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Disambiguation of Terminology 

In order to avoid confusion regarding the use of certain terminology in this thesis, some 

definitions have been provided. 

 

1. Drug uptake and Drug accumulation 

Drug uptake refers to the specific process of movement of drugs from the extracellular 

environment into the intracellular matrix, be it by passive or active mechanisms.  

Drug accumulation refers to the built-up intracellular content of a drug. This 

accumulation is the net effect of drug uptake, efflux and enzymatic conversion processes.  

Steady –state drug accumulation refers specifically to the achievement of equilibrium 

between drug uptake and efflux process such that an extension of the incubation period 

does not result in a further increase in intracellular accumulation.   

 

2. Diffusion and Facilitated diffusion 

Diffusion is defined as the passive process of movement of molecules down a 

concentration gradient, from a region of high concentration to a region of low 

concentration of the compound. 

Facilitated diffusion refers to the specific transport process where special transport 

proteins (ie. carrier proteins and ion channels) assist molecules to transverse a biological 

membrane. This is similar to passive diffusion in the way it does not require the spending 

of metabolic energy.  
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3. Drug resistance and Phenotypic drug resistance 

Drug resistance generally refers to decreased drug susceptibility that is brought about by 

either genotypic or phenotypic changes. 

Phenotypic drug resistance refers to the reversible phenomenon where decreased drug 

susceptibility is not the result of genetic mutations. Such drug tolerance is mediated by 

the physiological state of dormancy and full susceptibility is usually restored upon the 

resumption of bacterial growth.  
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1.1 Tuberculosis: The Global Phenomenon 

In 2009, it was estimated that there were 9.4 million incident cases of tuberculosis (TB) 

infections and 1.7 million tuberculosis-related deaths worldwide (240). Despite the availability of 

effective treatment options since the 1950s, and the implementation of well-structured treatment 

programs, the TB epidemic is not being controlled. Frontline anti-tuberculous drugs have 

gradually become ineffective because of the increasing incidence of resistance. Multidrug-

resistant TB (MDR-TB) is a difficult-to-treat form of M. tuberculosis that fails to respond to the 

two most effective first-line anti-tuberculous drugs, rifampicin and isoniazid. The World Health 

Organization (WHO) estimated that in 2009, around 5% of all new tuberculosis cases of 

infections involved MDR-TB (241). Strains that combine MDR with additional resistance to 

fluoroquinolones and at least one injectable drug have been appropriately named extensively 

drug-resistant tuberculosis (XDR-TB). The burden of tuberculosis on global health has pushed 

the research community into focusing efforts on the development of new vaccines, diagnostics 

and chemotherapy against Mycobacterium tuberculosis, the causative agent.  

The TB pathology is diverse, generating different types of lesions, containing several micro-

environments each harboring metabolically distinct bacterial sub-populations, some of which are 

not effectively killed by most existing drugs (148). This drug tolerance phenomenon typical of 

tuberculosis has been coined ‘phenotypic drug resistance’ (198), and is partly attributed to the 

pathogen’s ability to remain sequestered in macrophages and other stress-inducing micro-

environments in a non-replicating state of persistence (Figure 1) (42). These dormant bacilli are 

primarily responsible for the persistent and latent forms of the disease, but retain the potential to 

resume growth and produce an active infection, making them a critical target population of 

antimycobacterial agents (42, 238, 239). 
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The development of new antimycobacterials active against dormant cells and resistant strains is 

in need of novel drug targets. The failure of existing chemotherapeutic options to control the TB 

epidemic can be attributed in part to sub-therapeutic concentrations at the site of action (113). 

The longer a pool of bacteria is exposed to sub-inhibitory levels of an antimicrobial agent, the 

more likely the emergence and selection of resistant clones becomes (49). This has prompted 

researchers and drug discovery experts to turn to strategies which would potentiate existing 

therapeutics by increasing their intracellular levels through the use of small molecule inhibitors 

against efflux pumps (129). 

The cell envelope of mycobacteria is notorious for being several-fold less permeable to 

chemotherapeutic agents when compared to functionally similar cell walls of other bacteria (105). 

The knowledge of drug transport pathways could assist in the successful design of novel 

chemotherapeutic combinations against M. tuberculosis. Figure 2 illustrates the various transport 

processes that take place across the mycobacterial outer membrane. In this introduction section, 

we review the current understanding of the various influx and efflux pathways in mycobacteria 

while focusing our attention on details specific to M. tuberculosis. The function and expression 

of transport proteins such as porins, drug importers and efflux pumps are summarized and their 

respective influence on the drug-resistant and non-replicating persistent states is highlighted. 

Collectively, the literature data compiled here show that M. tuberculosis and other mycobacteria 

have evolved several intrinsic and adaptive mechanisms to increase their level of tolerance 

towards xenobiotic substances, by preventing or minimizing their entry: (i) natural or intrinsic 

resistance mediated by the thickened highly hydrophobic and waxy envelope; (ii) reduced 

permeability resulting from physiological adaptations under unfavorable environmental 

conditions; (iii) drug-induced resistance acquired via increased expression of various classes of 
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efflux pumps; and (iv) genetically encoded resistance conferred by mutations in efflux 

complexes.  
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Figure 1 Illustration of a classic tuberculous granuloma with a caseous centre that can be found 

in both actively- and latently-infected patients. M. tuberculosis in such granuloma can be found 

intra-cellularly within macrophages or extra-cellularly. Graphic representations are not drawn to 

scale. 

 

 

Figure 2 Mechanisms of drug influx and efflux across the mycobacterial outer membrane. 

Arrows (↑ and ↓) indicate directions of drug transport. Solid lines represent influx pathways, 

whereas dashed ones represent efflux pathways.  
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1.2 Antituberculosis Chemotherapy 

Despite the availability of antituberculosis for over 50 years, this infectious disease remains one 

of the deadliest known to mankind. Treatment is difficult, and requires the co-administration of 

multiple antibiotics over long periods of time. Since the 1980s, short-course 6-month treatment 

regiments that involve the use of isoniazid, rifampicin, ethambutol and pyrazinamide have been 

widely effective at treating tuberculosis infections. Second-line agents such as fluoroquinolones, 

thioamides and aminoglycosides have been made available for the treatment of MDR-TB. Non-

compliance and mismanagement of chemotherapy has led to the development of drug resistant 

infections in patients. DOTS, or Directly Observed Therapy-Short Course, is the recommended 

treatment strategy for TB control. It encompasses several components which include a regular, 

uninterrupted supply of high quality drugs and direct observations during treatment. 

1.2.1 Fluoroquinolones 

Fluoroquinolones are fluorine-containing nalidixic acid-derivatives put into clinical practice in 

the 1980s as second-line agents for the treatment of tuberculosis infections. Fluoroquinolones are 

now considered a mainstay of treatment for patients with MDR- and XDR-TB, delivering better 

clinical outcomes than other drug classes (39, 41). The pharmacophore that is characteristic of 

quinolones with antibacterial activity is 4-pridone-3-carboxylic acid with a ring at the 5 or 6 

position (Figure 3) (210). Since discovery, several generations of fluoroquinolones have been 

developed for treatment of not only tuberculosis, but also other forms of bacterial infections of 

the respiratory, gastrointestinal and urinary tracts (Figure 4). In vitro efficacy of 

fluoroquinolones against M. tuberculosis generally ranges between 0.2 – 2 µg/ml. In humans, 

fluoroquinolones are absorbed readily following once-daily dosing by oral administration, and 
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display effective distribution into lungs and alveolar macrophages. When first-line anti-

tuberculosis agents are administered in combination with fluoroquinolones against intra-

macrophage M. tuberculosis, greater bactericidal activity is recorded than with the individual 

drugs alone (83). Reported adverse effects of fluoroquinolones in humans include tendonitis, 

photosensitivity, seizures, QT interval prolongation, hepatitis and renal dysfunction  (9). 

DNA topoisomerases make up a set of ubiquitous enzymes that maintain chromosomes in their 

appropriate topological state. These enzymes are responsible for regulating DNA supercoiling 

during DNA replication and transcription. In majority of the species, fluoroquinolones target 

DNA gyrase (topoisomerase II) and topoisomerase IV, bringing about cell death. In M. 

tuberculosis, the A and B subunits of DNA gyrase are encoded for by gyrA and gyrB 

respectively. A conserved region of gyrA and gyrB, called the quinolone-resistance-determining 

region (QRDR) has been found to be most critical for the development of fluoroquinolone 

resistance in M. tuberculosis (224). Clinical- and laboratory-selected isolates on M. tuberculosis 

habour mutations of gyrA that are largely clustered at codons 74, 83, 87, 90, 91 and 94 (249). 

gyrB mutations in isolates are relatively infrequent. High levels of resistance are associated with 

at least 2 mutations in gyrA or concomitant mutations on gyrA and gyrB (224).  It has been noted 

that the frequency of mutations conferring fluoroquinolone resistance varies with the selection 

pressure (incubation concentration). Increasing fluoroquinolone concentrations reduce the 

variety of occurring mutations to a few high-level mutations (251). Decreased cell wall 

permeability is suspected to influence fluoroquinolone resistance in M. tuberculosis. The 

rv2686c-rv2687c-rv2688c operon encodes an ATP-binding cassette transporter whose efflux 

activity confers resistance to ciprofloxacin, amongst other fluoroquinolones, to M. smegmatis 
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(174). It has not yet been established how this operon is elaborated in the development of clinical 

resistance to fluoroquinolones.  

Evidence is recently being presented for the use of fluoroquinolones as a first-line agent to 

reduce the total course of anti-tuberculosis therapy. Briefly, moxifloxacin has shown to be 

superior to ethambutol at early bactericidal killing and achieves significantly more sputum 

conversions to negative at the critical 8-week mark (54, 223). Concern that the wide-spread use 

of fluoroquinolones as a first-line agent will result in the high prevalence of fluoroquinolone-

resistant tuberculosis still remains. However, several studies have shown that the prevalence of 

fluoroquinolone-resistant tuberculosis stays low despite wide-spread fluoroquinolone use (223). 

Current anti-tuberculosis chemotherapy is a 6-month long process. Phase III trials testing the 

effectiveness of 4-month first-line regiments containing moxifloxacin are in progress.  
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Figure 3 The required pharmacophore of quinolones (210). 

 

 

 

 

 

Figure 4 The chemical structures, as provided by Hayashi et al., of some of the more common 

first, second, third and fourth-line fluoroquinolones that have entered clinical practice. Some 

have since been removed because of toxicity issues or have been discontinued by their 

manufacturers. The drugs most frequently prescribed fluoroquinolones today consist of Avelox 

(moxifloxacin), Cipro (ciprofloxacin), Levaquin (levofloxacin) (92). 
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1.3 The Mycobacterial Outer Membrane 

The cell envelope of mycobacteria is structurally distinct from that of both Gram-positive and 

Gram-negative bacteria. The entire mycobacterial cell envelope can be broken down into two 

main structural components: cell membrane and cell wall. The outer leaflet of the cell wall is 

composed of mycolic acids which are covalently linked to the arabinogalactan-peptidoglycan 

complex of the inner leaflet. Mycobacteria are capable of producing a multitude of mycolic acids 

with varying lengths and modifications depending on species, strain and growth conditions (15, 

32, 59). It is widely believed that the unusually high mycolic acid content, combined with a 

variety of other intercalated lipids, contributes to the wall’s limited permeability (14). The 

mycobacterial cell wall is also composed of phosphotidyl-myo-inositol derived glycolipids such 

as lipomannan and lipoarabinomannan which have potent immunomodulatory activities (147). 

The mycolyl-arabinogalactan-peptidogalactan complex is acknowledged as being a more 

efficient permeability barrier than cell walls of any other class of bacteria (105). Jarlier and 

Nikaido attempted to clearly define the mycobacterial permeability barrier to hydrophilic 

molecules by studying the uptake kinetics of small nutrient molecules (glucose, glycine, leucine 

and glycerol) in M. chelonae (106). The permeability coefficients (P) for these nutrients were 

found ranging from 1.4 to 62 nm/s; specifically 2.8 nm/s for glucose. Km values of the overall 

transport of glucose and glycerol were 1,000µM and 200µM respectively as measured in the 

same study. In comparison, a different study had measured a permeability coefficient of glucose 

for E.coli (1.4 x 10
5 

nm/s) that was about five orders of magnitude higher (55). It should be noted 

that the precise values of permeability differ among different species of mycobacteria. M. 

chelonae, being one of the most drug-resistant species, has a cell wall that is about one to two 

orders of magnitude less permeable than M. tuberculosis, M. smegmatis and M. phlei (55, 105). 
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This intra-species difference in cell wall permeability may be attributed to variability in its 

content and organization. Detailed structural and quantitative analysis has revealed a higher 

mycolate-to-peptidoglycan ratio in M. leprae than M. tuberculosis; peptidoglycan coverage by 

mycolate was estimated at 80% and 63% for M. leprae and M. tuberculosis respectively (25). 

This unique cell wall composition and organization is believed to render mycobacteria less 

susceptible than other bacterial pathogens to various antibiotic classes (33, 105). Several 

pathways exist for compounds to cross this permeability barrier. It is assumed that hydrophobic 

compounds should be able to penetrate cell walls by simply dissolving into and through the 

lipophilic cell wall unassisted, whereas the influx of hydrophilic compounds is largely facilitated 

by porins, which are water-filled open channels that span the cell wall (166). It appears that the 

mycobacterial plasma membrane plays a limited role in pathogenicity and maintenance of the 

influx-efflux equilibrium (59, 60).
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1.3.1 Passive Diffusion of Hydrophobic Molecules 

In principle, antimicrobial agents of the more lipophilic classes such as the rifamycins, 

macrolides and fluoroquinolones are more likely to diffuse into and through the lipid-rich 

environment of the mycobacterial cell wall in order to transverse its depth (33). This passive 

transport has been coined “hydrophobic (or lipid) pathway”, characterized by the nature of the 

interactions between structural lipids and small molecules (136). However, lipophilic agents are 

presumably slowed down by the low fluidity and unusual thickness of the cell wall (124). It has 

been demonstrated that lipophilic derivatives within single drug classes are more active against 

mycobacteria when compared to their hydrophilic counterparts (33). This was more recently 

supported by evidence from a comparison of Minimum Inhibitory Concentrations (MIC) 

between hydrophilic and hydrophobic fluoroquinolone analogs. Moxifloxacin (cLogP 0.6) was 

32-fold more effective than norfloxacin (cLogP -0.1) at inhibiting the growth of M. smegmatis 

(61). Brennan et al postulated that an increase in the rate of drug penetration resulting from an 

increase in incubation temperature is also evidence of the predominant role of the hydrophobic 

pathway or passive diffusion in drug penetration  (33).  
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1.3.2 Active Efflux Processes 

1.3.2.1 Influx transporters 

Based on M tuberculosis genome sequence analysis, Braibant et al. have concluded that there is 

an under-representation of importers in M. tuberculosis, with the exception of phosphate 

importers, when compared to other bacterial species such as E. coli and B. subtilis (31). In 

addition, the ratio of exporter-to-importer proteins, based on sequence homology, is markedly 

higher in M. tuberculosis than in E. coli. This observation may again contribute to the reduced 

uptake of small molecules by M. tuberculosis bacilli. Though bacterial ABC transporters can 

mediate both influx and efflux, only their efflux activity has been observed and characterized in 

mycobacterial species (131). Identified substrates for ABC influx activity thus far include sugars, 

amino acids, metals and anions (64). 

 

1.3.2.2. Efflux Pumps  

1.3.2.2.1 Resistance Phenotype I – Natural Abundance 

The presence of active multi-drug efflux pumps is also thought to play a significant role in the 

development of natural and induced drug resistance in mycobacteria. In 1998, the complete 

genome sequencing of M. tuberculosis revealed at least 14 members of the Major Facilitator 

Family (MFS) and the ATP-binding Cassette (ABC) transporter family (52). In 2000, analysis of 

transcriptional clusters and homology searches of transporters from other organisms allowed for 

the reconstitution of 26 complete and 11 incomplete ABC transporters from the various subunits 

encoded for by the complete M. tuberculosis genome (31). In the same study, it was concluded 
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that ABC transporters account for 2.5% of the genome of M. tuberculosis. This compares with 5% 

of the entire E. coli genome that encodes for 69 ABC transporters (122). ATP-binding cassettes 

(ABC), the major facilitator superfamily (MFS), the multidrug and toxic compound extrusion 

(MATE) family, the small multidrug resistance (SMR) family and the resistance-nodulation-

division (RND) superfamily are the five families of bacterial drug efflux pumps that have been 

categorized thus far (95, 119, 120). The mechanisms of efflux-mediated drug resistance in 

bacteria have been well-studied and reviewed over the past decade, and are only briefly 

summarized here. 

ABC transporter proteins are known for coupling ATP-hydrolysis with the alternation between 

outward- and inward-facing conformations to bring about substrate transport (99).
 
MFS and 

RND transporters, on the other hand, are classified as secondary active transporters because they 

are driven by the proton-motive force (PMF) (142). SMR transporters are the smallest multidrug 

resistant proteins, with lengths of about a 110 amino acids only. Despite the general correlation 

between genome size and the number of ABC transport systems, the M. tuberculosis genome 

encodes fewer ABC systems per megabase than any other organism surveyed in a 

comprehensive analysis of the solute transport systems within the genomes of 18 prokaryotes. It 

was suggested that the relative abundances of ABC and MFS transporters reflects the overall use 

of energy coupling mechanism in each organism. M. tuberculosis, being a strict aerobe, is more 

dependent on PMF-type secondary transporters as compared to fermentative organisms that 

depend on substrate level phosphorylation to generate ATP. Also worth noting is the largest 

RND-family representation in M. tuberculosis compared to the other prokaryotes surveyed. 

These are believed to play a significant role in the extrusion of lipids and other cell envelope 

components (176). 
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Several ABC, MFS, RND and SMR efflux pumps of M. tuberculosis and other mycobacteria 

have been characterized as antibiotic transporters (Table 1). TetV and LfrA, which have been 

identified in M. smegmatis as drug transporters but not in M. tuberculosis have also been 

included in the table. Some of these putative pumps have been associated with reduced 

mycobacterial susceptibility to agents such as isoniazid, tetracycline, fluoroquinolones and 

aminoglycosides (67). Differences in efflux pump expression between mycobacterial species are 

important because they offer insights into the acquisition of drug resistance. One study which 

investigated flux and efflux rates of pyrazinamide and pyrazinoic acid, respectively, revealed that 

the efflux rate for M. smegmatis is 900 fold higher than for M. tuberculosis when no significant 

variability was noticed in flux rates. It is not known whether this difference is due to variability 

in the type or expression level of pumps present in both species but it potentially explains the 

innate resistance of M. smegmatis to pyrazinamide as compared to the relative susceptibility of 

M. tuberculosis (252). 
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Table 1 Summary of several known mycobacterial efflux pumps, their drug substrates and their energy sources. 

Pump Gene 
Transporter 

Family 
Known Substrates Known Inhibitors Energy Source Mycobacteria References 

- 

rv2686c-

rv2687c-

rv2688c 

ABC Fluoroquinolones 

Verapamil 

Reserpine 

CCCP 

ATP M. tuberculosis (174) 

- rv1218c ABC 

Novobiocins 

Pyrazolones 

Pyrroles 

Verapamil 

Reserpine 

CCCP 

ATP M. tuberculosis (8) 

- rv0194 ABC 

Ampicillin 

Chloramphenicol 

Streptomycin 

Novobiocin 

Reserpine ATP M. tuberculosis (61) 

DrrAB drrA-drrB ABC Doxorubicin 
Verapamil 

Reserpine 
ATP M. tuberculosis (46) 

MmpL7 mmpL7 RND Isoniazid 
Reserpine 

CCCP 
PMF M. tuberculosis (175) 

Tap rv1258c MFS 
Tetracycline 

Rifampicin 
Piperine PMF 

M. tuberculosis 

M. fortuitum 
(4, 188, 211) 

P55
b
 rv1410c MFS 

Rifampicin 

Clofazimine 

Aminoglycosides 

Tetracycline 

CCCP 

Valinomycin 
PMF 

M. tuberculosis 

M. bovis 
(189, 212) 
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JefA rv2459 MFS 

Isoniazid 

Ethambutol 

Streptomycin 

Verapamil 

CCCP 
Not speculated M. tuberculosis (88) 

EfpA rv2846c MFS Not determined - PMF 

M. tuberculosis 

M. smegmatis 

M. leprae 

M. avium 

(67, 75) 

IniA
a 

iniA - 
Isoniazid 

Ethambutol 
Reserpine Not speculated M. tuberculosis (51) 

Mmr rv3065 SMR Not determined CCCP PMF M. tuberculosis (68,77) 

Tet(V) tet(V) MFS Tetracycline CCCP PMF 
M. smegmatis 

M.fortuitum 
(68) 

LfrA lfrA MFS 
Fluoroquinolones 

Doxorubicin 
CCCP PMF M. smegmatis 

 

(125)  

 

a 
IniA is itself a pump component that hypothetically participates in the formation of a multimeric structure with a central pore. 

b
The function of P55 is connected to P27, a proposed glycolipid transporter (76). Both proteins are encoded in the IprG-Rv1410c operon of M. tuberculosis (26). 

Abbreviations: ABC: ATP-Binding Cassette transporters; MFS: Major Facilitator Superfamily transporters; RND: Resistance-Nodulation-Cell Division 

transporters; ATP: Adenosine triphosphate; CCCP: Carbonyl cyanide m-chlorophenyl hydrazone, PMF: Proton Motive Force 
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1.3.2.2.2. Resistance Phenotype II – Induction of expression 

Studies have shown that the exposure to various anti-tuberculous drugs can trigger increased 

expression of selected efflux pumps leading to drug-mediated phenotypic resistance. Two 

possible mechanisms are thought to contribute to higher expression of pump-encoding genes: 

transitory induction by the substrate of these pumps and mutations in the promoter and 

regulatory region leading to increased or constitutive expression (67, 159).  The latter is 

discussed in the next section. The study of kill kinetics of isoniazid against wild-type M. 

tuberculosis revealed that while rapid concentration-dependent killing was seen upon initial drug 

exposure, subsequent re-growth was observed over a wide range of isoniazid concentrations 

which was caused by the development of isoniazid-resistant sub-populations. Susceptibility of 

this subpopulation to isoniazid was restored in the presence of an efflux pump inhibitor for 98% 

of the resistant clones (69), suggesting that the majority of the isoniazid-resistant population 

represents efflux pump-mediated phenotypic drug tolerance, though genetic mutations in efflux 

pump-encoding genes were not formally excluded in this study. More recently, it was established 

that susceptible and rifampicin mono-resistant M. tuberculosis strains develop a resistance to 

isoniazid after 3 weeks that is could be reduced by means of efflux pump inhibitors (132). Such 

induction of resistance to isoniazid has been associated with the overexpression of efflux pump 

genes such as mmpl7, p55, efpA, mmr, Rv1258 and Rv2459 (132, 195, 244). In the presence of 

isoniazid, wild-type M. bovis BCG and M. tuberculosis increased the expression of iniA by up to 

10-fold (51). Though it does not appear to directly transport isoniazid out of the cell, this 

predicted transmembrane protein has been postulated to serve as a pump component that 

participates in the formation of a multimeric structure containing a central pore.  
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Gupta et al. demonstrated the overexpression of 10 efflux pump genes in MDR strains following 

exposure to a range of anti-tuberculous drugs. The simultaneous expression of Rv2459, Rv3728 

and Rv3065, for example, has been associated with resistance to the specific combination of 

isoniazid and ethambutol, while Rv2477 and Rv2209 overexpression has been associated with 

ofloxacin stress (88).  One MDR clinical isolate bearing defined mutations in katG and rpoB 

displayed rv1258c and Rv1410c overexpression upon rifampicin or isoniazid exposure, and 

Rv1819c overexpression upon isoniazid exposure alone (107). 

Interestingly, evidence exists for the reduction in susceptibility of M. tuberculosis to one drug 

upon exposure to another. The exposure of rifampicin-resistant strains to rifampicin resulted in a 

reduction in susceptibility to ofloxacin which could be restored by the introduction of efflux 

pump inhibitors (130). One could hypothesize that the up-regulated efflux pumps are 

promiscuous in their activity and that the cyclic nature of both drugs facilitates recognition by 

similar pumps.    
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1.3.2.2.3 Resistance Phenotype III – Efflux pump mutations 

Drug efflux is typically described as an intrinsic or natural resistance mechanism in bacteria. 

However, mutations in efflux pump genes and their regulator sequences can lead to increased 

efflux activity and, hence, enhanced drug resistance. Such mutational events either cause an 

inducible increase in pump expression upon antibiotic exposure, or the constitutive expression of 

otherwise tightly controlled pump genes above basal levels (144). Several such mutations have 

been documented in various bacterial systems, particularly in Gram-negative species (108, 140, 

237). Often, the mutations are stable point mutations that reduce the DNA binding affinity of 

particular repressors for their target regulatory region within promoters and lead to constitutive 

expression of efflux components (144).   

In M. tuberculosis, mutations in the bioactivating enzymes or in the target of rifampicin, 

isoniazid, pyrazinamide and the fluoroquinolones cannot explain all clinically observed 

resistance. For example, approximately 20 to 30% of INH-resistant M. tuberculosis isolates do 

not have mutations in any of the known genes associated with INH resistance (187). Similarly, 

approximately 5% of clinical RIF-resistant M. tuberculosis isolates do not harbor mutations in 

the RIF resistance-determining region of the rpoB gene (226). A number of studies based on gene 

expression profiling and efflux pump inhibition point towards the role of active extrusion in 

genotypic drug resistance (131). However, due to incomplete understanding of efflux substrate 

specificities and regulatory mechanisms, the distinction between expression induction by the 

substrate resulting in transient tolerance versus DNA mutations leading to inherited up-

regulation at the transcriptional level has not been clearly made in most cases. The growing pool 

of whole genome sequences from clinically resistant isolates provides a unique opportunity to 

elucidate some of the mechanisms underlying efflux-mediated drug resistance in M. tuberculosis. 
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Recently, La Rosa et al identified mutations in M. tuberculosis MmpL3, a putative transporter 

with sequence homology to the RND super-family of efflux pumps, which confer resistance to a 

range of anti-tuberculous small molecules of different chemical scaffolds (115). Similar results 

have been obtained recently by our and other groups (85, 222). Surprisingly, increased efflux 

does not appear to be the mechanism by which resistance to the respective small molecules is 

conferred, calling for caution when assuming protein function from sequence homology. 
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1.3.3 Mycobacterial Porins  

Porins are large water-filled channels in both Gram –positive and –negative bacteria that allow 

for the penetration of small hydrophilic molecules without requiring energy consumption. The 

specificity of these diffusion channels can vary. OmpF of E. coli, for instance, has no substrate 

specificity except for being weakly cation –selective. OprB, OprP and OprO of P. aeruginosa, on 

the other hand, specifically transport glucose, phosphate and pyrophosphate respectively (22). 

Often believed to be static and permanently –open pores, these channels can switch between 

open and closed conformations, and even occupy a prolonged inactivated state (no conductance). 

Such gating activity and inactivation is regulated by a number of physical and chemical 

parameters. In doing so, porins are believed to play a major role in modulating outer membrane 

permeability and, hence, antibiotic susceptibility of bacteria in response to various environmental 

stimuli (72). Substrates that transverse the outer membrane via porins then diffuse across the 

periplasm to be taken up across the inner membrane by hypothetical transporter proteins into the 

cytosol (162). The mechanisms of inner membrane transport are still being elucidated. Figure 5 

provides illustration of this uptake pathway. Porin channels caters to a limited range of 

compounds since channel diameters at the narrowest point define the exclusion limit, and 

parameters such as channel length and the number of open pores determine the velocity of 

transport (230). As demonstrated by studies in E.coli, diffusion rates through porins are further 

affected by the charge, hydrophobicity, and size of the solute (166, 167, 169). Several types of 

porins have been identified and studied in Gram-negative and some Gram-positive bacteria. To 

date, two putative classes of porins have been identified and characterized in mycobacteria; they 

are MspA-like and OmpA-like porins in M. smegmatis and M. tuberculosis respectively (61). 

 



23 
 

Figure 5 Model for porin –mediated uptake through the mycobacterial cell envelope. Porins (in 

blue) in the open state allow substrates to transverse the outer membrane. Hypothetical 

transporter proteins (in green) take substrate molecules from the periplasm across the inner 

membrane into the cytosol. The figure is not drawn to scale.  

 

 

 

 

 

 

1.3.3.1 MspA of M. smegmatis
 

MspA was the first porin of its class identified in a mycobacterial species, with proven 

oligomerization and channel-forming activity in vitro and when cloned in E. coli (164).
 

Subsequent sequencing of the M. smegmatis genome revealed three more porin genes with 

homology to mspA, namely mspB, mspC and mspD (219). Numerous studies have documented 

MspA-enabled transport of hydrophilic solutes and drug molecules across the cell wall of M. 

smegmatis. Table 2 summarizes drug transport specificities of various M. smegmatis porins and 

their impact on drug uptake and MIC. The studies show that porin deletion is clearly linked to 

increases in MICs of various antibiotics. In several instances, this increase in MIC has been 

associated with reduction in drug uptake. Furthermore, heterologous expression of M smegmatis 

mspA accelerated the growth and increased the susceptibility of M. tuberculosis and M. bovis 

BCG to various classes of antibiotics (136). This establishes the relationship between porin 

function, small molecule and nutrient uptake, and drug susceptibility in M. smegmatis.  

Outer membrane 

Inner membrane 

Periplasm 

Closed / inactive porin Open porin 

Transporter protein 
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Porins are only minor proteins in the mycobacterial cell wall unlike enterobacterial porins which 

are the most abundant proteins in the cell (136, 230). Direct counting of stained pores by electron 

microscopic analysis revealed a 45-fold lower number of MspA pores on the outer membranes of 

M. smegmatis when compared to pore counts of the outer membranes of Gram-negative bacteria 

(161). The octameric MspA porin consists of two consecutive hydrophobic β-barrels, a more 

hydrophilic globular rim domain, and a single central channel of 9.6nm in length. This porin is 

largely embedded into the cell membrane of M. smegmatis with the embedded region including a 

portion of the hydrophilic rim domain (135). Crystal structures revealed that the constriction zone 

of MspA is rich in aspartate residues. Together with the high number of negative charges in the 

vestibule and channel interior, this could explain the cation preference of MspA (160). 

1.3.3.2 OmpATb of M. tuberculosis 

OmpATb was the first porin protein suggested for M. tuberculosis. Encoded by the rv0899 gene, 

the name OmpATb was coined because of its homology to the E.coli porin OmpA (207).
 
A study 

by Teriete et al showed that Rv0899 does not form a transmembrane β-barrel, but a mixed α/β 

globular structure encompassing two independently folded modules which correspond to the B 

and C domains of the protein. The core of this B domain appears hydrophobic while its exterior 

is both polar and acidic (228). Altogether, this proposed structure for OmpATb makes it unlikely 

for it to function as a porin. More recent structural elucidation by Yang et al. suggests that 

OmpATb forms a heptameric ring complex, driven by interactions between the α/β structured 

monomers, and is hypothetically capable of inserting itself into a biological membrane and form 

channels (246), allowing ion diffusion as observed in vitro. This model is based on NMR data of 

minor oligomeric populations of OmpATb in solution, and lies in contrast with available data 

suggesting the lack of functional porin assembly in vitro (217).  
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OmpATb plays a key role in conferring M. tuberculosis the ability to survive under acidic 

conditions. Deletion mutants in ompATb exhibit a significant reduction in permeability to several 

hydrophilic molecules and impaired ability to grow at reduced pH. The role of OmpA in acid 

resistance was reinforced by the observation of increased ompATb transcription levels in M. 

tuberculosis growing within macrophages, given that vacuole acidification is known to occur in 

infected phagocytes (196).
 
More recent functional studies revealed no obvious porin activity of 

OmpATb. Rather, chemical analysis of low-pH M. tuberculosis culture filtrates showed that 

OmpATb is involved in rapid ammonia secretion capable of neutralizing medium pH and 

restoring exponential bacterial growth. This is further substantiated by the discovery that 

Rv0899-like proteins are present predominantly in bacteria with functions in nitrogen fixation 

and metabolism (139). OmpATb-mediated ammonia extrusion may be one of the multiple 

adaptations of M. tuberculosis to acidic environments and, on its own, is not critical for virulence 

in mice (217). The porin function of OmpATb in M. tuberculosis clearly remains a controversial 

issue. 

1.3.3.3 Other porins of M. tuberculosis 

MspA is understood to share its amphiphilic beta-barrel structure and potential to be secreted 

with outer membrane proteins (OMPs) of gram-negative bacteria. Based on these properties, 

bioinformatics approaches have led to the prediction of several OMPs of M. tuberculosis (133, 

218). One such attempt has led to the identification of Rv1698 and Rv1973. Both proteins have 

been proven to localize to the outer membrane (218). Since then, the channel-forming activity of 

Rv1698 has been successfully characterized; Rv1698 expression has proven to restore sensitivity 

of MspA-deletion mutants of M. smegmatis to ampicillin and chloramphenicol, and complement 

the permeability defect of the mutant for glucose. Single homologues of Rv1698 are found only 
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in mycolic-acid containing bacteria belonging to the suborder Corynebacterineae of the 

Actinomycetales, which includes mycobacteria. It therefore represents the first protein identified 

as specific for this suborder (214). Orthologous porins PorM1 and PorM2 have since been 

characterized in M. fortuitum  (209). 

Interestingly, M. tuberculosis does not express the Msp-like porins that are found in faster-

growing M. smegmatis (161). This and other significant differences between the pathogenic and 

saprophytic mycobacterial species call into question the appropriateness of M. smegmatis as a 

model organism for anti-tuberculosis drug discovery and virulence studies of M. tuberculosis 

(14).  

1.3.3.4 Porin-mediated Drug Uptake 

Table 3 summarizes several biophysical characteristics of mycobacterial and other bacterial 

porins. Single-channel conductance often provides an estimation of channel diameters of porins, 

and gives an indication of the relative mobilities of solutes through them. It can be observed 

from Table 3 that some proportionality exists between channel width, channel conductance and 

size exclusion limits. If OmpATb of M. tuberculosis does indeed form functional porin units, this 

trend would place its limit in the approximate range of 600 – 800Da. This implies that the 

rifamycin and macrolide classes are too large to utilize OmpATb to transverse the cell wall. 

Danilchanka et al attempted to illustrate the fit of a drug when oriented along their longest axes 

within the MspA porin constriction zone by using 3D structure visualization and surface 

representations of structural models of antibiotics. They predicted that ampicillin, 

chloramphenicol and norfloxacin are able to utilize this porin molecule, as opposed to antibiotics 

such as erythromycin, kanamycin and vancomycin (61). 
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The specific role played by porins in intracellular drug accumulation within other bacterial 

species has been well studied. The outer membrane porin protein OprD of Pseudomonas 

aeruginosa has been directly implicated in the influx of imipenem; a staggering 98% of 

imipenem- and meropenem-resistant P. aeruginosa clinical isolates have been identified as being 

negative for OprD porin production (155). Similarly, studies on expression levels of the porin 

protein OmpF in clinical isolates of E. coli have linked the decreased expression levels of this 

porin with resistance to quinolones (109, 225). In such enterobacterial pathogens, the reduction in 

the number of functional porins per cell is due to a decrease or complete shutdown of synthesis, 

or the expression of an altered porin, and that these changes bring about decreased susceptibility 

to antimicrobials and favor the acquisition of additional mechanisms of bacterial resistance (65). 

Changes in the expression levels of functional porins should therefore be viewed as potential 

contributing factors in the development of resistance in mycobacteria.  

In conclusion, porins appear to be less varied and less abundant in mycobacteria than in other 

bacterial families such as the enterobacteriaceae, though the possibility remains that we have 

only detected a small fraction of the total mycobacterial porin panel. The wide range of 

metabolic and physiologic adaptations seen in M. tuberculosis, combined with the generally 

complex regulation of porin expression in other species, suggest that M. tuberculosis may have 

likewise exploited porin modulation as a strategy to fence itself off from harmful small 

molecules.  
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Table 2 Summary of specific drug transport activities of mycobacterial porins. Information is 

limited to Msp porins of M. smegmatis. In all instances, porin-deletion mutants were used to 

determine drug transport specificity; the extent of dependence of individual drugs on porin 

transport is exemplified by fold-reduction in drug uptake and fold-increase in MIC. 

 

 

Table 3 Biophysical characteristics of OmpATb from M. tuberculosis and porins from other 

selected bacterial species. Exclusion limits were determined based on the uptake of saccharides 

of varied weight. 

 

 

 

Species 
Deleted 

Porin 
Drug 

Fold-reduction 

in Drug Uptake 

Fold-increase 

in MIC 
Ref. 

M. smegmatis 

 

MspA & C 

double 

deletion 

Ampicillin 

Cephaloridine 

Chloramphenicol 

Norfloxacin 

- 

- 

1-2 

4 

16 

8 

4 

2 

(59) 

MspA 

Ampicillin 

Cephaloridine 

Vancomycin 

- 

9 

- 

16 

8 

10 

(220) 

MspA Cephaloridine 9 - (219) 

Species Porin 
Channel Width 

(nm) 

Single-Channel 

Conductance (nS) 

Exclusion 

Limit (Da) 
Ref. 

M. tuberculosis OmpATb 1.4 - 1.8 0.7 Undetermined (207) 

M. smegmatis MspA 2.2 – 2.4 4.6 Undetermined (79,) 

E. coli 
OmpA 

OmpF 

0.6 - 0.7 

1.2 

0.14 (at 37°C) 

0.82 
550* 

(22, 156, 

200) 

P. aeruginosa OprF 2.2 5 6000 (20, 90) 

S. typhimurium Not specified 1.4 2.3 700 (21, 156) 
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1.3.3.5 Polyamines 

Polyamines are ubiquitous polycationic molecules found in all living organisms. The four most 

common polyamines are putrescine, cadaverine, spermidine and spermine (Figure 6). Larger 

linear and branched-chain polyamines have been detected in a variety of cell types. Apart from 

being water-soluble, all polyamines are positively charged at physiological pH.  

 

1.3.3.5.1 Biosynthesis and Excretion 

All cell types have the ability to synthesize putrescine, cadaverine and spermine. Spermidine 

production, however, appears to be limited to animals, plants and some species of fungi, archaea 

and bacteria (178). Polyamine biosynthesis begins with the conversion of arginine to ornithine. 

In mammals and fungi, ornithine decarboxylase converts ornithine to putrescine. An alternative 

pathway exists in micro-organisms and some plants where putrescine is formed via the 

production of agmatine. The cytoplasmically-located spermidine synthase transfers an 

aminopropylic group to putrescine, producing spermidine. Spermidine is then converted to 

spermine by spermine synthase by the addition of a second aminopropylic group (151). 

Cadaverine, on the other hand, is synthesized from lysine in a one-step reaction with lysine 

decarboxylase. These biosynthetic pathways have been illustrated in Figure 7. Polyamines can 

also be taken up from the medium. Polyamine uptake in E. coli has been found to take place both 

by energy-dependent and -independent absorption (221). 

In E. coli, the intracellular concentration of spermidine is believed to reach approximately 6mM, 

with 90% bound to RNA. Intracellular concentrations of putrescine, on the other hand, have been 

known to reach 20mM under normal conditions, with the potential to be further increased under 
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acidic conditions (16). Since only 40% of all intracellular putrescine is bound to nucleic acids, 

increased biosynthesis due to stimulation is believed to lead to excretion of the polyamine. 

Putrescine transporter PotE is also inducible and has been shown to facilitate both uptake and 

excretion processes. Putrescine excretion is suggested to facilitate survival under conditions of 

low pH and osmotic up-shock. Cadaverine is similarly excreted under acidic conditions via the 

membrane-bound lysine-cadaverine antiporter CadB (203).  

 

 

Figure 6 Molecular structures of the four key polyamines in animals, plants and micro-

organisms: spermidine, spermine, cadaverine and putrescine. 
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Figure 7 (A) The biosynthetic pathway of putrescine, spermidine and spermine as illustrated by 

Morgan et al (151). (B) The biosynthetic pathway of cadaverine. The enzymes indicated are as 

follows: (1) arginase; (2) ornithine decarboxylase; (3) arginine decarboxylase; (4) agmatinase; (5) 

agmatine deiminase; (6) N-carbamoylputrescine amidase; (7) S-adenosylmethionine 

decarboxylase; (8) spermidine synthase; (9) spermine synthase; (10) spermidine/spermine N
1
-

acetyltransferase; (11) polyamine oxidase; (12) lysine decarboxylase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 



32 
 

 

 

 

 

 

1.3.3.5.2 Functions 

Although it remains unclear what the specific roles of polyamines are, we know that they are 

necessary for optimal growth and replication of almost all cell types. In mammalian cells, 

polyamines influence transcription and translation, and perform as intracellular messengers. In 

plants and insects, polyamines are precursors and constituents for many compounds such as 

alkaloids and toxins respectively (151).  

The effects of four polyamines (spermine, spermidine, cadaverine and putrescine) on the activity 

of OmpC and OmpF have been documented. Electrophysiological techniques such as patch-

clamping have been used to study the modulation of these E. coli porins. These polyamines were 

shown to suppress channel opening, enhance channel closure as well as promote the inactive 

state (103). delaVega and Delcour explain that although the possibility of steric blocking of the 

open porin channel cannot be excluded, it is more likely that the binding of polyamines to sites 

within the transmembrane field brings about conformational changes in the protein that promote 

the prolonged occupancy of the closed state (71). The positive charge of polyamines is crucial for 

its mode of action given that their inhibitory effects are relieved at higher pH. Also, these small 

molecules exert their effects on pore proteins allosterically, by increasing the frequency of 

cooperative closures in trimeric OmpC and OmpF (71).  

Lysine 

 

Cadaverine 

CO2 

B 

(12) 
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Thus far, little data is available regarding the in vitro effects of polyamines on the uptake of 

antibiotics in E. coli. Spermidine has been shown to reduce norfloxacin and β-lactam diffusion 

through OmpF and cadaverine has been shown to reduce ampicillin susceptibility in E. coli (45, 

70, 202). Norfloxain uptake in E. clocae specifically is drastically altered in the presence of 

spermine and almost completely inhibited by high concentrations of the polyamine (45). We 

hypothesize that polyamines may therefore act as pore-modulators in the presence of porin-

utilizing antibiotics, and may reduce the overall penetration rate of these agents in mycobacteria 

as well. 

1.3.3.5.3 Induction 

Studies show that a decrease in pH stimulates cadA transcription and, hence, cadaverine 

production and excretion (16). It is now understood that the environmental sensor CadC binds to 

the promoter region, inducing the cadBA operon in E. coli. Researchers found that the addition of 

exogenous cadaverine allows wild-type E. coli cells to better survive a 30min exposure to pH3.6 

when compared to mutant cells expressing cadaverine-insensitive OmpC. Although long-term 

secretion of the polyamine leads to some neutralization of the acidic environment, cadaverine 

brings about a more rapid decrease in outer membrane permeability via enhanced porin closures. 

It has therefore been suggested that the excretion of cadaverine to inhibit porin-mediated 

chemoflux represents a novel mechanism that provides bacteria with the ability to survive acidic 

pH (203).  
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1.4 Phenotypic drug tolerance 

1.4.1 The NRP state  

Non-replicating persistence (NRP) is defined as the physiological state of bacteriostasis in 

addition to metabolic, chromosomal and structural changes in the bacilli that enable the 

conservation of energy (239). Sufficient evidence has emerged for long-term NRP of M. 

tuberculosis in the human host within tuberculous granulomas and necrotic lesions in pulmonary 

tissue.  Nutrient limitation and hypoxic conditions within granulomas trigger the shut-down in 

central metabolism that shifts subpopulations of bacilli to dormancy (81). Several in vitro models 

have been developed thus far to mimic these conditions of hypoxia and nutrient starvation (24, 

82, 238).
 
Studies have shown that the NRP state brings about phenotypic resistance to anti-

tuberculous agents, contributing to the challenge of effective disease control (247). Ofloxacin and 

the sulbactam-ampicillin combination, for example, have shown reduced activity on stationary-

phase cultures of M. tuberculosis (94). While rifampicin, streptomycin, moxifloxacin and 

isoniazid are highly bactericidal for actively-replicating M. tuberculosis, they have little or no 

effect on the viability of nutrient-starved cultures (24, 69). The MBC90 of rifampicin increased 50 

and 2500 times under conditions of oxygen- and nutrient-starvation respectively, and isoniazid’s 

cidal activity was completely lost on M. tuberculosis cultured under both conditions for 

concentrations up to 100µM (82). In another study where 17 agents were tested against nutrient-

starved M. tuberculosis at concentrations up to 160µM, only 4 were able to achieve 99% killing 

(MBC99), and only when considerably higher test concentrations were used than against growing 

bacteria (245). 
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It has been suggested that, because anti-tuberculous agents typically target functions essential for 

growth and replication, they are less effective at eradicating NRP tuberculosis (81). However, it 

is also believed that NRP bacilli develop alterations in their cell wall that affect permeability to 

antibiotics. Ziehl-Neelsen staining of M. tuberculosis in lung sections gradually fades with the 

persistence of an infection (206). The progression to the Ziehl-Neelsen-negative state is the result 

of cell wall composition alterations upon the onset of dormancy. Further studies are underway to 

understand the mechanisms driving the loss of acid-fastness.  

NRP conditions lead to induction of the ‘dormancy regulon’, a collection of at least 48 genes that 

are controlled by the dormancy survival regulator DosR (28, 29, 172). Under conditions of 

oxygen starvation, M. tuberculosis displays activation of several transport mechanisms including 

the up-regulated expression of predicted transporters for metal cations (ctpA and ctpV), sulphate 

(Rv1739c, cysW), molybdate (modA) and peptides (dppA) (154). In a separate study, nutrient 

starvation caused phosphate uptake proteins (PstA1, PstB, PhoS1 and PstA2) to be down-

regulated, and sulphate transport system proteins (CysA, CysW, CysT and SubI) to be up-

regulated (24). The regulation of expression of efflux pumps with antibiotic substrates under 

NRP conditions is still unclear. However, it is understood that the inactivation of Tap (Rv1258c), 

a known tetracycline efflux pump (188), in M. bovis BCG during stationary phase triggers a 

stress response that leads to a downshift in cell wall biosynthesis because of the accumulation of 

an unknown toxic substrate. This emphasizes that Tap is essential for the maintenance of 

balanced physiological function in the late stationary phase and indicates the potential role for 

the efflux pump during latency (190). 

In bacterial species where it has been extensively studied, the regulation of porin expression has 

proven to be a fine-tuned and complex phenomenon modulated by multiple factors (66). It is 
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tempting to hypothesize that reduced porin density may contribute to the development of 

phenotypic drug tolerance in M. tuberculosis. Ongoing studies by our group aim to understand 

how starvation conditions affect the intracellular concentrations of standard anti-tuberculosis 

drugs in quiescent M. tuberculosis bacilli.  

 

1.4.2 Cell wall thickening  

Recent ground breaking studies using cryo-electron tomography (CET) have revealed that the 

mycobacterial outer membrane is a symmetrical bilayer and might be less thick than generally 

believed in actively growing M. smegmatis and M. bovis BCG (98, 253). Cell wall thickening of 

the bacilli upon the onset of dormancy has been suggested based on transmission electron 

microscopy (TEM) studies and would have important implications on the persistence of M. 

tuberculosis. Caution should be exercised when interpreting TEM images, since electron 

microscopy analyses of ultrathin sections are performed with specimens from which water had 

been removed, a prerequisite for electron microscopy observation at room temperature. 

Consequently, water-soluble molecules may aggregate and lipid molecules may be prone to 

extraction or rearrangement by organic solvents during dehydration. This said, comparative 

analysis by TEM of M. bovis BCG and M. tuberculosis cultured under aerobic, micro-aerobic 

and anaerobic conditions revealed significant homogenous thickening of the cell wall in non-

replicating quiescent bacilli (58). More recently, thickening of the cell wall was observed in 

anaerobically grown quiescent M. tuberculosis, this time using atomic force microscopy (234). 

Though these observations await confirmation in vitro and in vivo, as well as in-depth 

biochemical and structural analysis, a reinforced cell wall may constitute an additional 
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permeability barrier, at least for some drug classes. Because porin dimensions and channel 

lengths presumably remain static despite these external changes, porin channels may not be able 

to span the depth of the thickened cell wall, thereby causing reduced access to the channel 

entrance by small molecules.  

 

1.4.3 Intracellular M. tuberculosis  

As is the case for many bacterial pathogens, M. tuberculosis is phagocytosed by macrophages via 

the process of endocytosis. Some strategies for surviving the hostile intracellular environment of 

macrophages include the inhibition of phagosome-lysosome fusion and the inhibition of 

phagosome acidification (145, 236).
 
In a recent elegant study, induction of drug tolerance in 

intracellular mycobacteria was attributed to macrophage-induced bacterial efflux mechanisms (1). 

By using M. tuberculosis-infected cultured macrophages and M. marinum-infected zebrafish, the 

authors have shown that drug-tolerant bacteria arose within individual macrophages soon after 

infection and prior to granuloma formation. In contrast with the prevalent dogma, this drug 

tolerance was associated with a replicating intracellular bacterial population rather than 

macrophage-induced stasis. The study further showed that bacterial efflux pumps such as 

rifampicin-specific Rv1258c were induced upon macrophage infection, mediating drug tolerance. 

Interestingly, this drug tolerance was found to be retained for a period of time after bacteria 

resumed extracellular growth. Efflux pump P55 plays a significant role in M. bovis replication 

and persistence in the macrophages. It is functionally connected to P27 of the same operon 

(IprG-Rv1410c). The p27-p55 knock-out mutation in M. bovis severely compromises virulence 

and intracellular replication (26). 
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M. tuberculosis also seems to have evolved a strategy to protect itself from mildly acidic 

conditions encountered within the macrophage phagosome, through the closing of OmpATb at 

low pH (149). M. tuberculosis porins are thought to be the key proteins for the uptake of small 

hydrophilic drugs, such as isoniazid, pyrazinamide and ethambutol, three out of the four current 

first line anti-tuberculosis drugs. Though porin function remains to be demonstrated for 

OpmATb, one interesting implication of its pH-mediated closure is the likely negative effect on 

the penetration of small hydrophilic drugs into lysosome-engulfed bacilli, leading to enhanced 

drug tolerance in these quiescent populations. 
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1.5 Specific Drug Accumulation in M. tuberculosis 

In the hunt for novel anti-tuberculosis drugs, the physico-chemical properties driving cell wall 

permeation by chemotherapeutic agents remain a critical but largely unsolved question. Table 4 

lists biological and molecular properties of selected anti-TB agents, compiled in an attempt to 

detect correlation trends between intracellular accumulation and physico-chemical properties. 

The level of drug accumulation within M. tuberculosis cells varies significantly between drug 

classes but drawing comparisons between them is difficult due to differences in experimental 

methods used to measure accumulation. Intracellular concentrations of the fluoroquinolones 

listed were determined by measuring their fluorescence in cell lysates (182). Pyrazinamide, 

isoniazid and rifampicin intracellular concentrations were calculated from scintillation counts of 

radio-labeled compounds in whole-cell preparations (12, 183, 191), which includes cell wall-

associated drug content. This results in a possible overestimation of intracellular drug 

concentration. In the study of efficacy of drugs targeting cytosol-localized proteins, only the drug 

content of the cytosol compartment is of concern. This provides a possible explanation as to why 

M. tuberculosis intracellular rifampicin concentrations determined by mass-spectrometric 

analysis of cell lysates in our lab are much lower than those listed here.  

Molecular weight is often speculated to be an important determinant of the rate of diffusion and 

cell wall permeation; the smaller the compound the higher the rate of passive diffusion (123), 

while ClogP, a measure of the hydrophobicity / lipophilicity of a compound, reflects partitioning 

into the hydrophobic phase of the cell wall (80). Attempts to plot these parameters as a function 

of intra-bacillary accumulation failed to reveal any significant correlation (Figure 8), consistent 

with the growing realization that many anti-TB agents lie outside the drug-like chemical space 

(113). Weak correlations hinted that smaller and more hydrophilic drugs accumulated 
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intracellularly more efficiently. These observations may support the hypothesis that diffusion 

through porins serves as a route of transport across the mycobacterial cell wall for this class of 

compounds. Altogether, weak correlations are very likely due to the fact that many of these anti-

tuberculous agents are transported via a combination of pathways. This analysis is also limited 

by the small number of drugs included and the fact that we attempted to compare physico-

chemical properties across different compound classes. The intracellular concentrations of pro-

drugs that require enzymatic activation are not always reflective of their potency; the 

intracellular concentration of active metabolites may be more relevant in the cases of isoniazid 

and pyrazinamide.  

Pyrazinamide appears to accumulate 6-fold within the bacilli. Its transport has been determined 

as being ATP-dependent and reliant on the nicotinamide transport pathway (191). However, the 

other drugs listed that accumulate intracellularly above the extracellular concentration have been 

speculated as being passively taken up by mycobacteria. In the case of isoniazid which 

accumulates 4-5 times within M. tuberculosis, the calculated accumulation factor should be more 

accurately described as the cellular content of radioactive derivatives of isoniazid. Constant 

conversion by KatG ensures a consistent pro-drug concentration gradient between the 

intracellular and extracellular compartments, driving intracellular accumulation of isoniazid (12). 

Fluoroquinolones appear to concentrate within the intracellular compartment despite being un-

metabolized. The ability to concentrate a drug within the intracellular environment of M. 

tuberculosis should reflect the presence of active drug importers which have yet to be identified.  

In conclusion, there is no simple formula linking physico-chemical parameters to intracellular 

accumulation of small molecules in M. tuberculosis. As mentioned above, the contribution of a 

variety of passive and active mechanisms of uptake and efflux precludes the use of a simple 
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equation to solve this question. Further studies focusing on relatively large numbers of molecules 

within the same chemical scaffold should help identify the major determinants of uptake for a 

given class of small molecules or therapeutic agents. 
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Table 4 Physico-chemical properties and intracellular accumulation factors of several antibiotics in M. tuberculosis as previously 

reported. Intracellular accumulation factors were defined as the ratio between intracellular and extracellular drug concentrations. 

 

Antibiotic 
Molecular 

Weight 
CLogP* 

PSA 

(Å
2
)* 

Target IC50 (mg/L) 
MIC90 

(mg/L)
 

Accumulation 

Factor
a 

Hypothesized 

Transport 

Mechanism 

Ref. 

Pyrazinamide 123.12 -0.676 68.87 
Fatty acid 

sysnthase I
b N.A. 

16 – 50 

(pH5.5) 
5.4 – 6.2 ATP-dependent 

(191, 

249) 

Isoniazid 137.14 -0.668 68.01 

Enoyl-acyl 

carrier protein 

reductase 

N.A. 0.02 – 0.2 4 – 5 Passive Diffusion (191,249) 

Ciprofloxacin 331.35 -0.725 77.04 DNA Gyrase 
3.2 

(M. smeg) 
1.0 3.3 – 4.1 Passive Diffusion (86, 182) 

Levofloxacin 361.38 -0.508 77.48 DNA Gyrase 
3.0 

(M. smeg) 
0.5 1.1 – 1.3 Passive Diffusion (182) (86) 

Ofloxacin 361.38 -0.508 77.48 DNA Gyrase 
7.9 

(M. smeg) 
0.5 2.2 – 2.7 Passive Diffusion (86, 182) 

Norfloxacin 319.34 -0.780 77.04 DNA Gyrase 
Information 

unavailable 
2 1.8 – 2.2 Passive Diffusion (182) 

Moxifloxacin 401.44 -0.082 86.27 DNA Gyrase 
Information 

unavailable 
0.5 1 – 1.3 Passive Diffusion (182) 

Ethambutol 204.32 0.119 64.52 
Arabinosyl-

transferase 

Information 

unavailable 
1 - 5 <1 Passive Diffusion (18,249) 

Rifampicin 822.96 3.710 220.15 
RNA 

polymerase 

0.07 

(M. avium) 
0.05 - 1 22.3 – 27.1 Passive Diffusion (182) 

 

a 
Assuming cellular volume of 2.4 – 3.0µl per mg dry weight(12, 191); 

b
 See also work by Zhang et al where an alternative mode of action for pyrazinamide is 

proposed (248); *CLogP and PSA were calculated by the cheminformatics profiling program InSilico Profile (v4.1) 
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Figure 8 Correlations between intracellular drug accumulation factors and (A) molecular weight, 

(B) ClogP or (C) PSA for the anti-tuberculous drugs listed in Table 3 (excluding data from 

Rifampicin). Pearson’s correlation coefficients (r) indicate the strength of correlations. 
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1.6 Measuring Drug Uptake in Mycobacteria 

Because a significant proportion of drug targets are located in intracellular compartments, the 

measure of intracellular accumulation of a drug is often regarded as an estimation of the efficacy 

of a drug. It is believed that the lack of permeability of the mycobacterial cell wall is significant 

limiting factor to the efficacy of anti-tuberculous agents. Several experimental methods to 

quantify intracellular drug accumulation in both prokaryotic and eukaryotic cells have been 

developed. The resilience of the mycobacterial cell wall, however, compounds the difficulty of 

cell lysis and cytosol extraction. 

 

1.6.1 M. bovis BCG as a model for the study of M. tuberculosis 

Being highly pathogenic, the study of M. tuberculosis is often hindered by policy and 

infrastructure. The BSL3 containment that is required for working on this pathogen imposes 

logistical constraints. Added to the facts that is has a generation time of 24 hours and it takes 3-4 

weeks to yield colonies on agar plates, it seems pertinent to use a faster-growing non-pathogenic 

mycobacterial species as surrogate models. Reyrat and Kahn argued for the use of M. smegmatis 

as an appropriate model on the basis that it shares homologues of numerous virulence genes in M. 

tuberculosis (192). It offers the technical benefits of being fast-growing (2-3 hour generation 

time) and bearing negligible risk to laboratory workers. It offers the additional advantage of 

being similarly able to successfully adapt to oxygen limitation in in vitro models of dormancy 

(232). This opinion is, however, not shared universally because M. smegmatis’ complete lack of 

virulence and its inability to survive within macrophages indicate that any use of comparative 

biology should be interpreted cautiously (13). 
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Being an attenuated strain of the live bovine tuberculous bacillus (M. bovis), BCG is a biosafety 

level 2 surrogate that bears over 99.9% genetic similarity to M. tuberculosis. Both are members 

of a group of highly-related mycobacterial species called the M. tuberculosis complex (34). 

Molecular analysis of the genetic differences between the two species revealed that the loss of 

virulence by BCG is due to the deletion of several regulatory sequences that repress protein 

expression. Controlled expression of these genes may be necessary to prevent the display of 

immunogenic proteins to the immune system so as to disrupt clearance of the infection in the 

host (134). 

Both M. smegmatis and BCG were evaluated as drug discovery models by conducting chemical 

library screens to identify anti-mycobacterial compounds. BCG proved to be more sensitive 

model in these library screens; 50% of the compounds detected as having inhibitory activity 

against M. tuberculosis were not identified in the screen with M. smegmatis. This is compared to 

21% with BCG. One reason for this difference is that 30% of M. tuberculosis proteins do not 

have conserved orthologues in M. smegmatis. Only 3% of such proteins are absent in BCG (5). 

BCG bears the additional advantage of being able to persist and multiply within host 

macrophages by way of survival mechanisms mentioned earlier in this review. This makes it 

ideal for use in macrophage infection models which help us understand this adaption. It is also 

shifts down to a persistent state during oxygen depletion in a manner similar to what has been 

observed with M. tuberculosis (121). BCG is, therefore, widely accepted as the most effective 

surrogate for tuberculosis.  
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1.6.2 Experimental Methods for Quantification of Intracellular Drug Accumulation 

The most established method thus far involves the use of radio-labeled compounds. Cultures are 

incubated with [H
3
]- or [C

14
]-labeled compounds  and scintillation counting is performed on 

whole-cells without any attempt at cell lysis. This method has been used to calculate cellular 

uptake of isoniazid, pyrazinamide, rifampicin and ethambutol (12, 18, 183, 191). While 

radiolabelled probes allow for accurate estimation of cellular uptake, they are expensive to 

produce and dangerous to handle. Also, scintillation counts do not distinguish between pro-drugs 

and their metabolized forms.  

With compounds that are natural fluorophores, the measurement of fluorescence using excitation 

and emission wavelengths specific to each compounds provides an alternative to radio-labeling 

them. This is an especially common method of quantifying fluoroquinolone uptake in bacterial 

cells (43, 61, 243). These assays include the lysis of cells to release their intracellular contents 

before quantification of drug content. Fluorometric methods, however, have to take into account 

the presence of background-fluorescence that most likely results from the presence of porphyrins 

in mycobacteria (57). The use of this method is unfortunately limited due to the lack of 

fluorescent moieties in many antibacterial compounds.  

A more seldom-used method of drug uptake quantification involves a microbiological assay 

where dilutions of cell lysates are applied to filter paper discs which are subsequently transferred 

onto agar plates containing E. coli cultures. The drug content on the discs causes inhibition of 

bacterial growth; the diameters of these zones of growth inhibition are a measure of cell lysate 

drug concentrations. Standard curves can be generated using discs with known concentrations of 
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the drug. The microbiological assay has been used to quantify fosmidomycin uptake in P. 

aeruginosa (36). This method is tedious and results in low-throughput analysis. 

More advanced assays for the quantification of intracellular drug accumulation include the use of 

liquid chromatography- mass spectrometric methods (LC/MS). LC/MS-based methodologies are 

more sensitive and specific than their counterparts. The use of specific MRM (multiple reaction 

monitoring) transitions for each analyte means that such assays are not limited to specific 

compound- classes. Rapid turnaround of LC/MS analysis also allows for the drug penetration 

assays to be conducted in a medium-throughput manner.  

 

1.6.3 Experimental Methods for Lysis of Mycobacterial Cells 

For the purposes of accurate measurement of intracellular drug quantification, bacterial cells 

should be lysed and lysates drug content should be distinguished from the level of drug 

absorption onto the surface of the outer membrane. The highly resilient mycobacterial outer 

membrane often requires the use of harsh methods of disruption in order to achieve cell lysis. 

These disruption methods can be classified as being of mechanical, enzymatic, or chemical 

natures.  Mechanical disruption techniques include the use of high pressure (French press), bead-

beating (with glass / zirconium beads) or probe-sonication. Lysozyme is a commonly used 

enzyme in mycobacterial cell lysis buffers. For the purposes of fractionation of mycobacterial 

cellular compartments (cell wall, cell membrane and cytosol), Rezwan et al found that probe-

sonication combined with lysozyme treatment produced the best results with outer membrane 

disruption (193).  
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In a comprehensive study of disruption methods for the purpose of mycobacterial proteome 

extraction, Lanigan et al compared the effectiveness of bead-beating and sonication. Protein 

concentrations and two-dimensional gel electrophoresis of mycobacterial lysates were used to 

evaluate the effectiveness of disruption techniques. Although both methods provided similar 

representations of mycobacterial proteomes, bead-beating was picked as the preferable method 

for rapid and effective proteome extraction. Open-tube sonication of pathogenic mycobacterial 

species with microprobe tips brings with it the associated risk of aerosol formation (116). 

Homogenization by bead-beating is often advised as the best method for isolation of genomic 

DNA, though this high-velocity mechanical process results in some shearing of DNA (19, 250). 

Several protocols detail the use of detergents such as Triton X-100 and SDS (sodium dodecyl 

sulphate) to further increase the effectiveness of permeabilization of the outer membrane (47). 

The use of detergents is, however, incompatible with LC-MS analytical methods as they 

suppress the ionization process (6). Several studies suggest the use of glycine hydrochloride 

(pH3) to lyse mycobacteria and the efficiency of this procedure has been assessed by 

transmission electron microscopy. Cell lysis by this method requires an overnight incubation 

period with agitation (on a shaker) at 37°C (57, 61, 243).  
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1.7 Study Rationale 

The standard treatment of tuberculosis infections requires the use of multiple drugs 

simultaneously for a minimum of 6 months. The success of the treatment regimen is variable and 

is partly dependent on the permeability of the drugs at three different levels: penetration in 

pulmonary tissue and lesions (63, 110), penetration in macrophages (73, 150, 215), and 

penetration in M. tuberculosis bacilli. Anti-tuberculous agents remain distinct from other anti-

bacterials because they generally do not follow Lipinski’s ‘rule of 5’ which defines the properties 

of a compound that makes it a likely drug candidate (113). The large disconnect between drug 

potency in vitro (target-based screens) and potency in vivo has led to much frustration with 

numerous recent anti-tuberculosis drug discovery projects (177). Whole-cell screens, however, 

have had relatively more success in churning out new drug candidates (ie. TMC207, PA-824) 

(74). Taken together with our knowledge of the mycobacterial outer membrane (see Chapter 1), 

we understand that permeation is a significant limiting factor for drug efficacy in M. tuberculosis.  

The development of a standard assay for assessing drug permeation of M. tuberculosis is well-

overdue. A drug permeation assay would facilitate the study of transport processes of the 

mycobacterial outer membrane, and the understanding of mode-of-action of existing anti-

tuberculous compounds. If included as part of standardized testing for drug discovery molecules, 

permeation data could also help optimize for drug efficacy in the way elucidating structure-

activity relationships (SAR) helps improve in vitro potency. Previous studies on drug permeation 

focused on the evaluation of assays for specific drug classes rather than for across-the-board 

testing in a medium-throughput manner. With this arises the need to use analytical methods that 

are not only sensitive, but also applicable to all compound-classes. Detection methods involving 

high-performance liquid chromatography (HPLC), coupled with mass spectrometric (MS) 
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techniques (LC/MS), have proved in recent years to be a valuable tool to bioanalysts developing 

highly sensitive assays for biological fluids. LC/MS techniques are now considered the method 

of choice for supporting pharmacokinetic studies (141). Therefore, a major objective of this study 

is the development and validation of an LC/MS -based drug penetration assay for M. 

tuberculosis.  

In recent years, increasing attention has been paid to fluoroquinolones for being effective anti-

tuberculous agents. Chemotherapeutic regiments containing fluoroquinolones are being tested in 

Phase II and III trials to shorten the duration of therapy from 6 – 9 months to just 4 months. Also, 

fluoroquinolones are now considered cornerstone drugs for the treatment of MDR- and XDR-TB 

(3). Unfortunately, resistance to fluoroquinolones is fast-emerging (2), especially due to its 

frequent prescription for simpler lower respiratory tract infections (3, 83). It has therefore 

become important for us to understand the mechanism of fluoroquinolone uptake and resistance-

development in mycobacteria to mitigate against the inevitable demise of this class of drugs. 

Mutations on gyrA and gyrB do not account for all occurrences of resistance. Instead, additional 

causes such as decreased cell wall permeability and enhanced drug efflux pump mechanisms are 

being explored (83, 131).  

The current understanding of fluoroquinolone uptake in mycobacteria is limited to observations 

of rapid, unsaturable uptake. Most studies imply that fluoroquinolones accumulation takes place 

via passive diffusion, while fewer studies have suggested that this diffusion is facilitated by 

porins (61, 243). Using our own validated drug penetration assay, we intended to characterize 

fluoroquinolone uptake in M. bovis BCG and M. tuberculosis. Unfortunately, the study of porin-

mediated transport is restricted to the generation of porin knock-out mutants. This appears to be 

the limiting factor with species such as M. tuberculosis, which has yet to have unambiguously 
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identified and characterized porin proteins. Unlike active efflux pumps, there are no conventional 

inhibitors of porins which are used in uptake assays. The review of existing literature has brought 

to light the modulation of porin channel activity by endogenous polyamines in E. coli (203). We 

hypothesized that these polyamines could be applied exogenously to M. tuberculosis to effect 

inhibition of porin-mediated uptake, therefore bypassing the need to first identify the porin in 

question. Specifically, we aimed to examine the effects of polyamines on fluoroquinolone uptake. 

We also attempted to explore the possibility that M. tuberculosis self-modulates its porin channel 

activity via the production and secretion of endogenous polyamines. Such a study could 

potentially shed a whole new light on the study of mycobacterial transport processes.  

The ability for M. tuberculosis to reversibly enter a non-replicating state when in the presence of 

unfavourable environmental conditions such as hypoxia and nutrient –starvation within lesions 

presents a daunting problem to the treatment process. The predictive values of current cell 

culture- and animal- models are insufficient as they do not reflect the difficulty of eradicating 

persistent tuberculosis infections in the human host. These ‘persister’ cells exhibit phenotypic 

drug resistance that is characterized by drastic down-shifts in antibiotic susceptibility (69, 82, 

245). These shifts are believed to be the result of altered cell wall permeability. Cell wall–

thickening and changes in the expression of cell wall components have been shown to occur in 

non-replicating M. tuberculosis. With a robust drug penetration assay at hand, we planned to 

definitively quantify differences in intracellular accumulation of fluoroquinolones and other 

agents between replicating and non-replicating cultures.   

Taking our study a step further, we hoped to help identify if changes in expression or availability 

of specific porins may be responsible for the decrease in fluoroquinolone susceptibility of non-

replicating M. tuberculosis. Several studies have already explored the role that porins play in 
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bacterial antibiotic resistance via mechanisms that include altered gene expression and modified 

protein products (89, 171). Clinical resistance to quinolones is already linked to decreased porin 

(OmpF) expression in E. coli (109, 225). Although scientists have not yet confidently identified a 

true porin of M. tuberculosis, bioinformatics approaches have churned out lists of putative porin 

proteins. We suggested that expression analysis of selected putative porins could help us better 

understand the drug permeability problems that non-replicating M. tuberculosis presents.   
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1.8 Study Objectives 

1. Develop and validate an a drug penetration assay for M. tuberculosis using M. bovis 

BCG as a surrogate model 

 Compare fluoroquinolone recovery and loss between various cell lysis methods 

 Compare signal strength and matrix effects between lysates from different 

procedures 

 Exclude errors incurred by cell-surface drug adsorption 

 Validate the appropriateness of a fixed time-point for the assay based on the 

equilibration of accumulation and maintenance of cell viability 

 Assess accuracy and precision of our LC/MS analysis methods 

 

2. Characterize the process of fluoroquinolone uptake in M. bovis BCG 

 Study the kinetics (time-course and saturability) of fluoroquinolone 

accumulation in BCG  

 Understand intra-class variation in intracellular accumulation by assessing the 

influence of various physicochemical properties 

 Attempt to competitively inhibit fluoroquinolone uptake with β-lactams and 

another fluoroquinolone  

 Understand the role played by active efflux mechanisms in fluoroquinolone 

accumulation  

 Explore the influence of external pH on fluoroquinolone accumulation and 

activity 
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3. Study the inhibition of porin-mediated fluoroquinolone uptake in M. bovis BCG by 

polyamines 

 Compare the efficacy of various polyamines as inhibitors of fluoroquinolone 

accumulation 

 Understand intra-class variation of fluoroquinolones in response to polyamines  

 Explore the effects of polyamines on non-fluoroquinolones  

 Understand specific characteristics of polyamine activity such as dose-, pH-

dependence and reversibility 

 Investigate the hypothesis that exposure to exogenous polyamines can effect  

resistance to fluoroquinolones 

 Investigate the possibility that mycobacteria produce and secrete polyamines 

endogenously 

 

4. Understand the effect nutrient-starvation has on fluoroquinolone susceptibility and 

uptake in M. tuberculosis 

 Compare drug susceptibility between replicating and non-replicating cultures 

 Investigate whether shifts in susceptibility are due to changes in drug permeability 

by quantifying drug accumulation in non-replicating bacteria 

 Investigate the role of active efflux mechanisms in the acquisition of phenotypic 

drug resistance  

 Investigate the role of porin-mediated uptake  in the acquisition of phenotypic 

drug resistance 



56 
 

5. Study porin expression in non-replicating M .tuberculosis 

 Understand the effect on nutrient-starvation on the expression on various OMPs 

 Identify porins that are down-regulated during latency 
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CHAPTER 2 

DEVELOPMENT OF A DRUG PENETRATION ASSAY FOR USE ON M. BOVIS BCG 
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2.1 Overview 

The main purpose of this section of the project was to develop a safe and efficient way to 

measure intracellular drug accumulation in M. tuberculosis. As was discussed in the Literature 

Review, M. bovis BCG is the most appropriate surrogate for M. tuberculosis, and was hence used 

during assay development. The process of developing a drug penetration assay required the 

optimization of several assay conditions. For the purposes our objectives, the drug penetration 

assay was primarily validated for the study of fluoroquinolone uptake processes. Hence, 

moxifloxacin was chosen as the compound with which method development was performed. 

These results are presented in the following Results section. However, the assay was also 

validated using rifabutin and mefloquine (non-fluoroquinolones) to ensure a more universal 

applicability. These drugs were chosen because preliminary testing indicated that they 

accumulate better within M. bovis BCG than other drugs. Additional validation experiments 

involving rifabutin and mefloquine have been included in the Appendix section III and have been 

made reference to. 

Since one of the objectives of the assay is to avoid the use of expensive and dangerous 

techniques, radiometric assays using labeled compounds were completely excluded from 

consideration. An alternative approach involving a LC/MS-based assay was pursued. LC/MS 

analytical methods were developed for a range of anti-tuberculous agents and presented in the 

Materials and Methods section. Mycobacterial outer membranes are very tough and require the 

use of more extreme methods of disruption to achieve cell lysis. Several lysis procedures were 

compared for their effectiveness in releasing moxifloxacin out of cells for before quantitation 

using LC/MS analytical methods. The use of LC/MS analytical methods precluded the use of 

detergents as lysis agents in our method development process. Chemical (glycine HCl), 
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mechanical (bead-beating) and enzymatic (lysozyme) cell lysis methods were considered. 

Differences in drug recovery were observed with the various cell lysis procedures. Further efforts 

were made to understand effects of non-specific binding to silica beads and signal suppression 

due to the lysozyme content of the matrix. We found that using glycine HCl as a cell lysis agent, 

combined with water-bath sonication to achieve more extensive cell disruption, is superior to the 

bead-beating method with respect to releasing the intracellular moxifloxacin content.  

The extent of non-specific drug adsorption onto the bacterial outer membrane during the assay 

was also determined to ensure that it does not result in the over-estimation of intracellular drug 

content. The appropriateness of a fixed time point for the assessment of steady-state drug 

accumulation was assessed based on the examination of the kinetics of moxifloxacin 

accumulation while checking that there is maintenance of cell viability during the course of the 

assay. The precision and accuracy of LC/MS analytical methods were also investigated by 

assessing intra- and inter- day variabilities in analysis. The validated assay ultimately allowed for 

the quantification of accumulation of a range of anti-tuberculous agents in M. bovis BCG and M. 

tuberculosis. 
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2.2 Materials and Methods 

2.2.1 Chemicals 

Moxifloxacin, gatifloxacin, rifabutin and linezolid were purchased from Sequoia Research 

Products (UK), while ciprofloxacin, levofloxacin and rifampicin were purchased from Fluka 

(Missouri, U.S.A.). Ofloxacin, sparfloxacin, rifapentine, mefloquine, ethambutol, thioridazine 

and para-aminosalicylic acid were obtained from Sigma (Missouri, U.S.A.). Clinafloxacin was 

obtained from Alexis Biochemicals (California, U.S.A.). TMC207 was a gift from Srinivasa Rao 

from the Novartis Institute for Tropical Diseases (Singapore). Stock solutions of 10mM were 

prepared for these compounds and stored at 4°C. Phosphate-buffered saline (PBS) was provided 

by Invitrogen (Carlsbad, California). HPLC-grade methanol and acetonitrile, and laboratory-

grade toluene, were purchased from Fisher Scientific (New Hampshire, U.S.A.). Glycine from 

Biorad (California, U.S.A.) was dissolved in water to 0.1M and adjusted to pH3 with 

hydrochloric acid (HCl). Lyophilized lysozyme from chicken egg white was also purchased from 

Sigma; a 10mg/ml aqueous solution was prepared and stored at 4°C.  

 

2.2.2 Strains and Culture Conditions 

M. bovis BCG and M. tuberculosis H37Rv were cultured in Middlebrook 7H9 broth (Difco, UK) 

supplemented with 0.4% ADS, 0.2% glycerol and 0.05%Tween80 or grown on Middlebrook 

7H11 agar (Difco) supplemented with 10% OADC and 0.5% glycerol. Broth cultures were 

incubated at 37°C till an OD600 of 0.3-0.4 was reached. Agar plates were incubated at 37°C and 

bacterial colonies were counted after 2-3 weeks. 
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2.2.3 Drug Penetration Assay Development 

2.2.3.1 Growth Kinetics 

A total of 100ml of supplemented 7H9 broth was inoculated with a single stock vial (1ml) of M. 

bovis BCG stored at -80°C. This culture was incubated at 37°C with constant rolling and 

triplicate 1ml samples were removed each day. Growth was evaluated by measuring the optical 

density (OD) of the culture at 600nm in a spectrophotometer (Ultrospec 3300 Pro, Amersham 

Biosciences). Fresh 7H9 medium was used as blanks for OD measurements. 

 

2.2.3.2 Evaluation of cell lysis procedures 

Several lysis procedures were tested on M. bovis BCG and the extent of drug recovery from cell 

lysate was compared. Specifically, the bead-beating method was compared against overnight 

incubation with glycine HCl, while evaluating the additional effects of lysozyme treatment and 

water-bath sonication respectively. BCG was incubated with moxifloxacin at 10µM for 30min, 

washed once with PBS and pelleted. For the bead-beating method, drug-treated BCG was 

resuspended in PBS and transferred to screw-capped tubes containing half the sample-volume of 

silica/zirconia beads (Biospec). Tubes were shaken in a bead-beater (Precellys 24, Bertin 

Technologies) for 3 x 60s cycles at 6,000rpm with at least 1min rest periods on ice between 

cycles. Beads and cell debris were pelleted at 13,000rpm and cell lysates were filter-sterilized. 

To test the additional effect of lysozyme treatment on the bead-beating procedure, drug-treated 

BCG was pre-treated with lysozyme at 2mg/ml (in PBS) for 1hr at 37°C before being subjected 

to the bead-beating procedure as described. Alternatively, BCG was lysed by incubating it in 

0.1M glycine HCl (pH3) overnight at 37°C with constant shaking at 400rpm. The next day, cell 
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debris was pelleted at 13,000rpm and cell lysates were filter-sterilized. The additional effect of 

sonication was evaluated by subjecting the samples to an ultrasonic water-bath (Fisher Scientific) 

for 5min after overnight incubation but before filter-sterilization. All lysate samples were then 

crashed with methanol and acetonitrile and analysed for moxifloxacin content.   

 

2.2.3.3 LC/MS/MS quantitative analysis 

Quantification of drug concentration was achieved by liquid chromatography tandem mass 

spectrometry (LC/MS/MS). Mass analysis and detection were performed on an API 4000 Q-trap 

triple-quadrupole mass spectrometer (Applied Biosystems, USA) equipped with a turbo ion-

spray ionization source. The HPLC system is of the Agilent (USA) 1200 series with a degasser, 

binary pump, autosampler and thermosatted column compartment. The mass spectrometer 

operated in the positive mode with an ion-spray voltage of +5KV and at the probe temperature of 

500°C. The mass transitions for each precursor/ product ion pair, and their elution times, are 

recorded in Table 5. Mobile phases, water and acetonitrile, were acidified with 0.1% acetic acid. 

The mobile phase gradients, flow rates, analytical columns and temperatures used to achieve 

elution of fluoroquinolones and non-fluoroquinolones used in this study are presented in Tables 

6 - 11. Injection volumes were fixed at 10µl. Calibration standards for all drugs were prepared 

from stock solutions to give final concentrations of 5nM to 500nM. Calibration curves and 

quality control checks were conducted with each batch of analysis. Drug concentrations of each 

injection were inferred from the integrated areas of the specific peak on the chromatogram. The 

goodness of fit (r
2
) for all linear calibration curves were >0.98. Integration of peak area and 

calibration curve fitting were performed by the Analyst
®
 sofware (AB Sciex, Massachusetts, 
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USA). The lower limits of quantitation (LLOQs) for all drugs range from 0.5 to 15nM (Table 5). 

Quality control (QC) samples (of known concentrations) were placed at intervals within the run 

to ensure accuracy of the assay. Snapshots of chromatograms, standard curves, and specific 

compound-dependent parameters that were optimized for MRM (multiple reaction monitoring) 

transitions of each drug tested have been presented in Appendix II (Figures 1 – 16, Tables 1 – 

16). 
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Table 5 Mass transitions monitored for each drug, elution times and lower limits of quantitation 

(LLOQs). 

 

Drug 
Parent ion 

mass 

Daughter ion 

mass 

Elution time 

(min) 

LLOQ 

(nM) 

Ciprofloxacin 332.3 288.4 4.6 0.5 

Moxifloxacin 402.4 384.3 4.6 1.0 

Ofloxacin (& 

Levofloxacin) 
361.9 318.4 4.6 0.1 

Gatifloxacin 376.0 289.7 4.6 15.0 

Clinafloxacin 365.9 322.1 4.6 0.5 

Sparfloxacin 392.7 349.3 4.9 0.75 

Rifampicin 823.6 791.9 5.2 0.1 

Rifabutin 847.2 815.8 4.7 0.1 

Rifapentine 877.6 845.7 4.7 0.1 

Ethambutol 205.1 116.0 1.3 0.1 

Mefloquine 379.0 361.1 4.7 2.5 

Linezolid 338.2 296.2 5.1 0.5 

Thioridazine 371.3 126.1 5.2 0.1 

TMC207 555.2 328.1 5.2 0.5 

para-aminosalicylic 

acid 
152.0 107.8 6.1 10 
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Table 6 Gradient method for all fluoroquinolones tested in this study. 

 

 

Time 
% Aqueous 

Phase 

% Organic 

Phase 
Flow Rate Column 

Column 

Temp. (°C) 

0.0 97 3 

0.8ml/min 

 

Gemini C18; 

150 x 4.6mm, 

5µm 

(Phenomenex) 

 

40 

0.5 97 3 

1.2 60 40 

3.2 60 40 

3.3 97 3 

7.0 97 3 

 

 

 

 

Table 7 Gradient method for rifampicin, rifabutin, mefloquine, thioridazine and linezolid. 

 

Time 
% Aqueous 

Phase 

% Aqueous 

Phase 
Flow Rate Column 

Column 

Temp. (°C) 

0.0 97 3 

0.8ml/min 

Gemini C6-

Phenyl; 150 x 

4.6mm, 5µm 

(Phenomenex) 

40 

0.5 97 3 

1.2 50 50 

3.2 50 50 

3.3 97 3 

7.0 97 3 
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Table 8 Gradient method for rifapentine. 

 

Time 
% Aqueous 

Phase 

% Organic 

Phase 

Flow Rate 

 
Column 

Column 

Temp. (°C) 

0.0 97 3 

0.8ml/min 

Gemini C6-

Phenyl; 150 x 

4.6mm, 5µm 

(Phenomenex) 

40 

0.5 97 3 

1.2 30 70 

3.2 30 70 

3.3 97 3 

7.0 97 3 

 

 

Table 9 Gradient method for ethambutol.  

 

Time 
% Aqueous 

Phase 

% Organic 

Phase 

Flow Rate 

 
Column 

Column 

Temp. (°C) 

0.0 97 3 

0.8ml/min 

Gemini C6-

Phenyl; 150 x 

4.6mm, 5µm 

(Phenomenex) 

40 

0.5 97 3 

1.0 50 50 

2.8 50 50 

3.0 97 3 

5.5 97 3 
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Table 10 Gradient method for TMC207. 

 

 

Time 
% Aqueous 

Phase 

% Organic 

Phase 

Flow Rate 

 
Column 

Column 

Temp. (°C) 

0.0 97 3 

0.8ml/min 

Gemini C6-

Phenyl; 150 x 

4.6mm, 5µm 

(Phenomenex) 

40 

0.5 97 3 

1.2 50 50 

3.2 50 50 

3.5 97 3 

7.0 97 3 

 

 

 

 

Table 11 Gradient method for para-aminosalicylic acid (PAS).  

 

Time 
% Aqueous 

Phase 

% Organic 

Phase 
Flow Rate Column 

Column 

Temp. (°C) 

0.0 97 3 

0.8ml/min 

Gemini C18; 

150 x 4.6mm, 

5µm 

(Phenomenex) 

 

40 

0.5 97 3 

0.7 0 100 

3.0 0 100 

3.2 97 3 

7.0 97 3 
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2.2.4 Assay Validation Methods 

2.2.4.1 Estimation of Matrix Effects 

The specific matrix effects (ME) of lysozyme on compound detection by LC/MS analysis was 

estimated based on the method described by Trufelli et al (231). Briefly, ion suppression was 

calculated using the following formula:  

    ME (%) = 100 – ( B/A X 100 ) ,  

where A represents the average analyte peak area of a standard PBS-based solution, and B 

represents the peak area of a solution also containing 2mg/ml lysozyme (both solutions are 

spiked with equal concentrations of the compound). 

 

2.2.4.2 Spectrophotometric detection of cell -surface adsorption 

In order to determine the extent of cell-surface adsorption of moxifloxacin on M. bovis BCG, 

concentrated cultures (OD600 4.0) were treated with 10µM moxifloxacin and incubated for 30min. 

Samples of unwashed, washed and lysed (bead-beaten) cells were measured for moxifloxacin 

content. All samples were resuspended in PBS. 200µl of each sample was loaded onto a flat-

bottomed, non-treated, 96-well black plate (Costar
®

). Fluorescence detection of moxifloxacin 

was achieved using a spectrophotometer (SpectraMax Plus, Molecular Devices) at the excitation 

and emission wavelengths of 294nm and 504nm respectively (181). Appropriate blanks (ie. 

untreated whole cells, untreated lysate) were also measured. 
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2.2.4.3 Assessment of Accuracy and Precision of LC/MS Analysis 

The accuracy and precision of the assay was determined using intra- and inter- day runs as 

described in the current validation requirements detailed by Bansal et al (10). Standard solutions 

of low, medium and high concentrations representing the entire range of the calibration curve 

were analysed using the LC/MS analytical methods we developed. The concentration of the low 

QC is chosen near the LLOQ. At least 5 replicate-injections of each standard solution was made 

per day for 3 consecutive days. The accuracy of the method is reflected by the relative error 

(RE%) of the measured analyte concentrations. RE was calculated using the following formula. 

RE (%)  =  
Measured Conc. – Standard Conc. 

X      100% 
Standard Conc. 

 

For the low concentration standard solution, RE should be within ±20%. The coefficient of 

variation (CV), which indicates precision, should be < 20%. For the medium and high 

concentration standard solutions, RE should fall within ±15% and CV should be <15%. CV was 

measured by the following equation. 

CV (%)  =  
Standard Deviation 

X      100% 
Mean Measured Conc. 

 

2.2.5 Statistical Tests 

For the determination of statistical significance of differences in drug uptake under different 

conditions we used unpaired t-tests with Welch’s correction (assuming unequal variances) 

(GraphPad Prism v5.0).   
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2.3 Results 

2.3.1 Selection of Growth Phase of M. bovis BCG 

The growth curve obtained for M. bovis BCG is shown in Figure 9. An initial lag phase was 

observed, spanning days 0 - 3 during which bacterial growth was slow. Bacterial growth then 

became more rapid in the exponential (logarithmic) phase, which lasted for 5 days. Subsequently, 

growth of the dense culture slowed as it entered the stationary phase, and plateaued off by day 8. 

A culture with an OD600 of 0.3 - 0.6 was hence identified as containing replicating bacteria in the 

mid-exponential phase.  

 

Figure 9 (A) Growth curve for M. bovis BCG. Growth was evaluated by OD600 measurements. 

(B) Plot of BCG growth on a log scale. The experiment was conducted with biological triplicates. 

Standard deviations are shown as error bars and are hidden by data points in most instances. 
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2.3.2 Assessment of the efficiency of various lysis procedures at releasing intracellular drug 

content  

2.3.2.1 Absolute fluoroquinolone recovery from different lysis procedures 

To eventually set up a drug penetration assay for M. tuberculosis, several lysis procedures were 

compared for their effectiveness in maximizing moxifloxacin recovery. Four different lysis 

procedures (or combination of procedures) were compared: bead-beating, bead-beating with 

lysozyme pre-treatment, incubation with glycine HCl (pH3) alone, and in combination with 

sonication. The cell lysates prepared were analyzed for moxifloxacin content using LC/MS 

methods and the results are presented in Figure 10A. A brief period of water-bath sonication 

after overnight lysis with glycine HCl improved the recovery of moxifloxacin from M. bovis 

BCG by about 10%. Similarly, pre-treatment of BCG with lysozyme for an hour before the bead-

beating process improved the recovery of moxifloxacin by 13.5%. Overall, the combined 

procedure of glycine HCl and sonication increased the moxifloxacin content of lysate by 1.3- 

fold when compared to the bead-beating – lysozyme combined procedure.  

Rifabutin and mefloquine recoveries were also compared for the purposes of more thoroughly 

validating our assay. The results of these experiments are presented in Figures 17A & 18A of 

Appendix III. With both rifabutin and mefloquine, the addition of the sonication step did not 

affect the final drug content of the cell lysates. The glycine HCl – sonication combined 

procedure was 1.3 and 1.5 –times more effective at releasing rifabutin and mefloquine, 

respectively, into the cell lysate. The addition of lysozyme treatment to the bead-beating 

procedure drastically reduced rifabutin and mefloquine recovery by 34% and 76% respectively.  
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2.3.2.2 Extent of compound-loss during the bead-beating procedure 

It was observed that with the bead-beating procedure there is a loss in sample volume due to the 

residual amount that remains adhered to the zirconia / silica beads. It was also hypothesized that 

a proportion of the drug in cell lysate may adsorb onto the surface if these beads. In order to 

prove that moxifloxacin recovery is compromised with the bead-beating procedure (as compared 

to chemical lysis without beads), PBS was spiked with known concentrations of moxifloxacin 

and then subjected to the bead-beating process without the addition of any bacterial cells. The 

standard solutions were then filtered and crashed with organic solvents in the way regular cell 

lysates were treated. The moxifloxacin content of these solutions were then analysed by LC/MS 

and compared against control samples that were not bead-beaten. The results showed that the 

process of bead-beating standard samples reduced moxifloxacin recovery by up to 60% (Figure 

10B). This helps account for the difference in compound recovery between lysis procedures.  
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Figure 10 (A) The relative levels of moxifloxacin (MXF) recovery from different cell lysis 

procedures. (B) Determination of loss in recovery of MXF from samples due to the bead-beating 

procedure. Results are expressed as the concentrations of MXF in cell lysates. The experiment 

was conducted with biological triplicates and standard deviations are shown as error bars. 
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2.3.3 Assessment of assay sensitivity 

2.3.3.1 Suppressive effects of lysozyme on compound detection 

Matrix effects have been known to be detrimental to important LC/MS method parameters (ie. 

limit of detection, linearity, accuracy) (141, 231). The different matrices, such as PBS and glycine 

HCl, used for lysate preparations in this study may compromise the quantitation of drug 

accumulation although the absolute drug content of the lysates remains the same. The effects of 

various matrices on moxifloxacin signal-detection by our LC/MS method were assessed. PBS 

(with and without 2mg/ml lysozyme) and glycine HCl were spiked with equal concentrations of 

moxifloxacin, crashed with equal volumes of organic solvents, and analysed by LC/MS. The 

absolute analyte signal peak areas were compared between standard solutions (Figure 11). The 

addition of lysozyme to PBS drastically reduced the signal of moxifloxacin in standard PBS 

solutions by 3.5 -fold. This difference in response indicates ion suppression by lysozyme. Based 

on the formula described in Trufelli et al (231), we calculated the suppressive matrix effect (ME) 

of 2mg/ml lysozyme on moxifloxacin detection as 70%. The analyte signal from glycine HCl is 

also significantly lower than from PBS, but still greater than in the lysozyme-PBS combined 

matrix.  

Similar observations were made with rifabutin (Appendix III, Figure 17B). The presence of 

lysozyme resulted in a 1.5-fold decrease in rifabutin detection in standard PBS solutions (ME = 

32%). The absolute signal strength of rifabutin in glycine HCl was lower than in PBS alone but 

this difference was insignificant. The signal strength of mefloquine was significantly higher (by 

3.2-fold) in glycine HCl than both PBS-based standard solutions (Appendix III, Figure 18B). 

The addition of lysozyme to PBS also reduced the signal strength of mefloquine (ME = 20%). 
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Figure 11 Comparison of signal strengths of MXF from standard solutions (100nM) prepared in 

different matrices. Data is presented as absolute signal peak areas from LC/MS chromatograms. 

The experiment was conducted with biological triplicates and standard deviations are shown as 

error bars.  
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2.3.3.2 Quantitation limits of various assays 

The lower limits of quantitation (LLOQs) of moxifloxacin, rifabutin and mefloquine in standard 

solutions of different matrices were compared (Table 12). These standard solutions were 

prepared in PBS (with and without lysozyme) and glycine HCl as described previously. Little 

variation of the quantitation limits was observed for all three drugs and the methods. Overall, 

these analytical methods displayed more than sufficient sensitivity for the purposes of 

quantifying drug accumulation with our assay. 

 

 

Table 12 LLOQs of moxifloxacin (MXF), rifabutin (RIB) and mefloquine (MEF) in different 

matrices for their respective analytical methods.  

 

 

 

 

 

 

 

 

 

 Detection Limit (nM) 

Matrix MXF RIB MEF 

Glycine HCl 0.6 0.05 0.5 

PBS 0.2 0.05 1.5 

PBS + Lysozyme 0.3 0.05 1.0 
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2.3.4 Fluorescence-detection of cell-surface adsorbance of fluoroquinolones 

Significant adsorption onto the cell surface is often feared to cause the misestimation of 

intracellular drug accumulation. In our drug penetration assay, sample filtration is performed 

following cell lysis in order to remove debris containing insoluble cellular components (ie. cell 

wall) and unbroken cells. We investigated the hypothesis that this insoluble fraction contains 

bound-moxifloxacin. The fluorometric method of fluoroquinolone detection was used here 

because of the lack of optimized protocols for the maximal extraction of drug from cell debris 

which is necessary prior to accurate quantitation by LC/MS methods.  

M. bovis BCG was treated with moxifloxacin and the relative fluorescence signals were 

compared between whole cells, lysate and cell debris. Moxifloxacin was detected in all three 

preparations of treated BCG cells, including the cell debris fraction. It was observed that the net 

fluorescent signal from the combined lysate and debris preparation is approximately equal to the 

sum of signals from individual lysate and debris fractions (Figure 12A).  

The effect of a single PBS wash on the level of moxifloxacin absorbance onto the outer 

membrane was also studied. The relative fluorescence detected from control (untreated) cell 

debris and the cell debris fraction obtained from moxifloxacin-treated BCG that was washed 

once did not differ significantly (p > 0.05). However, the cell debris fraction from treated but 

unwashed BCG fluoresced twice as much (Figure 12B). This shows that the single wash step of 

the drug penetration assay is crucial for the removal of the majority of moxifloxacin absorbed 

onto the cell. 
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Figure 12 (A) Fluorescence-detection of moxifloxacin in lysed fractions of M. bovis BCG. (B) 

Study of the effect of a wash step on the detection of moxifloxacin in cell debris fractions. Light 

and dark bars distinguish between moxifloxacin-treated and -untreated samples respectively. The 

amount of moxifloxacin present is expressed as relative fluorescence units (RFU). The 

experiment was conducted with biological triplicates and standard deviations are shown as error 

bars.  
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2.3.5 Selection of a fixed time-point for the measure of steady-state accumulation 

2.3.5.1 Time-course of moxifloxacin accumulation 

For the purposes of development of a standard assay, a common length of incubation period had 

to be decided upon based on the achievement of steady-state accumulation of drugs within the 

bacillus. The accumulation of moxifloxacin (and other fluoroquinolones) within M. bovis BCG 

was observed. The results for moxifloxacin are presented Figure 13. Because it was observed 

that this accumulation is rapid within the first few minutes and equilibrates within 20-30min of 

incubation, a 30min incubation period was deemed satisfactory for the evaluation of steady-state 

intracellular drug concentrations in the rest of this study. The time-course of intracellular 

accumulation for other fluoroquinolones is further elaborated on in Chapter 3. 

 

2.3.5.2 Maintenance of cell viability 

A standard incubation concentration (10µM) was chosen for the comparison of steady-state 

accumulation between different drugs. Incubation concentrations higher than the MICs are often 

used during drug accumulation studies (182, 183). An attempt was made to ensure that cell 

viability of M. bovis BCG was not compromised by the high fluoroquinolone concentrations 

during the course of the incubation period. Cell viability was assessed by CFU enumeration. 

BCG was incubated with 10µM of moxifloxacin and CFU counts were obtained at regular time 

intervals over 60min. The slight decrease observed in the number of viable bacilli within the total 

60min of drug incubation was found to be insignificant (p > 0.05) (Figure 14).   
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Figure 13 Kinetics of moxifloxacin (MXF) accumulation in M. bovis BCG over a 30 min period 

at an incubation concentration of 10µM. The results are expressed as MXF concentration in cell 

lysate (nM).  

 

 

 

 

 

 

 

Figure 14 Kill-kinetics of 10µM of moxifloxacin against BCG for the first 60min of incubation. 

Standard deviations are shown as error bars. 
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2.3.6 Intra- and inter-day variability 

The intra-day and inter-day variability of LC/MS analysis of moxifloxacin in cell lysate is shown 

in Table 13. Results were obtained by analyzing 6 standard samples at low, medium and high 

concentrations on 3 consecutive days. The concentrations 5nM, 50nM and 500nM were chosen 

to represent the full scale of the calibration curve for moxifloxacin. The relative errors (RE) of 

intra- and inter- day measurements for the 50nM and 500nM solutions were within the 

acceptable range of ±15%. The coefficients of variance (CV) for these solutions fell below 15% 

for both categories. For the 5nM solutions, the RE and CV fell between the acceptable range of 

±20% and 20% respectively. Similar results were obtained with the tests of variability in 

rifabutin and mefloquine analysis (Appendix III, Table 17).This shows that the analytical 

methods are of acceptable precision and accuracy.  

 

 Table 13 Intra- and inter-day variabilities of moxifloxacin analysis. RE, relative error; CV, 

coefficient of variation. 

 

 Standard conc. 

(nM) 

Mean measured 

conc. (nM) 

RE range 

(%) 

CV 

(%) 

 

Intra-day 

variability 

(n = 6) 

5 5.43 -0.4 – 12   4.6 

50 49.2 -4.6 – 1.2  2.0 

500 502.2 -3.6 – 3.4  3.3 

 

Inter-day 

variability 

(n = 18) 

5 5.12 -14 – 12   8.0 

50 47.7 -13 – 1.2  4.1 

500 503.8 -4.4 – 9.8  3.5 
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2.4 Discussion 

M. bovis BCG was used as a surrogate for M. tuberculosis for the purposes of development of a 

drug penetration assay given its comparable sensitivity to compounds with anti-tuberculous 

activities (5). In our study of drug accumulation, incubation concentrations were standardized at 

10µM. This is above the MICs of all drugs tested for M. tuberculosis and M. bovis BCG. 

However, studies of intracellular drug accumulation often report that the use of incubation 

concentrations above MICs is optimal as long as cell viability is not compromised. Exact 

concentrations in those studies were dependent on the sensitivity of the analytical method used 

(182, 183). The duration of drug incubation was also standardized. It was previously reported 

that steady-state accumulation of a variety of drugs (including fluoroquinolones, rifampicin, 

pyrazinamide) in M. tuberculosis occurs within minutes of drug exposure (182, 183, 191). Our 

study of the intracellular accumulation of 6 fluoroquinolones also showed that this accumulation 

is rapid within the first few minutes and equilibrates within 30min of exposure. Importantly, 

during the time-course of the experiment, no significant decrease in the viable cell count was 

detected. The check on the effect of moxifloxacin on BCG cell viability was sufficient because 

MIC tests revealed that moxifloxacin is the most potent of the 6 fluoroquinolones (MXF = GFX, 

CNX, SPX > CPX > OFX) (Appendix III, Figure 20). Therefore, the common sampling time-

point of 30min was selected for all fluoroquinolones for the general purposes of comparing 

steady-state accumulation. We kept the density of the culture constant by adjusting the optical 

density (OD600) before the start of each assay. We found that CFU counts were relatively 

consistent (5 x 10
8
 < CFU < 1 x 10

9
 cells/ml) between assays. Several culture densities were 

initially tested on the assay but an OD600 of 4.0 produced the highest assay sensitivity without 

resulting in clumping of the bacterial cells.  
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In this assay, the centrifugation separation method with a single PBS-wash step is used to pellet 

and separate the bacterial cells from the incubation medium. No attempts were made to validate 

the suitability of this method over the silicon oil separation method, where the aliquots of the 

culture are places over the oil and centrifuged to pellet the bacterial cells. The aqueous layer 

containing the incubation medium is then removed and the tube is snap-frozen so that the oil can 

be removed by careful pipetting. No wash step was included with this silicon oil separation 

method (118). This method has the advantage of quick separation of cells from the drug, but 

studies have shown that drug adsorption onto the cell causes an overestimation of drug 

accumulation because of the lack of a wash step (243). The centrifugation separation method was 

therefore decided as preferable without testing. We did, however, show that the single PBS wash 

step is effective at removing the amount of moxifloxacin adsorbed onto the outer membrane. 

While it still may be argued that the adsorption of drugs onto the outer membrane results in an 

over-estimation of intracellular concentrations, we observed that the procedure of filtration of the 

lysate, which was actually initially intended for the assurance of sample sterility, also has the 

additional benefit of removing aggregated fragments of lipid membrane layers. No evidence of 

this has been provided as this was merely a visual observation. However, we suggest that this 

ensures that drug molecules still left adsorbed onto fragments of the outer membrane can be 

removed from the cell lysate fraction. 

With regards to the cell lysis procedures, several important factors had to be considered. 

Chemical lysis methods involving detergents such as SDS and Triton-X could not be tested due 

to their incompatibility with LC/MS analytical methods (6). In this study, overnight chemical 

lysis with glycine HCl (pH 3) proved to effectively release the intracellular content of 

moxifloxacin from M. bovis BCG. Sonication in a water-bath was considered as an additional 
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procedure because it was hypothesized that, while glycine HCl is well-understood to weaken the 

outer membrane and causes lysis is come bacteria (197), it might require additional mechanical 

agitation to disrupt the whole-cells. It was observed that sonication did indeed increase the 

moxifloxacin content of cell lysates, although only slightly. Nevertheless, the sonication step was 

included in the protocol. 

It was observed with moxifloxacin, rifabutin and mefloquine that the bead-beating lysis 

procedure consistently resulted in lesser drug recovery from M. bovis BCG cultures than the lysis 

procedure using glycine HCl. We were able to show with cell-free experiments that the bead-

beating alone results in loss of moxifloxacin content. These results may be easily explained by 

the consistent observation that the volume of lysate recovered from this procedure is often 

reduced due to the unavoidable residual volume that is left adhering to the zirconia / silica beads 

within the tube. The additional problem of drug-binding to the high combined surface area of the 

beads possibly further reduces drug recovery.  To test this hypothesis, standard solutions spiked 

with known concentrations of moxifloxacin, rifampicin and mefloquine were subjected to the 

bead-beating process. We observed that bead-beating consistently resulted in the loss of analyte. 

Although bead-beating is often considered the ideal method of achieving mycobacterial cell 

disruption in genomic DNA and protein extraction protocols (116, 250), analyte -loses contribute 

to the underestimation of intracellular drug accumulation and, therefore, makes it less suitable 

for use in a drug penetration assay.  

Matrix effects (ME), which refer to matrix -dependent signal suppression or enhancement 

represent a major drawback in LC/MS analysis. ME can significantly affect the reproducibility, 

linearity and accuracy of analytical methods, leading to inaccurate quantitation results (231). It 

was observed during method validation that lysozyme treatment had varying effects on the drug 
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recovery depending on the drug. While it resulted in a slight increase in moxifloxacin recovery 

from the bead-beating cell lysis procedure, it caused significant decreases in rifabutin and 

moxifloxacin recovery. The testing of standard solutions in the absence of cell lysate confirmed 

that lysozyme consistently reduces analyte signal intensities. One possible explanation for this is 

that the co-elution of lysozyme during analysis causes competition for available charges during 

ionization and access to the droplet surface for gas-phase emission. The inconsistent suppressive 

effects of lysozyme (different impacts on different analytes) observed here are consistent with 

the concept that ME is unpredictable and that variation is response can be observed even with the 

same sample and methods (231). This problem of signal loss could potentially be resolved by the 

design of more efficient chromatographic separation (LC) methods, or more extensive sample 

clean-up procedures (protein-crashing). However, the process of evaluating ME and optimizing 

the assay for each drug defeats the intention to have a drug permeability assay with universal 

applicability. Therefore, even though lysozyme is widely regarded as a useful lysis agent for M. 

tuberculosis in numerous protocols, its use in LC/MS-based drug penetration assay is 

undesirable.  

Finally, while the extent of drug recovery is an important factor in the evaluation of cell lysis 

procedures, the ease and speed of the performance of the procedure should also be considered. 

Though lysis with glycine HCl is on the whole a slower procedure (due to the overnight 

incubation period) it is actually faster when comparing total time spent at the bench. The 

repeated cycles of bead-beating and cooling on ice makes for a cumbersome procedure. Added to 

the fact that aerosols generated during the bead-beating process are a biosafety concern when 

working with the pathogenic M. tuberculosis, the glycine HCl procedure appears much 

preferable.  
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Ultimately, the glycine HCl method of lysis paired with a brief period of sonication in a water-

bath proved effective at the release of intracellular fluoroquinolone content for the purposes of 

quantification of accumulation. Our LC/MS analytical methods have demonstrated accuracy and 

precision; Inter- and intra-day variabilities were within the recommended range for all three test 

compounds. Variability was in any case controlled for by the establishment of individual 

calibration curves for each batch of samples despite same day analysis. This drug penetration 

assay was used to characterize fluoroquinolone transport in M. bovis BCG and M. tuberculosis, 

as will be presented in the later sections of this thesis. The IBC-approved protocol that includes 

instructions for the safe-handing of the BSL3 pathogen has been included in Appendix I. The 

assay is also applicable for the study of non-fluoroquinolones. The accumulation of 8 other drugs 

with anti-tuberculous activity (including first, second and third line drugs, compounds in clinical 

development, and drugs with other clinical applications) in M. bovis BCG was studied and 

presented in Figure 19 (Appendix III). The assay is not without its limitations. This includes the 

difficulty of quantifying the accumulation of compounds that are metabolized within the bacilli, 

unless the specific metabolites are known and can be tracked individually. This is the case with 

isoniazid which is converted to a number of free-radicals. In such instances, the radiometric 

method of drug quantification is preferable because the labeled moiety can be tracked despite 

structural changes (12). Compounds that degrade in acidic medium are also not compatible with 

this assay given the low pH of the glycine HCl solution (pH3). The accumulation of p-

aminosalicylic acid (PAS), the second-line anti-tuberculous agent, could not be quantified by our 

assay because of its degradation to m-aminophenol (MAP) in acidic medium (233). Despite these 

limitations, this drug penetration assay is superior given its robustness, wide applicability and 

ease of performance.  
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CHAPTER 3 

CHARACTERIZATION OF FLUOROQUINOLONE UPTAKE IN M. BOVIS BCG 
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3.1 Overview 

Little is known about the way fluoroquinolones are transported across the mycobacterial outer 

membrane. In general, the uptake of most fluoroquinolones in Gram-positive and -negative 

bacteria is believed to take place via simple diffusion through porin channels (37). The study of 

fluoroquinolone accumulation in mycobacteria has traditionally involved the use of fluorometric 

methods of detection (61, 182, 243). These studies concluded that the uptake of fluoroquinolones 

in mycobacteria is also a passive process (57, 182). Moxifloxacin, a hydrophobic 

fluoroquinolone, is believed to be particularly efficient at diffusing across the lipid membrane 

(61). Others have also suggested the possibility of porin-mediated fluoroquinolone transport, as 

has been shown with E. coli (17, 152). The hydrophilic norfloxacin, for example, is believed to 

utilize the porin transport pathway in mycobacteria (61, 243). Using over-expression models, 

efflux pumps such as Rv2686c-Rv2687c-Rv2688c and LfrA have been associated with 

resistance to fluoroquinolones in mycobacteria (125, 174). However, it remains unsure to what 

extent efflux pump activity affects fluoroquinolone accumulation in wild-type strains.  

The main objective of this section of this study is to characterize fluoroquinolone transport in M. 

bovis BCG so as to provide further insight into the mechanism of uptake. We used the drug 

penetration assay presented in Section 1 to measure accumulation of various fluoroquinolones in 

M. bovis BCG. The panel of 6 fluoroquinolones studied included ciprofloxacin, moxifloxacin, 

ofloxacin, gatifloxacin, clinafloxacin and sparfloxacin. The kinetics of fluoroquinolone uptake 

was studied, and intra-class variability in steady-state accumulation examined. The correlation 

between fluoroquinolone accumulation and their anti-mycobacterial activity was analysed. The 

effects of various physicochemical properties were also considered. We found that 

fluoroquinolone uptake is rapid and steady-state accumulation correlates well with their 
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hydrophilicity. Following that, the effects of external drug concentration on intracellular 

accumulation were studied. We found with all 6 fluoroquinolones that accumulation was non-

saturable and also proportional to the external concentration. Co-incubation with a second 

fluoroquinolone or β-lactams (known substrates of porin-mediated transport) failed to inhibit 

fluoroquinolone accumulation. We also found that efflux pump inhibitors had no significant 

effect on fluoroquinolone accumulation.  

The effects of acidic external pH on fluoroquinolone uptake in mycobacteria had not been 

previously reported. Nikaido and Thanassi had summarized that an increase in the acidity of the 

external medium causes a reduction in intracellular accumulation and activity of 

fluoroquinolones in E. coli and S. aureus (168). We investigated to see if fluoroquinolone 

accumulation in M. bovis BCG is similarly dependent on medium pH. We noted significant 

decreases in intracellular accumulation of three fluoroquinolones. We also observed 

corresponding decreases in anti-mycobacterial activity with an increase in acidity. We 

summarized that the characteristics of fluoroquinolone transport in M. bovis BCG are consistent 

with facilitated transport by porin-like structures.  
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3.2 Materials and Methods 

3.2.1 Chemicals 

The efflux pump inhibitors verapamil and reserpine were obtained from Sigma (Missouri, 

U.S.A.). Stock solutions of 10mM were prepared for these compounds and stored at 4°C. The 

sources of all antibiotics have been stated in the previous chapter.  

 

3.2.2 Drug Penetration Assay and Quantitative Analysis 

Cultures were harvested by centrifugation at 3,200g for 10min. The pellets were re-suspended in 

fresh 7H9 broth medium or PBS-Tween80 to an OD600 of 4.0. Unless otherwise mentioned, all 

standard drug penetration assays were conducted at an incubation concentration of 10µM, for an 

incubation period of 30min at 37°C. Three 300µl aliquots were pelleted at 13,200g for 3.5min at 

4°C. The pellets were washed in an equal volume of PBS. The cells were then lysed overnight in 

an equal volume of glycine-HCl (pH3) at 37°C with constant agitation (61, 182). The following 

day, samples were subjected to sonification in a water bath for 5min before cell debris was 

pelleted by centrifugation. Lysates (supernatants) filtered with 0.22µm filter units (Millipore 

MILLEX-GV filter units, PVDF, 13mm) to ensure sample sterility. Compound extraction was 

achieved by the addition of 80µl of methanol and 40µl of acetonitrile. Lysate samples were 

subsequently stored at -20°C. A schematic diagram of this assay is provided in Figure 15. 

Following each assay, serial dilutions of the concentrated cultures were prepared and spread onto 

7H11 agar plates. CFU counts were performed 2-3 weeks later. This enabled the normalization 

of drug penetration results to the density of the culture, and the determination of amount of drug 

per bacillus when necessary. 
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When the kinetics of fluoroquinolone accumulation was being examined, samples were taken 

over the following time intervals: 0, 1, 2, 3, 5, 10, 15, 20, 25, and 30min (constant incubation 

concentration of 10µM). The effects of external fluoroquinolone concentration were investigated 

by incubating BCG in the following drug concentrations: 5, 10, 25, 50, 75, 100, 125, 150 and 

200µM; samples were taken after just 30s in order to reflect the initial rate of uptake. In efflux 

pump inhibition experiments, verapamil and reserpine were added (75µM and 20µM 

respectively) 3min after the addition of the anti-tuberculous agent (10µM). The pH of 

supplemented 7H9 medium was adjusted from 6.5 to 5.0 by the addition of hydrochloric acid 

when specified. Quantitative analysis of drug concentration was achieved by LC/MS as 

described previously.  
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Figure 15 Schematic diagram of the validated drug penetration assay used in this study. Specific 

parameters cater to a standard protocol for the measurement of steady-state intracellular drug 

accumulation. Parameters such as incubation concentration and duration of incubation and the 

addition of inhibitors can vary with the objective of the experiment.  
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3.2.3 Susceptibility Testing 

In this study, MIC90 (minimum inhibitory concentration 90) was defined as the concentration of 

drug required to inhibit bacterial growth by 90%. BCG broth cultures were diluted to an OD600 of 

0.02 and 200µl aliquots were transferred to 96-well plates. Testing of fluoroquinolone activity 

was conducted within the concentration range of 0.01 to 10µM. All 96-well plates were 

incubated at 37°C and their optical densities were read after 5 days. IC50 values were determined 

by GraphPad Prism v5.0 using non-linear regression of dose-response curves (ie. Log(agonist) vs 

Response, Variable slope, Four parameters).  

 

3.2.4 In silico Profiling and Statistical Testing 

The calculated partition coefficient (CLogP) and polar surface area (PSA) of various drug 

molecules were provided by the Novartis-owned cheminformatics profiling program InSilico 

Profile (v4.1) (153). To assess the correlation between fluoroquinolone uptake and these 

physicochemical properties, correlation regression analyses (GraphPad Prism v5.0) were 

conducted. All r values are Pearson’s correlation coefficients from the analysis and indicate the 

strength of the correlations. For the determination of statistical significance of differences in drug 

uptake under different conditions, unpaired t-tests with Welch’s correction (assuming unequal 

variances) (GraphPad Prism v5.0) were used. Significant, very significant and extremely 

significant differences were benchmarked at p-values of 0.05 (*), 0.01 (**) and 0.005 (***) 

respectively.  
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3.3 Results 

3.3.1 Kinetics of fluoroquinolone accumulation 

In an effort to understand the kinetics of fluoroquinolone accumulation by M. bovis BCG, a time-

based assay was conducted where 10µM of fluoroquinolones were added to cultures and sample 

aliquots were removed at regular time intervals over a 30min incubation period. Fluoroquinolone 

content was normalized to the number of viable cells and presented as the amount of drug per 

CFU over that length of time (Figure 16). Results indicate that accumulation of fluoroquinolones 

is rapid, with 50% of steady-state intracellular accumulation being achieved within the first 3min 

of incubation with the drug. Accumulation began to level off at the 20min mark and equilibrium 

conditions were achieved within 30min of drug incubation.  
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Figure 16 The kinetics of (A) ciprofloxacin, (B) moxifloxacin, (C) ofloxacin, (D) gatifloxacin, 

(E) clinafloxacin and (F) sparfloxacin accumulation at 10µM by M. bovis BCG. Drug uptake is 

expressed as the absolute quantity of each fluoroquinolone (nmol) per CFU. Best-fit curves were 

fit using non-linear regression (GraphPad v5.0). The experiments were conducted with biological 

triplicates and standard deviations are shown as error bars. 
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3.3.2 Intra-class variability in steady-state concentrations 

To assess intra-class variability in intracellular accumulation, steady-state concentrations (SSC) 

of fluoroquinolones were compared. For the purposes of this study, SSC was defined as 

intracellular drug content at the 30
th

 minute of incubation. SSCs of the 6 fluoroquinolones 

presented in Figure 16 were determined from the fitted non-linear regression curves and listed in 

Table 14. At an incubation concentration of 10µM, ciprofloxacin accumulated within the 

intracellular compartment most extensively (3.9 x 10
-10 

nmol/CFU) (Figure 17). This was 

followed by sparfloxacin, clinafloxacin, moxifloxacin and ofloxacin. Gatifloxacin accumulated 

least effectively in BCG (2.2 x 10
-10 

nmol/CFU). Overall, the intracellular accumulation of 

fluoroquinolones did not vary significantly, with less than a one-fold difference between 

ciprofloxacin and gatifloxacin.  

The activities of all 6 fluoroquinolones were determined (MIC90) and listed in Table 14 (MIC 

curves are presented in the Appendix III, Figure 20). Moxifloxacin, gatifloxacin, clinafloxacin 

and sparfloxacin displayed comparable activities against M. bovis BCG, while ciprofloxacin and 

ofloxacin were the least active. There was no identifiable correlation between SSC and MIC90 (r 

= 0.08) (Figure 18A). Table 14 also lists several physicochemical properties of the 

fluoroquinolones in this study. A weak correlation was obtained between intracellular 

accumulation and molecular weight (r = -0.33) (Figure 18B). The correlation implies that the 

uptake of smaller fluoroquinolones in BCG more efficient than that of larger fluoroquinolones. 

This corresponds with the similar correlation (r = -0.38) between accumulation and volume of 

the fluoroquinolone molecules (not shown).  No correlation was obtained between intracellular 

fluoroquinolone accumulation and polar surface area (PSA) (r = 0.20) (Figure18D). However, 

the accumulation of all 6 drugs displayed a strong correlation with their calculated partition 
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coefficients (ClogP) (r = -0.74) (Figure 18C). The strong negative correlation indicates that 

fluoroquinolones with greater hydrophilicity accumulate intracellularly more effectively. All r 

values are Pearson’s correlation coefficients from correlation regression analysis (GraphPad 

Prism v5.0).  
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Table 14 The steady-state concentrations (SSC) in M. bovis BCG, activities and physicochemical properties of six fluoroquinolones. 

MIC, minimum inhibitory concentration; ClogP, calculated partition coefficient; PSA, polar surface area. 

 

 

 

 

 

 

 

 

 

 

 

Fluoroquinolone 
SSC 

(nmol / CFU) 
MIC90 (µM) 

Molecular 

weight (g / mol) 
ClogP PSA 

Ciprofloxacin 3.86 x 10
-10 

0.64 331.4 -0.73 77.0 

Moxifloxacin 3.77 x 10
-10

 0.10 401.4 -0.082 86.3 

Ofloxacin 2.45 x 10
-10

 0.95 361.4 -0.51 77.5 

Gatifloxacin 2.18 x 10
-10

 0.13 375.4 -0.27 86.3 

Clinafloxacin 2.71 x 10
-10

 0.12 365.8 -0.42 91.0 

Sparfloxacin 3.64 x 10
-10

 0.12 392.4 -0.61 103.1 
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Figure 17 The steady-state concentration of 6 fluoroquinolones in M. bovis BCG. Results reflect 

accumulation at 10µM at the 30min mark as determined from fitted non-linear regression curves 

(see Figures 14). Average accumulation is expressed as the amount of drug (nmol) per colony 

forming unit (CFU).  
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Figure 18 Correlations between the steady-state concentrations of six fluoroquinolones and (A) 

MIC90 and the following physicochemical properties: (B) molecular weight, (C) calculated 

partition coefficient (ClogP), and (D) polar surface area (PSA). Pearson’s correlation coefficients 

(r) indicate the strength of correlations. 
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3.3.3 Effects of external concentration on fluoroquinolone accumulation 

The saturability of fluoroquinolone uptake was explored by incubating M. bovis BCG with 

increasing concentrations of fluoroquinolone (5, 10, 25, 50, 75, 100, 125, 150 and 200µM). 

Sampling of the drug-treated cultures was performed 30s after fluoroquinolone addition in order 

to reflect the initial rate of uptake (published and unpublished data suggest that the majority of 

ciprofloxacin penetration in M. bovis BCG occurs within the first minute) (182). The 

concentrations of fluoroquinolones accumulated intracellularly increased proportionately with 

increases in exogenous fluoroquinolone concentrations. Figure 19 (A – F) shows that the 

accumulation of all 6 fluoroquinolones in M. bovis BCG is non-saturable up to 200µM. 

 

 

 

 

 

 

 

 

 

 



105 
 

Figure 19 The effect of exogenous drug concentration on the initial rate of (A) ciprofloxacin, (B) 

moxifloxacin, (C) ofloxacin, (D) gatifloxacin, (E) clinafloxacin and (F) sparfloxacin 

accumulation by M. bovis BCG. Sampling was performed after 30s. The rate of drug 

accumulation is expressed as the absolute quantity of each fluoroquinolone per CFU (nmol / 

CFU/ min). Best-fit lines were fit using linear regression (GraphPad v5.0). The experiment was 

conducted with biological triplicates and standard deviations are shown as error bars. 
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3.3.4 Investigating competitive inhibition of fluoroquinolone uptake 

We set out to investigate if ciprofloxacin uptake would be inhibited in M. bovis BCG when co-

incubated with another fluoroquinolone or with a known substrate of porin-mediated transport. 

BCG was incubated with 10µM of both ciprofloxacin and moxifloxacin and the extent of 

intracellular ciprofloxacin accumulation was compared against bacteria that incubated with the 

single drug. The addition of a second fluoroquinolone did not have a significant effect on 

ciprofloxacin accumulation (p > 0.05) (Figure 20A). Next, we attempted a similar experiment 

with the β-lactam meropenem. It is understood that β-lactams utilize the porin transport pathway 

in both mycobacteria and non-mycobacterial species (112, 136). Co-incubation of ciprofloxacin 

and meropenem did not effect a significant change in ciprofloxacin accumulation in BCG (p > 

0.05) (Figure 20B). A range of meropenem concentrations was tested because it was unsure if 

the affinity of the porin in BCG responsible for fluoroquinolone uptake would be similar to its 

affinity for β-lactams. Ultimately, the competitive inhibition of fluoroquinolone uptake in 

mycobacteria was not achieved experimentally.   
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Figure 20 Competitive inhibition of ciprofloxacin accumulation. M. bovis BCG was co-

incubated with ciprofloxacin (CPX) and (A) moxifloxacin (MXF) or (B) meropenem (MPN). 

MPN was tested at concentrations ranging between 10 and 100µM. The experiment was 

conducted with biological triplicates and standard deviations are shown as error bars. 
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3.3.5 Effect of efflux pump inhibitors on fluoroquinolone accumulation 

To determine whether active efflux influences intracellular accumulation of fluoroquinolones in 

mycobacteria, the penetration of ciprofloxacin, moxifloxacin or gatifloxacin in M. bovis BCG 

was examined in the presence of known efflux pump inhibitors. Verapamil and reserpine are 

both potent inhibitors of a wide range of efflux pumps in mycobacteria (174, 175, 212). Neither 

verapamil nor reserpine, at concentrations of 75µM and 20µM respectively, was able to produce 

significant change in the uptake of ciprofloxacin, moxifloxacin or gatifloxacin (p > 0.05) (Figure 

21). 

 

Figure 21 The effects of efflux pump inhibitors, verapamil and reserpine, on ciprofloxacin 

(CPX), moxifloxacin (MXF) and gatifloxacin (GFX) accumulation in M. bovis BCG. The 

relative accumulation of each drug is expressed as percentage of uninhibited drug accumulation 

respectively. The experiment was conducted with biological triplicates and standard deviations 

are shown as error bars. 
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3.3.6 Investigating the dependence of fluoroquinolone accumulation and activity on 

carboxyl-group deprotonation 

3.3.6.1 Effect of medium pH on fluoroquinolone accumulation 

The effects of acidic external pH on fluoroquinolone penetration in mycobacteria were also 

investigated. The accumulation of ciprofloxacin, moxifloxacin and gatifloxacin in M. bovis BCG 

was measured at pH 6.5 (unadjusted 7H9 medium) and at pH 5. An increase in acidity of the 

medium resulted in significant decreases in intracellular accumulation of all three 

fluoroquinolones (Figure 22). The reduction in intracellular accumulation ranged between 58% - 

81%, with ciprofloxacin displaying the most drastic reduction.    

 

3.3.6.2 Effect of medium pH on fluoroquinolone activity 

Given that acidic conditions decrease the permeation of fluoroquinolones in M. bovis BCG, we 

proceeded to test whether their activities would similarly decrease. BCG was grown in pH-

adjusted medium (pH 5.0) in the presence of ciprofloxacin, moxifloxacin and gatifloxacin over a 

range of concentrations for 5 days. The resulting observations of growth inhibition at pH 5.0 

were normalized to data from bacteria grown in unadjusted medium. For all 3 fluoroquinolones, 

a decrease in external pH from 6.5 to 5.0 resulted in a loss in anti-mycobacterial activity 

(Figures 23). The MIC90 of ciprofloxacin increased most drastically (8-fold) (Table 15). The 

MIC90s of moxifloxacin and gatifloxacin increased 4 and 5-fold respectively.  
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Figure 22 The effects of acidic external pH on the accumulation of ciprofloxacin (CPX), 

moxifloxacin (MXF) and gatifloxacin (GFX) in M. bovis BCG. Accumulation at pH 5.0 is 

expressed as the percentage of accumulation at pH 6.5 (unadjusted medium). The experiment 

was conducted with biological triplicates and standard deviations are shown as error bars.  
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Figure 23 MIC curve-shifts for (A) ciprofloxacin, (B) moxifloxacin and (C) gatifloxacin as a 

result of increased medium acidity. Growth at pH 5.0 was assayed as OD600 readings and 

normalized against growth at pH6.5 and represented in percentages.  
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Table 15 MIC90 of ciprofloxacin, moxifloxacin and gatifloxacin against M. bovis BCG at pH6.5 

and pH5. 

 

MICs (µM) CPX MXF GFX 

pH6.5 0.55 0.1 0.1 

pH5.0 4.6 0.4 0.5 
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3.4 Discussion 

Fluoroquinolone uptake has been studied using various assays in a variety of bacterial species 

that include E. coli, P. aeruginosa, and S. aureus (143). The specific study of fluoroquinolone 

transport in mycobacteria thus far appears split between two hypotheses; fluoroquinolones 

uptake is believed to take place via either (1) passive diffusion through the lipid-rich outer 

membrane or (2) facilitated diffusion though porins located in the outer membrane. We 

attempted to study this uptake process using our newly-developed penetration assay and to 

further characterize it. Results showed that fluoroquinolone accumulation in M. bovis BCG is 

rapid, with steady-state intracellular concentrations being achieved within the first few minutes 

of exposure to the drugs. Our data also demonstrated that an increase in fluoroquinolone 

concentration between 5 and 200µM resulted in proportional increases in concentrations 

accumulated intracellularly. Also, this uptake was non-saturable within that concentration range. 

These results agree with published data on norfloxacin accumulation in Mycobacteria aurum; 

intracellular accumulation of norfloxacin was non-saturable over the concentration range of 0 - 

100µg/ml (0 - 313µM) (243). Fluoroquinolone uptake in other bacterial species has also been 

reported as rapid and non-saturable (44, 143).  

Physicochemical properties such as hydrophilicity, polarity and molecular weight frequently 

used to help understand the penetration properties of small molecules. ClogP is a general 

measure of the hydrophobicity / lipophilicity of a compound. The fluoroquinolones tested in this 

study were primarily hydrophilic (ClogP < 1). Interestingly, a strong correlation exists between 

the hydrophobicity the 6 fluoroquinolones and intracellular accumulation. Hydrophobic 

compounds are better equipped to directly diffuse through lipid membranes. Our observation that 

more hydrophilic fluoroquinolones are able to better permeate into mycobacteria indicates the 
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likelihood that channel proteins such as porins are responsible for their transport across the outer 

membrane. Molecular weight of fluoroquinolones only weakly correlated with intracellular 

accumulation. There was little variation in weight between the 6 fluoroquinolones in this panel, 

possibly explaining why only a weak correlation could be established. A previous study using a 

fluorometric assay also noted that there was no correlation between the anti-mycobacterial 

activity of fluoroquinolones and accumulation (182). Ultimately, rapid fluoroquinolone 

permeation in replicating wild-type M. bovis BCG or M. tuberculosis, combined with good 

affinity for the target enzyme, contributes towards their overall potency as anti-tuberculous 

agents. 

Our data also shows that the accumulation of fluoroquinolones in M. bovis BCG is unaffected by 

efflux pump inhibitors reserpine and verapamil, similar to what has been demonstrated with M. 

aurum, M. smegmatis and M. tuberculosis with metabolic inhibitors such as reserpine, 2,4-

dinitrophenol (DNP) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) (57, 182, 243). 

Verapamil is a calcium channel antagonist and reserpine is a P-glycoprotein inhibitor. Both 

compounds are commonly used to identify active efflux processes in microbial systems. The 

concentrations of reserpine and verapamil used here were based on similar experiments in 

previous studies (36, 174). These results apparently contradict the findings from a previous study 

of an efflux pump in M. tuberculosis with fluoroquinolones as substrates that responds to various 

chemical inhibitors (See Chapter 1, Table 1). However, those results were obtained by over-

expressing a specific efflux pump which is not reflective of wide-type strains (174). 

The effects of pH on fluoroquinolone susceptibility and penetration in M. tuberculosis, and 

mycobacteria in general, have not been elucidated prior to this study. It is known that a decrease 

in the pH of the medium results in an increase in MIC of norfloxacin against E. coli by up to 50 –
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fold. Several-fold change in MIC of norfloxacin against S. aureus was also observed upon the 

increase in acidity of the medium (227). Based on these previous observations, we set out to 

determine the effects of acidic external pH on fluoroquinolone accumulation in M. bovis BCG. 

Interestingly, we were able to demonstrate that a decrease in the medium pH from 6.5 to 5 

produced significant reductions in intracellular fluoroquinolone accumulation by up to 80%. 

Increases in fluoroquinolone MICs by several-fold as a result of the same decrease in external 

pH were also observed. Amongst the three fluoroquinolones tested at acidic pH, the magnitudes 

of reduction in fluoroquinolone activity correlated with magnitudes of reduction in intracellular 

accumulation (CPX > GFX > MXF). This phenomenon is believed to be due to decreased 

chelation of fluoroquinolones with Mg
2+

 in acidic pH due to a reduction in the deprotonation of 

their carboxyl groups (from COOH to COO
-
) (168). From the pKa of ciprofloxacin (6.09 and 

8.62) (11), we calculated that the ratio between protonated and deprotonated molecules is 30-

times higher at pH5.0 than at pH6.5. It was previously suggested that quinolones chelate Mg
2+

 

available on the surface of the outer membrane and acquire net positive charges that allow them 

to preferentially diffuse through porin channels, which usually have preferences for cations (168). 

The increasing acidity of incubation medium is therefore expected to compromise intracellular 

fluoroquinolone accumulation. Our study is the first to show that this phenomenon is evident in 

mycobacteria as well.  

The decrease in fluoroquinolone penetration at acidic pH has wider in vivo applications. It is well 

understood that intracellular M. tuberculosis persists within the acidic environment of phagocytic 

vesicles. Although it is known to inhibit phagosome acidification as a survival mechanism, 

vacuole pH has been measured as being maintained at moderately acidic pH (180). Our findings 

make the case for the use of finafloxacin, a new investigational fluoroquinolone, for the 
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treatment of TB infections. Finafloxacin is known for its enhanced activity against E. coli, S. 

aureus, and L. monocytogenes at moderately acidic pH, compared to reduced potency of 

ciprofloxacin under those conditions (78, 117). Furthermore, an increase in potency of 

finafloxacin against S. aureus under acidic conditions was specifically shown to directly 

correspond with an increase in intracellular accumulation (117). As of yet, there is no published 

material on the study of finafloxacin activity against M. tuberculosis which is well worth 

pursuing in light of the results of this study.  

Overall, the observations that fluoroquinolone accumulation in M. bovis BCG is dependent on its 

hydrophilicity and its potential to chelate metal ions indicate the preference for this class of 

compounds to utilize the porin transport pathway. The non-saturability, and inability to 

competitively inhibit this fluoroquinolone uptake with another fluoroquinolone or a β-lactam, 

appear to disprove the hypothesis that a specific transport protein is involved. However, this 

phenomenon could be explained by Nikaido’s description of non-specific porin channel activity 

as being linearly dependent on substrate concentrations. This is compared to specific porins or 

porin-like channels that have true substrate specificities and are saturable (165). Further 

investigation in subsequent chapters was necessary in order to isolate and study this 

fluoroquinolone transport pathway. 
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CHAPTER 4 

INHIBITION OF PORIN-MEDIATED FLUOROQUINOLONE TRANSPORT BY 

POLYAMINES 

 

 

 

 

 

 

 

 

Parts of this project have been included in the following manuscript: 

Sarathy JP, Lee EJD, Dartois V. Polyamines inhibit porin-mediated fluoroquinolone uptake in 

mycobacteria. PLoS One. 2013; 8(6): e65806. 
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4.1 Overview 

As was explained in the previous chapter, porin-mediated transport seems a likely mechanism for 

the uptake of fluoroquinolones in M. tuberculosis. A previous study had demonstrated reduced 

fluoroquinolone susceptibility and / or accumulation in porin knock-out mutants of M. smegmatis 

(61). The identification of porins of M. tuberculosis, however, has been slow, and limiting to the 

performance of similar studies on this species. OmpATb, once believed to be the first porin to be 

successfully identified in M. tuberculosis, has been rejected on the basis of functional and 

structural analyses (217, 228). Only Rv1698 has so far demonstrated potential to be a true porin 

on M. tuberculosis although further investigation is necessary (214). Unfortunately, the difficulty 

of studying of porin-mediated drug uptake is compounded by the fact that chemical inhibitors are 

not traditionally used to isolate this pathway. The activities of efflux pumps, for instance, are 

often characterized by using inhibitors such as verapamil and reserpine (235). Even active uptake 

processes are isolated using uncouplers such as CCCP (191). Without chemical inhibitors of 

porins, the study of their transport capabilities remains limited to knock-out mutants. 

Interestingly, the review of published literature revealed the existence of a class of compounds 

that inhibit the channel activity of porins in E. coli. Polyamines, which are ubiquitous to both 

prokaryotic and eukaryotic cells, have demonstrated the ability to suppress channel opening, 

enhance channel closure as well as promote the inactive state. It has been suggested that the main 

mechanism of porin channel modulation involves changes in the intrinsic rate constants for 

gating, which leads to the stabilization of the closed states (103). Drug accumulation studies have 

proven that the application of exogenous spermidine specifically reduces norfloxaxin influx 

through OmpF, a well-characterized porin of E. coli (45). Such evidence led us to the hypothesis 

that these small molecules could be used in a similar capacity to effect inhibition of porins-
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mediated drug transport in mycobacteria as well without the need for prior identification of the 

specific porin /s involved.  

In this chapter of the study, we explored the effects of polyamines on the intracellular 

accumulation of fluoroquinolones in M. bovis BCG. The potencies of spermidine, spermine, 

cadaverine and putrescine were compared, and it was shown that efficacy requires the 

application of polyamines in the millimolar range. The inhibitory activity of spermidine, the 

most potent inhibitor of the group, was characterized for its dose- and pH-dependencies. It was 

proven in this study that the positive charge on the polyamine is important for inhibition. These 

results correspond with those of studies on OmpF and OmpC of E. coli (71). Furthermore, we 

tested to see if a reduction in fluoroquinolone permeation would translate to decreased 

susceptibility of M. bovis BCG.  Spermidine clearly increased the survival of M. bovis BCG to a 

5-day exposure to ciprofloxacin by up to 25 times.  

Our study went further by attempting to quantify the extent of polyamine production and 

quantification in M. bovis BCG which has not been previously accomplished. This was based on 

published evidence that E. coli secretes endogenous cadaverine to modulate its outer membrane 

permeability during exposure to harsh conditions such as acidic external medium (203). Our 

measurement of high intracellular cadaverine concentration indicates that M. tuberculosis may 

similarly alter its outer membrane permeability in response to harsh external stimuli.     
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4.2 Materials and Methods 

4.2.1 Chemicals 

Spermidine, spermine, cadaverine and putrescine were obtained from Sigma-Aldrich (Missouri, 

U.S.A.). Stock solutions of 1M were prepared for all polyamines and stored at 4°C. 2,4,6- 

trinitrobenzenesulfonic acid (TNBS) and sodium carbonate were obtained from Sigma and 

aqueous solutions of  10.2mM and 1M, respectively, were prepared.  

 

4.2.2 Drug Penetration Assay and Quantitative Analysis 

The standard drug penetration was assay was conducted as described in Chapter 3 for the 

measurement of steady-state intracellular drug accumulation. When the kinetics of 

fluoroquinolone uptake over a 30min period was being examined, samples were taken over the 

following time intervals: 0, 1, 2, 3, 5, 10, 15, 20, 25, and 30min. In polyamine-inhibition 

experiments, cultures were pre-incubated with the specified polyamine for a period of 10min at a 

concentration of 10mM unless otherwise mentioned. The pH of supplemented 7H9 medium was 

adjusted from 6.5 to 8.0 and 9.0 by the addition of sodium hydroxide when specified. 

Quantitative analysis of drug concentration was achieved by LC/MS as described previously. 

The LC-gradient methods used for each compound have been listed in Chapter 2.  
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4.2.3 Susceptibility Testing 

The MIC90s of polyamines were assessed in a manner similar to what was described in the 

Chapter 2. Spermidine and cadaverine activities were assessed within the range of 0.001 to 

50mM. In fluoroquinolone MIC-shift experiments, dilutions of ciprofloxacin were prepared to 

achieve the final range of 0.05-2.0µM; spermidine and cadaverine were co-spotted with 

ciprofloxacin when needed to achieve the final concentrations of 0.01, 0.1 and 1mM. In kill-

kinetics assays, broth cultures with an OD600 of 0.2 were incubated with specific concentrations 

of ciprofloxacin and polyamine; 20µl aliquots were removed after specific time intervals and 

spread onto agar plates following ten-fold serial dilutions. 

 

4.2.4 Generation of spontaneous mutants 

Middlebrook 7H11 plates were prepared as described earlier with the addition of a range of 

concentrations of spermidine. These concentrations were several -fold higher than the MIC90 of 

spermidine against M. bovis BCG (3.5mM). The final concentrations of spermidine were 4mM, 

5mM, 7.5mM, 10mM, and 15mM. Mycobacterial cultures were grown to an OD600 of 0.3-0.4. 

100ml of culture was harvested by centrifugation at 3,200rpm for 10min. The pellet was re-

suspended in 1ml of fresh 7H9 medium to give the approximate cell density of 1 x 10
11 

cells/ml. 

A series of 10X dilutions of this culture were prepared in fresh 7H9 medium. 100µl of bacterial 

culture containing 10
9
, 10

7
and 10

5
 cells/ ml were spread onto compound-containing 7H11 agar 

plates. To estimate the exact original viable cell count of the culture, culture dilutions were also 

spread on drug-free 7H11 agar plates. All culture dilutions were plated in triplicates. Plates were 

incubated at 37°C under aerobic conditions for 4-6 weeks.  
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4.2.5 Statistical tests 

For the determination of statistical significance of differences in drug uptake between polyamine 

–treated and –untreated M. bovis BCG, unpaired t-tests with Welch’s correction (assuming 

unequal variances) (GraphPad Prism v5.0) were used. Significant, very significant and extremely 

significant differences were benchmarked at p-values of 0.05 (*), 0.01 (**) and 0.005 (***) 

respectively.  

 

4.2.6 Quantification of cadaverine production and secretion  

The assay used is adapted from procedures described elsewhere, with several modifications (179, 

202). The procedure is based on the principle that cadaverine, a product of lysine decarboxylase, 

forms a coloured reaction-product with 2,4,6-trinitrobenzene sulfonate (TNBS) that is soluble in 

toluene. The product formed with reaction precursor, lysine, is not soluble in toluene (Figure 24). 

Briefly, M. bovis BCG cultures were grown to an OD600 of 0.3 - 0.4 and concentrated to an 

approximated OD600 of 4.0 in PBS. The bacilli were then subjected to bead-beating in screw-

capped micro-centrifuge tubes containing 0.1mm zirconia / silica beads. Tubes were shaken in a 

bead-beater (Precellys 24, Bertin Technologies) for 3 x 60s cycles at 6,000rpm with at least 1min 

rest periods on ice between cycles. Beads and cell debris were pelleted at 13,000rpm and cell 

lysates were filter-sterilized. Each 500µl of cell lysate was mixed with 500µl of 1.0M sodium 

carbonate and 500µl of 10.2mM TNBS. This mixture was incubated for 5min at 42°C. The 

cadaverine-TNBS adduct was extracted by vigorous vortexing of the mixture with 1ml of toluene 

for 20s and centrifugation at 2,500rpm for 5min. 200µl of the organic layer was transferred to 

96-well plates and the absorbance at 340nm detected by a spectrophotometer (SpectraMax Plus, 
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Molecular Devices) with the use of appropriate blanks. Standard curves were similarly 

established for cadaverine in the concentration range of 5 – 250µM.   

 

4.2.7 Sequence alignment 

Multiple sequence alignment of CadB orthologues from various mycobacterial species was 

performed by ClustalW (Kyoto University Bioinformatics Centre; Japan) which was made 

available at www.genome.jp/tools/clustalw/ (27).   

 

Figure 24 A schematic diagram showing adduct-formations between TNBS and lysine / 

cadaverine. The coloured products have different solubilities in toluene. This diagram was 

obtained from Phan et al (179).  

 

 

 

 

 

 

 

 

 

http://www.genome.jp/tools/clustalw/
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4.3.2 Results 

4.3.1 Inhibitory effects of polyamines on fluoroquinolone accumulation 

4.3.1.1 Potencies of various polyamines 

We set out to investigate the effect of polyamines on fluoroquinolone accumulation in 

mycobacterium. In this study, drug accumulation was assessed at the steady-state (unless 

otherwise mentioned), 30min after exposure to the drug. Pre-incubation with 10mM of 

spermidine, spermine, cadaverine and putrescine reduced intracellular accumulation of 

ciprofloxacin in M. bovis BCG (Figure 25). At 10mM, spermidine proved most potent at 

decreasing ciprofloxacin accumulation, reducing the final ciprofloxacin intracellular 

accumulation by 69% relative to the control assay (p <0.001). Putrescine was least effective, 

causing a reduction in steady-state intracellular concentrations of only 19% (insignificant). The 

inhibitory effects of spermidine, spermine and cadaverine on ciprofloxacin accumulation were 

assessed over the concentration range of 0.01 – 30mM (Figures 26), and the IC50s were 

determined (Table 16). The inhibitory activities of all three polyamines were evident in the 

millimolar range. Spermidine was most potent (IC50 = 3.9mM), followed by spermine and 

cadaverine. Spermidine was hence selected for subsequent experiments unless otherwise 

mentioned. Interestingly, 100% inhibition of ciprofloxacin accumulation was not achieved by 

any polyamine even though it was evident that their effects had maximized by the highest tested 

concentration of 30mM.  
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Figure 25 Inhibition of ciprofloxacin (CPX) accumulation in M. bovis BCG by treatment with 4 

different polyamines. Relative uptake of CPX is expressed as percentage of average uninhibited 

uptake. The experiment was conducted with biological triplicates and standard deviations are 

shown as error bars.  Asterisks denote data points that differed significantly between spermidine-

treated and -untreated BCG.   
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Figure 26 Ciprofloxacin accumulation in M. bovis BCG in response to increasing concentrations 

of (A) spermidine, (B) spermine, (C) cadaverine. Ciprofloxacin uptake in each figure is 

expressed as the percentage of uninhibited uptake (100%) respectively. Polyamine 

concentrations are plotted on a log scale. The experiments were conducted with biological 

triplicates and standard deviations are shown as error bars.   
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Table 16 The IC50s of polyamines on the uptake of ciprofloxacin by M. bovis BCG. IC50 was 

defined as the concentration required to achieve 50% inhibition of ciprofloxacin accumulation. 

 

 

Polyamine IC50 (mM) 

Spermidine 3.9 

Spermine 3.8 

Cadaverine 9.1 

 

 

 

 

C 

0.001 0.01 0.1 1 10 100
0

50

100

150

Concentration (mM)

P
e
rc

e
n

ta
g

e
 C

P
X

a
c
c
u

m
u

la
ti

o
n

 (
%

)



130 
 

4.3.1.2 Effects of spermidine on the kinetics of fluoroquinolone accumulation 

The effects of spermidine on the kinetics of ciprofloxacin accumulation during a 30 min 

incubation period were determined. Spermidine clearly reduced steady-state accumulation of the 

drug rather than just delaying it, resulting in a downward shift of the time-based curve (Figure 

27). Spermidine-treated BCG only took 3 min to achieve equilibrium conditions while non-

treated bacteria took 20 – 30min to equilibrate uptake. In order to ensure that any reduction in 

drug uptake by M. bovis BCG brought about by spermidine was the result of inhibition of porin-

mediated uptake rather than cell death, a time-kill experiment was conducted. A 60min 

incubation period with 10mM of spermidine did not significantly reduce the number of colony-

forming units (Figure 28). 

 

4.3.1.3 Intra -class variation in response to polyamine treatment 

Reductions in moxifloxacin, ofloxacin and gatifloxacin steady-state intracellular accumulation 

were also observed in the presence of spermidine, proving that this phenomenon is reproducible 

across the fluoroquinolone class (Figure 29A).  The extent of reduction in accumulation varied 

between 69% and 31% across the four fluoroquinolones, with ciprofloxacin accumulation 

displaying the greatest reduction. In order to investigate if the effect of polyamine pre-treatment 

on drug uptake is fluoroquinolone-specific, further experiments were conducted with ethambutol, 

rifampicin and linezolid. The presence of 10mM of spermidine resulted in a 33% and 25% 

reduction in steady-state intracellular accumulation of linezolid and ethambutol respectively 

(Figure 29B). Rifampicin, however, displayed an increase in accumulation by 58%, further 

supporting the notion that spermidine does not affect cell viability at concentrations up to 10mM. 
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Figure 27 The effects of 10mM of spermidine on the kinetics of CPX accumulation (at 10µM) 

during a 30min period. Standard deviations are shown as error bars. 

 

 

 

 

 

 

 

 

Figure 28 Kill -kinetics of 10mM of spermidine against M. bovis BCG for the first 60min of 

incubation. Standard deviations are shown as error bars. 
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Figure 29 (A) The inhibitory effect spermidine has on the accumulation of moxifloxacin (MXF), 

ofloxacin (OFX) and gatifloxacin (GFX), as compared to CPX, in M. bovis BCG. (B) The effect 

spermidine has on the uptake of linezolid (LNZ), rifampicin (RIF) and ethambutol (EMB) in M. 

bovis BCG. Relative uptake of each drug is expressed as percentages of uninhibited drug uptake 

respectively. The experiment was conducted with biological triplicates and standard deviations 

are shown as error bars. Asterisks denote data points that differed significantly between 

spermidine treated and untreated BCG.  
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4.3.2 Reversibility of effects of polyamines 

The reversibility of the effects of polyamine treatment was investigated in order to further 

characterize the porin-inhibitory mechanism. When M. bovis BCG cultures that were pre-

incubating with spermidine were washed with PBS prior to incubation with ciprofloxacin, a 

partial recovery in steady-state ciprofloxacin accumulation was observed (Figure 30). Saline 

washes brought about an increase in ciprofloxacin uptake to approximately 80% of uninhibited 

uptake. No significant difference resulted from washing the bacilli twice rather than once. These 

results indicate that inhibition of porin-mediated fluoroquinolone uptake is mostly reversible. It 

is possible that a fraction of spermidine remains tightly adhered to the outer membrane or 

binding sites on porins despite two PBS washes. Alternatively, recovery in ciprofloxacin uptake 

may be underestimated at each additional wash step due to the partial loss of bacilli.  

 

4.3.3 Effect of pH changes on polyamine activity 

Ciprofloxacin penetration assays were performed on M. bovis BCG in pH-adjusted media in 

order to demonstrate the effect of increasing pH on the polyamine inhibitory activity. Steady-

state intracellular ciprofloxacin concentrations in BCG pre-incubated with spermidine were 

normalized against uninhibited ciprofloxacin accumulation under the respective pH conditions. 

Figure 31 shows that when supplemented 7H9 medium was adjusted to pH 8, spermidine 

reduced ciprofloxacin accumulation by 68% which is comparable to results obtained with 

unadjusted medium (pH6.5). At pH9, spermidine only produced a 36% reduction in 

ciprofloxacin accumulation. Cell viability remained unaffected for the incubation duration of 

30min at pH9.  
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Figure 30 The effects of PBS washes on the inhibition of ciprofloxacin (CPX) accumulation in 

M. bovis BCG that has been pre-incubating with spermidine. Relative ciprofloxacin 

accumulation is expressed as percentages of maximum (uninhibited) uptake. The experiment was 

conducted with biological triplicates and standard deviations are shown as error bars.  

 

 

 

 

 

 

 

 

Figure 31 The effects of increasing pH on the inhibitory effects of spermidine. Ciprofloxacin 

accumulation in the presence of spermidine was normalized against uninhibited accumulation for 

the respective pH conditions. Standard deviations are shown as error bars.  
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4.3.4 Effect of spermidine on mycobacteria susceptibility to ciprofloxacin 

Given the reduced uptake of ciprofloxacin in the presence of polyamines, we hypothesized that 

the anti-mycobacterial activity of ciprofloxacin could be weakened in the presence of spermidine. 

We first tested the growth inhibitory properties of spermidine and cadaverine on their own. 

OD600 measurements made after a 5 day incubation period revealed that both spermidine and 

cadaverine begin to inhibit M. bovis BCG growth at concentrations above 1mM (Figure 32). 

Concentrations below 1mM for both polyamines were hence chosen in experiments aimed at 

evaluating polyamine-induced changes in ciprofloxacin susceptibility. At 0.01, 0.1 and 1.0mM, 

neither polyamine brought about a shift in ciprofloxacin-mediated growth inhibition (Figure 33), 

with the MIC90 of ciprofloxacin against M. bovis BCG remaining constant at 0.7µM. However, 

enumeration of colony-forming units revealed that ciprofloxacin-mediated killing of M. bovis 

BCG was reduced by 10 and 25-fold in the presence of 1.0mM and 2.5mM of spermidine 

respectively over a 5 day period (Figure 34). The differences in the number of viable bacilli 

between spermidine-treated and -untreated cultures are statistically significant at the 5-day mark 

(p < 0.001). 
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Figure 32 MIC curves of spermidine and cadaverine against M. bovis BCG. Growth of BCG was 

evaluated as OD readings at 600nm. 

 

 

 

 

 

 

 

 

Figure 33 MIC curves of ciprofloxacin against M. bovis BCG in the presence of varying 

concentrations (0.01, 0.1 & 1.0mM) of spermidine and cadaverine.  
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Figure 34 Kill-kinetics of M. bovis BCG during a 5-days incubation period with ciprofloxacin 

and spermidine. The effects of pre-incubation with 100µM and 1mM of spermidine (SPM) were 

compared against incubation with 10µM ciprofloxacin (CPX) alone. The experiment was 

conducted with biological triplicates and standard deviations are shown as error bars.   
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4.3.5 Spontaneous Mutant Generation 

Attempts were made to generate M. bovis BCG mutants against spermidine by plating cultures 

onto 7H11 agar plates containing a range of concentrations of the polyamine. Multiple 

generations of bacteria from several inoculums were tested. No spontaneous mutants were 

generated at any of the spermidine concentrations above 3.5mM (up to 15mM) despite the 

plating of bacterial densities as high as 1 x 10
9
 (approximate). At 3.5mM itself and below, a lawn 

of colonies was obtained.  

 

4.3.6 Cadaverine Production and Secretion 

The cadaverine content of M. bovis BCG growing in 7H9 medium was measured without 

stimulation by addition of lysine or exogenous cadaverine. Similar to what was demonstrated by 

Samartzidou et al (202), cadaverine standard curves showed that the assay was linear between 

absorbance values of 0.1 and 1.0, with the latter corresponding to 250µM cadaverine (Appendix 

III, Figure 21). Cadaverine concentrations of cell lysates were normalized to the number of CFU. 

The calculated amount of cadaverine per viable bacillus averaged at (2.54 ± 0.31) x 10
-8

 nmol (n 

= 3). Assuming a cellular volume of 0.5µm
3
 based on the dimensions of the tubercle bacillus (56, 

91), the estimated intracellular concentration of cadaverine in BCG was 50mM.  
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4.4 Discussion 

In E. coli,  the inhibitory effect of polyamines on the outer membrane permeability is due to their 

specific interactions with the OmpF and OmpC porins (70).  Porins are trans-membrane proteins 

that act as channels for a wide variety of molecules. In facilitating chemotaxis and the flux of 

antibiotics, porins contribute significantly to the overall permeability of the outer membrane. 

There is general consensus that polyamine binding in E. coli causes a conformational change in 

the porin, which promotes the prolonged occupancy of the closed state, though it cannot be 

excluded that some steric blocking of the open channel may occur (71). It is plausible that 

polyamines may inhibit mycobacterial porins in a similar manner. In this study, we have 

explored the possibility of chemically inhibiting fluoroquinolone transport in mycobacteria by 

use of polyamines. Similar to published work in E. coli (45, 71, 103), we have demonstrated that 

significant reduction of mycobacterial outer membrane permeability requires polyamines in the 

millimolar range. It is known that the intracellular concentration of spermidine approximates 

6mM in E. coli. Under normal conditions, the intracellular concentration of putrescine in E. coli 

is estimated at about 20mM, with the potential to be further increased by high pH (16). We 

hypothesized that millimolar concentrations of polyamines are also present in mycobacteria and 

that they are involved in the modulation of outer membrane permeability. Since the effects of 

cadaverine production and excretion in E. coli have been particularly emphasized in literature 

(202, 203, 216), we proceeded with the study of mycobacterial cadaverine production. 

A spectrophotometric assay based on the formation of toluene-soluble cadaverine adducts of 

TNBS allowed for the measurement of cadaverine content of M. bovis BCG lysate. We estimated 

the intracellular concentration of cadaverine in un-stimulated BCG to be 50mM. Though this is 

significantly higher than the reported polyamine content of other bacteria, it could help explain 
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why the mycobacterial outer membrane is so much less permeable than its counterparts. The 

cadA gene, which encodes for lysine decarboxylase, is responsible for cadaverine production in 

E. coli. A BLAST search for an orthologue of CadA in M. tuberculosis revealed amino acid 

sequence homology with Rv2531 (24% identity, 41% positives).  Rv2531 is believed to be an 

ornithine / arginine / lysine decarboxylase although its exact function has not been characterized 

(102). We suggest that this gene may be responsible for cadaverine production in M. tuberculosis.  

Attempts were also made to study cadaverine excretion by M. bovis BCG by analyzing filtered 

media from growing cultures. Unfortunately, supplemented 7H9 medium is rich in compounds 

that absorb at 340nm (the wavelength used in the assay for cadaverine quantitation) and samples 

could not be successfully blanked using this fluorometric assay. CadB is the protein responsible 

for cadaverine transport in E. coli. It is not only responsible for cadaverine uptake, but also 

cadaverine excretion via cadaverine-lysine antiport activity (216). CadB is classified as a 

member of the Amino acid-Polyamine-Organocation (APC) superfamily of transporters (199). 

Although direct evidence of cadaverine secretion in mycobacteria could not be provided in this 

study, BLAST searches and multiple-sequence alignments showed that putative transporters of 

cadaverine are present in M. tuberculosis, M. bovis BCG and M. smegmatis (Figure 35). The 

amino acid sequence of Rv1999c of M. tuberculosis shares 23% identity and 40% similarity with 

CadB of E. coli. Although the function of Rv1999c has not been characterized, it is hypothesized 

to be an integral membrane protein involved in the transport of cationic amino acids across the 

membrane (102). This possible CadB orthologue of M. tuberculosis shares 100% and 74% 

identity with orthologues in M bovis BCG (Mb2022c) and M. smegmatis respectively. Both 

orthologues have also been identified as hypothetical amino acid transporters (101, 157). A 

comprehensive analysis of the APC superfamily by Jack et al revealed the presence of 6 such 
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transporters in M. tuberculosis belonging to various sub-families (104). This further supports the 

hypothesis that M. tuberculosis is able secrete (or uptake) endogenous polyamines.   

In this study, spermidine-induced inhibition of ciprofloxacin accumulation demonstrated dose-

dependency up to 30mM. The trend displayed suggests that increasing concentrations of 

spermidine beyond 30mM inhibits fluoroquinolone penetration to the point where all porin-

facilitated transport is suspended and only unassisted passive diffusion is reflected by residual 

accumulation. We suggest that the fraction of the fluoroquinolone pool that passively diffuses 

through the hydrophobic core of the outer membrane, independent of porin proteins, is the reason 

why increasing the concentration of spermidine is not able to completely block all uptake. 

Alternatively, this phenomenon could be explained by the hypothesis suggested by Nikaido and 

Thanassi in their work with porin –deficient mutants of E. coli. The inhibition of porin-mediated 

fluoroquinolone transport may mean that only the uncharged species, as opposed to Mg
2+

 -

chelated molecules, are able to transverse the outer membrane. Because the uncharged species 

are unable to respond to the interior –negative Donnan potential across the membrane, there is no 

uphill concentration of fluoroquinolones within the cytoplasm (168). 

Presented data suggest that porins account for fluoroquinolone cell wall permeation in M. bovis 

BCG to varying degrees, but are on the whole greater determinants of intracellular 

fluoroquinolone accumulation than efflux pumps in the wild-type strain. The trend seen with 

ciprofloxacin, ofloxacin and gatifloxacin suggests that greater hydrophilicity results in greater 

dependence on the porin transport pathway (Table 17). Moxifloxacin is an outlier to this trend. 

Being the most hydrophobic of the group, is most likely effective at diffusing through the lipid-

rich membrane in a porin-independent manner, as has also been demonstrated previously in M. 
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smegmatis. Alternatively, molecular dimensions which determine the fit of the molecules 

through the porin constriction zone may be a determinant of porin-mediated drug uptake (61).  

Our observation of the first 10min of ciprofloxacin uptake in M. bovis BCG showed that 

treatment with spermidine reduced net steady-state intracellular accumulation rather than 

delaying it. Similar results were obtained in the study of norfloxacin and cefepime uptake by F 

porins in Enterobacter cloacae (45). Despite the inhibition of porin-mediated uptake, the 

intracellular/extracellular concentration gradient should ultimately drive the equilibration of drug 

concentration between the two compartments. We suggest a cellular model where uptake and 

efflux processes work in concert to achieve steady-state conditions. A reduction in net steady-

state accumulation without impeding efflux processes suggests that polyamines reduce the rate of 

fluoroquinolone influx. Efflux pump inhibitors verapamil and reserpine were not able to elicit 

distinct shifts in steady-state fluoroquinolone accumulation (Chapter 3, Figure 21), but we 

acknowledge that these non-specific inhibitors are unlikely to account for the extensive list of 

bacterial efflux pumps, with their broad range of structural and substrate specificities. 

First-line standard TB drugs ethambutol and rifampicin have much lower and higher molecular 

masses than ciprofloxacin respectively. Intracellular steady-state accumulation of both drugs by 

M. bovis BCG failed to reduce significantly upon polyamine pre-treatment, indicating that these 

drugs are not similarly affected by spermidine and that porin-mediated drug uptake is more drug 

class specific than it is molecular mass-dependent. While linezolid and ciprofloxacin have 

comparable molecular masses, they have significantly differing hydrophobicity (ClogP of 0.168 

and -0.725 respectively). Interestingly, the inhibition of porin transport causes a 33% and 71% 

reduction in intracellular accumulation of hydrophobic linezolid and hydrophilic ciprofloxacin 

respectively.  
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Iyer and Delcour suggested at least 2 polyamine binding sites in OmpF and OmpC, one of which 

resides within the pore (103). Although we are unable to confirm the position of the polyamine 

binding site on the mycobacterial porin, we now understand that this binding is reversible 

because saline washes enable spermidine dissociation and restoration of channel activity. The 

positive charge of spermidine is an important determinant of its inhibitory mechanism. An 

increase in pH from 8 to 9 brought about a decrease in the inhibitory effects of spermidine by 

half. From the pKa values of spermidine (8.34, 9.61 and 10.88) (194), one can calculate that the 

ratio of trivalent to divalent species is 10 fold higher at pH8 than 9. Similarly, previous work has 

demonstrated that a reduction in concentration of the most highly charged species of cadaverine 

has the direct effect of relieving its porin-inhibitory capacity by decreasing the total number of 

closed events (71).  

The complex effect of polyamines thus far appears limited to cation-specific porins such as 

OmpF and OmpC. PhoE of E. coli, for example, is completely unaffected by spermine and 

cadaverine (201). This phosphate transporter is induced by phosphate-starvation and displays a 

general selectivity for anions (23). Fluoroquinolones are generally amphoteric at physiological 

pH due to the presence of acidic carboxyl group and basic quinolone nitrogen. However, 

chelation with Mg
2+

 as described earlier (Chapter 2, Discussion) lends fluoroquinolones net 

positive charges that may enable their transport by cation-specific porins. This possibly explains 

why polyamines have an effect on the uptake of these amphoteric molecules. 

The possibility of weak non-specific interactions between amines groups of polyamines and the 

carboxyl groups of fluoroquinolones may explain some of our results because it potentially 

depletes the amount of free drug available for accumulation in the intracellular environment. 

Thus far, the effect of polyamines has been established for the uptake of fluoroquinolones and β-
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lactams, both of which possess a carboxylic acid functional group (45, 70, 203). However, Iyer 

and Delcour presented results from the probing of membrane vesicles from the outer membrane 

of E. coli, expressing only OmpC and OmpF, by the patch clamp technique. Concentration- and 

voltage-dependent inhibitory effects of polyamines were observed, proving that the modulation 

of porin activity  by polyamines is independent of the presence of the substrate (103). We 

acknowledge the possibility that polyamines such as spermidine and cadaverine may alter drug 

accumulation by affecting other transporter proteins within mycobacteria. Thus far, we found no 

published evidence of such activity with regards to bacterial efflux pumps. One study has shown 

that substituted polyamines such as N-benzylated polyazaalkanes and N-benzylated 

polyaminoalkanes are efflux pump inhibitors. However, the structures of these compounds differ 

significantly from the short, straight-chained polyamines used in this study.   

It has been hypothesized that the development of fluoroquinolone resistance in some bacterial 

species may be the result of diminished production of porins acting in conjunction with enhanced 

efflux capabilities (100). Studies on porin knockout mutants of M. smegmatis have shown 

several fold-increase in resistance to sparfloxacin and moxifloxacin when compared to the wild-

type strain (61). We have demonstrated that spermidine concentrations of 1 to 2.5mM rescue M. 

bovis BCG from ciprofloxacin bactericidal activity. These concentrations are below the 

spermidine MIC of 4mM. It should be noted however that partial growth inhibition was observed 

at 2.5mM while growth remained unaffected at 1mM spermidine. Thus it is possible that partial 

growth inhibition may have contributed to the reduced killing activity of ciprofloxacin in the 

presence of 2.5mM spermidine. Nevertheless, the dose-proportional response we observe 

between 1 and 2.5mM spermidine supports the notion that transport processes play an important 

role in maintaining fluoroquinolone susceptibility in mycobacteria. Decreased synthesis, 
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mutation, inhibition by endogenous molecules, and internalization and degradation of porins are 

therefore all viable mechanisms of fluoroquinolone resistance acquisition in mycobacteria (171).  

We attempted to generate spontaneous mutants of M. bovis BCG against spermidine in order to 

help with the identification of the specific target interacting with polyamines. Unfortunately, no 

spontaneous mutants were isolated despite the use of high bacterial densities and multiple 

bacterial generations. The lowest concentration of spermidine at which the inhibition of CFU-

growth was observable (3.5mM) corresponds with the MIC of the polyamine. The lack of mutant 

isolation generally hints at the essentiality of the interacting target /s. Because endogenous 

polyamines are essential to a multitude of biological pathways that regulate cell growth and 

replication in all cell types, spontaneous mutants would have to carry multiple mutations on a 

range of targets. Therefore, the probability of isolating a single mutant colony may be extremely 

low and unhelpful in identifying a porin target.  
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Figure 35 Multiple amino-acid sequence alignment of CadB orthologues from E. coli and 

various mycobacterial species. Sequence alignment was performed by ClustalW (27). Stars 

indicate identical amino acids between all 6 sequences, while dots represent similar amino acids. 
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Table 17 The molecular weights, ClogP and Polar Surface Area (PSA) of four fluoroquinolones 

and their spermidine-induced reductions in intracellular accumulation.  

 

Fluoroquinolone Mol. Weight ClogP PSA % Decrease 

Ciprofloxacin 331.35 -0.725 77.04 69% 

Moxifloxacin 437.9 -0.082 86.27 49% 

Ofloxacin 361.4 -0.508 77.48 58% 

Gatifloxacin 375.4 -0.266 86.27 31% 
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CHAPTER 5 

UNDERSTANDING FLUOROQUINOLONE SUSCEPTIBILITY AND UPTAKE IN 

NON-REPLICATING M. TUBERCULOSIS 

 

 

 

 

 

 

 

 

Parts of this project have been included in the following manuscript: 

Sarathy JP, Dartois V, Dick T, Gengenbacher M. Impaired drug uptake contributes to phenotypic 

resistance in nutrient-starved non-replicating Mycobacterium tuberculosis. Antimicrobial Agents and 

Chemotherapy. 2013; 57(4): 1648-53.  
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5.1 Overview 

About one third of the world’s population is suspected to be latently infected with latent TB 

(242). Latent TB is characterized by long-term asymptomatic infections where the bacteria 

persists in a state of non-replication and slowed metabolism until host defenses are compromised 

(138). One crucial concern regarding latent M. tuberculosis is its display of decreased drug 

susceptibility, making it difficult to eradicate (247). This phenotypic drug resistance is reversible 

and not genetically predetermined. Some suspected mechanisms for the development of 

phenotypic resistance include cell wall thickening and changes in drug target essentiality (234). 

The main objective of this part of the study was to examine the possibility that decreased drug 

susceptibility of NRP M. tuberculosis is the result of decreased drug permeation. A shift from the 

use of M. bovis BCG in earlier chapters to M. tuberculosis in this and subsequent chapters was 

necessary in order for us to understand the latency of the disease in human infections. For this 

purpose, we used the well-established Loebel’s nutrient starvation model which mimics the 

limiting conditions of human granulomas in vivo for the generation of non-replicating bacteria 

(127, 128). We believe that the results from earlier experiments that used BCG can be 

extrapolated to these ones because BCG is widely accepted as a good surrogate model for M. 

tuberculosis for the reasons already discussed in the Introduction section.  

As discussed in the Literature Review section, NRP M. tuberculosis is less susceptible to a wide 

variety of antimicrobial agents. We began this chapter by comparing the susceptibility of actively 

-replicating and nutrient-starved non-replicating M. tuberculosis to a comprehensive panel of 

anti-tuberculous agents that includes first, second and third-line drugs, clinical development 

compounds, and existing drugs with other clinical applications. This part of the study extended 

beyond the fluoroquinolone class because we felt it necessary to demonstrate the gravity of the 
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matter by showing that the phenomenon affects a range of drug classes with antimycobacterial 

activity. Drastic losses in cidal activity were demonstrated with majority of the agents tested. We 

then proceeded to compare the permeability of these 10 drugs in both bacteria-types. With 7 of 

the 10 drugs, including all fluoroquinolones and rifamycins, significant reductions in 

intracellular accumulation were associated with the nutrient starvation state. This reduction is the 

result of a downward shift in the equilibrated state rather than slowed equilibration. These 

reductions were shown to be independent of enhanced efflux pump activity or changes in cellular 

dimensions.   

Starvation conditions have been known to cause changes in porin protein synthesis in other 

bacterial species. M. smegmatis responds to glycerol starvation by shutting down mspA 

expression, similar to E. coli’s shut down of OmpF synthesis is response to nutrient depletion 

(184).  Hillman et al reported that MspA expression is barely detectable in M. smegmatis during 

the stationary phase of growth (96). It was suggested that other mycobacterial species respond 

similarly to nutrient starvation. Using our knowledge of the effects of polyamines on the 

inhibition of intracellular fluoroquinolone accumulation (Chapter 4), we compared the sensitivity 

of replicating and non- replicating M. tuberculosis to spermidine and cadaverine. Our objective 

was to investigate the hypothesis that a reduction in porin-mediated drug uptake is the main 

cause of reduced drug permeation in the latter. We found that the treatment of actively-

replicating M. tuberculosis with spermidine reduced ciprofloxacin accumulation by half while 

non-replicating nutrient-starved cultures showed marginal sensitivity to polyamines. We suggest 

that a reduction in this porin-mediated transport contributes to the phenotypic drug resistance to 

fluoroquinolones demonstrated by M. tuberculosis in the non-replicating state. 
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5.2 Materials and Methods 

5.2.1 Culture Conditions 

Exponentially-replicating M. tuberculosis was cultured in supplemented 7H9 medium as 

previously described till an OD600 of 0.4 – 0.6 was obtained. Nutrient-starved non-replicating M. 

tuberculosis cultures were generated by re-suspending exponentially-growing H37Rv in PBS 

(0.025% Tween80) and incubating at 37°C with constant rolling for 14 days (24, 82). This 

method of generating nutrient-starved M. tuberculosis was pioneered by Loebel et al (127, 128) 

and in-house validation of the protocol proved that cell viability is maintained during the 2 –

week starvation period. 

 

5.2.2 Susceptibility Testing 

MBC90 (minimum bactericidal concentration 90) was defined as the concentration of drug 

required to kill 90% of the bacteria. LCC90 (Loebel cidal concentration 90) was similarly defined 

as the concentration of drug required to kill 90% of nutrient-starved non-replicating bacteria.  M. 

tuberculosis was incubated with each drug at various concentrations for a 5-day period, and 

subsequently grown on agar plates for 2-3 weeks. MBC90 and LCC90 were obtained upon CFU 

enumeration and plotting of CFU-drug concentration curves. 

 

5.2.3 Drug Penetration Assay and Quantitative Analysis 

The standard drug penetration was assay was conducted as described in Chapter 3 for the 

measurement of steady-state intracellular drug accumulation. When the assay was conducted on 
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nutrient-starved cultures, pellets were re-suspended in sterile PBS-tween instead of 7H9 medium 

in order to concentrate the culture. The kinetics of drug uptake was examined by taking duplicate 

samples over the following time intervals: 0, 1, 2, 3, 5, 10, 15, 20, 25, and 30min. In efflux pump 

inhibition experiments, verapamil and reserpine were added (75µM and 20µM respectively) 

3min after the addition of the anti-tuberculous agent (10µM). In polyamine- inhibition 

experiments, cultures were pre-incubated with the specified polyamine for a period of 10min at a 

concentration of 10mM unless otherwise mentioned. Quantitative analysis of drug concentration 

was achieved by LC/MS as described previously. The LC-gradient methods used for each 

compound have been listed in Chapter 2. 

 

5.2.4 Calculation of intracellular concentration 

The method of calculation of cellular concentrations was adapted from Cai et al (38). In 

instances when drug accumulation between various penetration assays was compared, drug 

concentrations in cell lysates were multiplied by the solvent-crashed lysate volume and 

normalized to the number of CFU per 300 µl sample. The result is an expression of the absolute 

amount of drug (nmol) per bacterial unit. Given the average cell width of 0.25 µm and length 

ranging from 1.5 - 4 µm for M. tuberculosis (56, 91), the estimated average cell volume of 0.5 

µm
3
 was used for the calculation of intracellular drug concentrations in this study (in µmol/dm

3
). 

Intracellular concentration/extracellular concentration ratios (IC/EC) were also calculated by 

normalizing to the drug incubation concentration (10µM). 
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5.2.5 Measurement of cell size distribution 

Samples of exponentially-growing and nutrient-starved M. tuberculosis were fixed for 2 hrs in 4% 

para-formaldehyde, applied onto poly-lysin glass slides and stained using the TB stain kit 

(Becton Dickinson) prior microscopic analysis. The individual length of 500 bacilli per sample 

was measured at 1000-fold magnification (phase contrast bright field) using a Leica DMLB 

microscope system equipped with a Jenoptik ProgRes CT5 digital camera and ProgRes 

CapturePro 2.7.7 software. Results were expressed as mean and standard deviation of three 

independent experiments.  

 

5.2.6 Statistical tests 

For the determination of statistical significance of differences in individual drug uptake between 

replicating and non-replicating M. tuberculosis, unpaired t-tests with Welch’s correction 

(assuming unequal variances) (GraphPad Prism v5.0) were used. Significant, very significant and 

extremely significant differences were benchmarked at p-values of 0.05 (*), 0.01 (**) and 0.005 

(***) respectively.  
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5.3 Results  

5.3.1 Antibiotic Susceptibility 

The bactericidal activities of 10 anti-tuberculous drugs were determined in both exponentially 

growing and nutrient-starved non-replicating cultures of the pathogen. The results of these tests 

are presented in Table 1. Except for mefloquine and thioridazine, a drastic drop of drug 

susceptibility was observed with nutrient-starved M. tuberculosis. All fluoroquinolones as well 

as ethambutol and linezolid showed LCC90s higher than 100 M. The three rifamycins tested 

here were highly-active against replicating bacteria but displayed a >100-fold decrease in 

bactericidal activity against nutrient-starved cultures. These results show that nutrient-starved 

non-replicating bacteria is highly tolerant to a variety of anti-tuberculous agents (upper section of 

Table 18). Data obtained with moxifloxacin, ofloxacin, rifampicin and ethambutol are in 

agreement with previous studies on nutrient-starved M. tuberculosis (82, 245). Non-standard 

drugs mefloquine and thioridazine (bottom section of Table 18), though much less cidal than 

standard anti-tuberculous agents against replicating bacteria, displayed almost unchanged 

activity against nutrient-starved cultures.   
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Table 18 The bactericidal activity of 10 standard anti-tuberculous drugs on both replicating and 

non-replicating M. tuberculosis.  

 

Drug MBC90 (µM) a LCC90 (µM) b 

Moxifloxacin 0.31-0.63 >100 

Ofloxacin 0.31-0.63 >100 

Levofloxacin 1.25-2.5 >100 

Rifampicin 0.078 >10 

Rifabutin 0.039 10 

Rifapentene 0.078 10 

Ethambutol 2.5-5.0 >100 

Mefloquine 25.0 25.0 

Thioridazine 40.0 50.0 

Linezolid 10.0 >100 

 

a 
MBC90 (minimum bactericidal concentration 90) is defined as the drug concentration required to kill 90% of the 

bacteria. 

b 
LCC90 (Loebel cidal concentration 90) is defined as the drug concentration required to kill 90% of nutrient-starved 

non-replicating bacteria. 
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5.3.2 Accumulation of 10 Standard TB Drugs in non-replicating M. tuberculosis 

Drug penetration assays with 10 anti-tuberculous drugs were performed on M. tuberculosis using 

a constant incubation concentration of 10 µM. Steady-state intracellular drug accumulation was 

determined by sampling at the 30min time point in replicating and non-replicating cultures. The 

amount of drug per CFU for each drug in both culture types is presented in Figure 36. 

Intracellular concentrations, IC/EC ratios, statistical significance and fold-differences in 

intracellular accumulation were calculated and are presented in Table 19.  

Fluoroquinolones - The three fluoroquinolones tested accumulated comparably in the 

intracellular compartment of M. tuberculosis. Moxifloxacin, ofloxacin and levofloxacin all 

produced intracellular concentrations of approximately 125µM and IC/EC ratios of 

approximately 12 in replicating bacteria. Of the different drug classes tested, the 

fluoroquinolones produced the greatest decrease in intracellular accumulation as a result of 

nutrient- starvation (p < 0.05). Ofloxacin accumulation decreased by 12 -fold and was most 

sensitive to the starvation state. Ofloxacin did not accumulate above the incubation concentration 

in nutrient-starved non-replicating bacteria (IC/EC ratio of 1.0). The effect of varying the 

incubation concentration of ofloxacin was tested.  

Rifamycins - Intracellular accumulation of rifampicin and rifapentine in replicating M. 

tuberculosis were comparable (19.6 µM and 13.2 µM respectively). Rifabutin, however, 

accumulated much more efficiently, with an intracellular concentration of up to 89 µM in 

replicating bacteria. The IC/EC ratio of rifabutin (8.9) was the highest among the rifamycins 

studied. Nutrient-starvation caused significant decreases in intracellular accumulation of all three 

rifamycins (p < 0.05). Fold-decrease in intracellular accumulation upon nutrient starvation 
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ranged between 1.5 and 2.7. The effect of varying rifampicin incubation concentrations was also 

tested at 1, 5 and 20 µM.  

Other anti-tuberculous agents - The intracellular concentration of linezolid in replicating M. 

tuberculosis reached 68.5 µM. This decreased by half in non-replicating bacteria (p < 0.05). 

Comparatively, the intracellular accumulation of ethambutol, mefloquine and thioridazine did 

not significantly decrease in the non-replicative state. Intracellular concentrations of ethambutol 

reached 23 µM and 21 µM in replicating and non-replicating bacteria respectively. Of all the 

antibiotics tested, mefloquine accumulated most in replicating bacteria. The intracellular 

concentration of mefloquine in replicating bacteria was almost 400 µM while the IC/EC ratio 

approached 40. Mefloquine accumulation did not decrease significantly in non-replicating 

bacteria. IC/EC ratios reached 24 despite the starvation conditions, much higher than for other 

antibiotics in either state of replication. Only thioridazine failed to accumulate within the 

intracellular compartment of M. tuberculosis. Intracellular concentrations of thioridazine in both 

replicating and non-replicating bacteria were around 0.7 to 0.8 µM. IC/EC ratios for thioridazine 

reached only 0.07 regardless of bacterial starvation/growth state, much lower than for all other 

study drugs. 

Collectively, our results reveal that the extent of drug penetration in replicating M. tuberculosis, 

as well as the effect of dormancy on intracellular accumulation, varies between drugs and drug 

classes. 
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Figure 36 Intracellular accumulation of 10 anti-tuberculous agents in M. tuberculosis in two 

different growth states (exponentially-growing and nutrient-starved non-replicating) following a 

30min incubation period at 10µM. Drug content is expressed as the amount of drug (nmol) per 

colony-forming unit (CFU).  Inset figure displays data for thioridazine. The experiment was 

conducted with biological triplicates and standard deviations are shown as error bars.  
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Table 19 The intracellular concentrations of 10 anti-tuberculous agents in replicating and non-

replicating M. tuberculosis. Accumulation factors are IC/EC ratios; intracellular concentrations 

were divided by the incubation concentrations of 10µM. p-values obtained from unpaired t-tests 

indicate significance of difference between intracellular drug concentrations from both growth 

phases whereas fold-differences represent the ratios between intracellular drug concentrations. 

Significant p-values (p <0.05) are bolded. 

 

 Intracellular Conc (µmol/dm3) Accumulation Factors p-value 
Fold-

difference 

 
Exponentially-

replicating MTB 

Non-replicating 

MTB 

Exponentially-

replicating MTB 

Non-replicating 

MTB 
  

Moxifloxacin 124.1±21.9 30.0±8.37 12.4 3.0 0.0199 4.14 

Ofloxacin 126.4±0.72 10.4±4.34 12.6 1.0 0.0005 12.2 

Levofloxacin 123.4±3.58 18.6±1.36 12.3 1.86 0.0004 6.64 

Rifampicin 19.6±1.66 13.1±1.68 1.96 1.30 0.0174 1.50 

Rifabutin 89.2±6.42 33.3±9.59 8.92 3.33 < 0.0001 2.68 

Rifapentene 13.2±0.12 7.02±0.34 1.32 0.70 0.0011 1.89 

Ethambutol 22.7±6.64 21.1±6.82 2.27 2.11 0.8154 1.07 

Mefloquine 398.8±132.5 238.8±86.4 39.9 23.9 0.1782 1.67 

Thioridazine 0.753±0.52 0.765±0.62 0.0753 0.0765 0.9812 0.98 

Linezolid 68.5±9.02 35.1±0.91 6.85 3.51 0.0199 1.95 
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5.3.3 Effect of efflux pump inhibitors on drug accumulation in non-replicating bacteria 

Several efflux pumps have been shown to actively transport fluoroquinolones out of M. 

tuberculosis. To test the hypothesis that increased efflux could be responsible for the reduced 

IC/EC ratios observed in the non-replicating state, we performed drug accumulation assays in the 

presence of two efflux pump inhibitors: verapamil and reserpine. There was no observable 

change in ofloxacin accumulation upon pre-incubation of bacteria in either growth state in the 

presence of either efflux inhibitor (Figure 37).  

 

5.3.4 Kinetics of drug accumulation in non-replicating bacteria 

Next we set out to determine whether reduced intracellular concentrations at the 30min mark 

were due to delayed equilibrium or reduced IC/EC at steady-state.  Ofloxacin accumulation by 

replicating and non-replicating bacteria was examined over a 30min time course by removing 

samples at specific time points. The plots of intracellular ofloxacin accumulation over time in 

both culture types are presented in Figure 38. In replicating bacteria, intracellular ofloxacin 

accumulation proceeded rapidly within the first 3min of incubation, and continued to gradually 

increase until end of the experiment. Likewise, steady-state accumulation was reached within the 

first 3min in non-replicating M. tuberculosis, but intracellular concentrations remained 

consistently lower than in replicating cells over the entire incubation period. The results 

demonstrate that nutrient starvation brings about a drastic reduction in steady-state ofloxacin 

accumulation without delaying the equilibrated state.  
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Figure 37 The effects of reserpine (RES) and verapamil (VER) on intracellular drug 

accumulation of ofloxacin (OFX) in replicating and non-replicating M. tuberculosis. Intracellular 

drug content is presented as amount of drug per CFU (nmol/CFU). Standard deviations are 

shown as error bars. 

 

 

 

 

 

 

 

 

Figure 38 The kinetics of ofloxacin accumulation in replicating and non-replicating M. 

tuberculosis over a 30min incubation period. Drug content is expressed as the amount of drug 

(nmol) per colony-forming unit (CFU).  Standard deviations are shown as error bars.  
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5.3.5 Polyamine treatment of M. tuberculosis 

We tested the hypothesis that fluoroquinolone accumulation in non-replicating M. tuberculosis is 

decreased due to a reduction in porin-mediated uptake. Spermidine, a known porin inhibitor, has 

been shown to significantly reduce ciprofloxacin permeation in replicating M. bovis BCG 

(Chapter 4). Its effects on non-replicating cultures of M. tuberculosis were examined. 

Ciprofloxacin penetration assays were performed on replicating and non-replicating cultures and 

results were expressed as the amount of ciprofloxacin per colony-forming unit. A comparison of 

uninhibited ciprofloxacin accumulation between the two cultures, as shown in Figure 39, 

confirmed that replicating M. tuberculosis when untreated by polyamines is 2.3-fold greater (p < 

0.05) than non-replicating cultures. Spermidine and cadaverine at 10mM produced a 49% and 41% 

reduction in ciprofloxacin accumulation in replicating M. tuberculosis respectively. In the non-

replicating culture, however, spermidine and cadaverine decreased accumulation by just 9% and 

13% respectively. Also, the differences in ciprofloxacin accumulation between both culture-

types following spermidine or cadaverine treatment are insignificant (p > 0.05).  
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Figure 39 The effects of spermidine on ciprofloxacin (CPX) accumulation in replicating and 

non-replicating M. tuberculosis. Results are expressed as the amount of CPX (nmol) per colony 

forming unit (CFU); cell lysate concentrations were normalized against bacterial counts for each 

experiment. The experiment was conducted with biological triplicates and standard deviations 

are shown as error bars.   
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5.3.6 Measurement of cell size distribution 

In order to exclude the possibility that differences in drug accumulation between replicating and 

non-replicating M. tuberculosis is due to changes in cell size brought about by nutrient starvation, 

measurements of cell size distribution were made. Results were expressed as mean and standard 

deviation of three independent experiments. It was found that cell size distribution is independent 

of the two growth phases; the average M. tuberculosis bacillus length at exponential phase was 

1.8±0.4 µm, n=500, as compared to 1.7±0.3 µm, n=500, in the nutrient-starved phase (Figure 

40). The difference in average dimensions was not statistically significant (p > 0.05). 

 

 

Figure 40 Comparison of cell length between (A) exponentially-replicating and (B) nutrient-

starved non-replicating M. tuberculosis. Average length measurements were 1.8±0.4 µm and 

1.7±0.3 µm respectively (n=500 for both). 
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5.4 Discussion 

In this part of the study, we have focused on the cell wall and membrane barrier in replicating 

versus non-replicating M. tuberculosis. Unlike microbial drug resistance conferred by genetic 

mutations, the phenotypic drug tolerance observed in this species during NRP is mediated by the 

physiological state of dormancy. Accordingly, full drug susceptibility is restored once growth 

resumes. While the cell envelope of exponentially growing bacteria is notably impermeable to 

small molecules (105, 159), we speculated that non-replicating bacilli are even more 

impermeable, and that this contributes to the phenomenon of phenotypic drug tolerance.  

To test our hypothesis, we selected a panel of drugs and drug classes active against M. 

tuberculosis, and compared their intracellular accumulation in replicating versus nutrient-starved 

non-replicating bacilli. Nutrient-starvation has been studied and validated as a model of 

persistence, causing M. tuberculosis to arrest growth, minimize aerobic metabolism and become 

resistant to existing drugs while maintaining viability, thereby mimicking some of the features of 

persistent bacteria (24, 84). We understand that a limitation of this study is that only one model 

of non-replicating persistence was employed. Apart from nutrient-starvation, shifts in pH, 

specific growth-limiting factors and hypoxic conditions are understood to initiate NRP (239). 

Nevertheless, Loebel’s starvation model was selected since it allows for repeated sampling 

without disturbing culture conditions and the physiological state of the bacilli.  

In replicating bacteria, we observed that fluoroquinolones accumulate within the intracellular 

compartment many-fold over the external concentration (IC/EC >> 1). This extensive 

accumulation of fluoroquinolones within M. tuberculosis should be explained by a more 

complex process than simple diffusion. It is known that fluoroquinolones chelate magnesium 

ions (Mg
2+

) (173, 229). These cations are abundant on the surface of the outer membrane which 
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is rich in acidic groups. These Mg
2+

-chelated compounds then acquire net positive charges that 

allow them to preferentially diffuse through porin channels which are traditionally cation-

specific. Nikaido and Thanassi explained that the interior-negative Donnan potential across the 

outer membrane should result in the uphill accumulation of chelated fluoroquinolones in the 

cytoplasm relative to the concentration of the external medium. Conventional fluoroquinolones 

that chelate Mg
2+

 carry the net positive charge of 2. The intracellular accumulation of such 

compounds is predicted to reach 8 – 10 times that of the extracellular medium  (168). Our 

observation of high IC/EC ratios is consistent with this hypothesis. 

The majority of the drugs tested in this study showed significantly decreased accumulation in 

nutrient starved M. tuberculosis bacilli. Uptake of the fluoroquinolones was most affected by the 

non-replicating state, consistent with the marked loss of bactericidal activity in starved versus 

replicating cultures. Intracellular accumulation of the rifamycins was impaired to a lesser extent 

under starvation conditions, also consistent with the observation that they retain measurable 

bactericidal activity against persisters, though much reduced compared to that achieved in 

growing cultures. However, the decrease in rifamycin and fluoroquinolone uptake alone was not 

able to account for the loss of drug susceptibility exhibited by non-replicating cultures. For 

instance, ofloxacin accumulation decreased 12-fold while its cidal activity was 300-fold lower in 

non-replicating bacilli. These results indicate that several factors including altered cellular 

permeability contribute collectively to the drug tolerance phenotype of persistent M. tuberculosis. 

Fluoroquinolones and rifamycins impede DNA replication and transcription by inhibiting DNA 

gyrase and RNA polymerase respectively. It is believed that both processes are slowed down in 

non-replicating M. tuberculosis. Hence, the inhibition of these less-essential targets may produce 

a limited response in latent infections. The same applies for linezolid, which inhibits the process 
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of translation during protein biosynthesis. Interestingly, IC/EC of the fluoroquinolones and 

rifamycins in non-replicating bacilli approached 1 for most compounds and was independent of 

the extracellular concentration used in the assay, suggesting mostly passive uptake.  

Intracellular penetration of ethambutol remained unchanged in replicating and non-replicating M. 

tuberculosis, while its cidal activity decreased drastically against the latter.  Ethambutol affects 

cell wall biosynthesis by specifically inhibiting the arabinosyltransferase, a pathway which is 

dispensable during non-replicating survival. In addition, penetration of ethambutol in the cytosol 

is likely not required for its activity given the transmembrane location of its target (137, 146). 

These two factors likely account for the ‘disconnect’ between cytosol accumulation and activity 

of ethambutol. Similarly, thioridazine is believed to inhibit the type II NADH dehydrogenase, a 

key component of the respiratory chain within the cellular membrane of M. tuberculosis. In 

addition, the highly hydrophobic phenothiazines are thought to be largely sequestered in the 

mycobacterial cell wall (30), in agreement with the very low intracellular concentrations of 

thioridazine observed in this study.  

Mutations in or induction of efflux systems are thought to confer low resistance levels to the 

fluoroquinolones and rifamycins, consistent with their MIC being affected by efflux pump 

inhibitors (verapamil and/or reserpine) in selected clinical isolates resistant to these two drug 

classes (87, 130, 213). Mycobacterial efflux pumps suspected to be associated with 

fluoroquinolone and rifampicin resistance include members of the Major Facilitator Superfamily 

and ATP Binding Cassette transporters (88, 130). To test the possibility that enhanced efflux 

might reduce intracellular drug concentrations in starved cells, we tested the effects of standard 

efflux inhibitors on intracellular fluoroquinolone accumulation in replicating and nutrient-starved 

cultures. Neither reserpine nor verapamil had a significant effect on ofloxacin accumulation  
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Collectively, the results of this study demonstrate that intracellular penetration of different drugs 

and drug classes is affected to different extents in the non-replicating state. Uptake of various 

drug classes is likely driven by a combination of multiple active and passive mechanisms, each 

of which is differentially affected once M. tuberculosis ceases to grow and enters a dormant life 

style. To date however, outer membrane protein candidates that could mediate facilitated or 

active transport into the TB bacillus have not been unambiguously identified (163). Besides the 

modulation of active transport systems, cell wall alterations have been suggested to account for 

the loss of cidal activity of small molecules against non-replicating M. tuberculosis. The 

biosynthesis of cell wall components is controlled by global regulators such as sigma factors, 

serine threonine kinases and two-component systems. Cell wall components implicated in 

virulence are induced under conditions that mimic the pathogen’s environment during infection 

(84). The precise remodelling mechanisms and structural changes brought about during 

dormancy remain to be elucidated in order to understand how they affect small molecule 

permeation.  

While there is evidence of cell wall thickening in M. tuberculosis upon the onset of dormancy, it 

remains unclear how porins orientate themselves across these thickened walls, amongst other 

still undocumented changes in porin expression and channel activity (58). Porin dimensions 

presumably remain static despite these external changes. In this case, it is conceivable that porin 

function is significantly impaired because the thickened cell wall reduces or blocks access by 

small molecules and impacts ‘sensing’ of the extracellular microenvironment. The treatment of 

M. tuberculosis with polyamines in this study demonstrated that nutrient-starved bacteria is less 

sensitive to the inhibitory effects of polyamines on intracellular fluoroquinolone accumulation. 

This shows that decreased drug susceptibility of non-replicating bacteria is likely the result of 
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decreased porin-mediated drug uptake. The additional possibility that channel activity of porins 

of M. tuberculosis may be regulated by endogenous molecules in response to unfavorable 

conditions, as observed with E.coli (203), awaits further investigation. 

The possible mechanisms for resistance acquisition in persistent M. tuberculosis via porin 

modifications are illustrated in Figure 41. Although this phenomenon could not be confirmed in 

this study with the generation and testing of a specific porin knock-out strains, it corresponds 

with the published observation that mspA expression decreases significantly in M. smegmatis 

even under moderate decreases in glycerol concentrations. It appears that the down-regulation of 

porin-mediated transport to reduce overall outer membrane permeability may be a crucial 

protective mechanism of mycobacteria against harsh environmental conditions. On a side note, 

M. smegmatis isolates lacking outer membrane-bound MspA are also resistant to ubiquitin-

derived peptides. These peptides are localized to lysosomes of macrophages where they are 

believed to contribute to mycobacterial clearance during autophagy. MspA provides access to 

these peptides so that they may access the inner membrane and disrupt membrane integrity, 

thereby exerting its bactericidal activity (186). This phenomenon also lends credit to our 

hypothesis that the loss of porin-mediated permeability in M. tuberculosis grants it a survival 

advantage. While reduced outer membrane permeability contributes to phenotypic drug 

resistance of latent M. tuberculosis in vivo, it also enables it to persist within the phagosomes of 

macrophages despite immune responses.   
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Figure 41 Four hypothetical mechanisms for drug resistance acquisition in persistent M. 

tuberculosis via porin modifications. Yellow cylinders represent cross-sections of porin channels. 

This diagram is not drawn to scale. 
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CHAPTER 6 

UNDERSTANDING PORIN GENE EXPRESSION IN NON-REPLICATING M. 
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6.1 Overview  

Results from the previous chapters of this thesis have demonstrated that reduced drug 

permeability of the outer membrane contributes to reduced drug susceptibility in latent M. 

tuberculosis. Preliminary studies using polyamines showed that a reduction in porin-mediated 

drug transport is one possible cause of this reduced permeability in non-replicating cultures. A 

review of published work showed that no attempt has yet been made to characterize changes in 

porin expression levels with respect to the growth-state of M. tuberculosis. This challenge is 

compounded by the limited identification and characterization of porin proteins of this species. 

OmpATb (Rv0899) was the first suggested porin in M. tuberculosis (207). This has since been 

disputed by structural and functional studies (217, 228). Bioinformatics approaches have been 

undertaken to predict porin proteins in mycobacteria. One particular study based their approach 

on the proof of principle that MspA of M. smegmatis shares its β-barrel structure, presence of a 

signal peptide, and absence of hydrophobic α-helices with OMPs of gram-negative bacteria. The 

combination of secondary structure prediction and the computation of amphiphilicity allowed for 

the genome-wide prediction of OMPs in M. tuberculosis. Two hypothetical proteins, Rv1698 and 

Rv1973 were identified (218). Mah et al’s search for outer membrane pore proteins led to the 

further refinement of this algorithm, enabling the additional identification of a range of putative 

OMPs from seven mycobacterial species. Their M. tuberculosis homologues are Rv1968, 

Rv1970, Rv1351, Rv1352, Rv2270, Rv0431 and Rv0227 (133).  

A panel of the 10 OMPs from M. tuberculosis mentioned above was put together and attempts 

were made to study their expression levels during non-replication. Total RNA from replicating 

and non-replicating nutrient-starved bacterial cultures was extracted, purified and reverse-

transcribed. Quantitative real-time PCR (qRT-PCR) using SYBR Green as the fluorescent 
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reporter allowed for the quantitation of porin expression levels in both cell-types. The SYBR 

Green-based technique was chosen for its cost-effectiveness, ease of performance and 

availability of instrumentation. OMPs that showed marked reductions in expression levels in the 

latter were identified. Results from the analyses helped identify Rv1698 as a possible candidate 

for transporter of fluoroquinolones in M. tuberculosis.  
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6.2 Materials and Methods 

6.2.1 Chemicals 

Trizol was purchased from Invitrogen (California, U.S.A.) and stored at 4°C. Isoamyl alcohol 

and isopropanol were purchased from Merck (Darmstadt, Germany), while EDTA and 

chloroform were obtained from Sigma (Missouri, U.S.A.). Ethanol was obtained from Fisher 

Scientific (New Hampshire, U.S.A.). 

 

6.2.2 Analysis of Porin Protein Expression 

6.2.2.1 Total RNA extraction 

Cultures were grown to an OD600 of 0.4-0.5. 30ml of culture was harvested by centrifugation at 

3,200rpm for 10min at room temperature. Cells were re-suspended in 1ml of Trizol (ice-cold) 

and bead-beaten at 6,500rpm with approximately 300µl of silica beads (3 x 30s with intermittent 

cooling on ice) to achieve homogenization. Lysates were then spun down at 12,000rpm for 1min. 

The supernatant was removed and 300µl of chloroform: isoamyl alcohol (24:1) added. After 

15min incubation at room temperature, samples were spun down at 12,000rpm for 15min. The 

aqueous phase was transferred and 0.9 volumes of isopropanol added to achieve RNA 

precipitation. After incubating at room temperature for 10min, samples were spun down at 

12,000rpm for 10min at 4°C. RNA pellets were washed with 75% ethanol and stored at -20°C. 

When pellet needed to be re-dissolved, 100µl of RNase-free water was added and samples were 

incubated at 55°C for 5min. RNA purification was performed with the RNeasy Mini Kit (Qiagen; 

California, U.S.A.). 3.5µl of mercaptoethanol and 350µl of RLT buffer were added to the RNA 
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solution and vortexed. 265µl of ethanol was added and the total volume spun down over an 

RNeasy column at 12,000rpm for 15s. The column was washed with 500ul of ethanol: RPE 

buffer (4:1) twice with intermittent 12,000rpm spins for 1min each. RNA was then eluted from 

the columns into fresh collection tubes twice with 20µl of RNase-free water. The purity of 

extracted RNA was estimated based on the ratio between A260 and A280 measurements. A ratio 

between 1.9 and 2.1 is optimal. 

DNase digestion of the total RNA extract was performed using the the RNase-Free DNase Set 

(Qiagen; California, U.S.A.). Briefly, approximately 1µg of RNA was incubated with 2µl of 10x 

DNase buffer, 0.5Kunitz units of DNase and RNase-free water (to make total volume of 20µl) 

for 30min at 37°C. Subsequently, 2µl of 25mM EDTA was added and the mixture incubated for 

5min at 65°C to achieve DNase inactivation. 

 

6.2.2.2 cDNA preparation 

cDNA synthesis from total RNA extracts was performed using the iScript Select cDNA 

Synthesis Kit and random primers (BioRad; California, U.S.A.).The final reaction mix consisted 

of 4µl of 5x reaction mix, 2µl of random primers, 1µl of reverse transcriptase and 5µl of DNase-

treated RNA. RNase-free water was added to make up the total reaction volume of 20µl. The 

RNA load per well ranged from 0.5-1.0µg. Reverse transcription was performed at 42°C for 

30min on a T3000 Thermocycler (Biometra; Goettingen, Germany) and enzyme inactivation 

achieved at 85°C for 5min.  
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6.2.2.3 Quantitative RT-PCR 

Quantitative RT-PCR was performed by the iQ5 Real Time Detection System (BioRad; 

California, U.S.A.) using the SYBR Green Supermix Kit (BioRad). The final reaction mix 

consisted of 25µl SYBR Green, 2.5µl of each primer (to make 250nM) and 5µl of the cDNA 

template. RNase-free water was added to make up the final reaction volume of 50µl. DNA 

sequences as provided by the National Centre for Biotechnology Information (NCBI) for 

ompATB (rv0899), rv1698, rv1973, rv0227, rv0431, rv1351, rv1352, rv1968, rv1970 and rv2270 

were used for primer design. The primer sets for each gene studied is listed in Table 20. The 

housekeeping gene 16s rRNA was used as a positive controls. Negative controls were generated 

with the exclusion of reverse transcriptase (No Amplification Control) or the cDNA template 

(No Template Control). Each experiment was conducted at least twice, with triplicate samples 

each time. The amplification method consisted of 40 cycles of 95°C for 30s, 61°C for 30s and 

72°C for 30s. The specificity of the PCR method was confirmed using melting curves. This 

involved subjecting the RT-PCR products to a temperature gradient of 55°C to 95°C with optical 

detection of SYBR Green at every 0.5°C increment. Relative fluorescence is then plotted as a 

derivative. Single peaks on the melting curves indicated single amplification products. Single 

products were further confirmed by gel electrophoresis. Products were run on 0.8% agarose gels. 

Relative gene expression data was expressed using the 2
-ΔΔCT

 method as detailed by Livak and 

Schmittgen (126).     
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Table 20 Sequences of oligonucleotides used in this study 

Gene name Direction Oligonucleotide sequence (5
1 
- 3

1
) Length 

Product Length 

(bp) 

rv0899 

(ompATb) 

Forward A C C  G T T  A C T  C T G  A T C  G G T  G A C  T 22 140 

Reverse G A G  A A A  T C A  A G T  G A T  C G C  A C A  A 22  

rv1698 
Forward G G T  C T C  A T T  G A C  C C A  G G A  G T T 21 

105 
Reverse A G T  T T G  G T G  C T C  A A C  T G G  C T A  C 22 

rv1973 
Forward G A C  G C C  T A C  A C A  C A G  C T G  A C 20 

148 
Reverse T G A  T G G  T C T  G G T  T T A  C G A  A C A  G 22 

rv0227 
Forward C C G  A G A  A G A  A G A  C A T  A C C  C C T  A 22 

100 
Reverse C G G  T A T  G T G  G T T  A A A  C C G  T T G 21 

rv0431 
Forward T C T  A C A  A C A  T C T  C A G  G C A  C A G  A 22 

107 
Reverse G A C  G T C  G G G  T A A  C G A  T A G  A T T  C 22 

rv1351 
Forward C T G  G G T  G T T  A T T  G G C  T T G  C T C  G 22 

125 
Reverse T C A  A G T  A C C  T A T  G A C  G G T  G C T  G 22 

rv1352 
Forward C G A  A T C  C C C  T T A  T T T  T G G  T G T 21 

106 
Reverse T T G  G T G  T C G  A C A  A T G  T T C  T C A  T 22 

rv1968 
Forward C T A  T C C  G G T  G G G  A A A  A G T  G T C 21 

125 
Reverse A C A  A G C  C C T  T G G  T T T  T G A  T T G 21 

rv1970 
Forward C C C  G A A  C G A  G A C  G T T  C C A  A A A  T 22 

131 
Reverse G A G  C T G  G G T  C A G  A T G  A C A  C T C 21 
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rv2270 
Forward A C G  A A C  A T G  A A T  C C G  A C A  A A C 21 

105 
Reverse T T G  A A G  G T T  A A T  C C A  G G T  C T C  G 22 

16s rRNA 
Forward G G A  C A C  C T A  T T A  C G A  T C A  C C A  G 22 

139 
Reverse C A A  A A C  C T C  A T C  G G A  A T C  A C G 21 
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6.2.3 Structural predictions and Sequence alignment 

Multiple sequence alignment of Rv1698 orthologues from various mycobacterial species was 

performed by ClustalW (Kyoto University Bioinformatics Centre; Japan) which was made 

available at www.genome.jp/tools/clustalw/ (27).  Predictions of transmembrane domains on the 

protein sequence of Rv1698 were performed by TMHMM Server v 2.0 (Center for Biological 

Sequence Analysis, DTU; Denmark) at www.cbs.dtu.dk/services/TMHMM/ (40).  
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6.3 Results 

6.3.1 RT-PCR analysis of porin gene expression in replicating and non-replicating M. 

tuberculosis 

We set out to investigate if a decrease in porin-mediated transport is the reason for decreased 

fluoroquinolone uptake in non-replicating M. tuberculosis. The quantitative RT-PCR assays were 

run to measure the transcript level of 10 OMP genes in actively-replicating and nutrient-starved 

non-replicating bacteria. Each assay was conducted at least twice with independent bacterial 

cultures and one representative data set was presented. Table 21 shows results obtained from the 

quantification of expression levels of ompATB (rv0899), rv1698, rv1973, rv0227, rv0431, rv1351, 

rv1352, rv1968, rv1970 and rv2270. The housekeeping gene 16srRNA was used as the internal 

control gene to normalize the PCRs for the amount of RNA added to the reverse transcription 

reaction. Transcription levels of actively-replicating M. tuberculosis were set as the calibrator for 

the 2
-ΔΔCt 

method and data is presented as fold change in gene expression relative to this control 

(Figure 42). An effect on gene expression levels was considered significant when the 

corresponding fold-change ratios were ≤0.4 or ≥2.5. 

The expression levels of all selected 10 OMP genes, inclusive of uncharacterized predicted pore 

proteins derived from computational methods, were detectable by qRT-PCR. Of the 10 OMP 

genes tested, only rv1698, rv1973 and rv0431 displayed significant reductions in expression 

levels in non-replicating bacteria. Specifically, rv1698 and rv0431 expression was reduced by 

≥25-fold. OmpATb and rv2270 expression levels were increased by 3.0- and 5.1- fold 

respectively. Interestingly, the expression of rv1352 was significantly increased by over 1000-
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fold in non-replicating bacteria. This was the largest change in expression level observed from 

all the OMP genes tested. 

Figure 22 (Appendix III) illustrates the melting curve for all 12 genes (in duplicate). For all 

genes, Tm values from replicating and non-replicating cultures aligned and produced only single 

peaks. No significant primer-dimer pairs (or other unspecific DNA fragments) were detected. 

Gel electrophoresis of RT-PCR products confirmed that only single amplification products were 

obtained (Appendix III, Figure 23). 
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Table 21 Results from qRT-PCR analysis of 10 genes of both actively-replicating and non-replicating cultures of M. tuberculosis. ΔCt 

is difference in mean Ct between each OMP gene and the control (16srRNA). ΔΔCt is the difference in ΔCt between the two culture 

types for each OMP gene. 2
-ΔΔCt 

is the calculated fold change in normalized OMP gene expression relative to the replicating culture. 

The experiment was conducted with biological triplicates.  

 

Actively-replicating  

TB 

 Gene Mean Ct ΔCt ΔΔCt 2
-ΔΔCt

 

1 16s rRNA 24.16 ± 0.145 0 ± 0.205   

2 ompATb 25.28 ± 0.06 1.12 ± 0.157   

3 rv1698 20.53 ± 0.196 -3.63 ± 0.243 
  

4 rv1973 28.31 ± 0.14 4.15 ± 0.202 
  

5 rv0227 20.62 ± 0.23 -3.54 ± 0.272 
  

6 rv0431 22.87 ± 0.316 -1.29 ± 0.348 
  

7 rv1351 23.51 ± 0.396 -0.65 ± 0.422 
  

8 rv1352 21.05 ± 0.055 6.89 ± 0.155 
  

9 rv1968 27.9 ± 0.134 3.74 ± 0.197 
  

10 rv1970 26.33 ± 0.11 2.17 ± 0.182 
  

11 rv2270 28.8 ± 0.238 4.64 ± 0.279   
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  Gene Mean Ct ΔCt ΔΔCt 2

-ΔΔCt
 

Non-replicating 

TB 

 

1 16s rRNA 27.98 ± 0.057 0 ± 0.08 0 1.00 

2 ompATb 27.51 ± 0.357 -0.47 ± 0.36 -1.59 3.01 

3 rv1698 29.09 ± 0.413 1.11 ± 0.41 4.74 0.04 

4 rv1973 30.95 ± 0.232 2.97 ± 0.23 -1.18 2.27 

5 rv0227 26.47 ± 0.301 -1.51 ± 0.31 2.03 0.24 

6 rv0431 32.54 ± 0.394 4.56 ± 0.40 5.21 0.03 

7 rv1351 28.13 ± 0.297 0.15 ± 0.30 0.8 0.57 

8 rv1352 24.63 ± 0.007 -3.35 ± 0.06 -10.24 1209.34 

9 rv1968 30.5 ± 0.174 2.52 ± 0.18 -1.22 2.33 

10 rv1970 30.83 ± 0.367 2.85 ± 0.37 0.68 0.62 

11 rv2270 30.26  0.093 2.28 ± 0.11 -2.36 5.13 
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Figure 42 Expression levels of 10 OMP genes of M. tuberculosis (in increasing order) following 

a shift to the non-replicating state. The relative expression of each OMP was calculated using the 

16srRNA transcript to normalize for the amount of RNA. Replicating cultures of M. tuberculosis 

served as controls.  
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6.4 Discussion 

The acquisition of drug resistance due to decreased membrane permeability has been 

demonstrated in several bacterial species. Multiple antibiotic resistant (MAR) mutants of E. coli, 

for example, have reduced OmpF porins amongst other changes in their outer membrane. Further 

investigation led scientists to understand that this reduction is primarily mediated by a post-

translational mechanism that affects OmpF mRNA stability (50). Several studies also make 

reference to the starvation state and how changes in porin expression in E. coli aid in survival 

under stressful conditions (62, 170). Darcan et al made specific reference to the existence of a 

‘viable but nonculturable’ (VNBC) state of E. coli which conceptually compares with the non-

replicating state of M. tuberculosis covered in this study. These studies, in combination with 

results from previous chapters of this thesis, led us to the hypothesis that porins of non-

replicating M. tuberculosis are similarly down -regulated.   

Gene expression profiling of 10 putative porin genes in replicating and non-replicating M. 

tuberculosis was conducted to identify the cause of decreased drug permeability of nutrient-

starved cells. Both rv1698 and rv0431 were identified as being severely under-expressed (>25 

fold) during nutrient-starvation. Changes in expression levels of ompATb, rv0227 and rv2270 

were more marginal, although significant. Rv1352, surprisingly, demonstrated >1000-fold 

increase in expression in nutrient-stared bacteria. Together with Rv1351, these two predicted 

OMPs are in an operon conserved between M. tuberculosis and M. bovis BCG. These putative 

proteins are also specific to these species, with no other identifiable orthologues in the five other 

non-pathogenic, facultative- and opportunistic-pathogenic mycobacterial species analyzed by 

Mah et al (133). Because the function of this non-essential gene remains uncharacterized (205), 

and its increased expression suggests that it does not significantly contribute to fluoroquinolone 
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permeation of non-replicating M. tuberculosis, Rv1352 was not further explored in this 

discussion.  

Rv1698 is significantly under-expressed in non-replicating M. tuberculosis. Having shown that 

such bacteria display significant reductions in fluoroquinolone permeability and susceptibility 

(Chapter 5), we suggest that this OMP is a likely transporter of fluoroquinolones in this species. 

Rv1698 has recently been profiled as a channel-forming protein in M. tuberculosis. Previous 

studies showed that this protein localizes in the outer membrane and is surface-accessible (218). 

It also restored sensitivity to ampicillin and chloramphenicol of a M. smegmatis mutant with 

MspA knocked-out. It was suggested that this pore protein may oligomerize in the outer 

membrane. Rv1698-like proteins are only found in the suborder Corynebacterineae. It is the first 

channel protein to be identified specifically for mycolic-acid containing outer membranes (214). 

Multiple amino acid sequence alignment of Rv1698 orthologues from several Corynebacterineae 

species revealed that this protein is conserved in this suborder (Figure 44). The M. tuberculosis 

and M. bovis BCG orthologues are completely identical. The R. equi orthologue is 47% identical 

and 66% similar to that of M. tuberculosis, the highest homology demonstrated amongst the non-

mycobacterial species compared. The C. diphtheria orthologue was least identical with only 33% 

identity. R. equi, N. brasiliensis and C. diphtheria are weakly infectious, causing mainly 

opportunistic infections in immune-compromised patients.  

TMHMM is a widely used bioinformatics tool that predicts transmembrane helices of integral 

membrane proteins based on the principles of the hidden Markov model (HMM) (114). Analysis 

by TMHMM Server v 2.0 (Center for Biological Sequence Analysis, DTU) predicts the 

existence of just one transmembrane domain (residues 7 – 29) in the amino acid sequence of 

Rv1698. This is preceded by a short intracellular domain (residues 1 – 6) and succeeded by a 
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long extracellular domain that spans the rest of the protein (residues 30 – 314) (Figure 45). The 

presence of just one transmembrane domain is unusual with outer membrane transport proteins. 

However, in the study of putative transport proteins from 18 bacterial species, Paulsen et al 

noted that M. tuberculosis has the largest number of proteins with just one transmembrane 

segment (TMS) and the lowest percentage proteins with multiple (2 – 3, 4 – 6 or 7 – 9) TMS. 

The unusual composition and structure of the mycobacterial cell envelope is offered as an 

explanation for this observation (176). From our analysis of its hypothetical structure alone, it 

appears unlikely that the Rv1698 monomer forms a functional transmembrane porin protein on 

its own. However, the possibility that this OMP oligomerizes in M. bovis BCG has been reported 

previously. This was based on the observations of dimeric Rv1698 protein and the multiple 

conductance states of its channel-complexes in lipid bilayers. Also a significant proportion of 

this protein displays a pattern of alternating hydrophobic and hydrophilic amino acid residues 

which is typical of transmembrane β-barrel channels (214). We therefore support the hypothesis 

that Rv1698 forms a functional porin that is responsible for fluoroquinolone uptake in M. 

tuberculosis, and that its down-regulated expression causes decreased permeability during 

latency. 

Rv0431, the putative OMP that also displayed significant under-expression in non-replicating 

culture, is another possible candidate for the porin that transports fluoroquinolones in M. 

tuberculosis. This protein contains an ACT domain at its C-terminal that has been associated 

with the genus Corynebacteria. Orthologues of this OMP can be found in all seven of the 

pathogenic and non-pathogenic mycobacterial species studied by Mah et al (133). It is also 

interesting that the two OMPs which showed the most significant reductions in expression levels 

are associated with bacteria that have mycolic-acid-rich outer membranes. A potential 
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transmembrane domain lies between the 19
th

 and 37
th

 amino acid. Other than the identification of 

Rv0431 as a putative tuberculin-related peptide, this hypothetical protein has not been further 

functionally characterized (102).  

The results from our gene expression analysis would have to be confirmed by other techniques. 

Microarray analysis could be a useful method to expand on our study of OMP expression in M. 

tuberculosis under different conditions. The performance of western blot analysis using 

membrane protein extracts would allow us to confirm that Rv1698 is indeed under-expressed in 

nutrient-starved cells. Unfortunately, the generation of either rv1698 or rv0431 knock-outs of M. 

tuberculosis was not successfully completed in this study. Further experimentation with such 

OMP knock-outs, especially in the nutrient-starved state, would provide us with clearer insight 

into the mechanism of reduced drug permeability in latent TB.  
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Figure 43 Multiple amino-acid sequence alignment of Rv1698 orthologues from various species 

of the Corynebacterineae suborder. Sequence alignment was performed by ClustalW (27). Stars 

indicate identical amino acids between all 6 sequences, while dots represent similar amino acids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mycobacterium tuberculosis          -MISLRQHAVSLAAVFLALAMGVVLGSGFFSDTLLSSLRSEKRDLYTQID                              

Mycobacterium bovis BCG             -MISLRQHAVSLAAVFLALAMGVVLGSGFFSDTLLSSLRSEKRDLYTQID 

Mycobacterium leprae                -MISLRQHAFSLAAVFLALAVGVVLGSGFLSDTLLSSLRDEKRDLYTQIS 

Rhodococcus equi                    ----MRQHAISIAAIFLALAIGVVLGSGLLSNGMLSGLRDDKADLQSRIE 

Norcardia brasiliensis              -MISLRQHAVSIVAIFLALAIGVVLGSQTLAADLLSGLRADKSDLRQQVD 

Corynebacterium diphtheriae         MARKSGRTATAIAGLSFGLALGIGAGMYVLAPNVAGGPNQTTSTLERERD 

                                          : * ::..: :.**:*:  *   ::  : .. .  .  *  . . 

 

Mycobacterium tuberculosis          RLTDQRDALREKLSAADNFDIQVGSRIVHDALVGKSVVIFRTPDAHDDDI 

Mycobacterium bovis BCG             RLTDQRDALREKLSAADNFDIQVGSRIVHDALVGKSVVIFRTPDAHDDDI 

Mycobacterium leprae                GLNDQKNMLNEKVSAANNFDNQLLGRIVHDVLGGTSVVVFRTPDAKDDDV 

Rhodococcus equi                    DLNTTNNQLNEQLTAADGFDSVVSDRIVRDTLAQRSVVVVTTPDADPGEA 

Norcardia brasiliensis              TVSEQNRQLTDQLNAADRFIAGSAGRILGGTLADRSVVVFTTPDADPADI 

Corynebacterium diphtheriae         DALESAQIAKAQAKSADSVVSALGRGITTDLLKEKKVLVFRTSDSLDSDA 

                                               : .:*: .       *  . *   .*::. *.*:   :  

 

Mycobacterium tuberculosis          AAVSKIVGQAGGAVTATVSLTQEFVEANSAEKLRSVVNSSILPAGSQLST 

Mycobacterium bovis BCG             AAVSKIVGQAGGAVTATVSLTQEFVEANSAEKLRSVVNSSILPAGSQLST 

Mycobacterium leprae                AAVSKIVVQAGGTVTGTVSLTQEFVDANSTEKLRSVVNSSILPAGAQLST 

Rhodococcus equi                    EGINRLISQAGGNVTGRVALTKSFVDSVNGDQLRTTVTN-VIPAGIQLRT 

Norcardia brasiliensis              EGVTKSLETSGAAITGRIALTDAFADATEGDRMRTAVTN-VIPAGAQLRT 

Corynebacterium diphtheriae         DALSEALKSAGAENAGTIKLGEEFFTQEGADGLKNIIAT-TLPAGAQLST 

                                     .:.. :  :*.  :. : * . *      : ::. : .  :*** ** * 

 

Mycobacterium tuberculosis          KLVDQGSQAGDLLGIALLSNADPAAPTVEQAQRDTVLAALRETGFITYQP 

Mycobacterium bovis BCG             KLVDQGSQAGDLLGIALLSNADPAAPTVEQAQRDTVLAALRETGFITYQP 

Mycobacterium leprae                KLVDQGSQAGDLLGITLLVNANPAVPNVGDAQRSTVLVALRDTGFITYQT 

Rhodococcus equi                    GAVDQGSLAGDLLGSVLLLDPQTAQPQTTPEERALALDALRGGGFVDF-- 

Norcardia brasiliensis              GAVDQGSMAGDLLGLVLLLDPANGQTRGTPQELGLVLETLRGGGFLAY-- 

Corynebacterium diphtheriae         EKMDSGTHAGDALGSALLLNKDDGSEQANKEDRGIVLGALRESGYIDFDE 

                                      :*.*: *** ** .** :   .       :   .* :**  *:: :   

 

Mycobacterium tuberculosis          RDR---IGTANATVVVTGGALSTDAGNQGVSVARFAAALAPRGSGTLLAG 

Mycobacterium bovis BCG             RDR---IGTANATVVVTGGALSTDAGNQGVSVARFAAALAPRGSGTLLAG 

Mycobacterium leprae                YNRNDHLGAANAALVITGGLLPQDAGNQGVSVARFSAALAPHGSGTLLAG 

Rhodococcus equi                    -DGN-VAPAQFAIVLTGSGDPENTSGNRGAVIARFAAAMDGRGAGAVLVG 

Norcardia brasiliensis              -GDTPIQPAQLAVVITGNG-AKSAENSQGANIARFAGALRGRGAGVVLAG 

Corynebacterium diphtheriae         ASVK----PAHAIVLLSGDSDGSKAAFSIKNQASFATALKSKGSGLLVAG 

                                     .      .  * ::  ..             * *: *:  :*:* ::.* 

 

Mycobacterium tuberculosis          RDGSANRPAAVAVTRADADMAAEISTVDDIDAEPGRITVILALHDLINGG 

Mycobacterium bovis BCG             RDGSANRPAAVAVTRADADMAAEISTVDDIDAEPGRITVILALHDLINGG 

Mycobacterium leprae                RDGSATGVAAVAVARADAGMAATISTVDNVDAEPGRITAILGLHDLLSGG 

Rhodococcus equi                    PPAAAEGSGPIAVARADAGVSATLSTVDNVDRESGRITTVLALQEQLGG- 

Norcardia brasiliensis              RAGAAENPGPIAVVRTDGALATSVTTVDNLDREIGRVTTVLALTEQLNG- 

Corynebacterium diphtheriae         RIHTASDAGLLGTIRTSAQDKQAVSTIDSIDQNWAQIVAILALKEQLDGK 

                                       :*   . :.. *:..     ::*:*.:* : .::..:*.* : :.*  

 

Mycobacterium tuberculosis          HVGHYGTGHGAMSVTVSQ--- 

Mycobacterium bovis BCG             HVGHYGTGHGAMSVTVSQ--- 

Mycobacterium leprae                HTGQYGVGHGATSITVPQ--- 

Rhodococcus equi                    GAGRYGTGPGATSVTVGAPAQ 

Norcardia brasiliensis              GAGRYGTGDKATSLTLASAPR 

Corynebacterium diphtheriae         SGAYGAAGNVDATSPGIKNPE 

                                      .  ..*    : .       
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Figure 44 A graphic representation of the predicted transmembrane helices in Rv1698. The 

probability of regions of the protein sequence lying extracellularly, intracellularly, or within a 

membrane is expressed on a scale of 0 – 1. Predictions were performed by TMHMM Server v 

2.0 (40). 
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CONCLUSION 

 

 

 

 

 

 

 

 

 

 



192 
 

7.1 Conclusion 

A drug penetrations assay for M. tuberculosis involving use of glycine HCl and sonication to 

achieve cell lysis, and LC/MS analytical methods to quantify drug accumulation, was developed. 

This assay was evaluated by comparing against one involving the widely-accepted bead-beating 

procedure, and proved more effective at reflecting total drug penetration. M. bovis BCG was 

used as a surrogate model for the characterization of fluoroquinolone uptake in M. tuberculosis 

because of the genetic and physiological similarities between both species. However, we 

understand from comparative genomics of the M. tuberculosis complex that attenuation of BCG 

is in part related to the loss of ESX-1, a protein secretion system. This is the result of several 

independent deletions in the region of deletion-1 (RD1) locus, which remains intact in the 

virulent strain (35). Studies have shown that, as a result of this deletion, BCG lacks certain 

secreted antigens such as ESAT-6 and CFP-10. The loss of this function has unknown effects on 

the structure and permeability of the outer membrane. For future studies, we suggest the use of 

newly developed attenuated strains of M. tuberculosis with their secretory mechanisms intact, 

such as the ΔlysAΔpanCD mutant mc
2
6020 (204). 

The specificity and sensitivity of LC/MS analysis allows for this assay to be applicable to the 

testing of permeability of a wide range of compounds. In the past few decades, we have seen a 

shift in antimicrobial drug discovery from being largely based on natural product sources to 

being more target-oriented. Target-based screens encompass the search for inhibitors of specific 

enzymes in the target organism. However, it is of the opinion of some researchers that single 

enzymes do not make good antibacterial targets because of the potential for rapid resistance 

development. Also, such assays ignore the fact that net permeability is a critical determinant of 

intrinsic drug sensitivity in bacteria, especially in species with formidable outer membranes. Our 
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new assay bears the potential to be conducted in a medium-throughput manner to aid in anti-

mycobacterial drug discovery programs by bridging the gap between in vitro target-based 

inhibition assays to whole cell activity screens. 

Most recently, we are seeing increasing emphasis on designing drugs to better permeate the 

bacterial cell. This represents a new aspect of structure-function relationships. Certain 

physicochemical properties may confer a molecule the advantage of being able to move 

efficiently cross the outer membrane and even circumvent efflux processes. Lipinski’s Rule of 5 

is a set of chemical descriptors that are related to intestinal absorption and cell membrane 

permeability. This raises the question: Is it possible to design a similar set of descriptors that 

define the characteristics for accumulation in bacteria and, more specifically, in mycobacteria? 

Nestorovich et al resolved the movement of single drug molecules through the bacterial porins in 

an effort to characterize drug uptake pathways. Their study concluded that the interactions 

between charges on the drug molecule and charges on the porin’s constriction zone facilitate 

permeation, and that antibiotic classes have been ‘evolving’ to become more channel specific 

(158).   

In this study, the drug penetration assay was specifically used to study the transport processes of 

fluoroquinolones in mycobacteria. Although our findings agree with previous studies on the 

passive nature of fluoroquinolone uptake in M. tuberculosis, we conclude that porin-mediated 

uptake in addition to un-facilitated diffusion through the mycobacterial outer membrane 

significantly contributes to intracellular fluoroquinolone accumulation. This conclusion is 

supported by observations of rapid, unsaturable uptake that is dependent on the hydrophilicity of 

the fluoroquinolone. We also discussed the novel observation that fluoroquinolone uptake in 

mycobacteria is pH-dependent. The possibility that efficient intracellular accumulation of 
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fluoroquinolones is dependent on the acquisition of a net positive charge following chelation 

with Mg
2+

 ions further supports the hypothesis that such uptake is porin-mediated. Furthermore, 

we made a case for the testing of finafloxacin, an investigational fluoroquinolone with enhanced 

activity under acidic pH, for the treatment of TB infections based on our knowledge of vacuole 

acidification during phagocytosis of M. tuberculosis. We believe that finafloxacin may be more 

efficacious than other fluoroquinolones at eradicating intracellular bacteria.  

The assay was critical for proving of the long-held hypothesis that phenotypic drug resistance of 

M. tuberculosis in the dormant state is in part related to reduced drug permeation. The absolute 

difference in intracellular accumulation of fluoroquinolones and several other anti-tuberculous 

agents between replicating- and nutrient-starved non-replicating bacteria provides quantitative 

evidence of this phenomenon. Because this observation of reduced drug permeability appears 

independent of active efflux mechanisms, we suggest that structural remodeling of the outer 

membrane (ie. thickening) influences the development of persistent bacilli. Our findings indicate 

that new lead compounds aiming to shorten tuberculosis chemotherapy must not only target 

functions relevant in dormancy but also effectively penetrate the persistent bacillus. The 

inclusion of drug penetration assays in replicating and non-replicating populations may prove 

critical during lead optimization campaigns.  

Most recently, researchers have made headway using MALDI mass spectrometric imaging 

(MALDI-MSI) to map the distribution of drugs and metabolites in biological tissues. This means 

that scientists now have a way to directly measure drug levels in tissues and, hence, drug 

penetration into granuloma lesions. As is the case with the M. tuberculosis bacillus, drug 

penetration into such lesions is both drug-specific and lesion-specific. For example, Prideaux et 

al discovered that moxifloxacin accumulates well in the cellular regions of granulomas (mostly 
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containing macrophages) while accumulating relatively poorly in the central region of necrotic 

caseum (185). Such studies offer us a unique insight into drug localization at the site of action 

and help us interpret ongoing fluoroquinolone efficacy studies. Taken together with our current 

knowledge of drug accumulation in replicating and latent M. tuberculosis, we may be able to 

develop more effective combined treatment regiments. 

We reported the novel discovery that natural polyamines have an inhibitory effect on 

intracellular fluoroquinolone accumulation in mycobacteria. The concentration and pH-

dependent nature of this inhibition is similar to the phenomenon reported with E. coli. The 

significant rescue of M. bovis BCG from fluoroquinolone-induced killing suggests that exposure 

to exogenous (within macrophages or released from infected tissue) polyamines could potentially 

result in the development of phenotypic drug resistance of M. tuberculosis. Most importantly, 

our investigation of the effects of polyamines on drug uptake in non-replicating bacteria revealed 

that reduced permeability of persistent bacteria is likely the result of decreased porin-mediated 

drug uptake. We propose that the modulation of porin channel-activity, either by down-

regulation of protein expression, internalization or degradation, could represent a novel 

mechanism that enables the development of drug tolerant and persistent M. tuberculosis.   

The inhibition of porins by polyamines has in vivo implications as well. Porin-deletion mutants 

of M. smegmatis exhibit enhanced persistence in macrophages, demonstrating that intracellular 

persistence of mycobacteria  is dependent on reduced permeability of the outer membrane (208). 

Proliferating and infected tissue reportedly have increased levels of polyamines such as spermine 

(7, 48, 53). Interestingly, Hirsh and Dubos first reported increased local spermine levels at sites 

of mycobacterial infection over 60 years ago (97). They suggested that spermine possesses 

tuberculostatic activity in vivo that is distinct from conventional immune processes. It was later 
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shown that human monocytes express a non-selective polyamine transporter, and that increased 

monocyte uptake of spermidine upon stimulation plays a role in the modulation of inflammatory 

responses. In light of our recent observation that polyamines can reduce the overall drug 

permeation of M. tuberculosis, it appears that endogenous polyamines in eukaryotic 

macrophages may contribute towards the development of dormancy and phenotypic drug 

resistance of the intracellular tubercle bacillus. 

Direct evidence of porin-mediated fluoroquinolone uptake in mycobacteria could not be 

provided in this study without the generation of a porin knock-out mutant. However, knowledge 

that polyamine-induced decrease in drug permeation of E. coli is the direct result of complex 

inhibition of OmpF and OmpC provides a strong argument for a similar mechanism of action on 

as-of-yet unidentified porins in M. tuberculosis. Our analysis of expression levels of OMPs 

revealed that Rv1698 is a likely candidate for the transport protein responsible for 

fluoroquinolone uptake. Its significant down-regulated expression during non-replication would 

therefore explain the drastic loss in fluoroquinolone susceptibility observed. It would be 

interesting to pursue the generation of an Rv1698 knock-out of M. tuberculosis and to study the 

polyamine-sensitivity of this mutant.         

Ultimately, we must consider the clinical relevance of antibiotic-resistance acquired due to 

reduced drug permeability. The incidence of resistance in bacterial strains due to known porin 

modifications are reportedly low compared to other mechanisms of resistance. The moderate 

increases in MICs of such strains are likely easily overcome by sufficient increases in drug 

exposure. However, M. tuberculosis is often sequestered in in vivo environments with limited 

drug accessibility. First-line agents such as isoniazid, rifampicin and pyrazinamide have already 

been shown to partition unfavorably into pulmonary lesions as compared to blood plasma (110). 
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Compounding problems of improper treatment regiments and poor patient compliance during 

chemotherapy with the described phenomenon of decreased drug permeability at the lesion and 

bacterial levels may contribute to the overall selection of drug resistant M. tuberculosis. 

This brings us to the question of whether mycobacterial porins are possible targets for 

antimicrobial agents. Small molecules that upregulate porin expression or induce porins to 

remain permanently in the open configuration could bring about the increased accumulation of 

drugs in the intracellular compartment and hence increase drug susceptibility. Alternatively, 

inhibitory molecules could induce channel closures and inhibit membrane permeability to 

essential solutes. These mechanisms of bactericidal activity are purely hypothetical and remain 

to be tested.  

We are also the first to confirm the production of endogenous cadaverine in mycobacteria. As 

explained earlier, other bacterial species have been known to decrease their outer membrane 

permeability during adverse conditions by increasing cadaverine secretion. The high estimated 

intracellular content of cadaverine in M. bovis BCG could provide a new rationalization of its 

impermeability to drugs. Although we were not able to prove that intracellular cadaverine is 

excreted, the reported presence of amino acid / polyamine transporters in the outer membrane of 

M. tuberculosis maintains the possibility for this excretion. The hypothesis that M. tuberculosis 

alters its outer membrane permeability by self-modulating its porin channel-activity with 

endogenous polyamines opens up an exciting field for study.   
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Materials  

 

1. Roller bottle (Corning, 490cm2, cat. no.: 430195) 
2. Spectrophotometer (Spectramax M2, Molecular Devices or Novaspec Plus, GE Health Care) 
3. Pipette aid 
4. Gilsan pipetteman 
5. Plastic cuvettes plus caps 
6. Centrifuge Centrifuge bucket with 50ml tube holder(Heraeus) 
7. Microcentrifuge plus rotor 
8. 50ml Falcon tubes 
9. 15ml Falcon tubes 
10. 7H9-ADS liquid media 
11. 7H11- OADC agar plates 
12. Filter pipette tips 
13. Antibiotic stock solution (10mM) 
14. 2ml Sarstedt tubes (screw cap) 
15. Phosphate Saline Buffer with 0.05% Tween 80 (PBS-T) 
16. 0.1M Glycine HCl (pH3) 
17. Lock-lock box 
18. Water-bath sonicator (HF-frequency-35Hz, type-T460/H: Gen-Probe, Germany) 
19. Millipore MILLEX-GV filter unit (0.22uM, PVDF, 13mm) (Cat No. SLGV013SL) 
20. BD 1ml Tuberculin Syringe (Cat No. 302100) 
21. Zip lock bag 
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PROCEDURES 

Day 1 

1. All procedures are carried out inside the BSC unless otherwise stated. 

2. Grow MTB culture in 7H9-ADS to an OD600 of 0.5 according to BSL3 Protocol #11. 

3. Set up BSC. 

4. Bring a steel canister containing log-growing MTB culture bottle into BSC. Transfer 45ml of 

culture to each 50ml falcon tube and close cap tightly. 

5. Wipe down tubes with 1% Aniosyme and place in sealed centrifuge bucket. Wipe down 

centrifuge bucket with 1% Aniosyme.  Take centrifuge bucket out of BSC; centrifuge at 3200rpm 

at RT for 10min. 

6. Bring sealed bucket back into BSC. Discard supernatant into liquid waste pot containing 1% 

Aniosyme. Resuspend pellet in appropriate amount of fresh 7H9-ADS to bring culture to desired 

optical density. Spread concentrated culture equally among 15ml Falcon tubes. 

7. Add antibiotic stock solution to MTB culture in 15ml Falcon tubes to make final desired drug 

concentration (eg. 10uM). Leave MTB to incubate with drug for desired length of time (eg. 

30min, 60min) within BSC. 

8. From 15ml Falcon tube, transfer aliquot (eg. 300µl) of drug-incubated MTB culture to 3 x 2ml 

screw-cap tubes. Squeeze 1% Aniosyme onto tubes, wipe away excess,   and transfer the tubes 

into the microcentrifuge rotor. Wipe down sealed rotor with 1% Aniosyme and bring out of BSC. 

Spin samples down at 13,000rpm at 4 degrees for 3min. 

9. Return rotor to BSC. Remove supernatant using pipette tips and discard in liquid waste pot. 

Wash pellet in screw-cap tube by resuspending in equal volume of PBS-T. Replace tubes to rotor 

and repeat the process of pelleting as mentioned in Step #8. 

10. Return rotor to BSC. Remove supernatant as mentioned in Step #9 and resuspend pellet in 

screw-cap tube with equal volume of 0.1M Glycine HCl (pH3) using filter pipette tips. 

11. Squeeze 1% Aniosyme onto screw-cap tubes, place tubes in rack, place rack in lock-lock box and 

wipe down box with 1% Aniosyme. Transfer the lock-lock box to 37°C incubator (with shaking). 

During shaking, a lead ring must be placed on the box.   

Day 2 

12. Set up a “clean” BSC. 

13. After shaking overnight, bring lock-lock box back into the BSC. Take out tubes and properly seal 

screw-cap tops with parafilm.  

14.  Bring water-bath sonicator into the BSC and set it up over a newabsorbent pad. Place tubes in a 

floating device and start sonication (as in Protocol #23) within the BSC. Do not allow tubes to 

touch bottom or sides of sonicator. Apply sonication for 5 min. Wear ear-mufflers during 

sonication. Ask other users to leave the room during sonication.  

15.  Remove tubes from floating device  and place tubes in microcentrifuge rotor. Wipe down 

sealed rotor with 1% Aniosyme, bring out of BSC and centrifuge for 3.5min at RT at 13,000rpm. 
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Wipe down water-bath sonicator with 1% Aniosyme and remove from the BSC. Pour out  water 

from the sonicator into the water containing bucket.  

16. Bring the rotor back into BSC and remove tubes. From tubes, carefully withdraw the 

supernatant through 1ml syringes and pass through Millipore 0.22uM filter units. Filtrates are 

collected in fresh screw-cap tubes (as in Protocol #29) 

17. Repeat filtration process as in Step #16 with new filter units and fresh screw-cap tubes. 

Transfer of sterile supernatant to BSL2 (as in Protocol #29) 

1. Take small roller bottle and add 1% Aniosyme to disinfect inner side of bottle. 

2. Squeeze 1% Aniosyme onto screw-cap tubes and transfer into sterilized small roller bottle. 

3. Seal bottle and wipe outer surface with 1% Aniosyme. Remove bottle from BSC. 

4. Carry bottle out of BSL3 lab in a zip lock bag and transfer to BSL2 lab. 

5. In BSL2 lab, samples from BSL3 are handled within BSCs only. 

 

RISK ASSESSMENT 

Pathogen(s): 

(See Pathogen Risk Assessment for general risks associated with this pathogen) 

 

Most high risk conditions & 
procedures: 

Possible incident: Possible consequences: 

Incubation/growth of MTB in a 1 
L roller bottle. 

Leakage of the roller bottle 
containing infectious MTB.  

Exposure of MTB to lab 
workers when lab workers 
do not ware PPE properly 

 

 

Discarding MTB contamainted 
liquid waste into a 1% Aniosyme 
contianing pot 

 

Users discard larger volume of MTB 
contaminated liquid waste into a 
pot. Insufficient chemical 
sterilsation of infectiouse liquids 
could happen.  

Coincidnetly such liquid waste pot 
may not be autoclaved out 
properly. 

Exposure of MTB to 
associates and 
environment 

Using a centrifuge/micro-
centrifuge to spin down MTB 

Imbalance could cause rotor 
damage. Tubes get destroyed when 

Contamination of 
centrifuge because of 
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cells placed incorrectly. damage to tubes. 
Contamination to room if 
user opens lid without 
knowing a leak has 
occured inside centrifuge.  

Sonication of samples in water 
bath  

Screw-cap tubes are not screwed 
on tightly within BSC before 
transfer out to water bath 
sonicator. 

Screw-caps come losen during the 
sonication process. 

Leakage of MTB-
contaminated cell lysate 
from tubes or the release 
of aerosols generated 
during the process results 
in contamination of room 
and infection of user if PPE 
is worn inappropriately. 

Filtrating supernatant 
contaminated with MTB bacilli 

Filter unit becomes lose/detaches 
from syringe while pushing the 
plunger. 

If filter unit is defective, samples 
are not propoerly filtered. 

Due to aerosol generation, 
instruments and surface 
areas within the BSC, 
gloves and sleeves of user 
may get contaminated. 

Contaminated filtrate used 
in BSL2 lab can infect BSL2 
users  with MTB since they 
do not need to wear a 
suitable PPE required for 
protection against the 
MTB pathogen. 

 

Instructions and measures to reduce risk: 

 

Our experience showed that 1 L roller bottles sometimes leak due to cracks caused by 

- Manufacturing problems 

- Transport damage 

- Inappropriate handling by end users 

 

To minimize the risk, lab staff is advised to 

- Visibly check roller bottles for any cracks 

- Pre-roll the bottles intended to use in BSL3 for 24 h containing a non-infectious liquid 

- Handle roller bottles carefully 

 

To further reduce the risk of leakage, the roller bottles used in BSL3 for culturing MTB were incubated 

inside a stainless steel canister carrying absorbing paper towels (ref. BSL3 protocol #11) in order to 
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contain infectious liquids inside the canister. The lid of the canister is tapped down properly, and when 

more than one canister is being transferred between the BSC and incubator, the basket should be used 

to avoid dropping the canister.   

 

Chemical sterilization of MTB containing liquids prior to autoclaving is an integral contribution to 

biosafety. Lab staff is advised to sterilize any infectious liquid by mixing with 1% Aniosyme in at least a 

1:1 ratio. Autoclaving represents a second layer of biosafety: this step is carefully carried out/monitored 

according to validated procedures as well as documented and witnessed by the respective end users (ref. 

WI: BSL3 WI-001 Autoclaves.pdf). The risk that both sterilization steps fail is in minimal. 

 

Always ensure centrifuge buckets/rotors are sealed before centrifugation. This ensures that any 

potential culture spill is contained within buckets/rotors which are only subsequently opened within 

BSCs. Make sure buckets/rotors are balanced to prevent damage to centrifuge. 

 

Before sonication, screw-caps are screwed on tightly and top of tubes are always wrapped with parafilm 

to prevent the loosening of the screw-caps and the release of any aerosols from within the tube. The 

parafilm is subsequently only unwrapped within the BSC.  

 

During filtration, do not push the plunger forcefully to prevent filter unit from detaching from syringe. 

Apply gentle and steady force when pushing plunger. Do not fill syringe completely. Allow at least ¼ 

volume of air within syringe to reduce the risk of overflowing (See Protocol #29 Risk Assessment). 

 

Repeat filtration step with new filter unit to ensure complete sterilization of samples that are brought 

out of BSL3. 

 

Users should adhere to BSL3 SOP5.2.4 while dealing with any spill occurs inside the BSC and outside the 

BSC. 

 

Users should adhere to all general work rules mentioned in the Biosafety policy 5.2 while working with 

MTB. 
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Appendix II 

Figure 1 (A) A snapshot of a chromatogram from the LC/MS analysis of ciprofloxacin (CPX) using the 

analytical method described in Table 6. Mass transition 332.3 / 288.4, eluting at 4.6min, was chosen for 

quantitation of sample CPX concentration. (B) A snapshot of a calibration curve derived from CPX 

standard preparations ranging from 5 to 500mM.  
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Table 1 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of CPX. 

 

Parameter Magnitude (units) 

Q1 mass 332.3 Da 

Declustering potential (DP) 60 

Entrance potential (EP) 6 

Q3 mass 288.4 

Collision energy (CE) 26 

Collision cell exit potential (CXP) 9 
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Figure 2 (A) A snapshot of a chromatogram from the LC/MS analysis of moxifloxacin (MXF) using the 

analytical method described in Table 6. Mass transition 402.4 / 384.3, eluting at 4.9min, was chosen for 

quantitation of sample MXF concentration. (B) A snapshot of a calibration curve derived from MXF 

standard preparations ranging from 5 to 500mM.  
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Table 2 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of MXF. 

 

Parameter Magnitude (units) 

Q1 mass 402.4 

Declustering potential (DP) 85 

Entrance potential (EP) 10 

Q3 masses 384.3 364.5  

Collision energies (CE) 32 36 

Collision cell exit potentials (CXP) 13.5 15 
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Figure 3 (A) A snapshot of a chromatogram from the LC/MS analysis of ofloxacin (OFX) using the 

analytical method described in Table 6. Mass transition 361.9 / 318.4, eluting at 4.6min, was chosen for 

quantitation of sample OFX concentration. (B) A snapshot of a calibration curve derived from OFX 

standard preparations ranging from 5 to 500mM.  
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Table 3 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of OFX. 

 

Parameter Magnitude (units) 

Q1 mass 361.9 

Declustering potential (DP) 90 

Entrance potential (EP) 6.5 

Q3 masses 318.4 344.1 

Collision energies (CE) 27 30 

Collision cell exit potentials (CXP) 25 25 
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Figure 4 (A) A snapshot of a chromatogram from the LC/MS analysis of levofloxacin (LFX) using the 

analytical method described in Table 6. Mass transition 361.9 / 318.4, eluting at 4.6min, was chosen for 

quantitation of sample LVX concentration. (B) A snapshot of a calibration curve derived from LVX 

standard preparations ranging from 5 to 500mM.  
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Table 4 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of LVX. 

 

Parameter Magnitude (units) 

Q1 mass 361.9 

Declustering potential (DP) 90 

Entrance potential (EP) 6.5 

Q3 masses 318.4 344.1 

Collision energies (CE) 27 30 

Collision cell exit potentials (CXP) 25 25 
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Figure 5 (A) A snapshot of a chromatogram from the LC/MS analysis of gatifloxacin (GFX) using the 

analytical method described in Table 6. Mass transition 376.0 / 289.7, eluting at 4.6min, was chosen for 

quantitation of sample GFX concentration. (B) A snapshot of a calibration curve derived from GFX 

standard preparations ranging from 5 to 500mM.  
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Table 5 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of GFX. 

 

Parameter Magnitude (units) 

Q1 mass 376.0 

Declustering potential (DP) 25 

Entrance potential (EP) 10 

Q3 masses 289.7 332.9 

Collision energies (CE) 33 26 

Collision cell exit potentials (CXP) 24 28 
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Figure 6 (A) A snapshot of a chromatogram from the LC/MS analysis of clinafloxacin (CNX) using the 

analytical method described in Table 6. Mass transition 365.9 / 322.1, eluting at 4.6min, was chosen for 

quantitation of sample CNX concentration. (B) A snapshot of a calibration curve derived from CNX 

standard preparations ranging from 5 to 500mM.  
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Table 6 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of CNX. 

 

Parameter Magnitude (units) 

Q1 mass 365.9 

Declustering potential (DP) 80 

Entrance potential (EP) 5 

Q3 masses 322.1 279.2 

Collision energies (CE) 25 34 

Collision cell exit potentials (CXP) 8 6.5 
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Figure 7 (A) A snapshot of a chromatogram from the LC/MS analysis of sparfloxacin (SPX) using the 

analytical method described in Table 6. Mass transition 392.7 / 349.3, eluting at 4.9min, was chosen for 

quantitation of sample SPX concentration. (B) A snapshot of a calibration curve derived from SPX 

standard preparations ranging from 5 to 500mM.  
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Table 7 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of SPX. 

 

Parameter Magnitude (units) 

Q1 mass 392.7 

Declustering potential (DP) 80 

Entrance potential (EP) 6 

Q3 masses 349.3 292.1 

Collision energies (CE) 28 34 

Collision cell exit potentials (CXP) 10 15 
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Figure 8 (A) A snapshot of a chromatogram from the LC/MS analysis of rifampicin (RIF) using the 

analytical method described in Table 7. Mass transition 823.6 / 791.9, eluting at 5.3min, was chosen for 

quantitation of sample RIF concentration. (B) A snapshot of a calibration curve derived from RIF 

standard preparations ranging from 5 to 500mM.  
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Table 8 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of RIF. 

 

Parameter Magnitude (units) 

Q1 mass 823.6 

Declustering potential (DP) 100 

Entrance potential (EP) 6.5 

Q3 masses 791.9 399.6 

Collision energies (CE) 24 35 

Collision cell exit potentials (CXP) 25 10 
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Figure 9 (A) A snapshot of a chromatogram from the LC/MS analysis of rifabutin (RIB) using the 

analytical method described in Table 7. Mass transition 847.2 / 815.8, eluting at 4.7min, was chosen for 

quantitation of sample RIB concentration. (B) A snapshot of a calibration curve derived from RIB 

standard preparations ranging from 5 to 500mM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 



234 
 

Table 9 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of RIB. 

 

Parameter Magnitude (units) 

Q1 mass 847.2 

Declustering potential (DP) 100 

Entrance potential (EP) 6.0 

Q3 masses 815.8 755.9 

Collision energies (CE) 36 41 

Collision cell exit potentials (CXP) 22 24 
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Figure 10 (A) A snapshot of a chromatogram from the LC/MS analysis of rifapentine (RIP) using the 

analytical method described in Table 8. Mass transition 877.6 / 845.7 eluting at 4.7min was chosen for 

quantitation of sample RIP concentration. (B) A snapshot of a calibration curve derived from RIP 

standard preparations ranging from 5 to 500mM.  
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Table 10 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of RIP. 

 

Parameter Magnitude (units) 

Q1 mass 877.6 

Declustering potential (DP) 100 

Entrance potential (EP) 9 

Q3 masses 845.7 453.4 

Collision energies (CE) 28 41 

Collision cell exit potentials (CXP) 25 13 
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Figure 11 (A) A snapshot of a chromatogram from the LC/MS analysis of ethambutol (EMB) using the 

analytical method described in Table 9. Mass transition 205.1 / 116.0, eluting at 1.3min, was chosen for 

quantitation of sample EMB concentration. (B) A snapshot of a calibration curve derived from EMB 

standard preparations ranging from 2 to 200mM.  
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Table 11 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of EMB. 

 

Parameter Magnitude (units) 

Q1 mass 205.1 

Declustering potential (DP) 60 

Entrance potential (EP) 5.5 

Q3 masses 116 98 

Collision energies (CE) 21 28 

Collision cell exit potentials (CXP) 20 16 
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Figure 12 (A) A is a snapshot of a chromatogram from the LC/MS analysis of mefloquine (MEF) using 

the analytical method described in Table 7. Mass transition 379.0 / 361.1, eluting at 4.7min, was chosen 

for quantitation of sample MEF concentration. (B) A snapshot of a calibration curve derived from MEF 

standard preparations ranging from 5 to 500mM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 



240 
 

Table 12 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of MEF. 

 

Parameter Magnitude (units) 

Q1 mass 379.0 

Declustering potential (DP) 75 

Entrance potential (EP) 9 

Q3 masses 361.1 321.1 

Collision energies (CE) 30 45 

Collision cell exit potentials (CXP) 10 27 
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Figure 13 (A) A snapshot of a chromatogram from the LC/MS analysis of linezolid (LNZ) using the 

analytical method described in Table 7. Mass transition 338.2 / 296.2, eluting at 5.2min, was chosen for 

quantitation of sample LNZ concentration. (B) A snapshot of a calibration curve derived from LNZ 

standard preparations ranging from 5 to 500mM.  
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Table 13 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of LNZ. 

 

Parameter Magnitude (units) 

Q1 mass 338.2 

Declustering potential (DP) 100 

Entrance potential (EP) 5 

Q3 masses 296.2 235.2 

Collision energies (CE) 27 31 

Collision cell exit potentials (CXP) 16 19 
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Figure 14 (A) A snapshot of a chromatogram from the LC/MS analysis of thioridazine (TRZ) using the 

analytical method described in Table 7. Mass transition 371.3 / 126.1, eluting at 5.2min, was chosen for 

quantitation of sample TRZ concentration. (B) A snapshot of a calibration curve derived from TRZ 

standard preparations ranging from 1 to 200mM.  
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Table 14 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of TRZ. 

 

Parameter Magnitude (units) 

Q1 mass 371.3 

Declustering potential (DP) 80 

Entrance potential (EP) 4.5 

Q3 masses 126.1 257.9 

Collision energies (CE) 35 37 

Collision cell exit potentials (CXP) 35 37 
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Figure 15 (A) A snapshot of a chromatogram from the LC/MS analysis of TMC207 (TMC) using the 

analytical method described in Table 10. Mass transition 555.2 / 328.1, eluting at 5.2min, was chosen for 

quantitation of sample TMC concentration. (B) A snapshot of a calibration curve derived from TMC 

standard preparations ranging from 5 to 500mM.  
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Table 15 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of TMC. 

 

 

Parameter Magnitude (units) 

Q1 mass 555.2 

Declustering potential (DP) 80 

Entrance potential (EP) 5 

Q3 masses 328.1 

Collision energies (CE) 33 

Collision cell exit potentials (CXP) 26 
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Figure 16 (A) A snapshot of a chromatogram from the LC/MS analysis of para-aminosalicylic acid (PAS) 

using the analytical method described in Table 11. Mass transition 152.0 / 107.8, eluting at 6.1min, was 

chosen for quantitation of sample PAS concentration. (B) A snapshot of a calibration curve derived from 

PAS standard preparations ranging from 5 to 500mM.  
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Table 16 Several compound-dependent parameters that were optimized for MRM (multiple reaction 

monitoring) analysis of PAS. 

 

Parameter Magnitude (units) 

Q1 mass 152.0 

Declustering potential (DP) -50 

Entrance potential (EP) -5 

Q3 masses 107.8 65.7 

Collision energies (CE) -20 -35 

Collision cell exit potentials (CXP) -18 -10 
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Appendix III 

Figure 17 (A) The relative levels of rifabutin (RIB) recovery from different cell lysis procedures. Data is 

expressed as the concentration of RIB (nmol/dm
3
) is cell lysate. (B) Comparison of signal strengths of 

RIB from standard solutions (100nM) prepared in different matrices. Data is presented as absolute signal 

peak areas from LC/MS chromatograms. Standard deviations are shown as error bars. 
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Figure 18 (A) The relative levels of mefloquine (MEF) recovery from different cell lysis procedures. 

Data is expressed as the concentration of MEF (nmol/dm
3
) is cell lysate. (B) Comparison of signal 

strengths of MEF from standard solutions (100nM) prepared in different matrices. Data is presented as 

absolute signal peak areas from LC/MS chromatograms. Standard deviations are shown as error bars. 
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Table 17 Intra- and inter- day variabilities of (A) rifabutin and (B) mefloquine analysis. 5nM, 50nM and 

500nM standard solutions of both drugs were analyzed for their drug contents using respective LC/MS 

methods and the variations in analysis were calculated. RE, relative error; CV, coefficient of variation. 

 

 

 

 

 

 

Rifabutin 
Standard conc. 

(nM) 

Mean measured 

conc. (nM) 

RE range 

(%) 

CV 

(%) 

 

Intra-day 

variability 

(n = 6) 

5 5.59 11 – 12  0.64 

50 56.5 3.0 – 8.8 2.1 

500 499.5 -3.2 – 3.4 2.5 

 

Inter-day 

variability 

(n = 18) 

5 5.62 6.8 – 20  3.4 

50 57.0 3.0 – 14   6.6 

500 499.4 -4.6 – 3.4 2.1 

Mefloquine 
Standard conc. 

(nM) 

Mean measured 

conc. (nM) 

RE range 

(%) 

CV 

(%) 

 

Intra-day 

variability 

(n = 6) 

5 5.64 7.6 – 16  2.9 

50 49.4 -3.4 – 2.6  2.7 

500 500 -2.2 – 2.0  1.8 

 

Inter-day 

variability 

(n = 18) 

5 5.8 -13 – 16  15.8 

50 49.2 -10 – 3.2  3.4 

500 500.1 -2.2 – 2.0 1.3 

A 

B 
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Figure 19 Accumulation of 8 anti-tuberculous drugs (non-fluoroquinolones) in M. bovis BCG following a 

30 min incubation period at 10µM. Drug content is expressed as the amount of drug (nmol) per CFU. The 

applications / statuses of each drug are stated below the bar chart. Standard deviations are shown as error 

bars. 
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Figure 20 (A – F) MIC curves of six fluoroquinolones tested in this study. Growth of M. bovis BCG was 

evaluated as optical density readings at 600nm. Drug concentrations are plotted on log scales. 
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Figure 21 A calibration curve derived from a spectrophotometric assay for cadaverine. Absorbance 

measurements at 340nm were made for standard dilutions of cadaverine after adduct formation with 

TNBS and extraction of the chromophore, while using appropriate blanks. The assay is linear over the 

absorbance range of 0.1 – 1.0. 
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Figure 22 A snapshot of the melting curves chart for the 12 M. tuberculosis genes analysed by RT-PCR. 

Relative fluorescence unit (RFU) measurements during the step-wise increase from 55°C to 95°C are 

plotted as the derivative.  
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Figure 23 Image of an agarose gel confirming single RT-PCR products. Table 18 below lists the PCR 

products loaded into each well by gene and sample type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lane Gene Sample Type 

1 - DNA ladder 

2 ompATb unknown 

3 rv1698 unknown 

4 rv1973 unknown 

5 rpoB unknown 

6 16s rRNA unknown 

7 rv0227 unknown 

8 rv0431 unknown 

9 rv1351 unknown 

10 rv1352 unknown 

11 rv1968 unknown 

12 rv1970 unknown 

13 rv2270 unknown 

14 16s rRNA No Amplification 

Control 
15 16s rRNA No Transcription 

Control 

  1      2     3       4      5       6      7      8      9     10     11    12    13    14    15  


