
Ensuring Session Integrity in the Browser
Environment

PATIL KAILAS RAVSAHEB
(M.E Computer Engg), University of Pune, India

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2013

Abstract

Over the past decade, web applications have undergone a transformation from a collection of

static HTML web pages to complex applications containing dynamic code and rich user interfaces.

As the supporting platform for such applications, web browsers execute and manage dynamic and

potentially malicious code. However, lack of protection mechanisms in the execution environment

provided by web browsers has made various attacks possible that can compromise the integrity of

web applications.

Various existing solutions are proposed to secure web applications, but they fail to regulate the

behaviors of JavaScript code, such as manipulations of the UI elements or communications with

web servers. However, such behaviors are key indicators of attacks against web applications. By

capturing malicious behaviors exposed by such attacks, we can robustly defeat them. Thus, in this

thesis, we focus on fundamental ways to control the behaviors of untrusted code. We develop a

line of novel solutions to bring necessary behavior control mechanisms into web browsers, which

effectively combat threats to the integrity of web applications.

We first analyze the mediation requirements inside a web origin and propose a technique to

regulate behaviors of untrusted code inside an origin using fine-grained access control. We further

develop a solution that protects the integrity of web sessions from malicious requests. In a complex

browser environment, the attacker may find different ways to inject malicious requests in a victim

users active web application. Our solution extracts the client-side dependency of a request and

enforces the integrity checks on the request dependency. In addition, we propose an approach

to address the problem of insecure extensibility allowed by web browsers that pose threats to

the integrity of web applications. Our approach extracts the behaviors of browser extensions to

detect integrity violations from the execution of untrusted browser extensions and selectively apply

extracted behaviors in a web session.

This thesis proposes new solutions for extracting and controlling the behaviors of untrusted

code in the execution environment. They provide an effective way to combat integrity problems

in web sessions. As shown by evaluation results on detecting and preventing malicious behaviors

in web sessions, this thesis shows that the behaviors of untrusted code play an important role in

the development of security solutions for ensuring integrity of web sessions. Our evaluation with

real-world web applications also demonstrate the practicality, effectiveness, and low-performance

overhead of the proposed solutions.

Declaration

I hereby declare that the thesis is my original work and it has been written by me in its entirety.

I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

PATIL KAILAS RAVSAHEB

21 January 2013

Acknowledgements

First, I would like to thank my adviser, Dr. Liang Zhenkai, to express my profound gratitude and

deep regards for his constant encouragement, monitoring and exemplary guidance throughout the

course of this thesis. This thesis would have been inconceivable without the blessing, help and

guidance given by him time to time on my research works and academic writing. His creativity,

dedications and infinite energy are inspiring and motivating for me.

I would also like to thank professors Roland Yap, Chang Ee-Chien, and Prateek Saxena for

helpful feedback and constant support on my research works. I sincerely thanks to all my coauthors

over the years for all of the hard work, and late nights. I would especially like to thank Professor

Xuxian Jiang, for his dedication to left our research greatly enriched.

Many friends have brightened my life in Singapore and provided much needed help and enter-

tainment. I would particularly like to thank Sai, Xinshu, Xiaolei, Meingwei, Bodhi, and DaiTing.

Finally, I would like to give my special thanks to my wife, Shital, and my parents. I could not

have made it without their constant love and encouragement.

Contents

1 Introduction 1
1.1 Thesis Overview . 3
1.2 Summary of Contributions . 5

2 Background and Related Work 7
2.1 Core Web Application Technologies . 7
2.2 The Execution Environment . 8
2.3 Attacks in the Execution Environment . 11
2.4 Existing Defense Solutions . 15

3 Securing Web Applications from Untrusted JavaScript Included within an Origin 19
3.1 Motivating Example . 19
3.2 Background . 21
3.3 Our Approach . 23

3.3.1 Mediating Host Objects . 24
3.3.2 Mediating Objects in a JavaScript Context 27

3.4 Security Policies . 28
3.5 Implementation . 30

3.5.1 Mediating Access to Objects in JavaScript Context 30
3.5.2 Mediating Access to Host Objects . 33
3.5.3 Configuration Files of Shadow Contexts and Security Policies 33

3.6 Evaluation . 34
3.6.1 Effectiveness . 35
3.6.2 Compatibility . 36
3.6.3 Performance Overhead . 37

3.7 Related Work . 38
3.8 Summary . 39

4 Preventing Click Event Hijacking by User Intention Inference 41
4.1 Motivating Examples . 42
4.2 Background . 45
4.3 Design of ClickGuard . 46

4.3.1 Overview of Our Approach . 46
4.3.2 Intercepting Browser Events . 46
4.3.3 Inferring User Intentions . 47

4.3.4 Correlating Output Events to Input Events 49
4.3.5 Detecting and Responding to Attacks . 50
4.3.6 Inferring Host Relationships by Cookie Policy 50

4.4 Implementation . 51
4.5 Evaluation . 52

4.5.1 Effectiveness . 53
4.5.2 False Positive and Performance . 54

4.6 Related Work . 55
4.7 Limitations . 56
4.8 Summary . 57

5 Securing Web Sessions from Malicious Requests 59
5.1 Motivating Examples . 59
5.2 Development of Session-Misuse Attacks . 61
5.3 Background . 63
5.4 Request Dependency Graph . 65

5.4.1 Extracting RDG from Browser Environment 66
5.4.2 RDG Slicing . 69

5.5 Design of ClearRequest . 70
5.6 Implementation . 71

5.6.1 Integration of the ClearRequest with Web Browser 72
5.6.2 Integration of the ClearRequest with Web Applications 73

5.7 Evaluation . 74
5.7.1 Session-Misuse Attack Detection . 74
5.7.2 Effectiveness on other session-misuse attacks 76
5.7.3 Study of recent incidents of session-misuse attacks 79
5.7.4 Protecting Web Applications . 79
5.7.5 Performance Overhead . 80

5.8 Related Work . 82
5.9 Summary . 85

6 A Behavior-based Approach to Confine Malicious Browser Extensions 86
6.1 Background . 87

6.1.1 Overview . 87
6.1.2 Google Chrome Extension . 88
6.1.3 Motivating Example . 90
6.1.4 High-level Behaviors of Extensions . 91

6.2 Design of SessionGuard . 92
6.2.1 Components of SessionGuard . 92
6.2.2 The Net Effect Extractor Component . 93
6.2.3 The API Activity Monitor Component . 95

6.3 Implementation of SessionGuard . 97
6.4 Evaluation . 99

6.4.1 Effectiveness . 99
6.4.2 Compatibility . 101

6.4.3 Performance . 102
6.5 Related Work . 102
6.6 Summary . 105

7 Conclusion 106

List of Tables

3.1 The security policy 2 for host and custom objects 29
3.2 Performance of our solution for basic operations. Time in first three columns above

is measured in millisec. 35
3.3 Overhead incurred by JERMonitor on industry-standard JavaScript benchmark . . 37

5.1 Methods to generate HTTP request and relevant information to record 67
5.2 ClearRequest APIs for a web application to examine RDG slice of a request 72
5.3 Summary of real-world attacks . 79
5.4 Overhead incurred by ClearRequest on industry-standard JavaScript benchmark. . . 81
5.5 Overhead incurred by ClearRequest in network traffic. 81

6.1 Net effects captured from the shadow DOM tree 94
6.2 Overhead incurred by SessionGuard on industry-standard benchmark 102

List of Figures

2.1 Components in the web application’s execution environment 9
2.2 Illustration of cross-site request forgery (CSRF) . 13
2.3 A sample demonstration of download-and-execute botnet using the JS/Febipos.A

trojan . 14

3.1 An example of using a JavaScript library in web applications 20
3.2 Components in a JavaScript Environment . 22
3.3 Overview of JERMonitor. It extends the JavaScript engine to support privilege separation

within an origin. 24
3.4 An example of host object privilege separation . 25
3.5 An Example of a host object access control bypass . 26
3.6 A sample XML-based security policy . 34
3.7 An example of a policy sent with the SecurityPolicy HTTP response header 34
3.8 An example of the SecurityPolicy HTTP response header to indicate that the policy is

available as an external resource . 35

4.1 Clickjacking using transparent iFrame and overlay objects. 42
4.2 Illustration of Clickjacking using transparent iFrame and overlay objects 43
4.3 Floating object example . 44
4.4 Illustration of a floating object in a web page . 44
4.5 An example of Pop-up on click . 58
4.6 Component overview of ClickGuard . 58
4.7 An example of a Framekiller code . 58

5.1 Illustration of cross-site scripting (XSS) . 60
5.2 Illustration of dynamic cross-site request forgery . 61
5.3 An example of self-XSS code . 61
5.4 An example of user-assisted attacks . 62
5.5 A sample web page snippet. 69
5.6 A request dependency graph for the web page snippet 69
5.7 Architecture of ClearRequest . 71
5.8 (a):An RDG slice of benign request to Like a link (b):An RDG slice of a request

generated using self-xss . 74
5.9 An RDG slice of a malicious request . 75
5.10 (a):An RDG slice of benign request (b):An RDG slice of a CSRF attack 76
5.11 (a):An RDG slice of benign request (b):An RDG of an XSS attack 78

5.12 (a):An RDG slice of benign request (b):An RDG slice of a Clickjacking attack 79

6.1 A sample of manifest file of the Turn Off the Lights extension 91
6.2 Overview of SessionGuard . 92
6.3 Architecture of the SessionGuard . 93
6.4 Screenshots of the original web page and the shadow DOM of the web page 99
6.5 An Advertisement injection into Wikipedia by I Want This malicious extension 100
6.6 A sample of manifest file to inject advertisements in Wikipedia 101

Chapter 1

Introduction

Web applications such as online banking, web-based email, shopping, etc., have become ubiqui-

tous in people’s everyday lives. For example, a survey by the American Bankers Association shows

62% of respondents prefer Internet banking to in-person banking [89]. To respond to the demand

for dynamic services, web browsers have evolved from an application that displayed simple static

web pages to a complex environment that executes a myriad of content-rich web applications.

Unfortunately, because of the increased popularity, web applications have also attracted the atten-

tion of attackers as a new venue for malicious actions. A few examples of web attack techniques

are Clickjacking, Cross-Site Scripting (XSS), and Cross-Site Request Forgery (CSRF), amongst

others.

To better understand these attacks and the corresponding security mechanisms, we first need

to understand the basic relationship between web applications, the browser environment, and web

sessions. A web application architecture is split between client-side and server-side components.

Web requests are used to connect these two components. Client-side components are stored and

executed in the environment provided by web browsers, i.e., the browser environment.

A typical session of a web application on the client-side can often involve execution of code

from various untrusted sources. Examples of untrusted sources might include third-party wid-

gets, mashups, or external advertisements. Code from these untrusted sources provide new content

functionality to users, but they can also introduce malicious code such as malicious browser exten-

sions [15, 54, 78] or intrusive advertisements into a web session [116]. Moreover, bugs in the code

from these sources may also introduce vulnerabilities into web applications such as code injection

or redirection to malicious sites [129], even if the original web applications contain no vulnerabil-

ities. Simply put, the code from untrusted sources poses a significant risk to the integrity of web

sessions, including that of all code and data enclosed in the sessions.

1

To prevent data of one web application from being accessed by other web applications in the

execution environment, web browsers use the same-origin policy (SOP) [99]. For each web page,

browsers associate origins1 with web page objects. In effect, SOP partitions the execution envi-

ronment of web applications, based on these origins. Under SOP, all contents included in one web

page are associated with the origin of the hosting web page. Hence, when third-party code such

as libraries or advertisement code is embedded in a web page, it runs with the privileges of the

web application’s origin, even though it only needs limited access to the resources in the origin.

Moreover, SOP policy does not control behaviors of browser extensions in active web sessions.

This raises a challenge for web applications and web users, such as how to ensure that the integrity

of a web application’s logic is not violated by untrusted third-party code running in the execution

environment.

Several research efforts [10, 30, 65, 72, 76, 80, 81, 86, 146] have aimed to isolate resources in

different origins or restrict the functionality of JavaScript, but these solutions are coarse-grained

and impose an all-or-nothing restriction. To constrain potential threats from malicious web re-

quests, several solutions have been proposed by industry and research community [11, 58, 67, 68,

85, 120, 121, 135] suggesting that web applications should send additional information to the web

server in the request. However, these solutions lack the knowledge of client-side behaviors. Thus,

attackers constantly find new ways to evade existing solutions, such as self-XSS attack [17], anti-

CSRF token social engineering attack [41], and other circumventions. One class of research

solutions [12, 69] proposed permission-based frameworks to mandate the declaration of permis-

sions requested by extensions. Under the current permission-based system, an extension code can

perform much more than what users expect them to do. Recent attack examples [104, 139, 164]

and academic research efforts [69, 78] reveal that browser extension frameworks failed to achieve

their design goals.

A study by Dasient [32] on one million websites reveals that 75% of websites use third-party

JavaScript widgets on their websites, 42% websites use third-party ad-related resources, and 91%

websites use outdated third-party applications. Each of these practices greatly increases their po-

tential exposure to malicious code. According to study by Kirda et al. [73], many malware pro-

grams have implementations based on browser extension. Another study by Chia [114] of 5,943

Chrome extensions shows that 35% of Chrome extensions request permissions to access users data

on all websites. The broad popularity of third-party code usage and unrestricted access to web

applications data raises a major challenge to the integrity of web sessions. For example, the exten-

sion Turn Off the Lights provides a more pleasant video viewing experience, by inserting a lamp

1An origin is defined as the triple of protocol, host, and port.

2

button in the browser menu bar which makes an active web page dark when clicked. To achieve

its functionality, the Turn Off the Lights extension requests permissions to inject code into web

sessions and access to random network requests. With the granted permissions, the extension can

perform dangerous activities such as execute arbitrary JavaScript code in web sessions. As an

another example, to earn more revenue web applications could sell space on their web pages to

an advertising network. The advertising network would then take advertisements from its clients

and display them on the publisher’s web pages. An attacker may subscribe as a client to the ad-

vertisement network and submit malicious code as an advertisement. When such malicious code

is loaded into the publisher’s web pages, it will compromise the integrity of the application, and

can spawn pop-ups, download and execute code, or forge malicious requests to web servers. Here,

one key intuition is that instead of speculating whether an advertisement is malicious or not before

it is executed, it will be much more accurate to detect attacks by monitoring the behaviors of the

advertisement code during its execution.

We observe that the runtime behaviors are key indicators of malicious code. However, exist-

ing solutions fail to provide proper control on the behaviors of the untrusted code executed from

various sources in the web session, such as browser extensions or embedded third-party code in

web pages (for e.g. third-party widgets, mashups, or external advertisements). As a result, they are

unable to regulate the malicious behaviors of untrusted code, exposing web applications to attacks

against integrity.

Our observation entails that we should build our defense against threats to web session integrity

based on the behaviors of untrusted code. Such behavior-based techniques can transparently reg-

ulate the behaviors of untrusted code, without restricting its functionality. This thesis focuses on

the fundamental ways to use behaviors of untrusted code to protect integrity of web applications in

the browser environment. We believe that client-side behaviors are key aspects to protect integrity

of web sessions on the Web platform.

This thesis supports the above thesis statement and develops a line of solutions to detect and

prevent malicious behaviors in web sessions from untrusted JavaScript libraries, user intention

interference, malicious requests, and malicious browser extensions.

1.1 Thesis Overview

The goal of this thesis is to protect integrity of web sessions in the execution environment. We

develop solutions that control the behaviors of untrusted code to protect web session data in the

execution environment.

3

We examined the execution environment provided by web browsers and identified major com-

ponents and their interactions [39, 110]. We used this analysis to identify behavior control mech-

anisms required within the execution environment to protect integrity of web sessions, and devel-

oped a line of novel solutions: 1) a behavior control approach to regulate behaviors of untrusted

JavaScript code embedded within a web page, 2) a user inference monitor to prevent clickjacking

behaviors, 3) a client-side request dependency extractor to validate web requests by using browser

behavior dependencies in the execution environment, and, 4) a behavior control approach to con-

fine browser extensions without restricting JavaScript capabilities.

We start from the assumption that the browser itself and the underlying operating system are

trusted and they are not under the control of attackers. However, there exists untrusted JavaScript

codes that can run in the execution environment provided by web browsers in the form of browser

extensions, advertisements, and external JavaScript libraries. We addressed the challenges that

arise when controlling behaviors of untrusted JavaScript code running in the execution environ-

ment.

Securing web applications from untrusted JavaScript included within an origin Within an

origin, needed are security mechanisms that monitor and control the behavior of untrusted code.

This is because web applications commonly use JavaScript from third-parties, and these scripts

from untrusted sources are executed in the JavaScript execution environment with the full privi-

leges of the web application’s origin.

To address these challenges, Chapter 3 presents a reference monitor called JERMonitor, which

enables behavior control of untrusted code by using fine-grained access control in the JavaScript

execution environment.

Preventing clickjacking by user intention inference We propose a mechanism to combat Click-

jacking attacks, which can trick users by exploiting layout features provided by browsers [111], by

which attackers can create web page objects that hijack user clicks. Such objects look like normal

web page objects, but user clicks on these objects can lead to unexpected browser behaviors, such

as visiting different URLs or sending out malicious requests. Although the actual techniques in-

volved in these attacks may vary, they generally aim to make users clicks trigger browser actions

that users do not expect.

We observed that user intentions play an important role in detecting clickjacking behaviors, but

it is a challenging task to correctly infer user intentions. In Chapter 4, we propose a technique to

automatically infer a user’s intentions in the browser environment.

4

Securing web session from malicious requests Web requests are the cornerstones of modern

web applications. As the browser environment evolves with increasing complexity, attackers have

continued to develop varied ways to trigger malicious requests to the server. Traditional security

solutions, such as HTTP cookies and session IDs, are now insufficient in helping the server to

distinguish benign web requests from malicious ones.

By design, a web application only expects requests to be generated by specific browser be-

havior sequences. Browser behaviors of a web request play a key role in validating requests. In

Chapter 5, we propose a technique that collects browser behaviors by extracting the dependency

of web requests from the browser environment, representing them in a request dependency graph

(RDG). RDG allows web servers to detect malicious requests through checking request depen-

dency.

Confine behaviors of malicious browser extensions Web browsers allow themselves to be ex-

tended by third-party code, such as browser extensions, to provide enhanced functionality and

customization features to their users. Browser extensions can have high privileges to access web

page contents, thus recent browsers, such as Chrome, control extensions’ capabilities with permis-

sions. Browsers associate permissions requested by an extension during the extension installation

time. However, malicious extensions can usually perform more dangerous actions than what they

are expected to do with the permissions given to them. For example, once injected by the exten-

sion into victim web sessions, malicious content scripts can send malicious requests in the web

application without the user’s knowledge. To address this problem, we propose an approach, Ses-

sionGuard, which confines malicious extensions based on the behaviors of extensions as described

in Chapter 6.

1.2 Summary of Contributions

In this thesis, we examine the security of web sessions in the execution environment and show that

the capability to control behaviors of code plays an important role to protect the integrity of web

sessions in the execution environment. This thesis makes the following contributions:

1. We develop an approach that regulates behaviors of untrusted code in the JavaScript exe-

cution environment. It uses privilege separation and access rules enforcement techniques

to control behaviors of untrusted JavaScript code. Compared to existing solutions, our ap-

proach provides fine-grained access control to untrusted JavaScripts within an origin.

5

2. We develop a new approach that infers intent to ensure that browser behaviors match user

intentions. Our approach prevents clickjacking attack behaviors in web sessions.

3. We analyzed various attack vectors that can be leveraged to launch client-side session misuse

attacks and summarize how browser behavior dependencies of malicious requests from these

attacks differ from legitimate ones in the client-side execution environment. We identified

the request dependency as the inherent characteristic to validate web requests. We proposed

a new approach that uses request dependency to validate web requests.

4. We analyzed behaviors of browser extensions and propose a protection mechanism to control

behaviors of browser extensions. Our approach effectively extracts the net effects of browser

extensions and only applies benign ones to the original web sessions. This way, our approach

does not restrict JavaScript capabilities of browser extensions.

6

Chapter 2

Background and Related Work

We introduce the background and related work of this thesis in this chapter. First, an overview of

core web application technologies is given in Section 2.1. It serves as the basis for understanding

behaviors in web applications. Then, we elaborate on the internals of the execution environment

provided by web browsers in Section 2.2. In Section 2.3, we summarize existing attacks against

the integrity of web sessions. We discuss existing security solutions against these attacks in Sec-

tion 2.4.

2.1 Core Web Application Technologies

The modern web application uses three essential technologies: HTML, CSS, and JavaScript. Hy-

perText Markup Language (HTML) [154] is the primary language for creating web pages and dis-

playing information within web browsers. HTML consists of HTML elements (such as <html>)

that are enclosed in angle brackets within a web page’s contents. A web browser uses HTML tags

to mark web page contents. The Cascading Style Sheets (CSS) [150] are used to describe the look

and formatting of a web page within web browsers. The CSS are used to isolate the content of

a web page from its presentation to improve content accessibility, provide more flexibility, and

enable multiple web pages to share style formatting. The JavaScript [155] is the scripting language

which makes web applications responsive and dynamic. JavaScript interacts with the user, controls

the browser, communicates asynchronously with web servers, and dynamically changes web page

contents.

Web applications are coded in browser-supported languages such as HTML and JavaScript,

among others, and accessed over a network using HTTP or HTTPS protocol. Web applications are

preferred over dedicated client-server software programs because they do not need to be installed

7

on client computers and allow cross-platform compatibility.

A web application contains server components and client components. To connect server-side

components and client-side ones, web applications expose HTTP-based interfaces on web servers

to web clients, so that the web clients can request operations on web servers using the HTTP pro-

tocol. An HTTP session involves a sequence of request-response transactions between the web

browser and the server. However, HTTP is a stateless protocol, meaning that web servers do not

maintain states to relate one request to another. To support session-based web applications, such

as, email or e-commerce websites, the session-related states must be stored by the browser. Re-

quests should carry the session information to identify themselves to the server. To track sessions

among multiple HTTP requests, web applications use different mechanisms such as session cook-

ies. Cookies are widely used as a mechanism to “remember” the current user and the ongoing

session of a web application. The web application server sets the cookie in the response to the

browser after a user successfully logs in, and the browser stores the cookie for a certain amount of

time. For every subsequent HTTP request sent to the web application server, the browser automat-

ically attaches the cookie to identify the session.

Web applications use a browser-supported language such as JavaScript or HTML to develop

the client-side part, and commonly embed resources from third-parties such as JavaScript libraries,

advertisement scripts, mashups, or widgets. Web sessions are vulnerable when there are untrusted

contents embedded in web applications.

2.2 The Execution Environment

To better understand the attacks and existing solutions, we need to understand the client-side ex-

ecution environment that is provided by web browsers. Figure 2.1 shows a browser environment

that contains a set of components to process and render web contents and communicate with web

servers.

• The network library The network library of the execution environment is responsible for

handling various network communication protocols such as HTTP and HTTPS.

• Host objects These are objects provided by the hosting application (for example, the web

browser) of the JavaScript engine for accessing peripheral resources outside the JavaScript

engine. Host objects include the Document Object Model (DOM) objects, XMLHttpRequest

(XHR) object, cookies, and others. The DOM objects are a cross-platform way to represent

and interact with HTML tags. The DOM is a platform and language-independent interface to

8

JavaScript
Engine

Web
Application

Server
Network

Parsers
(HTML, CSS,

XML)

Host Objects
(DOM, XHR,

Cookie)

Others

Extensions Plug-ins

Web Browser

Web
Storage

Figure 2.1: Components in the web application’s execution environment

describe HTML and well-formed XML documents. It allows scripts to dynamically access

and update these documents. Web browsers parse the markups such as HTML, XML, and

build an in-memory DOM, which is an organized tree structure of the document. The DOM

tree has a node for every element in the document [28]. Web pages may store sensitive

information in HTML tags such as security tokens in hidden input field or administrator

email. The XMLHttpRequest (XHR) is a DOM API that allows JavaScript to access data

from a web server without refreshing the web page content. Cookie has been widely used as

a mechanism by web applications to remember the current user and the ongoing web session

of the web application. The cookies allow a web application to track a user’s session between

multiple requests and are attached by the client web browser with each HTTP request to the

server in order to authenticate the user of the session.

• Parsers Web browsers implement parsers to parse various types of content, including HTML,

XML and CSS. The HTML/XML parser components parse the raw content of HTML and

XML and build the document object model (DOM) tree. Each node in the DOM tree also

has the associated CSS data, including any web application-defined event handlers.

• The JavaScript engine The JavaScript engine is a key component for script execution. It

consists of JavaScript contexts and host objects. The JavaScript context includes JavaScript

objects representing variables and functions. The set of host objects gives access to local

objects in the host environment. For example, host objects in a web page include the page’s

Document Object Model (DOM), while host objects of a Firefox extension environment

provide interfaces to native services such as local file access.

9

• Web storage This allows the storing of structured data on the local file system of a client

machine. There are two main types of web storage: sessionStorage and localStorage [29].

Because cookies are included with every request, it becomes inefficient for web applications

to store megabytes of user data at the client side. The web storage mechanism is used to

address the weakness of cookie. In addition, the web storage mechanism allows multiple

transactions to be conducted on the same web application in different windows at the same

time. For instance, if a user of an airline ticket-purchasing web application is buying tickets

from that application in two different windows, then cookies could possibly leak the ticket

being purchased from one window to another and potentially lead the user to buy two tickets

for the same flight. The sessionStorage mechanism allows the web application to store the

client side data that spans multiple windows, and available in the current session. The lo-

calStorage mechanism not only allows client-side data that span multiple windows, but also

allows client-side data to be persistent and last beyond the current session.

• Browser extensions To enhance user experience and provide new functionality, user-installed

browser extensions have been developed by browser vendors and third-party developers.

Browser extensions are written in JavaScript, but they can also contain binary components.

Extensions written in JavaScript access resources using APIs exposed to extensions by web

browsers, while extensions with binary components, also known as plug-ins, can directly use

APIs provided by an operating system to access the user file system or resources.

• Plug-ins Web browsers do not natively support all media types used in web applications,

such as PDF or Flash. Plug-ins extend the web browsers’ support to these media types,

by processing and rendering these media types for web browsers. Web browsers provide

mechanisms to allow the content rendered by plug-ins to inject scripts into a web page.

• Others This includes components such as the rendering engine, the event manager, and Vi-

sual Basic script interpreter. The rendering engine uses the DOM tree to compute the position

and style of each element, and renders web application’s cross-platform user interface. The

Visual Basic script, interpreter is only supported by Internet Explorer. Other web browsers

such as Opera, Firefox, and Google Chrome do not provide built-in support for it. The event

manager in web browsers is responsible for handling events including registering event han-

dlers, invoking appropriate event handlers and listening to user interface events.

The execution environment provided by web browsers runs client-side code for web applica-

tions. Web applications expect that the behavior of its code is not tampered within the execution

10

environment by malicious code of unverified origin. To achieve this, modern web browsers em-

bodied same-origin policy (SOP) mechanism.

The primary security model in browsers: the same-origin policy (SOP) Modern browsers

partition the execution environment of one web application from another using the same-origin

policy (SOP). The same-origin policy prevents JavaScript from accessing DOM properties and

methods across partitions. However, there are a few weaknesses of SOP as discussed below.

• The inconsistent enforcement of SOP under different scenarios. SOP is enforced differently

for different resources in the execution environment [163]. For example, web pages can

set document.domain property to a fully-qualified fragment in the right-hand part of its

current domain name. For instance, abc.example.com can set it to example.com. If two

web pages set their respective document.domain property to the same value, then they are

granted to access each other’s web session.

• Third-party resources included in a web page. When scripts are on a completely different

domain and document.domain cannot be used, then web publishers often include the con-

tents within their web pages, such as third-party widgets or external advertisements, as a

means to earn revenue. By hosting malicious widgets or malicious advertisements, attackers

often find a way to execute malicious code into web sessions of an application. Under such

scenarios, origin-based security mechanism is too coarse-grained and inadequate to protect

the integrity of web sessions from attacks that occur from within the origin of the victim’s

web application.

• Limited to web applications. SOP is only enforced on web applications. Browser extensions

are not subject to SOP, even though they have full access to web sessions running in the

execution environment.

Even though SOP lays a useful security foundation inside the execution environment to protect

integrity of web sessions, it is far from providing comprehensive protection to web sessions. The

next section describes various examples of possible threats to the integrity of web sessions.

2.3 Attacks in the Execution Environment

In this section, we focus on the possible threats from untrusted JavaScript included in web sessions

which run in the execution environment provided by browsers. In this thesis, we focus on web-

based attacks against web applications.

11

Threats within an origin It includes threats from JavaScript either included in web applications

by design (such as mashups, JS libraries, etc.) or by exploiting vulnerabilities in web applications

(such as XSS attack).

Malicious mashup: JavaScript allows functions to be defined and assigned in the execution en-

vironment during runtime. For example, the ability to dynamically override functions is commonly

used in web applications to mask the differences in various browser implementations, or temporar-

ily fix browser implementation bugs [156]. There are JavaScript libraries to override JavaScript

functions provided by the browser, so that web applications can be coded in a browser-independent

manner. However, attackers can exploit this feature to inject code into benign JavaScript, and carry

out malicious activities with escalated privilege.

Let’s look at an example of how a malicious gadget integrated into a web page can affect the

behavior of other benign gadgets integrated within the same web page, thereby severely threatening

the integrity of the entire mashup web page. Suppose the integrator page http://public.com

includes two gadgets from two different domains as follows:

<div id=’Gadget1’>

<script src=’http://example1.com/gadget1.js’></script>

</div>

<div id=’Gadget2’>

<script src=’http://example2.com/gadget2.js’></script>

</div>

Suppose Gadget2 checks the current web page’s location, by calling the JavaScript function

location.href.toString. In this case, the location is used to construct a request for a piece of

external JavaScript from example2.com that can contain sensitive information, if the integrator

page is https://private.com.

If Gadget1 is malicious, it can override the native toString function of the String object

with its own function:

String.prototype.toString = function() {

return "https://private.com";

}

Consequently, when Gadget2 calls the location.href.toString() function to retrieve

the location of the integrator page, its call to location.href.toString() is “answered” by

12

the function defined by Gadget1, which then returns https://private.com, instead of the lo-

cation http://public.com. This way, attackers can retrieve the sensitive information supposed

to be only displayed at https://private.com.

Another attack example is dynamic code injection by malicious embedded Flash applications

into the execution environment. Flash contents embedded in a web page can inject scripts through

interfaces exposed to plug-ins by web browsers for interactions with the integrator’s web page

DOM. Although the permissions of a flash object to inject scripts is controlled by web applications,

some web applications erroneously give full access to all flash contents. For example, to track user

clicks on advertisements, the Yahoo! web application allows Flash contents to inject JavaScript

code into the web page. However, malicious Flash contents can exploit this feature to inject scripts

into the web page and compromise the integrity of the entire web application session, or generate

malicious requests to web servers by fraudulently using the credential of legitimate users.

1 POST / login

HTTP/1.1 200 OK
Set-Cookie: SID=12345...

2 GET / HTTP/1.1
Host: MaliciousSite.com

<html>
 ...
<img src=http://HonestSite.com
changepw.php?username=[victim]
&password=[newPassword]”
 …
 </html>

3 GET /changepw.php?
 username=[victim]
 &password=[newPassword]
HTTP/1.1
Host: HonestSite.com

Cookie: SID=12345...

MaliciousSite.com Victim User HonestSite.com

Figure 2.2: Illustration of cross-site request forgery (CSRF)

Injecting malicious web requests Web browsers enforce the same-origin policy (SOP) to pre-

vent a website from accessing cookies that belong to another site. However, web browsers do not

impose any restriction on outgoing requests to external resources. For example, if a user visits

a malicious website (MaliciousSite.com) while the cookie-based session on the website Honest-

Site.com is still active, the malicious site can initiate cross-site HTTP requests to the Honest-

Site.com.

As shown in Figure 2.2, a user authenticated to HonestSite.com (Step 1) visits Malicious-

Site.com (Step 2). The malicious site triggers a cross-site request to HonestSite.com, using an

 tag to request a sensitive service (Step 3). Since the browser automatically attached the

13

user’s cookie, HonestSite.com processes the request. This attack example is constructed from a

real world attack example CVE-2009-3759 [3, 107].

Malicious extensions Under the permission-based system, an extension can perform much more

than what users expect them to do such as executing arbitrary JavaScript code in web pages.

JS/Febipos.A a JavaScript trojan: This malicious Firefox and Chrome extension gives an at-

tacker remote control of the victim user’s Facebook profile [19]. Figure 2.3 shows the high-

level mechanism of the trojan JS/Febipos.A. Once installed in a user’s browser (either Firefox

or Chrome), this trojan extension monitors victim users to see if they are currently logged in to

Facebook, as shown in the Step 1. It then attempts to get a configuration file from its master server,

as shown in Step 2. This file is one of the following:

• avbr. < removed > /sqlvarbr.php

• frupsv. < removed > /sqlvarfr.php

• le− chinatown. < removed > /sqlvarch.php

• leferrie. < removed > /sqlvarbr.php

• lesmecz. < removed > /sqlvarbr.php

• supbr. < removed > /sqlvarbr.php

Web Browser

Facebook
webpage

Malicious
Extension

Facebook

Monitor login
to Facebook
web site

Command
& Control
Server

1

2 Download
command file

3 Perform automated
malicious actions on
FB

Figure 2.3: A sample demonstration of download-and-execute botnet using the JS/Febipos.A trojan

The file contains a list of commands that the browser extension will execute. In Step 3 shown

in Figure 2.3, this trojan can perform any of the following operations on the infected user’s profile:

add posts to a profile, like pages, join groups or invite others to join groups, chat to friends and

comment on posts. The message posted may vary depending on the configuration file. The message

it posts also entices other users to infect themselves.

14

Malicious extensions can perform dangerous activities in web sessions than what are expected

with the permissions given to them. When malicious extensions tamper with web application logic,

it cannot be stopped by permission-based mechanisms.

2.4 Existing Defense Solutions

In this section, we discuss existing solutions to protect web sessions within the execution environ-

ment.

Defense solutions against threats within an origin Several solutions have been suggested to

increase the granularity of access control within the browser execution environment. A class of

research efforts [9, 13, 14, 53, 66, 74, 82, 101, 118, 122, 125, 130, 137, 141, 146] prevents cross-site

scripting (XSS) attacks by identifying injected JavaScript and preventing it from executing in the

execution environment. Other approaches [2,45,48,52,62,66,83,84,88,115,115,161] either isolate

the JavaScripts, or limit accesses from certain JavaScript by disallowing dangerous features. These

approaches target injected or untrusted JavaScript within a confined portion of a web page, but it is

not generally applicable to other types of environments, such as web page and browser extensions,

where full JavaScript functionality is expected. Escudo provides fine-grained access control to host

objects within the context of web pages [65]. Ter Louw et al. [81] provides a policy enforcement

framework for the JavaScript in Firefox extensions. It controls extensions’ access to XPCOM

services, network services, or a browser’s password manager, among other restrictions. These two

approaches provide fine-grained access control to the host objects of their JavaScript environment.

Similarly, research efforts [12,60,80] regulate DOM objects. Nevertheless, a malicious JavaScript

code can compromise the integrity of web applications either by injecting a malicious JavaScript

code or by injecting a forged HTTP request in live sessions of web applications.

Several research proposals develop new primitives for web applications to adapt to mashup

applications [30, 64, 72, 146]. Extensions [63, 70, 79] to the same-origin policy have also been

proposed to allow better separation of JavaScripts even if they are from the same origin. However,

these approaches do not support dynamic access control policies and provide coarse-grained access

control.

Flax [124] proposed dynamic analysis techniques to systematically discover any client-side

validation vulnerabilities. Flax used the features of dynamic taint analysis combined with au-

tomated random fuzzing to remedy any the limitations. Adsentry [40] proposed an in-browser

isolation mechanism to combat attacks from malicious scripts in advertisements. It provides iso-

15

lated, separate environments for trusted and untrusted scripts that previously were executed in the

same environment. In addition, it enables flexible policy enforcement to control the behaviors of

untrusted JavaScripts.

To mitigate threats of XSS attacks, Mozilla proposed Content Security Policy (CSP) [134] a

more in-depth defense. CSP has become a part of W3C specification, and CSP 1.0 is in the state

of Candidate Recommendation [117]. It aims to combat XSS attacks by providing a declarative

content restriction policy in an HTTP header that the browser can enforce. CSP defines directives

associated with various types of content that allow developers to create whitelists of trusted content

sources and instruct client browsers to only load, execute, or render content from those sources.

However, writing an effective and comprehensive CSP policy for websites is laborious. A policy

can break website functionality if legitimate content is overlooked during policy generation. More-

over, web developers at large technology companies may not have direct access or authorization

to change the CSP header on web servers, making it difficult to iterate over policies. This is hin-

dering the adoption of CSP by real-world web applications. We performed a usage study of CSP

policy on real-world desktop and mobile websites. Our results show that out of the top 104,500

Alexa websites [6], only twenty seven unique websites are using CSP policies. In particular, only

twenty desktop websites actually enforced CSP policies, and the remaining seven websites use

CSP policy in report-only mode. Similarly, we analyzed 289 mobile websites [7]. In our exper-

iments we noticed that only one mobile website, mobile.twitter.com, uses a CSP policy.

UserCSP [112] is a Firefox extension that allows security-savvy users to specify their own CSP

policies on websites.

In addition, Firefox’s implementation of CSP lets a protected website specify a set of whitelisted

websites that can embed it through the frame-ancestors directive. The X-Frame-Options HTTP

header provides a similar but more restrictive functionality, as it only allows the website to be em-

bedded in its own origin or a single trusted third-party, but not both [16]. With frame-ancestors,

websites can specify a list of trusted origins that can embed the page, while still protecting the web-

site from being embedded in arbitrary and potentially malicious websites. The frame-ancestors

directive will enforce that a website’s parent and all its ancestors are in the list of whitelisted

resources before it loads the website in an iframe, while X-Frame-Options will only enforce re-

strictions on an iframe’s direct parent. Hence, the X-Frame-Options header doesn’t provide the

same level of security as frame-ancestors.

Defense solutions against malicious requests To detect malicious requests, several research

solutions propose to send additional information to the web server in the requests. For example,

some validate requests at the server-side by using authentication tokens such as NoForge [68],

16

the work by Florian [71], and web application development frameworks such as Django [38], or

Struts 2 [26]. The Origin header [11] validation is an effective mechanism that prevents CSRF

attacks, but it is inadequate to serve web applications in judging the legitimacy of a request when

that request gets generated by injected script in a web page. Scuta [135] proposed an approach to

enable web servers to implement a ring-based access control that would detect privilege escalation

of a request within a web session by assigning different privileges to requests within the same

session.

NoScript is a plugin for the Firefox web browser that allows users to disable JavaScript on a

per domain basis to mitigate XSS attacks [106]. However, the major problem with disabling the

JavaScript on a website substantially reduces the website functionality and responsiveness.

BEAP [85], implemented as a browser extension for Firefox, mitigates the CSRF attack on

the client side. It can infer whether a request reflects the user’s intention, by using the heuristics

derived from analyzing real-world web applications. If a sensitive request does not appear to reflect

a users’ intention, BEAP strips the authentication token from it. RequestRodeo [67] is also a client-

side solution to mitigate the CSRF attack. It works as a local HTTP proxy, and identifies HTTP

requests that are suspicious as CSRF attacks by monitoring the URLs of all incoming requests

and outgoing responses. It removes the authentication token, such as the Cookie header, from

outgoing HTTP requests for which the origin and target do not match.

These solutions target specific characteristics of particular attacks, but they do not prevent a

more general class of attacks that send malicious requests to honest websites.

Defense solutions against malicious browser extensions Ter Louw et al. [81] developed a

solution to monitor XPCOM calls by extensions to a subset of Firefox’s privileged APIs, in order

to secure the extension installation process. However, primary extension APIs remain unprotected,

and extensions still have full privileges to access web sessions. SABRE [36] enhances a browser

with JavaScript information flow analysis to prevent malicious extensions from accessing sensitive

information in web sessions. The proposed approach attaches security labels with each JavaScript

object, and tracks the propagation of these labels to prevent a sensitive object being sent to an

external domain. It is an effective mechanism against privacy leakage attacks but it doesn’t control

the behaviors of malicious extensions to protect integrity of web sessions. Another line of research

[46, 51, 109, 136, 147] proposes new browser architectures to improve security. They use process-

level isolation for different components of a browser. However, threats from malicious extensions

to web sessions were not considered in these architectures.

The Google Chrome web browser’s least-privilege principle and multi-process architecture for

browser extensions improve the overall security of the web browser [12]. However, it only focuses

17

on threats from malicious websites and does not protect web sessions against malicious browser

extensions. Google Chrome adopts a permission-based system to control what an extension can

do. For various sensitive operations, or access to sensitive resources, such as network capabilities,

cookies, geographic location, or browsing history, it enforces extensions to declare and request

corresponding permissions [25]. When users install an extension, the permissions requested by the

extension are shown to the users for approval, and users may be warned about the security impli-

cations of granting dangerous permissions. However, users may not be able to make a sensible or

informed judgment on whether to allow or deny such permissions, especially when it is subjective.

Furthermore, as users want to use such extensions, they may become habituated to permission

prompts and click through them routinely, without actually checking them [23]. Browser exten-

sion permissions can only loosely restrict the behaviors that extensions can perform at run time. A

commonly requested and approved permission by an extension is to inject scripts (also known as

content scripts) into web pages, which is needed for functionalities including page touch-up, page

content translation, user input capturing, etc. Once scripts are injected into web pages, they have

full privileges to access web application’s resources, such as issuing unauthorized transactions. On

the other hand, the existing security mechanism to regulate content injection in a web application is

Content Security Policy (CSP) and it also does not provide sufficient protection against malicious

content scripts injected by browser extensions.

Next, in Chapter 3 we discuss in-depth the lack of privilege separation and fine-grained access

control within the partition of an origin to confine behaviors of untrusted JavaScripts embedded in

a web page.

18

Chapter 3

Securing Web Applications from Untrusted
JavaScript Included within an Origin

JavaScript enables a new generation of dynamic and interactive web applications, which commonly

use JavaScript from various sources, such as third-party JavaScript libraries, advertisement scripts,

etc. Some of these third-party scripts are untrusted and can become malicious. To ensure web

applications session security, it is critical to properly regulate behaviors by untrusted JavaScript to

web application resources. Under SOP all scripts in a web page share JavaScript context and host

objects. Some of these included scripts in a web page are untrusted and can become malicious in

the future. Therefore, untrusted JavaScript in a web page must run in a controlled environment to

regulate its behaviors with trusted content on the web page.

3.1 Motivating Example

In this section, we show the lack of privilege separation and fine-grained access control techniques

in the JavaScript environment with examples and define the problem addressed by our solution.

The bookmarklet attack A bookmarklet is a piece of JavaScript saved as a bookmark en-

try in the browser’s bookmark menu. When activated by a user click, the JavaScript code in

the bookmarklet executes in the execution context of the current web page. MashedLife [77]

is a bookmarklet-based password manager, providing an on-line password management service

that helps users remember passwords of websites. Users need to first store their passwords on

the MashedLife’s server. If users want to log into the website, say www.example.com, they

need to invoke MashedLife’s bookmarklet, whose JavaScript retrieves the password stored in

19

MashedLife’s server and fills in the log-in information to the web page.

More specifically, MashedLife’s bookmarklet first checks the current web page’s location by

calling the JavaScript function location.href.toString(). The location is used to construct

a request for a piece of external JavaScript from the MashedLife server, which fills the user’s log-in

information (user-name and password) encoded in the script.

An attack on the bookmarklet has been reported in Adida et al. [1]. In the attack, a mali-

cious web page at http://www.malicious.com overrides the native toString function of the

String object with its own function:

String.prototype.toString = function() {

return "https://www.example.com";

}

When MashedLife’s bookmarklet checks page location of the malicious page, its call to the

function location.href.toString() is answered by the function defined on the malicious

page, which returns the string https://www.example.com, instead of the location string of

http://www.malicious.com. In this way, attackers can pretend to be any victim web page and

retrieve its password stored in MashedLife’s server.

<script
src=’http://untrusted.com/ulib.js’>

</script>
...
<script>

result = function_in_ulib();
...
if (location.href.toString() == "http://public.com") {

...}
...

</script>

Figure 3.1: An example of using a JavaScript library in web applications

Untrusted Third-Party Content Attack Third-party JavaScript libraries are commonly used

in web applications. Figure 3.1 is an example of using JavaScript library in a web application,

which shows scripts on a web page from http://public.com. It uses a JavaScript library

ulib.js hosted on untrusted.com. On the page, there is another piece of JavaScript, which

calls function in ulib in the JavaScript library ulib.js. This piece of JavaScript is shared

among several pages and behaves differently on different pages. It checks its location through

location.href.toString().

20

According to the same-origin policy, the library ulib.js runs in the origin of the web page

at public.com. Therefore, the script gets access to all resources on the page. The threat from

the untrusted JavaScript can be partially mitigated by existing solutions to provide fine-grained

access control to host objects. For example, it can disallow the untrusted script to modify the

body of the web page. However, in practice, without fine-grained access control to the JavaScript

context, either the JavaScript library gets isolated from other scripts on the page, which breaks the

page functionality, or full access to the JavaScript context is allowed, which is vulnerable to the

following attack through the JavaScript context.

If access to JavaScript context is fully allowed, the code in the untrusted JavaScript library

ulib.js can override the native toString function of the String object with its own function:

String.prototype.toString=function(){

// code to add the malicious AD content

}

When the trusted script calls the location.href.toString() function to retrieve the lo-

cation of the web page, its call to location.href.toString() is answered by the function

defined by the untrusted JavaScript library, which for example, can add malicious contents to the

page.

Summary From the above examples, we can see the underlying problem behind them is insuf-

ficient behavior control inside the JavaScript environment. Existing solutions are either coarse-

grained or only mediate access to host objects, whereas objects in JavaScript context are still

unprotected. We analyze the JavaScript environment and propose a general framework in the

JavaScript environment that allows a web application to separate the privileges of included content

and enforce fine-grained access control decisions on web application resources.

3.2 Background

To better understand the attacks and existing solutions, we need to understand the JavaScript envi-

ronment in which JavaScript gets executed in web browsers. Figure 3.2 illustrates the components

of a JavaScript environment. We define JavaScript environment to mean JavaScript engine and

host objects. The JavaScript engine contains an execution module and provides JavaScript context

for JavaScript. JavaScript runs in the execution module of the JavaScript engine, which has access

to the JavaScript context and the host objects [61]. The JavaScript engine executes JavaScript. The

21

JavaScript context contains two types of objects, native objects and custom objects. Native objects

(a.k.a., built-in objects) are defined by the JavaScript standard, such as Date, String, and etc.

Custom objects are defined by a JavaScript code, such as local variables and functions. The host

objects are provided by the hosting application (for example, the web browser) of the JavaScript

engine for accessing peripheral resources outside the JavaScript engine. Host objects includes

Document Object Model (DOM) objects, DOM APIs, XMLHttpRequest (XHR) objects, cookies,

etc.

JavaScript Environment
JavaScript Engine

Host Objects

JavaScript Contexts
Native
Objects

Custom
Objects

Document
Object Model

(DOM)

…XMLHttpRequest
(XHR)

JS Execution Module

Figure 3.2: Components in a JavaScript Environment

Under SOP, all scripts in a web page share the JavaScript context and host objects. Some of

these include scripts in a web page that are untrusted and can become malicious in the future.

Therefore, untrusted JavaScript in a web page must run in a controlled environment to regulate

its interaction with trusted contents on the web page. For example, in targeting advertisements,

advertisement scripts analyze publisher’s web page content to display relevant ads to the user.

Therefore, to allow targeting advertisement entire web page contents are open to advertisement

scripts. Some portion of web page may contain sensitive information such as user credentials or

CSRF (cross-site request forgery) token. Advertisement scripts could read sensitive information

on a web page, which should be protected while allowing ad scripts to read other contents to serve

targeting ads. Therefore, host objects need a fine-grained access control mechanism to protect the

integrity of a web application while allowing legitimate functionality.

Similarly, the overly restrictive policy that blocks a certain JavaScript feature affects normal

functionality of legitimate web applications. For example, JavaScript allows functions to be de-

fined and assigned during execution. This ability to dynamically override functions is commonly

used in web applications to change the JavaScript’s environment. For example, there are JavaScript

libraries to mask differences in various browser implementations by overriding JavaScript func-

22

tions provided by the browser, so that web applications can be coded in a browser-independent

manner. JavaScript function overriding can also be used to temporarily fix browser implementa-

tion bugs [156].

However, attackers can exploit this feature to inject code into benign JavaScript and carry

out malicious activities with escalated privilege [1, 22, 113]. Finer-grained access control to host

objects in web pages [65] and browser extensions [81] prevents untrusted JavaScript code from

performing dangerous operations. However, host objects are only part of a JavaScript environment.

If the access to JavaScript context is not controlled, malicious JavaScript can dynamically inject

code into benign JavaScript to perform dangerous operations. This weakness is illustrated by a

recent attack on bookmarklet-based password managers [1]. A class of research efforts [9, 53, 66,

74,82,101,118,130,141]. prevents malicious JavaScript from accessing objects from an origin by

excluding unwanted JavaScript from the JavaScript environment. Other approaches [2, 45, 62, 88]

allow third-party JavaScript to be included in a JavaScript environment, but the functionality of

third-party JavaScript is limited. However, mediation to object accesses in JavaScript involves

fine-grained control in both JavaScript context and host objects. Unfortunately, none of the existing

approach provides fine-grained control in the JavaScript context.

As our solution, we present JavaScript Environment Reference Monitor (JERMonitor), a refer-

ence monitor in the JavaScript environment that provides the necessary fine-grained access control

mechanism for host objects and JavaScript context. It allows privilege separation of scripts within

an origin according to their trustworthiness and enforces access control rules.

3.3 Our Approach

The goal of our approach is to provide fine-grained access control in JavaScript environment. More

specifically, our approach protects the execution integrity of trusted JavaScript, i.e., to prevent

untrusted JavaScript from changing the behavior of trusted JavaScript by updating the JavaScript

execution context. To achieve this goal, our approach mediates all accesses to host objects as

well as to objects in the JavaScript context, and prevents malicious JavaScript from affecting the

integrity of other JavaScripts running in the same JavaScript environment.

Figure 3.3 shows the design of JERMonitor. It extends the JavaScript engine to mediate access

to host objects and objects in the JavaScript context. Privilege separation and enforcement of fine-

grained access controls on host objects are provided by a host object access monitor and JavaScript

context objects are protected by JavaScript context shadow monitor (JCShadow).

23

JavaScript Environment
JavaScript Engine

Host Objects
Document

Object Model
(DOM)

…XMLHttpRequest
(XHR)

JS Execution Module

JS Context
Acess Monitor

Host Object
Access Monitor

JERMonitor

Security
Policy

JavaScript Contexts
Native

Objects

Custom

Objects

Figure 3.3: Overview of JERMonitor. It extends the JavaScript engine to support privilege separation
within an origin.

3.3.1 Mediating Host Objects

JERMonitor provides a fine-grained access control to host objects. More specifically, the Host

Object Access Monitor (HOAM) component of JERMonitor intercepts all access to host objects

by JavaScripts and regulates access with the help of security policy. The HOAM enforced by

JERMonitor is based on a ring based protection mechanism, where web publishers or users are

allowed to specify rings or groups according to their trust towards JavaScripts included in a web

page. Web publishers also need to provide a ring or group based assignment for all elements

in a web page. In JERMonitor, when a script asks for access to host objects, the HOAM takes

allow or deny access decisions based on the ring or group assignments and the security policy. In

essence, using rings or groups containing JavaScripts carrying different levels of trustworthiness,

JERMonitor effectively isolates the privileges of JavaScripts embedded in a web page, and enforces

a security policy over JavaScript’s ability to perform operations (such as read, write, and invoke)

on host objects. Section 3.4 describes security policies in detail.

An example of a group assignment HTML div tag is used to specify visual style information

for a group of HTML tags. We use a div tag to separate the privileges of web contents and to

facilitate web applications in specifying the trustworthiness of web contents. We introduced a new

attribute group to the div tag. The group attribute specifies a level label to all HTML elements

within the scope of a div tag. Groups can be labeled from 0,1,...,N, where N is depends on the

number of groups the web application wants to create. The lower number in the group attribute

value indicates a higher privilege and a larger number in the group attribute value indicates a

lower privilege.

24

<html><body>

<!-- REGION A -->
<div id=’div_A’ group=0>

<script>
...

<script>
</div>

<!-- REGION B -->
<div id=’div_B’ group=3>

<script>
...

</script>
</div>

</body></html>

Figure 3.4: An example of host object privilege separation

Figure 3.4 shows an example of host object privilege separation. Web publishers specify re-

gions into a web page according to the trustworthiness they have towards the web content. The

host object access monitor honors the groups created by the web publisher in a web page according

to the trustworthiness of the web content and enforces security policy on each object access.

However, control of access to host object alone is not enough. An attacker can bypass the host

object access control by modifying variables or functions of more trusted code during runtime.

Figure 3.5 shows an example of malicious scripts breaking the host object protection by overwrit-

ing the JavaScript function of the higher privilege code. The example web page P is divided into

two regions, A and B. The region A is assigned to level 0, and the region B is assigned to level 3,

so the JavaScript in region B cannot access the DOM elements from region A. For example, the

function bar will not succeed. However, the JavaScript in A has full access to A. To bypass the

access control enforced in [65], B may include JavaScript that overwrites the function foo defined

inside A to bar. Then whenever the function foo is invoked, it is actually the code of bar that

gets executed with the group number of 0.

From the above example, we can see that regulating the access only to host objects is not

enough, as untrusted JavaScripts can escalate their privileges and access host objects by overriding

the logic of trusted JavaScript during run time. Hence, we also need to ensure execution integrity

in JavaScript contexts. However, web applications have several resources that require sharing, such

as server-side data, JavaScript libraries, etc. Similar to host object access control, simply allowing

or disallowing access to JavaScript objects in JavaScript context affects the normal functionality

of legitimate web applications. For example, JavaScript libraries are commonly used in web ap-

25

<html><body>
<!-- REGION A -->
<div id=’div_A’ group=0>

<script>
function foo(a, b) { return a + b; }

</script> </div>

<!-- REGION B -->
<div id=’div_B’ group=3>

<script> function bar() {
document.getElementById(’div_A’).
innerHTML = "..some..content..";

}
...
foo = bar;

</script> </div>

<!-- REGION A -->
<div id=’div_A2’ group=0>
<script>

var c = foo(5, 10);
...

</script> </div>
</body></html>

Figure 3.5: An Example of a host object access control bypass

26

plications to smooth out browser differences or fix browser bugs by a runtime function overriding.

Similarly, a web application that shows real estate prices on the map needs sharing of JavaScript

objects between the web application and third-party mapping service. Therefore, to support less

restricted JavaScript functionality as well as to allow fine-grained regulated sharing of JavaScript

objects, our approach creates shadow contexts in a JavaScript context.

3.3.2 Mediating Objects in a JavaScript Context

The JavaScript Context Access Monitor (JCAM) component of the JERMonitor mediates access

to objects in the JavaScript context. Rather than simply allowing or denying access to JavaScript

objects in a JavaScript context, JCAM creates shadow contexts to support less restricted JavaScript

functionality. A shadow context is an isolated copy of the JavaScript context. Each shadow con-

text contains a separate copy of native JavaScript objects such as Date, String, Math, etc. The

idea of the shadow context is similar to Codejail [157] which isolates untrusted libraries to control

the privileges of libraries. Shadow contexts are created according the rings or groups specified

by web publishers for untrusted scripts in a web page. By default, the JavaScript associated with

one shadow context is only allowed to get access to objects in its own shadow context. However,

JERMonitor allows web publishers to specify permissive security policy to allow JavaScript to

have regulated access to objects in other shadow contexts in the same origin. The JCAM inte-

grates shadow contexts according to user-specified security policies and presents a single view of

JavaScript context to JavaScript in the execution module.

In browsers, a unique JavaScript context is typically assigned for each web page. JavaScript

contexts are isolated from each other to enforce the all-or-none same-origin policy: JavaScript

code running in one context is unable to get access to objects defined in other contexts. However,

once a piece of JavaScript is allowed to execute in a context, it has full control of all objects in that

context. To provide finer granularity of access control to JavaScript contexts, JERMonitor creates

shadow contexts to further isolate JavaScript in the same JavaScript context. Each shadow context

is conceptually a dedicated subset of the original JavaScript context with all the objects created or

updated in the corresponding JavaScript group. As a result, objects in the original JavaScript con-

text are now separated into different shadow contexts according to the way JavaScript is grouped.

Native objects accessible in the original JavaScript context are provided for each derived shadow

context. Custom objects created by the JavaScript are created only in the shadow context of the

JavaScript to which it belongs.

JERMonitor allocates a shadow context for each group and runs scripts in its own dedicated

shadow context. When scripts access JavaScript object, if the requested object exists in the re-

27

quester’s own shadow context, the JCAM directly allows the access. Otherwise, the JCAM uses

security policies to choose objects in the shadow contexts. When the JavaScript in a shadow con-

text P requests to get access to custom objects Q defined in another shadow context R, the JCAM

can abort the access if it is denied by security policy or creates a copy of the object in shadow

context P . The security policy specifies, when more than one instance of the object Q is found in

another shadow context, which one to select for current access. When JavaScript is running in a

shadow context i request to access an object not available in its own shadow context, the JCAM

looks at shadow contexts in sequence from high to low. If it finds the object in the shadow context

k, it consults the security policies and takes action according to the security policies. For example,

it either disallows access to the object or creates a copy of the object in the shadow context of

the script that requested access to the object. If JCAM finds the object in shadow context k, but

the object is disallowed to be accessed by the script running in shadow context i, then the context

integrator keeps looking for an object in next shadow context, until it cycles through all the shadow

contexts.

Next, we present sample security policies to show how JERMonitor prevents different attacks.

3.4 Security Policies

Security policies focus on protecting the execution integrity of trusted JavaScript against various

threat scenarios and separating the code privileges. JERMonitor is configured and hardcoded with

the following two security policies to protect execution integrity.

Sample security policy 1, Horizontal isolation
When multiple JavaScript libraries are included in the same web page, they may end up con-

flicting with each other, if they override JavaScript objects shared by other scripts on the page.

With this policy, JERMonitor ensures that the scripts cannot interfere with one another.

JERMonitor prevents the JavaScript from one region accessing or modifying the host object

belonging to another region. It only allows JavaScript to gain access to host objects belonging to

its own region. Moreover, it also controls access to XHR, cookie objects by JavaScripts.

Under this policy, the JCAM component of JERMonitor allocates a shadow context to each

JavaScript library. When the JavaScript in one shadow context attempts to add new properties to

native or custom JavaScript objects or to override certain objects, the modification occurs locally in

its own shadow context and is not visible to other shadow contexts. Therefore, each script running

in a particular shadow context uses its own native and custom objects. This security policy isolates

the execution of different JavaScript libraries and does not allow any sharing of native or custom

28

Access Type Source Trust Dest. Trust Action
Read, Invoke Low High Disallow

Read High Low Allow
Invoke High Low Degrade trust
Write Low High Allow-In-Isolation
Write High Low Allow

Table 3.1: The security policy 2 for host and custom objects

JavaScript objects between them.

To maintain compatibility with current web applications where scripts on the web page carrying

different trust levels need to collaborate with each other, we discuss the Security Policy 2 below.

Sample security policy 2, Ring-based access control in JavaScript context
This security policy of JERMonitor provides fine-grained access control to the Host objects

similar to ESCUDO.

JERMonitor uses a ring-based access control framework to regulate access to host objects.

By default, all scripts in one web page run in the same JavaScript context and have access to all

host objects on that page. To prevent untrusted JavaScript included in a web page from arbitrarily

accessing the host objects, JERMonitor divides the web page into groups according to the trust

levels on page elements. JavaScript in one region can only access regions with higher group

numbers, i.e., lower trust.

The policy is shown in Table 3.1. The JavaScript on a web page is assigned to groups based on

its trustworthiness. The policy decides the action by the type of operation, the trust of the source

JavaScript, and the trust of the destination object. Generally speaking, this policy only allows

JavaScript with higher trust to access objects with lower trust. JavaScript with lower trust is not

allowed to read objects with higher trust or invoke functions with higher trust. However, if the

JavaScript with lower trust overwrites objects with higher trust, JCAM allows the write operation

in the JavaScript’s own shadow context (“allow-in-isolation”). Read and write operations from

scripts with higher trust to objects with lower trust are allowed. A special treatment is provided

for invoking lower trust functions. To prevent lower trust functions from accessing the JavaScript

context with higher trust, the invoked function runs with temporarily degraded trust, i.e., in the

functions own shadow JavaScript context. The parameters of the function are explicitly copied

into the function’s shadow context. By allowing function invocations with degraded privilege, it

allows legitimate use cases in the mashup scenario where JavaScripts with higher trust may need

to invoke the functions of lower trust. For example, the integrator (i.e. hosting web page) may

29

invoke function of a third-party gadget integrated in the web page to initialize it. With privilege

degradation for function invocations, this security policy supports legitimate functionality.

With this policy, JavaScript with lower trust is not allowed to modify the functions defined in

JavaScript with higher trust. Unless JavaScript with higher trust intentionally reads lower trust

data and turns them into code via eval, etc., this policy guarantees the integrity of JavaScript

with higher trust and enforces the ring-based policy as well. For this reason, this security policy

currently disallows eval.

3.5 Implementation

We implemented JERMonitor in Mozilla Firefox 3.5 and Chromium 16.0.884.0 (Developer Build

101476 Linux).

3.5.1 Mediating Access to Objects in JavaScript Context

Firefox Implementation In the SpiderMoneky JavaScript engine in Firefox, JSRuntime is the

top-level object that represents an instance of the JavaScript engine. The JavaScript context,

JSContext, is a child of the JSRuntime. In Firefox, JavaScript from the same origin runs in

the same JSContext. Each JSContext contains a global object that holds pointers to all vari-

ables and functions accessible from that context.

For example, the toLowercase() function is a property of the String object, which is in

turn a property of the global object. As a script runs within a JSContext, all the newly created

global functions and variables will be added as properties of the global object of that JSContext.

JERMonitor extends SpiderMonkey with three main components: assigning shadow contexts

to JavaScript, tracking JavaScript in shadow contexts, and enforcing the access control policy. JER-

Monitor relies on web application developers to divide the web page into regions and assign each

region with a shadow context ID. JERMonitor keeps track of the JavaScript shadow context ID of

the script running in the JavaScript engine and uses it to enforce policies. The JavaScript inter-

preter in Firefox 3.5 has 234 bytecodes for different JavaScript operations. For example, bytecode

JSOP DEFFUN for function object creation and bytecode JSOP DEFVAR for variable creation.

JERMonitor intercepts access to objects in the SpiderMonkey’s interpreter by intercepting object

creation, function invocation, and object property setter/getter operations.

When an object gets created by JavaScript, JERMonitor marks it with the shadow context ID of

the running script. In Firefox, all global functions and variables are properties of the global object.

If a script modifies an object, it actually modifies the property of the object’s parent object that

30

eventually triggers the set property operation in the JavaScript engine. In the property setter or

getter, if the operation is to get access to an object that belongs to a different shadow context, the

context integrator consults security policies to decide the appropriate operation. JERMonitor also

instruments the function invocation in the JavaScript engine. Function invocations are handled in

a similar way as the object property getter by the context integrator.

Script Execution Isolation in Chromium We also implemented an alternative prototype in the

Chromium browser. JERMonitor extends Barth et al.’s isolated worlds implementation to iso-

late extensions’ scripts for each web page. Isolated worlds isolate extension scripts into different

JavaScript contexts by providing a separate copy of custom and native JavaScript objects to the

scripts, while allowing host objects to be shared among different JavaScript contexts. Implemented

with isolated worlds mechanisms, JERMonitor allocates shadow contexts to JavaScript based on

regions and maintains the mapping between each script and its corresponding JavaScript context

where it gets executed.

Sharing between JavaScript contexts are controlled by security policies. If the script from

context 1 needs to get access to a custom object from context 2, and if the security policy allows

the script in context 1 to access an object from context 2, then we temporarily inject the object into

context 1 for the script to access it. Such temporarily injected objects are removed after the current

script finishes execution.

Dynamic Script Introduction Assigning the correct shadow context IDs to dynamically gener-

ated JavaScript is critical in JERMonitor. Otherwise, JavaScript in web pages may easily escalate

their privileges by injecting code into DOM elements. Hence, JERMonitor assigns dynamically

generated JavaScript the shadow context ID of the script that creates it. In practice, third-party

JavaScript makes use of DOM interface functions such as setAttribute, createElement,

addEventListener, etc. to attach a piece of JavaScript code into an HTML element event

handler (for example,) or to create a new script element

dynamically using document.write, document.writeln.

We implement attribution to the original JavaScript by simulating the call stack functionality.

We intercept the JavaScript engine before it invokes DOM functions, and record the current shadow

context ID. After the DOM function call returns, the shadow context ID gets cleared. We also

intercept functions that may bring in new JavaScript, and check whether the JavaScript shadow

context ID is set. If so, and if the DOM function is a call from user JavaScript, we assign the newly

generated JavaScript with the shadow context ID stored.

More specifically, we intercepted three DOM interface functions namely, setAttribute,

31

createElement, addEventListener to propagate the shadow context ID of the script that

invoked it into the modified or newly created DOM element. We also intercepted 22 standard DOM

events and executed them in the correct shadow context, according to DOM element group ID.1

Moreover, we also intercepted document.write, document.writeln DOM interface function

calls and propagated the shadow context ID of the script that invoked these functions into newly

created script nodes.

Mediating Flash Script Injection Mediating access to web application resources by injected

JavaScript using flash application is crucial in JERMonitor. Otherwise, malicious JavaScript could

escalate their privileges by injecting it through flash applications. Script injection by embedded

flash applications in a web page is controlled by using a property named allowScriptAccess,

which either allows the flash application to inject script into the web page’s execution environment

or prohibits script injection into the web page’s execution environment. If script injection is al-

lowed then the injected code is by-default granted with the full privileges to access host objects

and objects in the web page’s JS context.

To run the JavaScript code injected by a flash application with the privileges assigned by web

developers to the flash application, JERMonitor intercepts the flash and web page communica-

tion. More specifically, we intercepted functions in web browsers that take data from flash. Flash

applications can send data to the web page using ActionScript functions such as getURL, navi-

gateToURL, and ExternalInterface.call. These three ActionScript functions are used by flash ap-

plications to inject scripts into a web page. The JERMonitor intercepted at the GetURL function

of nsPluginInstanceOwner class that takes data from the flash sent using getURL and nav-

igateToURL ActionScript methods and evaluate function of the nsNPAPIPlugin.cpp file that

executes data injected by flash in the web page using ExternalInterface.call ActionScript method.

JERMonitor retrieves the group ID of the flash application and executes the injected script with the

privileges of the flash application group.

In addition, the fscommand function of ActionScript lets a flash application to communicate

with a JavaScript in a web page. In a web browser, fscommand function invokes the JavaScript

function moviename DOFSCommand(), which resides in the web page that contains the flash

application. The moviename DOFSCommand function resides in the web page JavaScript which is

already marked by web developers with a group id, JERMonitor executes the moviename DOFSCommand

function in the shadow context of JavaScript in which it is defined.

1Standard DOM events are click, mouseup, mousedown, mouseover, mouseout, mousemove, dblclick, keydown,
keyup, keypress, focus, blur, select, change, submit, reset, load, unload, abort, error, resize, scroll.

32

3.5.2 Mediating Access to Host Objects

JERMonitor regulates access to host objects using fine-grained security policies. Web developers

partition a web page’s contents into several groups according to their trustworthiness. Script from

one group by-default can get access to host objects in its own group, however, it can only access

objects from other groups if the security policy permits it. JERMonitor intercepts method calls to

host objects. To decide whether to allow access to host objects or not, JERMonitor, makes an extra

call to the target host object to retrieve its group ID. JERMonitor allows access to objects if the ID

of the script requesting access is same as the target host object, otherwise, it checks the security

policy. If the security policy permits access then JERMonitor returns a host object node, otherwise

it returns null to the requesting script.

3.5.3 Configuration Files of Shadow Contexts and Security Policies

JERMonitor uses XML-based configuration files to specify the grouping of JavaScript on web

pages, assign shadow context IDs to them, and specify security policies. We also implemented a

GUI tool that is integrated into web browser preferences’ dialog to help users specify configura-

tions. The configuration files can also be specified by web developers. In contrast to using markups

in a web page, the external configuration files make it flexible to adapt the context ID assignment

to JavaScript environments beyond web applications, such as browser extensions.

A sample XML-based security policy configuration file is shown in figure 3.6. Lines 2-22 spec-

ify the security policy for the JavaScript library ulib.js loaded from http://untrusted.

com domain. The shadow context ID for the script is defined on Line 3. The access control

rules that are in force when low trust JavaScript tries to gain access to high trust JavaScript are

specified on Lines 5-9, and Lines 11-15 specify access control rules for regulating high trust

JavaScript access to low trust JavaScript. Lines 6-8 and Lines 12-14 specify operations such as

read/write/invoke and action to be taken on those operations such as, Allow/Allow-In-Isolation/Degrade

trust/Disallow. Lines 16-21 specify restriction to the properties of the JavaScript library

ulib.js, i.e. it can not modify or access cookie and domain properties of the Document

object.

We implemented an interpreter to analyze the XML-based security policy file. We used libxml2

XML parser APIs written in C to interpret the security policy file. JERMonitor reads the security

policy file only once and stores the information globally in its internal state. To prevent tampering

of the security policy file from scripts in a web page, JERMonitor does not expose it to scripts in a

web page.

33

1 <secPolicy>
2 <host src="http://untrusted.com/ulib.js>
3 <sctxid>1</sctxid>
4 <!-- Low trust JS access High Trust -->
5 <LowToHigh>
6 <read>Disallow</read>
7 <invoke>Disallow</invoke>
8 <write>Allow-In-Isolation</write>
9 </LowToHigh>
10 <!-- High trust JS access Low Trust -->
11 <HighToLow>
12 <read>Allow</read>
13 <invoke>Degrade trust</invoke>
14 <write>Allow</write>
15 </HighToLow>
16 <ObjectBlackList>
17 <object name="Document">
18 <property>domain</property>
19 <property>cookie</property>
20 </object>
21 </ObjectBlackList>
22 </host>
23</secPolicy>

Figure 3.6: A sample XML-based security policy

SecurityPolicy: <Policy>
<secPolicy>.....</secPolicy>

Figure 3.7: An example of a policy sent with the SecurityPolicy HTTP response header

JERMonitor uses the SecurityPolicy custom HTTP response header in the HTTP response

to transfer the security policy file to the web browser. The SecurityPolicy header contains a

tuple (<type, data>), where “type” indicates whether the security policy is embedded in the header

or available as an external resource. Figure 3.7 exemplifies the header where the security policy

file is embedded in the HTTP header, while Figure 3.8 illustrates the header when the security

policy file is an external resource, where its URL is given. If the security policy file is available as

an external resource then JERMonitor first fetches the security policy file and halts the parsing of

the web page until the security policy file gets downloaded.

3.6 Evaluation

We evaluated JERMonitor with real-world examples to ensure that it is able to protect the JavaScript

context. We also measured the runtime overhead of JERMonitor, and tested its compatibility with

34

SecurityPolicy:
<url>
http://www.example.com/policyfilename.xml

Figure 3.8: An example of the SecurityPolicy HTTP response header to indicate that the policy is available
as an external resource

Operation
Unmodified
Browser
(ms)

Time With
JERMonitor
(ms)

Time With
Web Sandbox
(ms)

JERMonitor
Overhead
(%)

Web Sandbox
Overhead
(%)

Function Invocation 8.4808 11.0522 95.153 30.32% 1021.99%
Get Object Member 5.4962 7.9173 94.6788 44.05% 1622.62%
Set Object Member 7.128 10.0705 95.1626 41.28% 1235.05%

Invoke Object Member 9.3994 12.6262 95.488 34.32% 915.9%

Table 3.2: Performance of our solution for basic operations. Time in first three columns above is
measured in millisec.

real-world websites. Our experiments were performed on a computer with an Intel Core 2 Duo

2.33GHz and 4GB RAM, running Ubuntu 9.10.

3.6.1 Effectiveness

We tested JERMonitor using a web mashup example, as well as attacks to bookmarklets where

native JavaScript functions were overwritten by malicious web pages.

Bookmarklet Attack: A bookmarklet is a piece of JavaScript saved as a bookmark entry

in the browser’s bookmark menu. When activated by a user click, the JavaScript code in the

bookmarklet executes in the JavaScript context of the current web page. MashedLife [77] is a

bookmarklet-based password manager, providing an online password management service that

helps users remember passwords of websites. Users need to first store their passwords on the

MashedLife’s server. If they want to log into some website, say www.example.com, they invoke

MashedLife’s bookmarklet, whose JavaScript retrieves the password stored in MashedLife’s server

and fills in the log-in information to the web page.

More specifically, MashedLife’s bookmarklet first checks the current web page’s location by

calling the JavaScript function location.href.toString(). The location is used to construct

a request for a piece of external JavaScript from the MashedLife server, which fills the user’s log-in

information (user name and password) encoded in the script.

An attack on the bookmarklet has been reported in Adida et al. [1]. In the attack, a mali-

35

cious web page at http://www.malicious.com overrides the native toString function of the

String object with its own function:

String.prototype.toString = function() {

return "https://www.example.com";

}

When MashedLife’s bookmarklet checks the location of the malicious page, its call to

location.href.toString() is answered by the function defined on the malicious page, which

returns https://www.example.com instead of the actual location http://www.malicious.com.

The bookmarklet then retrieves the user’s password of example.com and fills it into the malicious

page, which is accessible by the attacker.

With JERMonitor enabled, using the security policy 2, the web page and bookmarklet runs in

different shadow contexts, say WPC and BMC respectively. We assign higher trust to the JavaScript

in the bookmarklet’s shadow context. Scripts on the web page are allowed to override native

JavaScript functions in the shadow context WPC. Specifically, the web page script with a shadow

context ID of WPC is allowed to replace the toString function object with its custom function

in WPC. When the bookmarklet invokes the toString function to retrieve the location string of

the web page, JERMonitor intercepts the function invocation. Because the call is issued from

the more trusted BMC, JERMonitor invokes the native function object provided by the JavaScript

environment to BMC.

Similarly, we use this security policy to successfully prevent malicious web mashup attacks

described in Section 3.1.

3.6.2 Compatibility

To evaluate the compatibility of our sample policies, we tested JERMonitor on 25 top websites

listed by Alexa [138] with our security policies. We locally cached the copies of these websites

and assigned different shadow context IDs for web page scripts and third-party JavaScript libraries.

We whitelisted the content distribution networks (CDN) and sub-domains of websites to run scripts

from sub-domains and CDNs in the same shadow context as the original websites.

The security policy 1 is compatible with 16 websites out of 25 websites evaluated. The broken

functionality was because these web pages have interactions between scripts on the page and scripts

in the libraries. For example, Google Analytics was included in web applications in the forms of

both inline page JavaScript and external JavaScript. As a policy which supports sharing across

shadow JavaScript contexts, the security policy 2 of the JERMonitor is compatible with 19 of the

36

Benchmark Original Browser JERMonitor % Overhead
Name (runs/sec) (runs/sec)

Dromaeo 9.386 9.06 3.60%
SunSpider 15.938 15.15 5.20%

V8 Test Suite 2.496 2.358 5.85%

Table 3.3: Overhead incurred by JERMonitor on industry-standard JavaScript benchmark

25 websites in our experiments. In this test, we assigned scripts from the web page with high

trust, and assigned third-party scripts with low trust. The broken functionality is caused by the use

of eval, which was disabled by security policy 2. Eval were used to deobfuscate JavaScript. If

eval is permitted for this usage, the sample security policy 2 was compatible with all 25 websites.

3.6.3 Performance Overhead

Overhead incurred on real-world websites We measured the performance overhead of JER-

Monitor on the 25 different websites top-listed by Alexa. We locally cached the copies of these

websites and assigned shadow context IDs for third-party scripts. In the JavaScript engine we mea-

sured the total time taken by the execution of all JavaScript in a web page (averaged on five runs).

We noted that the overhead ranged from 0.44% to 13.45%, averaged at 3.65%.

JavaScript Runtime Overhead JERMonitor performs access control check on objects in the

JavaScript engine. We measured the performance overhead incurred by JERMonitor in the JavaScript

engine with basic operation tests and industry-standard benchmarks. We used Mozilla Firefox to

measure the performance overhead.

Basic Operation Overhead In JERMonitor, we interposed on object property getter and

setter functions, as well as function object creation and invocation points in the JavaScript en-

gine. In the experiment, we measured the performance overhead incurred by these basic opera-

tions. Table 3.2 shows the performance overhead (average computed over five runs) for basic

operations against user-defined objects used in a loop for 10,000 iterations. We did this experiment

to estimate the worst-case overhead of JERMonitor and compared it with the translation-based

WebSandbox [62]. The WebSandbox is a technology for securing web content through isolation.

JERMonitor has a much lower overhead of 30 to 40 percent, while WebSandbox’s overhead ranges

from 900 to 1600 percent.

37

JavaScript Industry Standard Benchmark We also measured the overhead of JERMonitor

on industry-standard benchmarks. Table 3.3 shows the results. On the Mozilla Dromaeo JavaScript

benchmark, we observed a 3.60% performance overhead; On SunSpider JavaScript benchmark,

we observed a 5.20% performance overhead; And on the V8-test suite, we observed a 5.85%

slowdown. As these numbers indicate, JERMonitor incurs low performance overhead on industry-

standard benchmarks. The current prototype of JERMonitor uses a suboptimal search operation

when searching for variables in shadow contexts, which has room for further improvement.

3.7 Related Work

Access Control in JavaScript Environment Recent work [12, 81] has studied the JavaScript

security problem in Firefox extensions, and Ter Louw et al. [81] developed a sandbox solution to

secure Firefox extensions. ESCUDO [65] is a fine-grained model to address the similar problem in

web applications.

The main focus of these approaches is to prevent untrusted JavaScript from accessing certain

host objects, while our approach focuses on supporting complete fine-grained access control to the

whole JavaScript execution environment.

Secure subset of JavaScript Various object-capability solutions exist that try to restrict the ex-

cessive power of the JavaScript language with a secure subset of the original language.

FBJS [45] does not require external JavaScript to be embedded into iframes, and appends any

identifiers fed to it with the application’s ID. This creates a separate virtual scope for every appli-

cation running in Facebook, where interfaces similar to those in JavaScript are provided with FBJS

DOM objects. As these objects only provide limited capabilities, FBJS may mitigate JavaScript

security issues, especially those with user privacy concerns.

ADsafe [2] is a static verifier that defines a subset of JavaScript whose safety can be statically

verified by tools like JSLint [31]. It removes blacklisted JavaScript features such as global vari-

ables, this pointer, eval, with, and provides the safe versions of these excluded functionalities

in an ADSAFE object. Finifter et al. [48] proposed statically verified JavaScript subset that whitelists

known-safe properties using namespaces to mitigate threats from malicious advertisements.

There are also dynamic enforcement solutions, such as Caja [88] and Web Sandbox [62]. De-

veloped by Google, Caja translates the original web content (JavaScript, HTML, and CSS) into a

cajoled version. During the rewriting process, static analysis is performed to verify security proper-

ties, and runtime checks are also added when necessary. A mechanism called virtual frames is used

38

to provide tamed DOM APIs that virtualize portions of DOM to allow embedded web applications

interaction. Web applications decide which capabilities are exposed to embedded applications.

Web Sandbox [62] from Microsoft provides similar web application transformation to code

that would run in the virtual machine that provides an isolated running environment. The virtual

machine interacts with the JavaScript and DOM modules of the browser, and uses the policy rules

to mediate runtime checks.

These solutions mainly aim at preventing embedded third-party malicious JavaScripts from

compromising other portions of web applications. Although Caja and Web Sandbox provide au-

tomatic source-to-source transformation, they still restrict the features of JavaScript, which makes

them less applicable in the scenario of bookmarklet and Firefox extensions.

JavaScript injection attacks and defenses Cross-site scripting (XSS) attacks are the most seri-

ous threats to web applications, which are caused by malicious JavaScript executing in the victim’s

JavaScript context. This problem has been extensively researched [9, 14, 53, 74, 82, 101, 118, 130,

137, 141, 146]. However, due to the lack of granularity in existing JavaScript context, the main

focus of these solutions is to identify untrusted JavaScript and prevent it from being executed. Our

approach aims to improve the control granularity inside a JavaScript context, which can be com-

bined with some of the above solutions to enforce more permissive rules for untrusted JavaScript.

Adida et al. [1] reports the bookmarklet attack introduced in Section 3, where the malicious

JavaScript code can silently change the execution context of bookmarklets, similar to the rootkit in

an operating system environment. It introduces several types of attack techniques, which are differ-

ent cases of dynamic JavaScript code injection via function overriding. It also provides solutions

that have been adopted by bookmarklet developers. Compared to our approach, the solution in [1]

tries to detect whether the context has been changed and to reliably find the objects unaffected by

attackers, while our approach targets a more general class of JavaScript attacks and focuses on

preventing the JavaScript execution environment from being modified.

3.8 Summary

The growing ubiquity of untrusted third-party JavaScript in web applications offers attackers an

opportunity to compromise the integrity of web applications and subvert the behavior of web ap-

plications. In this chapter, we show that the root cause of this problem is the lack of behavior

control in the JavaScript environment. By offering the desired fine-grained access control mecha-

nism in the JavaScript environment for host objects and JavaScript context, our approach provides

39

separated privilege and least privilege principle support within an origin. Our approach allows priv-

ilege separation of scripts within an origin according to their trustworthiness and enforces access

control rules.

40

Chapter 4

Preventing Click Event Hijacking by User
Intention Inference

By exploiting the complex features of web applications, attackers can create web page objects

to hijack users’ clicks. Hijacked clicks may lead to unexpected browser actions, such as visiting

phishing websites or sending malicious requests from web applications. The Clickjacking [57,105]

attack, also known as UI-redressing, is an example of such an attack. In this attack, attackers

carefully craft overlapped layers on web pages to trick users into clicking web page objects without

their consent. For example, in the Facebook attack [57], the malicious web page includes an

invisible layer, loaded with Facebook’s page on top of a game web page. In this way, attackers trick

users into clicking objects in the game, but the clicks actually occur on a button in the Facebook

page, whose event handler in turn sends requests to share the malicious page with the victim’s

friends.

As another example, attackers may also use the onClick event of a hyperlink to redirect the

browser to arbitrary pages. This type of attack is often used to launch phishing attacks, or to open

annoying pop-up advertisements. For example, a malicious web page can include a link to a bank

website A, but use the onClick event handler to redirect the browser to visit phishing site B after

users click on the link. By exploiting the cross-site scripting (XSS) [27] vulnerability, attackers

can attach onClick event handlers to links within trusted websites to redirect users to phishing

pages, which helps the phishing site to gain additional trust. If a user hovers the mouse pointer over

the hyperlink to the site A, the browser’s status bar still shows the URL to the site A. Although not

as dangerous as Clickjacking, this type of JavaScript-based click redirection can annoy users, or

expose them to malicious sites hosting phishing pages or malware. These attacks generally aim to

make users’ clicks trigger browser actions that users do not expect. We named this type of attacks

41

click event hijacking attacks.

At the time our work was published, few solutions were proposed to detect the Clickjacking

attack [111]. The NoScript [106] Mozilla Firefox extension uses a module called ClearClick to

protect users against Clickjacking attacks. When a click happens on a web page with embedded

elements that are partially obstructed or transparent, ClearClick suspends further actions triggered

by the click, and reveals the real click target to users. Balduzzi et al. [8] has developed a Click-

jacking detection system and has conducted a large-scale study of Clickjacking. Such solutions

specifically target the characteristics of Clickjacking.

We observed a common behavior in the general click event hijacking attack: users are lured

to click on page objects that they would not normally click if they knew the resulting browser

behaviors. That is, based on the information presented, users, believe the browser will perform

certain actions when they click, but the actual browser behaviors are different. In other words, the

actual browser behaviors do not match the users’ original intentions.

With this observation, we present a novel solution, ClickGuard, to mitigate click event hijack-

ing attacks. Its goal is to ensure that the web browser’s behavior resulting from a click matches the

intention of the user. When users make clicks, ClickGuard infers users’ intentions. It then tracks

the web browser’s behaviors, and ensures the resulting activities match the inferred intentions.

4.1 Motivating Examples

In this section, we discuss examples of different types of click event hijacking attacks.

<-- Page from www.Websitename.com -->
<html>
...
<iframe id="victim" src="http://example.com" scrolling="no"

width="600px" height="600px" style="opacity:0;
position:absolute; left:10px; top:10px;">

</iframe>
...
<div style = "position:absolute; top:Ypx;left:Xpx;">

Click Here
</div>
...
</html>

Figure 4.1: Clickjacking using transparent iFrame and overlay objects.

42

Click Here NoYes

Delete Your Mails...
Are you sure?

Click HereNoYes

Delete Your Mails...
Are you sure?

Hidden iFrame on Top

a) User View of
Web Page

b) Hidden Content in
Web Page

c) Actual Web Page
Layout

Figure 4.2: Illustration of Clickjacking using transparent iFrame and overlay objects

Clickjacking In Clickjacking attacks [56, 105], attackers exploit the layout feature introduced

by iFrames. Specifically, they load a victim web page into an iFrame on the top layer, and make

it transparent. Then they load a deceptive page in another iFrame at the bottom layer, to at-

tract users to click. Figure 4.1 shows an example of a Clickjacking attack. The front page of

http://example.com is loaded inside a transparent iFrame, set to zero opacity value to make

it transparent. To lure users to click at a particular location of the page loaded inside the transpar-

ent iFrame, the attacker creates a link in the visible bottom layer, which is located exactly at the

same position where the attacker wants users to click in the top layer. As shown in Figure 4.1, the

attacker specifies the location of a link by setting its X and Y coordinates. When users try to click

on the link, they actually click on the transparent layer of the iFrame that is loaded with the page

from example.com. An illustration of such a Clickjacking attack is presented in Figure 4.2.

Floating objects Alternatively, attackers can put malicious code inside a floating object, and

automatically bring that object under the mouse pointer when users hover the mouse pointer over

a particular link. Clicking triggers the malicious code in the floating layer. Figure 4.3 shows such

an example, where float layer is a JavaScript class defined by the website that is hidden and

floating around on a web page. The scenario of a floating object attack is illustrated in Figure 4.4.

The example shown here uses the onMouseover event. After onMouseover is triggered

when users move the mouse cursor over the link, the float layer object is moved to the point

of the current mouse cursor, and when users click on the link, they click on the float layer

object. Therefore, the onClick event of the float layer object is triggered.

Attackers are not limited to hijack onMouseover. They can also exploit onKeyup, onKeydown

or other JavaScript event handlers to launch attacks. For a more complete list of exploitable

43

JavaScript event handlers, we refer readers to [119]. Attackers can also use the floating object

concept to make the cursor follow the iFrame on which they want users to click [105].

Pop-up on click By default, web browsers only allow pop-ups triggered by certain user inter-

actions, such as click or double click. Therefore, attackers cannot create web pages that pop up

within windows automatically. Instead, they have to generate pop-ups when users click on the

page. Figure 4.5 shows such an example. When users click on the link that displays its destination

as http://www.example.com, a pop-up window will be opened. This can also be modified

to open pop-up windows only when users click inside a particular area or on a particular object on

the web page. In these scenarios, users’ original intentions are subverted into opening a pop-up

window.

Our observation From the examples above, we can see that the intrinsic property of click event

hijacking is the mismatch of user intentions and actions taken by the browser, resulting from client-

side scripting and complex page layouts. When users click somewhere on a web page, they believe

the browser will perform common and expected actions, such as going to a target web page, or

submitting form data to the server. Careful users should check the information provided by the

browser before they click, such as the destination URL shown in the status bar when the mouse

pointer is over the link. The status bar information is partially protected by web browsers that

prevent JavaScript code from changing the status bar information. However, this protection does

not prevent the attacks discussed in this chapter. Therefore, even if users check the destinations

of the elements they click on, and believe the click will result in expected browser actions, the

browser may actually carry out a different action controlled by attackers.

4.2 Background

In the past decade, web technology has evolved rapidly from simple static web pages to complex

dynamic web applications. These web applications often use a complex layout, consisting of

components or pages from different sources. They also often rely on dynamic features such as

JavaScript, a client-side scripting language designed to add interactivity to web pages.

Although web pages are more dynamic, their functionality is controlled, to protect websites

from being affected by others. Using the same-origin policy [99] and JavaScript sandboxes,

browsers only allow JavaScript on a web page to get access to the objects and services of its

originating website. Browsers also use user actions, such as clicks, as an indicator of user inten-

44

<-- Page from www.Websitename.com -->
<float layer id="layerk"

onclick="document.location=’http://www.malicious.com’;"
style="position:absolute;width:2px;height:2px">

</float layer>
<script type="text/javascript">

function clickjack(evt) {
mouseX=evt.pageX?evt.pageX:evt.clientX;
mouseY=evt.pageY?evt.pageY:evt.clientY;
document.getElementById(’layerk’).style.left=mouseX;
document.getElementById(’layerk’).style.top=mouseY;

}
</script>
<a href="http://www.example.com"

onmouseover="clickjack(event)"> Click here

Figure 4.3: Floating object example

Hidden Floating Object

Click Here

Click on the following link
to claim your Prize!

Click Here

Click on the following link
to claim your Prize!

Hidden Floating Object
brought under the mouse
cursor after a mouseover
event on a link

a) Before hovering the link a) After bringing the mouse on a link

Figure 4.4: Illustration of a floating object in a web page

<script Language="JavaScript">
function popUp() {

window.open ("http://www.malicious.com","malwin");
}

</script>
<a href="http://www.example.com"
onclick="javascript:popUp()" > Click here

Figure 4.5: An example of Pop-up on click

45

Web
Page

Clickable
Object

Extractor

Click
Event

Listener

HTTP
Requests

X, Y coordinates
of click

User
Intention
Extractor

User Intention
Tuple

Browser
Event

Interceptor

Analyzer
User Click

on W
ebpage

Des
tin

at
io

n

URL

User Intention

Figure 4.6: Component overview of ClickGuard

tions. For example, most of the web browsers have implemented pop-up blockers, which only

allow a window to be opened if it is associated with a user action. As another example, settings of

Adobe Flash objects on a web page can only be changed by user clicks.

By exploiting the complex features of web applications, attackers can create web page objects

to hijack users’ clicks. Hijacked clicks may lead to unexpected browser actions, such as visiting

phishing websites or sending malicious requests within web applications. Attackers trick users

to click on page objects that they would not normally click if they knew the resulting browser

behaviors.

4.3 Design of ClickGuard

The main idea of our solution is to ensure the browser’s action after a click matches the user’s

original intention. To achieve this goal, we first need to know what users intend to do. Secondly,

we need to know browser’s behaviors resulting from the click, which can be intercepted as browser

events. With user intentions and the corresponding browser behaviors, we can check whether they

match, and report unmatched results to warn users of the potential threat.

4.3.1 Overview of Our Approach

Figure 4.6 presents the component overview of ClickGuard. It has three main components: browser

event interceptor, user intention extractor, and analyzer. The browser event interceptor intercepts

46

important browser events, such as JavaScript events and HTTP request events. When a click event

is intercepted, the user intention extractor infers the user intention of the click from web page ob-

jects in the browser window, and associates the inferred user intention with the click event. When

the browser is about to perform important actions, the browser event interceptor finds the corre-

sponding click event and its associated user intention, and asks the analyzer to match the extracted

user intention with the suspicious browser event. If they do not match, the analyzer reports an

attack and triggers actions specified by users, such as displaying an alert.

4.3.2 Intercepting Browser Events

This module intercepts two main types of browser events: input events and output events. Input

events are those corresponding to user actions in web applications, such as user clicks, which reflect

user intentions. Output events are events that can modify web applications’ states or transfer data

to external parties, such as HTTP requests.

The browser event interceptor intercepts input events by registering listeners for JavaScript

events related to user actions. For example, when a user click happens on a web page, the

onClick JavaScript event occurs, and notifies the corresponding event listener. Then, the event

listener may invoke user-defined event handlers, which are JavaScript functions that have the ac-

cess to event properties, such as, type, target, pageX, pageY, screenX, and screenY, etc. Type

indicates the type of the event; target indicates the object to which the event is originally sent;

pageX, pageY, screenX, and screenY represent the cursor location at the time the event occurs.

Event handlers can perform tasks such as modifying the content of their web pages or sending out

HTTP requests.

The output events are HTTP requests, the main interface for web applications to communicate

with the outside world. ClickGuard intercepts HTTP requests just before they are sent out.

When the intercepted output event is triggered, ClickGuard starts the detection process. It finds

the input event that triggered this output event and invokes the analyzer. Next we will discuss

how to infer user intentions from input events, and the details of correlating input events to output

events are explained in Section 4.3.4.

4.3.3 Inferring User Intentions

After an input event is intercepted, ClickGuard infers the user intention for this event before the

browser starts processing the event. This task must be performed immediately because the browser

environment may change during the processing of the event, thus making users’ original intentions

47

harder to determine.

Intuitively, if users click on a multi-layered region on a web page, the object on the visible

layer is what they want to click. For example, if they click in a single-layered region, the object

clicked is what they want to click. Next, we use the object on which users want to click and its

attributes to infer users’ intentions.

In ClickGuard, the user intention is defined as a tuple <Target Object, Destination URL>,

explained as follows:

• “Target Object” is a clickable object found under the mouse pointer when a click happens,

and so is considered the target object of the click. Clickable objects are either hyperlinks or

call-to-action buttons. Hyperlinks include HTML elements <a> and <link>. The appear-

ance of hyperlinks depends on the HTML content embedded in these hyperlinks, such as text,

images, etc. Other HTML elements, such as <div> or, are considered non-clickable

objects, and are not considered as user intentions, because they do not reveal any destination

information to the user. We believe that it is not a good practice to use non-clickable objects

as links, since this would confuse users in their understanding of the potential behaviors of

web page objects.

• “Destination URL” is the URL of the inferred destination of the Target Object.

When a user clicks on the web page, ClickGuard stores the user intention tuple that is later fed

into the analyzer component for matching the user intention with the actual browser behavior. To

compose the user intention tuple, we need to obtain the Target Object as well as the Destination

URL. The main challenge of this step is to deal with the complexity of page layout. Next we explain

how ClickGuard finds the Target Object when there are multiple layers, and how the Destination

URL is inferred from the Target Object.

Finding the Target Object from multiple layers If there are multiple layers on a web page

formed using Frames or iFrames and there are multiple objects under the mouse pointer when the

click happens, we find the Target Object based on the visibility of the objects under the mouse

pointer. A naive approach to prevent attackers from exploiting users using complex layout is to

disallow clicks on transparent layers. However, that approach would prevent legitimate web ap-

plications from using complex layouts. The aim of ClickGuard to match browser actions with the

user intention, rather than simply disallowing clicks on the transparent layers. Our approach deter-

mines the visibility of layers and objects based on their opacity values. The opacity attribute [142]

is used by the Cascading Style Sheets (CSS) to adjust the visibility of objects on a web page, where

48

0.0 denotes fully transparent and 1.0 indicates fully opaque. We consider an object as more related

to the user intention if its opacity value is higher. Our approach works as follows:

1. Collect all objects under the clicked position We traverse the DOM (Document Object

Model) [152] tree to examine the main web page and its iFrame and Frame elements to

retrieve all objects under the mouse pointer at the time of the user click.

2. Check opacity values If there are multiple layers in the web page and the layer clicked on

is transparent, we check the opacity values of all objects collected in the previous step.

3. Choose the object representing user intention Here we filter out objects with lower opacity

values than our threshold. If none of the objects have an opacity value above our threshold,

we record nil as the Target Object. If multiple clickable objects have the same opacity value

higher than our threshold, we examine their vertical layer order and pick the object on the

top as the Target Object.

Obtaining the Destination URL from the Target Object Now we describe the way we infer

the Destination URL information from the Target Object. If the Target Object is a link created

by an HTML [28] anchor element (<a>), then it is of type HTMLAnchorElement, and has a

HREF attribute. In this case, the value of the HREF attribute is taken as the Destination URL. For

example, in Figure 4.1 and Figure 4.3, when the user clicks on the link, our interceptor stores the

user intention information as <Target Object, http://example.com> and <Target Object,

http://www.example.com>, respectively. If the Target Object is a submit button in an

HTMLFormElement, it does not have the HREF attribute, but its enclosing HTMLFormElement

has an ACTION attribute. We take the value of the ACTION attribute as the Destination URL in

the user intention tuple. If users click on blank space or a non-clickable object, then the Target

Object is nil. We believe that there is no user intention to send a new HTTP request or open a

pop-up window. In this case, the Destination URL is also nil.

4.3.4 Correlating Output Events to Input Events

To match browser behaviors with user intentions, ClickGuard needs to correlate an output event

to the input event (as described in Section 4.3.2) that triggers it. For example, a single click on

a web page may be followed by multiple HTTP requests: some of the requests result from the

click, while others may be generated by other asynchronous events in the browser. So for each

browser action intercepted, we need to figure out whether it is triggered by an input event or not.

49

If the HTTP request is not triggered by an input event, we should allow those requests, as web

pages often send requests automatically to same origins or other domains to load resources (such

as images, flash, etc.). If the HTTP request is triggered by an input event, we need to find the user

intention information associated with it. In our approach, we leverage the JavaScript call stack to

find the association.

In Firefox, JavaScript-to-JavaScript function calls are implemented using a JavaScript call

stack [97]. When a JavaScript event occurs, the JavaScript event handler is pushed onto the top

of the JavaScript call stack, and the event handler executes the pre-defined JavaScript code inside

that event handler. When the execution terminates, its frame is popped off from the JavaScript call

stack. If a JavaScript event handler initiates an HTTP request, it does not terminate until the HTTP

request is sent to the network. As a result, if there is a JavaScript event handler in the JavaScript

stack, it means this HTTP request results from that event handler. If the current JavaScript stack

does not have any JavaScript event handler, then this HTTP request is not from client-side scripts

and is allowed by ClickGuard. However, one exception is indirectly generated HTTP requests. For

example, the click event handler can use the JavaScript setTimeout() or setInterval()

functions to generate timed or deferred execution of specified code. In these cases, when the HTTP

request is finally initialized, it is the timeout or interval event handler that is on the JavaScript call

stack, not the original click event handler. Our current version of ClickGuard does not handle these

cases, and we will discuss more on this issue in Section 4.7.

4.3.5 Detecting and Responding to Attacks

Once ClickGuard correlates an output event to its corresponding input event, it retrieves the user

intention associated with the input event and activates the analyzer. The analyzer detects the click

event hijacking attacks by two inputs: the user intention and the intercepted output event.

We match user-intended destination against the target in the intercepted output event. We

perform two checks between the user intention and the HTTP request output event, using a policy

similar to the same-origin policy (SOP) [99].

The first check is between the Destination URL value in the user intention and the destination

URL of the HTTP request. The second check is between the URL of the enclosing web page of

the Target Object in the user intention tuple and the URL of the web page that initiates the HTTP

request. As we mentioned in Section 4.3.3, the URL of the web page enclosing the Target Object

is stored as one of its attributes. If either check fails, ClickGuard shows a security warning.

The first check ensures there is no JavaScript-based click event hijacking attacks and the second

check is used to prevent layout-based attacks. As seen in the example of Figure 4.1, the attacker

50

creates a visible link on the bottom layer to trick users into clicking on it. However, what is actually

clicked is the invisible object in the layer above. In this case, the link in the bottom layer is inferred

as the user intention by ClickGuard. An HTTP request is prepared for the object in the top layer,

and its destination is matched against the URL extracted from the user intention. Since the link

at the bottom layer will never be touched, the attacker can freely set its destination to that of the

invisible object above it to bypass our first check. But this attack will be detected in our second

check, as the attacker’s web page has a different URL than the trusted one embedded in the iFrame.

For HTTP request output events, we use the following check on origins. We define the origin

as a combination of the protocol, host name, and port number of a URL, the same as that in

the same-origin-policy (SOP) enforced by browsers. We require the two URLs to have the same

origin, because naturally the actual destination should not have significant difference from the user

intention.

4.3.6 Inferring Host Relationships by Cookie Policy

The criterion above is strict, as it prevents requests from being sent to hosts in different sub-

domains of the same domain, which is common in big web applications. For example, a website

hosting videos may store videos on its sub-domains to reduce the load on the main web server.

To prevent such unnecessary restrictions, we propose a method to automatically infer relationships

among hosts within one domain.

HTTP, a stateless protocol, uses cookies to track user sessions, to authenticate users to web ap-

plications, or to remember custom preferences about users. The contents of cookies are name=value

pairs [75]. To allow cookies to be sent to sub-domains, a web application sets domain=<domain-name>

pair in its cookie. When the cookie is going to be sent to a website, the URL of that website is

compared with the domain attribute of the cookie. If there is a tail match1, then the cookie can

be sent to that sub-domain. For example, if the domain attribute has the value .example.com,

then it is allowed to send cookies to sub-domains such as first.example.com or,

second.first.example.com. However, it is not allowed to send cookies to

example.first.com. The presence of a leading dot (.) in .example.com indicates it is

a domain cookie, otherwise it is treated as a host cookie, which is sent back, during subsequent

visits, only to the server that sets it. A domain cookie is sent back to any site in the same domain

as the site that sets it.

The sub-domain policy in cookies indicates the trust among web servers within one domain.

1The value of the domain attribute in the Set-cookie header is matched with the fully qualified domain name of
the host.

51

We leverage this information to handle sub-domain communications of JavaScript on legitimate

websites to avoid false positives. If the origin check we perform fails, we then check the cookie

policy. Specifically, we check the domain attribute in the cookie. If it exists, we perform the tail

matching between the fully qualified domain name of the HTTP request and the domain attribute

value in the cookie. If it fails, we report failure of the check; otherwise, the check passes. If the

domain attribute is not set by the web application in its cookie, we also report failure of the check.

In summary, we relaxed our same origin checking criteria, and allowed access to sub-domains

if the cookie policy allows cookies to be sent to them.

4.4 Implementation

To demonstrate a feasibility and effectiveness of our approach, we developed the prototype Click-

Guard as an extension [98] of the Mozilla Firefox browser. We chose Firefox as the platform,

because it is the most popular open-source web browser. Our approach can be implemented by

either modifying Firefox’s source code, or extending Firefox’s functionality by its extension in-

terfaces. We decided to implement ClickGuard as an extension, as extensions are much easier to

deploy and distribute. Meanwhile, the event interception and object access functionality needed

by our approach are mostly supported by Firefox’s extension interfaces. More on this issue is

discussed in Section 4.7.

To intercept input events, ClickGuard intercepts JavaScript events such as click and keypress.

By calling the function targetObject.addEventListener(

eventType, listener, capt) in Mozilla Firefox, we can add an event listener on targetObject

which can be an HTML document, window, etc [91]. The first parameter, eventType, can be

click, keypress, etc. The second parameter, listener, is a JavaScript event listener func-

tion that will be invoked when the event occurs. The third parameter is important to us. If the third

parameter is true, when the specified event occurs, our registered listener will be notified first,

before it is dispatched to other event targets. To get the genuine user intention, we need to execute

our listener before the execution of other event handlers. Therefore, when we register the event

using the addEventListener function, the third parameter must be set to true.

To intercept HTTP-related output events, ClickGuard intercepts the HTTP request event via

the http-on-modify-request notification in Firefox. Firefox sends an http-on-modify-request noti-

fication to extensions after an HTTP request is prepared and before it is sent out to the network.

Notifications are just like events or signals in other programming languages and frameworks.

We use the JavaScript call stack to look for correlations between input and output events. To

52

get the JavaScript call stack, we use a Mozilla specific property stack of the Error object.

It shows the functions called, their order, and the arguments to them. Alternatively, in Mozilla

Firefox extension we can also use the Components.stack property of the nsIStackFrame

interface.

The prototype of ClickGuard registers event listener functions for the click,

mouseover, and keypress events. It is straightforward to include other JavaScript events, such

as mousedown, keyup, keydown, etc [143].

In this implementation, we use 0.2 as our threshold value of opacity, since during our exper-

iments, layers with opacity values less than 0.2 were hardly visible. To decide the vertical layer

order of objects, we use the CSS z-index attribute [144] of the layers to identify their vertical layer

order. The z-index attribute specifies the stack level of the generated box in HTML rendering, and

the layer at the top has the largest z-index value.

4.5 Evaluation

We evaluated the prototype of ClickGuard on a computer with an Intel Core 2 Duo 2.33GHz CPU

and 4GB RAM, running Ubuntu 9.10. We tested our solution in Firefox 3.0 and 3.5.7.

4.5.1 Effectiveness

We evaluated the effectiveness of ClickGuard using several types of click event hijacking attacks.

We created attack examples for each type of attacks discussed in Section 4.1.

Clickjacking Similar to most malicious websites, a Clickjacking web page is usually available

for only a small period of time, and thus, hard to archive without actively crawling the web. In-

stead of using a real page, we created a Clickjacking attack modeled after the recent Facebook

attack. The attack is similar to the Clickjacking example in Section 4.1, but the HREF value of the

anchor tag in Figure 4.1 is changed to www.facebook.com. Instead of using example.com

as a source of iFrame in demo example 4.1, we used a Facebook URL:

http://www.facebook.com/tos.php?api_key=b2b2967f51e927af4b

4b8e07e8ba03d4&next=http%3A%2F%2Fl1.slashkey.com%2Ffaceb

ook%2Ffarm%2F%3Fref%3Dbm%26cid%3Dbm%26_fb_fromhash%3D189

b80a34bd2444c4537513a3ec37691&v=1.0&canvas

53

This link makes a user a fan of the “Farm Town” application, if he or she has already logged into

Facebook. The Facebook page was loaded into a hidden iFrame at the top layer, and a deceptive

anchor element at the bottom layer was placed exactly at the same position where Facebook’s

“Allow” button appears inside the hidden iFrame. When users click on the deceptive link, they

actually click on the “Allow” button of Facebook inside the top-layer iFrame. In our experiment,

when the button was clicked, our event handler registered with the click event was triggered,

we collected all objects under the mouse pointer, and in this case, they were the “Allow” button

in Facebook and the anchor element. The opacity value of the “Allow” button in Facebook is

below our threshold 0.2. Therefore, we inferred the anchor element as the user intention (www.

facebook.com). In the HTTP request output event handler, http-on-modify-request,

we examined the Destination URL in the user intention (www.facebook.com), with the URL

of the HTTP request (http://www.facebook.com/...&canvas). In this case the first

origin check passed. Hence, we performed the second origin check between the enclosing web

page URL of the clickable object (www.Websitename.com), and the URL of the web page

generating the HTTP request (www.facebook.com). The second check failed, so we showed a

security warning to the user.

Floating objects Figure 4.3 is an example that floats an object and brings it under the mouse

pointer on the onMouseover event, which subsequently triggers the onClick event handler on

the floating object. It coordinates two events to achieve the goal of changing the DOM location on

the fly. To detect this kind of attacks, we collected all clickable objects under the mouse pointer and

recorded the Destination URL value as http://www.example.com in the user intention tuple.

On the HTTP output event, we performed the first check between the URL of the HTTP request

(malicious.com) and the Destination URL in the user intention (http://www.example.

com). It failed because the host part in the Destination URL and the HTTP request were different.

Therefore, we showed a security warning to the user.

Pop-up on click On some carefully crafted websites, even a click in a white-space area triggers

a pop-up window, which is both annoying and potentially insecure to users. Some of the most

annoying pop-up window actions include windows that continually reopen themselves whenever

users attempt to close them [87]. Figure 4.5 is an example of a pop-up window opening when a user

click event occurs on a web page. Our prototype ClickGuard recorded the X and Y coordinates

of the mouse click, and retrieved all objects at that position. However, if a user click occurs in

blank space or on a non-clickable object, such as a piece of text on the web page, the user intention

extractor returns nil. In the HTTP request event interceptor, we correlated HTTP requests with

54

user clicks by examining the presence of click event listener in the JavaScript call stack. The first

check failed in this case, because the user intention extractor returned nil. We showed a security

warning to the user.

4.5.2 False Positive and Performance

In our system, a false positive is a normal page that is detected as malicious. To evaluate false

positives generated by our system, we did arbitrary surfing among the top 180 sites from Alexa [6].

During the experiment, we did not observe any false positives. After we turned off the cookie

policy check for relaxation, the origin check failed for 37 sites out of the 180 websites we arbitrarily

surfed. The reason the origin check failed for those 37 sites was that those websites were sending

requests to their sub-domains and changing the HTTP addresses dynamically. However, our origin

check passed for all those websites when the cookie policy check was enabled.

We also measured the performance overhead of ClickGuard, incurred from intercepting at two

types of events, JavaScript events (such as onClick, onMouseover, etc), and the http-on-

modify-request notification event generated by Mozilla Firefox. We measured the wall clock time

of a typical browsing session. The average overhead was around 3ms per session. Our solution

does not cause noticeable slowdown to the interactivity of web applications.

4.6 Related Work

Pop-up window blocking Using user clicks as indicators of user intentions, web browsers im-

plemented pop-up blockers to suppress unwanted pop-up windows. Pop-up blockers block pop-up

windows that are created during page loading by JavaScript functions such as window.showHelp,

window.showModalDialog,

window.showModelessDialog, window.external.NavigateAndFind [94, 95], etc.

Web browsers block calls to window.open() if one of the following conditions are met:

1) global scripts executed during document loading request to open pop-up windows; 2) scripts

executed as part of an onload event handler ask to open pop-up windows, or 3) scripts executed

in setTimeout() or setInterval() try to open pop-up windows [95].

Clickjacking defense ClearClick, the module in NoScript [106], protects users against Click-

jacking. It performs same origin check between the URL of the web page loaded in the iFrame

and the URL of the top-level document.

55

With ClearClick, NoScript is a good prevention for Clickjacking attacks. However, it does

not provide a general solution for other attacks discussed in this paper, such as click redirection.

Instead, users are expected to specify for each domain whether to allow JavaScript, which lacks

the fine granularity to selectively allow/deny specific type or source of JavaScript code.

ClickIDS [8] introduces a solution to automatically detect Clickjacking attacks. ClickIDS reg-

isters for the onClick event listener, and retrieves the coordinates of the mouse pointer when

clicks happen. Then it searches for objects at the same position. If there exists more than one

object under the mouse pointer, ClickIDS generates an alarm. ClickIDS detects overlay-based at-

tacks effectively. Compared to ClickIDS, our approach focuses more on studying the effect of user

intentions on a broader class of attacks.

To defend Clickjacking, a web application can use a technique called “framekiller” to pre-

vent itself from being loaded in an iFrame [153]. One piece of example code is shown below in

Figure 4.7:

if ((top.location != self.location)) {
top.location = self.location.href;

}

Figure 4.7: An example of a Framekiller code

On the server-side, web application developers can protect their users against Clickjacking at-

tacks by including similar framekiller JavaScript code in those web pages they do not want to be

embedded inside frames by others websites. However, this solution suffers from obvious disad-

vantages. First, it affects the functionality of websites that use overlays or frames. Second, it is

limited to Clickjacking attack, and does not prevent click redirection attacks. Third, it only works

when JavaScript is not disabled by users.

Another direction to prevent Clickjacking attacks is to enhance web browsers. Microsoft re-

leased a Clickjacking prevention solution in Internet Explorer 8 (IE8), which detects and prevents

overlays or frame-based attacks [16, 59, 100, 127]. IE8 introduces a new HTTP response header

X-Frame-Options, which can be set to either Deny or SameOrigin [63, 99] by websites.

If it is set to Deny then IE8 prevents pages of that website from being embedded into frames. If

X-Frame-Options is set to SameOrigin, then IE8 will prevent pages of that website from

being embedded into frames in web pages from a different origin. The solution implemented in IE8

only mitigates overlay or frame-based attacks, and requires an extra header in HTTP responses.

Content Security Policy (CSP) [134] is another mechanism intending to mitigate web applica-

tion vulnerabilities, but its primary focus is Cross-Site Scripting (XSS). To mitigate Clickjacking

attacks, CSP enables the site to specify which sources are valid for Frame and iFrame elements.

56

It maintains a frame-ancestor list which indicates valid sources for Frame and iFrame tags.

However, CSP addresses only overlay Clickjacking attacks. It cannot prevent click redirection at-

tacks. In addition, each website needs to maintain a frame-ancestor list in order to activate

Clickjacking protection, whose size may grow rapidly as the number of sites allowed increases.

Chen et al. [21] describe “self-exfilteration” attack technique that allows attackers to steal users’

information through either the victim website or another whitelisted website. Self-exfilteration can

make use of XSS vulnerabilities to steal users credentials or exploit complex layout structure to

trick users into leaking sensitive information.

4.7 Limitations

Browser extension vs. browser instrumentation Our ClickGuard prototype is an extension to

the Mozilla Firefox web browser, which facilitates convenient deployment and distribution. How-

ever, malicious Firefox extensions can affect the ClickGuard prototype. Therefore, ClickGuard

assumes the browser environment (including extensions) is not affected by malicious programs.

If implemented via browser modification, ClickGuard will be immune to threats from malicious

extensions.

Moreover, as previously mentioned, the current prototype of ClickGuard cannot handle indi-

rectly generated HTTP requests by JavaScript functions like setTimeout() and setInterval().

Default settings in web browsers disable the opening of a pop-up window by built-in JavaScript

functions such as setTimeout() or setInterval(), but HTTP requests from these functions

are still allowed.

The reason our prototype lacks support in these scenarios is that the current Firefox exten-

sion interfaces [20] do not provide notifications for the setting of timeouts and intervals. These

limitations are solved in our next work through browser modification. Through timer object refer-

ence inside the Firefox browser, we can correlate the JavaScript code activated by a timer with the

JavaScript code that sets the timer.

Obstructed UIs Although ClickGuard is preventing overlay attacks, attackers can embed legit-

imate page inside an iFrame with opacity value set to 1, and obstruct part of the page using other

objects. This may change the appearance of the victim application, such as swapping the labels

of the “Yes” and “No” radio buttons, leading to incorrect actions by users. This is a limitation of

the current approach of ClickGuard. Although obstructed victim pages can be identified by users

familiar with the interface, this remains a potential issue for first visits to websites

57

4.8 Summary

Clickjacking is an attack that encompasses multiple techniques to trick web users into clicking

on web elements that lead to harmful actions. It is an example of a broader range of attacks of

hijacking click events. In this chapter, we study using user intentions to detect this type of attacks.

Based on intercepting browser events, we proposed an approach to detect the mismatch between

user intentions and browser actions. For events related to user actions, our approach infers the

associated users’ intentions; for events related to suspicious browser behavior, our approach finds

the corresponding user action and matches the browser behavior with the user’s original intention.

If they do not match, our approach reports an alert to the user.

58

Chapter 5

Securing Web Sessions from Malicious
Requests

In Chapter 4, we used a user intention inference to combat clickjacking attacks that trick web users

into clicking on web elements that lead to harmful actions. However, as web technology advances

and produces more dynamic and complex web applications, the threat to web application integrity

is also increasing. Web applications with a wide menu of choices and features for the user also give

attackers more choices and flexibility as to where they can hide their malicious requests. Attackers

can trick a victim user or direct his/her browser to send requests to the web server, and then steal

or destroy user’s data by riding or piggybacking on existing sessions. The server will accept this

request, because the request will include the user’s valid session information.

5.1 Motivating Examples

In the versatile browser environment, there are many ways to trigger web requests sent to the

web server, such as URL visits, image loading, and XMLHttpRequest of JavaScript. Attackers

exploit many techniques to automatically generate malicious requests, such as cross-site scripting

(XSS) [27] and cross-site request forgery (CSRF) [11]. Next, we will describe attack examples

that send malicious requests to web servers.

Cross-Site Scripting (XSS) Attack If a user visits a web page of a trusted, but vulnerable,

website, for example, HonestSite.com, in which an attacker has injected inline malicious script, for

example, Ms. Malicious script Ms, is executed within the context of the website and can send a

state modifying request to HonestSite.com

59

User Browser HonestSite.com Attacker

1 Login

2 Post content with
malicious script, Ms3 Login

4

Injected malicious script, Ms

Executed by Browser

5
GET /changepw.php?
 username=[victim]
 &password=[newPassword]
HTTP/1.1
Origin: HonestSite.com

Cookie: SID=12345...

<html>
 ...
Malicious script, Ms
 …
 </html>

Web Page

Figure 5.1: Illustration of cross-site scripting (XSS)

As shown in Figure 5.1, the attacker first logs in to the website, HonestSite.com (Step 1). On

the vulnerable website page, the attacker then submits the malicious script, Ms (Step 2). When a

user logs in to the website (Step 3), and visits the affected web page (Step 4), the injected malicious

script Ms, is executed within the context of website. This compromises the integrity of website by

sending a malicious request to modify the state of the user on the website (Step 5). The request

is generated by the injected script, but carries a valid authentication token. Therefore, the website

processes the malicious request.

Cross-Site Request Forgery (CSRF) Attack If a user visits MaliciousSite.com, possi-

bly because of an enticing email, a web page of MaliciousSite.com can send a request to

bank.com. In addition, if web browsers hold active session cookies of bank.com, they automat-

ically attach those cookies to the outgoing request. The bank.com web server will authenticate

the request based on the session information in the attached cookie, rather than verifying how the

request the generated on the client side.

Dynamic CSRF Attack HTTP Referer header is widely used to detect CSRF, which sends

information about the page where a web request is initiated. To defeat this defense mechanism, a

new technique launches CSRF attacks dynamically [55]. For example, figure 5.2 shows that on a

website forum that allows html tags, the attacker embeds images using the HTML element

that points to the server under the attacker’s control. Using session information leaked through the

Referer header, attackers can dynamically create CSRF requests, redirecting user browsers via

HTTP redirect (302) to the web forum with a users’ valid credential and session information.

60

1 POST / login

HTTP/1.1 200 OK
Set-Cookie: SID=12345...

2
GET /image.jpg HTTP/1.1
Host: MaliciousSite.com
Referrer:
HonestSite.com/csrf_token=xyzw

<html>
 ...
<img src=”http://MaliciousSite.com/
 image.jpg” />
 …
 </html>

3
GET /changepw.php?
 username=[victim]
 &password=[newPassword]
 &csrf_token=xyzw
HTTP/1.1
Host: HonestSite.com

Cookie: SID=12345...

MaliciousSite.com Victim User HonestSite.com

HTTP/1.1 302 Found
Location:
 HonestSite.com/changepw.php?
 username=[victim]
 &password=[newPassword]
 &csrf_token=xyzw

Figure 5.2: Illustration of dynamic cross-site request forgery

javascript:
var list=document.getElementsByName(’like’);
for(var i=0;i<list.length;i++){
// invoke click event on Like button
list[i].click();
// introduces delay
for(var j=0;j<100000;j++);
}

Figure 5.3: An example of self-XSS code

5.2 Development of Session-Misuse Attacks

As effective defense techniques for attacks (such as CSRF, XSS, Clickjacking) have been widely

adopted, attackers have turned to various types of social engineering to lure users into participating

in an attack. For example, attackers explicitly trick the victim user to copy and paste code segments

into the user’s session. We introduce examples from this new attack trend that involves users to

assist session misuse attacks on a target web application (e.g., Facebook).

Self-XSS Attack In this type of attack, the malicious JavaScript is injected by users into their

web sessions, by users who were tricked by attackers into “copy-and-pasting” the malicious code

in browser’s URL bar [17]. The code entered in the URL bar of the web browser runs within the

context of the web application in the active tab of the browser. To combat this technique, modern

browsers will disallow execution of JavaScript in the URL bar if it is copy-pasted. However, they

still allow user-typed JavaScript to be executed within the context of the current web page. More-

over, modern web browsers allow JavaScript in browser bookmarks (bookmarklet) to be executed

61

Figure 5.4: An example of user-assisted attacks

within the context of current web application. A bookmarklet is a piece of JavaScript saved as a

bookmark entry in the browser’s bookmark menu. To launch the attack, attackers will trick users

into saving a piece of malicious script as a bookmark entry into the web browser’s bookmark menu.

When it is activated by the user, the malicious script sends requests to a target server.

Figure 5.3 shows sample code of a self-XSS attack on Facebook to “Like” all posts on the

victim user’s wall. The malicious script is stored as an entry in the browser’s bookmark menu. To

trick users to store the malicious script in the web browser’s bookmark menu, attackers can use

various tricks, such as fake security dialog boxes and fake “link to giveaway” coupons, which ask

users to save malicious JavaScript as a bookmark entry. When the saved bookmark entry is invoked

by the user from the bookmark menu, it retrieves all Like buttons from the victim user’s wall and

invokes the Click event on each Like button to like all posts displayed on the victim user’s wall.

Anti-CSRF Token Social Engineering Attack To protect against CSRF and dynamic CSRF

attacks [55], a web application authenticates web forms using a secret token (also known as an anti-

CSRF token). The anti-CSRF token is a one-time token, generated randomly by web applications,

which is submitted as a hidden input parameter in a web form. When form data is submitted by

the user, the web application checks whether the form data contains the correct anti-CSRF token.

If no such token is found, which means the form data has been generated by a forged request, the

web application will reject the request. For example, Facebook uses a unique anti-CSRF token

each session to defend against CSRF attacks that post scam message on a user’s wall. To make

web applications (such as, Facebook) to accept their malicious request, attackers need to guess the

anti-CSRF token. To overcome this hurdle, a recent attack technique uses social engineering to

retrieve the anti-CSRF token [41].

To trick users into revealing their Facebook anti-CSRF token, a malicious website, for example,

M, might entice users into clicking a malicious link that shows a false verification message, such as

Before you proceed, you must complete a quick Security Check. When the user clicks to continue,

it opens a Facebook page in a pop-up window using view-source protocol, and asks the user to

copy and paste some JavaScript code from the Facebook pop-up window on a text field in malicious

website M. As shown in Figure 5.4, the JavaScript code contains the anti-CSRF token (fb dtsg)

62

for the victim user’s session. When users copy and paste code into the attacker-controlled pages,

attackers can extract the value of anti-CSRF token of the victim user’s session. After retrieving

the anti-CSRF token, attackers can then launch CSRF attacks to post malicious links on the victim

user’s Facebook wall.

Summary The above examples demonstrate examples of various ways to bypass the existing

defenses that guard against session-misuse attacks. The root cause of session-misuse attacks is the

mismatch between the complex client environment and the simple server validation mechanisms.

5.3 Background

Web application logic is split between the web server and the web browser. To connect server-side

components and client-side ones, web applications use the HTTP protocol. Moreover, web appli-

cations need to expose HTTP-based interfaces on the web servers to the web clients, so that the

web clients can request operations independently on the web application servers using the HTTP

protocol. However, HTTP is a stateless protocol, where web servers do not maintain states to relate

one request to another. To support session-based web applications, such as e-commerce or email

websites, the session-related states must be stored by the browser. Requests carry the session in-

formation to identify themselves to the server. To track users’ authentication information between

multiple HTTP requests, web applications use different mechanisms, such as session cookies or

client SSL certificates. This kind of authentication information, if present in the browser, is auto-

matically attached by the client web browser to each HTTP request sent to the web application.

HTTP cookies have been widely used as a mechanism to “remember” the current user and the

ongoing session of a web application. The web application server sets the cookie in response to

the browser after a user successfully logs in, and the browser stores the cookie for a period of

time. For every subsequent HTTP request sent to that web application server, the browser auto-

matically attaches the cookie to identify the session to the server. By exploiting the complex layout

and JavaScript features of a web application, attackers can force browsers to send requests to web

applications carrying a victim user’s session identifier. From the web server’s point of view, it’s

difficult to identify malicious requests injected by an attacker within an active user’s session.

Although the client-side logic of web applications is more dynamic, their functionalities are

controlled, to protect a website from being affected by others, using the same-origin policy [99].

The same-origin policy allows session identifiers, for instance, session cookies, from different do-

mains to coexist on the user’s browser, without interfering with each other. To perform misdeeds

63

on behalf of a victim, an attacker needs the session cookies of the victim. However, same-origin

policy prohibits the web page from one origin to access the cookies or DOM (Document Object

Model) properties of a web page from another origin. Hence, to achieve their goals, attackers find

ways to trick either the web browser or the user into sending malicious requests to exploit their

active sessions. The requests carry the user’s valid session information, and the validation mecha-

nism on web application servers are limited in deciding whether a request is generated legitimately

or triggered by attackers. This limitation is actively exploited by attackers to generate malicious

requests. When these malicious requests are sent to web servers where the victim user has already

established a session, the web server cannot distinguish malicious requests from benign ones. We

call such attacks session-misuse attacks. For example, attackers can trigger malicious requests

through exploiting cross-site scripting (XSS) vulnerabilities or through cross-site request forgery

(CSRF) attacks.

To help the web server distinguish benign requests from malicious requests, the common de-

fense technique is to include more information about the request sender. For example, the HTTP

Origin header [11] is used to indicate from which origin the current HTTP request is generated.

It is used by web applications to prevent CSRF attack. Web applications only accept requests with

HTTP Origin from its own origin. However, the Origin header is not attached to all HTTP

requests, such as HTTP requests loading images. Another line of solutions is to make forging ma-

licious requests more difficult, such as including an authentication token in each request [26, 38].

The authentication token is randomly generated and recorded in web pages, which provides addi-

tional authentication to cookies. Although effective in detecting attacks, these solutions are limited

to specific attack types, such as CSRF.

Despite the many solutions proposed by industry and the research community to address session-

misuse attacks, this threat has continued to gain momentum. Although solutions to prevent XSS

and CSRF have been actively developed and deployed, attackers keep finding new ways to evade

them. A recent attack technique uses social engineering to trick users to assist session-misuse

attacks [17, 41]. In such user-assisted attacks, attackers lure users to participate in the attack pro-

cess, such as by injecting a piece of malicious JavaScript into their active web sessions through the

browser interface, which generates requests to the server on behalf of the user.

The root cause of session-misuse attacks is that the server-side web request validation mecha-

nism lacks the knowledge of client-side behaviors. Given the complexity of the browser environ-

ment, it is important to know how the request is generated from it. Such details of the environment

from which the request is generated can help web servers to validate web requests. For exam-

ple, from which web page, which region of the page, and by which event the request is generated

64

all can be used for validation purposes. Unless we bridge this gap between the browser environ-

ment complexity and the power of server-side request validation, attackers will constantly find new

ways to trigger browsers to generate malicious requests that can be accepted by the server. The

user-assisted attack is just an example.

By design, a web application expects a particular request to be generated by specific browser

behavior sequences, such as executing JavaScript and processing user events, and from certain

browser components, such as nodes in Document Object Model (DOM) tree. In other words, the

request’s dependency on the browser behaviors and the browser environment states should form an

invariant, which we call request dependency integrity. This is a fundamental security property that

is violated by a wide-range of session-misuse attacks.

To protect from session-misuse attacks, our main idea is to enforce the request dependency

integrity of web requests. We define a Request Dependency Graph (RDG) to represent the client-

side dependency. The RDG captures information on how a request is generated from the browser

environment. Such execution environment information includes events that trigger the generation

of a request and the elements on which the event occurs. The dependency relationship among

web page elements, events, and HTTP requests is crucial for the web server to identify malicious

requests. Based on RDG, we developed an end-to-end solution called ClearRequest, which extracts

RDGs at the browser side and enforces the request dependency integrity on the server side. We

design techniques to compute the slice of RDG, which only maintains the information related to the

specified request. The corresponding slice of RDG is used by web servers to validate the incoming

request accurately.

5.4 Request Dependency Graph

The key technique of our approach is to extract request-related dependency information in a

browser environment. We define the Request Dependency Graph to represent the dependency

between events in the web browser runtime environment that is relevant to HTTP requests.

Definition 1 Request Dependency Graph (RDG) is a directed, rooted graph, defined by RDG =<

V,E >. V denotes the sets of nodes of an RDG and each v ∈ V is an Element or a Request;

E represents the set of edges in an RDG and each edge < v1, v2 > ∈ E denotes the relationship

that the node v2 is dependent on the node v1.

• An Element = <Name, DevId, SerId, Origin, Opacity, Hash> represents an element in a

web application. Name defines the type of the element, such as form, frame, address bar, etc.

65

DevId is the ID attribute of a HTML element in the web page and it is specified by developers

in the HTML tag. SerId is the unique identifier for the element by DOM serialization. Origin

denotes the origin from which the resource is loaded. Opacity is the transparency value of

the element. Hash is the hash value of the attributes or data of the element.

• A Request=< id, URL > is a pair that contains information about the destination URL,

where id is the unique identifier for the request assigned by our approach, and URL is the

URL of the request’s destination.

• An edge < v1, v2 > represents the dependency between them, and is labeled by an Event

that generates the dependency. For example, a request can be generated by a click on an

HTML hyperlink. In this case, the request is dependent on the link element, which is labeled

by a click event.

• An Event=< EventType > is a singleton that contains information about the type of the

event, where EventType denotes the type of the event, such as Click, Parse, DOM Mutation,

Load, Timer, Execute, AutoSubmit, etc. An EvenType describes the action performed by a

web browser, whereas an Element represents HTML tags in a web application.

• The node r ∈ V is the root of the RDG, which represents the top window element.

The RDG includes information on the evolving structure, as well as run-time events of the

web applications at the client side, such as the origin of the request, resource loading events, user

actions, DOM element information, etc.

In the rest of this section, we will first introduce in detail how to extract RDG from the browser

environment. Then, we will present the slicing algorithm to find the dependencies related to a

request.

5.4.1 Extracting RDG from Browser Environment

Web browsers send requests to web servers, and receive responses from them. When they receive

a response, they parse it and build the Document Object Model (DOM), which is a tree structure

that consists of page elements as its nodes. Other information, such as rendering properties and

JavaScript event listener functions, is stored as the attributes of the nodes. In addition, modern

web browsers use an event-driven model. Hence, lots of events are generated and processed by the

browser, such as loading a resource when encountering an image or iframe element, and trigger-

ing JavaScript event handler routine on the element by a user action. This browser environment

66

Ways of generating HTTP Request Relevant Information
User enters URL either in address bar
or selects from bookmarks

Address bar or bookmark

Extensions or plugin Extension name or plugin name
Fetch resources while parsing Element where the request is issued
User action Action name & element that triggered the action
JavaScript sends request directly The <SCRIPT> element where the request is generated
JavaScript sends request indirectly A sequence of elements & events that affect the request
Redirection The Origin where the request redirects

Table 5.1: Methods to generate HTTP request and relevant information to record

provides information about the request relationship, for example, whether a request is triggered by

user action on a web page element, or by client-side JavaScript code in web application.

When one request is generated from a web page, it is important to know how it is generated.

For example, when untrusted content is injected in web pages, different regions of web pages may

indicate different trustworthiness.

On the other hand, requests can be generated in web browsers in different ways. Table 5.1

describes ways to generate HTTP requests in a browser and the relevant information about how the

requests are generated.

Next, we will explain how to build RDG from the browser environment.

• DOM Element Identification. The first problem we need to solve is to uniquely identify

DOM elements in the RDG. This is difficult, because web pages usually contain multiple

elements of the same type, but not each of them has an id attribute set by web developers.

Therefore, we need to leverage additional information to identify DOM elements. In our

approach, to allow web applications to identify an element uniquely when the element does

not contains an ID, we calculate the hash of the attributes of DOM elements. In addition, we

assign unique integer IDs to DOM elements by serializing DOM.

• Timer Events. Web applications use JavaScript to create timers to execute certain scripts

after a period of time, or at certain intervals. We record the mapping between timers and the

origins of their creator JavaScript, when the timer is created. When a timer event is triggered,

we look up its creator JavaScript in our record. We add a node for timer handler script and

connect it with its creator node by an edge label as Timer.

• User Actions. User actions are also important in deciding the legitimacy of requests. We

intercept event handling in the browser, such as click, keypress, mouseover, etc. The target

element in the event handler routine is the DOM element on which the user interaction

67

occurred. We add this target element as a node in our request dependency graph, and we

maintain an attribution table that records the target element and any events that occurs on it.

When an HTTP request is generated, we look up its initiator, the target element that we have

already added in the graph. We draw an edge from the target element found towards a new

node created for the HTTP request. The edge is labeled with the event that triggers it.

• JavaScript Modifications. JavaScript can dynamically create new DOM elements or mod-

ify existing ones, and those DOM elements may in turn generate HTTP requests. Modifica-

tions on DOM elements trigger DOM Mutation events. For example, the modification of an

attribute of a DOM element fires a DOMAttrModified event. We draw an edge from the

JavaScript node that represents the one that directly generates the new request to the target

DOM element node with label DOM Mutation.

We construct the RDG based on the above cases, representing dependency between web appli-

cation elements and events that affect requests. When an element is parsed and constructed by the

browser, if it can generate or affect subsequent requests, we add it into RDG. Such elements in-

clude script, image, and iframe elements. We do not add them into RDG immediately after they are

created by the browser. Instead, we maintain dependency relationship involving them separately,

and add them, along with their dependency information, into RDG whenever a request affected by

them is generated. Constructed this way, the RDG contains all relevant dependency information of

elements and nodes that affect HTTP requests.

Let’s consider a sample web page snippet from www.example.com that initially contains a link,

an image, an iframe, and a script element. The script modifies the attribute of the link and creates

another piece of script on the fly, which in-turn sends an XMLHttpRequest request. The iframe

loads a page from a third-party server, which in turn loads an image and a script element. This is

shown in Figure 5.5.

Figure 5.6 shows the RDG built for this page. As shown in the figure, www.example.com is a

web domain that generates various HTTP requests. First, it sends HttpRequest0 for its front page.

Then during parsing, it sends HttpRequest1 and HttpRequest2 to load an iframe and an image

resource, respectively. The iframe further requests HttpRequest4 and HttpRequest5 for external

image and script resources, and the script in the iframe also generates a new request HttpRequest6

during its execution. Back to the main page, some inline script creates a new script element by

mutating the DOM, which in turn sends out HttpRequest7. The inline script Script0 also modifies

the HTML hyperlink. The link is clicked, so it sends HttpRequest7 to navigate to another page.

68

//A sample web page from www.example.com
<img src="http://www.example.com/img1.jpg"

id=’img1’ />
<iframe

src="http://www.thirdparty.com/page.html" />
click here
<script>
// modify link
var lk=document.getElementById(’link1’);
lk.href="www.example.com/page2.htm";
//Create new script element that sends XHR
//request to example.com
....
</script>

Figure 5.5: A sample web page snippet.

www.example.com

Link0Image0 Script0

Script1HttpRequest2

HttpRequest3

Click

HttpRequest7

DOM
Mutation

Load

Execute

Parse
ParseParse

DOM
Mutation

Frame0HttpRequest1

Parse

Image1

HttpRequest4

Load

Parse

Script2

HttpRequest6

Execute

Parse

HttpRequest0
Addressbar

Load

HttpRequest5

Load

Figure 5.6: A request dependency graph for the web page snippet

5.4.2 RDG Slicing

In a long-lived user session, RDG often becomes huge in size. Hence, we only maintained the

RDG for the current web page, rather than storing the entire execution history of web pages visited

in the session. However, it will be prohibitively inefficient to directly pass the entire graph to the

web servers for processing, and when multiple pages are integrated into the same page, the RDG

also contains information of different pages, and should be filtered with great care before being

sent to the web server. To solve the above two practical concerns, we also develop an RDG Slicer

to perform backward dynamic slicing, according to different needs on the RDG we obtain earlier.

RDG Slicer is used to obtain a slice for a particular request.

Our slicing algorithm takes an HTTP request node and the RDG as inputs. It outputs a slice,

which is a sub-graph that contains only nodes and edges that the request node is dependent on.

Starting with the sub-graph containing only the HTTP request node, we iteratively add to the sub-

graph nodes that the nodes in the sub-graph depend on, as well as the edges of such dependencies,

69

until there are no more nodes and edges to add. As illustrated in Figure 5.6, the slice extracted

for HttpRequest7 is shown in gray color in the figure. The slice contains the dependency from

the root node to the HTTP request. To further reduce slice sizes, the algorithm only includes the

iFrame elements that are outside the request-generating iFrame and the Root node in the RDG

slice, excluding other elements that are outside the request generating iFrame.

The primary objective of ClearRequest is to detect malicious requests. RDG includes the client-

side environment information of web applications, such as the domain of the request initiator,

region of the page, and browser and user events. To protect privacy, the RDG slicer strips sensitive

information from the RDG slice. In particular, the request dependency graph built by our approach

contains information about DOM elements that sometimes store sensitive information, such as

CSRF security token or users’ private information. To prevent leakage of privacy information,

ClearRequest does not store any sensitive information in RDG nodes. It only stores non-sensitive

information, such as the DOM element type, its ID, the hash of its attributes, opacity value, etc. In

addition, web applications may also append security tokens to the URLs. Hence, we only maintain

origins, defined as < protocol, domain, port >, in RDG, rather than the complete URLs.

Furthermore, ClearRequest handles the cases of same-origin and cross-origin requests differ-

ently. For same-origin requests, the slice with full element information is sent; for cross-origin

requests, it only sends the name, origin, and opacity of elements to servers. Cross-origin sites can

use user-action events in the RDG slice to track user’s behavior. Therefore, ClearRequest strips

user actions information from the slice for cross-origin requests.

5.5 Design of ClearRequest

In this section, we introduce the design of ClearRequest. For a high-level view, ClearRequest ex-

tracts RDG from browsers to represent how a request is generated, and sends it to web application

servers to help them identify malicious requests.

We focus on enabling web servers to validate the legitimacy of HTTP requests to prevent

attacks through malicious requests, regardless of their attacking techniques, such as CSRF, XSS,

and malicious mashups. There are a number of threats we do not consider in this chapter, such as

information leakage, cookie-stealing-based session hijacking, and XSS attacks that send victim’s

sensitive information directly to third-party servers, self-exfiltration [21], or phishing [162, 165].

Attacks targeting browser vulnerabilities and active network attacks are also out of the scope.

To facilitate web application in authenticating web requests using browser environment infor-

mation, we propose ClearRequest. Figure 5.7 illustrates the architecture of ClearRequest. We

70

Web
Server

Web Browser

JS
Engine

DOM
HTML
Parser

Network library

Request Dependency
Graph (RDG) Builder

Environment Monitor
RDG
Slicer

ClearRequest
API Library

Figure 5.7: Architecture of ClearRequest

monitor the runtime environment of web applications by monitoring the web browser internal be-

haviors, using a new component called Environment Monitor (EM). EM logs all important events,

including JavaScript execution, Document Object Model mutations, HTML parsing, and HTTP

requests. Moreover, EM also records the dependency relations between different events. Such

events, as well as their interdependency are used by the RDG builder to generate RDG. The RDG

contains the rich set of browser environment information that can be leveraged by web servers to

better authenticate incoming requests.

Before sending a request, ClearRequest prepares a slice of request dependency from the RDG

using our slicing algorithm. The slice is sent with the request to the server. When the server

receives a request, it first authenticates the request using its session tracking mechanisms, such as

valid authentication token or session cookie, etc. Then it checks the legitimacy of the request

by examining the RDG slice field, checking whether the properties in RDG matches the web

application’s expectation. ClearRequest provides a library to web application servers to examine

the RDG Slice and ease the task of web developers. Web developers can perform various types

of property checks on the RDG slice, such as matching user action, matching initiator element,

matching origin, etc. Table 5.2 shows API’s provided by ClearRequest for the web application to

examine the RDG slice of a request for its properties. For example, the checkUserAction API

of ClearRequest takes an RDG slice in the request and the expected user action provided by web

developers as inputs, and examines whether an element (i.e immediate parent of the request node

in the RDG slice) initiated request from matches the expected user action. This API is useful to

defend against XSS, because it usually initiates request using injected scripts.

5.6 Implementation

In this section, we will describe the implementation of ClearRequest in detail.

ClearRequest, consists of a client-side component and a server-side component. The client-

side component records all events in the web browser, and generates and sends a slice of the RDG

71

ClearRequest API for Web
Application

ClearRequest API Description

checkDependencySlice
($RDG Slice,$expectedSlice)

This API returns TRUE if $expectedSlice matches with the $RDG Slice; oth-
erwise returns FALSE.

checkInitiatorOrigin
($RDG Slice,$expectedOrigin)

This API returns TRUE if $expectedOrigin value matches with the origin value
in the $RDG Slice; otherwise returns FALSE.

checkInitiatorElementType
($RDG Slice,$expectedType)

This API returns TRUE if $expectedType value matches with the parent ele-
ment type value of the request in the $RDG Slice; otherwise returns FALSE.

checkInitiatorElementId
($RDG Slice,$expectedId)

This API returns TRUE if $expectedId value matches with the parent element
ID value of the request in the $RDG Slice; otherwise returns FALSE.

checkUserAction
($RDG Slice,$expectedAction)

This API returns TRUE if $expectedAction value matches with the parent event
value of the request in the $RDG Slice; otherwise returns FALSE.

checkPageStructure($RDG Slice) This API checks page structure and returns FALSE if request is generated by
an element in frame, or an initiator element of the request is found transparent;
otherwise returns TRUE.

Table 5.2: ClearRequest APIs for a web application to examine RDG slice of a request

for the HTTP request to the web application. In ClearRequest, we labeled client-side component

as Environment Monitor. The server-side component is the API library, written in PHP to allow

easy integration with PHP web applications.

5.6.1 Integration of the ClearRequest with Web Browser

We prototyped the client-side component of ClearRequest in Mozilla Firefox 8.0 open source web

browser. In the Firefox web browser, we instrumented a networking component, which is also

known as Necko, JavaScript Engine, DOM Mutation Events and HTML parser in the browser

engine. The entire system consists of 3200 lines of C++ code.

Browser Environment Monitor hooked browser events like resource loading (such as IMG,

CSS, etc.), new page creation (such as iFrame or Frame loading), user actions (such as click,

mouseover, etc.), and DOM modifications. In Firefox, when an HTTP request is generated, the

necko (network library) does not contain information about the node that generated the request.

Therefore, ClearRequest maintained a mapping table of the elements generating the request.

The nsIContentPolicy interface provided by Firefox controls the loading of various re-

sources and provides mapping of the element that generated a request [92]. The current imple-

mentation of ClearRequest uses an nsIContentPolicy interface and records nine different types of

nodes 1 and eleven different types of edges2 in RDG.

To track the dynamic modification correctly inside a web browser, we used DOM mutation

1List of Nodes: script, image, stylesheet, object, iframe, frame, font, media and request
2List of Edges:timer, xhr, parse, load, execute, addressbar, bookmarklet, DOM mutation, click, dbclick, keypress

72

events such as DOMNodeInserted and DOMAttrModified. According to DOM Level 3

event specification [143], the mutation events are designed to notify listeners of any changes to the

structure of a document. The MutationEvent interface provides contextual information associated

with DOM mutation events. We use the contextual information provided by the MutationEvent

interface to check the original and current target elements associated with that event, and recorded

the source and target elements in the RDG graph by adding an edge from source to target node

labeled with DOM Mutation event.

We added a new HTTP header to the each request to send an RDG slice of the request. For

each HTTP request sent to the web application, the web browser attaches the slice of the RDG of

an HTTP request in the RequestDependency HTTP header.

5.6.2 Integration of the ClearRequest with Web Applications

Integration with PHP applications We implemented a prototype of the server-side ClearRequest

component as a PHP class. This class provides interfaces to web developers for examining the

RDG slice in the request. Our implementation of ClearRequest class is 135 lines of code. It is

easy to be integrated in web application, by including it as a library. We tested ClearRequest li-

brary in an open source web forum phpBB. We inserted checks, using the interfaces provided by

ClearRequest API before the important operations were performed in the phpBB web forum, such

as posting a new post or deleting a post, etc.

Integration with CodeIgniter Recently, web application development frameworks became more

popular as they free web developers from low-level implementation details and allow them to fo-

cus on high-level application logic. We also integrate ClearRequest with a popular web applica-

tion development framework CodeIgniter [44], to enable adoption of ClearRequest in framework-

generated web applications.

CodeIgniter is an open source web application development framework for building websites

using PHP. It allows rapid development of web applications, by providing a rich set of libraries.

This removes the burden of implementation of commonly-needed tasks from web developers. We

extended the Security core class of CodeIgniter v2.1.3 with 142 lines of code to support RDG

checks. Our extension provides the web developers API to perform checks, such as originator

element, user action that triggered request, domain that initiated request, and RDG slice. Clear-

Request doesn’t accept state-modifying requests that do not contain any RDG. This prevents an

attacker from bypassing the mechanism, by suppressing the RDG header. Our prototype is tested

with CodeIgniter-developed web applications fule-cms and ukulima.

73

Synthesizing RDG checking rules To help web developers specify the rules to check RDG

slices, we develop an RDG slice synthesizing mode. During the synthesizing mode, our instru-

mented browser records the RDGs for requests sent to web applications. For each particular re-

quest, our prototype merges different RDG slices, only retaining the common entities in the RDGs,

such as the origin, the triggering user action and the elements during throughout the testing process.

These merged RDG slices represent the expected ones for corresponding requests. To derive RDG

checking rules from these expected RDG slices, our prototype provides a few heuristics to web

developers, such as matching user action, matching initiator element, and matching origin. Web

developers can choose among these heuristics, and our prototype automatically generates rules

that check whether the specified user action, initiator element, and/or origin matches the expected

values in the expected RDG slices. We use this mechanism to obtain synthesized RDG checking

rules for expected request dependency in our experiments.

5.7 Evaluation

We evaluated the effectiveness of the request dependency graph (RDG) technique to enforce re-

quest dependency integrity. Our technique was tested against session-misuse attacks, through sev-

eral experiments. The experiments were performed on a desktop computer with an Intel Core 2

Duo 2.33 GHz CPU and 4GB RAM, running Ubuntu Linux 10.04. To measure the performance

overhead of our technique, we integrated our technique as a prototype called ClearRequest in Fire-

fox open source web browser, and phpBB open source web forum.

5.7.1 Session-Misuse Attack Detection

We analyzed our technique using various session-misuse attacks we discussed in sub section 5.2.

www.facebook.com

Button

HttpRequest

Bookmarklet

Execute

www.facebook.com

Button

HttpRequest

Parse

Click

Script

Execute

Fig: (a) Fig: (b)

Script

Script

Execute

Figure 5.8: (a):An RDG slice of benign request to Like a link (b):An RDG slice of a request
generated using self-xss

74

Self-XSS Attack In this social engineering attack, users were tricked into bookmarking a piece

of malicious JavaScript in the browser’s bookmark menu. If the user activated a malicious JavaScript

code in bookmark menu while the Facebook tab was active in the browser, the malicious JavaScript

executed in the context of Facebook, and by default, acquired all privileges of Facebook. It

retrieved all Like buttons from the Facebook page and triggered a Click event on each Like

Button element, to automatically like all posts on victim user’s wall. The benign request sce-

nario is illustrated in Figure 5.8 (a), in which Facebook expects a request to Like a friend’s post

from user’s wall should come from a Like Button, when the user Clicks on that button. In the

Self-XSS attack scenario, shown in Figure 5.8 (b), the attacker injected malicious script using a

bookmarklet that initiated the Click event on the Like Button element, which in turn initiated

a request to like a post. Hence, using RDG, we differentiated a benign request invariant from a

malicious request.

www.example.com

Link0 Form

HttpRequest4

Click

Parse
Parse

IFrame0
www.facebook.comHttpRequest1

Parse

Image1

HttpRequest3

Load

Parse

Script2

Execute

Parse

HttpRequest0
Addressbar

Load

HttpRequest2

Load

Script1

Execute

Figure 5.9: An RDG slice of a malicious request

Anti-CSRF Token Social Engineering Attack In this social engineering attack, the goal of at-

tackers is to bypass anti-csrf protection used by web applications (such as Facebook), to force

the web application into processing malicious requests. Figure 5.9 shows a RDG slice for a user-

assisted attack constructed to automatically Like the malicious link. To ease understanding, we

have shown only a few nodes from RDG that are relevant to this attack. The attacker tricked the

user into copying and pasting the anti-csrf token into the attacker’s control field, so that attacker

can gain control of the anti-csrf token of the user’s session. After stealing the anti-csrf token,

the attacker generated requests to Facebook to post messages or updates on user’s wall, with-

out the user’s consent. In the attack scenario, a request was prepared and sent by a script from

www.example.com, as shown in the figure as gray color nodes with red border. The benign

request was expected to originate from a Like button inside the Facebook iFrame, whereas the ma-

licious request was triggered from www.example.com. Thus, RDG provides vital information

about how the request is generated at client-side, and this helps the web applications ensure the

75

Origin:www.example.com

DOM Node
Name:FORM

Parse

DOM Node
Name:INPUT

Request
www.example.com/

changepw.php?username=[victim]
&password=[newPassword]

Parse
Click

Origin:www.attacker.com

DOM Node
Name:IMG

Request
www.example.com/

changepw.php?username=[victim]
&password=[newPassword]

Parse

Load

(a) (b)

Figure 5.10: (a):An RDG slice of benign request (b):An RDG slice of a CSRF attack

request dependency integrity.

5.7.2 Effectiveness on other session-misuse attacks

To evaluate the effectiveness of RDG against session-misuse attacks, we also conducted detailed

case studies of our RDG against various real-world attack examples. We used attack samples that

generated malicious requests to vulnerable hosts using various attack vectors, such as CSRF and

XSS. We simulated real-world vulnerabilities and attacks, using virtual hosts and virtual machines.

In our experiments we simulated total eight number of real-world attack examples, in which five

were CSRF attack examples (CVE-2009-3759, CVE-2008-7248, CVE-2009-1339, CVE-2009-

4898, and CVE-2010-3449), three XSS-worm examples (WHID 2010-175, Orkut XSS [159], and

MySpace XSS worm [158]).

CSRF Attack Figure 5.10 shows the RDG slice for both the benign request and the CSRF attack

constructed from real world attacks against vulnerabilities in CVE-2009-3759 [3, 107]. For sim-

plicity, we have omitted details of DOM nodes in the figure, and only show slice of the RDG for

the benign and malicious requests.

This attack involved a victim user, an honest site www.example.com and a malicious site

www.attacker.com. The victim user visited the malicious site while he/she had an active session

with the honest site. The malicious site then crafted an HTTP request to the honest site that injected

a request into the victim user’s current session. We simulated this CSRF attack using virtual hosts,

and set up the two sites in a virtual machine. In normal scenarios, as illustrated in Figure 5.10

(a), the honest site used an HTML FORM to submit a request to change the password when the

user clicked on the Submit INPUT button in its enclosing FORM. In the CSRF attack, shown in

Figure 5.10 (b), the malicious site www.attacker.com sent an HTTP request to change the user’s

password, with an IMG tag requesting for an image resource. This image load request carried the

victim user’s session token, hence it performed the password change action on behalf of the victim

user.

76

The slice of the malicious request in the CSRF attack contained an IMG tag that was generated

when parsing the document, and the IMG tag in turn generated the request when loading the image

resource. This was different from the expected behavior, where the request to change the password

was generated by a user click on a Submit INPUT button whose parent node was a FORM node.

Hence, using RDG, we detected the attempt of this CSRF attack, and prevented the processing of

the request.

In addition to above attack, we also simulated four real-world attacks namely, CVE-2008-

7248, CVE-2009-1339, CVE-2009-4898, and CVE-2010-3449 [90], to evaluate the effectiveness

of the RDG in the detection of malicious requests sent using CSRF. Using RDG, ClearRequest

successfully prevented these malicious requests in our experiments.

XSS Attack Figure 5.11 shows an RDG slice of both a benign request and an XSS attack con-

structed from real world attacks against vulnerabilities in WHID 2010-175 [33].

This simulated stored XSS attack injected malicious script into the vulnerable web forum

site www.example.com, so when a victim user visited it, the malicious script sent a request to

www.example.com to post a message on the web forum on behalf of the victim user.

Figure 5.11 (a), shows a normal scenario of posting a message on the vulnerable site. The

request came from an HTML FORM element when the user clicked on the Submit INPUT button

in the FORM. Figure 5.11 (b), shows an RDG slice of a request generated using XSS attack. Ma-

licious script was injected into the site www.example.com, which automatically sent two requests

to post two messages on behalf of the victim user when the user hovered a mouse over the link.

One request posted the malicious link itself on victim user’s account, which then attacked others if

they hovered their mouse on the link. Another request posted an embarrassing tweet on the victim

user’s account. The slice of RDG for these requests contained an edge from the SCRIPT node to

the request with the labeled Execute rather than Click as in the expected behavior. Moreover,

the immediate parent node of the request was the SCRIPT node, rather than the INPUT element

node in the FORM. Furthermore, this XSS request slice contained a LINK node as the parent node

of the SCRIPT node with an edge labeled as MouseOver. This indicated that the request was

sent by JavaScript. As shown in the Figure 5.11 (b), the slice of the RDG for the request provided

contextual information of the generation of the request. In the RDG slice of XSS, the element

nodes and events triggered that request differed from those of the benign request. Therefore, using

RDG slice, ClearRequest detected this malicious request and prevented the modification of user

state on the web server.

In addition to the above attack, we also simulated two real-world XSS worms to evaluate the

77

Origin:www.example.com

DOM Node
Name:LINK

Parse

DOM Node
Name:SCRIPT

Request
www.example.com/
postMessage.php

MouseOver

Execute

Origin:www.example.com

DOM Node
Name:FORM

Parse

DOM Node
Name:INPUT

Request
www.example.com/
postMessage.php

Parse
Click

(a) (b)

Request
www.example.com/
postMessage.php

Exe
cut

e

Figure 5.11: (a):An RDG slice of benign request (b):An RDG of an XSS attack

effectiveness of the RDG against detection of malicious request sent using XSS [159] and [158].

In our experiments using RDG, ClearRequest successfully protected user’s state on the web server

from malicious requests.

Clickjacking Attack Figure 5.12 shows an RDG slice of both a benign request and a Clickjack-

ing attack, constructed from real world Clickjacking vulnerability WHID 2010-109 [33, 133]. In

this real-world attack, users were tricked into posting a Clickjacking worm to their status updates.

Victim users who clicked on the links in these malicious posts redirected to a Clickjacking web

page hosted on an attacker-controlled domain. The Clickjacking web page loaded a Facebook page

in an invisible iFrame, on top of another visible page that attracts user clicks. When victim users

clicked anywhere on the page, the click fell on the invisible iFrame, which in turn posted the same

malicious post on the victim user’s status update, to further infect his/her friends, and so on.

We simulated this Clickjacking worm using virtual websites, where www.example.com was an

honest site like Facebook, and www.attacker.com simulated the domain controlled by an attacker.

Figure 5.12(a) shows a normal request to post a message, and 5.12(b) shows an RDG slice for

the request in a Clickjacking scenario that embedded the honest site within an invisible iFrame. In

both (a) and (b), the honest site www.example.com generated the request in the same way, through

a click on an INPUT element whose parent node was a FORM element.

Therefore, both slices were identical, except their root nodes that indicated the page that gen-

erated the request. In (b), the root node indicated that it was loaded in an iFrame with an opacity

value zero, i.e., being invisible to users. Such contextual information provided by the RDG enabled

the detection of this Clickjacking attack in our experiments.

We tested the effectiveness of RDG with two other simulated real-world clickjacking attacks

WHID 2011-96 [128] and [132]. Using RDG, ClearRequest successfully prevented these attacks

in our experiments.

78

DOM Node
Name: IFRAME

Origin:www.example.com
Opacity: 0

DOM Node
Name: FORM

Parse

DOM Node
Name:INPUT

Request
www.example.com/

posting.php?...

Parse
Click

Origin:www.example.com

DOM Node
Name:FORM

Parse

DOM Node
Name:INPUT

Request
www.example.com/

posting.php?...

Parse

Click

(a) (b)

Origin:www.attacker.com

Parse

Figure 5.12: (a):An RDG slice of benign request (b):An RDG slice of a Clickjacking attack

5.7.3 Study of recent incidents of session-misuse attacks

Table 5.3 summarizes the results of our analysis of recent session-misuse attacks. It summarizes

session-misuse attacks reported in the Web Hacking Incident Database (WHID) [33] and also

the Common Vulnerabilities and Exposures (CVE) [90] database, both of which maintain web

application vulnerabilities and web hacking incident reports. We include those attacks from the

past three years that sent malicious requests from within the victim user’s established web sessions.

We manually analyzed the mechanism used by various attacks to trigger malicious requests. and

the effectiveness of RDG against those malicious requests which resulted from different attack

vectors. In total, we analyzed 385 attacks that used different attack vectors to trigger malicious

requests to vulnerable hosts, and our approach was able to detect all of them.

Attack Methods Number of Attacks ClearRequest Detected ClearRequest Missed
XSS 17 17 0

CSRF 368 368 0
Total 385 385 0

Table 5.3: Summary of real-world attacks

5.7.4 Protecting Web Applications

To make the adaptation of ClearRequest easier, we integrated it into the CodeIgniter framework.

We used three open-source applications namely phpBB web forum, FUEL-CMS [50], and Ukulima [140]

as a testbed. We found seven, eleven, and six RDG check-point locations for phpBB, FUEL-CMS

and ukulima, respectively. Those RDG check points were the locations in the server-side code

where web requests cause database interactivity. Out of the eleven security check-points in FUEL-

CMS, nine were post-form submissions and the remaining two were XHR requests. In phpBB

and ukulima all requests were post-form submissions. Furthermore, we automated verification

79

of RDG checks for form submission, we modified the Form builder class in web applications to

extract form ID, submit button ID, and use click as the user action to trigger form submissions.

We conducted testing of the applications in the RDG slice synthesizing mode, and specify the

following to derive RDG checking rules from the collected and merged RDG slices. We require

matching user action, so the checking rule requires that the triggering user action must be clicks,

as in those RDG slices in the synthesizing mode. Similarly, we require matching initiator element

and origin. Thus, the generated checking rules also enforce that the initiator element must be a

Form element, and the initiator origin be the root node, as seen in the synthesizing mode. With

such derived RDG checking rules, the web applications detected malicious requests from session-

misuse attacks in our evaluation, which attempted to post new threads or update user profile.

5.7.5 Performance Overhead

To evaluate the performance of ClearRequest, we measured the execution overhead of Clear-

Request at client-side and server-side with industry-standard benchmarks. All results presented

here are on an average of five runs.

Client-side overhead At the client side we measured the overhead incurred by ClearRequest on

JavaScript and DOM performance and page load time.

JavaScript and DOM We measured JavaScript and DOM performance overhead introduced

by ClearRequest in the web browser with the Mozilla Dromaeo benchmark. This benchmark con-

tains JavaScript and DOM tests of different categories, ranging from text processing to object

manipulation. Table 5.4 shows the result of the test. We observed a 1.43% performance overhead

of ClearRequest, as compared to an unmodified Firefox browser. We also measured the perfor-

mance overhead with the SunSpider JavaScript benchmark and the V8 Benchmark Suite. These

benchmarks are used to measure the performance overhead incurred by our approach in JavaScript

execution. In the SunSpider JavaScript benchmark tests we observed a 2.09% performance over-

head, and in the V8 Benchmark Suite we observed a 2.29% slowdown. As these numbers indicate,

ClearRequest incurred low performance overhead on industry-standard benchmarks.

Overhead on page loading We measured the impact of our approach on the page-load per-

formance using the Mozilla page-loader tool, which is commonly used by Mozilla as a benchmark

of Mozilla Firefox performance [93]. It takes a text file as an input that contains a list of URLs

specified by the user and loads each URL ten times, reporting statistics about the time each page

80

Benchmark
Name

Original Browser
(runs/sec)

ClearRequest
(runs/sec)

%
Overhead

V8 Test Suite 2.496 2.44 2.29%
SunSpider 16.382 16.046 2.09%
Dromaeo 9.668 9.532 1.43%

Table 5.4: Overhead incurred by ClearRequest on industry-standard JavaScript benchmark.

Website
Name

Min Slice Size
(bytes)

Max Slice Size
(bytes)

Avg Slice Size
(bytes)

Gmail 96 391 124
Facebook 102 1490 167
Msn 85 416 129
Yahoo 95 390 122
Youtube 93 256 146

Table 5.5: Overhead incurred by ClearRequest in network traffic.

takes to load in the web browser. For each page load, we measured the time taken by the web

browser. ClearRequest incurred on average 2.35% performance overhead in page loading.

Server-side performance overhead To measure server-side performance overhead, we config-

ured phpBB forum and integrated server-side RDG check for posting the message, deleting mes-

sage operations, etc. To calculate the performance overhead incurred by ClearRequest at the server-

side to examine RDG slice before authorizing the request to modify server-side state, we measured

the execution time with and without ClearRequest API library. In our experiments ClearRequest

incurred only 3% of overhead on RDG slice check operations.

Network traffic overhead To measure the network overhead incurred by our technique RDG to

enforce request dependency integrity, we measured the sizes of RDG slices for requests by logging

into five real-world websites and randomly visiting several web pages. Table 5.5 shows the results

of the test. We also measured the number of nodes in an RDG slice3 .

To measure network delay introduced by RDG we used a client machine and a web server from

different countries within the Asia region. The client machine in our lab measured the RTT (round-

trip time) of HTTP request with and without RDG. The web server responded to each request with

an empty HTML page. The two RTT estimates (with RDG and without RDG) are compared to the

median of the five HTTP request measurements. The earlier procedure was repeated on three dif-

ferent slots in a day, such as morning, afternoon, and evening. It is important to note that although

3Gmail 1-8(avg:3 nodes), Facebook:1-22(avg:8 nodes), MSN:1-16bytes(avg:6 nodes), Yahoo:1-9(avg:6 nodes),
Youtube: 1-13 (avg:7 nodes)

81

the trace was collected at one of the two connection end-hosts, the RTT in an HTTP request/re-

sponse pair is not constant due to queuing delay variation. For this reason we use the median of

the HTTP request/response measurements as a basis for comparison. We noticed network delay

for RDG size of 200 bytes ranging from 7-18%, but averaging a modest 11.19%. On RDG size of

500 bytes we observed a delay ranging from 15-36%, but averaging to 21%.

5.8 Related Work

In this section, we compare our approach with other related research efforts. BEAP [85], imple-

mented as a browser extension for Firefox, mitigates the CSRF attack on the client side. It can

infer whether a request reflects user’s intention, by using the heuristics derived from analyzing

real-world web applications. If a sensitive request does not appear to reflect a users’ intention,

BEAP strips the authentication token from it.

RequestRodeo [67] is also a client-side solution to mitigate the CSRF attack. It works as a local

HTTP proxy, and identifies HTTP requests that are suspicious as CSRF attacks by monitoring the

URLs of all incoming requests and outgoing responses. It removes authentication token, such as

the Cookie header, from outgoing HTTP requests for which the origin and target do not match.

Content Security Policy helps prevent both XSS and Clickjacking attacks. CSP is supported

and implemented in the Firefox, Chrome, and Safari browsers. Content Security Policies contain

a large set of directives that are set on a per-page basis. These directives indicate which servers

the website trusts to deliver JavaScript, images, stylesheets, and a number of other content types

embedded on the page. Through per-directive whitelists, a developer has control over the source

of each piece of data included in their webpage. By default CSP does not allow inline JavaScript

or calls to the eval() function on a website. The inline JavaScript restriction prevents execution

of scripts within <script> blocks as well as inline event handlers within the webpage such as <a

... onclick=“JAVASCRIPT CODE”>. Restricting inline JavaScript substantially mitigates the risk

of XSS attacks. With this restriction, attackers must compromise a whitelisted source in order to

perform a successful attack. When a CSP [134] policy is applied on a website, the web browser

will only execute script in source files from the whitelisted origins and will disregard everything

else, including inline scripts. Hence, website administrators can reduce or even eliminate their XSS

attack surface by implementing CSP. Firefox’s implementation of CSP lets a protected website

specify a set of whitelisted websites that can embed it through the frame-ancestors directive. The

X-Frame-Options HTTP header provides a similar but more restrictive functionality, as it only

allows the website to be embedded in its own origin or a single trusted third-party, but not both.

82

With frame-ancestors, websites can specify a list of trusted origins that can embed the page, while

still protecting the website from being embedded in arbitrary and potentially malicious websites.

The frame-ancestors directive will enforce that a website’s parent and all its ancestors are in the

list of whitelisted resources before it loads the website in an iframe, while X-Frame-Options will

only enforce restrictions on an iframe’s direct parent. Hence, the X-Frame-Options header doesn’t

provide the same level of security as frame-ancestors.

Florian proposed a gateway at the server to mitigate reflected XSS and CSRF attacks [71]. The

website S is divided into entry pages and regular pages. Gateway does not allow entry pages to

accept any input, thus preventing the reflected XSS attack. To prevent the CSRF attack, access to

regular pages must contain authentication cookie and a referrer string from site S; otherwise the

request is discarded.

NoForge [68] is a proxy-based approach deployed at the server side. It inspects and modifies

client requests as well as web application responses to automatically append CSRF tokens to all hy-

perlinks and form submissions. NoForge is unable to handle dynamically generated HTML at the

client side. Moreover, it does not differentiate between hyperlinks to itself and hyperlinks to other

domains. NoForge is also susceptible to dynamic CSRF attacks [55], as its CSRF tokens could

be leaked to other domains. Furthermore, NoForge can not differentiate between user intention

and forged requests. For example, it is unable to handle a CSRF variant know as clickjacking, in

which an honest website is embedded into a transparent frame and the user is tricked into clicking

on a button on the honest website without the consent of the user. Because the request is generated

by the honest website embedded into a frame that includes a correct token, it passes the check of

NoForge.

Compared to the above approaches, our solution focuses more on how requests can be au-

thenticated accurately using browser execution environment information. Instead of preventing

or mitigating a specific type of attack, our solution provides client-side behavior information that

helps web applications understand where and how the request is generated. We believe that the

new request validation approach we proposed is more resilient to future attack techniques, as it

solves the root cause of the request validation problem.

According to the HTTP standard [47], the POST method is used to mutate the state of the user

on the web server, whereas the GET method is used to retrieve information. To protect against

CSRF attack and prevent mutation of server-side state of a user, a web application authenticates

web forms using a secret token. To achieve this goal the web application validates the web form

using a hidden form element with a one-time random token. When form data is submitted by the

user, the web application checks whether the form data contains a hidden one-time random token.

83

If no such token is found, that means the form data has been generated by a forged request and

the web application thus rejects the request. Web application development frameworks such as

django [38] (python), Ruby-on-Rails [108] (Ruby), Struts 2 [26] (Java) provide a mechanism to

web application to add a hidden pseudo-random token to web forms and validate that token when

the web form is submitted. Since data in forms are not automatically attached in a request, this

solution makes it much harder to ride an existing web session by CSRF. However, injected script in

a web page can read authentication tokens and send malicious HTTP requests with authentication

of the valid token. Therefore, the authentication token is effective in preventing CSRF but not a

general solution to help web applications judge authenticity of requests.

Moreover, to prevent CSRF attacks from mutating the server-side state of users, web appli-

cations can use the multi-step transaction technique [151]. In this technique, a web application

gathers data from web forms via multiple requests and processes the final request on behalf of the

user only when it receives requests from all steps. However, an attacker can simulate multi-step

requests using iFrames and automatically submit the requests using JavaScript.

Another line of work is to provide ad-hoc information to a web server in HTTP Header with

each request. When a web browser issues a request, it includes an Origin header in the request

that indicates the origin of the initiator of the request [11]. Origin is expressed as a triplet consisting

of protocol, host, and port number. If a web browser cannot determine the origin, it sends the

value null. For example, for requests generated from bookmarks. Origin header validation is

an effective mechanism to prevent CSRF attacks, but it is inadequate to help web applications in

judging the authenticity of a request when the request is generated by injected script in a web page.

To ensure the confidentiality of sensitive data (such as cookies), Noxes [74] and NoMoXSS [141]

are client-side XSS mitigation mechanisms. However, attacks that do not violate same-origin pol-

icy (SOP) [99] and modify user state on the server are not detected by these solutions.

Even though Web 2.0 and Ajax websites favor the use of JavaScript, users could opt to disable

JavaScript in their browsers to mitigate XSS attacks. NoScript is a plugin for the Firefox web

browser that allows users to disable JavaScript on a domain basis [106]. However, the major

problem with disabling the JavaScript on a website is that it substantially reduces the website’s

functionality and responsiveness, as client-side script is faster than server-side scripting and use

of Ajax reduces the need for a page to be reloaded. Furthermore, many sites do not work without

enabling JavaScript, hence forcing users to disable protection for that site.

To protect its users from injected scripts, web applications use content filtering. Content fil-

tering, also known as sanitization [122, 149], is a technique used by web applications to identify

and remove potentially malicious content from user input. However, sanitization is difficult to

84

implement correctly by web applications that allow HTML in user input such as blogs, web fo-

rums, etc. Furthermore, there exist parsing quirks in browser to render legacy web applications as

documented in XSS-CheatSheet [119]. Attacks such as Samy worm [123] offer an example of

exploiting weakness in content filtering.

5.9 Summary

Session-based authentication mechanisms are threatened by the complex environment of browsers

where the client-side logic of web applications is running. In such an environment, attackers have

different ways to generate a malicious request, where the server is unable to decide whether the

request has been generated legitimately or generated by client-side attacks that exploit users’ active

sessions. Such attacks either use JavaScript to directly generate malicious web requests, or exert

UI spoofing techniques to trick users into initiating them. As these malicious requests are sent to

websites where the victim user has already logged in, they will be automatically authenticated and

thus processed by the web server. As a result, web servers often fall victim to forged web requests.

In this Chapter, we proposed a novel approach ClearRequest, which extracts the request-related de-

pendency information in a browser environment into the request dependency graph (RDG). Clear-

Request sends the slices of RDG to web application servers to help them detect malicious requests

in the web session.

85

Chapter 6

A Behavior-based Approach to Confine
Malicious Browser Extensions

While the solution from Chapter 3 allows privilege separation and fine-grained access control to

untrusted JavaScript within an origin to confine its behavior, today’s popular web browsers run

untrusted code from various sources in web sessions such as browser extensions. To enhance

functionality and customization features, web browsers allow themselves to be extended by third-

party code such as browser extensions. A browser extension extends the functionality of a web

browser. Web browser extensions allow for modification of the behaviors of existing features of

the browser or addition of new features. Examples of new features an extension may add include

bookmark managers, password managers, IRC clients, etc. In addition, extensions can modify user

views of the web pages, such as removing distracting page components such as advertisements.

Our Observations Google Chrome uses a permission-based system to control what an extension

can do. Under the permission-based system, an extension can perform much more than what users

expect it to do. It is the behavior, instead of requested permissions, that makes an extension

malicious. Browser extension permissions and CSP policies can only loosely restrict the behaviors

that extensions can perform at run time. Therefore, we need a solution that controls an extension

based on its behaviors to prevent them from tampering with web applications.

Our Solution We propose a permissive and flexible security mechanism, SessionGuard, which

protects web sessions from malicious behaviors of extensions. Instead of enforcing permission

checks, SessionGuard extracts behaviors of extensions and monitors high-level actions performed

by malicious extensions such as “keystroke logging”, “proxying”, and “runtime code download

and execution”. We used low-level events such as modification to DOM, use of extension APIs

86

to access web session, network request, etc., to define high-level behavior specifications. Such

a design allows a full spectrum of JavaScript functionality to untrusted extensions and regulates

their behaviors in a transparent manner. The key of our approach is that high-level malicious

behaviors can be efficiently matched against runtime behaviors of an unknown extension to detect

malicious extensions. The key benefit of behavior-based detection is that behaviors are invariants

in malicious extensions and allow detection of previously unseen malicious extensions.

SessionGuard isolates the execution of content scripts injected by extensions into web pages

in a controlled environment, called the shadow DOM. In the shadow DOM, SessionGuard extracts

content script behaviors without sacrificing their functionality and integrity of web application

data. Thus, SessionGuard ensures that injected content scripts by extensions will not affect the

website contents without control, protecting the integrity of web applications. The isolated en-

vironment provided by SessionGuard is different from isolated worlds [12]. In isolated worlds,

content scripts get separate copies of JavaScript objects while they share DOM objects with the

web page; in the shadow DOM, content scripts run on shadow copies of DOM to operate on web

page data. In addition, the shadow DOM allows network access but prevents extensions from send-

ing HTTP requests to the origin of web sessions. To reflect changes done by content scripts into the

actual web page DOM, SessionGuard takes net effects of DOM changes from the shadow DOM

at regular intervals and applies them to the real DOM. When applying net effects, SessionGuard

allows new changes if they are benign changes, consisting of changes to style property of DOM

elements and HTML tags that do not introduce third-party origins or scripts.

6.1 Background

In this section we briefly give an overview of browser extensions and describe the Google Chrome

extension security model and limitation of existing defense solutions.

6.1.1 Overview

The popularity of browser extensions is further increased with extension stores, such as the Chrome

Web Store [24], which offers convenient ways for users to browse, download, and install browser

extensions. However, as shown in prior studies [12, 18, 78, 148], browser extensions can run with

high privileges in the browser, which poses risks to web applications and users’ host systems. To

constrain potential threats from malicious extensions, modern browsers propose permission-based

frameworks to mandate the declaration of permissions requested by extensions [12, 69]. Such

permissions are presented to users during installation time, where users have to approve them if

87

they want to install and use the extension. For instance, without permissions for access to the

browser history and cookie storage, extensions cannot read users’ browsing history and cookies

stored (for specific domains) in the browser. A commonly requested and approved permission by

an extension is to inject scripts (also known as content scripts) into web pages, which is needed for

functionalities including page touch-up, page content translation, user input capturing, etc. Once

scripts are injected into web pages, they have full privileges to access a web application’s resources,

such as issuing unauthorized transactions.

The wide popularity of browser extensions has attracted the attention of malware writers. Ac-

cording to the study by Kirda et al. [73], many malware programs have implementations based

on browser extension. The malicious extension is one of the main threats to the security of web

users [19, 131]. Another study by Chia [114] of 5,943 Chrome extensions shows that 35% of

Chrome extensions request permissions to access user data on all websites. Unrestricted access to

web applications contents from extensions raises a major challenge to the integrity of web appli-

cations.

The permission-based extension framework cannot address the above mentioned challenge, as

users have to approve permissions during extension installation time if they want to use the re-

questing browser extensions. For example, after content scripts enter web sessions, the extension

permission enforcement mechanism cannot have further control. On the other hand, existing se-

curity mechanisms within a web page also have no sufficient protection against malicious content

scripts injected by browser extensions. A well-known protection mechanism to regulate content

injection in a web application is Content Security Policy (CSP) [134]. CSP provides a declarative

content restriction policy in an HTTP header that the browser can enforce. CSP defines direc-

tives associated with various types of contents that allow developers to create whitelists of content

sources and instruct client browsers to only load, execute, or render content from those trusted

sources. However, CSP is an all-or-none approach and it is limited to content injected into web

pages.

6.1.2 Google Chrome Extension

The Google Chrome extension security model [12] aims to protect users from buggy extensions

by following three security principles: least privilege, privilege separation, and strong isolation.

According to the Chrome extension security model, extensions are limited to a set of privileges

chosen at install time. In addition, extensions are divided into three isolated components: content

scripts, an extension core, and a native binary. The content script gets injected into a web page

when the web page is loaded. The injected content script runs in the same process of the web

88

page. Each content script is allowed to interact with the DOM of a web page where it is injected.

However, by default it does not have permission to get access to API’s provided to extensions, or

send network requests, except the ability to send messages to the extension core. Each extension

core is executed in a dedicated process from the browser process or web page’s renderer process,

and its accesses to system resources and browser interfaces are controlled by using a manifest file.

The extensions core has all the privileges of browser extension, but to achieve the least privilege

principle, the power of the extension core is limited to the permission it has explicitly requested

in the manifest.json file, which is in the extension package. In addition, extension core is not

allowed to access the user’s file system. To access the host machine, an extension can optionally

include a native binary, which has a user’s full privileges. Furthermore, extensions that contain

a native binary component are not permitted in the gallery unless the extension developer signs a

contract with Google.

Each component of an extension runs in a different process. The content scripts are injected

into a web page and run in the sandboxed process of the web page. The extension core and

native binary each run in separate dedicated processes. Even though the security model of Google

Chrome extensions is comprehensive, malicious Chrome extensions still exist. Threats to a web

session integrity from malicious extensions are a major security concern.

It is common for extensions to inject scripts. In a manual study using fifty extensions from

ten different categories on Google Chrome Extension gallery1, we selected five unique extensions

from each category of the Recommended section of the Google Chrome gallery. We found that

78% (39 out of 50) extensions injected content scripts into web pages.

To prevent users from installing malicious extensions, Google Chrome disables the ability to

install extensions outside of its official web store of extensions. In addition, Google Chrome adopts

a permission-based system to control what an extension can do. For various sensitive operations or

access to sensitive resources, such as network capabilities, cookies, geographic location, browsing

history, etc., it enforces extensions to declare and request corresponding permissions [25]. When

users install an extension, the permissions requested by the extension are shown to the users for ap-

proval; users may also be warned for the security implications of dangerous permissions. However,

users may not be able to make sensible judgment on whether to allow or deny such permissions, es-

pecially when it is subjective. Furthermore, as users want to use such extensions, they may become

habituated to permission prompts and click through them without actually checking them [23].

Mozilla Firefox does not use the permission based framework like Google Chrome. Instead,

Mozilla add-on gallery performs automatic validation of extension code using a set of static checks,

1Categories:Accessibility, Blogging, By Google, Developers Tool, Fun, Photos, Productivity, Search Tools, Shop-
ping and Social

89

which aims to identify common bad practices and possible security problems in extension code.

A limited set of static checks performed by an add-on validation module on the extension code

includes checking the use of eval, setTimeout, setInterval functions to evaluate remote code, remote

script injection, loading content from unsecured third-party into secured sites, <iframe> elements

with no type information, insertion of remote content with innerHTML. This limited set of checks

identifies bad practices in extension code, but they lack the ability to comprehensively identify

malicious behaviors of extensions.

Even though web browsers regulate resources of one web application from another using same-

origin policy (SOP) [99], browser extensions are allowed to inject content script into web pages.

Once content scripts are injected into web pages they can load resources from untrusted third-

parties, access web resources and send it to extension core, etc. Therefore, it is critical to regulate

behaviors of browser extensions to protect the integrity of web sessions.

6.1.3 Motivating Example

In this section we describe the threats from malicious extensions to web sessions. We use an

example based on the extension Turn Off the Lights throughout the chapter to illustrate our solution.

Turn Off the Lights This extension inserts a lamp button in the browser menu bar, which makes

an active web page dark when clicked. It sets everything on the screen to dark except the Flash

and HTML5 video. It injects content scripts into all websites users visit. The content script in turn

injects a DIV element and STYLE elements. The style element covers the entire page with the

injected DIV element by setting its z-index property to the value 999. Elements on web pages are

vertically layered according to the z-index property values with the highest z-index value element

on top. Therefore, the DIV element injected by the extension in the web page will be on top of

all existing elements in the page. It also sets the color of the DIV region to black. Furthermore,

the content script also injects a JavaScript file named injected.js from the extension directory into

web pages. The injected.js file checks for video element in web pages and changes its style value

to make it above the DIV element that covers the entire web page. To do so, it sets the z-index

property value to 1000 for video element.

To achieve its functionality the “Turn Off the Lights” extension requests permissions shown

in the Figure 6.1. By installing the “Turn Off the Lights” extension users expect to enhance us-

ability by minimizing the distraction for a more pleasant video viewing experience. With the

granted permissions, the extension has permissions to perform dangerous activities such as exe-

cute arbitrary JavaScript code in web pages. The permissions are dangerous enough to enable a

90

"content_scripts": [{
"css": ["css/light.css"],
"js": ["js/content.js"],
"matches": ["http://*/*", "https://*/*"],
"run_at": "document_end"

}],
"permissions": ["contextMenus", "tabs",

"http://*/*", "https://*/*"]

Figure 6.1: A sample of manifest file of the Turn Off the Lights extension

remote-controlled web trojan, such as JS/Febipos.A, demonstrated in the Section 2.3.

Summary Malicious extension can perform dangerous activities in web sessions that are not

expected with the permissions given to them. When malicious extensions tamper with web appli-

cation logic, it cannot be stopped by permission-based mechanisms.

6.1.4 High-level Behaviors of Extensions

The behavior of an extension can be described as its observable effect on the execution environ-

ment. In this paper, we focus on the effect of a sequence of APIs used by extensions and modifica-

tion done to web page DOM. Since extension APIs provided by a browser capture the interaction

of an extension with web applications, we aim to capture integrity violations using unintended

interactions with APIs and DOM. An extension behavior refers to the range of activities exhibited

by the extension as a result of granted permissions to the extension.

In our running example, Turn Off the Lights, it injects content scripts into web pages. The

injected content scripts add dynamic SCRIPT elements as well as DIV and Style elements in all

web pages users visit. That is, it not only introduces new elements in web pages but also inserts

dynamic code in web pages. Introducing dynamic code in web pages posses a threat to the in-

tegrity of web applications. Hence, it is necessary to control the behaviors of dynamically injected

untrusted code in web sessions. Content scripts, if injected into web pages, can exhibit various be-

haviors. For example, behaviors of a content script can include injecting new HTML elements into

the web page’s DOM, introducing contents from new origins, modifying existing DOM elements’

value, changing style properties of DOM elements, etc. Behaviors of content scripts can be dif-

ferent in different extensions even though they have acquired the same permissions. For instance,

two extensions with the same content script permission can have different behaviors, such as one

that introduces new origins in web pages whereas another changes style attributes of elements.

91

6.2 Design of SessionGuard

Ja
va

S
cr

ip
t

E
n

g
in

e

Web
Application

Server
Network

Host Objects
(DOM, XHR,

Cookie)

Extensions

Web Browser

Web
Storage

SessionGuard

Figure 6.2: Overview of SessionGuard

Extensions that interact with arbitrary web applications on client browsers pose a wide variety

of threats to the integrity of web sessions. In this work, we focus on threats from JavaScript-based

malicious extensions.

In-scope threats Extensions written by untrusted third-parties can be malicious and tamper with

web sessions or steal web application data. We address such threats to web sessions in this work.

Out-of-scope threats Our work does not address threats from a binary component of extension.

If an extension contains the binary component then it can compromise a host system, preventing

which would require mechanisms on the operating system outside the browser. Thus, we leave this

type of threat out of the scope of our approach.

6.2.1 Components of SessionGuard

The primary goal of SessionGuard is to effectively protect the integrity of a web application from

malicious extensions. To achieve this goal, SessionGuard provides an isolated environment to cap-

ture the behaviors of extensions, shown in Figure 6.2. SessionGuard detects integrity violations

based on the observation of the execution of malicious extension. That is, SessionGuard executes

and monitors an extension in a controlled analysis environment. Then it extracts the behaviors

that characterize the execution of the extension from the controlled analysis environment. Ses-

sionGuard inspects observable effects of extensions and selectively applies those effects into real

the web page DOM based on the security policy of the protected web session.

Figure 6.3 shows the architecture of SessionGuard that extracts behaviors of an extension.

SessionGuard needs to record the interactions of content scripts with web pages and extension

92

Web Page
DOM

Shadow
DOM

Integrator

 Page
Observer Content

Scripts

Analyzed
Extension

Mutation
Observer

Shadow
DOM

Web Browser

Net Effect
Extractor

API Activity
Recorder

SessionGuard
Security

Policy

Figure 6.3: Architecture of the SessionGuard

APIs used by the extension. To monitor the behaviors of content scripts in a web page, Ses-

sionGuard interposes a layer of shadow DOM between the web page DOM and content scripts.

JavaScript from a web page runs on a real DOM tree, and changes done by them occur in the real

DOM tree, whereas content scripts run on their “own” shadow copy of the DOM tree and changes

made by content scripts on shadow DOM objects are selectively reflected into the real DOM tree

only if those behaviors are allowed by users. The Mutation Observer component in the shadow

DOM monitors for changes performed in the shadow DOM tree by content scripts and sends those

changes to the Net Effect Extractor module, which in-turn reflects those changes into the web page

DOM, subject to the security policy constraints. Similarly, the Page Observer component in the

real web page DOM monitors for changes made in the web page DOM and forwards them to the

Shadow DOM Integrator module, which in-turn reflects DOM data into the shadow DOM tree.

6.2.2 The Net Effect Extractor Component

The Net Effect Extractor component of the SessionGuard extracts behaviors of content scripts in-

jected by the extension under analysis. To extract behaviors of content script, SessionGuard runs it

inside a controlled environment and monitors the important security-related actions performed by

content script on web sessions. In particular, SessionGuard isolates content scripts of extensions

and web pages’ DOM objects by providing a shadow copy of DOM to content scripts. Hence, con-

tent scripts of each extension operate on a shadow copy of real DOM objects rather than accessing

real DOM objects of the web page. This helps to detect behaviors of content scripts and allows

recovering from unwanted changes done by malicious content scripts. The summary of changes

extracted from shadow DOM defines the behaviors of the content scripts injected by the extension

into web session. To extract actions from shadow DOM the difference between shadow DOM and

real DOM is calculated. The changes in the shadow DOM as compared with real DOM show the

93

Net Effect Description
Element newly
added

The newly added nodes mean they are present in the shadow DOM but not in
the real web page DOM.

Element
removed

The removed DOM nodes are DOM elements that were present in the real web
page DOM but now they are not present in the shadow DOM.

Element
reparented

The reparented nodes are present in both the real DOM as well as the shadow
DOM but they moved to be children of new parents.

Element
reordered

The reordered nodes that are present in both the real DOM and the shadow
DOM and are children of same parent but now moved to new location in their
parentNode’s childList.

Element
attributeChanged

The attributeChanged means value of a DOM element attribute is changed.

Event listener
register

A call back function registered on particular event (such as submit, click,
mouseover, keypress ,etc.)

Communicate
with the exten-
sion core

Send message or data to extension core from content scripts

New origin
introduction

New element added to the web page DOM that loads resources from third-party
origin.

Table 6.1: Net effects captured from the shadow DOM tree

actions performed by content scripts on the web page such as new DOM elements added, exist-

ing DOM elements removed, DOM elements reordered or reparented, etc. These changes allow

identification of an extension’s behavior on web contents. By default, SessionGuard selects clean

changes and discards changes that introduce a script element and network requests into the DOM

of a web page.

SessionGuard uses mutation observers [42] to extract behaviors of content scripts from the

shadow DOM. It records changes done by content scripts into shadow DOM using mutation ob-

servers and reflects the net effect of those changes into the real DOM tree of the web page if

allowed by the security policy. Net effects are a summary of changes done by a content script

into shadow DOM after comparing with the real web page DOM. It describes how the document

is different in the shadow DOM as compared to the real web page DOM. The difference includes

elements that are newly added, removed, reordered, reparented, and attribute modified. Table 6.1

shows net effects of the content scripts extracted by the Net Effect Extractor component of the

SessionGuard.

By default, SessionGuard allows all DOM tree modifications except changes that introduce

HTTP requests or JavaScript elements into real web page DOM. SessionGuard prevents changes

94

made in the shadow DOM, such as SCRIPT elements and DOM elements with href or src attributes

from the changes, before reflecting them into the real web page DOM tree. The Net Effect Extractor

module is responsible for enforcing such security policies. The communication between the Page

Observer and the Shadow DOM Integrator is in the form of message passing. Similarly, message

passing is used to communicate between the Mutation Observer in shadow DOM tree and the Net

Effect Extractor. When components receive a message of DOM changes, they extract the message

and process it.

6.2.3 The API Activity Monitor Component

The API Activity Monitor component of the SessionGuard monitors behaviors of extension core

and records APIs used by the extension under observation. SessionGuard uses in-browser moni-

toring of APIs used by extensions to record APIs used by extensions to interact with web session.

The set of activities an extension can perform using extension APIs in web sessions is as follows:

• Cookie-API: If an extension invokes APIs provided by the browser to get handle to a cookie

store then it indicates the extension has a behavior of cookie access.

• HTTP-interception: This behavior indicates an extension invoking APIs that allow intercep-

tion of HTTP requests/responses to read/modify network traffic.

• Web-storage: This behavior indicates that an extension invokes APIs that allow the extension

to get access to the user’s web history and localStorage of web applications.

To regulate the behaviors of extensions, web application developers can specify a behavior

control policy, which is composed of directives like Content Security Policy (CSP) [134]. Each

directive specifies how the behavior of an extension code is to be controlled on the protected web

application. The behavior control policy is an opt-in mechanism to allow a web application to

specify security policies to control the interaction of extension APIs with the web application’s

session using a special response header such as X-Behavior-Control-Security-Policy.

Examples of Security Policy to Control Extension Core Behavior

Example 1. A website wants extensions to interact with its web session cookies.

X-Behavior-Control-Security-Policy:

cookie-api:*;

The security policy in this example allows all extensions to access protected web session cook-

ies.

95

Example 2. A bank site wants extensions should not access its web session cookies and client-

side web storage. Also the bank site wants extensions should not intercept its HTTP requests.

X-Behavior-Control-Security-Policy:

cookie-api:none; http-interception:none;

web-storage:none;

The security policy in this example doesn’t allow extensions to access cookies, send HTTP

requests, or access client-side web storage of the protected web session.

Challenges The main challenge in achieving behavior confinement on content scripts injected

by extensions into web sessions is from dynamic behaviors of JavaScript on DOM. For exam-

ple, JavaScript can create new origin, insert new DOM elements, delete existing DOM elements,

change style properties of a DOM element, etc. during its execution. SessionGuard should iden-

tify net effects of content scripts and should confine them inside the corresponding shadow DOM

tree to prevent breaches on a real DOM tree. In particular, SessionGuard needs to track the cre-

ation of new script element into shadow DOM and prevent a reflection of it into the real web page

DOM; otherwise, content scripts would easily bypass protection mechanisms by injecting mali-

cious script elements into a web page’s DOM. While creating a shadow DOM from the real web

page DOM, we insert a web page SCRIPT element as a NO-SCRIPT element in the shadow DOM

to prevent them from executing in the shadow DOM. In other words, SessionGuard provides a

copy of DOM to content scripts that don’t include executable SCRIPT elements of the web page.

SessionGuard adds SCRIPT elements as text contents to maintain a serialized DOM tree order

between the shadow DOM and the real web page DOM. Because this makes it easy to identify net

effects by performing comparisons between the shadow DOM and the real DOM.

Another challenge in reflecting changes from the shadow DOM into the real web page DOM

and vice versa was to avoid cycles of modifications. SessionGuard reflects changes in the real

web page into the shadow DOM and changes occurred in the shadow DOM into the real web page.

Hence, this process can cause cycles. To avoid cycles, we disable observers before applying collec-

tive changes and start observer after applying changes. In addition, SessionGuard first removes all

reordered and reparented nodes from DOM, then inserts new nodes added to DOM and reordered

and reparented nodes at new locations.

96

6.3 Implementation of SessionGuard

We implemented SessionGuard in the Chromium web browser version 24.0.1290.0(160599). The

execution environment of web application’s session contains a set of components to process and

render the content and communicate with the web application servers. These components are the

network library, host objects, web storage, and the JavaScript engine. The network library is re-

sponsible for sending HTTP requests, receiving HTTP responses, and provides APIs to extensions

to intercept or modify requests in-flight and to observe network traffic. Host objects include the

Document Object Model (DOM) objects, XMLHttpRequest (XHR) object, cookies, etc. By de-

fault the JavaScript engine executes JavaScript from web pages as well as content scripts from

browser extensions in an isolated environment.

In Chromium’s source code, the binding module glues the V8 JavaScript engine and the We-

bKit DOM. We intercepted JavaScript calls to the DOM in the binding module and obtained the

JavaScript context of the current JavaScript engine. Content scripts injected by extension in web

pages run in IsolatedWorld. In Chromium, JavaScript context provides information whether it is

in IsolatedWorld or not. If it is not in IsolatedWorld then the JavaScript context belongs to a web

page and no security check is required. Otherwise, the JavaScript context belongs to an extension,

and web page DOM write/modify operations intercepted by SessionGuard. We use this informa-

tion to regulate network requests initiated by content scripts to the web page origin. SessionGuard

intercepted APIs available for an extension under cookies permission in the manifest file.

Shadow DOM Construction We mirror the real web page DOM tree to create a shadow DOM to

run content scripts. We created a separate browser tab for the shadow DOM and constructed a copy

of objects from the browser tab of the real web page DOM in the browser tab of the shadow DOM.

We leverage a browser’s SOP policy to isolate the shadow DOM in the newly created tab. In the

shadow DOM, we assigned tab ID instead of the web page origin, thus the browser’s same-origin

policy ensures that the shadow DOM by default has no access to cookies or other data belonging

to the real web page.

SessionGuard maintains a mapping from the real web page DOM node to the shadow DOM

node, so that when we process the inserted, removed, reordered, reparented, and modified attributes

nodes, we can efficiently locate the corresponding shadow DOM nodes by simply looking them

up in the map. To avoid cycles, SessionGuard first removes all reordered, and reparented nodes

before inserting all newly added, reordered and reparented DOM nodes.

For each node added to the web page DOM, SessionGuard creates a node in the shadow DOM.

In addition, SessionGuard creates NO-SCRIPT elements for all SCRIPT DOM elements in web

97

pages rather than inserting them as SCRIPT elements and executing them in the shadow DOM

as well. SessionGuard uses messages to communicate between the browser tab of the real web

page DOM and browser tab of the shadow DOM. Ideally, each extension should get a separate

copy of shadow DOM. However, our current implementation is limited to only one copy of the

shadow DOM for all extensions. Therefore, we used only one extension at a time in our isolated

environment to get correct behavior of content scripts injected by extensions.

Reflection of Shadow DOM Changes into Real Web Page DOM To reflect changes done in the

shadow DOM into the real web page, we registered MutationObserver on the shadow DOM

nodes rather than Mutation Events. Mutation Events are slow and they are fired too frequently

in a synchronous way, whereas Mutation Observers are faster and invoked asynchronously [35].

In MutationObserver, a callback on observing nodes will not be fired until the DOM has finished

changes. When the callback triggers it is supplied with a list of the changes occurred in the DOM.

We registered mutation observers on all DOM nodes. When one or more nodes are added or re-

moved from a node’s childNodes collection, a “childList” record is created with the target set of

nodes, which is a contiguous sequence of nodes that was inserted or removed. In addition, the po-

sition in the DOM at which the nodes were inserted or removed is recorded via the previousSibling

and nextSibling attributes of a mutation observer object. In mutation observers, when an attribute

is inserted, removed, or modified, an attribute record is created with the target set to the element

owning the attribute.

Figure 6.4 shows screen shots of the real-world web pages (Facebook in this example), the

shadow DOM and reflection of changes done by content scripts in the shadow DOM into the real

web page. For illustration purpose only, we show the shadow DOM contents in a separate tab

in the web browser. The shadow DOM web page assigned with a tabId rather than original

web page domain to leverage the SOP policy implemented by browsers. Figure 6.4(a) shows

the home page of the Facebook web application. Figure 6.4(b) shows the shadow DOM of the

Facebook’s home page. We used the Zoom extension from the Google Chrome gallery to zoom

the web page. Figure 6.4(c) shows content scripts of the Zoom extension modified style properties

of DOM contents in the shadow DOM. It zooms out the Facebook’s home web page content into

shadow DOM. Figure 6.4(d) shows the net effects of changes performed in the shadow DOM by

the Zoom extension are reflected into real web page’s DOM.

98

(a) Original web page DOM (b) Shadow DOM provided to browser extensions

(c) Style change in the shadow DOM by ZOOM
browser extension

(d) Style change reflected in the real web page
DOM from the shadow DOM

Figure 6.4: Screenshots of the original web page and the shadow DOM of the web page

6.4 Evaluation

We evaluated SessionGuard to ensure that it is able to protect the integrity of web applications. We

also measured the runtime overhead of SessionGuard and tested its compatibility with real-world

extensions. All experiments were conducted on a computer with an Intel Core 2 Duo 2.33 GHz

CPU and 4GB RAM, running Linux Mint 12.

6.4.1 Effectiveness

To measure the effectiveness of our approach we created two extensions, namely ExtBot and ad-

Injector. The ExtBot download commands from our controlled server and executes them victim

user’s Facebook session. The adInjector extension injected advertisement from our domain in a

website. We created a website attacker.com in a virtual machine to act as our botnet control

server and domain to serve advertisements.

99

Figure 6.5: An Advertisement injection into Wikipedia by I Want This malicious extension

Download and execute commands

Trojan:JS/Febipos.A: This is a real world malicious botnet extension that downloads and executes

commands from its controlling server as describe in section 2.3. To simulate the behavior of

download and execute commands, we constructed extension ExtBot in our test environment. If the

user is logged in to Facebook, then ExtBot downloaded dynamic scripts from attacker.com

and executed within a victim user’s Facebook session to like all posts on the victim user’s profile.

The ExtBot sends dynamically downloaded code to content scripts that scans all DOM elements

from Facebook’s web page that contains the name like. Then, it automatically invokes click event

on Like buttons to like all posts on the victim user’s profile. SessionGuard executes dynamically

downloaded scripts into the shadow DOM and prevents network requests from being initiated from

the shadow DOM. Thus, SessionGuard prevented botnet behavior of the malicious extension in our

test environment.

Inject Malicious Advertisements to Generate Revenue

I Want This: This is a real world example of a malicious extension that injects advertisement

without the consent of the website publishers [131]. In particular, this real-world malicious ex-

tension injected ads in non-profit websites, such as en.wikipedia.org, that do not support

advertisements, as shown in the Figure 6.5.

The Figure 6.6 shows an example of a malicious extension manifest file. The malicious ex-

tension in its manifest requests to access en.wikipedia.org/ HTTP and HTTPS web pages

to inject injectAd.js content scripts. This injected malicious script inserted an advertisement

into ad-free web application Wikipedia. We created an extension adInjector that loaded

static advertisements from our domain attacker.com and injected them into the web pages

of Wikipedia.

The adInjector extension injects content scripts into Wikipedia sites that add new cross-origin

elements into Wikipedia web pages. SessionGuard captured this behavior of adInjector at run-

time using shadow DOM. To protect the integrity of web applications, the basic policy of Ses-

100

"content_scripts" :
[{ "matches":
["https://http://en.wikipedia.org/*",
"http://http://en.wikipedia.org/*"],
"js": ["injectAd.js"] }],

"permissions":
["tabs", "https://http://en.wikipedia.org/*",
"http://http://en.wikipedia.org/*"]

Figure 6.6: A sample of manifest file to inject advertisements in Wikipedia

sionGuard is to prevent content scripts from introducing new origins or JavaScript code in the web

page’s DOM. According to this policy, before reflecting changes into the real web page DOM,

SessionGuard discarded those DOM elements added by adInjector into the shadow DOM that

introduced the new origins. Thus, SessionGuard successfully prevented content scripts from com-

promising the integrity of the web application by introducing new origins or dynamic code.

6.4.2 Compatibility

To evaluate the compatibility of SessionGuard, we tested it with 10 real world extensions1. Ses-

sionGuard is compatible with all extensions we evaluated.

Turn Off the Lights

This is a typical example on how SessionGuard supports existing extensions. SessionGuard ex-

ecuted content scripts injected by this extension into the shadow DOM. Content scripts inserted

the injected.js JavaScript file into the shadow DOM. In addition, it also inserted DIV and STYLE

element into the shadow DOM. These inserted DIV and STYLE elements created a black layer

on all web page elements except a pause/active video element on the page. SessionGuard only

accepted DIV and STYLE elements from the shadow DOM, while reflecting changes into the real

web page DOM. Thus, we observed a black layer is also created in the real web page DOM for all

DOM elements, except the pause/active video element in the web page. In addition, SessionGuard

created a NO-SCRIPT element into the real web DOM, instead of a SCRIPT element for injected.js

into the shadow DOM. Thus, SessionGuard prevented the injection of dynamic JavaScript into the

web page, but accepted net effects of the changes done by content script in the shadow DOM.

1Adblock Plus, Alexa Traffic Rank, Custom Google Background, Color Changer for Facebook, Google Dictionary,
Highlight Keywords for Google Search, Speed Tracer, Turn Off the Lights, Zoom, LastPass

101

Benchmark Original Browser SessionGuard % Overhead
Name (runs/sec) (runs/sec)

Dromaeo DOM Core 338.32 311.56 8.59%
V8 Test Suite 765.09 749.358 2.1%

Table 6.2: Overhead incurred by SessionGuard on industry-standard benchmark

6.4.3 Performance

We inserted security checks in five cookie APIs 2 provided by the Google Chrome extension sys-

tem, and allowed access to the web application’s cookies if the security policy specified by the

web application allowed it. We also intercepted APIs such as executeScript, content script injec-

tion, event listener registration, and others. We created an extension that uses all five cookie APIs

and we hooked and measured the performance overhead of API interception, both with and without

our approach. SessionGuard incurred, on average, 1.20% performance overhead to perform access

control checks.

Overhead incurred on real-world websites We measured the performance overhead of Ses-

sionGuard occurred upon page load of the 25 different top websites as listed by Alexa. To measure

page load latency, we visited websites with and without SessionGuard. Each experiment was re-

peated 10 times, and the averages of obtained results were recorded. SessionGuard incurred, on

average, 8.29% performance overhead. This overhead is introduced by SessionGuard, due to cre-

ation of the shadow DOM copy for content scripts of browser extensions.

Industry Standard Benchmark We also measured the overhead of SessionGuard on industry-

standard benchmarks. Table 6.2 shows the performance overhead incurred by SessionGuard, as

compared to an unmodified Google Chrome web browser. On the Mozilla Dromaeo DOM Core

benchmark, we observed an 8.59% performance overhead, and on the V8-test suite, we observed

a 2.1% slowdown. As these numbers indicate, SessionGuard incurs low performance overhead on

industry-standard benchmarks.

6.5 Related Work

In this section, we discuss the existing research efforts that mitigate threats from browser exten-

sions.
2Cookie APIs: get, getAll, set, remove, getALLCookieStores

102

Ter Louw et al. [81] developed a solution to monitor XPCOM calls by extensions to a subset of

Firefox’s privileged APIs, in order to secure the extension installation process. However, primary

extension APIs remain unprotected, and extensions still have full privileged to access web sessions.

Barth et al. [12] developed the multi-process security architecture used for Google Chrome exten-

sions. It focuses on threats from a malicious web page exploiting a buggy extension, rather than

a malicious extension compromising web session integrity and privacy. Therefore, the Chrome

security mechanism usually grants extra permissions to content scripts. SessionGuard provides the

ability to check and restrict how browser extensions interact with web sessions, for more precise

control on browser extensions than the default extension manifest.

Liu et al. [78] examined Google Chrome extension security mechanism against malicious ex-

tensions. They introduced macro privileges in the Google Chrome extension permission system,

to limit by-default access of extensions to sensitive information on websites. Our approach also

focuses on malicious extension, but without introducing macro privileges. SessionGuard extracts

behaviors of content script and selectively applies them into the web page DOM.

The JetPack [102] framework is Mozilla’s extension development framework, and aims to im-

prove security by containing any vulnerabilities in an extension module. From the security perspec-

tive, it aims to reduce interaction interfaces between extensions and browser resources. However,

the current implementation of JetPack technology is fully-privileged, which allows uncontrolled

access of users and web applications data.

SpyShield [76] uses an access control proxy to control communications between untrusted add-

ons and their host application. It aims to protect users from spy add-ons. Some static approaches

are also proposed to detect vulnerabilities in JavaScript-based widgets. GATEKEEPER [52] is a

static approach for enforcing security and reliability policies for JavaScript programs. VEX [10]

proposed a static information flow technique to perform an analysis of the JavaScript code of

browser extensions to identify potential security errors. Similar to the Chrome browser, VEX does

not aim to detect malicious extensions. As compared to the above approaches, our solution focuses

on controlling dangerous behaviors of content scripts, instead of vulnerabilities.

Egele et al. [43] developed a flow-tracking technique that examines the guest system states

from outside, with complete knowledge of all important data structures. It uses a dynamic taint

analysis technique to analyze how sensitive information is processed by the system to monitor the

behaviors of untrusted browser extensions.

Sabre [36] is a system that uses in-browser information flow-tracking and analyzes the browser

extensions. It produces an alert when an extension attempts to access any sensitive information in

an unsafe way.

103

Another line of research [51,136,147] proposed new browser architectures to improve security.

They use process-level isolation for different components of a browser. However, threats from

malicious extensions to web sessions were not considered in these architectures.

One class of research solutions [49,145,157,160,166] used fault isolation and system call inter-

position techniques to securely run native plug-in code. These techniques focus on the isolation of

untrusted native code, and they are complementary to our work. Our approach focuses on threats

by JavaScript of browser extensions to web sessions.

Akhawe et al. [5] proposed a privilege separation technique for HTML5 applications. It uses

abstractions available in existing browsers to isolate untrusted components in web applications into

an arbitrary number of temporary origins, in order to leverage SOP policy for isolation.

Akhawe et al. [4] proposed a data-confined sandbox (DCS) primitive for client-side HTML5

applications that handle sensitive data. The proposed approach by the authors executes web appli-

cations code by handling sensitive data in data-confined sandboxes, and provides complete medi-

ation on data communication channels.

CSP [134] mechanism aims to protect the integrity of web applications from content injection.

However, it is all-or-none approach that either allows content in web pages to execute with full

privileges of web application or not at all. In addition, CSP blocks execution of inline script

and inline style sheets thus enforcing content scripts to host JavaScripts/stylesheets they want to

inject in web pages on at least one of the whitelisted domain of web applications. Furthermore, a

recent survey revealed that only 79 out of the Alexa Top 1,000,000 websites [126] implement CSP,

showing that CSP has a very low adoption rate [34].

BLUEPRINT [82] uses an alternative approach to protect the integrity of web applications from

content injection. BLUEPRINT treats the HTML parsing component of a browser as untrustworthy,

and instead uses web servers to parse the document and create output representing the structure

of the web page (the blueprint). This is sent to the browser, which uses the blueprint to build the

document exactly as intended by the web application. SessionGuard’s main goal is to extract the

behavior of content scripts to protect integrity of web sessions.

Code signing allows identification of the author of a piece of code. Java uses code signing

to establish trust by the behavior of an executable, such as Java applet [103]. Netscape Com-

municator uses object signing that permits Java code to request specific kinds of access to local

file-system [37]. The JavaScript security model in Netscape Communicator is based upon the Java

security model for verifying the signed script of the object. JavaScript in web pages is sandboxed

and not allowed to access local file system. Signed scripts certify the owner of the script, therefore

only signed scripts can be granted extended privileges, such as, reading the user’s file system [96].

104

6.6 Summary

To enhance functionality and customization features, web browsers allow themselves to be ex-

tended by third-party code such as browser extensions. In modern web browsers, code in the ex-

tension is usually granted with more privileges than code in web pages. In this paper, we proposed

a novel approach, SessionGuard, to prevent malicious extensions from compromising the integrity

of web applications. SessionGuard extracts net effects of browser extensions in web sessions by

executing them in a controlled environment, and monitoring and recording their interactions within

web sessions. We implemented SessionGuard in the Chromium web browser. Our evaluation and

measurements demonstrated the effectiveness and efficiency of SessionGuard.

105

Chapter 7

Conclusion

This thesis proposed solutions to incorporate necessary behavior control mechanisms into web

browsers to effectively battle against threats to the integrity of sessions. We have begun with the

systematic analysis of the execution environment provided by web browsers and proposed tech-

niques to control behaviors of untrusted code. First, we examined protection mechanisms available

inside an origin, and the existing research efforts to protect a web application’s session from ma-

licious embedded JavaScript. We observed that there is a lack of behavior control mechanism in

the JavaScript context component of the JavaScript engine. This allows attackers to compromise

the integrity of web sessions. To protect web sessions and address this problem, we proposed the

behavior control approach that uses privilege separation and fine-grained access control techniques

inside the origin.

Although our approach provides behavior confinement for any untrusted JavaScript embedded

within web pages by using privilege separation, we also extracted client-side information on how

a request is generated and transported to the server. The complex browser environment provides

various ways for an attacker to forge malicious requests into an active session to modify server-side

state of the web users. Therefore, it is crucial for web servers to know the client-side code behavior

that generated state modifying requests to the server. To help web servers distinguish benign

requests from malicious ones, information on how those requests are generated at the client-side is

also critical.

In the process of designing and implementing behavior control mechanisms to untrusted JavaScript

embedded in a web page, we found that malicious browser extensions can also access and modify

web session data. Modern browsers implicitly trust extensions and allow uncontrolled behaviors

of extensions within web sessions. To protect the integrity of web sessions, we enhanced existing

browsers, to confine behaviors of extensions within web sessions.

106

This dissertation demonstrates that behavior is the key in detecting malicious code, and it pro-

vides an effective way to combat integrity problems within web sessions. This thesis proposed a

line of solutions to extract and control behaviors of untrusted code in the execution environment,

which is a promising direction to build a more secure platform for web applications.

107

Bibliography

[1] Ben Adida, Adam Barth, and Collin Jackson. Rootkits for JavaScript Environments. In Proceedings of the

USENIX Workshop on Offensive Technologies (WOOT), 2009.

[2] ADSafe. Adsafe. http://www.adsafe.org/.

[3] Secure Network Security Research Advisory. Citrix xencenterweb multiple vulnerabilities.

http://securenetwork.it/ricerca/advisory/download/SN-2009-01.txt, 2009.

[4] Devdatta Akhawe, Frank Li, Warren He, Prateek Saxena, and Dawn Song. Data-confined html5 applications.

In Proceedings of the International Conference on European Symposium on Research in Computer Security

(ESORICS), 2013.

[5] Devdatta Akhawe, Prateek Saxena, and Dawn Song. Privilege separation in html5 applications. In Proceedings

of the Usenix Security Symposium (Usenix Security), 2012.

[6] Alexa. Top sites. http://www.alexa.com/topsites, 2009.

[7] Alexa Internet, Inc. Top sites. http://www.alexa.com/topsites, 2013.

[8] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide Balzarotti, and Chrisopher Kruegel. A solution for the

automated detection of clickjacking attacks. In Proceedings of the Symposium on Information, Computer and

Communication Security (ASIACCS), 2010.

[9] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and

Giovanni Vigna. Saner: Composing static and dynamic analysis to validate sanitization in web applications. In

Proceedings of the IEEE Symposium on Security and Privacy (IEEE S & P), 2008.

[10] Sruthi Bandhakavi, Samuel King, P Madhusudan, and Marianne Winslett. Vex: Vetting browser extensions for

security vulnerabilities. In Proceedings of the USENIX Security Symposium (Usenix Security), 2010.

[11] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for cross-site request forgery. In Proceed-

ings of the International Conference on Computer and Communications Security (CCS), 2008.

[12] Adam Barth, Felt Adrienne Porter, Prateek Saxena, and Boodman Aaron. Protecting browsers from extension

vulnerabilities. In Proceeding of the International Conference on Network and Distributed System Security

Symposium (NDSS), 2010.

[13] Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered harmful in client-side xss

filters. In Proceedings of the International Conference on World wide web (WWW), 2010.

108

[14] Prithvi Bisht and V.N. Venkatakrishnan. Xss-guard: Precise dynamic prevention of cross-site scripting at-

tacks. In Proceedings of the International Conference on Detection of Intrusions & Malware, and Vulnerability

Assesment (DIMVA), 2008.

[15] TrendLabs Malware Blog. Malicious firefox extensions. http://blog.trendmicro.com/malicious-firefox-

extensions/.

[16] Bugzilla. bug 475530 - X-FRAME-OPTIONS header against “UI redressing” aka Clickjacking.

https://bugzilla.mozilla.org/show bug.cgi? id=475530, 2009.

[17] Commtouch Cafe. Nasty facebook picture attack based on ”self-xss” - how does this work?

http://blog.commtouch.com/cafe/web-security/nasty-facebook-picture-attack-based-on-self-xss/.

[18] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. An evaluation of the google chrome extension

security architecture. In Proceedings of the USENIX Security Symposium (Usenix Security), 2012.

[19] Microsoft: Malware Protection Center. Trojan:js/febipos.a.

http://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?

Name=Trojan%3aJS/Febipos.A#tab=2.

[20] Mozilla Developer Center. Observer notifications. https://developer.mozilla.org/en/Observer Notifications.

[21] Eric Yawei Chen, Sergey Gorbaty, Astha Singhal, and Collin Jackson. Self-exfiltration: The dangers of

browser-enforced information flow control. In Proceedings of the Workshop of Web 2.0 Security & Privacy

(W2SP), 2012.

[22] Brian Chess, Yekaterina T. O’Neil, and Jacob West. Javascript hijacking. Technical report, 2007.

[23] Pern Hui Chia, Andreas P. Heiner, and N. Asokan. Use of ratings from personalized communities for

trustworthy application installation. In Proceedings of the 15th Nordic conference on Information Security

Technology for Applications (NordSec), 2012.

[24] Google Chrome. Chrome web store. https://chrome.google.com/webstore.

[25] Google Chrome. Declare permissions.

http://developer.chrome.com/dev/extensions/declare_permissions.html.

[26] Nick Coblentz. Csrf prevention in struts 2. http://digg.com/news/technology/ CSRF Prevention in Struts 2.

[27] The Web Application Security Consortium. Cross-site scripting.

http://projects.webappsec.org/Cross-Site-Scripting, 2013.

[28] World Wide Web Consortium. Document object model (dom) level 2 core specification, w3c recommendation.

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html, November 2000.

[29] World Wide Web Consortium. Web storage editor’s draft. http://dev.w3.org/html5/webstorage/, April 2012.

[30] S. Crites, F. Hsu, and H. Chen. Omash: enabling secure web mashups via object abstractions. In Proceedings

of the International Conference on Computer and Communications Security (CCS), 2008.

[31] Douglas Crockford. Jslint. http://www.jslint.com/.

109

[32] Dasient. Continued growth in web-based malware attacks – over 1m web sites infected in q2 2010. http://

blog.dasient.com/2010/09/continued-growth-in-web-based-malware_9357.html,

2010.

[33] Web Hacking Incident Database. The web application security consortium.

http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database.

[34] Isaac Dawson. Security headers on the top 1000000 websites.

http://www.veracode.com/blog/2012/11/security-headers-report/, 2012.

[35] Ernest Delgado. Detect dom changes with mutation observers.

http://updates.html5rocks.com/2012/02/Detect-DOM-changes-with-Mutation-Observers, 2012.

[36] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in javascript-based browser extensions. In

Proceedings of the International Conference on Annual Computer Security Applications Conference (ACSAC),

2009.

[37] Oracle docs. Netscape object signing: Establishing trust for downloaded software.

http://docs.oracle.com/cd/E19957-01/816-6171-10/.

[38] Django Documentation. Cross site request forgery protection.

http://docs.djangoproject.com/en/dev/ref/contrib/csrf/.

[39] Xinshu Dong, Kailas Patil, Xuhui Liu, Jian Mao, and Zhenkai Liang. An entensible security framework in

web browsers. Technical Report TR-SEC-2012-01, Systems Security Group, School of Computing, National

University of Singapore, 2012.

[40] Xinshu Dong, Minh Tran, Zhenkai Liang, and Xuxian Jiang. Adsentry: comprehensive and flexible

confinement of javascript-based advertisements. In Proceedings of the International Conference on Annual

Computer Security Applications Conference (ACSAC), 2011.

[41] Nishant Doshi. Please send me your facebook anti-csrf token!

http://www.symantec.com/connect/blogs/please-send-me-your-facebook-anti-csrf-token.

[42] DOM4 W3C Working Draft. Mutation observers. http://www.w3.org/TR/domcore/#mutation-observers.

[43] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song. Dynamic spyware analysis. In

Proceeding of the USENIX Security Symposium (Usenix Security), 2007.

[44] EllisLab. Codeigniter: Php web application development framework. http://ellislab.com/codeigniter.

[45] Facebook. FBJS - Facebok Developers Wiki. http://wiki.developers.facebook.com/index.php/FBJS, 2008.

[46] Adrienne Porter Felt, Helen J. Wang, Alex Moshchuk, Steve Hanna, and Erika Chin. Permission re-delegation:

Attacks and defenses. In Proceedings of the USENIX Security Symposium (Usenix Security), 2011.

[47] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Rfc 2616, hypertext

transfer protocol – http/1.1, 1999.

[48] Matthew Finifter, Joel Weinberger, and Adam Barth. Preventing capability leaks in secure javascript subsets.

In Proceedings of the International Conference on Network and Distributed System Security Symposium

(NDSS), 2010.

110

[49] Bryan Ford and Russ Cox. Vx32: Lightweight user-level sandboxing on the x86. In USENIX Annual

Technical Conference, 2008.

[50] FUEL-CMS. An open source codeigniter based content management system.

https://github.com/daylightstudio/FUEL-CMS.

[51] Chris Grier, Shuo Tang, and Samuel T. King. Secure web browsing with the op browser. In Proceedings of the

IEEE Symposium on Security and Privacy (IEEE S & P), 2008.

[52] Salvatore Guarnieri and Benjamin Livshits. Gatekeeper: mostly static enforcement of security and reliability

policies for javascript code. In Proceedings of the USENIX Security Symposium (Usenix Security), 2009.

[53] Matthew Van Gundy and Hao Chen. Noncespaces: Using randomization to enforce information flow tracking

and thwart cross-site scripting attacks. In Proceeding of the International Conference on Network and

Distributed System Security Symposium (NDSS), 2009.

[54] ha.cakers.org Blog. Fizzle firefox extension vulnerability.

http://ha.ckers.org/blog/20070324/fizzle-firefox-extension-vulnerability/, 2007.

[55] Nathan Hamiel and Shawn Moyer. Dynamic CSRF. In Black Hat USA, 2009.

[56] Robert Hansen and Jeremiah Grossman. Clickjacking. http://www.sectheory.com/clickjacking.htm, 2008.

[57] Kelly Jackson Higgins. Facebook hit by clickjacking attack.

http://www.darkreading.com/insiderthreat/security/attacks/showArticle.jhtml?articleID=222100098, 2009.

[58] Lin-Shung Huang, Alex Moshchuk, Helen J Wang, Stuart Schechter, and Collin Jackson. Clickjacking:

Attacks and defenses. In Proceedings of the USENIX Security Symposium (Usenix Security), 2012.

[59] IEBlog. IE8 security part vii: Clickjacking defenses. http://blogs.msdn.com/ie/archive/

2009/01/27/ie8-security-part-vii-clickjacking- defenses.aspx, 2009.

[60] Lon Ingram and Michael Walfish. Treehouse: Javascript sandboxes to help web developers help them-selves.

In Proceedings of the USENIX annual technical conference, 2012.

[61] ECMA International. Standard ECMA-262.

http://www.ecma-international.org/publications/standards/Ecma-262.htm, 2009.

[62] Scott Isaacs and Dragos Manolescu. WebSandbox - Microsoft Live Labs. http://websandbox.livelabs.com/,

2009.

[63] Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell. Protecting browser state from web privacy

attacks. In Proceedings of the International Conference on World Wide Web (WWW), 2006.

[64] Collin Jackson and Helen J. Wang. Subspace: secure cross-domain communication for web mashups. In

Proceedings of the International Conference on World Wide Web (WWW), 2007.

[65] Karthick Jayaraman, Wenliang Du, Balamurugan Rajagopalan, and Steve J. Chapin. Escudo: A Fine-grained

Protection Model for Web Browsers. In Proceedings of the International Conference On Distributed

Computing Systems (ICDCS), 2010.

[66] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating Script Injection Attacks with Browser-Enforced

Embedded Policies. In Proceedings of the International Conference on World Wide Web (WWW), 2007.

111

[67] Martin Johns and Justus Winter. RequestRodeo: Client-side protection against session riding. In Proceedings

of the OWASP Europe 2006 Conference, Refereed Papers Track, Report CW448, 2006.

[68] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Preventing cross site request forgery attacks. In

Proceedings of the Second IEEE Conference on Security and Privacy in Communications Networks

(SecureComm), 2006.

[69] Rezwana Karim, Mohan Dhawan, Vinod Ganapathy, and Chung-chieh Shan. An analysis of the mozilla

jetpack extension framework. In Proceedings of the 26th European conference on Object-Oriented

Programming (ECOOP), 2012.

[70] Chris Karlof, Umesh Shankar, J. D. Tygar, and David Wagner. Dynamic pharming attacks and locked

same-origin policies for web browsers. In Proceedings the International Conference on Computer and

Communications Security (CCS), 2007.

[71] Florian Kerschbaum. Simple cross-site attack prevention. In Proceedings of the International Conference on

Security and Privacy in Communications Networks and the Workshops (SecureComm), 2007.

[72] Frederik De Keukelaere, Sumeer Bhola, Michael Steiner, Suresh Chari, and Sachiko Yoshihama. Smash:

secure component model for cross-domain mashups on unmodified browsers. In Proceedings of the

International Conference on World Wide Web (WWW), 2008.

[73] Engin Kirda and Christopher Kruegel. Behavior-based spyware detection. In Proceedings of USENIX Security

Symposium (Usenix Security), 2006.

[74] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic. Noxes: A client-side solution for

mitigating cross site scripting attacks. In Proceedings of the Symposium on Applied Computing (SAC), 2006.

[75] D. Kristol. Http state management mechanism. http://www.ietf.org/rfc/rfc2109.txt, 1997.

[76] Zhuowei Li, XiaoFeng Wang, and Jong Youl Choi. Spyshield: preserving privacy from spy add-ons. In

Proceedings of the International Conference on Recent Advances in Intrusion Detection (RAID), 2007.

[77] Mashed Life. Mashedlife. http://mashedlife.com.

[78] Lei Liu, Xinwen Zhang, Guanhua Yan, and Songqing Chen. Chrome extensions: Threat analysis and

countermeasures. In Proceeding of the International Conference on Network and Distributed System Security

Symposium (NDSS), 2012.

[79] Benjamin Livshits and Úlfar Erlingsson. Using web application construction frameworks to protect against

code injection attacks. In Workshop on Programming Languages and Analysis for Security (PLAS), 2007.

[80] Mike Ter Louw, Karthik Thotta Ganesh, and V. N. Venkatakrishnan. Adjail: Practical enforcement of

confidentiality and integrity policies on web advertisements. In Proceedings of the USENIX Security

Symposium (Usenix Security), 2010.

[81] Mike Ter Louw, Jin Soon Lim, and V. N. Venkatakrishnan. Enhancing web browser security against malware

extensions. In Proceedings of the Journal in Computer Virology, August 2008.

[82] Mike Ter Louw and V. N. Venkatakrishnan. Blueprint: Robust prevention of cross-site scripting attacks for

existing browsers. In Proceedings of the IEEE Symposium on Security and Privacy (IEEE S & P), 2009.

112

[83] Sergio Maffeis, John C Mitchell, and Ankur Taly. Run-time enforcement of secure javascript subsets. In

Proceedings of the Workshop of Web 2.0 Security & Privacy (W2SP), 2009.

[84] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object capabilities and isolation of untrusted web

applications. In Proceedings of the IEEE Symposium on Security and Privacy (IEEE S & P), 2010.

[85] Ziqing Mao, Ninghui Li, and Ian Molloy. Defeating cross-site request forgery attacks with browser-enforced

authenticity protection. In Proceedings of the International Conference on Financial Cryptography and Data

Security (FC), 2009.

[86] Leo A. Meyerovich and Benjamin Livshits. ConScript: Specifying and enforcing fine-grained security policies

for javascript in the browser. In Proceedings of the IEEE Symposium on Security and Privacy (IEEE S & P),

2010.

[87] Microsoft. About the pop-up blocker. http://msdn.microsoft.com/en-us/library/ms537632(VS.85).aspx.

[88] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. Caja - Safe Active Content in Sanitized

JavaScript. http://google-caja.googlecode.com/files/caja-spec-2007-10-11.pdf, 2007.

[89] Travis Mitchell. Aba survey: 62% of u.s. adults now prefer online banking.

http://www.fiercefinance.com/story/aba-survey-62-us-adults-now-prefer-online-banking/2011-09-08, 2011.

[90] MITRE. Common vulnerabilities and exposures. the standard for information security vulnerability names.

http://cve.mitre.org/find/index.html.

[91] Mozilla. event.addeventlistener. https://developer.mozilla.org/en/DOM/element.addEventListener.

[92] Mozilla. nsicontentpolicy-mdn. https://developer.mozilla.org/en/NsIContentPolicy.

[93] Mozilla. Performance:tinderbox tests. https://wiki.mozilla.org/Performance:Tinderbox Tests.

[94] Mozilla. Pop-up blocker. http://support.mozilla.com/en-US/kb/Pop-up+blocker.

[95] Mozilla. Pop-up window controls. https://developer.mozilla.org/en/Popup Window Controls.

[96] Mozilla. Signed scripts in mozilla. http://www.mozilla.org/projects/security/components/signed-scripts.html.

[97] Mozilla. Spidermonkey internals. https://developer.mozilla.org/En/SpiderMonkey/Internals.

[98] Mozilla. Extensions. https://developer.mozilla.org/En/Extensions, 2009.

[99] MDC Mozilla. Same origin policy for javascript. https://developer.mozilla.org/En/Same origin policy for

JavaScript, 2009.

[100] MSDN. What’s new in Internet Explorer 8. http://msdn.microsoft.com/en-us/library/ cc288472.aspx, 2009.

[101] Yacin Nadji, Prateek Saxena, and Dawn Song. Document structure integrity: A robust basis for cross-site

scripting defense. In Proceeding of the International Conference on Network and Distributed System Security

Symposium (NDSS), 2009.

[102] Mozilla Developer Network. Jetpack. https://developer.mozilla.org/en/Jetpack.

[103] Oracle Sun Developer Network. Chapter 10: Signed applets.

http://java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html.

113

[104] BitDefender News. Trojan poses as fake google chrome extension.

www.bitdefender.com/site/News/pdfDescription/1487.pdf.

[105] Nex. The clickjacking meets xss: a state of art. http://www.milw0rm.com/papers/265, 2008.

[106] NoScript. http://noscript.net, 2009.

[107] National Vulnerability Database (NVD). Cve-2009-3759.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3759, 2009.

[108] Ruby on Rails. http://rubyonrails.org/.

[109] Bryan Parno, Jonathan M. McCune, Dan Wendlandt, David G. An-dersen, and Adrian Perrig. Clamp:

Practical prevention of large-scale data leaks. In Proceedings of the IEEE Symposium on Security and Privacy

(IEEE S & P), 2009.

[110] Kailas Patil, Xinshu Dong, Xiaolei Li, Zhenkai Liang, and Xuxian Jiang. Towards fine-grained access control

in javascript contexts. In Proceedings of the International Conference on Distributed Computing Systems

(ICDCS), 2011.

[111] Kailas Patil, Xinshu Dong, and Zhenkai Liang. Clickguard: Preventing click event hijacking by user intention

inference. In Proceedings of the International Conference on Applied Cryptography and Network Security

(ACNS) [Industrial Track], 2010.

[112] Kailas Patil, Tanvi Vyas, Fredrik Braun, and Mark Goodwin. Usercsp- user specified content security policies.

SOUPS’13 POSTER, 2013.

[113] S. D. Paula and G. Fedon. Subverting ajax. In Proceedings of the International Conference on Chaos

Communication Congress (CCC), 2006.

[114] Chia P.H., Yamamoto Y., and Asokan N. Is this app safe?: a large scale study on application permissions and

risk signals. In Proceedings of the International Conference on World Wide Web (WWW), 2012.

[115] Phu H. Phung, David Sands, and Andrey Chudnov. Lightweight Self-Protecting JavaScript. In Proceedings of

the Symposium on Information, Computer, and Communications Security (ASIACCS), 2009.

[116] Ameet Ranadive, Tufan Demir, Shariq Rizvi, and Neil Daswani. Malware distribution via widgetization of the

web. In Proceedings of the BlackHat Technical Security Conference, DC, 2011.

[117] W3C Candidate Recommendation. Content security policy 1.0. http://www.w3.org/TR/CSP/, 2012.

[118] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir. Browsershield:

Vulnerability-driven filtering of dynamic html. In Proceedings of the Symposium on Operating Systems

Design and Implementation (OSDI), 2006.

[119] RSnake. Xss(cross site scripting) cheat sheet esp: for filter evasion. http://ha.ckers.org/xss.html.

[120] Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens, and Wouter Joosen. Csfire: Transparent

client-side mitigation of malicious cross-domain requests. In Lecture Notes in Computer Science, 2010.

[121] Justin Samuel. Requestpolicy. http://www.requestpolicy.com, 2010.

114

[122] Mike Samuel, Prateek Saxena, and Dawn Song. Context-sensitive auto-sanitization in web templating

languages using type qualifiers. In Proceeding of the International Conference on Computer and

Communications Security (CCS), 2011.

[123] Samy. Technical explanation of the myspace worm. http://namb.la/popular/tech.html.

[124] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. Flax: Systematic discovery of client-side

validation vulnerabilities in rich web applications. In Proceedings of the International Conference on Network

and Distributed System Security Symposium (NDSS), 2010.

[125] Prateek Saxena, David Molnar, and Benjamin Livshits. Scriptgard: Preventing script injection attacks in

legacy web applications with automatic sanitization. Technical Report, Microsoft Research, 2010.

[126] Scottdb56. mobi*list - a list of mobile device-friendly websites. http://mobi.sdboyd56.com/, 2013.

[127] Security and the Net. About IE8’s Clickjacking protection. http://securityandthe.net/2009/02/01/

about-ie8s-clickjacking-protection/, 2009.

[128] Websense security labs blog. A weekend of click-jacking on facebook.

http://community.websense.com/blogs/securitylabs/archive/2011/05/02/

a-weekend-of-click-jacking-on-facebook.aspx.

[129] O Segal, O Weisman, Adi Sharabani, Y Amit, and L Guy. Close encounters of the third kind.

ftp://public.dhe.ibm.com/common/ssi/ecm/en/raw14252usen/RAW14252USEN.PDF, 2010.

[130] R. Sekar. An efficient black-box technique for defeating web application attacks. In Proceeding of the

International Conference on Network and Distributed System Security Symposium (NDSS), 2009.

[131] IDG News Service. Browser malware is injecting ads into our pages, warns wikipedia.

http://www.computerworlduk.com/news/security/3358034/browser-malware-is-injecting-ads-into-our-pages-

warns-wikipedia/.

[132] Nakedsecurity Sophos. Try not to laugh xd: Worm spreads via facebook status messages.

http://nakedsecurity.sophos.com/2010/05/21/laugh-xd-worm-spreads-facebook-status-messages/.

[133] Nakedsecurity Sophos. Viral clickjacking ’like’ worm hits facebook users.

http://nakedsecurity.sophos.com/2010/05/31/viral-clickjacking-like-worm-hits-facebook-users/.

[134] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with content security policy. In

Proceedings of the International Conference on World Wide Web (WWW), 2010.

[135] Xi Tan, Wenliang Du, Tongbo Luo, and Karthick D. Soundararaj. Scuta: A server-side access control system

for web applications. Technical report, SYR-EECS-2011-09, July 14, 2011.

[136] Shuo Tang, Haohui Mai, and Simon King. Trust and protection in the illinios browser operating system. In

Proceedings of the Symposium on Operating Systems Design and Implementation (OSDI), 2010.

[137] Mike Ter Louw, Prithvi Bisht, and V.N. Venkatakrishnan. Analysis of hypertext isolation techniques for XSS

prevention. In Proceedings of the workshop on Web 2.0 Security and Privacy (W2SP), 2008.

[138] Alexa the Web information company. Top sites by category. http://www.alexa.com/topsites/category.

115

[139] Amir Tinkering. Chrome extension spyware?: Smooth gestures.

http://amirtinkering.com/52/chrome-extension-spyware-smooth-gestures/.

[140] Ukulima. An open source codeigniter based social networking platform and knowledge base for farmers.

https://github.com/PamojaMedia/ukulima.

[141] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and Giovanni Vigna.

Cross-site scripting prevention with dynamic data tainting and static analysis. In Proceeding of the

International Conference Network and Distributed System Security Symposium (NDSS), 2007.

[142] W3C. 3.2 transparency: the opacity property - css color module level 3.

http://www.w3.org/TR/css3-color/#transparency.

[143] W3C. Document object model (dom) level 3 events specification.

http://www.w3.org/TR/DOM-Level-3-Events/.

[144] W3C. ’z-index’ - cascading style sheets level 2 revision 1 (css 2.1) specification.

http://www.w3.org/TR/CSS21/visuren.html#propdef-z-index.

[145] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient software-based fault

isolation. In Proceedings of the Symposium on Operating Systems Principles (SOSP), 1993.

[146] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and communication abstractions for

web browsers in mashupos. In Proceedings of the Symposium on Operating Systems Principles (SOSP), 2007.

[147] Helen J Wang, Chris Grier, Alex Moshchuk, and Sam King. The multi-principle os construction of the gazelle

web browser. In Proceedings of the USENIX Security Symposium (Usenix Security), 2009.

[148] Jiangang Wang, Xiaohong Li, Xuhui Liu, Xinshu Dong, Junjie Wang, Zhenkai Liang, and Zhiyong Feng. An

empirical study of dangerous behaviors in firefox extensions. In Proceedings of the Information Security

Conference (ISC), 2012.

[149] Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter, Richard Shin, and Dawn Song. A

systematic analysis of xss sanitization in web application frameworks. In Proceedings of the International

Conference on European Symposium on Research in Computer Security (ESORICS), 2011.

[150] Wikipedia. Cascading style sheets.

http://en.wikipedia.org/wiki/Cascading_Style_Sheets.

[151] Wikipedia. Cross-site request forgery (csrf) prevention cheat sheet.

http://www.owasp.org/index.php/Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet.

[152] Wikipedia. Document object model. http://en.wikipedia.org/wiki/Document Object Model.

[153] Wikipedia. Framekiller. http://en.wikipedia.org/wiki/Framekiller.

[154] Wikipedia. Html. http://en.wikipedia.org/wiki/HTML.

[155] Wikipedia. Javascript. http://en.wikipedia.org/wiki/JavaScript.

116

[156] J. Max Wilson. IE JavaScript bugs: Overriding internet explorer’s document.getElementById() to be W3C

compliant exposes an additional bug in getAttributes(), 2007.

http://www.sixteensmallstones.org/ie-javascript-bugs-overriding-internet-explorers-documentgetelementbyid-

to-be-w3c-compliant-exposes-an-additional-bug-in-getattributes.

[157] Yongzheng Wu, Sai Sathyanarayan, Roland H. C. Yap, and Zhenkai Liang. Codejail: Application-transparent

isolation of libraries with tight program interactions. In Proceedings of the International Conference on

European Symposium on Research in Computer Security (ESORICS), 2012.

[158] Xssed.com. Myspace.com hit by a permanent xss.

http://www.xssed.com/news/83/Myspace.com_hit_by_a_Permanent_XSS/.

[159] Xssed.com. New orkut xss worm by brazilian web security group. http://www.xssed.com/news/77/

New_Orkut_XSS_worm_by_Brazilian_web_security_group/.

[160] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,

Neha Narula, and Nicholas Fullagar. Native client: A sandbox for portable, untrusted x86 native code. In

Proceedings of the IEEE Symposium on Security and Privacy (IEEE S & P), 2009.

[161] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. JavaScript Instrumentation for Browser

Security. In Proceedings of the Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL), 2007.

[162] Chuan Yue and Haining Wang. Anti-phishing in offense and defense. In Proceedings of the International

Conference on Annual Computer Security Applications Conference (ACSAC), 2008.

[163] Michal Zalewski. Browser security handbook.

http://code.google.com/p/browsersec/wiki/Main.

[164] ZDNet. Malicious chrome extensions hijack facebook accounts.

http://www.zdnet.com/blog/security/malicious-chrome-extensions-hijack-facebook-accounts/11074.

[165] Yue Zhang, Jason I. Hong, and Lorrie F. Cranor. Cantina: a content-based approach to detecting phishing web

sites. In Proceedings of the International Conference on World Wide Web (WWW), 2007.

[166] lfar Erlingsson, Martn Abadi, Michael Vrable, Mihai Budiu, and George C. Necula. Xfi: Software guards for

system address spaces. In Proceedings of the Symposium on Operating Systems Design and Implementation

(OSDI), 2006.

117

