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Summary

This thesis contains two independent parts. The first part concerns fast par-

allel approximation algorithms for semidefinite programs. The second part

concerns strong direct product results in communication complexity.

In the first part, we study fast parallel approximation algorithms for certain

classes of semidefinite programs. Results are listed below.

� In Chapter 3, we present a fast parallel approximation algorithm for pos-

itive semidefinite programs. In positive semidefinite programs, all matri-

ces involved in the specification of the problem are positive semidefinite

and all scalars involved are non-negative. Our result generalizes the

analogous result of Luby and Nisan [53] for positive linear programs.

� In Chapter 4, we present a fast parallel approximation algorithm for

mixed packing and covering semidefinite programs. Mixed packing and

covering semidefinite programs are natural generalizations of positive

semidefinte programs. Our result generalizes the analogous result of

Young [76] for linear mixed packing and covering programs.

In the second part, we are concerned with strong direct product theorems in

communication complexity. A strong direct product theorem for a problem

in a given model of computation states that, in order to compute k instances

of the problem, if we provide resource which is less than k times the resource

required for computing one instance of the problem, with constant success

probability, then the probability of correctly computing all the k instances

together, is exponentially small in k.

� In Chapter 6, we show a direct product theorem for any relation in the

model of two-party bounded-round public-coin communication complex-

ity. In particular, our result implies a strong direct product theorem for

the two-party constant-message public-coin communication complexity of

all relations.

v



� In Chapter 7, we show a strong direct product theorem for all relations in

terms of the smooth rectangle bound in the model of two-way public-coin

communication complexity. The smooth rectangle bound was introduced

by Jain and Klauck [28] as a generic lower bound method for this model.

Our result therefore implies a strong direct product theorem for all rela-

tions for which an (asymptotically) optimal lower bound can be provided

using the smooth rectangle bound.
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Chapter 1

Introduction

The thesis contains two independent parts. The first part concerns fast parallel approx-

imation algorithms for semidefinite programs. The second part concerns strong direct

product results in communication complexity. The first part is based on the following

two papers.

� Rahul Jain and Penghui Yao. A parallel approximation algorithm for positive

semidefinite programming [38]. In Proceedings of the 52nd IEEE Symposium on

Foundations of Computer Science, FOCS’11, page 437-471, 2011.

� Rahul Jain and Penghui Yao. A parallel approximation algorithm for mixed packing

and covering semidefinite programs [39]. CoRR, abs/1302.0275, 2012.

In this thesis, we concern fast parallel approximation algorithms for semidefinite pro-

grams. Fast parallel computation is captured by the complexity class NC. NC contains all

the functions that can be computed by logarithmic space uniform Boolean circuits of poly-

logarthmic depth. Many matrix operations can be implemented in NC circuits. We have

further discussion on this class in Chapter 2. As computing an approximation solution

to a semidefinite program, or even to a linear program is P-complete, not all semidefinite

programs have fast parallel approximation algorithms under widely-believed assumption

P 6= NC. Thus it is interesting to ask what subclasses of semidefinite programs have fast

parallel approximation algorithms. Fast parallel approximation algorithms for approx-

imating optimum solutions to different subclasses of semidefinite programs have been

studied in several recent works (e.g. [3; 4; 26; 36; 37; 42]) leading to many interesting

applications including the celebrated result QIP = PSPACE [26]. In this thesis, we con-

cern two subclasses of semidefinite programs, positive semidefinite programs and mixed
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packing and covering semidefinite programs. Positive semidefinite programs and mixed

packing and covering semidefinite programs are two important subclasses of semidefinite

programs. In positive semidefinite programs, all matrices involved in the specification of

the problem are positive semidefinite and all scalars involved are non-negative. Mixed

packing and covering semidefinite programs are natural generalizations of positive linear

programs. In Chapter 2, we give the precise definitions of both subclasses of semidefinite

programs and present some facts about parallel computation. In Chapter 3, we present a

fast parallel approximation algorithm for positive semidefinite programs, which given an

instance of a positive semidefinite program of size N and an approximation factor ε > 0,

runs in parallel time poly(1
ε
) · polylog(N), using poly(N) processors, and outputs a value

which is within multiplicative factor of (1 + ε) to the optimal. Our result generalizes the

analogous result of Luby and Nisan [53] for positive linear programs and our algorithm is

also inspired by their algorithm. In Chapter 4, we present a fast parallel approximation

algorithm for a class of mixed packing and covering semidefinite programs. As a corollary

we get a faster approximation algorithm for positive semidefinite programs with better

dependence of the parallel running time on the approximation factor, as compared to the

one in Chapter 3. Our algorithm and analysis is on similar lines as that of Young [76]

who considered analogous linear programs. Although the result in Chapter 3 is improved

and simplified, the techniques used in Chapter 3 are still interesting on its own.

The second part is based on the following two papers.

� Rahul Jain, Attila Pereszlényi and Penghui Yao. A direct product theorem for

bounded-round public-coin communication complexity [30]. In Proceedings of the

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, FOCS

’12, pages 167-176.

� Rahul Jain and Penghui Yao. A strong direct product theorem in terms of the

smooth rectangle bound [40]. CoRR, abs/1209.0263, 2012.

A strong direct product theorem for a problem in a given model of computation

states that, in order to compute k instances of the problem, if we provide resource which

is less than k times the resource required for computing one instance of the problem

with constant success probability, then the probability of correctly computing all the k

instances together, is exponentially small in k.

Direct product questions and the weaker direct sum questions have been extensively

investigated in different sub-models of communication complexity. A direct sum theorem

2



states that in order to compute k independent instances of a problem, if we provide re-

source less than k times the resource required to compute one instance of the problem

with a constant success probability p < 1, then the success probability for comput-

ing all the k instances correctly is at most a constant q < 1. As far as we know, the

first direct product theorem in communication complexity is Parnafes, Raz and Wigder-

son’s [58] theorem for forests of communication protocols. Shaltiel’s [66] showed a di-

rect product theorem for the discrepancy bound, which is a powerful lower bound on

the distributional communication complexity, under the uniform distribution. Later,

it was extended to arbitrary distributions by Lee, Shraibman and Špalek [51]; to the

multiparty case by Viola and Wigderson [71]; to the generalized discrepancy bound by

Sherstov [67]. Klauck, Špalek, de Wolf’s [48] showed a strong direct product theorem

for the quantum communication complexity of the Set Disjointness problem, one of the

most well-studied problems in communication complexity. Klauck’s [46] extended it to

the public-coin communication complexity (which was re-proven using very different ar-

guments in Jain [25]). Other examples are Jain, Klauck and Nayak’s [29] theorem for the

subdistribution bound, Ben-Aroya, Regev, de Wolf’s [10] theorem for the one-way quan-

tum communication complexity of the Index function problem; Jain’s [25] theorem for

randomized one-way communication complexity and Jain’s [25] theorem for conditional

relative min-entropy bound (which is a lower bound on the public-coin communication

complexity). Direct sum theorems have been shown in several models, like the public-coin

one-way model [33], public-coin simultaneous message passing model [33], entanglement-

assisted quantum one-way communication model [35], private-coin simultaneous message

passing model [27] and constant-round public-coin two-way model [13]. Very recently,

Braverman, Rao, Weinstein and Yehudayoff [14] have shown a direct product theorem for

public-coin two-way communication models, which improves the analogous direct sum

result in [8]. On the other hand, strong direct product conjectures have been shown to be

false by Shaltiel [66] in some models of distributional communication complexity (and of

query complexity and circuit complexity) under specific choices for the error parameter.

Examples of direct product theorems in others models of computation include Yao’s

XOR lemma [74], Raz’s [61] theorem for two-prover games; Shaltiel’s [66] theorem for fair

decision trees; Nisan, Rudich and Saks’ [56] theorem for decision forests; Drucker’s [20]

theorem for randomized query complexity; Sherstov’s [67] theorem for approximate poly-

nomial degree and Lee and Roland’s [50] theorem for quantum query complexity. Besides

their inherent importance, direct product theorems have had various important applica-

tions such as in probabilistically checkable proofs [61]; in circuit complexity [74] and in
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showing time-space tradeoffs [2; 46; 48].

Some definitions and basic facts on communication complexity and information theory

are given in Chapter 5. In Chapter 6, we consider the model of two-party bounded-round

public-coin communication and show a direct product theorem for the communication

complexity of any relation in this model. In particular, our result implies a strong direct

product theorem for the two-party constant-message public-coin communication com-

plexity of all relations. As an immediate application of our result, we get a strong direct

product theorem for the Pointer Chasing problem. This problem has been well studied

for understanding round v/s communication trade-offs in both classical and quantum

communication protocols [32; 44; 47; 57; 60]. Our result generalizes the result of Jain

[25] which can be regarded as the special case when t = 1. We show the result using

information theoretic arguments. Our arguments and techniques build on the ones used

in Jain [25]. One key tool used in our work and also in Jain [25] is a message compression

technique due to Braverman and Rao [13], who used it to show a direct sum theorem in

the same model of communication complexity as considered by us. Another important

tool that we use is a correlated sampling protocol, which for example, has been used in

Holenstein [23] for proving a parallel repetition theorem for two-prover games. In Chap-

ter 7, we consider the model of two-way public-coin communication and show a strong

direct product theorem for all relations in terms of the smooth rectangle bound, intro-

duced by Jain and Klauck [28] as a generic lower bound method in this model. Our result

therefore implies a strong direct product theorem for all relations for which an (asymp-

totically) optimal lower bound can be provided using the smooth rectangle bound. In

fact we are not aware of any relation for which it is known that the smooth rectangle

bound does not provide an optimal lower bound. This lower bound subsumes many of

the other known lower bound methods, for example the rectangle bound (a.k.a the cor-

ruption bound) [5; 9; 45; 63; 75], the smooth discrepancy bound (a.k.a the γ2 bound [52]

which in turn subsumes the discrepancy bound), the subdistribution bound [29] and the

conditional min-entropy bound [25]. As a consequence, our result reproves some of the

known strong direct product results, for example for Inner Product [49] Greater-Than [70]

and Set-Disjointness [25; 46]. Our result also shows new strong direct product result for

Gap-Hamming Distance [17; 68] and also implies near optimal direct product results for

several important functions and relations used to show exponential separations between

classical and quantum communication complexity, for which near optimal lower bounds

are provided using the rectangle bound, for example by Raz [62], Gavinsky [21] and

Klartag and Regev [65]. Our proof is based on information theoretic argument. A key

4



tool we use is a sampling protocol due to Braverman [12], in fact a modification of it used

by Kerenidis, Laplante, Lerays, Roland and Xiao [43].
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Chapter 2

Semidefinite programs and parallel

computation

As discussed in the previous chapter, several different subclasses of semidefinite programs

are shown to admit fast parallel approximation algorithms e.g. [3; 4; 26; 36; 37; 42].

However for each of the algorithms used for example in [26; 36; 37], in order to produce

a (1 + ε) approximation of the optimal value for a given semidefinite program of size

N , in the corresponding subclass that they considered, the (parallel) running time was

polylog(N) ·poly(κ) ·poly(1
ε
), where κ was a width parameter that depended on the input

semidefinite program (and was defined differently for each of the algorithms). For the

specific instances of the semidefinite programs arising out of the applications considered

in [26; 36; 37], it was separately argued that the corresponding width parameter κ is at

most polylog(N) and therefore the running time remained polylog(N) (for constant ε).

It is therefore desirable to remove the polynomial dependence on the width parameter

and obtain a truly polylog running time algorithm, for a reasonably large subclass of

semidefinite programs.

We will introduce parallel commputation, and then describe positive semidefinite

programs and mixed packing and covering semidefinite programs in this chapter. And in

the subsequent two chapters, we will present a fast parallel approximation algorithm for

each of them.

2.1 Parallel computation

To design fast parallel approximation algorithms, we will make use of various facts con-

cerning parallel computation. Note that the complexity class NC contains all the func-
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tions that can be computed by logarithmic-space uniform Boolean circuits of polyloga-

rthmic depth. Many matrix operations can be performed by NC algorithms. Here we

make an assumption that the entries of all the matrices we consider have rational real

and imaginary parts. First, the elementary matrix operations, such as addition, multipli-

cation, inversion can be implemented by NC algorithm. We refer the readers to von zur

Gathen’s survey[72] for more details. Second, matrix exponentials and spectral decom-

positions can be approximated with high accuracy in NC. More precisely, the following

two problems are in NC.

� Matrix exponentials. Given input an n × n matrix M , a rational number ε > 0

and an integer number k expressed in unary notation (i.e. 1k) satisfying ‖M‖ ≤ k,

output an n× n matrix X such that ‖exp(M)−X‖ ≤ ε.

� Spectral decompositions. Given input an n × n matrix M and a rational number

ε > 0, output an n×n unitary matrix U and an n×n diagonal matrix Γ such that

‖M − UΓU∗‖ ≤ ε.

Readers can refer to [26; 36] for more discussion.

2.2 Positive semidefinite programs

A positive semidefinite program can be expressed in the following standard form (we use

symbols ≥,≤ to also represent Löwner order, where A ≥ B means A − B is positive

semidefinite).

Primal problem P

minimize: TrCX

subject to: ∀i ∈ [m] : TrAiX ≥ bi,

X ≥ 0.

Dual problem D

maximize:
m∑
i=1

biyi

subject to:
m∑
i=1

yi · Ai ≤ C,

∀i ∈ [m] : yi ≥ 0.

Here C,A1, . . . , Am are n×n positive semidefinite matrices and b1, . . . , bm are non-negative

reals (in a general semidefinite program C,A1, . . . , Am are Hermitian and b1, . . . , bm are

7



reals). Let us assume that the conditions for strong duality are satisfied and the optimum

value for P , denoted opt(P ), equals the optimum value for D, denoted opt(D). Assume

w.l.o.g m ≥ n (by repeating the first constrain in P if necessary).

We will show that the problem can be transformed to the following special form in

parallel polylog time.

Special form Primal problem P̂

minimize: Tr X̂

subject to: ∀i ∈ [m] : Tr ÂiX̂ ≥ 1,

X̂ ≥ 0.

Lemma 2.2.1. Let X̂ be a feasible solution to P̂ such that Tr X̂ ≤ (1+ε)opt(P̂ ). For any

ε > 0, a feasible solution X to P can be derived from X̂ such that TrX ≤ (1+ε)2opt(P ).

Furthermore, X can be obtained from X̂ in parallel time polylog(m).

Given the positive semidefinite program (P,D) as above, we first show that without

loss of generality (P,D) can be in the following special form.

Special form Primal problem P

minimize: TrX

subject to: ∀i ∈ [m] : TrAiX ≥ 1,

X ≥ 0.

Special form Dual problem D

maximize:
m∑
i=1

yi

subject to:
m∑
i=1

yi · Ai ≤ I,

∀i ∈ [m] : yi ≥ 0.

Here A1, . . . , Am are n × n positive semidefinite matrices and I represents the identity

matrix. Furthermore, for all i, norm of Ai, denoted ‖Ai‖, is at most 1 and the minimum

non-zero eigenvalue of Ai is at least 1
γ

where γ = m2

ε2
.

We show how to transform the primal problem to the special form and a similar

transformation can be applied to dual problem. First observe that if for some i, bi = 0,

the corresponding constraint in primal problem is trivial and can be removed. Similarly

if for some i, the support of Ai is not contained in the support of C, then yi must be 0 and

can be removed. Therefore we can assume w.l.o.g. that for all i, bi > 0 and the support

of Ai is contained in the support of C. Hence w.l.o.g we can take the support of C as the

8



whole space, in other words, C is invertible. For all i ∈ [m], define A′i
def
= C−1/2AiC

−1/2

bi
.

Consider the normalized Primal problem.

Normalized Primal problem P’

minimize: TrX ′

subject to: ∀i ∈ [m] : TrA′iX
′ ≥ 1,

X ′ ≥ 0.

Hence, we have the following claim.

Claim 2.2.2. If X is a feasible solution to P , then C1/2XC1/2 is a feasible solution

to P ′ with the same objective value. Similarly if X ′ is a feasible solution to P ′, then

C−1/2X ′C−1/2 is a feasible solution to P with the same objective value. Hence opt(P ) =

opt(P ′).

The next step to transforming the problem is to limit the range of eigenvalues of A′is.

Let β = mini ‖A′i‖.

Claim 2.2.3. 1
β
≤ opt(P ′) ≤ m

β
.

Proof. Note that 1
β
I is a feasible solution for P ′. This implies opt(P ′) ≤ n

β
≤ m

β
. Let X ′

be an optimal feasible solution for P ′. Let j be such that ‖A′j‖ = β. Then β TrX ′ ≥
TrA′jX

′ ≥ 1, hence 1
β
≤ opt(P ′).

Let A′i =
∑n

j=1 a
′
ij|vij〉〈vij| be the spectral decomposition of A′i. Define for all i ∈ [m]

and j ∈ [n],

a
′′

ij
def
=


βm
ε

if a′ij >
βm
ε

,

0 if a′ij <
εβ
m
,

a′ij otherwise.

(2.1)

Define A
′′
i =

∑n
j=1 a

′′
ij|vij〉〈vij|. Consider the transformed Primal problem P

′′
.

Transformed Primal problem P
′′

minimize: TrX
′′

subject to: ∀i ∈ [m] : TrA
′′

iX
′′ ≥ 1,

X
′′ ≥ 0.

9



Lemma 2.2.4. 1. Any feasible solution to P
′′

is also a feasible solution to P ′.

2. opt(P ′) ≤ opt(P
′′
) ≤ opt(P ′)(1 + ε).

Proof. 1. Follows immediately from the fact that A
′′
i ≤ A′i.

2. First inequality follows from 1. Let X ′ be an optimal solution to P ′ and let τ =

Tr(X ′). Let X
′′

= X ′ + ετ
m
I. Then, since m ≥ n, TrX

′′ ≤ (1 + ε) TrX ′. Thus it

suffices to show that X
′′

is feasible to P
′′
.

Fix i ∈ [m]. Assume that there exists j ∈ [n] such that a′ij ≥
βm
ε

. Then, from

Claim 2.2.3

TrA
′′

iX
′′

i ≥ Tr
βm

ε
|vij〉〈vij| ·

ετ

m
I = βτ ≥ 1.

Now assume that for all j ∈ [n], aij ≤ βm
ε

. By (2.1) and definition of β, ‖A′′i ‖ =

‖A′i‖ ≥ β and A′′i ≥ A′i −
εβ
m
I. Therefore

TrA
′′

iX
′′

i ≥ TrA′′iX
′ + β

ετ

m

≥ TrA′iX
′ + β

ετ

m
− Tr

εβ

m
X ′ = TrA′iX

′ ≥ 1.

Note that for all i ∈ [m], the ratio between the largest eigenvalue and the smallest

nonzero eigenvalue of A
′′
i is at most m2

ε2
= γ.

Finally, we get the special form Primal problem P̂ as follows. Let t = maxi∈[m] ‖A
′′
i ‖

and for all i ∈ [m] define Âi
def
=

A
′′
i

t
. Consider,

Special form Primal problem P̂

minimize: Tr X̂

subject to: ∀i ∈ [m] : Tr ÂiX̂ ≥ 1,

X̂ ≥ 0.

It is easily seen that there is a one-to-one correspondence between the feasible solutions to

P
′′

and P̂ and opt(P̂ ) = t · opt(P ′′). Furthermore, X can be obtained from X̂ in parallel

time polylog(m) since all the operations involved can be implemented in NC circuits and

the number of operations ispolylog(m). Therefore P̂ satisfies all the properties that we

want and cumulating all we have shown above, we get Lemma 2.2.1.
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2.3 Mixed packing and covering

Mixed packing and covering is a more general optimization problem, which can be for-

malized as the following feasibility problem.

Q1: Given n× n positive semidefinite matrices P1, . . . , Pm, P and non-negative diagonal

matrices C1, . . . , Cm, C and ε ∈ (0, 1), find an vector x ≥ 0 such that

m∑
i=1

xiPi ≤ (1 + ε)P and
m∑
i=1

xiCi ≥ C

or show that the following is infeasible

m∑
i=1

xiPi ≤ P and
m∑
i=1

xiCi ≥ C .

Given a fast parallel approximation algorithm for Q1, we can obtain a fast parallel

approximation algorithm for the following optimization problem by the standard binary

search method.

Q2: Given n× n positive semidefinite matrices P1, . . . , Pm, P and non-negative diagonal

matrices C1, . . . , Cm, C,

maximize: γ

subject to:
m∑
i=1

xiPi ≤ P

m∑
i=1

xiCi ≥ γC

∀i ∈ [m] : xi ≥ 0.

The following special case of Q2 is positive semidefinite programs.

Q3: Given n × n positive semidefinite matrices P1, . . . , Pm, P and non-negative scalars

c1, . . . , cm,

maximize:
m∑
i=1

xici

subject to:
m∑
i=1

xiPi ≤ P

∀i ∈ [m] : xi ≥ 0.

11



Chapter 3

A parallel approximation algorithm

for positive semidefinite

programming

3.1 Introduction

In this chapter, we consider the class of positive semidefinite programs given in Chapter 2

Section 2.2. We present an algorithm, which given as input, (C,A1, . . . , Am, b1, . . . , bm),

and an error parameter ε > 0, outputs a (1 + ε) approximation to the optimum value of

the program, and has running time polylog(n) · polylog(m) · poly(1
ε
). As can be noted,

there is no polynomial dependence on any ’width’ parameter on the running time of our

algorithm.

Our algorithm is inspired by the algorithm used by Luby and Nisan [53] to solve

positive linear programs. Positive linear programs can be considered as a special case

of positive semidefinite programs in which the matrices used in the description of the

program are all pairwise commuting. Our algorithm (and the algorithm in [53]) is based

on the multiplicative weights update (MWU) method. This is a powerful technique for

experts learning and finds its origins in various fields including learning theory, game

theory, and optimization. The algorithms used in [3; 4; 26; 36; 37; 42] are based on its

matrix variant the matrix multiplicative weights update method.

The algorithm starts with feasible primal variableX and feasible dual variable (y1, · · · , ym).

The algorithm proceeds in phases, where in each phase the large eigenvalues of
∑m

i=1 y
t
iAi

(X t, ytis represent the candidate primal and dual variables at time t, respectively) are

12



sought to be brought below a threshold determined for that phase. The primal variable

X t at time step t is chosen to be the projection onto the large eigenvalues (above the

threshold) eigenspace of
∑m

i=1 y
t
iAi. Using the sum of the primal variables generated so

far, the dual variables are updated using the MWU method. A suitable scaling parameter

λt is chosen during this update, which is small enough so that the change of dual objec-

tive value
∑m

i=1 yi at each update is small. It ensures that the output of the algorithm is

a good approximation solution if the program is feasible. At the same time, λt is large

enough so that there is reasonable progress in bringing down the large eigenvalues of∑m
i=1 y

t
iAi. This guarantees that only polylog number of phases are needed.

Due to the non-commutative nature of the matrices involved in our case, our algorithm

primarily deviates from that of [53] in how the threshold is determined inside each phase.

The problem that is faced is roughly as follows. Since Ai’s could be non-commuting, when

ytis are scaled down, the sum of the large eigenvalues of
∑m

i=1 y
t
iAi may not come down

and this scaling may just move the large eigenvalues eigenspace. Therefore a suitable

extra condition needs to be ensured while choosing the threshold. Due to this, our

analysis also primarily deviates from [53] in bounding the number of time steps required

in any phase and is significantly more involved. The analysis requires us to study the

relationship between the large eigenvalues eigenspaces before and after scaling (say W1

and W2). For this purpose we consider the decomposition of the underlying space into

one and two-dimensional subspaces which are invariant under the actions of both Π1 and

Π2 (projections onto W1 and W2 respectively) and this helps the analysis significantly.

Such decomposition has been quite useful in earlier works as well for example in quantum

walk [1; 64; 69] and quantum complexity theory [54; 55]. The result is improved later by

Jain and Yao in [38], which is given in Chapter 4. However, the techniques used here are

interesting in their own right.

We present the algorithm in the next section and its analysis, both optimality and

the running time, in the subsequent section.

3.2 Algorithm

By Lemma 2.2.1, We may start with the following special positive semidefinte programs.

13



Special form Primal problem P

minimize: TrX

subject to: ∀i ∈ [m] : TrAiX ≥ 1,

X ≥ 0.

Special form Dual problem D

maximize:
m∑
i=1

yi

subject to:
m∑
i=1

yi · Ai ≤ I,

∀i ∈ [m] : yi ≥ 0.

In order to compactly describe the algorithm, and also the subsequent analysis, we

introduce some notation. Let Y = Diag(y1, . . . , ym) (m×m diagonal matrix with Y (i, i) =

yi for i ∈ [m]). Let Φ be the map (from n × n positive semidefinite matrices to m ×m
positive semidefinite diagonal matrices) defined by Φ(X) = Diag(TrA1X, . . . ,TrAmX).

Then its adjoint map Φ∗ acts as Φ∗(Y ) =
∑m

i=1 Y (i, i) · Ai (for all diagonal matrices

Y ≥ 0). We let I represent the identity matrix (in the appropriate dimensions clear from

the context). For Hermitian matrix B and real number l, let Nl(B) represent the sum of

eigenvalues of B which are at least l. The algorithm is mentioned in Figure 3.1.

3.3 Analysis

For all of this section, let ε1 = 3ε
lnn

. In the following we assume ε < 1
1000

and n > 1000.

3.3.1 Optimality

In this section we present the analysis assuming that all the operations performed by

the algorithm are perfect. Note that the algorithm only involves elementary matrix

operations (addition, substraction and multiplication), matrix exponentials and matrix

spectral decomposition. All those operation can be performed with high precision. And

the number of operations is polylog to the size of inputs, which will be shown in the next

subsection. We claim, without going into further details, that similar analysis can be

performed while taking into account the accuracy loss due to the actual operations of the

algorithm in the limited running time.

We start with following claims.

Claim 3.3.1. For all t ≤ tf , λt satisfies the conditions 1. and 2. in Step (3d) in the

Algorithm.

Proof. Easily verified.
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Input : Positive semidefinite matrices A1, . . . , Am and error parameter ε > 0.

Output : X∗ feasible for P and Y ∗ feasible for D.

1. Let ε0 = ε2

ln2 n
, t = 0, X0 = 0. Let ks be the smallest positive number such that (1+ε0)ks ≤

‖Φ∗(I)‖ < (1 + ε0)ks+1. Let k = ks.

2. Let Yt = exp(−Φ(Xt)).

3. If TrYt >
1

m1/ε , do

(a) If ‖Φ∗(Yt)‖ < (1 + ε0)k, then set k ← k − 1 and repeat this step.

(b) Set thr′ = k.

(c) If

N(1+ε0)thr′−1(Φ∗(Yt)) ≥ (1 +
2

5
ε)N(1+ε0)thr′ (Φ

∗(Yt)).

then thr′ ← thr′ − 1 and repeat this step. Else set thr = thr′.

(d) Let Πt be the projector on the eigenspace of Φ∗(Yt) with eigenvalues at least
(1 + ε0)thr. For λ > 0, let P≥λ be the projection onto eigenspace of Φ(λΠt) with

eigenvalues at least 2
√
ε. Let P≤λ be the projection onto eigenspace of Φ(λΠt) with

eigenvalues at most 2
√
ε. Find λt such that

1. Tr(P≥λtYtP
≥
λt

)Φ(Πt) ≥
√
εTrYtΦ(Πt) and,

2. Tr(P≤λtYtP
≤
λt

)Φ(Πt) ≥ (1−
√
ε) TrYtΦ(Πt) as follows.

i. Sort {TrAiΠt}mi=1 in non-increasing order. Suppose TrAj1Πt ≥ TrAj2Πt ≥
· · · ≥ TrAjmΠt.

ii. Let yj be the j-th diagonal entry of Yj . Find index r ∈ [m] satisfying

r∑
k=1

yjk TrAjkΠt ≥
√
ε
m∑
k=1

yjk TrAjkΠt, and

m∑
k=r

yjk TrAjkΠt ≥ (1−
√
ε)

m∑
k=1

yjk TrAjkΠt.

iii. Let λt = 2
√
ε

TrAjrΠt
.

(e) Let Xt+1 = Xt + λtΠt. Set t← t+ 1 and go to Step 2.

4. Let tf = t, kf = k. Let α be the minimum eigenvalue of Φ(Xtf ). Output X∗ = Xtf /α.

5. Let t′ be such that TrYt′/ ‖Φ∗(Yt′)‖ is the maximum among all time steps. Output
Y ∗ = Yt′/ ‖Φ∗(Yt′)‖.

Figure 3.1: Algorithm
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Claim 3.3.2. α > 0.

Proof. Follows since 1
m1/ε ≥ TrYtf = Tr exp(−Φ(Xtf )) > exp(−α) .

Following lemma shows that for any time t, ‖Φ∗(Yt)‖ is not much larger than (1+ε0)thr.

Lemma 3.3.3. For all t ≤ tf , ‖Φ∗(Yt)‖ ≤ (1 + ε0)thr(1 + ε1).

Proof. Fix any t ≤ tf . As Tr(Φ∗(Yt)) ≤ nN(1+ε0)k(Φ
∗(Yt)), the loop at Step 3(c) runs at

most lnn
ln(1+ 2ε

5
)

times. Hence

‖Φ∗(Yt)‖ ≤ (1 + ε0)k+1 ≤ (1 + ε0)thr(1 + ε0)
lnn

ln(1+ 2ε
5 )

+1

< (1 + ε0)thr(1 +
3ε

lnn
) = (1 + ε0)thr(1 + ε1).

Following lemma shows that as t increases, there is a reduction in the trace of the

dual variable in terms of the trace of the primal variable.

Lemma 3.3.4. For all t ≤ tf we have, TrYt+1 ≤ TrYt−λt ·(1−4
√
ε) ·‖Φ∗(Yt)‖·(Tr Πt) .

Proof. Fix any t ≤ tf . Let B = P≤λtΦ(λtΠt)P
≤
λt

. Note that B ≤ Φ(λtΠt) and also

B ≤ 2
√
εI. Second last inequality below follows from Lemma 3.3.3 which shows that all

eigenvalues of ΠtΦ
∗(Yt)Πt are at least (1− ε1) ‖Φ∗(Yt)‖.

TrYt+1 = Tr exp(−Φ(Xt)− Φ(λtΠt))

≤ Tr exp(−Φ(Xt)−B)

= Tr exp(−Φ(Xt)) exp(−B)

≤ Tr exp(−Φ(Xt))(I − (1− 2
√
ε)B)

= TrYt − (1− 2
√
ε) TrYtB

≤ TrYt − (1−
√
ε)(1− 2

√
ε) TrYtΦ(λtΠt)

= TrYt − (1−
√
ε)(1− 2

√
ε) Tr Φ∗(Yt)λtΠt

≤ TrYt − (1− ε1)(1−
√
ε)(1− 2

√
ε)λt ‖Φ∗(Yt)‖ (Tr Πt)

≤ TrYt − (1− 4
√
ε)λt ‖Φ∗(Yt)‖ (Tr Πt).

The first inequality holds because A1 ≥ A2 implies Tr exp(A1) ≥ Tr exp(A2), the second

equality because both B and Φ(Xt) are diagonal, the second inequality because A ≤ I

implies exp(−δA) ≤ I− δ(1− δ)A), and the third inequality is from step 3(d) part 1.
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Following lemma relates the trace of Xtf with the trace of Y ∗ and Ytf .

Lemma 3.3.5. TrXtf ≤ 1
(1−4

√
ε)
· (TrY ∗) · ln(m/TrYtf ) .

Proof. Using Lemma 3.3.4 we have,

TrYt+1

TrYt
≤ 1− (1− 4

√
ε)λt ‖Φ∗(Yt)‖ (Tr Πt)

TrYt

≤ exp

(
−(1− 4

√
ε)λt ‖Φ∗(Yt)‖ (Tr Πt)

TrYt

)
≤ exp

(
−(1− 4

√
ε)λt Tr Πt

TrY ∗

)
= exp

(
−(1− 4

√
ε) Tr(Xt+1 −Xt)

TrY ∗

)
.

The second inequality holds because exp(−x) ≥ 1 − x, and second inequality is from

property of Y ∗. This implies,

TrYtf ≤ (TrY0) exp

(
−

(1− 4
√
ε) TrXtf

TrY ∗

)
⇒ TrXtf ≤

(TrY ∗) ln(m/(TrYtf ))

(1− 4
√
ε)

(since TrY0 = m).

We can now finally bound the trace of X∗ in terms of the trace of Y ∗.

Theorem 3.3.6. X∗ and Y ∗ are feasible for the P and D respectively and

TrX∗ ≤ (1 + 5
√
ε) TrY ∗ .

Therefore, since opt(P ) = opt(D),

opt(D) = opt(P ) ≤ TrX∗ ≤ (1 + 5
√
ε) TrY ∗

≤ (1 + 5
√
ε)opt(D) = (1 + 5

√
ε)opt(P ).

Proof. Note that Φ(X∗) = Φ(Xtf )/α ≥ I and Φ∗(Y ∗) = Φ∗(Yt′)/ ‖Φ∗(Yt′)‖ ≤ I. X∗ and

Y ∗ are feasible for P and D respectively. From Lemma 3.3.5 we have,

αTrX∗ = TrXtf ≤
1

1− 4
√
ε
· (TrY ∗) · ln(m/TrYtf ) .
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Since Ytf = exp(−Φ(Xtf )) we have

TrYtf ≥
∥∥exp(−Φ(Xtf ))

∥∥ = exp(−α) .

Using above two equations we have,

TrX∗ ≤ 1

1− 4
√
ε
· (TrY ∗) ·

ln(m/TrYtf )

ln(1/TrYtf )

=
1

1− 4
√
ε
· (TrY ∗) ·

(
1 +

lnm

ln(1/TrYtf )

)
≤ 1 + ε

1− 4
√
ε
· (TrY ∗) (since TrYtf ≤

1

m1/ε
)

≤ (1 + 5
√
ε) · TrY ∗ .

3.3.2 Time complexity

In this section we are primarily interested in bounding the number of iterations of the

algorithm, that is we will bound kf and also the number of iterations for any given k.

We claim, without going into further details, that the actions required by the algorithm

in any given iteration can all be performed in time polylog(n) · polylog(m) · poly(1
ε
),

since operations for Hermitian matrices like eigenspace decomposition, exponentiation,

and other operations like sorting and binary search for a list of real numbers etc. can be

all be performed in polylog parallel time.

Let us first introduce some notation. Let A be a Hermitian matrix and l be a real

number. Let

� ΠA
l denote the projector onto the space spanned by the eigenvectors of A with

eigenvalues at least l. Let ΠA be shorthand for ΠA
1 .

� Nl(A) denote the sum of eigenvalues of A at least l. Thus Nl(A) = Tr ΠA
l A. Let

N(A) be shorthand for N1(A).

� λk(A) denote the k-th largest eigenvalue of A.

� λ↓(A)
def
= (λ1(A), · · · , λn(A)).

� for any two vectors u, v ∈ Rn we say u majorizes v, denoted u � v, iff
∑k

i=1 ui =∑k
i=1 vi and for any j ∈ [n] we have,

∑j
i=1 ui ≥

∑j
i=1 vi.
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We need the following facts.

Fact 3.3.7. [11] For n × n Hermitian matrices A and B, A ≥ B implies λi(A) ≥ λi(B)

for all 1 ≤ i ≤ n. Thus Nl(A) ≥ Nl(B) for any real number l.

Fact 3.3.8. [11] Let A be an n × n Hermitian matrix and P1, · · · , Pr be a family of

mutually orthogonal projections. Then λ↓(A) � λ↓(
∑

i PiAPi).

Fact 3.3.9. [41] For any two projectors Π and ∆, there exits an orthogonal decomposition

of the underlying vector space into one dimensional and two dimensional subspaces that

are invariant under both Π and ∆. Moreover, inside each two-dimensional subspace, Π

and ∆ are rank-one projectors.

Lemma 3.3.10. Let kf be the final value of k. Then ks − kf = O( logm log2 n
ε3

).

Proof. Note that ‖Φ∗(I)‖ = ‖
∑m

i=1Ai‖ ≤ m, since for each i, ‖Ai‖ ≤ 1. Hence

ks = O((logm)/ε0) .

Let Ytf−1 = Diag(y1, . . . ym). We have (since TrAi ≥ 1
γ
≥ ε2

m2 for each i),

m(1 + ε0)kf+1 ≥ m
∥∥Φ∗(Ytf−1)

∥∥ ≥ Tr Φ∗(Ytf−1)

=
m∑
i=1

yi TrAi ≥
∑m

i=1 yi
γ

=
TrYtf−1

γ

≥ 1

m1/εγ
≥ ε2

m2+1/ε
.

Hence kf ≥ −O( logm
εε0

). Therefore ks − kf = O( logm
εε0

) = O( logm log2 n
ε3

).

Theorem 3.3.11. For any fixed k, the number of iterations of the algorithm is at most

O( log2 n
ε91ε

). Hence combined with Lemma 3.3.10, the total number of iterations of the algo-

rithm is at most O( log13 n logm
ε13 ).

Proof. Fix k. Assume that the Algorithm has reached step 3(d) for this fixed k , 6 log2 n
ε91ε

times. As argued in the proof of Lemma 3.3.4, whenever Algorithm reaches step 3(d),

thr ≥ k − 3 lnn
ε

. Thus there exists a value s between k and k − 3 lnn
ε

such that thr = s at

least 2 logn
ε91

times.

From Lemma 3.3.3 we get that the sum of the eigenvalues above (1 + ε0)s, is at most

n(1 + ε1)(1 + ε0)s at the beginning of this phase. Whenever thr 6= s in this phase, using
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Fact 3.3.7, we conclude that the eigenvalues of Φ∗(Yt) above (1 + ε0)s do not increase.

Whenever thr = s in this phase, using Lemma 3.3.12, we conclude that the eigenvalues

of Φ∗(Yt) above (1 + ε0)s reduce by a factor of (1 − ε9
1). This can be seen by letting A

in Lemma 3.3.12 to be 1−exp(−2
√
ε)

(1+ε0)s
· Φ∗(P≥λtYtP

≥
λt

) and B to be 1
(1+ε0)s

Φ∗(Y t) − A. Now

condition 3(d)(1.) of the Algorithm gives condition (2) of Lemma 3.3.12. Condition (1)

of Lemma 3.3.12 can also be seen to be satisfied (using Lemma 3.3.3) and condition (4)

of Lemma 3.3.12 is false due to condition 3(c) of the Algorithm. This implies condition

(3) of Lemma 3.3.12 must also be false which gives us the desired conclusion.

Therefore the eigenvalues of Φ∗(Yt) above (1 + ε0)s (in particular above (1 + ε0)k)

will vanish before thr = s, 2 logn
ε91

times. Hence k must decrease before the Algorithm has

reached step 3(d), 6 log2 n
ε91ε

times.

Following is a key lemma. It states that for two positive semidefinite matrices A,B,

if A has good weight in the large (above 1) eigenvalues space of A+B and if the sum of

large (above 1) eigenvalues of B is pretty much the same as for A + B, then the sum of

eigenvalues of A+B, slightly below 1 should be a constant fraction larger than the sum

above 1.

Lemma 3.3.12. Let ε′ = ε0
1+ε0

. Let A,B be two n × n positive semidefinite matrices

satisfying

‖A+B‖ ≤ 1 + ε1 and ‖B‖ ≥ 1, (3.1)

Tr ΠA+BA ≥ εTr ΠA+B(A+B), and (3.2)

Tr ΠBB ≥ (1− ε9
1) Tr ΠA+B(A+B). (3.3)

Then

N1−ε′(A+B) > (1 +
2

5
ε)N(A+B). (3.4)

Proof. In order to prove this Lemma we need to first show a few other Lemmas. By Fact

3.3.9, ΠB and ΠA+B decompose the underlying space V as follows,

V =

(
k⊕
i=1

Vi

)⊕
W.

Above for each i ∈ [k], Vi is either one-dimensional or two-dimensional subspace, invariant

for both ΠB and ΠA+B and inside Vi at least one of ΠB and ΠA+B survives. W is

the subspace where both ΠB and ΠA+B vanish. We identify the subspace Vi and the
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projector onto itself. For any matrix M , define Mi to be ViMVi. We can see that both

the projectors ΠB and ΠA+B are decomposed into the direct sum of one-dimensional

projectors as follows.

ΠB =
k⊕
i=1

ΠB
i and ΠA+B =

k⊕
i=1

ΠA+B
i .

Lemma 3.3.13. For any i ∈ [k], ΠBi = ΠB
i and ΠA+B

i = ΠAi+Bi. That is, the eigenspace

of Bi with eigenvalues at least 1, is exactly the restriction of ΠB to Vi and similarly for

Ai +Bi.

Proof. We prove ΠBi = ΠB
i and the other equality follows similarly. If dimVi = 1, i.e.

Vi = span{|v〉}, then either ΠB|v〉 = |v〉 or ΠB|v〉 = 0. For the first case, ΠB
i = |v〉〈v|,

and Bi = 〈v|B|v〉|v〉〈v| and 〈v|B|v〉 ≥ 1, which means ΠBi = |v〉〈v|. For the second case,

ΠB
i = 0, 〈v|B|v〉 < 1, i.e. ΠBi = 0.

For the case dimVi = 2,

Bi = ViBVi = Vi(Π
BBΠB + (I − ΠB)B(I − ΠB))Vi

= Vi(
⊕
j

ΠB
j )B(

⊕
j

ΠB
j )Vi +

Vi((W ⊕
⊕
j

(Vj − ΠB
j ))B(W ⊕

⊕
j

(Vj − ΠB
j )))Vi

= ΠB
i BΠB

i + (Vi − ΠB
i )B(Vi − ΠB

i ).

Let ΠB
i = |v1〉〈v1| and Vi − ΠB

i = |v0〉〈v0|, then

Bi = 〈v1|B|v1〉|v1〉〈v1|+ 〈v0|B|v0〉|v0〉〈v0| (3.5)

is the spectral decomposition of Bi. As ΠB|v1〉 = ΠB
i |v1〉 = |v1〉 and ΠB|v0〉 = ΠB

i |v0〉 = 0,

we have 〈v1|B|v1〉 ≥ 1 and 〈v0|B|v0〉 < 1, and hence ΠBi = |v1〉〈v1|.

Lemma 3.3.14.

Tr ΠBB =
k∑
i=1

Tr ΠBiBi, (3.6)

Tr ΠA+BB =
k∑
i=1

Tr ΠAi+BiBi, and (3.7)
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Tr ΠA+B(A+B) =
k∑
i=1

Tr ΠAi+Bi(Ai +Bi) (3.8)

Then using Eq.(3.2) and Eq.(3.3) we get,

k∑
i=1

Tr ΠAi+BiBi ≤ (1− ε)
k∑
i=1

Tr ΠAi+Bi(Ai +Bi). (3.9)

k∑
i=1

Tr ΠBiBi ≥ (1− ε9
1)

k∑
i=1

Tr ΠAi+Bi(Ai +Bi). (3.10)

Proof. We prove (3.6) and (3.7) and (3.8) follow similarly.

Tr ΠBB =
k∑
i=1

Tr ΠB
i B =

k∑
i=1

TrViΠ
B
i ViB

=
k∑
i=1

Tr ΠB
i ViBVi =

k∑
i=1

Tr ΠB
i Bi =

k∑
i=1

Tr ΠBiBi.

Remarks:

1. In any one-dimensional subspace Vi = span{|v〉} in the decomposition of V as

above, if ΠA+B|v〉 = 0, then 〈v|(A + B)|v〉 < 1, which implies 〈v|B|v〉 < 1, that is

ΠB|v〉 = 0. But this contradicts the fact that at least one of ΠB and ΠA+B does

not vanish in Vi. Thus ΠA+B never vanishes in any of Vi. Therefore for all i ∈ [k]

we have Tr ΠAi+Bi(Ai +Bi) = Tr ΠA+B
i (Ai +Bi) ≥ 1.

2. From (3.1), for all i ∈ [k], Tr ΠAi+Bi(Ai + Bi) ≤ 1 + ε1. Combined with (3.8), we

have

k ≤ N(A+B) ≤ k(1 + ε1).

Lemma 3.3.15. Let

I = {i : Tr ΠAi+BiBi ≤ (1− ε2) Tr ΠAi+Bi(Ai +Bi)},

and

J = {i : Tr ΠBiBi ≥ (1− ε8
1) Tr ΠAi+Bi(Ai +Bi)}.
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Then

|I ∩ J | > 99

100
εk.

Proof. From (3.9),

(1− ε2)
∑
i 6∈I

N(Ai +Bi) ≤ (1− ε)
k∑
i=1

N(Ai +Bi)

⇒ (ε− ε2)
∑
i 6∈I

N(Ai +Bi) ≤ (1− ε)
∑
i∈I

N(Ai +Bi)

⇒ ε(k − |I|) ≤ (1 + ε1)|I| (from Remarks 1. and 2.)

⇒ |I| ≥ ε

1 + ε1 + ε
k.

From (3.10) (since for all i ∈ [k], N(Ai +Bi) ≥ N(Bi)),∑
i∈J

N(Ai +Bi) + (1− ε8
1)
∑
i 6∈J

N(Ai +Bi)

≥ (1− ε9
1)

k∑
i=1

N(Ai +Bi)

⇒ ε1

∑
i∈J

N(Ai +Bi) ≥ (1− ε1)
∑
i 6∈J

N(Ai +Bi)

⇒ ε1(1 + ε1)|J | ≥ (1− ε1)(k − |J |)

⇒ |J | ≥ 1− ε1

1 + ε2
1

k.

The second last implication is from Remarks 1 and 2. Thus

|I ∩ J | ≥
(

ε

1 + ε1 + ε
+

1− ε1

1 + ε2
1

− 1

)
k >

99

100
εk.

Remark:

3. Note that for any i ∈ I ∩J , dimVi = 2. Otherwise, either ΠAi+Bi = ΠBi or ΠBi = 0

and neither of these can happen in I ∩ J (from definitions of I and J).

The following lemma states that for each i ∈ I ∩ J , the second eigenvalue of Ai + Bi

is close to 1.
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Lemma 3.3.16. Let P and Q be 2× 2 positive semidefinite matrices satisfying

‖Q‖ ≥ 1, ‖P +Q‖ ≤ 1 + ε1, λ2(P +Q) < 1, (3.11)

Tr ΠP+QP ≥ ε2 Tr ΠP+Q(P +Q) and (3.12)

Tr ΠQQ ≥ (1− ε8
1) Tr ΠP+Q(P +Q) . (3.13)

Then λ2(P +Q) > 1− 1
9
ε3

1.

Proof. We prove it by direct calculation. Let η be the maximum real number such that

P − η(I − ΠP+Q) ≥ 0. Set P1 = P − η(I − ΠP+Q) and Q1 = Q + η(I − ΠP+Q). P1, Q1

satisfy all the conditions in this Lemma and P1 is a rank one matrix. Furthermore,

set P2 = P1/‖Q1‖ and Q2 = Q1/‖Q1‖. Again all the conditions in this Lemma are

still satisfied by P2, Q2 since ΠQ2 = ΠQ1 = ΠQ and ΠP2+Q2 = ΠP1+Q1 = ΠP+Q. As

λ2(P2 +Q2) ≤ λ2(P1 +Q1) = λ2(P +Q), it suffices to prove that λ2(P2 +Q2) > 1− 1
9
ε3

1.

Consider P2, Q2 in the diagonal bases of Q2.

P2 =

(
|r| cos2 θ r sin θ cos θ

r∗ sin θ cos θ |r| sin2 θ

)
, Q2 =

(
1 0

0 b

)
.

where r ∈ C and 0 ≤ b < 1. Set λ = ‖P2 +Q2‖. Eq. (3.13) implies that

λ ≤ 1

1− ε8
1

< 1 + 2ε8
1. (3.14)

Since

Tr ΠQ2P2 = Tr ΠQ2(P2 +Q2)− Tr ΠQ2Q2

≤ Tr ΠP2+Q2(P2 +Q2)− Tr ΠQ2Q2

≤ ε8
1 Tr ΠP2+Q2(P2 +Q2) = ε8

1λ < 2ε8
1,

we have,

|r| cos2 θ < 2ε8
1. (3.15)

Observe that,

|v〉 =
1√

1 +
(
|r| sin θ cos θ

λ−b−|r| sin2 θ

)2

(
1

r∗ sin θ cos θ
λ−b−|r| sin2 θ

)
,

is the eigenvector of P2 + Q2 with eigenvalue λ. Hence ΠP2+Q2 = |v〉〈v|. Note that λ >
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b+ |r| sin2 θ, because λ2(P2 +Q2) = 1 + |r|+ b− λ < 1. Consider

Tr(ΠP2+Q2P2) = 〈v|P2|v〉

=
|r| cos2 θ + 2|r|2 sin2 θ cos2 θ

λ−b−|r| sin2 θ
+ |r|3 sin4 θ cos2 θ

(λ−b−|r| sin2 θ)2

1 + |r|2 sin2 θ cos2 θ

(λ−b−|r| sin2 θ)2

=
|r|(λ− b)2 cos2 θ

(λ− b− |r| sin2 θ)2 + |r|2 sin2 θ cos2 θ

≤ |r| cos2 θ

(1− |r| sin
2 θ

λ−b )2

<
2ε8

1

(1− |r| sin
2 θ

λ−b )2
.

Combining with (3.12), we obtain

2ε8
1 ≥ ε2(1− |r| sin

2 θ

λ− b
)2

⇒ (1− |r| sin
2 θ

λ− b
)2 <

ε6
1

100

⇒ |r| sin2 θ > (1− 1

10
ε3

1)(λ− b)

⇒ |r| sin2 θ + (1− 1

10
ε3

1)b > (1− 1

10
ε3

1)λ

⇒ |r|+ b > (1− 1

10
ε3

1)λ > 1− 1

10
ε3

1 .

Hence

λ2(P2 +Q2) = Tr(P2 +Q2)− λ = 1 + |r|+ b− λ

> 2− 1

10
ε3

1 − (1 + 2ε8
1) > 1− 1

9
ε3

1 .

We can finally prove Lemma 3.3.12. By Fact 3.3.7, λ↓(A + B) � λ↓(
∑

iAi +Bi). Let

j1 = max{j : λj(A + B) ≥ 1}, j2 = max{j : λj(
∑

i(Ai + Bi)) ≥ 1}, and j0 = j1 + 99
100
εk.

Then ∑
j≤j0

λj(A+B) ≥
∑
j≤j0

λj

(∑
i

(Ai +Bi)

)
.

According to the decomposition in Fact 3.3.9, Lemma 3.3.14 and the remarks below
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it, j1 = j2 = k and ∑
j≤j1

λj(A+B) = Tr ΠA+B(A+B), and

∑
j≤j2

λj

(∑
i

(Ai +Bi)

)
=
∑
i

Tr ΠAi+Bi(Ai +Bi).

The RHS of both the equations are equal by Lemma 3.3.14. Therefore,

∑
k<j≤j0

λj(A+B) ≥
∑

k<j≤j0

λj

(∑
i

(Ai +Bi)

)
.

By Lemma 3.3.15 and Lemma 3.3.16,

∑
k<j≤j0

λj

(∑
i

(Ai +Bi)

)
≥ 99

100
εk

(
1− 1

9
ε3

1

)
.

Let x = N1−ε′(A+B)−N(A+B), then

∑
k<j≤j0

λj(A+B) ≤ x+

(
99

100
εk − x

)
(1− ε′).

Therefore from previous three inequalities,

99

100
εk

(
1− 1

9
ε3

1

)
≤ x+

(
99

100
εk − x

)
(1− ε′),

which implies

x ≥ 99

100
εk

(
1− ε3

1

9ε′

)
.

Note that ε3
1 � ε′, therefore from Remark 2.,

N1−ε′(A+B) ≥ k +
99

100
εk

(
1− ε3

1

9ε′

)
>

(
1 +

1

2
ε

)
k

>

(
1 +

2

5
ε

)
(1 + ε1)k ≥

(
1 +

2

5
ε

)
N(A+B).
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Chapter 4

A parallel approximation algorithm

for mixed packing and covering

semidefinite programs

4.1 Introduction

In this chapter, we continue investigating fast parallel approximation algorithms for

semidefinite programs. We present an algorithm for Q1 given in Chapter 2 Section 2.3

running in parallel time polylog(n,m) · 1
ε4
· log 1

ε
. Using this and standard binary search,

a multiplicative (1 − ε) approximate solution can be obtained for the optimization task

Q2 in parallel time polylog(n,m, 1
ε
).

Our algorithm for Q1 and its analysis is on similar lines as the algorithm and analysis

of Young [76] who had considered analogous questions for linear programs. As a corollary

we get an algorithm for approximating positive semidefinite programs (Q3) with better

dependence of the parallel running time on ε as compared that in the previous chapter

(and arguably with simpler analysis). Very recently, in an independent work, Peng and

Tangwongsan [59] also presented a fast parallel approximation algorithm for positive

semidefinite programs. Their work is also inspired by Young [76].

4.2 Algorithm and analysis

Using standard arguments, the feasibility question Q1 can be transformed, in parallel

time polylog(m,n), to the special case when P and C are identity matrices. (Similar
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transformation is used in Chapter 2 Section 2.2 for positive semidefinite programs) Hence

we consider the following special case from now on.

Q: Given n × n positive semidefinite matrices P1, . . . , Pm, P and non-negative diagonal

matrices C1, . . . , Cm, C and ε ∈ (0, 1), find a vector x ≥ 0 such that

m∑
i=1

xiPi ≤ (1 + ε)I and
m∑
i=1

xiCi ≥ I

or show that the following is infeasible

m∑
i=1

xiPi ≤ I and
m∑
i=1

xiCi ≥ I .

Our algorithm is presented in Figure 4.1 .

4.2.1 Idea of the algorithm

The algorithm starts with an initial value for x such that
∑m

i=1 xiPi ≤ I. It makes

increments to the vector x such that with each increment, the increase in ‖
∑m

i=1 xiPi‖
is not more than (1 + O(ε)) times the increase in the minimum eigenvalue of

∑m
i=1 xiCi.

We argue that it is always possible to increment x in this manner if the input instance

is feasible, hence the algorithm outputs infeasible if it cannot find such an increment

to x. The algorithm stops when the minimum eigenvalue of
∑m

i=1 xiCi has exceeded

1. Due to our condition on the increments, at the end of the algorithm we also have∑m
i=1 xiPi ≤ (1 + O(ε))I. The change of the eigenvalues is generally hard to analyze

directly. Using the idea from Young [76], We obtain handle on the largest and smallest

eigenvalues of concerned matrices via their soft versions, which are more easily handled

functions of those matrices (see definitions in the next section). Like the algorithm

for positive semidefinite programs in Chapter 3, We set the changes in each step small

enough to ensure the approximation. At the same time, they are large enough such that

the algorithm terminates in polylog time.

4.2.2 Correctness analysis

We begin with the definitions of soft maximum and minimum eigenvalues of a positive

semidefinite matrix A. They are inspired by analogous definitions made in Young [76] in
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Input : n × n positive semidefinite matrices P1, . . . , Pm, non-negative diagonal matrices
C1, . . . , Cm, and error parameter ε ∈ (0, 1).

Output : Either infeasible, which means there is no x such that (I is the identity matrix),

m∑
i=1

xiPi ≤ I and
m∑
i=1

xiCi ≥ I .

OR an x∗ ∈ Rm such that

m∑
i=1

x∗iPi ≤ (1 + 9ε)I and
m∑
i=1

x∗iCi ≥ I .

1. Set xj = 1
m‖Pj‖ .

2. Set N = 1
ε (‖
∑m

i=1 xiPi‖+ 2 lnn+ lnm).

3. While λmin(
∑m

i=1 xiCi) < N (λmin represents minimum eigenvalue), do

(a) Set

localj(x) =
Tr(exp(

∑m
i=1 xiPi) · Pj)

Tr(exp(−
∑m

i=1 xiCi) · Cj)
and

global(x) =
Tr exp(

∑m
i=1 xiPi)

Tr(exp(−
∑m

i=1 xiCi))
.

(b) If g is not yet set or minj{localj(x)} > g(1 + ε), set g = global(x).

(c) If minj{localj(x)} > global(x) , return infeasible.

(d) For all j ∈ [m], set Cj = Πj ·Cj ·Πj , where Πj is the projection onto the eigenspace
of
∑m

i=1 xiCi with eigenvalues at most N .

(e) Choose increment vector α ≥ 0 and scalar δ > 0 such that

∀j : αj = xjδ if localj(x) ≤ g(1 + ε), else αj = 0, and

max{

∥∥∥∥∥
m∑
i=1

αiPi

∥∥∥∥∥ ,
∥∥∥∥∥
m∑
i=1

αiCi

∥∥∥∥∥} = ε.

(f) Set x = x+ α.

4. Return x∗ = x/N .

Figure 4.1: Algorithm
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the context of vectors.

Definition 4.2.1. For positive semidefinite matrix A, define

Imax(A)
def
= ln Tr exp(A),

and

Imin(A)
def
= − ln Tr exp(−A).

Note that Imax(A) ≥ ‖A‖ and Imin(A) ≤ λmin(A), where λmin(A) is the minimum

eigenvalue of A.

The following lemma shows that if a small increment is made in the vector x, then

changes in Imax(
∑m

j=1 xjAj) and Imin(
∑m

j=1 xjAj) can be bounded appropriately.

Lemma 4.2.2. Let A1, . . . , Am be positive semidefinite matrices and let x ≥ 0, α ≥ 0 be

vectors in Rm. If ‖
∑m

i=1 αiAi‖ ≤ ε ≤ 1, then

Imax(
m∑
j=1

(xj+αj)Aj)−Imax(
m∑
j=1

xjAj) ≤
(1 + ε)

Tr(exp(
∑m

i=1 xiAi))

m∑
j=1

αj Tr(exp(
m∑
i=1

xiAi)Aj),

and

Imin(
m∑
j=1

(xj+αj)Aj)−Imin(
m∑
j=1

xjAj) ≥
(1− ε/2)

Tr(exp(−
∑m

i=1 xiAi))

m∑
j=1

αj Tr(exp(−
m∑
i=1

xiAi)Aj).

Proof. We will use the following Golden-Thompson inequality.

Fact 4.2.3. For Hermitian matrices A,B : Tr(exp(A+B)) ≤ Tr exp(A) exp(B).

We will also need the following fact.

Fact 4.2.4. Let A be positive semidefinite with ‖A‖ ≤ ε ≤ 1. Then,

exp(A) ≤ I + (1 + ε)A and exp(−A) ≤ I − (1− ε/2)A.
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Consider,

Imax(
m∑
j=1

(xj + αj)Aj)− Imax(
m∑
j=1

xjAj)

= ln

(
Tr exp(

∑m
i=1(xi + αi)Ai)

Tr exp(
∑m

i=1 xiAi)

)
≤ ln

(
Tr exp(

∑m
i=1 xiAi) exp(

∑m
j=1 αjAj)

Tr exp(
∑m

i=1 xiAi)

)
(from Fact 4.2.3)

= ln

(
Tr exp(

∑m
i=1 xiAi)(I + (1 + ε)(

∑m
j=1 αjAj))

Tr exp(
∑m

i=1 xiAi)

)
(from Fact 4.2.4)

= ln

(
1 +

(1 + ε) Tr exp(
∑m

i=1 xiAi)(
∑m

j=1 αjAj)

Tr exp(
∑m

i=1 xiAi)

)

≤
(1 + ε) Tr exp(

∑m
i=1 xiAi)(

∑m
j=1 αjAj)

Tr exp(
∑m

i=1 xiAi)
(since ln(1 + a) ≤ a for all real a)

The desired bound on Imin(
∑m

j=1(xj + αj)Aj) − Imin(
∑m

j=1 xjAj) follows by analogous

calculations.

The next two lemmas show that the increment of Imax(
∑m

i=1 xiPi) is bounded by the

increment of Imin(
∑m

i=1) from above, as expected.

Lemma 4.2.5. At step 3(e) of the algorithm, for any j with αj > 0 we have,

Tr(exp(
∑m

i=1 xiPi) · Pj)
Tr(exp(

∑m
i=1 xiPi))

≤ (1 + ε)
Tr(exp(−

∑m
i=1 xiCi) · Cj)

Tr(exp(−
∑m

i=1 xiCi))
.

Proof. Consider any execution of step 3(e) of the algorithm. Fix j such αj > 0. Note

that,
localj(x)

global(x)
=

Tr(exp(
∑m

i=1 xiPi) · Pj) · Tr(exp(−
∑m

i=1 xiCi))

Tr(exp(
∑m

i=1 xiPi)) · Tr(exp(−
∑m

i=1 xiCi) · Cj)
.

We will show that global(x) ≥ g throughout the algorithm and this will show the desired

since that localj(x) ≤ (1 + ε)g ≤ (1 + ε)global(x).

At step 3(b) of the algorithm, g can be equal to global(x). Since x never decreases

during the algorithm, at step 3(a), global(x) can only increase. At step 3(d), the modi-

fication of Cjs only decreases Tr(exp(−
∑m

i=1 xiCi)) and hence again global(x) can only

increase.
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Lemma 4.2.6. For each increment of x at step 3(f) of the algorithm,

Imax(
m∑
j=1

(xj+αj)Pj)−Imax(
m∑
j=1

xjPj) ≤ (1+ε)3

(
Imin(

m∑
j=1

(xj + αj)Cj)− Imin(
m∑
j=1

xjCj)

)
.

Proof. Consider,

Imax(
m∑
j=1

(xj + αj)Pj)− Imax(
m∑
j=1

xjPj)

≤ (1 + ε)

Tr(exp(
∑m

i=1 xiPi))

m∑
j=1

αj Tr(exp(
m∑
i=1

xiPi)Pj) (from Lemma 4.2.2)

≤ (1 + ε)2

Tr(exp(−
∑m

i=1 xiCi))

m∑
j=1

αj Tr(exp(−
m∑
i=1

xiCi)Cj)

(from Lemma 4.2.5 and step 3(e) of the algorithm)

≤ (1 + ε)2

1− ε/2

(
Imin(

m∑
j=1

(xj + αj)Cj)− Imin(
m∑
j=1

xjCj)

)
(from Lemma 4.2.2).

This shows the desired.

The following lemma shows that such j in step 3 (c) always exists if the program is

feasible.

Lemma 4.2.7. If the input instance P1, . . . , Pm, C1, . . . , Cm is feasible, that is there exists

vector y ∈ Rm such that

m∑
i=1

yiPi ≤ I and
m∑
i=1

yiCi ≥ I ,

then always at step 3(c) of the algorithm, minj{localj(x)} ≤ global(x). Hence the algo-

rithm will return some x∗.

If the algorithm outputs infeasible, then the input instance is not feasible.

Proof. Consider some execution of step 3(c) of the algorithm. Let C ′1, . . . , C
′
m be the

current values of C1, . . . , Cm. Note that if the input is feasible with vector y, then we will
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also have

Tr(exp(
∑m

i=1 xiPi)(
∑m

j=1 yjPj))

Tr(exp(
∑m

i=1 xiPi))
≤ 1 ≤

Tr(exp(−
∑m

i=1 xiC
′
i)(
∑m

j=1 yjC
′
j))

Tr(exp(−
∑m

i=1 xiC
′
i))

.

Therefore there exists j ∈ [m] such that

Tr(exp(
∑m

i=1 xiPi)Pj)

Tr(exp(
∑m

i=1 xiPi))
≤

Tr(exp(−
∑m

i=1 xiC
′
i)C

′
j)

Tr(exp(−
∑m

i=1 xiC
′
i))

,

and hence localj(x) ≤ global(x).

If the algorithm outputs infeasible, then at that point minj{localj(x)} > global(x) and

hence from the argument above P1, . . . , Pm, C
′
1, . . . , C

′
m is infeasible which in turn implies

that P1, . . . , Pm, C1, . . . , Cm is infeasible.

Finally, we are able to show that the algorithm outputs a good approximation solution.

Lemma 4.2.8. If the algorithm returns some x∗, then

m∑
i=1

x∗iPi ≤ (1 + 9ε)I and
m∑
i=1

x∗iCi ≥ I.

Proof. Because of the condition of the while loop, it is clear that
∑m

i=1 x
∗
iCi ≥ I.

For x ∈ Rm, define

Φ(x)
def
= Imax(

m∑
j=1

xjPj)− (1 + ε)3 · Imin(
m∑
j=1

xjCj).

Note that the update of Cj’s at step 3(d) only increase Imin(
∑m

j=1 xjCj). Hence using

Lemma 4.2.6, we conclude that Φ(x) is non-decreasing during the algorithm. At step 1

of the algorithm,

Φ(x) ≤ Imax(
m∑
j=1

xjPj) = ln Tr(exp(
m∑
i=1

xiPi))

≤ ln(n exp(

∥∥∥∥∥
m∑
i=1

xiPi

∥∥∥∥∥)) ≤ ln(n exp(
m∑
i=1

‖xiPi‖)) = lnn+ 1.
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Hence just before the last increment,∥∥∥∥∥
m∑
i=1

xiPi

∥∥∥∥∥ ≤ Imax(
m∑
j=1

xjPj) ≤ Φ(x) + (1 + ε)3 · Imin(
m∑
j=1

xjCj)

≤ lnn+ 1 + (1 + ε)3 · Imin(
m∑
j=1

xjCj)

≤ lnn+ 1 + (1 + ε)3 · λmin(
m∑
j=1

xjCj)

≤ lnn+ 1 + (1 + ε)3N ≤ (1 + 8ε)N .

In the last increment, because of the condition on step 3(e) of the algorithm, ‖
∑m

i=1 xiPi‖
increase by at most ε. Hence

∑m
i=1 x

∗
iPi ≤ (1 + 9ε)I.

4.2.3 Running time analysis

Note that each individual step in the algorithm can be performed in parallel time polylog(mn).

Please refer to Chapter 2, Section 2.1. We show that the wile loop is executed polylog

times, then show that only polylog iterations are required in each loop.

Lemma 4.2.9. Assume that the algorithm does not return infeasible for some input in-

stance. The number of times g is increased at step 3(b) of the algorithm is O(N/ε).

Proof. At the beginning of the algorithm Tr(exp(−
∑m

i=1 xiCi)) ≤ n since each eigenvalue

of exp(−
∑m

i=1 xiCi) is at most 1. Also Tr exp(
∑m

i=1 xiPi) ≥ 1. Hence

g = global(x) =
Tr exp(

∑m
i=1 xiPi)

Tr(exp(−
∑m

i=1 xiCi))
≥ 1

n
≥ 1

exp(N)
.

At the end of the algorithm λmin(
∑m

i=1 xiCi) ≤ N + ε ≤ 2N . Hence

Tr(exp(−
m∑
i=1

xiCi)) ≥

∥∥∥∥∥exp(−
m∑
i=1

xiCi)

∥∥∥∥∥ = exp(−λmin(
m∑
i=1

xiCi)) ≥ exp(−2N).

Also (using Lemma 4.2.8)

Tr(exp(
m∑
i=1

xiPi)) ≤ n

∥∥∥∥∥exp(
m∑
i=1

xiPi)

∥∥∥∥∥ ≤ n exp((1 + 9ε)N) ≤ exp(11N).

Hence g ≤ global(x) ≤ exp(13N).
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Whenever g is updated at step 3(b) of the algorithm, we have

global(x) ≥ min
j
{localj(x)} > (1 + ε)g

just before the update and global(x) = g just after the update. Thus g increases by at

least (1 + ε) multiplicative factor. Hence the number of times g increases is O(N/ε).

Lemma 4.2.10. Assume that the algorithm does not return infeasible for some input

instance. The number of iterations of the while loop in the algorithm for a fixed value of

g is O(N log(mN)/ε).

Proof. From Lemma 4.2.8 and step 3(d) of the algorithm we have

max{

∥∥∥∥∥
m∑
i=1

xiPi

∥∥∥∥∥ ,
∥∥∥∥∥

m∑
i=1

xiCi

∥∥∥∥∥} = O(N)

throughout the algorithm. On the other hand we have max{‖
∑m

i=1 δxiPi‖ , ‖
∑m

i=1 δxiCi‖} =

ε at step 3(e). Hence δ = Ω(ε/N) throughout the algorithm.

Let xj be increased in the last iteration of the while loop for a fixed value of g. Note

that xj is initially 1/(m ‖Pj‖) and at the end xj is at most 10N/ ‖Pj‖ (since, using

Lemma 4.2.8, ‖xjPj‖ ≤ ‖
∑m

i=1 xjPj‖ ≤ 10N). Hence the algorithm makes at most

O(log(mN)/δ) = O(N log(mN)/ε) increments for each xj.

Note that localj(x) only increases throughout the algorithm by steps 3(d) and 3(e) of

the algorithm. Hence since the last iteration of the while loop (for this fixed g) increases

xj, it must be that each iteration of the while loop increases xj. Hence, the number of

iterations of the while loop (for this fixed g) is O(N log(mN)/ε).

Hence combining the above lemmas and using N = O( ln(mn)
ε

), we get

Corollary 4.2.11. The parallel running time of the algorithm is upper bounded by polylog(mn)·
1
ε4
· log 1

ε
.
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Chapter 5

Information theory and

communication complexity

In this chapter, we give some definitions and facts on information theory and communi-

cation complexity, which will be used in the subsequent chapters.

5.1 Information theory

For integer n ≥ 1, let [n] represent the set {1, 2, . . . , n}. Let X, Y be finite sets and

k be a natural number. Let Xk be the set X × · · · × X, the cross product of X, k

times. Let µ be a (probability) distribution on X. Let µ(x) represent the probability of

x ∈ X according to µ. Let X be a random variable distributed according to µ, which

we denote by X ∼ µ. We use the same symbol to represent a random variable and its

distribution whenever it is clear from the context. The expectation value of function f

on X is denoted as Ex←X [f(x)]
def
=
∑

x∈X Pr[X = x] · f(x). The entropy of X is defined

as H(X)
def
= −

∑
x µ(x) · log µ(x). For two distributions µ, λ on X, the distribution µ⊗ λ

is defined as (µ ⊗ λ)(x1, x2)
def
= µ(x1) · λ(x2). XY represents the joint distribution of X

and Y . Let µk
def
= µ⊗ · · · ⊗ µ, k times. The `1 distance between µ and λ is defined to be

half of the `1 norm of µ− λ; that is, ‖λ− µ‖1
def
= 1

2

∑
x |λ(x)− µ(x)| = maxS⊆X |λS − µS|,

where λS
def
=
∑

x∈S λ(x). We say that λ is ε-close to µ if ‖λ− µ‖1 ≤ ε.

The relative entropy between distributions X and Y on X is defined as S(X‖Y )
def
=

Ex←X
[
log Pr[X=x]

Pr[Y=x]

]
. Here we assume 0 log 0

0
= 0. The relative min-entropy between them

is defined as S∞ (X‖Y )
def
= maxx∈X

{
log Pr[X=x]

Pr[Y=x]

}
. S∞ (X‖Y )

def
= ∞ if there exists x such

that Pr[X = x] > 0 and Pr[Y = x] = 0. It is easy to see that S(X‖Y ) ≤ S∞ (X‖Y ).
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Let X, Y, Z be jointly distributed random variables. Let Yx denote the distribution of

Y conditioned on X = x. The conditional entropy of Y conditioned on X is defined as

H(Y |X)
def
= Ex←X [H(Yx)] = H(XY )− H(X). The mutual information between X and Y

is defined as: I(X : Y )
def
= H(X) + H(Y )−H(XY ) = Ey←Y [S(Xy‖X)] = Ex←X [S(Yx‖Y )] .

It can be checked from the definition that I(X : Y ) = S(XY ‖X ⊗ Y ). We say that X

and Y are independent iff I(X : Y ) = 0, or equivalently, XY = X ⊗ Y . The conditional

mutual information between X and Y , conditioned on Z, is defined as: I(X : Y |Z)
def
=

Ez←Z[I(X : Y |Z = z)] = H (X|Z)+H (Y |Z)−H (XY |Z) . The following is the chain rule

for mutual information : I(X : Y Z) = I(X : Z) + I(X : Y |Z) .

Let X,X ′, Y, Z be jointly distributed random variables. We define the joint distribu-

tion of (X ′Z)(Y |X) by: Pr[(X ′Z)(Y |X) = x, z, y]
def
= Pr[X ′ = x, Z = z] · Pr[Y = y|X =

x]. We say that X, Y , Z is a Markov chain iff XY Z = (XY )(Z|Y ) and we denote it by

X ↔ Y ↔ Z. Suppose Alice is given x ∼ X and Bob is given y ∼ Y , then Bob can

sample distribution Zxy without knowing x if and only if X ↔ Y ↔ Z. It is easy to

see that X, Y , Z is a Markov chain if and only if I(X : Z |Y ) = 0. Ibinson, Linden and

Winter [24] showed that if I(X : Z |Y ) is small then XY Z is close to being a Markov

chain.

Lemma 5.1.1 ([24]). For any random variables X, Y and Z, it holds that

I(X : Z |Y ) = min {S(XY Z‖X ′Y ′Z ′) : X ′ ↔ Y ′ ↔ Z ′} .

The minimum is achieved by distribution X ′Y ′Z ′ = (XY )(Z|Y ).

We need the following basic facts. A very good text for reference on information

theory is [19].

Fact 5.1.2. Relative entropy is jointly convex in its arguments. That is, for distributions

µ, µ1, λ, λ1 ∈ X and p ∈ [0, 1]: S(pµ+ (1− p)µ1‖λ+ (1− p)λ1) ≤ p · S(µ‖λ) + (1 − p) ·
S(µ1‖λ1) .

Fact 5.1.3. Relative entropy satisfies the following chain rule. Let XY and X1Y 1 be

random variables on X×Y. It holds that: S(X1Y 1‖XY ) = S(X1‖X)+Ex←X1[S(Y 1
x ‖Yx)] .

In particular, using Fact 5.1.2: S (X1Y 1‖X ⊗ Y ) = S (X1‖X) + Ex←X1 [S(Y 1
x ‖Y )] ≥

S(X1‖X) + S(Y 1‖Y ) .

Fact 5.1.4. Let XY and X1Y 1 be random variables on X× Y. It holds that

S
(
X1Y 1

∥∥X ⊗ Y ) ≥ S
(
X1Y 1

∥∥X1 ⊗ Y 1
)

= I
(
X1 : Y 1

)
.
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Fact 5.1.5. For distributions λ and µ: 0 ≤ ‖λ− µ‖1 ≤
√

S(λ‖µ).

Fact 5.1.6. Let λ and µ be distributions on X. For any subset S ⊆ X, it holds that:∑
x∈S λ(x) · log λ(x)

µ(x)
≥ −1.

Fact 5.1.7. The `1 distance and relative entropy are monotone non-increasing when

subsystems are considered. Let XY and X1Y 1 be random variables on X× Y, then

∥∥XY −X1Y 1
∥∥

1
≥
∥∥X −X1

∥∥
1

and

S
(
XY

∥∥X1Y 1
)
≥ S

(
X
∥∥X1

)
.

Fact 5.1.8. For function f : X × R → Y and random variables X,X1 on X and R on

R, such that R is independent of (XX1), it holds that: ‖Xf(X,R)−X1f(X1, R)‖1 =

‖X −X1‖1 .

Fact 5.1.9. (Classical substate theorem [31]) Let X,X ′ be two distributions on X.

For any δ ∈ (0, 1), it holds that

Pr
x←X′

[
Pr[X ′ = x]

Pr[X = x]
≤ 2(S(X′‖X)+1)/δ

]
≥ 1− δ.

Lemma 5.1.10. Given random variables A, A′ and ε > 0, if ‖A− A′‖1 ≤ ε, then for

any r ∈ (0, 1),

Pra←A

[∣∣∣1− Pr[A′=a]
Pr[A=a]

∣∣∣ ≤ ε
r

]
≥ 1− 2r; and

Pra←A′
[∣∣∣1− Pr[A′=a]

Pr[A=a]

∣∣∣ ≤ ε
r

]
≥ 1− 2r − ε.

Proof. Let G =
{
a :
∣∣∣1− Pr[A′=a]

Pr[A=a]

∣∣∣ ≤ ε
r

}
, then

2ε ≥
∑
a

∣∣∣Pr[A = a]− Pr[A′ = a]
∣∣∣

≥
∑
a6∈G

∣∣∣Pr[A = a]− Pr[A′ = a]
∣∣∣

=
∑
a6∈G

Pr[A = a]

∣∣∣∣1− Pr[A′ = a]

Pr[A = a]

∣∣∣∣ ≥ Pr
a←A

[a 6∈ G] · ε
r
.

Thus Pra←A [a ∈ G] ≥ 1− 2r. The second inequality follows immediately.
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The following definition was introduced by Holenstein [23]. It plays a critical role in

his proof of a parallel repetition theorem for two-prover games.

Definition 5.1.11 ([23]). For two distributions (X0Y0) and (X1SY1T ), we say that

(X0, Y0) is (1− ε)-embeddable in (X1S, Y1T ) if there exists a probability distribution R

over a set R, which is independent of X0Y0 and functions fA : X×R→ S, fB : Y×R→ T,

such that

‖X0Y0fA(X0, R)fB(Y0, R)−X1Y1ST‖1 ≤ ε.

The following lemma was shown by Holenstein [23] using a correlated sampling pro-

tocol.

Lemma 5.1.12 ([23]). For random variables S, X and Y , if

‖XY S − (XY )(S|X)‖1 ≤ ε and

‖XY S − (XY )(S|Y )‖1 ≤ ε,

then (X, Y ) is (1− 4ε)-embeddable in (XS, Y S).

We need the following generalization of the previous lemma.

Lemma 5.1.13. For joint random variables (A′, B′, C ′) and (A,B), satisfying

S(A′B′‖AB) ≤ ε. (5.1)

E(a,c)←A′,C′
[
S
(
B′a,c

∥∥Ba

)]
≤ ε, (5.2)

E(b,c)←B′,C′
[
S
(
A′b,c
∥∥Ab)] ≤ ε, (5.3)

it holds that (A,B) is (1− 5
√
ε)-embeddable in (A′C ′, B′C ′).

Proof. Using the definition of the relative entropy, we have the following.

E
(a,c)←A′,C′

[
S
(
B′a,c

∥∥Ba

)]
− E

(a,c)←A′,C′

[
S
(
B′a,c

∥∥B′a)] = E
(a,b,c)←A′,B′,C′

[
log

Pr[B′ = b|A′ = a]

Pr[B = b|A = a]

]
= E

a←A′
[S(B′a‖Ba)] ≥ 0.

This means that

E
(a,c)←A′,C′

[
S
(
B′a,c

∥∥B′a)] ≤ E
(a,c)←A′,C′

[
S
(
B′a,c

∥∥Ba

)]
≤ ε. (5.4)
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Then

E
(a,c)←A′,C′

[
S
(
B′a,c

∥∥B′a)]
= S(A′C ′B′‖(A′C ′) (B′|A′)) (5.5)

= S(A′B′C ′‖(A′B′) (C ′|A′)) (5.6)

≥ ‖A′B′C ′ − (A′B′) (C ′|A′)‖2
1 . (5.7)

Above, Eq. (5.5) follows from the chain rule for the relative entropy, Eq. (5.6) follows

because (A′C ′) (B′|A′) and (A′B′) (C ′|A′) are identically distributed, and Eq. (5.7) follows

from Fact 5.1.5. Now from Equations (5.7) and (5.4) we get

‖A′B′C ′ − (A′B′) (C ′|A′)‖1 ≤
√
ε.

By similar arguments we get

‖A′B′C ′ − (A′B′) (C ′|B′)‖1 ≤
√
ε.

The inequalities above and Lemma 5.1.12 imply that (A′, B′) is (1− 4
√
ε)-embeddable

in (A′C ′, B′C ′). Furthermore from Fact 5.1.5 and S(A′B′‖AB) ≤ ε we get

‖A′B′ − AB‖1 ≤
√
ε.

Finally using the inequality above, Fact 5.1.8 and the triangle inequality for the `1 norm,

we get that (A,B) is (1− 5
√
ε)-embeddable in (A′C ′, B′C ′).

5.2 Communication complexity

In this work, we are concerned with the model of communication complexity which was

introduced by Yao [73]. In this model there are different parties who wish to compute a

joint relation of their inputs. They do local computation, use public/private coins, and

communicate between them to achieve this task. The player receiving the last message

outputs the answer. The resource that is counted is the number of bits communicated.

The text by Kushilevitz and Nisan [49] is an excellent reference for this model.

Let f ⊆ X × Y × Z be a relation, k ≥ 1 be an integer and ε ∈ (0, 1). And let
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fk ⊆ Xk × Yk × Zk be defined to be cross product of f with itself k times. In a protocol

for computing fk, Alice will receive input in Xk, Bob will receive input in Yk and the

output of the protocol will be in Zk.

Two-way public-coin communication complexity. In a two-way public-coin com-

munication protocol, Alice is given x ∈ X, and Bob is given y ∈ Y. They are supposed to

output z ∈ Z such that (x, y, z) ∈ f via exchanging messages and doing local computa-

tions. They may share public coins before the inputs are revealed to them. The transcript

of a protocol is the concatenation of the public coins and all messages exchanged between

Alice and Bob. Let Rpub
ε (f) represent the two-way public-coin randomized communica-

tion complexity of f with the worst case error ε, that is the communication of the best

two-way public-coin for f with error for each input (x, y) being at most ε. Let µ be a

distribution on X × Y. Let Dµ
ε (f) represent the two-way distributional communication

complexity of f under distribution µ with distributional error ε, that is the commu-

nication of the best two-way deterministic protocol for f , with average error over the

distribution of the inputs drawn from µ, at most ε. Following is Yao’s min-max principle

which connects the worst case error and the distributional error settings, see. e.g., [49,

Theorem 3.20, page 36].

Fact 5.2.1 (Yao’s principle, [73]). Rpub
ε (f) = maxµ Dµ

ε (f).

Two-party bounded-round public-coin communication complexity. In a two-

party t-message public-coin model of communication, Alice with input x ∈ X and Bob

with input y ∈ Y, do local computation using public coins shared between them and

exchange t messages, with Alice sending the first message. At the end of their protocol

the party receiving the t-th message outputs some z ∈ Z. The output is declared correct

if (x, y, z) ∈ f and wrong otherwise. Let R
(t),pub
ε (f) represent the two-party t-message

public-coin communication complexity of f with worst case error ε, i.e., the communica-

tion of the best two-party t-message public-coin protocol for f with error for each input

(x, y) being at most ε. We similarly consider two-party t-message deterministic protocols

where there are no public coins used by Alice and Bob. Let µ ∈ X× Y be a distribution.

We let D
(t),µ
ε (f) represent the two-party t-message distributional communication com-

plexity of f under µ with expected error ε, i.e., the communication of the best two-party

t-message deterministic protocol for f , with distributional error (average error over the

inputs) at most ε under µ. We have similar Yao’s principle for this model.

Lemma 5.2.2 (Yao’s principle, [73]). R
(t),pub
ε (f) = maxµ D

(t),µ
ε (f).
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The following fact about communication protocols can be verified using the rectangle

property of communication protocols.

Fact 5.2.3. Let there be t messages M1, . . . ,Mt in a deterministic communication proto-

col between Alice and Bob with inputs X, Y respectively where X and Y are independent.

Then for any s ∈ [t], X and Y are independent even conditioned on M1, . . . ,Ms.

5.2.1 Smooth rectangle bounds

Besides showing direct product results, another major focus in communication complex-

ity has been to investigate generic lower bound methods, that apply to all functions

(and possibly to all relations). In the model we are concerned with, various generic

lower bound methods are known, for example the partition bound [28], the information

complexity [18], the smooth rectangle bound [28] (which in turn subsumes the rectangle

bound a.k.a the corruption bound) [5; 9; 45; 63; 75], the smooth discrepancy bound a.k.a

the γ2 bound [52] ( which in turn subsumes the discrepancy bound), the subdistribution

bound [29] and the conditional min-entropy bound [25]. Proving strong direct product

results in terms of these lower bound methods is a reasonable approach to attacking the

general question. Indeed, many lower bounds have been shown to satisfy strong direct

product theorems, example the discrepancy bound [51], the subdistribution bound un-

der product distributions [29], the smooth discrepancy bound [67] and the conditional

min-entropy bound [25].

Smooth rectangle bound was introduced by Jain and Klauck in [28], which generalizes

the rectangle bound (a.k.a. the corruption bound) [5; 9; 45; 63; 75]. Roughly speaking,

the rectangle bound for relation f ⊆ X × Y × Z under a distribution µ, with respect to

an element z ∈ Z, and error ε, tries to capture the size (under µ) of a largest rectangle

for which z is a right answer for 1 − ε fraction of inputs inside the rectangle. It is

not hard to argue that the rectangle bound forms a lower bound on the distributional

communication complexity of f under µ. The smooth rectangle bound for f further

captures the maximum, over all relations g that are close to f under µ, of the rectangle

bound of g under µ. The distributional error setting can eventually be related to the

worst case error setting via the well known Yao’s principle [75].

Let f ⊆ X × Y × Z be a relation and ε, δ ≥ 0. With a slight abuse of notation, we

write f(x, y)
def
= {z ∈ Z| (x, y, z) ∈ f}, and f−1(z)

def
= {(x, y) : (x, y, z) ∈ f}.

Definition 5.2.4. (Smooth-rectangle bound [28]) The (ε, δ)-smooth rectangle bound
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of f , denoted by s̃recε,δ (f), is defined as follows:

s̃recε,δ (f)
def
= max{s̃recλε,δ (f) | λ a distribution over X× Y};

s̃recλε,δ (f)
def
= max{s̃recz,λε,δ (f) | z ∈ Z};

s̃recz,λε,δ (f)
def
= max{r̃ecz,λε (g) | g ⊆ X× Y× Z; Pr

(x,y)←λ
[f(x, y) 6= g(x, y)] ≤ δ};

r̃ecz,λε (g)
def
= min{S∞(λR‖λ) | R is a rectangle in X× Y, λ(g−1(z) ∩R) ≥ (1− ε)λ(R)}.

When δ = 0, the smooth rectangle bound equals the rectangle bound (a.k.a. the

corruption bound) [5; 9; 45; 63; 75]. Definition 5.2.4 is a generalization of the one in [28],

where it is only defined for boolean functions.

Jain and Klauck showed that the smooth rectangle bound is stronger than every lower

bound method we mentioned above except the partition bound and the information

complexity. Jain and Klauck showed that the partition bound subsumes the smooth

rectangle bound and in a recent work Kerenidis, Laplante, Lerays, Roland and Xiao [43]

showed that the information complexity subsumes the smooth rectangle bound (building

on the work of Braverman and Weinstein [16] who showed that the information complexity

subsumes the discrepancy bound). New lower bounds for specific functions have been

discovered using the smooth rectangle bound, for example Chakrabarti and Regev’s [17]

optimal lower bound for the Gap-Hamming Distance partial function. Klauck [46] used the

smooth rectangle bound to show a strong direct product result for the Set-Disjointness

function, via exhibiting a lower bound on a related function. On the other hand, as far

as we know, no function (or relation) is known for which its smooth rectangle bound is

(asymptotically) strictly smaller than its two-way public-coin communication complexity.

Hence establishing whether or not the smooth rectangle bound is a tight lower bound for

all functions and relations in this model is an important open question.

In [28], Jain and Klauck provide an alternate definition of smooth-rectangle bound

for boolean functions.

Definition 5.2.5. For function f : X × Y → Z, the ε- smooth rectangle bound of f

denoted srecε (f) is defined to be max{sreczε (f) : z ∈ Z}, where sreczε (f) is given by the

optimal value of the following linear program. (W represents the set of all rectangles.)

Primal
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min:
∑

W∈W

vW

∀(x, y) ∈ f−1(z) :
∑

W :(x,y)∈W

vW ≥ 1− ε,

∀(x, y) ∈ f−1(z) :
∑

W :(x,y)∈W

vW ≤ 1,

∀(x, y) ∈ f−1 − f−1(z) :
∑

W :(x,y)∈W

vW ≤ ε,

∀W : vW ≥ 0 .

Dual

max:
∑

(x,y)∈f−1(z)

((1− ε)λx,y − φx,y)−
∑

(x,y)/∈f−1(z)

ε · λx,y

∀W :
∑

(x,y)∈f−1(z)∩W

(λx,y − φx,y)−
∑

(x,y)∈(W∩f−1−f−1(z))

λx,y ≤ 1,

∀(x, y) : λx,y ≥ 0;φx,y ≥ 0 .

The following lemma lower bounds the natural definition in terms of the linear pro-

gramming definition of smooth rectangle bound. A similar, but weaker, relationship was

shown in [28].

Lemma 5.2.6. Let f : X × Y → Z be a function. Let z ∈ Z and ε > 0. There exists a

distribution µ ∈ X× Y and δ, β > 0 such that

s̃recz,µ
(1+ε2) δ

β
,δ

(f) ≥ log(sreczε (f)) + 3 log ε.

Proof. See Appendix A.

The smooth rectangle bound is a lower bound on the two-way public-coin communi-

cation complexity. It is first proved by Jain and Klauck in [28]. The proof is contained

in Appendix A for completeness.

Lemma 5.2.7. Let f ⊆ X× Y× Z be a relation. Let λ ∈ X× Y be a distribution and let

z ∈ Z. Let β
def
= Pr(x,y)←λ [f(x, y) = {z}]. Let ε, ε′, δ > 0 be such that δ+ε

β−2ε
< (1 + ε′) δ

β
.

Then,

Rε(f) ≥ Dλ
ε (f) ≥ s̃recz,λ(1+ε′)δ/β,δ (f)− log

4

ε
.
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Chapter 6

A direct product theorem for

two-party bounded-round

public-coin communication

complexity

6.1 Introduction

In this chapter, we show a direct product theorem for the two-party bounded-round

public-coin communication complexity. In this model, for computing a relation f ⊆
X × Y × Z (X,Y,Z are finite sets), one party, say Alice, is given an input x ∈ X and

the other party, say Bob, is given an input y ∈ Y . They are supposed to do local

computations using public coins shared between them, communicate a fixed number of

messages between them and at the end, output an element z ∈ Z. They are said to

succeed if (x, y, z) ∈ f . In this chapter we only consider complete relations, that is for

every (x, y) ∈ X × Y, there is some z ∈ Z such that (x, y, z) ∈ f . Using the notations

introduced in Section 5.2, we show that

Theorem 6.1.1. Let X, Y, Z be finite sets, f ⊆ X× Y×Z a relation, ε > 0 and k, t ≥ 1

be integers. There exists a constant κ ≥ 0 such that,

R
(t),pub

1−(1−ε/2)Ω(kε2/t2)
(fk) = Ω

(
ε · k
t
·
(

R(t),pub
ε (f)− κt2

ε

))
.

In particular, it implies a strong direct product theorem for the two-party constant-
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message public-coin communication complexity of all relations f .1 Our result generalizes

the result of Jain [25] which can be regarded as the special case when t = 1. Our

result can be considered as an important progress towards settling the strong direct

product conjecture for the two-party public-coin communication complexity, a major

open question in this area.

As a direct consequence of our result we get a direct product theorem for the Pointer

Chasing problem defined as follows. Let n, t ≥ 1 be integers. Alice and Bob are given

functions FA : [n] → [n] and FB : [n] → [n], respectively. Let F t represent alternate

composition of FA and FB done t times, starting with FA. The parties are supposed to

communicate and determine F t(1). In the bit version of the problem, the players are

supposed to output the least significant bit of F t(1). We refer to the t-pointer chasing

problem as FPt and the bit version as BPt. The pointer chasing problem naturally

captures the trade-off between number of messages exchanged and the communication

used. There is a straightforward t-message deterministic protocol with t · log n bits of

communication for both FPt and BPt. However if only t − 1 messages are allowed to

be exchanged between the parties, exponentially more communication is required. The

communication complexity of this problem has been very well studied both in the classical

and quantum models of communication complexity [32; 44; 47; 57; 60]. Some tight lower

bounds that we know so far are as follows.

Theorem 6.1.2. For integer t ≥ 1,

1. [60] R
(t−1),pub
1/3 (FPt) ≥ Ω(n log(t−1) n);

R
(t−1),pub
1/3 (BPt) ≥ Ω(n).

As a consequence of Theorem 6.1.1 we get strong direct product results for this prob-

lem. Note that in the descriptions of FPt and BPt, t is a fixed constant, not dependent

on the input size.

Corollary 6.1.3. For integers t, k ≥ 1,

1. R
(t−1),pub

1−2−Ω(k/t2)
(FPk

t ) ≥ Ω
(
k
t
· n log(t−1) n

)
;

2. R
(t−1),pub

1−2−Ω(k/t2)
(BPk

t ) ≥ Ω
(
k
t
· n
)
.

1When R
(t),pub
ε (f) is a constant, a direct product result can be shown via direct arguments as for

example in [25].
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6.1.1 Our techniques

We prove our direct product result using information theoretic arguments. Information

theory is a versatile tool in communication complexity, especially in proving lower bounds

and direct sum and direct product theorems [6; 8; 13; 18; 25; 27; 33; 34; 35]. The broad

argument that we use is as follows. For a given relation f , let the communication required

for computing one instance with t messages and constant success be c. Let us consider

a protocol for computing fk with t messages and communication cost o(kc). Let us

condition on success on a set C of coordinates. If the overall success in coordinates

in C ⊆ [k] is already as small as we want then we are done and stop. Otherwise we

exhibit another coordinate j outside C such that the success in the j-th coordinate, even

conditioned on the success in the l coordinates, is bounded away from 1. This way the

overall success keeps going down and becomes exponentially small (in k) eventually. More

concretely, the distribution of inputs XjYj (conditioning on the success of the coordinates

in C), in the j-th coordinate is quite close to µ and the joint distribution XjYjM (where

M is the message transcript of P) can be approximated very well by Alice and Bob using a

t message protocol for f , when they are given input according to µ, using communication

less than c. This shows that success in the j-th coordinate must be bounded away from

one. We do this argument in the distributional setting where one is concerned with

average error over the inputs coming from a specified distribution rather than the worst

case error over all inputs. The distributional setting is then related to the worst case

setting by the well known Yao’s principle [73].

To simulate the transcript, we adopt the message compression protocol due to Braver-

man and Rao [13], where they used the protocol to show a direct sum theorem for the

same communication model we are considering. Informally, the protocol can be stated

as follows.

Braverman-Rao protocol (informal). Given a Markov chain Y ↔ X ↔M , there

exists a public-coin protocol between Alice and Bob, with input X, Y , respectively, with

a single message from Alice to Bob of O(I(X : M |Y )) bits, such that at the end of the

protocol, Alice and Bob both possess a random variable M ′, close to M in `1 distance.

Consider the situation after conditioning on the success in the set C as above, and

let XjYj represent the input in the jth coordinate. The Braverman-Rao compression

protocol cannot be directly applied at this stage. Take the first message M1 sent by Alice,

for instance. YjXjM1 is not necessarily a Markov chain even if the initial distribution

is product. However, we are able to show that YjXjM1 is ‘close’ to being a Markov
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chain by further conditioning on appropriate sub-events. We then use a more ‘robust’

Braverman-Rao compression protocol (along the lines of the original), where by being

‘robust’, we mean that the communication cost and the error do not vary much even for

XYM which is close to being a Markov chain (similar arguments were used in Jain [25]).

We then apply such a robust message compression protocol to each successive message.

We accumulate some errors for each of these messages. Thus in order to keep the overall

error bounded, we are able to make our argument for protocols with a bounded number

of message exchanges.

Another difficulty that is faced in this argument is that since µ may be a non-product

distribution, Alice and Bob may obtain information about each other’s input in the j-

th coordinate via their inputs in other coordinates. This is overcome by splitting the

distribution µ into a convex combination of several product distributions. This idea of

splitting a non-product distribution into convex combination of product distributions

has been used in several previous works to handle non-product distributions in different

settings [6; 8; 13; 23; 25; 61; 63]. This splitting of non-product distribution leads us to use

another important tool namely the correlated sampling protocol, that was also used for

example by Holenstein [23] while arguing a strong direct product result for the two-prover

one-round games.

As mentioned previously, we build on the arguments used in Jain [25]. Jain shows

a new characterization of the two-party one-way public-coin communication complexity

and uses it to show a strong direct product result for all relations in this model. We are

unable to arrive at such a characterization for protocols with more than one message and

use a more direct approach, as outlined above, to arrive at our direct product result.

6.2 Proof of Theorem 6.1.1

We start by showing a few lemmas which are helpful in the proof of the main result. The

following lemma was shown in Jain [25] and follows primarily from a message compression

argument due to Braverman and Rao [13].

Theorem 6.2.1. Let δ > 0, c ≥ 0. Let X ′, Y ′, N be random variables for which Y ′ ↔
X ′ ↔ N is a Markov chain and the following holds,

Pr
(x,y,m)←X′,Y ′,N

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
> c

]
≤ δ. (6.1)

There exists a public-coin protocol between Alice and Bob, with inputs X ′, Y ′ respec-
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tively, with a single message from Alice to Bob of c + O(log(1/δ)) bits, such that at

the end of the protocol, both Alice and Bob possess a random variable M satisfying

‖X ′Y ′N −X ′Y ′M‖1 ≤ 2δ.

Remark 6.2.2. In [13], the condition I(X ′ : N |Y ′) ≤ c is used instead of (6.1). It is

changed to the current one in Jain [25]. By Markov’s inequality, I(X ′ : N |Y ′) ≤ c implies

Pr
(x,y,m)←X′,Y ′,N

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
>
c+ 1

δ

]
≤ δ.

This modification is essential in our arguments since the condition (6.1) is robust when

the underlying joint distribution is perturbed slightly, while I(X ′ : N |Y ′) may change a

lot with such a perturbation.

As mentioned in Subsection 6.1.1, we have to work with approximate Markov chains

in our arguments for the direct product. The following lemma makes Theorem 6.1.1 more

robust to deal with approximate Markov chains.

Lemma 6.2.3. Let c ≥ 0, 1 > ε > 0, ε′ > 0. Let X ′, Y ′,M ′ be random variables for which

the following holds,

I(X ′ : M ′ |Y ′) ≤ c and I(Y ′ : M ′ |X ′) ≤ ε.

There exists a public-coin protocol between Alice and Bob, with inputs X ′, Y ′ respec-

tively, with a single message from Alice to Bob of c+5
ε′

+ O(log 1
ε′

) bits, such that at

the end of the protocol, both Alice and Bob possess a random variable M satisfying

‖X ′Y ′M ′ −X ′Y ′M‖1 ≤ 3
√
ε+ 6ε′.

Proof. Let us introduce a new random variable N with joint distribution X ′Y ′N
def
=

(X ′Y ′)(M ′|X ′). Note that Y ′ ↔ X ′ ↔ N is a Markov chain. Using Lemma 5.1.1, we

have

S(X ′Y ′M ′‖X ′Y ′N) = I(Y ′ : M ′ |X ′) ≤ ε. (6.2)

Applying Fact 5.1.5, we get ‖X ′Y ′M ′ −X ′Y ′N‖1 ≤
√
ε. Theorem 6.2.1 and the

following claim together imply that there exists a public-coin protocol between Alice

and Bob, with input X ′, Y ′, respectively, with a single message from Alice to Bob of
c+5
ε′

+ O(log 1
ε′

) bits, at the end of which both Alice and Bob possess a random variable

N ′ satisfying ‖X ′Y ′N ′ −X ′Y ′N‖1 ≤ 2
√
ε+ 6ε′. Finally using the triangle inequality for

the `1 norm we conclude the desired.
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Claim 6.2.4.

Pr
(m,x,y)←N,X′,Y ′

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]
≤ 3ε′ +

√
ε.

As mentioned in Remark 6.2.2, although mutual information is not robust, an upper

bound on the mutual information implies an upper bound on the majority of the logarithm

of a ratio, which turns out to be robust. We can also apply this trick to the bounds on

other information theoretic quantities. The following claim is a robust version of the

inequality S(M ′X ′Y ′‖NXY ) ≥ 0.

Claim 6.2.5. Given 0 < ε, ε′ < 1, we have

Pr
(m,x,y)←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]
<
ε+ 1

ε′

]
> 1− ε′.

Proof. We prove it by applying Markov inequality to S(M ′X ′Y ′‖NXY ) ≥ 0. let us define

the set

G1
def
=

{
(m,x, y) : log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]
<
ε+ 1

ε′

}
.

Consider,

0 ≥ −S(M ′X ′Y ′‖NXY ) ≥ − E
(x,y)←X′,Y ′

[
S
(
M ′

xy

∥∥Nxy

)]
= E

(m,x,y)←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]

]
(6.3)

=
∑

(m,x,y)∈G1

(
Pr[M ′ = m,X ′ = x, Y ′ = y] · log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]

)
+

∑
(m,x,y)/∈G1

(
Pr[M ′ = m,X ′ = x, Y ′ = y] · log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]

)
≥

∑
(m,x,y)∈G1

(
Pr[M ′ = m,X ′ = x, Y ′ = y] · log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]

)
+ Pr[(M ′, X ′, Y ′) /∈ G1] · ε+ 1

ε′
(6.4)

=
∑

(m,x,y)/∈G1

(
Pr[M ′ = m,X ′ = x, Y ′ = y] · log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[N = m|X ′ = x, Y ′ = y]

)
− S(M ′X ′Y ′‖NX ′Y ′) + Pr[(M ′, X ′, Y ′) /∈ G1] · ε+ 1

ε′
(6.5)

≥ −1− ε+ Pr[(M ′, X ′, Y ′) /∈ G1] · ε+ 1

ε′
. (6.6)
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Above, Eq. (6.3) and Eq. (6.5) follow from the definition of the relative entropy, and

Eq. (6.4) follows from the definition of G1. To get Eq. (6.6), we use Fact 5.1.6 and

Eq. (6.2). Eq. (6.6) implies that Pr[(M ′, X ′, Y ′) /∈ G1] ≤ ε′.

Applying Markov inequality to the condition I(M ′ : X ′ |Y ′) ≤ c, we can get the following

claim.

Claim 6.2.6. Pr(m,x,y)←M ′,X′,Y ′
[
log Pr[M ′=m|X′=x,Y ′=y]

Pr[M ′=m|Y ′=y]
< c+1

ε′

]
≥ 1− ε′.

Proof. Let us define

G2
def
=

{
(m,x, y) : log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]
<
c+ 1

ε′

}
.

Consider,

c ≥ I(M ′ : X ′ |Y ′) (6.7)

= E
(m,x,y)←M ′,X′,Y ′

[
log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]

]
(6.8)

=
∑

(m,x,y)∈G2

(
Pr[M ′ = m,X ′ = x, Y ′ = y] · log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]

)
+

∑
(m,x,y)6∈G2

(
Pr[M ′ = m,X ′ = x, Y ′ = y] · log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]

)
≥ c+ 1

ε′
· Pr[(M ′, X ′, Y ′) /∈ G2]− 1. (6.9)

Above Eq. (6.7) is one of the assumptions in the lemma; Eq. (6.8) follows from the

definition of the conditional mutual information; Eq. (6.9) follows from the definition of

G2 and Fact 5.1.6. Eq. (6.9) implies that Pr[(M ′, X ′, Y ′) /∈ G2] ≤ ε′.

Applying Markov inequality to (6.2), we have the following claim.

Claim 6.2.7. Pr(m,x,y)←M ′,X′,Y ′
[
log Pr[M ′=m,Y ′=y]

Pr[N=m,Y ′=y]
< ε+1

ε′

]
≥ 1− ε′.

Proof. Define

G3
def
=

{
(m,x, y) : log

Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]
<
ε+ 1

ε′

}
.
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Consider,

ε ≥ S(X ′Y ′M ′‖X ′Y ′N)

≥ S(Y ′M ′‖Y ′N) (6.10)

= E
(m,x,y)←M ′,X′,Y ′

[
log

Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]

]
=

∑
(m,x,y)∈G3

(
Pr[M ′ = m,X ′ = x, Y ′ = y] · log

Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]

)
+

∑
(m,x,y) 6∈G3

(
Pr[M ′ = m,X ′ = x, Y ′ = y] · log

Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]

)
≥ −1 + Pr[(M ′, X ′, Y ′) /∈ G3] · ε+ 1

ε′
. (6.11)

Above Eq. (6.10) follows from Fact 5.1.7 and Eq. (6.11) follows from definition of G3.

This implies Pr[(M ′, X ′, Y ′) /∈ G3] ≤ ε′.

With those claims above we can prove Claim 6.2.4.

Proof of Claim 6.2.4:.

log
Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
= log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[N = m|Y ′ = y]

= log
Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]
+ log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]

+ log
Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]
. (6.12)

From union bound and above we get (recall 1 > ε > 0),

Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]

= Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]

≤ Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]
≥ ε+ 1

ε′

]

+ Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]
≥ c+ 1

ε′

]
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+ Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]
≥ ε+ 1

ε′

]
. (6.13)

By Claim 6.2.5, 6.2.6 and 6.2.7, each term is bounded from above by ε′. Combining the

bounds for the three terms we get

Pr
(m,x,y)←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]
≤ 3ε′.

Using ‖X ′Y ′M ′ −X ′Y ′N‖1 ≤
√
ε (as was shown previously), we finally have,

Pr
(m,x,y)←N,X′,Y ′

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]
≤ 3ε′ +

√
ε.

The following lemma generalizes the lemma above to deal with multiple messages, as

needed for our purposes.

Lemma 6.2.8. Let t ≥ 1 be an integer. Let ε′ > 0, cs ≥ 0, 1 > εs > 0 for each

1 ≤ s ≤ t. Let R′, X ′, Y ′,M ′
1, . . . ,M

′
t, be random variables for which the following holds

(below M ′
<s

def
= M ′

1 · · ·M ′
s−1),

I(X ′ : M ′
s |Y ′R′M ′

<s) ≤ cs, I(Y ′ : M ′
s |X ′R′M ′

<s) ≤ εs, (6.14)

for odd s, and

I(Y ′ : M ′
s |X ′R′M ′

<s) ≤ cs, I(X ′ : M ′
s |Y ′R′M ′

<s) ≤ εs,

for even s.

There exists a public-coin t-message protocol Pt between Alice, with input X ′R′, and

Bob, with input Y ′R′, with Alice sending the first message. The total communication of Pt

is
∑t
s=1 cs+5t

ε′
+O

(
t log 1

ε′

)
, and at end of the protocol, both Alice and Bob possess random

variables M1, . . . ,Mt, satisfying: ‖R′X ′Y ′M1 · · ·Mt−R′X ′Y ′M ′
1 · · ·M ′

t‖1 ≤ 3
∑t

s=1

√
εs+

6ε′t.

Proof. We prove the lemma by induction on t. For the base case t = 1, note that

I(X ′R′ : M ′
1 |Y ′R′) = I(X ′ : M ′

1 |Y ′R′) ≤ c1
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and

I(Y ′R′ : M ′
1 |X ′R′) = I(Y ′ : M ′

1 |X ′R′) ≤ ε1.

Lemma 6.2.3 implies (by taking X ′, Y,′M ′ in Lemma 6.2.3 to be X ′R′, Y ′R′,M ′
1 respec-

tively) that Alice, with input X ′R′, and Bob, with input Y ′R′, can run a public-coin

protocol with a single message from Alice to Bob of

c1 + 5

ε′
+ O(log

1

ε′
)

bits and generate a new random variable M1 satisfying

‖R′X ′Y ′M ′
1 −R′X ′Y ′M1‖1 ≤ 3

√
ε1 + 6ε′.

Now let t > 1. Assume t is odd, for even t a similar argument follows. From the induction

hypothesis there exists a public-coin t − 1 message protocol Pt−1 between Alice, with

input X ′R′, and Bob, with input Y ′R′, with Alice sending the first message, and total

communication ∑t−1
s=1 cs + 5(t− 1)

ε′
+ O

(
(t− 1) log

1

ε′

)
, (6.15)

such that at the end both Alice and Bob possess random variables M1, . . . ,Mt−1 satisfying

‖R′X ′Y ′M1 · · ·Mt−1 −R′X ′Y ′M ′
1 · · ·M ′

t−1‖1 ≤ 3
t−1∑
s=1

√
εs + 6ε′(t− 1). (6.16)

Note that

I(Y ′R′M ′
<t : M ′

t |X ′R′M ′
<t) = I(Y ′ : M ′

t |X ′R′M ′
<t) ≤ ct

and

I(X ′R′M ′
<t : M ′

t |Y ′R′M ′
<t) = I(X ′ : M ′

t |Y ′R′M ′
<t) ≤ εt.

Therefore Lemma 6.2.3 implies (by takingX ′, Y,′M ′ in Lemma 6.2.3 to beX ′R′M ′
<t, Y

′R′M ′
<t,M

′
t

respectively) that Alice, with input X ′R′M ′
<t, and Bob, with input Y ′R′M ′

<t, can run a

public coin protocol P with a single message from Alice to Bob of

ct + 5

ε′
+ O

(
log

1

ε′

)
(6.17)

54



bits and generate a new random variable M ′′
t satisfying

∥∥R′X ′Y ′M ′
1 · · ·M ′

t−1M
′
t −R′X ′Y ′M ′

1 · · ·M ′
t−1M

′′
t

∥∥
1
≤ 3
√
εt + 6ε′. (6.18)

Fact 5.1.8 and Eq. (6.16) imply that Alice, on input X ′R′M<t and Bob on input Y ′R′M<t,

on running the same protocol P will generate a new random variable Mt satisfying

‖R′X ′Y ′M1 · · ·Mt−1Mt −R′X ′Y ′M ′
1 · · ·M ′

t−1M
′′
t ‖1

= ‖R′X ′Y ′M1 · · ·Mt−1 −R′X ′Y ′M ′
1 · · ·M ′

t−1‖1

≤ 3
t−1∑
s=1

√
εs + 6ε′(t− 1). (6.19)

Therefore by composing protocol Pt−1 and protocol P, using Equations (6.15), (6.17),

(6.18), (6.19) and the triangle inequality for the `1 norm, we get a public-coin t-message

protocol Pt between Alice, with input X ′R′, and Bob, with input Y ′R′, with Alice sending

the first message, and total communication∑t
s=1 cs + 5t

ε′
+ O

(
t log

1

ε′

)
,

such that at the end Alice and Bob both possess random variables M1, . . . ,Mt satisfying

‖R′X ′Y ′M1 · · ·Mt −R′X ′Y ′M ′
1 · · ·M ′

t‖1 ≤ 3
t∑

s=1

√
εs + 6ε′t.

In the lemma above, Alice and Bob shared an input R′ (potentially correlated with

X ′Y ′). Eventually we need Alice and Bob to generate this shared part themselves using

correlated sampling. The following lemma, obtained from the lemma above, is the one

that we finally use in the proof of our main result.

Lemma 6.2.9. Let random variables R′, X ′, Y ′,M ′
1, . . . ,M

′
t and numbers ε′, cs, εs sat-

isfy all the conditions in Lemma 6.2.8. Let τ > 0 and let random variables (X, Y ) be

(1− τ)-embeddable in (X ′R′, Y ′R′). There exists a public-coin t-message protocol Qt be-

tween Alice, with input X, and Bob, with input Y , with Alice sending the first message,

and total communication
∑t
s=1 cs+5t

ε′
+ O

(
t log 1

ε′

)
bits, such that at the end Alice pos-

sesses RAM1 · · ·Mt and Bob possesses RBM1 · · ·Mt, such that: ‖XY RARBM1 · · ·Mt −
X ′Y ′R′R′M ′

1 · · ·M ′
t‖1 ≤ τ + 3

∑t
s=1

√
εs + 6ε′t.

Proof. In Qt, Alice and Bob, using public coins and no communication first generate
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RA, RB such that ‖XY RARB −X ′Y ′R′R′‖1 ≤ τ . They can do this from the Definition

5.1.11 of embedding. Now they will run protocol Pt (as in Lemma 6.2.8) with Alice’s input

being XRA and Bob’s input being Y RB and at the end both possess M1, . . . ,Mt. From

Lemma 6.2.8, the communication of Qt is as desired. Now from Fact 5.1.8, Lemma 6.2.8

and the triangle inequality for the `1 norm,

‖XY RARBM1 · · ·Mt −X ′Y ′R′R′M ′
1 · · ·M ′

t‖1 ≤ τ + 3
t∑

s=1

√
εs + 6ε′t.

We are now ready to prove our main result, Theorem 6.1.1. We restate it here for

convenience.

Theorem 6.2.10. Let X, Y, Z be finite sets, f ⊆ X×Y×Z a relation, ε > 0 and k, t ≥ 1

be integers. There exists a constant κ ≥ 0 such that,

R
(t),pub

1−(1−ε/2)Ω(kε2/t2)
(fk) = Ω

(
ε · k
t
·
(

R(t),pub
ε (f)− κt2

ε

))
.

Proof of Theorem 6.1.1: Let δ
def
= ε2

7500t2
and δ1 = ε

3000t
. From Yao’s principle,

Lemma 5.2.2, it suffices to prove that for any distribution µ on X×Y, D
(t),µk

1−(1−ε/2)bδkc
(fk) ≥

δ1kc , where c
def
= D

(t),µ
ε (f)− κt2

ε
, for constant κ to be chosen later. Let XY ∼ µk. Let Q

be a t-message deterministic protocol between Alice, with input X, and Bob, with input

Y , that computes fk, with Alice sending the first message and total communication δ1kc

bits. We assume t is odd for the rest of the argument and Bob makes the final output

(the case when t is even follows similarly). The following Claim 6.2.11 implies that the

success of Q is at most (1− ε/2)bδkc and this shows the desired.

Claim 6.2.11. For each i ∈ [k], define a binary random variable Ti ∈ {0, 1}, which

represents the success of Q (that is Bob’s output being correct) on the i-th instance.

That is, Ti = 1 if the protocol Q computes the i-th instance of f correctly, and Ti = 0

otherwise. Let k′
def
= bδkc. There exist k′ coordinates {i1, . . . , ik′} such that for each

1 ≤ r ≤ k′ − 1,

either Pr
[
T (r) = 1

]
≤ (1− ε/2)k

′
or

Pr
[
Tir+1 = 1

∣∣T (r) = 1
]
≤ 1− ε/2,

where T (r) def
=

r∏
j=1

Tij .
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Proof of Claim 6.2.11: For s ∈ [t], denote the s-th message of Q by Ms. Define

M
def
= M1 · · ·Mt. In the following we assume 1 ≤ r < k′, however same arguments also

work when r = 0, that is for identifying the first coordinate, which we skip for the sake of

avoiding repetition. Suppose we have already identified r coordinates i1, . . . , ir satisfying

that Pr[Ti1 = 1] ≤ 1 − ε/2 and Pr[Tij+1
= 1|T (j) = 1] ≤ 1 − ε/2 for 1 ≤ j ≤ r − 1.

If Pr
[
T (r) = 1

]
≤ (1 − ε/2)k

′
, we are done. So from now on, assume Pr

[
T (r) = 1

]
>

(1− ε/2)k
′ ≥ 2−δk.

Let D be a random variable uniformly distributed in {0, 1}k and independent of XY .

Let Ui = Xi if Di = 0, and Ui = Yi if Di = 1. For any random variable L, let us introduce

the notation: L1 def
= (L|T (r) = 1). For example, X1Y 1 = (XY |T (r) = 1). If L = L1 · · ·Lk,

define L−i
def
= L1 · · ·Li−1Li+1 · · ·Lk, and L<i

def
= L1 · · ·Li−1. Random variable L≤i is

defined analogously. Let C
def
= {i1, . . . , ir}. Define Ri

def
= D−iU−iXC∪[i−1]YC∪[i−1] for

i ∈ [k]. We denote an element from the range of Ri by ri.
1

To prove the claim, we show that there exists a coordinate j 6∈ C such that,

1. (XjYj) can be embedded well in (X1
jR

1
j , Y

1
j R

1
j ) (with appropriate parameters as

required in Lemma 5.1.13.)

2. Random variables R1
j , X

1
j , Y

1
j ,M

1
1 , . . . ,M

1
t satisfy the conditions of Lemma 6.2.8

with appropriate parameters.

Applying Markov inequality to Claim 6.2.12, we can get a coordinate j /∈ C such that

S
(
X1
j Y

1
j

∥∥XjYj
)
≤ 12δ, (6.20)

E
(rj ,xj)←R1

j ,X
1
j

[
S
((
Y 1
j

)
rj ,xj

∥∥∥(Yj)xj

)]
≤ 12δ, (6.21)

E
(rj ,yj)←R1

j ,Y
1
j

[
S
((
X1
j

)
rj ,yj

∥∥∥(Xj)yj

)]
≤ 12δ, (6.22)∑

s odd

I
(
X1
j : M1

s

∣∣R1
jY

1
j M

1
<s

)
+
∑
s even

I
(
Y 1
j : M1

s

∣∣R1
jX

1
jM

1
<s

)
≤ 12δ1c, (6.23)

1We justify here the composition of Ri. Random variables D−iU−i are useful since conditioning on
them makes the distribution of inputs product across Alice and Bob (for fixed values of XiYi) and is
helpful in our arguments later. Random variables XCYC are helpful since conditioning on them ensures
that the inputs become product even conditioned on success on C. Random variables X[i−1]Y[i−1] are
helpful since the following chain rule is used to draw a new coordinate outside C with low information
content:

I(XY : M) =
∑
i

I
(
XiYi : M

∣∣X[i−1]Y[i−1]
)
.
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∑
s odd

I
(
Y 1
j : M1

s

∣∣R1
jX

1
jM

1
<s

)
+
∑
s even

I
(
X1
j : M1

s

∣∣R1
jY

1
j M

1
<s

)
≤ 12δt. (6.24)

Set ε′
def
= ε

125t
, and

εs
def
=

I
(
Y 1
j : M1

s

∣∣R1
jX

1
jM

1
<s

)
s ∈ [t] odd,

I
(
X1
j : M1

s

∣∣R1
jY

1
j M

1
<s

)
s ∈ [t] even.

;

cs
def
=

I
(
Y 1
j : M1

s

∣∣R1
jX

1
jM

1
<s

)
s ∈ [t] even,

I
(
X1
j : M1

s

∣∣R1
jY

1
j M

1
<s

)
s ∈ [t] odd.

By (6.24),
∑t

s=1

√
εs ≤

√
12δt. From Equations (6.20)(6.21)(6.22) and Lemma 5.1.13 we

can infer that (XjYj) is (1− 10
√

3δ)-embeddable in (X1
jR

1
j ;Y

1
j R

1
j ). This, combined with

Equations (6.23)(6.24) and Lemma 6.2.9 (take ε′, εs, cs in the lemma to be as defined

above and take XYX ′Y ′R′M ′
1 · · ·M ′

t in the lemma to be XjYjX
1
j Y

1
j R

1
jM

1
1 · · ·M1

t ) imply

the following (for appropriate constant κ). There exists a public-coin t-message protocol

Q1 between Alice, with input Xj, and Bob, with input Yj, with Alice sending the first

message and total communication, 12δ1c+5t
ε′

+ O(t log 1
ε′

) < D
(t),µ
ε (f), such that at the end

Alice possesses RAM1 · · ·Mt and Bob possesses RBM1 · · ·Mt, satisfying

∥∥XjYjRARBM1 · · ·Mt −X1
j Y

1
j R

1
jR

1
jM

1
1 · · ·M1

t

∥∥
1
≤ 10

√
3δ + 3

√
12δt+ 6ε′t < ε/2.

Assume for contradiction that Pr
[
Tj = 1

∣∣T (r) = 1
]
> 1 − ε/2. Consider a protocol Q2

(with no communication) for f between Alice, with input X1
jR

1
jM

1
1 · · ·M1

t , and Bob,

with input Y 1
j R

1
jM

1
1 · · ·M1

t , as follows. Bob generates the rest of the random variables

present in Y 1 (not present in his input) himself since, conditioned on his input, those

other random variables are independent of Alice’s input (here we use Fact 5.2.3). Bob

then generates the output for the j-th coordinate in Q, and makes it the output of Q2.

This ensures that the success probability of Bob in Q2 is Pr
[
Tj = 1

∣∣T (r) = 1
]
> 1− ε/2.

Now consider protocol Q3 for f , with Alice’s input Xj and Bob’s input Yj, which is a

composition of Q1 followed by Q2. This ensures, using Fact 5.1.8, that success probability

of Bob (averaged over public coins and the inputs XjYj) in Q3 is larger than 1−ε. Finally

by fixing the public coins of Q3, we get a deterministic protocol Q4 for f with Alice’s input

Xj and Bob’s input Yj such that the communication of Q4 is less than D
(t),µ
ε (f) and Bob’s

success probability (averaged over the inputs XjYj) in Q4 is larger than 1 − ε. This is

a contradiction to the definition of D
(t),µ
ε (f) (recall that XjYj are distributed according
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to µ). Hence it must be that Pr
[
Tj = 1

∣∣T (r) = 1
]
≤ 1 − ε/2. The claim now follows by

setting ir+1 = j.

Claim 6.2.12. It holds that

1.
∑

i/∈C S(X1
i Y

1
i ‖XiYi) < δk.

2. 1
2

∑
i/∈C E(ri,xi)←R1

i ,X
1
i

[
S
(

(Y 1
i )ri,xi

∥∥∥(Yi)xi

)]
+1

2

∑
i/∈C E(ri,yi)←R1

i ,Y
1
i

[
S
(

(X1
i )ri,yi

∥∥∥(Xi)yi

)]
<

δk

3. 1
2

∑
i/∈C
(∑

s odd I(X1
i : M1

s |R1
iY

1
i M

1
<s) +

∑
seven I(Y 1

i : M1
s |R1

iX
1
iM

1
<s)
)
< δk.

4.
∑

i/∈C
(∑

s odd I(Y 1
i : M1

s |R1
iX

1
iM

1
<s) +

∑
s even I(X1

i : M1
s |R1

iY
1
i M

1
<s)
)
≤ 2δkt.

Proof. 1.

δk > S∞
(
X1Y 1

∥∥XY ) ≥ S
(
X1Y 1

∥∥XY ) ≥∑
i/∈C

S
(
X1
i Y

1
i

∥∥XiYi
)
, (6.25)

where first inequality follows from the assumption that Pr
[
T (r) = 1

]
> 2−δk, and

the last inequality follows from Fact 5.1.3. The following calculations are helpful

for achieving conditions (5.2) and (5.3) of Lemma 5.1.13.

2.

δk > S∞
(
X1Y 1D1U1

∥∥XYDU)
≥ S

(
X1Y 1D1U1

∥∥XYDU)
≥ E

(d,u,xC ,yC)
←D1,U1,X1

C ,Y
1
C

[
S
((
X1Y 1

)
d,u,xC ,yC

∥∥∥(XY )d,u,xC ,yC

)]
(6.26)

=
∑
i/∈C

E
(d,u,xC∪[i−1],yC∪[i−1])

←D1,U1,X1
C∪[i−1]

,Y 1
C∪[i−1]

[
S

((
X1
i Y

1
i

)
d,u,xC∪[i−1],
yC∪[i−1]

∥∥∥∥(XiYi)d,u,xC∪[i−1],
yC∪[i−1]

)]
(6.27)

=
∑
i/∈C

E
(di,ui,ri)
←D1

i ,U
1
i ,R

1
i

[
S
(
(X1

i Y
1
i )di,ui,ri

∥∥(XiYi)di,ui,ri
)]

(6.28)

=
1

2

∑
i/∈C

E
(ri,xi)←R1

i ,X
1
i

[
S
((
Y 1
i

)
ri,xi

∥∥∥(Yi)xi

)]
+

1

2

∑
i/∈C

E
(ri,yi)←R1

i ,Y
1
i

[
S
((
X1
i

)
ri,yi

∥∥∥(Xi)yi

)]
.

(6.29)
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Above, Eq. (6.26) and Eq. (6.27) follow from Fact 5.1.3; Eq. (6.28) is from the def-

inition of Ri. Eq. (6.29) follows since D1
i is independent of R1

i and with probability

half D1
i is 0, in which case U1

i = X1
i and with probability half D1

i is 1 in which case

U1
i = Y 1

i .

3.

δ1ck ≥
∣∣M1

∣∣ ≥ I
(
X1Y 1 : M1

∣∣D1U1X1
CY

1
C

)
=
∑
i/∈C

I
(
X1
i Y

1
i : M1

∣∣D1U1X1
C∪[i−1]Y

1
C∪[i−1]

)
=
∑
i/∈C

t∑
s=1

I
(
X1
i Y

1
i : M1

s

∣∣D1U1X1
C∪[i−1]Y

1
C∪[i−1]M

1
<s

)
=
∑
i/∈C

t∑
s=1

I
(
X1
i Y

1
i : M1

s

∣∣D1
iU

1
i R

1
iM

1
<s

)
=
∑
i/∈C

((∑
s odd

+
∑
s even

)
I
(
X1
i Y

1
i : M1

s

∣∣D1
iU

1
i R

1
iM

1
<s

))

≥ 1

2

∑
i/∈C

( ∑
s odd

I
(
X1
i : M1

s

∣∣R1
iY

1
i M

1
<s

)
+
∑
seven

I
(
Y 1
i : M1

s

∣∣R1
iX

1
iM

1
<s

) )
. (6.30)

Above we have used the chain rule for mutual information several times. Last

inequality follows since D1
i is independent of (X1

i Y
1
i R

1
iM

1) and with probability

half D1
i is 0, in which case U1

i = X1
i and with probability half D1

i is 1 in which case

U1
i = Y 1

i .

4.

δk ≥ S∞
(
D1U1X1Y 1M1

≤s
∥∥DUXYM≤s)

≥ S
(
D1U1X1Y 1M1

≤s
∥∥DUXYM≤s)

≥ E(d,u,xC ,yC ,m≤s)←D1,U1,X1
C ,Y

1
C ,M

1
≤s

[
S
(
(X1Y 1)d,u,xC ,yC ,m≤s

∥∥(XY )d,u,xC ,yC ,m≤s
)]

=
∑
i/∈C

E
(d,u,xC∪[i−1],yC∪[i−1],m≤s)

←D1,U1,X1
C∪[i−1]

,Y 1
C∪[i−1]

,M1
≤s

[
S

(
(X1

i Y
1
i ) d,u,xC∪[i−1],

yC∪[i−1],m≤s

∥∥∥∥(XiYi) d,u,xC∪[i−1],
yC∪[i−1],m≤s

)]
=
∑
i/∈C

E
(di,ui,ri,m≤s)

←D1
i ,U

1
i ,R

1
i ,M

1
≤s

[
S
(
(X1

i Y
1
i )di,ui,ri,m≤s

∥∥(XiYi)di,ui,ri,m≤s
) ]

(6.31)
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≥ 1

2

∑
i/∈C

E
(xi,ri,m≤s)

←X1
i ,R

1
i ,M

1
≤s

[
S
(
(Y 1

i )xi,ri,m≤s
∥∥(Yi)xi,ri,m≤s

)]
=

1

2

∑
i/∈C

E
(xi,ri,m≤s)

←X1
i ,R

1
i ,M

1
≤s

[
S
(
(Y 1

i )xi,ri,m≤s
∥∥(Yi)xi,ri,m<s

)]
(6.32)

=
1

2

∑
i/∈C

E(xi,ri,m<s)←X1
i ,R

1
i ,M

1
<s

[
S
(
(Y 1

i M
1
s )xi,ri,m<s

∥∥(Yi)xi,ri,m<s ⊗ (M1
s )xi,ri,m<s

) ]
≥ 1

2

∑
i/∈C

E
(xi,ri,m<s)
←X1

i ,R
1
i ,M

1
<s

[
I
(
(Y 1

i )xi,ri,m<s : (M1
s )xi,ri,m<s

)]
(6.33)

=
1

2

∑
i/∈C

I
(
Y 1
i : M1

s

∣∣X1
i R

1
iM

1
<s

)
. (6.34)

Above we have used Fact 5.1.3 several times. Eq. (6.31) follows from the definition

of Ri; Eq. (6.32) follows from the fact that Y ↔ XiRiM<s ↔Ms for any i, whenever

s is odd; Eq. (6.33) follows from Fact 5.1.4. From a symmetric argument, we can

show that when s ∈ [t] is even, 1
2

∑
i/∈C I (X1

i : M1
s |Y 1

i R
1
iM

1
<s) ≤ δk. This and

Eq. (6.34) together imply∑
i/∈C

( ∑
s odd

I
(
Y 1
i : M1

s

∣∣R1
iX

1
iM

1
<s

)
+
∑
s even

I
(
X1
i : M1

s

∣∣R1
iY

1
i M

1
<s

) )
≤ 2δkt. (6.35)
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Chapter 7

A strong direct product theorem in

terms of the smooth rectangle bound

7.1 Introduction

In this chapter, we investigate direct product problems for the model two-way public-coin

communication (Please refer to Section 5.2). We assume that the last dlog |Z|e bits of

the transcript of a protocol is the output. For most of interesting functions (relations),

the lengths of the outputs are much smaller than the communication cost in this model.

7.1.1 Result

In this chapter, we show a strong direct product theorem in terms of the smooth rectangle

bound (please refer to Definition 5.2.4). Using the notations introduced in Section 5.2,

we show that

Theorem 7.1.1. Let X,Y,Z be finite sets, f ⊆ X × Y × Z be a relation. Let µ be a

distribution on X× Y. Let z ∈ Z and β
def
= Pr(x,y)←µ [f(x, y) = {z}]. Let ε′, δ > 0. There

exists a small enough ε > 0 such that the following holds. For all integers t ≥ 1,

Rpub

1−(1−ε)bε2t/32c(f
t) ≥ ε2

32
· t ·
(

11ε · s̃recz,µ(1+ε′)δ/β,δ (f)− 2
)
.

Our result implies a strong direct product theorem for all relations for which an

(asymptotically) optimal lower bound can be provided using the smooth rectangle bound.

Combining Theorem 7.1.1 with Lemma 5.2.6, we get the following result.
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Theorem 7.1.2. Let f : X × Y → Z be a (partial) function. For every ε ∈ (0, 1), there

exists small enough η ∈ (0, 1/3) such that the following holds. For all integers t ≥ 1,

Rpub

1−(1−η)bη2t/32c(f
(t)) ≥ η2

32
· t ·
(

11η · log srecε(f)− 3 log
1

ε
− 2

)
.

As a consequence, our results reprove some of the known strong direct product re-

sults, for example for Inner Product [49] and Set-Disjointness [25; 46]. Recently smooth

rectangle bound has been used to provide new tight lower bounds for several functions,

for example for the Gap-Hamming Distance [17; 68] partial function and the Greater-Than

function [70]. These results, along with our result, imply strong direct product for these

functions. Smooth rectangle bound has also been used to provide near optimal lower

bounds for several important functions and relations used to show exponential separa-

tions between classical and quantum communication complexity for example Vector in

Subspace by Raz [62] and Klartag and Regev [65], and Hidden Matching by Gavinsky [21].

These results combined with our result imply near optimal strong direct product results

for these functions and relations.

In a recent work, Harsha and Jain [22] have shown that the smooth-rectangle bound

provides an optimal lower bound of Ω(n) for the Tribes function. For this function all

other weaker lower bound methods mentioned before like the rectangle bound, the sub-

distribution bound, the smooth discrepancy bound, the conditional min-entropy bound

etc. fail to provide an optimal lower bound since they are all O(
√
n). Earlier Jayram,

Kumar and Sivakumar [7] had shown a lower bound of Ω(n) using information complexity.

The result of [22] along with Theorem 7.1.2 implies a strong direct product result for the

Tribes function. This adds to the growing list of functions for which a strong direct

product result can be shown via Theorem 7.1.2.

In [43], Kerenidis et. al. introduced the relaxed partition bound (a weaker version of

the partition bound [28]) and showed it to be stronger than the smooth rectangle bound.

For boolean functions, or more generally for the functions with constant-size output, the

smooth rectangle bound and the relaxed partition bound are in-fact equivalent, which

can be checked by by comparing the corresponding linear-programs. Thus our result

also implies a strong direct product theorem in terms of the relaxed partition bound for

boolean functions (and more generally when the size of output set is a constant).
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7.1.2 Our techniques

The broad argument of the proof is similar to the one in Chapter 6. We show our

result in the distributional error setting and translate it to the worst case error setting

using Yao’s principle Fact 5.2.1. Let f be a relation, µ be a distribution on X × Y,

and c be the smooth rectangle bound of f under the distribution µ with output z ∈ Z.

Consider a protocol Π which computes fk with inputs drawn from distribution µk and

communication o(c · k) bits. Let C be a subset of the coordinates {1, 2, . . . , k}. If the

probability that Π computes all the instances in C correctly is as small as desired, then

we are done. Otherwise, we exhibit a new coordinate j /∈ C, such that the probability,

conditioned on success in C, of the protocol Π answering correctly in the j-th coordinate

is bounded away from 1. Same as proving Theorem 6.1.1, we introduce a new random

variable Rj, such that conditioned on it and XjYj (input in the jth coordinate), Alice

and Bob’s inputs in the other coordinates become independent when the distribution of

the input µ is non-product. Let the random variables X1
j Y

1
j R

1
jM

1 represent the inputs in

the jth coordinate, the new variable Rj and the message transcript of Π, conditioned on

the success on C. The first useful property that we observe is that the joint distribution

of X1
j Y

1
j R

1
jM

1 can be written as,

Pr
[
X1
j Y

1
j R

1
jM

1 = xyrjm
]

=
1

q
µ(x, y)ux(rj,m)uy(rj,m),

where ux, uy are functions and q is a positive real number. The marginal distribution of

X1
j Y

1
j is no longer µ though. However using the same arguments as in [25] and in the

previous chapter, one can show that the distribution of X1
j Y

1
j is close, in `1 distance, to

µ and I
(
X1
j : R1

jM
1
∣∣Y 1

j

)
+ I
(
Y 1
j : R1

jM
1
∣∣X1

j

)
≤ o(c), where I(:) represents the mutual

information (please refer to Section 5.1 for precise definitions) .

Now, assume for contradiction that the success in the jth coordinate in Π is large,

like 0.99, conditioned on success in C. Using the conditions obtained in the previous

paragraph, we argue that there exists a zero-communication public-coin protocol Π′,

between Alice and Bob, with inputs drawn from µ. In Π′ Alice and Bob are allowed to

abort the protocol or output an element in Z. We show that the probability of non-abort

for this protocol is large, like 2−c, and conditioned on non-abort, the probability that

Alice and Bob output a correct answer for their inputs is also large, like 0.99. This allows

us to exhibit (by fixing the public coins of Π′ appropriately), a large rectangle (with

weight under µ like 2−c) such that z is a correct answer for a large fraction (like 0.99)

of the inputs inside the rectangle. This shows that the rectangle bound of f , under µ
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with output z, is smaller than c. With careful analysis we are also able to show that

the smooth rectangle bound of f under µ, with output z, is smaller than c, reaching a

contradiction to the definition of c.

The sampling protocol that we use to obtain the public-coin zero-communication

protocol, is the same as that in Kerenidis et al. [43], which in turn is a modification of

a protocol due to Braverman [12]1 (a variation of which also appears in [16]). However

our analysis of the protocol’s correctness deviates significantly in parts from the earlier

works [12; 16; 43] due to the fact that for us the marginal distribution of X1Y 1 need not

be the same as that of µ, in fact for some inputs (x, y), the probability under the two

distributions can be significantly different.

There is another important original contribution of our work, not present in the

previous works [12; 16; 43]. We observe a crucial property of the protocol Π′ which turns

out to be very important in our arguments. The property is that the bad inputs (x, y) for

which the distribution of Π′’s sample for R1
jM

1, conditioned on non-abort, deviates a lot

from the desired R1
jM

1| (X1Y 1 = xy), their probability is nicely reduced (as compared to

Pr[X1Y 1 = xy]) in the final distribution of Π′, conditioned on non-abort. This helps us to

argue that the distribution of inputs and outputs in Π′, conditioned on non-abort, is close

in `1 distance to X1
j Y

1
j R

1
jM

1, implying good success in Π′, conditioned on non-abort.

7.2 Proof

The following lemma builds a connection between the zero-communication protocols and

the smooth rectangle bound.

Lemma 7.2.1. Let f ⊆ X × Y × Z, X ′Y ′ ∈ X × Y be a distribution and z ∈ Z. Let

β
def
= Pr(x,y)←X′Y ′[f(x, y) = {z}]. Let c ≥ 1. Let ε, ε′, δ > 0 be such that (δ+2ε)/(β−3ε) <

(1 + ε′)δ/β. Let Π be a zero-communication public-coin protocol with input X ′Y ′, public

coin R, Alice’s output A ∈ Z∪{⊥}, and Bob’s output B ∈ Z∪{⊥}. Let X1Y 1A1B1R1 def
=

(X ′Y ′ABR| A = B 6= ⊥). Let

1. Pr[A = B 6= ⊥] ≥ 2−c ; 2. ‖X1Y 1 −X ′Y ′‖ ≤ ε.

3. Pr[(X1, Y 1, A1) ∈ f ] ≥ 1− ε.

Then s̃recz,X
′Y ′

(1+ε′)δ/β,δ (f) < c
ε
.

1A protocol, achieving similar task, however working only for product distributions on inputs was
first shown by Jain, Radhakrishnan and Sen [35].
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Proof. Let g ⊆ X × Y × Z, satisfy Pr(x,y)←X′Y ′ [f(x, y) 6= g(x, y)] ≤ δ. It suffices to show

that r̃ecz,X
′Y ′

(1+ε′)δ/β (g) ≤ c
ε
. Since Pr[A = B 6= ⊥] ≥ 2−c,

c ≥ S∞
(
X1Y 1R1A1B1

∥∥X ′Y ′RAB)
≥ S

(
X1Y 1R1A1B1

∥∥X ′Y ′RAB)
≥ E

r←R1,a←A1

[
S
(
(X1Y 1)r,a

∥∥X ′Y ′)] (from Fact 5.1.3). (7.1)

Since ‖X1Y 1 −X ′Y ′‖ ≤ ε,

Pr
xyr←X1Y 1R1

[f(x, y) = {z}] ≥ Pr
xy←X′Y ′

[f(x, y) = {z}]− ε ≥ β − ε. (7.2)

Since Pr[(X1, Y 1, A1) ∈ f ] ≥ 1− ε, we have Pr[A1 = B1 = z] ≥ β − 2ε. Since

Pr
(x,y)←X′Y ′

[f(x, y) 6= g(x, y)] ≤ δ,

by item 2 of this lemma, we have

Pr
xyra←X1Y 1R1A1

[(x, y, a) ∈ g] ≥ Pr
xyra←X1Y 1R1A1

[(x, y, a) ∈ f ]− δ − ε ≥ 1− 2ε− δ. (7.3)

By standard application of Markov’s inequality on equations (7.1), (7.2), (7.3), we get an

r0, such that

S
(
(X1Y 1)r0,z

∥∥X ′Y ′) ≤ c

ε
,

Pr
xy←(X1Y 1)r0,z

[z /∈ g(x, y)] ≤ (δ + 2ε)/(β − 3ε) ≤ (1 + ε′)δ/β.

Here, (X1Y 1)r0,z = (X1Y 1|(R1 = r0, A
1 = z). Note that the distribution of (X1Y 1)r0,z

is the distribution of X ′Y ′ restricted to some rectangle and then rescaled to make a

distribution. Hence

S
(
(X1Y 1)r0,z

∥∥X ′Y ′) = S∞
(
(X1Y 1)r0,z

∥∥X ′Y ′) .
Thus r̃ecz,X

′Y ′

(1+ε′)δ/β (g) < c
ε
.

The following is our main lemma. A key tool that we use here is a sampling protocol

that appears in [43] (protocol Π′ as shown in Figure 7.1), which is a variant of a sampling

protocol that appears in [16], which in turn is a variant of a sampling protocol that
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appears in [12]. Naturally similar arguments and calculations, as in this lemma, are

made in previous works [12; 16; 43], however with a key difference. In their setting∑
m ux(m)uy(m) = 1 for all (x, y). However in our setting this number could be much

smaller than one for different (x, y). Hence our arguments and calculations deviate from

previous works at several places significantly. Another important original contribution of

our work is Claim 7.2.6 which is used in the proof of the main lemma. We highlight its

importance later just before its proof.

Lemma 7.2.2. (Main Lemma) Let c ≥ 1. Let p be a distribution over X × Y and

z ∈ Z. Let β
def
= Pr(x,y)←p [f(x, y) = {z}]. Let 0 < ε < 1/3 and δ, ε′ > 0 be such that

δ+22ε
β−33ε

< (1+ε′) δ
β

. Let XYM be random variables jointly distributed over the set X×Y×M
such that the last dlog |Z|e bits of M represents an element in Z. Let ux : M → [0, 1],

uy : M→ [0, 1] be functions for all (x, y) ∈ X× Y. If it holds that,

1. For all (x, y,m) ∈ X× Y×M,

Pr[XYM = xym] =
1

q
p(x, y)ux(m)uy(m),

where q
def
=
∑

xym p(x, y)ux(m)uy(m);

2. S(XY ‖p) ≤ ε2/4;

3. I(X : M |Y ) + I(Y : M |X) ≤ c;

4. errf(XYM) ≤ ε, where errf(XYM)
def
= Prxym←XYM[(x, y, m̃) /∈ f ] , and m̃ represents

the last dlog |Z|e bits of m;

then s̃recz,p(1+ε′)δ/β,δ (f) < 2c
11ε3

.

Note by direct calculations,

Pr[XY = xy] =
1

q
p(x, y)αxy, where αxy

def
=
∑
m

ux(m)uy(m); (7.4)

Pr[X = x] =
1

q
p(x)αx, where αx

def
=
∑
y

p(y|x)αxy; (7.5)

Pr[Y = y] =
1

q
p(y)αy, where αy

def
=
∑
x

p(x|y)αxy; (7.6)
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Pr[Xy = x] =
p(x|y)αxy

αx
, Pr[Yx = y] =

p(y|x)αxy
αy

; (7.7)

Pr[Mxy = m] = ux(m)uy(m)/αxy; (7.8)

Pr[Mx = m] =
ux(m)vx(m)

αx
, where vx(m)

def
=
∑

y p(y|x)uy(m); (7.9)

Pr[My = m] =
uy(m)vy(m)

αy
, where vy(m)

def
=
∑

x p(x|y)ux(m). (7.10)

Like in Chapter 6, we apply Markov inequality to Item 2 and Item 3 of Lemma 7.2.2

to show most of (x, y) have nice properties. Let us define the sets of good (x, y).

G1
def
= {(x, y) :

∣∣∣∣1− αxy
q

∣∣∣∣ ≤ 1

2
and

∣∣∣∣1− αx
q

∣∣∣∣ ≤ 1

2
and

∣∣∣∣1− αxy
q

∣∣∣∣ ≤ 1

2
}; (7.11)

G2
def
= {(x, y) : S(Mxy‖Mx) + S(Mxy‖My) ≤ c/ε} ; (7.12)

G
def
= {(x, y) : Pr

m←Mxy

[
uy(m)

vx(m)
≤ 2∆ and

ux(m)

vy(m)
≤ 2∆

]
≥ 1− 2ε}. (7.13)

We begin by showing that G1 ∩G2 is a large set and also G1 ∩G2 ⊆ G.

Claim 7.2.3. 1. Pr(x,y)←p [(x, y) ∈ G1] > 1− 6ε,

2. Pr(x,y)←p [(x, y) ∈ G2] ≥ 1− 3ε/2,

3. Pr(x,y)←p [(x, y) ∈ G1 ∩G2] ≥ 1− 15ε/2,

4. G1 ∩G2 ⊆ G.

Proof. Note item 1. and item 2. imply item 3. Now we show 1. Note that (using item

2. of Lemma 7.2.2 and Fact 5.1.5) ‖XY − p‖1 ≤ ε/2. From Lemma 5.1.10 and (7.4), we

have

Pr
(x,y)←p

[∣∣∣∣1− αxy
q

∣∣∣∣ ≤ 1/2

]
≥ 1− 2ε.

By the monotonicity of `1-norm, we have ‖X − pX‖1 ≤
ε
2

and ‖Y − pY‖1 ≤
ε
2
. Similarly,

from (7.5) and (7.6) we have

Pr
(x,y)←p

[∣∣∣∣1− αx
q

∣∣∣∣ ≤ 1/2

]
≥ 1− 2ε, and Pr

(x,y)←p

[∣∣∣∣1− αy
q

∣∣∣∣ ≤ 1/2

]
≥ 1− 2ε.

By the union bound, item 1. follows.

Next we show 2. From item 3. of Lemma 7.2.2,

E
(x,y)←XY

[S(Mxy‖Mx) + S(Mxy‖My)] = I(X : M |Y ) + I(Y : M |X) ≤ c.
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Markov’s inequality implies Pr(x,y)←XY [(x, y) ∈ G2] ≥ 1 − ε. Then item 2. follows from

the fact that XY and p are ε/2-close.

Finally we show 4. For any (x, y) ∈ G1 ∩G2,

S(Mxy‖Mx) ≤ c/ε

⇒ Pr
m←Mxy

[
Pr[Mxy = m]

Pr[Mx = m]
≤ 2

c/ε+1
ε

]
≥ 1− ε (from Fact 5.1.9)

⇒ Pr
m←Mxy

[
uy(m)αx
vx(m)αxy

≤ 2
c/ε+1
ε

]
≥ 1− ε (from (7.8) and (7.9))

⇒ Pr
m←Mxy

[
uy(m)

vx(m)
≤ 2∆

]
≥ 1− ε. ((x, y) ∈ G1 and the choice of ∆)

Similarly, Prm←Mxy

[
ux(m)
vy(m)

≤ 2∆
]
≥ 1− ε. By the union bound,

Pr
m←Mxy

[
uy(m)

vx(m)
≤ 2∆ and

ux(m)

vy(m)
≤ 2∆

]
≥ 1− 2ε,

which implies (x, y) ∈ G. Hence G1 ∩G2 ⊆ G.

Following few claims establish the desired properties of protocol Π′ (Figure 7.1).

Definition 7.2.4. Define the following events.

� E occurs if the smallest i ∈ A satisfies h(mi) = r and i ∈ B. Note that E implies

A 6= ∅.

� Bc (subevent of E) occurs if E occurs and there exist j ∈ B such that h(mj) = r

and mi 6= mj, where i is the smallest element in A.

� H
def
= E −Bc.

Below we use conditioning on (x, y) as shorthand for “Alice’s input is x and Bob’s

input is y”.

Claim 7.2.5. For any (x, y) ∈ G1 ∩G2, we have

1. for all i ∈ [T ],

1

2
· q

|M|2∆
≤ Pr

rΠ′
[Alice accepts mi| (x, y)] ≤ 3

2
· q

|M|2∆
,
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Alice’s input is x. Bob’s input is y. Common input is c, ε, q,M.

1. Alice and Bob both set ∆
def
= c/ε+1

ε
+ 2, T

def
= 2

q
|M|2∆ ln 1

ε
and k

def
= log(3

ε
(ln 1

ε
)).

2. For i = 1, · · · , T :

(a) Alice and Bob, using public coins, jointly sample mi ← M,αi,βi ← [0, 2∆],
uniformly.

(b) Alice accepts mi if αi ≤ ux(mi), and βi ≤ 2∆vx(mi).

(c) Bob accepts mi if αi ≤ 2∆vy(mi), and βi ≤ uy(mi).

3. Let A
def
= {i ∈ [T ] : Alice accepts mi} and B

def
= {i ∈ [T ] : Bob accepts mi}.

4. Alice and Bob, using public coins, choose a uniformly random function h : M →
{0, 1}k and a uniformly random string r ∈ {0, 1}k.

(a) Alice outputs ⊥ if either A is empty or h(mi) 6= r (where i is the smallest ele-
ment in non-empty A). Otherwise, she outputs the element in Z, represented
by the last dlog |Z|e bits of mi.

(b) Bob finds the smallest j ∈ B such that h(mj) = r. If no such j exists, he
outputs ⊥. Otherwise, he outputs the element in Z, represented by the last
dlog |Z|e bits of mj.

Figure 7.1: Protocol Π′

and
1

2
· q

|M|2∆
≤ Pr

rΠ′
[Bob accepts mi| (x, y)] ≤ 3

2
· q

|M|2∆
,

where rΠ′ is the internal randomness of protocol Π′;

2. PrrΠ′
[Bc| (x, y), E] ≤ ε;

3. PrrΠ′
[H| (x, y)] ≥ (1− 4ε) · 2−k−∆−2.

The proof requires long but direct calculation. Similar arguments and calculation are

made in [43]. We defer the proof to the end of this chapter.

The following claim is an important original contribution of this work (not present in

the previous works [12; 16; 43].) The claim helps us establish a crucial property of Π′.

The property is that the bad inputs (x, y) for which the distribution of Π′’s sample for
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M , conditioned on non-abort, deviates a lot from the desired, their probability is nicely

reduced in the final distribution of Π′, conditioned on non-abort. This helps us to argue

that the joint distribution of inputs and the transcript in Π′, conditioned on non-abort,

is still close in `1 distance to XYM .

Claim 7.2.6. Let AB and A′B′ be random variables over A1×B1 and h : A1 → [0,+∞)

be a function. Suppose for any a ∈ A1, there exist functions fa, ga : B1 → [0,+∞), such

that

1.
∑

a,b h(a)fa(b) = 1, and Pr[AB = ab] = h(a)fa(b);

2. fa(b) ≥ ga(b), for all (a, b) ∈ A1 ×B1;

3. Pr[A′B′ = ab] = h(a)ga(b)/C, where C =
∑

a,b h(a)ga(b);

4. Pra←A [Prb←Ba [fa(b) = ga(b)] ≥ 1− δ1] ≥ 1− δ2, for δ1 ∈ [0, 1), δ2 ∈ [0, 1).

Then ‖AB − A′B′‖1 ≤ δ1 + δ2.

Proof. Set G
def
= {(a, b) : fa(b) = ga(b)}. By condition 4, Pr(a,b)←AB [(a, b) ∈ G] ≥ 1− δ1−

δ2. Then

C =
∑
a,b

h(a)ga(b) ≥
∑

a,b:(a,b)∈G

h(a)fa(b) = Pr
(a,b)←AB

[(a, b) ∈ G] ≥ 1− δ1 − δ2. (7.14)

We have

‖AB − A′B′‖1 =
1

2

∑
a,b

|h(a)fa(b)−
1

C
h(a)ga(b)|

≤ 1

2

∑
a,b

(
|h(a)fa(b)− h(a)ga(b)|+ |h(a)ga(b)−

1

C
h(a)ga(b)|

)

≤ 1

2

(∑
a,b

(h(a)fa(b)− h(a)ga(b)) +
1− C
C

∑
a,b

h(a)ga(b)

)
(using item 2. of this claim)

≤ 1

2

 ∑
a,b:(a,b)/∈G

h(a)fa(b) + 1− C


=

1

2

(
Pr

(a,b)←AB
[(a, b) /∈ G] + 1− C

)
≤ δ1 + δ2 (from (7.14))
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Claim 7.2.7. Prp,rΠ′
[H] ≥ (1− 23

2
ε) · 2−k−∆−2.

Proof. By the definition of H, we have

Pr
p,rΠ′

[H] ≥
∑

(x,y)∈G1∩G2

p(x, y) Pr
rΠ′

[H| (x, y)]

≥ (1− 4ε) · 2−k−∆−2
∑

(x,y)∈G1∩G2

p(x, y)

≥ (1− 23

2
ε) · 2−k−∆−2.

The second inequality is by Claim 7.2.5, item 3, and the last inequality is by Claim 7.2.3

item 3.

With the previous claim, we are able to show that the protocol Π′ nicely simulate the

distribution XYM .

Claim 7.2.8. Let the input of protocol Π′ be drawn according to p. Let X1Y 1M1

represent the input and the transcript (the part of the public coins drawn from M)

conditioned on H. Then we have ‖XYM −X1Y 1M1‖1 ≤ 10ε. Note that this implies

that
∥∥∥X1Y 1A1B1 −XY M̃M̃

∥∥∥
1
≤ 10ε, where M̃ represents the last dlog |Z|e bits of M

and A1, B1 represent outputs of Alice and Bob respectively, conditioned on H.

Proof. For any (x, y), define

wxy(m)
def
= min

{
ux(m), 2∆vy(m)

}
·min

{
uy(m), 2∆vx(m)

}
.

From step 2 (a),(b),(c), of protocol Π′, Pr [M1X1Y 1 = mxy] = 1
C
p(x, y)wxy(m), where

C =
∑

xym p(x, y)wxy(m). Now,

Pr(x,y)←XY
[
Prm←Mxy [wxy(m) = ux(m)uy(m)] ≥ 1− 2ε

]
= Pr(x,y)←XY [(x, y) ∈ G] ≥ 1− 8ε.

The last inequality above follows using items 3. and 4. of Claim 7.2.3 and the fact that

XY and p are ε/2-close.

Finally using Claim 7.2.6, (by substituting δ1 ← 2ε, δ2 ← 8ε, A← XY,B ←M,A′ ←
X1Y 1, B′ ←M1, h← p

q
, f(x,y)(m)← ux(m)uy(m) and g(x,y)(m)← wxy(m)), we get that

‖X1Y 1M1 −XYM‖1 ≤ 10ε.

We are now ready to finish the proof of Lemma 7.2.2.
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Proof of Lemma 7.2.2: Consider the protocol Π′. We claim that it satisfies Lemma

7.2.1 by taking the correspondence between quantities in Lemma 7.2.1 and Lemma 7.2.2

as follows : c← (c/ε2 + 3/ε), ε← 11ε, β ← β, δ ← δ, z ← z,X ′Y ′ ← p.

Item 1. of Lemma 7.2.1 is implied by Claim 7.2.7 since (1− 23
2
ε)·2−k−∆−2 ≥ 2−(c/ε2+3/ε),

from choice of parameters.

Item 2. of Lemma 7.2.1 is implied since ‖X1Y 1 − p‖1 ≤ ‖X1Y 1 −XY ‖1+‖XY − p‖1 ≤
21
2
ε, using item 2. of Lemma 7.2.2, Fact 5.1.5 and Claim 7.2.8.

Item 3. of Lemma 7.2.1 is implied since

errf
(
X1Y 1M1

)
≤ errf (XYM) +

∥∥X1Y 1M1 −XYM
∥∥

1
≤ 11ε,

using item 4. in Lemma 7.2.2 and Claim 7.2.8.

This implies

s̃recz,p(1+ε′)δ/β,δ (f) <
c/ε2 + 3/ε

11ε
≤ 2c

11ε3
.

We can now prove our main result.

Theorem 7.2.9. Let X,Y,Z be finite sets, f ⊆ X× Y× Z be a relation, and t > 1 be an

integer. Let µ be a distribution on X × Y. Let z ∈ Z and β
def
= Pr(x,y)←µ [f(x, y) = {z}].

Let 0 < ε < 1/3 and ε′, δ > 0 be such that δ+22ε
β−33ε

< (1 + ε′) δ
β

. It holds that,

Rpub

1−(1−ε)bε2t/32c(f
t) ≥ ε2

32
· t ·
(

11ε · s̃recz,µ(1+ε′)δ/β,δ (f)− 2
)
.

Proof. Set δ1
def
= ε2/32. define

c
def
= 11ε · s̃recz,µ(1+ε′)δ/β,δ (f)− 2

and XY ∼ µk. By Fact 5.2.1, it suffices to show

Dµt

1−(1−ε)bε2t/32c(f
t) ≥ δ1tc.

Let Π be a deterministic two-way communication protocol, that computes f t, with total

communication δ1ct bits. The following claim implies that the success of Π is at most

(1− ε)bδ1tc, and this shows the desired.

Claim 7.2.10. For each i ∈ [t], define a binary random variable Ti ∈ {0, 1}, which
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represents the success of Π on the i-th instance. That is, Ti = 1 if the protocol computes

the i-th instance of f correctly, and Ti = 0 otherwise. Let t′
def
= bδ1tc. There exists t′

coordinates {i1, · · · , it′} such that for each 1 ≤ r ≤ t′ − 1,

1. either Pr
[
T (r) = 1

]
≤ (1− ε)t′ or

2. Pr
[
Tir+1 = 1| T (r) = 1

]
≤ 1− ε, where T (r) def

=
∏r

j=1 Tij .

Proof. Suppose we have already identified r coordinates, i1, · · · , ir satisfying that Pr[Ti1 ] ≤
1− ε and Pr

[
Tij+1

= 1| T (j) = 1
]
≤ 1− ε for 1 ≤ j ≤ r − 1. If Pr

[
T (r) = 1

]
≤ (1− ε)t′ ,

then we are done. So from now on we assume Pr
[
T (r) = 1

]
> (1− ε)t′ ≥ 2−δ1t. Here we

assume r ≥ 1. Similar arguments also work when r = 0, that is for identifying the first

coordinate, which we skip for the sake of avoiding repetition.

Let D be a random variable uniformly distributed in {0, 1}t and independent of XY .

Let Ui = Xi if Di = 0, and Ui = Yi if Di = 1. For any random variable L, define L1 def
=

(L|T (r) = 1). If L = L1 · · ·Lt, define L−i
def
= L1 · · ·Li−1Li+1 · · ·Lt. Let C

def
= {i1, · · · , ir} .

Define Ri
def
= D−iU−iXC∪[i−1]YC∪[i−1].

Now let us apply Lemma 7.2.2 by substituting XY ← X1
j Y

1
j ,M ← R1

jM
1, p ←

XjYj, z ← z, ε ← ε, δ ← δ, β ← β, ε′ ← ε′ and c ← 16δ1(c + 1). Condition 1. in Lemma

7.2.2 is implied by Claim 7.2.12. Conditions 2. and 3. are implied by Claim 7.2.13. Also

we have s̃recz,µ(1+ε′)δ/β,δ (f) > 32δ1(c+1)
11ε3

, by our choice of c. Hence condition 4. must be false

and hence errf
(
X1
j Y

1
j M

1
)

= errf
(
X1
j Y

1
j R

1
jM

1
)
> ε. This shows condition 2. of this

Claim.

The following fact can be easily verified by induction on the number of message

exchanges in a private-coin protocol (please refer for example to [12] for an explicit proof).

It is also implicit in the cut and paste property of private-coins protocol used in Bar-Yossef,

Jayram, Kumar and Sivakumar [6] and in Jain, Radhakrishnan and Sen [35].

Lemma 7.2.11. For any private-coin two-way communication protocol, with input XY ∼
µ and transcript M ∈M, the joint distribution can be written as

Pr[XYM = xym] = µ(x, y)ux(m)uy(m),

where ux : M→ [0, 1] and uy : M→ [0, 1], for all (x, y) ∈ X× Y.
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Claim 7.2.12. Let R denote the space of Rj. There exist functions uxj , uyj : R×M→
[0, 1] for all (xj, yj) ∈ X× Y and a real number q > 0 such that

Pr
[
X1
j Y

1
j R

1
jM

1 = xjyjrjm
]

=
1

q
µ(xj, yj)uxj(rj,m)uyj(rj,m).

Proof. Note that XjYj is independent of Rj. Now consider a private-coin two-way pro-

tocol Π1 with input XjYj as follows. Let Alice generate Rj and send to Bob. Alice and

Bob then generate (X−j)xjrj and (Y−j)yjrj , respectively. Then they run the protocol Π.

Thus, from Lemma 7.2.11,

Pr[XjYjRjM = xyjrm] = µ(xj, yj) · vxj(rj,m) · vyj(rj,m),

where vxj , vyj : R×M→ [0, 1], for all (xj, yj) ∈ X× Y.

Note that conditioning on T (r) = 1 corresponds to choosing a subset, say S, of R×M.

Let

q
def
=

∑
xjyjrjm:(rj ,m)∈S

µ(xj, yj)vxj(rj,m)vyj(rj,m) .

Then

Pr
[
X1
j Y

1
j R

1
jM

1 = xjyjrjm
]

=
1

q
µ(xj, yj)vxj(rj,m)vyj(rj,m),

for (rj,m) ∈ S and Pr
[
X1
j Y

1
j R

1
jM

1 = xjyjrjm
]

= 0 otherwise.

Now define

uxj(rj,m)
def
= vxj(rj,m), and uyj(rj,m)

def
= vyj(rj,m),

for (rj,m) ∈ S and define them to be 0 otherwise. The claim follows.

Claim 7.2.13. If Pr
[
T (r) = 1

]
> 2−δ1t, then there exists a coordinate j /∈ C such that

S
(
X1
j Y

1
j

∥∥XjYj
)
≤ 8δ1 = ε2

4
, (7.15)

and

I
(
X1
j : M1R1

j

∣∣Y 1
j

)
+ I
(
Y 1
j : M1R1

j

∣∣X1
j

)
≤ 16δ1(c+ 1).

(7.16)

Proof. This follows using Claim 6.2.11.

Now let us prove Claim 7.2.5.
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Proof of Claim 7.2.5:

1. We do the argument for Alice. Similar argument follows for Bob. Note that

ux(m), vx(m) ∈ [0, 1]. Then for all (x, y) ∈ X× Y,

Pr
rΠ′

[Alice accepts mi| (x, y)] =
1

|M|
∑
m

ux(m)vx(m)

2∆
=

αx
|M|2∆

.

Item 1 follows by the fact that (x, y) ∈ G1.

2. Define Ei (subevent of E) when i is the smallest element of A. For all (x, y) ∈
G1 ∩G2, we have :

Pr
rΠ′

[Bc| (x, y), Ei]

= Pr
rΠ′

[∃j : j ∈ B and h(mj) = r and mj 6= mi| (x, y), Ei]

≤
∑

j∈[T ],j 6=i

Pr
rΠ′

[j ∈ B and h(mj) = r and mj 6= mi| (x, y), Ei] (from the union bound)

≤
∑

j∈[T ],j 6=i

Pr
rΠ′

[j ∈ B| (x, y), Ei] · Pr
rΠ′

[h(mj) = r| (x, y), Ei, j ∈ B,mj 6= mi]

≤ T · 3q

|M|2∆+1
· 1

2k
(two-wise independence of h and item 1. of this Claim)

≤ ε. (from choice of parameters)

Since above holds for every i, it implies PrrΠ′
[Bc| (x, y), E] ≤ ε.

3. Consider,

Pr
rΠ′

[E| (x, y)] = Pr
rΠ′

[A 6= ∅| (x, y)] · Pr
rΠ′

[E| A 6= ∅, (x, y)]

≥

(
1−

(
1− 1

2
· q

|M|2∆

)T)
· Pr
rΠ′

[E| A 6= ∅, (x, y)] (using item 1. of this claim)

≥ (1− ε) · Pr
rΠ′

[E| A 6= ∅, (x, y)] (from choice of parameters)

= (1− ε) · Pr
rΠ′

[h(mi) = r| A 6= ∅, (x, y)] · Pr
rΠ′

[i ∈ B| i ∈ A, h(mi) = r, (x, y)]

(from here on we condition on i being the first element of A)

= (1− ε) · 2−k · Pr
rΠ′

[i ∈ B| i ∈ A, (x, y)]

= (1− ε) · 2−k ·
PrrΠ′

[i ∈ B and i ∈ A| (x, y)]

PrrΠ′
[i ∈ A| (x, y)]
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≥ 2

3q
(1− ε) · 2−k · |M|2∆ · Pr

rΠ′
[i ∈ B and i ∈ A| (x, y)] (using item 1. of this claim)

=
2

3q
(1− ε) · 2−k · |M|2∆ ·

∑
m∈M

1

|M|22∆
min

{
ux(m), 2∆vy(m)

}
·min

{
uy(m), 2∆vx(m)

}
(from construction of protocol Π′)

≥ 2

3q
(1− ε) · 2−k · |M|2∆ ·

∑
m∈Gxy

ux(m)uy(m)

|M|22∆

(Gxy
def
= {m : ux(m) ≤ 2∆vy(m) and uy(m) ≤ 2∆vx(m)})

=
2

3q
(1− ε) · 2−k · |M|2∆ · αxy

|M|22∆

∑
m∈Gxy

ux(m)uy(m)

αxy

≥ 1

3
(1− ε) · 2−k−∆ · Pr

m←Mxy

[m ∈ Gxy] (since (x, y) ∈ G1 and (7.8))

≥ 1

3
(1− ε) · 2−k−∆ · (1− 2ε) (since (x, y) ∈ G, using item 4. of Claim 7.2.3)

≥ (1− 3ε) · 2−k−∆−2.

Finally, using item 2. of this Claim.

PrrΠ′
[H| (x, y)] = PrrΠ′

[E| (x, y)] (1− PrrΠ′
[Bc| (x, y), E]) ≥ (1− 4ε) · 2−k−∆−2.
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Chapter 8

Conclusions and open problems

In this thesis, we have studied two independent topics. The first topic is concerned

with fast parallel approximation algorithms for semidefinite programs. The second topic

is concerned with strong direct product results in communication complexity. In this

chapter, we briefly recall our main results and list some related open problems for further

study.

8.1 Fast parallel approximation algorithms for semidef-

inite programs

In Chapter 3, we presented a fast parallel approximation algorithm for positive semidefi-

nite programs. Our result generalizes the algorithm of Luby and Nisan [53]. To generalize

their algorithm, the difficulty we faced was the non-commutative nature of the matrices

involved. To handle it, we introduced new techniques, which are independently interesting

and may have other applications. In Chapter 4, we presented a fast parallel approxima-

tion algorithm for mixed packing and covering problem, which strengthened the result in

Chapter 3. Some related open problems are listed below.

8.1.1 Open problems

1. The programs we considered in Chapter 4 are not the most general mixed packing

and covering programs since the covering constraints in the programs are linear. A

natural question that arises is as follows. Can we get a fast parallel approximation

algorithm for the following more general mixed packing and covering program?
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Given n× n positive semidefinite matrices P1, . . . , Pm, P, C1, . . . , Cm, C,

maximize: γ

subject to:
m∑
i=1

xiPi ≤ P

m∑
i=1

xiCi ≥ γC

∀i ∈ [m] : xi ≥ 0.

2. Can we find interesting applications of the fast parallel approximation algorithms

exhibited in this thesis ?

8.2 Strong direct product problems

In Chapter 6, we proved a direct product theorem for bounded-round public-coin com-

munication complexity. As an application, we showed the strong direct product theorem

for the Pointer Chasing. Very recently, our result is improved by Braverman, Rao, We-

instein and Yehudayoff [15] with better dependence on the number of rounds in the

direct product result using a new sampling technique introduced in [14]. In Chapter 7,

we provided a strong direct product result for the two-way public-coin communication

complexity in terms of an important and widely used lower bound method, the smooth

rectangle bound.

8.2.1 Open problems

As we mentioned in Chapter 5, strong direct product problems are central problems

in complexity theory. They have been studied in various models for several years. In

communication complexity, much progress has been made in the last decade. Some

natural questions that arise from this work are:

1. In quantum communication complexity, strong direct product quesions are widely

open. Can the techniques in Chapter 6 be extended to show direct product theorems

for bounded-round quantum communication complexity?
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2. Is the smooth rectangle bound a tight lower bound for two-way public-coin com-

munication complexity for all relations? If yes, this would imply a strong direct

product result for the two-way public-coin communication complexity for all rela-

tions, settling a major open question in this area. To start with, we can ask: is the

smooth rectangle bound polynomially tight for the two-way public-coin communi-

cation complexity for all relations?

3. Or on the other hand, can we exhibit a relation for which the smooth rectangle

bound is (asymptotically) strictly smaller than its two-way public-coin communi-

cation complexity?

4. Can we show similar direct product results in terms of possibly stronger lower bound

methods like the partition bound and the information complexity?

5. It will be interesting to obtain new optimal lower bounds for the functions and

relations using the smooth rectangle bound, implying strong direct product results

for them.
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Appendix A

Smooth rectangle bound

A.1 Proof of Lemma 5.2.6

Let (λ′x,y, φ
′
x,y) be an optimal solution to the Dual. For (x, y) ∈ f−1(z), if λ′x,y > φ′x,y

define λ = λ′x,y − φ′x,y and φx,y = 0. Otherwise define λ = 0 and φx,y = φ′x,y − λ′x,y. For

(x, y) /∈ f−1(z) define φx,y = 0. We note that (λx,y, φx,y) is an optimal solution to the

Dual with potentially higher objective value. Hence (λx,y, φx,y) is also an optimal solution

to the Dual.

Let us define three sets

U1
def
= {(x, y)| f(x, y) = z, λx,y > 0},

U2
def
= {(x, y)| f(x, y) = z, φx,y > 0},

U0
def
= {(x, y)| f(x, y) 6= z, λx,y > 0}.

Define,

∀(x, y) ∈ U1 : µ′(x, y)
def
= λx,y,

∀(x, y) ∈ U2 : µ′(x, y)
def
= εφx,y,

∀(x, y) ∈ U0 : µ′(x, y)
def
= ελx,y.

Define r
def
=
∑

x,y µ
′(x, y) and define probability distribution µ

def
= µ′/r. Let sreczε (f) = 2c.
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Define function g such that g(x, y) = z for (x, y) ∈ U1; g(x, y) = f(x, y) for (x, y) ∈ U0

and g(x, y) = z′ (for some z′ 6= z) for (x, y) ∈ U2. Then,

2c =
∑

(x,y)∈f−1(z)

((1− ε)λx,y − φx,y)−
∑

(x,y)/∈f−1(z)

ε · λx,y

= (1− ε)µ′(U1)− 1

ε
µ′(U2)− µ′(U0)

This implies r ≥ µ′(U1) ≥ 2c. Consider rectangle W .

∑
(x,y)∈f−1(z)∩W

(λx,y − φx,y)−
∑

(x,y)∈(W−f−1(z))

λx,y ≤ 1

⇒
∑

(x,y)∈U1∩W

µx,y −
1

ε

∑
(x,y)∈U2∩W

µx,y −
∑

(x,y)∈U0∩W

1

ε
µx,y ≤

1

r

⇒ ε

 ∑
(x,y)∈U1∩W

µx,y −
1

r

 ≤ ∑
(x,y)∈U2∩W

µx,y +
∑

(x,y)∈U0∩W

µx,y

⇒ ε

 ∑
(x,y)∈g−1(z)∩W

µx,y −
1

r

 ≤ ∑
(x,y)∈W−g−1(z)

µx,y

⇒ ε

 ∑
(x,y)∈W

µx,y −
1

r

 ≤ (1 + ε) ·
∑

(x,y)∈W−g−1(z)

µx,y

⇒ ε

 ∑
(x,y)∈W

µx,y − 2−c

 ≤ (1 + ε) ·
∑

(x,y)∈W−g−1(z)

µx,y.

Now consider a W with µ(W ) ≥ 2−c/ε3. We have µ(W − g−1(z)) ≥ (1−ε3)ε
1+ε

µ(W ). Define

β
def
= µ(U1 ∪ U2), δ

def
= µ(U2). Now,

(1− ε)rβ ≥ (1− ε)µ′(U1) ≥ 1

ε
µ′(U2) =

1

ε
rδ.

Hence we have

µ(W − g−1(z)) ≥ (1− ε3)δ

(1− ε2)β
µ(W ) ≥ (1 + ε2)

δ

β
µ(W ).
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This implies r̃ecz,µ(1+ε2)δ/β (g) ≥ c+ 3 log ε. This implies that

s̃recz,µ
(1+ε2) δ

β
,δ

(f) ≥ c+ 3 log ε = log(sreczε (f)) + 3 log ε.

A.2 Smooth lower bound vs. communication com-

plexity

Jain and Klauck show that the smooth rectangle bound is a lower bound on public-coin

two-way communication complexity, as stated in Lemma 5.2.7. We contain the proof here

for completeness.

Proof of Lemma 5.2.7: Let c
def
= s̃recz,λ

(1+ε′) δ
β
,δ

(f). Let g be such that r̃ecz,λ
(1+ε′) δ

β

(g) = c

and

Pr
(x,y)←λ

[f(x, y) 6= g(x, y)] ≤ δ.

If Dλ
ε (f) ≥ c− log(4/ε) then we are done using Fact 5.2.1.

So lets assume for contradiction that Dλ
ε (f) < c − log(4/ε). This implies that there

exists a deterministic protocol Π for f with communication c−log(4/ε) and distributional

error under λ bounded by ε. Since

Pr
(x,y)←λ

[f(x, y) 6= g(x, y)] ≤ δ,

the protocol Π will have distributional error at most ε + δ for g. Let M represent the

message transcript of Π and let O represent protocol’s output. We assume that the last

dlog |Z|e bits of M contain O. We have,

1. Prm←M [Pr[M = m] ≤ 2−c] ≤ ε/4, since the total number of message transcripts in

Π is at most 2c−log(4/ε).

2. Prm←M [O = z| M = m] > β − ε,
since Pr(x,y)←λ[f(x, y) = {z}] = β and distributional error of Π under λ is bounded

by ε for f .

3. Prm←M

[
Pr(x,y)←(XY )m [(x, y,O) /∈ g| M = m] ≥ ε+δ

β−2ε

]
≤ β− 2ε, since distributional

error of Π under λ is bounded by ε+ δ for g.
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Using all of above we obtain a message transcript m such that Pr [M = m] > 2−c and

(O = z| M = m) and

Pr
(x,y)←(XY |M=m)

[(x, y,O) /∈ g| M = m] ≤ ε+ δ

β − 2ε

< (1 + ε′)
δ

β
.

This and the fact that the support of (XY | M = m) is a rectangle, implies that

r̃ecz,λ
(1+ε′) δ

β

(g) < c, contradicting the definition of c. Hence it must be that Dλ
ε (f) ≥

c− log(4/ε), which using Fact 5.2.1 shows the desired.
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