
ENHANCING SIMULATION OPTIMIZATION METHODS
USING SMOOTHING AND METAMODELING

TECHNIQUES

MA SICONG

(B.Eng, Shanghai Jiao Tong University, China)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS
ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE
2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48678667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby declare that the thesis is my original

work and it has been written by me in its entirety.

I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any

degree in any university previously.

Ma, Sicong

13 August 2013

i

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my main
supervisor, Dr. Kim Sujin. Without her supervision, encouragement, support
and patience, this thesis would not be possible. Her invaluable advice will
always guide me for the rest of my life. I would also like to thank my co-
supervisor, Prof. Tang Loon Ching, who is always patient and supportive of my
work.

I also owe my gratitude to Dr. Cheon Myungsuk, Dr. Xu Lu and Dr. Song
Jinhwa from ExxonMobil Research and Engineering Company. Their invalu-
able comments and advice during our collaboration help a lot for my work.

My thanks also go to other professors and my seniors in ISE department of
NUS for their help and encouragement though all the way. They are Prof. Goh
Thong Ngee, A/Prof. Poh Kim Leng, A/Prof. Lee Loo Hey, Dr. Ng Tsan Sheng,
Fu Yinghui, Mu Aoran, Chen Liqin, Wang Qiang, and Li Juxin.

Last but not least, I would like to thank my parents for their continuing
support.

ii

Contents

1 Introduction 1
1.1 Simulation Optimization and Methods 1
1.2 Direct Search Methods . 4
1.3 Motivations and Objectives . 5
1.4 Dissertation Outline . 7

2 Literature Review 9
2.1 Direct Search Methods . 9

2.1.1 Direct Search Methods in Early Stage 9
2.1.2 Recent Variants: GPS and MADS 11
2.1.3 GSS Methods . 13
2.1.4 Improvements on Efficiency 14

2.2 Sample Average Approximation (SAA) Methods 15
2.2.1 Methodologies and Variants 15
2.2.2 Theoretical Properties 17

3 Smoothed SAA Methods for Probability Optimization Problems 20
3.1 Introduction . 20
3.2 Smoothed SAA Methods for Probability Optimization 26
3.3 Convergence of Solution Set 29
3.4 Numerical Experiments . 31

3.4.1 Purpose and Test Problems 31
3.4.2 Implementation and Results 32
3.4.3 Comparison with Other Algorithms 38

3.5 Conclusions . 40

iii

4 Retrospective-Approximation Algorithms Using Direct Search Meth-
ods 43
4.1 Introduction . 43
4.2 Retrospective-Approximation Algorithms Using Direct Search

Methods . 45
4.2.1 Outlines of the RA-DS Method 46
4.2.2 Determination of N j and ∆tol

j 48
4.2.3 Numerical Experiments 51

4.3 Retrospective-Smoothing Algorithms Using Direct Search Meth-
ods for Probability Optimization Problems 52
4.3.1 Outlines of the RS-DS Methods 52
4.3.2 Choice of Parameters and Numerical Experiments 53

Choice of ε j . 53
Comparison with the Smoothed SAA Methods 56

4.4 Conclusions . 60

5 Direct Search Methods Combined with Local Metamodeling 61
5.1 Introduction . 61
5.2 Some Metamodeling Techniques 62

5.2.1 Linear Interpolation and Regression 62
5.2.2 Minimum Frobenius Norm Model 63
5.2.3 Kriging Models . 65

5.3 Framework of Improved Algorithms 67
5.4 Asymptotic Performance Analysis 70

5.4.1 Performance of Local Interpolation and Regression . . . 70
Convergence analysis for the case with ρ ≡ 0 71
Convergence analysis for the case with ρ(∆(k)) 6= 0 . . . 73

5.4.2 Asymptotic Performance of mK 75
5.5 Finite-time Performance Analysis 76

5.5.1 Regression Metamodels 77
5.5.2 Expected Number of Evaluations of Kriging 78

5.6 Numerical Experiments . 79
5.7 Conclusions . 81

6 Conclusions and Future Work 85

iv

Bibliography 87

A Summary of Test Problems 96

v

Summary

Simulation optimization is widely applied and can be found in many fields
with the development of computer technology. However, there are many is-
sues arise in dealing with simulation optimization problems, which make them
generally more difficult to solve compared with the ordinary optimization prob-
lems. One of the main issues is that the simulation programs could be extremely
expensive and time consuming. Also, the form of the objective function is un-
known and the response value returned by simulation experiment possesses ran-
dom noise. The purpose of this study is to explore enhanced simulation al-
gorithms to reduce simulation evaluations in both stochastic and deterministic
cases.

In the stochastic case, a specific type of optimization problem with a prob-
ability objective is studied. Sample average approximation (SAA) method is
one of the most popular methods to deal with stochastic optimization problems.
Since probability functions essentially are expected value of an indicator func-
tion, optimization algorithms exhibiting a local convergence cannot work well
on them when the SAA method is applied since the corresponding SAA func-
tion is ill-structured. We propose a smoothed SAA method, which incorporates
smoothing techniques into the classic SAA method, so that a wide range of
nonlinear optimization algorithms can be successfully applied even when the
sample size is small. The convergence results of the method are also discussed.

The method is further developed by specifically focusing on direct search
methods. We also incorporate our smoothing technique into the retrospective-
approximation (RA) method, which solves a sequence of SAA problems with
increasing sample size and decreasing error-tolerance driven by a computational
strategy. The choice of parameters in the RA method in combination with direct
search algorithms is investigated. According to the numerical results, the new
algorithm performs better than the standard SAA method with smoothing tech-
nique. It uses less simulation evaluations in average to achieve a given accuracy
level and exhibits more stable performance. In conclusion, the two enhanced
methods provide new options to the users who deal with expensive probability
simulation optimization problems.

In the deterministic case, we propose a new framework to incorporate local
metamodeling techniques into direct search methods to improve the efficiency

vi

of the algorithms without affecting the convergence. The principle behind is
to construct a local picture based on the available information so that a more
promising candidate can be identified and visited first. We discuss the con-
ditions on the local metamodels and the objective functions to guarantee the
improvement of direct search algorithms. Numerical results with a wide vari-
ety of test problems show that a large amount of evaluations can be save by
using direct search methods with local metamodeling techniques even when the
regularity conditions are not fully satisfied.

vii

List of Tables

3.1 Comparison with other algorithms 39

4.1 µ
(
‖x∗budgt− x∗‖

)
based on 100 runs, where x∗budgt is the so-

lution obtained for a given limited budget and a random initial
guess . 52

4.2 Parameters settings for different schemes of ε j 53
4.3 Average evaluations consumed by the RS-DS method under dif-

ferent schemes of {ε j} and different values of error-tolerance
. 55

4.4 Choice of parameters for the RS-DS method 56
4.5 Statistical performance of the solutions obtained by the RS-DS

method and the smoothed SAA methods based on 1000 runs . . 59

5.1 A summary of test problems. 79

viii

List of Figures

1.1 Simulation optimization process (Lacksonen, 2001) 2

2.1 A GSS method . 14

3.1 SAA problems of Example 1 24
3.2 Applying a direct search algorithm on the SAA problems of Ex-

ample 1 . 25
3.3 NEW STEP function . 27
3.4 Smoothed indicator function Φ̂(x,ξ ,ε) 28
3.5 Smoothed SAA functions with different N and ε 29
3.8 Iteration history of direct search method on true and smoothed

SAA problems . 33
3.9 Multiple runs performance of direct search methods on standard

and smoothed SAA problems 35
3.10 Failure times out of 100 runs 37
3.6 SAA functions with different N 41
3.7 Smoothed SAA functions with different N and ε 42

4.1 RA-DS method . 47
4.2 The RS-DS method . 54
4.3 Iteration history of the RS-DS method and the smoothed SAA

method . 57
4.4 Smoothed SAA with a small sample fails to converge to the true

solution . 58

5.1 GSS algorithm with local metamodeling techniques. 68
5.2 Results for case with ρ 6= 0 . 83
5.3 Results for case with ρ ≡ 0. 84

ix

Chapter 1

Introduction

1.1 Simulation Optimization and Methods

Simulation optimization, also known as simulation-based optimization, or opti-
mization for simulation, can be defined as the process of finding the best input
variable values from among all possibilities without explicitly evaluating each
possibility(Carson and Maria, 1997). Simulation optimization is widely applied
and can be found in many fields including finance, aerospace engineering, call
center designs, oil detection, and medical treatment (Fu and Hu (1995); Semini
et al. (2006); Rani and Moreira (2010); Carson and Maria (1997); April et al.
(2003)). As its name suggests, simulation optimization can be considered an
integration of classic optimization techniques and simulation analysis. The cor-
responding objective function is an associated measurement of an experimental
simulation, which could be either physical or computer-based. Due to the lack
of mathematical expression of the objectives, algorithms for simulation opti-
mization problems are implemented based on the output measure obtained from
the simulation program, while in the standard optimization scheme, algorithms
rely more on the mathematical information provided by the objective function.
Figure 1.1 below illustrates the process of simulation-based optimization.

Simulation optimization problems can be classified into various categories
depending on the different criteria used. Depending on whether the simula-
tion responses are deterministic or affected by noise or uncertainties, simula-
tion optimization can be divided into deterministic cases and stochastic cases.
Simulation optimization methods have also been applied to applications with

1

Optimization

Algorithm

Simulation

Program

Output Performance

Measure

Input Values

Solution

Figure 1.1: Simulation optimization process (Lacksonen, 2001)

a single objective, applications that require the optimization of multiple crite-
ria, and even applications with non-parametric objectives (Carson and Maria,
1997). According to the nature of decision variables, simulation problems can
likewise be classified as discrete state space problems or continuous state space
problems.

It is worth mentioning that even in deterministic cases, simulation optimiza-
tion problems are more difficult to solve compared with ordinary determinis-
tic optimization problems. Some reasons that simulation-based optimization
problems are difficult to deal with are highlighted by Banks (2005, p. 488) and
Kleijnen et al. (2010). In summary, one of the most important causes is that
under the simulation schemes, little information about the structure of the ob-
jective function is available. As a result, derivative information, which usually
plays a critical role in the ordinary optimization algorithms, cannot be applied
directly. Another crucial factor is that simulation programs might be so compu-
tationally expensive that a single run may take ten days ((Kleijnen et al., 2010)).
Therefore, these two issues are typically among the top concerns during the
development of algorithms for simulation optimization problems.

In this study, we investigate some enhanced methods and techniques to deal
with a type of continuous and stochastic simulation optimization problems with
a single objective.

Many algorithms and techniques have been developed for solving contin-
uous simulation optimization problems. In addition, there are many excellent
review papers on the subject of simulation-based optimization methods, such as
Fu (1994); Banks (1998); Andradóttir (1998); Swisher et al. (2000); Fu (2002);
Gosavi (2003).

2

One popular strategy to deal with the randomness in the stochastic schemes
is sample average approximation (SAA) methods, also referred to as sample-
path optimization. SAA methods use simulation to generate one sample path,
and then obtain an approximate deterministic optimization problem (SAA prob-
lem) based on the sample path. After the deterministic approximation is ob-
tained, any appropriate algorithm can be applied on it to get a solution, which
will be considered as an estimator of the solution to the true problem.

There are many available algorithms can be applied on the deterministic
problem that SAA methods generate. In a general standard, they can be classi-
fied into gradient-based methods and derivative-free methods, based on whether
the algorithm requires derivative information or constructs an approximation of
it.

Gradient-based methods estimate the gradient of the response function using
a set of gradient estimation skills to measure the shape of the objective function
and then employ some ordinary deterministic optimization algorithms to solve
the problems (Carson and Maria, 1997). Gradient-based simulation optimiza-
tion procedures have attracted a large amount of research attention over the past
decade, due largely to the enormous amount of research attention also given to
gradient estimation techniques. Some of these estimation techniques include
finite difference (FD) estimation, likelihood ratio estimation, perturbation anal-
ysis (PA) and frequency domain experiments (PDE) (Fu, 1994). However, there
are cases where none of these approaches works because, for a variety of rea-
sons, derivative information is unavailable or unreliable in many cases. Conse-
quently, derivative-free methods have always been needed.

Derivative-free methods seek to solve problems with no derivative informa-
tion assumed or estimated. Two typical examples of such deterministic methods
are trust region methods and direct search methods. The idea of trust region
methods is to construct and optimize a local quadratic model iteratively within a
‘trust region’. The size of this region is modified during the process, depending
on how well the local model agrees with the true function evaluations. More
details of the trust region methods can be found in Conn et al. (2000). Direct
search methods also work iteratively, but instead of building local models, the
algorithms visit a set of candidates along a positive-spanning direction set and
decide where to move based only on the responses obtained from the candidates.
For a quick and recent review of derivative-free algorithms and comparison of

3

software implementations, we recommend Rios and Sahinidis (2012). In addi-
tion, Vicente and Custódio (2012) introduce derivative-free optimization com-
prehensively in their work with a thorough statement of the art of derivative-free
optimization methods, and a detailed description of the theory.

This study tries to propose a variant version of SAA methods to specifically
solve a type of probability simulation optimization problems. Direct search
methods, one of the derivative-free methods designed for deterministic simu-
lation optimization problems, are proposed to work together with the modified
SAA methods due to the methods’ prominence, frequency of use, and appealing
properties, which are highlighted next.

1.2 Direct Search Methods

Direct search methods are a class of deterministic optimization methods de-
signed particularly for black-box optimization problems with continuous input
space. The algorithms proceed iteratively, evaluate the objective functions at a
finite number of points at each iteration, and decide which actions to take next
exclusively based on those function values (or simulation responses) without
any explicit or implicit derivative approximation or model building.

Direct search methods were first developed in the 1950s (Lewis et al., 2000),
and remain popular with practitioners in the scientific and engineering commu-
nities, largely because they are straightforward to implement and do not require
derivatives. However, they were not given much attention by the mathematical
optimization community until the early 1990s, due to their lack of convergence
proof (Swann, 1972). The situation was changed with the publication of a pa-
per about convergence analysis on the direct search methods in 1991 (Torczon,
1991).

With the sophisticated development of gradient-based methods in recent
years, direct search methods now appears less appealing. Many refined algo-
rithms and software of gradient-based methods are available and easy to use,
with diverse options to generate approximations to the derivatives. Furthermore,
users can compute derivatives effortlessly with the help of automatic differen-
tiation tools. There are also modeling languages (Brooke et al., 1996; Fourer
et al., 1993) that can compute the gradient and/or the Hessian information au-
tomatically. In fact, to solve an unconstrained problem for which accurate first

4

derivatives can be obtained, Kolda et al. (2003) recommend a gradient-based
method the first choice, rather than direct search methods.

In spite of this, direct search methods are still needed for a few reasons
relating to their nature. The first reason is that direct search methods remain
an effective option, and are sometimes the only option for some types of sce-
narios. One typical and intuitive example is non-numerical functions, whose
output values are not numerical in nature. Users compare objective values and
decide which is better in terms of qualitative measure instead of quantitative
data, which implies that gradient-based methods cannot work here as there is no
gradient to use in any way. Another situation, which is happening more often
in real practice, is that of gradient approximation techniques sometimes failing
to give a reliable gradient estimation, in which cases gradient-based methods
might fail to work well or even collapse.

Another important reason for the continuing relevance of direct search meth-
ods is that a large number of them can provide guarantees of convergence. Al-
though direct search methods were originally designed for unconstrained opti-
mization problems of a real-valued function, many extensions for constrained
optimization problems have recently been developed. In fact, direct search
methods can nowadays reach global convergence under mild conditions for a
wide range of problems. More details will be reviewed in Chapter 2.

Therefore, there are conclusive reasons to believe that direct search methods
will remain in favor with the simulation optimization community, including both
mathematicians and practitioners.

1.3 Motivations and Objectives

The main aim of this study is to work on direct search methods to improve their
performance efficiency and to extend the scale of their application in the field of
simulation optimization. The study involves both stochastic and deterministic
cases.

For the stochastic cases, it is mentioned in Section 1.1 that one typical way
to deal with stochastic simulation optimization problems is the SAA method,
which approximate the true problem by constructing a deterministic function
based on a sequence of samples, and then employing an appropriate determin-
istic algorithm to solve the approximation problem. However, in the process of

5

approximation, some structures of the original problem, such as continuity or
differentiability, may be changed, making deterministic algorithms cannot work
well on the SAA problems. One type of problems that is dealing with this issue
and also widely seen in practice is a family of optimization problems with a
probability objective function.

Probability functions can be also considered as the expectation measure of a
random indicator function. Under the schemes of simulation optimization, the
closed form of the true objective is not available, yet the distribution of the ran-
dom factors is supposed to be known. According to the idea behind the SAA
methods, the original probability objective can be approximated by averaging
a sample of indicator values. However, due to the properties of indicator func-
tions, the SAA problem is discontinuous as long as the sample size used is finite.
Furthermore, since the possible values of the SAA function are limited by the
sample size used in the approximation, it can be deduced that when the sample
size is small, there is a high chance that large areas of flat regions exist. If a
local convergent deterministic algorithm is applied to such a SAA problem, it
can easily get trapped in the flat region and returns a wrong solution.

To help deterministic algorithms that exhibit a local convergence to deal with
this issue, we propose two improved SAA methods for probability optimization
problems, which will enable the local convergent algorithms to work much more
smoothly even when the sample size is small. The first proposed method com-
bines smoothing techniques with the idea behind the standard SAA methods,
and the method is further improved in the second work by combining with the
framework of retrospective-approximation algorithms. Under mild conditions,
the solution set of the proposed methods converges to the counterpart of the true
problem.

The two enhanced methods will provide new options to users who are deal-
ing with expensive simulation-based probability optimization problems. Due to
the smoothing tricks introduced here, the performances of the proposed methods
are noticeably better in our numerical experiments. Furthermore, the dominant
position of the proposed methods tends to be more obvious as the sample size
decreases, implying that a large number of function evaluations can be saved.

In addition to the stochastic cases, we also attempt to improve direct search
methods under the deterministic schemes. Driven by the need to optimize ex-
tremely expensive simulation-based problems, we propose an enhanced direct

6

search method in the deterministic cases which makes extra use of visited points
to obtain a picture of the local region. Combined with local metamodeling tech-
niques, the enhanced algorithm makes a more flexible and intelligent decision
about where to move first. Due to its capability to select a more promising can-
didate wisely, the proposed algorithm may find optimal solutions more quickly,
and hence helps to reduce the simulation budget. The adjusted algorithm retains
all the merits of the well established direct search methods without affecting
the convergence results they exhibit, and therefore the quality of the obtained
solution is not sacrificed.

We are also interested in the performance analysis from a theoretical point
of view, and hence the study also mathematically examines the assistance pro-
vided by the local metamodels. The performance analysis provides insights into
whether metamodels can really improve the efficiency of direct search methods,
and how much exactly they can do. Due to different needs of real applica-
tions, two performance measures are proposed to quantify the performance of
new methods from an asymptotic view and a finite time view respectively. The
proposed algorithm is tested on a set of variants test problems, and numerical
experiments arrive at the supporting conclusion that evaluations can be saved by
using the adjusted algorithm.

1.4 Dissertation Outline

Chapter 2 provides a comprehensive review of two types of simulation optimiza-
tion methods that are closely related to this thesis, namely direct search methods
and sample average approximation (SAA) methods. Research gaps that exist be-
tween the up-to-date literature and the practical requirements are elaborated on,
and suggest the motivations of this study.

In Chapter 3 a smoothed SAA method is proposed to smoothly approximate
probability optimization problems under the simulation schemes and it is shown
that asymptotically the solution set of the smoothed problem converges to the
counterpart of the true problem. By introducing smoothing techniques to a SAA
probability function, we should be able to prevent deterministic optimization al-
gorithms that exhibit a local convergence from getting trapped in a flat region.
Based on the numerical results, the smoothed SAA method significantly de-
creases the chance of the algorithm failing to work, and the proposed method

7

also perform fairly well when the sample size is small.
The smoothed SAA method is extended in Chapter 4 with the introduction of

a retrospective technique. The developed method, named retrospective smooth-
ing SAA (RS-SAA) method, optimizes a sequence of smoothed SAA prob-
lems with an increasing sequence of sample sizes and decreasing sequences of
smoothing parameters and mesh tolerances. By using the retrospective frame-
work, the RS-SAA method can start from a very small sample size and auto-
matically increase the size of samples once a solution of a certain accuracy is
obtained. Given the convergence results in Chapter 3, similar results can be ob-
tained for the RS-SAA method. The selection of parameters are discussed and
numerical tested as well.

Chapter 5 proposes a framework for introducing local metamodels to a class
of direct search algorithms in deterministic optimization problems. The pro-
posed algorithm aims to improve the efficiency of the original standard direct
search methods without affecting the convergence results. The framework of
the improved algorithm is presented. We also discuss the conditions of the local
metamodels and the objective functions under which the benefit of using meta-
models is guaranteed. Numerical results with a wide variety of test problems
show that using local metamodels can help to save simulation evaluations even
when the regularity conditions are not fully satisfied.

Chapter 6 summarizes the work of this thesis and discusses several direc-
tions for further research.

8

Chapter 2

Literature Review

2.1 Direct Search Methods

For simplicity, we restrict our attention in this section to the following optimiza-
tion problem:

min
x∈X

f (x),

where f : Rd → R, and X ⊂ Rd is a given feasible set. We assume that f is
continuously differentiable, but the closed form of it and the information about
the gradient of f is either unavailable or unreliable.

2.1.1 Direct Search Methods in Early Stage

The first work using the idea of direct search methods dated back from Box
(1957), who outlined a heuristic procedure called evolutionary operation to
solve the problem of improving industrial processes and the shortage of tech-
nical personnel. Evolutionary operation relied only on simple designs and com-
parison of observed function values. This work also significantly defined a clear
distinction between the direct search methods and response surface methodol-
ogy, which was firstly proposed by Box and Wilson (1951). The phrase ‘direct
search’ did not appear for the first time until in 1961 in the work of Hooke and
Jeeves (1961). The authors defined direct search methods as “sequential exam-
ination of trial solutions involving comparison of each trial solution with the
‘best’ obtained up to that time together with a strategy for a determining what
the next trial solution will be”, which highlighted the core attribute of direct

9

search methods even is valid today.
During the following decade, direct search methods were actively developed

and remained popular with users in the scientific and engineering field because
they do work well in practice though they are based on heuristics. Lewis et al.
(2000) distinguished the variants in this period into three types, which are: pat-

tern search methods, simplex methods, and methods with adaptive sets of search

directions. Though this classification only focused on the classical direct search
methods during the period of 1960-1971, most of the wide variants of algo-
rithms developed subsequently can still be considered modifications of the three
basic structures.

The work of Davidon (1991), which was originally published in 1959, pro-
vided an early form of pattern search algorithms. An abstract definition of the al-
gorithms for solving nonlinear unconstrained optimization problems was firstly
introduced by Torczon (1991). The basic idea of simplex methods, which belong
the second category of direct search methods, is from Spendley et al. (1962),
who constructed a nondegenerate simplex in Rd (a set of d + 1 points in Rd)
and used the simplex to lead the move. Nelder and Mead (1965) improved the
simplex search by adding expansion, contraction, and shrink move on the sim-
plex to accelerate the search process, which has gained enduring success. As for
the last category of direct search methods, methods with adaptive sets of search
directions, as the name suggests, construct direction sets iteratively using the
curvature information of the objective that is obtained before to accelerate the
search. Several representative works belong to this family include Rosenbrock
(1960); Powell (1964); Zangwill (1967).

Though these early developments have established a solid stage for their fol-
lowing achievements, direct search methods had not been recognized by mathe-
maticians until by 1971, when a proof of first order convergence for a simplified
version of pattern search methods came to light (Polak, 1971). It proved that
a method named ‘method of local variations’ converges to a stationary point
under the assumption that f (x) is at least once continuously differentiable. In
the same year, using a stronger assumption, Cea et al. (1971) showed the con-
vergence result of Hooke and Jeeves (1961)’s pattern search algorithm. Polak
(1971) and Cea et al. (1971) are two important works in the justification of di-
rect search methods, not only because they dispelled the popular view in that
time that direct search methods are just heuristic approaches with no conver-

10

gence derived, but also because they successfully identified the essential ingre-
dients required for the general convergence theories of direct search methods
(Lewis et al., 2000). Many recent works extended the theory framework of Po-
lak (1971) and Cea et al. (1971). One of the representatives is performed by
Torczon (1997), who relaxed some conditions required for the convergence, and
hence made the convergence conclusion be more general to cover more cases.

On the other hand, compared with the convergence works on pattern search
methods, Nelder-Mead simplex methods do not show a robust performance in
terms of convergence despite of the fact that they can work pretty well most of
the time. All we have is that Nelder-Mead can be guaranteed to converge to a
stationary point under mild conditions in R1 (Lagarias et al., 1998). As a matter
of fact, McKinnon (1998) made a final conclusion that proving first order con-
vergence for the Nelder-Mead methods in higher dimensions is impossible. Due
to this reason, we will focus our subject of this study on the other two categories
of the direct search methods: pattern search methods and methods with adaptive
set of search directions. Some newly developed algorithms derived from these
two ancestors are reviewed next.

2.1.2 Recent Variants: GPS and MADS

Two types of direct search methods that are most popular nowadays are gener-
alized pattern search (GPS) methods and mesh adaptive direct search (MADS)
methods. As the names suggest, they are correspondingly modified from the two
basic themes (patterns search methods and methods with adaptive set of search
directions) have been reviewed in the previous part. Before going in depth into
each of them, some common features they share are highlighted.

Both GPS and MADS have two stages at each iteration, named a SEARCH
stage and a POLL stage. The SEARCH stage is flexible and optional. It allows
evaluations of objectives at any finite number points to find a better objective
value. There is no specific rule of points selection as long as their number re-
mains finite. The cost of its flexibility and optionality is that the SEARCH stage
cannot be used in the convergence analysis. The convergence is guaranteed
by the POLL stage, which is implemented after the SEARCH only when the
SEARCH fails to find a better point. The POLL stage is more like a local search.
It visits a set of candidates locating along a positive-spanning direct set, and de-

11

cides what to do next only based on the function values. A positive-spanning
set in Rd means that any nonnegative linear combinations of its elements must
span Rd .

As a matter of fact, the difference between the GPS and the MADS lies
exactly in the POLL stage (Audet and Dennis Jr, 2006). More specifically, they
have different mechanisms to generate the direction set at each iteration. The
directions used by MADS are selected in a way so that asymptotically they are
not confined to a finite set, whereas for GPS, the number of direction sets can
be formed is constant over all iterations.

In the development of direct search methods, much attention has been placed
on exploring the types of problems on which direct search methods can work
with a guarantee of convergence. As a matter of fact, a wide range of problems
can be solved by sophisticated direct search methods with a global convergence
currently. By saying global convergence in the nonlinear programming litera-
ture, we mean first-order convergence from an arbitrary starting point.

The framework of GPS is firstly introduced by Torczon (1997) for uncon-
strained optimization problems. Lewis and Torczon (1999) developed the GPS
algorithms to bound constrained optimization. Later, the framework of GPS was
improved to solve linearly constrained optimization problems (Lewis and Torc-
zon, 2000), and more generally for problems with nonlinear constraints (Audet
and Dennis Jr, 2004). Liu and Zhang (2006) designed a GPS framework for
linearly equality constrained optimization problems. Bogani et al. (2009a) pro-
posed a GPS method to solve a class of highly structured nonsmooth minimiza-
tion problems. In the same year, Bogani et al. (2009b) proposed a generating set
search method for solving nonsmooth optimization problems where the objec-
tive function is locally Lipschitz continuous and piecewise continuously differ-
entiable on a finite family of polyhedra. Sriver et al. (2009) extended GPS for
mixed variable optimization with stochastic objective functions. More recently,
Custódio et al. (2011) proposed a direct multisearch (DMS) methodology for
multiobjective optimization and they proved that at least on limit point of the
sequence of iterates generated by the novel method lies in a stationary form
of the Pareto front. Vicente and Custódio (2012) contributed analysis of di-
rect searches for discontinuous functions, showing that contribute Rockafellar
derivatives are also nonnegative along the limit directions of those subsequences
of unsuccessful iterates when the function values converge to the function value

12

at the limit point.
As for the MADS, Audet and Dennis Jr (2006) first introduced it for achiev-

ing global convergence in the nonsmooth case. MADS is able to converge to
a poinst where the Clarke generalized directional derivative is nonnegative for
a set of directions dense in Rd , which is different from the result of GPS that
is just for a finite set of directions. Later, Audet et al. (2008) proposed a way
to combine MADS with the Variable Neighborhood Searchmetaheuristic (VNS)
for nonsmooth constrained optimization. The convergence of MADS is retained
while the far reaching exploration features of VNS to move away from local so-
lutions is obtained as well. Audet et al. (2010) studied a mesh adaptive direct
search algorithm for nonsmooth functions subject to general constraints.

There are many studies about practicing direct search methods in real appli-
cations as well, which cover the field of power system, chemical engineering,
biology and many others (Al-Sumait et al., 2007; Güneş and Tokan, 2010; Hos-
seini et al., 2011; Lee et al., 2011).

All the works mentioned above are for deterministic cases. A few works
have been done to extend direct search methods to stochastic cases as well. An-
derson and Ferris (2001) considered the case where the responses obtained is
affected by a white noise and it gave the conditions under which direct search
could still work and guarantee a first-order convergence. Kim and Zhang (2010)
adapted a type of direct search methods for standard stochastic optimization
problems, and gave the conditions for convergence using a variable-number
sampling scheme.

2.1.3 GSS Methods

As mentioned in Section 2.1.2, for both GPS and MADS, the SEARCH stage
is flexible and optional, and it does not help to reach a global convergence. Fo-
cusing only on the POLL stage, the framework of GPS and MADS can be both
considered derivatives from a classic direct search method named generating-
set search (GSS) method introduced by Kolda et al. (2003), whose framework is
presented in Figure 2.1. Without further notice, we assume an empty SEARCH
stage by default for our work coming afterward and the notations used in Fig-
ure 2.1 will be reserved through out this thesis.

13

Initialization:
For given f : Rd → R, set k = 1, and initialize:
• x(k) as the starting point
• ∆tol as the mesh size, or step-length tolerance to terminate the algo-

rithm
• ∆(0) > ∆tol as the initial mesh size
• ρ : [0,+∞)→R as a continuous forcing function such that ρ(t)/t→ 0

as t ↓ 0, or ρ ≡ 0.
Ensure:

1: for each iteration k = 1,2, · · · do
2: generate a direction set D(k) under some technical conditions;
3: if ∃d(k) ∈ D(k) such that f (x(k)+∆(k)d(k))< f (x(k))−ρ(∆(k)) then
4: set x(k+1) = x(k)+∆(k)d(k);
5: set ∆(k+1) = γ(k)∆(k), where γ ≥ 1 denotes an expansion factor;
6: else
7: set x(k+1) = x(k);
8: set ∆(k+1) = θ (k)∆(k), where θ < θmax < 1 denotes a contraction factor;

9: if ∆(k+1) < ∆tol then
10: terminate the algorithm ;
11: end if
12: end if
13: k← k+1;
14: end for

Figure 2.1: A GSS method

2.1.4 Improvements on Efficiency

It can be seen from Section 2.1.2 that mathematical communities have put lots
of effects into the study and develop the convergence performance of direct
search methods. By now, as a matter of fact, for a large number of direct search
methods, it is possible to provide rigorous guarantees of convergence (Kolda
et al., 2003, section 1.3.1).

However, one issue concerned by the users of direct search methods, other
than the people in the mathematical community, is that this asymptotic conver-
gence might be slow (Kolda et al., 2003, section 1.3.1). In fact, the truth in the
real simulation problems is that many simulations are so expensive that a more
efficient algorithm which can obtain a solution with less simulation consumed is

14

much preferred. However, to the best of our knowledge, there has not been many
efforts in trying to develop efficient implementations of direct search methods.

One of the earliest and also most developed trend is mentioned by Lewis
et al. (2000), that is to use adaptive sets of search directions instead of fixed ones.
Another trend to improve efficiency is to let the algorithm run parallel (Hough
et al., 2002; Regis and Shoemaker, 2010). However, this method focuses on the
saving in the running time, rather than the essential simulation evaluations that
are assumed. Abramson (2005) looked at the cases where some incomplete form
of gradient information is available. He showed that the information can be used
to save some function evaluations. Andradóttir and Prudius (2009) studied GPS
and proposed a framework to maintain an appropriate balance between global
search, local search, and estimation. The numerical experiment results of these
two works were good, but little mathematical justification was provided on their
proposed methods.

Custódio and Vicente (2007) used simplex derivatives in the pattern search
methods to reorder the sequence to visit candidate points and the work has been
extended into nonsmooth functions by Custódio et al. (2008). Both works focus
on the deterministic cases. Though the effect of the improvement is analyzed,
the mathematical conditions required for the objective functions are not stated.
Furthermore, the numerical results presented in the work were not clearly sup-
portive. Custódio et al. (2010) used quadratic underdetermined metamodeling
in the SEARCH stage of GPS and showed good performance with some numer-
ical tests. Still, the mathematical justification of the proposed algorithms was
not discussed.

2.2 Sample Average Approximation (SAA) Meth-

ods

2.2.1 Methodologies and Variants

Sample average approximation (SAA) methods, also referred as Monte Carlo
sampling methods (Lasdon and Popova, 2005; Shapiro, 2003; Homem-de Mello
and Bayraksan, 2013), Monte Carolo simulation approaches (Rubinstein and
Kroese, 2011), or sample-path methods (Robinson, 1996), are one of the classic

15

methods to deal with stochastic simulation optimization problems. The reason
that SAA methods stay popular in the field of stochastic simulation optimization
in that they are easily understood and implemented, and also can be surprisingly
efficient for some classes of stochastic programming problems. As a matter of
fact, in many practical applications, SAA may be the only reasonable way of
dealing with the objective function (Shapiro, 2001).

Consider the optimization problem

min
x∈X

f (x) := E [F(x,ξ)] , (2.1)

where F : Rd ×Ξ→ R, the expectation is taken with respect to a probability
measure defined on a sample space (Ξ,F), and X ⊂ Rd . Assume that for
every x ∈X the expectation f (x) is well defined.

In the scenario of simulation optimization, the closed form of the objective
function f (x) is not available, neither can f (x) be observed or computed directly.
However, we suppose that the distribution of the random element ξ is known
and it does not depend on x. therefore a sample of N realizations of ξ can be
generated. In SAA, a sequence of samples {ξ1,ξ2, · · · ,ξN} is first generated
from the same distribution of ξ. With the samples, one can estimate the true
expectation function f (x) by the corresponding sample average function:

f̄N(x) :=
1
N

N

∑
i=1

F(x,ξi). (2.2)

Once the samples are realized, the function (2.2) becomes deterministic, and
any proper deterministic optimization algorithms could be applied to solve the
SAA problem

min
x∈X

f̄N(x).

It can be seen that SAA is essentially not an algorithm itself; it refers to a method
to approximate the original objective problem by using a sample average func-
tion.

Though the origin of the approach is difficult to point, some variants of
the SAA method were suggested by various researchers over the year attribute
to the simplicity of the idea behind. Geyer and Thompson (1992) employed
Monte Carlo techniques based on Gibbs sampling to compute Maximum Like-

16

lihood estimates. The similar idea was also suggested in the work of Rubinstein
and Shapiro (1993). SAA methods are employed in the stochastic programs in
a wide range of applications such as finance (Rockafellar and Uryasev, 2002;
Alexander et al., 2006), engineering design (Rockafellar and Royset, 2010), in-
ventory management (Xu and Zhang, 2009), power system planning (Linderoth
et al., 2006) and many others.

One of the variants of SAA methods that relates to this thesis is a type of se-
quential sampling approach. Homem-de Mello and Bayraksan (2013) described
this method as ‘an iterative approach whereby the optimization alternates with
the sampling procedure’. The idea behind employing the sequential sampling
approach is to save sampling effort in the early stage of the searching, when the
current solution is far from the optimal solution, and increase the sample size
as the solution approaches closer to the optimal one. Driven by this rationale,
Chen and Schmeiser (2001) proposed the Retrospective Approximation (RA)
method for a general type of stochastic root finding problems. RA solves a se-
quence of root finding problems with an increasing sequence of sample size and
a decreasing sequence of solution tolerance. Based on the same need of sav-
ing evaluations, Deng and Ferris (2009) developed a variable-number method to
choose appropriate number of samples by using Bayesian analysis techniques
at each iteration. Pasupathy and Schmeiser (2009) developed a family of RA
algorithms named Bounding RA to solve a certain type of multidimensional
stochastic root finding problems, and study the rate of convergence and choice
of parameters of RA methods comprehensively in the work Pasupathy (2010).

In this thesis, we will describe a sequential sampling approach using the
similar framework of RA but in the context of simulation optimization.

2.2.2 Theoretical Properties

One of the important topics in the theoretical study of SAA is to investigate the
conditions under which the optimal solutions of the SAA problem (2.2) con-
verge to the set of optimal solutions of the true problem (2.1) as the sample size
N grows. Normally this result is conditioned on the uniform convergence of the
SAA function f̄N(x). Let S denote the set of optimal solutions of the true prob-
lem (2.1) and S̄N denote the set of optimal solutions of the SAA problem (2.2),
then we state a converge result based on uniform convergence from Shapiro

17

(2003, Proposition 6) in the following.

Proposition 1. Suppose that there exists a compact set C ⊂ Rd such that:

1. the set S of optimal solutions of the true problem is nonempty and is con-

tained in C,

2. the function f (x) is finite valued and continuous on C,

3. f̄N(x) converges to f (x) w.p.1, as N→ ∞, uniformly in x ∈C,

4. w.p.1 for N large enough the set S̄N ⊂C.

Then D(S̄N ,S)→ 0 w.p.1 as N → ∞, where D(A,B) := supx∈A dist(x,B), and

dist(x,B) := infx′∈B ‖x− x′‖.

The third condition in Proposition 1 is a uniform version of the strong law
of large numbers (Kim, 2006), and the proof of the proposition can be checked
in Shapiro (2003, Proposition 6). The result of Proposition 1 will be used later
in this thesis.

The following result by Shapiro (2003, Proposition 7) is cited without proof
to show a set of sufficient conditions under which the uniform assumption in
Proposition 1 can be ensured.

Proposition 2. Suppose that for almost every ξ ∈ Ξ,

1. the function F(x,ξ) is continuous on X , and

2. F(x,ξ) is dominated by an integrable function.

Then f (x) is finite valued and continuous on X and f̄N(x) converges to f uni-

formly on X as N→ ∞ w.p.1.

In addition to the convergence on the solution set, Glasserman (1990) pro-
vided necessary and sufficient conditions to ensure ∇ f̄N(x) converges to ∇ f (x)

as N goes to infinity. Glasserman (1990) also pointed that when f (x) is an ex-
pectation measure, the most popular method to make ∇ f̄N(x)→ ∇ f (x) hold is
through Lebesgue’s dominated convergence theorems combining with the gen-
eralized mean value theorem (Pasupathy, 2010).

There are many excellent review works on the theoretical properties of the
SAA methods. Shapiro (2003); Shapiro et al. (2009) gave a comprehensive
discussion on various properties of the SAA methods, including rates of conver-
gence and complexity of the methods. Kim et al. (2011) reviewed the technical
conditions in detail under which SAA methods are appropriate to use in terms
of the quality of the solution. The most recent review work, to the best of our

18

knowledge, is from Homem-de Mello and Bayraksan (2013), who surveyed the
issues in use of SAA methods such as the optimality conditions, choosing ap-
propriate sample sizes and many others.

19

Chapter 3

Smoothed SAA Methods for
Probability Optimization Problems

3.1 Introduction

In this chapter, we focus on a certain type of probabilistic programming prob-
lems in the field of simulation optimization. Probabilistic programming nor-
mally refers to two strongly connected models: minimizing (or maximizing) a
probability under constraints, and programming under probabilistic constraints
(Prékopa, 2003). The subject of this study falls in the first category.

The optimization problems with an probability objective function were ex-
tensively investigated by Prékopa (1988) and Robbins and Monro (1951). This
form of objective function is widely used in many fields such as finance, engi-
neering, aviation and health care (Rockafellar and Royset, 2010). Due to the
lack of closed form of the probability function, a sample average approximation
(SAA) problem can be constructed and solved to obtain an estimate of the so-
lution of the true problem. Sample average approximation (SAA) is one of the
most popular methods to deal with stochastic optimization problems; however,
since probability functions are essentially expected values of an indicator func-
tion, optimization algorithms exhibiting a local convergence cannot work well
on them when the SAA methods are directly applied because the corresponding
SAA functions are ill-structured.

We propose a smoothed SAA method, which incorporates smoothing tech-
niques into the classic SAA methods, so that a wide range of nonlinear opti-

20

mization algorithms can be successfully applied even when the sample size is
small. Numerical results show that computational time is significantly saved
when solvers are applied to the smoothed SAA problem compared with the case
applied to the original standard SAA problem. In addition, we state that under
certain conditions, the set of optimal solutions to the smoothed SAA problem
converges to the counterpart of the true problem as sample size goes to infinity.

Consider a probability optimization program represented as follows:

min
x∈X

f (x) := Pr
{

c(x,ξ)≥ 0
}
. (3.1)

Here, x ∈ Rd is a decision vector, and X is a subset of Rd . Unless stated
otherwise we assume that the set X is Rd or a box constraint set, that is, X =

[LB,UB], where LB, UB∈Rd . ξ ∈Rm is a vector of uncertain parameter, whose
support is denoted as Ξ. In order to distinguish between random data and their
numerical values, we will use bold script ξ for the random vector, and ξ for its
particular realization afterwards. c(x,ξ) : Rd×Ξ→ R is a real-valued function
and we assume that f (x) is continuously differentiable on x ∈X .

The investigation of the continuity of probability functions with respect to
the decision variables is initially studied by Raik (1975). Later, Kibzun and Kan
(1996) developed well-established theory on continuity and differentiability of
probability functions. Some of the key results are presented first. The follow-
ing proposition provides sufficient conditions on the continuity of a probability
function.

Proposition 3. Let the following conditions hold:

1. the loss function c(x,ξ) is continuous at every point x ∈X for almost all

ξ ;

2. mes{ξ : c(x,ξ) = 0} = 0 for every x ∈ X , where mes(A) denotes the

Lebesgue measure of set A;

3. the random vector ξ has a probability density function p(ξ).

Then the probability function f (x) is continuous with respect to x.

For a proof, see Lemma 2.12 in Kibzun and Kan (1996).
Before a set of sufficient conditions for the differentiability of a probabil-

ity function is stated, some notations are defined first. Let T (x) := {ξ ∈ Rm :
c(x,ξ) ≥ 0}, ∆TX := cl

(
∪x∈X ∂T (x)

)
, where cl(A) is the closure of a set A,

21

∆TX Ξ := ∆TX ∩Ξ, ∆GX Ξ := cl(X)×∆X Ξ, B(x) := {ξ ∈ m : c(x,ξ) = 0},
and BΞ(x) := B(x)∩Ξ. The gradient of the probability function f (x) can be
obtained by the following proposition.

Proposition 4. Let the following conditions hold:

1. the set ∆TX Ξ is bounded;

2. the vector functions ∇xc(x,ξ) and ∇ξ c(x,ξ) are continuous on the set

∆GX Ξ;

3. the probability density function p(ξ) is continuous on the set ∆TX Ξ;

4. mesm−1

(
{ξ ∈ ∂Ξ : p(ξ) > 0}∩B(x)

)
= 0 holds for all x ∈X , where

mesm−1 is the (m−1)-surface Lebesgue measure;

5. ‖∇ξ c(x,ξ)‖> 0 on the set BΞ(x) for all x ∈X .

Then the probability function f (x) is differentiable for all x ∈X and

∇ f (x) =−
∫

BΞ(x)

∇xc(x,ξ)
‖∇ξ c(x,ξ)‖

p(ξ)dT.

For a proof, see Lemma 2.29 in Kibzun and Kan (1996). For some other
results concerning differentiability of probability functions, readers are referred
to Kibzun and Kan (1996, Chapter 2).

Note that the objective function (3.1) can be reformulated as an expectation
minimization problem, which is

min
x∈X

f (x) = E
[
Φ(x,ξ)

]
:= E

[
1[0,∞)c(x,ξ)

]
, (3.2)

where 1A(z) denotes the indicator function of set A that equals to 1 if z ∈ A and
0 otherwise.

Throughout this chapter, we assume that the closed form of (3.2) is not avail-
able and hence have to be approximated by using sample average approxima-
tion (SAA) methods. By applying the SAA, a set of independent realizations
ξ1,ξ2, · · · ,ξN of ξ from a Monte Carlo simulation is generated and the true ob-
jective function (3.2) is approximated by

min
x∈X

f̄N(x) =
1
N

N

∑
i=1

[
1[0,∞)c(x,ξi)

]
=

1
N

N

∑
i=1

Φ(x,ξi). (3.3)

Note that once the samples are generated, i.e., the numerical values of ξ1, · · · ,ξN

22

are realized, f̄N(x) becomes a deterministic function and its value can be deter-
mined at any given point x ∈X . We would refer to (3.1) and (3.2) as the true
problem and (3.3) as the SAA problem hereafter.

Technically, any appropriate deterministic algorithm can be applied to (3.3)
to obtain an optimal solution of the SAA problem, say x∗N , which can be con-
sidered as an estimator of the solution to the true problem. Generally, the SAA
problem (3.3) is approaching to the true problem when sample size N is large.
Furthermore, under certain conditions, the set ΠN of optimal solutions to the
SAA problem converges to the solution set Π to the true problem.

However, applying SAA methods to the probability optimization problem
(3.3) is significantly different from the normal literature. Due to the binary-
value nature of the indicator function 1[0,∞)c(x,ξ), (3.3) is of a step-like form
and consequently discontinuous whenever the sample size is finite. Further-
more, we have ∇ f̄N(x) = 0 for all x except discontinuity points, making any
algorithms exhibiting a local convergence cannot work well as all the differen-
tiable x has a gradient of zero. What makes things worse is that when the sample
size is small, there might be a large area of flat region existing so that (nonlin-
ear) optimization methods can easily get trapped in, with the belief that they
have found the local optimal solution. In summary, we believe that the nature
of (3.3) makes it difficult to apply (nonlinear) optimization methods directly on
them. This issue is illustrated more clearly by the following example.

Example 1. Consider solving a probability optimization problem with SAA

methods and nonlinear optimization algorithm:

min
x≥0

f (x) := Pr{x−ξ ≥ 0} , (3.4)

where ξ ∼ Norm(0,1). Then, the optimal solution is x∗ = 0.

Notice that the objective function (3.4) can be reformulated as minx≥0 E
[
1[0,∞)(x−

ξ)
]
. By generating a sequence {ξ1,ξ2, · · · ,ξN} of replications of ξ, a SAA ap-

proximation deterministic problem is obtained, which is:

min
x≥0

f̄N(x) :=
1
N

N

∑
i=1

1[0,∞)(x−ξi). (3.5)

We present the shape of the SAA problem with different values of N in Fig-

23

ure 3.1. Due to the simplicity of the problem, we expect to construct a SAA

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x

f̄
N
(x
)

SAA problem of Example 1

N=5
N=10
N=20

Figure 3.1: SAA problems of Example 1

problem with small sample sizes: N =5, 10 and 20. It can be seen that there
are many jumps and flat regions presented in the SAA objective function, which
might let users concern if (nonlinear) optimization methods can work effec-
tively on them. In particular, we apply a direct search algorithm to solve the
SAA problem. The result with N = 20 is present in Figure 3.2.

In this example, 10 starting points are generated from a uniform distribution
in the range [0,3]. For each starting point, the direct search algorithm is im-
plemented and a corresponding path of iterates xk and accumulated consumed
function evaluations are recorded. The ten paths are presented in Figure 3.2,
where the x-axis denotes the total number function evaluations consumed and
the y-axis denotes the distance between iterates xk to the optimal solution x∗= 0.

It can be seen from Figure 3.2 that neither of the path converges to the true
solution successfully. Some of the paths end up with a poor quality solution.
Considering the simplicity of the example problem, it can be expected that the
performance of the SAA methods will be deteriorated with more complex ob-
jective functions.

Example 1 also reveals the reason that SAA methods cannot be directly ap-
plied to probability functions. Since ∇ f̄N(x) = 0 for all x except discontinuity
points, f̄N is ill-structured for a local convergent algorithm. In this chapter, we

24

0 10 20 30 40 50 60
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of function evaluations

||x
k−

x* ||
Applying direct search methods on the SAA problem in Example 1: 10 runs

Figure 3.2: Applying a direct search algorithm on the SAA problems of Exam-
ple 1

try to resolve this issue caused by the nature of indicator functions by introduc-
ing smoothing techniques to the standard SAA methods.

Smoothing techniques have been introduced to the field of optimization to
make discrete problems more manageable. One trend that smoothing tech-
niques have been used is for minimizing risk measures such as VaR and CVaR.
Gaivoronski and Pflug (2005) presented a method, which is based on the ap-
proximation of historical VaR by smoothed VaR, to calculate the mean-VaR
efficient frontier. Alexander et al. (2006) proposed a computational method
based on smoothing techniques to solve a simulation based CVaR optimization
problem efficiently. Inspired by the work of Alexander et al. (2006), Xu and
Zhang (2009) studied a smoothing scheme for a class of Lipschitz continuous
stochastic problems and investigated the convergence of stationary points of the
smoothed SAA problems as sample size increases. The work proved that with
probability one, the accumulation points of the stationary points of the approxi-
mation problem are weak stationary points of their counterpart of the true prob-
lem. Meng et al. (2011) proposed similar smoothing techniques to solve single

25

CVaR and mixed CVaR minimization problems, and proved that for any fixed
smoothing parameter the method produces a sequence whose cluster point is a
weak stationary point of the true optimization problems with probability one.
To the best of our knowledge, few work has been done to combine smoothing
techniques with probability optimization problem.

The main contributions of this work as far as we are concerned are as fol-
lows. First we incorporate smoothing techniques into the standard SAA methods
to deal with probability simulation optimization problems. The smoothed SAA
problem generated by our algorithms is well-structured so that a wide range of
optimization algorithms can be successfully applied to them. In addition, direct
search algorithms are employed to solve both the smoothed SAA problems pro-
posed and classic SAA problems, and the results of the two cases are compared.
It can be seen from the numerical results that our method exhibits a much better
performance especially when the sample size is small. Last but not least, we
show that under mild conditions, with probability one the optimal solution set
of the smoothed SAA problems converges to the solution set of the true prob-
lems. Overall, the smoothed SAA methods provide a new option to the users
who are dealing with expensive probability simulation optimization problems
and they are fairly general so that a wide class of numerical algorithms can be
incorporated with them as a solver.

The rest of this chapter is organized as follows. In Section 3.2, we discuss
a smoothing technique and propose a smoothed SAA method for the probabil-
ity optimization problem. In Section 3.3, we investigate the convergence per-
formance on the solution set of the smoothed SAA problems. In Section 3.4,
numerical experiments are carried out to illustrate the performance of smoothed
SAA scheme. The work is concluded in Section 3.5.

3.2 Smoothed SAA Methods for Probability Opti-

mization

We propose a smooth function Φ̂(x,ξ,ε), where ε > 0 is an approximation pa-
rameter to approximate the standard indicator function Φ(x,ξ). In order to ob-
tain well defined smoothed approximation problems, the following assumption
is imposed.

26

Assumption 1. The smooth approximation of the true indicator function can be

expressed as

Φ̂(x,ξ ,ε) = Ψ(c(x,ξ),ε),

where Ψ : R×R+ → R is a continuously differentiable real-valued function

such that for any z ∈ R,
a) limε↓0 Ψ(z,ε) = 1[0,∞)(z), and

b) 1[0,∞)(z)≤Ψ(z,0)≤ 1[−ε,∞)(z), for any ε > 0.
Furthermore, we assume the assumptions in Proposition 4.

It is pointed out that the conditions (a) and (b) of Assumption 1 are com-
monly used for a general definition of smoothing (Xu and Zhang, 2009; Kim
et al., 2011).

By using the smooth function Φ̂ to replace the original indicator function,
the objective function (3.2) is turned into the following approximation problem:

min
x∈X

g(x,ε) := E
[
Φ̂(x,ξ ,ε)

]
. (3.6)

Appropriate numerical algorithms are employed to solve the SAA problem of
(3.6) as follows:

min
x∈X

ḡN(x) :=
1
N

N

∑
i=1

Φ̂(x,ξi,ε(N)), (3.7)

where the smooth parameter ε(·) is a function of N satisfying ε(N)→ 0 as
N→ ∞.

One of the examples of Ψ functions satisfying Assumption 1 is the NEW STEP
function proposed by Vikram (1995) in his electronic technical report. As shown
in Figure 3.3, the NEW STEP function provides a mean of transitioning from
a constant value h1 to another value h2 over a specified interval between two
specified transition points x1 and x2.

z1 z2

h1

h2

z

s(
z)

NEW_STEP function

Figure 3.3: NEW STEP function

Mathematically, the NEW STEP
function is defined as follows:

s(z)=

h1 , z < z1;

s(z,x1,h1,x2,h2) , z1 ≤ z≤ z2;

h2 , z2 > z;

27

where the transition function in the interval of z1 and z2 is in the form of

s(z,z1,h1,x2,h2) = h1 +
∆h
∆x

(z− z1)−
∆h
2π

sin
(

2π

∆x
(z− z1)

)
,

where ∆h = h2−h1, and ∆z = z2− z1.
By plugging the values z1 =−ε , z2 = 0, h1 = 0, and h2 = 1 in the NEW STEP

function, we have the smoothing function Ψ(z,ε) of the following form:

Ψ(z,ε) =

0 , z <−ε

1
ε
(z+ ε)− 1

2π
sin
(2π

ε
· z
)

, −ε ≤ z≤ 0,

1 , z > 0.

The plot of Ψ(z,ε) with ε = 1 and ε = 0.5 is presented in Figure 3.4. This

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

1

z

Φ
(z

,ε
)

Smoothed indicator function

ε=1
ε=0.5

Figure 3.4: Smoothed indicator function Φ̂(x,ξ ,ε)

form of smoothing function will be used in the numerical experiments coming
afterwards.

A preview of the corresponding smoothed SAA function in Example 1 is
presented in Figure 3.5. Though an approximation error is introduced by the
positive ε , it successfully resolves the ill-posed structure of the original SAA
problems and helps optimization algorithms applicable. It can be seen from
Figure 3.5 that even when sample size is small (N = 5), with the help of intro-
ducing ε , the smoothed function ḡN gives a more smooth and accurate picture

28

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x

ḡ
N
(x
)

Smoothed SAA of Example 1: ε=0.5

N=5
N=10
N=20

Figure 3.5: Smoothed SAA functions with different N and ε .

of the true function than function f̄N does in Figure 3.1.
More detailed experiment results are presented in Section 3.4. Before mov-

ing to that, the convergence result of the smoothed SAA method are stated first.
In particular, we are interested in the asymptotic performance of the solution of
problem (3.7) as the sample size N goes to infinity.

3.3 Convergence of Solution Set

Let Π and Πs
N denote the set of optimal solutions of (3.2) and (3.7) respec-

tively. For sets A,B⊂Rd we denote the distance from x ∈Rd to A by d(x,A) :=
infx′∈A ‖x− x′‖, and the deviation of the set A from the set B by D(A,B) :=
supx∈A d(x,B). By the definition, d(x,A) = +∞ if A is empty.

We are interested in the asymptotic performance of Πs
N as the sample size N

goes to infinity. We first show that under a set of conditions, ḡk(x) converges to
f (x) uniformly in x with probability one as N→ ∞, and then we show that the
convergence of solution set can be reached with probability one.

Assumption 2. ε(N)→ 0 as N→∞, that is, the error introduced by smoothing

diminishes as sample size increases.

29

Assumption 3. Π is nonempty and there exists a compact set C ∈ Rd such that

Π is contained in C and f (x) is continuous on C.

Assumption 4. With probability 1 for N large enough and ε small enough, the

set Πs
N is nonempty and Πs

N ⊂C where C follows the conditions in Assumption 3.

The analysis of convergence consists of two parts. We first show ḡN(x)

converges to f (x) w.p.1 uniformly in Lemma 1. Based on that, the convergence
of solutions set is developed in Theorem 1.

Lemma 1. Suppose that Assumption 1 holds. In addition, assume that Ψ(·,ε(N))

converges to 1[0,∞)(·) uniformly on the image set {c(x,ξ) : x ∈X ,ξ ∈ Ξ}. Then

for any given x, ḡN(x) converges to f (x) w.p.1 as N goes to ∞.

Furthermore, assume that Assumptions 2 and 3. Then, ḡN(x) converges to

f (x) w.p.1 uniformly on C.

Proof. Note that

|ḡN(x)− f (x)| ≤
∣∣ḡN(x)− f̄N(x)

∣∣+ ∣∣ f̄N(x)− f (x)
∣∣

≤ 1
N

N

∑
i=1

∣∣∣Ψ(c(x,ξi),ε(N)
)
−1[0,∞)

(
c(x,ξi)

)∣∣∣+ ∣∣ f̄N(x)− f (x)
∣∣ .

(3.8)

The first term in (3.8) converges to 0 w.p.1 by the uniform convergence assump-
tion and the second term converges to 0 w.p. 1 by the LLN . In fact, the first
term converges uniformly w.p.1. With additional assumption, the second term
converges to zero uniformly w.p.1 by Shapiro (2003, Proposition 6).

Now we are showing the convergence result of optimal solution set as N→
∞. The core result is based on the proposition of Shapiro (2003, Proposition 6),
which is stated below without a proof.

Proposition 5 (Shapiro (2003)). Suppose that there exists a compact set C⊂Rd

such that: (i) the set Π of optimal solutions of the true problem is nonempty and

is contained in C, (ii) the function f (x) is finite valued and continuous on C, (iii)

ḡN(x) converges to f (x) w.p.1 as N → ∞, uniformly in x ∈ C, (iv) w.p.1 for N

large enough the set Πs
N is nonempty and Πs

N ⊂C. Then D(Πs
N ,Π)→ 0 w.p.1

as N→ ∞.

30

Theorem 1. Let Assumption 1 to 3 hold. Then D(Πs
N ,Π)→ 0 w.p.1 as N→∞.

Proof. The conclusion is direct from Theorem 5. Conditions (i), (ii) and (iv) of
Shapiro (2003, Proposition 6) hold by our Assumption 3 and 4. Condition (iii)
is satisfied from our Lemma 1. Then the convergence is proved.

3.4 Numerical Experiments

3.4.1 Purpose and Test Problems

The purpose of the numerical experiments is to investigate the following two
problems:

1. Does solving a smoothed SAA problem instead of a standard SAA prob-
lem really help numerical algorithms mitigate the situation of getting
trapped?

2. Is there a better selection of N and ε(N) we can find such that a better
performance can be obtained?

The test problems are selected from the numerical examples of Kibzun and
Kan (1996). The problem ‘prob1’ is defined as below:

min
x∈R2

f (x) := Pr
{
ξ(1)

(
x(1)2 + x(2)2)/(1+ x(1)2 + x(2)2)−ξ(2)> 0

}
,

where independent random variables ξ(1) and ξ(2) are normally distributed,
which is ξ(1) ∼ Norm(1,1) and ξ(2) ∼ Norm(2,1). The problem has optimal
value of 0.023 at the singular optimal point [0,0].

Another test problem ‘prob2’ is given as

prob2: min
x∈R2

:= Pr
{
(ξ(1)+ξ(1))(x(1)2 + x(2)2 +1)−2 > 0

}
,

where independent random variables ξ(1) and ξ(2) are normally distributed,
namely ξ(1),ξ(2)∼Norm(0,1). Prob2 reaches the optimal value of 0.05 at the
solution point [0,0].

We show the SAA shapes of test problems with different sizes of samples
in Figure 3.6. It can be seen that the shape of the SAA functions is severely
concealed by the discreteness. A large flat region is existing, especially when
the sample size is small. Local convergent algorithms cannot work well on these

31

functions as they would easily get trapped and announce the end of an algorithm
in the flat area. A type of direct search method embedded in the pattern search
toolbox of Matlab is employed trying to solve these standard SAA problems,
and it turns out that the algorithm does not work until the sample size increases
to 100.

On the other hand, the shape of the smoothed SAA functions ḡN with differ-
ent sizes of N is presented in Figure 3.7. Visually the smoothed SAA problems
have better structures for optimization algorithms to work on than the standard
but discontinuous SAA problems. In the next subsection, we take direct search
methods as solver to illustrate how local convergent optimization algorithms
perform on the smoothed SAA and standard SAA problems.

3.4.2 Implementation and Results

For simplicity, the two schemes of standard SAA methods and smoothed SAA
methods are referred to as ε = 0 and ε > 0 case respectively. The solver em-
ployed in the experiment is the pattern search toolbox embedded in Matlab. For
a fair comparison, the two schemes of ε = 0 and ε > 0 share all the algorithm
parameters (including random stream) except for the value of ε . The procedures
of the experiment are described as below. For a given test problem and a given
sample size N,

1. randomly generate a starting point by using Latin hypercube sampling
within a neighborhood of the optimal solution,

2. create four objective functions of the test problem with different values of
ε , including ε = 0 and three different values of positive ε ,

3. run Matlab’s pattern search function with same stopping criteria and al-
gorithm parameters on the four objective functions,

4. record the iteration history and compare the performance based on the
history paths.

Note that no specific form of ε(N) has been restricted by now. Driven by
the convergence purpose, Assumption 2 is the only condition required. In the
test, three constant values of the smoothing parameter, which are 0.5, 1, and 2,
are combined with the given N trying to find out a smarter strategy to determine
ε(N).

32

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of function evaluations

||x
k−

x* ||

Problem: prob1, N= 5

ε=0
ε=2
ε=1
ε=0.5

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of function evaluations

||x
k−

x* ||

Problem: prob1, N= 100

ε=0
ε=2
ε=1
ε=0.5

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Number of function evaluations

||x
k−

x* ||

Problem: prob2, N= 5

ε=0
ε=2
ε=1
ε=0.5

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of function evaluations

||x
k−

x* ||

Problem: prob2, N= 100

ε=0
ε=2
ε=1
ε=0.5

Figure 3.8: Iteration history of direct search method on true and smoothed SAA
problems

The iteration paths obtained from one single run are presented in Figure 3.8.
The horizontal axis denotes the accumulated function evaluations, whereas the
y-axis denotes the Euclidean distance between iterate xk to the optimal solution
x∗. We choose this Euclidean distance as a measure to qualify the current so-
lution because it can clearly indicate whether the algorithm is approaching to
the correct solution or getting stuck in the current point. The stopping criteria is
in terms of a limited number of function evaluations. For a clear presentation,
we set different stopping criteria to the different schemes so that the curves can
still be differentiated even when they overlap. When we do this, we are careful
enough to make sure all the paths shown have reached the state of convergence
so that no prospective information is missing.

33

We have chosen two sets of sample size, 5 and 100 respectively, to observe
how N will affect the utility of smoothing parameter. Figure 3.8 shows that when
sample size is small (N = 5), introducing positive smoothing parameters can
significantly increase the chance of algorithm getting out trapped and moving to
the correct solution. Specifically, in the ε = 0 case, the algorithm does not move
and hence gets stuck on the both test problems from the very beginning. On the
other hand, all the smoothed SAA problems successfully help the algorithm step
out and move toward the correct solution. In the N = 5 examples, the schemes
of ε = 1 and ε = 2 even obtain the optimal solutions to the both test problems.

As sample size grows to 100, the performance of the ε = 0 becomes better
than that when N = 5. The reason is intuitive in that f̄N(x) is approaching to the
true function f (x) as N grows up, implying that the SAA function may exhibit
less flat area compared with smaller sample cases. Despite of the improvement
of the standard SAA scheme, the three cases of ε > 0 still work even better. For
the two test problems, when N = 100, all the paths of ε > 0 cases converge to
the true solution successfully. Interestingly, the three parameters of ε exhibit
amost same path so that it is difficult to tell which parameter is better.

Due to the randomness of samples, the single-run performance shown in
Figure 3.8 is also random. Hence, the following numerical experiment is ex-
ecuted to show an average performance of the two methods based on multiple
runs. The procedures are described as below:

1. randomly generate m starting points around the neighborhood of the opti-
mal solution using Latin hypercube sampling.

2. for each starting point, run the solver multiple times with the limit evalua-
tion budget of {n,2n,3n, · · · ,}, where n = 10d by default. The limit of the
budget sequence is tested and adjusted to make sure all paths can reach the
state of convergence. Record the optimal solution solution x∗budg, where
the subscript implies the limited budget stopping criteria, and calculate
‖x∗budg− x∗‖ to qualify the performance of the solution.

3. average the m values of ‖x∗budg − x∗‖ and plot the average versus the
budget sequence.

The average performance based on 20 runs is presented in Figure 3.9. Since
same staring point is used for all the scenarios, the four curves are expected to
start from the same point on the vertical axis. Two sets of N are practiced to
check how the smoothed method works when the sample size is comparatively

34

small (N = 5) and relatively large (N = 100).

0 200 400 600 800
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of function evaluations

¯
||
x
∗ b
u
d
g
−
x
∗
||

Problem: prob1, N= 5, run times=20

ε=0
ε=2
ε=1
ε=0.5

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of function evaluations

¯
||
x
∗ b
u
d
g
−
x
∗
||

Problem: prob1, N= 100, run times=20

ε=0
ε=2
ε=1
ε=0.5

0 200 400 600 800
1.5

2

2.5

3

3.5

4

Number of function evaluations

¯
||
x
∗ b
u
d
g
−
x
∗
||

Problem: prob2, N= 5, run times=20

ε=0
ε=2
ε=1
ε=0.5

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of function evaluations

¯
||
x
∗ b
u
d
g
−
x
∗
||

Problem: prob2, N= 100, run times=20

ε=0
ε=2
ε=1
ε=0.5

Figure 3.9: Multiple runs performance of direct search methods on standard and
smoothed SAA problems

The first thing we notice in Figure 3.9 is that the results of ε > 0 schemes
on small sample case is much better than the standard SAA method. Since the
vertical axis denotes the distance between the true optimal solution and the solu-
tion obtained by the solver with limited function evaluation budget, and both test
problems have only one global optimal solution and no local optimal solution,
we say that the less the vertical value is, the better the algorithm performs. It
can be seen that the black curve tends to stay constantly at the same level since
a very early stage, indicating that the solver gets stuck in a flat region. Fur-
thermore, it has an obvious higher value of y-axis than the other three curves.
As a matter of fact, all the performance of ε = 0 curves confirms the issue we
proposed in the beginning of this chapter, which is, local convergent algorithms
cannot work well on a SAA probability problem, particularly when sample size

35

is small.
On the other hand, it can be seen from the figure that introducing smoothing

techniques gains an obvious improvement on the performance of the solver es-
pecially in the small sample case. Figure 3.9 shows that all the vertical values
of colorful curves, which denote the cases of ε > 0, are less than the black one,
where the objective problem is a true SAA discrete function. Furthermore, this
dominance is consistent from the beginning to the end of the algorithm inde-
pendent of the evaluation budget. Another trend can be observed is that when
N = 5, the dominance of ε > 0 cases get weaken as the value of ε decreases.
What surprises us most is the path of ε = 2 in prob1. For 20 times of simula-
tion runs, they almost converge to the true solution every time, which is really
impressive considering the sample size is only 5.

When sample size increases to 100, the performance of all schemes im-
proves. Nevertheless, the smoothed SAA cases still perform better than the
standard SAA though the dominance is not as obvious as when N = 5. For
prob1, all paths of ε > 0 converge to the true optimal solution, while the path of
ε = 0 fails to do that.

To better answer the two questions proposed in the beginning of this section,
the parameters of ε and N are tuned and tested. Under different combination of
ε and N, we run the algorithm 100 times using the same starting point x0 = [2,2]
but different samples, and count the number that the solver gets trapped. The
results are shown in Figure 3.10.

For each test problem, three sets of sample size, which are 5, 10, and 50,
are tested. Under each scheme of N, the failure times of smoothed SAA and
standard SAA are counted. By saying a run is failure, we mean that the algo-
rithm fails to reach the optimal solution x∗ when the function evaluation budget
is unlimited. The horizontal axis denotes the smoothing parameter ε used for
smoothing, which is uniformly divided with a step size of 0.02 when plotted.
The vertical axis denotes the number of times that the algorithm fails to con-
verge to the optimal solution. Three colored curves are presented to denote the
three schemes of N, whereas three horizontal lines with the matching colors de-
note the number of failures in the standard SAA case. The legend of two plots
is the same, hence we omit it in the right plot to present the curves clearly.

36

0 1 2 3 4 5
0

20

40

60

80

100

Smoothing parameter ε

N
um

be
r

of
 fa

ilu
re

s

Failure times out of 100 runs: prob1

N=5, smooth
N=5
N=10, smooth
N=10
N=50, smooth
N=50

0 1 2 3 4 5
0

20

40

60

80

100

Smoothing parameter ε

N
um

be
r

of
 fa

ilu
re

Failure times out of 100 runs: prob2

Figure 3.10: Failure times out of 100 runs

In the example of prob1, smoothing techniques improve the performance
impressively compared with the standard SAA case. This dominance is espe-
cially significant when sample size is small. It can be seen that more than 80%
of times standard SAA method fails to work when N = 10, and almost 100%
fail when N = 5. On the other hand, smoothed SAA insists with a strong perfor-
mance when ε > 1, which tends to suggest that the smoothing parameter should
not be too small when sample size is small.

The result of prob2 on the right gives us more inspirations. For all the three
values of N, the failure times of smoothed SAA are more than that of the corre-
sponding standard SAA when ε is larger than a certain level, implying that a too
big value of ε can make the problem out of shape. For different sample size, this
level of breaking point also differs. In the plot, we can check this level by ob-
serving the intersection of solid colorful curve and the corresponding dash line.
For N = 5, the intersection locates around the value of ε = 4; for N = 10, this
value decrease a little to ε = 3.7; and for N = 50, the intersection locates around
ε = 3.5. This trend of phenomenon is reasonable in that positive smoothing pa-
rameters introduce an error to the function. Though a small sample sized SAA
problem might not be accurate enough either, a too large smoothing parameter
can still deteriorate the shape of the function.

In addition, when sample size is small like N = 5 and N = 10, a small value
of ε does not help a lot. Notice that when N = 5, the smoothed SAA performs
even worse than the corresponding standard SAA when ε < 0.5. Similarly, when
N = 10, the smoothed case does not show obvious dominance until ε > 1.

37

Going back to the two questions proposed in the very beginning of this sec-
tion, we give the following answers. Solving a smoothed SAA problem instead
of a standard SAA problem can help numerical algorithms get out of trapped
with a higher chance especially when the sample size is small. However, this
help is not guaranteed for every single run due to the randomness of the sam-
ples. The selection of smoothing parameter would also affect the performance
of smoothed SAA methods. For each sample size, there should exist a range of
smoothing parameters such that smoothing techniques work better with; how-
ever, an optimal value of the smoothing parameter is difficult to decide in ad-
vance. This value should be closely related to the structure of the problem and
also depend on the samples especially when sample size is small.

3.4.3 Comparison with Other Algorithms

There are not many stochastic algorithms designed specially for probability sim-
ulation optimization problems. To the best of our knowledge, we compare the
results of our smoothed SAA methods with the results shown in Kibzun and Kan
(1996). Kibzun and Kan (1996) presented the results of the same test problems
obtained from four algorithms. The four algorithms, named Uryas’ev algorithm
(Uryas’ ev, 1989), Lepp algorithm(Lepp, 1983), Raik algorithm(Raik, 1975),
and Ubi algorithm(Ubi, 1977), are four gradient-based stochastic algorithms us-
ing different gradient approximation techniques.

The tuned parameters and computation results are presented in Table 3.1.
For all the algorithms and two test problems prob1 and prob2, the initial

point x0 is set to be [2,2]. The corresponding probability value is equal to
f (x0) ≈ 0.74 for prob1 and f (x0) ≈ 0.44 for prob2. The algorithm is called
stop when the the solution accuracy with respect to x reaches 0.01, which means
the algorithm terminates when ‖xk− x∗‖ < 0.01. The three gradient-based al-
gorithms increase sample size iteratively depending on the iteration number k,
while the smoothed SAA uses a fixed sample size of five.

We are interested in the total function evaluations consumed by the algo-
rithm when it reaches the solution accuracy standard. For the smoothed SAA
case, this number is recorded and directly output by Matlab’s pattern search
toolbox. For the other three counterparts, this number could be obtained by
summing up all the iteration sample size from the total number of iterations.

38

prob1

Algorithm of: Uryas’ev Lepp Ubi ε = 3

Sample size at iteration k: Nk 5k1/3 +1 5k1/3 +1 k8/5 +10 5

Total number k of iterations 70 30 25 3

Total function evaluations 1196 401 2008 60

Solution accuracy w.r.t. x 0.01 0.01 0.01 0.01

prob2

Algorithm of: Uryas’ev Lepp Ubi ε = 3

Sample size at iteration k:Nk 5k1/3 +1 5k1/3 +1 k8/5 +10 5

Total number k of iteration 12 10 25 3

Total function evaluations 125 99 731 60

Solution accuracy w.r.t. x 0.01 0.01 0.01 0.01

Table 3.1: Comparison with other algorithms

From Table 3.1 we see that ε = 3 has the smallest function evaluations of all
with obvious dominance. This is not only due the small sample size (Nk ≡ 5),
but also owing to the fact that direct search methods quickly approach to the true
solution with the help of smoothing. As a matter of fact, though the stopping
accuracy is set as 0.01, direct search methods return to the optimal solution
when the algorithm terminates.

Since the samples generated are random, the performance of the algorithm
is affected by the samples as well especially when the sample size is small.
We need to point out that for prob2, when N = 5 and ε = 3, our method is
not guaranteed to reach the solution accuracy every time. Once the smoothed
SAA works, the direct search solver can find the optimal solution very quickly,
consuming only 60 function evaluations; however, sometimes the smoothing
fails to help the algorithm get out of trapped, in which cases the algorithms stays
constantly at the initial point x0. The frequency of this failure can be roughly
referred to Figure 3.10.

39

3.5 Conclusions

We propose a smoothed SAA method to deal with simulation-based probability
optimization problems so that a wide range of (nonlinear) optimization algo-
rithms can be successfully applied to solve the problems. It is also stated under
mild conditions that the solution set of the smoothed SAA problems converges
to the counterpart of the true problem as sample size goes to infinity.

In the numerical experiments, we employ a type of direct search methods as
solver to illustrate that the performance of the smoothed SAA methods is better
than the standard SAA methods. Depending on the problem, the dominance of
our method can be significant especially when the sample size is small, mean-
ing that a significant amount of simulation cost can be saved compared with
standard SAA methods.

The relationship between the sample size and the smoothing parameter is
also investigated. It is implied by the numerical results that when sample size is
small, a comparatively big smoothing parameter should be used, but the issue is
that selecting a proper value of either sample sizes or smoothing parameters in
advance without knowing any information about the problems seems intractable.
In the next chapter, we enhance the smoothed SAA methods to tackle this issue
by borrowing the idea behind retrospective-approximation methods.

40

−2
0

2

−2
0

2
0

0.5

f̄
N
(x
)

N =5

x(1)x(2) −2
0

2

−2
0

2
0

0.5

x(1)

N =10

x(2)

f̄
N
(x
)

−2
0

2

−2
0

2
0

0.5

x(1)

N =50

x(2)

f̄
N
(x
)

−2
0

2

−2
0

2
0

0.5

x(1)

N =100

x(2)

f̄
N
(x
)

prob1

−2
0

2

−2
0

2
0

0.5

x(1)

N =5

x(2)

f̄
N
(x
)

−2
0

2

−2
0

2
0

0.5

x(1)

N =10

x(2)

f̄
N
(x
)

−2
0

2

−2
0

2
0

0.5

x(1)

N =50

x(2)

f̄
N
(x
)

−2
0

2

−2
0

2
0

0.5

x(1)

N =100

x(2)

f̄
N
(x
)

prob2

Figure 3.6: SAA functions with different N

41

−2
0

2

−2
0

2
0

0.1

0.2

0.3

x(1)

N =5, ε=3

x(2)

ḡ
N
(x
)

−2
0

2

−2
0

2
0

0.1

0.2

0.3

x(1)

N =10, ε=1

x(2)

ḡ
N
(x
)

−2
0

2

−2
0

2
0

0.1

0.2

0.3

x(1)

N =50, ε=0.5

x(2)

ḡ N
(x
)

−2
0

2

−2
0

2
0

0.1

0.2

0.3

x(1)

N =100, ε=0.1

x(2)

ḡ N
(x
)

Smoothed prob1

−2
0

2

−2
0

2
0

0.5

x(1)

N =5, ε=3

x(2)

ḡ
N
(x
)

−2
0

2

−2
0

2
0

0.5

x(1)

N =10, ε=1

x(2)

ḡ
N
(x
)

−2
0

2

−2
0

2
0

0.5

x(1)

N =50, ε=0.5

x(2)

ḡ
N
(x
)

−2
0

2

−2
0

2
0

0.5

x(1)

N =100, ε=0.1

x(2)

ḡ
N
(x
)

Smoothed prob2

Figure 3.7: Smoothed SAA functions with different N and ε

42

Chapter 4

Retrospective-Approximation
Algorithms Using Direct Search
Methods

4.1 Introduction

It is presented in the previous chapter that local convergent numerical algorithms
could work well on the probability optimization problems by combining the idea
behind the SAA methods with smoothing techniques. However, determining an
appropriate number of sample size in advance without knowing any information
about the problems is difficult. To deal with that, the principle of a refined
family of SAA methods named retrospective approximation is introduced to
incorporate into a type of direct search methods to enhance the smoothed SAA
methods proposed before.

Retrospective approximation (RA) algorithms, described as a sequential-
sampling approach by Homem-de Mello and Bayraksan (2013), are originally
proposed by Chen and Schmeiser (2001) and later extended by Pasupathy and
Schmeiser (2009) for stochastic root finding problems. The desire of RA algo-
rithms is due to a computational strategy. Unlike classic SAA methods that use a
fixed number of sample size to generate a sample-path approximation problem,
RA algorithms generate a sequence of SAA problems with increasing sample
sizes. By employing an appropriate deterministic algorithm, these sequential
SAA problems are solved with gradually decreasing error tolerances. The ra-

43

tionale behind RA algorithms is the belief that computation cost could be saved
if small sample sizes are used in the early stage when the current solution is
far from the optimal one, and more sampling effort is put in as the solution is
approaching to the true solution in the later stage.

A similar idea is studied in the context of stochastic programming by Shapiro
and Homem-de Mello (1998), who incorporated sampling into a two-stage stochas-
tic programming problem with recourse. Homem-De-Mello (2003) studied variable-
sample techniques backed up by the same principle as RA algorithms under the
scheme of discrete stochastic optimization. Instead of using a pre-determined
sequence of sample sizes, Deng and Ferris (2009) proposed a new variant of
variable-sample method using trust region algorithms. The proposed method
integrates Bayesian analysis techniques to determine an appropriate number of
samples based on an instant inspection of the current step.

In this work we describe a type of RA algorithms using direct search meth-
ods. We discuss and present the numerical results of the algorithm for probabil-
ity optimization problems. The algorithm is stated in two-fold. We first assume
a general stochastic objective function such that direct search methods can be di-
rectly applied to its corresponding SAA problems. The convergence properties
of the direct search methods are studied and it is presented that the combination
of direct search methods and RA algorithms is reasonable and applicable. It
is also discussed that the parameters of the proposed RA algorithms using di-
rect search methods, named RA-DS method, can be determined under certain
conditions by following the technical guidelines and specific recommendations
proposed by Pasupathy (2010) for standard RA algorithms. In the second part,
the RA-DS method are adjusted by introducing a new sequence of smoothing
parameters to specifically deal with probability optimization problems. Due to
the smoothing techniques they use, the modified methods are referred to as retro-
spective smoothing direct search (RS-DS) method. The numerical experiments
are implemented to investigate an appropriate choice of the new parameter. In
addition, the numerical results of the RS-DS method are compared with the
smoothed SAA methods proposed in Chapter 3.

One of the recent works that closely relates to this study is by Pasupathy
(2010), who presented a comprehensive study of convergence rate of the RA
algorithms and provided a guideline for choosing the sequence of sample sizes
and error tolerances in the methods. The conditions that Pasupathy (2010) pro-

44

posed on the two sequences are discussed under the scheme of using direct
search methods and the specific choices he recommended for the sequences will
be applied to the RA-DS method and RS-DS method.

The remainder of this chapter is organized as follows. Section 4.2 proposes
the outline of the RA-DS method and investigates appropriate forms of the pa-
rameters by discussing the convergence properties of the direct search methods.
The RA-DS method are developed in Section 4.3 to especially deal with prob-
ability objectives. The choice of the smoothing parameter that is newly intro-
duced and the performance of the developed methods are studied. Section 4.4
concludes the work and gives some aspects of the future work.

4.2 Retrospective-Approximation Algorithms Us-

ing Direct Search Methods

Consider the following stochastic optimization problem:

min
x∈X

f (x) = E [Φ(x,ξ)] , (4.1)

where x ∈Rd is a decision vector, X is a subset of Rd . Unless stated otherwise
we assume that the feasible set X = Rd or it is boxed constrained as X =

[LB,UB], where LB,UB∈Rd . ξ ∈Rd is a vector of uncertain parameter, whose
support is denoted as Ξ. We also assume that the expected function f (x) is
well defined for x ∈X , which means that Φ(x, ·) is measurable, with respect
to the Borel sigma algebra of Rd , and either E[Φ(x,ξ)+] or E[−Φ(x,ξ)+] is
finite (Shapiro, 2003). In order to distinguish between random data and their
numerical values, we would use bold script ξ for the random vector, and ξ for
its particular realization afterwards.

Assumption 5. The true objective function f (x) is continuously differentiable

on x ∈X and ∇ f is Lipschitz continuous with constant κ f .

Assumption 5 is used to clearly define the original objective function. It is
a very standard assumption for direct search methods to guarantee a first-order
convergence.

45

Assumption 6. Φ(x,ξ) is continuously differentiable on x∈X for almost every

ξ ∈ Ξ.

Assumption 6 is to assure that a sample-path problem of (4.1) can be solved
by direct search methods likewise.

4.2.1 Outlines of the RA-DS Method

In the context of simulation optimization, given a realization of ξ , Φ(x,ξ) can be
evaluated via a single simulation run. Applying sample average approximation
(SAA) methods, f (x) is approximated by taking an average over the sample
responses:

min
x∈X

f̄ N(x) :=
1
N

N

∑
i=1

Φ(x,ξi). (4.2)

Instead of solving a single SAA problem, RA algorithms work sequentially
by generating a sequence of (4.2) with increasing sample sizes and solving them
by employing a numerical method with decreasing error-tolerance.

Let index variables j = 1,2, · · · denote the stage that the RA algorithms are
at, and N j denote the sample size used in the jth stage. Let ξ

j
= {ξ j,1, · · · ,ξ j,N j}

denote the samples generated at jth stage, where ξ j,i, i = 1, · · · ,N j mean the ith
realization of randomness ξ at jth stage. Then RA algorithms generate and
solve a SAA problem at each stage of the following form:

min
x∈X

f̄ j(x) =
1

N j

N j

∑
i=1

Φ(x,ξ j,i), j = 1,2, · · · . (4.3)

For any given stage j, the samples within the stage ξ j,is are generated in-
dependently by Monte Carlo sampling. However, the samples between stages
can be generated either independently or dependently. In the independent sam-
pling scheme, ξ

j
contains N j new observations independent from all previous

samplings; whereas in the later case, there is ξ
j
= ξ

j−1
∪{ξ j,N j−1+1,ξ j,N j−1+2,

· · · ,ξ j,N j}, meaning that all the observations in ξ
j−1

are reused and combined
with (N j−N j−1) new observations to consistent of ξ

j
.

Direct search methods are applied to solve the stage problem (4.3). For a
given stage j, the algorithms terminate when the mesh size shrinks to or smaller
than ∆tol

j . Each stage returns a solution of x j, which is the best solution have

46

found when the stage terminates. The stage solution x j is set as the initial guess
(starting point) for the (j+1) stage. The procedures of the RA-DS method are
described in Figure 4.1.

Initialization:
Set j = 1, k = 1, and set:
• an initial sample size N1 and a rule for increasing N j for j ≥ 2;
• an stopping meshsize ∆tol

j and a rule for decreasing ∆tol
j for j ≥ 2;

• a starting point x(k)j and other parameters required for direct search
methods (which can be referred to Figure 2.1).

Ensure:
1: for j = 1,2, · · · or while there is simulation budget, do
2: for k = 1,2, · · · do
3: generate a direction set D(k)

j under some technical conditions;

4: if ∃d(k)
j ∈ D(k)

j such that f̄ j
(
x(k)+ ∆

(k)
j d(k)

j
)
< f̄ j(x

(k)
)
−ρ(∆

(k)
j) then

5: set x(k+1)
j = x(k)j +∆

(k)
j d(k)

j ;

6: set ∆
(k+1)
j = γ

(k)
j ∆

(k)
j ;

7: else
8: set x(k+1)

j = x(k)j ;

9: set ∆
(k+1)
j = θ

(k)
j ∆

(k)
j , where θ

(k)
j ≥ θmin denotes a contraction factor;

10: if ∆
(k+1)
j < ∆tol

j then

11: set x j = x(k+1)
j ;

12: set x(1)j+1 = x j;

13: set ∆
(1)
j+1 = ∆

(k)
j ;

14: return x j;
15: break;
16: end if
17: end if
18: end for
19: end for

Figure 4.1: RA-DS method

47

4.2.2 Determination of N j and ∆tol
j

For the RA algorithms, Chen and Schmeiser (2001) suggested that a family of
{N j} with the form of N j = c1N j−1 where the constant c1 ≥ 1 is reasonable
for their stochastic root finding problems. Correspondingly, they suggested the
form e j = c−1/2

1 e j−1 for their decreasing error-tolerance sequence of {e j}. The
sequence {e j} in the RA is a measure of error-tolerance with respect to the
distance of the current solution to the optimal solution, while in our case, {∆tol

j }
plays a similar role of error-tolerance but with respect to the mesh size.

Pasupathy (2010) provided technical conditions on choosing the sequences
of {N j} and {e j} in RA algorithms so that a certain rate of convergence of RA’s
iterates is guaranteed. A specific recommendation for the sample size and the
error-tolerance sequences proposed by Pasupathy (2010) to reach the conver-
gence rate is N j = cNN j−1 and e j = ce/

√
N j, where cN is some constant greater

than one and ce is some constant greater than zero. There are two critical com-
ponents required to reach the recommended form. The first is that the numerical
algorithm used to solve sample-path problems exhibits linear or polynomial con-
vergence. The second is that the stage solution x j satisfies ‖x j−x∗j‖ ≤ e j w.p.1,
where x∗j is the unique sample-path solution to the jth stage SAA problem.

To obtain appropriate forms of the N j and ∆tol
j in the RA-DS method, we

first state the result that under certain conditions ‖x j−x∗j‖ ≤ c∆tol
j holds. Based

on this result, it can be justified that the specific recommendations of Pasupa-
thy (2010) could be borrowed to the RA-DS method as the parameters of ∆tol

j

play a similar role as the error-tolerance e j in the retrospective-approximation
algorithm.

We impose the following assumption on the response function Φ(x,ξ) and
sample-path functions f̄ j(x).

Assumption 7. Suppose that

1. Φ(x,ξ) is twice continuously differentiable on x w.p.1;

2. ∇2 f̄ j(x∗j) is positive definite w.p.1 where x∗j is a local minimizer of f̄ j for

j = 1,2, · · · ;
3. the set L(x0) := {x| f̄ j(x)≤ f̄ j(x0)} is compact for any given x0 ∈X .

The first condition in Assumption 7 is to assure that for any j, the sample-
path problem f̄ j(x) is twice continuously differentiable with respect to x w.p.1.

48

We also place the following conditions on the direct search methods used in the
RA-DS methods.

Assumption 8. Suppose that ρ(·)≡ 0 and for j = 1,2, · · · , there exists a K such

that for all k ≥ K, γ
(k)
j ≡ 1.

Proposition 6. Let Assumptions 7 and 8 hold. Then for j = 1,2, · · · , if x(1)j is

sufficiently close to x∗j and ∆
(1)
j is sufficiently small, then we have that

‖x j− x∗j‖ ≤ c j∆
tol
j

w.p.1 for some constant c j independent of k.

Proof. The proof is trivial based on the local convergence results by Dolan et al.
(2003, Theorem 4.4). For any stage j, under the conditions of Assumption 7 and
Assumption 8, according to Dolan et al. (2003, Theorem 4.4), for all unsuccess-
ful iterations k, there is

‖x(k)j − x∗j‖ ≤ c1
j∆

(k)
j , (4.4)

for some constant c1
j independent of k. Let superscript ‘(end)’ denote the last

iteration of a stage. Due to the procedures of the RA-DS methods, it can be
claimed that the ‘(end)’ iteration must be unsuccessful. Furthermore, we have

θ
end
j ∆

end
j < ∆

tol
j < ∆

end
j .

Embedding the iteration of ‘(end)’ in the equation (4.4), we have

‖x(end)
j − x∗j‖ ≤ c1

j∆
(end)
j ≤

c1
j

θ
(end)
j

∆
tol
j ≤

c1
j

θmin
∆

tol
j := c j∆

tol
j .

A similar result can also be obtained for the case of ρ(·) 6= 0. Specific
conditions need to be imposed on the ρ(·) to obtain the result. The conditions
are clearly stated in Assumption 9.

Assumption 9. Suppose that

1. for j = 1,2, · · · , γ
(k)
j = 1 for all unsuccessful iterations k;

2. ρ(∆) = α∆p for some fixed α > 0 and fixed p≥ 2;

49

3. there exists some βmin and βmax such that βmin ≤ ‖d
(k)
j ‖ ≤ βmax for all

d(k)
j ∈ D(k)

j .

The similar results in the case of ρ(·) 6= 0 is stated in Proposition 7 without
a proof.

Proposition 7. Suppose Assumptions 7 and 9 hold. Then for j = 1,2, · · · , if x(1)j

is sufficiently close to x∗j and ∆
(1)
j is sufficiently small, then there is

‖x j− x∗j‖ ≤ c j∆
tol
j

w.p.1 for some constant c j independent of k and j.

For a proof of the inequality ‖x(k)−x∗‖ ≤ c1∆(k) for any unsuccessful itera-
tion k, see Theorem 3.15 in Kolda et al. (2003).

Propositions 6 and 7 reveal two properties of direct search methods which
make the choice of the parameters in RA-DS method and RA algorithms con-
nected.

1. Suppose the constants c j for j = 1,2, · · · are upper bounded by some con-
stant cmax. Then according to Propositions 6 and 7, ‖x j−x∗j‖ ≤ cmax∆tol

j

holds w.p.1 for j = 1,2, · · · , indicating that ∆tol
j in the RA-DS methods

plays a similar role as the error-tolerance e j in the RA methods.
2. Direct search methods exhibit r-linearly convergence on the unsuccessful

iterates, meaning that ‖x(k)− x∗‖ ≤ αk for all k ∈ U sufficiently large,
where {αk} is a sequence of scalars that is q-linearly convergent to zero,
and U denotes the subsequence of unsuccessful iterations. Hence it can
be approximately supposed that direct search methods exhibit linear con-
vergence.

Based on the above two components, according to Pasupathy (2010), a natural
choice for the sequences of N j and ∆tol

j is

N j = cNN j−1 for j > 2, (4.5)

and
∆

tol
j =

c∆√
N j

for j = 1,2, · · · , (4.6)

where cN is some constant greater than 1 and c∆ is some constant greater than
zero.

50

4.2.3 Numerical Experiments

We apply the RA-DS method to an adapted Rosenbrock function. The de-
terministic Rosenbrock function is a well-known test problem introduced by
Rosenbrock (1960), and it has an single optimal solution inside a long, narrow,
parabolic shaped flat valley. A two-dimensional Rosenbrock function is of the
form

f (x) = 100(x2− x2
1)

2 +(x1−1)2.

To make the problem stochastic, x1 is multiplied by a random variable ξ ∼
N (1,0.12), and hence the noisy Rosenbrock function is given as

Φ(x,ξ) = 100
(
x2− (ξx1)

2)2 +(ξx1−1)2, (4.7)

and the objective function is give as

f (x) = E[Φ(x,ξ)]. (4.8)

The optimal solution of (4.8) is x∗ = (0.4162,0.1750), and the optimal value is
f (x∗) = 0.4616.

The RA-DS methods with the parameters in forms of (4.5) and (4.6) are
compared with SAA methods using direct search methods. Specifically, we let
N1 = 5 and N j = 2N j−1 for j≥ 2 and ∆tol

j = 0.01/
√

N j for j = 1,2, · · · . For the
SAA methods, we test three cases of N = 10, N = 20 and N = 50.

The initial guess x(0) is randomly generated by a Latin hypercube sampling
within the range of B(x∗,1), and 100 runs are implemented with a limit number
of function evaluations. The quality of the solution is quantified by its distance
to the optimal solution, mathematically denote as ‖x∗budgt− x∗‖. The average
performance of the quality measure ‖x∗budgt− x∗‖ is given in Table 4.1.

It can be seen that in this example, when budget is small, RA-DS method ex-
hibit a better performance than the standard SAA methods in terms of µ

(
‖x∗budgt−

x∗‖
)

value. The reason behind this is that the RA-DS method start with a small
sample size. When the budget grows, the dominance of RA-DS method be-
comes obvious because as the employed sample size increases, the error of the
sample-path function decreases and hence the solution estimator converges to
the true solution. On the other hand, as the budget grows, the quality of the so-

51

Fixed-N SAA

Budget RA-DS N = 10 N = 20 N = 50

1e+3 0.5863 0.6886 0.7287 0.7202

1e+4 0.3342 0.5893 0.6416 0.7160

Table 4.1: µ
(
‖x∗budgt− x∗‖

)
based on 100 runs, where x∗budgt is the solution

obtained for a given limited budget and a random initial guess

lution obtained by the SAA methods is capped because the solution converges
to the SAA problem’s optimal solution instead of the true solution. Since deter-
mining an appropriate sample size in advance for SAA methods is generally not
easy, RA algorithms tend to be a better choice due to their gradually-increase-
samples strategy when the simulation budget is large.

4.3 Retrospective-Smoothing Algorithms Using Di-

rect Search Methods for Probability Optimiza-

tion Problems

In this section we propose a variant of the RA-DS method specifically for prob-
ability simulation optimization problems. The new algorithm is referred to
as the retrospective-smoothing direct search (RS-DS) method, in that it com-
bines the smoothing techniques presented in Chapter 3 and the framework of
the retrospective-smoothing algorithms discussed in the previous section.

4.3.1 Outlines of the RS-DS Methods

Considered a probability optimization program represented as follows:

min
x∈X

f (x) := Pr
{

c(x,ξ)≥ 0
}

:= E
[
Φ(x,ξ)

]
= E

[
1[0,∞)c(x,ξ)

]
, (4.9)

where all the notations denote the same as in (4.1).
We propose to optimize a sequence of smoothed SAA problems with certain

stopping tolerance at successive stage j = 1,2, · · · . To accomplish that, three se-

52

quences are involved. Let {N j} denotes the sequence of increasing sample sizes
of each stage, {ε j} denotes the sequence of decreasing smoothing parameters,
and {∆tol

j } denotes a mesh-tolerance sequence that determines when to termi-
nate current stage. We assume {N j} goes infinity w.p.1, and {ε j} and {∆tol

j }
goes to zero w.p.1.

At stage j, once ξ
j

is realized, the RS-DS methods optimize the smoothed
SAA problem as follows:

min
x∈X

ḡ j(x) :=
1

N j

N j

∑
i=1

Φ̂
(
x,ξ j,i,ε j

)
:=

1
N j

N j

∑
i=1

Ψ
(
c(x,ξ j,i),ε j

)
. (4.10)

Suppose the smoothed functions Φ̂ and Ψ satisfy Assumption 1 as well.
The procedures of the RS-DS method are summarized in Figure 4.2.

4.3.2 Choice of Parameters and Numerical Experiments

Choice of ε j

Introducing the new parameter {ε j} to the retrospective-approximation algo-
rithm causes an error of function approximation, but the error is vanished asymp-
totically in that ε j → 0 as j → ∞. In this section, we exploit an appropriate
form of the parameters ε j by conducting numerical experiments under different
schemes of {ε j}. The test problems employed in this part are the same as Chap-
ter 3, and the specific forms of the three sequences used in the experiments are
stated in Table 4.2.

j = 1,2, · · · Scheme 1.1 Scheme 1.2 Scheme 2.1 Scheme 2.2

N j 2 j−1×5

∆tol
j 4−0.5(j−1)×5

ε j
cε√
N j

cε

N j

cε 4 5 8 10

Table 4.2: Parameters settings for different schemes of ε j

53

Initialization:
Set j = 1, k = 1, and set:
• an initial sample size N1 and a rule for increasing N j for j ≥ 2;
• an initial smoothing parameter ε1 and a rule for decreasing ε j for

j ≥ 2;
• an stopping meshsize ∆tol

j and a rule for decreasing ∆tol
j for j ≥ 2;

• a starting point x(k)j and other parameters required for direct search
methods (which can be referred to Figure 2.1).

Ensure:
1: for j = 1,2, · · · or while there is simulation budget, do
2: for k = 1,2, · · · do
3: generate a direction set D(k)

j under some technical conditions;

4: if ∃d(k)
j ∈ D(k)

j such that ḡ j
(
x(k)+ ∆

(k)
j d(k)

j
)
< ḡ j(x

(k)
)
−ρ(∆

(k)
j) then

5: set x(k+1)
j = x(k)j +∆

(k)
j d(k)

j ;

6: set ∆
(k+1)
j = γ

(k)
j ∆

(k)
j , where γ

(k)
j ≥ 1 denotes an expansion factor;

7: else
8: set x(k+1)

j = x(k)j ;

9: set ∆
(k+1)
j = θ

(k)
j ∆

(k)
j , where θ

(k)
j ≥ θmin denotes a contraction factor;

10: if ∆
(k+1)
j < ∆tol

j then

11: set x j = x(k+1)
j ;

12: set x(1)j+1 = x j;

13: set ∆
(1)
j+1 = ∆

(k)
j ;

14: return x j;
15: break;
16: end if
17: end if
18: end for
19: end for

Figure 4.2: The RS-DS method

Schemes 1.1 and 1.2 take the specific form recommended by Pasupathy
(2010) for the error-tolerance sequences in the retrospective-approximation al-
gorithms. Under these schemes, the smoothing parameters {ε j} decrease at
the same rate as ∆tol

j , and further we have ε2
j = O

(1
N j

)
. On the other hand,

Schemes 2.1 and 2.2 let ε j go to zero faster than the first two schemes by setting

54

ε2
j = o

(1
N j

)
. The row of cε is determined as in the table to make sure the ε1

values under the four schemes are all approximately around 2.
The procedures of comparing the RS-DS method under different schemes of

{ε j} are as follows:
1. generate 100 initial guesses within B(0,5) using Latin Hypercube sam-

pling;
2. for each initial guess, employ the RS-DS method with the parameters in

Table 4.2 to get a solution x∗ such that ‖x∗− x∗‖ < e, where multiple
values of the error-tolerance e are set and tested; and ξ j is independent of
ξ j−1 in the implementation;

3. record the accumulated function evaluations consumed by the four schemes
and compare the average evaluations of 100 runs.

The results of testing the RS-DS method on problem prob2 is presented in
Table 4.3.

error-tolerance e Scheme 1.1 Scheme 1.2 Scheme 2.1 Scheme 2.2

10−1 1540 1192 3769 1810

10−2 2853 2522 20189 15670

10−3 6058 5011 34282 29606

10−4 10177 8718 78064 63547

Table 4.3: Average evaluations consumed by the RS-DS method under different
schemes of {ε j} and different values of error-tolerance

Based on the results for this example, the evaluations consumed by Schemes
2.1 and 2.2 grow much faster than the ones consumed by the other two schemes
as the error-tolerance e decreases. This trend suggests that the smoothing pa-
rameter should not decrease too fast (compared with ∆tol

j or O
(1

N j

)
), which is

consistent with numerical results in Chapter 3 indicating that when sample is un-
dersized, a too small value of ε does not show much help. The rationale behind
this is that if ε j converges to zero too fast, it might become too small (relative
to N j) to play an effective role of smoothing the stage SAA function. Hence,
in the numerical experiments coming afterwards, the smoothing parameter ε j is
defined of the form ε j = cε/

√
N j, where cε is some constant greater than zero.

55

Comparison with the Smoothed SAA Methods

In this test, the performance of the RS-DS method is compared with the smoothed
SAA methods proposed in Chapter 3. To have a fair comparison, the test prob-
lems employed in the experiments are the prob1 and prob2 used in the previous
chapter. Based on the numerical results in Chapter 3, the values of sample size
N and the smoothing parameter ε are closely related to the performance of the
proposed methods. The parameters of the smoothed SAA methods we decide to
take in this test are N = 10 and N = 20, and correspondingly ε = 2 and ε = 1.
The reason of selecting these values is that according to the failure frequencies
shown in Figure 3.10, both values of the ε show a comparatively good perfor-
mance with the matching sample size in terms of the failure frequency.

As for the RS-DS method, the parameters of each stage j are specified in
Table 4.4. By using the tuned parameters shown in the last column, we have

j = 1 j > 1 tuned parameters

N j 5 cNN j−1 cN = 2

∆tol
j 1 c−0.5(j−1)

∆
∆end

1 c∆ = 0.1

ε j 2 cε/N j cε =
√

20

Table 4.4: Choice of parameters for the RS-DS method

N2 = 10 and N3 = 20, meaning that the RS-DS problem has the same size of
samples as the fixed N smoothed SAA problem during the 2nd and 3rd stage.
In addition, we have ε1 = 2 and ε3 = 1, hence both the RS-DS (in the early
stage) methods and the smoothed SAA methods have similar range of smoothing
parameter. Furthermore, since the default value of the mesh tolerance in Matlab
is 1e−6, we believe that ∆end

1 = 1 should be a reasonable choice. All the other
parameters involved in the direct search methods are set as the default values of
the ‘pattersearch’ function in Matlab.

Starting from the same initial guess, the history paths of the RS-DS method
and the fixed-N smoothed SAA methods from one single run are presented in
Figure 4.3. The beginning of a new stage is highlighted in the figure.

It can be seen that by using a small sample in the beginning, the RS-DS
method to the solution faster than the two smoothed SAA methods with fixed
sample size. Though during its procedures, the RS-DS method shares some

56

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5

4

j=1, N
j
=5, ∆

j
=1, ε

j
=2

j=2, N
j
=10, ∆

j
=0.70711, ε

j
=1.4142

j=3, N
j
=20, ∆

j
=0.5, ε

j
=1

Number of function evaluations

¯
||
x
(k
)

j
−
x
∗
||

Problem: prob1, RS−DS v.s. smoothed SAA

RS−SAA
fixed N=10, ε=2

fixed N=20, ε=1
new stage

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

j=1, N
j
=5, ∆

j
=1, ε

j
=2

j=2, N
j
=10, ∆

j
=0.70711, ε

j
=1.4142

j=3, N
j
=20, ∆

j
=0.5, ε

j
=1

Number of function evaluations

¯
||
x
(k
)

j
−
x
∗
||

Problem: prob2, RS−DS v.s. smoothed SAA

RS−SAA
fixed N=10, ε=2

fixed N=20, ε=1
new stage

Figure 4.3: Iteration history of the RS-DS method and the smoothed SAA
method

same values of N j and ε j with the fixed N cases, the performance of RS-DS
method is better than both of the fixed-N paths. What helps the RS-DS method
outperform is that a very small number of samples is used in the beginning of

57

the algorithm, which enables the algorithm to save budget when the iterates are
far away from the true solution.

The stability of the RS-DS method are also of interest. Though the smoothed
SAA methods can sometimes work surprisingly well with a pretty small sample,
this is dependent on the structure of the original objective function, the value of
the smoothing parameter, and also the realization of the samples. As suggest in
Figure 3.10, there is a chance that smoothed SAA methods fail to converge to the
true solution when the sample is finite. In another words, when they work, the
smoothed SAA methods can find the correct solution quickly and successfully
save a significant amount of evaluations, but when they do not work, they may
consume the budget but lead to a wrong solution. The issue is that without any
information about the underlying problem, this possibility of ‘failure’ is difficult
to estimate in advance. We present an example in Figure 4.4 to illustrate a case
when the smoothed SAA methods get stuck.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

j=1, N
j
=5, ∆

j
=1, ε

j
=2

j=2, N
j
=10, ∆

j
=0.70711, ε

j
=1.4142

j=3, N
j
=20, ∆

j
=0.5, ε

j
=1

Number of function evaluations

¯
||
x
(k
)

j
−
x
∗
||

Problem: prob2, RS−DS v.s. smoothed SAA

RS−SAA
fixed N=10, ε=2
fixed N=20, ε=1
new stage

Figure 4.4: Smoothed SAA with a small sample fails to converge to the true
solution

By using an increasing sequence of sample size, we the expect RS-DS method
to relieve this issue by showing a better stability in terms of the capability of
finding the correct solution with limited function evaluations. To investigate
this, multiple simulations are ran and the average performance of the RS-DS

58

method and the smoothed SAA methods are checked. The parameters of the
two methods are set the same as in Table 4.4 and Figure 4.3. The initial guess
x(0) for each run is randomly generated by a Latin hypercube sampling within
the range of B(x∗,5), and 1000 runs are implemented with a certain number of
function evaluation budget. The quality of the solution is quantified by its dis-
tance to the true solution, mathematically denote as ‖x∗budgt− x∗‖. After 1000
runs, the statistical performance of the quality measure ‖x∗budgt− x∗‖ is given
in Table 4.5.

RS-DS N = 10,ε = 2 N = 20,ε = 1

budget µ
(
‖x∗budgt− x∗‖

)
0.4004 0.5006 0.6977

= 600 Var
(
‖x∗budgt− x∗‖

)
0.7998 1.1210 0.8748

budget µ
(
‖x∗budgt− x∗‖

)
0.0939 0.4997 0.6621

= 2000 Var
(
‖x∗budgt− x∗‖

)
0.2073 1.1674 0.7744

Table 4.5: Statistical performance of the solutions obtained by the RS-DS
method and the smoothed SAA methods based on 1000 runs

The two algorithms are tested under two values of simulation budget, which
are 600 and 2000. The two schemes can be considered to measure a finite-time
performance and an asymptotic performance correspondingly. The justification
for the choice of the two values is the singular run result presented in Figure 4.3
and Figure 4.4. It can be roughly said that a budget of 2000 evaluations should
be large enough for all of the three paths to converge.

From the statistical results in Table 4.5, two trends reflecting the advantages
of the RS-DS method rather than the smoothed SAA methods can be observed.
The first is that under both budget schemes , the RS-DS method performs better
than the smoothed SAA counterparts in terms of both mean and variance of the
measure ‖x∗budgt− x∗‖. This not only means that in average RS-DS method
can get a better solution than the smoothed SAA methods, but also implies that
former have a better stability rather than the later, which is consistent with our
expectation. Another trend implied by Table 4.5 is that when the simulation bud-
get increases from 600 to 2000, the performance of the two solutions obtained
by the smoothed SAA methods does not change much. This is understandable in
that for smoothed SAA methods, the more evaluations it consumed, the closer

59

it will approach to the solution; however, this solution is the optimal solution
of the SAA problem rather than the true objective problem. In another word,
for the smoothed SAA cases, the error of the solution cannot be wiped off by
increasing simulation budget once the a number of samples is finite and fixed.
On the other hand, the performance of the RS-DS method improves substan-
tially as the simulation budget is enlarged. This is due to the fact that the RS-DS
method increases its sample size automatically in stage, making it possible for
the algorithm to eliminate the function error and converge to the true solution
asymptotically. By proceeding in this retrospective way, the RS-DS method
outperforms the smoothed SAA methods.

4.4 Conclusions

We propose a specific type of retrospective-approximation algorithm using di-
rect search methods to deal with stochastic simulation optimization problems.
The convergence properties of the direct search methods make this combination
reasonable and applicable, and further under certain conditions the parameters
of the new algorithm can be determined following the guidelines proposed for a
general retrospective-approximation algorithm.

This retrospective-approximation direct search methods are further devel-
oped by introducing a new smoothing parameter to solve probability problems
in simulation-based optimization. We conduct numerical experiments to find
out appropriate forms of the newly introduced parameter, and present numerical
results showing that the new algorithm performs better than the standard SAA
methods with smoothing technique.

Recommendations for future work on the proposed methods include: (i)
proposing specific mathematical justification for the selection of the smooth-
ing parameters; (ii) deriving convergence rate or asymptotic distributions of
‖∇ f (x j)‖.

60

Chapter 5

Direct Search Methods Combined
with Local Metamodeling

5.1 Introduction

The aim of this study is to improve the efficiency of direct search methods by
using less evaluations than they normally take. More specifically, a local meta-
modeling methodology is introduced to combine with the standard direct search
methods. The performance of the new algorithm is analyzed mathematically.

Our work is closely related to Custódio and Vicente (2007) and Custódio
et al. (2010), both of which aim to improve the efficiency of the POLL stage
of direct search methods by reducing the number of evaluations that each iter-
ation consumes. Custódio and Vicente (2007) used simplex derivatives in the
pattern search methods to reorder the visiting and the work has been extended
into nonsmooth functions by Custódio et al. (2008). Custódio et al. (2010) used
quadratic underdetermined metamodels in the SEARCH stage of the pattern
search methods and showed good performance of the enhanced methods with
numerical tests. In this work, several types of local metamodeling techniques
are introduced to the standard POLL stage of direct search methods. This adap-
tion can be applied to the POLL stage of any classical direct search methods
without causing any extra computational time , and the existing convergence
results of direct search methods are also preserved.

The key differences between this work and the two mentioned above lie in
two folds. First, we use a set of local metamodeling techniques instead of sim-

61

plex derivatives to realize the improvement, which is more flexible and general.
Second, while Custódio and Vicente (2007) analyzed the effect of the improve-
ment, the conditions required to guarantee the utility of the simplex derivatives
are not stated and the improvement is not mathematically justified either. On the
other hand, we analyze the our algorithm by proposing two types of measures to
quantify the performance of the algorithm from an asymptotic point of view and
a finite-time point of view, respectively. The measures are closely dependent
on the local metamodeling techniques used in the proposed algorithm and the
nature of the metamodels plays an important role in justifying the utility of the
algorithm.

5.2 Some Metamodeling Techniques

We turn our attention to a set of local metamodeling techniques in this sec-
tion. Throughout this chapter, we denote a design set with p design points as
DS =

{
x1,x2, · · · ,xp}. We will introduce three types of commonly used meta-

modeling techniques . Some mathematical properties of these techniques, which
will be used in our mathematical analysis, will be presented as well.

5.2.1 Linear Interpolation and Regression

Let mL(x) denote a first-order polynomial metamodeling function, and x =

{x(1),x(2), · · · ,x(d)}∈Rd . Then mL(x) can be expressed in the following form:

mL(x) = β0 +β1x(1)+ · · ·+βnx(d).

We say that metamodel m(x) interpolates the true function f (x) at a given
point x′ if m(x′)= f (x′). Let p denote the number of design points, and ΦL(x) :=
{1,x(1),x(2), · · · ,x(d)} ∈ Rd+1 denote the linear polynomials of degree 1. In
the case of linear interpolation, let mL(x) interpolate f (x) at the p points in the

62

DS, i.e., mL(xi) = f (xi), i = 1, · · · , p. Mathematically

ΦL(x1)

ΦL(x2)

...

ΦL(xp)

β0

β1

...

βd

=

f (x1)

f (x2)

...

f (xp)

. (5.1)

The linear parameter β can be obtained by solving the above linear system as
long as p = d and the design set is poised, meaning that the corresponding
design matrix, the matrix on the left in (5.1), is nonsingular (Conn et al., 2009,
pg. 24).

5.2.2 Minimum Frobenius Norm Model

A quadratic polynomial model can be considered as the simplest yet often the
most efficient nonlinear metamodel (Conn et al., 2009, pg. 37). Minimum
Frobenius norm model, denoted as mF , is essentially a type of quadratic poly-
nomial interpolation model. Let Rd denote the d-dimensional real space and
N= {0,1,2, · · ·}, then define Nd

0 to be

Nd
0 = {z = (z1,z2, ...,zd) ∈ Rd : zi ∈ N, i = 1,2, ...,d}.

Let Φ(x) ∈ R(d+1)(d+2)/2 be a vector of monomials which will be appear in
the mF model to be presented later. Mathematically, the lth element of Φ(x),
denoted as Φl(x), can be expressed as

Φ
`(x) =

1
(α`)!

xα`, l = 0, · · · , (d +1)(d +2)
2

,

where α`=
(
α`(1), · · · ,α`(d)

)
∈Nd

0 , such that ∑
d
j=1 α`(j)≤ 2, (α`)!=∏

d
j=1
(
α`(j)!

)
,

and xα` = ∏
d
j=1 x(j)α`(j). More intuitively, for a given x ∈ Rd ,

Φ(x) = {1,x(1),x(2), · · · ,x(d),x(1)2/2,x(1)x(2), · · · ,x(d−1)x(d),x(d)2}.

63

When p = (d + 1)(d + 2)/2, we let mF interpolate f at all design points and
solve the following the system of linear equations:

Φ(x1)

Φ(x2)

· · ·

Φ(xp)

β =

f (x1)

f (x2)

· · ·

f (xp)

, (5.2)

where β is a vector in R(d+1)(d+2)/2. Recall that the definition of ΦL given
in Section 5.2.1. Let ΦQ(x) be the complementary set of Φ(x) and ΦL(x), in
which case we have Φ(x) =

(
ΦL(x),ΦQ(x)

)
. Further denote the corresponding

parameters of ΦL(x) and ΦQ(x) as β L and β Q, thus we have β = (β L,β Q).
Same as linear interpolation, a solution of β can be obtained as long as the
design matrix on the left in (5.2) is nonsingular.

One difficulty in determining a quadratic interpolation is that there may not
be enough well-poised design points, in which case the left hand side is non-
singular. Minimum Frobenius norm (MFN) model provides an option when
the design points are large enough for a linear regression but not enough for
a quadratic interpolation. When d < p < (d + 1)(d + 2)/2, the information of
curvature is appreciated driven by the belief that the actual accuracy of a under-
determined quadratic model is better than that of a purely linear model.

Let ΦL(x) := {1,x(1),x(2), · · · ,x(d)} and ΦQ(x) := {x(1)2/2,x(1)x(2), · · ·
x(d)2} be the linear and quadratic natural basis, and define β = (β L,β Q), where
β L and β Q are the correspondent linear and quadratic part of the coefficient
vector. Then the MFN parameter β is defined as the solution of the following

64

optimization problem:

min 1
2‖β Q‖2

s.t.

ΦL(x1)

ΦL(x2)

· · ·

ΦL(xp)

β L +

ΦQ(x1)

ΦQ(x2)

· · ·

ΦQ(xp)

β Q =

f (x1)

f (x2)

· · ·

f (xp)

.

(5.3)

MNF model gets its name due to the fact that minimizing the norm of β Q is
equivalent to minimizing the Frobenius norm of the Hessian of mF(x). Once we
get the solution of β , the MNF estimator can be obtained by:

mF(x) = ΦL(x)β L +ΦQ(x)β Q. (5.4)

5.2.3 Kriging Models

Kriging model is a geostatistical method to infer the value of an unobserved
location from available samples Simple kriging assumes that the true function
value f (x) is a sample-path of a random process dependent on x. Mathemati-
cally,

f (x) = β + z(x),

where z(x) follows a stationary Gaussian process of mean 0 and variance σ2
x .

The covariance between two sample points x1 and x2 is dependent on the dis-
tance between the two points such that Cov(z(x),z(y)) = R

(
‖x− y‖

)
for some

radial basis function R. For a simple notation, we will use c(x,y) to refer
Cov

(
z(x),z(y)

)
afterwards.

Given a set of design points DS, the kriging model mK interpolates the ob-
served values on them, and estimates the values of an unvisited point x as a

65

linear combination of the available observations:

mK(x) =
p

∑
i=1

λi(x) f (xi). (5.5)

The weights λi(x), i = 1, · · · , p are chosen such that the kriging variance is to be
minimized subject to the unbiasedness condition. In this sense, kriging can be
considered as a type of least squares estimation algorithm and it reaches the best
linear unbiased estimator. The kriging variance is a popular measure to quantify
the reliance of kriging, which is

σ
2
K(x) := Var

(
mK(x)− f (x)

)
=

p

∑
i=1

p

∑
j=1

λi(x)λ j(x)c(xi,x j)+Var
(

f (x)
)
−2

p

∑
i=1

λi(x)c(xi,x).

Given the unbiased estimator and kriging variance, a confidence interval of
each prediction can be obtained. This information of confidence interval plays
an important role later when the performance of kriging local metamodel is
analyzed quantitatively.

In addition to the kriging variance, Yamamoto (2000) has propose inter-
polation variance as another measure to quantify the local accuracy of kriging
estimation, which is

σI(x) =
p

∑
i=1

λi
[

f (xi)−mK(x)
]2
.

Compared to the kriging variance, interpolation variance is considered to be
a better measure for quantifying the reliability of kriging in that it is objective-
value dependent, while kriging variance is only location dependent. Due to this
reason, interpolation variance is selected to measure the reliability of the kriging
local model in this work. In the proposed algorithm, kriging model is used for
a local estimation instead of for a global fitting, hence only the visited points
located in the neighborhood of the estimate point will be used. Therefore, a
reliability measure that can capture more available information should be more
helpful.

One thing needs to be pointed out is that interpolation variance is the vari-

66

ance conditional to the p design points ((Froidevaux, 1993)), which is

σI(x) = E
[
(f (x)−mK(x))2

∣∣∣{ f (x(i)), i = 1, · · · , p
}]

. (5.6)

Because ordinary kriging variance is equal to the mean squared error, which is
σK(x) = E

[
(f (x)− f̂ (x))2], we have σK(x) = E[σI(x)].

The two measures of kriging’s reliability are highlighted here because they
will be employed later to analyze the performance of local metmodels. To the
best of our knowledge, kriging has been little used in a local sense, but it does
exhibit some properties that make employing it as a local metamodel applicable.
Since the set of design points is limited in size, ∆(k) goes to zero as algorithm
progresses. In addition, | f (xi)− f (x j)| for i, j ∈ Z ≤ p also decreases under
some conditions, which provides a chance to quantify the asymptotic perfor-
mance of the metamodels in our analysis.

The software package DACE (Design and Analysis of Computer Experi-
ments) is a Matlab toolbox to construct a kriging approximation model based
on data from a computer experiment, and to use this approximation model as a
surrogate for the computer model. The DACE toolbox will be used in the nu-
merical experiments part and a good survey on DACE is referred to Sacks et al.
(1989).

5.3 Framework of Improved Algorithms

We now present a description of the new direct search methods which are com-
bined with some local metamodeling techniques mentioned above. The motiva-
tion of the adaption is that in the normal GSS, though the direct set is generated
using different techniques, the candidates points determined by this direct set
are normally visited in a predetermined order (Conn et al., 2009). We want to
make the maximum use of the available information to decide the visiting order
more wisely so that we can reduce some number of evaluations in each itera-
tion. For this purpose, we construct a local metamodel at the beginning of each
iteration and keep it updated whenever new information is available. With the
help of the local metamodels, we can identify the most potential candidate by
evaluating some estimation measures. More specifically, the framework of our
algorithm is illustrated in Figure 5.1.

67

I. Initialization. Use the same initialization in GSS algorithms. Initialize infor-
mation set I0.
II. Algorithm. For each iteration k = 0,1,2, · · · , set nested index j = 1,
• Step I (next iterate selection) Define candidate set C(k) = {x(k)i , i =

1, · · · ,nk}, where x(k)i is defined as in Figure 2.1. Set unvisited candidate
set UC(k) =C(k).
• Step II(local metamodels) Determine design set DS(k j) by following

Equation (5.7). Construct a local metamodel m(k j) based on DSk j us-
ing the techniques described in Section 5.2. Identify the most potential
candidate, x(k)mp, using Equation (5.8).
• Step III(update models or algorithm parameters) Evaluate f (x(k)mp):

– (i) (Success) If f (x(k)mp)< f (x(k))−ρ(∆(k)), then
∗ set x(k+1) = x(k)mp, and ∆(k+1) = γ∆(k), where γ ≥ 1.
∗ update Ik = Ik∪{(x

(k)
mp, f (x(k)mp))}.

∗ iteration terminates, k← k+1.
– (ii) (Failure) Otherwise,
∗ update Ik = Ik∪{x

(k)
mp, f (x(k)mp)}.

∗ update UC(k) =UC(k)−{x(k)mp}:
· if UC(k) 6= /0, j← j+1, goto Step II and repeat.
· if UC(k) = /0, then x(k+1) = x(k), ∆(k+1) = θ∆(k), where 0 <

θ ≤ θmax ≤ 1.
– Stopping criterion check:
∗ if ∆(k+1) < ∆tol, then terminate.

Figure 5.1: GSS algorithm with local metamodeling techniques.

As Figure 5.1 says, in the beginning of iteration k, a local metamodel is
constructed first. A design set DS(k) is identified depending on whether the
previous iteration is successful or not. More specifically, we define DS(k) as
follows:

DS(k) =

{x(k)}∪C(k−1), , if (k−1)th iteration is a failure;

(nk +1) points in Ik

that are closest to x(k) , otherwise

.

(5.7)
Note that according to the definition of DS(k), it can be seen that no matter in

68

which case, the current center point x(k) is always included in the corresponding
design set.

Although metamodel is updated within one iteration once new candidate is
visited, we abuse m(k) to refer the m(k j) defined in Figure 5.1 afterwards for a
simplification. The estimation measures used to identify the most potential can-
didate, x(k)mp, are different for different types of local metamodeling techniques.
Mathematically, it can be expressed as following:

x(k)mp :=

argmin
x∈UC(k)

m(k)(x) , m(k) ∈ {mL,mF};

argmax
x∈UC(k)

Pr{ f (x)< f (x(k))−ρ(∆(k))} , m(k) ∈ {mK}.

(5.8)

For the second category m(k) ∈ mK , the probability measure implies the chance
that the unvisited point outperforms than x(k) for at least ρ(∆(k)) based on the
available interpolation points and together with kriging metamodels. The reason
that we choose probability interval instead of mean value as the measure for
kriging meatmodels is that when compare a candidate with the current center
point, the only thing that matters is whether the performance on the candidate
is better than that of current best at least for a value of ρ(∆(k)), while the actual
value of the function gap does not matter. Pr{ f (x) < f (xk)} can be obtained
from the unbiased estimator m(k)

K (x), kriging variance σk(x), and together with
the Gaussian assumption of the model. This probability information revealed
by kriging metamodels will play an important role in the performance analysis
of our adapted algorithm.

The local metamodeling techniques used in the new algorithm can be seam-
lessly embedded in a wide range of direct search methods. Also, the existing
convergence results of the direct search methods are not affected. Furthermore,
because the improved algorithm does not require extra evaluations in the imple-
mentation, it improves the efficiency of the algorithm by making more use of
local information and reducing the evaluations that it would cost to find a better
point. This saving would be significant especially when the problem size is big,
or the running simulation is extremely costly. Note that we only expect local
metamodels to help in successful iterations, in which cases there exist at least

69

one better point. Otherwise, all the candidate points have to be visited before
the algorithm moves to the next iteration anyway.

5.4 Asymptotic Performance Analysis

In this section, we study the asymptotic performance of local metamodels that
are embedded in the standard direct search methods. By saying ‘asymptotic
performance’, we mean a situation where the simulation budget is sufficient
enough to get an optimal solution. More specifically, we want to learn how does
the accuracy of local metamodels change as meshsize ∆(k) decreases to zero.
Remember that the embedded metamodels would not effect the convergence
results of the algorithm. They only aim to improve the algorithm efficiency by
providing with a wiser visiting order to the candidate points.

Three types of metamodeling techniques mentioned before, mL, mF , mK

are to be looked into. Linear metamodels mL and minimum Frobenius norm
models mF are considered in the same category since they are both interpolation
or regression polynomial models but just with different orders.

5.4.1 Performance of Local Interpolation and Regression

We study the asymptotic performance of mL and mF in this section. We firstly
give an assumption on the local metamodels to guarantee their estimation accu-
racy quantitatively.

Assumption 10. Assume that for all the point x∈ B(x(k);r∆(k)), the error bound

of the metamodel estimation m(k)(x) to the true value f (x) is upper bounded as

| f (x)−m(k)| ≤ κ · (∆(k))α ,

for α ≥ 2, where κ is a constant depending on the f (·) and geometrical proper-

ties of the design set DS(k).

As a matter of fact, a fully linear model satisfies Assumption 10 with α = 2
and a fully quadratic model satisfies it with α = 3 (Conn et al., 2009, Chapter
6.1). As for the design points, Custódio and Vicente (2007) have shown that
DS(k) is guaranteed to be poised if DS(k) = {x(k)} ∪C(k−1), where the set of

70

candidate points C(k−1) is defined as in Figure 5.1. According to our definition
to the design set (5.7) and Conn et al. (2009, Theorem 2.11), it can be shown
that mL and mF would satisfy Assumption 10 with α = 2 whenever the previ-
ous iteration is a failure. Therefore, in this subsection, we would focus on the
performance of mL and mF .

We will check the asymptotic performance of metamodels conditioned on
the form of forcing function ρ(∆(k)). Recall that ρ can be either constantly equal
to zero, or some positive-valued function satisfying lim

∆(k)→0 ρ(∆(k))/∆(k) = 0.
Both cases will be analyzed, respectively.

Convergence analysis for the case with ρ ≡ 0

Assumption 11. Let x(k)i = x(k)+∆(k)d(k)
i , i = 1, · · · ,nk, and for the objective

function f (x), define OD(k) := min
{
| f (x(k))− f (x(k)i)| : | f (x(k))− f (x(k)i)| 6=

0, i = 1, · · · ,nk
}

. Furthermore, limk→∞
∆
(k)α

OD(k) = 0.

Note that
(
∆(k))α quantifies the metamodel estimation error, whereas ODk

can be considered as a measure of optimality error. Assumption 11 basically
requires that the metamodel should be accurate enough such that its estimation
error would be dominated by optimality error asymptotically. We may use the
mean value theorem for a better description. For some t between 0 and 1, we
have

f (x(k))− f (x(k)i) = (x(k)− x(k)i) ·∇ f
(
(1− t)x(k)+ tx(k)i

)
= ∆

(k)d(k)
i

T
∇ f
(
(1− t)x(k)+ tx(k)i

)
.

One sufficient condition for Assumption 11 is that at the region near stationary
points, ∇ f should converge to zero slower than O(α − 1). For models like mL

and mF with α = 2, this is to require that ∇ f should converge to zero slower
than linear rate near the local solutions.

It can be seen that Assumption 11 is strong and typically violated in practice.
However, later in the numerical experiments, we also test a wide variety of prob-
lems that do not follow Assumption 11. The results show that the performance
with metamodels are still better than those without metamodels.

By the following theorem, we will show that under Assumption 10 and As-
sumption 11, asymptotically, metamodel gives a correct ranking of candidate

71

points and center point at successful iterations as the meshsize decreases to zero.
We first define an indicator variable to evaluate the consistency of the meta-

model ranking and true ranking. Define subsequence {kl : l ≥ 1} ⊂ {k ≥ 1} be
a sequence of successful iterations. The reason why only successful iterations
are considered is that for unsuccessful iterations all the candidate points have
to be visited before the algorithm moves to the next iteration anyway. Let the
indicator function 1cm denote the correctness of local metamodel, which is

1cm(x(kl)) =

1 , if sgn

(
m(kl)(x(kl)

mp)− f (x(kl))
)
= sgn

(
f (x(kl)

mp)− f (x(kl))
)

0 , otherwise,

.

Notice that the indicator value of 1cm implies that the sign of
(
m(kl)(x(kl)

mp)
)
−

f (x(kl)) is consistent with the sign of f (x(kl)
mp)− f (x(kl)), meaning that meatmodel

estimation is accurate enough for a correct ranking between candidate point and
center point when the candidate is really better than the center point. We give
the limit value of 1cm indicator function by stating the theorem below.

Theorem 2. Suppose that Assumptions 10 and 11 hold. Then, liml→∞ 1cm(x(kl))=

1.

Proof. By Assumption 10, |m(k)(x)− f (x)| ≤ κ ·
(
∆(k))α , which implies

f (x)−κ ·
(
∆
(k))α ≤ m(k)(x)≤ f (x)+κ ·

(
∆
(k))α

. (5.9)

Let Lkl =
(
m(kl)(x(kl)

mp)− f (x(kl))
)(

f (x(kl)
mp)− f (x(kl))

)
, then

Lkl ≥ min
{(

f (x(kl)
mp)−κ · (∆(k))α − f (x(kl))

)(
f (x(kl)

mp)− f (x(kl))
)
,(

f (x(kl)
mp)+κ · (∆(k))α − f (x(kl))

)(
f (x(kl)

mp)− f (x(kl))
)}

. (5.10)

By Assumption 11, there exists a positive L such that for all l > L, the sign of
the right-hand side of (5.10) = sgn

((
f (x(kl)

mp)− f (x(kl))
)2
)
. Since kl denotes the

subsequence of successful iterations, we have f (x(kl)
mp)− f (x(kl)) < 0, meaning

that for all l > L, Lkl is positive. According to the definition of Lkl , a positive
value of Lkl implies that the signs of m(kl)(x(kl)

mp)− f (x(kl)) and f (x(kl)
mp)− f (x(kl))

72

are consistent. According to the definition of 1cm(x(kl)), it can be obtained
liml→∞ 1cm(x(kl)) = 1.

Convergence analysis for the case with ρ(∆(k)) 6= 0

The conditions required to get Theorem 2 is strong. The reason is that when
ρ ≡ 0 metamodel approximations should be pretty accurate so that they can
make a correct ranking between f (x(kl)) and f (xmp). The strong condition
needed can be relaxed when ρ is a positive-valued function rather than zero.
When analyzed, the positive ρ could be considered as a tolerable estimation er-
ror for making a correct ranking between the current center point and a better
candidate. Compared to the zero tolerance case with ρ ≡ 0, in the case of ρ ≥ 0
the asymptotic performance of metamodels can be guaranteed under much re-
laxed conditions.

Assumption 12. For some α > 0, the forcing function ρ(∆(k)) satisfies

lim
∆(k)→0

(
∆(k))α

ρ(∆(k))
= 0. (5.11)

Recall that a prerequisite for ρ(·) is that lim
∆(k)→0

ρ(∆(k))

∆
(k) = 0. Combin-

ing this condition with Assumption 12, one of the simplest form of the forcing
function is ρ(∆(k)) = (∆(k))γ , where 1 < γ < α .

We will show that if Assumption 12 is satisfied, for the sequence of success-
ful iterations {kl : k ≥ 1} ⊂ {k ≥ 1}, the model error of mL and mF is asymp-
totically dominated by the objective difference between x(kl)

mp and x(kl), meaning
that metamodel can identify x(kl)

mp successfully in one shot.

Proposition 8. Suppose that Assumptions 10 and 12 hold. Then,

lim
l→∞

| f (x(kl)
mp)−m(x(kl)

mp)|
f (x(kl))− f (x(kl)

mp)
= 0.

Proof. By Assumption 10, for any l ≥ 1,

0≤
| f (x(kl)

mp)−m(x(kl)
mp)|

f (x(kl))− f (x(kl)
mp)

≤ κ · (∆(kl))α

ρ(∆(kl))
. (5.12)

73

By Assumption 12, the upper bound in (5.12) converges to zero as ∆(k) goes
to zero. Thus the proof is done.

Based on Proposition 8, a similar asymptotic result to the case of ρ ≡ 0 can
be obtained.

Let the indicator function 1cm denote the correctness of local metamodel in
the cases of ρ 6= 0, which is

1̄cm(x(kl)) =

1 , if sgn

(
m(kl)(x(kl)

mp)− f (x(kl))+ρ(∆(kl))
)

= sgn
(

f (x(kl)
mp)− f (x(kl))+ρ(∆(kl))

)
;

0 , otherwise.

Theorem 3. Suppose that Assumptions 10 and 12 hold. Then, liml→∞ 1̄cm(x(kl))=

1.

Proof. By Assumption 10, |m(k)(x)− f (x)| ≤ κ ·
(
∆(k))α , which is

f (x)−κ ·
(
∆
(k))α ≤ m(k)(x)≤ f (x)+κ ·

(
∆
(k))α

.

Let Lkl =
(
m(kl)(x(kl)

mp)− f (x(kl))+ρ(∆(kl))
)(

f (x(kl)
mp)− f (x(kl))+ρ(∆(kl))

)
, then

Lkl ≥ min
{(

f (x(kl)
mp)−κ · (∆(k))α − f (x(kl))+ρ(∆(kl))

)
×
(

f (x(kl)
mp)− f (x(kl))+ρ(∆(kl))

)
,(

f (x(kl)
mp)+κ · (∆(k))α − f (x(kl))+ρ(∆(kl))

)
×
(

f (x(kl)
mp)− f (x(kl))+ρ(∆(kl))

)}
. (5.13)

By Assumption 12, there exists a positive L such that for all l > L, sgn
(
RHS

of (5.13)
)
= sgn

((
f (x(kl)

mp)− f (x(kl))+ ρ(∆(kl))
)2
)
. Since kl denotes the sub-

sequence of successful iterations, we have f (x(kl)
mp)− f (x(kl)) + ρ(∆(kl)) < 0,

meaning that for all l > L, Lkl is positive. According to the definition of Lkl ,
a positive value of Lkl implies that the signs of m(kl)(x(kl)

mp)− f (x(kl))+ρ(∆(kl))

and f (x(kl)
mp)− f (x(kl))+ρ(∆(kl)) are consistent. According to the definition of

1̄cm(x(kl)), it can be obtained liml→∞ 1̄cm(x(kl)) = 1.

74

Theorem 3 implies that for the sequence of successful iterations, asymptoti-
cally metamodels can identify a better candidate in just one shot.

5.4.2 Asymptotic Performance of mK

We have introduced two different measures, kriging variance σK and interpo-
lation variance σI , to quantify the reliance of kriging in Section 5.2.3. In this
section, we will check the asymptotic performance of mK by studying the limit
values of these two measure.

Assumption 13. f (·) is Lipschitz continuous with some constant κL, i.e., | f (x)−
f (y)| ≤ κL‖x− y‖ for any x,y ∈ Rd .

Proposition 9. Suppose that Assumption 13 holds. Then

lim
k→∞

σI(x(k)) = 0.

Proof. We firstly rewrite the interpolation variance σI(x) as follows:

σI(x) =
p

∑
i=1

λi
[

f (x(i))−mK(x)
]2

=
p

∑
i=1

λi
[

f (x(i))−
p

∑
i=1

λi f (x(i))
]2

=
p

∑
i=1

λi

[
(1−λi) f (x(i))− ∑

j=1,··· ,p
& j 6=i

λ j f (x(j))
]2
.

Define ∆δ
k :=maxi 6= j ‖x(i)−x(j)‖. Since ∑i λi = 1, two bounds of ∑

j=1,··· ,p
& j 6=i

λ j f (x(j))

can be obtained based on Assumption 13:

∑
j=1,··· ,p
& j 6=i

λ j f (x(j)) ≤ ∑
j=1,··· ,p
& j 6=i

λ j(f (x(i))+κL‖x(i)− x(j)‖)≤ (1−λi) ·
(

f (x(i))+κL∆
δ
k
)
;

∑
j=1,··· ,p
& j 6=i

λ j f (x(j)) ≥ ∑
j=1,··· ,p
& j 6=i

λ j(f (x(i))−κL‖x(i)− x(j)‖)≥ (1−λi) ·
(

f (x(i))−κL∆
δ
k
)
.

Then, we have

75

(1−λi) f (x(i))− ∑
j=1,··· ,p
& j 6=i

λ j f (x(j) ≥ (1−λi) f (x(i))− (1−λi)
(

f (x(i))+κL∆
δ
k
)

= −κL∆
δ
k (1−λi),

(1−λi) f (x(i))− ∑
j=1,··· ,p
& j 6=i

λ j f (x(j) ≤ (1−λi) f (x(i))− (1−λi)
(

f (x(i))−κL∆
δ
k
)

= κL∆
δ
k (1−λi).

Therefore,

σI(x) =
p

∑
i=1

λi
[

f (x(i))−mK(x)
]2

≤
p

∑
i=1

λi

(
κL∆

δ
k (1−λi)

)2

= (κL∆
δ
k)

2
p

∑
i=1

λi(1−λi)
2

≤ p(κL∆
δ
k)

2, (5.14)

where the last inequality is from 0 < λi < 1. Since ∆δ
k → 0 as k→ ∞, we have

limk→∞ σIx(k) = 0.

Recall that it has been shown in Section 5.2.3 that σK(x) = E[σI(x)]. Since
σI(x) is upper bounded as in (5.14), according to Dominated Convergence The-
orem, limk→∞ σK(x(k)) = 0.

5.5 Finite-time Performance Analysis

In this section, we study the finite-time performance rather than asymptotic one.
By saying finite-time performance, we mean the quality of the solutions can
be obtained with limited simulation budget. We compare our algorithm which
uses local metamodeling techniques with the direct search methods which visit
candidates in a random order. For the regression metamodels, we show that
the probability of detecting a better candidate is higher in the first scheme. As
for the kriging, the number of evaluations consumed by the two schemes are

76

analyzed and it is shown that evaluations can be reduced by using local kriging
in direct search methods.

5.5.1 Regression Metamodels

The idea of prediction interval in the statistical inference will be used in the
following analysis. A prediction interval is an estimate of an interval in which
future observations will fall, with a certain probability, based on what has al-
ready been observed, which is different from estimation in that the later is to
estimate a parameter, like mean or variance, instead of individual observation.

In ordinary linear regression theory, where residuals are assumed to be in-
dependent and with the same variance, the best prediction is consistent with
a linear regression estimation (Stein and Corsten, 1991). Furthermore, Stein
and Corsten (1991) point out that the possible future observation on a point
x can be considered to follow a normal distribution with mean of m(x) and
variance of σ(x) := 1+ x(X ′X)−1x, where X is the design matrix used in the
metamodel construction. Based on this assumption, for any given a, if the meta-
model value m(x) > a, we have Pr{ f (x) < a} < 1/2 and if m(x) < a, we have
Pr{ f (x)< a}> 1/2.

Let Sr denote the event of finding a better point in the first trial by the al-
gorithm which visits candidates randomly, and Sm denote the event of finding
a better point in the first trial by our algorithm which uses regression meta-
models. Let C(k) denote the set of candidate points as defined in Figure 5.1 and
n1 = |C(k)| denote its cardinality. Let BC(k) = {x∈C(k) : m(x)< f (x(k))} denote
the set of candidate points with a better meatmodel estimation than the current
center point and n2 = |BC(k)| denote its cardinality. Then, we have

Pr{Sr} =
1
n1
· ∑

xci∈C(k)

Pr
{

f (xci)< f (x(k))
}

(5.15)

=
1
n1

(
∑

xci∈BC(k)

Pr
{

f (xci)< f (x(k))
}

+ ∑
xci∈
(

C(k)−BC(k)
)Pr
{

f (xci)< f (x(k))
})

.

Selecting a candidate point based on the metamodel values, and assuming that

77

the number of candidate points with a better metamodel value is positive, we
have

Pr{Sm}=
1
n2
· ∑

xc j∈BC(k)

Pr
{

f (xc j)< f ((x(k))
}
.

Under the assumptions of independent prediction, for any x ∈ BC(k), we have
Pr{ f (x) < f (x(k)} > 1/2 and for any x ∈

(
C(k)−BC(k)) we have Pr{ f (x) <

f (x(k)}< 1/2, and hence it can be obtained that Pr{Sm}> Pr{Sr}.

5.5.2 Expected Number of Evaluations of Kriging

Let x(k)i = x(k)+∆(k)d(k)
i , i = 1, · · · ,nk and Y (k) denote the vector of response

of currently used design set. By the assumptions of kriging model, we have
f (x(k)i)

∣∣Y (k) ∼ N
(
mK(x

(k)
i),Var(x(k)i)

)
.

Since we select the points with the largest probability of outperforming the
current center point as the most potential candidate, we are interested in check-
ing this would help to save the total evaluations consumed. We compare a
metamodel-guided visit with a random visit. In the former scenario, candi-
dates are visited in a decreasing order of Pr

{
f (x(k)i) < f (x(k))−ρ(∆(k))

}
, i.e.,

x(k)mp would be visited first, whereas in the later one, we visit candidate points
randomly.

Let EV (k)
i , i= 1, · · · ,nk denotes the expected number of evaluations required

to terminate this iteration when there are i candidates to visit at iteration k. We
add subscript R and K to denote the scheme of random visit and kriging-guided
visit respectively.

Proposition 10. For ∀k = 1,2, · · · , EV (k)
R,i ≥ EV (k)

K,i for i = 1,2, · · · ,nk.

Proof. For i = 1, EV (k)
R,1 = EV (k)

K,1 = 1. This is due to the fact that we need to visit
the only candidate anyway.

Assume that for i = `, E(k)
R,` ≥ E(k)

K,`. Then at (`+1)th evaluation,

EV (k)
R,`+1 = 1+EV (k)

R,` ·
(

∑
`+1
i=1 Pr

{
f (x(k)i)> f (x(k))−ρ(∆(k))

}
`+1

)
,

EV (k)
K,`+1 = 1+EV (k)

K,` ·Pr
{

f (x(k)mp)> f (x(k))−ρ(∆(k))
}
.

According to the definition of x(k)mp given in equation (5.8), we have EV (k)
R,`+1 ≥

78

EV (k)
K,`+1.

5.6 Numerical Experiments

We test our algorithm on a set of standard problems selected from some op-
timization library. The dimensions of these problems range from 2 to 10 and
some of them have more than one stationary point. A summary of the selected
problems can be referred in Table 5.1. The detailed information of each problem
is presented in Appendix A.

Table 5.1: A summary of test problems.

Problem d No. of x∗ No. of local solutions (other than x∗)

Schwefel 2 1 several

Easom 2 1 several

Rosenbrock-10D 10 1 several

Branin 2 3 0

Goldstein-Price 2 1 several

Price Transistor 9 1 0

Singular 4 1 0

Shekel5 4 18 several

For each test problem, we implement a pattern search (GPS) algorithm with-
out search step and use a classical update of the mesh size parameter of 1/2. The
positive spanning sets are set to have only one positive basis, which is D(k) ≡D.
More specifically, we set D := [−I, I], where I is the identity matrix of size d.
This direction set with 2d columns corresponds to coordinate search and pro-
vides more accurate final iterates. In addition to GPS, we have also implemented
a lower triangular MADS (Audet and Dennis Jr, 2006) for a reference. MADS
and GPS use the same set of algorithm parameter and initialization information
expect that MADS generates a random direction set at each iteration.

Three types of local metamodeling techniques are tested, which are linear
regression (mL), minimum Frobenius norm quadratic interpolation (mF), and

79

Kriging (mK). In the standard algorithm in which no metamodels are used (mN),
candidates are visited in a random order. This is different from the normal rou-
tine that the polling vectors are visited in a fixed predetermined order. This idea
behind is that we want to remove the shape effect of the objective function.

The procedures for testing the finite-time performance of different algo-
rithms are listed below.

1. Sample N starting points x(0) using LHS method within the feasible region
X .

2. For each x(0), run the algorithm, and record a path of f (x(k)) and the
correspondent accumulated evaluations at each iteration k.

3. Take average on the N paths in terms of the f (x(k)) and the accumulated
evaluations at a sequence of simulation budget nodes, therefore we get
one performance path from a certain algorithm for each test problem.

4. Eight algorithms from two schemes (GPS and MADS), which are denoted
as GPSN , GPSL, GPSF , GPSK , MADSN , MADSL, MADSF , MADSK are
figured and compared together.

Both cases of ρ ≡ 0 and ρ 6= 0 are tested, and in the later case, we set
ρ(∆(k))=

(
∆(k))1.8. Numerical results are presented in Figure ?? and Figure 5.2.

under the two schemes of ρ(·). In each plot, the performance of GPS is pre-
sented in solid line, while the counterpart of MADS is presented in dot dash
line. The purpose is to compare the N model with other three (L, F , and K) in
a matching group, i.e., whether the colored curves, both in solid and dash, are
better than the black curve in solid and dash correspondingly.

Some trends can be observed from the results:
1. In most cases, mN performs worse than the other three. This is implied

by that the black curve tends to have a high y-axis value compared with
the other curves, meaning that for a given budget, a random visit with-
out a metamodel obtains a worse solution than our algorithms with local
metamodels.

2. Compared with the case of ρ ≡ 0, the advantage of using metamodels
becomes less obvious in the case of ρ(·). This makes sense in that meta-
models are only expected to help in a successful iteration, while otherwise
all the candidate points have to be evaluated anyway according to the al-
gorithm. If ρ(·) 6= 0, it becomes more difficult for an iteration to be suc-
cessful, which makes the advantage of local metamodels less significant.

80

3. mL and mK exhibit a more promising performance on the test problems
with multiple local optimal solutions, while mF seems to be a better choice
for singular-solution problems.

4. GPS and MADS do not show an obvious difference in terms of average
performance.

5.7 Conclusions

Direct search methods can be made more efficient if past function evaluations
are appropriately reused. We propose the use of local metamodeling techniques
in direct search methods to improve the algorithm efficiency. The local meta-
models are introduced and incorporated into the existing standard direct search
methods to help save simulation cost without affecting the convergence results
of the original algorithm. At each iteration of a pattern search method, one can
attempt to compute a local metamodel by identifying a sampling set of previous
visited points with good geometrical properties. To evaluate how much the local
metamodel can help to save evaluations, we propose two measures to estimate
its utility from two aspects, which are asymptotic performance and finite-time
performance respectively. We draw the conclusion that under some assump-
tions, as iteration k goes infinity, local metamodels can detect an existing better
candidate with one evaluation. We also justify the help of local metamodel in
the sense of saving evaluations.

Three variants of local metamodels are discussed, which are simplex linear
regression, minimum Frobenius norm quadratic interpolation and kriging. All
the three variants satisfy some accuracy requirements of the estimation, which
is a necessary condition for the expected asymptotic performance. For the con-
struction of the metamodels, we assumed that a design set with a good geometric
property was available so that no extra simulations were required for the meta-
model construction. However, this good-geometric-property condition may not
be satisfied in real-world implementation because none of our modifications de-
mands new function evaluations. This issue is checked in the numerical experi-
ments as the metamodels are constructed only based on the visited points which
can be not well located in terms of their geometrical properties. The numerical
results on a set of test problems show that the efficiency of the algorithm still
get improved with the help of local metamodels even in this case.

81

Conclusively, function evaluations can be saved by incorporation local meta-
models into direct search methods. This evaluation reduction is supportive by
both mathematical analysis and numerical results, and this improvement is sig-
nificant in practice especially in the cases where simulation cost is extremely
high.

82

0 50 100 150 200 250
400

450

500

550

600

650

700

750

800

function evaluations

f
(x

(k
))

Schwefel

GPS

N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

function evaluations

f
(x

(k
))

Branin

GPS

N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−3

function evaluations

f
(x

(k
))

Easom

GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 10

9

function evaluations

f
(x

(k
))

Singular

GPS

N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

function evaluations

f
(x

(k
))

Price Transistor

 GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

500

function evaluations

f
(x

(k
))

Goldstein−Price

 GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12
x 10

4

function evaluations

f
(x

(k
))

Rosenbrock

GPS

N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 50 100 150 200 250
−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

function evaluations

f
(x

(k
))

Shekel5

GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

Figure 5.2: Results for case with ρ 6= 0

83

0 50 100 150
350

400

450

500

550

600

650

700

750

800

function evaluations

f
(x

(k
))

Schwefel

 GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 10 20 30 40 50 60
0

5

10

15

20

25

function evaluations

f
(x

(k
))

Branin

GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 10 20 30 40 50 60 70 80 90
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−5

function evaluations

f
(x

(k
))

Easom

GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 50 100 150
0

2

4

6

8

10

12

14
x 10

8

function evaluations

f
(x

(k
))

Singular

GPS

N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9
x 10

8

function evaluations

f
(x

(k
))

Price Transistor

GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

function evaluations

f
(x

(k
))

Goldstein−Price

GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 50 100 150 200 250 300 350
0

5

10

15
x 10

4

function evaluations

f
(x

(k
))

Rosenbrock

GPS

N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

0 50 100 150 200
−7

−6

−5

−4

−3

−2

−1

0

function evaluations

f
(x

(k
))

Shekel5

 GPS
N

GPS
L

GPS
F

GLS
K

MADS
N

MADS
L

MADS
F

MADS
K

Figure 5.3: Results for case with ρ ≡ 0.

84

Chapter 6

Conclusions and Future Work

In this thesis, we explore enhanced simulation algorithms to reduce simulation
evaluations in both stochastic and deterministic cases.

For the stochastic case, a specific type of optimization problems with a prob-
ability objective is studied in Chapter 3. Since probability functions are essen-
tially expected values of indicator functions, optimization algorithms exhibiting
a local convergence cannot work well on them when the SAA method is applied
since the corresponding SAA function is ill-structured. We propose smoothed
SAA methods to deal with this issue so that a wide range of (nonlinear) deter-
ministic optimization algorithms could be successfully applied even when the
sample size is small. The convergence of the solution set of the smoothed SAA
methods is also discussed.

The smoothed SAA methods are further developed in Chapter 4 by introduc-
ing the idea behind retrospective-approximation (RA) methods. The enhanced
method solves a sequence of smoothed SAA problems with increasing sample
size, decreasing smoothing parameter, and decreasing error-tolerance driven by
a computational strategy. The selection of the parameters are discussed. More
specifically, we suggest to decrease the smoothing parameters at the same rate
of error-tolerance based on the convergence properties of direct search methods
and numerical test. The method numerically performs better than the fixed-
sample-size SAA methods with smoothing techniques.

Both proposed enhanced SAA methods exhibit better performance than the
classic SAA methods in dealing with probability objective problems. They use
less simulation evaluations in average to achieve a given accuracy level and

85

also perform more stable. Furthermore, our methods are general enough so that
many variants of numerical algorithms can be employed. In conclusion, the two
methods provide new options to the users who deal with expensive probability
simulation optimization problems.

For the deterministic case, we propose a new framework in Chapter 5 to in-
corporate local metamodeling techniques into direct search methods to improve
the efficiency of the algorithms without affecting their convergence results. The
conditions on the local metamodels and the objective functions are discussed so
that the utility of the local metamodels is guaranteed. Numerical results with
a wide variety of test problems show that a large amount of evaluations can be
saved by using direct search methods with the local metamodeling techniques
even when the regularity conditions are not fully satisfied.

The following are some possible future research directions for this thesis.
1. The assumption imposed in Chapter 3 to obtain Lemma 1 is strong, which

should be relaxed in our future work.
2. Mathematical justification for the selection of the smoothing parameters

in Chapter 4 can be investigated.
3. The convergence rate or asymptotic distributions of ‖∇ f (x j)‖ in Chap-

ter 4 can also be explored to give a clearer guideline on the choice of
three sequences of parameters.

86

Bibliography

Abramson, M.A. 2005. Convergence of mesh adaptive direct search to second-
order stationary points. Tech. rep., DTIC Document.

Al-Sumait, J. S., A. K. Al-Othman, J. K. Sykulski. 2007. Application of pattern
search method to power system valve-point economic load dispatch. Interna-

tional Journal of Electrical Power & Energy Systems 29 720–730.

Alexander, S., T. F. Coleman, Y. Li. 2006. Minimizing cvar and var for a port-
folio of derivatives. Journal of Banking & Finance 30 583–605.

Anderson, E. J., M. C. Ferris. 2001. A direct search algorithm for optimization
with noisy function evaluations. SIAM Journal on optimization 11 837.

Andradóttir, S., A. A. Prudius. 2009. Balanced explorative and exploitative
search with estimation for simulation optimization. INFORMS Journal on

Computing 21 193–208.

Andradóttir, Sigrún. 1998. A review of simulation optimization techniques.
Simulation Conference Proceedings, 1998. Winter, vol. 1. IEEE, 151–158.

April, J., F. Glover, J. P. Kelly, M. Laguna. 2003. Practical introduction to
simulation optimization. Simulation Conference, 2003. Proceedings of the

2003 Winter, vol. 1. IEEE, 71–78.

Audet, C., V. Béchard, S. L. Digabel. 2008. Nonsmooth optimization through
mesh adaptive direct search and variable neighborhood search. Journal of

Global Optimization 41 299–318.

Audet, C., J. E. Dennis Jr. 2006. Mesh adaptive direct search algorithms for
constrained optimization. SIAM Journal on Optimization 17 188–217.

87

Audet, C., G. Savard, W. Zghal. 2010. A mesh adaptive direct search algorithm
for multiobjective optimization. European Journal of Operational Research

204 545–556.

Audet, Charles, JE Dennis Jr. 2004. A pattern search filter method for nonlinear
programming without derivatives. SIAM Journal on Optimization 14 980–
1010.

Banks, J. 1998. Handbook of simulation. Wiley Online Library.

Banks, J. 2005. Discrete Event System Simulation, 4/e. Pearson Education India.

Bogani, C., M. G. Gasparo, A. Papini. 2009a. Generalized pattern search meth-
ods for a class of nonsmooth optimization problems with structure. Journal

of computational and applied mathematics 229 283–293.

Bogani, C., M. G. Gasparo, A. Papini. 2009b. Generating set search methods
for piecewise smooth problems. SIAM Journal on Optimization 20 321–335.

Box, G. E. P. 1957. Evolutionary operation: A method for increasing industrial
productivity. Applied Statistics 81–101.

Box, George EP, KB Wilson. 1951. On the experimental attainment of optimum
conditions. Journal of the Royal Statistical Society. Series B (Methodological)

13 1–45.

Brooke, A., D. Kendrick, A. Meeraus. 1996. GAMS Release 2.25: A user’s

guide. GAMS Development Corporation Washington, USA.

Carson, Y., A. Maria. 1997. Simulation optimization: methods and applications.
Proceedings of the 29th conference on Winter simulation. IEEE Computer
Society, 118–126.

Cea, J., J. Céa, J. Céa, J. Céa, F. Mathematician. 1971. Optimisation: Théorie

et algorithmes. Dunod Paris.

Chen, H., B. W. Schmeiser. 2001. Stochastic root finding via retrospective ap-
proximation. IIE Transactions 33 259–275.

Conn, A. R., N. I. M. Gould, P. L. Toint. 2000. Trust-region methods, vol. 1.
Society for Industrial Mathematics.

88

Conn, A. R., K. Scheinberg, L. N. Vicente. 2009. Introduction to derivative-free

optimization. SIAM.

Custódio, A. L., J. E. Dennis Jr, L. N. Vicente. 2008. Using simplex gradients
of nonsmooth functions in direct search methods. IMA journal of numerical

analysis 28 770–784.

Custódio, A. L., H. Rocha, L. N. Vicente. 2010. Incorporating minimum frobe-
nius norm models in direct search. Computational Optimization and Appli-

cations 46 265–278.

Custódio, A.L., L.N. Vicente. 2007. Using sampling and simplex derivatives in
pattern search methods. SIAM Journal on Optimization 18 537–555.

Custódio, Ana Luı́sa, José F Aguilar Madeira, A Ismael F Vaz, Luı́s N Vicente.
2011. Direct multisearch for multiobjective optimization. SIAM Journal on

Optimization 21 1109–1140.

Davidon, W. C. 1991. Variable metric method for minimization. SIAM Journal

on Optimization 1 1–17.

Deng, G., M. C. Ferris. 2009. Variable-number sample-path optimization. Math-

ematical Programming 117 81–109.

Dolan, E. D., R. M. Lewis, V. Torczon. 2003. On the local convergence of
pattern search. SIAM Journal on Optimization 14 567–583.

Fourer, R., D. M. Gay, B. W. Kernighan. 1993. Ampl. Boyd and Fraser.

Froidevaux, R. 1993. Constrained kriging as an estimator of local distribution
functions. Proceedings of the International Workshop on Statistics of Spatial

Processes: Theory and Applications. Bari, Italy. 106–118.

Fu, M. C. 1994. Optimization via simulation: A review. Annals of Operations

Research 53 199–247.

Fu, M. C. 2002. Optimization for simulation: Theory vs. practice. INFORMS

Journal on Computing 14 192–215.

89

Fu, M. C., J. Q. Hu. 1995. Sensitivity analysis for monte carlo simulation of
option pricing. Probability in the Engineering and Informational Sciences 9
417–446.

Gaivoronski, A. A., G. Pflug. 2005. Value at risk in portfolio optimization:
properties and computational approach. Journal of Risk 7 1–31.

Geyer, C. J., E. A. Thompson. 1992. Constrained monte carlo maximum like-
lihood for dependent data. Journal of the Royal Statistical Society. Series B

(Methodological) 657–699.

Glasserman, P. 1990. Gradient estimation via perturbation analysis, vol. 116.
Springer.

Gosavi, A. 2003. Simulation-based optimization: parametric optimization tech-

niques and reinforcement learning, vol. 25. Springer.

Güneş, F., F. Tokan. 2010. Pattern search optimization with applications on
synthesis of linear antenna arrays. Expert systems with applications 37 4698–
4705.

Homem-De-Mello, T. 2003. Variable-sample methods for stochastic optimiza-
tion. ACM Transactions on Modeling and Computer Simulation (TOMACS)

13 108–133.

Homem-de Mello, T., Güzin Bayraksan. 2013. Monte carlo sampling-based
methods for stochastic optimization .

Hooke, R., T. A. Jeeves. 1961. “direct search”solution of numerical and statis-
tical problems. Journal of the ACM (JACM) 8 212–229.

Hosseini, S. S. S., Ali Jafarnejad, Amir Hossein Behrooz, Amir Hossein Gan-
domi. 2011. Combined heat and power economic dispatch by mesh adaptive
direct search algorithm. Expert Systems with Applications 38 6556–6564.

Hough, P. D., T. G. Kolda, V. J. Torczon. 2002. Asynchronous parallel pattern
search for nonlinear optimization. SIAM Journal on Scientific Computing 23
134–156.

90

Kibzun, A. I., Y. S. Kan. 1996. Stochastic programming problems with proba-

bility and quantile functions. Wiley.

Kim, S. 2006. Gradient-based simulation optimization. Simulation Conference,

2006. WSC 06. Proceedings of the Winter. IEEE, 159–167.

Kim, S., R. Pasupathy, S. G. Henderson. 2011. A guide to sample-average
approximation. Handbook of Simulation Optimization .

Kim, S., D. Zhang. 2010. Convergence properties of direct search methods for
stochastic optimization. Winter Simulation Conference (WSC), Proceedings

of the 2010. IEEE, 1003–1011.

Kleijnen, J. P. C., W. V. Beers, I. V. Nieuwenhuyse. 2010. Constrained op-
timization in expensive simulation: Novel approach. European Journal of

Operational Research 202 164–174.

Kolda, T. G., R. M. Lewis, V. Torczon. 2003. Optimization by direct search:
New perspectives on some classical and modern methods. Siam Review 385–
482.

Lacksonen, T. 2001. Empirical comparison of search algorithms for discrete
event simulation. Computers & Industrial Engineering 40 133–148.

Lagarias, J. C., J. A. Reeds, M. H. Wright, P. E. Wright. 1998. Convergence
properties of the nelder–mead simplex method in low dimensions. SIAM

Journal on Optimization 9 112–147.

Lasdon, L., E. Popova. 2005. Monte carlo sampling-based methods in stochastic
programming .

Lee, D., J. W. Kim, C. G. Lee, S. Y. Jung. 2011. Variable mesh adaptive direct
search algorithm applied for optimal design of electric machines based on fea.
Magnetics, IEEE Transactions on 47 3232–3235.

Lepp, R. 1983. Stochastic approximation type algorithm for the maximization of
the probability function’. Eesti NSV Teaduste Akademia Toimetised, Füüsika,

Matem 32 150–156.

91

Lewis, R. M., V. Torczon. 1999. Pattern search algorithms for bound constrained
minimization. SIAM Journal on Optimization 9 1082–1099.

Lewis, R. M., V. Torczon. 2000. Pattern search methods for linearly constrained
minimization. SIAM Journal on Optimization 10 917–941.

Lewis, R. M., V. Torczon, M. W. Trosset. 2000. Direct search methods: then
and now. Journal of Computational and Applied Mathematics 124 191–207.

Linderoth, J., A. Shapiro, S. Wright. 2006. The empirical behavior of sampling
methods for stochastic programming. Annals of Operations Research 142
215–241.

Liu, L., X. Zhang. 2006. Generalized pattern search methods for linearly equal-
ity constrained optimization problems. Applied mathematics and computation

181 527–535.

McKinnon, K. I. M. 1998. Convergence of the nelder–mead ximplex method to
a nonstationary point. SIAM Journal on Optimization 9 148–158.

Meng, F., J. Sun, M. Goh. 2011. A smoothing sample average approximation
method for stochastic optimization problems with cvar risk measure. Com-

putational Optimization and Applications 50 379–401.

Nelder, J. A., R. Mead. 1965. A simplex method for function minimization. The

computer journal 7 308–313.

Pasupathy, R. 2010. On choosing parameters in retrospective-approximation al-
gorithms for stochastic root finding and simulation optimization. Operations

Research 58 889–901.

Pasupathy, R., B. W. Schmeiser. 2009. Retrospective-approximation algorithms
for the multidimensional stochastic root-finding problem. ACM Transactions

on Modeling and Computer Simulation (TOMACS) 19 5.

Polak, E. 1971. Computational methods in optimization: A unified approach,
vol. 77. Academic Pr.

Powell, M. J. D. 1964. An efficient method for finding the minimum of a func-
tion of several variables without calculating derivatives. The computer journal

7 155–162.

92

Prékopa, A. 1988. Numerical solution of probabilistic constrained programming
problems. Numerical techniques for stochastic optimization 123–139.

Prékopa, Andras. 2003. Probabilistic programming. A. Ruszczyn-
ski, A. Shapiro, eds., Stochastic Programming, Handbooks in Op-

erations Research and Management Science, vol. 10. Elsevier, 267
– 351. doi:http://dx.doi.org/10.1016/S0927-0507(03)10005-9. URL
http://www.sciencedirect.com/science/article/pii/

S0927050703100059.

Raik, E. 1975. The differentiability in the parameter of the probability function
and optimization of the probability function via the stochastic pseudogradient
method. Eesti NSV Teaduste Akdeemia Toimetised. Füüsika-Matemaatika 24
860–869.

Rani, D., M. M. Moreira. 2010. Simulation–optimization modeling: A sur-
vey and potential application in reservoir systems operation. Water resources

management 24 1107–1138.

Regis, R. G., C. A. Shoemaker. 2010. Parallel stochastic global optimization
using radial basis functions. INFORMS Journal on Computing 21 411.

Rios, L. M., N. V. Sahinidis. 2012. Derivative-free optimization: A review of
algorithms and comparison of software implementations. Journal of Global

Optimization 1–47.

Robbins, H., S. Monro. 1951. A stochastic approximation method. The Annals

of Mathematical Statistics 400–407.

Robinson, S. M. 1996. Analysis of sample-path optimization. Mathematics of

Operations Research 21 513–528.

Rockafellar, R. T., J. O. Royset. 2010. On buffered failure probability in design
and optimization of structures. Reliability Engineering & System Safety 95
499–510.

Rockafellar, R. T., S. Uryasev. 2002. Conditional value-at-risk for general loss
distributions. Journal of Banking & Finance 26 1443–1471.

93

http://www.sciencedirect.com/science/article/pii/S0927050703100059
http://www.sciencedirect.com/science/article/pii/S0927050703100059

Rosenbrock, H. 1960. An automatic method for finding the greatest or least
value of a function. The Computer Journal 3 175–184.

Rubinstein, R. Y., D. P. Kroese. 2011. Simulation and the Monte Carlo method,
vol. 707. Wiley.

Rubinstein, Reuven Y., A. Shapiro. 1993. Discrete event systems: Sensitivity

analysis and stochastic optimization by the score function method, vol. 346.
Wiley New York.

Sacks, J., W. J. Welch, T. J. Mitchell, H. P. Wynn. 1989. Design and analysis of
computer experiments. Statistical science 4 409–423.

Semini, M., H. Fauske, J. O. Strandhagen. 2006. Applications of discrete-
event simulation to support manufacturing logistics decision-making: a sur-
vey. Proceedings of the 38th conference on Winter simulation. Winter Simu-
lation Conference, 1946–1953.

Shapiro, A. 2001. Monte carlo simulation approach to stochastic programming.
Proceedings of the 33nd conference on Winter simulation. IEEE Computer
Society, 428–431.

Shapiro, A. 2003. Monte carlo sampling methods. Handbooks in Operations

Research and Management Science 10 353–425.

Shapiro, A., D. Dentcheva, A.j P Ruszczyński. 2009. Lectures on stochastic

programming: modeling and theory, vol. 9. SIAM.

Shapiro, A., T. Homem-de Mello. 1998. A simulation-based approach to two-
stage stochastic programming with recourse. Mathematical Programming 81
301–325.

Spendley, W., G. R. Hext, F. R. Himsworth. 1962. Sequential application of
simplex designs in optimisation and evolutionary operation. Technometrics 4
441–461.

Sriver, T. A., J. W. Chrissis, M. A. Abramson. 2009. Pattern search ranking
and selection algorithms for mixed variable simulation-based optimization.
European journal of operational research 198 878–890.

94

Stein, A., L. C. A. Corsten. 1991. Universal kriging and cokriging as a regres-
sion procedure. Biometrics 575–587.

Swann, W. H. 1972. Numerical methods for unconstrinaed optimization, chap.
Direct search methods. Acamedic Press, London, New York, 13–28.

Swisher, James R., P. D. Hyden, S. H. Jacobson, L. W. Schruben. 2000. A sur-
vey of simulation optimization techniques and procedures. Simulation Con-

ference, 2000. Proceedings. Winter, vol. 1. IEEE, 119–128.

Torczon, V. 1991. On the convergence of the multidirectional search algorithm.
SIAM journal on Optimization 1 123–145.

Torczon, V. 1997. On the convergence of pattern search algorithms. SIAM

Journal on optimization 7 1–25.

Ubi, E. 1977. Statistical investigation of stochastic programming problems and
method for their solution. Proceedings of Tallinn Polytechnical Institute 26
57–76.

Uryas’ ev, S. 1989. A differentiation formula for integrals overseas given by
inclusion. Numerical Functional Analysis and Optimization 10 827–841.

Vicente, Luı́s. N., A. L. Custódio. 2012. Analysis of direct searches for discon-
tinuous functions. Mathematical programming 133 299–325.

Vikram, N. S. 1995. A new smooth step function for adams. Tech. rep.,
ADAMS.

Xu, H., D. Zhang. 2009. Smooth sample average approximation of stationary
points in nonsmooth stochastic optimization and applications. Mathematical

Programming 119 371–401.

Yamamoto, J. K. 2000. An alternative measure of the reliability of ordinary
kriging estimates. Mathematical Geology 32 489–509.

Zangwill, W. I. 1967. Minimizing a function without calculating derivatives.
The Computer Journal 10 293–296.

95

Appendix A

Summary of Test Problems

• Beale (BE)
– Dimension: 2
– Domain: (−4.5,4.5)2.
– Definition: BE(x) = (1.5− x1(1− x2))

2 + (2.25− x1(1− x2
2))

2 +

(2.625− x1(1− x3
2))

2 +1.
– Local minima: none.
– Global minima: x∗ = (3,0.5), BE(x∗) = 1.

• Branin (BR)
– Dimension: 2.
– Domain: xl = (−5,0), xu = (10,15).
– Local minima: none.
– Global minima: x∗=(−π,12.275;π,2.275;9.42478,2.475); BR(x∗)=

0.397887.
• Colville (CV)

– Dimension: 4.
– Domain: [−10,10]4.
– Definition: CO(x) = 100(x2

1−x2)
2+(x1−1)2+(x3−1)2+90(x2

3−
x4)

2 + ...10.1((x2−1)2 +(x4−1)2)+19.8(x2−1)(x4−1).
– Local minima: none.
– Global minima: x∗ = (1,1,1,1), CO(x∗) = 0.

• Easom (EA)
– Dimension: 2
– Domain: [−10,10]2.

96

– Definition: EA(x) =−cos(x1)cos(x2)exp(−x1−π)2− (x2−π)2.
– Local minima: none.
– Global minima: x∗ = (π,π), EA(x∗) =−1.

• Price Transistor (PT)
– Dimension: 9
– Domain: xl =(0,0,0,0,0,0,0,0,0),xu =(10,10,10,10,10,10,10,10,10).

x ∈ [xl, xu].
– Definition: Define

g=

0.485 0.752 0.869 0.982

0.369 1.254 0.703 1.455

5.2095 10.0677 22.9274 20.2153

23.3037 101.779 111.461 191.267

28.5132 111.8467 134.3884 211.4823

, and sumsqr= 0.

For k = 0 : 3

α = (1.0− x1x2x3)(exp(x5(g(1,k+1)−0.001g(3,k+1)x7

−0.001x(8) ·g(5,k+1))−1.0))

−g(5,k+1)+g(4,k+1)x2;

β = (1.0− x1x2)x4(exp(x6(g(1,k+1)−g(2,k+1)

−0.001g(3,k+1)x7 +0.001g(4,k+1)x9))−1.0)

−g(5,k+1)x1 +g(4,k+1);

sumsqr = sumsqr+α
2 +β

2;

End for loop.
PT (x) = (x1x3− x2x4)

2 + sumsqr.
– Local minima: None;
– Global minima: x∗ = (0.9,0.45,1,2,8,8,5,1,2), PT (x∗) = 0.

• Rosenbrock (RO)
– Dimension: user defined d.
– Domain: [−5,5]d .

97

– Definition: Initiate RO(x) = 0.
For i = 1 : d−1

RO(x) = RO(x)+(1− xi)
2 +100(xi+1− x2

i)
2;

End for loop.
RO(x) = RO(x)+1.

– Local minima: none.
– Global minima: x∗i = 1, i = 1, · · · ,d; RO(x∗) = 0.

• Shekel5 (SH)
– Dimension: 4.
– Domain: [1,10]4.
– Definition: Define

A =

4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

, SH(x) = 0, and c =

0.1

0.2

0.2

0.4

0.4

.

For i = 1 : 5

z = x−A(i, :);

SH(x) = SH(x)−1/(z× z′+ c(i));
– Local minima: 760.
– Global minima: 18. End for loop.

• Singular (SI)
– Dimension: 4.
– Domain:[−100,100]4.
– Definition: SI(x)= (x1−10x2)

2+5(x3−x4)
2+(x2−2x3))

4+10(x1−
x4)

4 +1;

98

	Introduction
	Simulation Optimization and Methods
	Direct Search Methods
	Motivations and Objectives
	Dissertation Outline

	Literature Review
	Direct Search Methods
	Direct Search Methods in Early Stage
	Recent Variants: GPS and MADS
	GSS Methods
	Improvements on Efficiency

	Sample Average Approximation (SAA) Methods
	Methodologies and Variants
	Theoretical Properties

	Smoothed SAA Methods for Probability Optimization Problems
	Introduction
	Smoothed SAA Methods for Probability Optimization
	Convergence of Solution Set
	Numerical Experiments
	Purpose and Test Problems
	Implementation and Results
	Comparison with Other Algorithms

	Conclusions

	Retrospective-Approximation Algorithms Using Direct Search Methods
	Introduction
	Retrospective-Approximation Algorithms Using Direct Search Methods
	Outlines of the RA-DS Method
	Determination of Nj and jtol
	Numerical Experiments

	Retrospective-Smoothing Algorithms Using Direct Search Methods for Probability Optimization Problems
	Outlines of the RS-DS Methods
	Choice of Parameters and Numerical Experiments
	Choice of j
	Comparison with the Smoothed SAA Methods

	Conclusions

	Direct Search Methods Combined with Local Metamodeling
	Introduction
	Some Metamodeling Techniques
	Linear Interpolation and Regression
	Minimum Frobenius Norm Model
	Kriging Models

	Framework of Improved Algorithms
	Asymptotic Performance Analysis
	Performance of Local Interpolation and Regression
	Convergence analysis for the case with 0
	Convergence analysis for the case with ((k))=0

	Asymptotic Performance of mK

	Finite-time Performance Analysis
	Regression Metamodels
	Expected Number of Evaluations of Kriging

	Numerical Experiments
	Conclusions

	Conclusions and Future Work
	Bibliography
	Summary of Test Problems

