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Summary 

 

Transdermal drug delivery has gained importance in the past three decades, 

with several drugs being approved by FDA. Cosmetic science, has also gained 

prevalence with the development of novel molecules. However, the outermost 

layer of skin, stratum corneum, only allows the passage of molecules smaller 

than 500 Da to passively diffuse to the underlying vascular tissues. Molecules 

larger than this size, majorly proteins, peptides and vaccines have thus been 

delivered using painful injections, which significantly reduce compliance 

among users. Delivering these macromolecules through skin by reversibly 

modifying the permeability of stratum corneum is an attractive alternative. 

Techniques such as iontophoresis, ultrasound, laser and thermal ablation have 

been used to alter the membrane properties and enhance drug delivery. 

Concerns have been raised about the safety of these techniques and 

researchers have looked to develop safer alternatives. Microneedles are 

miniaturized needles supported on a flat base, intended to be applied on skin in 

a manner similar to transdermal patch, to create micron sized channels that 

enable the macromolecules to diffuse to the underlying vascular tissues for 

improved drug absorption. Previously, microneedles have been fabricated 

from silicon, metals, glass and various polymers. The needles from non-

biodegradable materials pose biohazard concerns, as well as the risk of 

breakage in the skin. On the other hand polymeric needles developed 

previously utilized complex multi-step procedures involving long exposure to 

ultraviolet (UV) light, high temperature, vacuum, solvents and other strenuous 

procedures, which may compromise the stability of fragile protein molecules. 

Most of these methods require the preparation of reverse molds, which may 

interact with the drugs and affect drug stability. 

In this thesis, a simple method of fabricating polymeric microneedles using a 

simple photolithographical approach, using short exposure to ultraviolet light, 

in a mold and solvent free process was developed. The influence of various 

parameters such as UV intensity, time of exposure, and distance from UV light 

source on microneedle geometry was evaluated. The process was capable of 
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controlling the microneedle length and tip diameter for specific control of drug 

delivery at various depths in the skin. The needles were shown to be robust 

enough to penetrate the skin, using trypan blue staining and histological 

sectioning of the skin. They were shown to deliver a range of drugs/cosmetics, 

including chemicals rhodamine B and lidocaine and proteins like bovine 

serum albumin and collagen, at much higher rates and amount as well as 

greater depths in the skin, as compared to passive diffusion through the skin 

using solutions. The encapsulated proteins were shown to remain stable post 

UV exposure, by analyzing the primary, secondary and tertiary structural 

characteristics. Microneedles were also shown to be non toxic by assessing in 

vitro cytotoxicity using mitochondrial succinate dehydrogenase and lactate 

dehydrogenase activity in three different cell lines, representing epidermal and 

dermal skin cells as well as normal human embryonic kidney cells. 

Conclusively, the prepared microneedles are expected to serve as a potentially 

useful delivery system to deliver biological drugs and cosmeceuticals. 

In another part of this thesis, a miniaturized flow through cell (MFtC) for 

testing the skin permeation of drugs was fabricated. During the development 

of new transdermal dosage forms/cosmetics, it is imperative to carry out 

preformulation studies to test the permeation capability of drug/cosmetic 

compounds across the skin. However, currently available models for testing 

skin permeation consist of a donor (contains compound) and a receptor 

chamber (contains buffer), require large amounts of compounds as well as the 

high receptor flow rates, owing to their inherent design, causes excessive 

dilution of permeated compounds, making subsequent analysis difficult. This 

is particularly important for new drug entities, which are available in limited 

amounts and are prohibitively expensive. The cells also require larger human 

skin samples, which are scarce due to lack of donors. Moreover, the 

commercial versions of diffusion cells are expensive, too. In light of these 

shortcomings, a prototype miniaturized flow through cell (MFtC) on the 

concept of microfluidics has been developed. The MFtC utilizes minimal 

amount of compound and the low flow rate achievable prevents excessive 

dilution of permeated compound. The device is carved out of 

polydimethylsiloxane (PDMS) and hence is easily adaptable to the various 
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sizes. The low cost of fabrication and material used make the device single-

use, disposable entity, potentially avoiding contamination issues that arise 

from repeated use of commercial models for different compounds, making 

MFtC adaptable for a GMP environment. 

In addition, these miniaturized platforms for drug delivery and drug testing, 

provide suitable alternative to macroscopic systems, both with respect to 

materials as well as the amount of pharmaceutical ingredients used. This in 

turn, opens up possibilities to reduce the environmental load due to non 

recyclable materials used in conventional systems, together with a significant 

reduction in the use of chemicals and solvents, thereby reducing waste 

generation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

List of Tables 
Table            Title                                                                                    Page 

 

Table 1
  

Advantages of transdermal drug delivery 4 

Table 2
  

Limitations of transdermal drug delivery 5 

Table 3 
  

Advantages and Disadvantages of other routes of 
administration for systemic drug delivery apart from 
transdermal 
 

8 

Table 4 
 

Advantages and Disadvantages of various passive and 
active transdermal drug delivery systems apart from 
microneedles 
 

17 

Table 5 Advantages of microneedles 
 

19 

Table 6 Flow rate (ml/h) of the receptor solutions (mean ± 
S.D.) N = 9 
 

123 

Table 7 Comparison of lag time and fluxes between HDC and 
MFtC across rat abdominal skin using rhodamine B at 
1 mg/ml, rhodamine B at 5 mg/ml and mangostin at 2.3 
mg/ml. n denotes number of replicates. Error bars 
denote S.D. between replicates. Flux comparisons 
between the setups showed no statistical difference 
 

124 

Table 8 Intra-day precision and accuracy. n = 3 127 

Table 9 Permeation parameters of ENX in various donor 
solutions. Data was expressed as mean ± S.D. PE 
concentration = 0.5% w/v. (n= 3). Enhancement index 
(EI) = Jss (with enhancer) / Jss (without enhancer) 
 

128 

Table 10 Comparison between MFtC and commercial flow-
through cell models 

130 

 

 

 

 

 

 



xiii 
 

List of Figures 
Figure                Title                                                                                    Page      

 

Figure 1     Cumulative number of transdermal products 
approved by FDA since 1979 when scopolamine 
patch was approved.  
 

1 

Figure 2    A three dimensional view of the skin and 
underlying subcutaneous tissue.  
 

2 

Figure 3 Structural features of epidermis (a) Photomicrograph of 
four epidermal layers (b) Epidermal layers with 
distribution of cells.  
 

3 

Figure 4 Mechanisms of transdermal delivery (a) Transdermal 
diffusion, passive and with chemical enhancer, follows 
a tortuous route across the stratum corneum (b) Low-
voltage electrical enhancement by iontophoresis can 
make transport pathways through hair follicles and 
sweat ducts more accessible. (c) High-voltage 
enhancement by electroporation has been shown to 
occur via transcellular pathways made accessible by 
disrupting lipid bilayers. The application of ultrasound 
seems to make pathways (a) and (c) more permeable by 
disorganizing lipid bilayer structure. (d) Microneedles 
and thermal poration create micron-scale holes in skin.  
 

9 

Figure 5 Methods of drug delivery to the skin using 
microneedles (MN). Microneedles are first applied to 
the skin (A) and then used for drug delivery (B). Solid 
microneedles are used as a pretreatment, after which 
drug can diffuse through residual holes in skin from a 
topical formulation (solid MN). After insertion of drug-
coated microneedles into the skin, the drug coating 
dissolves off the microneedles in the aqueous 
environment of the skin (coated MN). Drug-loaded 
microneedles are made of water-soluble or 
biodegradable materials encapsulating drug that is 
released in the skin upon microneedle dissolution 
(dissolving MN). Hollow microneedles are used to 
inject liquid formulations into the skin (hollow MN).  
 

21 

Figure 6 Schematic representations of various types of in vitro 
skin permeation systems.  
 

30 

Figure 7 Schematic representation of the fabrication process. (A) 
PEGDA is attached to TMSPMA coated coverslip via 
free radical polymerisation using UV irradiation, 

40 



xiv 
 

forming the backing for microneedles. (B) Using glass 
slides as support, the PEGDA backing is mounted onto 
the set-up with PEDGA filled in the enclosed cavity. 
Subsequently, the set-up is irradiated with UV light. 
UV light is only able to pass through the clear regions 
on the photomask, forming microneedles. 
 

Figure 8 Schematic showing fabrication of microneedle 
integrated transdermal patch (MITP) using ultraviolet 
curing. (A) Fabrication of thick transdermal patch using 
low intensity UV irradiation, (B) conjugation of pre-
fabricated microneedle array to the thick patch  by 
ultraviolet curing forming interpenetrating polymer 
networks and (C) rapid release (within 5 minutes) of 
lidocaine from MITP, potentially providing rapid pain 
relief. 
 

48 

Figure 9 (A) Schematic representation of the fabrication process 
of lenses-embedded photomask. (1) 4” glass wafer. (2) 

Cr/Au layer deposited using an e-beam evaporator. (3) 
Exposure of Cr/Au/photoresist masking layer to UV 
light with photomask. (4) Formation of pattern on layer 
using Cr/Au etchant. (5) Temporary bonding of glass on 
a dummy silicon wafer. (6) – (7) Wet etching (isotropic) 
process using HF/HCl etchants followed by ultra-
sonication. (8) Debonding of dummy silicon wafer and 
removal of photoresist layer. (B) Schematic 
representation of the fabrication process of needles. 
Chromium coated photomask (7 × 7 array), is placed 
over a cavity containing pre-polymer solution and 
exposed to UV irradiation. (C) Schematic 
representation of the fabrication process of the backing 
layer. Photomask, with microneedles attached, is placed 
in a well filled with pre-polymer and exposed to UV 
irradiation. 

54 

Figure 10 Schematic diagram of fabrication process of (A) donor 
compartment and (B) receptor compartment. (C) Full 
assembly of fabricated diffusion cell. (D) Schematic 
diagram of full assembly of Miniaturized Flow-through 
Cell (MFtC). 
 

57 

Figure 11 Effect of UV parameters on microneedle geometry. 
Effect of (A) polymerization time, (C) intensity and (E) 
distance from UV source on microneedle length. Effect 
of (B) polymerization time (D) intensity and (F) 
distance from UV source on tip diameter 
 

65 

Figure 12 Effect of increasing spacer thickness. (A–F) Images at 
various spacer thickness, with microneedle length of 

66 



xv 
 

252, 441, 680, 820, 1044 and 1211 μm, respectively. 
(G) Increase in microneedle length with increase in 
spacer thickness. (H) Decrease in the tip diameter with 
increase in spacer thickness. 
 

Figure 13 Penetration of microneedles in cadaver pig skin. (A) 
Area of microneedle penetration stained with trypan 
blue. (B) A positive control with skin penetrated using 
a 27 gauge hypodermic needle (4 × 3 array) and holes 
stained by trypan blue. (C) Negative control (no 
microneedles) applied on the skin, subsequently stained 
by trypan blue. (D) Histological section of skin stained 
with hematoxylin and eosin post microneedle 
application 
 

68 

Figure 14 Incorporation of rhodamine B in microneedle arrays. 
(A) Without rhodamine B, (B) rhodamine B in 
microneedle shafts, (C) rhodamine B in backing layer 
and (D) rhodamine B in both microneedle shafts and 
backing. 
 

69 

Figure 15 Release profile of rhodamine B encapsulated in 
microneedles over a period of 1 week. (A) percentage 
released (B) cumulative amount released. 
 

70 

Figure 16 Cumulative amount of rhodamine B permeated through 
rat skin when microneedle patch and propylene glycol 
solution of rhodamine B were applied over a period of 
48 h. 
 

71 

Figure 17 Encapsulation of bovine serum albumin Texas red 
conjugate (TR-BSA) in polymeric microstructures 
shows uniform distribution. Uniformly distributed TR-
BSA in (A) microneedle backing and (B) microneedle 
shaft (C) microneedle array. Quantitative estimation of 
fluorescence intensity shows uniform distribution over 
(D) different areas of the backing layer (n = 3), (E) 
different lengths on a microneedle shaft (n = 6) and (F) 
different microneedles of an array. 
 

78 

Figure 18 Sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis images of protein standard marker, 
bovine serum albumin standard and bovine serum 
albumin released from microneedles after 24, 48, and 
72 hours 
 

79 

Figure 19 Circular dichroism analyses to assess the stability of 
encapsulated bovine serum albumin (BSA). Stability of 
BSA released from microneedles after storage for 3 
days at 37 °C is compared with a freshly prepared BSA 

80 



xvi 
 

solution and BSA degraded by heating at 75 °C and 
under acidic conditions, pH2 (A) mean residue 
ellipticity and (B) percentage of alpha-helix. All results 
confirmed the alpha helix structure of BSA was 
preserved during encapsulation and release over a 
period of 3 days. 
 

Figure 20 Fluorescence spectroscopic analysis to assess the 
tertiary structure of encapsulated bovine serum albumin 
(BSA). Stability of BSA released from microneedles 
after storage for 1-3 days at 37 °C is compared with 
freshly prepared BSA solution and BSA degraded by 
heating at 75°C and under acidic conditions, (pH 2) by 
analyzing the emission spectra of BSA. Peak BSA 
emission wavelength was found to be similar for all 
samples. No fluorescence was observed in degraded 
BSA samples. 
 

81 

Figure 21 Release profile of bovine serum albumin encapsulated 
in microneedles over a period of 6 hours. (A) 
Percentage amount and (B) cumulative amount 
released. 
 

82 

Figure 22 In vitro permeation through rat skin. (A) Percentage 
amount and (B) cumulative amount permeated through 
rat skin when applied with a microneedle patch 
(containing 0.71% – 1.85% w/w bovine serum albumin) 
or a propylene glycol solution of bovine serum albumin 
over a period of 48 hours. 
 

83 

Figure 23 In vitro biocompatibility testing using MTT assay in 
(A) human dermal fibroblasts (HDF), (B) human adult 
low calcium high temperature (HaCaT) cells, and (C) 
human embryonic kidney 293 (HEK293) cells 
demonstrated high cell viability, indicating the 
biocompatibility of polymerized PEGDA microneedles. 
 

84 

Figure 24 In vitro cytotoxicity testing using lactate dehydrogenase 
assay in (A) human dermal fibroblasts (HDF), (B) 
human adult low calcium high temperature (HaCaT) 
cells, and (C) human embryonic kidney 293 (HEK293) 
cells demonstrated low toxicity, indicating the 
biocompatibility of PEGDA microneedles. 
 

85 

Figure 25 Images of MITP formed during fabrication. (A) With 
encapsulated rhodamine B imaged using the Nikon 
AZ100 Multipurpose Zoom Microscope (B) Scanning 
electron microscope (SEM) image of a single needle 
with a thin backing layer and the integrated patch. 
 

93 



xvii 
 

Figure 26 Number of microneedles (A) penetrating and (B) 
broken on the rat skin, with exertion of different forces 
between (10 - 70 N). 
 

94 

Figure 27 Microneedle arrays after the exertion of different forces 
(A) 10 N (B) 30 N (C) 50 N (D) 70 N on the skin model 
were also taken, with the sharpness of the needles 
maintained. 
 

95 

Figure 28 Decrease in the length of microneedles after varying 
forces were applied on the array. 
 

95 

Figure 29 Penetration of microneedles in rat skin by exerting 
varying amounts of forces on the skin:  (A) 10N (B) 
30N (C) 50N (D) 70N, as shown by trypan blue 
staining. 
 

96 

Figure 30 SEM images of MITP before and after the release test. 
(A) Microneedle containing 2.2% w/w lidocaine shows 
a smooth surface and tightly packed arrangement of 
polymer. (B) Microneedle containing 15% w/w 
lidocaine shows a rougher surface. (C)Microneedle 
containing 21% w/w lidocaine shows a rough, 
corrugated surface with a large surface area for 
interaction with release medium. (D, E and F) SEM 
images for 2.2%, 15% and 21% w/w lidocaine MITP 
show a smooth surface indicating almost complete drug 
release. 
 

98 

Figure 31 Results from in vitro release test of lidocaine 
encapsulated integrated patch (A) over 24 hours (B) 
over the first two hours. The cumulative amount of 
lidocaine released increased as encapsulation 
concentration increases, with higher concentration 
showing a sustained release over a period of 24 hours, 
whereas the commercial patch showed an initial burst 
release followed by a plateau, due to possible drug 
depletion. 
 

99 

Figure 32 Permeation of lidocaine through rat skin was 
determined (A) over 24 hours (B) over the first two 
hours. The amount of lidocaine permeated from the 
21% w/w lidocaine patch was higher than that of 
Lignopad®. Higher initial rates of permeation were also 
observed for the 21% w/w patch, potentially providing 
rapid pain relief. 
 

100 

Figure 33  FTIR-ATR spectroscopy of (A) Pre-polymer solution 
(B) Lidocaine powder (C) Pre-polymer solution with 
21% w/w lidocaine dissolved (D) Polymerized pre-

101 



xviii 
 

polymer film (E) Polymerized pre-polymer with 21% 
w/w lidocaine film. 
 

Figure 34 Characterization of photomask. (A) A SEM image of a 
portion of an array of microlenses etched into a glass 
substrate. (C) A SEM image of a microlens.  (E) A 
portion of an array of PDMS mold replicas copied from 
the microlenses, showing the flattened convex surface, 
under a stereomicroscope. (F) UV (365nm) exposure 
focuses light into a conical path, producing tapered 
microneedles.  
 

108 

Figure 35 Effect of UV parameters on microneedle geometry. 
Effect of (A) intensity and (C) spacer thickness on 
microneedle length. Effect of (B) intensity and (D) 
spacer thickness on microneedle tip diameter. 
 

110 

Figure 36 Effect of increasing intensity on geometry of 
microneedles. (A-D) images showing increasing level 
of deformations at intensities 3.14, 6.44, 9.58 and 12.4 
J/cm² respectively.  
 

111 

Figure 37 Effect of varying pre-polymer volume used for backing 
layer fabrication.(A-B) images at various pre-polymer 
volume, with average microneedle length for short (957 
µm) and long (1336 µm) microneedles respectively. (C-
D) Images corresponding to (A-B) after fracture force 
testing. (E) Decrease in microneedle length with 
increase in pre-polymer volume used for backing layer 
fabrication. (F) Microneedle fracture force across the 
two pre-polymer volumes used to fabricate backing 
layer. 
 

112 

Figure 38 Penetration of microneedles in rat abdominal skin. (A-
B) Images of penetration by microneedles of average 
length 1336 and 957 µm respectively, with the force of 
a thumb. (C) Number of successfully penetrated 
microneedles of average length 1336 and 957 µm. (F) 
Percentage of penetration by microneedles of average 
length  1336 and 957 µm. 
 

114 

Figure 39 Collagen permeation in rat skin. (A) Auto-fluorescence 
of cadaver rat skin. (B) Fluorescence of bovine collagen 
type 1, FITC conjugate together with auto-fluorescence 
of control rat skin without microneedle treatment. (C-E) 
Fluorescence of bovine collagen type 1, FITC 
conjugate together with auto-fluorescence of rat skin 
for collagen concentrations 0.025, 0.05 and 0.075% w/v 
respectively. 
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rhodamine B at 5 mg/ml and mangostin at 2.3 mg/ml. 
Each point represents mean ± S.D. 
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125 
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Each point represents mean ± S.D.  n = 3. (Inset) 
Photocyclization of ENX into a product with 
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Figure 44 Chemical structures of (A) mangostin (MW = 410.46, 
Log P = 6.64), (B) rhodamine B (MW = 479.02, Log P 
= 2.43), (C) PG (MW = 76.09, Log P = -1.00), (D) 
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Figure 45 MFtC setup with pig skin showing the ability to be used 
with thicker skin samples, without any leakage 
problem. 
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    CHAPTER 1 

Introduction & Literature Review 

 

1.1. Transdermal drug delivery – an introduction 

Anticipating the need for patient friendly technologies which deliver the drug 

reliably at their intended site of action, researchers have looked for alternatives 

to conventional oral and parenteral route based dosage forms. Skin, which 

forms a major part of our integumentary system, is the largest organ of the 

body and has been utilized as a drug delivery route to achieve both local 

(dermal) as well as systemic (transdermal) pharmacological effects.  Local 

application of plant extracts and herbal drugs to treat topical conditions such 

as eczema, dermatitis and psoriasis has been in practice for hundreds of years 

now. The potential of skin as an effective route to deliver drugs to systemic 

sites has gained importance in the past four decades and has evolved as an 

appealing alternative to the conventional dosage forms. This can be testified 

by the number of drugs that have been approved by FDA for transdermal use 

since the first transdermal patch was approved in 1979 (Figure 1) [1]. 

Figure 1 Cumulative number of transdermal products approved by FDA since 1979 
when scopolamine patch was approved. Currently 21 drugs and their combinations 
are approved by FDA for transdermal use. Data has been derived from FDA Orange 
Book [1]. 
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1.2.  Skin as a route for drug delivery: anatomy and challenges 

The primary function of the skin is to provide a rigid structural barrier 
protecting the underlying tissues rather than being an amenable passage for 
chemicals to permeate. The skin has three basic layers: epidermis, dermis and 
hypodermis (Figure 2) [2]. Epidermis, which is the outermost layer,  

 

Figure 2 A three dimensional view of the skin and underlying subcutaneous tissue. 
Adapted with permission from [2].  
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Figure 3 Structural features of epidermis (a) Photomicrograph of four epidermal 
layers (b) Epidermal layers with distribution of cells. Adapted from [2]. 

 

comprised of five layers which from top to bottom are as follows: stratum 

corneum, stratum lucidum (present only in thick skin), stratum granulosum, 

stratum spinosum and stratum basale (Figure 3) [2]. The outermost layer of 

epidermis, stratum corneum, also called as the horny layer, presents a strong 

permeation barrier.   The barrier properties of stratum corneum were proved as 

early as in 1924 by Rein [3] and supported by several subsequent studies [4-6]. 

It offers mechanical, anatomical and chemical barrier due to its highly 

organized multi layer overlapping cells which are sealed by tightly packed 

intercellular lipid multi–lamellae [7]. This compacted mass of dead 

corneocytes interspersed with a lipid rich matrix resembles a “brick and 

mortar” architecture and is primarily essential to prevent the transepidermal 

water loss, egress of other endogenous substances and ingress of foreign 

particles (chemicals and drugs) [8], maintaining the internal homeostasis of 

the body. This complex organization of cells and lipids offers resistance to 

most pharmacological agents, making it a hurdle for topically administered 
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products to be systemically absorbed. This formidable barrier function of 

stratum corneum has limited the number of drug candidates that can be 

delivered through this route and the commercial transdermal products that are 

available for human use. Table 1 and 2 summarize the advantages and 

limitations of transdermal drug delivery. 

Table 1 Advantages of transdermal drug delivery 

Benefits 

 The avoidance of hepatic first pass effect and other variables associated 

with the GI   tract, such as pH, gastric emptying time [9, 10]. 

 Sustained and controlled delivery over a prolonged period of time [11]. 

 Reduction in side effects associated with systemic toxicity, i.e. 

minimization of peaks and troughs in blood-drug concentration [12]. 

 Improved patient acceptance and compliance [13-15]. 

 Direct access to target or diseased site, e.g. treatment of skin disorders 

such as psoriasis, eczema and fungal infections [16]. 

 Ease of dose termination in the event of any adverse reactions, either 

systemic or local [8]. 

 Convenient and painless administration [9]. 

 Ease of use may reduce overall healthcare treatment costs [17]. 

 Provides an alternative in circumstances where oral dosing is not 

possible (in unconscious or nauseated patients) [12]. 

 Effective  drug delivery system for drugs with short biological half-lives 

and narrow therapeutic indices [8]. 

 

 

 

 



5 
 

Table 2 Limitations of transdermal drug delivery 

Limitations 

 A molecular weight less than 500 Da is essential to ensure ease of diffusion 

across the SC [18], since solute diffusivity is inversely related to its size. 

 Sufficient aqueous and lipid solubility, a log P (octanol/water) between 1 and 

3 is required for the permeant to successfully traverse the SC and its 

underlying aqueous layers for systemic delivery to occur [19]. 

 Intra- and inter-variability associated with the permeability of intact and 

diseased human skin. This implies that there will be fast, slow and normal 

skin absorption profiles, resulting in varying biological responses [20]. The 

barrier nature of intact SC ensures that this route is applicable only for very 

potent drugs that require only minute concentrations (e.g. 10–30 ng mL−1 for 

nicotine) in the blood for a therapeutic effect [10]. 

 Pre-systemic metabolism; the presence of enzymes, such as peptidases, 

esterases, in the skin might metabolise the drug into its therapeutically 

inactive form [21]. 

 Skin irritation and sensitization, referred to as the “Achilles heel” of dermal 

and transdermal delivery. The skin as an immunological barrier may be 

provoked by exposure to certain stimuli; this may include drugs, excipients or 

components of delivery devices, resulting in erythema, oedema, etc. [22-25]. 

 

This thesis describes two major areas of transdermal drug delivery, viz. drug 

delivery platforms and permeation testing apparatus. Since skin with its 

natural barrier properties does not allow diffusion of many therapeutic 

molecules, scientists have worked to develop dosage forms and delivery 

devices that minimally disrupt the skin while enhancing delivery rates. On this 

aspect, this thesis describes a novel method of microneedle fabrication and its 

efficiency in delivering a range of drugs and cosmetics. On the other hand, 

many platforms for preformulation testing of transdermal dosage forms have 

been developed to suit the needs of novel drug delivery systems and efforts are 

needed to further enhance their applicability to sophisticated platforms like 
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electroporation, iontophoresis or microneedles. This thesis describes the 

development of a novel miniaturized flow through cell, with potential to 

reduce drug and skin sample consumption, a critical necessity, especially for 

new drug molecules. 

1.3.  Literature Review 

1.3.1. Drug delivery systems 

A drug delivery system is a formulation or a device that enables the placement 

of a therapeutic substance in the body and improves its efficacy and safety by 

controlling the rate, time and place of its release in the body. It is an interface 

between a patient and a drug. If a device is introduced into a patient’s body for 

functions other than or in addition to delivering a drug, for example, a drug 

eluting stent, it is strictly classified as a device. Drug delivery systems have 

been further classified as per the route of administration as described below. 

1.3.2. Routes of drug delivery 

Table 3 summarizes various routes of drug delivery. Oral route of delivery is 

most commonly used simply because of ease of administration and patient 

acceptance. However due to variable absorption through the gut wall, 

enzymatic and acidic degradation of several drugs (particularly biomolecules), 

first pass metabolism, solubility of drugs in gastric fluid and irritation of 

gastric mucosa are some of the limitations of this route. Also, since the route 

involves systemic absorption, targeted drug delivery is seldom achieved and 

may lead to toxicity of non target organs as well. 

Parenteral drug delivery, which stands for routes other than gastrointestinal 

tract, but has been majorly used to refer injection based routes such as 

subcutaneous, intravenous, intra-arterial or intramuscular routes of drug 

delivery. This route of drug delivery is often used when an immediate effect of 

the drug is desired and almost 100% bioavailability can be achieved. These 

injections can be used in comatose and unresponsive patients or those who 

cannot swallow pills, particularly paediatrics and geriatrics. However, always 

trained personnel are required to administer injections and they are associated 

with pain. Moreover, they are the biggest risk behind spread of infections if 
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misused. Achieving a sustained release of the drug may be a concern and it is 

difficult to reverse an overdose.  

Intranasal route is used for drugs required in small doses and often required to 

act quickly, through the nasal epithelium drugs could bypass the blood brain 

barrier and hence delivery to the brain could be achieved. Since absorption of 

drug through nasal mucosa occurs through the aqueous channels of the 

membrane, it most often depends on the molecular weight of the compound 

and its ability to hydrogen bond with membrane components. However 

compounds with molecular weight more than 300 Da do not cross the 

membrane in significant proportions. Greater nasal secretions and ciliary 

movements also reduce bioavailability.  

Colorectal drug delivery dates back to 1500 B.C., however is not very popular 

among consumers as it not very aesthetically pleasing. Nonetheless, it is an 

important route for delivering drugs to the intestines and systemically. The 

drugs can be slowly absorbed for a prolonged action and are not affected by 

the conditions in the gastrointestinal tract. Hydrophilic drugs are absorved to a 

lower extent than hydrophobic drugs. There is significantly lower first pass 

metabolism involved via this route. 

Pulmonary route of drug delivery has been used since the middle of the 20th 

century since aerosols were first developed. Recently the route has been 

studied for its ability to deliver drugs systemically due to large surface area 

that lungs offer for exchange of drug between lungs and systemic circulation. 

However large molecules such as proteins and peptides do not readily cross 

the pulmonary mucosa because it is thick, ciliated and covered with mucus 

lining.  

Transdermal drug delivery as has been described earlier provides an 

alternative to delivery of both small and large molecular weight drugs, due to 

development various passive and active drug delivery systems being 

developed. These will be described in greater detail in the next section. 
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Table 3 Advantages and Disadvantages of other routes of administration for systemic 

drug delivery apart from transdermal  

Route of administration Advantages  Disadvantages 
Oral convenient (portable, easy, 

painless), economical 
to the patients (non-sterile, 
compact), variety 
(tablets, capsules, liquid, 
fast, slow release), high 
dose possible, high surface 
of absorption, good 
permeability of GI barrier 

may be inefficient (high 
dose, low solubility), first 
pass effect (the 
concentration of a drug is 
greatly 
reduced before reaching 
the systemic circulation), 
food interaction, local 
effect (GI flora), not 
suitable for unconscious 
patients 

Intravenous direct access to blood 
central compartment, 
bypasses the digestive 
system, does not harm 
the lungs or mucous 
membranes, rapid onset of 
action 

increased risk of infection 
and overdose, risk of 
the peripheral vein or 
arterial damage, limited to 
highly soluble drugs, fear, 
trained personnel is 
needed, 
sustained/controlled action 
not possible 

Subcutaneous can be self-administered, 
slow, but generally 
complete absorption 

painful, tissue damage 
from irritant drugs, max. 
2 ml injection 

Intramuscular depot or sustained effect is 
possible 

unpredictable or 
incomplete absorption, 
trained 
personnel is needed 

Inhalation bypasses liver, large 
surface of absorption 

difficulties in regulating 
the exact amount of 
dosage, difficulties 
administering the drug via 
inhaler 

Rectal bypasses liver, useful for 
children or older people, 
drug released at slow, 
steady state 

unpredictable absorption, 
not well accepted by 
patients 

Sublingual avoid first pass effect, 
rapid absorption, drug 
stability, can be 
administered for local 
effect 

small dose limit, 
inconvenience for some 
patients 

 
1.3.3. Mechanisms of drug absorption through skin 

Delivery of drugs across the skin has been achieved either by passive diffusion 

or by active disruption of the horny layer.  These strategies have been able to 

increase the efficiency of drug delivery across the stratum corneum, in their 
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own capacity. Figure 4 describes the various routes of transdermal diffusion 

employed by different techniques [26]. 

Figure 4 Mechanisms of transdermal delivery (a) Transdermal diffusion, passive and 
with chemical enhancer, follows a tortuous route across the stratum corneum (b) 
Low-voltage electrical enhancement by iontophoresis can make transport pathways 
through hair follicles and sweat ducts more accessible. (c) High-voltage enhancement 
by electroporation has been shown to occur via transcellular pathways made 
accessible by disrupting lipid bilayers. The application of ultrasound seems to make 
pathways (a) and (c) more permeable by disorganizing lipid bilayer structure. (d) 
Microneedles and thermal poration create micron-scale holes in skin. Adapted with 
permission from [26]. 

 

a) Passive methods of transdermal delivery: mechanism, evolution and 

limitations 

The transport mechanisms by which drugs cross the intact skin have not yet 

been completely elucidated yet several pathways have been suggested. Drug 

transport through intercellular lipids follows a complex path around 

corenocytes, where hydrophilic molecules travel through the polar region 

(head group) of the intercellular lipids and the lipophilic molecules traverse 

through the lipid chains (lipid tails) [8, 27]. The appendageal route has also 

been implicated in passive diffusion of small polar molecules [8].  

The passive diffusion of molecules through these routes depends on several 

factors including the time scale of permeation, the physico-chemical properties 

of the permeant (e.g. pKa, stability, molecular size, solubility, partition 

coefficient, etc.), integrity and thickness of stratum corneum, density of sweat 

glands and follicles, skin hydration and vehicle properties [8].  
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Conventionally, gels, creams and ointments have been used for passive 

diffusion of drugs across the stratum corneum. Michaels et. al. [28] studied the 

permeation characteristics of several drugs and low molecular weight 

compounds and proved that compounds with high water and oil solubility and 

sufficient potency can be delivered though the skin at effective rates through a 

small area. This spurred the revolution in the field of transdermal drug 

delivery and active research with several potent drugs led to development of 

transdermal patches. Creams and gels have long existed but are difficult to 

retain on skin for longer periods, together with non-uniform dosing. In 1979, 

US FDA approved the first patch to deliver scopolamine for motion sickness 

[26]. Transdermal patches have since been developed and marketed for 

fentanyl, clonidine, nitroglycerin, estrogens, lidocaine, testosterone and the 

blockbuster nicotine patch, which substantiated the role that transdermal drug 

delivery, played in public health.  The success of transdermal patches can be 

judged from the fact that between 2003 - 2007 a new patch was approved 

every 7.5 months by FDA. The annual market for patches in US is more than 

US$ 3 billion [26]. 

Despite achieving this success, the amount of drugs that can be delivered 

using these conventional passive methods is limited. This can be attributed to 

the fact that for passive diffusion, drugs should possess the following 

characteristics: a molecular weight of < 500 Da, sufficient lipid solubility and 

a small therapeutic dose. This is exemplified further as the smallest drug 

currently incorporated in a commercial transdermal patch is nicotine (162 Da) 

and the largest is oxybutynin (359 Da) [26].  Drugs with molecular weight 

larger than 500 Da and low lipophilicity have failed to achieve the desired 

bioavailability when delivered passively through the skin. The success of 

transdermal patches has thus relied on the judicious selection of drugs which 

can passively cross the skin at therapeutic rates without the aid of physical or 

chemical disruption of the horny layer. Mark Prausnitz and Robert Langer 

have categorized these as the first generation of transdermal drug delivery 

systems [27]. 

Numerous active penetration techniques have been tried to chemically or 

physically alter the permeability of stratum corneum and drive the hydrophilic 
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molecules as well as macromolecules (proteins, peptides, nucleic acids) and 

vaccines across the skin to targeted sites or systemic circulation. These come 

under the scope of active methods of transdermal drug delivery and aim to 

broaden the horizon for this novel route for therapeutic application. 

b) Active methods of transdermal drug delivery: mechanism, evolution, 

and potential 

The advent of biotechnology and recombinant technologies in the latter half of 

the twentieth century has presented novel and potent biotherapeutics including 

proteins, peptides and vaccines [29]. These molecules are usually large 

molecular weight (> 500 Da) polar hydrophilic molecules. Drug delivery 

scientists have looked for alternatives to oral route which presents harsh acidic 

and enzymatic environment not conducive for the stability of these drugs [30]. 

Current administration relies on the hypodermic injection which is painful, 

needs trained personnel, poses a high risk of infection and requires careful 

disposal of biohazardous sharps. These issues have invoked a need for an 

efficient drug delivery system which circumvents the problems faced with oral 

and hypodermic routes for delivering novel biomolecules. 

Active disruption of stratum corneum provides an ideal alternative route. 

These active penetration enhancement methods involve the use of external 

energy to drive large and hydrophilic molecules across the stratum corneum 

by reducing its barrier properties utilizing an array of mechanisms. Prausnitz 

and Langer have classified active permeation enhancers into two categories: 

second and third generation of transdermal drug delivery systems. These 

systems are based on their physico-chemical properties and their mechanism 

of enhancing drug permeability. 

Chemical enhancers, which belong to the second generation, act by either 

enhancing drug solubility and/or partitioning in the stratum corneum or by 

reversibly disrupting the lipid structures of stratum corneum by fluidizing the 

lipid bilayers [31, 32]. This leads to creation of defects in the lipid packing 

structure [33-39] resulting in increased permeability of stratum corneum. 

Extensive research in screening and testing has resulted in identification of 

various classes of penetration enhancers, including surfactants (Tweens and  
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spans) [40], fatty acids/esters (oleic acid) [41], terpenes [42, 43] and solvents 

(ethanol, decanol) [44]. Although these penetration enhancers offer design 

flexibility in formulation and ease of application over a larger area, a 

challenge posed by them is the accompanying skin irritation. An increase in 

the enhancer concentration has resulted in increased permeability, but with 

increased skin irritancy [26, 27]. Fatty alcohols like decanol, undecanol and 

lauryl alcohol have shown to increase transepidermal water loss with resultant 

erythema and increased skin blood flow, all of which are markers of skin 

irritation [44]. A few non irritant penetration enhancers such as laurocapram 

(Azone) [45, 46] and 2-n-nonyl-1,3 –dioxolane (SEPA) [47] have been used, 

but they have been limited in use due to their inability to deliver 

macromolecules.  Lack of convincing permeation enhancing properties for 

large hydrophilic molecules has led researchers to look for other efficient 

alternatives.  

Technological advancements in bioengineering, computing, chemical and 

material sciences, microfabrication techniques have provided an array of 

miniature, powerful and efficient transdermal drug delivery systems which 

actively disrupt the barrier properties to deliver large molecules. These include 

iontophoresis, ultrasound (non-cavitational and cavitational), electroporation, 

thermal ablation, microdermabrasion and microneedles. They vary in their 

mechanism of increasing stratum corneum permeability to hydrophilic drugs 

and have been reported to be more effective than conventional chemical 

enhancers [8].  

Iontophoresis, classified as a second generation transdermal drug delivery 

system, involves application of a small voltage electric current to the skin 

directly or indirectly using an electrically activated dosage form. This 

technique has been practiced for more than a century [48, 49] and employs a 

combination of methodologies, electrorepulsion (for charged molecules), 

electroosmosis (for uncharged molecules) and electroperturbation (for both 

charged and uncharged molecules) for drug transport across the skin. FDA has 

approved the use of iontophoresis for anti-inflammatory agents for their local 

effects [50], pilocarpine to induce sweating as a diagnostic tool for cystic 

fibrosis [51], tap-water delivery to treat hyperhidrosis [52], lidocaine 
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anaesthesia prior to venipuncture [53] and extraction of interstitial fluid for 

determining glucose levels in diabetics [54]. Research has also shown 

improved iontophoretic permeation of dexamethasone, ketorolac, luteinizing 

hormone-releasing hormone and calcitonin. An asset of significant impact in 

iontophoresis is the rate of drug delivery which could be modulated with a 

microprocessor to control the application of current. However, in this attempt 

to increase the rate of drug delivery, considerable skin irritation and pain 

resulted due to significant inflammation of underlying nerve innervated tissues 

[55]. The use of microprocessors for control and batteries to generate current 

involves complicated fabrication methods which accrue the cost of therapy for 

the end user. Regulatory constraint on the amount of current that can be 

applied (0.5 mA cm-2) on human skin is another limitation for this technique. 

Iontophoresis doesn’t primarily change skin’s barrier properties and hence has 

been applicable to a small fraction of molecules which are either charged or 

low molecular weight, weighing up to few thousand Daltons (7 kDa) [56].  

Non cavitational ultrasound comes under the class of second generation 

systems as well. Ultrasound is oscillating pressure wave whose frequency is 

higher than what human ear can hear. Use of ultrasound to increase 

transdermal permeability has been referred to as sonophoresis or 

phonophoresis. Ultrasonic energy has been used simultaneously or as a pre 

treatment before drug application on skin.  Frequency between 20 kHz-16 

MHz has been used to increase the permeability of stratum corneum but 

frequencies lower than 100 kHz have shown to more efficient in breaching 

barrier properties of stratum corneum with molecules up to 48 kDa effectively 

delivered transdermally [57]. Heating and subsequent lipid solubilisation has 

been hypothesized to disrupt the lipid architecture as a mechanism for 

penetration enhancement. Similar to iontophoresis, use of aggressive methods 

with the aim of increasing skin permeability and deliver larger molecules has 

resulted in irritation of deeper tissues and has thus limited its use to deliver 

small, lipophilic molecules.  

The quest for development of transdermal drug delivery systems with stronger 

disruption of stratum corneum yet conferring minimal insult to the deeper 

tissues has led scientists to the third generation of transdermal drug delivery 
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systems. These techniques have shown the potential to deliver 

macromolecules including proteins, peptides and vaccines at therapeutic rates. 

Emanation of suitable supporting technologies from other disciplines has 

provided an impetus for the development of these systems, which has been 

made stronger by the desire to make these systems with agreeable clinical 

benefits. Techniques such as electroporation, cavitational ultrasound, thermal 

ablation, microdermabrasion and micron-scale needles have been used in an 

attempt to develop an ideal transdermal drug delivery system for 

macromolecules. 

Electroporation, which involves use of electric fields for providing short, high 

voltage pulses to increase transdermal permeability of macromolecules acts by 

disrupting the lipid bilayer structure [58].  High voltages in excess of 100 volts 

for short duration of milliseconds has been applied frequently and molecules 

greater than 7 kDa (limit for iontophoresis) have been delivered [8]. Larger 

molecules like heparin [59], insulin [60], vaccines [61, 62], oligonucleotides 

[63], etc., have also been delivered in conjunction with chemical penetration 

enhancers. The electric field applied to skin is initially concentrated in the 

stratum corneum owing to the higher resistance offered by it. But as 

liquidation of stratum corneum lipids ensues, this resistance drops exposing 

the lower sensory organs to the electric field causing pain and muscle 

stimulation, limiting the scope of this efficient approach for human 

applications. Moreover, the complex design and the high fabrication and usage 

cost has curbed research initiatives and scientists have looked for other 

convenient and economical alternatives. 

Cavitational ultrasound is known to increase skin permeability by formation, 

oscillation and collapse of bubble in ultrasonic pressure fields [64]. The 

formation and collapse of bubbles concentrates the energy of ultrasound on the 

skin surface, which is thought to generate shock waves. Generation of cavities 

and bubble collapse at high pressures is  expected to create fallacies in the 

lipid arrangement leading to increased permeability of large molecular weight 

drugs [65]. This effect is observed at low ultrasound frequencies (< 100 MHz) 

and is distinct from high frequency (non cavitational) ultrasound which is 

thought to increase permeability by heating and solubilising stratum corneum 
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lipids. Cavitational ultrasound has been approved by FDA for delivery of 

lidocaine [66] and several animal studies have demonstrated the efficiency to 

deliver insulin, heparin, tetanus vaccine and other drugs [64]. However, the 

complicated equipment design and operation, high cost of fabrication preclude 

this technique from being a successful drug delivery system for the masses. 

Thermal ablation involves selective heating of the skin surface to breach the 

stratum corneum. In vitro studies have demonstrated  -  fold increase in skin 

permeability for  -       rise in skin temperature [67, 68]. Vasodilation which 

resulted as a homeostatic response of the body further increased systemic 

absorption of drugs [69].  arlier studies employed a temperature of   -       

which could be tolerated for longer periods (> 1hr). These methods caused 

dermal tissue damage and did not significantly improve enhancement for 

drugs greater than 500 Da. Newer thermal ablation methods involve heating of 

the skin surface to a very high temperature          C) for a very short time 

(milliseconds or microseconds). The mechanism may involve vaporization of 

epidermal water resulting in creation of micron sized openings in the stratum 

corneum [70]. Skin heating could be achieved using ohmic micro-heaters and 

radio-frequency ablation [27]. Some animal studies have shown to increase the 

permeability of human growth hormone and interferon α-2b [71]. There are 

however several concerns with the applicability of this technique. Individual 

variance in tolerability to high temperatures may not make this technique 

widely acceptable. Another prime consideration is the stability of drug 

molecules, intended for this application (proteins, peptides and vaccines) may 

not withstand high temperatures.  

Microdermabrasion, which has been used primarily for cosmetic purposes, 

involves removing the stratum corneum by simple methods such as the use of 

sandpaper. Increase in permeability of lidocaine, vitamin C and 5-fluorouracil 

has been reported and some animal studies have demonstrated possibility for 

vaccine delivery using this method [72-74]. Development of specialized 

microdermabrasion tools may aid in gently abrading the dead keratinized 

stratum corneum without causing much damage to the underlying tissues [75]. 
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Laser radiation [74, 76, 77], photomechanical waves [78-80], radio frequency 

[81], magnetophoresis [82, 83], suction ablation [84] and needleless injection 

[85] are some other techniques that have been tried to enhance transdermal 

permeability of hydrophilic drugs. Although they have all shown potential, the 

sophisticated fabrication and functional approach, significant investment 

involved in research and development, the final cost of the delivery system 

and elaborate and inconvenient application methods have impeded their 

widespread clinical use. Table 4 highlights the advantages and disadvantages 

of various passive and active transdermal drug delivery systems. 

Successful transdermal drug delivery relies on the balance between efficiency 

of drug delivery and safety of the skin, coupled with the ease of application 

and economical nature of the system. Creation of micron scale perforations in 

the dead cells of stratum corneum, which do not significantly affect the living 

cells in the viable epidermis and dermis, is the goal of an ideal physical 

penetration enhancement technique. Micron scale needles, which consist of an 

array of projections, supported on a flat base present a pragmatic approach. 

They were first proposed in the 1976 [86] but conceptualized and realized only 

in the last decade by Henry et. al. [87], when microfabrication techniques 

came to fore. The advancement in microfabrication techniques and application 

of technology from the semiconductor industry to the biomedical arena has led 

to the innovation of microneedles. 
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Table 4 Advantages and Disadvantages of various passive and active transdermal 

drug delivery systems apart from microneedles  

Delivery system Advantages  Disadvantages 
Liquids and semisolids convenient (portable, easy, 

painless), economical 
to the patients (non-sterile, 
compact 
 

limited absorption for 
molecular weight above 
500 Da, short duration of 
action, may soil clothes 

Patches convenient, ease of 
application 

only applicable for low 
molecular weight drugs, 
slow absorption of drugs 

Chemical enhancers increased permeability Skin irritation, permeation 
enhancement not very 
high 

Iontophoresis increased permeation, 
suitable for peptides, FDA 
approved for some drugs 

skin irritation, pain, for 
molecules up to 7 kDa, 
expensive 

Non-cavitational 
ultrasound 

milder than iontophoresis, 
molecules up to 48 kDa 
can be delivered 

skin irritation at high 
frequencies 

Electroporation molecules > 7 kDa can be 
delivered, combined with 
chemical enhancers,  

pain and muscle 
stimulation, complex 
design, high fabrication 
cost 

Cavitational ultrasound FDA approved for 
lidocaine delivery 

high equipment fabrication 
cost, complex operation,  

Thermal ablation 2-3 fold increase 
permeability 

individual tolerance to 
high temperature, drug 
stability  

Microdermabrasion increase in permeability 
with minor injury, ideal 
for cosmetics 

specialized tools not 
available 

 

1.3.4. Microneedles as a transdermal drug delivery system 

The revolution in microelectronics industry has knocked the doors of drug 

delivery. The advent of microelectromechanical systems (MEMS) has 

provided an impetus for fabrication of biomedical and drug delivery devices 

that offer the convenience of use as well as advantage of affordability as they 

can be mass produced. They can be specifically designed to be minimally 

invasive and the drug release can be specifically programmed using special 

tools. Amalgamation of concepts from several disciplines offers the specific 

benefits of optimization of design and functional parameters to best suit the 

clinical requisites. 
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Microneedles have been one such innovative present from the 

microelectronics industry, which provides a potential and promising 

alternative to hypodermic injection for delivering the plethora of biomolecules 

that are being synthesised as a result of the surge in biotechnology industry. 

Microneedles can be thought to be a hybrid offering the convenience and safe 

application of transdermal patches and efficiency of hypodermic injections. 

Microneedles exhibiting variations in their geometrical aspects of length, tip 

diameter, base diameter, needle to needle spacing and array dimensions have 

been fabricated. As such they can be tailor-made to be long enough to breach 

the stratum corneum, but short enough to avoid stimulation of the nerves in the 

underlying dermis. They have been proven to be painless in human volunteers 

by Kaushik et al. [88]. Microneedle length can also be tuned to deliver the 

drug to specific sites in the skin, especially vaccines which utilize skin’s 

immune system, housing a large population of langerhans cells and dermal 

dendritic cells. They have been proved to show higher immunogenicity than 

intramuscular injection at a lower immunogenic dose of the influenza vaccine 

[89]. Table 5 details the advantages of microneedle based transdermal drug 

delivery systems. 
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Table 5 Advantages of microneedles 

Advantages of microneedles 

 Painless alternative to hypodermic injections, which are invasive and 

stimulate the nerve endings in the dermal tissues. Microneedles deliver the 

drug in epidermal tissues, causing less pain and hence increased patient 

compliance [88]. 

 Potential risk of infection from hypodermic injection is obviated with the use 

of polymeric microneedles, which are biocompatible and generate no 

hazardous biological waste. 

 Novel microfabrication techniques result in good reproducibility, high 

accuracy and moderate fabrication cost, which results in economy of therapy 

[90]. 

 Drug can either be coated on the needles, encapsulated within the polymeric 

matrix or a patch maybe subsequently applied to aid in drug permeation. 

 Immunization and vaccination in developing nations such as in Asia and 

Africa can be easily achieved using microneedles with minimal patient 

education. They avoid the risk of infection prevalent in these countries due to 

needle re-use. 

 Targeted drug delivery to specific cells in the skin, e.g. langerhans cells and 

dermal dendritic cells. 

 Hollow microneedles can be used to deliver liquids and withdraw tissue 

fluids for analysis [91]. 

 Microneedles can be fabricated to achieve complex release patterns 

(bolus/sustained) [92]. 

 Dose delivered can be terminated immediately by removing the microneedle 

patch from the skin. 
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1.3.5. Microneedles: development and current status 

The concept of micron scale arrays to transiently breach the stratum corneum 

was conceived by Gerstel et al. [86] in 1976. However, it was not possible to 

fabricate and commercialize these microneedles at that time due to lack of 

mass fabrication techniques. The advent of microelectronic tools, first 

employed to fabricate three dimensional microstructures for the semiconductor 

industry in the 1990s, renewed the interest of drug delivery scientists for 

fabrication of microneedles. Microneedles have since been fabricated from a 

variety of materials including, silicon, metal, glass, zeolite and more recently 

polymers and sugars.  The mode of transdermal delivery is dependent on the 

design of microneedles (Figure 5). Microneedles displaying four distinct 

modes have been fabricated to increase skin permeability, including (a) solid 

microneedles, which are used to pre-treat the skin before application of dosage 

form, (b) coated microneedles that release the coatings once applied to skin, 

(c) polymeric microneedles which encapsulate the drug and may or may not 

dissolve in the skin upon application and (d) hollow microneedles that provide 

a channel for infusing liquids into the skin [93]. With nearly 400 research 

papers and 2 dedicated conferences organized, microneedles are a fast 

growing field [93, 94].  
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Figure 5 Methods of drug delivery to the skin using microneedles (MN). 
Microneedles are first applied to the skin (A) and then used for drug delivery (B). 
Solid microneedles are used as a pretreatment, after which drug can diffuse through 
residual holes in skin from a topical formulation (solid MN). After insertion of drug-
coated microneedles into the skin, the drug coating dissolves off the microneedles in 
the aqueous environment of the skin (coated MN). Drug-loaded microneedles are 
made of water-soluble or biodegradable materials encapsulating drug that is released 
in the skin upon microneedle dissolution (dissolving MN). Hollow microneedles are 
used to inject liquid formulations into the skin (hollow MN). Adapted with 
permission from [93]. 

 

a) Silicon microneedles 

Henry et al. fabricated microneedles from silicon wafer using a reactive ion 

etching technique [87]. In this process a silicon wafer was masked with 

chromium dots using lithographic patterning and the microneedles were 

further developed using a deep reactive ion etcher in plasma of SF6 and O2. 

The regions protected by chromium remained and formed the needles. The 

needles formed had extremely sharp tips and were approximately 150 µm 

long. These needles had sufficient strength to penetrate the stratum corneum 

without breaking and were successful in achieving a 1000 fold increase in 

calcein permeability [87]. However, materials such as single crystal silicon are 

brittle and hence are prone to breakage in the skin. Other materials such as 

meso porous silicon offer better biocompatibility and reduce the risk in case of 

inadvertent breakage in the skin [95]. 

With a vast amount of processing knowledge and experience in silicon 

micromechanics, it came as a natural choice for scientists as a material for 
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microneedle fabrication. Microfabrication of a device using silicon involves 

photolithographic patterning as the key process. Lithography (lithos means 

‘stone’ and graphein means ‘to write’) [96] is the transfer of a specific pattern 

on to a substrate. Most of the initial microneedle fabrication processes 

revolved around these principles of lithographic patterning, film deposition 

and etching (wet and dry) to generate the required microstructure. Silicon 

microneedles have been fabricated of varying heights, shapes and densities of 

silicon. Several modifications of film deposition and etching processes have 

been adapted to reduce the number of processing steps, increase the efficiency 

of the process or to reduce the fabrication cost [90, 97-100]. 

Paik and co workers designed in-plane single-crystal silicon microneedles 

using the processes of anisotropic dry etching, isotropic dry etching and 

trench-refilling. The needles were integrated with a PDMS microfluidic chip 

which was used to deliver Rhodamine B and black ink in in vitro and ex vivo 

models [97]. Wilke et al. devised a wet etching technique using potassium 

hydroxide to fabricate silicon microneedles [90]. Similar technique was used 

by Wei-Ze et al. to fabricate super short microneedles measuring 70-80 µm in 

length, which were able to penetrate the skin as was observed with Evans Blue 

application as an array of blue spots on pierced human skin. Plasma based 

process such as those described above are very expensive and need elaborate 

equipments. Shikida and co workers devised a novel anisotropic wet etching 

and dicing based process which did not use any photolithography or the 

plasma based equipment. They proposed two different procedures, in first, the 

process involved the formation on an etching mass followed by dicing and an 

anisotropic wet etching process and the second process involved just dicing 

and wet etching  processes [100]. These novel methods were suitable for 

fabricating solid microneedles. To make an adaptation of the process for 

fabrication of hollow microneedles, Shikida et al. proposed an enhancement of 

the previous processes by application of metal plating and minimizing the 

number of photolithography steps to fabricate hollow microneedles. The 

process involved mechanical grinding of a silicon substrate followed by 

anisotropic etching of a single silicon crystal to form the required molds. A 

thin metal film was deposited on the silicon molds by physical deposition, 
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vacuum evaporation or sputtering and further the hardness was increased by 

metal plating. The hollow microneedles were obtained by etching the silicon 

substrate [99]. Other techniques including Bosch deep reactive ion etching and 

isotropic etching have been used to fabricate tapered hollow microneedles 

[101] and microneedles with sharp tips [102], while chemical and deep 

reactive ion etching has been used to create sharp tipped hollow microneedles, 

with the help of a dicing saw [103].  

Combination of sonophoresis and hollow silicon microneedles has been 

demonstrated by Chen et al. to deliver higher amounts of calcein and bovine 

serum albumin [104]. Similarly, Tao and Das demonstrated 10 × enhanced 

delivery of BSA using a combination of 1.5 mm long microneedles and 15 W 

ultrasound output device, as opposed to passive diffusion [105]. 

Although silicon offered the advantage of adaptability to a wide range of 

fabrication procedures and the knowledge exchanged from the 

microelectronics industry made the processing of microneedles easier, the 

complexity of the processes is not ideal for mass production of dosage forms. 

Silicon as a raw material, too, is expensive. The extensive hi-tech processing 

and the need for clean room facilities further adds to the cost and makes it less 

attractive for commercial use. However, during mass production cost is not the 

issue; the biocompatibility of silicon is questionable and it is a non approved 

material. Metals and glass have been shown to effectively penetrate the skin. 

b) Metal microneedles 

Some metals like stainless steel have already been used for medical devices 

and are approved. Microneedles have been fabricated from stainless steel [106, 

107], palladium [108], titanium [109] and nickel [110] using approaches such 

as electroplating, photochemical etching and laser cutting.  

Martanto et al. fabricated stainless steel microneedles from 75 µm thick sheets 

using an infra red laser which was operated at 1000 Hz for 4 minutes at energy 

density of 20 J/cm2
.  he needles thus formed were bent     

  out of plane 

manually and electropolished [107]. Gill and co-workers successfully 

demonstrated the use of steel microneedles for the transdermal delivery of 

various compounds like vitamin B and calcein. They also devised a method to 
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seclude or ‘pocket’ microparticles within the holes of the microneedles to 

deliver particles of small dimensions like barium sulphate without wiping off 

on the skin [106, 111].  

Microneedles have also been fabricated from materials like glass and ceramic. 

Adaptations from conventional glass micropipette drawing techniques were 

used to fabricate hollow microneedles [112]. Ceramic microneedles were 

prepared by sintering alumina slurry in PDMS moulds [113]. A two-photon 

polymerization method using a polymer-ceramic mixture has also been used to 

make ceramic microneedles [114]. 

Albeit the fast progress in fabrication techniques for silicon and metallic 

microneedles across academia and industry and the proof of their applicability 

in increasing permeability of skin, their clinical usefulness still remains 

ambiguous. Both, metals and silicon are non biodegradable and concerns over 

their breakage in the skin have been expressed. Silicon, unlike some metals 

(titanium) is not an FDA approved material and regulatory issues might pose a 

stumbling block in its path. Metals, being undoubtedly cheaper than silicon, 

present the concern of generating biohazardous sharps whose disposal is a 

global concern and houses the risk of transmission of diseases such as HIV 

AIDS, if the needles are accidently or incidentally reused. Cases of immune-

inflammatory responses have also been reported with stainless steel and 

titanium implants [96]. Also, the drug dose that can be delivered using these 

solid microneedles is limited as the drugs can only be coated on the 

microneedle shafts, which is usually less than 1 mg for small microneedle 

arrays [115]. Hollow microneedles, on the other hand, are fabricated using 

complicated techniques and require a secondary drug delivery system. 

Polymeric microneedles have since drawn the attention of many researchers as 

they obviate the problems inherent with their predecessors. The needles are 

biocompatible and biodegradable and have been shown to be strong enough to 

penetrate the skin [92, 116, 117]. 

c) Polymeric microneedles 

Various polymers including poly (vinyl pyrrolidone) [116], its co-polymer 

with methacrylic acid [116] and poly-lactide-co-glycolide [118] have been 
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used. Sugars and sugar derivatives like dextrose [119], maltose [120], 

galactose [121], carboxymethylcellulose [92] and amylopectin [92] have also 

been used for fabricating microneedles. These materials are biocompatible, 

cost effective and generate no biohazardous waste. Park et al. were the first to 

fabricate polymeric microneedles from polylactic acid, polyglycolic acid and 

their copolymers using PDMS micromolds. Beveled, chisel-tip and tapered 

cone shapes were obtained using techniques of MEMS masking and etching 

[122]. They reported 2-3 times increase in skin permeability for calcein and 

BSA. Deep X ray lithography techniques have been used by Moon et al. [123] 

and Perennes et al. [124] to fabricate hollow microneedle arrays from poly 

methyl methacrylate. Aoyagi et al. have used excimer laser to fabricate 

microneedles from polylactic acid [125]. Lee et al. fabricated microneedles 

from carboxymethylcellulose, albumin and amylopectin. The model drugs 

sulforhodamine B, albumin and lysozyme were either incorporated in the 

needles or in the backing for bolus or sustained release respectively [92]. 

Sullivan et al. designed a novel room temperature molding technique 

especially for biomolecules [116]. The process involved in situ polymerization 

of using monomer vinyl pyrrolidone, encapsulating albumin. The fabrication 

process involved use of PDMS molds and UV exposure for 30 minutes at 

room temperature to effect polymerization. Microneedles from sugars have 

also offered cheaper alternatives to silicon and metals with ease of fabrication. 

Ito et al. used another simple process to fabricate microneedles from dextrin 

[126]. Microneedles were fabricated with dextrin glue using polypropylene tip 

dipping method. Individual tips were dipped in the viscous glue followed by 

drying at room temperature and scrapping off to get the microneedle. Kolli et 

al. used maltose microneedles to study the permeation characteristics of 

nicardipine hydrochloride across hairless rat skin and observed an increase as 

compared to passive diffusion [127]. Appendix 1 provides an overview of 

polymeric microneedles fabricated by different procedures using different 

polymer/s and sugar. 

d) Polymeric microneedles:  fabrication issues with current methods 

Microneedles developed from sugars [128, 129] pose processing difficulties as 

the melting points of these sugars are usually very high     -       ).  ost of 
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the protein drugs cannot withstand these high temperatures and substantial 

losses in the drug content have been observed [129]. Fabrication from other 

sugars such as dextrin or dextran using a thread forming process with 

polypropylene [119, 126] or polyethylene tips [130], although avoids high 

temperature melting but is not suitable for large scale fabrication of 

microneedles. Casting method used by Prausnitz et al. [92, 118] utilizes 

polymers or sugar derivatives requiring the concentration of hydrogel using 

high temperature and vacuum which may have their deleterious effects on the 

fragile protein molecules. A microneedle roller device recently developed by 

Prausnitz et al. also involves the use of elevated temperatures [131]. Other 

methods for polymeric microneedle fabrication using techniques such as deep 

x-ray lithography [123], ultraviolet lithography [122], wet silicon etching and 

reactive ion etching [122], lens based lithographic patterning [122], 

photopolymerization with longer exposure to UV light [116] and laser based 

fabrication [125, 132] involve complex multistep procedures which accrue the 

overall cost of the process and make it inaccessible to many researchers. At 

the same time, such strenuous processes may not be suitable for encapsulation 

of biomolecular drugs and cosmetic molecules, which are inherently fragile 

and sensitive to solvents, ultraviolet light, x-rays and laser radiation.                      
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e) Commercial microneedle products 

A number of microneedle based products are available around the world, 

primarily for cosmetic purposes. Dermaroller®, was the first microneedle 

product, sold in Europe in 1999, and is now available the world over 

(http://www.dermaroller.com/). It consists of a cylindrical roller which holds 

an array of solid, metal microneedles measuring 0.2 – 2.5 mm in length and 

has been used for a variety of purposes, including improvement of skin texture 

at home by small microneedles to specific skin care treatments in clinics to 

treat scars and hyperpigmentation using longer microneedles. Similar products 

are also available from other companies (http://www.hansderma.net/, 

http://www.whitelotus.com.au/). The companies also provide training on use 

of these microneedle products. Nanomed Skincare (www.nanomed-

devices.com) launched silicon microneedles devices called as SP ™  Skin 

Permeation Enhancer) for cosmetic and medical applications. The devices 

consist of an array of nanopins with a diameter of 80 µm. LiteClear® , is a pen 

shaped device based on SP ™ technology, that consist of a pen shaped device 

holding a microneedle array at the end and a tube dispenser for delivering 

actives. These devices are intended for applications in acne treatment as well 

as wrinkles and blemish management.   ™  icrochannel Skin System 

(http://solutions.3m.com/wps/portal/3M/en_US/Microchannel/Skin_Systems/) 

consists of an array of 351 microneedles / cm2 , each measuring 650 µm in 

length and made from medical grade polymer. The device comprises of a 

microneedle patch and a snap-on handle. The device is intended for 

pretreatment of skin in dermatological and cosmetic applications, with needles 

expected to penetrate 100 µm into the skin with application of little force. 

While these solid microneedle products do not containing any drug/cosmetics, 

a Japanese firm (http://www.cosmed-pharm.co.jp/) has designed a 

microneedle patch containing hyaluronic acid (MicroHyala®), which is 

intended for anti-wrinkle and whitening effect and is claimed to release active 

ingredients in 90 minutes. The patch was launched in 2008 is currently sold in 

Japan. Another Japanese cosmetics giant, Sheiseido (www.shiseido.co.jp), 

developed an eye patch containing hyaluronic acid. The patch consisting of 

1200 microneedles was launched as Navision® in March 2011. 

http://www.hansderma.net/
http://www.nanomed-devices.com/
http://www.nanomed-devices.com/
http://solutions.3m.com/wps/portal/3M/en_US/Microchannel/Skin_Systems/
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BD Soluvia™ prefillable microinjection system 

(http://www.bd.com/pharmaceuticals/products/microinjection.asp) consists of 

a hollow microneedle attached to a syringe that can be prefilled with 

drug/vaccines. The microneedle which is 1.5 mm in length is aimed to deliver 

drugs/vaccines intradermally. The device has been used widely for 

administration of first approved intradermal influenza vaccine Intanza® or 

IDflu®, marketed by Sanofi-Pasteur, the vaccines division of Sanofi-Aventis 

(http://www.sanofi.com/).  

 icronJet   ™ is an FDA registered medical device, which has completed 

world’s first intradermal H N  flu vaccination study, demonstrating superior 

immunogenicity to intramuscular administration, at only 20% of the dose 

(http://www.nanopass.com/content-c.asp?cid=22). The device consists of a 

row of hollow silicon microneedles and is adaptable to any conventional 

syringe.  

f) Microneedles in clinical trials 

There are about 26 clinical trials, some of which have been completed, while 

others are currently underway, using microneedles for delivering vaccines, 

proteins, small molecular weight drugs, to carry out diagnostic tests or to 

study allergic reactions of skin to microneedles (http://www.clinicaltrials.gov, 

Keyword: Microneedle).  icronJet   ™ is being tested for development of 

intradermal injection of lidocaine for local anaesthesia [133] insulin [134] and 

vaccine for influenza [135]. Lidocaine application for rapid anaesthesia has 

been the subject of other microneedle studies too [136]. BD Soluvia™ has 

been used to administer tuberculin intradermally in diagnosis of tuberculosis 

[137].   ™  icrochannel Skin System was tested for its skin irritation 

properties in a phase I clinical trial in 54 healthy volunteers [138]. While the 

results have not been made public yet, the company’s website claims the 

system to be safe for all age and skin types and erythema formed upon 

application usually resolves in 1-2 minutes. Many other studies have primarily 

focused on vaccines like influenza and polio while others have looked at small 

molecules for management of osteoporosis and local skin conditions like 

actinic keratoses (http://www.clinicaltrials.gov). 

http://www.sanofi.com/
http://www.nanopass.com/content-c.asp?cid=22
http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/


29 
 

1.3.6. In vitro skin permeation testing  

Experimental evaluation of transdermal diffusion is mostly carried out using 

diffusion cells that have been fabricated in a variety of designs, but have a 

certain commonality in their elements, including a donor and a receptor 

chamber, having a piece of excised skin or equivalent membrane sandwiched 

between the two. Such studies are important in highlighting the behaviour of a 

dosage form in vitro or ex vivo and its likely performance in vivo. These 

devices are essential in pre-formulation studies, in assessment of extent of 

absorption of a particular compound from a dosage form, which helps in 

establishing dosing and safety profiles for a drug delivery system. Such 

profiles also enable cosmetic formulators to design safe products, minimizing 

the potential for allergic skin reactions as well as systemic side effects.  

Transdermal diffusion cells have been the mainstay of in vitro cutaneous 

permeation studies since they were first conceptualized four decades ago. 

Apart from their major contribution in studying transdermal flux to predict 

possible in vivo absorption, they have also been used to monitor batch to batch 

variations, assessment of product quality and in several pre-formulation 

studies guiding product development [139]. Although several designs have 

been developed over the years, these systems, in principle, are of two major 

types: the static, non-flowing cells with stagnant receptor solution or the 

continuous flow through cells, with continual replenishment of receptor fluid 

also called as in vivo mimic diffusion systems [140, 141]. Most other features 

remain the same, including the donor and receptor compartments, which hold 

the skin tissue or an equivalent membrane in between themselves. A 

schematic of various types of diffusion cells in presented in Figure 6. 
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Figure 6 Schematic representations of various types of in vitro skin permeation 
systems. Adapted with permission from [141]. 

 

As temperature plays a critical role in transdermal absorption, water jackets 

are usually incorporated into the cell designs to maintain the temperature close 

to in vivo environment, although in some conventional designs, complete 

submersion of receptor compartments in a temperature controlled water bath 

has been practiced. A provision for agitation or constant mixing of receptor 

solution is incorporated, mostly by the use of magnetic stirrers. This is to 

avoid the formation of static diffusion boundary layers that may affect the 

permeation by reducing the sink conditions [142]. Since current regulatory 

guidelines offer only partial standardisation of in vitro permeation studies, a 

variety of diffusion cell designs with varying dimensions following laboratory 

customized/specific protocols have been used [143]. 
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a) Static diffusion cells 

Static diffusion cells are usually designed in two orientations, vertical (Franz) 

cells or horizontal (side-by-side) cells. Horizontal diffusion cells usually 

contain two parallel oriented cells sandwiching skin in between, tightly 

clamped together to prevent donor and receptor solutions from leaking. Made 

of glass, the donor and receptor compartments have been fabricated in various 

shapes and designs [144-147]. Earliest design of this shape was fabricated 

using brass chambers that had complicated screw threaded assembly for fixing 

donor and receptor chambers [148]. Large Teflon stirrers were mounted on the 

shafts and skin was mounted on O-rings placed on the chambers. The design 

required motors to turn the stirrers and the bulky design necessitated the use of 

large skin sample. Wurster et al. developed a modified conical flask shaped 

design that was used to test the permeation of model drug, sarin. The design 

was complicated and had no provision for temperature control. The whole 

assembly had to be submerged in a temperature controlled water bath and 

occasional shaking was required to uniformly disperse the permeated drug 

[149]. Further reduction in size and complexity was achieved by Southwell et 

al. who designed small glass chambers which can be placed over a small 

magnetic stirrer to allow for Teflon coated magnetic bars to be used within the 

diffusion cells [150]. Chien and Valia developed a water jacketed version of 

the horizontal cells to obviate the need to immerse the cells in a water bath. 

The cells had an effective skin exposure area of 0.64 cm2, making them 

amenable to use with scarce human skin samples [145]. Over the years, 

horizontal cells have undergone several design manipulations and many of 

them can be easily purchased commercially as they offer the ease of operation 

and more intimate contact of receptor fluids with the skin, eliminating the 

formation of static boundary layers to a large extent. However, setting up the 

cell and preventing the leakage of donor and receptor compounds can be a 

challenging task and needs to be performed with care.  

Franz type diffusion cells are the most commonly used type of in vitro 

diffusion apparatus that include a vertically oriented donor chamber and 

separated from a lower receptor chamber by a membrane, usually skin. A 

variety of donor formulations can be used with this design, allowing for 



32 
 

flexibility of operation. Also, as the cells are sealed by clamps in a vertical 

orientation, leakage of donor formulation is less often encountered. The 

receptor chamber is provided with a side arm as a sampling port and a 

mechanism to continually stir the receptor liquid is incorporated by using 

magnetic stirrers underneath.  However, one of the main concerns with this 

design is the built-up of air bubbles below the skin surface, thus preventing 

intimate contact between receptor liquid and skin. This has to be carefully 

removed by tipping the cells before starting the experiment.  

One of the earliest designs of this type called the skin cell was developed by 

Coldman et al. [151]. The device consisted of glass receptor containing 10 mL 

of receptor solution with a side arm for sampling. The receptor was mixed 

using a Teflon coated magnetic stirrer attached to a polyethylene sail. The skin 

was spread on a flat ground glass surface and held in place by Teflon clamps, 

leaving an exposed zone measuring 0.62 cm diameter. A modified design of 

vertical diffusion cell was developed by Southwell et al. [150]. The design had 

a stainless steel mesh screen to hold the skin samples above the receptor 

chamber. A drawback with these cells is the poorly stirred receptor liquid 

located in the side arm, which was undesirable. 

Franz diffusion cells were first introduced by Thomas J. Franz [152]. Most of 

the design specifications pertaining to receptor solution, stirring mechanism 

and sampling remained similar to the earlier models. But, these cells were 

better than previously developed models as they allowed temperature control 

by providing in built water circulation jacket, an O-ring for effective sealing 

of donor and receptor together with a small donor compartment that could be 

sealed from the top. The design of receptor chamber, mimicking a dumbbell 

shaped tube with a narrow bottom and a wider top also suffered from similar 

drawbacks of poor mixing hydrodynamics as there was significant resistance 

to mixing from the constricted bottom to the stationary boundary layer in the 

wider top portion holding the skin [153]. Newer designs have tried to address 

this issue by using a spherical receptor chamber [154]. 
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Franz diffusion cells were the first to be marketed in vitro permeation testing 

device and have undergone several design modification over the years. 

Several other designs have been developed since and commercialized.  

A common shortcoming amongst all the static diffusion cells is their 

significant deviation from the dynamic in vivo environment where sink 

conditions are continually maintained underneath the skin, owing to flushing 

away of the absorbed drug molecules by blood flowing through the capillaries 

or lymph in the lymphatic circulation and lymph nodes. Hence, with greater 

appreciation of skin as a novel route for drug delivery, it was imperative to use 

in vitro systems that mimic the permeation conditions in vivo. These cells 

circumvent the mixing problems encountered in static cells by providing a 

continual replenishment of receptor solution that carries the drug across to a 

sampling tube. These devices are also amenable to automation, providing for 

minimal human involvement. 

b) Flow-through diffusion cells 

The first of its kind flow through diffusion cell was reported even before static 

diffusion cells were made. The device made from stainless steel had provision 

for holding skin and continuous passage of receptor fluid at a flow rate of 10-

20 mL/hour [155]. The device had an effective surface area of skin exposure 

of 0.2 cm2; however there was no mechanism for receptor stirring. Years later, 

several designs were made, most drawing their principles from the Franz static 

diffusion cells, in terms of design [153, 156] as well features such as 

automated sample collection [157] and similar permeation coefficients when 

compared to static versions [158]. Although most of the designs for flow-

through cells are based on vertical orientation of donor and receptor chambers, 

horizontal orientations have also been reported [159]. 

It is noteworthy that flow through cells result in better prediction of in vitro 

permeation as compared to static diffusion cells, due to the dynamic flow 

pattern of receptor solution. Albeit, a concern with these flow-through cells is 

their inherent designs being in the macroscale range, requires large volumes of 

donor liquids. This is particularly difficult to manage during the pre-

formulation studies in early drug/cosmetic development phases, where new 
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molecules might not be available in large quantities and may be prohibitively 

expensive to carry out extensive studies. Particularly with the development of 

new biotechnology based products, majority of which are macromolecular, 

hydrophilic, with low permeability coefficients, large receptor flow rates 

achieved in the conventional models, cause excessive dilution of permeated 

drug, making subsequent analysis a challenge. The large interface between 

donor and receptor chamber needs large skin samples, which are extremely 

scarce due to lack of donors and ever increasing stringency in guidelines for 

testing on human subjects. This calls for development of newer in vitro testing 

systems, which utilize a low volume of the reagent as well as have minimal 

surface area at the interface, requiring smaller skin samples. 

1.4.  Specific aims and objectives  

Microneedle research has made rapid strides in the past few years, going from 

non-biocompatible materials like silicon, glass and metals to polymeric 

alternatives. While many microneedle products are available commercially, 

most of them are made of non biodegradable, potentially hazardous metals or 

plastics which may break off in the skin and necessitate a subsequent surgery 

to be removed. On the other hand some intradermal hollow microneedles 

require a secondary drug delivery system like syringes to deliver liquids to the 

dermis. These microneedles are long and may cause some amount of pain or 

discomfort to the users. Polymeric microneedles are hence the way forward. 

With the current fabrication techniques being strenuous for drug 

encapsulation, there is a need to develop simple microneedle fabrication 

method that is easily adaptable, scalable and innocuous to drug stability. 

On the other hand, plethora of transdermal permeation testing platforms has 

been developed. However, their non suitability in case of limited drug and 

skin availability presents an opportunity to leverage the benefits of 

microfabrication to develop a miniaturized platform that utilizes minimal 

amounts of scarce, yet precious drug and skin samples. This thesis investigates 

the development of a simple lab scale photolithography based microneedle 

fabrication method as well as development of a miniaturized flow-through cell 

to test the permeation of transdermally applied drugs. 
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The following specific aims and objectives are outlined to realize the above 

mentioned goals: 

1. To develop a simple photolithography based microneedle fabrication 

method, without the use of solvents or pre-formed moulds. 

2. To determine the factors affecting microneedle geometrical properties 

3. To demonstrate the ability of microneedles to penetrate animal skin 

models, in vitro. 

4. To encapsulate model chemical and biological drugs in microneedles 

and test for their in vitro release and permeation through rat skin. 

5. To evaluate the stability of protein molecules encapsulated in 

microneedles by an array of structural characterization tests. 

6. To investigate the in vitro toxicity of microneedles by testing 

polymeric extracts on a variety of cell lines. 

7. To evaluate the possibility of encapsulation of higher doses of a drug 

by integrating microneedles to a transdermal patch system. 

8. To investigate the possibility of delivering cosmeceuticals using 

microneedles. 

9. To develop a novel miniaturized transdermal permeation testing device 

to minimize the utilization of compounds as well as skin samples 

Addressing these specific aims, this thesis is presented in five parts as 

mentioned below. 

In the first part (chapter 3) of the thesis, the focus is to develop a simple 

photolithographical approach to fabricate polymeric microneedles in a mould 

free process. Photolithographic methods have been used previously to 

fabricate polymeric microneedles. However, most of the methods required 

fabrication of reverse moulds in the first step; followed by subsequent 

fabrication of microneedles in the moulds. The new method is intended to 

allow microneedle fabrication in a single step procedure, without the need to 

prefabricate the moulds, or to use any solvent to dissolve the polymers. The 

second part (chapter 4) of the thesis deals with an important application that 

microneedles are chiefly intended for: delivering protein drugs. Proteins, 

peptides and vaccines form a big group of biotherapeutics, whose 



36 
 

development has seen a surge in the past two decades.  The surge has not been 

matched by the development of drug delivery systems; hence most of these 

compounds are still not in the market. Methods to fabricate polymeric 

microneedles in the past involved long exposure to UV light, melting of 

sugars at high temperatures and application of high vacuum to fill the moulds 

that may be deleterious to protein stability. The method developed in this 

thesis is expected to be adapted for delivering protein and peptide drugs as 

well as vaccines. Assessment of protein stability upon encapsulation in 

polymeric microneedle matrix is critical to prove the viability of 

photolithography as a safe method. The third part (chapter 5) of the thesis 

examines the possible clinical applications of microneedles. A shortcoming of 

the microneedle based transdermal systems, particularly for less potent small 

molecular weight drugs, is their inherent low encapsulation efficiency, as not 

enough drug can be encapsulated within the microstructures. This limits their 

use in conditions that require large dose of a drug, particularly conditions such 

as pain. Most transdermal delivery systems to treat conditions such as pain use 

conventional dosage forms such as gels, creams, ointments or transdermal 

patches. These however are not as effective due to differences in skin 

thickness and skin anatomy among individuals, leading to large variations in 

therapy. Integration of a transdermal patch to microneedle array could provide 

the advantage of active disruption of skin barrier to provide rapid delivery of 

drug as well as act as a source of drug reservoir for continued, sustained 

release over a long period of time. In this part, photolithography and 

ultraviolet curing were used as tools to create a microneedle integrated 

transdermal patch to encapsulate large doses of lidocaine to be potentially 

used for pain management. In the fourth part (chapter 6) of the thesis, an 

improved microneedle fabrication method is developed, to produce sharper 

microneedles. The conventional soft lithographic technique previously 

developed in part one used a planar photomask, which did not alter the path of 

UV light and hence had minimal effect on microneedle geometry, apart from 

its role in forming microstructures in a particular pattern. In an amended 

approach, embedded convex lenses in the photomask causing the light rays to 

converge to a point when they travel in the polymeric solution, was aspired to 

form sharp microneedles. These sharp microneedles are then investigated for 
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their ability to deliver cosmeceuticals. The fifth part (chapter 7) of this thesis 

deals with the development of a novel skin permeation testing device is 

developed based on the concepts of microfabrication. Due to the inherent 

design properties of the current set-ups, it is difficult to do exhaustive pre-

formulation testing, without employing a large amount of the drug/cosmetic 

compound as well as skin samples. The idea here is to miniaturize all the 

components, without compromising on the testing protocol especially skin’s 

morphology as well as maintenance of sink conditions during the permeation 

experiments. 
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CHAPTER 2 

Materials and Methods 

 

2.1. Materials  

The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO, 

USA): poly (ethylene glycol) diacrylate (PEGDA, Mn = 258), 2-hydroxy-2-

methyl-propiophenone, (HMP), 3-(trimethoxysilyl) propyl methacrylate 

(TMSPMA), trypan blue solution (0.4 %), bovine serum albumin, lidocaine, 

bovine collagen type I – fluorescein isothiocyanate (FITC) conjugate, 

endoxifen hydrochloride and (R)-(+)-limonene and oleic acid.  

Rhodamine B and sodium azide were purchased from Alfa Aesar (Lancaster, 

UK). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 

and dimethyl sulfoxide were purchased from MP Biomedicals (Cleveland, 

OH). A CytoTox-ON ™ homogeneous membrane integrity assay kit was 

bought from Promega (Madison, WI). Sodium azide was purchased from Alfa 

Aesar (Lancaster, UK). BSA Texas red conjugate was bought from Molecular 

Probes, Invitrogen (Orlando, FL, USA). HPLC-grade acetonitrile was 

purchased from Tedia, USA. Phosphate buffered saline (PBS, 10×) ultra pure 

grade was obtained from Vivantis, Malaysia. Propylene glycol was obtained 

from Chempure, Singapore. Polydimethylsiloxane (PDMS) (Sylgard 184 

Silicone Elastomer Kit) was obtained from Sylgard, USA. Myristyl lactate 

was a gift from Chemic Laboratories, USA. α-mangostin standard was 

supplied by Dr. Prachya Kongtawelent from Chiang Mai University, Thailand. 

Ultrapure water (Millipore, USA) was used in the preparation of aqueous 

solutions. All chemicals and materials were of analytical grade and used as 

received. 

2.2.  A simple method of microneedle array fabrication for transdermal 

drug delivery 

2.2.1. Coating of glass coverslips 

Glass coverslips (Menzel Glaser, Germany, 190 micron thickness, 22 × 22 

mm) were first rinsed with 70 % ethanol and air dried. Later, they were 
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immersed in 0.4 % TMSPMA solution overnight for coating. The coverslips 

were then washed with water and baked for 2 hours at 70 ºC. TMSPMA 

molecules attach to the silanol groups on the glass. The resultant chemical 

interaction is depicted in Figure 7. 

2.2.2. Fabrication of microneedle backing layer 

Two uncoated coverslips were supported on either side of a glass slide (Sail 

Brand,  hina) as ‘spacers’ as shown in Figure 7 A. A TMSPMA coated 

coverslip was placed on this setup to create a cavity in the centre, 

approximately     μm thick. P GDA, containing  .5% w/w H P  referred as 

the prepolymer solution) was wicked by capillary action into the cavity. The 

set up was then irradiated with high intensity ultraviolet light (11.0 W/cm2) for 

1.5 sec using UV curing station with a UV filter range of 320–500 nm 

(OmniCure® S200-XL, EXFO Photonic Solutions Inc., Canada). The 

intensity of the UV light was measured with the OmniCure® R2000 

radiometer. A collimating adaptor (EXFO 810-00042) was used with the UV 

light probe. TMSPMA molecules bonded to the glass coverslips are covalently 

linked to the acrylate groups of PEGDA via free-radical polymerization 

(Figure 7, within dashed ellipses) [160, 161]. The backing layer 

approximately     μm thick was then easily removed from the setup. 

2.2.3. Fabrication of microneedle shafts 

The set up for fabrication of microneedles is similar to that for microneedle 

backing except for number of ‘spacers’. Increased spacer thickness was 

achieved by increasing the number of coverslips stacked on either side of the 

glass slide as shown in Figure 7 B. The prepolymer solution was then 

similarly wicked by capillary action into the cavity. A plastic film (known as 

photomask) was inked specifically in the pattern of microneedle array. The 

background of this film was inked leaving small circles in an array pattern 

transparent to allow the UV light to pass through. The transparent circles 

govern the base diameter of the microneedles.  Similarly, the center-to-center 

spacing between two microneedles can be controlled. Such a film was placed 

on the coverslip carrying the microneedle backing and the setup was irradiated 

with UV light. The use of photomask blocked the UV access in the inked 
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regions and allowed the UV light to pass through the transparent circles, 

which resulted in the formation of microneedles. The microneedles were 

covalently bonded with the PEGDA macromers in the backing layer to form 

an interpenetrating polymer network (Figure 7 B, within dashed rectangles) 

[160, 161]. The microneedle structures, attached to the coverslip, were 

carefully removed from the glass slide and washed with water to remove the 

un-crosslinked prepolymer solution. The prepared microneedles were imaged 

using Nikon SMZ 1500 stereomicroscope (Nikon, Japan), to quantify the 

microneedle geometric characteristics. 

 

Figure 7 Schematic representation of the fabrication process. (A) PEGDA is attached 
to TMSPMA coated coverslip via free radical polymerisation using UV irradiation, 
forming the backing for microneedles. (B) Using glass slides as support, the PEGDA 
backing is mounted onto the set-up with PEDGA filled in the enclosed cavity. 
Subsequently, the set-up is irradiated with UV light. UV light is only able to pass 
through the clear regions on the photomask, forming microneedles. 

 

2.2.4. Microneedle insertion in pig skin 

To ascertain that microneedles penetrate the skin, PEGDA microneedles, in an 

8 × 8 array were inserted into excised cadaver pig skin obtained (after the pig 

was sacrificed using CO2 asphyxiation) from a local abattoir. The hair was 

first removed using an electric hair clipper (Philips, Hong Kong) followed by 
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hair removal cream Veet® (Reckitt Benckiser, Poland) to completely remove 

the hair [162].  he skin samples were cleaned and stored at −   °  until use. 

Prior to use, the subcutaneous fat was removed using a scalpel. The skin was 

fixed fully stretched on a thin (7-8 mm) layer of modelling clay (Nikki, 

Malaysia), to mimic the tissue-like mechanical support. Microneedles were 

inserted using the force of a thumb on the backing layer for approximately 1 

min. The arrays were then removed and the area of insertion was stained with 

trypan blue for 5 min, which specifically stains the perforated stratum 

corneum sites. The excess stain was washed away with water. The areas 

stained with the dye were viewed by brightfield microscopy using Eikona 

Image Soft Microscope (China). A positive control, which consisted of a 27 

gauge hypodermic needle, was used to create perforations in the form of a 4 × 

3 array. Intact skin stained with trypan blue was used as a negative control. 

Histological examination of the skin was also carried out by the microneedle 

treated skin samples in to    μm sections using a microcryostat  Leica, 

Germany). The histological sections were stained with hematoxylin and eosin 

and imaged by stereomicroscopy. All animal experiments were approved by 

Institutional Animal Care and Use Committee (IACUC), National University 

of Singapore (NUS). 

2.2.5.  Encapsulation of a model drug: imaging and in vitro release 

Rhodamine was dissolved in the prepolymer solution at a concentration of 

0.09, 0.17 and 0.44 weight %, respectively. The drug-laden microneedle 

samples were imaged using a fluorescence stereomicroscope SMZ - 1500 

(Nikon). The amount of drug encapsulated in the microneedles was calculated 

from the percent weight of the drugs in the prepolymer solution and the 

weight of fabricated microneedles. Selective incorporation of rhodamine B in 

the backing layer or microneedle shafts was made possible by using the 

prepolymer solutions containing the model drug to fabricate the backing layer 

or microneedles respectively. In vitro release of rhodamine B was tested by 

suspending fabricated microneedle arrays in 15 mL of 1 × PBS, at 37 °C and 

sampled at regular intervals. At each sampling point, the whole 15 mL of 

release medium was withdrawn and replaced with 15 mL of fresh 1 × PBS. 
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The samples were stored at 4 °C before analysis. The amount released was 

quantified by measuring rhodamine B fluorescence at excitation and emission 

wavelengths of 554 nm and 586 nm, respectively, with a Tecan 2000 

microplate reader (Tecan, Germany) [122]. 

2.2.6.  In vitro permeation through rat skin 

To analyze the increase in skin permeability following microneedle 

application, cadaver rat skin was used. The subcutaneous fat was removed 

with a scalpel.  icroneedles containing 5  μg of rhodamine B were applied to 

the skin samples. As a comparative control, a similar concentration of 

rhodamine B in propylene glycol solution in the donor compartment was used. 

Skin was mounted on a side-by-side diffusion cell (TK- 6H1, Shanghai Kai 

Kai Science and Technology Co., Ltd, China) with receptor compartment 

containing 4.5 mL of 1 × PBS with 0.005% v/v sodium azide (Alfa Aesar). 

For each group, six replicates were used. Water was circulated at 37 °C and 

the donor and receptor solutions were continuously stirred at 250 rpm with 

magnetic stirrers. The samples were collected at regular intervals over a period 

of 48 hours. At each sampling point, 1 mL of receptor medium was withdrawn 

and replaced with 1 mL of fresh PBS. The samples were stored at 4°C before 

analysis. All the sample vials were centrifuged at 10,000 rpm and supernatant 

was analyzed by measuring rhodamine B fluorescence as previously 

mentioned. Cumulative amount of drug permeated against time and skin 

permeability was calculated by assuming a steady state flux. 

 

2.3.  Protein encapsulation in polymeric microneedles by 

photolithography 

 

2.3.1. Fabrication and characterization of polymeric microneedles 

The microneedles were fabricated by a photolithographic method, as described 

previously in section 2.2. The geometric characteristics of the microneedles 

(length, base, and tip diameter) were studied using an SMZ-1500 

stereomicroscope (Nikon, Tokyo, Japan). 
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2.3.2. Incorporation and uniform protein distribution in microneedles 

BSA Texas red conjugate was incorporated into the microneedle backing layer 

and shafts at a concentration of 0.045% w/w in the prepolymer solution to 

ascertain uniform distribution of drug in the polymerized microneedles. The 

fabricated microstructures were then imaged using a Nikon A-1R confocal 

microscope to observe the fluorescence intensity at various areas of the 

backing layer and various lengths of a microneedle shaft. The fluorescence 

intensity was calculated using Nikon NIS elements BR 3.1 analytical software. 

Microneedle arrays were also imaged with a Nikon SMZ-1500 

stereomicroscope. 

2.3.3. Stability tests for BSA in microneedles 

a) Primary structure stability 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 

carried out using Laemmli’s method to assess the effect of ultraviolet-initiated 

photopolymerization on the conformational stability of BSA [163]. It was 

performed by casting 10% running gel and 5% stacking gel. Each formulation, 

containing    μg of protein sample as determined by bicinchoninic acid 

protein assay (Pierce, Rockford, IL), was mixed with an equal quantity of 

Laemmli sample buffer and 5% of β-mercaptoethanol. The solutions were 

heated at 100 °C for 2 minutes after which they were loaded onto a comb 

stacked on the gel cast in an electrophoresis cell. The gel was run at 100 volts 

for 2.5 hours. After removal from the electrophoresis cell, the gel was stained 

with Coomassie brilliant blue R-250 staining solution for 2 hours on an orbital 

shaker. The excess stain was removed by a destaining solution (20% 

methanol, 10% glacial acetic acid, 70% water) overnight and the gel was 

imaged using a Samsung ST-550 digital camera (Seoul, South Korea). 

b) Secondary structure stability 

Circular dichroism spectroscopy was performed on the samples to evaluate the 

secondary structural characteristics of BSA in the fabricated microneedles. 

The analysis was performed using a Jasco J-810 spectropolarimeter (Tokyo, 

Japan) with a 1 mm light path quartz cell (Hellma, Müllheim, Germany). Data 
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were acquired at a bandwidth of 0.1 nm with a scan speed of 50 nm per 

minute and a response time of 8 seconds. The samples and standard BSA 

solution were scanned over the wavelength range of 240–200 nm. The 

microneedle release samples were first filtered using microcentrifugal 

concentrators, (30 kDa cutoff, Vivaspin 20, General Electric, Addlestone, 

Surrey, UK) to separate the protein from the polymer. The samples were 

compared with a standard solution of BSA, and BSA degraded using heat 

(75°C) and acidic conditions (pH 2) was used as a control [164, 165]. The 

average value of triplicate measurements was used to plot the curve of mean 

residue ellipticity (in degrees cm2 dmol−1) to wavelength. The experimental 

data acquired from the spectropolarimeter were analyzed using the 

DichroWeb browser and a deconvolution algorithm (K2d) to calculate the 

mean residue ellipticity and percentage of alpha helix [166-168]. 

c) Tertiary structure stability 

In order to evaluate tertiary structural changes in the protein conformation, 

their fluorescence spectra were analyzed. A standard BSA solution at a 

concentration of 0.026 mg/mL in purified water was prepared to compare the 

spectral data with the BSA released from the microneedle samples. The 

emission spectra were studied in the range of 300–400 nm at a fixed excitation 

wavelength of 280 nm using a Hitachi F-7000 fluorescence spectrophotometer 

(Hitachi, Japan). Similar to the circular dichroism experiments, heat-degraded 

and acid-degraded samples were used as a control. The fluorescence 

intensities were plotted against wavelength as an average of triplicate 

measurements. 

2.3.4. In vitro release of BSA from microneedles 

BSA was encapsulated in the microneedles at three different concentrations 

(0.5%, 0.8%, and 1.3% w/w BSA in prepolymer solution) to obtain 

microneedle arrays containing 0.4–1.6 mg of the protein. The in vitro release 

was determined by suspending the microneedle arrays in 15 mL of 1× 

phosphate buffered saline at 37 °C. Periodically, the release medium was 

withdrawn completely and replaced with 15 mL of fresh medium to maintain 

sink conditions. The collected samples were kept at 4 °C until analysis. The 
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protein concentration in the release samples was analyzed by a bicinchoninic 

acid protein assay kit. Each concentration was analyzed in triplicate and the 

mean value was used for analysis. The cumulative amount in mg and the 

percentage of BSA released were plotted against time. 

 

2.3.5. In vitro permeation through rat skin 

In vitro permeation studies were carried out in water jacketed horizontal 

diffusion cells as described in section 2.2.6. The skin was hydrated in the 

receptor solution (1× phosphate-buffered saline with 0.005% w/v sodium 

azide) overnight. The skin was placed stretched on ten layers of Kimwipes 

(Kimberly-Clark, Roswell, GA) to provide tissue-like mechanical support 

[122]. Microneedles containing 0.7%, 1.42%, and 1.85% w/w BSA were 

applied to abdominal rat skin after removing the subcutaneous fat. 

Microneedles containing no BSA were used to blank the inherent protein 

released from the skin. BSA dissolved in propylene glycol was used to 

compare the enhancement of BSA permeation by microneedles over passive 

diffusion. The microneedle array was secured on the skin using scotch tape 

and the skin was placed between the donor and receptor compartments. The 

receptor compartment was filled with 4.5 mL of receptor solution, which was 

continuously stirred at 250 rpm using a Teflon-coated magnetic stirrer. At 

each sampling point, 1 mL of receptor solution was withdrawn and replaced 

with fresh receptor solution. The collected samples were stored at 4°C until 

they were analyzed. All samples were centrifuged at 10,000 rpm for 5 minutes 

and the supernatant was collected for analysis. The concentration of 

permeated BSA was determined by the ultraviolet A215–A225 method [169]. 

Each sample was analyzed in triplicate. The cumulative amount of drug 

permeated per unit area was plotted against time. 

2.3.6. In vitro cytotoxicity of polymeric microneedles 

Cytotoxicity of the microneedle materials was assessed by the viability of 

three different cell lines using colorimetric determination of mitochondrial 

succinate dehydrogenase activity using the MTT assay [170]. Human dermal 

fibroblasts, human adult low calcium high temperature (HaCaT) keratinocytes, 
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and human embryonic kidney (HEK293) cells were used to assess the toxicity 

of the polymer used in fabricating the microneedles. The cells were grown in 

Dulbecco’s modified  agle’s medium (DMEM) supplemented by 10% fetal 

bovine serum and 1% penicillin-streptomycin solution. After the cells had 

achieved 80% – 90% confluency, they were trypsinized and counted. Cells (1 

× 104 cells/well) were plated into 96-well microtiter plates (Corning, NY) in 

    μL of growth medium. After    hours of plating,    μL of polymer 

extracts (prepared by extracting the polymer from fabricated microneedles in 

1× phosphate-buffered saline at 37 °C for 24 hours) were added to each well. 

Positive control consisted of wells containing    μL  × phosphate-buffered 

saline. The plates were incubated at 37 °C in humidified 5% CO2 for 24, 48, 

and 72 hours. The medium was aspirated at the respective analysis point, and 

   μL of     solution  5 mg/mL in phosphate-buffered saline) was added to 

each well, followed by     μL of growth medium.  he plates were incubated 

for 4 hours at 37 °C. After 4 hours, the medium was aspirated again and 150 

μL of dimethyl sulfoxide was added into each well to dissolve the formazan 

crystals formed, with the aid of a plate shaker operated at 100 rpm. The 

colorimetric assay was carried out by measuring the absorbance at 595 nm 

using a Tecan 2000 microplate reader (Tecan, Germany). The cell viabilities 

were calculated as a percentage of the control. 

The toxicity of the polymer was also assessed by analyzing the amount of 

lactate dehydrogenase released from the membranes of damaged cells [171]. 

The cells were cultured in well plates in a similar manner as described above 

and treated with polymer extract and phosphate-buffered saline. Maximum 

lactate dehydrogenase release was achieved by treating the cells with the lysis 

solution (9% w/v Triton X-100) provided by the manufacturer. The assay was 

performed according to the manufacturer’s protocol using the CytoTox-

ON ™ Homogeneous  embrane Integrity Assay kit. The percentage toxicity 

was calculated using the following equation, where PolymerLDH, VehicleLDH, 

and TritonLDH represent the respective fluorescence values obtained from 

wells treated with polymer, phosphate-buffered saline, and Triton X-100. 

(%) 100
LDH LDH

LDH LDH

Polymer Vehicle
Cytotoxicity

Triton Vehicle
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2.4.  Microneedle integrated transdermal patch for fast onset and 

sustained delivery of lidocaine in acute and chronic analgesic 

applications 

2.4.1. Fabrication of microneedle integrated transdermal patch (MITP) 

Fabrication of MITP consists of two phases. In the phase one, a microneedle 

array was fabricated as described previously in section 2.2 [117]. Briefly, 

P GDA containing  .5% v/v of H P  called as ‘prepolymer’ solution) was 

filled into a 190 µm high preformed cavity made from glass slides and 

coverslips  The solution was then exposed to a high power (12.9 W/cm2) 

ultraviolet (UV) light source (Exfo®, Canada)  for 2 seconds. This resulted in 

the formation of a thin film (microneedle backing) that acts as a support for 

subsequently fabricated microneedle shafts.  Following this, the thin film was 

removed from the fabrication set-up and placed on another similar set-up 

scaffold, 950 µm in height. The cavity formed was filled with prepolymer 

solution and exposed to UV (12.9 W/cm2) through a specially patterned 

photomask, for a duration of 4.3 seconds, forming the microneedle shafts. The 

remaining prepolymer solution was pipetted out and microneedles were rinsed 

with water to remove any un-crosslinked polymer and left to air dry. 

In the second phase of fabrication, low power ultraviolet curing was used to 

fabricate a thick patch for enhanced drug loading capacity. A cavity measuring 

1.2 mm in height was created using glass slides as base and spacers and a 

coverslip as a lid shown in Figure 8 A.  Prepolymer solution was wicked in to 

this cavity and a thick patch of polymer was cured using a low intensity (5.8 

mW/cm2) ultraviolet radiation source (Single-side Mask Aligner, H94-25, 

Sichuan Nanguang Vacuum Technology Co. Ltd, China) for a duration of 15 

seconds. The patch was then removed from the set-up using a blade and 

placed on another glass slide as shown in Figure 8 B. At this stage, the 

microneedle array fabricated in phase I was integrated to the thick patch 

fabricated in phase II. A drop of prepolymer solution was spread evenly over 

the surface of the thick patch and microneedle array was placed over it. The 

integrated set-up was exposed to a high power (12.9 W/cm2)  UV radiation for 
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a period of 3 seconds, to facilitate the binding between the two layers through 

formation of interpenetrating polymer networks [160]. 

 

Figure 8 Schematic showing fabrication of microneedle integrated transdermal patch 
(MITP) using ultraviolet curing. (A) Fabrication of thick transdermal patch using low 
intensity UV irradiation, (B) conjugation of pre-fabricated microneedle array from 
[117] to the thick patch  by ultraviolet curing forming interpenetrating polymer 
networks and (C) rapid release (within 5 minutes) of lidocaine from MITP, 
potentially providing rapid pain relief. 

 

2.4.2. Drug encapsulation in MITP 

Incorporation of lidocaine in the MITP was achieved by dissolution of the 

drug in the prepolymer solution prior to UV curing. Various concentrations 

(2.2%, 15% and 21% w/w) of lidocaine were dissolved in prepolymer solution 

followed by fabrication of MITP. As all the liquid prepolymer was converted 

to solid polymer, the amount of lidocaine encapsulated in MITP was 

determined by weighing the MITP specimens and calculating the amount on 

weight by weight basis. Selective incorporation of drugs in a specific layer of 

MITP could be possible by using the drug containing prepolymer solutions to 

specifically fabricate that layer, while other components can be fabricated 
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using drug free prepolymer solution. Figure 8 C demonstrates a schematic 

showing rapid release of lidocaine from MITP and its subsequent diffusion 

through skin’s layers upon application. Rhodamine B was encapsulated at 

0.075 % w/v in prepolymer solution to image the drug distribution using a 

Nikon AZ 100 microscope (Nikon, Japan). 

2.4.3. Mechanical strength of MITP 

To determine the mechanical strength of the microneedles on the integrated 

patch, an electronic force gauge (Dillon Model GL, USA) held on a test stand 

(Dillon CT manual test stand) was used. The fracture force of the 

microneedles was first determined by placing the microneedles on a flat block 

of aluminium [172] and rotating the hand wheel of the test stand slowly till the 

force probe contacts the top of the patch. Successive increase in application 

force caused the microneedles to break, with a sudden decrease in the amount 

of force exerted. This point was taken to be the fracture force of the 

microneedle [173]. As a comparative control, force of a thumb was obtained 

from 5 individuals, males and females, aged 21-25, by pressing the thumb of 

the stronger hand against the force gauge probe. 

The effect of varying the amount of force exerted on the microneedle patch 

was also investigated for studying the degree of skin penetration. De-fatted rat 

skin was placed on top of 10 layers of Kimwipes® to provide a tissue like 

mechanical support [122]. Varying forces (10N, 30N, 50N, 70N) were exerted 

on the microneedles placed on rat skin for 1 minute. The extent of needle 

penetration into the rat skin was determined by the trypan blue staining 

method [117]. Trypan blue was placed on the microneedle treated skin with a 

dropper for 5 minutes and removed gently using Kimwipes® and 70% ethanol. 

Skin samples were then viewed under the hand-held microscope (Eikona 

Image Soft, China). 

2.4.4. In vitro release test 

In order to ensure that lidocaine could diffuse out of the integrated patch, an in 

vitro release test was conducted. First, the upper surface of the integrated 

patch was covered with a waterproof vinyl tape (3M® Vinyl Tape) to prevent 
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diffusion of lidocaine from the upper surface (which will be in contact with 

the air during in vivo application ) of the integrated patch. After which, the 

integrated patch was immersed in 15 mL of 1× phosphate buffered saline 

(PBS) in a falcon tube incubated at 37°C and sampled at regular intervals. At 

each sampling point, all 15 mL of the release solution was withdrawn and 

replaced with fresh PBS. A positive control to determine the release of 

lidocaine from Lignopad® was done as well. The amount of lidocaine 

released into PBS was determined by high performance liquid 

chromatography (HPLC) method described in section 2.4.6. 

To characterize the surface properties of microneedles before and after the 

release test, samples with different concentrations of lidocaine were imaged 

using a JSM - 6701F field emission scanning electron microscope (JEOL, 

Japan) at an acceleration voltage of 5 kV. The microneedles samples were first 

platinum sputter coated using a JFC – 1600 autofine coater (JEOL, Japan) at a 

current of 20 mA for 30 seconds to provide a coating of 5 nm thickness 

2.4.5. In vitro rat skin permeation study 

To determine the enhancement of rate of delivery of lidocaine by MITP, an in 

vitro skin permeation study was carried out. Cadaver rat skin was used to 

determine the comparative rate and extent of permeation of lidocaine through 

the skin between the fabricated MITP and commercial lidocaine patch, 

Lignopad®. The skin from the same rat was divided into 6 portions in order to 

minimize inter-animal variation: 3 replicates with Lignopad® placed on intact 

skin and 3 replicates using the fabricated MITP. For the application of MITP, 

10 layers of Kimwipes® which mimic underlying skin tissues was used to 

support the rat skin. The integrated patch was applied on the skin for 1 minute 

with the force of a thumb. The array was then secured onto the skin using 

Scotch® tape. 

The rat skins with the patches were mounted on horizontal diffusion cells with 

an effective exposed area of 1.131 cm2. The diffusion cells were maintained at 

37 °C by a circulating water jacket and the solutions were continuously stirred 

at 250 rpm. The receptor cells were filled with 4.5 mL of PBS with 0.005 %w 

/v sodium azide as an anti microbial agent and samples were taken at regular 
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intervals [174]. 4 mL of receptor solution was withdrawn at each time interval 

and replaced with the same amount of fresh receptor solution. The samples 

were stored at 4 °C upon collection and they were centrifuged at 10,000 rpm 

for 5 minutes before the supernatant was withdrawn for HPLC analysis. 

2.4.6. HPLC analysis of lidocaine 

The amount of lidocaine released/permeated is analyzed using Hitachi L2000 

LaChrome Elite HPLC system with a Hypersil ODS C18 reverse column (ODS 

hypersil, Thermo Scientific; 4.6 × 250 mm, 5 μm). The mobile phase used was 

acetonitrile : water (70:30 v/v) with 5.5% v/v triethylamine, which was 

filtered through a nylon membrane filter (Whatman®, Germany) and 

sonicated before use. The flow rate of the pump was maintained at 0.7 

mL/min and each run was 8.0 min long. 20 μL of sample was injected during 

each run and UV detection was performed at a wavelength of 254 nm [175].  

Before analyzing the samples, standard lidocaine curves were plotted by 

preparing standard lidocaine solutions of 0.2, 1.0, 10.0 mg/mL. Injection 

volumes of  , 5,   ,  5 and    μL were drawn from the standard solutions to 

obtain 3 calibration curves. The peaks obtained from the samples were then 

compared to the calibration curves and the amount of lidocaine present in the 

injected sample was extrapolated. 

2.4.7. Interaction between polymer and lidocaine: FTIR-ATR spectroscopy  

To verify the interactions between the PEGDA and lidocaine, fourier 

transformed infrared attenuated total reflectance (FTIR-ATR) spectroscopy 

using Spotlight 400 FTIR Imaging System (PerkinElmer, CT, USA) with an 

ATR accessory having a diamond crystal, was carried out. The spectra of the 

pre-polymer solution with and without lidocaine, and that of the polymerized 

film with and without lidocaine were obtained. The films (190 µm thick) were 

fabricated under identical conditions as used for MITP fabrication, to expose 

the polymer and drug to same extent of UV radiation.  To analyze liquid 

samples, a drop of liquid was placed on top of and covering the crystal. For 

solid samples, the solid was placed on top of the crystal and a pressure arm 
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was positioned over the sample to exert a force of ~80 N on the sample. No 

additional sample preparation was required for IR analysis. 

 

2.5.  Direct Microneedle Array Fabrication off a Photomask to Deliver 

Collagen through Skin 

2.5.1. Fabrication of photomask with embedded microlenses 

A  ” Pyrex glass wafer   orning     ) was first cleaned in piranha  H2SO4/ 

H2O2) for 20 minutes at 120 °C as shown in Figure 9 A. Later an e-beam 

evaporator was used to deposit a Chromium/Gold (Cr/Au) layer (30 nm/1 µm) 

[176] on the glass wafer. A classical photolithographic process using an 

AZ7220 positive photoresist was utilized to create patterns in the Cr/Au layer 

using Cr/Au etchant. In order to increase the quality of the Cr/Au/photoresist 

masking layer, a hard baking process was performed on a hot plate at 120 °C 

for 30 minutes [177]. The opposite surface of the glass wafer was temporary 

bonded using wax on a dummy silicon wafer in order to conserve the quality 

of the surface during the wet etching process. Isotropic etching of the lens was 

performed using an optimized hydrofluoric acid (49%) / hydrochloric acid 

(37%)  in 10/1 volumetric ratio [178] using magnetic stirring for 8.5 minutes 

(having an etching rate of 7 µm/min). Separation of glass wafer from the 

dummy silicon wafer was performed by placing on a hot plate (at 100 °C). 

Over-hanging photoresist and Cr/Au layers at the edges of the lenses were 

removed by ultrasonication. Finally, removal of the photoresist mask and 

residual wax was done by cleaning in N-Methyl-2-pyrrolidone at 80 °C in an 

ultrasonic tank. Microscopic analysis of the photomask dimensions were 

performed by directly imaging the photomask and the PDMS mold replicas 

copied from the microlenses with a scanning electron microscope and Nikon 

SMZ 1500 stereomicroscope (Nikon, Japan) respectively.  

2.5.2. Fabrication of microneedle shafts 

A photomask (1 × 1 cm) consisting of an array of 7 × 7 embedded lenses was 

used for the fabrication process. A cavity, measuring 2.5 × 0.9 cm, was 

created using glass slides as shown in Figure 9 B. The number of glass sides 

used determines the height of the cavity (referred to as spacer thickness). 
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Increased spacer thickness was achieved by increasing the number of glass 

slides stacked on either side of the glass. The photomask was positioned to 

ensure that the chromium coated surface faced the interior of the cavity with 

none of the lenses being obscured by the sides of the cavity walls. PEGDA, 

containing 0.5% w/w HMP (referred as prepolymer solution) was filled into 

the cavity until the chromium coated surface was in contact with the solution 

without any visible bubble. The setup was then irradiated with high intensity 

ultraviolet light of the desired intensity for 1 sec at the distance of 3.5 cm from 

the UV source using UV curing station with a UV filter range of 320-500 nm 

(OmniCure S200-XL, EXFO Photonic Solutions Inc., Canada). The intensity 

of the UV light was measured with the OmniCure R2000 radiometer. A 

collimating adaptor (EXFO 810-00042) was used with the UV light probe. 

After exposure to UV light, the photomask with the array of needles was 

removed and the remaining prepolymer solution could be reused. The use of 

the photomask blocked the UV access in the chromium-coated regions and 

allowed UV light to pass through the embedded lenses followed by 

subsequent refraction of light rays to a focal point that determines the height 

of the microneedles formed. The prepared microneedles were then imaged 

using Nikon SMZ 1500 stereomicroscope (Nikon, Japan), to quantify the 

microneedle length and tip diameter. 

2.5.3. Fabrication of microneedle backing layer 

The photomask with needles was placed in a well of a 24-well plate (Thermo 

Fisher Scientific, USA) as shown in Figure 9 C. A specified volume (300 and 

400 µL) of prepolymer solution was added to the well until the needles were 

submerged to a desired height. The volume of prepolymer solution used 

determines the thickness of the backing layer. The set up was then irradiated 

with high intensity ultraviolet light (15.1 W/cm2) from a distance of 10.5 cm 

from the UV source for a duration of 1 second. After polymerization, the 

microneedle with the backing layer was separated from the photomask. 

Microneedles of two different lengths with minimal differences in tip diameter 

could be achieved via this method. The prepared microneedles with the 

backing layer were then imaged using Nikon AZ100 stereomicroscope 
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(Nikon, Japan), to quantify the microneedle length, tip diameter and base 

diameter. 

 

Figure 9 (A) Schematic representation of the fabrication process of lenses-embedded 
photomask.   )  ” glass wafer.   )  r/Au layer deposited using an e-beam evaporator. 
(3) Exposure of Cr/Au/photoresist masking layer to UV light with photomask. (4) 
Formation of pattern on layer using Cr/Au etchant. (5) Temporary bonding of glass 
on a dummy silicon wafer. (6) – (7) Wet etching (isotropic) process using HF/HCl 
etchants followed by ultra-sonication. (8) Debonding of dummy silicon wafer and 
removal of photoresist layer. (B) Schematic representation of the fabrication process 
of needles. Chromium coated photomask (7 × 7 array), is placed over a cavity 
containing pre-polymer solution and exposed to UV irradiation. (C) Schematic 
representation of the fabrication process of the backing layer. Photomask, with 
microneedles attached, is placed in a well filled with pre-polymer and exposed to UV 
irradiation. 

 

2.5.4. Microneedle fracture force testing 

Microneedles of two different lengths were pressed against an aluminium 

plate with a force applied by a Dillon GL-500 digital force gauge (Dillon, 

USA) [172]. The applied force was increased until maximum resistance was 

observed. The force at which microneedles start to break (fracture force) was 

recorded after which microneedles were imaged using Leica M205FA 
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stereomicroscope (Leica, Germany), to assess the changes in the microneedle 

geometric characteristics.  

2.5.5. Sharper microneedle penetration in cadaver human skin 

Microneedles of two different average lengths were inserted into cadaver 

human back skin obtained through posthumous organ donation by a 75 year 

old, white female. The skin was laid stretched on a board and microneedle 

shafts of both lengths were inserted using the force of a thumb for 1 min. The 

microneedles were then removed and the area of insertion was stained with 

trypan blue for 12 minutes. The excess stain was wiped away using Kimwipes 

and ethanol (70%). The areas stained with the dye were viewed by brightfield 

microscopy using Eikona Image Soft Microscope (China). 

2.5.6. Collagen permeation through rat skin 

Microneedles of the two different lengths were inserted into excised rat 

abdominal skin after removal of hair and fat as mentioned previously in 

section 2.26 and 2.3.5. A force of 10 Newton (N) [179] was applied using the 

Dillon GL-500 digital force gauge [172] for 2 minutes. Bovine skin collagen 

type 1, FITC conjugate (MW= 300 kDa) of concentrations 0.025, 0.050 and 

0.075% w/v was obtained by diluting the stock collagen solution (0.1% w/v) 

with appropriate amount of 0.1M Tris-HCl buffer (pH 7.8) containing 0.4 M 

NaCl, 10 mM CaCl2 and 0.25 M glucose [180]. NaCl and CaCl2 aid in 

stabilizing the collagen molecules and glucose is added to prevent gelation of 

the collagen fibers [180]. Each collagen concentration was applied to separate 

skin samples at the area of insertion. The time of contact between the collagen 

solution and the skin was kept constant at 4 hours [181] at room temperature, 

after which excess collagen on the skin surface was removed using 

Kimwipes®. The degree of permeation of collagen through the skin was 

quantified by using the A-1R confocal microscope (Nikon, Japan) to observe 

the fluorescence intensity of collagen type 1, FITC conjugate at excitation and 

emission wavelengths of 490 nm and 520 nm respectively. Other parameters 

including high voltage (150), offset (-1), laser (7.2% of 150 mW), pinhole (1.2 

A.U), optical sectioning (16.6 µm), scan size (512 × 512), scan speed (1 
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frame/sec), pixel dwell (2.2 µsec), lever average (4), zoom (5×), step size (5 

µm) and intensity calculation (low = 300, high = 4095) were kept constant. 

 

2.6.  A Miniaturized Flow-through Cell (MFtC) for testing the 

permeation of drugs across biological membranes 

 

2.6.1. Fabrication of miniaturized flow-through cell (MFtC) 

The fabrication process involved two simple polydimethylsiloxane (PDMS) 

moulding steps. Firstly, for fabricating the receptor compartment (16 mm tall, 

22 mm wide), a specially designed borosilicate glass mould (16 mm wide) 

was inserted into a single well of a 12-well plate, (Cellstar, Greiner Bio-One), 

carrying 0.9 mm poly vinyl chloride tubing, (B. Braun, Germany) bore 

through its axis. The borosilicate glass sits firmly in a small split created in the 

tubing. PDMS was then filled into the cavity between the glass mould and the 

well plate (Figure 10 A) and was subsequently cured at 70 °C for 2 hours. 

The glass mould was then removed to create a hollow cavity for donor 

compartment to sit in. 

The donor compartment (13 mm tall, 16 mm wide) was fabricated with a 

similar process in a single well of a 24-well plate. A 6 mm hollow lumen was 

first created with a metal mold (Figure 10 B). The mold was placed in the 

well of the 24-well plate and PDMS was used to fill the space between the 

external wall of the mold and the 24-well plate and was similarly cured at 70 

°C for 2 hours. The metal mold was removed to create a hollow cavity, to 

serve as the donor liquid compartment. As part of the property of MFtC, donor 

compartment was designed to hold up to 283 µL of drug solution with an area 

of 0.283 cm2. The assembled donor and receptor compartments are shown in 

Figure 10 C. 

2.6.2. Assembly and operation of MFtC 

MFtC was assembled by connecting the tubing of the fabricated cell to an 

infusion pump system (Terufusion, UK) at one end and sampling tubes at the 

other end (Figure 10 D). The fabricated diffusion cell was then placed in a 
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water bath maintained at 37 °C using a hot plate. Drug solution is placed in 

donor compartment. Flow rate of the receptor solution through the fabricated 

diffusion cell was controlled by the infusion pump that delivers the solution 

from a syringe (Figure 10 D). 

 

Figure 10 Schematic diagram of fabrication process of (A) donor compartment and 
(B) receptor compartment. (C) Full assembly of fabricated diffusion cell. (D) 
Schematic diagram of full assembly of Miniaturized Flow-through Cell (MFtC). 

2.6.3. Validation of MFtC against horizontal diffusion cell 

a) Skin permeation of model drugs using both diffusion cells 

To evaluate the performance characteristics of the MFtC, permeation of model 

compounds rhodamine B and mangostin using a horizontal diffusion cell (TK-

6H1, Shanghai Kai Kai Technology, China) and MFtC were compared.  
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Rat abdominal skins were obtained from National University of Singapore 

Animal Centre and kept at −80 °C until use. Prior to permeation studies, the 

skins were thawed and hair was completely removed with an electrical shaver 

and hair removal cream (Veet®). Subcutaneous fat and connective tissues 

were also lightly trimmed off.  

Rat abdominal skin of 2.0 cm × 2.0 cm was mounted between the donor and 

receptor compartments of the horizontal diffusion cell, with stratum corneum 

side facing the donor compartment. The effective diffusion area was 1.13 cm2. 

Each donor cell contained 4.5 mL of each model compound in propylene 

glycol (PG) and the receptor cell contained the same volume of PBS. 

Mangostin was used at a concentration of 2.3 mg/mL and rhodamine B at 

concentrations of 1 mg/mL and 5 mg/mL. Both compartments were 

thermostated at 37 °C by means of a surrounding temperature controlled water 

jacket. In order to minimize evaporation, all cell openings were occluded with 

parafilm. The fluids in both compartments were maintained in a stirred state 

by a Teflon coated magnetic stirrer at a speed of 250 ± 1.25 rpm. Samples (1 

mL) were withdrawn from the receptor compartment for analysis at specific 

time intervals. Upon each sample withdrawal, the receptor compartment was 

immediately replaced by equal volume of fresh solution. The experiments 

were performed in triplicates or more. 

Similar conditions were used in the MFtC setup. Rat abdominal skin of 1.0 cm 

× 1.0 cm was mounted between the donor compartment and the receptor 

compartment with the stratum corneum side facing the donor compartment of 

this apparatus. High vacuum grease (Dow Corning, USA) was applied to the 

donor compartment on unexposed stratum corneum side, in contact with 

receptor compartment, to minimize leakage from the donor compartment. 

Application of grease prevented the leakage of donor solution, even at the end 

of 48 hr study, which could be observed when no grease was applied. The 

effective diffusion area was 0.283 cm2. 70 µL of the donor solution was added 

into the donor compartment. Degassed PBS solution constituted the receptor 

fluid. Flow rate of each diffusion cell was controlled by an infusion pump at 

0.20 mL/hr. MFtC were placed in a water bath maintained at 37 °C using a hot 

plate. In order to minimize evaporation, the donor compartment and sampling 
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microfuge tubes were occluded with parafilm. The sampling tubes were 

collected at specific time intervals and replaced by empty tubes for subsequent 

collections. The experiments were performed in triplicates or more. 

Skin samples from the same rat were used for comparisons between the 

horizontal diffusion cell and MFtC setups to minimise inter-animal variability. 

All experiments were performed at least three times. The samples were 

collected at the same time intervals and stored at 4 °C until analysis. During 

analysis, samples were first centrifuged at 13,000 rpm (Sorvall Biofuge Pico, 

UK) for 5 min. The supernatant was obtained and analyzed according to their 

respective assay methods as reported below.  

b) Fluorimetric analysis of rhodamine B 

Concentration of rhodamine B was determined by fluorescence spectroscopy 

with a microplate reader (Tecan, Switzerland) [182, 183] at an excitation 

wavelength  λex) = 55  nm and an emission wavelength  λem) = 586 nm at 

ambient temperature. All samples were protected from light to prevent 

possible light quenching of fluorescence during the assay [184].  

c) HPLC analysis of mangostin 

Mangostin concentration was determined with a reversed phase HPLC 

(Hitachi, Japan) using a C18 column (5 µm, 4.6 mm × 250 mm; ODS 

Hypersil, Thermo Scientific) maintained at ambient temperature. The mobile 

phase comprised of methanol and ultrapure water (90:10, v/v) delivered at a 

flow rate of 1 mL/min. The UV detector (L-2400, Hitachi, Japan) was 

operated at a λ =     nm. Under these conditions, the mangostin peak 

appeared at a retention time of 6.8 min.  

d) Histological analysis of skin from both diffusion cells 

 omparison of change in skin’s properties when applied on a diffusion cell for 

a particular period of time was done by histological examination of the skin 

applied to MFtC and horizontal diffusion cell. For this purpose, defatted rat 

skin was clamped in both the diffusion cells in a manner described above. PG 

was applied to the donor side and receptor comprised of PBS. Histological 
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examination of skin applied to both the diffusion cells was carried out at 0, 24 

and 48 h post application by cutting the skin longitudinally into 20 µm 

sections using a microcryostat (Leica, Germany). Subsequently the sections 

were fixed in absolute ethanol and stained with hematoxylin and eosin and 

imaged using a Nikon AZ100 (Nikon, Japan) microscope. 

2.6.4. Permeation testing of a novel anticancer drug, endoxifen  

a) Endoxifen fluorescence assay 

A fluorescence assay for endoxifen was established whereby endoxifen was 

converted to highly fluorescent phenanthrene derivatives following exposure 

to ultraviolet (UV) irradiation [185, 186]. A UV transilluminator (BioRad, 

USA) at a λ =     nm and an intensity of     µW/cm
2 was used for the 

conversion of endoxifen to its phenanthrene derivatives. The fluorescence 

emitted from the phenanthrene derivatives of endoxifen after various durations 

of UV exposure was determined with a microplate reader at a λex = 260 nm 

and a λem = 380 nm. Fluorescence measurements from non-UV exposed 

samples served as a control. The optimum duration of UV irradiation was 

determined with 10 µg/mL solution of endoxifen. For all subsequent 

experiments, this duration of UV irradiation was fixed at the optimal time. 

The linearity and sensitivity of the assay were determined by spiking 

endoxifen in PBS at eleven concentrations (0.78–25.00 µg/mL). The 

fluorescence, obtained post UV irradiation, was plotted against endoxifen 

concentrations. Linear regression was performed to obtain the slope and 

intercept. The limit of detection (LOD) and limit of quantification (LOQ) were 

set as three and ten times the standard deviation of the blank respectively 

[187].  

The intra-day accuracy and precision of the assay method were determined by 

spiking receptor solution collected from a permeation study with PG as the 

donor solution with four concentrations (1.56–12.50 µg/mL) of endoxifen. 

Aliquots of these samples were analyzed on three occasions on the same day. 

Triplicates were prepared for each analysis. 
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b) Endoxifen permeation testing 

The validated MFtC mounted with rat abdominal skin was employed to 

determine the permeation profile of endoxifen. Donor solutions consisting of 

endoxifen (2 mg/mL) in PG with and without permeation enhancers (PEs) 

namely limonene, myristyl lactate and oleic acid at 0.5% (w/v) were prepared. 

All solutions were sonicated for 3 min to ensure dissolution of endoxifen and 

PEs [185]. Each donor compartment was filled with 200 µL of donor solution. 

Endoxifen was allowed to permeate through the rat abdominal skin over 48 hr. 

The experiments were performed in triplicates. Samples of permeated 

solutions were collected at specific time intervals and stored at −20 °C until 

analysis. The flux at steady state (Jss) and lag time were obtained from the 

cumulative plots. The effect of the PEs on the flux was evaluated by 

calculating the enhancement index (EI). 

2.7.   Statistical analysis 

All experiments were carried out in triplicates, unless otherwise stated. Results 

were stated as mean ± standard deviation. One-way ANOVA was used, for 

analyzing multiple groups of data or statistical differences (IBM SPSS PASW 

Statistics 18). Independent sample t-test was used wherever applicable. 

Results with p value of less than 0.05 were considered to be statistically 

significant. 
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CHAPTER 3 

A Simple Method of Microneedle Array Fabrication for 

Transdermal Drug Delivery 

(Adapted from Drug Development and Industrial Pharmacy. 2013; 39 (2): 

299-309) 

 

3.1.  Overview 

Despite some special advantages over their silicon and metallic predecessors, 

microneedles fabricated from polymers and sugars present some processing 

concerns. Microneedles developed from sugars [128, 129] pose processing 

difficulties due to high melting points of sugars (140–160°C) and substantial 

losses in the drug content [129]. Similarly, high temperatures have been used 

for the casting methods used by other groups for fabricating polymeric 

microneedles [92, 118]. A microneedle roller device recently developed also 

involves the use of elevated temperatures [131]. Fabrication from other sugars 

such as dextrin using a thread forming process with polypropylene [119, 126] 

or polyethylene tips [130], has been adapted for single-needle/micropile 

fabrication, which may limit the amount of drug encapsulation [188]. 

Other methods involve techniques such as deep X-ray lithography, ultraviolet 

lithography, wet silicon etching and reactive ion etching, lens based 

lithographic patterning, photopolymerization with longer exposure to UV light 

and laser based fabrication involve sophisticated equipments which accrue the 

overall cost of the process and make it potentially inaccessible to many 

researchers. 

In this chapter, a simple photo-polymerization method to fabricate 

microneedles with poly (ethylene glycol) diacrylate (PEGDA) is described. 

PEGDA was used owing to its known biocompatibility [189] and FDA 

approval for human use [190]. It has a long history as non toxic and non 

immunogenic polymer, widely used for several drug delivery applications 

[191]. Compared with the photo-crosslinkable monomer vinyl pyrrolidone 

[116, 192], the macromer PEGDA can be cross-linked in short time under UV 
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(a few seconds). In addition, PEGDA used in this study (Mn = 258) has a 

larger molecular weight than vinyl pyrrolidone (MW = 111), which may 

indicate better biocompatibility [193]. 

Moreover, its extensive use as a substrate for tissue engineering [194, 195] 

also makes it a potentially useful biomaterial for microneedle fabrication. The 

fabrication method is based on photolithography, involving exposure of the 

polymer to UV light through a patterned mask in a single step process. The 

method offers the advantage of short exposure to UV light. It is similar to the 

commercial manufacture of contact lenses, which also employs a mask based 

photolithography method to polymerize the monomers [196], suggesting that 

the process lends itself suitable to be scaled up commercially for industrial 

applications. 

3.2. Results  

3.2.1. Effect of varying UV light parameters on fabrication of microneedles 

a) Effect of varying polymerization time 

Microneedles were fabricated at different polymerization times ranging from 

0.5 to 4 sec, keeping the UV light intensity (11.0 W/cm2) and the distance 

from UV light source (3.5 cm) constant. Uniform microneedle arrays could 

not be formed at times below 1 sec. At polymerization times beyond 1 sec 

microneedles started to form with an average length of      ±    μm until the 

exposure time of 2 sec (p > 0.05). Beyond that, the microneedle length 

increased to an average of      ±    μm till a maximum exposure time of   

sec (p > 0.05) (Figure 11 A). Similarly, for times up to 2 sec, the tip diameter 

averaged     ±    μm, which increased to     ±    μm with increase in 

exposure time between 2.5 and 4 sec (Figure 11 B). Higher polymerization 

times may have resulted in higher microneedle strength which is important for 

microneedle penetration in skin. 

b) Effect of intensity of UV light 

The intensity was varied between 1.15 and 11.0 W/cm2 maintaining the 

polymerization time (3.5 sec) and distance from UV light source (3.5 cm) 

constant. Uniform microneedle arrays could not form below the strength of 



64 
 

2.21 W/cm2. Microneedle length averaged at   5  ±   μm and varying the 

intensity had insignificant effect on the microneedle length (p > 0.05) (Figure 

11 C). Average tip diameter of microneedle tip was found to be  5  ±   μm  p 

> 0.05) (Figure 11 D). The microneedles fabricated at 11.0 W/cm2 were 

observed to be strong enough to be used for subsequent penetration 

experiments. 

c) Effect of varying distance from UV light source 

Variation of intensity of UV light with increase in the distance from the light 

source was tested for its influence on the microneedle length and tip diameter. 

For this purpose, the fabrication stage was placed at a distance ranging, 3.5–

9.5 cm from the light source. Microneedles were fabricated at several 

distances within this range, keeping other variables of polymerization time 

(3.5 sec) and ultraviolet light intensity (11.0 W/cm2) constant. It was observed 

that as the distance was increased, the microneedle length decreased from 

  5  ±    μm to      ±    μm. However the difference was found to be 

statistically insignificant between the distances 3.5–6.5 cm and 3.5–9.5 cm 

(Figure 11 E). Increasing the distance of the fabrication stage beyond 9.5 cm 

resulted in the formation of non uniform arrays of microneedles with variable 

lengths. Tip diameter averaged at 156 ±    μm with the increase in distance 

from 3.5 cm to 9.5 cm (Figure 11 F). 
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Figure 11 Effect of UV parameters on microneedle geometry. Effect of (A) 
polymerization time, (C) intensity and (E) distance from UV source on microneedle 
length. Effect of (B) polymerization time (D) intensity and (F) distance from UV 
source on tip diameter. 

 

3.2.2. Effect of non UV light parameter (spacer distance)on fabrication of 

microneedles 

For targeting the drugs to specific areas of the skin, it is essential to have a 

definite control over the microneedle length. The spacer thickness was 

manipulated by increasing the number of coverslips stacked on the base glass 

slide (Figure 7). Such a successive increase in the space between the base 

glass slide and the TMSPMA coated coverslip (which has PEGDA backing 
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fabricated on it), increases the microneedle length (Figure 12 A - F). At each 

step one coverslip was added to the stack increasing the spacer thickness by 

approximately     μm.  he spacer thickness could be varied between     and 

     μm.  he UV parameters were kept constant at UV intensity    .  

W/cm2), polymerization time (3.5 sec) and distance from UV source (3.5 cm). 

In this manner, the microneedle length could be varied between     ±   μm 

and      ±  5 μm  ANOVA, p < 0.001) which is corroborated by the average 

coverslip thickness of     μm each  Figure 12 G). An increase in the spacer 

thickness also resulted in a corresponding decrease in the tip diameter of the 

microneedles.  he tip diameter ranged from     ±    μm to     ±    μm 

(Figure 12 H). 

 

Figure 12 Effect of increasing spacer thickness. (A–F) Images at various spacer 
thickness, with microneedle length of 252, 441, 680, 820, 1044 and 1211 μm, 
respectively. (G) Increase in microneedle length with increase in spacer thickness. 
(H) Decrease in the tip diameter with increase in spacer thickness. 
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3.2.3. Microneedle penetration in pig skin 

 icroneedles measuring     ±    μm in length were inserted in cadaver pig 

skin. Penetration of microneedle arrays in the skin was demonstrated using the 

trypan blue staining method. Figure 13 A shows the image of a microneedle 

array penetration after staining. The blue spots are specifically stained at the 

points of microneedle insertion. Penetration with a hypodermic needle as a 

positive control and staining with trypan blue to ascertain the staining 

specificity and capability of the dye is displayed in Figure 13 B. As a negative 

control, the dye was applied on intact skin. After washing, the stain was 

removed, proving that the blue dye only stains the sites of stratum corneum 

perforation (Figure 13 C). The microneedles were not deformed upon 

removal from the skin suggesting that they were robust enough to penetrate 

the skin. Figure 13 D shows the histological section prepared after 

microneedles were inserted and removed subsequently. Hematoxylin and 

eosin staining to visualize the skin layers displays a clear indentation left by 

microneedle penetration. The microneedle penetrated almost completely into 

the skin suggesting that the encapsulated drug can be delivered efficiently. As 

these needles present a blunt tip, they are observed to pierce through the 

stratum corneum, a phenomenon also observed with hollow microneedles 

[112]. 

3.2.4. Encapsulation and in vitro release of encapsulated model drug 

Figure 14 A shows the microneedles fabricated from PEGDA, in which no 

model drug has been incorporated. As observed from Figure 14 B, the 

microneedle shafts contain the red coloured rhodamine B, whereas there is no 

fluorescence observed from the backing layer. Conversely, in Figure 14 C, 

the microneedle shafts do not contain any rhodamine B dye and the 

fluorescence is only observed in the backing layer, which specifically contains 

the dye. The drug can also be incorporated in both microneedles as well as the 

backing, which were also fabricated during this study (Figure 14 D). 
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Figure 13 Penetration of microneedles in cadaver pig skin. (A) Area of microneedle 
penetration stained with trypan blue. (B) A positive control with skin penetrated 
using a 27 gauge hypodermic needle (4 × 3 array) and holes stained by trypan blue. 
(C) Negative control (no microneedles) applied on the skin, subsequently stained by 
trypan blue. (D) Histological section of skin stained with hematoxylin and eosin post 
microneedle application. 
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Figure 14 Incorporation of rhodamine B in microneedle arrays. (A) Without 
rhodamine B, (B) rhodamine B in microneedle shafts, (C) rhodamine B in backing 
layer and (D) rhodamine B in both microneedle shafts and backing. 

 

The release of encapsulated rhodamine B was studied over a period of 1 week. 

It was observed that nearly 30% of the encapsulated drug was released within 

the first hour (Figure 15 A). The drug release continued as the drug loaded in 

the backing layer potentially serves as a reservoir. The percentage amount 

released was independent of the concentration of the drug in the microneedles 

and the backing layer. The actual amount released was shown in Figure 15 B. 
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Figure 15 Release profile of rhodamine B encapsulated in microneedles over a 
period of 1 week. (A) percentage released (B) cumulative amount released. 

 

3.2.5. In vitro permeation through rat skin 

The ability of microneedles to increase skin permeability of rhodamine B was 

assessed. Microneedle increased the total amount permeated by 3.89-fold as 

compared to a propylene glycol solution of rhodamine B (Figure 16). The 

steady-state flux was  .    ±  .  μg/cm2/hr for microneedle and 0.067 ± 0.01 

μg/cm
2/hr for propylene glycol solution, which is 4.35 times lower (p < 0.05). 
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Figure 16 Cumulative amount of rhodamine B permeated through rat skin when 
microneedle patch and propylene glycol solution of rhodamine B were applied over a 
period of 48 hr. 

 

3.3. Discussion 

Development of a one-step lithographical method to fabricate microneedles 

was accomplished. The major equipment in this method is the UV curing 

station [194]. The fabrication process involved free radical polymerization 

using the photoinitiator HMP, which initiates the polymerization reaction in 

the presence of UV. Polymerization time ranging from 1 to 4 sec is not 

expected to compromise the stability of encapsulated drugs. The fabrication 

set up does not have specific requirements of vacuum or heating 

arrangements. 

Fabrication of microneedles from PEGDA began with the process of 

optimization of fabrication conditions. As method to fabricate microneedles 

using ultraviolet light governed photo polymerization was being developed, 

several variables were studied. The polymerization time (time of exposure of 

polymer to ultraviolet light), ultraviolet light’s intensity and the distance of the 

fabrication assembly from the ultraviolet light source was considered as 

factors influencing microneedle fabrication and were evaluated for their effect 

on microneedle geometry. 
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The time of exposure to UV light, defined as the polymerization time, is 

important with respect to the microneedle geometric properties as well the 

encapsulated drug stability. Ultraviolet light has been well known to cause 

primary photooxidation, which is the major contributor to drug degradation 

[197]. One of the aims of these experiments was to study the geometric 

properties and develop a method of fabricating microneedles in the shortest 

possible polymerization time. The photopolymerization methods used to date 

involved long exposure times to UV in the range of 30 min [116]. With the 

new approach, microneedle structures were obtained at low polymerization 

time of 1 – 4 sec. Although microstructures could be formed at lower 

polymerization times as well, but as the time was increased the microneedle 

strength increased. A polymerization time of 3.5 sec was used for 

microneedles fabricated in the current study as it resulted in robust 

microneedle arrays enabling penetration in skin. On the other hand, 

photopolymeric reactions can also be influenced by the intensity of the light 

source used [198]. Beyond a certain intensity of UV light, microneedle length 

was governed by the spacer thickness and intensity only affects the 

microneedle strength. The aim was to find the right combination of 

polymerization time and the UV intensity for fabricating robust microneedles. 

It was found that a combination of polymerization time of 3.5 sec and 

intensity of 11.0 W/cm2 was suitable for this method. 

Penetration of microneedles in cadaver pig skin revealed that microneedles 

penetrated the skin using a thumb with little force. Trypan blue is a 

hydrophobic dye and is known to specifically stain the sites of stratum 

corneum perforation, which is confirmed by histological sectioning of the 

skin. Microneedles are intended to create transient pores in the skin structure 

and release the drug through these pores. These pores have been previously 

shown to close within 72 hr upon microneedle removal [126] and microneedle 

application has been associated with a lower risk of microbial infection as 

compared to hypodermic needles [199]. 

Polymeric microneedles offer the advantage of incorporating the drugs in the 

polymeric matrix as compared to silicon or metallic counterparts where the 

drug can only be coated on pre-fabricated microneedles. Incorporation of 
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drugs in microneedles fabricated from PEGDA demonstrates the 

encapsulation efficiency of PEGDA microneedles. The drugs have been 

incorporated either in the microneedle shafts for bolus release or in the 

backing layer for sustained release or in both layers for a prolonged effect 

[92]. The drug release from the microneedles in the surrounding subcutaneous 

tissue is followed by release of the drug encapsulated in the backing layer, 

which continues to release the drug through the transient pores created by the 

microneedles. Since it is possible to incorporate a larger amount of drug in the 

backing layer as compared to the microneedles, it is useful to incorporate the 

drug both in the microneedles and the backing layer to increase drug loading. 

The drug encapsulated was released with a burst upfront in the first hour, 

which was followed by slower release over a period of 1 week of the study. 

This can be attributed to the reservoir capacity of the backing layer which can 

release the drugs through the microneedles inserted into the skin. The drug 

release properties, however, may be modified by coating the microneedles or 

incorporating varying amounts of release modifying polymers, such as 

chitosan, to control the release of the drug from the PEGDA matrix. Chitosan 

as a coating material for controlling the release rates has been previously 

investigated [169]. Other photo-crosslinkable polymers may also be used to 

alter the release profile of the drugs. Drug laden microneedles created 

transient pores which may have led to a higher flux as compared to a control, 

which included a propylene glycol solution containing the same amount of the 

drug as in one microneedle array. The microneedles increased the flux by over 

four times compared to passive diffusion of rhodamine B through the capillary 

intercellular pathways in the stratum corneum, which is the main mode of 

drug transport across the skin for a propylene glycol solution [8]. 

3.4.  Summary 

A simple photolithographical approach was developed to fabricate polymeric 

microneedles. Microneedles were found to be capable of penetrating cadaver 

pig skin when inserted with the force of a thumb. A model drug, rhodamine B 

could be encapsulated in the polymeric matrix of the microneedle shafts and 

the backing layer and released in an in vitro release medium. The 

microneedles, when applied to rat skin, increased the flux of encapsulated 
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rhodamine B by 4 times over passive diffusion of a solution. The approach is 

amenable to other photo cross linkable polymers and potentially useful for 

transdermal drug delivery. Moreover, the method may be potentially scaled up 

for mass production of microneedle arrays. 
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CHAPTER 4 

Protein Encapsulation in Polymeric Microneedles by 

Photolithography 

(Adapted from International Journal of Nanomedicine. 2012; 7: 3143-3154) 

 

4.1. Overview 

The growth of biotechnology has produced a surge in the number of protein 

and peptide drugs available for human use [29]. Transdermal delivery has 

evolved as an interesting alternative for protein drug therapy because it 

circumvents the inherent challenges associated with oral and parenteral routes. 

However, the skin’s natural barrier prevents these macromolecules from 

diffusing through the skin. Microneedles have been shown to disrupt the 

stratum corneum actively by creating micron-sized pores and hence enhancing 

the flux of macromolecules. They offer the advantage of delivering a drug 

without impinging on the underlying nerves. 

Drugs, both small and macromolecular, have been delivered using 

microneedles by three different modes. Firstly, coating onto microneedle 

shafts, [200, 201] and secondly, pretreating the skin with microneedles to cre-

ate pores, followed by application of conventional dosage forms [202, 203]. 

With the development of polymeric microneedles, a third approach was 

developed whereby drugs could be encapsulated in the polymeric matrix and 

released from the polymer upon application [192]. Encapsulation of drugs 

within the polymeric core offers the advantage of a higher drug loading in one 

convenient formulation, omitting multiple steps that would otherwise be 

required.  

Encapsulation of proteins inside microscale and nanoscale particles has been 

studied previously using various approaches, such as double emulsion [204], 

electrospray [205], self-assembly [206], and microfabrication [207]. For 

example, lipid nanocarriers of the self-assembled type can be used to 

encapsulate proteins, peptides, and nucleic acids with tunable sizes and 
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morphologies [206, 208]. These three-dimensional nanostructures can be 

obtained by homogenizing a mixture of lipids hydrated with protein solutions. 

Similarly, therapeutic proteins such as insulin and vaccines can be 

encapsulated in microneedles and proteins released from microneedles can 

form a depot from where they can be absorbed into the systemic circulation or 

lymphatic vessels.  

However, previously reported fabrication approaches used for these protein-

laden microneedles involve use of high temperatures, vacuum, or prolonged 

exposure to ultraviolet light which may be potentially harmful to biological 

drugs. High temperatures (140 °C–160 °C) used for micromoulding of sugar 

microneedles have resulted in a significant loss of drug content [129]. Casting 

methods used by other groups [92] utilize polymers or sugar derivatives 

requiring a concentration of hydrogel using high temperatures and vacuum 

which may have deleterious effects on fragile protein molecules. A newer 

process reported recently involves prefabrication of a female purple sand 

mould at high temperatures and subsequent fabrication of needles by vacuum 

suction and freeze-drying [209]. These challenging conditions may not be 

ideal for a drug delivery system aimed to encapsulate fragile molecules. 

A novel photolithography-based method utilizing low exposure to ultraviolet 

light developed in chapter 3 [117] can be potentially applied for protein 

encapsulation. In this chapter, bovine serum albumin (BSA) was selected as a 

model protein. To ensure that the encapsulated material retains its structure 

and activity, the stability of the encapsulated BSA was tested by analyzing its 

primary, secondary, and tertiary structural features. This is relevant for 

therapeutic proteins and peptide drugs like insulin, desmopressin, and 

vaccines, such as influenza vaccine. This chapter is the first report in literature 

for exhaustive stability testing for protein encapsulation in microneedles. The 

in vitro release of the BSA protein was tested in phosphate-buffered saline. In 

vitro permeation of the encapsulated BSA through rat skin was also tested. In 

addition, the in vitro biocompatibility of microneedles was also reported using 

three different cell lines to assess the toxicity of the polymeric microneedles 

for skin applications. 
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4.2. Results 

4.2.1.  Fabrication and characterization of microneedles 

 he microneedles were found to have an average length of     μm, a base 

diameter of     μm, a center to center spacing between the needles of  5   

μm, and an average tip diameter of     μm.  he microneedle patch consisted 

of an array of 8 × 8 needles spread over an area of 1.44 cm2. 

4.2.2.  Incorporation and uniform drug distribution in microneedles 

Drug incorporation in the polymeric matrix prior to microneedle formation 

allows for higher drug loading as opposed to coating the drug molecules on 

the fabricated microneedles. In this study, drug loading up to 1.6 mg of BSA 

per microneedle array could be achieved. Confocal imaging was used as a tool 

to image the microneedle samples to assess the fluorescence distribution at 

different areas and depths of the microstructure. As observed from Figure 17 

A and D, fluorescence is distributed across different areas of the backing layer 

in a uniform pattern (p > 0.05). However, as the microneedle length increased 

from the bottom of the array  length    μm) to the microneedle tip  length     

μm), the fluorescence intensity was observed to decrease gradually from     

to 3.1 (Figure 17 B and E). Drug distribution among different microneedles 

in an array varied in different areas, with microneedles at the edges having a 

lower intensity and those in the centre exhibiting higher intensity. 

Approximately 60% of the microneedles were in the high intensity range. 

(Figure 17 F). Since needles contain much less drug than backing, this is 

expected to ensure uniform drug delivery over the patch area of 1.44 cm2. 

Figure 17 C shows a stereomicroscope image of a complete microneedle 

array, showing that the drug is evenly distributed. 
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Figure 17 Encapsulation of bovine serum albumin Texas red conjugate (TR-BSA) in 
polymeric microstructures shows uniform distribution. Uniformly distributed TR-
BSA in (A) microneedle backing and (B) microneedle shaft (C) microneedle array. 
Quantitative estimation of fluorescence intensity shows uniform distribution over (D) 
different areas of the backing layer (n = 3) and (E) different lengths on a microneedle 
shaft (n = 6). (F) Distribution of fluorescence intensity among different microneedles 
of an array shows a varied pattern. 

 

4.2.3.  Stability tests for BSA in microneedles 

a) Primary structure stability 

In this study, sodium dodecyl sulfate polyacrylamide gel electrophoresis was 

used to determine the amino acid sequence of BSA and analyze any 
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deleterious effect of ultraviolet radiation on the protein (Figure 18). BSA 

released from the formulation was compared with a freshly prepared solution 

and a protein standard marker. The single line of bands appearing at 66 kDa 

suggests that the protein was stable during the fabrication process and 

remained stable in the dosage form for a period of 72 hours. 

 

Figure 18 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis images of 
protein standard marker, bovine serum albumin standard and bovine serum albumin 
released from microneedles after 24, 48, and 72 hours. 

 

b) Secondary structure stability 

The secondary structure of BSA was assessed by circular dichroism. It was 

observed that the secondary structure of BSA encapsulated in the 

microneedles was similar to a freshly prepared solution of BSA, as shown in 

Figure 19 A. The degraded BSA used as a control showed significantly lower 

ellipticity values than the standard BSA and microneedle release samples. The 

percentage of α-helix from the microneedle release samples was consistent 

with the reported amount of helix in the native BSA structure (about 67%) 

[210].  he percentage of α-helix in the BSA released from the microneedle 

samples was comparable with the standard (p > 0.05, Figure 19 B) and 

significantly different from heat-denatured and acid-denatured BSA samples 

(p < 0.05). 
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Figure 19 Circular dichroism analyses to assess the stability of encapsulated bovine 
serum albumin (BSA). Stability of BSA released from microneedles after storage for 
3 days at 37 °C is compared with a freshly prepared BSA solution and BSA degraded 
by heating at 75 °C and under acidic conditions, pH2 (A) mean residue ellipticity and 
(B) percentage of alpha-helix. All results confirmed the alpha helix structure of BSA 
was preserved during encapsulation and release over a period of 3 days (* p ≤  . 5). 

 

c) Tertiary structure stability 

BSA emission spectra were scanned between 300 nm and 400 nm and an 

emission maximum was observed at 338 nm for all the release samples and a 

standard solution of BSA (Figure 20). This is in accordance with previously 

reported results [211] and demonstrates the feasibility of this fabrication 

process for retaining protein stability in the microneedles. On the other hand, 

BSA samples denatured using heat or acid did not show any fluorescence 

(excitation wavelength 280 nm and emission wavelength 300 – 400 nm). 
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Figure 20 Fluorescence spectroscopic analysis to assess the tertiary structure of 
encapsulated bovine serum albumin (BSA). Stability of BSA released from 
microneedles after storage for 1-3 days at 37 °C is compared with freshly prepared 
BSA solution and BSA degraded by heating at 75°C and under acidic conditions, 
(pH2) by analyzing the emission spectra of BSA. Peak BSA emission wavelength 
was found to be similar for all samples. No fluorescence was observed in degraded 
BSA samples. 

 

4.2.4. In vitro release of BSA from microneedles 

The release profile of BSA is depicted in Figure 21 A (percentage release) 

and Figure 21 B (cumulative amount). Phosphate-buffered saline (pH 7.4) 

was used as a release medium because it closely resembles extracellular fluids 

and plasma. It was observed that 80 – 100% of the protein encapsulated in the 

microneedle array was released within a period of 6 hours. Most of the protein 

was encapsulated in the microneedle backing layer (about 90%) and the 

needles owing to their micron-scale geometry contain lesser drug. 
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Figure 21 Release profile of bovine serum albumin encapsulated in microneedles 
over a period of 6 hours. (A) Percentage amount and (B) cumulative amount released. 

 

4.2.5.  In vitro permeation through rat skin 

Microneedles increased the amount of BSA permeated as compared with 

passive diffusion of BSA. Figure 22 shows the increase in the cumulative 

amount permeated per unit area on microneedle application as compared with 

a propylene glycol solution of BSA, which showed practically no permeation 

at the end of 48 hours. The amount permeated in the case of microneedles 

increased with the increase in the encapsulated amount of BSA. The perme-

ation curve resembles the in vitro release profile observed in phosphate-

buffered saline, with an initial burst-release followed by a slow-release phase. 

The protein concentration was calculated using the following equation:  

BSA concentration  μg/mL) =     ×  A215–A225) 

where, A215 and A225, are the absorbance readings of BSA solutions at 

wavelength of 215 and 225 nm respectively. 
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Figure 22 In vitro permeation through rat skin. (A) Percentage amount and (B) 
cumulative amount permeated through rat skin when applied with a microneedle 
patch (containing 0.71% – 1.85% w/w bovine serum albumin) or a propylene glycol 
solution of bovine serum albumin over a period of 48 hours. 

 

Microneedles containing no BSA were used as a control to minimize any 

absorption from the dissolved polymer. When lower amounts of BSA were 

encapsulated, the permeation curve demonstrated a plateau at nearly 18 hours, 

because most of the drug was released. When higher amounts were encapsu-

lated, the protein continued to be released for 2 days, suggesting that the 

microneedle array developed in the study is amenable to dose adjustment as 

per the requirements of the therapeutic regimen. As compared with 

microneedles, passive diffusion of BSA using a propylene glycol solution did 

not result in any significant amount of drug permeation through the skin. 

4.2.6.  In vitro biocompatibility of polymeric microneedles 

Using three different cells, HDF, HaCaT and HEK 293, the local and systemic 

biocompatibility of polymeric microneedles was assessed. The MTT assay 

was used to assess the toxicity of microneedle extracts to these cells. Viable 

cells, possessing the active mitochondrial succinate-tetrazolium reductase 

system, reduce MTT to formazan crystals which were quantified by 

colorimetric determination [212]. The cell viabilities were calculated as 

Apolymer/Acontrol × 100, where Apolymer and Acontrol were the absorbance 

measurements of the wells containing polymeric extracts and control 
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(phosphate-buffered saline), respectively. Each value was an average of six 

replicates. 

High cell viabilities with respect to the control were found for human dermal 

fibroblasts and HaCaT cells for exposure of cells to polymeric extracts up to 

72 hours (Figure 23 A and B), with cell survival numbers statistically 

insignificant between 24 and 72 hours (p > 0.05). This shows that the polymer 

used for fabricating the microneedles was safe to skin locally. HEK293 cell 

viability assays yielded similar viability for the first 24 hours, which 

subsequently decreased (p < 0.05, Figure 23 C). 

 

Figure 23 In vitro biocompatibility testing using MTT assay in (A) human dermal 
fibroblasts (HDF), (B) human adult low calcium high temperature (HaCaT) cells, and 
(C) human embryonic kidney 293 (HEK293) cells demonstrated high cell viability, 
indicating the biocompatibility of polymerized PEGDA microneedles. 

 

Fluorometric determination of lactate dehydrogenase leaked out from 

damaged cell membranes into the supernatant medium was also used to assess 

the cytotoxicity of PEGDA microneedles. In this study, low cell toxicities 

were observed for HDF and HEK 293 cell lines, while slightly higher toxicity 

was observed for HaCaT cells treated with polymer extracts. The percentage 

cytotoxicity for cells treated from 24 – 72 hours did not vary significantly (P > 

0.05), supporting the results from the MTT assay and further proving the non 

toxicity of polyethylene glycol diacrylate (Figure 24 A–C). 
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Figure 24 In vitro cytotoxicity testing using lactate dehydrogenase assay in (A) 
human dermal fibroblasts (HDF), (B) human adult low calcium high temperature 
(HaCaT) cells, and (C) human embryonic kidney 293 (HEK293) cells demonstrated 
low toxicity, indicating the biocompatibility of PEGDA microneedles. 

 

4.3.  Discussion 

Microneedles have been considered as a useful drug delivery system to deliver 

therapeutic peptides, proteins, and vaccines [27]. Drug encapsulation in 

polymeric microneedles has been used previously with other polymers, 

namely, polyvinyl pyrrolidone and its copolymer with methacrylic acid [116], 

copolymer of methylvinylether and maleic anhydride [213], and polyvinyl 

alcohol [214]. However, the method developed in this thesis circumvents the 

long ultraviolet exposure and extensive preprocessing required for 

microneedle formation using the previous methods, which may impact protein 

stability. Moreover, the process does not involve any mold-based or template-

based processing, potentially avoiding interactions between mold or template 

material and fragile protein molecules. 

An important aspect of a drug delivery system is the uniform distribution of 

drug in the carrier matrices. To test for uniformity, BSA Texas red conjugate 

was encapsulated to visualize the distribution of the protein inside the backing 

and the shafts of the microneedle array. The BSA Texas red conjugate shows 

peak excitation wavelength  λex) and emission wavelength  λem) at 596 nm and 

615 nm, respectively [215], which was quantified using fluorescence 

microscopy and protein distribution was found to be uniform. 

Because the biological function of a protein is dependent on its conformation, 

it is imperative to design a dosage form which does not adversely affect the 

stability of these fragile molecules. In this fabrication process, ultraviolet 
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light-based photo cross-linking method was used for creating polymeric 

microstructures. Ultraviolet light has been previously reported to cause protein 

denaturation and structural changes in the primary, secondary, and tertiary 

structure of proteins [197]. These three structural features were studied by 

investigating sodium dodecyl sulfate polyacrylamide gel electrophoresis, 

circular dichroism spectra, and fluorescence intensity measurements of BSA 

encapsulated in the microneedles. While the results here demonstrate that the 

conformation of BSA was maintained throughout the fabrication process and 

the subsequent release experiments, the structural and biological properties of 

proteins other than BSA will depend on individual protein characteristics. 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis has been the most 

common method used for the separation of proteins and determination of 

protein molecular weight [216, 217]. It has been used previously to determine 

the structural integrity of BSA in microspheres [218]. There were no other 

bands observed during the electrophoretic separation, except for BSA bands at 

66 kDa providing evidence against any protein aggregation to form dimer or 

multimer or fragmentation to smaller subunits, indicating that the primary 

structure of BSA remained intact during the fabrication process. 

Circular dichroism has been a common technique in assessment of secondary 

structure of proteins. BSA contains   % of α-helix,   % of turn, and no β-

sheet [164]. The far ultraviolet circular dichroism spectrum (260 – 200 nm) 

has been used to characterize the structural stability of BSA [219].  he α-helix 

structure is indicated by two negative peaks at 208 nm and 222 nm with a 

minimum peak at     nm, which is attributed to n → π* and π → π* transition 

of the α-helix structure [220, 221]. BSA encapsulated in microneedles showed 

similar structural properties to a freshly prepared solution together with 

retention of α-helix structure. Circular dichroism analysis has been similarly 

reported for lysozyme [92]. These results demonstrated that secondary 

structural integrity of BSA was maintained during ultraviolet-dependent 

photopolymerization. 

Because proteins contain aromatic amino acids like tyrosine, tryptophan, and 

phenylalanine, which are inherently fluorescent, fluorescence spectra and 



87 
 

intensity can be used as a marker of protein structural stability. Tryptophan is 

the most dominant fluorophore and displays the largest extinction coefficient. 

Thus, the emission spectra of proteins can be measured at a fixed excitation 

wavelength of 280 nm [222]. The emission maximum of tryptophan in water 

is observed around 350 nm and is dependent on the polarity of the solvent. 

BSA showed an emission maximum at 338 nm, which is a characteristic of its 

tertiary structure.  

The analysis of primary, secondary, and tertiary structural stability of BSA 

demonstrated the microneedles to be a potentially useful carrier for protein 

drugs. The ultraviolet photo cross-linking did not significantly alter the 

structural properties of BSA, possibly due to the short time of exposure. 

The transient pores created by microneedles and diffusion of the protein 

through the polymeric layer to the epidermal and dermal regions to create a 

depot of protein drugs have been reported [118]. The drugs can be 

subsequently absorbed into the blood stream or lymphatic circulation [223]. It 

is expected that the protein released will accumulate in the subepidermal 

tissues and be rapidly absorbed from the highly vascularized regions lying 

underneath. The initial burst of the drug from the microneedle array intends to 

form a depot which slowly gets absorbed. This drug concentration is also 

supplemented by the protein continuously released from the backing layer. 

Similar release kinetics was observed in previous reports [118]. 

Microneedles enhanced the permeation of BSA as compared to passive 

diffusion of BSA solution which resulted in negligible permeation even at the 

end of 48 hour study period. A similar BSA permeation pattern has been 

reported previously [169]. Other protein molecules, like fluorescein 

isothiocyanate-labeled BSA and insulin, incorporated in polymeric 

microneedles have also shown such burst-release patterns [213]. Such 

permeation profiles are common for other highly water-soluble drugs, such as 

calcein (log P = −5.  ). However, as observed in chapter 3 that relatively 

lipophilic drugs (e.g., rhodamine B, log P = 2.43) do not show a burst in 

permeation and their absorption is somewhat limited by interaction with 

stratum corneum lipids [117]. 
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The A215–A225 method has been previously used in determining the BSA 

concentration in in vitro permeation studies [169]. The concentration of BSA 

is a linear function of the difference between extinction at 215 nm and 225 nm 

[224]. The method is sensitive for protein concentrations as low as 5 ng/mL, 

which are usually expected in in vitro permeation studies. 

Conventional skin permeation where steady state can be established is based 

on the fact that the donor concentration is constant throughout the diffusion 

process.  his can be proven by Fick’s first law for membrane diffusion [42]. 

However, in this study, the donor concentration decreased during the 

permeation process. Moreover, it is not a pure membrane diffusion process 

because micropassages were created by these microneedles, making the 

process a combination of diffusion through the skin membrane and mass 

transport through micron-sized channels across skin. 

Human dermal fibroblasts and HaCaT keratinocytes are representative of skin 

cells and hence were used to assess the toxicity of the polymeric microdevice 

on the skin. These cells have been used previously to study the toxicity of 

transdermal polymeric dosage forms [225, 226]. HEK293 cells were used 

because they are representative of healthy human cells. HEK293 cells have 

been used in numerous in vitro toxicity studies as being representative of 

human cells since they offer a convenient model to evaluate toxicity at the 

cellular level [227]. They have also been previously reported with regard to 

transdermal toxicity from topical gels [212]. Overall, the low in vitro toxicity 

observed from both MTT and LDH assays showed promising biocompatibility 

of the polymeric microneedles, both transdermally and systemically. 

4.4. Summary 

The amenability of a simple photolithographic technique to encapsulate 

protein drugs was demonstrated in this chapter. Drug distribution was found to 

be uniform across the microneedle arrays. Moreover, the process was proven 

to maintain protein stability and is hence expected to retain the biological 

activity of the encapsulated proteins. The encapsulated protein was released 

and permeated through the skin in much larger amounts as compared with 

passive diffusion. In vitro biocompatibility of the polymeric microneedles has 
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been demonstrated by the low cytotoxicity of the polymeric extracts on 

different cell lines, indicating the safety of these microneedles. The prepared 

microneedles are expected to serve as a potentially useful drug delivery 

system to deliver biological drugs. 
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CHAPTER 5 

Microneedle Integrated Transdermal Patch (MITP) for Fast 

Onset and Sustained Delivery of Lidocaine  

(Adapted from Molecular Pharmaceutics. 2013, 10 (11):4272–4280) 

 

5.1. Overview 

The occurrence of pain is common among all age groups, with about 1.5 

billion people suffering from it around the globe. On the basis of duration, 

pain may be classified as acute or chronic pain. Acute pain is defined as ‘pain 

of recent onset and probable limited duration'. It usually has an identifiable 

temporal and causal relationship to injury or disease [228]. On the other hand, 

chronic pain is a ‘pain without apparent biological value that has persisted 

beyond the normal tissue healing time” [229, 230]. Chronic pain is the most 

prevalent disorder in the United States, with more people affected by it than 

diabetes, coronary heart disease and cancer combined [231]. Chronic pain of 

moderate to severe intensity affects 19% of adult Europeans as well [232]. 

Approximately 3 –  .5% of world’s population suffers from chronic 

neuropathic pain, with incidence commensurating with increasing age [233, 

234]. 

Lidocaine, also known as lignocaine or xylocaine, has been of special interest 

for its analgesic properties apart from its known role as a local anesthetic, 

being used in the management of both acute and chronic pain conditions.  For 

the management of acute pain, perioperative infusion of lidocaine has been 

used to prevent dose escalation of opioids, reducing pain scores, nausea, 

vomiting and other related symptoms associated with abdominal surgery 

[228]. In addition, topical formulations of lidocaine and its combination with 

prilocaine and tetracaine have been widely used to provide superficial skin 

anesthesia in prophylactic pain management, especially in children before 

intravenous administration [235]. It has also been used in minor 

dermatological surgery procedures [235]. On the other hand, for chronic pain 

management, lidocaine finds its most prominent analgesic application in the 
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management of peripheral neuropathic pain, being recommended as a first line 

therapy. Lidocaine 5% transdermal patch is licensed in many countries for the 

management of postherpetic neuralgia; it is used off-label in most cases of 

neuropathic pain [236]. Many randomized controlled trials support the use of 

transdermal lidocaine patches in the management of peripheral neuropathic 

pain [237, 238].  

Despite their regnant use, their lack of efficacy and rapid action, primarily due 

to skin’s barrier properties is a major concern with patch-wear times up to 60 

minutes required, which may be unacceptable to some pediatric patients [239]. 

In randomized controlled trials, a maximum of 420 cm2 of patch area was 

applied to the skin for 4 hours before any significant reduction in pain could 

be observed [240, 241]. For chronic pain, a maximum of 3-4 patches/day are 

recommended for a period of 12-18 hours a day. Such a long patch wear time 

has been reported with incidents of skin rash and erythema, and discomfort 

[242].  

Recently, microneedle arrays have been shown to enhance delivery of drugs 

like naltrexone [243], lidocaine [244] and insulin [245] in humans.  Lidocaine 

delivery using microneedles has been demonstrated using hollow 

microneedles coupled to liquid formulation containing syringe to deliver large 

amounts of lidocaine. However, the complicated multi-component application 

system is bulky and is not ideal for self administration and long wear times 

[244].  oated microneedles using   ’s solid microstructured transdermal 

system (sMTS) were reported to deliver lidocaine tissue concentrations 

comparable to commercial EMLA® cream (applied for 1 hour) in 1 - 5 

minutes of wear time. However, the drug loading on these microneedles was 

limited due to small surface area and only 225 µg of lidocaine could be coated 

[246]. While these hollow and solid microneedles, pose the additional risk of 

breakage in the skin, polymeric microneedles present a viable alternative. 

Drugs could be encapsulated within the polymeric matrix in higher doses than 

surface coating of solid microneedles and do not require an additional source 

of drug delivery as needed with hollow microneedles. Lee et al. first 

demonstrated the utility of polymeric microneedle backings as drug reservoirs 
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for higher drug loading and sustained release of small molecular weight drugs 

[92]. Albeit this advantage, drug amounts in the range of 1- 3 mg have been 

encapsulated at the maximum using polymeric microneedles and their 

usability in clinical applications requiring higher doses is limited. Ito et al. 

recently demonstrated the attachment of drug loaded chip fabricated by 

pouring a drug-polymer glue in the molds of a tabletting machine, to a 

microneedle array fabricated by conventional mold based process [247]. The 

process is a multiple step technique and requires several ancillary equipments 

to increase the drug loading capacity of polymeric microneedle arrays and 

drug encapsulation of only about 12 mg was achieved. As demonstrated in 

previous chapters, a simple photolithographical approach was developed to 

fabricate polymeric microneedle structures [117]. Microneedle arrays, 

supported on flat backing layer were formed in a solvent- and mold- free, 

single step process and drug loading capacity of 3 – 4 mg was achieved. 

In this chapter, ultraviolet curing was used to fabricate a microneedle 

integrated transdermal patch (MITP) that could be tuned in size to encapsulate 

drugs several times higher than the previously reported methods, in a simple 

process. Mechanical properties of the microneedles attached to the MITP were 

studied in order to gain an insight into axial loading properties of the newly 

developed integrated patch system. In vitro permeation from MITP was 

compared to a commercial lidocaine patch, Lignopad®. The integrated patch 

system is intended to provide a reservoir system with high drug loading, to 

deliver the drugs the initial drug load rapidly and also sustaining the release of 

the active ingredient, with potential applications for management of both acute 

and chronic pain conditions. 

In addition, a novel approach to deliver drugs by keeping microneedles in skin 

was demonstrated, providing the opportunity for longer application time of 

microneedles where, microneedle shafts act as channels for drugs 

encapsulated in backing layers. This circumvents the premature closure of 

miniaturized pores created by microneedles, possibly due to removal of 

microneedles, aiding in continued drug permeation.  
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5.2. Results 

5.2.1.  Geometric properties of MITP 

Governed primarily by the photomask dimensions, an array of 8 × 8 

microneedles covering an area of ~1.44 cm2 was fabricated. The fabricated 

microneedles had an average length of     ±    μm, base diameter of     ± 

   μm and centre-to-centre spacing of      ±   μm.  he thin backing layer 

fabricated in phase I was     ±    μm in height while the integrated patch 

fabricated in the phase II was   5  ±    μm thick. An image of the fabricated 

MITP containing rhodamine B is shown in Figure 25 A and various layers of 

MITP in Figure 25 B.  

 

Figure 25 Images of MITP formed during fabrication. (A) With encapsulated 
rhodamine B imaged using the Nikon AZ100 Multipurpose Zoom Microscope (B) 
Scanning electron microscope (SEM) image of a single needle with a thin backing 
layer and the integrated patch.  

5.2.2. Drug encapsulation in MITP 

As the integrated patch encapsulating lidocaine appeared colorless, rhodamine 

B (0.075% w/v in prepolymer solution) was encapsulated as a model drug into 

the array to observe the uniformity of drug distribution. Rhodamine B, a 

fluorescent dye, was dissolved in the pre-polymer solution prior to UV 

exposure and was observed to be uniformly distributed in all layers of the 

fabricated MITP (Figure 25 A). Rhodamine B has log P value of 2.43 and 

serves a good substitute for lidocaine (log P 2.84) for imaging purposes.  

Lidocaine was encapsulated in different concentrations (2.2%, 15% and 21% 

w/w), leading to fabrication of MITP containing 7.917 ± 0.739 mg, 50.592 ± 

1.855 mg and 70.940 ± 2.189 mg, respectively. 
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5.2.3. Mechanical strength of MITP 

Fracture force of the microneedles supported on the integrated patch was 

evaluated by application of axial force upon the microneedles held against a 

stationary aluminium block. The fracture force of the microneedles on the 

integrated patch against the block was recorded 91.28 ± 9.2 N, as compared to 

the force of a thumb (10.72 ± 0.9 N) obtained from 5 individuals, which was 

significantly lower than the fracture force.  

MITP application on excised cadaver rat skin was carried out at successively 

increasing forces to evaluate the extent of penetration and strength of 

microneedles when applied to a skin model. With successive increase in the 

force applied between 10- 70 N, an increasing amount of microneedles 

penetrated the skin (Figure 26 A). Figure 27 shows no apparent change in 

microneedle structures when applied to rat skin for a period of 1 minute at 

different forces (10 – 70 N). Insignificant decrease in the average length of a 

microneedle was observed with length decreasing from 865 ± 22 μm at 10 N 

to 848 ± 23 μm at 70 N (p > 0.05) (Figure 28). The microneedle arrays appear 

sharp even after a single administration and removal from rat skin (Figure 27 

A-D). While microneedle shafts were robust enough to penetrate the skin, at 

higher forces beyond 50 N, 2 – 4 needles broke on the surface of the skin 

(Figure 26 B).  

 

Figure 26 Number of microneedles (A) penetrating and (B) broken on the rat skin, 
with exertion of different forces between (10 - 70 N). 
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Figure 27 Microneedle arrays after the exertion of different forces (A) 10 N (B) 30 N 
(C) 50 N (D) 70 N on the skin model were also taken, with the sharpness of the 
needles maintained. 

 

 

 

Figure 28 Decrease in the length of microneedles after varying forces were applied 
on the array. 
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An increased force of application also increased the percentage of 

microneedles penetrating through the skin as ascertained by increase in the 

number of spots stained by trypan blue. Even at the lowest penetration force of 

10 N, which closely resembles force of a human thumb, more than 75 % of 

microneedles penetrate, with this number increasing to nearly 95% at 70 N 

(Figure 29). However, since a force of a thumb would be more ideal and 

practical in microneedle applications in humans, a force of 10 N using a force 

gauge was used for application of MITP for subsequent in vitro permeation 

studies. 

 

Figure 29 Penetration of microneedles in rat skin by exerting varying amounts of 
forces on the skin:  (A) 10N (B) 30N (C) 50N (D) 70N, as shown by trypan blue 
staining. 

 

5.2.4. In vitro release of lidocaine from MITP  

It is interesting to note that with higher drug concentration, MITP surface 

exhibits a rougher and corrugated surface, as observed in Figure 30 A, B and 

C. With lower (2.2% w/w) lidocaine in MITP, a tightly packed polymer 
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structure is observed as seen in Figure 30 A, while  with an increase in 

concentration to 15% polymer surface appears to be rougher (Figure 30 B) 

and at highest drug loading of 21% w/w, a highly rough and irregular structure 

is seen (Figure 30 C). This rough surface morphology potentially allows for 

better interaction with the release medium and hence higher drug release. As 

observed from SEM images post drug release, most of the drug was released 

from the microneedle shafts, resulting in smooth surface across all tested 

concentrations (Figure 30 D, E and F). 
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Figure 30 SEM images of MITP before and after the release test. (A) Microneedle 
containing 2.2% w/w lidocaine shows a smooth surface and tightly packed 
arrangement of polymer. (B) Microneedle containing 15% w/w lidocaine shows a 
rougher surface. (C) Microneedle containing 21% w/w lidocaine shows a rough, 
corrugated surface with a large surface area for interaction with release medium. (D, 
E and F) SEM images for 2.2%, 15% and 21% w/w lidocaine MITP show a smooth 
surface indicating almost complete drug release. 

 

The release of lidocaine from the integrated patches encapsulating different 

concentrations of drug was studied over a period of 24 hours. For all samples, 

lidocaine was released with an initial rapid burst followed by a gradual release 
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after about 6 hours (Figure 31 A and B). A total of 0.20 ± 0.01 mg of 

lidocaine was released from the MITP containing 2.2% w/w lidocaine, which 

constituted 15.1% of total lidocaine encapsulated. A larger amount of 

lidocaine (86.24 ± 11.61 mg) was released from the MITP containing 21% 

w/w of lidocaine, which made most of the lidocaine encapsulated in the patch 

(Figure 31 A). The difference between the amounts of lidocaine released from 

the different drug concentrations encapsulated was significant (ANOVA, p < 

0.001). The commercial patch released higher amount of lidocaine as 

compared to all three concentrations of lidocaine-laden MITP. 

 

 

Figure 31 Results from in vitro release test of lidocaine encapsulated integrated patch 
(A) over 24 hours (B) over the first two hours. The cumulative amount of lidocaine 
released increased as encapsulation concentration increases, with higher 
concentration showing a sustained release over a period of 24 hours (ANOVA, p <, 
whereas the commercial patch showed an initial burst release followed by a plateau, 
due to possible drug depletion. 

 

5.2.5. In vitro skin permeation of lidocaine test 

With significant amounts of lidocaine released from the fabricated patch, an in 

vitro skin permeation test was conducted over a similar period of 24 hours to 

determine the practical applications of MITP with respect to a commercial 

patch, in carrying a higher load of the drug and delivering it at a faster rate. 



100 
 

The MITP was compared with Lignopad® placed on intact rat skin to compare 

the permeation of lidocaine from both patches.  

Although a lower amount of lidocaine permeated when using a 2.2% w/w 

lidocaine MITP as compared to 5% lidocaine commercial patch, it was 

observed that when 21% w/w MITP was used more lidocaine permeated 

through the skin as compared to the commercially available patch (Figure 32 

A). For the MITP, a total of 25.21 ± 3.41 mg/cm2 of lidocaine permeated 

through skin. In contrast, a total of 19.49 ± 8.01 mg/cm2 of lidocaine from 

Lignopad® permeated through skin over a period of 24 hours. While a higher 

amount of drug permeation is desirable, in conditions such as pain a rapid 

absorption is equally essential. Using the MITP to create microchannels in the 

skin, lidocaine could be detected in the receptor solution within 5 minutes of 

placing the MITP on the skin, as compared to Lignopad® in which lidocaine 

was first detected in the receptor solution only after 45 minutes (Figure 32 B). 

This faster initial rate of drug release could potentially allow for a more rapid 

rate of pain relief as lidocaine can be delivered to the pain sites faster.  

 

Figure 32 Permeation of lidocaine through rat skin was determined (A) over 24 hours 
(B) over the first two hours. The amount of lidocaine permeated from the 21% w/w 
lidocaine patch was higher than that of Lignopad®. Higher initial rates of permeation 
were also observed for the 21% w/w patch, potentially providing rapid pain relief. 
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5.2.6. Interaction between polymer and lidocaine: FTIR-ATR spectroscopy 

As observed in the in vitro release study, particularly for lower concentrations 

of lidocaine in MITP, a lower amount of lidocaine was released, prompting us 

to explore any possible chemical interaction between PEGDA and lidocaine. 

FTIR-ATR spectra revealed the N-H peak shifted from ~3271 cm-1 in pure 

lidocaine powder to ~3258 cm-1 in lidocaine in polymerized PEGDA film and 

broadening of the peak was observed. Also, there was an obvious broadening 

of the peak at ~1660 cm-1, which could possibly indicate the amide C=O 

stretch (Figure 33). As these observations correlate to those reported in Cui et 

al.’s characterization of lidocaine in polymers, possible hydrogen bonding 

might be present in the lidocaine integrated patch, which limits the release of 

lidocaine from the polymer and some lidocaine to remain in the fabricated 

patch even after 24 hours of application [248], necessitating a higher initial 

drug loading required in the MITP.  In addition, the spectroscopic peaks at 

1635, 1621, 1409 and 810 cm−1 corresponding to the main C=C bond signals 

of acryl groups in liquid PEGDA (Figure 33 A) are no longer present upon 

polymerization of PEGDA into the solid film (Figure 33 D) [249], indicating 

crosslinking between PEGDA molecules to form interpenetrating polymeric 

networks. 

 

Figure 33 FTIR-ATR spectroscopy of (A) Pre-polymer solution (B) Lidocaine 
powder (C) Pre-polymer solution with 21% w/w lidocaine dissolved (D) Polymerized 
pre-polymer film (E) Polymerized pre-polymer with 21% w/w lidocaine film. 



102 
 

5.3. Discussion 

The microneedle integrated transdermal patch is a promising approach to 

improve lidocaine delivery across the skin, providing a suitable alternative to 

painful injections as well as passive, slow and unreliable diffusion of 

transdermal creams and patches. Fabrication of the MITP by the 

photolithographic approach is rapid and simple as encapsulated drugs are not 

exposed to high heat or drastic temperature changes seen in the micromolding 

process where the moulds are filled with molten or softened thermoplastics at 

elevated temperatures [93]. Integration of high loading efficiency backing 

layer to the microneedle shafts does not require any ancillary equipments as 

has been reported previously [247]. Fabrication of the whole integrated patch 

system can be achieved within 1 - 2 minutes, thus commercial scaling up and 

production of these microneedles is feasible. With more than 1.5 billion 

people around the world suffering from chronic pain and the pain management 

market projected to grow to about USD$60 billion by 2015, this microneedle 

integrated transdermal patch can possibly serve as a viable source for the 

transdermal delivery of lidocaine with a faster rate of pain relief as compared 

to the commercially available patch and creams [250].  

The applicability of MITP spans the therapeutic and prophylactic domains of 

acute and chronic pain. The microneedle system aids in creating 

microchannels on the skin, rapidly delivering the initial analgesic load to 

cause dermal analgesia. This is particularly important, especially in pediatric 

patients prior to drug/vaccine injection administration. Also, it would provide 

clinicians and nurses in emergency and traumatic surgery cases, where it is 

often difficult to locate the vascular tissues and nerve damage has been a 

common phenomenon due to inadvertent and accidental injection injury. 

At the same time, the transdermal patch integrated to the microneedle array 

acts as a reservoir of the drug and continues to deliver the analgesic dose 

through the pores created by the microneedles over a longer period of time, as 

is desired in the cases of neuropathic pain. This microneedle array has a 

distinct mechanism of delivering drugs, from the four common ways of drug 

delivery proposed for microneedle systems by Kim et al. [93]. The 
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microneedle although being polymeric, are made using poly (ethylene glycol) 

diacrylate, which doesn’t readily dissolve, hence providing an opportunity for 

provision of channels in the skin, through which the drug stored in the patch 

could be delivered for prolonged period of time.  Since, different layers of the 

integrated patch were also fabricated independently; hence the drug of interest 

can possibly be incorporated into the microneedle shafts, the thin or the thick 

backing layers, to allow for a rapid or sustained drug release as well as the 

MITP could be used to encapsulate potent drugs in the microneedles to 

provide rapid analgesia, followed by maintenance analgesia by a less potent 

drug encapsulated in the integrated transdermal patch.  

MITP containing a thicker backing is also amenable to application of larger 

forces aiding more efficient microneedle penetration and at the same time 

microneedle shafts more resistant to breakage as compared to microneedles 

supported on a thin film. Although UV light has been shown to cause 

photodegradation of light sensitive drugs, short exposure process did not cause 

lidocaine degradation, as was highlighted from the FTIR-ATR spectra as well 

(Figure 33).   

Lidocaine was successfully shown to be released from the MITP and 

permeated through rat skin (Figure 31 and 32). Thus, the MITP serves as a 

potential drug delivery system, which is able to overcome the limitations of a 

conventional transdermal patch. Even though Lignopad® released more drug 

than the microneedle integrated patches, it showed an initial burst release 

profile followed by a plateau indicating drug depletion in the patch. On the 

other hand 21% w/w lidocaine showed a consistent increase and sustained 

release of lidocaine over a period of 24 hours. With lower concentration (2.2% 

w/w) of drug loading, microneedles structures were formed with tight polymer 

structure packing as shown from SEM images in Figure 30 A, while with 

higher concentrations (15 and 21% w/w), a more porous structure was 

observed, explaining the higher drug release from the microneedles containing 

higher amounts of lidocaine (Figure 30 B and C). This potentially provides an 

ideal delivery system, with rapid release of drugs from the polymeric core and 

a sustained release due from the reservoir patch. 
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Permeation of lidocaine was greater from the integrated patch due to the 

presence of microneedles that penetrate the stratum corneum. This highlights 

the utility of having a combination of active and passive drug delivery system, 

integrated into one device to have benefits of both. The lag time for lidocaine 

permeation was reduced from 45 minutes in Lignopad® to 5 minutes when the 

MITP was used. This is favorable to achieve almost instantaneous pain relief 

(within 0-15 min) from the use of microneedles, similar to the effects achieved 

by a hypodermic injection [244]. Maximum pain relief from transdermal 

patches were shown to be obtained after 4 hours of patch application with 

three transdermal patches were applied onto the skin [241], with the patch 

application requiring a larger area for drug absorption. This problem could be 

potentially alleviated with MITP application as larger amount of drug could 

diffuse through a smaller area in a shorter period of time, providing higher 

patient compliance and quality of life.  Hence, MITP could provide a more 

efficient delivery of lidocaine for faster pain relief in patients with peripheral 

neuropathic pain.  

Although lidocaine delivery using microneedles has been studied previously 

[244, 246], the MITP offers the advantage of having a simple fabrication 

process and high encapsulation efficiency of more than 70 mg of drug. This is 

particularly relevant as small molecular weight drugs are required in higher 

amounts to achieve clinically relevant concentrations. In addition, the use of 

MITP does not require any additional gel or lidocaine containing solution to 

be applied onto the skin, as lidocaine can be easily incorporated and released 

from the cross-linked polymer matrix. For hydrophilic drugs insoluble in 

PEGDA, they can be first dissolved in very small amounts of water and mixed 

with PEGDA to form a uniform dispersion [251]. Preferential incorporation of 

drugs could be achieved in the MITP. Drugs incorporated into microneedle 

shafts allow for bolus and rapid release while that in the backing layers allow 

for sustained release as it acts as a drug reservoir. Dissolving lidocaine in 

PEGDA assures a uniformed distribution of drug and retains the geometry of 

microneedle shafts, a feature largely lost during coating of microneedles. 

Despite the higher permeability achieved with MITP as compared to 

Lignopad®, a higher amount of drug loading was required to achieve this 
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effect. This is probably due to chemical interactions between lidocaine and 

PEGDA, forming hydrogen bonds as was revealed in the FTIR-ATR spectrum 

(Figure 33), where enhanced affinity between lidocaine and the polymer 

matrix and preventing drug release. A similar effect was also observed in the 

release test, where lower amounts of lidocaine were released from MITP as 

compared to Lignopad®, where an MITP patch containing 2.2% w/w of 

lidocaine contains similar amounts of lidocaine as compared to the same area 

of Lignopad®. However, the amount of lidocaine released and permeated 

from the 2.2% w/w lidocaine integrated patch is much lower than that from 

Lignopad®. This effect was observed to a lower extent, with higher drug 

loading amounts of 15 and 21% w/w, possibly due to the reason that more 

diffusion passages were created at higher drug-loading microneedles. 

5.3. Summary 

The lidocaine encapsulated microneedle integrated transdermal patch was 

shown to be an ideal alternative to injections and passive transdermal systems 

like gels and creams for the management of acute and chronic pain. MITP was 

shown to deliver lidocaine at a faster initial rate than Lignopad®, with 

lidocaine permeating rat skin within 5 minutes of MITP application, whereas 

Lignopad® had a delay of 45 minutes before lidocaine permeated. This faster 

permeation enables a possibly faster rate of pain relief for patients. Having a 

larger amount of lidocaine permeating through the skin can also potentially 

reduce the patch application time which decreases the likelihood of 

developing skin irritation. Thus, the integrated patch could be a good clinical 

tool for pediatric applications, management of perioperative pain and chronic 

pain in patients suffering from diabetes, cancer and herpes zoster infection, 

and can be used in home care settings due to its ease of application. 
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                CHAPTER 6 

Direct Microneedle Array Fabrication off a Photomask to 

Deliver Collagen through Skin  

(Adapted from a manuscript submitted to Pharmaceutical Research, 2013, In 

press) 

                

6.1. Overview 

Various fabrication methods have been used to form polymeric microneedles. 

One of the common methods employed by researchers is micromolding in 

which molds of the desired microneedle  geometry are constructed using high-

aspect-ratio SU-8 epoxy photoresist or polyurethane master structures to form 

PDMS (polydimethylsiloxane) molds from which biodegradable polymer 

microneedle replicates are formed [252, 253]. However, this approach 

involves numerous steps and the use of toxic SU-8 epoxy in the intermediate 

processes [254]. 

In the previously developed method described in chapter 3, photolithography 

using photomasks was used as an alternative to fabricate polymeric 

microneedles in a single step, mould free process [117]. Polymer was exposed 

to high intensity ultraviolet (UV) light through a patterned film in the presence 

of a photo initiator to form crosslinked polymeric rods. Free radicals formed 

by the photoinitiator propagate the polymerization reaction. This method 

offers the advantage of a short fabrication time and a greater suitability of 

scaling up commercially for industrial purposes. However, as no mechanism 

to optically modify the light path was involved, the formed microneedles had 

bigger tip diameter which potentially affects the efficiency of penetration 

through the skin.  

To overcome this problem, in this chapter, a simple photolithographical 

process using microlenses to fabricate polymeric microneedles of increased 

sharpness was developed. Instead of planar photomask films, specific convex 

microlenses were etched on to a glass substrate to guide the light path, 

resulting in sharper microneedles as compared to previously developed 
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method. Although some previous studies have involved the use of microlenses 

to fabricate polymeric microneedles, those methods were limited by 

involvement of multiple complicated steps [252]. Mechanical properties of 

microneedles were characterized to ensure their suitability for efficient 

penetration through excised rat skin. Previous studies have showed that 

reducing the tip diameter and increasing the base width may improve the 

mechanical properties of the polymer microneedles [117, 254].   

Finally, evaluation of usability of the resultant microneedles in the 

transdermal delivery of biopharmaceutical cosmetic products like collagen 

was performed on rat skin. 

6.2. Results  

6.2.1. Fabrication of photomask 

The characteristics of the photomask and the embedded microlenses affect the 

geometry of the microneedles significantly as the path of the UV rays are 

dependent on the degree of refraction on the convex surface of microlenses 

(Figure 34 A). All photomasks consisted of an array of microlenses  (7 × 7) 

with a constant center-to-center spacing of 1000 µm. Analysis of microlenses 

revealed that each microlens  has a diameter of 350 µm with a flattened 

convex surface of diameter 130 µm, and a depth of 62.3 µm as shown in 

Figure 34 B - D. To evaluate the estimated focal length (f) of the microlens, 

radius of curvature of the first surface was calculated to be 272.89 µm using 

Pythagoras theorem. Considering these parameters and the refractive index of 

both glass (1.53627) and air (1.000) at a wavelength of 365 nm, the focal 

length was estimated to be 5  .   µm via the Lens maker’s equation as stated 

below: 

1/f = (n
1
/n

m
-1) * (1/r

1
-1/r

2
)  

 
Where, 
 
n

1
 - Refractive Index of Lens Material 

n
m

- Refractive Index of Ambient Medium  

r
1
 - Radius of Curvature of the First Surface  

r
2
 - Radius of Curvature of the Second Surface  
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Figure 34 Characterization of photomask. (A) A SEM image of a portion of an array 
of microlenses etched into a glass substrate. (C) A SEM image of a microlens.  (E) A 
portion of an array of PDMS mold replicas copied from the microlenses, showing the 
flattened convex surface, under a stereomicroscope. (F) UV (365nm) exposure 
focuses light into a conical path, producing tapered microneedles.  
 
 
6.2.2. Fabrication of polymeric microneedles 

a) Effect of intensity of UV light 

The intensity of UV light was varied between 3.14 to 15.1 W/cm2 maintaining 

the spacer thickness (5 mm) and distance from UV light source (3.5 cm) 

constant. Average microneedle length was found to increase from 2358 ± 144 

µm to 3347 ± 156 µm when intensity was increased from 3.14 to 9.58 W/cm2 

(p < 0.05) (Figure 35 A). However, the difference in average length measured 

for the needles formed for the intensities 9.58 to 15.1 W/cm2 was found to be 

insignificant (p > 0.05). The minimum length obtained is more than three 

times the estimated microneedle length quantified by the focal length. 

Sharpness, quantified by tip diameter of microneedles, reduced as intensity 

was increased. Average tip diameter increased from 41.5 ± 8.4 µm to 49.0 ± 

5.8 µm for the intensities of 3.14 to 6.44 W/cm2 (p < 0.05) as shown is Figure 

35 B. However, no significant change in the tip diameter was observed from 

6.44 to 12.4 W/cm2, with a maximum tip diameter of 71.6 ± 13.7 µm obtained 
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when an intensity of 15.1 W/cm2 was used. Interestingly, greater level of 

deformation on the needles was observed as higher intensities were used. It 

was noted that the microneedles’ upper half became wider and more 

cylindrical with the lower half acquiring a more tapered formation as 

intensities increased. In addition, the tips of the microneedles also underwent 

deformations leading to more irregular structures as shown in Figure 36 A, C 

and D. The microneedles fabricated at 6.44 W/cm2 were observed to be more 

regular in shape (Figure 36 B), than that of higher intensities, without 

significant structural deformation thus preserving the sharpness. Hence, this 

intensity was chosen for fabrication of microneedles for subsequent 

experiments. 

b) Effect of spacer thickness 

The spacer thickness was varied between 1050 µm to 5000 µm maintaining 

the intensity (6.44 W/cm2), and distance from UV light source (3.5 cm) 

constant. An expected increase in average length was observed for the spacer 

thivkness of   5  to  5 5 μm  p < 0.05). Insignificant difference in average 

length was recorded for the needles formed for the spacer thickness of 2525 

µm to 3000 µm (p > 0.05). The longest microneedle length of 3347 ± 156 µm 

was observed for the needles formed using a spacer thickness of 5    μm  p < 

0.05) (Figure 35 C). Average tip diameter decreased as the spacer thickness 

was increased from 1050 µm to 3000 µm (p < 0.05), with a constant tip 

diameter reached beyond the spacer thickness of 3000 µm (p > 0.05) (Figure 

35 D). 
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Figure 35 Effect of UV parameters on microneedle geometry. Effect of (A) intensity 
and (C) spacer thickness on microneedle length. Effect of (B) intensity and (D) 
spacer thickness on microneedle tip diameter. 
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Figure 36 Effect of increasing intensity on geometry of microneedles. (A-D) images 
showing increasing level of deformations at intensities 3.14, 6.44, 9.58 and 12.4 
W/cm² respectively.  
 

6.2.3. Effect of backing layer volume  

Formation of a backing layer is crucial to enhance the strength of the 

microneedle shafts and to enable the removal of the microneedles from the 

photomasks, making them reusable. The thickness of the backing layer was 

manipulated by varying the volume of prepolymer solution. Two different 

volumes (300 µL and 400 µL) were used for this purpose. Due to the affinity 

between the polymerized microneedles and the prepolymer solution together 

with the small center-to-center spacing between microneedles, capillary action 

was evident. Subsequent exposure to UV light led to formation of each patch 

of microneedle acquiring a range of length, with the tip diameter being 

unaffected as shown in Figure 37 A and B. It was observed that the average 

microneedle length decreased from 1336 ± 193 µm to 957 ± 171 µm as 
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volume used to form the backing layer, was increased from 300 µL to 400 µL 

(Figure 37 E). Similarly, base diameter reduced from 233 ± 20 µm to 156 ± 

21 µm (p < 0.05). 

 

Figure 37 Effect of varying pre-polymer volume used for backing layer 
fabrication.(A-B) images at various pre-polymer volume, with average microneedle 
length for short (957 µm) and long (1336 µm) microneedles respectively. (C-D) 
Images corresponding to (A-B) after fracture force testing. (E) Decrease in 
microneedle length with increase in pre-polymer volume used for backing layer 
fabrication. (F) Microneedle fracture force across the two pre-polymer volumes used 
to fabricate backing layer. 
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6.2.4. Microneedle fracture force testing 

Evaluation of the effect of the thickness of the patch on the strength of 

microneedles is essential for the selection of the appropriate type of patch for 

maximum penetration through the skin. After subjecting each class of 

microneedle array to an increasing force against a flat surface, it was observed 

that the fracture force was consistent for both classes of patches  with a similar 

negligible degree of breakage for both microneedle arrays as depicted in 

Figure 37 C, D and F. 

6.2.5. Microneedle penetration in human skin 

Microneedles of average length 957 (short) and 1336 (long) µm were inserted 

in cadaver human skin. Trypan blue staining method was used to demonstrate 

the extent of penetration by each type of microneedle shaft as shown in 

Figure 38 A and B. Negligible staining on the control skin proved that trypan 

blue only stains the sites of corneum perforation.  

The extent of penetration by the shorter microneedle shafts was found to be 

higher (72.7 ± 5.1%) as compared to longer shafts (52.3 ± 3.1%), (p < 0.05) 

(Figure 38 C and D). Fracture of microneedle was not observed in any of the 

microneedle shafts tested. 
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Figure 38 Penetration of microneedles in rat abdominal skin. (A-B) Images of 
penetration by microneedles of average length 1336 and 957 µm respectively, with 
the force of a thumb. (C) Number of successfully penetrated microneedles of average 
length 1336 and 957 µm. (F) Percentage of penetration by microneedles of average 
length  1336 and 957 µm. 

 

6.2.6. In vitro collagen permeation through rat skin 

The ability of microneedles to increase skin permeation of bovine collagen 

type 1, FITC conjugate (MW = 300 kDa) was assessed. The control skin 

(without collagen treatment) was found to possess a significant level of auto 

fluorescence which was visible up to a depth of 150 µm (Figure 39 A), while  

application of collagen solution on intact skin did not lead to any significant 

absorption (Figure 39 B).This phenomenon could be due to the presence of 

fluorescent biomolecules such as lipofuscin and riboflavin [255-257] on the 

rat skin which are able to emit light at similar wavelengths used in the 

experiment. However, this did not hinder the analysis of the increase degree of 

collagen permeation by the microneedles. With the shorter microneedle of 957 

µm, three concentrations of collagen revealed a penetration to a depth of 250 
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to 300 µm confirming the increased extent of diffusion of collagen molecules 

through the skin up to the dermis layer as shown in Figure 39 C - E. 

 

Figure 39 Collagen permeation in rat skin. (A) Auto-fluorescence of cadaver rat skin. 
(B) Fluorescence of bovine collagen type 1, FITC conjugate together with auto-
fluorescence of control rat skin without microneedle treatment. (C-E) Fluorescence of 
bovine collagen type 1, FITC conjugate together with auto-fluorescence of rat skin 
for collagen concentrations 0.025, 0.05 and 0.075% w/v respectively. 
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6.3. Discussion 

Many groups have successfully developed polymeric microneedles using 

photolithographical methods. Previous studies to develop sharp polymeric 

microneedles have used multi-step methods involving development of SU–8 

master structures to create PDMS molds and the use of lasers [252, 258]. Long 

processing time and requirement for sophisticated equipments are certain 

limitations of these methods. Development of a simple photolithographical 

process by us previously involved the use of a planar patterned photomask 

showed a simple alternative to mould based methods. However, with the use 

of planar photomasks, UV light passed through straight with little deviation 

resulting in microneedles with a more cylindrical and less sharp tips. 

In this chapter, a one-step lithographical method utilizing a photomask with 

integrated convex lenses was developed. Ultraviolet rays undergo refraction at 

the surface of the lens, allowing the rays to converge at a focal point. 

Polymerization reaction in the presence of UV only occurs in the converged 

path. This results in sharp- tipped microneedles with improved skin 

penetration capability than previously fabricated microneedles. While thermal 

and annealing processes were recently reported for fabrication of 

microneedles on a curved surface [259], this photolithographical approach is 

amenable for production of microneedles of any desired shape and geometry. 

This new approach to fabrication involved first optimizing fabrication 

conditions to form sharp microneedles. Lens geometry, UV light intensity and 

spacer thickness were considered as factors influencing microneedle 

fabrication and geometry. 

Characteristics of the thin lens in the photomask determine the degree of 

refraction of the UV light rays at the convex surface.  he Lens makers’ 

equation, which is used to approximate the focal length of a thin lens, was 

evaluated for its suitability as a predictive model for microneedle length in the 

fabrication process. Microneedle length measured was at least three times 

more than the calculated focal length regardless of UV light intensity. This 

indicates that the Lens makers’ equation may not be an accurate predictive 

model. This could be due to the presence of the flattened convex surface of the 
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microlens. The irregular convex surface could have caused spherical 

aberration of light rays causing the path of light rays to be significantly 

different from that of a conventional convex thin lens [260]. Spherical 

aberration allows parallel light rays that pass through the central region of the 

lens to focus farther away than light rays that pass through the edges of the 

lens leading to differential microneedle lengths. However, it was found that 

the lack of a perfectly curved lens did not hinder the formation of sharp-tipped 

microneedles after optimization of other parameters.  

The intensity of UV light used for the polymerization process is another 

important with respect to the microneedle geometric properties. In the new 

approach, an intensity of 6.44 W/cm2 allowed microneedles to reach a high 

vertical length, with minimal structural deformation, and a desirable sharp tip 

diameter. Although sharper microstructures without any observable 

deformation were obtained at lower intensities as well, the microneedles may 

not possess sufficient strength and a higher intensity leads to formation of 

more rigid microneedles which improves the penetration efficacy. 

Another phenomenon observed was that the length of microneedles increased 

significantly with the microneedles acquiring a more cylindrical shape, 

compared to the hypothesized conical shape, as intensity increased. The 

optical nature of light may rationalize this occurrence. Due to the flat top 

surface of the microlens, some light rays travel beyond the focal point in a 

collimated manner [261, 262]. In addition, converged light rays may also 

extrapolate beyond the focal point. These particular optical movements of 

light rays could have led to the formation of the more cylindrical portions of 

the needle. However, as degree of polymerization has a limit and based on the 

inverse-square law of light, UV light loses energy as the distance away from 

the surface of the lens increases [263]. This explains the tapered appearance of 

the microneedles observed beyond the focal point. As intensity was increased, 

more photons were transmitted to a further distance leading to greater uneven 

polymerization, evidenced by the non-uniform tapered structures and 

deformations formed at higher intensities in Figure 36. 
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The formation of the backing layer is important to strengthen the array as a 

whole and to ensure reusability of the photomask. Emphasizing the 

importance of the backing layer, effect of the thickness of the backing layer on 

the strength of the microneedle shafts and extent of penetration was studied. In 

both different lengths of microneedle shafts, a significant fraction of the 

microneedles was intact after a force of more than 60 N was applied.  

The ability for the polymeric microneedles to bend causes the actual 

compressive stress at the tip of the microneedle to be much lesser than the 

total compressive force applied by the thumb. It has been reported in literature 

that to avoid sudden failure of a microneedle by buckling, and to insert the 

microneedle into the skin successfully, a 12:1 aspect ratio of length-to-

equivalent diameter or lesser is recommended [264]. However, it was 

observed that for two lengths of microneedles had an aspect ratio lower than 

12:1. The shaft with the longer microneedle length (1336 µm) obtained the 

aspect ratio of 11:1, while the other shorter microneedle shaft obtained an 

aspect ratio of 8:1. While some microneedle bending when applied on human 

skin was seen, shorter microneedles with aspect ratio 8:1 penetrated better, 

indicating that microneedle tip diameter is a more critical determinant of 

microneedle penetration, irrespective of its base diameter. 

As a model for microneedle mediated enhancement of permeation of 

macromolecules, bovine skin collagen type 1, FITC conjugate was used. 

While FITC collagen is not a substitute for collagen and its cosmetic 

properties, fluorescence from FITC tagged collagen enabled easy analysis and 

visualization of depth of permeation. Diffusion of collagen molecules was 

greatly enhanced by the treatment of skin with the fabricated microneedles. 

Microneedles enhance the permeation by creating micro channels allowing 

macromolecules to pass through the skin. In this particular study, FITC tagged 

collagen molecules with a molecular weight of approx 300 kDa + 400 Da 

could permeate the skin, and hence it is expected that native collagen will be 

able to permeate the skin as well.  

Collagen molecules were able to diffuse past the epidermis and reach the 

dermal layer. This enables exogenous collagen to express its pharmacological 
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function effectively which includes activating keratinocytes in the dermis 

layer for reepithelialisation [265]. While collagen has been extensively used as 

a cosmetic product to retard skin degradation in chronologically aged skin 

[265, 266], its efficacy from topical preparations is questionable as stratum 

corneum is impermeable to collagen [267]. With microneedle pretreatment, 

collagen could permeate in significantly higher amounts and to greater depths 

in the skin, potentially providing a gateway for its enhanced efficacy. 

The fact that higher concentrations of collagen did not significantly increase 

the diffusion rate, can be explained by the fact that epidermis and dermis layer 

offer a significant permeability barrier to both small molecules and 

macromolecules [268] thus becoming the rate limiting step upon sufficient 

permeabilization of the stratum corneum. This implies that higher doses of 

collagen may not warrant an increased pharmacological effect when delivered 

transdermally. Moreover at higher concentrations, collagen is more 

susceptible to gel formation and hence may actually result in less amount of 

permeation as compared to lower concentrations which remain in solution and 

hence more easily available to pass through the micro channels created 

microneedles.  

Another issue with collagen molecules is their stability and maintenance of 

native confirmation. We also observed that primary structural properties of 

collagen type 1 when applied to skin post microneedle application were 

similar to freshly prepared solution of collagen indication stability of collagen 

post microneedle application and delivery into the skin. 

In a recent patented technology [269], collagen type VII was modified by 

recombinant production in host cells having higher expression of prolyl 4-

hydroxlase resulting in collagen having more proline residues. This collagen 

with increased proline residues has higher in vivo stability and a longer half 

life. The said collagen was then encapsulated in polymeric microneedles made 

from chitosan or alginate in pre formed micromolds. These microneedles are 

then used to deliver collagen VII to epidermis-dermis basement membrane in 

patients of dystrophic epidermolysis bullosa, a genetic disease where there is 

lack of functional collagen VII and leads to formation of painful blisters on 
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the skin. Apart from these, there are some reports in literature and numerous 

on the internet, whereby microneedles are used to activate the normal healing 

cascade of the skin, causing temporary injury and initiating collagen synthesis 

to rejuvenate the skin.   

6.4. Summary 

A simple photolithographical method to fabricate polymeric microneedles, 

whose geometry could be controlled by modifying the photomask parameters 

in a mould free manner, was developed in this study. The microneedles were 

able to penetrate excised rat skin effectively when inserted with the force of a 

thumb. Microneedle shafts were also able to withstand high levels of 

compressive force due to the increased elasticity and shock-absorbing 

property of the backing layer. Irrespective of the length of the microneedle 

shafts, this method provides the capability to produce microneedles with 

similar tip diameters. In addition, it was proven that collagen can be delivered 

transdermally up to the dermis layer for its cosmetic/pharmacological effect. 

The approach may be useful for the transdermal delivery of proteins and other 

macromolecules for localized effect within the skin layers. Finally, the new 

fabrication process has the potential for scaling up for mass production. 
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CHAPTER 7 

A Miniaturized Flow-through Cell (MFtC) for Testing the 

Permeation of Drugs across Biological Membranes 

(Adapted from International Journal of Pharmaceutics. 2013; 441 (1-2): 433-

440) 

 

7.1. Overview 

Conventionally, a variety of transdermal diffusion cells were developed for 

the evaluation of in vitro permeation characteristics of transdermally delivered 

drugs. In principle, some are based on the static, non flowing cells [270] in 

which the donor and receptor compartments may be placed either vertically 

(Franz type) [271] or horizontally (side-by-side) [272, 273] and others are the 

in-line, flow through cells, that offer the advantage of continual replenishment 

of receptor fluid and hence aid in maintaining a condition similar to 

microcirculation in the in vivo setting [274, 275]. 

Several modified versions of these diffusion cells have also been fabricated 

and validated against the conventional apparatus. Sanghvi and Collins 

compared the permeation characteristics of hydrocortisone using the 

“enhancer cell”, which is a modified version of USP type II dissolution 

apparatus to serve as a diffusion cell [276]. Modified automatic sampling 

apparatus have been developed [277-280]. These static and flow-through cells 

have been compared and validated [281-283]  

However, a major drawback of these cells is the requirement of relatively 

large amounts of drug owing to their inherent designs. Investigational new 

drug entities, such as anticancer drug endoxifen, are prohibitively expensive 

for such studies. This was the motivation to develop a miniaturized testing 

system that utilizes minimum amount of the drug. 

Microfluidic platforms which are miniaturized fluid flow systems have 

recently received significant attention in the drug discovery and development 

horizon, due to their abilities to reduce the amount of reagents necessary for 
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assays and pre-clinical development [284]. These microscale systems 

fabricated with biomaterials such as polydimethylsiloxane (PDMS), may 

provide a useful model to develop miniaturized flow-through cells. A PDMS-

based, miniaturized flow-through cell to minimize the consumption of 

candidate drugs was envisaged. With the economic environment in 

pharmaceutical firms becoming more tenuous and pharmaceutical cost 

containment being the main focus, the need to develop pre-formulation testing 

systems that utilize minimum amount of the drug is the need of the hour. 

In this chapter, fabrication of a miniaturized flow-through cell for in vitro skin 

permeation studies is described. The system was compared and validated 

against a static, horizontal diffusion cell (HDC) using two model drugs, 

namely, rhodamine B and α-mangostin. Histological sectioning of the skin 24 

– 48 hour post-application in both diffusion cells was conducted to test for 

skin damage. Subsequently, the skin permeation of endoxifen was assessed 

with several skin permeation enhancers (PEs). One of the enhancers was 

found to be able to deliver enough endoxifen for its clinical applications. 

7.2. Results 

7.2.1. Validation of MFtC against horizontal diffusion cell 

For the receptor liquid, an average flow rate of 0.18 ± 0.01 mL/hr was 

measured (Table 6). The choice of low flow rate was selected to achieve 

adequate drug to be present in the samples for detection and quantification. 

This is particularly important in the case of low flux. It was reported that flow 

rate of the receptor solution does not affect the numerical value of the flux of 

drug but the time to achieve steady state instead [281]. Therefore, any small 

fluctuations in the flow rate would not influence the flux significantly.  
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Table 6 Flow rate (mL/hr) of the receptor solutions (mean ± S.D.) N = 9. 

 

 

 

 

 

The different nature of the two model substances (rhodamine B and 

mangostin) and varied concentrations were chosen to ensure the 

reproducibility of permeation parameters in the presence of different test 

substances. No significant difference in Jss (p > 0.05) was found between the 

horizontal diffusion cell and the MFtC for the three different donor solutions 

(Figure 40 and Table 7). While the design of the MFtC varies significantly 

from that of the horizontal diffusion cell, the results obtained confirmed that 

permeation profiles from both the set-ups were comparable, thereby 

confirming that the MFtC fabricated is a suitable platform for reproducible 

results for scaled-down permeation studies. 

 

Figure 40 Time course of cumulative amount permeated through rat abdominal skin 
for rhodamine B at 1 mg/mL, rhodamine B at 5 mg/mL and mangostin at 2.3 mg/mL. 
Each point represents mean ± S.D. 

 

Histological examination of the skin from both diffusion cells revealed that 

there were no apparent changes in the skin structure over a period of 48 h 

Flow rate (mL/hr) Accuracy 

(%) 

RSD 

(%) Run 1 Run 2 Mean 

0.17 ± 

0.01 

0.19 ± 

0.01 

0.18 ± 

0.01 
88.50 7.94 
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(Figure 41). The structure of stratum corneum obliterated minimally, 

particularly for the first 24 hr of the permeation study. However, shrinkage of 

the skin thickness was observed in both the diffusion set-ups. This may be 

attributed to the continuous shredding of the skin as it is in contact with the 

donor and receptor fluids. Also, the excised skin loses its inherent water 

content, leading to transepidermal water loss and the resultant shrinkage. 

Table 7 Comparison of lag time and fluxes between HDC and MFtC across rat 
abdominal skin using rhodamine B at 1 mg/mL, rhodamine B at 5 mg/mL and 
mangostin at 2.3 mg/mL. n denotes number of replicates. Error bars denote S.D. 
between replicates. Flux comparisons between the setups showed no statistical 
difference. 

 

 

Rhodamine B  

(1 mg/mL)  

Rhodamine B  

(5 mg/mL)  

Mangostin  

(2.3 mg/mL)  

n  

Lag 

time 

(hr)  

Flux 

(µg/cm2/hr)  
n  

Lag 

time 

(hr)  

Flux 

(µg/cm2/hr)  
n  

Lag 

time 

(hr)  

Flux 

(µg/cm2/hr)  

HDC  5  
17.7 ±  

3.47  
0.04 ± 0.03  4  

11.4 ± 

3.31  
0.07 ± 0.01  5  

7.19 ± 

0.47  

7.06 ±  

1.06  

MFtC  3  
22.1 ±  

4.07  
0.05 ± 0.02  5  

8.35 ± 

4.75  
0.05 ± 0.02  7  

14.5 ± 

2.71  

8.34 ±  

3.40  
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Figure 41 Histological images of the skin mounted on MFtC (A) at 0 hour, (B) at 24 
hours, (C) at 48 hours, as well as horizontal diffusion cell (D) at 0 hour, (E) at 24 
hours and (F) at 48 hours. The images demonstrate no apparent damage to the skin 
was caused by MFtC and skin exhibited similar properties as compared to horizontal 
diffusion cells. 

 

7.2.2. Endoxifen fluorescence assay 

Endoxifen (ENX), without irradiation, emits minimal fluorescence. Following 

UV irradiation, the phenanthrene derivatives of endoxifen emitted 

fluorescence, which is dependent on the amount of UV exposure [185]. The 
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optimum duration of UV irradiation of 15 min, which correspond to maximum 

fluorescence value, was used for all subsequent experiments (Figure 42).  

 

Figure 42 Plot of the fluorescence emitted for ENX in ultrapure water (10 µg/mL) 
against the duration of UV irradiation. Each point represents mean ± S.D.  n = 3. 
(Inset) Photocyclization of ENX into a product with phenanthrene core. 

 

In order to ensure accurate quantification of endoxifen, the linearity and 

sensitivity of the fluorescence based assay was determined using calibration 

experiments. The regression curve was obtained and the limits were: 

Range: 0.78–3.13 µg/mL, A = (510.7 ± 90.7) [endoxifen] – (422.4 ± 93.4), 

r2 = 0.97 

Range: 3.13–25.00 µg/mL, A = (1226.5 ± 38.8) [endoxifen] – (2663.4 ± 

149.1), r2 = 0.98. 

N = 4, LOD = 0.31 g/mL, LOQ = 0.78 µg/mL, where A is in arbitrary units and 

the concentration is in µg/ml. Accuracy and precision were assessed using four 

concentrations, i.e., 1.56 µg/mL, 3.13 µg/mL, 6.25 µg/mL and 12.50 µg/mL. 

An accuracy of +2.05%, +18.86%, +11.41% and +19.06% with an intra-day 

CV of 2.99%, 5.21%, 1.68% and 4.82% was respectively observed (Table 8). 
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Table 8 Intra-day precision and accuracy. n = 3. 

Actual 

concentration 

(µg/mL) 

Recovered 

concentration 

(mean ± SD) 

(µg/mL) 

Accuracy 

(%) 

Intra-

day CV 

(%) 

12.50 14.88 ± 0.72 +19.06 4.82 

6.25 6.96 ± 0.12 +11.41 1.68 

3.13 3.71 ± 0.19 +18.86 5.21 

1.56 1.59 ± 0.04 +2.05 2.99 

 

7.2.3. Endoxifen permeation studies 

Cumulative permeation plots and permeation parameters of endoxifen in PG 

with and without PEs are shown in Figure 43 and Table 9. All PEs 

significantly increased (p < 0.05) the endoxifen flux in comparison with the PG 

alone. Endoxifen in PG with 0.5% w/v oleic acid, myristyl lactate and 

limonene achieved an EI of 6.26, 8.17 and 9.99 respectively, when compared 

to endoxifen in PG alone. The highest Jss was achieved using limonene as a PE, 

with an EI of about ten times more than PG alone. Lag time of permeation for 

endoxifen in PG alone was however lower than those achieved with the use of 

PEs. 
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Figure 43 Time course of cumulative ENX permeated through 0.283 cm2 of rat 
abdominal skin with or without enhancers using MFtC. ENX donor concentration = 2 
mg/mL. Each point represents mean ± S.D. 

 

Table 9 Permeation parameters of ENX in various donor solutions. Data was 
expressed as mean ± S.D. PE concentration = 0.5% w/v. (n= 3). Enhancement index 
(EI) = Jss (with enhancer) / Jss (without enhancer). 

Donor solution  Lag time (hr)  Flux (µg/cm2/h)  EI  

PG alone (control)  1.03 ± 1.40  0.65 ± 0.01  -  

PG with oleic acid  7.58 ± 4.04  4.09 ± 1.07*  6.26  

PG with myristyl lactate  7.62 ± 2.18  5.33 ± 0.13*  8.17  

PG with limonene  3.75 ± 2.37  6.52 ± 1.41*  9.99  

* p < 0.05 compared to control. 

 

7.3.  Discussion 

Previous attempts at fabricating miniaturized platforms for transdermal testing 

have been based on metallic cells or glass vials, both of which are not easily 

customizable and are expensive. These include devices fabricated by Mak 

VHW[285] and Shockley Jr HD [286]. The multi-compartment bulky device 

fabricated by Mak VHW was chalked out of a block of steel, aluminium or 
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glass. The device could be directly attached to a 96-well plate for analysis. 

Clips are needed to seal donor with the receptor. Donor volume is 350 µL, 

receptor volume is 1mL. The other one fabricated by Shockley Jr, consists of 

frame like continuous flow apparatus, with very complicated design. Sensor 

slots are provided for in-line monitoring of flowing receptor. Clamps are 

required to secure the skin, making this complex device unsuitable for 

economic systems.  

Another spiral shaped donor and receptor device was developed by Tanojo et 

al. with area of diffusion 55.2 mm2, flow rate 5 mL/h, receptor volume 66.2 

µL. The cells were mechanically engineered [287]. An interesting innovation 

was the development of diffusion cells within an HPLC vial by Moody RP. 

HPLC vial made as a permeation apparatus with two chambers separated by a 

filter which supports the skin. The skin is immersed in donor solution 

containing drug which diffuses to the receptor compartment where the HPLC 

injector can collect the sample for analysis [288]. Despite the development of 

these innovative models for permeation testing, a simplistic, easy to fabricate 

and customize, disposable and cost effective permeation testing apparatus was 

still lacking. Moreover some of these cells still suffer from the drawback of 

consumption of higher volume of reagents or skin or being static diffusion 

cells. This provided the impetus to develop miniaturized flow through cell 

using PDMS. 

PDMS was selected for the fabrication of MFtC because of its advantageous 

properties. Firstly, the total cost of such a device was reduced substantially, 

thereby making such a setup readily affordable. The fabrication process is 

simple and can be easily adapted by individual research labs to customize their 

diffusion cells as per their specific requirements. A single diffusion cell made 

of PDMS approximately costs 1 USD (material cost) as compared to 

commercial equivalent that costs around 440 USD. 

Secondly, the rheological properties of PDMS allow shaping of any desired 

design due to its flowability into any pre-formed mold. Owing to the flexible 

nature of PDMS, miniaturization of the whole assembly could be made 

possible. MFtC had significantly lower donor area, donor and receptor volumes 



 

130 
 

as compared to the current flow-through cells (Table 10) [42, 281, 289]. The 

low receptor flow rate of 0.20 mL/hr is in accordance with the general rule that 

flow rate should be at least ten times the receptor volume (10 µL) [290].  

Table 10 Comparison between MFtC and commercial flow-through cell models. 

Mechanical elements  MFtC  Commercial 

Donor area 0.283 cm2 0.785 cm2 

Donor volume 70-200 µL 100-1000 µL 

Receptor volume 10 µL 230-855 µL 

 

In addition, the optical clarity of PDMS allows a clear view of the area below 

the skin. This in turn facilitates the ascertainment of the absence of air bubbles 

which is especially important as these air bubbles can adversely affect the 

accuracy of permeation results [291]. Lastly, PDMS being an inert material, 

allows for prolonged shelf life of the diffusion cell, making them reusable. 

Moreover, it has been reported that adsorption of PDMS is comparable to 

glass, especially for hydrophilic compounds while it is four times higher than 

glass for hydrophobic compounds [292]. While most of the compounds used in 

this study were relatively hydrophobic, insignificant loss of drug due to 

adsorption was observed. The diffusion cells made of PDMS were made 

reusable by washing with acetone and isopropanol. If needed, the surface of 

PDMS may be modified physically or chemically, to reduce the adsorption of 

hydrophobic drug molecules [293]. 

While validating the newly fabricated MFtC against the established permeation 

equipment, horizontal diffusion cells, two factors, namely, the varied 

concentrations and the log P of the compounds were considered. First, two 

different concentrations of rhodamine B were used to investigate the validity of 

flux at low and high concentrations of the donor solution. Rhodamine B is a 

fluorescent molecule, with a suitable log P (2.43) and molecular weight 

(479.02) for skin permeation testing. Its pink colour aids in easy detection of 

leakage of the donor solution. It was observed that the flux achieved was 
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comparable for both the concentrations between MFtC and the horizontal 

diffusion cells. 

Second, the permeation profiles of rhodamine B and mangostin, a molecule 

similar to rhodamine B, in terms of molecular structures and molecular weights 

(Figure 44), but with a higher log P value (6.64) than rhodamine B, were 

compared. log P is an important parameter to consider for skin permeation, as 

it will affect the partition of the drug inside stratum corneum and viable layers 

of epidermis. 

It was observed that the permeation parameters of MFtC and the horizontal 

diffusion cell were in close correlation to each other, signifying the validity of 

the newly fabricated diffusion cells.  

 

 

Figure 44 Chemical structures of (A) mangostin (MW = 410.46, Log P = 6.64), (B) 
rhodamine B (MW = 479.02, Log P = 2.43), (C) PG (MW = 76.09, Log P = -1.00), 
(D) ENX (MW = 373.49, Log P = 4.94), (E) limonene (MW = 136.2, Log P = 4.83), 
(F) oleic acid (MW = 282.46, Log P = 7.42) and (G) myristyl lactate (MW = 286.45, 
Log P = 6.08). 

The device was also adaptable for thicker skin samples, such as those from pig 

cadaver, which closely resemble human skin. Pig skin could be supported on 
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the MFtC set-up, with the application of vacuum grease and no leakage was 

detected from the donor compartment when a rhodamine B solution in PG was 

applied (Figure 45). 

 

Figure 45 MFtC setup with pig skin showing the ability to be used with thicker skin 
samples, without any leakage problem. 

 

To achieve a plasma concentration of endoxifen that is comparable to those 

achieved on administration of an oral daily dose of 2–4 mg [294], an ideal flux 

of 2.0–4.0 µg/cm2/hr, assuming an application area of 40 cm2 would be 

required from endoxifen transdermal drug delivery system. The reported 

transdermal endoxifen study was not able to achieve this flux [295]. In this 

study, the highest flux reported was 0.22 µg/cm2/hr for endoxifen dissolved in 

60% (v/v) ethanol – phosphate buffer with 0.5% (w/v) oleic acid. 

In the search of a suitable vehicle and PEs for endoxifen in transdermal drug 

delivery system, three different permeation enhancers were used. It has been 

reported that high skin flux of tamoxifen can be achieved by using limonene as 

a PE with PG as the vehicle [296]. Because of the molecular structural 

similarities between tamoxifen and endoxifen, in this study, endoxifen was 

incorporated in PG while limonene was selected as one of the PEs. In addition 

to limonene, oleic acid and myristyl lactate were also selected as PEs in this 

study. 

It was found that oleic acid, myristyl lactate and limonene in PG enhanced the 

permeation of endoxifen by 6.26, 8.17 and 9.99 folds respectively as compared 

to PG alone (Table 10). Oleic acid has been reported to increase drug transport 
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by coexisting as pools in the stratum corneum lipids structure [31]. Myristyl 

lactate may act by disrupting ceramide – cholesterol or cholesterol - cholesterol 

interaction and increase permeation of endoxifen [297]. As myristyl lactate 

(log P = 6.08) has a shorter carbon chain than oleic acid (log P = 7.42), the 

higher flux achieved by myristyl lactate can be explained by lower partitioning 

of drugs into stratum corneum as compared to oleic acid.  

Results showed that limonene delivered the highest flux among the three PEs 

tested. Limonene belongs to the class of terpenes which are constituents of 

essential oils [42]. Their ability to enhance drug flux could have been attributed 

to partial extraction of stratum corneum lipids, [298] phase separation within 

the SC lipid lamellae [299] and limonene - PG synergy [300]. 

Besides, results using oleic acid as a PE in PG has shown significantly better 

endoxifen delivery with a Jss of 4.09 ± 1.07 µg/cm2/hr compared with the Jss of 

0.22 µg/cm2/hr as reported by using ethanol–phosphate buffer as the vehicle 

[295]. A plausible explanation for this observation is the different effects of 

various vehicles on the skin. It has been reported that PG can affect the 

transdermal permeability by altering thermodynamic activity of drug and/or 

barrier nature of skin [301]. Moreover, it is also been known that activity of 

PEs can be significantly increased when applied in combination with PG [302]. 

Overall, all three PEs chosen in this study were able to achieve higher flux than 

control. The best one was limonene, which attained a flux of 6.52 µg/cm2/hr 

through rat skin, which can be translated to 2.17 µg/cm2/hr through human skin 

[303]. Therefore, the target flux of 2–4 µg/cm2/hr through human skin can be 

achieved with this limonene formulation. 

7.4. Summary 

This chapter dealt with the development and validation of a miniaturized flow-

through cell. The developed MFtC utilizes a small amount of donor solution 

(70–200 µL) and membrane (0.283 cm2) for skin permeation studies. The 

device had no damaging effect on the skin as compared to the established 

models like horizontal diffusion cell. A novel fluorescent spectroscopic method 

was also developed to quantify endoxifen in a fast and convenient manner. 

Permeation studies of endoxifen attained the targeted flux. The miniaturized 
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diffusion cell is demonstrated to be useful for investigative drugs with limited 

supply during the pre-formulation studies. 
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                CHAPTER 8 

Conclusions and Future Directions 

 

8.1. Conclusions 

This thesis presents novel strategies to address issues with transdermal 

drug/cosmetic delivery as well as pre-formulation testing of transdermal 

dosage forms. As such, this thesis describes a novel method to fabricate 

polymeric microneedle arrays for transdermal delivery of drugs and cosmetics 

as well as designing of a novel transdermal formulation testing platform and 

development work towards the same. Both innovative devices are in the 

process of being patented and are on their path towards commercialization. 

Brief conclusion from the development of both devices is summarized below: 

The microneedles: 

- were fabricated by a simple photolithographical process within seconds, 

without the need for reverse molds, the method could be potentially 

scaled up for mass production. 

- the geometrical properties of microneedles were controlled spacer 

thickness and photomask geometry and microneedle arrays of any 

shape could potentially be fabricated. 

- penetrated the skin (rat, pig and human) with little force of a thumb 

with high penetration efficiencies. 

- were able to encapsulate a wide range of drugs (chemical and 

biological), with exposure process demonstrated to be mild for retention 

of protein stability. 

- were integrated to a transdermal patch and achieve drug loading up to 

70 mg, which has not been achieved by any previously developed 

microneedle system. 

- were shown to enable permeation of large amounts of both chemical as 

well as biological drugs in a faster manner than passive diffusion and to 

greater depths in the skin. 
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- were shown to be non toxic to different skin and embryonic kidney cell 

lines. 

The miniaturized flow-through cell: 

- was fabricated using simple micromolding process with PDMS. 

- utilizes minimal amounts of formulation as well as skin samples. 

- could be tuned to low receptor flow rates resulting in lesser dilution of 

the permeated compound across the skin, making analysis easier. 

- was shown to be a good platform for testing permeation of 

investigational new drug entities like endoxifen. 

 

8.2. Future Directions 

This thesis described the development of prototypes for polymeric 

microneedles as well as a miniaturized flow through cell, with both showing 

promising results in preliminary studies highlighted previously. Future work 

pertaining to both devices is mentioned below. 

The microneedles: 

- could be further optimized for geometry and mechanical strength. 

Microneedles fabricated using microlens embedded photomasks could 

be optimized further by fine tuning the lens geometries and hence 

leading to an array of different geometries, shapes and sizes. Moreover, 

microneedles could be made in different shapes and sizes to suit the 

need of the disease, as may be required in skin conditions like psoriasis, 

melasma and other topical skin disorders. 

- could be integrated to microneedle applicators and uniform force 

ejectors to minimize variation on application by subjects. Microneedle 

injectors can be optimized to deliver particular force which will lead to 

uniform delivery of dose to required depths in the skin. 

- are to be tested in vivo in pig model for delivering both chemical and 

biological drugs, including enzymes like phenylalanine ammonia lyase 

for management of phenylketonuria, nucleic acids like shRNA for 

chikungunya virus. Current understanding and expertise gained with 
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transdermal diffusion testing as well as development of MFtC will aid 

in cost efficient analysis of expensive proteins and nucleic acids. 

- are to be tested in vivo for first-in-human trials for drug and cosmetic 

compounds to gather data for regulatory approval and commercial 

launch. Consumer research and physician/cosmetologist feedback is 

currently being sought and will pave the path for human trials with 

cosmetic microneedles as well as initial small scale trial in healthy 

volunteers. 

-  active permeation could be studied by development of a mathematical 

model. With considerable amount of data available from various classes 

of drugs, both hydrophilic and hydrophobic, it will be beneficial to 

develop a mathematical model for active transport of molecules across 

stratum corneum. This will enable suitable prediction of permeation of 

drug and cosmetic compounds, as well as to analyze delivery to local 

skin sites or systemic delivery based on the predicted extent of 

permeation. 

- could be miniaturized further to nanoneedles with optimization of 

photomask geometry, which could be then used for cell manipulation 

studies. This will enable to deliver nucleic acids directly to cells for 

their action. Even with the current knowledge on optimization of 

photomasks and ultraviolet curing, nanoneedle fabrication is still a 

significant challenge, in particular the nanoneedle strength. This will 

need to be tested and may necessitate the need for alternative materials 

to achieve needles of sufficient strength. 

The miniaturized flow-through cell: 

- has to be integrated to a syringe pump and water bath to make a wholly 

integrated device. A multichannel syringe pump will enable consistent 

flow rates across several MFtC coupled together and similarly a water 

bath immersing all the cells together will help ensure consistent 

temperature distribution throughout the whole system enabling, results 

which can be more reproducible. 

- could be attached to an autosampler for ease of sample collection. 

Commercial models from Permegear and other such companies come 
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with the options of autosampler to reduce manual sampling 

requirements and make the system more user-friendly. This will also 

enable us to look for potential customers and investors to 

commercialize the device. 

- improvement in design of the cells could be achieved using 3D printing. 

3D printing technology has grown leaps and bounces in the past few 

years and enables easy and precise designing of miniaturized platforms. 

With the help of experts in this area, MFtC design could be further 

optimized as per the needs of a particular study and hence making these 

cells easily customizable and highly adaptable to specific needs. 

- could be customized for microneedle permeation studies. So far 

microneedle mediated skin permeation studies have been carried out in 

conventional horizontal or vertical type Franz cells which are suitable 

for semisolid or liquid dosage forms. Microneedles are to be adjusted 

and clamped between the cells and hence the situation is not very ideal. 

Design of MFtC platforms that support microneedles in place for the 

length of the study without hampering the skin/microneedle geometry 

would be an ideal choice and will be suitable as microneedle is a 

growing field. 

- could be made disposable, which is then expected to revolutionize the 

in vitro testing, significantly reducing cross-batch contamination and 

lead times between experiments. This could be further made possible 

by looking for other cheaper raw materials and scaling up of production 

will further bring down the cost. 
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Appendix 1 Major methods of polymeric microneedle fabrication. 

Polymer/s or 

sugar used 

Technique Shape Length 

(µm) 

Base 

diameter 

(µm) 

Tip 

diameter 

(µm) 

Center-

to-center 

spacing 

(µm) 

Needles 

on an 

array 

Array size References Comments 

Polylactic/ 

polyglycolic acid 

MEMS 

masking/ 

etching 

Chisel tip, 

Beveled tip, 

Tapered cone 

570-

1500 

100-200 10-20 400-1400 120-225 9x9 mm Park et al. [122] Lens geometry and refractive index 

can be changed to control geometry. 

Complex etching procedures to create 

master structures. Heating used to melt 

polymer may not be ideal for drug 

encapsulation. 

Polymethyl 

methacrylate 

(PMMA) 

Polyvinyl alcohol 

(PVA) 

Deep X-ray 

lithography 

Tapered with 

long shafts 

600-

1000 

190-400 70-100 - 25-60 5-6 mm2 Moon et al. [123] 

and Perennes et al. 

[124] 

Complicated multistep x-ray exposure 

of polymer, creation of master 

structures of PVA by pouring PVA 

solution over PMMA coated with 

metal. 
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Polymer/s or 

sugar used 

Technique Shape Length 

(µm) 

Base 

diameter 

(µm) 

Tip 

diameter 

(µm) 

Center-

to-center 

spacing 

(µm) 

Needles 

on an 

array 

Array size References Comments 

Polylactic acid Excimer laser Straight, with 

jagged sides 

1000 230 - - - - Aoyagi et al. [125] Laser cutting and heating to high 

temperatures is required. 

Carboxymethylce

llulose (CMC), 

amylopectin, 

bovine serum 

albumin 

PDMS 

molding 

Conical, 

Pyramidal 

600-800 300 25 - - - Lee et al. [92] Creation of master structures using 

toxic SU-8 photoresist. Matrix 

preparation at high temperatures may 

not be suitable for thermolabile drugs. 

Polyvinyl 

pyrrolidone 

PDMS 

molding, UV 

lithography 

Conical 650 300 5 - 100 - Sullivan et al. [116] Longer exposure to UV light. Similar 

approach in [192] 
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Polymer/s or 

sugar used 

Technique Shape Length 

(µm) 

Base 

diameter 

(µm) 

Tip 

diameter 

(µm) 

Center-

to-center 

spacing 

(µm) 

Needles 

on an 

array 

Array size References Comments 

Dextrin, 

Chondroitin 

sulphate 

Dipping 

method 

Conical - - - - Single 

needles 

- Ito et al. [126] Individual needles restrict drug 

loading capacity. Similar approach 

in [119, 130] 

Maltose Metal mold 

casting 

Tetrahedron 150-

2000 

- > 5 350 µm  

for 500 

µm 

needles 

28 - Miyano et al. [128] Metal molds need to be prepared by 

etching. Heating of maltose to 140 ° 

C to melt and pour in mold.  

Chondroitin 

sulphate 

Mold casting Conical 500 300 - - 100 1 cm2 Ito et al. [304] Separate preparation of molds 

required 

Polyetherimide, 

polycarbonate 

Inclined 

lithography, 

electroformin

g, PDMS 

molding 

Square pillar 

or 

Microneedle 

rollers, with 

square pillars 

500-

1500 

- 2 500-200 17 - Han et al. [305] 

You et al. [306] 

Complex multistep procedure of 

inclined UV lithography of SU-8 to 

create Nickel master structures 

followed by PDMS molding. 

Related method used in [131] 


