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Summary 

A software system is designed to fulfill both its functional requirements and 

quality attributes. As the system is designed, the design issues (e.g., the 

existence of duplicate copies of the same object) that occur have to be solved 

by applying the appropriate design solutions (e.g., the Singleton design 

pattern). In my thesis, both the design issues and design solutions are generic; 

meaning that – like design patterns, they can be applied in many situations in 

any given system and also in different systems. The same design issue may 

occur at different parts of the system. Each occurrence of design issue is 

unique and is solved by considering the context of the part of the system in 

which it occurs. The same design solution may also be instantiated a few times 

to solve design issues that occur at different parts of a system. A design 

decision is however not generic, it is taken for an occurrence of design issue 

by instantiating a design solution and customizing it to suit the context of that 

part of the system; the effect of the design decision is the impact on the design 

of the system. For a given occurrence of design issue, one or more alternative 

design solutions may be considered; they correspond to one or more candidate 

design decisions. As a result, for a given occurrence of design issue, the 

designers have to deliberate and select the most suitable one among the 

multiple candidate design decisions.  

The designers typically take a few factors into account. Firstly, the design 

decisions selected for a system have to collectively satisfy their functional 

requirements and quality attributes (e.g., runtime memory usage and design-

time extensibility), resolving the tensions among them. Secondly, the 

implications of the selected design decisions may affect each other in 

complicated ways; the dependencies among them must be accounted. 

Therefore functional requirements, quality attributes, occurrences of design 

issues, design solutions, and design decisions form a complicated and ever 

changing web of information. Understanding this web of design information is 

essential for making informed design decisions. Unfortunately, design 
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information rarely is explicitly represented. This creates problems during 

development, and these problems aggravate in follow up maintenance. The 

web of design information is even more complex in the Software Product Line 

(SPL) situation, where by definition, the designers deal with variable 

requirements that lead to even more variability in the design space. 

In my thesis, I formalize the key aspects of the web of design information. 

My model captures the functional requirements, occurrences of design issues, 

design solutions, and design decisions along with their implications on design. 

My model also has provisions for the evolution of its elements where the 

potential impacts are derived. The benefits of my approach include the explicit 

documentation of design information, the formal verification of the integrity 

of design information, the derivation of the applicable code for a consistent set 

of design decisions, and the derivation of the potential impacts due to the 

evolution of an element of design information. 

Furthermore, my model can be applied to the SPL situation where 

functional requirements can be variable. According to the feature selection for 

an SPL application, my model caters to the emergence or the vanishing of the 

corresponding elements of design information. The additional SPL-specific 

benefits of my approach include the formal verification of planned feature 

configurations against those supported by an instance of my model, and the 

derivation of the applicable code for a consistent set of design decisions for an 

SPL application. 

Although my model does not currently capture the quality attributes and 

their influence on design decisions, I believe this aspect can be addressed in a 

future work that extends my work. 

I validate my model by illustrating the key usage scenarios. I also devise the 

schemes to specify and verify my model using formal method. I also evaluate 

the benefits of my model against the design activities in development 

processes. 



 x 

I envision the use of my model as a basis for IDEs that can help developers 

in documenting the web of design information and validating software design 

for single systems and SPLs. To guide the tool developers in building such 

IDEs, I specify the key challenges that need to be addressed as well as 

possible solutions to these challenges. 
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Chapter 1 Introduction 

1.1 Motivation 

A software system is designed to fulfill both its functional requirements and 

quality attributes. As the system is designed, the design issues (e.g., existence 

of duplicate copies of the same object) that occur have to be solved by 

applying the appropriate design solutions (e.g., the Singleton design pattern). 

In my thesis, both the design issues and design solutions are generic; meaning 

that – like design patterns, they can be applied in many situations in any given 

system and also in different systems. The same design issue may occur at 

different parts of the system. Each occurrence of design issue is unique and is 

solved by considering the context of the part of the system in which it occurs. 

The same design solution may also be instantiated a few times to solve design 

issues that occur at different parts of a system. A design decision is however 

not generic, it is taken for an occurrence of design issue by instantiating a 

design solution and customizing it to suit the context of that part of the system; 

the effect of the design decision is the impact on the design of the system. For 

a given occurrence of design issue, one or more alternative design solutions 

may be considered; they correspond to one or more candidate design 

decisions. As a result, for a given occurrence of design issue, the designers 

have to deliberate and select the most suitable one among the multiple 

candidate design decisions. 

Both the functional requirements and the quality attributes (e.g., runtime 

memory usage and design-time extensibility) are the primary inputs for 

software design, they collectively determines the selection of an appropriate 

design decision among the candidate design decisions that are considered for a 

given occurrence of design issue. Firstly, a design decision may have different 

impacts on different quality attributes of the system. For instance, the use of 

the Singleton design pattern to solve an occurrence of design issue may 
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positively reduce the memory footprint of the system while negatively 

restricting the extensibility of design (i.e., due to the difficulty in subclassing 

the class to be instantiated). As a result, a consistent set of design decisions is 

required to solve the set of occurrences of design issues that occurs during the 

design of a system. Secondly, the implications of the design decisions in the 

set are not completely independent; the implication of a design decision may 

ideally be isolated, however one may exist in the context of the implication of 

another, one may even be in conflict with the implication of another. As a 

result, additional occurrences of design issues may arise from these couplings 

and conflicts, which require even more design decisions to solve them. Last 

but not least, the eventual set of design decisions selected for a system should 

also be an optimal set where the quality attributes are concerned. As each 

candidate design decision contributes in a different way to the quality 

attributes, the combination of design decisions that satisfy the occurrences of 

design issues in a system must be selected in such a way that the quality 

attributes are fulfilled – in fact, it is an elaborate and error-prone effort to 

exhaustively evaluate all the combinations of these candidate design decisions. 

As discussed above, the designers often have to evaluate and decide on the 

combinations of candidate design decisions to satisfy the above-mentioned 

tensions among the functional requirements and the quality attributes of a 

system. The implications of the candidate design decisions on the design of 

the system may affect each other in some complicated ways. Therefore 

functional requirements, quality attributes, occurrences of design issues, 

design solutions, and design decisions form a complicated and ever changing 

web of information. Understanding this web of design information is essential 

for making informed design decisions. Unfortunately, design information is 

rarely explicitly represented. This creates problems during development; and 

these problems aggravate in follow up maintenance. 

The web of design information is even more complex in the SPL situation, 

where by definition the developers deal with variable requirements that lead to 
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even more variability in the design space. Firstly, the variability in functional 

requirements means that the occurrences of design issues (together with their 

candidate design decisions) that arise due to a variant feature will only apply 

when the variant feature is selected during application engineering. The 

emergence or the vanishing of an occurrence of design issue will also impact 

on the existence of its dependent occurrences of design issues. Secondly, the 

variability in quality attributes means that the optimal set of design decisions 

for each feature configuration (of functional requirements) changes as the 

required quality attributes vary – the derivation of each optimal set will require 

the elaborate effort as discussed earlier. 

In this thesis, my solution deals with aspects common to single systems and 

SPLs as well as aspects unique to SPLs. I formalize key aspects of the web of 

design information. My model captures occurrences of design issues and their 

dependencies, design solutions, design decisions and their dependencies, trace 

links from features, and trace links to variation points in code. It facilitates 

designers in evaluating candidate design decisions by recommending valid 

combinations of candidate design decisions that collectively address the 

applicable occurrences of design issues. My solution also has provisions for 

the evolution of its elements. Before an element of my model is evolved, the 

potential impacts on other elements of the model can be derived for the change 

to be assessed first. Once the change is effected, the integrity of the resultant 

model can be checked for noncompliance.  

Furthermore, my model can be applied to the SPL situation where features 

can be variant – either optional or alternative. My solution accounts for the 

impact of feature selection on the applicability (i.e., emergence or vanishing) 

of specific occurrences of design issues and their corresponding candidate 

design decisions in the model. It can recommend the feasible combinations of 

candidate design decisions for a given feature configuration. It can detect the 

feature configurations that are planned for but are not supported by a given set 

of candidate design decisions. 
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In this thesis, my model does not currently capture the aspect of quality 

attributes and their influence on the selection of design decisions. This aspect 

would include the derivation of the optimal sets of design decisions for single 

systems or SPLs. It can be addressed as part of possible future work that 

extends my model. 

The benefits of my approach include the explicit documentation of design 

information, the formal verification of the integrity of design information, the 

derivation of the applicable code for a consistent set of design decisions, and 

the derivation of the potential impacts due to the evolution of an element of 

design information. The additional SPL-specific benefits of my approach 

include the formal verification of planned feature configurations against those 

supported by an instance of my model, and the derivation of the applicable 

code for a consistent set of design decisions for an SPL application. 

I validate my model by illustrating the key usage scenarios. I also devise the 

schemes to specify and verify my model using formal method. I also evaluate 

the benefits of my model against the design activities in development 

processes. 

I envision the use of my model as a basis for IDEs that can help developers 

document the web of design information and validation of software design for 

single systems and SPLs. To guide the tool developers in building such IDEs, 

I specify the key challenges that need to be addressed as well as possible 

solutions to these challenges. 

1.2 Overview of Solution and Contributions 

With the above scope in mind, I propose a Design Decision Model (DDM) as 

an intermediate structure between feature tree and code that documents the 

design information for a single system. A feature tree structures the features of 

a single system. The code is instrumented to accommodate the impacts of the 

candidate design decisions of the single system. I generally assume that these 

code is instrumented with variation points that allow them to be appropriately 
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configured for reuse (refer to section 8.2.3 for a specific mechanism). For a 

single system, the code would cater only to variability in design. 

 

 

Fig. 1. Design Decision Model for a single system. 

Fig. 1 shows DDM in the context of single system design. The model 

comprises elements (only design decisions are shown, others are omitted for 

now) of DDM and dependencies among them. The trace links between 

features and the model associate features with the related design decisions in 

DDM. The trace links from the model to variation points in code associate the 

design decisions in DDM with their impacted code. As the requirements of the 

features evolve, the elements of DDM, trace links, and code must also evolve 

in tandem. I hence propose a set of traceability rules for enforcing the integrity 

of DDM. 

To apply the above solution to the SPL situation, a feature model is 

used instead of a feature tree. A feature model describes the variability of 

features in an SPL. Each SPL application is characterized by a specific 

selection of features. For an SPL, the code (core assets) would cater to 

variability in features and design.  
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Fig. 2. Design Decision Model for an SPL. 

Fig. 2 shows DDM in the context of SPL domain engineering. A feature 

model is used in place of the feature tree in Fig. 1. The features in the feature 

model can be mandatory or variant (i.e., optional or alternative). Since a 

variant feature may not be selected for an SPL application, DDM also needs to 

provide for the emergence or the vanishing of the elements in DDM that 

correspond to the variant feature. 

Because of its impact on productivity, support for traceability between 

features and code has received much attention in single system and SPL 

engineering research. However, no comprehensive and practical enough 

solutions have been proposed, and current solutions provide only limited 

support for traceability. One reason why traceability solutions have not been 

more successful is that the problem has not been defined and formalized at 

sufficient level of details. DDM is proposed as an effective means to support 

such traceability.  

In this thesis, I propose a semi-formal notation for specifying the abstract 

syntax of DDM and the trace links from features to code via DDM. I propose 
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DDM (for the SPL situation). I also propose how the formalization can be 

used in systematically deriving the applicable code for a given feature 

configuration (for the SPL situation) as well as highlighting the impacts due to 

the evolution of the elements of DDM. I envision the use of this abstract 

syntax and its formalization as the basis for IDEs that can help developers in 

the design of single systems as well as in the domain engineering and the 

application engineering of SPLs. 

A critical advantage of my solution is in allowing the use of the automatic 

reasoning capability of formal method in the verification of properties of 

interest and the derivation of information from DDM. As compared to manual 

inspection, this approach conducts systematic analyses that are much more 

exhaustive, reliable, and quick. This minimizes the required human effort and 

potential oversights. 

1.3 Organization of Thesis 

In this thesis, Chapter 2 describes the problem. Chapter 3 and Chapter 4 

formalize DDM and impacts of design decisions respectively. Chapter 5 

extends the formalization for the SPL situation. Chapter 6 validates the usage 

of DDM and its impacts by means of usage examples. Chapter 7 describes 

how formal method can be used to specify and verify the abstract syntax of 

DDM, instances of DDM, and feature configurations of instances, and to 

derive information from instances of DDM. Chapter 8 suggests how the key 

salient features of IDEs adopting DDM can be implemented. Chapter 9 

evaluates the benefits of DDM against the design activities of single systems 

and SPLs. Chapter 10 discusses related works. Chapter 11 concludes by 

summarizing the achievements and recommending future works.  
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Chapter 2 Problem 

This chapter describes the problem, explains its relevance in the design of 

single systems and SPLs, and also motivates it with a running example. 

2.1 Problem Definition 

In the software design of single systems and SPLs, the designers may consider 

some alternative design solutions for each design issue that occurs at a part of 

the system without explicitly documenting the corresponding candidate design 

decisions. The core of my problem focuses on the explicit documentation of 

these candidate design decisions and their implications on the design of the 

system, and the benefits that can be derived to help developers in the design of 

single systems and SPLs.  

Assuming object-oriented design, the structure of code is specified by the 

design elements (i.e., classes and interfaces) and their relationships (i.e., 

association, dependency, generalization, and realization); while the behaviour 

is specified by the design objects and their interactions. A design issue may 

occur in the structural and/or behavioural design of one or more features (i.e., 

a part of the system). The design issue may be solved by one or more 

alternative design solutions. A design solution is generic – not specific to the 

context of any part of the system, it may be instantiated a few times to solve 

multiple design issues that occur at different parts of the system. When a 

candidate design decision is taken for an occurrence of design issue, an 

alternative design solution is instantiated to the context of that part of the 

system. The implication of a candidate design decision is on the structure 

and/or the behaviour of the code. For each occurrence of design issue, the 

designers evaluate the candidate design decisions and select the most 

appropriate one. As the implication of a design decision may give rise to a 

new design issue or may even be in conflict with the implication of another 

design decision; this results in dependencies among the design decisions. 
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These dependencies must also be documented so that they can be taken into 

account when the candidate design decisions are evaluated by the designers. I 

refer to a model that captures these occurrences of design issues, the design 

solutions, and the corresponding design decisions as Design Decision Model 

(DDM). 

In the domain engineering of a SPL, the domain engineers design code core 

assets to realize the variability in features, aiming for optimized reuse during 

application engineering. To support the variability in features, DDM needs to 

be flexible in terms of the emergence or the vanishing of the elements of DDM 

that are associated with each variant feature. A variant feature can be 

associated with zero or more occurrences of design issues, each of which is in 

turn associated with one or more candidate design decisions.  

Fig. 1 of section 1.2 is a simplified illustration of selected design decisions 

without showing occurrences of design issues, design solutions, and other 

candidate design decisions (these will be detailed in Chapter 3). There are 

three design decisions as in D1, D2, and D3. D1 handles a design issue that 

occurs in the design of feature F2. D2 handles a design issue that occurs in the 

design common to features F3 and F4. D3 handles a design issue that occurs in 

the design of feature F2 that arises due to D1. In general, the relationship 

between features and design decisions, via occurrences of design issues, is 

many-to-many. One or more occurrences of design issues that arise from one 

or more features may be addressed by one or more design decisions; while a 

design decision may address an occurrence of design issue that arises from one 

or more features. I generally assume the variability technique in code to 

comprise variation points that control the reuse of code. A design decision 

affects its implication on the design by configuring one or more applicable 

variation points; while a variation point may be impacted by multiple design 

decisions. In Fig. 1, D1 impacts on variation point VP1 that reuses classes B 

and C. D2 impacts on VP2 and VP4 where VP2 reuses classes D and E while 

VP4 reuses fragments G and H. D3 impacts on VP3 which reuses fragment F. 
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In addition, there are also dependencies among the design decisions as one 

may be taken on the premise of the others and one may be in conflict with 

another – I analyze them further in section 3.2. First subproblem: The 

abstract syntax of DDM and trace links from features through to variation 

points should be specified and verified for consistency. (SPL-specific) The 

abstract syntax also has to provide for the emergence and the vanishing of the 

elements of DDM for each variant feature. Second subproblem: Instances of 

DDM should also be verified to be consistent with the abstract syntax. 

Fig. 2 of section 1.2 extends Fig. 1 for the SPL situation. A feature model is 

used to describe the variability in features. It specifies the composition and 

dependencies among the features of an SPL. It implies a set of feature 

configurations which are planned by the domain engineers. On the other hand, 

an instance of DDM represents the actual design for the features. It implies a 

set of feature configurations which are supported within the constraints of the 

instance of DDM. Since the design is often compromised due to the realities in 

implementation technologies or human oversights, it is highly likely for some 

planned feature configurations to be unsupported for a given instance of 

DDM. Third subproblem (SPL-specific): In order to establish the 

correctness of the design for an SPL, the set of planned feature configurations 

must be exhaustively derived and verified against those supported by the 

instance of DDM – this is a laborious and error-prone task. A mismatch can be 

addressed by the domain engineers by either constraining the set of planned 

feature configurations in the feature model or expanding the set of supported 

feature configurations in the instance of DDM. 

Having verified the feature configurations of a feature model, each feature 

configuration represents a supported application of the SPL. For a given 

feature configuration, the applicable code for the application are derived from 

the core assets. Fourth subproblem (SPL-specific): For a given feature 

configuration, the possible combinations of design decisions, the impacted 
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variation points and their configurations, and the preferred order of applying 

these design decisions are systematically derived from an instance of DDM. 

The design for a single system or an SPL is evolved in response to changes 

in its required features, the adopted implementation technologies, etc. An 

instance of DDM guides the developers by deriving the potential impacts of a 

change. After the change is effected, the developers update the instance of 

DDM to reflect the evolved design. Fifth subproblem: For a change in the 

design, the potential impact of the change is systematically derived from the 

instance of DDM. (SPL-specific) The derivation also has to provide for the 

removal of a variant feature. As for the resultant instance of DDM, it has to be 

verified to be consistent with the abstract syntax – this is subsumed as part of 

the second subproblem. 

In summary, the problem can be broken down to the following five sub-

problems: 

1. Specification and verification of the abstract syntax of DDM and trace 

links from features to variation points. (SPL-specific) The abstract 

syntax also has to provide for the emergence and the vanishing of the 

elements of DDM for each variant feature. 

2. Specification and verification of the instances of DDM against the 

abstract syntax. 

3. (SPL-specific) Derivation and verification of planned feature 

configurations against those supported by an instance of DDM. 

4. (SPL-specific) Derivation of the possible combinations of design 

decisions, the impacted variation points and their configurations, and 

the preferred order of applying these design decisions for a given 

feature configuration of an instance of DDM. 

5. Derivation of the potential impact of a change in the design of an 

instance of DDM. (SPL-specific) The derivation also has to provide for 

the removal of a variant feature. 
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As a guide to locate the solution to the above subproblems, the following 

indices to the key sections are provided against each subproblem: 

1. Chapter 3, section 5.2, section 7.4, section 8.2.1, and section 8.2.2. 

2. Chapter 3, section 5.2, section 7.4, section 8.2.1, and section 8.2.2. 

3. Section 7.6. 

4. Section 7.7 and section 8.2.5. 

5. Chapter 4, section 5.3, and section 8.2.6. 
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2.2 Running Example 

This section introduces an example which is a part of a Car Rental System. It 

is referred by the later sections. It contains feature tree, DDM, and code. As in 

Fig. 1 of section 1.2, only some selected design decisions of DDM are 

illustrated in the earlier part of this section. Other elements of DDM are 

detailed in the later part of this section and Chapter 3. 

Fig. 3 and Fig. 4 illustrate four design decisions D1 through D4, the 

associated features F5 through F10, and the impacted variation points VP1 

through VP4 in code. In each of the two figures, on the left is a fragment of 

feature tree; on the right is the code that realizes the design of the features; in 

the middle are the design decisions and the trace links from features to code.  

Using trace links, D1 and D2 are associated with F5 while D4 is associated 

with F6 through F10. D3 is not directly associated with any features as it 

resolves a conflict that arises between D1 and D2. Trace links are also used to 

associate D1 through D4 with their impacted variation points that 

include/exclude code. D1 impacts VP1; D2 impacts VP3; D3 impacts VP4; 

and D4 impacts VP2. I assume that these variation points are instrumented 

using a variability technique that can include/exclude and configure code. 

With the above, it is possible to trace end-to-end from a feature to its 

associated design decisions and further to the impacted variation points. 

The design decisions are not isolated; there are inherent dependencies 

among them which are explained as they are specified in section 3.2. In the 

two figures, I illustrate that D1 “constrains” D2 and “comprises” D4; D2 

“forbids” (i.e., conflicts with) D2; and D3 “resolves” the conflict between D2 

and D1. 

Apart from the design decisions, there are also other elements that are 

essential in decision making. In order to specify these additional details, I refer 

to the related works by Kruchten et al. [11] and Capilla et al [4]. [11] analyzes 

architectural design decisions and focuses on managing design knowledge in 

terms of such decisions. It suggests the possible attributes of a decision as 
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description, rationale, scope (system, time, and organization), author (time-

stamp and history), state, categories (usability, security, etc.), etc. It also 

suggests the possible relationships between these decisions as constrains, 

forbids, enables, subsumes, conflicts with, overrides, comprises, is an 

alternative to, is bound to, is related to, dependencies, etc. [4] proposes a 

reference metamodel to model architectural design decisions. I adapt and 

extend both the existing works below. 
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Fig. 3. Sample design decisions with trace links from features to code.   

package crs;

public abstract class RentalPerk extends RentalStrategy {

public enum Type {XmasPromo, CNYPromo, GSSPromo, LoyaltyProgram, DiscountVoucher};
private static RentalPerk[] p = new RentalPerk[Type.values().length];
public static RentalPerk getInstance(Type t) {

if (p[t.ordinal()] == null) {
try {

if (t == RentalPerk.Type.XmasPromo)
p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.XmasPromo.name()).newInstance();

else if (t == RentalPerk.Type.CNYPromo)
p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.CNYPromo.name()).newInstance();

else if (t == RentalPerk.Type.GSSPromo)

p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.GSSPromo.name()).newInstance();
else if (t == RentalPerk.Type.LoyaltyProgram)

p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.LoyaltyProgram.name()).newInstance();
else if (t == RentalPerk.Type.DiscountVoucher)

p[t.ordinal()] = (RentalPerk) Class.forName("crs." + RentalPerk.Type.DiscountVoucher.name()).newInstance();

else
return null;

} catch (InstantiationException e) {
e.printStackTrace();

} catch (IllegalAccessException e) {

e.printStackTrace();
} catch (ClassNotFoundException e) {

e.printStackTrace();
}

}

return p[t.ordinal()];
}

private RentalStrategy strategy;
public void setRentalStrategy(RentalStrategy s) {

this.strategy = s;
}
public RentalStrategy getRentalStrategy() {

return strategy;
}

}

package crs;

public abstract class RentalStrategy {

public abstract float computeRental(

Customer c, Vehicle v, int days, float undiscounted);
}

VP4()
[D3] Design decision 
to set RentalStrategy.
(Due to conflict between
[D1] & [D2]).

[D2] Design decision using 
Singleton design pattern
for feature “Rental Perk”.

F5

F10

F9

F6

F7

F8

[D1] Design decision using 
Decorator design pattern
for feature “Rental Perk”.

VP3()

makefile

:
:

:

:

VP1()

VP2()

trace to
variation point

trace from 
feature

re
so

lv
e

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great 
Singapore Sale
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Fig. 4. Sample design decisions with trace links from features to code (continued). 

makefile

:
:

:

:

package crs;
public abstract class RentalPerk extends RentalStrategy {

:
:

}

package crs;

public class LoyaltyProgram extends RentalPerk {

protected LoyaltyProgram() {};

public float computeRental(Customer c, Vehicle v, int days, float undiscounted) {
// Offset discounted amount with loyalty points.
float prevPrice = getRentalStrategy().computeRental(c, v, days, undiscounted);
float discounted;
if (prevPrice > c.getLoyaltyPoints()) {

discounted = prevPrice - c.getLoyaltyPoints();
c.setLoyaltyPoints(0);

}
else {

discounted = prevPrice - (int)prevPrice;

c.setLoyaltyPoints(c.getLoyaltyPoints() - (int)prevPrice);
}
System.out.println("LoyaltyProgram discounted amount is $" + discounted);
System.out.println("Balance loyalty point amount is " + c.getLoyaltyPoints());
return discounted;

}
}

… CNYPromo… 

… GSSPromo… 

… DiscountVoucher…

package crs;

public class XmasPromo extends RentalPerk {

protected XmasPromo() {};

public float computeRental(Customer c, Vehicle v, int days, float undiscounted) {
// 20% off total charge.
float discounted = 0.80f * undiscounted;
System.out.println("XmasPromo discounted amount is $" + discounted);
float prevPrice = getRentalStrategy().computeRental(c, v, days, undiscounted);

return (discounted < prevPrice) ? discounted : prevPrice;
}

}

VP1()

VP2()

[D4] Design decision for various 
rental perk  features.

[D1] Design decision using 
Decorator design pattern
for feature “Rental Perk”.

trace from 
feature

F5

F10

F9

F6

F7

F8

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great 
Singapore Sale
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Fig. 5. Metamodel for capturing design decisions and trace links. 

 

Fig. 5 is a UML class diagram that illustrates my metamodel, as adapted and 

enhanced from [11] and [4], for capturing design decisions in single system 

design. The key elements of the metamodel are issue occurrence, alternative, 

and decision (termed as outcome in [4]). An issue occurrence is an instance of 

design issue that arises in the context of the design for one or more features. 

(Note that the generic design issues are omitted from the metamodel as they 

add little information while the essential information is already captured by 

the issue occurrences.) The issue occurrence may possibly be addressed by 

one or more alternative solutions. A decision is taken to instantiate an 

alternative solution to the context of the issue occurrence. For a given issue 

occurrence, there are as many candidate decisions as the number of alternative 

solutions considered – Each candidate decision impacts the code differently. 

Each issue occurrence is solved by selecting one decision among the candidate 

decisions of the issue occurrence. 

Fig. 6 illustrates the modeling of D1 and D2 with their related elements. D1 

is modeled as Decision6, Issue3, Alternative4, and Alternative6. (Refer to Fig. 

8 for the candidate decision for Alternative6.) D2 is modeled as Decision8, 
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Issue4, and Alternative5. Decision6 constrains Decision8 via Issue4. 

Decision8 forbids Decision6. (Note that Issue3 and Issue4 are actually issue 

occurrences.) 

Fig. 7 shows a sample DDM with features and variation points that covers 

decisions D1 through D4. D3 is modeled as Decision9 (Name: Resolve 

conflict between Outcome8 and Outcome6. Rationale: Rental perk child 

classes have public constructors while Singleton constructors should be 

protected or private. Cannot initialize a RentalPerk instance with a 

RentalComp instance via constructor. Implication: Make constructors of 

rental perk child classes protected. Add setRentalStrategy() to initialize a 

RentalPerk instance with a RentalStrategy instance.) Decision9 resolves the 

conflict between Decision8 and Decision6. D4 is modeled as Decision7 

(Name: Extensibility of rental perks. Rationale: Decouple other classes from 

rental perk child classes. Implication: Add, modify or remove rental perk 

child classes to/from rental perk hierarchy.) Decision6 comprises Decision7 

(i.e., Decision7 is a part of Decision6). 

Fig. 8 extends Fig. 7 to show the candidate decision for alternative solution 

for Issue3. Decision10 (Name: Represent combinations of rental perks using 

subclasses. Rationale: Create a hierarchy of subclasses to represent required 

combinations. Acceptable for small number of combinations. Implication: Use 

one subclass for each combination of rental perks.) solves Issue3 using 

Alternative6. Decision10 gives rise to and constrains Issue5 (Name: Too many 

instances of rental perk combinations. Problem statement: Each rental 

scheme is configured with its own instances of rental perk combination.) 

Decision12 (Name: Share instances of rental perk combinations. Rationale: 

Rental perk combinations are not specific to any rental scheme. Implication: 

Apply Singleton pattern to RentalPerkComb. Add getInstance() that 

instantiates and shares instances of child classes.) solves Issue5 by using 

Alternative5 (Name: Singleton Design Pattern. Description: Ensure a class 

only has one instance, and provide a global point of access to it. Pros: 
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Controlled access to sole instance. Can vary number of instances. Cons: 

Direct instantiation is not allowed.) Decision10 also comprises Decision11 

(Name: Extensibility of rental perk combinations. Rationale: Decouple other 

classes from rental perk combination child classes. Implication: Add, modify 

or remove rental perk combination child classes to/from rental perk 

combination hierarchy.) 

Lastly, Fig. 9 shows all the elements of the sample DDM for the running 

example. 

 

Fig. 6. Modeling of decisions with their related elements (without trace links). 

[D2] Design decision using
Singleton design pattern
for feature “Rental Perk”.

[D1] Design decision using
Decorator design pattern
for feature “Rental Perk”.

constrain

Decision8: Make rental perks singletons
Rationale: Rental perks are not specific to 

any rental scheme. 
Implication: Apply Singleton pattern to 

RentalPerk. Add getInstance() that 
instantiates and shares instances of child 

classes.

Decision6: Decorate rental schemes with rental 
perks

Rationale: Any combination of rental perks can 
be configured for any rental scheme at runtime.

Implication: Extract algorithms of rental perks 
from computeRental() and encapsulate them in 
a hierarchy of rental perk child classes. Merge 
hierarchies of rental schemes and rental perks.

fo
rb

id

Issue3:  Various rental perks
Problem statement: Explosion 

of combinations of rental 
schemes and rental perks.

Alternative4:  Decorator design 
pattern

Description: Attach additional 
responsibilities to an object 

dynamically. Pros: More 
flexibility than static inheritance. 

No explosion of subclasses.
Cons: More object interactions 

due to chain of decorators.

Alternative6: Subclassing

Description: Encapsulate each 
combination of responsibilities in a class.
Pros: Straightforward – one subclass for 

each combination.
Cons: Explosion of subclasses if there are 

many combinations.

Issue4: Too many instances of rental perks
Problem statement: Each rental scheme is 

configured with its own instances of rental perks.

Alternative5: Singleton Design Pattern
Description: Ensure a class only has one 
instance, and provide a global point of 

access to it.
Pros: Controlled access to sole instance. 

Can vary number of instances.
Cons: Direct instantiation is not allowed.

Note: The 
decision for 
Alternative6 is
currently not 
shown.
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Fig. 7. Sample DDM with trace links from features to code. 

class RentalPerk

extends RentalStrategy

};

makefile

:
VP1()
:
:
:

VP2()
:
:

Decision8

class RentalMgr{

details omitted
}

class XmasPromo

extends RentalPerk{

protected XmasPromo
(…){…};

computeRental(){
…};

}

class LoyaltyProgram

extends RentalPerk{

protected Loyalty
Program(…){…};

computeRental(){
…};

}

class DiscountVoucher

extends RentalPerk{

protected Discount
Voucher(…){…};

computeRental(){
…};

}

class GSSPromo

extends RentalPerk{

protected GSSPromo
(…){…};

computeRental(){
…};

}

class CNYPromo

extends RentalPerk{

protected CNYPromo
(…){…};

computeRental(){
…};

}

Decision6

Decision9

re
so

lv
e

co
m

p
ri

se

Decision7

class RentalStrategy

computeRental();
}

Issue3

Alternative4

Alternative6

Issue4

Alternative5

Legends

Element of design decision

Variation point in codes with
configuration parameters, if any

Code

Dependency between elements
of design decision

Trace link  between a feature 
and an issue occurrence

Trace link from a decision to
variation points in codes

RentalStrategy strategy;

setRentalStrategy(
RentalStrategy strategy){

this.strategy= strategy};

VP4()

Note: The  decision for Alternative6 
is shown in the next figure.

static RentalPerk p=

new RentalPerk[];
static getInstance(int type){

p[type]=new from a subclass;

VP3()

F5

F10

F9

F6

F7

F8

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great 
Singapore Sale
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Fig. 8. Sample DDM with trace links from features to code (the alternative solution for Issue3). 

makefile

:
VP5()
:
:
:

VP6()
:
:

Subclasses are introduced 

when new combinations of 
perks are applicable. These 
subclasses are just samples.

class LProg extends 

RentalPerkComb{
protected 

LProg(…){…};

computeRental();
}

class LProgXmas

extends 
RentalPerkComb{
protected 

LProgXmas(…){…};
computeRental();

}

class DVoucGSS
extends 

RentalPerkComb{
protected

DVoucGSS(…){…};
computeRental();

}

class LProgDVouc
extends  LProg{
protected

LProgDVouc(…){…};
computeRental();

}

class LProgDVoucGSS

extends  LProg{
protected

LProgDVoucGSS(…){

…};
computeRental();

}

class LProgDVoucXmas
extends  LProgDVouc{
protected
LProgDVoucXmas(…){
…};

computeRental();

}

class RentalMgr{

details omitted
}

class RentalStrategy
computeRental();

}

class RentalPerkComb

computeRental();
}

Decision12

Decision11

Decision10

Alternative6

Alternative5

Issue5

Issue3

static RentalPerkComb p=
new RentalPerkComb[];

static getInstance(int type){
p[type]=new from a subclass;};

VP7()

F5

F10

F9

F6

F7

F8

Car Rental System

Rental

Rental Perk

Discount Voucher

Loyalty Program

Xmas Promotion

CNY Promotion

Great 
Singapore Sale

Legends

Element of design decision

Variation point in codes with
configuration parameters, if any

Code

Dependency between elements
of design decision

Trace link  between a feature 
and an issue occurrence

Trace link from a decision to
variation points in codes
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Fig. 9. Overview of the elements in the DDM of the complete example (trace links omitted).  

Issue1

Decision3

Decision2

Alternative3

Alternative1 Decision1

Issue2

Alternative2

Decision4

Decision8

Decision6

Decision9

Decision10

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

Decision12

Decision11Issue5



 23 

Chapter 3 Formalization of Abstract Syntax 
of DDM for Single Systems 

This chapter analyzes the running example in section 2.2 and formalizes the 

elements of DDM, the dependencies between them, and the trace links from 

features to the impacted variation points in code. A set of traceability rules are 

specified to enforce the integrity of DDM. The additional challenges to be 

addressed by the developers of IDEs that adopt my model are highlighted. 

3.1 Elements of DDM 

Based on the metamodel in Fig. 5, the key elements are issue occurrence, 

alternative, and decision. As explained in section 2.1, they capture the 

occurrences of design issues, the alternative design solutions considered, and 

the candidate design decisions along with their impacts on code. Without 

formally capturing this information, the traceability from features to code is 

incomplete; the design decisions behind the implementation cannot be 

explicitly reasoned and evolved. 

 

An issue occurrence is formalized as a 2-tuple, i = (n, ps) where 

n = name 

ps = problem statement 

An alternative is formalized as a 4-tuple, a = (n, as, pr, cn) where 

n = name 

as = alternative solution 

pr = pros of alternative 

cn = cons of alternative 

A decision is formalized as a 4-tuple, d = (n, rt, ip, vps) where 

n = name 

rt = rationale behind the decision 

ip = implication of the decision 
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vps = {vp1, vp2 ..., vpn} where n ≥ 1 is a set of impacted variation points 

in code  

A variation point is formalized as a 2-tuple, vp = (n, ps) where 

n = name 

ps = (p1, p2 ..., pm) where m ≥ 0 is a sequence of input parameters that 

configures the variation point on specific ways in reusing code 

 

The above scheme is used to formalize issue occurrences, alternatives, 

decisions, and impacted variation points in code as shown in Fig. 7 and Fig. 8. 

A few examples needed in this section are given for various element types. 

Refer to Appendix A for the complete formalization. 

Issue occurrences, I = {i3, i4, i5} 

Alternatives, A = {a4, a5, a6} 

Decisions, D = {d6, d7, d8, d9, d10, d11, d12} 

Variation Points, VP = {vp1, vp2, vp3, vp4, vp5, vp6, vp7} 

i3 = (“Various rental perks”, “Explosion of combinations of 

rental schemes and rental perks”) 

a4 = (“Decorator design pattern”, “Attach additional 

responsibilities to an object dynamically.”, “More 

flexibility than static inheritance. No explosion of 

subclasses.”, “More object interactions due to chain of 

decorators.”) 

d6 = (“Decorate rental schemes with rental perks”, omitted, 

omitted, {vp1}) 

d7 = (“Extensibility of rental perks”, omitted, omitted, 

{vp2})  

vp1 = (“VP1”, ()) 

vp2 = (“VP2”, ()) 

vp3 = (“VP3”, ()) 

vp4 = (“VP4”, ()) 

 

For a given decision (e.g. d7), the impact on the variation points (vps) needs 

to be captured. A mechanism is required to map from the decision to the 

applicable variation points and the specific parameters, if any, of each 

variation point. Tool developers need to address this mapping mechanism in 
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tool implementation. The following sample mappings are provided for the 

impact of d6, d7, d8, and d9: 

d6 maps to vp1;  

d7 maps to vp2;  

d8 maps to vp3;  

d9 maps to vp4. 

3.2 Dependencies between Elements of DDM 

 

Fig. 10. Overview of the relationships in the DDM of the complete example (trace links omitted). 

Fig. 7 and Fig. 8 also shows additional dependencies required in the running 

example beyond my reference metamodel in [4]. Fig. 10 (reproduced from 

Fig. 9 for ease of reference) shows the dependencies that exist for the 

complete running example. The various types of dependency collectively 

embody the rules that define the integrity of DDM. The following subsections 

analyze the types of dependency and formalize these rules with samples given 

for the running example. I refer to these rules as traceability rules that must be 

enforced for the integrity of DDM. 

Issue1

Decision3

Decision2

Alternative3

Alternative1 Decision1

Issue2

Alternative2

Decision4

Decision8

Decision6

Decision9

Decision10

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

Decision12

Decision11Issue5
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3.2.1 Issue occurrence-alternative Association 

The relationship captures the alternative solutions considered for the issue 

occurrences. A solution is generic – not specific to the context of any issue 

occurrence. An issue occurrence may be solved by one or more alternative 

solutions. Different solutions address the issue occurrence in different ways; a 

suitable way is to be selected for the issue occurrence. 

An issue occurrence-alternative association is formalized as a 2-tuple,  

ia = (i, a). 

E.g. Issue occurrence-alternative associations,  

IA = {(i3, a4), (i3, a6), (i4, a5), (i5, a5)} 

 

Traceability Rule 1: Co-existence of issue occurrences and alternatives in 

issue occurrence-alternative association. 

ij ∈ I => ∃a: (ij, a) ∈ IA 

3.2.2 Issue occurrence-decision Association 

The relationship captures the binding of a candidate decision to an issue 

occurrence. As an alternative solution associated with a decision is a generic 

solution that can possibly address multiple issue occurrences, this issue 

occurrence-decision association binds a candidate decision to a specific issue 

occurrence. This association captures the instantiation of an alternative 

solution to the context of an issue occurrence. Furthermore, for a given issue 

occurrence, one of the candidate decisions must be selected. 

An issue occurrence-decision association is formalized as a 2-tuple,  

id = (i, d).  

The selection of a candidate decision is formalized as predicate selected. 

E.g. Issue occurrence-decision associations,  

ID = {(i3, d6), (i3, d10), (i4, d8), (i5, d12)};  

selected(d6); selected(d8); selected(d12). 
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Traceability Rule 2: Co-existence of issue occurrences and candidate 

decisions in issue occurrence-decision association. 

ij ∈ I => ∃d ∈ D: (ij, d) ∈ ID 

ij ∈ I => ∃!d ∈ D: ((ij, d) ∈ ID AND selected(d)) 

3.2.3 Decision-alternative Association 

The relationship captures the contextualization of generic solutions for an 

issue occurrence that arises due to one or more specific features. A decision 

justifies, with rationale, the choice of an alternative solution. As an alternative 

solution is generic (e.g. design pattern), it has to be contextualized for the 

issue occurrence. Hence, a decision also captures the specific way the 

alternative solution is applied, by identifying the impacted variation points 

accordingly. 

A decision-alternative association is formalized as a 2-tuple,  

da = (d, a). 

E.g. Decision-alternative associations,  

DA = {(d6, a4), (d8, a5), (d10, a6), (d12, a5)} 

 

Traceability Rule 3: Co-existence of decisions and alternatives in decision-

alternative association. 

(ij, dk) ∈ ID => ∃!a: ((ij, a) ∈ IA AND (dk, a) ∈ DA) 

3.2.4 Comprise Association 

The relationship captures the compositions among decisions. A decision may 

“comprise” other decisions. The “comprise” association represents that one 

decision is made of one or more decisions. The “whole” decision should also 

precede its “part” decisions when applied. d1 “comprise” d2 and d3 implies that 

d1 is made of d2 and d3; d1, d2 and d3 can be seen collectively as a single 

composite decision that should be taken or dropped together. d1 should also 
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precede d2 and d3 when applied, while ordering between d2 and d3 does not 

matter. 

A comprise association is formalized as a 2-tuple,  

ddcomprise = (dj, dk) where dj ≠ dk. 

E.g. Comprise associations,  

DDcomprise = {(d6, d7), (d10, d11)} 

 

Traceability Rule 4: Co-existence and precedence of whole and part 

decisions in comprise association. 

(dj, dk) ∈ DDcomprise => (dj <=> dk) AND precede(dj, dk) 

where predicate precede(dj, dk) means implication of dj precedes that of 

dk. 

 

Traceability Rule 5: Transitivity in comprise associations. 

(dj, dk) ∈ DDcomprise AND (dk, dl) ∈ DDcomprise => (dj, dl) ∈ DDcomprise.  

3.2.5 Constrain Association 

The relationship captures the constraints between issue occurrences and 

decisions. A decision may give rise to other issue occurrences; these issue 

occurrences arise in the context of the decision. Hence, the decision 

“constrains” the issue occurrences and their associated decisions. The 

“constrain” association represents that one or more issue occurrences arise in 

the premise of a decision. d1 “constrains” i2 implies that i2 arises in the 

premise of d1; if d1 is dropped, then i2 becomes irrelevant. 

A constrain association is formalized as a 2-tuple,  

diconstrain = (d, i). 

E.g. Constrain associations,  

DIconstrain = {(d6, i4), (d10, i5)} 
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Traceability Rule 6: Co-existence and precedence of decisions and the issue 

occurrences they raise in constrain association. 

(d, i) ∈ DI => (d => i) AND precede(d, i). 

 

Traceability Rule 7: Transitivity of constrain and issue occurrence-decision 

associations. 

(dj, ik) ∈ DIconstrain AND (ik, dl) ∈ DO => (dj, dl) ∈ DDconstrain. 

where DDconstrain is the set of derived decision-decision “constrain” 

associations. 

(dj, dl) ∈ DDconstrain => (dj => dl) AND precede(dj, dl). 

3.2.6 Forbid and Resolve Associations 

The relationships capture the conflicts between decisions and their resolutions. 

A conflict between two decisions occurs if their implications cannot be applied 

concurrently in harmony. It must be resolved by compromising either or both 

of the implications of the conflicting decisions. Such compromise in 

implications is called resolution; it makes it possible for both decisions to be 

applied concurrently. 

The “forbid” association represents the prevention by another decision of a 

decision from being applied. Decision d2 “forbids” decision d1 implies that the 

implication of d2 conflicts with that of d1; d2 is not possible unless the 

implications of d1 and/or d2 are worked around by the resolution (also a 

decision) d3. The “resolve” association represents the resolution of a “forbid” 

conflict. d3 “resolves” conflict of d2 “forbids” d1 implies that d3 makes it 

possible for both d1 and d2 to co-exist. 

The forbid and resolve associations are formalized as 2-tuples and should 

exist in triplets as follow. 

ddforbid = (dk, dj) where dj ≠ dk  

ddresolve1 = (dr, dj) where dr ≠ dj; ddresolve2 = (dr, dk) where dr ≠ dk  

E.g.  
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Forbid associations, DDforbid = {(d8, d6)},  

Resolve associations, DDresolve = {(d9, d8), (d9, d6)} 

 

Traceability Rule 8: Co-existence of decisions in forbid and resolve 

associations. 

(dk, dj) ∈ DDforbid => ∃dr: {(dr, dj), (dr, dk)} ⊆ DDresolve  

 

Traceability Rule 9: Precedence of decisions in forbid associations. 

(dk, dj) ∈ DDforbid => precede(dj, dk). 

 

Traceability Rule 10: Precedence of decisions in resolve associations. 

(dr, dj) ∈ DDresolve AND (dr, dk) ∈ DDresolve =>  

precede(dj, dr) AND precede(dk, dr). 

3.3 Trace Links 

The running example shows the trace links between features, the associated 

decisions (actually via issues) in DDM, and the impacted variation points in 

code. The trace links are captured to support the traceability of features and 

variability in design. 

3.3.1 Feature-issue occurrence Trace 

The relationship traces between features and DDM as part of end-to-end 

traceability from features to variation points in code. 

A decision may be taken directly for one or more features. A decision may 

also be taken indirectly via comprise, constrain, forbid, and resolve 

associations. Decisions that are neither directly nor indirectly taken for some 

features are still included for tracing as they represent design variability. 

A feature may be associated with one or more issue occurrences while an 

issue occurrence may be associated with zero or more features. 

A feature is formalized as a 1-tuple, f = (n) where n = name. 
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A feature-issue occurrence trace is formalized as a 2-tuple, fi = (f, i). It is 

bidirectional. A set of feature-issue occurrence traces is a symmetric relation. 

As illustrated in Fig. 7 and Fig. 8,  

Features F = {f5, f6, f7, f8, f9, f10}; f5 = (“Rental Perk”) 

(other features omitted) 

Feature-issue occurrence traces FI = {(f5, i3), (f5, i4), (f5, 

i5), (f6, i3), (f7, i3), (f8, i3), (f9, i3), (f10, i3)} 

3.3.2 Decision-code Trace 

The relationship traces between DDM and the variation points in code as part 

of the end-to-end traceability from features to code. The code is in the form of 

reusable code fragments which can be class, interface, attribute, operation, 

statement, or a part of statement.  

In Fig. 7 of section 2.2, RentalPerk is a class, 

RentalPerk.strategy is an attribute, 

RentalPerk.setRentalStrategy is an operation, and 

this.strategy = strategy is a statement of RentalPerk, and 

extends RentalStrategy is a part of statement of RentalPerk. 

A decision may be associated with one or more variation points while a 

variation point may be associated with zero or more decisions. 

The decision-code traces of a decision is formalized as a set of variation 

points, vps = {vp1, vp2 ..., vpn} where n ≥ 1. It is captured as the fourth 

element of the 4-tuple formalization of decision in section 3.1. 

As illustrated in Fig. 7, d6’s impacted variation points, vps = {vp1}. 
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Chapter 4 Impacts of Design Decisions for 
Single Systems 

Building on the formalization in Chapter 3, this chapter analyzes and 

formalizes the required rules and logics on the impacts of design decisions. 

The impact can be on other elements of DDM and the trace links to features 

and variation points. It also highlights the additional challenges to be 

addressed by tool developers, most of them can be attributed to the 

enforcement of the traceability rules. 

4.1 Order in Applying the Implications of Decisions 

The dependencies among the elements of DDM dictate the order of applying 

the implications of decisions. This order will also evolve as the elements of 

DDM and their dependencies are evolved. Traceability Rules 4, 6, 9, and 10 

dictate ordering via predicate precede (introduced in section 3.2). In fact, each 

of the above traceability rules dictates the ordering in some way. 

Note that Traceability Rule 2 does not dictate ordering among the candidate 

decisions for an issue occurrence; it however requires that one decision is 

selected among the candidate decisions. The candidate decisions that are not 

selected for an issue occurrence are omitted from ordering. 

Consider only the following elements and dependencies from the running 

example: 

I = {i3, i4} 

A = {a4, a5, a6} 

D = {d6, d7, d8, d9} 

IA = {(i3, a4), (i3, a6), (i4, a5)} 

ID = {(i3, d6), (i4, d8)} 

DA = {(d6, a4), (d8, a5)} 

DDcomprise = {(d6, d7)} 

DIconstrain = {(d6, i4)} 

DDforbid = {(d8, d6)} 

DDresolve = {(d9, d8), (d9, d6)} 
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Fig. 11. Sample compliant chains for applying the implications of decisions. 

As illustrated in Fig. 11, the following chains of application of decisions 

comply with the traceability rules:  

d6-d7-d8-d9 or 

d6-d8-d7-d9 or 

d6-d8-d9-d7.  

Any of these chains will consistently impact, via variation points, on the 

same set of code. Any other ordering may result in unexpected impact on 

code. As a counterexample, if d9 precedes d6, VP3 configured by d6 would not 

be included when it is required by d9. 

A tool requires an ordering mechanism to analyze all the applicable 

precedence between the decisions and propose the chains of application. As 

the number of applicable precedence increases, the number of possible chains 

combinatorially explodes. These chains must comply with the ordering 

dictated by the applicable traceability rules at all times; they must adapt 

accordingly as decisions and dependencies evolve. Furthermore, the sheer 

number of possible chains is a cognitive challenge when evolving decisions 

and dependencies, the ordering mechanism should mitigate that by 

recommending the preferred chain based on some prioritization scheme. For 

instance, the prioritization scheme can assign different weights to different 
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types of association; the preferred chain can be a chain that complies with the 

traceability rules with weight as an additional ordering criterion. 

Assume a prioritization scheme that assigns descending weights to 

Constrain with Forbid (4), Comprise (3), Constrain (2), and Resolve (1) 

associations, the preferred chain could be: 

d6-d8-d9-d7  

Without such an ordering mechanism, the implications of decisions cannot 

be automatically sequenced in the right order to correctly affect their impacts 

on variation points. Without a prioritization scheme, it is cognitively 

complicated for the domain engineers to evaluate impacts when evolving 

decisions and their dependencies. The next 3 sections analyze the impacts on 

the chains of application as decisions and their dependencies evolve. 

4.2 Evolution of Decision and its Ripple 

The implication of a decision is “hard-wired”. As the decision itself is 

evolved, the implication may also change in terms of the impact on the 

variation points in code. The change in the implication of a decision on the 

variation points may further impact its dependant decisions. Such changes in 

implications and their orderly propagation can be complicated. Consider chain 

d6-d7-d8-d9 for the samples below. 

4.2.1 Evolution of Decision 

A change in the “hard-wired” part of the implication of a decision results in 

changes, via variation points, in code.  

An evolved d7,  

d7’ = (“Extensibility of rental perks”, omitted, omitted, {vp2’, vp8}) where 

vp2’ is an evolved vp2 and vp8 is a newly introduced variation point. 
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Fig. 12. Sample mappings from decisions to variation points for the evolution of a decision. 

As illustrated in Fig. 12, the mapping of d7 to vps7 (variation points) can be 

formalized as a relation R7 from D to VP where D is the set of all decisions; 

VP is the set of all variation points (shared by all the decisions). However, R7 

does not cater to the evolution of d7. A new relation R7’ is required to map 

from d7’ to a new vps7’. The evolution of R7 to R7’ is formalized below: 

(d7, vps7) ∈ R7, (d7’, vps7’) ∈ R7’ where 

vps7’ is the set of variation points for d7’ where vps7’ ∈ VP’. 

As vps7 ≠ vps7’, the variation points (and hence code) are impacted as d7 

is evolved to d7’. 

4.2.2 Ripple 

So, the evolution of a decision impacts vps (i.e., its set of variation points). As 

vps is a premise of the dependent decisions, this change in vps may invalidate 

that premise; requiring dependent decisions to be individually assessed for 

impacts along the chain. Traceability Rules 4, 6, 9, and 10 dictate the decision-

decision precedence, predicate precede (introduced in section 3.2) has further 

implication as specified in Rule 11 below. 
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Traceability Rule 11: Ripple of the evolution of a decision to its 

descendants. 

evolve(dj) AND precede(dj, dk) => assess(dk)  

where predicate evolve(dj) means dj is evolved; and predicate assess(dk) 

means dk is evaluated for impact and may result in evolve(dk). 

 

  

Fig. 13. Sample ripples for the evolution of a decision. 

As illustrated in Fig. 13, applying Traceability Rule 11 on chain d6-d7-d8-d9, 

the possible “waves” of impacts that must be evaluated are d6-d7 and d6-d8-d9. 

I refer to such a “wave” of impact from a decision onto its dependent decisions 

as a ripple. One possible result is ripples across multiple dependent decisions. 

The impact of these ripples must be manually assessed. A worse result is that 

the premise of some dependent decision becomes invalid, requiring some 

form of redesign: use of a new alternative solution, removal of the subject 

decision, etc. Such redesign may also cause more ripples. Traceability Rule 11 

enables the automated identification of the potential impacts when evolving a 

decision, minimizing possible misses if assessed manually. 
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4.3 Addition/removal of Elements of DDM 

As part of the maintenance of a software system, the elements of DDM may 

be evolved (as discussed in section 4.2), added or removed as the design for 

the features changes. These changes must comply with the traceability rules 

with their ripples properly evaluated. Such an action may cause DDM to be 

incomplete, requiring other actions to mend it.  

4.3.1 Issue occurrence-alternative Association 

Based on Traceability Rule 1, an issue occurrence should have at least one 

alternative solution that can solve it. 

Assuming ij ∈ I, ak ∈ A, (ij, ak) ∈ IA: 

 ak can be removed individually, resulting in ak ∉ A, (ij, ak) ∉ IA; DDM is 

incomplete until ∃a ∈ A: (ij, a) ∈ IA. 

 ij can be removed individually, resulting in ij ∉ I, (ij, ak) ∉ IA. 

Assuming ij ∉ I: ij can be added as an issue occurrence, resulting in ij ∈ I; 

DDM is incomplete until ∃a ∈ A: (ij, a) ∈ IA. 

Assuming ij ∈ I: ak can be added as an alternative for ij, resulting in ak ∈ A, 

(ij, ak) ∈ IA. Note that ak can be pre-existing or newly added. 

4.3.2 Issue occurrence-decision Association 

Based on Traceability Rule 2, an issue occurrence should have at least one 

decision that instantiates an alternative solution to solve it. 

Assuming ij ∈ I, dk ∈ D, (ij, dk) ∈ ID: 

 dk can be removed individually, resulting in dk ∉ D, (ij, dk) ∉ ID; DDM is 

incomplete until ∃d ∈ D: (ij, d) ∈ ID, ∃!d ∈ D: ((ij, d) ∈ ID AND 

selected(d)). 

 ij can only be removed together with dk, resulting in ij ∉ I, dk ∉ D, (ij, dk) 

∉ ID. 
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Assuming ij ∉ I: ij can be added as an issue occurrence, resulting in ij ∈ I; 

DDM is incomplete until ∃d ∈ D: (ij, d) ∈ ID, ∃!d ∈ D: ((ij, d) ∈ ID AND 

selected(d)). 

Assuming ij ∈ I, dk ∉ D: dk can be added as a decision addressing ij, 

resulting in dk ∈ D, (ij, dk) ∈ ID; DDM is incomplete until ∃!d ∈ D: ((ij, d) ∈ 

ID AND selected(d)). 

4.3.3 Decision-alternative Association 

Based on Traceability Rule 3, a decision should instantiate exactly one 

alternative solution if it addresses an issue occurrence. Otherwise, it does not 

require an alternative solution. 

Assuming dj ∈ D, (i, dj) ∈ ID, ak ∈ A, (dj, ak) ∈ DA: 

 ak can only be removed together with dj, resulting in dj ∉ D, ak ∉ A, (dj, 

ak) ∉ DA. 

 dj can be removed individually, resulting in dj ∉ D, (dj, ak) ∉ DA. 

Assuming ak ∉ A: ak can be added as an alternative solution, resulting in ak 

∈ A. 

Assuming ak ∈ A, dj ∉ D: dj can be added as a decision adopting ak, 

resulting in dj ∈ D, (dj, ak) ∈ DA. 

4.3.4 Comprise Association 

Based on Traceability Rule 4, dj and dk must exist together if one comprises 

the other and vice-versa.  

Assuming dj ∈ D, dk ∈ D, (dj, dk) ∈ DDcomprise: dj must be removed if dk is 

removed and vice-versa, resulting in dj ∉ D, dk ∉ D, (dj, dk) ∉ DDcomprise. 

Assuming dj ∈ D, dk ∉ D: dk can be added as a part of dj, resulting in dk ∈ 

D, (dj, dk) ∈ DDcomprise. 

4.3.5 Constrain Association 

Based on Traceability Rules 6 and 7, dj constrains dl via ik. 
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Assuming dj ∈ D, ik ∈ I, dl ∈ D, (dj, ik) ∈ DIconstrain, (ik, dl) ∈ ID, then (dj, dl) 

∈ DDconstrain: 

 dl can be removed individually, resulting in dl ∉ D, (ik, dl) ∉ ID, (dj, dl) ∉ 

DDconstrain; DDM is incomplete until ∃!d ∈ D: (ik, d) ∈ ID. 

 dj can only be removed together with ik and dl resulting in dj ∉ D, ik ∉ I, dl 

∉ D, (dj, ik) ∉ DIconstrain, (ik, dl) ∉ ID, (dj, dl) ∉ DDconstrain. 

Assuming dj ∈ D, ik ∉ I: ik can be added as an issue occurrence arises due to 

dj, resulting in ik ∈ I, (dj, ik) ∈ DIconstrain; DDM is incomplete until ∃!d ∈ D: (ik, 

d) ∈ ID.  

Assuming dj ∈ D, ik ∈ I, (dj, ik) ∈ DI: dl can be added to address ik, resulting 

in dl ∈ D, (ik, dl) ∈ ID, (dj, dl) ∈ DDconstrain. 

4.3.6 Forbid and Resolve Associations 

Based on Traceability Rule 8, a forbid association exists with 2 resolve 

associations. 

Assuming {dj, dk, dr} ⊆ D, (dk, dj) ∈ DDforbid, {(dr, dj), (dr, dk)} ⊆ DDresolve: 

 dr can be removed individually, resulting in dr ∉ D, (dr, dj) ∉ DDresolve, (dr, 

dk) ∉ DDresolve; DDM is incomplete until ∃d ∈ D: {(d, dj), (d, dk)} ⊆ 

DDresolve. 

 dk can only be removed together with dr, resulting in dk ∉ D, dr ∉ D, (dk, 

dj) ∉ DDforbid, (dr, dj) ∉ DDresolve, (dr, dk) ∉ DDresolve. 

 dj can only be removed together with dk and dr, resulting in dj ∉ D, dk ∉ 

D, dr ∉ D, (dk, dj) ∉ DDforbid, (dr, dj) ∉ DDresolve, (dr, dk) ∉ DDresolve. 

Assuming dj ∈ D, dk ∉ D: dk can be added to conflict with dj, resulting in dk 

∈ D, (dk, dj) ∈ DDforbid; DDM is incomplete until ∃d ∈ D: {(d, dj), (d, dk)} ⊆ 

DDresolve. 

Assuming dj ∈ D, dk ∈ D, (dk, dj) ∈ DDforbid: dr can be added to resolve (dk, 

dj), resulting in dr ∈ D, {(dr, dj), (dr, dk)} ⊆ DDresolve. 
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Chapter 5 Extension for Software Product 
Lines 

This chapter extends the formalization of design decisions in Chapter 3 and 

Chapter 4 for the SPL situation. The running example in section 2.2 is also 

suitably extended here. As compared to a single system, an SPL has features 

which are mandatory or variant (i.e., either optional or alternative). This 

variability in features is a new dimension to be supported in my model. The 

core of this dimension is that variant features and their associated design 

information can emerge or vanish as they are selected or deselected for an SPL 

application. The challenges for my model include how variant features are 

represented, how variability in features is incorporated into DDM, and how 

variability in features is supported by the variation points in code core assets. 

5.1 Extension of the Running Example 

Fig. 14 and Fig. 15 extend the sample DDM in Fig. 7 and Fig. 8 for the SPL 

situation. The original fragments of feature tree are now replaced with 

fragments of feature model, providing for the presence of variant features. For 

instances, features Rental, Rental Perk, and Xmas Promotion are now labeled 

respectively as mandatory, optional and alternative. An optional or alternative 

feature is only present in an SPL application if it is selected for the SPL 

application. The elements of DDM now provide for the emergence or the 

vanishing of variant features via the feature-issue occurrence traces. The 

variation points in code core assets now provide for the emergence or the 

vanishing of decisions in DDM. For instances, VP2 and VP6 are now 

configurable via a parameter which indicates the selection of the alternative 

features under Rental Perk. 
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Fig. 14. Sample DDM with trace links from features to code core assets (extended for SPL). 

Legends – Feature Model

class RentalPerk

extends RentalStrategy

};

makefile

:
VP1()
:
:
:

VP2(p1)
:
:

Decision8

class RentalMgr{

details omitted
}

class XmasPromo

extends RentalPerk{

protected XmasPromo
(…){…};

computeRental(){
…};

}

class LoyaltyProgram

extends RentalPerk{

protected Loyalty
Program(…){…};

computeRental(){
…};

}

class DiscountVoucher

extends RentalPerk{

protected Discount
Voucher(…){…};

computeRental(){
…};

}

class GSSPromo

extends RentalPerk{

protected GSSPromo
(…){…};

computeRental(){
…};

}
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protected CNYPromo
(…){…};

computeRental(){
…};

}
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RentalStrategy strategy;

setRentalStrategy(
RentalStrategy strategy){

this.strategy= strategy};

VP4()
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p[type]=new from a subclass;
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Fig. 15. Sample DDM with trace links from features to code core assets (the alternative solution for Issue3) (extended for SPL). 

makefile
:

VP5()
:

:
:

VP6(p1)

:
:

Subclasses are introduced 
when new combinations of 

perks are applicable. These 
subclasses are just samples.

class LProg extends 
RentalPerkComb{

protected 
LProg(…){…};

computeRental();
}

class LProgXmas
extends 

RentalPerkComb{
protected 

LProgXmas(…){…};
computeRental();

}

class DVoucGSS
extends 

RentalPerkComb{
protected

DVoucGSS(…){…};
computeRental();

}

class LProgDVouc
extends  LProg{
protected

LProgDVouc(…){…};
computeRental();

}

class LProgDVoucGSS
extends  LProg{

protected
LProgDVoucGSS(…){

…};
computeRental();

}

class LProgDVoucXmas
extends  LProgDVouc{

protected
LProgDVoucXmas(…){

…};
computeRental();

}

class RentalMgr{

details omitted
}

class RentalStrategy

computeRental();
}

class RentalPerkComb

computeRental();
}
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Decision11

Decision10

Alternative6

Alternative5

Issue5

Issue3

static RentalPerkComb p=
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5.2 Extension of the Abstract Syntax 

The abstract syntax for single systems as specified in Chapter 3 is generally 

applicable to the SPL situation. The following subsections identify the 

required extensions. 

5.2.1 Scoping of DDM based on Feature Configuration 

For a single system, all the features in its feature tree are applicable at the 

same time. The issue occurrences that arise in all these features as well as 

other elements of DDM associated with these issue occurrences are also 

applicable at the same time. That is, the traceability rules should be applied to 

check the integrity of DDM as a whole. 

In the SPL situation, a feature model specifies the variability in features and 

implies a set of feature configurations. A feature configuration is a valid set of 

features for the feature model. For each feature configuration, a subset of the 

issue occurrences and other elements of DDM associated with these issue 

occurrences are applicable at the same time. That is, the traceability rules 

should be applied to check the integrity of DDM on a per feature configuration 

basis.  

I refer to the identification of the elements of DDM which are within the 

scope of consideration for integrity check for a given feature configuration as 

scoping. So, for the SPL situation, DDM should be scoped first before the 

traceability rules are applied. Since a feature model represents several feature 

configurations, DDM must be repeatedly scoped for each feature configuration 

and checked for integrity – The required effort to manually conduct such 

checking also increases proportionally.  

In order to support scoping, a set of scoping rules are introduced in the 

following sections. 
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5.2.2 Elements of DDM 

5.2.2.1 Scoping of Elements of DDM 

Among the elements of DDM, the issue occurrences and the decisions may be 

scoped in or out for a given feature configuration. The alternatives are not 

affected as they are generic design solutions that are not specific to any 

features. Predicate in_scope is added to the abstract syntax to represent the 

scoping in of an element of DDM. 

 

Scoping Rule 1: Scoping of issue occurrences and decisions. 

i ∈ I, d ∈ D 

in_scope(i) 

in_scope(d) 

5.2.2.2 Scoping in Variation Points in Code Core Assets 

For single systems, a mechanism is required to map from a decision to the 

applicable variation points and the specific parameters, if any, of each 

variation point. In the SPL situation, the impact of a decision on the variation 

points may vary as the variant features associated with the issue occurrence 

change due to feature selection. The mechanism has to be enhanced to account 

for the variant features associated with the issue occurrence. The following 

sample mappings are provided for the impact of d6, d7, d8, and d9: 

d6 maps to vp1;  

d7 maps to vp2 and its parameter p1;  

d8 maps to vp3;  

d9 maps to vp4. 

Note that vp1 corresponds to f5 which is an optional feature. If f5 is selected, 

the code configured by vp1 is included. Parameter p1 of vp2 is newly 

introduced to provide for the alternative features f6 through f10. Depending on 

the selection of these alternative features, vp2 is configured via its p1 to include 

the relevant code. 
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5.2.3 Dependencies between Elements of DDM 

If an issue occurrence is in scope, it follows that the decisions that solve the 

issue occurrence are also in scope. If a decision is in scope, it follows that the 

decisions that it comprises are also in scope; it also follows that the issue 

occurrences that it gives rise to and constrains are also in scope. If two 

conflicting decisions are in scope, it follows that the resolution (also a 

decision) of the conflict is also in scope.  

 

Scoping Rule 2: Transitivity of scoping in issue occurrence-decision 

association. 

i ∈ I, d ∈ D 

in_scope(i) AND (i, d) ∈ ID => in_scope(d) 

 

Scoping Rule 3: Transitivity of scoping in comprise association. 

dj ∈ D, dk ∈ D 

in_scope(dj) AND (dj, dk) ∈ DDcomprise => in_scope(dk) 

 

Scoping Rule 4: Transitivity of scoping in constrain association. 

i ∈ I, d ∈ D 

in_scope(d) AND (d, i) ∈ DI => in_scope(i) 

 

Scoping Rule 5: Transitivity of scoping in forbid and resolve associations. 

dj ∈ D, dk ∈ D, dr ∈ D 

in_scope(dk) AND in_scope(dj) AND (dk, dj) ∈ DDforbid AND {(dr, dj), 

(dr, dk)} ⊆ DDresolve => in_scope(dr) 

5.2.4 Trace Links 

If a variant feature in the feature model is selected to be in a feature 

configuration, it is then in scope. If a feature is in scope, it follows that the 

issue occurrences that arise in the design of the feature is also in scope.  
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Scoping Rule 6: Transitivity of scoping in feature-issue occurrence trace. 

f ∈ F, i ∈ I 

in_scope(f) AND (f, i) ∈ FI => in_scope(i) 

5.3 Extension of the Impacts of Design Decisions 

After adjusting for the scoping of DDM as specified in section 5.2, the impacts 

of design decisions for single systems as specified in Chapter 4 is generally 

applicable to the SPL situation. The following subsections identify the 

required extensions. 

5.3.1 Evolution of Decision and its Ripple 

The implication of a decision changes as the selection of the variant features 

associated with the issue occurrence it solves changes. In contrast to the “hard-

wired” implication in section 4.2, the implication of a decision due to the 

selection of variant features can be planned and configured via parameters.  

A change in the selection of the variant features associated with the issue 

occurrence that a decision solves results in changes, via variation points, in 

code. Such evolution can be planned and be easily affected by taking the 

associated variant features as an input parameter of the decision. 

Take the feature-issue occurrence traces for i3,  

FI3 = {(f6, i3), (f7, i3), (f8, i3), (f9, i3), (f10, i3)}.  

Also, (i3, d6) ∈ ID and (d6, d7) ∈ DDcomprise => (i3, d7) ∈ ID. A change in the 

associated variant features of i3 may result in the evolved feature-issue 

occurrence traces for i3, 

FI3’= {(f6, i3), (f7, i3), (f8, i3)} where f9 and f10 are disassociated from i3. 
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Fig. 16. Sample mappings from features to variation points for the evolution of decisions 

(extended for SPL). 

As illustrated in Fig. 16, the mapping of d7 (with FI3 taken as input 

parameter) to vps (variation points) can be formalized as relation R7 from D to 

VP where D is the set of all decisions; VP is the set of all variation points 

(shared by all decisions). The evolution of d7 as FI3 changes is formalized 

below: 

{(FI3, vps7), (FI3’, vps7’’)} ⊆ R7 where 

FI3 and FI3’ are instances of input parameter of d7; 

vps7 and vps7’’ are instances of vps of d7 where vps7 ∈ VP, vps7’’ ∈ VP. 

As vps7 ≠ vps7’’, variation points (and hence code) are impacted. 

 

Since the evolution of decision due to variant features is planned (as 

discussed above), there is no need to consider the ripples as in the case of the 

evolution of the decision itself (as discussed in section 4.2.2). 

  

VP

R7

D

Case 
of FI3

Case 
of FI3’
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Chapter 6 Validation by Usage Examples 

This chapter validates DDM and the impacts of design decisions by means of 

usage examples. Using step by step illustration, I demonstrate the applicability 

of the rules and/or the logics from the formalization in Chapter 3 and Chapter 

4 in: 

 Constructing the DDM in Fig. 7 from section 2.2 from scratch 

given an existing feature model and code. 

 Showing how the ordering mechanism and prioritization scheme 

help in understanding the impacts of design decisions for the 

constructed DDM. 

 Evolving the constructed DDM with salient evolution scenarios. 

These usage examples represent means of validating my proposed 

formalization by manual inspection. It provides the confidence on the 

practicality of using the formalization in a design support IDE. 

I do not provide usage examples for the SPL situation. What sections 6.1, 

6.2, and 6.3 illustrate is equivalent to one feature configuration of an SPL. The 

same rigor is required for each feature configuration of the SPL. 
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6.1 Construction of DDM 

Step Rule & Logic Evolution of DDM 

1 Assume Decision1 to exist. It gives 

rise to Issue3. 

Issue3 is added and associated 

with Decision1 using a Constrain 

association. 

 

2 Traceability Rule 1 requires an 

issue occurrence to have at least 

one alternative. Its logic specifies 

how to add an issue occurrence to 

complete DDM. 

Alternative4 & Alternative6 are 

added and associated with Issue3. 

 

3 Traceability Rule 2 requires an 

issue occurrence to have at least 

one decision. Its logic specifies 

how to add a decision to complete 

DDM. 

Decision6 is added and 

associated with Issue3. 

 

4 Traceability Rule 3 requires a 

decision to have exactly one 

alternative if it addresses an issue 

occurrence. Its logic specifies how 

to add an alternative to complete 

DDM. 

Alternative4 is associated with 

Decision6. 

 

Decision1

Issue3

Decision1

Issue3

Alternative4

Alternative6

Decision1

Decision6

Issue3

Alternative4

Alternative6

Decision1

Decision6

Issue3

Alternative4

Alternative6



 50 

Step Rule & Logic Evolution of DDM 

5 Decision7 is a composite part of 

Decision6.  

Decision6 is associated with 

Decision7 using a Comprise 

association.   

6 Decision6 also gives rise to Issue4. 

Issue4 is added and associated 

with Decision6 using a Constrain 

association. 

 

7 Applying Traceability Rules 1, 2 & 

3 as in steps 2, 3 & 4. 

Alternative5 is added and 

associated with Issue4. 

Decision8 is added and 

associated with Issue4. 

Alternative5 is associated with 

Decision8.  

 

8 The implication of Decision8 

conflicts with that of Decision6 in 

code.  

Decision8 is associated with 

Decision6 using a Forbid 

association.  

 

Decision6

Decision7

Decision6

Decision7

Issue4

Decision8

Decision6

Decision7

Issue4

Alternative5

Decision8

Decision6

Decision7

Issue4

Alternative5
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Step Rule & Logic Evolution of DDM 

9 Traceability Rule 8 requires a 

conflict between decisions to be 

resolved by a resolution decision. 

The implication of Decision9 

resolves the conflict between 

Decision8 & Decision6 in code. 

Both Decision8 & Decision6 are 

associated with Decision9 using 

two Resolve associations. 

This completes the construction of 

DDM.  

 

 

  

Decision1

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Issue4

Alternative5

Alternative6
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6.2 Understanding the Impacts of DDM 

Step Rule & Logic Evolution of DDM 

10 Traceability Rules 4, 6, 9, and 10 

dictate the ordering of the 

application of decisions via 

predicate precede. An ordering 

mechanism that complies with 

these rules generates the compliant 

chains of applications for an 

instance of DDM. 

Assume the instance of DDM in 

section 6.1. The compliant chains of 

application are: 

• d6-d7-d8-d9    (Note: d6 is 

Decision6) 

• d6-d8-d7-d9 

• d6-d8-d9-d7 

 

 

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

1

3

2

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

2

3

1
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Step Rule & Logic Evolution of DDM 

 

11 Cognitive challenge arises due to 

the combinatorial explosion of the 

number of chains as the number of 

applicable precedence increases. A 

prioritization scheme recommends 

the preferred chain.  

One simple prioritization scheme 

is to assign different weights to 

various types of association.  

Assume a prioritization scheme that 

assigns descending weights to 

Constrain with Forbid (4), Comprise 

(3), Constrain (2), and Resolve (1) 

associations, the preferred chain could 

be: 

• d6-d8-d9-d7 

 

12 Same as step 10. To consider the candidate decisions d6 

and d10 for issue occurrence i3, 

expand DDM to include d1 and d6 

through d12 in Fig. 7 and Fig. 8. The 

compliant chains of applications are: 

• d1-d6-d7-d8-d9 

• d1-d6-d8-d7-d9 

• d1-d6-d8-d9-d7 

• d1-d10-d11-d12 

• d1-d10-d12-d11 

As observed in the above chains, d6 

and d10 are mutually exclusive. 

  

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

3

2

1
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6.3 Evolution of DDM 

Step Rule & Logic Evolution of DDM 

13 Traceability Rule 11 identifies the 

ripples due to the evolution of a 

decision. Each ripple must be 

evaluated and the impact handled 

accordingly.  

If d8 is evolved, the ripples are: 

• d8-d9 

If d6 is evolved, the ripples are: 

• d6-d7 

• d6-d8-d9 

 

14 To remove a decision, the 

following rules apply. 

Traceability Rule 2: If a decision 

associated with an issue occurrence 

is removed, the model is 

incomplete till another decision is 

associated with the issue. 

Traceability Rule 3: If a decision 

associated with an issue occurrence 

is removed, the issue occurrence 

can continue to exist. 

Traceability Rule 4: If a decision in 

a Comprise association is removed, 

the other decision in the 

association must be removed. 

Note: Braces “{}” below reference the 

applicable rules from the “Rules & 

Logic” column. 

If d9 is removed: 

• another decision must replace d9 

{8a}.  

If d8 is removed: 

• d9 must be removed {8b}. 

• another decision must replace d8 

{2}. 

If d6 is removed: 

• d8 & d9 must be removed {8c}.  

• d7 must be removed {4}. 

• i4 & d8 must be removed {6 & 7}.  

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Alternative6

Issue4

Alternative5

1

2

2
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Step Rule & Logic Evolution of DDM 

Traceability Rules 6 & 7: If a 

decision that constrains another 

decision via an issue occurrence is 

removed, the issue occurrence and 

the constrained decision must be 

removed. 

Traceability Rule 8a: If a decision 

that resolves the conflict between 

two other decisions is removed, the 

model is incomplete till another 

decision that resolves the conflict 

exists. 

Traceability Rule 8b: The 

forbidding decision of two 

conflicting decisions can be 

removed together with the decision 

that resolves the conflict. 

Traceability Rule 8c: The 

forbidden decision of two 

conflicting can only be removed 

together with the forbidding 

decision and the decision that 

resolves the conflict. 

 

15 To remove an issue occurrence, 

the following rules apply. 

Traceability Rule 1: If an issue 

occurrence is removed, the 

associated alternative can continue 

to exist. 

Traceability Rule 2: If an issue 

occurrence is removed, the 

If i4 is removed: 

• d8 must be removed {2}.  

If i3 is removed: 

• d6 must be removed {2}. 

• d8 & d9 must be removed 

(cf. Step 14).  

• d7 must be removed (cf. 

Step 13). 

Decision1

Decision8

Decision6

Decision9

Decision7

Issue3

Alternative4

Issue4

Alternative5

Alternative6
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Step Rule & Logic Evolution of DDM 

associated decision must be 

removed. 

• i4 & d8 must be removed 

(cf. Step 14).  

16 To remove an alternative, the 

following rules apply. 

Traceability Rule 1: If an 

alternative associated with an issue 

occurrence is removed, the model 

is incomplete till another 

alternative is associated with the 

issue occurrence. 

Traceability Rule 3: If an 

alternative associated with a 

decision is removed, the decision 

must be removed. 

If a5 (i.e., Alternative5) is removed: 

• d8 must be removed {3}. 

• d9 must be removed (cf. 

Step 14). 

• another decision must 

replace d8 (cf. Step 14). 

• another alternative must replace a5 

{1}. 

If a4 is removed: 

• d6 must be removed {3}. 

• d8 & d9 must be removed 

(cf. Step 13).  

• d7 must be removed (cf. 

Step 14). 

• i4 & d8 must be removed 

(cf. Step 14).  

If a6 is removed: 

• none. 
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Chapter 7 Verification by Formal Method 

This chapter describes how formal method can be used to specify and verify 

the abstract syntax of DDM, instances of DDM, and feature configurations of 

instances, as well as to derive information from instances of DDM.  

Note that I discuss together both the situations for single systems and SPLs. 

This is done by using a feature model to represent the feature variability in an 

SPL; and to represent the features of a single system using a feature model 

with only mandatory features (i.e., effectively a feature tree). 

7.1 Use of Formal Method 

The verification of the abstract syntax and its instances can be conducted 

through formal verification and/or manual inspection. Manual inspection is 

usually adopted in typical software development lifecycles. For DDM, it may 

include activities like peer review of the abstract syntax, peer review of the 

code of the support tool, and unit and system testing of the support tool. As 

these techniques demand human effort and skills, they are conducted with best 

effort which tends to be error-prone and non-exhaustive. In fact, it is 

practically impossible to manually cover all possible scenarios of the abstract 

syntax and the support tool. 

Formal verification takes a very different approach. The structure and/or 

behavior of the test subject have to be specified in a formal language so that it 

can be verified formally using techniques like theorem proving. Once a 

specification is formally verified, all the possible scenarios are completely 

covered. As compared to manual inspection, in cases where formal 

verification is feasible, the latter can precisely and completely verify the test 

subject. This characteristic is the main motivation behind my proposal to 

formally verify DDM. 
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7.2 Alloy as a Formal Method Tool 

In order to verify a test subject using formal method, it must firstly be possible 

to specify its structure and/or behavior without overly elaborate effort that 

negates the potential gains from formal verification. The approach used must 

also be computationally economical so that instances of verification test can 

be conducted within bearable time and be regressed as frequently as the test 

subject evolves. 

In formal verification, test subjects are typically specified in a combination 

of predicate logic and first order logic. These representations vary in terms of 

expressiveness but are generally sufficient to capture structure and behaviors. 

The main problem lies in the computation of first order logic which is 

undecidable – It is impossible to compute if an assertion is valid, i.e. holds 

true for every possible assignment.  

Alloy [7] is a structural modeling language based on first-order logic, for 

expressing complex structural constraints and behavior. The Alloy Analyzer is 

a constraint solver that provides fully automatic simulation and checking. 

There are two primary use cases. Firstly, as a model checker, it formally 

verifies a model against an abstract syntax and some properties. If the model is 

invalid, counterexamples are provided to help refine the model. Secondly, as a 

model finder, it formally derives a model that complies with an abstract syntax 

and some specified constraints, if any. 

Alloy works around the undecidability of first order logic by introducing the 

notion of scope to limit the size of state space considered. This makes the 

earlier computation tractable within a scope of concern. The main 

compromise is that Alloy does not verify outside the specified scope. This is 

however mitigated, as claimed by the creator of Alloy, the Small Scope 

Hypothesis where most bugs can be found within small scopes. Furthermore, 

Alloy does more than a theorem prover in verifying an abstract syntax or its 

models; it goes a step further in suggesting counterexamples that help in 

debugging.  
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7.3 Overall Verification Approach using Alloy 

This section describes the overall verification approach using Alloy. Alloy 

supports constructs like signature, relation, predicate, function, formula, fact, 

assertion, etc.  

The abstract syntax of DDM is specified in Alloy. For instances: 

 the decision as a signature 

 the dependencies among the elements of DDM as relations 

 the rules that enforce the integrity of DDM as predicates, arities of 

relations, etc. 

 the rules that govern the impacts of decisions of DDM as functions, 

formulae, etc. 

 the rules that scope the elements of DDM as predicates. 

In order to reason about feature configurations, the abstract syntax of feature 

model (FM) is also specified in Alloy. With the abstract syntaxes specified, 

the instances of DDM and FM and any additional constraints are also specified 

in Alloy.  

The above strategy makes it possible to formally reason on properties that 

encompass feature configurations (of an instance of FM) and/or design 

decisions (of an instance of DDM). The strategy can first be applied on the 

single system situation and then the SPL situation of the running example. 

This should identify issues which help debug and refine the formalization. The 

refined strategy can then be applied to the single system situation and then the 

SPL situation of an industry case study to show that it can scale up from the 

running example. 

To show the infeasibility of exhaustive manual inspection of all possible 

verification scenarios, the complexity involved in various verification tasks 

(e.g., comparing planned against supported feature configurations) can be 

computed for comparison where applicable. 
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7.4 Specification and Verification of DDM and its 
Instances 

Fig. 17 illustrates the approach for specifying and verifying the abstract syntax 

(including rules) of DDM (on the left of the figure) and its instances (on the 

right of the figure). 

 

Fig. 17. Scheme for verifying the abstract syntax of DDM and its instances. 

The following steps are to be performed: 

1. Formally specify the abstract syntax (including rules) of DDM in 

Alloy language. 

2. Formally verify this specification for a sufficiently large scope using 

Alloy as a model checker. 

3. If there are no counterexamples, this abstract syntax is valid within 

the scope. 

4. If there are counterexamples, this abstract syntax is invalid. They are 

used to refine the abstract syntax towards a valid one. 

5. Formally specify an instance of DDM in Alloy language. 

6. Formally verify this instance of DDM against the abstract syntax of 

DDM for an exact scope (of this instance) using Alloy as a model 

finder. 

7. If the input instance is found, this instance is a valid model of DDM. 

That is, the design represented by the instance is verified to be 

consistent. 

8. If no instance is found, this instance is an invalid model of DDM. 
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For step 8 above, the scheme cannot enumerate issues that result in the 

invalidity as counterexamples so that the instance can be refined towards a 

valid model of DDM using Alloy. 

7.5 Specification and Verification of Feature Model and 
its Instances 

Although the formalization of FM is not a subproblem of this thesis, it is 

required for supporting the reasoning related to feature configurations in 

section 7.6. This formalization can be based on [5] which proposes an abstract 

syntax for FM in Alloy. Fig. 18 illustrates the approach for specifying and 

verifying the abstract syntax of FM (on the left of the figure) and its instances 

(on the right of the figure). 

 

Fig. 18. Scheme for verifying the abstract syntax of FM and its instances. 

The following steps are to be performed: 

1. Formally specify the abstract syntax (including rules) of FM in 

Alloy language. 

2. Formally verify this specification for a sufficiently large scope using 

Alloy as a model checker. 

3. If there are no counterexamples, this abstract syntax is valid within 

the scope. 

4. If there are counterexamples, this abstract syntax is invalid. They are 

used to refine the abstract syntax towards a valid one. 

5. Formally specify an instance of FM in Alloy language. 
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6. Formally verify this instance of FM against the abstract syntax of 

FM for an exact scope (of this instance) using Alloy as a model 

finder. 

7. If the input instance is found, this instance is a valid model of FM. 

That is, the design is verified to be consistent. 

8. If no instance is found, this instance is an invalid model of FM. 

For step 8 above, the scheme cannot enumerate issues that result in the 

invalidity as counterexamples so that the instance can be refined towards a 

valid model of FM using Alloy. 

7.6 Comparison of Planned vs. Supported Feature 
Configurations 

This section devises the scheme to address the third subproblem specified in 

section 2.1. Fig. 19 illustrates the approach for comparing planned against 

supported feature configurations. 

 

Fig. 19. Scheme for comparing planned against supported feature configurations. 

A feature model implies a set of valid feature configurations, say FCfm, 

which are planned. An instance of DDM supports a set of valid feature 

configurations, say FCddm, which are constrained by the design represented by 

the instance.  

The following steps are to be performed: 

1. Given an instance of DDM and an instance of FM. 

2. Formally derive FCddm from the instance of DDM. 
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3. Formally derive FCfm from the instance of FM. 

4. Formally compare FCfm and FCddm for an exact scope (of the 

instances of DDM and FM) using Alloy as a model checker. 

5. If FCfm ⊆ FCddm, all the planned feature configurations are supported 

by the design. 

6. Otherwise, some planned feature configurations are not supported by 

the design. The issues are enumerated as counterexamples so that 

they can be resolved either by: 

a. constraining FCfm further by adding feature dependencies in 

the instance of FM. 

b. expanding FCddm by refining the design in the instance of 

DDM. 

7.7 Derivation of Information for a Feature 
Configuration from DDM 

This section devises the scheme to address the fourth subproblem specified in 

section 2.1. As DDM is already equipped with the traceability capability from 

features through code, the main challenge is the derivation of the possible 

combinations of design decisions for a given feature configuration. 

The following steps are to be performed: 

1. Given an instance of DDM, an instance of FM, and a feature 

configuration FC1. 

2. Let F1 be the set of features that are in the scope of FC1. 

Given FC1, ∀f ∈ F1: in_scope(f) 

3. Using Scoping Rule 6, let I1 be the set of issues that are in the scope 

of FC1. 

Given F1, ∀i ∈ I1: in_scope(i) 

4. Using Traceability Rule 2, let ID1 be the set of issue occurrence-

decision associations in the scope of FC1. 

Given I1, ∀(i, d) ∈ ID1: i ∈ I1 
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5. Let D1 be the set of possible combinations of decisions in the scope 

of FC1. 

Given ID1, ∀D ∈ D1: (∃!i ∈ I1: ((i, d) ∈ ID1))  

6. For each combination of decisions, D ∈ D1, the Traceability Rules 

can be applied to derive the other elements of DDM that are in the 

scope of this combination of decisions. 

7.8 Verification of Instances of DDM for the Addition 
and Removal of Elements of DDM 

The elements of an instance of DDM may be added or removed as the design 

is evolved. These changes are more drastic as compared to the evolution of 

decisions. A change (e.g. the removal of an issue occurrence) could potentially 

invalidate other elements of the instance of DDM (e.g. the decision for the 

issue occurrence and other elements that depend on the decision). Hence, after 

one or more changes to the instance of DDM, it should be: 

 formally verified that the model is still consistent – against the 

abstract syntax and rules of DDM. The inconsistencies, if any, are 

enumerated. 

 formally verified that the planned feature configurations are still 

intact. The inconsistencies, if any, are enumerated. 

The schemes for verifying the above using Alloy are described in section 

7.4 and section 7.6 respectively. 
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Chapter 8 Implementation of Support IDEs 

This chapter recommends to the tool developers how the key salient features 

of support IDEs adopting DDM can be implemented. I first summarize the 

additional challenges to be addressed by the tool developers, address them in 

my proposed solution, and then plan for a prototype tool. 

Note that, in the same approach in Chapter 7, I discuss together both the 

situations for single systems and SPLs. SPL-specific considerations are 

highlighted accordingly. 

8.1 Challenges for Tool Developers 

The metamodel in Fig. 5 of section 2.2 also incorporate the additional 

dependencies required: comprise, constrain, forbid, and resolve. Note that the 

enforcement of the 11 traceability rules for the integrity of DDM and trace 

links is already accounted for by the abstract syntax. There is no need for the 

tool developers to separately address them. 

As discussed in section 3.1, a mapping mechanism is required to map from 

a decision to the applicable variation points and the specific parameters of 

each variation point. (SPL-specific) As discussed in section 5.2.2.2, the 

mechanism also has to account for the variant features associated with the 

issue occurrence that the decision addresses. 

As discussed in section 4.1, an ordering mechanism is required to analyze 

all the applicable precedence between the decisions and propose the chains of 

application. It should also recommend the preferred chain based on some 

prioritization scheme. 

As discussed in section 4.2.2, the solution should automatically identify 

potential impacts due to ripples of the evolutions of the “hard-wired” part of 

decisions. 
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(SPL-specific) As for the scoping rules introduced for the abstract syntax in 

section 5.2, they are already taken into account by DDM. There is no need for 

the tool developers to separately address them. 

8.2 Solutions to Challenges 

8.2.1 Metamodel for DDM 

This section proposes a metamodel for DDM. It is adapted and enhanced from 

[11] and [4] that discuss architectural design decisions in single systems. 

 

Fig. 20. Metamodel for DDM. 

 

Fig. 20 illustrates an enhanced metamodel that takes into consideration the 

additional dependencies as identified in section 8.1. A root attribute is added 

to IssueOccurrence in order to differentiate between root and non-root 

issue occurrences. A non-root issue occurrence arises in the context of (i.e., 

constrained by) another decision; a root issue occurrence is one which is not 

constrained by another decision. There must be at least one such root issue 

occurrence in an instance of DDM. The “comprise” association is represented 

by the whole-part association of Decision. The “constrain” association 

is represented by the constraining-constrained association from 
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Decision to IssueOccurrence. The “forbid” association is represented 

by the forbidding-forbidden association of Decision. The “resolve” 

association is represented by the association class Resolution which 

inherits from Decision. As for the trace links, the feature-issue occurrence 

trace is represented by the feature-issueOccurrence association from 

IssueOccurrence to Feature. The decision-code trace is changed to the 

decision-realized association from Decision to VPMap. VPMap 

captures the mapping from a Decision to its impacted variation points. 

VPMap.paramNVPairs captures the information required to configure 

parameters of a variation point in code.  

8.2.2 Mapping Mechanism 

 

Fig. 21. Sample mappings for some decisions of the running example. 

Fig. 21 above illustrates the required mappings for some decisions of the 

running example for both the situations for single systems and SPLs. It shows 

the role of a decision in mapping from the domain (i.e., the selected variant 

features via issue occurrences) to the range (i.e., the applicable variation points 

and the configuration of their parameters). As the domain accounts for variant 

features, it is only applicable to the SPL situation. The “p1” parameter is also 

introduced to account for the impact of the variant features on VP2. 

For each decision, the corresponding mapping specifies: 

VP1()

VP2(p1)

VP4()

Decision6

Decision7

Decision8

Decision9

{∅, {f5}}

Domain Map Range

{P({f6,f7,f8,f9,f10}) − ∅}

{∅}

(For SPL) p1 of VP2 in EBNF
perk = “XmasPromo” | “CNYPromo”

| “GSS” | ”DiscountVoucher”
| “LoyaltyProgram”;

p1 = perk, 4*[“,”, perk];
VP3()

(For SPL)
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 the set of valid feature configurations (It would be {∅} for the case 

of a single system) 

 for each feature configuration, the set of impacted variation points 

and the value of each applicable parameter 

The above specification is captured as VPMap objects. 

Based on the feature selection, the mapping mechanism computes for each 

decision: 

 the impacted variation points 

 the value of each applicable parameter of the variation points 

If a specific parameter is impacted by multiple decisions, the impacts (i.e., 

values) are combined. 
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8.2.3 Variability Technique 

 

Fig. 22. XVCL as a variability technique. 

A variability technique is 

required to include/exclude 

code based on the selection 

of variant features (for 

SPL) and candidate design 

decisions. I choose XML-

based Variant 

Configuration Language 

(XVCL) [5] for its generic 

support on various formats 

of core assets and its 

independence from the 

syntaxes of programming 

languages. 

Fig. 22 illustrates the use of XVCL as a mechanism to capture the 

configuration parameters required to assemble the application code from the 

reusable code as impacted by the decisions. An XVCL specification specifies 

how a set of XVCL frames are to be used as code templates. It can be 

parameterized to allow for variations in the use of these code templates. The 

required parameters for the applicable decisions are captured in VPMap of Fig. 

20. An XVCL specification is instantiated with parameter values and 

interpreted by the XVCL Processor to assemble the application code. 
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8.2.4 Metamodel for Feature Model 

 

Fig. 23. Metamodel for feature model of FODA. 

Fig. 23 illustrates a metamodel compatible with feature model of FODA [9]. It 

shall be the basis for my proposed prototype tool to support feature model. 

8.2.5 Ordering Mechanism and Prioritization Scheme 

To propose the chains of application of decisions, rooted directed acyclic 

graph (DAG) can be used as the ordering mechanism where the decisions are 

the vertices and the precedence dependencies between decisions are the edges. 

The topological sorts of such DAG are then the possible chains. To 

recommend the preferred chain among the possible chains, weighted vertices 

and edges can be used to accumulate the relative importance of a subgraph 

rooted at a vertex. The preferred chain would then be the one produced by 

prioritizing vertex weight. 
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Fig. 24. Rooted directed acyclic graph for the ordering mechanism. 

Fig. 24 illustrates the use of rooted DAG as the ordering mechanism where: 

 decisions are the vertices  

 precedence dependencies between decisions are the edges (forbid 

association & the corresponding resolved association from the 

forbidden decision are omitted) 

Note: For readability, the “resolve” association is reversed in direction to 

become “resolved”. 

The topological sorts of such DAG are then the possible chains. 

 

Fig. 25. Weighted rooted directed acyclic graph for the prioritization scheme. 

Fig. 25 illustrates the use of weighted vertices and edges to accumulate the 

relative importance of a subgraph rooted at a vertex.  

weight of a vertex = sum of weights of edges outgoing from the vertex 
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weight of an edge = weight of direct descendant vertex + weight of 

type of edge (comprise: 3, constrain: 2, constrain with forbid: 4, resolved: 1) 

The preferred chain would then be the one produced by prioritizing 

vertex weight. 

8.2.6 Ripple Mechanism 

While there can be multiple ways in computing the ripples due to evolution of 

a decision, I propose a way that leverages on the already built weighted 

rooted DAG.  

 

Fig. 26. Weighted rooted directed acyclic graph for the ripple mechanism. 

Fig. 26 illustrates the computation of ripples as follows: 

 Perform topological sorting for the subgraph rooted at the evolved 

vertex 

 Transform the resultant topological sort into a set of paths from 

the evolved vertex 

 Disregard any duplicate paths 

 The remaining paths are the ripples 

These ripples can then be highlighted as the impacts of an evolved 

decision. E.g., ripples for d6 are shown in the figure. 
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8.3 Implementation Technologies 

I highlight a few implementation technologies that facilitate the 

implementation of the proposed solutions in section 8.2. 

 

Fig. 27. Key artifacts to be managed by a typical SPL support IDE. 

Fig. 27 illustrates the key artifacts to be managed by a typical SPL support 

IDE. These artifacts span feature model, DDM, and reusable code. By having 

only mandatory features on the feature model (equivalent to a feature tree), 

this IDE can be simplified to support single systems. 

I propose the use of three key technologies: Domain-specific Language 

(DSL), Alloy, and XVCL. 

DSL is used to code the metamodels and instantiate models for: 

 feature model of FODA 

 DDM 

 trace links between features and DDM 

 trace links between DDM and variation points in XVCL frames 

Custom code on top of DSL implementation for: 

 the mapping mechanism 

 the ordering mechanism and prioritization scheme 

 the ripple mechanism 

Alloy is used for the formal verification of: 

XVCL Spec
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 the integrity of feature models of FODA 

 the integrity of models of DDM based on the traceability rules 

 the comparison of planned (of feature models of FODA) vs. supported 

(of models of DDM) feature configurations 

XVCL specifications and frames are used to: 

 capture fine-grained trace links from decisions to the impacted code  

 automate the assembly of application code from the impacted code for 

selected variant features of an application 
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Chapter 9 Evaluation against Design 
Activities in Development Processes 

This section analyzes the benefits the proposed DDM presents to the 

developers of single systems and SPLs by describing salient features of 

support IDEs built on top of the model. The tool is assumed to fulfill the 

criteria specified in Chapter 3, Chapter 4, and Chapter 5. It is evaluated against 

the design activities in the development processes of single systems and SPLs. 

9.1 Benefits for the Design Activities of Single Systems 

There are various types of development lifecycle for single systems. The more 

typical ones are the waterfall, incremental, and agile models. Rational Unified 

Process (RUP) [12] is a de facto process framework popularly used in the 

industry. Since it is inherently incremental and iterative, it can be tailored to 

support various process models. I hence discuss the benefits of DDM for the 

design activities of single systems by using RUP as a reference process model. 

  

Fig. 28. The Analysis and Design workflow of Rational Unified Process. 

Fig. 28 illustrates the analysis and design workflow of RUP comprising 

three modeling stages: requirements modeling, analysis modeling, and design 

modeling. In requirements modeling, the functional requirements are analyzed 
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and structured as use cases. The dependencies among the functional 

requirements are identified as relationships between use cases. The operation 

flows of each use case are described in terms of the interactions between the 

users and the system. In analysis modeling, the analysis objects are identified 

along with their state (attributes) and responsibilities (operations) without 

considerations for implementation. In design modeling, design strategies 

(which are captured as a part of the software architecture) are devised 

according to the operating environment in order to fulfill the quality attributes. 

The analysis objects are adapted according to the design strategies to become 

the design objects with full class details. Design issues occur as the analysis 

objects are adapted, these occurrences of design issues and their related design 

information can be captured using DDM. So, DDM is a means to formally 

document design information that are not usually captured in design modeling 

of RUP. 

The first benefit of DDM is that the developers can revisit the existing 

design information for various features to understand the deliberations and 

rationales behind. In fact, an inexperienced developer can study the design 

information to learn on design approaches and techniques. 

With the explicit dependencies specified between the elements of DDM, the 

second benefit is that the developers can systematically evaluate the impact of 

evolution (addition, removal, and modification) of an element on other 

elements of DDM as the design for features changes. 

With the explicit trace links from the features through the elements of DDM 

to the variation points in code, the third benefit is that the developers can 

systematically evaluate the impact of evolution of an element of DDM on 

various features and variation points in code. Hence, DDM bridges between 

the features and the variation points in code; enabling end-to-end traceability 

that minimizes unintended errors during evolution, which are common given 

the complication involved. 
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9.2 Benefits for the Design Activities of SPLs 

In the development of SPLs, domain engineering and application engineering 

are the key workflows.  

 

Fig. 29. The Domain Engineering and Application Engineering workflows of the development of SPL. 

Fig. 29 illustrates the key workflows of the development of SPL. In domain 

engineering, the domain engineers analyze a few similar existing systems in a 

domain and construct reusable core assets. The core assets may include any 

artifacts that can be reused, e.g., requirements specification, software 

architecture, design specification, code, user documentation, test cases, etc. In 

this thesis, I focus on code core assets. The code core assets are designed to 

support the required features of the SPL. They are instrumented with some 

variability technique so that they can be reused during application engineering.  

In application engineering, the application engineers analyze the user 

requirements for an SPL application and construct it by reusing and adapting 

the code core assets. The assembled code is finally tested against the user 

requirements of the SPL application. The SPL application may possibly be 

evolved and enhanced, these changes can be selectively absorbed into the code 

core assets by the domain engineers.  
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Similar to the situation of single systems, the design information for an SPL 

can also be formally documented using DDM that caters to variability in 

features. It retains the design knowledge and decisions made for the features 

of the SPL that are beyond what is usually captured by the SPL architecture. 

As such knowledge is now formally captured by DDM, my model benefits 

greatly those activities of SPL that require more granular design information 

than what component architecture can accommodate. These activities are 

enumerated below. 

The three benefits for the situation of single systems, as discussed in section 

9.1, also apply to the situation of SPLs. In domain engineering, these benefits 

are also extended to cater to the variability in features. For the first benefit, the 

design information for variant features can emerge or vanish according to 

feature selection. For the second and third benefits, the evaluation of impact 

also caters to the inclusion/exclusion of the design information associated with 

variant features, based on feature selection.  

In application engineering, as an SPL application is instantiated from the 

core assets, a customized instance of DDM that includes only the design 

information for the selected variant features of the SPL application is 

instantiated. In fact, this application-specific instance of DDM is equivalent to 

that of a single system. The application engineers can hence enjoy the same 

traceability-enabled benefits of single systems, as discussed in section 9.1, in 

the context of application engineering. They can also adapt the design 

information for the application features by evolving this application-specific 

instance of DDM. As the fourth benefit, the use of the same representation to 

capture the design information for an SPL application as well as the SPL itself 

would ease the future incorporation of application-specific adaptation back 

into the SPL. 
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Chapter 10 Related Works 

Apart from the design at the object level in section 2.1, a single system or an 

SPL may also specify its architectural design in terms of components and 

interfaces. An architectural design decision differs from the design decisions 

in this thesis in that it impacts components instead of objects. Architectural 

design is usually a component architecture represented in diagrams (e.g. the 

UML component diagram) and textual description. It may guide the 

developers on the design of code that interface with other components. Being 

coarse-grained, the implication of an architectural design decision is usually 

not directly traceable to its fine-grained objects. 

In general software (i.e., single system) engineering, topics on architectural 

design decisions and related concepts are researched [4,11,17,18,15]. These 

works focus on the architectural design (e.g. loose coupling between 

components) with trace links from features to architectural artifacts. In 

particular, [4] proposes a metamodel for elements of architectural design 

decisions and their links to architectural artifacts. There is however no 

comprehensive and practical enough solutions on traceability of design 

decisions for design at the object level, going beyond design of component 

architecture; and current IDEs provide only limited support for traceability. 

In SPL engineering, existing works [12,2,16,1,10,5] focus on the 

traceability between artifacts from various levels of abstraction, primarily 

features, components, and objects. The role of design decisions at the object 

level in bridging the problem space (features) and solution space (components 

and objects) is overlooked. [3] proposes a metamodel for capturing 

architectural design decisions and trace links from features to architectural 

description. These various models for architectural design do not address 

design at the object level, going beyond design of component architecture. 

In SPL feature modeling, the dependencies among features further constrain 

valid feature configurations in addition to variability in features. In FODA [9], 

two composition rules are used to represent requires and mutually exclusive 
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dependencies between any two features. In FORM [10], additional 

composition rules are added to represent mutual exclusion and mutual 

dependency among variant features. Lee et al. [12] show that there are 

operational dependencies among features. For instance, a feature may have a 

usage dependency on another feature. They should be identified before 

designing core assets. Ferber et al. [5] propose a graphical representation for 

feature dependency which complements feature diagram of FODA. Apart 

from [5], the above works identify feature dependencies by analyzing features. 

The identified feature dependencies are planned and serve as an input to the 

design and realization of core assets – a top-down approach. While [5] does 

not restrict the identification approach, it briefly mentions the use of bottom-

up approach where design in core assets is analyzed for feature dependencies. 

My work on DDM captures the design decisions for features in code. It also 

captures the dependencies, if any, among the design decisions. In the context 

of feature dependency, DDM can serve as a bottom-up structured means to 

identify feature dependencies that arise due to the design decisions. 

In short, there is a lack of existing solutions that address both design 

decisions for design at the object level – beyond component architecture – as 

well as traceability from features to code in both single system and SPL 

engineering. My work enhances fine-grained reuse at the object level, beyond 

coarse-grained reuse at the component level, in the context of both single 

system and SPL engineering. My work also explicates feature dependencies 

due to design at the object level and the impact on feature configurations. 

  



 81 

Chapter 11 Conclusion 

This chapter concludes by summarizing my achievements and recommending 

future works. 

11.1 Achievements 

In this thesis, I discuss the decisions involved in the design for features and 

their importance in the traceability from features to code in both single system 

and SPL engineering. 

I propose an abstract syntax (DDM) to document these decisions and also 

the trace links from features to code. I formalize DDM in terms of its 

elements, dependencies among elements, and trace links. I also specify a set of 

traceability rules for enforcing the integrity of DDM. Detailed logics are 

specified for the impacts due to the evolution of elements of DDM as design 

for features changes. In order to apply DDM on the SPL situation, I also 

devise a set of scoping rules that extends DDM to account for the variability in 

features. 

I describe how formal method can be used to specify and verify the abstract 

syntax of DDM, the instances of DDM, and the feature configurations of the 

instances of DDM, and to derive information from instances of DDM. I also 

devise the schemes to perform formal verification using Alloy, a formal 

method tool. As a guideline to the tools developers, I suggest how the key 

salient features of support IDEs adopting DDM can be implemented. 

I validate the usage of DDM and its impacts by means of usage examples. I 

also evaluate the benefits of the proposed DDM in the context of the design 

activities of both single system and SPL engineering. 

11.2 Future Works 

I have three major recommendations for future works that extend the works in 

this thesis.  
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The first recommendation is to extend my model to capture the aspect of 

quality attributes and their influence on the selection of design decisions. This 

aspect would include the derivation of optimal sets of design decisions for a 

single system or an SPL.  

The second recommendation is to implement the abstract syntax in a formal 

method tool as proposed in Chapter 7. The implementation will serve to verify 

the abstract syntax so that the latter can be refined accordingly. 

The third recommendation is to implement a support IDE that is proposed in 

Chapter 8. The implementation can be conducted incrementally and be tested 

against the running example. The complete implementation can then be tested 

against an industry case study. 
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Appendix A Formalization of the Running 
Example 

This appendix formalizes the running example in section 2.2 using the abstract 

syntax specified in Chapter 3, Chapter 4, and Chapter 5. 

A.1 Formalization for Single System 

This section formalizes the running example as a single system. The scope 

includes issues Issue3 through Issue5, alternatives Alternative4 through 

Alternative6, decisions Decision6 through Decision12, and variation points 

VP1 through VP7. 

Issue occurrences I = {i3, i4, i5} 

i3 = (“Various rental perks”, “Explosion of combinations of 

rental schemes and rental perks”) 

i5 = (“Too many instances of rental perk combinations.”, 

“Each rental scheme is configured with its own instances of 

rental perk combination.”) 

 

Alternatives A = {a4, a5, a6} 

a4 = (“Decorator design pattern”, “Attach additional 

responsibilities to an object dynamically.”, “More 

flexibility than static inheritance. No explosion of 

subclasses.”, “More object interactions due to chain of 

decorators.”) 

a5 = (“Singleton Design Pattern.”, “Ensure a class only has 

one instance, and provide a global point of access to it.”, 

“Controlled access to sole instance. Can vary number of 

instances.”, “Direct instantiation is not allowed.”) 

a6 = (“Subclassing”, “Encapsulate each combination of 

responsibilities in a class.”, “Straightforward – one 

subclass for each combination.”, “Explosion of subclasses if 

there are many combinations.”) 

 

Decisions D = {d6, d7, d8, d9, d10, d11, d12} 

d6 = (“Decorate rental schemes with rental perks”, “Any 

combination of rental perks can be configured for any rental 

scheme at runtime.”, “Extract algorithms of rental perks from 

computeRental() and encapsulate them in a hierarchy of rental 
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perk child classes. Merge hierarchies of rental schemes and 

rental perks.”, {vp1}) 

d7 = (“Extensibility of rental perks”, “Decouple other 

classes from rental perk child classes.”, “Add, modify or 

remove rental perk child classes to/from rental perk 

hierarchy.”, {vp2})  

d8 = (“Make rental perks singletons”, “Rental perks are not 

specific to any rental scheme.”, “Apply Singleton pattern to 

RentalPerk. Add getInstance() that instantiates and shares 

instances of child classes.”, {vp3}) 

d9 = (“Resolve conflict between Decision8 and Decision6.”, 

“Rental perk child classes have public constructors while 

Singleton constructors should be protected or private. Cannot 

initialize a RentalPerk instance with a RentalComp instance 

via constructor.”, “Make constructors of rental perk child 

classes protected. Add setRentalStrategy() to initialize a 

RentalPerk instance with a RentalStrategy instance.”, {vp4}) 

d10 = (“Represent combinations of rental perks using 

subclasses.”, ”Create a hierarchy of subclasses to represent 

required combinations. Acceptable for small number of 

combinations.”, “Use one subclass for each combination of 

rental perks.”, {vp5}) 

d11 = (“Extensibility of rental perk combinations.”, 

“Decouple other classes from rental perk combination child 

classes.”, “Add, modify or remove rental perk combination 

child classes to/from rental perk combination hierarchy.”, 

{vp6}) 

d12 = (“Share instances of rental perk combinations.”, 

“Rental perk combinations are not specific to any rental 

scheme.”, “Apply Singleton pattern to RentalPerkComb. Add 

getInstance() that instantiates and shares instances of child 

classes.”, {vp7}) 

 

Variation Points VP = {vp1, vp2, vp3, vp4, vp5, vp6, vp7} 

vp1 = (“VP1”, ()) 

vp2 = (“VP2”, ()) 

vp3 = (“VP3”, ()) 

vp4 = (“VP4”, ()) 

vp5 = (“VP5”, ()) 

vp6 = (“VP6”, ()) 

vp7 = (“VP7”, ()) 

 

Issue occurrence-alternative associations IA = {(i3, a4), (i3, 

a6), (i4, a5), (i5, a5)} 
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Issue occurrence-decision associations ID = {(i3, d6), (i3, 

d10), (i4, d8), (i5, d12)} 

selected(d6) 

selected(d8) 

selected(d12) 

 

Decision-alternative associations DA = {(d6, a4), (d8, a5), 

(d10, a6), (d12, a5)} 

 

Comprise associations DDcomprise = {(d6, d7), (d10, d11)} 

 

Constrain associations DIconstrain = {(d6, i4), (d10, i5)} 

 

Forbid associations DDforbid = {(d8, d6)} 

Resolve associations DDresolve = {(d9, d8), (d9, d6)} 

 

Features F = {f5, f6, f7, f8, f9, f10};  

f5 = (“Rental Perk”)  

f6 = (“Xmas Promotion”) 

f7 = (“CNY Promotion”) 

f8 = (“Great Singapore Sale”) 

f9 = (“Discount Voucher”) 

f10 = (“Loyalty Program”) 

 

Feature-issue occurrence traces FI = {(f5, i3), (f5, i4), (f5, 

i5), (f6, i3), (f7, i3), (f8, i3), (f9, i3), (f10, i3)} 

A.2 Formalization for SPL 

This section extends the formalization in section A.1 for a single system. It 

assumes that all the variant features are selected for an SPL application. 

in_scope(f5) 

in_scope(f6) 

in_scope(f7) 

in_scope(f8) 

in_scope(f9) 

in_scope(f10) 
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By applying the scoping rules specified in Chapter 5, the elements of DDM 

that are in scope can be derived. 
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Appendix B Source Code of the Running 
Example 

This appendix lists the source code in Java programming language that are 

referred to by the running example in section 2.2. These classes are 

RentalStrategy.java, RentalPerk.java, XmasPromo.java, CNYPromo.java, 

GSSPromo.java, DiscountVoucher.java, and LoyaltyProgram.java. 

RentalStrategy.java 

package crs; 

 

public abstract class RentalStrategy { 

    public abstract float computeRental( 

            Customer c, Vehicle v, int days, float undiscounted); 

} 

 

RentalPerk.java 

package crs; 

 

public abstract class RentalPerk extends RentalStrategy { 

    public enum Type {XmasPromo, CNYPromo, GSSPromo,  

        LoyaltyProgram, DiscountVoucher}; 

    private RentalStrategy strategy; 

    private static RentalPerk[] p =  

        new RentalPerk[Type.values().length]; 

     

    public static RentalPerk getInstance(Type t) { 

        if (p[t.ordinal()] == null) { 

            if (t == RentalPerk.Type.XmasPromo) 

                p[t.ordinal()] = new XmasPromo(); 

            else if (t == RentalPerk.Type.CNYPromo) 

                p[t.ordinal()] = new CNYPromo(); 

            else if (t == RentalPerk.Type.GSSPromo) 

                p[t.ordinal()] = new GSSPromo(); 

            else if (t == RentalPerk.Type.LoyaltyProgram) 

                p[t.ordinal()] = new LoyaltyProgram(); 
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            else if (t == RentalPerk.Type.DiscountVoucher) 

                p[t.ordinal()] = new DiscountVoucher(); 

            else 

                return null; 

        } 

        return p[t.ordinal()]; 

    } 

     

    public void setRentalStrategy(RentalStrategy s) { 

        this.strategy = s; 

    } 

     

    public RentalStrategy getRentalStrategy() { 

        return strategy; 

    } 

} 

 

XmasPromo.java 

package crs; 

 

public class XmasPromo extends RentalPerk { 

 

    @Override 

    public float computeRental( 

            Customer c, Vehicle v,  

                int days, float undiscounted) { 

        // 20% off total charge. 

        float discounted = 0.80f * undiscounted; 

        System.out.println( 

           "XmasPromo discounted amount is $" + discounted); 

 

        float prevPrice = getRentalStrategy().computeRental( 

                c, v, days, undiscounted); 

 

        return (discounted < prevPrice)  

            ? discounted : prevPrice; 
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    } 

} 

 

CNYPromo.java 

package crs; 

 

public class CNYPromo extends RentalPerk { 

 

    @Override 

    public float computeRental( 

            Customer c, Vehicle v,  

                int days, float undiscounted) { 

        // 30% off total charge. 

        float discounted = 0.70f * undiscounted; 

        System.out.println( 

            "CNYPromo discounted amount is $" + discounted); 

 

        float prevPrice = getRentalStrategy().computeRental( 

                c, v, days, undiscounted); 

 

        return (discounted < prevPrice)  

            ? discounted : prevPrice; 

    } 

} 

 

GSSPromo.java 

package crs; 

 

public class GSSPromo extends RentalPerk { 

 

    @Override 

    public float computeRental( 

            Customer c, Vehicle v,  

                int days, float undiscounted) { 

        // 1 day free for every 2 days. 

        float discounted = (float)(days - (days / 3))  
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            / (float)days * undiscounted; 

        System.out.println( 

            "GSSPromo discounted amount is $" + discounted); 

         

        float prevPrice = getRentalStrategy().computeRental( 

                c, v, days, undiscounted); 

         

        return (discounted < prevPrice)  

            ? discounted : prevPrice; 

    } 

} 

 

DiscountVoucher.java 

package crs; 

 

public class DiscountVoucher extends RentalPerk { 

    private float value = 0f; 

     

    @Override 

    public float computeRental( 

            Customer c, Vehicle v,  

                int days, float undiscounted) { 

        // Offset previous price with value of voucher. 

        float prevPrice = getRentalStrategy().computeRental( 

                c, v, days, undiscounted); 

        float discounted; 

        if (prevPrice > getValue()) { 

            discounted = prevPrice - getValue(); 

        } 

        else { 

            discounted = 0; 

        } 

        System.out.println("DiscountVoucher discounted amount  

            is $" + discounted); 

         

        return discounted; 
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    } 

 

    public float getValue() { 

        return value; 

    } 

 

    public void setValue(float value) { 

        this.value = value; 

    } 

} 

 

LoyaltyProgram.java 

package crs; 

 

public class LoyaltyProgram extends RentalPerk { 

 

    @Override 

    public float computeRental( 

            Customer c, Vehicle v,  

            int days, float undiscounted) { 

        // Offset discounted amount with loyalty points. 

        float prevPrice = getRentalStrategy().computeRental( 

                c, v, days, undiscounted); 

        float discounted; 

        if (prevPrice > c.getLoyaltyPoints()) { 

            discounted = prevPrice - c.getLoyaltyPoints(); 

            c.setLoyaltyPoints(0); 

        } 

        else { 

            discounted = prevPrice - (int)prevPrice; 

            c.setLoyaltyPoints( 

                c.getLoyaltyPoints() - (int)prevPrice); 

        } 

        System.out.println("LoyaltyProgram discounted amount  

            is $" + discounted); 

        System.out.println("Balance loyalty point amount is " +  
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            c.getLoyaltyPoints()); 

         

        return discounted; 

    } 

} 

 

 


