

FORMALIZING AND VERIFYING DESIGN DECISIONS

IN SINGLE SYSTEMS AND SOFTWARE PRODUCT LINES

HENG BOON KUI

(M.Tech (SE), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2013

 ii

DECLARATION

I hereby declare that this thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Heng Boon Kui

30 October 2013

 iii

Acknowledgements

I would like to thank all the following people who have facilitated me in

various ways for my Master of Science study at Department of Computer

Science, School of Computing, National University of Singapore.

Apart from providing guidance on my work, I owe immensely to my

supervisor Associate Professor Stanislaw Jarzabek on many aspects – for

agreeing to supervise me as a part-time student; for allowing me to work on

my area of interest; for being critical in reviewing my work; for making effort

to respond promptly to my queries; and for accommodating my schedule due

to my day job.

I am also very grateful to my examiners Associate Professor Khoo Siau

Cheng and Associate Professor Dong Jin Song. They had assessed and

provided constructive feedbacks on my thesis proposals.

Being a part-time student, I am very thankful for the support and

encouragement from the management of my employer, Institute of Systems

Science, National University of Singapore. Without the support, I hardly find

sufficient time to conduct my work.

Not forgetting the vice-deans and administration staff of the office of

graduate studies, I would like to thank the vice-deans for approving my

various requests. Thanks to Ms. Loo Line Fong for her facilitation on

administrative matters. Thanks to Ms. Agnes Ang for her advices on the

wrapping up of my work.

Last but not least, I must thank my wife, my son, and my parents for bearing

with me for depriving them of my time during the course of my study.

 iv

Table of Contents

Acknowledgements .. iii

Table of Contents .. iv

Summary .. viii

List of Figures ... xi

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 Overview of Solution and Contributions ... 4

1.3 Organization of Thesis ... 7

Chapter 2 Problem .. 8

2.1 Problem Definition .. 8

2.2 Running Example .. 13

Chapter 3 Formalization of Abstract Syntax of DDM for Single Systems

 23

3.1 Elements of DDM .. 23

3.2 Dependencies between Elements of DDM 25

3.2.1 Issue occurrence-alternative Association 26

3.2.2 Issue occurrence-decision Association................................... 26

3.2.3 Decision-alternative Association.. 27

3.2.4 Comprise Association .. 27

3.2.5 Constrain Association .. 28

3.2.6 Forbid and Resolve Associations ... 29

3.3 Trace Links .. 30

 v

3.3.1 Feature-issue occurrence Trace .. 30

3.3.2 Decision-code Trace ... 31

Chapter 4 Impacts of Design Decisions for Single Systems 32

4.1 Order in Applying the Implications of Decisions 32

4.2 Evolution of Decision and its Ripple ... 34

4.2.1 Evolution of Decision... 34

4.2.2 Ripple ... 35

4.3 Addition/removal of Elements of DDM .. 37

4.3.1 Issue occurrence-alternative Association 37

4.3.2 Issue occurrence-decision Association................................... 37

4.3.3 Decision-alternative Association.. 38

4.3.4 Comprise Association .. 38

4.3.5 Constrain Association .. 38

4.3.6 Forbid and Resolve Associations ... 39

Chapter 5 Extension for Software Product Lines 40

5.1 Extension of the Running Example ... 40

5.2 Extension of the Abstract Syntax .. 43

5.2.1 Scoping of DDM based on Feature Configuration................. 43

5.2.2 Elements of DDM .. 44

5.2.3 Dependencies between Elements of DDM............................. 45

5.2.4 Trace Links ... 45

5.3 Extension of the Impacts of Design Decisions 46

5.3.1 Evolution of Decision and its Ripple 46

Chapter 6 Validation by Usage Examples .. 48

 vi

6.1 Construction of DDM .. 49

6.2 Understanding the Impacts of DDM ... 52

6.3 Evolution of DDM ... 54

Chapter 7 Verification by Formal Method.. 57

7.1 Use of Formal Method ... 57

7.2 Alloy as a Formal Method Tool .. 58

7.3 Overall Verification Approach using Alloy 59

7.4 Specification and Verification of DDM and its Instances 60

7.5 Specification and Verification of Feature Model and its Instances

 61

7.6 Comparison of Planned vs. Supported Feature Configurations 62

7.7 Derivation of Information for a Feature Configuration from DDM

 63

7.8 Verification of Instances of DDM for the Addition and Removal of

Elements of DDM .. 64

Chapter 8 Implementation of Support IDEs ... 65

8.1 Challenges for Tool Developers .. 65

8.2 Solutions to Challenges ... 66

8.2.1 Metamodel for DDM .. 66

8.2.2 Mapping Mechanism .. 67

8.2.3 Variability Technique ... 69

8.2.4 Metamodel for Feature Model.. 70

8.2.5 Ordering Mechanism and Prioritization Scheme 70

8.2.6 Ripple Mechanism.. 72

8.3 Implementation Technologies ... 73

 vii

Chapter 9 Evaluation against Design Activities in Development

Processes 75

9.1 Benefits for the Design Activities of Single Systems 75

9.2 Benefits for the Design Activities of SPLs 77

Chapter 10 Related Works .. 79

Chapter 11 Conclusion .. 81

11.1 Achievements .. 81

11.2 Future Works ... 81

Bibliography ... 83

Appendix A Formalization of the Running Example 85

A.1 Formalization for Single System ... 85

A.2 Formalization for SPL ... 87

Appendix B Source Code of the Running Example 89

 viii

Summary

A software system is designed to fulfill both its functional requirements and

quality attributes. As the system is designed, the design issues (e.g., the

existence of duplicate copies of the same object) that occur have to be solved

by applying the appropriate design solutions (e.g., the Singleton design

pattern). In my thesis, both the design issues and design solutions are generic;

meaning that – like design patterns, they can be applied in many situations in

any given system and also in different systems. The same design issue may

occur at different parts of the system. Each occurrence of design issue is

unique and is solved by considering the context of the part of the system in

which it occurs. The same design solution may also be instantiated a few times

to solve design issues that occur at different parts of a system. A design

decision is however not generic, it is taken for an occurrence of design issue

by instantiating a design solution and customizing it to suit the context of that

part of the system; the effect of the design decision is the impact on the design

of the system. For a given occurrence of design issue, one or more alternative

design solutions may be considered; they correspond to one or more candidate

design decisions. As a result, for a given occurrence of design issue, the

designers have to deliberate and select the most suitable one among the

multiple candidate design decisions.

The designers typically take a few factors into account. Firstly, the design

decisions selected for a system have to collectively satisfy their functional

requirements and quality attributes (e.g., runtime memory usage and design-

time extensibility), resolving the tensions among them. Secondly, the

implications of the selected design decisions may affect each other in

complicated ways; the dependencies among them must be accounted.

Therefore functional requirements, quality attributes, occurrences of design

issues, design solutions, and design decisions form a complicated and ever

changing web of information. Understanding this web of design information is

essential for making informed design decisions. Unfortunately, design

 ix

information rarely is explicitly represented. This creates problems during

development, and these problems aggravate in follow up maintenance. The

web of design information is even more complex in the Software Product Line

(SPL) situation, where by definition, the designers deal with variable

requirements that lead to even more variability in the design space.

In my thesis, I formalize the key aspects of the web of design information.

My model captures the functional requirements, occurrences of design issues,

design solutions, and design decisions along with their implications on design.

My model also has provisions for the evolution of its elements where the

potential impacts are derived. The benefits of my approach include the explicit

documentation of design information, the formal verification of the integrity

of design information, the derivation of the applicable code for a consistent set

of design decisions, and the derivation of the potential impacts due to the

evolution of an element of design information.

Furthermore, my model can be applied to the SPL situation where

functional requirements can be variable. According to the feature selection for

an SPL application, my model caters to the emergence or the vanishing of the

corresponding elements of design information. The additional SPL-specific

benefits of my approach include the formal verification of planned feature

configurations against those supported by an instance of my model, and the

derivation of the applicable code for a consistent set of design decisions for an

SPL application.

Although my model does not currently capture the quality attributes and

their influence on design decisions, I believe this aspect can be addressed in a

future work that extends my work.

I validate my model by illustrating the key usage scenarios. I also devise the

schemes to specify and verify my model using formal method. I also evaluate

the benefits of my model against the design activities in development

processes.

 x

I envision the use of my model as a basis for IDEs that can help developers

in documenting the web of design information and validating software design

for single systems and SPLs. To guide the tool developers in building such

IDEs, I specify the key challenges that need to be addressed as well as

possible solutions to these challenges.

 xi

List of Figures

Fig. 1. Design Decision Model for a single system. 5

Fig. 2. Design Decision Model for an SPL. ... 6

Fig. 3. Sample design decisions with trace links from features to code. 15

Fig. 4. Sample design decisions with trace links from features to code

(continued). .. 16

Fig. 5. Metamodel for capturing design decisions and trace links. 17

Fig. 6. Modeling of decisions with their related elements (without trace

links). ... 19

Fig. 7. Sample DDM with trace links from features to code. 20

Fig. 8. Sample DDM with trace links from features to code (the alternative

solution for Issue3). ... 21

Fig. 9. Overview of the elements in the DDM of the complete example

(trace links omitted). .. 22

Fig. 10. Overview of the relationships in the DDM of the complete example

(trace links omitted). .. 25

Fig. 11. Sample compliant chains for applying the implications of decisions.

.. 33

Fig. 12. Sample mappings from decisions to variation points for the

evolution of a decision. .. 35

Fig. 13. Sample ripples for the evolution of a decision. 36

Fig. 14. Sample DDM with trace links from features to code core assets

(extended for SPL). .. 41

Fig. 15. Sample DDM with trace links from features to code core assets (the

alternative solution for Issue3) (extended for SPL). .. 42

Fig. 16. Sample mappings from features to variation points for the evolution

of decisions (extended for SPL). .. 47

Fig. 17. Scheme for verifying the abstract syntax of DDM and its instances.

.. 60

 xii

Fig. 18. Scheme for verifying the abstract syntax of FM and its instances. 61

Fig. 19. Scheme for comparing planned against supported feature

configurations. ... 62

Fig. 20. Metamodel for DDM. ... 66

Fig. 21. Sample mappings for some decisions of the running example. 67

Fig. 22. XVCL as a variability technique. ... 69

Fig. 23. Metamodel for feature model of FODA. .. 70

Fig. 24. Rooted directed acyclic graph for the ordering mechanism. 71

Fig. 25. Weighted rooted directed acyclic graph for the prioritization

scheme.. 71

Fig. 26. Weighted rooted directed acyclic graph for the ripple mechanism.

.. 72

Fig. 27. Key artifacts to be managed by a typical SPL support IDE. 73

Fig. 28. The Analysis and Design workflow of Rational Unified Process. . 75

Fig. 29. The Domain Engineering and Application Engineering workflows

of the development of SPL. ... 77

 1

Chapter 1 Introduction

1.1 Motivation

A software system is designed to fulfill both its functional requirements and

quality attributes. As the system is designed, the design issues (e.g., existence

of duplicate copies of the same object) that occur have to be solved by

applying the appropriate design solutions (e.g., the Singleton design pattern).

In my thesis, both the design issues and design solutions are generic; meaning

that – like design patterns, they can be applied in many situations in any given

system and also in different systems. The same design issue may occur at

different parts of the system. Each occurrence of design issue is unique and is

solved by considering the context of the part of the system in which it occurs.

The same design solution may also be instantiated a few times to solve design

issues that occur at different parts of a system. A design decision is however

not generic, it is taken for an occurrence of design issue by instantiating a

design solution and customizing it to suit the context of that part of the system;

the effect of the design decision is the impact on the design of the system. For

a given occurrence of design issue, one or more alternative design solutions

may be considered; they correspond to one or more candidate design

decisions. As a result, for a given occurrence of design issue, the designers

have to deliberate and select the most suitable one among the multiple

candidate design decisions.

Both the functional requirements and the quality attributes (e.g., runtime

memory usage and design-time extensibility) are the primary inputs for

software design, they collectively determines the selection of an appropriate

design decision among the candidate design decisions that are considered for a

given occurrence of design issue. Firstly, a design decision may have different

impacts on different quality attributes of the system. For instance, the use of

the Singleton design pattern to solve an occurrence of design issue may

 2

positively reduce the memory footprint of the system while negatively

restricting the extensibility of design (i.e., due to the difficulty in subclassing

the class to be instantiated). As a result, a consistent set of design decisions is

required to solve the set of occurrences of design issues that occurs during the

design of a system. Secondly, the implications of the design decisions in the

set are not completely independent; the implication of a design decision may

ideally be isolated, however one may exist in the context of the implication of

another, one may even be in conflict with the implication of another. As a

result, additional occurrences of design issues may arise from these couplings

and conflicts, which require even more design decisions to solve them. Last

but not least, the eventual set of design decisions selected for a system should

also be an optimal set where the quality attributes are concerned. As each

candidate design decision contributes in a different way to the quality

attributes, the combination of design decisions that satisfy the occurrences of

design issues in a system must be selected in such a way that the quality

attributes are fulfilled – in fact, it is an elaborate and error-prone effort to

exhaustively evaluate all the combinations of these candidate design decisions.

As discussed above, the designers often have to evaluate and decide on the

combinations of candidate design decisions to satisfy the above-mentioned

tensions among the functional requirements and the quality attributes of a

system. The implications of the candidate design decisions on the design of

the system may affect each other in some complicated ways. Therefore

functional requirements, quality attributes, occurrences of design issues,

design solutions, and design decisions form a complicated and ever changing

web of information. Understanding this web of design information is essential

for making informed design decisions. Unfortunately, design information is

rarely explicitly represented. This creates problems during development; and

these problems aggravate in follow up maintenance.

The web of design information is even more complex in the SPL situation,

where by definition the developers deal with variable requirements that lead to

 3

even more variability in the design space. Firstly, the variability in functional

requirements means that the occurrences of design issues (together with their

candidate design decisions) that arise due to a variant feature will only apply

when the variant feature is selected during application engineering. The

emergence or the vanishing of an occurrence of design issue will also impact

on the existence of its dependent occurrences of design issues. Secondly, the

variability in quality attributes means that the optimal set of design decisions

for each feature configuration (of functional requirements) changes as the

required quality attributes vary – the derivation of each optimal set will require

the elaborate effort as discussed earlier.

In this thesis, my solution deals with aspects common to single systems and

SPLs as well as aspects unique to SPLs. I formalize key aspects of the web of

design information. My model captures occurrences of design issues and their

dependencies, design solutions, design decisions and their dependencies, trace

links from features, and trace links to variation points in code. It facilitates

designers in evaluating candidate design decisions by recommending valid

combinations of candidate design decisions that collectively address the

applicable occurrences of design issues. My solution also has provisions for

the evolution of its elements. Before an element of my model is evolved, the

potential impacts on other elements of the model can be derived for the change

to be assessed first. Once the change is effected, the integrity of the resultant

model can be checked for noncompliance.

Furthermore, my model can be applied to the SPL situation where features

can be variant – either optional or alternative. My solution accounts for the

impact of feature selection on the applicability (i.e., emergence or vanishing)

of specific occurrences of design issues and their corresponding candidate

design decisions in the model. It can recommend the feasible combinations of

candidate design decisions for a given feature configuration. It can detect the

feature configurations that are planned for but are not supported by a given set

of candidate design decisions.

 4

In this thesis, my model does not currently capture the aspect of quality

attributes and their influence on the selection of design decisions. This aspect

would include the derivation of the optimal sets of design decisions for single

systems or SPLs. It can be addressed as part of possible future work that

extends my model.

The benefits of my approach include the explicit documentation of design

information, the formal verification of the integrity of design information, the

derivation of the applicable code for a consistent set of design decisions, and

the derivation of the potential impacts due to the evolution of an element of

design information. The additional SPL-specific benefits of my approach

include the formal verification of planned feature configurations against those

supported by an instance of my model, and the derivation of the applicable

code for a consistent set of design decisions for an SPL application.

I validate my model by illustrating the key usage scenarios. I also devise the

schemes to specify and verify my model using formal method. I also evaluate

the benefits of my model against the design activities in development

processes.

I envision the use of my model as a basis for IDEs that can help developers

document the web of design information and validation of software design for

single systems and SPLs. To guide the tool developers in building such IDEs,

I specify the key challenges that need to be addressed as well as possible

solutions to these challenges.

1.2 Overview of Solution and Contributions

With the above scope in mind, I propose a Design Decision Model (DDM) as

an intermediate structure between feature tree and code that documents the

design information for a single system. A feature tree structures the features of

a single system. The code is instrumented to accommodate the impacts of the

candidate design decisions of the single system. I generally assume that these

code is instrumented with variation points that allow them to be appropriately

 5

configured for reuse (refer to section 8.2.3 for a specific mechanism). For a

single system, the code would cater only to variability in design.

Fig. 1. Design Decision Model for a single system.

Fig. 1 shows DDM in the context of single system design. The model

comprises elements (only design decisions are shown, others are omitted for

now) of DDM and dependencies among them. The trace links between

features and the model associate features with the related design decisions in

DDM. The trace links from the model to variation points in code associate the

design decisions in DDM with their impacted code. As the requirements of the

features evolve, the elements of DDM, trace links, and code must also evolve

in tandem. I hence propose a set of traceability rules for enforcing the integrity

of DDM.

To apply the above solution to the SPL situation, a feature model is

used instead of a feature tree. A feature model describes the variability of

features in an SPL. Each SPL application is characterized by a specific

selection of features. For an SPL, the code (core assets) would cater to

variability in features and design.

Decision

F1

F2

D3

D2

D1

Feature Tree

Design Decision Model
(Decisions only, others omitted)

Code
(instrumented)

F3
F4

Scope of work

Requirement
Specifications

trace
(out of
scope)

Acronyms

VP: Variation Point
: Code Module

trace
(many to many) trace

(many to many)

dependencies
(one to many)

makefile

:

VP1
:
:
:

VP2

:
:

class A

:

:

class B
:
VP3

association

class E

:

:

class D

:

:

generalization

class C

:
VP4
:

fragment H

fragment G

constraints
(quality attributes)
(out of scope)

fragment F

 6

Fig. 2. Design Decision Model for an SPL.

Fig. 2 shows DDM in the context of SPL domain engineering. A feature

model is used in place of the feature tree in Fig. 1. The features in the feature

model can be mandatory or variant (i.e., optional or alternative). Since a

variant feature may not be selected for an SPL application, DDM also needs to

provide for the emergence or the vanishing of the elements in DDM that

correspond to the variant feature.

Because of its impact on productivity, support for traceability between

features and code has received much attention in single system and SPL

engineering research. However, no comprehensive and practical enough

solutions have been proposed, and current solutions provide only limited

support for traceability. One reason why traceability solutions have not been

more successful is that the problem has not been defined and formalized at

sufficient level of details. DDM is proposed as an effective means to support

such traceability.

In this thesis, I propose a semi-formal notation for specifying the abstract

syntax of DDM and the trace links from features to code via DDM. I propose

how formal method can be used to formalize and verify the consistency of the

abstract syntax, the consistency of the instances of DDM, and the comparison

of planned feature configurations against those supported by an instance of

Decision

F1

F2

D3

D2

D1

Feature Model

Design Decision Model
(Decisions only, others omitted)

Code
(core assets)

F3
F4

1-2

Scope of work

VP
VVP

VP

Requirement
Specifications
(core assets)

VP
VP

trace
(out of
scope)

Acronyms

VP: Variation Point
: Code Module

trace
(many to many) trace

(many to many)

dependencies
(one to many)

makefile

:

VP1
:
:
:

VP2

:
:

class A

:

:

class B
:
VP3

association

class E

:

:

class D

:

:

generalization

class C

:
VP4
:

fragment H

fragment G

constraints
(quality attributes)
(out of scope)

fragment F

 7

DDM (for the SPL situation). I also propose how the formalization can be

used in systematically deriving the applicable code for a given feature

configuration (for the SPL situation) as well as highlighting the impacts due to

the evolution of the elements of DDM. I envision the use of this abstract

syntax and its formalization as the basis for IDEs that can help developers in

the design of single systems as well as in the domain engineering and the

application engineering of SPLs.

A critical advantage of my solution is in allowing the use of the automatic

reasoning capability of formal method in the verification of properties of

interest and the derivation of information from DDM. As compared to manual

inspection, this approach conducts systematic analyses that are much more

exhaustive, reliable, and quick. This minimizes the required human effort and

potential oversights.

1.3 Organization of Thesis

In this thesis, Chapter 2 describes the problem. Chapter 3 and Chapter 4

formalize DDM and impacts of design decisions respectively. Chapter 5

extends the formalization for the SPL situation. Chapter 6 validates the usage

of DDM and its impacts by means of usage examples. Chapter 7 describes

how formal method can be used to specify and verify the abstract syntax of

DDM, instances of DDM, and feature configurations of instances, and to

derive information from instances of DDM. Chapter 8 suggests how the key

salient features of IDEs adopting DDM can be implemented. Chapter 9

evaluates the benefits of DDM against the design activities of single systems

and SPLs. Chapter 10 discusses related works. Chapter 11 concludes by

summarizing the achievements and recommending future works.

 8

Chapter 2 Problem

This chapter describes the problem, explains its relevance in the design of

single systems and SPLs, and also motivates it with a running example.

2.1 Problem Definition

In the software design of single systems and SPLs, the designers may consider

some alternative design solutions for each design issue that occurs at a part of

the system without explicitly documenting the corresponding candidate design

decisions. The core of my problem focuses on the explicit documentation of

these candidate design decisions and their implications on the design of the

system, and the benefits that can be derived to help developers in the design of

single systems and SPLs.

Assuming object-oriented design, the structure of code is specified by the

design elements (i.e., classes and interfaces) and their relationships (i.e.,

association, dependency, generalization, and realization); while the behaviour

is specified by the design objects and their interactions. A design issue may

occur in the structural and/or behavioural design of one or more features (i.e.,

a part of the system). The design issue may be solved by one or more

alternative design solutions. A design solution is generic – not specific to the

context of any part of the system, it may be instantiated a few times to solve

multiple design issues that occur at different parts of the system. When a

candidate design decision is taken for an occurrence of design issue, an

alternative design solution is instantiated to the context of that part of the

system. The implication of a candidate design decision is on the structure

and/or the behaviour of the code. For each occurrence of design issue, the

designers evaluate the candidate design decisions and select the most

appropriate one. As the implication of a design decision may give rise to a

new design issue or may even be in conflict with the implication of another

design decision; this results in dependencies among the design decisions.

 9

These dependencies must also be documented so that they can be taken into

account when the candidate design decisions are evaluated by the designers. I

refer to a model that captures these occurrences of design issues, the design

solutions, and the corresponding design decisions as Design Decision Model

(DDM).

In the domain engineering of a SPL, the domain engineers design code core

assets to realize the variability in features, aiming for optimized reuse during

application engineering. To support the variability in features, DDM needs to

be flexible in terms of the emergence or the vanishing of the elements of DDM

that are associated with each variant feature. A variant feature can be

associated with zero or more occurrences of design issues, each of which is in

turn associated with one or more candidate design decisions.

Fig. 1 of section 1.2 is a simplified illustration of selected design decisions

without showing occurrences of design issues, design solutions, and other

candidate design decisions (these will be detailed in Chapter 3). There are

three design decisions as in D1, D2, and D3. D1 handles a design issue that

occurs in the design of feature F2. D2 handles a design issue that occurs in the

design common to features F3 and F4. D3 handles a design issue that occurs in

the design of feature F2 that arises due to D1. In general, the relationship

between features and design decisions, via occurrences of design issues, is

many-to-many. One or more occurrences of design issues that arise from one

or more features may be addressed by one or more design decisions; while a

design decision may address an occurrence of design issue that arises from one

or more features. I generally assume the variability technique in code to

comprise variation points that control the reuse of code. A design decision

affects its implication on the design by configuring one or more applicable

variation points; while a variation point may be impacted by multiple design

decisions. In Fig. 1, D1 impacts on variation point VP1 that reuses classes B

and C. D2 impacts on VP2 and VP4 where VP2 reuses classes D and E while

VP4 reuses fragments G and H. D3 impacts on VP3 which reuses fragment F.

 10

In addition, there are also dependencies among the design decisions as one

may be taken on the premise of the others and one may be in conflict with

another – I analyze them further in section 3.2. First subproblem: The

abstract syntax of DDM and trace links from features through to variation

points should be specified and verified for consistency. (SPL-specific) The

abstract syntax also has to provide for the emergence and the vanishing of the

elements of DDM for each variant feature. Second subproblem: Instances of

DDM should also be verified to be consistent with the abstract syntax.

Fig. 2 of section 1.2 extends Fig. 1 for the SPL situation. A feature model is

used to describe the variability in features. It specifies the composition and

dependencies among the features of an SPL. It implies a set of feature

configurations which are planned by the domain engineers. On the other hand,

an instance of DDM represents the actual design for the features. It implies a

set of feature configurations which are supported within the constraints of the

instance of DDM. Since the design is often compromised due to the realities in

implementation technologies or human oversights, it is highly likely for some

planned feature configurations to be unsupported for a given instance of

DDM. Third subproblem (SPL-specific): In order to establish the

correctness of the design for an SPL, the set of planned feature configurations

must be exhaustively derived and verified against those supported by the

instance of DDM – this is a laborious and error-prone task. A mismatch can be

addressed by the domain engineers by either constraining the set of planned

feature configurations in the feature model or expanding the set of supported

feature configurations in the instance of DDM.

Having verified the feature configurations of a feature model, each feature

configuration represents a supported application of the SPL. For a given

feature configuration, the applicable code for the application are derived from

the core assets. Fourth subproblem (SPL-specific): For a given feature

configuration, the possible combinations of design decisions, the impacted

 11

variation points and their configurations, and the preferred order of applying

these design decisions are systematically derived from an instance of DDM.

The design for a single system or an SPL is evolved in response to changes

in its required features, the adopted implementation technologies, etc. An

instance of DDM guides the developers by deriving the potential impacts of a

change. After the change is effected, the developers update the instance of

DDM to reflect the evolved design. Fifth subproblem: For a change in the

design, the potential impact of the change is systematically derived from the

instance of DDM. (SPL-specific) The derivation also has to provide for the

removal of a variant feature. As for the resultant instance of DDM, it has to be

verified to be consistent with the abstract syntax – this is subsumed as part of

the second subproblem.

In summary, the problem can be broken down to the following five sub-

problems:

1. Specification and verification of the abstract syntax of DDM and trace

links from features to variation points. (SPL-specific) The abstract

syntax also has to provide for the emergence and the vanishing of the

elements of DDM for each variant feature.

2. Specification and verification of the instances of DDM against the

abstract syntax.

3. (SPL-specific) Derivation and verification of planned feature

configurations against those supported by an instance of DDM.

4. (SPL-specific) Derivation of the possible combinations of design

decisions, the impacted variation points and their configurations, and

the preferred order of applying these design decisions for a given

feature configuration of an instance of DDM.

5. Derivation of the potential impact of a change in the design of an

instance of DDM. (SPL-specific) The derivation also has to provide for

the removal of a variant feature.

 12

As a guide to locate the solution to the above subproblems, the following

indices to the key sections are provided against each subproblem:

1. Chapter 3, section 5.2, section 7.4, section 8.2.1, and section 8.2.2.

2. Chapter 3, section 5.2, section 7.4, section 8.2.1, and section 8.2.2.

3. Section 7.6.

4. Section 7.7 and section 8.2.5.

5. Chapter 4, section 5.3, and section 8.2.6.

 13

2.2 Running Example

This section introduces an example which is a part of a Car Rental System. It

is referred by the later sections. It contains feature tree, DDM, and code. As in

Fig. 1 of section 1.2, only some selected design decisions of DDM are

illustrated in the earlier part of this section. Other elements of DDM are

detailed in the later part of this section and Chapter 3.

Fig. 3 and Fig. 4 illustrate four design decisions D1 through D4, the

associated features F5 through F10, and the impacted variation points VP1

through VP4 in code. In each of the two figures, on the left is a fragment of

feature tree; on the right is the code that realizes the design of the features; in

the middle are the design decisions and the trace links from features to code.

Using trace links, D1 and D2 are associated with F5 while D4 is associated

with F6 through F10. D3 is not directly associated with any features as it

resolves a conflict that arises between D1 and D2. Trace links are also used to

associate D1 through D4 with their impacted variation points that

include/exclude code. D1 impacts VP1; D2 impacts VP3; D3 impacts VP4;

and D4 impacts VP2. I assume that these variation points are instrumented

using a variability technique that can include/exclude and configure code.

With the above, it is possible to trace end-to-end from a feature to its

associated design decisions and further to the impacted variation points.

The design decisions are not isolated; there are inherent dependencies

among them which are explained as they are specified in section 3.2. In the

two figures, I illustrate that D1 “constrains” D2 and “comprises” D4; D2

“forbids” (i.e., conflicts with) D2; and D3 “resolves” the conflict between D2

and D1.

Apart from the design decisions, there are also other elements that are

essential in decision making. In order to specify these additional details, I refer

to the related works by Kruchten et al. [11] and Capilla et al [4]. [11] analyzes

architectural design decisions and focuses on managing design knowledge in

terms of such decisions. It suggests the possible attributes of a decision as

 14

description, rationale, scope (system, time, and organization), author (time-

stamp and history), state, categories (usability, security, etc.), etc. It also

suggests the possible relationships between these decisions as constrains,

forbids, enables, subsumes, conflicts with, overrides, comprises, is an

alternative to, is bound to, is related to, dependencies, etc. [4] proposes a

reference metamodel to model architectural design decisions. I adapt and

extend both the existing works below.

 15

Fig. 3. Sample design decisions with trace links from features to code.

package crs;

public abstract class RentalPerk extends RentalStrategy {

public enum Type {XmasPromo, CNYPromo, GSSPromo, LoyaltyProgram, DiscountVoucher};
private static RentalPerk[] p = new RentalPerk[Type.values().length];
public static RentalPerk getInstance(Type t) {

if (p[t.ordinal()] == null) {
try {

if (t == RentalPerk.Type.XmasPromo)
p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.XmasPromo.name()).newInstance();

else if (t == RentalPerk.Type.CNYPromo)
p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.CNYPromo.name()).newInstance();

else if (t == RentalPerk.Type.GSSPromo)

p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.GSSPromo.name()).newInstance();
else if (t == RentalPerk.Type.LoyaltyProgram)

p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.LoyaltyProgram.name()).newInstance();
else if (t == RentalPerk.Type.DiscountVoucher)

p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.DiscountVoucher.name()).newInstance();

else
return null;

} catch (InstantiationException e) {
e.printStackTrace();

} catch (IllegalAccessException e) {

e.printStackTrace();
} catch (ClassNotFoundException e) {

e.printStackTrace();
}

}

return p[t.ordinal()];
}

private RentalStrategy strategy;
public void setRentalStrategy(RentalStrategy s) {

this.strategy = s;
}
public RentalStrategy getRentalStrategy() {

return strategy;
}

}

package crs;

public abstract class RentalStrategy {

public abstract float computeRental(

Customer c, Vehicle v, int days, float undiscounted);
}

VP4()
[D3] Design decision
to set RentalStrategy.
(Due to conflict between
[D1] & [D2]).

[D2] Design decision using
Singleton design pattern
for feature “Rental Perk”.

F5

F10

F9

F6

F7

F8

[D1] Design decision using
Decorator design pattern
for feature “Rental Perk”.

VP3()

makefile

:
:

:

:

VP1()

VP2()

trace to
variation point

trace from
feature

re
so

lv
e

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great
Singapore Sale

 16

Fig. 4. Sample design decisions with trace links from features to code (continued).

makefile

:
:

:

:

package crs;
public abstract class RentalPerk extends RentalStrategy {

:
:

}

package crs;

public class LoyaltyProgram extends RentalPerk {

protected LoyaltyProgram() {};

public float computeRental(Customer c, Vehicle v, int days, float undiscounted) {
// Offset discounted amount with loyalty points.
float prevPrice = getRentalStrategy().computeRental(c, v, days, undiscounted);
float discounted;
if (prevPrice > c.getLoyaltyPoints()) {

discounted = prevPrice - c.getLoyaltyPoints();
c.setLoyaltyPoints(0);

}
else {

discounted = prevPrice - (int)prevPrice;

c.setLoyaltyPoints(c.getLoyaltyPoints() - (int)prevPrice);
}
System.out.println("LoyaltyProgram discounted amount is $" + discounted);
System.out.println("Balance loyalty point amount is " + c.getLoyaltyPoints());
return discounted;

}
}

… CNYPromo…

… GSSPromo…

… DiscountVoucher…

package crs;

public class XmasPromo extends RentalPerk {

protected XmasPromo() {};

public float computeRental(Customer c, Vehicle v, int days, float undiscounted) {
// 20% off total charge.
float discounted = 0.80f * undiscounted;
System.out.println("XmasPromo discounted amount is $" + discounted);
float prevPrice = getRentalStrategy().computeRental(c, v, days, undiscounted);

return (discounted < prevPrice) ? discounted : prevPrice;
}

}

VP1()

VP2()

[D4] Design decision for various
rental perk features.

[D1] Design decision using
Decorator design pattern
for feature “Rental Perk”.

trace from
feature

F5

F10

F9

F6

F7

F8

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great
Singapore Sale

 17

Fig. 5. Metamodel for capturing design decisions and trace links.

Fig. 5 is a UML class diagram that illustrates my metamodel, as adapted and

enhanced from [11] and [4], for capturing design decisions in single system

design. The key elements of the metamodel are issue occurrence, alternative,

and decision (termed as outcome in [4]). An issue occurrence is an instance of

design issue that arises in the context of the design for one or more features.

(Note that the generic design issues are omitted from the metamodel as they

add little information while the essential information is already captured by

the issue occurrences.) The issue occurrence may possibly be addressed by

one or more alternative solutions. A decision is taken to instantiate an

alternative solution to the context of the issue occurrence. For a given issue

occurrence, there are as many candidate decisions as the number of alternative

solutions considered – Each candidate decision impacts the code differently.

Each issue occurrence is solved by selecting one decision among the candidate

decisions of the issue occurrence.

Fig. 6 illustrates the modeling of D1 and D2 with their related elements. D1

is modeled as Decision6, Issue3, Alternative4, and Alternative6. (Refer to Fig.

8 for the candidate decision for Alternative6.) D2 is modeled as Decision8,

 18

Issue4, and Alternative5. Decision6 constrains Decision8 via Issue4.

Decision8 forbids Decision6. (Note that Issue3 and Issue4 are actually issue

occurrences.)

Fig. 7 shows a sample DDM with features and variation points that covers

decisions D1 through D4. D3 is modeled as Decision9 (Name: Resolve

conflict between Outcome8 and Outcome6. Rationale: Rental perk child

classes have public constructors while Singleton constructors should be

protected or private. Cannot initialize a RentalPerk instance with a

RentalComp instance via constructor. Implication: Make constructors of

rental perk child classes protected. Add setRentalStrategy() to initialize a

RentalPerk instance with a RentalStrategy instance.) Decision9 resolves the

conflict between Decision8 and Decision6. D4 is modeled as Decision7

(Name: Extensibility of rental perks. Rationale: Decouple other classes from

rental perk child classes. Implication: Add, modify or remove rental perk

child classes to/from rental perk hierarchy.) Decision6 comprises Decision7

(i.e., Decision7 is a part of Decision6).

Fig. 8 extends Fig. 7 to show the candidate decision for alternative solution

for Issue3. Decision10 (Name: Represent combinations of rental perks using

subclasses. Rationale: Create a hierarchy of subclasses to represent required

combinations. Acceptable for small number of combinations. Implication: Use

one subclass for each combination of rental perks.) solves Issue3 using

Alternative6. Decision10 gives rise to and constrains Issue5 (Name: Too many

instances of rental perk combinations. Problem statement: Each rental

scheme is configured with its own instances of rental perk combination.)

Decision12 (Name: Share instances of rental perk combinations. Rationale:

Rental perk combinations are not specific to any rental scheme. Implication:

Apply Singleton pattern to RentalPerkComb. Add getInstance() that

instantiates and shares instances of child classes.) solves Issue5 by using

Alternative5 (Name: Singleton Design Pattern. Description: Ensure a class

only has one instance, and provide a global point of access to it. Pros:

 19

Controlled access to sole instance. Can vary number of instances. Cons:

Direct instantiation is not allowed.) Decision10 also comprises Decision11

(Name: Extensibility of rental perk combinations. Rationale: Decouple other

classes from rental perk combination child classes. Implication: Add, modify

or remove rental perk combination child classes to/from rental perk

combination hierarchy.)

Lastly, Fig. 9 shows all the elements of the sample DDM for the running

example.

Fig. 6. Modeling of decisions with their related elements (without trace links).

[D2] Design decision using
Singleton design pattern
for feature “Rental Perk”.

[D1] Design decision using
Decorator design pattern
for feature “Rental Perk”.

constrain

Decision8: Make rental perks singletons
Rationale: Rental perks are not specific to

any rental scheme.
Implication: Apply Singleton pattern to

RentalPerk. Add getInstance() that
instantiates and shares instances of child

classes.

Decision6: Decorate rental schemes with rental
perks

Rationale: Any combination of rental perks can
be configured for any rental scheme at runtime.

Implication: Extract algorithms of rental perks
from computeRental() and encapsulate them in
a hierarchy of rental perk child classes. Merge
hierarchies of rental schemes and rental perks.

fo
rb

id

Issue3: Various rental perks
Problem statement: Explosion

of combinations of rental
schemes and rental perks.

Alternative4: Decorator design
pattern

Description: Attach additional
responsibilities to an object

dynamically. Pros: More
flexibility than static inheritance.

No explosion of subclasses.
Cons: More object interactions

due to chain of decorators.

Alternative6: Subclassing

Description: Encapsulate each
combination of responsibilities in a class.
Pros: Straightforward – one subclass for

each combination.
Cons: Explosion of subclasses if there are

many combinations.

Issue4: Too many instances of rental perks
Problem statement: Each rental scheme is

configured with its own instances of rental perks.

Alternative5: Singleton Design Pattern
Description: Ensure a class only has one
instance, and provide a global point of

access to it.
Pros: Controlled access to sole instance.

Can vary number of instances.
Cons: Direct instantiation is not allowed.

Note: The
decision for
Alternative6 is
currently not
shown.

 20

Fig. 7. Sample DDM with trace links from features to code.

class RentalPerk

extends RentalStrategy

};

makefile

:
VP1()
:
:
:

VP2()
:
:

Decision8

class RentalMgr{

details omitted
}

class XmasPromo

extends RentalPerk{

protected XmasPromo
(…){…};

computeRental(){
…};

}

class LoyaltyProgram

extends RentalPerk{

protected Loyalty
Program(…){…};

computeRental(){
…};

}

class DiscountVoucher

extends RentalPerk{

protected Discount
Voucher(…){…};

computeRental(){
…};

}

class GSSPromo

extends RentalPerk{

protected GSSPromo
(…){…};

computeRental(){
…};

}

class CNYPromo

extends RentalPerk{

protected CNYPromo
(…){…};

computeRental(){
…};

}

Decision6

Decision9

re
so

lv
e

co
m

p
ri

se

Decision7

class RentalStrategy

computeRental();
}

Issue3

Alternative4

Alternative6

Issue4

Alternative5

Legends

Element of design decision

Variation point in codes with
configuration parameters, if any

Code

Dependency between elements
of design decision

Trace link between a feature
and an issue occurrence

Trace link from a decision to
variation points in codes

RentalStrategy strategy;

setRentalStrategy(
RentalStrategy strategy){

this.strategy= strategy};

VP4()

Note: The decision for Alternative6
is shown in the next figure.

static RentalPerk p=

new RentalPerk[];
static getInstance(int type){

p[type]=new from a subclass;

VP3()

F5

F10

F9

F6

F7

F8

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great
Singapore Sale

 21

Fig. 8. Sample DDM with trace links from features to code (the alternative solution for Issue3).

makefile

:
VP5()
:
:
:

VP6()
:
:

Subclasses are introduced

when new combinations of
perks are applicable. These
subclasses are just samples.

class LProg extends

RentalPerkComb{
protected

LProg(…){…};

computeRental();
}

class LProgXmas

extends
RentalPerkComb{
protected

LProgXmas(…){…};
computeRental();

}

class DVoucGSS
extends

RentalPerkComb{
protected

DVoucGSS(…){…};
computeRental();

}

class LProgDVouc
extends LProg{
protected

LProgDVouc(…){…};
computeRental();

}

class LProgDVoucGSS

extends LProg{
protected

LProgDVoucGSS(…){

…};
computeRental();

}

class LProgDVoucXmas
extends LProgDVouc{
protected
LProgDVoucXmas(…){
…};

computeRental();

}

class RentalMgr{

details omitted
}

class RentalStrategy
computeRental();

}

class RentalPerkComb

computeRental();
}

Decision12

Decision11

Decision10

Alternative6

Alternative5

Issue5

Issue3

static RentalPerkComb p=
new RentalPerkComb[];

static getInstance(int type){
p[type]=new from a subclass;};

VP7()

F5

F10

F9

F6

F7

F8

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great
Singapore Sale

Legends

Element of design decision

Variation point in codes with
configuration parameters, if any

Code

Dependency between elements
of design decision

Trace link between a feature
and an issue occurrence

Trace link from a decision to
variation points in codes

 22

Fig. 9. Overview of the elements in the DDM of the complete example (trace links omitted).

Issue1

Decision3

Decision2

Alternative3

Alternative1 Decision1

Issue2

Alternative2

Decision4

Decision8

Decision6

Decision9

Decision10

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

Decision12

Decision11Issue5

 23

Chapter 3 Formalization of Abstract Syntax
of DDM for Single Systems

This chapter analyzes the running example in section 2.2 and formalizes the

elements of DDM, the dependencies between them, and the trace links from

features to the impacted variation points in code. A set of traceability rules are

specified to enforce the integrity of DDM. The additional challenges to be

addressed by the developers of IDEs that adopt my model are highlighted.

3.1 Elements of DDM

Based on the metamodel in Fig. 5, the key elements are issue occurrence,

alternative, and decision. As explained in section 2.1, they capture the

occurrences of design issues, the alternative design solutions considered, and

the candidate design decisions along with their impacts on code. Without

formally capturing this information, the traceability from features to code is

incomplete; the design decisions behind the implementation cannot be

explicitly reasoned and evolved.

An issue occurrence is formalized as a 2-tuple, i = (n, ps) where

n = name

ps = problem statement

An alternative is formalized as a 4-tuple, a = (n, as, pr, cn) where

n = name

as = alternative solution

pr = pros of alternative

cn = cons of alternative

A decision is formalized as a 4-tuple, d = (n, rt, ip, vps) where

n = name

rt = rationale behind the decision

ip = implication of the decision

 24

vps = {vp1, vp2 ..., vpn} where n ≥ 1 is a set of impacted variation points

in code

A variation point is formalized as a 2-tuple, vp = (n, ps) where

n = name

ps = (p1, p2 ..., pm) where m ≥ 0 is a sequence of input parameters that

configures the variation point on specific ways in reusing code

The above scheme is used to formalize issue occurrences, alternatives,

decisions, and impacted variation points in code as shown in Fig. 7 and Fig. 8.

A few examples needed in this section are given for various element types.

Refer to Appendix A for the complete formalization.

Issue occurrences, I = {i3, i4, i5}

Alternatives, A = {a4, a5, a6}

Decisions, D = {d6, d7, d8, d9, d10, d11, d12}

Variation Points, VP = {vp1, vp2, vp3, vp4, vp5, vp6, vp7}

i3 = (“Various rental perks”, “Explosion of combinations of

rental schemes and rental perks”)

a4 = (“Decorator design pattern”, “Attach additional

responsibilities to an object dynamically.”, “More

flexibility than static inheritance. No explosion of

subclasses.”, “More object interactions due to chain of

decorators.”)

d6 = (“Decorate rental schemes with rental perks”, omitted,

omitted, {vp1})

d7 = (“Extensibility of rental perks”, omitted, omitted,

{vp2})

vp1 = (“VP1”, ())

vp2 = (“VP2”, ())

vp3 = (“VP3”, ())

vp4 = (“VP4”, ())

For a given decision (e.g. d7), the impact on the variation points (vps) needs

to be captured. A mechanism is required to map from the decision to the

applicable variation points and the specific parameters, if any, of each

variation point. Tool developers need to address this mapping mechanism in

 25

tool implementation. The following sample mappings are provided for the

impact of d6, d7, d8, and d9:

d6 maps to vp1;

d7 maps to vp2;

d8 maps to vp3;

d9 maps to vp4.

3.2 Dependencies between Elements of DDM

Fig. 10. Overview of the relationships in the DDM of the complete example (trace links omitted).

Fig. 7 and Fig. 8 also shows additional dependencies required in the running

example beyond my reference metamodel in [4]. Fig. 10 (reproduced from

Fig. 9 for ease of reference) shows the dependencies that exist for the

complete running example. The various types of dependency collectively

embody the rules that define the integrity of DDM. The following subsections

analyze the types of dependency and formalize these rules with samples given

for the running example. I refer to these rules as traceability rules that must be

enforced for the integrity of DDM.

Issue1

Decision3

Decision2

Alternative3

Alternative1 Decision1

Issue2

Alternative2

Decision4

Decision8

Decision6

Decision9

Decision10

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

Decision12

Decision11Issue5

 26

3.2.1 Issue occurrence-alternative Association

The relationship captures the alternative solutions considered for the issue

occurrences. A solution is generic – not specific to the context of any issue

occurrence. An issue occurrence may be solved by one or more alternative

solutions. Different solutions address the issue occurrence in different ways; a

suitable way is to be selected for the issue occurrence.

An issue occurrence-alternative association is formalized as a 2-tuple,

ia = (i, a).

E.g. Issue occurrence-alternative associations,

IA = {(i3, a4), (i3, a6), (i4, a5), (i5, a5)}

Traceability Rule 1: Co-existence of issue occurrences and alternatives in

issue occurrence-alternative association.

ij ∈ I => ∃a: (ij, a) ∈ IA

3.2.2 Issue occurrence-decision Association

The relationship captures the binding of a candidate decision to an issue

occurrence. As an alternative solution associated with a decision is a generic

solution that can possibly address multiple issue occurrences, this issue

occurrence-decision association binds a candidate decision to a specific issue

occurrence. This association captures the instantiation of an alternative

solution to the context of an issue occurrence. Furthermore, for a given issue

occurrence, one of the candidate decisions must be selected.

An issue occurrence-decision association is formalized as a 2-tuple,

id = (i, d).

The selection of a candidate decision is formalized as predicate selected.

E.g. Issue occurrence-decision associations,

ID = {(i3, d6), (i3, d10), (i4, d8), (i5, d12)};

selected(d6); selected(d8); selected(d12).

 27

Traceability Rule 2: Co-existence of issue occurrences and candidate

decisions in issue occurrence-decision association.

ij ∈ I => ∃d ∈ D: (ij, d) ∈ ID

ij ∈ I => ∃!d ∈ D: ((ij, d) ∈ ID AND selected(d))

3.2.3 Decision-alternative Association

The relationship captures the contextualization of generic solutions for an

issue occurrence that arises due to one or more specific features. A decision

justifies, with rationale, the choice of an alternative solution. As an alternative

solution is generic (e.g. design pattern), it has to be contextualized for the

issue occurrence. Hence, a decision also captures the specific way the

alternative solution is applied, by identifying the impacted variation points

accordingly.

A decision-alternative association is formalized as a 2-tuple,

da = (d, a).

E.g. Decision-alternative associations,

DA = {(d6, a4), (d8, a5), (d10, a6), (d12, a5)}

Traceability Rule 3: Co-existence of decisions and alternatives in decision-

alternative association.

(ij, dk) ∈ ID => ∃!a: ((ij, a) ∈ IA AND (dk, a) ∈ DA)

3.2.4 Comprise Association

The relationship captures the compositions among decisions. A decision may

“comprise” other decisions. The “comprise” association represents that one

decision is made of one or more decisions. The “whole” decision should also

precede its “part” decisions when applied. d1 “comprise” d2 and d3 implies that

d1 is made of d2 and d3; d1, d2 and d3 can be seen collectively as a single

composite decision that should be taken or dropped together. d1 should also

 28

precede d2 and d3 when applied, while ordering between d2 and d3 does not

matter.

A comprise association is formalized as a 2-tuple,

ddcomprise = (dj, dk) where dj ≠ dk.

E.g. Comprise associations,

DDcomprise = {(d6, d7), (d10, d11)}

Traceability Rule 4: Co-existence and precedence of whole and part

decisions in comprise association.

(dj, dk) ∈ DDcomprise => (dj <=> dk) AND precede(dj, dk)

where predicate precede(dj, dk) means implication of dj precedes that of

dk.

Traceability Rule 5: Transitivity in comprise associations.

(dj, dk) ∈ DDcomprise AND (dk, dl) ∈ DDcomprise => (dj, dl) ∈ DDcomprise.

3.2.5 Constrain Association

The relationship captures the constraints between issue occurrences and

decisions. A decision may give rise to other issue occurrences; these issue

occurrences arise in the context of the decision. Hence, the decision

“constrains” the issue occurrences and their associated decisions. The

“constrain” association represents that one or more issue occurrences arise in

the premise of a decision. d1 “constrains” i2 implies that i2 arises in the

premise of d1; if d1 is dropped, then i2 becomes irrelevant.

A constrain association is formalized as a 2-tuple,

diconstrain = (d, i).

E.g. Constrain associations,

DIconstrain = {(d6, i4), (d10, i5)}

 29

Traceability Rule 6: Co-existence and precedence of decisions and the issue

occurrences they raise in constrain association.

(d, i) ∈ DI => (d => i) AND precede(d, i).

Traceability Rule 7: Transitivity of constrain and issue occurrence-decision

associations.

(dj, ik) ∈ DIconstrain AND (ik, dl) ∈ DO => (dj, dl) ∈ DDconstrain.

where DDconstrain is the set of derived decision-decision “constrain”

associations.

(dj, dl) ∈ DDconstrain => (dj => dl) AND precede(dj, dl).

3.2.6 Forbid and Resolve Associations

The relationships capture the conflicts between decisions and their resolutions.

A conflict between two decisions occurs if their implications cannot be applied

concurrently in harmony. It must be resolved by compromising either or both

of the implications of the conflicting decisions. Such compromise in

implications is called resolution; it makes it possible for both decisions to be

applied concurrently.

The “forbid” association represents the prevention by another decision of a

decision from being applied. Decision d2 “forbids” decision d1 implies that the

implication of d2 conflicts with that of d1; d2 is not possible unless the

implications of d1 and/or d2 are worked around by the resolution (also a

decision) d3. The “resolve” association represents the resolution of a “forbid”

conflict. d3 “resolves” conflict of d2 “forbids” d1 implies that d3 makes it

possible for both d1 and d2 to co-exist.

The forbid and resolve associations are formalized as 2-tuples and should

exist in triplets as follow.

ddforbid = (dk, dj) where dj ≠ dk

ddresolve1 = (dr, dj) where dr ≠ dj; ddresolve2 = (dr, dk) where dr ≠ dk

E.g.

 30

Forbid associations, DDforbid = {(d8, d6)},

Resolve associations, DDresolve = {(d9, d8), (d9, d6)}

Traceability Rule 8: Co-existence of decisions in forbid and resolve

associations.

(dk, dj) ∈ DDforbid => ∃dr: {(dr, dj), (dr, dk)} ⊆ DDresolve

Traceability Rule 9: Precedence of decisions in forbid associations.

(dk, dj) ∈ DDforbid => precede(dj, dk).

Traceability Rule 10: Precedence of decisions in resolve associations.

(dr, dj) ∈ DDresolve AND (dr, dk) ∈ DDresolve =>

precede(dj, dr) AND precede(dk, dr).

3.3 Trace Links

The running example shows the trace links between features, the associated

decisions (actually via issues) in DDM, and the impacted variation points in

code. The trace links are captured to support the traceability of features and

variability in design.

3.3.1 Feature-issue occurrence Trace

The relationship traces between features and DDM as part of end-to-end

traceability from features to variation points in code.

A decision may be taken directly for one or more features. A decision may

also be taken indirectly via comprise, constrain, forbid, and resolve

associations. Decisions that are neither directly nor indirectly taken for some

features are still included for tracing as they represent design variability.

A feature may be associated with one or more issue occurrences while an

issue occurrence may be associated with zero or more features.

A feature is formalized as a 1-tuple, f = (n) where n = name.

 31

A feature-issue occurrence trace is formalized as a 2-tuple, fi = (f, i). It is

bidirectional. A set of feature-issue occurrence traces is a symmetric relation.

As illustrated in Fig. 7 and Fig. 8,

Features F = {f5, f6, f7, f8, f9, f10}; f5 = (“Rental Perk”)

(other features omitted)

Feature-issue occurrence traces FI = {(f5, i3), (f5, i4), (f5,

i5), (f6, i3), (f7, i3), (f8, i3), (f9, i3), (f10, i3)}

3.3.2 Decision-code Trace

The relationship traces between DDM and the variation points in code as part

of the end-to-end traceability from features to code. The code is in the form of

reusable code fragments which can be class, interface, attribute, operation,

statement, or a part of statement.

In Fig. 7 of section 2.2, RentalPerk is a class,

RentalPerk.strategy is an attribute,

RentalPerk.setRentalStrategy is an operation, and

this.strategy = strategy is a statement of RentalPerk, and

extends RentalStrategy is a part of statement of RentalPerk.

A decision may be associated with one or more variation points while a

variation point may be associated with zero or more decisions.

The decision-code traces of a decision is formalized as a set of variation

points, vps = {vp1, vp2 ..., vpn} where n ≥ 1. It is captured as the fourth

element of the 4-tuple formalization of decision in section 3.1.

As illustrated in Fig. 7, d6’s impacted variation points, vps = {vp1}.

 32

Chapter 4 Impacts of Design Decisions for
Single Systems

Building on the formalization in Chapter 3, this chapter analyzes and

formalizes the required rules and logics on the impacts of design decisions.

The impact can be on other elements of DDM and the trace links to features

and variation points. It also highlights the additional challenges to be

addressed by tool developers, most of them can be attributed to the

enforcement of the traceability rules.

4.1 Order in Applying the Implications of Decisions

The dependencies among the elements of DDM dictate the order of applying

the implications of decisions. This order will also evolve as the elements of

DDM and their dependencies are evolved. Traceability Rules 4, 6, 9, and 10

dictate ordering via predicate precede (introduced in section 3.2). In fact, each

of the above traceability rules dictates the ordering in some way.

Note that Traceability Rule 2 does not dictate ordering among the candidate

decisions for an issue occurrence; it however requires that one decision is

selected among the candidate decisions. The candidate decisions that are not

selected for an issue occurrence are omitted from ordering.

Consider only the following elements and dependencies from the running

example:

I = {i3, i4}

A = {a4, a5, a6}

D = {d6, d7, d8, d9}

IA = {(i3, a4), (i3, a6), (i4, a5)}

ID = {(i3, d6), (i4, d8)}

DA = {(d6, a4), (d8, a5)}

DDcomprise = {(d6, d7)}

DIconstrain = {(d6, i4)}

DDforbid = {(d8, d6)}

DDresolve = {(d9, d8), (d9, d6)}

 33

Fig. 11. Sample compliant chains for applying the implications of decisions.

As illustrated in Fig. 11, the following chains of application of decisions

comply with the traceability rules:

d6-d7-d8-d9 or

d6-d8-d7-d9 or

d6-d8-d9-d7.

Any of these chains will consistently impact, via variation points, on the

same set of code. Any other ordering may result in unexpected impact on

code. As a counterexample, if d9 precedes d6, VP3 configured by d6 would not

be included when it is required by d9.

A tool requires an ordering mechanism to analyze all the applicable

precedence between the decisions and propose the chains of application. As

the number of applicable precedence increases, the number of possible chains

combinatorially explodes. These chains must comply with the ordering

dictated by the applicable traceability rules at all times; they must adapt

accordingly as decisions and dependencies evolve. Furthermore, the sheer

number of possible chains is a cognitive challenge when evolving decisions

and dependencies, the ordering mechanism should mitigate that by

recommending the preferred chain based on some prioritization scheme. For

instance, the prioritization scheme can assign different weights to different

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

1

3

2

2

3

1

3

2

1

 34

types of association; the preferred chain can be a chain that complies with the

traceability rules with weight as an additional ordering criterion.

Assume a prioritization scheme that assigns descending weights to

Constrain with Forbid (4), Comprise (3), Constrain (2), and Resolve (1)

associations, the preferred chain could be:

d6-d8-d9-d7

Without such an ordering mechanism, the implications of decisions cannot

be automatically sequenced in the right order to correctly affect their impacts

on variation points. Without a prioritization scheme, it is cognitively

complicated for the domain engineers to evaluate impacts when evolving

decisions and their dependencies. The next 3 sections analyze the impacts on

the chains of application as decisions and their dependencies evolve.

4.2 Evolution of Decision and its Ripple

The implication of a decision is “hard-wired”. As the decision itself is

evolved, the implication may also change in terms of the impact on the

variation points in code. The change in the implication of a decision on the

variation points may further impact its dependant decisions. Such changes in

implications and their orderly propagation can be complicated. Consider chain

d6-d7-d8-d9 for the samples below.

4.2.1 Evolution of Decision

A change in the “hard-wired” part of the implication of a decision results in

changes, via variation points, in code.

An evolved d7,

d7’ = (“Extensibility of rental perks”, omitted, omitted, {vp2’, vp8}) where

vp2’ is an evolved vp2 and vp8 is a newly introduced variation point.

 35

Fig. 12. Sample mappings from decisions to variation points for the evolution of a decision.

As illustrated in Fig. 12, the mapping of d7 to vps7 (variation points) can be

formalized as a relation R7 from D to VP where D is the set of all decisions;

VP is the set of all variation points (shared by all the decisions). However, R7

does not cater to the evolution of d7. A new relation R7’ is required to map

from d7’ to a new vps7’. The evolution of R7 to R7’ is formalized below:

(d7, vps7) ∈ R7, (d7’, vps7’) ∈ R7’ where

vps7’ is the set of variation points for d7’ where vps7’ ∈ VP’.

As vps7 ≠ vps7’, the variation points (and hence code) are impacted as d7

is evolved to d7’.

4.2.2 Ripple

So, the evolution of a decision impacts vps (i.e., its set of variation points). As

vps is a premise of the dependent decisions, this change in vps may invalidate

that premise; requiring dependent decisions to be individually assessed for

impacts along the chain. Traceability Rules 4, 6, 9, and 10 dictate the decision-

decision precedence, predicate precede (introduced in section 3.2) has further

implication as specified in Rule 11 below.

D

VP

R7

VP’

R7’

 36

Traceability Rule 11: Ripple of the evolution of a decision to its

descendants.

evolve(dj) AND precede(dj, dk) => assess(dk)

where predicate evolve(dj) means dj is evolved; and predicate assess(dk)

means dk is evaluated for impact and may result in evolve(dk).

Fig. 13. Sample ripples for the evolution of a decision.

As illustrated in Fig. 13, applying Traceability Rule 11 on chain d6-d7-d8-d9,

the possible “waves” of impacts that must be evaluated are d6-d7 and d6-d8-d9.

I refer to such a “wave” of impact from a decision onto its dependent decisions

as a ripple. One possible result is ripples across multiple dependent decisions.

The impact of these ripples must be manually assessed. A worse result is that

the premise of some dependent decision becomes invalid, requiring some

form of redesign: use of a new alternative solution, removal of the subject

decision, etc. Such redesign may also cause more ripples. Traceability Rule 11

enables the automated identification of the potential impacts when evolving a

decision, minimizing possible misses if assessed manually.

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

1

2

2

 37

4.3 Addition/removal of Elements of DDM

As part of the maintenance of a software system, the elements of DDM may

be evolved (as discussed in section 4.2), added or removed as the design for

the features changes. These changes must comply with the traceability rules

with their ripples properly evaluated. Such an action may cause DDM to be

incomplete, requiring other actions to mend it.

4.3.1 Issue occurrence-alternative Association

Based on Traceability Rule 1, an issue occurrence should have at least one

alternative solution that can solve it.

Assuming ij ∈ I, ak ∈ A, (ij, ak) ∈ IA:

 ak can be removed individually, resulting in ak ∉ A, (ij, ak) ∉ IA; DDM is

incomplete until ∃a ∈ A: (ij, a) ∈ IA.

 ij can be removed individually, resulting in ij ∉ I, (ij, ak) ∉ IA.

Assuming ij ∉ I: ij can be added as an issue occurrence, resulting in ij ∈ I;

DDM is incomplete until ∃a ∈ A: (ij, a) ∈ IA.

Assuming ij ∈ I: ak can be added as an alternative for ij, resulting in ak ∈ A,

(ij, ak) ∈ IA. Note that ak can be pre-existing or newly added.

4.3.2 Issue occurrence-decision Association

Based on Traceability Rule 2, an issue occurrence should have at least one

decision that instantiates an alternative solution to solve it.

Assuming ij ∈ I, dk ∈ D, (ij, dk) ∈ ID:

 dk can be removed individually, resulting in dk ∉ D, (ij, dk) ∉ ID; DDM is

incomplete until ∃d ∈ D: (ij, d) ∈ ID, ∃!d ∈ D: ((ij, d) ∈ ID AND

selected(d)).

 ij can only be removed together with dk, resulting in ij ∉ I, dk ∉ D, (ij, dk)

∉ ID.

 38

Assuming ij ∉ I: ij can be added as an issue occurrence, resulting in ij ∈ I;

DDM is incomplete until ∃d ∈ D: (ij, d) ∈ ID, ∃!d ∈ D: ((ij, d) ∈ ID AND

selected(d)).

Assuming ij ∈ I, dk ∉ D: dk can be added as a decision addressing ij,

resulting in dk ∈ D, (ij, dk) ∈ ID; DDM is incomplete until ∃!d ∈ D: ((ij, d) ∈

ID AND selected(d)).

4.3.3 Decision-alternative Association

Based on Traceability Rule 3, a decision should instantiate exactly one

alternative solution if it addresses an issue occurrence. Otherwise, it does not

require an alternative solution.

Assuming dj ∈ D, (i, dj) ∈ ID, ak ∈ A, (dj, ak) ∈ DA:

 ak can only be removed together with dj, resulting in dj ∉ D, ak ∉ A, (dj,

ak) ∉ DA.

 dj can be removed individually, resulting in dj ∉ D, (dj, ak) ∉ DA.

Assuming ak ∉ A: ak can be added as an alternative solution, resulting in ak

∈ A.

Assuming ak ∈ A, dj ∉ D: dj can be added as a decision adopting ak,

resulting in dj ∈ D, (dj, ak) ∈ DA.

4.3.4 Comprise Association

Based on Traceability Rule 4, dj and dk must exist together if one comprises

the other and vice-versa.

Assuming dj ∈ D, dk ∈ D, (dj, dk) ∈ DDcomprise: dj must be removed if dk is

removed and vice-versa, resulting in dj ∉ D, dk ∉ D, (dj, dk) ∉ DDcomprise.

Assuming dj ∈ D, dk ∉ D: dk can be added as a part of dj, resulting in dk ∈

D, (dj, dk) ∈ DDcomprise.

4.3.5 Constrain Association

Based on Traceability Rules 6 and 7, dj constrains dl via ik.

 39

Assuming dj ∈ D, ik ∈ I, dl ∈ D, (dj, ik) ∈ DIconstrain, (ik, dl) ∈ ID, then (dj, dl)

∈ DDconstrain:

 dl can be removed individually, resulting in dl ∉ D, (ik, dl) ∉ ID, (dj, dl) ∉

DDconstrain; DDM is incomplete until ∃!d ∈ D: (ik, d) ∈ ID.

 dj can only be removed together with ik and dl resulting in dj ∉ D, ik ∉ I, dl

∉ D, (dj, ik) ∉ DIconstrain, (ik, dl) ∉ ID, (dj, dl) ∉ DDconstrain.

Assuming dj ∈ D, ik ∉ I: ik can be added as an issue occurrence arises due to

dj, resulting in ik ∈ I, (dj, ik) ∈ DIconstrain; DDM is incomplete until ∃!d ∈ D: (ik,

d) ∈ ID.

Assuming dj ∈ D, ik ∈ I, (dj, ik) ∈ DI: dl can be added to address ik, resulting

in dl ∈ D, (ik, dl) ∈ ID, (dj, dl) ∈ DDconstrain.

4.3.6 Forbid and Resolve Associations

Based on Traceability Rule 8, a forbid association exists with 2 resolve

associations.

Assuming {dj, dk, dr} ⊆ D, (dk, dj) ∈ DDforbid, {(dr, dj), (dr, dk)} ⊆ DDresolve:

 dr can be removed individually, resulting in dr ∉ D, (dr, dj) ∉ DDresolve, (dr,

dk) ∉ DDresolve; DDM is incomplete until ∃d ∈ D: {(d, dj), (d, dk)} ⊆

DDresolve.

 dk can only be removed together with dr, resulting in dk ∉ D, dr ∉ D, (dk,

dj) ∉ DDforbid, (dr, dj) ∉ DDresolve, (dr, dk) ∉ DDresolve.

 dj can only be removed together with dk and dr, resulting in dj ∉ D, dk ∉

D, dr ∉ D, (dk, dj) ∉ DDforbid, (dr, dj) ∉ DDresolve, (dr, dk) ∉ DDresolve.

Assuming dj ∈ D, dk ∉ D: dk can be added to conflict with dj, resulting in dk

∈ D, (dk, dj) ∈ DDforbid; DDM is incomplete until ∃d ∈ D: {(d, dj), (d, dk)} ⊆

DDresolve.

Assuming dj ∈ D, dk ∈ D, (dk, dj) ∈ DDforbid: dr can be added to resolve (dk,

dj), resulting in dr ∈ D, {(dr, dj), (dr, dk)} ⊆ DDresolve.

 40

Chapter 5 Extension for Software Product
Lines

This chapter extends the formalization of design decisions in Chapter 3 and

Chapter 4 for the SPL situation. The running example in section 2.2 is also

suitably extended here. As compared to a single system, an SPL has features

which are mandatory or variant (i.e., either optional or alternative). This

variability in features is a new dimension to be supported in my model. The

core of this dimension is that variant features and their associated design

information can emerge or vanish as they are selected or deselected for an SPL

application. The challenges for my model include how variant features are

represented, how variability in features is incorporated into DDM, and how

variability in features is supported by the variation points in code core assets.

5.1 Extension of the Running Example

Fig. 14 and Fig. 15 extend the sample DDM in Fig. 7 and Fig. 8 for the SPL

situation. The original fragments of feature tree are now replaced with

fragments of feature model, providing for the presence of variant features. For

instances, features Rental, Rental Perk, and Xmas Promotion are now labeled

respectively as mandatory, optional and alternative. An optional or alternative

feature is only present in an SPL application if it is selected for the SPL

application. The elements of DDM now provide for the emergence or the

vanishing of variant features via the feature-issue occurrence traces. The

variation points in code core assets now provide for the emergence or the

vanishing of decisions in DDM. For instances, VP2 and VP6 are now

configurable via a parameter which indicates the selection of the alternative

features under Rental Perk.

 41

Fig. 14. Sample DDM with trace links from features to code core assets (extended for SPL).

Legends – Feature Model

class RentalPerk

extends RentalStrategy

};

makefile

:
VP1()
:
:
:

VP2(p1)
:
:

Decision8

class RentalMgr{

details omitted
}

class XmasPromo

extends RentalPerk{

protected XmasPromo
(…){…};

computeRental(){
…};

}

class LoyaltyProgram

extends RentalPerk{

protected Loyalty
Program(…){…};

computeRental(){
…};

}

class DiscountVoucher

extends RentalPerk{

protected Discount
Voucher(…){…};

computeRental(){
…};

}

class GSSPromo

extends RentalPerk{

protected GSSPromo
(…){…};

computeRental(){
…};

}

class CNYPromo

extends RentalPerk{

protected CNYPromo
(…){…};

computeRental(){
…};

}

Decision6

Decision9

re
so

lv
e

co
m

p
ri

se

Decision7

class RentalStrategy

computeRental();
}

Issue3

Alternative4

Alternative6

Issue4

Alternative5

Legends – Others

Element of design decision

Variation point in code core assets
with configuration parameters, if any

Code core assets

Dependency between elements
of design decision

Trace link between a feature
and an issue occurrence

Trace link from a decision to
variation points in code core assets

RentalStrategy strategy;

setRentalStrategy(
RentalStrategy strategy){

this.strategy= strategy};

VP4()

Note: The decision for Alternative6
is shown in the next figure.

static RentalPerk p=

new RentalPerk[];
static getInstance(int type){

p[type]=new from a subclass;

VP3()

F5

F10

F9

F6

F7

F8

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great
Singapore Sale

1-5

Mandatory

Optional

AlternativeAlternative

1-2

Root

 42

Fig. 15. Sample DDM with trace links from features to code core assets (the alternative solution for Issue3) (extended for SPL).

makefile
:

VP5()
:

:
:

VP6(p1)

:
:

Subclasses are introduced
when new combinations of

perks are applicable. These
subclasses are just samples.

class LProg extends
RentalPerkComb{

protected
LProg(…){…};

computeRental();
}

class LProgXmas
extends

RentalPerkComb{
protected

LProgXmas(…){…};
computeRental();

}

class DVoucGSS
extends

RentalPerkComb{
protected

DVoucGSS(…){…};
computeRental();

}

class LProgDVouc
extends LProg{
protected

LProgDVouc(…){…};
computeRental();

}

class LProgDVoucGSS
extends LProg{

protected
LProgDVoucGSS(…){

…};
computeRental();

}

class LProgDVoucXmas
extends LProgDVouc{

protected
LProgDVoucXmas(…){

…};
computeRental();

}

class RentalMgr{

details omitted
}

class RentalStrategy

computeRental();
}

class RentalPerkComb

computeRental();
}

Decision12

Decision11

Decision10

Alternative6

Alternative5

Issue5

Issue3

static RentalPerkComb p=
new RentalPerkComb[];

static getInstance(int type){
p[type]=new from a subclass;};

VP7()

F5

F10

F9

F6

F7

F8

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great
Singapore Sale

Legends – Feature Model

Mandatory

Optional

AlternativeAlternative

1-2

Root

1-5

Legends – Others

Element of design decision

Variation point in code core assets
with configuration parameters, if any

Code core assets

Dependency between elements
of design decision

Trace link between a feature
and an issue occurrence

Trace link from a decision to
variation points in code core assets

 43

5.2 Extension of the Abstract Syntax

The abstract syntax for single systems as specified in Chapter 3 is generally

applicable to the SPL situation. The following subsections identify the

required extensions.

5.2.1 Scoping of DDM based on Feature Configuration

For a single system, all the features in its feature tree are applicable at the

same time. The issue occurrences that arise in all these features as well as

other elements of DDM associated with these issue occurrences are also

applicable at the same time. That is, the traceability rules should be applied to

check the integrity of DDM as a whole.

In the SPL situation, a feature model specifies the variability in features and

implies a set of feature configurations. A feature configuration is a valid set of

features for the feature model. For each feature configuration, a subset of the

issue occurrences and other elements of DDM associated with these issue

occurrences are applicable at the same time. That is, the traceability rules

should be applied to check the integrity of DDM on a per feature configuration

basis.

I refer to the identification of the elements of DDM which are within the

scope of consideration for integrity check for a given feature configuration as

scoping. So, for the SPL situation, DDM should be scoped first before the

traceability rules are applied. Since a feature model represents several feature

configurations, DDM must be repeatedly scoped for each feature configuration

and checked for integrity – The required effort to manually conduct such

checking also increases proportionally.

In order to support scoping, a set of scoping rules are introduced in the

following sections.

 44

5.2.2 Elements of DDM

5.2.2.1 Scoping of Elements of DDM

Among the elements of DDM, the issue occurrences and the decisions may be

scoped in or out for a given feature configuration. The alternatives are not

affected as they are generic design solutions that are not specific to any

features. Predicate in_scope is added to the abstract syntax to represent the

scoping in of an element of DDM.

Scoping Rule 1: Scoping of issue occurrences and decisions.

i ∈ I, d ∈ D

in_scope(i)

in_scope(d)

5.2.2.2 Scoping in Variation Points in Code Core Assets

For single systems, a mechanism is required to map from a decision to the

applicable variation points and the specific parameters, if any, of each

variation point. In the SPL situation, the impact of a decision on the variation

points may vary as the variant features associated with the issue occurrence

change due to feature selection. The mechanism has to be enhanced to account

for the variant features associated with the issue occurrence. The following

sample mappings are provided for the impact of d6, d7, d8, and d9:

d6 maps to vp1;

d7 maps to vp2 and its parameter p1;

d8 maps to vp3;

d9 maps to vp4.

Note that vp1 corresponds to f5 which is an optional feature. If f5 is selected,

the code configured by vp1 is included. Parameter p1 of vp2 is newly

introduced to provide for the alternative features f6 through f10. Depending on

the selection of these alternative features, vp2 is configured via its p1 to include

the relevant code.

 45

5.2.3 Dependencies between Elements of DDM

If an issue occurrence is in scope, it follows that the decisions that solve the

issue occurrence are also in scope. If a decision is in scope, it follows that the

decisions that it comprises are also in scope; it also follows that the issue

occurrences that it gives rise to and constrains are also in scope. If two

conflicting decisions are in scope, it follows that the resolution (also a

decision) of the conflict is also in scope.

Scoping Rule 2: Transitivity of scoping in issue occurrence-decision

association.

i ∈ I, d ∈ D

in_scope(i) AND (i, d) ∈ ID => in_scope(d)

Scoping Rule 3: Transitivity of scoping in comprise association.

dj ∈ D, dk ∈ D

in_scope(dj) AND (dj, dk) ∈ DDcomprise => in_scope(dk)

Scoping Rule 4: Transitivity of scoping in constrain association.

i ∈ I, d ∈ D

in_scope(d) AND (d, i) ∈ DI => in_scope(i)

Scoping Rule 5: Transitivity of scoping in forbid and resolve associations.

dj ∈ D, dk ∈ D, dr ∈ D

in_scope(dk) AND in_scope(dj) AND (dk, dj) ∈ DDforbid AND {(dr, dj),

(dr, dk)} ⊆ DDresolve => in_scope(dr)

5.2.4 Trace Links

If a variant feature in the feature model is selected to be in a feature

configuration, it is then in scope. If a feature is in scope, it follows that the

issue occurrences that arise in the design of the feature is also in scope.

 46

Scoping Rule 6: Transitivity of scoping in feature-issue occurrence trace.

f ∈ F, i ∈ I

in_scope(f) AND (f, i) ∈ FI => in_scope(i)

5.3 Extension of the Impacts of Design Decisions

After adjusting for the scoping of DDM as specified in section 5.2, the impacts

of design decisions for single systems as specified in Chapter 4 is generally

applicable to the SPL situation. The following subsections identify the

required extensions.

5.3.1 Evolution of Decision and its Ripple

The implication of a decision changes as the selection of the variant features

associated with the issue occurrence it solves changes. In contrast to the “hard-

wired” implication in section 4.2, the implication of a decision due to the

selection of variant features can be planned and configured via parameters.

A change in the selection of the variant features associated with the issue

occurrence that a decision solves results in changes, via variation points, in

code. Such evolution can be planned and be easily affected by taking the

associated variant features as an input parameter of the decision.

Take the feature-issue occurrence traces for i3,

FI3 = {(f6, i3), (f7, i3), (f8, i3), (f9, i3), (f10, i3)}.

Also, (i3, d6) ∈ ID and (d6, d7) ∈ DDcomprise => (i3, d7) ∈ ID. A change in the

associated variant features of i3 may result in the evolved feature-issue

occurrence traces for i3,

FI3’= {(f6, i3), (f7, i3), (f8, i3)} where f9 and f10 are disassociated from i3.

 47

Fig. 16. Sample mappings from features to variation points for the evolution of decisions

(extended for SPL).

As illustrated in Fig. 16, the mapping of d7 (with FI3 taken as input

parameter) to vps (variation points) can be formalized as relation R7 from D to

VP where D is the set of all decisions; VP is the set of all variation points

(shared by all decisions). The evolution of d7 as FI3 changes is formalized

below:

{(FI3, vps7), (FI3’, vps7’’)} ⊆ R7 where

FI3 and FI3’ are instances of input parameter of d7;

vps7 and vps7’’ are instances of vps of d7 where vps7 ∈ VP, vps7’’ ∈ VP.

As vps7 ≠ vps7’’, variation points (and hence code) are impacted.

Since the evolution of decision due to variant features is planned (as

discussed above), there is no need to consider the ripples as in the case of the

evolution of the decision itself (as discussed in section 4.2.2).

VP

R7

D

Case
of FI3

Case
of FI3’

 48

Chapter 6 Validation by Usage Examples

This chapter validates DDM and the impacts of design decisions by means of

usage examples. Using step by step illustration, I demonstrate the applicability

of the rules and/or the logics from the formalization in Chapter 3 and Chapter

4 in:

 Constructing the DDM in Fig. 7 from section 2.2 from scratch

given an existing feature model and code.

 Showing how the ordering mechanism and prioritization scheme

help in understanding the impacts of design decisions for the

constructed DDM.

 Evolving the constructed DDM with salient evolution scenarios.

These usage examples represent means of validating my proposed

formalization by manual inspection. It provides the confidence on the

practicality of using the formalization in a design support IDE.

I do not provide usage examples for the SPL situation. What sections 6.1,

6.2, and 6.3 illustrate is equivalent to one feature configuration of an SPL. The

same rigor is required for each feature configuration of the SPL.

 49

6.1 Construction of DDM

Step Rule & Logic Evolution of DDM

1 Assume Decision1 to exist. It gives

rise to Issue3.

Issue3 is added and associated

with Decision1 using a Constrain

association.

2 Traceability Rule 1 requires an

issue occurrence to have at least

one alternative. Its logic specifies

how to add an issue occurrence to

complete DDM.

Alternative4 & Alternative6 are

added and associated with Issue3.

3 Traceability Rule 2 requires an

issue occurrence to have at least

one decision. Its logic specifies

how to add a decision to complete

DDM.

Decision6 is added and

associated with Issue3.

4 Traceability Rule 3 requires a

decision to have exactly one

alternative if it addresses an issue

occurrence. Its logic specifies how

to add an alternative to complete

DDM.

Alternative4 is associated with

Decision6.

Decision1

Issue3

Decision1

Issue3

Alternative4

Alternative6

Decision1

Decision6

Issue3

Alternative4

Alternative6

Decision1

Decision6

Issue3

Alternative4

Alternative6

 50

Step Rule & Logic Evolution of DDM

5 Decision7 is a composite part of

Decision6.

Decision6 is associated with

Decision7 using a Comprise

association.

6 Decision6 also gives rise to Issue4.

Issue4 is added and associated

with Decision6 using a Constrain

association.

7 Applying Traceability Rules 1, 2 &

3 as in steps 2, 3 & 4.

Alternative5 is added and

associated with Issue4.

Decision8 is added and

associated with Issue4.

Alternative5 is associated with

Decision8.

8 The implication of Decision8

conflicts with that of Decision6 in

code.

Decision8 is associated with

Decision6 using a Forbid

association.

Decision6

Decision7

Decision6

Decision7

Issue4

Decision8

Decision6

Decision7

Issue4

Alternative5

Decision8

Decision6

Decision7

Issue4

Alternative5

 51

Step Rule & Logic Evolution of DDM

9 Traceability Rule 8 requires a

conflict between decisions to be

resolved by a resolution decision.

The implication of Decision9

resolves the conflict between

Decision8 & Decision6 in code.

Both Decision8 & Decision6 are

associated with Decision9 using

two Resolve associations.

This completes the construction of

DDM.

Decision1

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Issue4

Alternative5

Alternative6

 52

6.2 Understanding the Impacts of DDM

Step Rule & Logic Evolution of DDM

10 Traceability Rules 4, 6, 9, and 10

dictate the ordering of the

application of decisions via

predicate precede. An ordering

mechanism that complies with

these rules generates the compliant

chains of applications for an

instance of DDM.

Assume the instance of DDM in

section 6.1. The compliant chains of

application are:

• d6-d7-d8-d9 (Note: d6 is

Decision6)

• d6-d8-d7-d9

• d6-d8-d9-d7

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

1

3

2

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

2

3

1

 53

Step Rule & Logic Evolution of DDM

11 Cognitive challenge arises due to

the combinatorial explosion of the

number of chains as the number of

applicable precedence increases. A

prioritization scheme recommends

the preferred chain.

One simple prioritization scheme

is to assign different weights to

various types of association.

Assume a prioritization scheme that

assigns descending weights to

Constrain with Forbid (4), Comprise

(3), Constrain (2), and Resolve (1)

associations, the preferred chain could

be:

• d6-d8-d9-d7

12 Same as step 10. To consider the candidate decisions d6

and d10 for issue occurrence i3,

expand DDM to include d1 and d6

through d12 in Fig. 7 and Fig. 8. The

compliant chains of applications are:

• d1-d6-d7-d8-d9

• d1-d6-d8-d7-d9

• d1-d6-d8-d9-d7

• d1-d10-d11-d12

• d1-d10-d12-d11

As observed in the above chains, d6

and d10 are mutually exclusive.

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

3

2

1

 54

6.3 Evolution of DDM

Step Rule & Logic Evolution of DDM

13 Traceability Rule 11 identifies the

ripples due to the evolution of a

decision. Each ripple must be

evaluated and the impact handled

accordingly.

If d8 is evolved, the ripples are:

• d8-d9

If d6 is evolved, the ripples are:

• d6-d7

• d6-d8-d9

14 To remove a decision, the

following rules apply.

Traceability Rule 2: If a decision

associated with an issue occurrence

is removed, the model is

incomplete till another decision is

associated with the issue.

Traceability Rule 3: If a decision

associated with an issue occurrence

is removed, the issue occurrence

can continue to exist.

Traceability Rule 4: If a decision in

a Comprise association is removed,

the other decision in the

association must be removed.

Note: Braces “{}” below reference the

applicable rules from the “Rules &

Logic” column.

If d9 is removed:

• another decision must replace d9

{8a}.

If d8 is removed:

• d9 must be removed {8b}.

• another decision must replace d8

{2}.

If d6 is removed:

• d8 & d9 must be removed {8c}.

• d7 must be removed {4}.

• i4 & d8 must be removed {6 & 7}.

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

1

2

2

 55

Step Rule & Logic Evolution of DDM

Traceability Rules 6 & 7: If a

decision that constrains another

decision via an issue occurrence is

removed, the issue occurrence and

the constrained decision must be

removed.

Traceability Rule 8a: If a decision

that resolves the conflict between

two other decisions is removed, the

model is incomplete till another

decision that resolves the conflict

exists.

Traceability Rule 8b: The

forbidding decision of two

conflicting decisions can be

removed together with the decision

that resolves the conflict.

Traceability Rule 8c: The

forbidden decision of two

conflicting can only be removed

together with the forbidding

decision and the decision that

resolves the conflict.

15 To remove an issue occurrence,

the following rules apply.

Traceability Rule 1: If an issue

occurrence is removed, the

associated alternative can continue

to exist.

Traceability Rule 2: If an issue

occurrence is removed, the

If i4 is removed:

• d8 must be removed {2}.

If i3 is removed:

• d6 must be removed {2}.

• d8 & d9 must be removed

(cf. Step 14).

• d7 must be removed (cf.

Step 13).

Decision1

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Issue4

Alternative5

Alternative6

 56

Step Rule & Logic Evolution of DDM

associated decision must be

removed.

• i4 & d8 must be removed

(cf. Step 14).

16 To remove an alternative, the

following rules apply.

Traceability Rule 1: If an

alternative associated with an issue

occurrence is removed, the model

is incomplete till another

alternative is associated with the

issue occurrence.

Traceability Rule 3: If an

alternative associated with a

decision is removed, the decision

must be removed.

If a5 (i.e., Alternative5) is removed:

• d8 must be removed {3}.

• d9 must be removed (cf.

Step 14).

• another decision must

replace d8 (cf. Step 14).

• another alternative must replace a5

{1}.

If a4 is removed:

• d6 must be removed {3}.

• d8 & d9 must be removed

(cf. Step 13).

• d7 must be removed (cf.

Step 14).

• i4 & d8 must be removed

(cf. Step 14).

If a6 is removed:

• none.

 57

Chapter 7 Verification by Formal Method

This chapter describes how formal method can be used to specify and verify

the abstract syntax of DDM, instances of DDM, and feature configurations of

instances, as well as to derive information from instances of DDM.

Note that I discuss together both the situations for single systems and SPLs.

This is done by using a feature model to represent the feature variability in an

SPL; and to represent the features of a single system using a feature model

with only mandatory features (i.e., effectively a feature tree).

7.1 Use of Formal Method

The verification of the abstract syntax and its instances can be conducted

through formal verification and/or manual inspection. Manual inspection is

usually adopted in typical software development lifecycles. For DDM, it may

include activities like peer review of the abstract syntax, peer review of the

code of the support tool, and unit and system testing of the support tool. As

these techniques demand human effort and skills, they are conducted with best

effort which tends to be error-prone and non-exhaustive. In fact, it is

practically impossible to manually cover all possible scenarios of the abstract

syntax and the support tool.

Formal verification takes a very different approach. The structure and/or

behavior of the test subject have to be specified in a formal language so that it

can be verified formally using techniques like theorem proving. Once a

specification is formally verified, all the possible scenarios are completely

covered. As compared to manual inspection, in cases where formal

verification is feasible, the latter can precisely and completely verify the test

subject. This characteristic is the main motivation behind my proposal to

formally verify DDM.

 58

7.2 Alloy as a Formal Method Tool

In order to verify a test subject using formal method, it must firstly be possible

to specify its structure and/or behavior without overly elaborate effort that

negates the potential gains from formal verification. The approach used must

also be computationally economical so that instances of verification test can

be conducted within bearable time and be regressed as frequently as the test

subject evolves.

In formal verification, test subjects are typically specified in a combination

of predicate logic and first order logic. These representations vary in terms of

expressiveness but are generally sufficient to capture structure and behaviors.

The main problem lies in the computation of first order logic which is

undecidable – It is impossible to compute if an assertion is valid, i.e. holds

true for every possible assignment.

Alloy [7] is a structural modeling language based on first-order logic, for

expressing complex structural constraints and behavior. The Alloy Analyzer is

a constraint solver that provides fully automatic simulation and checking.

There are two primary use cases. Firstly, as a model checker, it formally

verifies a model against an abstract syntax and some properties. If the model is

invalid, counterexamples are provided to help refine the model. Secondly, as a

model finder, it formally derives a model that complies with an abstract syntax

and some specified constraints, if any.

Alloy works around the undecidability of first order logic by introducing the

notion of scope to limit the size of state space considered. This makes the

earlier computation tractable within a scope of concern. The main

compromise is that Alloy does not verify outside the specified scope. This is

however mitigated, as claimed by the creator of Alloy, the Small Scope

Hypothesis where most bugs can be found within small scopes. Furthermore,

Alloy does more than a theorem prover in verifying an abstract syntax or its

models; it goes a step further in suggesting counterexamples that help in

debugging.

 59

7.3 Overall Verification Approach using Alloy

This section describes the overall verification approach using Alloy. Alloy

supports constructs like signature, relation, predicate, function, formula, fact,

assertion, etc.

The abstract syntax of DDM is specified in Alloy. For instances:

 the decision as a signature

 the dependencies among the elements of DDM as relations

 the rules that enforce the integrity of DDM as predicates, arities of

relations, etc.

 the rules that govern the impacts of decisions of DDM as functions,

formulae, etc.

 the rules that scope the elements of DDM as predicates.

In order to reason about feature configurations, the abstract syntax of feature

model (FM) is also specified in Alloy. With the abstract syntaxes specified,

the instances of DDM and FM and any additional constraints are also specified

in Alloy.

The above strategy makes it possible to formally reason on properties that

encompass feature configurations (of an instance of FM) and/or design

decisions (of an instance of DDM). The strategy can first be applied on the

single system situation and then the SPL situation of the running example.

This should identify issues which help debug and refine the formalization. The

refined strategy can then be applied to the single system situation and then the

SPL situation of an industry case study to show that it can scale up from the

running example.

To show the infeasibility of exhaustive manual inspection of all possible

verification scenarios, the complexity involved in various verification tasks

(e.g., comparing planned against supported feature configurations) can be

computed for comparison where applicable.

 60

7.4 Specification and Verification of DDM and its
Instances

Fig. 17 illustrates the approach for specifying and verifying the abstract syntax

(including rules) of DDM (on the left of the figure) and its instances (on the

right of the figure).

Fig. 17. Scheme for verifying the abstract syntax of DDM and its instances.

The following steps are to be performed:

1. Formally specify the abstract syntax (including rules) of DDM in

Alloy language.

2. Formally verify this specification for a sufficiently large scope using

Alloy as a model checker.

3. If there are no counterexamples, this abstract syntax is valid within

the scope.

4. If there are counterexamples, this abstract syntax is invalid. They are

used to refine the abstract syntax towards a valid one.

5. Formally specify an instance of DDM in Alloy language.

6. Formally verify this instance of DDM against the abstract syntax of

DDM for an exact scope (of this instance) using Alloy as a model

finder.

7. If the input instance is found, this instance is a valid model of DDM.

That is, the design represented by the instance is verified to be

consistent.

8. If no instance is found, this instance is an invalid model of DDM.

finder

flow

Alloy
mode

Legends

exact scope

instance
(model) of

DDM

the input
instance
(valid)

DDM
abstract
syntax &

rules

checker

scope

no counter-
example
(valid)

counter-
example
(invalid)

no instance
(invalid)

 61

For step 8 above, the scheme cannot enumerate issues that result in the

invalidity as counterexamples so that the instance can be refined towards a

valid model of DDM using Alloy.

7.5 Specification and Verification of Feature Model and
its Instances

Although the formalization of FM is not a subproblem of this thesis, it is

required for supporting the reasoning related to feature configurations in

section 7.6. This formalization can be based on [5] which proposes an abstract

syntax for FM in Alloy. Fig. 18 illustrates the approach for specifying and

verifying the abstract syntax of FM (on the left of the figure) and its instances

(on the right of the figure).

Fig. 18. Scheme for verifying the abstract syntax of FM and its instances.

The following steps are to be performed:

1. Formally specify the abstract syntax (including rules) of FM in

Alloy language.

2. Formally verify this specification for a sufficiently large scope using

Alloy as a model checker.

3. If there are no counterexamples, this abstract syntax is valid within

the scope.

4. If there are counterexamples, this abstract syntax is invalid. They are

used to refine the abstract syntax towards a valid one.

5. Formally specify an instance of FM in Alloy language.

finder

flow

Alloy
mode

Legends

exact scope

instance
(model) of

FM

the input
instance
(valid)

FM abstract
syntax &

rules

checker

scope

no counter-
example
(valid)

counter-
example
(invalid)

no instance
(invalid)

 62

6. Formally verify this instance of FM against the abstract syntax of

FM for an exact scope (of this instance) using Alloy as a model

finder.

7. If the input instance is found, this instance is a valid model of FM.

That is, the design is verified to be consistent.

8. If no instance is found, this instance is an invalid model of FM.

For step 8 above, the scheme cannot enumerate issues that result in the

invalidity as counterexamples so that the instance can be refined towards a

valid model of FM using Alloy.

7.6 Comparison of Planned vs. Supported Feature
Configurations

This section devises the scheme to address the third subproblem specified in

section 2.1. Fig. 19 illustrates the approach for comparing planned against

supported feature configurations.

Fig. 19. Scheme for comparing planned against supported feature configurations.

A feature model implies a set of valid feature configurations, say FCfm,

which are planned. An instance of DDM supports a set of valid feature

configurations, say FCddm, which are constrained by the design represented by

the instance.

The following steps are to be performed:

1. Given an instance of DDM and an instance of FM.

2. Formally derive FCddm from the instance of DDM.

flow

Alloy
mode

Legends

instance
(model) of

DDM

checker

instance
(model)
of FM

no counter-
example

(all configs
supported)

counter-
example

(some configs
not supported)

exact
scope

 63

3. Formally derive FCfm from the instance of FM.

4. Formally compare FCfm and FCddm for an exact scope (of the

instances of DDM and FM) using Alloy as a model checker.

5. If FCfm ⊆ FCddm, all the planned feature configurations are supported

by the design.

6. Otherwise, some planned feature configurations are not supported by

the design. The issues are enumerated as counterexamples so that

they can be resolved either by:

a. constraining FCfm further by adding feature dependencies in

the instance of FM.

b. expanding FCddm by refining the design in the instance of

DDM.

7.7 Derivation of Information for a Feature
Configuration from DDM

This section devises the scheme to address the fourth subproblem specified in

section 2.1. As DDM is already equipped with the traceability capability from

features through code, the main challenge is the derivation of the possible

combinations of design decisions for a given feature configuration.

The following steps are to be performed:

1. Given an instance of DDM, an instance of FM, and a feature

configuration FC1.

2. Let F1 be the set of features that are in the scope of FC1.

Given FC1, ∀f ∈ F1: in_scope(f)

3. Using Scoping Rule 6, let I1 be the set of issues that are in the scope

of FC1.

Given F1, ∀i ∈ I1: in_scope(i)

4. Using Traceability Rule 2, let ID1 be the set of issue occurrence-

decision associations in the scope of FC1.

Given I1, ∀(i, d) ∈ ID1: i ∈ I1

 64

5. Let D1 be the set of possible combinations of decisions in the scope

of FC1.

Given ID1, ∀D ∈ D1: (∃!i ∈ I1: ((i, d) ∈ ID1))

6. For each combination of decisions, D ∈ D1, the Traceability Rules

can be applied to derive the other elements of DDM that are in the

scope of this combination of decisions.

7.8 Verification of Instances of DDM for the Addition
and Removal of Elements of DDM

The elements of an instance of DDM may be added or removed as the design

is evolved. These changes are more drastic as compared to the evolution of

decisions. A change (e.g. the removal of an issue occurrence) could potentially

invalidate other elements of the instance of DDM (e.g. the decision for the

issue occurrence and other elements that depend on the decision). Hence, after

one or more changes to the instance of DDM, it should be:

 formally verified that the model is still consistent – against the

abstract syntax and rules of DDM. The inconsistencies, if any, are

enumerated.

 formally verified that the planned feature configurations are still

intact. The inconsistencies, if any, are enumerated.

The schemes for verifying the above using Alloy are described in section

7.4 and section 7.6 respectively.

 65

Chapter 8 Implementation of Support IDEs

This chapter recommends to the tool developers how the key salient features

of support IDEs adopting DDM can be implemented. I first summarize the

additional challenges to be addressed by the tool developers, address them in

my proposed solution, and then plan for a prototype tool.

Note that, in the same approach in Chapter 7, I discuss together both the

situations for single systems and SPLs. SPL-specific considerations are

highlighted accordingly.

8.1 Challenges for Tool Developers

The metamodel in Fig. 5 of section 2.2 also incorporate the additional

dependencies required: comprise, constrain, forbid, and resolve. Note that the

enforcement of the 11 traceability rules for the integrity of DDM and trace

links is already accounted for by the abstract syntax. There is no need for the

tool developers to separately address them.

As discussed in section 3.1, a mapping mechanism is required to map from

a decision to the applicable variation points and the specific parameters of

each variation point. (SPL-specific) As discussed in section 5.2.2.2, the

mechanism also has to account for the variant features associated with the

issue occurrence that the decision addresses.

As discussed in section 4.1, an ordering mechanism is required to analyze

all the applicable precedence between the decisions and propose the chains of

application. It should also recommend the preferred chain based on some

prioritization scheme.

As discussed in section 4.2.2, the solution should automatically identify

potential impacts due to ripples of the evolutions of the “hard-wired” part of

decisions.

 66

(SPL-specific) As for the scoping rules introduced for the abstract syntax in

section 5.2, they are already taken into account by DDM. There is no need for

the tool developers to separately address them.

8.2 Solutions to Challenges

8.2.1 Metamodel for DDM

This section proposes a metamodel for DDM. It is adapted and enhanced from

[11] and [4] that discuss architectural design decisions in single systems.

Fig. 20. Metamodel for DDM.

Fig. 20 illustrates an enhanced metamodel that takes into consideration the

additional dependencies as identified in section 8.1. A root attribute is added

to IssueOccurrence in order to differentiate between root and non-root

issue occurrences. A non-root issue occurrence arises in the context of (i.e.,

constrained by) another decision; a root issue occurrence is one which is not

constrained by another decision. There must be at least one such root issue

occurrence in an instance of DDM. The “comprise” association is represented

by the whole-part association of Decision. The “constrain” association

is represented by the constraining-constrained association from

 67

Decision to IssueOccurrence. The “forbid” association is represented

by the forbidding-forbidden association of Decision. The “resolve”

association is represented by the association class Resolution which

inherits from Decision. As for the trace links, the feature-issue occurrence

trace is represented by the feature-issueOccurrence association from

IssueOccurrence to Feature. The decision-code trace is changed to the

decision-realized association from Decision to VPMap. VPMap

captures the mapping from a Decision to its impacted variation points.

VPMap.paramNVPairs captures the information required to configure

parameters of a variation point in code.

8.2.2 Mapping Mechanism

Fig. 21. Sample mappings for some decisions of the running example.

Fig. 21 above illustrates the required mappings for some decisions of the

running example for both the situations for single systems and SPLs. It shows

the role of a decision in mapping from the domain (i.e., the selected variant

features via issue occurrences) to the range (i.e., the applicable variation points

and the configuration of their parameters). As the domain accounts for variant

features, it is only applicable to the SPL situation. The “p1” parameter is also

introduced to account for the impact of the variant features on VP2.

For each decision, the corresponding mapping specifies:

VP1()

VP2(p1)

VP4()

Decision6

Decision7

Decision8

Decision9

{∅, {f5}}

Domain Map Range

{P({f6,f7,f8,f9,f10}) − ∅}

{∅}

(For SPL) p1 of VP2 in EBNF
perk = “XmasPromo” | “CNYPromo”

| “GSS” | ”DiscountVoucher”
| “LoyaltyProgram”;

p1 = perk, 4*[“,”, perk];
VP3()

(For SPL)

 68

 the set of valid feature configurations (It would be {∅} for the case

of a single system)

 for each feature configuration, the set of impacted variation points

and the value of each applicable parameter

The above specification is captured as VPMap objects.

Based on the feature selection, the mapping mechanism computes for each

decision:

 the impacted variation points

 the value of each applicable parameter of the variation points

If a specific parameter is impacted by multiple decisions, the impacts (i.e.,

values) are combined.

 69

8.2.3 Variability Technique

Fig. 22. XVCL as a variability technique.

A variability technique is

required to include/exclude

code based on the selection

of variant features (for

SPL) and candidate design

decisions. I choose XML-

based Variant

Configuration Language

(XVCL) [5] for its generic

support on various formats

of core assets and its

independence from the

syntaxes of programming

languages.

Fig. 22 illustrates the use of XVCL as a mechanism to capture the

configuration parameters required to assemble the application code from the

reusable code as impacted by the decisions. An XVCL specification specifies

how a set of XVCL frames are to be used as code templates. It can be

parameterized to allow for variations in the use of these code templates. The

required parameters for the applicable decisions are captured in VPMap of Fig.

20. An XVCL specification is instantiated with parameter values and

interpreted by the XVCL Processor to assemble the application code.

XVCL
Processor

Code (Application)

in
pu

t
ge

ne
ra

te

Code

Module

Code

Module

XVCL

Specification

XVCL Frame

XVCL Frame

adapt

adapt

Code (Reusable)Configuration
(Application)

VP

VP

VP

 70

8.2.4 Metamodel for Feature Model

Fig. 23. Metamodel for feature model of FODA.

Fig. 23 illustrates a metamodel compatible with feature model of FODA [9]. It

shall be the basis for my proposed prototype tool to support feature model.

8.2.5 Ordering Mechanism and Prioritization Scheme

To propose the chains of application of decisions, rooted directed acyclic

graph (DAG) can be used as the ordering mechanism where the decisions are

the vertices and the precedence dependencies between decisions are the edges.

The topological sorts of such DAG are then the possible chains. To

recommend the preferred chain among the possible chains, weighted vertices

and edges can be used to accumulate the relative importance of a subgraph

rooted at a vertex. The preferred chain would then be the one produced by

prioritizing vertex weight.

 71

Fig. 24. Rooted directed acyclic graph for the ordering mechanism.

Fig. 24 illustrates the use of rooted DAG as the ordering mechanism where:

 decisions are the vertices

 precedence dependencies between decisions are the edges (forbid

association & the corresponding resolved association from the

forbidden decision are omitted)

Note: For readability, the “resolve” association is reversed in direction to

become “resolved”.

The topological sorts of such DAG are then the possible chains.

Fig. 25. Weighted rooted directed acyclic graph for the prioritization scheme.

Fig. 25 illustrates the use of weighted vertices and edges to accumulate the

relative importance of a subgraph rooted at a vertex.

weight of a vertex = sum of weights of edges outgoing from the vertex

d6d3

d4

d1
association

decision

omitted for
ordering

d2 d8 d9

Legends
co

m
p

ri
se

co
m

p
ri

se

root

d7
co

n
st

ra
in

fo
rb

id

resolved

X X

X

X

d6d3

d4

d1
association

decision

omitted for
ordering

d2 d8 d9

Legends

co
m

p
ri

se

co
m

p
ri

se

root

d7

co
ns

tr
ai

n

fo
rb

id

resolved

Weighted Vertices
weight of a vertex =
sum of weights of edges
outgoing from the vertex

Weighted Edges
weight of an edge = weight of
direct descendant vertex +
weight of type of edge:
•comprise: 3
•constrain: 2
•constrain with forbid: 4
•resolved: 1

0

1 0

00

3

3

5

3

1

5

8

10

15

3

X

X

 72

weight of an edge = weight of direct descendant vertex + weight of

type of edge (comprise: 3, constrain: 2, constrain with forbid: 4, resolved: 1)

The preferred chain would then be the one produced by prioritizing

vertex weight.

8.2.6 Ripple Mechanism

While there can be multiple ways in computing the ripples due to evolution of

a decision, I propose a way that leverages on the already built weighted

rooted DAG.

Fig. 26. Weighted rooted directed acyclic graph for the ripple mechanism.

Fig. 26 illustrates the computation of ripples as follows:

 Perform topological sorting for the subgraph rooted at the evolved

vertex

 Transform the resultant topological sort into a set of paths from

the evolved vertex

 Disregard any duplicate paths

 The remaining paths are the ripples

These ripples can then be highlighted as the impacts of an evolved

decision. E.g., ripples for d6 are shown in the figure.

X

d6d3

d4

d1
association

decision

omitted for
ordering

d2 d8 d9

Legends

co
m

p
ri

se

co
m

p
ri

se

root

d7

co
ns

tr
ai

n

fo
rb

id

resolved

Weighted Vertices
weight of a vertex =
sum of weights of edges
outgoing from the vertex

Weighted Edges
weight of an edge = weight of
direct descendant vertex +
weight of type of edge:
•comprise: 3
•constrain: 2
•constrain with forbid: 4
•resolved: 1

0

1 0

00

3

3

5

3

1

5

8

10

15

3

X

X

 73

8.3 Implementation Technologies

I highlight a few implementation technologies that facilitate the

implementation of the proposed solutions in section 8.2.

Fig. 27. Key artifacts to be managed by a typical SPL support IDE.

Fig. 27 illustrates the key artifacts to be managed by a typical SPL support

IDE. These artifacts span feature model, DDM, and reusable code. By having

only mandatory features on the feature model (equivalent to a feature tree),

this IDE can be simplified to support single systems.

I propose the use of three key technologies: Domain-specific Language

(DSL), Alloy, and XVCL.

DSL is used to code the metamodels and instantiate models for:

 feature model of FODA

 DDM

 trace links between features and DDM

 trace links between DDM and variation points in XVCL frames

Custom code on top of DSL implementation for:

 the mapping mechanism

 the ordering mechanism and prioritization scheme

 the ripple mechanism

Alloy is used for the formal verification of:

XVCL Spec

Feature model DDM Reusable Code

F1: Mandatory

F2: Optional

F3: Alternative

F4: Alternative

1-2

Feature Model

D1: Design decision

D3: Design decision

D2: Design decision

Design Decision Model
XVCL Spec & Frames

(reusable code)
Acronyms
VP: Variation Point

makefile

:

VP1
:
:
:
VP2
:
:

class A

:

:

class B

:

:
:

association

class E
:
:

class D
:
:

generalization

class C
:
VP3
:

fragment G

fragment F

config

config

 74

 the integrity of feature models of FODA

 the integrity of models of DDM based on the traceability rules

 the comparison of planned (of feature models of FODA) vs. supported

(of models of DDM) feature configurations

XVCL specifications and frames are used to:

 capture fine-grained trace links from decisions to the impacted code

 automate the assembly of application code from the impacted code for

selected variant features of an application

 75

Chapter 9 Evaluation against Design
Activities in Development Processes

This section analyzes the benefits the proposed DDM presents to the

developers of single systems and SPLs by describing salient features of

support IDEs built on top of the model. The tool is assumed to fulfill the

criteria specified in Chapter 3, Chapter 4, and Chapter 5. It is evaluated against

the design activities in the development processes of single systems and SPLs.

9.1 Benefits for the Design Activities of Single Systems

There are various types of development lifecycle for single systems. The more

typical ones are the waterfall, incremental, and agile models. Rational Unified

Process (RUP) [12] is a de facto process framework popularly used in the

industry. Since it is inherently incremental and iterative, it can be tailored to

support various process models. I hence discuss the benefits of DDM for the

design activities of single systems by using RUP as a reference process model.

Fig. 28. The Analysis and Design workflow of Rational Unified Process.

Fig. 28 illustrates the analysis and design workflow of RUP comprising

three modeling stages: requirements modeling, analysis modeling, and design

modeling. In requirements modeling, the functional requirements are analyzed

URS

Requirements

Modeling

functional

requirements

Use

Case
Model

Analysis

Modeling Analysis

Model

Design

Modeling Design

Model

Software

Architecture

 76

and structured as use cases. The dependencies among the functional

requirements are identified as relationships between use cases. The operation

flows of each use case are described in terms of the interactions between the

users and the system. In analysis modeling, the analysis objects are identified

along with their state (attributes) and responsibilities (operations) without

considerations for implementation. In design modeling, design strategies

(which are captured as a part of the software architecture) are devised

according to the operating environment in order to fulfill the quality attributes.

The analysis objects are adapted according to the design strategies to become

the design objects with full class details. Design issues occur as the analysis

objects are adapted, these occurrences of design issues and their related design

information can be captured using DDM. So, DDM is a means to formally

document design information that are not usually captured in design modeling

of RUP.

The first benefit of DDM is that the developers can revisit the existing

design information for various features to understand the deliberations and

rationales behind. In fact, an inexperienced developer can study the design

information to learn on design approaches and techniques.

With the explicit dependencies specified between the elements of DDM, the

second benefit is that the developers can systematically evaluate the impact of

evolution (addition, removal, and modification) of an element on other

elements of DDM as the design for features changes.

With the explicit trace links from the features through the elements of DDM

to the variation points in code, the third benefit is that the developers can

systematically evaluate the impact of evolution of an element of DDM on

various features and variation points in code. Hence, DDM bridges between

the features and the variation points in code; enabling end-to-end traceability

that minimizes unintended errors during evolution, which are common given

the complication involved.

 77

9.2 Benefits for the Design Activities of SPLs

In the development of SPLs, domain engineering and application engineering

are the key workflows.

Fig. 29. The Domain Engineering and Application Engineering workflows of the development of SPL.

Fig. 29 illustrates the key workflows of the development of SPL. In domain

engineering, the domain engineers analyze a few similar existing systems in a

domain and construct reusable core assets. The core assets may include any

artifacts that can be reused, e.g., requirements specification, software

architecture, design specification, code, user documentation, test cases, etc. In

this thesis, I focus on code core assets. The code core assets are designed to

support the required features of the SPL. They are instrumented with some

variability technique so that they can be reused during application engineering.

In application engineering, the application engineers analyze the user

requirements for an SPL application and construct it by reusing and adapting

the code core assets. The assembled code is finally tested against the user

requirements of the SPL application. The SPL application may possibly be

evolved and enhanced, these changes can be selectively absorbed into the code

core assets by the domain engineers.

Domain
Engineers

Application EngineeringApplication
Engineers

Feedback

user
requirements

SPL
Application

Domain Engineering

domain
knowledge existing systems in a

domain

SPL Core Assets

reuse of core assets

design and evolution of core assets

 78

Similar to the situation of single systems, the design information for an SPL

can also be formally documented using DDM that caters to variability in

features. It retains the design knowledge and decisions made for the features

of the SPL that are beyond what is usually captured by the SPL architecture.

As such knowledge is now formally captured by DDM, my model benefits

greatly those activities of SPL that require more granular design information

than what component architecture can accommodate. These activities are

enumerated below.

The three benefits for the situation of single systems, as discussed in section

9.1, also apply to the situation of SPLs. In domain engineering, these benefits

are also extended to cater to the variability in features. For the first benefit, the

design information for variant features can emerge or vanish according to

feature selection. For the second and third benefits, the evaluation of impact

also caters to the inclusion/exclusion of the design information associated with

variant features, based on feature selection.

In application engineering, as an SPL application is instantiated from the

core assets, a customized instance of DDM that includes only the design

information for the selected variant features of the SPL application is

instantiated. In fact, this application-specific instance of DDM is equivalent to

that of a single system. The application engineers can hence enjoy the same

traceability-enabled benefits of single systems, as discussed in section 9.1, in

the context of application engineering. They can also adapt the design

information for the application features by evolving this application-specific

instance of DDM. As the fourth benefit, the use of the same representation to

capture the design information for an SPL application as well as the SPL itself

would ease the future incorporation of application-specific adaptation back

into the SPL.

 79

Chapter 10 Related Works

Apart from the design at the object level in section 2.1, a single system or an

SPL may also specify its architectural design in terms of components and

interfaces. An architectural design decision differs from the design decisions

in this thesis in that it impacts components instead of objects. Architectural

design is usually a component architecture represented in diagrams (e.g. the

UML component diagram) and textual description. It may guide the

developers on the design of code that interface with other components. Being

coarse-grained, the implication of an architectural design decision is usually

not directly traceable to its fine-grained objects.

In general software (i.e., single system) engineering, topics on architectural

design decisions and related concepts are researched [4,11,17,18,15]. These

works focus on the architectural design (e.g. loose coupling between

components) with trace links from features to architectural artifacts. In

particular, [4] proposes a metamodel for elements of architectural design

decisions and their links to architectural artifacts. There is however no

comprehensive and practical enough solutions on traceability of design

decisions for design at the object level, going beyond design of component

architecture; and current IDEs provide only limited support for traceability.

In SPL engineering, existing works [12,2,16,1,10,5] focus on the

traceability between artifacts from various levels of abstraction, primarily

features, components, and objects. The role of design decisions at the object

level in bridging the problem space (features) and solution space (components

and objects) is overlooked. [3] proposes a metamodel for capturing

architectural design decisions and trace links from features to architectural

description. These various models for architectural design do not address

design at the object level, going beyond design of component architecture.

In SPL feature modeling, the dependencies among features further constrain

valid feature configurations in addition to variability in features. In FODA [9],

two composition rules are used to represent requires and mutually exclusive

 80

dependencies between any two features. In FORM [10], additional

composition rules are added to represent mutual exclusion and mutual

dependency among variant features. Lee et al. [12] show that there are

operational dependencies among features. For instance, a feature may have a

usage dependency on another feature. They should be identified before

designing core assets. Ferber et al. [5] propose a graphical representation for

feature dependency which complements feature diagram of FODA. Apart

from [5], the above works identify feature dependencies by analyzing features.

The identified feature dependencies are planned and serve as an input to the

design and realization of core assets – a top-down approach. While [5] does

not restrict the identification approach, it briefly mentions the use of bottom-

up approach where design in core assets is analyzed for feature dependencies.

My work on DDM captures the design decisions for features in code. It also

captures the dependencies, if any, among the design decisions. In the context

of feature dependency, DDM can serve as a bottom-up structured means to

identify feature dependencies that arise due to the design decisions.

In short, there is a lack of existing solutions that address both design

decisions for design at the object level – beyond component architecture – as

well as traceability from features to code in both single system and SPL

engineering. My work enhances fine-grained reuse at the object level, beyond

coarse-grained reuse at the component level, in the context of both single

system and SPL engineering. My work also explicates feature dependencies

due to design at the object level and the impact on feature configurations.

 81

Chapter 11 Conclusion

This chapter concludes by summarizing my achievements and recommending

future works.

11.1 Achievements

In this thesis, I discuss the decisions involved in the design for features and

their importance in the traceability from features to code in both single system

and SPL engineering.

I propose an abstract syntax (DDM) to document these decisions and also

the trace links from features to code. I formalize DDM in terms of its

elements, dependencies among elements, and trace links. I also specify a set of

traceability rules for enforcing the integrity of DDM. Detailed logics are

specified for the impacts due to the evolution of elements of DDM as design

for features changes. In order to apply DDM on the SPL situation, I also

devise a set of scoping rules that extends DDM to account for the variability in

features.

I describe how formal method can be used to specify and verify the abstract

syntax of DDM, the instances of DDM, and the feature configurations of the

instances of DDM, and to derive information from instances of DDM. I also

devise the schemes to perform formal verification using Alloy, a formal

method tool. As a guideline to the tools developers, I suggest how the key

salient features of support IDEs adopting DDM can be implemented.

I validate the usage of DDM and its impacts by means of usage examples. I

also evaluate the benefits of the proposed DDM in the context of the design

activities of both single system and SPL engineering.

11.2 Future Works

I have three major recommendations for future works that extend the works in

this thesis.

 82

The first recommendation is to extend my model to capture the aspect of

quality attributes and their influence on the selection of design decisions. This

aspect would include the derivation of optimal sets of design decisions for a

single system or an SPL.

The second recommendation is to implement the abstract syntax in a formal

method tool as proposed in Chapter 7. The implementation will serve to verify

the abstract syntax so that the latter can be refined accordingly.

The third recommendation is to implement a support IDE that is proposed in

Chapter 8. The implementation can be conducted incrementally and be tested

against the running example. The complete implementation can then be tested

against an industry case study.

 83

Bibliography

1. Anquetil, N., Grammel, B., Galvao Lourenco da Silva, I., Noppen, J.A.R.,

Shakil Khan, S., Arboleda, H., Rashid, A., Garcia, A.: Traceability for

Model Driven, Software Product Line Engineering,

http://purl.org/utwente/64994, (2008).

2. Berg, K., Bishop, J., Muthig, D.: Tracing software product line variability:

from problem to solution space. Proceedings of the 2005 annual research

conference of the South African institute of computer scientists and

information technologists on IT research in developing countries. pp. 182–

191. South African Institute for Computer Scientists and Information

Technologists, White River, South Africa (2005).

3. Capilla, R., Ali Babar, M.: On the Role of Architectural Design Decisions in

Software Product Line Engineering. In: Morrison, R., Balasubramaniam, D.,

and Falkner, K. (eds.) Software Architecture. pp. 241–255. Springer Berlin

Heidelberg, Berlin, Heidelberg.

4. Capilla, R., Zimmermann, O., Zdun, U., Avgeriou, P., Küster, J.M.: An

Enhanced Architectural Knowledge Metamodel Linking Architectural

Design Decisions to other Artifacts in the Software Engineering Lifecycle.

In: Crnkovic, I., Gruhn, V., and Book, M. (eds.) Software Architecture. pp.

303–318. Springer Berlin Heidelberg, Berlin, Heidelberg (2011).

5. Ferber, S. et al.: Feature Interaction and Dependencies: Modeling Features

for Reengineering a Legacy Product Line. Proceedings of the Second

International Conference on Software Product Lines. pp. 235–256 Springer-

Verlag (2002).

6. Gheyi, R., Massoni, T., Borba, P.: A theory for feature models in alloy.

7. Jackson, D.: Software abstractions: logic, language and analysis. MIT Press,

Cambridge, Mass (2006).

8. Jarzabek, S., Bassett, P., Zhang, H., Zhang, W.: XVCL: XML-based variant

configuration language. Software Engineering, 2003. Proceedings. 25th

International Conference on. pp. 810 – 811 (2003).

 84

9. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-

oriented domain analysis (FODA) feasibility study. DTIC Document

(1990).

10.Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-

oriented reuse method with domain-specific reference architectures. Annals

of Software Engineering. 5, 143–168 (1998).

11.Kruchten, P.: Building Up and Reasoning About Architectural Knowledge.

Quality of Software Architectures. Springer Berlin / Heidelberg (2006).

12.Kruchten, P.: The rational unified process: an introduction. Addison-

Wesley, Boston (2004).

13.Lee, K., Kang, K.C.: Feature Dependency Analysis for Product Line

Component Design. In: Bosch, J. and Krueger, C. (eds.) Software Reuse:

Methods, Techniques, and Tools. pp. 69–85 Springer Berlin Heidelberg,

Berlin, Heidelberg (2004).

14.Pashov, I., Riebisch, M.: Using feature modeling for program

comprehension and software architecture recovery. Engineering of

Computer-Based Systems, 2004. Proceedings. 11th IEEE International

Conference and Workshop on the. pp. 406-417.

15.Ramesh, B., Dhar, V.: Supporting systems development by capturing

deliberations during requirements engineering. IEEE Transactions on

Software Engineering. 18, 498–510 (1992).

16.Sousa, A., Kulesza, U., Rummler, A., Anquetil, N., Moreira, A., Amaral,

V., Araújo, J.: A Model-Driven Traceability Framework to Software

Product Line Development. (2008).

17.Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design

traceability and reasoning. Journal of Systems and Software. 80, 918–934

(2007).

18.Tyree, J., Akerman, A.: Architecture Decisions: Demystifying

Architecture. IEEE Software. 22, 19–27 (2005).

 85

Appendix A Formalization of the Running
Example

This appendix formalizes the running example in section 2.2 using the abstract

syntax specified in Chapter 3, Chapter 4, and Chapter 5.

A.1 Formalization for Single System

This section formalizes the running example as a single system. The scope

includes issues Issue3 through Issue5, alternatives Alternative4 through

Alternative6, decisions Decision6 through Decision12, and variation points

VP1 through VP7.

Issue occurrences I = {i3, i4, i5}

i3 = (“Various rental perks”, “Explosion of combinations of

rental schemes and rental perks”)

i5 = (“Too many instances of rental perk combinations.”,

“Each rental scheme is configured with its own instances of

rental perk combination.”)

Alternatives A = {a4, a5, a6}

a4 = (“Decorator design pattern”, “Attach additional

responsibilities to an object dynamically.”, “More

flexibility than static inheritance. No explosion of

subclasses.”, “More object interactions due to chain of

decorators.”)

a5 = (“Singleton Design Pattern.”, “Ensure a class only has

one instance, and provide a global point of access to it.”,

“Controlled access to sole instance. Can vary number of

instances.”, “Direct instantiation is not allowed.”)

a6 = (“Subclassing”, “Encapsulate each combination of

responsibilities in a class.”, “Straightforward – one

subclass for each combination.”, “Explosion of subclasses if

there are many combinations.”)

Decisions D = {d6, d7, d8, d9, d10, d11, d12}

d6 = (“Decorate rental schemes with rental perks”, “Any

combination of rental perks can be configured for any rental

scheme at runtime.”, “Extract algorithms of rental perks from

computeRental() and encapsulate them in a hierarchy of rental

 86

perk child classes. Merge hierarchies of rental schemes and

rental perks.”, {vp1})

d7 = (“Extensibility of rental perks”, “Decouple other

classes from rental perk child classes.”, “Add, modify or

remove rental perk child classes to/from rental perk

hierarchy.”, {vp2})

d8 = (“Make rental perks singletons”, “Rental perks are not

specific to any rental scheme.”, “Apply Singleton pattern to

RentalPerk. Add getInstance() that instantiates and shares

instances of child classes.”, {vp3})

d9 = (“Resolve conflict between Decision8 and Decision6.”,

“Rental perk child classes have public constructors while

Singleton constructors should be protected or private. Cannot

initialize a RentalPerk instance with a RentalComp instance

via constructor.”, “Make constructors of rental perk child

classes protected. Add setRentalStrategy() to initialize a

RentalPerk instance with a RentalStrategy instance.”, {vp4})

d10 = (“Represent combinations of rental perks using

subclasses.”, ”Create a hierarchy of subclasses to represent

required combinations. Acceptable for small number of

combinations.”, “Use one subclass for each combination of

rental perks.”, {vp5})

d11 = (“Extensibility of rental perk combinations.”,

“Decouple other classes from rental perk combination child

classes.”, “Add, modify or remove rental perk combination

child classes to/from rental perk combination hierarchy.”,

{vp6})

d12 = (“Share instances of rental perk combinations.”,

“Rental perk combinations are not specific to any rental

scheme.”, “Apply Singleton pattern to RentalPerkComb. Add

getInstance() that instantiates and shares instances of child

classes.”, {vp7})

Variation Points VP = {vp1, vp2, vp3, vp4, vp5, vp6, vp7}

vp1 = (“VP1”, ())

vp2 = (“VP2”, ())

vp3 = (“VP3”, ())

vp4 = (“VP4”, ())

vp5 = (“VP5”, ())

vp6 = (“VP6”, ())

vp7 = (“VP7”, ())

Issue occurrence-alternative associations IA = {(i3, a4), (i3,

a6), (i4, a5), (i5, a5)}

 87

Issue occurrence-decision associations ID = {(i3, d6), (i3,

d10), (i4, d8), (i5, d12)}

selected(d6)

selected(d8)

selected(d12)

Decision-alternative associations DA = {(d6, a4), (d8, a5),

(d10, a6), (d12, a5)}

Comprise associations DDcomprise = {(d6, d7), (d10, d11)}

Constrain associations DIconstrain = {(d6, i4), (d10, i5)}

Forbid associations DDforbid = {(d8, d6)}

Resolve associations DDresolve = {(d9, d8), (d9, d6)}

Features F = {f5, f6, f7, f8, f9, f10};

f5 = (“Rental Perk”)

f6 = (“Xmas Promotion”)

f7 = (“CNY Promotion”)

f8 = (“Great Singapore Sale”)

f9 = (“Discount Voucher”)

f10 = (“Loyalty Program”)

Feature-issue occurrence traces FI = {(f5, i3), (f5, i4), (f5,

i5), (f6, i3), (f7, i3), (f8, i3), (f9, i3), (f10, i3)}

A.2 Formalization for SPL

This section extends the formalization in section A.1 for a single system. It

assumes that all the variant features are selected for an SPL application.

in_scope(f5)

in_scope(f6)

in_scope(f7)

in_scope(f8)

in_scope(f9)

in_scope(f10)

 88

By applying the scoping rules specified in Chapter 5, the elements of DDM

that are in scope can be derived.

 89

Appendix B Source Code of the Running
Example

This appendix lists the source code in Java programming language that are

referred to by the running example in section 2.2. These classes are

RentalStrategy.java, RentalPerk.java, XmasPromo.java, CNYPromo.java,

GSSPromo.java, DiscountVoucher.java, and LoyaltyProgram.java.

RentalStrategy.java

package crs;

public abstract class RentalStrategy {

 public abstract float computeRental(

 Customer c, Vehicle v, int days, float undiscounted);

}

RentalPerk.java

package crs;

public abstract class RentalPerk extends RentalStrategy {

 public enum Type {XmasPromo, CNYPromo, GSSPromo,

 LoyaltyProgram, DiscountVoucher};

 private RentalStrategy strategy;

 private static RentalPerk[] p =

 new RentalPerk[Type.values().length];

 public static RentalPerk getInstance(Type t) {

 if (p[t.ordinal()] == null) {

 if (t == RentalPerk.Type.XmasPromo)

 p[t.ordinal()] = new XmasPromo();

 else if (t == RentalPerk.Type.CNYPromo)

 p[t.ordinal()] = new CNYPromo();

 else if (t == RentalPerk.Type.GSSPromo)

 p[t.ordinal()] = new GSSPromo();

 else if (t == RentalPerk.Type.LoyaltyProgram)

 p[t.ordinal()] = new LoyaltyProgram();

 90

 else if (t == RentalPerk.Type.DiscountVoucher)

 p[t.ordinal()] = new DiscountVoucher();

 else

 return null;

 }

 return p[t.ordinal()];

 }

 public void setRentalStrategy(RentalStrategy s) {

 this.strategy = s;

 }

 public RentalStrategy getRentalStrategy() {

 return strategy;

 }

}

XmasPromo.java

package crs;

public class XmasPromo extends RentalPerk {

 @Override

 public float computeRental(

 Customer c, Vehicle v,

 int days, float undiscounted) {

 // 20% off total charge.

 float discounted = 0.80f * undiscounted;

 System.out.println(

 "XmasPromo discounted amount is $" + discounted);

 float prevPrice = getRentalStrategy().computeRental(

 c, v, days, undiscounted);

 return (discounted < prevPrice)

 ? discounted : prevPrice;

 91

 }

}

CNYPromo.java

package crs;

public class CNYPromo extends RentalPerk {

 @Override

 public float computeRental(

 Customer c, Vehicle v,

 int days, float undiscounted) {

 // 30% off total charge.

 float discounted = 0.70f * undiscounted;

 System.out.println(

 "CNYPromo discounted amount is $" + discounted);

 float prevPrice = getRentalStrategy().computeRental(

 c, v, days, undiscounted);

 return (discounted < prevPrice)

 ? discounted : prevPrice;

 }

}

GSSPromo.java

package crs;

public class GSSPromo extends RentalPerk {

 @Override

 public float computeRental(

 Customer c, Vehicle v,

 int days, float undiscounted) {

 // 1 day free for every 2 days.

 float discounted = (float)(days - (days / 3))

 92

 / (float)days * undiscounted;

 System.out.println(

 "GSSPromo discounted amount is $" + discounted);

 float prevPrice = getRentalStrategy().computeRental(

 c, v, days, undiscounted);

 return (discounted < prevPrice)

 ? discounted : prevPrice;

 }

}

DiscountVoucher.java

package crs;

public class DiscountVoucher extends RentalPerk {

 private float value = 0f;

 @Override

 public float computeRental(

 Customer c, Vehicle v,

 int days, float undiscounted) {

 // Offset previous price with value of voucher.

 float prevPrice = getRentalStrategy().computeRental(

 c, v, days, undiscounted);

 float discounted;

 if (prevPrice > getValue()) {

 discounted = prevPrice - getValue();

 }

 else {

 discounted = 0;

 }

 System.out.println("DiscountVoucher discounted amount

 is $" + discounted);

 return discounted;

 93

 }

 public float getValue() {

 return value;

 }

 public void setValue(float value) {

 this.value = value;

 }

}

LoyaltyProgram.java

package crs;

public class LoyaltyProgram extends RentalPerk {

 @Override

 public float computeRental(

 Customer c, Vehicle v,

 int days, float undiscounted) {

 // Offset discounted amount with loyalty points.

 float prevPrice = getRentalStrategy().computeRental(

 c, v, days, undiscounted);

 float discounted;

 if (prevPrice > c.getLoyaltyPoints()) {

 discounted = prevPrice - c.getLoyaltyPoints();

 c.setLoyaltyPoints(0);

 }

 else {

 discounted = prevPrice - (int)prevPrice;

 c.setLoyaltyPoints(

 c.getLoyaltyPoints() - (int)prevPrice);

 }

 System.out.println("LoyaltyProgram discounted amount

 is $" + discounted);

 System.out.println("Balance loyalty point amount is " +

 94

 c.getLoyaltyPoints());

 return discounted;

 }

}

