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ABSTRACT

In traditional relational databases, data are modeled as tables. However, most

real life data cannot be simply modeled as tables, but as complex structures

like sequences, trees and graphs. Existing systems typically cater to the storage

of complex structures separately. Therefore, each application domain may need

to redesign the storage system for a specific complex structure. Obviously, this

can result in a waste of resources. Moreover, many applications may require

the storage of various complex structures, and it is not easy to adapt existing

systems to support such applications. In this dissertation, we aim to develop

a unified framework, denoted by 3-in-1, that can support the efficient storage

and retrieval of various complex structures (i.e., sequences, trees, and graphs).

As graph is the most complex model, we first address the graph similarity

search problem. A novel efficient indexing method is developed for handling

graph range queries. In this method, a two-level inverted index is constructed

based on the star decomposition method. Meanwhile, a set of effective and

efficient pruning techniques are developed to support graph search. The pro-

posed search algorithms follow a filter-and-refine framework. Comprehensive

experiments on two real datasets show that the proposed method returns the

smallest candidate set and outperforms all the state-of-the-art works. This

is because the total query time can be reduced as much as possible as our

method can significantly reduce the number of candidates for verification. Ex-

perimental results also show that our method takes reasonable filtering time

compared with existing works. To extend the above inverted index structure

to support efficient sequence similarity search, we then propose a novel pipeline
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framework. We address the problem of finding k-nearest neighbors (KNN) in

sequence databases, as this type of search is more general in real applications.

Unlike most existing works which used short, exact n-gram matching in a filter-

and-refine framework for approximate sequence search, our new approach allows

us to use longer but approximate n-gram matching as a basis for pruning off

KNN candidates. Based on this breakthrough, we adopt a pipeline framework

over a two-level inverted index for searching KNN in the sequence database.

By coupling this framework together with several efficient filtering strategies

including the frequency queue and the well-known Combined Algorithm (CA),

our proposal brings various enticing advantages over existing work, including

progressive result update, early termination, and easily parallelization. With

comprehensive experiments on three real datasets, the results show that our ap-

proach outperforms all the state-of-the-art works by achieving huge reduction

on false positive candidates which will incur the expensive cost of verification.

We further investigate the problem of unified 3-in-1 indexing and processing

for complex structures. From previous work, the inverted index has been shown

to be effective to support efficient complex structure similarity search. Con-

sequently, we use it as the basic index structure to develop a unified retrieval

framework for supporting various complex structures. In this work, we imple-

ment the 3-in-1 system with three layers: the storage layer, the index layer,

and the application layer. In the storage layer, various types of original data is

stored in the file system. In the index layer, we implement a unified inverted in-

dex for various complex structures. The application layer is the processing layer

where each type of complex structure can build specific processor to communi-

cate with the other two layers. This system can be very useful as it can support

many complex applications that involve a variety of complex structures. For

instance, we apply it to a real ebook reading system for solving several real

problems, and present the initial demo from http://readpeer.com.
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CHAPTER 1

Introduction

In the past decades, tremendous amount of data in various complex structures

are collected and need to be managed. It is very important to model such data

using appropriate data structures for storage. For example, in traditional data

management system such as relational databases, data are modeled as tables.

However, most complex data in the real world cannot be simply modeled as

tables, but as complex structures like sequences, trees and graphs. For in-

stance, real systems such as chemical compounds and web documents are often

stored as graph structures in graph databases. The complex structure poses

new challenging research problems that do not exist in traditional databases.

In the literature, how to search the required and interesting complex objects

has become an important research topic, and exiting work has focused on many

related issues. Such issues are often presented as the complex structure search

problems, such as the graph isomorphism problem, the string matching prob-

lem, the tree similarity search problem, and so on. The classical search problem

is often formulated as the exact matching problem. However, in practice, ex-

tract matching is too restrictive, as real objects are often affected by noises.

Therefore, complex structure similarity search has been attracting significant

attention in many scientific fields for its general usage and wide applications.

1



CHAPTER 1. INTRODUCTION

1.1 Complex Models and Applications

To understand the importance of problems on complex structures, it is worth-

while to see the applications of complex structure models in practical research.

1.1.1 Graph Model and Search

Graph is a very powerful model. It has been applied to handling many in-

teresting research problems in various domains including bio-informatics [30],

chem-informatics [71], software engineering [18], pattern recognition [42], etc.

Many researchers in these areas have used graph model to represent data and

developed graph search algorithms to manage data. Figure 1.1 shows a series

of interesting applications on graph models.

Fingerprint Document Shape

Coil

Chemical compound Protein structure Program flow

Image

Figure 1.1: Examples on graph models

In bio-informatics and chem-informatics, graphs are usually used to mod-

el proteins and molecular compounds (e.g., [30, 71]). With the graph model,

searching in protein databases helps to identify pathways and motifs among

species, and assists in the functional annotation of proteins. Meanwhile, search-

ing a molecular structure in a database of molecular compounds is useful to de-

tect molecules that preserve chemical properties associated with a well-known

molecular structure. This can be used in screening and drug design.

In software engineering, J. Ferrante et al. [18] used program dependence

graph (PDG) to model the data flow and control dependency within a proce-

2



CHAPTER 1. INTRODUCTION

dure. In a program dependence graph, vertices are statements and edges rep-

resent dependency between the statements. Searching in such program graph

databases is widely applied to clone detection, optimization, debugging, etc

(e.g., [19, 67]).

In pattern recognition, graphs have been shown to be efficient as a pro-

cessing and representational scheme. There is a technical committee of the

International Association for Pattern Recognition (IAPR)1, dedicated to pro-

mote the graph research in this field. Specifically, Riesen K. et al. [50] collected

graph databases with coils, fingerprints, web documents, etc. These databases

have been used to do classification or search tasks for the graph research2.

As listed above, it is essential to process graph searching efficiently for man-

aging a large graph database. In particular, graph similarity search has been

attracting more attention from researchers, as traditional exact matching prob-

lems (e.g., [22, 34]) is too restrictive to support the noise data in practice. This

dissertation focuses on supporting similarity search in graph databases.

1.1.2 Sequence Similarity Search

Sequence has wide applications in a variety of areas including approximate

keyword search [2], DNA/protein sequence search [44], plagiarism detection

[51, 55, 81], ebook annotation search [68], etc. In the literature, numerous

approximate string matching algorithms have been proposed to support the

efficient sequence similarity search in the above applications.

Simply consider a keyword search example. A search engine may have to

identify that names like “E. L. Wood” and “Emma Louise Wood” are poten-

tially referring to the same person in the searching results.

In bio-informatics, it is important for solving problems like looking for given

features in DNA chains or determining how different two genetic sequences are

[32]. In such applications, exact matching is of little use. This is because queried

gene sequence rarely matches existing gene sequences exactly: the experimental

measures have errors of different kinds and even the correct chains may have

small differences. Figure 1.2 shows a simple alignment example between two

DNA sequences.

1http://www.greyc.ensicaen.fr/iapr-tc15/index.php
2http://www.iam.unibe.ch/fki/databases/iam-graph-database
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CHAPTER 1. INTRODUCTION

Homo sapiens A C A A

Pan

T G G A G - A A A

A T A A T A CA G- A A A

Figure 1.2: A simple alignment example on DNA sequences

Client

Query

Annotations 

User Sever

Figure 1.3: An example of the ebook annotation search

Now consider another example. Due to the fast development of the Internet,

the number of public documents increases so rapidly that various copy detec-

tion techniques are proposed to protect the author’s copyright. Among these

techniques, string matching algorithms play important roles. Such as in [43],

they have developed a match detect retrieval system using such algorithms.

In an ebook social annotation system, a large number of paragraphs are

annotated and associated with comments and discussions3. For users who own

a physical copy of the book, it is a very interesting feature to allow them to

retrieve these annotations into their mobile devices using query by snapping. As

shown in Figure 1.3, queries are generated by users when they use mobile devices

to snap a photo of page in a physical book. The query photo is then processed

by an optical character recognition (OCR) program which extracts the text

from the photo as a sequence. Since the OCR program might generate errors

within the sequence, we need to perform an approximate query against the

paragraphs in the server to retrieve those paragraphs that had been annotated.

Obviously, most of the above interesting problems often require the sim-

ilarity search of extremely long sequences. Although exiting approaches are

effective on short sequence searches, they are less effective if there is a need

to process sequences that are longer like a page of text in a book. This dis-

sertation further investigates the long sequence similarity search problem from

the viewpoint of enhancing efficiency, and focuses on the KNN sequence search

problem as its more general usage in real applications.

3http://readpeer.com
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CHAPTER 1. INTRODUCTION

1.1.3 Tree Structure: A Specific Case of Graph

In modern database applications, tree structure has been widely used to model

the structured and semi-structured data. Typical examples of such data include

RNA secondary structures [53, 77], XML documents [72], etc. An example of

modeling a RNA secondary structure as a tree can be seen in Figure 1.4. Ma-

nipulating these tree structured data based on similarity also becomes essential

for many applications. Consider the example on RNA secondary structure.

Comparisons among the secondary structures are necessary to understanding

the comparative functionality of different RNAs. This is because different RNA

sequences can produce similar tree structures [53, 77]. In this case, algorithms

to compute similarity measure between two trees are required.

Figure 1.4: A tree model for a RNA secondary structure

Many existing works have studied the similarity measure and similarity

search on large trees in huge databases (e.g., [37, 72]). In this dissertation,

we see tree structure as a specific case of graph, and adapt the inverted index

proposed in [?] to support the storage of tree data in our 3-in-1 unified system.

1.1.4 Complex and Nested Structures

In the real world, complex objects are not always restrictively modeled as single

complex structures like sequences, trees and graphs. This study gives a new

definition of nested structure where basic complex structures will be used as

building blocks to construct more complex and nested structures.
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entry main

while i<11i=1 print sumsum=0 print i

call add call add

ain=sum bin=i sum=ret ain=i bin=1 i=ret

entry add

a=ain b=bin ret=result

result=a+b

legend

control

data

Figure 1.5: A nested program dependency graph

For example, in a generated dependency graph from program procedures,

the relationship between procedures can then be represented by creating a high-

er level graph that connects the lower level dependency graphs. Figure 1.5 shows

an example of such a simple nested graph with some vertices of program state-

ments and two specific vertices of lower level dependency graphs. The nested

structure poses new challenging research problems that do not exist in existing

complex structure systems. How to search the required and interesting nested

structures is a very important problem.

This study is also motivated by the real application on ebook social anno-

tation systems. In our systems, an important application requires to identify

ebooks with duplicate copies from different users for annotation sharing and

recommendation. For example, users with similar interests prefer to upload

the same ebook and an ebook can have multiple editions. This produces many

duplicate copies of an ebook. Consequently, the need arises to support efficient

document retrieval. Previous work models a web document as a simple graph

[52]. Although the simple graph model is useful in the document classification

tasks, it is not efficient to support the document retrieval task in our systems.

6
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In particular, for an ebook with multiple editions, different editions may have

different graph representations. In this dissertation, we use the nested structure

to model an ebook document. For instance, a typical document might contain

a title, authors, an abstract, and section headings. In this case, we can 1) use

sequences to represent the title, author names, the abstract, and section head-

ings; 2) convert each section heading into a vertex in the resulting document

graph; 3) add an edge from a preceding section heading to a succeeding section

heading. Therefore, a document is modeled as a nested graph with vertices of

sequences. Figure 1.6 shows an example of such a simple nested graph with

vertices of section heading sequences. With the nested graph representation,

similarity search on vertex sequences is necessary first to generate candidates

for further graph matching.

Introduction Related work Preliminaries

KNN Search AlgorithmsAbstract

Figure 1.6: A nested document graph

It can be seen that all the above wide spectrum of application domains

require proper storage and manipulation of complex and nested structures.

This motivates to develop a general 3-in-1 indexing mechanism to support the

efficient index and retrieval of complex structures.

1.2 Similarity Search on Complex Structures

Previous examples illustrate that similarity search on complex structures is very

important in many applications. Enormous efforts have been put into devel-

oping practical searching methods on complex structures. Given a database of

sequences, trees, or graphs, existing approaches attempt to find the most sim-

ilar objects to a query object. No matter which type of complex structures is

processed, the problems solved in most existing works can be categorized into

four groups:

1. Full search: find complex structures that are identical to the query struc-

ture;

7
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2. Substructure search: find complex structures that contain the query struc-

ture, or vice versa;

3. Full similarity search: find complex structures that are similar to the

query structure based on a predefined similarity measure;

4. Substructure similarity search: find complex structures that contain the

query structure based on a predefined similarity measure, or vice versa.

The above four kinds of queries are very useful within their own applications.

As an example, the first two query problems on graph data are often formulated

as search problems for graph or subgraph isomorphism [10, 29, 70]. However, in

practice, exact matching is often too restrictive, as real structured objects are

often affected by noise. Therefore, similarity searching for complex structures

has become a basic research problem.

In general, different applications have various meanings by “similarity”. For

example, there are many sequence similarity measures, such as hamming dis-

tance, overlap coefficient, edit distance, and so on4. Likewise, many similarity

measures have been proposed to evaluate the similarity between two graphs

such as maximum common subgraph and graph edit distance. In the litera-

ture, edit distance (ED) has become a standard measure for various types of

complex structures. In contrast to other measures, edit distance does not suffer

restriction and can be applied to many applications. Consequently, most ex-

isting works concentrate on similarity search problems based on edit distance.

In this dissertation, we generally formulate the problem of similarity search on

complex structures as below.

Definition 1.1. Similarity search on complex structures

Given a complex structure database D = {c1, c2, . . . , cn} and a query structure q,

find all the complex structures in D that are similar to q based on edit distance.

Hereafter, ci is a sequence, a tree, or a graph. In general, users are interested

in querying the complex structures within a specified tolerance based on edit

distance. The edit distance on complex structures has been fully investigated

in the literature [5, 20, 44]. Many existing works have proposed various defi-

nitions on sequence edit distance (SED), tree edit distance (TED), and graph

4http://en.wikipedia.org/wiki/Category:String_similarity_measures
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edit distance (GED). This dissertation considers all these definitions and gives

a general definition in edit distance on complex structures.

Definition 1.2. Edit distance on complex structures

Given two complex structures c1 and c2, the edit distance between them, de-

noted by λ(c1, c2), is defined as the cost of the least expensive sequence of edit

operations that can transform c1 to c2. An edit operation can be an insertion,

a deletion, or a substitution.

Program flowBiology data

sequence

databases

tree

databases

graph

databases

storage

…

access method

like query

access method access method

Image data Chemical compounds

Figure 1.7: Existing systems for searching complex structures

As shown in Figure 1.7, existing works have been done on processing com-

plex structures with isolated efforts targeted at specific domains. Although

such works have focused on proposing efficient complex structure searching

algorithms, they still suffer from certain drawbacks.

1. To support similarity search on graph databases, existing work follows a

filter-and-refine framework. Based on filtering techniques, complex graph

similarity computation can be reduced to enhance the graph search. Un-

fortunately, these methods have limitations. Some of them require enu-

merating sub-units exhaustively with high space and time overhead, and

some of them do not capture the attributes on vertices or edges which are

continuous values on graphs and often suffer from poor pruning power.

2. In sequence databases, the filter-and-refine framework works well in sup-

porting the similarity search based on a signature-based schema and in-
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verted files. However, these techniques are often constrained for answer-

ing similarity search on short sequences within a small distance threshold,

and have been shown to have poor performance in KNN search.

3. Existing works typically consider complex structures separately for differ-

ent applications. As shown in Figure 1.7, this results in wasting resources

for data storage and requiring high cost when a real system requires to

support the storage and retrieval of various types of complex structures.

Especially for those real systems with complex and nested structures, to

the best of our knowledge, no solution has been proposed.

Sequence data Tree data Graph data

Unified indexing mechanism

Sequence 

search
Tree search Graph search

Storage layer

Application layer

Index layer

Figure 1.8: The 3-in-1 system architecture

To overcome the drawbacks, this study was to develop a unified framework,

denoted by 3-in-1, that could support the efficient storage and retrieval of com-

plex structures. Figure 1.8 shows our system architecture. The 3-in-1 system

includes three layers: the storage layer, the index layer, and the application

layer. To implement such system, the most important work was to design a

unified indexing mechanism for supporting various complex structure search.

Consequently, this dissertation focuses on addressing similarity search problem-

s on complex structures using an inverted indexing structure. Therefore, the

work of this research was to:

• propose a novel effective inverted indexing method for handling efficient

graph similarity search.

10
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• extend the novel index developed for graph similarity search to support

efficient sequence similarity search, based on a novel pipeline framework.

• investigate the properties of complex and nested structures based on

graph model and sequence model, and develop a unified 3-in-1 invert-

ed index framework for various complex or nested structures.

The proposed 3-in-1 system may be useful for supporting different complex

structures. A unified indexing mechanism could provide a general interface

for various complex structures without redesigning their storage and retrieval.

Moreover, the developed system should open up new applications that involve

the model and search for a variety of complex or nested structures.

1.3 Summary of Contributions

In this dissertation, we seek to achieve the objectives described above on devel-

oping a unified 3-in-1 system that can support efficient storage and retrieval of

various complex structures. The main contributions are summarized as follows:

• Our first contribution is to develop an efficient indexing mechanism for

graph similarity search. We propose SEGOS, an indexing and query pro-

cessing framework for graph similarity search. First, an effective two-level

index is constructed off-line based on the star decomposition of graphs.

Then, a novel search strategy based on the index is proposed. Two algo-

rithms adapted from TA and CA methods [15, 57] are seamlessly integrat-

ed into the proposed strategy to enhance graph search. More specially,

the proposed framework is easy to be pipelined to support continuous

graph pruning. Extensive experiments that are conducted on two real

datasets show the effectiveness and scalability of our approaches.

• Our second contribution is to further extend the index developed for graph

similarity search to support efficient sequence similarity search. We focus

on the problem of finding KNN results in sequence databases due to its

more general usage in real applications. Unlike most existing works which

used short, exact n-gram matching in a filter-and-refine framework, our

approach allows us to use longer but approximate n-gram matching as

a basis for pruning off KNN candidates. Based on this breakthrough,

11
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we adopted a pipeline framework over a two-level index for searching

KNN in the sequence database. By coupling this framework together

with several efficient filtering strategies including the frequency queue and

the well-known Combined Algorithm (CA), our proposal brings various

enticing advantages over existing works, including 1) huge reduction on

false positive candidates which will incur the expensive cost of verification;

2) progressive result update and early termination; 3) easily parallelizable.

The results of extensive experiments on three real datasets show that our

framework is effective and efficient to support the KNN sequence search.

• Our third contribution is to develop a unified 3-in-1 system for support-

ing efficient storage and retrieval of various complex or nested structures.

We introduce a new concept of nested structure to model the complex

data which are not easy to be represented using the single complex struc-

tures. To support efficient processing of the nested structures, we design

a generic processing framework based on the inverted index structure.

The proposed framework is applied to support various complex or nested

structures. The input query can be a graph, a sequence, a tree, or a nest-

ed structure. We design the interface for answering queries for various

complex structures. We also present a demo to show the application of

the proposed unified framework on a real ebook social reading system5.

Our works on graph similarity search and sequence similarity search were

previously published in [67] and [68]. The real system for ebook social reading

is published in http://readpeer.com/.

1.4 Thesis Organization

According to our contributions to solve the three problems, the rest of the thesis

is organized as follows:

In Chapter 2, we give a thorough literature review of complex structure

similarity search techniques as well as similarity measures and similarity search

algorithms. We also provide all the preliminary concepts and notations used

in the dissertation. For the graph approximate matching problem, we list ex-

iting works based on the similarity measure that they adopted. While for the

5http://readpeer.com/
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sequence similarity search problem, we give a comprehensive survey based on

the index mechanism that they employed. We also list several works on tree

similarity search based on the filtering techniques they used. We give a simple

review on the 3-in-1 unified indexing problem, and introduce its application

in our practical ebook social reading system. We also present several existing

ebook reading tools.

In Chapter 3, we address the problem of similarity search on graph databas-

es. We aim to develop a novel inverted index to speed up the graph similarity

search. A two-level inverted index is first constructed based on the star de-

composition method, and preprocessed to maintain a global similarity order

both for decomposed stars and original graphs. With this blessing property,

graphs can be accessed in increasing dissimilarity, and any GED based lower

or upper bound can be used as filtering features. Consequently, we propose a

novel pipeline search framework. Two algorithms adapted from TA and CA

are seamlessly integrated into the framework, and it is easy to pipeline the

proposed framework to process continuous graph pruning.

In Chapter 4, we study the problem of k-nearest neighbor sequence search

based on the edit distance. We propose a novel pipeline approach using ap-

proximate n-grams. The approach follows a filter-and-refine framework. In

the filtering phase, we develop a novel filtering technique based on counting

the number of approximate n-grams. We also design an efficient searching al-

gorithm with the frequency queue and the CA strategy. The frequency queue

supports our proposed filtering techniques by reducing the number of candidate

verification. By using the summation of gram edit distances as the aggregation

function, the CA based search has an optimal feature of early termination which

helps to invoke the halting condition of the whole pipeline framework. Our pro-

posed filtering strategies have significant performance on the KNN search, and

the pipeline framework is easy to support parallelism strategies.

In Chapter 5, we address some real challenging problems that exist in our

real ebook social reading system, such as the annotation search problem, the

ebook copy detection problem, and so on. To solve these problems, we introduce

a new concept of nested structure and develop a unified indexing and searching

framework to support efficient complex and nested structure search. We also

present our ebook reading system which provides a friendly and collaborative

annotation tool for social users.
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In Chapter 6, we conclude remarks and discuss possible future extensions

of the current work.
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CHAPTER 2

Literature Review

Many existing works have been done on processing complex structures in various

domains. These are isolated efforts to target at specific complex structures, such

as sequences, trees, and graphs. In subsequent sections, we first give an overview

of related works on graph similarity search problem, sequence similarity search

problem, and tree similarity search problem. After that, we study the 3-in-1

search problem, and present several existing ebook social reading tools.

2.1 Graph Similarity Search Problem

As mentioned in previous chapter, this dissertation focuses on the graph sim-

ilarity search problem based on edit distance. Since graph edit distance is

important for supporting the graph similarity search, we first give a review on

this graph similarity measure. However, existing works on this problem also use

other similarity measures. To present a more complete study, we discuss and

category different graph similarity search algorithms based on various similarity

measures they adopted. We also give a simple review on related works on the

graph isomorphism problem which only support the graph exact matching.

2.1.1 Graph Edit Distance

To support graph search based on similarity, a number of similarity measures

have been proposed in the literature (e.g., [7, 17, 39]). Among them, graph edit
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distance (GED) is the most widely used measure for evaluating graph similarity.

The GED problem has been extensively studied in many previous works, and

a detailed survey can be found in [20]. GED is widely defined as the minimum

number of edit operations needed to transform one graph into another. An edit

operation can be an insertion, a deletion or a substitution of a vertex/edge.

Algorithms for computing the GED can be classified into two classes: exact

and approximate algorithms.

Exact algorithms calculate the exact GED between two graphs. Many opti-

mal error-correcting subgraph isomorphism algorithms have been proposed, and

A∗-based algorithms [28] are the most widely used ones. However, since GED

computation is in NP-hard [21], these algorithms have exponential complexity

and are only feasible for small graphs [46].

To avoid expensive GED computations, approximate algorithms are devel-

oped to compute lower and upper bounds of GED for graph filtering. In early

works [1] and [31], GED computation was formulated as a BLP problem. They

respectively computed a lower bound and an upper bound of GED with time

complexity of O(n7) and O(n3). A recent method proposed in [75] computed

both lower and upper bounds in cubic time, by breaking graphs into multi-

sets of sub-units, and applying a novel algorithm to bound GED for filtering.

Obviously, they take polynomial time on GED bound computation, which can

efficiently reduce the total GED computation time by early pruning. However,

such algorithms suffer from the scalability problem. Specifically, a full scan of

the whole database brings in poor scalability in databases with a large number

of graphs. To solve this problem, it is natural to consider building an effective

index structure to reduce GED computations for the graph similarity search.

2.1.2 Graph Isomorphism Search

In graph isomorphism and subgraph isomorphism search, the aim is to find

graphs that are either isomorphic or contain a subgraph that is isomorphic to

the query graph. In this regard, the matching must be exact and there is no

query relaxation of any form. Algorithms for isomorphism search includes FG-

index [10], TreePi [78] and Tree+Delta [80]. These methods differ only in

the features that they use for pruning candidates. These techniques however

cannot be easily generalized to handle graph similarity search which requires
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certain amount of error tolerance in the matching graphs.

2.1.3 Graph Similarity Search

There is a great amount of literatures on graph similarity search. However,

few developed indexes for searching by graph edit distance. Here we list these

works based on the similarity function that they adopted.

Feature Counting

Since graph alignment is NP-hard, various heuristical feature counting methods

have been developed to compare graphs. GraphGrep proposed in [22] com-

pares graphs by counting the number of matching paths between two graphs.

Signatures are generated for all the paths in a graph up to a threshold length

and inserted into an index to facilitate searching and counting of paths. In

[58], features are generated by merging each node in a graph together with its

neighbouring vertices information. Graph similarity is judged by counting the

number of features that are sufficiently from both graphs and a B+-tree is used

to index the features of the graphs in the database. However, none of these

methods can guarantee that edit distance is minimized for graphs returned as

query results.

Edge Relaxation

Given two graphs g1 and g2, if c12 is the maximum common subgraph of g1 and

g2, then the substructure similarity between g1 and g2 is defined by |E(c12)|
|E(g2)| and

1− |E(c12)|
|E(g2)| is called the edge relaxation ratio. In [70], the gIndex is developed to

support similarity search by edge relaxation. The gIndex adopts discriminative

frequent subgraphs as basic indexing structures and involves complex feature

extraction for each query. Adopting edge relaxation as a similarity measure

implicitly excludes node substitution as a graph edit operation [75] and is thus

not general enough to handle search by edit distance.

Edit Distance

As far as we know, there are few works that provide an index for searching

by graph edit distance. The C-Tree [29] is one of such pieces of work. In

C-Tree, an R-tree like index structure is used to organize graphs hierarchically

in a tree. Each internal node in the tree summarizes its descendants by a graph

closure. By approximating the graph edit distance against the graph closures

that are stored in the internal nodes, C-Tree tries to avoid accessing individual
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graphs that are too dissimilar based on the GED. A most recent work κ-AT

[63] decomposes graphs into κ-adjacent tree patterns and indexes them using

inverted lists. A lower bound is also proposed to filter out graphs that do not

sharing sufficient common patterns with a query graph.

In this dissertation, we focus on the graph similarity search problem based

on edit distance. Although two state-of-the-art works, C-Tree [29] and κ-AT

[63], have been made some progress on solving this problem, they still suffer

several serious limitations. The κ-AT has been shown to be efficient on pruning

using the inverted index. However, the GED bound they derived is so loose

that it generates too many false positives which will incur the expensive cost

of verification. The C-Tree takes more filtering time than the κ-AT to reduce

the false positive candidates, which can save the verification cost. However,

the filtering power of this method is still poorer than that of those works with

tighter GED bounds [1, 31, 75]. As described in Section 2.1.1, there is no

indexing technique that has been proposed to support the tighter GED bounds.

This motivates our first work on graph similarity search to design such a novel

indexing method. We will illustrate this work in Chapter 3.

2.2 Sequence Similarity Search Problem

Sequence similarity search based on edit distance is a well-studied problem

(e.g., [39, 47, 69]). An extensive survey had been conducted very early in [44].

We first give a review on sequence edit distance, and then summarize exiting

sequence similarity search algorithms by the various filtering techniques they

have employed.

2.2.1 Sequence Edit Distance

To compute the exact sequence edit distance (SED), existing algorithms can

be classified into three groups: dynamic programming, automata, and bit-

parallelism [44]. Among them, dynamic programming algorithms are the most

well-known algorithms for computing the exact SED. Given two sequences s1

and s2, the basic idea computes λ(s1, s2) based on dynamic programming. A

two-dimensional cost matrix M0..|s1|,0..|s2| is first used to hold edit distance val-
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ues, where Mi,j represents the best score to match s1[1, i] to s2[1, j]
1. It is

computed as follows:

Mi,j = min


Mi−1,j−1 + δ(s1[i], s2[j]) substitute/copy

Mi−1,j + δ(s1[i], ε) insert

Mi,j−1 + δ(ε, s2[j]) delete

where δ is an arbitrary distance function on characters. Let M0,0 = 0,

Mi,0 = i and M0,j = j, representing distances between two sequences including

empty sequence. A dynamic programming algorithm fills each cell of the matrix

by computing its upper-left, upper, and left neighbors. It takes O(|s1||s2|) time

and O(min(|s1|, |s2|)) space. Then we finally obtain λ(s1, s2) =M|s1|,|s2|.

Many existing works focus on speeding up the dynamic programming com-

putation, the most efficient algorithm requires O(|s|2/ log |s|) time [39] for com-

puting the SED, and only O(τ |s|) time for testing if the SED is within some

threshold τ [79].

2.2.2 Sequence Similarity Search

As described above, early similarity search algorithms are based on online se-

quential search, and mainly focus on speeding up the exact sequence edit dis-

tance (SED) computation using the above exact SED computation algorithms.

However, these online algorithms still suffer from poor scalability in terms of se-

quence length or database size since they need a full scan on the whole database.

To overcome this drawback, most recent works follow a filter-and-refine frame-

work. Many indexing techniques have been proposed to prune off most of the

sequences before verifying the exact edit distances for a small set of candi-

dates [45]. There are three main indexing ideas: enumerating, backtracking

and partitioning.

The first idea is introduced for supporting specific queries when strings are

very short or the edit distance threshold is small (e.g., [3, 66]). It is clear that

enumeration usually have high space complexity and is often impractical in real

query systems.

The second idea is based on branch-and-bound techniques on tree index

structures. In [9, 64], a trie is used to index all strings in a dictionary. With

1The position of the first character in a sequence is 1 instead of 0.
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a trie, all shared prefixes in the dictionary are collapsed into a single path, so

they can process them in the best order for computing the exact SEDs. Sub-trie

pruning is employed to enhance the efficiency of computing the edit distance.

However, building a trie for all strings is expensive in term of both time and

space complexity. In [79], a B+-tree index structure called Bed-tree is proposed

to support similarity queries based on edit distance. Although this index can

be implemented on most modern database systems, it suffers from poor query

performance since it has a very weak filtering power.

To improve filtering effectiveness, most existing works employ the third

idea that splits original strings into several smaller signatures to reduce the

approximate search problem to an exact signature match problem (e.g., [8,

25, 35, 36, 38, 48, 56, 61, 65, 73]). We further classify these methods based

on their preprocessing methods into the threshold-aware approaches and the

threshold-free approaches.

The threshold-aware approaches have been developed mainly based on the

prefix-filtering framework. Recent work in [65] performed a detailed studies

of these methods [38, 48, 65] and conclude that the prefix-filtering framework

can be enhanced with an adaptive framework. These methods typically work

well only for a fixed similarity threshold. If the threshold is not fixed, two

choices exist. First, the index has to be built online for each query with a

distinct threshold. This could be time consuming and always be impractical in

real systems. Second, multiple indexes are constructed offline for all possible

thresholds. This choice has high space complexity especially for databases with

long sequences since there can be many distinct edit distance thresholds.

The threshold-free approaches generally employ various n-gram based sig-

natures. The basic idea is that if two strings are similar they should share

sufficient common signatures. Compared to the threshold-aware approaches,

these methods generally have much less preprocessing time and space over-

head for storing indexes. However, if we ignore the preprocessing phrase, these

methods have been presented to have the worse performance for supporting

edit distance similarity search [48]. This is because they often suffer from poor

filtering effectiveness through the use of loose bounds.

Although such approaches may be efficient for approximate searching with

a predefined threshold, limited progress has been made for addressing the KNN

search problem. However, the KNN search problem has wider usage in practice.
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2.2.3 KNN Sequence Search

To solve the KNN sequence search problem, existing efforts utilize two kinds of

index mechanisms [14, 62, 74, 79].

The first index mechanism is adapted from inverted list based index [62, 74].

The KNN search algorithm employs the same intuition by selecting candidates

with sufficient number of common n-grams. The difference between them is the

list merging technique. In [62], the MergeSkip algorithm is employed to reduce

the inverted list processing time. A predefined threshold based algorithm is

also proposed by repeating the approximate string queries multiple times to

support KNN search. In [74], the basic length filtering is used to improve the

inverted list processing.

Another index mechanism is based on the tree structure [14, 79]. In [79],

a B+-tree based index is proposed to index database sequences based on some

sequence orders. The tree nodes are iteratively traversed to update the lower

bound of edit distance and the nodes beyond the bound are pruned. In the most

recent work [14], an in-memory trie structure is used to index sequences and

share computations on common prefixes of sequences. A range-based method

is proposed by grouping the pivotal entries to avoid duplicated computation-

s in the dynamic programming matrix when the edit distance is computed.

Although such approaches are effective on the short sequence search, their per-

formances degrade for long sequences since the length of the common prefix is

relatively short for long sequences and the large number of long, single branches

in the trie brings about large space and computation overhead.

To overcome the drawbacks of the above existing work, this dissertation

proposes the second work which attempts to derive tighter SED bounds and

extend the inverted index proposed for the first work to enhance the sequence

search. The detail of this work will be presented in Chapter 4.

2.3 Tree Similarity Search Problem

Exiting works on the tree similarity search problem have focused on proposing

efficient indexing techniques and filtering algorithms. As this dissertation sees

tree as a specific case of graph, we present a simple overview on the related

works which help to build our final unified 3-in-1 system.
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To compute the exact tree edit distance (TED), numerous algorithms are

proposed in the literature, and a complete survey can be found in [5]. Comput-

ing TED has been shown to be in NP-complete in previous works [5]. Although

several works have introduced the concept of constrained edit distance and pro-

posed polynomial algorithms, due to the high computational complexity, it is

still impractical to directly use TED for searching huge tree databases. Conse-

quently, previous efforts are often put into finding efficient filtering methods.

Most existing searching methods follow a filter-and-refine framework. They

aims to find efficient and tight bounds to guarantee the filtration efficiency. In

general, two main ideas are used: transforming complex trees into simple se-

quences by using SED to bound the TED (e.g.,[26, 37]), and adapting q-gram

methods by breaking trees into smaller sub-units (e.g., [72]). The sequence-

based approach first transforms original trees into their corresponding preorder

and postorder traversal sequences. Then the SED of two sequences is used

as the bound of the TED. Pairs of trees from heterogeneous repositories are

matched when their SEDs are within a threshold. As previous review on SED,

the quadratic time of SED computation is also not so efficient for every pair

comparison in the whole database. Differently, the q-gram like approach breaks

trees into a set of smaller sub-units (like binary branches in [72]). Based on

storing these sub-units using inverted index, trees are mapped into an approx-

imate numerical multidimensional vectors which encodes the original structure

information and distance of vectors are used as a lower bound of TED. This

index mechanism has been shown to be effective on supporting the tree simi-

larity search [72]. In this dissertation, we see tree structure as a specific case

of graph, and adapt the inverted index proposed in [72] to support the storage

of tree data in our 3-in-1 unified system.

2.4 3-in-1 Unified Indexing Problem

Existing systems process various types of complex structures with isolated ef-

forts, targeting at specific domains. Yan et al. [27] investigated the importance

of mining and searching problems in complex structures like graphs, trees, and

networks. However, they still cater to the storage of complex structures sepa-

rately. This results in a waste of resources for redesigning the index mechanism

and developing numerous query processing algorithms for each specific appli-
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cation. This dissertation aims to develop a unified storage system.

Based on the above literature review, we observe that the storage method

based on inverted lists can be used to solve the similarity search problems on

various types of complex structures. We summarize the idea of such approaches

as “shotgun and assembly”. The idea is that complex structures will be first

broken down into smaller units, such as q-grams for sequences (e.g., [8, 35]),

binary branches for trees (e.g., [72]), and stars for graphs (e.g., [75]). Then,

smaller units are stored in inverted lists with each inverted list keeping track of

references from complex structures to the corresponding smaller unit. Similar-

ity search on such complex structures can be effectively performed by breaking

them down into smaller units, after which searches are performed by retrieving

these smaller units individually in the inverted lists and assembling them. Con-

sequently, this dissertation propose the third work to adopt this idea to design

a unified 3-in-1 inverted index storage for various complex structures.

2.4.1 The Storage of Inverted Index

Many existing works have focused on proposing an appropriate storage schema

for creating and managing inverted files. Such approaches are mainly developed

to support efficient information retrieval, and a earlier comprehensive survey

can be found in [82].

Several works directly used the file systems to store and manage inverted

files. A most recent work [4] has designed a disk-based method to support

efficient sequence similarity search. In such approaches, the most challenging

problem would be the cost of update. As inverted lists are stored in sequences

of blocks, the focus on reducing update costs thus may lead to increased space

consumption and slower query evaluation. Considering this problem, [76] has

observed that inverted indexes can also be implemented in commercial relational

database systems.

Many works used the relational database management system (RDBMS)

(e.g., [6, 12, 13, 16, 23, 41, 49, 54, 59]) to manage inverted files. In these

works, two main conventional storage structures are used. We call them as

the table-based approach and the tree-based approach. The table-based approach

[6, 23, 54] uses a persistent object store to manage inverted files. That is to

store a table of records consisting of a keyword and a posting in a database.
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Such approaches can simplifies implementation and use intelligent caching or

contiguous storage to improve information retrieval. However, they still suffer

low query performance and require excessive storage space due to redundancy

of keywords. Differently, the tree-based approach [12, 13, 16, 41, 49, 59] uses

tree structures instead of database tables for storing the inverted index. Such

approaches has focused on various important issues such as index compression,

incremental updates and distributed query performance. Especially, this ap-

proach is also adopted in [24] where n-grams are stored in a relational database

to support approximate string join. This dissertation will further investigate

this problem in Chapter 5.

2.4.2 Social Reading Tools

As mentioned in Chapter 1, the unified index mechanism helps to solve many

real challenging problems in social reading systems. Here, we present a review

on existing ebook reading tools.

The development of digital publishing provides new possibilities for users to

share their ideas and connect to each other [40]. Early e-book readers support

several simple features, such as permitting a user to highlight text, write sticky

notes, and track annotations. For example, Sony Reader is introduced in 2006,

which sets the standard for eInk devices2. With such devices, users can only

track previous annotations without any feedback by commenting back. The

need arises to provide an information sharing tool for users to leave their com-

ments and start conversations with other users. Some later reading systems

have been developed to allow users to share their readings and discuss books,

such as Goodreads3 and Shelfari4. Goodreads allows users to create short book

reviews and share comments with their friends; while Shelfari focuses on ex-

citing users to find those users with common reading interests. However, such

sites show the comments of users separately from original books. Differently

from e-book readers, such sites do not allow users to see the book contents.

Consequently, recent social reading systems focus on developing a user-

friendly platform by combing the features of highlighting with the capability

of social networking. Since 2008, more and more reading sites have been pub-

2http://en.wikipedia.org/wiki/Sony_Reader
3http://www.goodreads.com
4http://www.shelfari.com
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lished, such as BookGlutton5, Readmill6, ReadSocial7, and so on. Although

such systems have certain successful features by providing users various ser-

vices, limited progress has been made for reading data management and re-

trieval. In particular, with the development of web browser plugins and mobile

applications, a cross-system information management tool is required. ReadSo-

cial has offered an interface for users to create virtual group on top of different

reading systems, and users can share their comments anywhere in any group by

group tags. However, such systems require users to be very familiar with group

tags or contents. Otherwise, it may require quality group recommendation, and

challenging technical considerations on reading recognition. To solve such chal-

lenging problems, a most recent social reading tool requires novel techniques.

In this dissertation, we will illustrate how to employ the unified storage system

for efficiently managing information in such social reading systems. The demo

system for social reading will be presented in Chapter 5.

5http://www.bookglutton.com
6https://readmill.com
7https://www.readsocial.net
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CHAPTER 3

An Efficient Graph Indexing Method

Since graph is the most general model and graph similarity search is the most

hard and challenging problem, this work first addresses a novel efficient indexing

method for handling the graph similarity search. In this work, a two-level

inverted index is introduced together with a set of effective and efficient pruning

techniques. Comprehensive experiments on two real datasets also show that the

proposed method outperforms the state-of-the-art works.

3.1 Overview

As mentioned in Chapter 1, graphs are widely used to model complex entities

in many applications, and managing a large amount of graph data is a very

challenging problem. It is essential to process graph queries efficiently. The

classical query processing is often formulated as the (sub)graph isomorphism

problem. However, this kind of exact matching is too restrictive, as real objects

are often affected by noises. Therefore, similarity search has become a basic

operation in graph databases.

This work has focused on the graph similarity search problem based on edit

distance. This problem can be described as follows: given a graph database

D = {g1, g2, . . . , g|D|} and a query graph q, find all gi ∈ D that are similar

to q within a GED threshold denoted by τ . Scanning the whole database D

to compute the GED between q and each gi ∈ D is very expensive, due to
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the high complexity of GED computation, which is proved to be in NP-hard.

Facing this difficulty, several existing works use upper and lower bounds of

GED to prune off unlikely candidates. Although these methods allow more

efficient bound computations, they still suffer from certain drawbacks. First,

GED bound computations are still very expensive. Second, they do not take

full advantage of indexes, and require a full scan of the whole database. These

bring in poor scalability in databases with a large number of graphs.

Facing these difficulties, it is natural to consider building an effective index

structure to reduce complex computations. Our basic idea is to break graphs

into sub-units (sub-unit is used as a small substructure derived from a graph in

this work), and to index them as filtering features using inverted lists. In our

approach, we decompose each database graph into sub-units, and each sub-unit

contains a vertex and discriminative information about its neighboring vertices

and edges. To avoid exhaustive enumerations, discriminative information for

a sub-unit only contains the most neighboring information. To enhance filter-

ing power, the decomposed sub-units in our method are compared against the

sub-units generated from the query graph using the Hungarian algorithm. For-

mulated as a bipartite matching problem, each sub-unit in database graphs can

have only partial matching with each sub-unit in the query graph. The need

arises to find highly similar sub-units that not only match exactly but also are

similar to the sub-units from the query.

To support such functionality, we propose a novel query processing frame-

work, called SEGOS (SEarching similar Graphs based On Sub-units).

In this framework, a two-level inverted index is constructed based on the de-

composed sub-units. In the upper-level index, sub-units derived from the graph

database are used to index all graphs using inverted lists. In the lower-level

index, each sub-unit is further broken into multiple vertices and indexed in in-

verted lists. This two-level inverted index is preprocessed to maintain a global

order for sub-units and graphs. This order ensures that sub-units or graphs

can be accessed in increasing dissimilarity to a query sub-unit or graph. Given

a query, our strategy follows a novel, cascaded framework: in the lower level,

top-k similar sub-units to each sub-unit of the query can be returned quickly; in

the upper level, graph pruning is done based on the top-k results from the lower

level. Two search algorithms, based on the paradigm of the TA and the CA

methods are proposed for retrieving sub-units and graphs. By deploying the
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summation of sub-unit distances as the aggregation function, sorted lists can

be easily constructed to guarantee the global orders on increasing dissimilarity

for graphs. The CA based methods can enhance similarity search by avoiding

access to graphs with high dissimilarity. It is clear that the top-k sub-units

returned from the lower-level sub-unit search can be automatically used as the

input to the upper-level graph search. Therefore, these two search stages are

easy to be pipelined to support continuous graph pruning.

In summary, the main contributions of this work are:

• We propose a novel two-level inverted index to speed up graph similarity

search. The lower-level index is first used to efficiently find top-k similar

sub-units. With the top-k results, the upper-level index is retrieved to

construct a list of graphs that are sorted based on the similarity score.

• We propose a better search strategy following a cascade framework using

the novel index. Search algorithms adapted from the TA and the CA

methods [15] are proposed to improve efficiency by dramatically reducing

accesses to sub-units and graphs with high dissimilarity.

• SEGOS can be applied to enhance existing works like C-Star [75] de-

veloped for evaluating graph edit distance using sub-units.

• SEGOS is easy to be pipelined into three processing stages: the lower-

level top-k sub-unit search, the upper-level graph sorted list processing,

and the dynamic graph mapping distance computation.

3.2 Indexing and Filtering Techniques

In this work, we focus on a database D of undirected, simple graphs whose

vertices are labelled. A graph is defined as a 4-tuple g = (V,E,Σ, l), where V

is a finite set of vertices, E ⊆ V × V is a set of edges, Σ is a finite alphabet of

vertex labels and l : V → Σ is a labelling function assigning a label to a vertex.

Figure 3.1 shows an example of a graph database with five data graphs from

g1 to g5. The size of a graph g, denoted by |g|, is the number of vertices in g,

and other common notations used in this work can be found in the “LIST OF

SYMBOLS” in Page xii.
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Figure 3.1: A sample graph database

3.2.1 Graph Decomposing Method

To estimate GED bounds effectively, we employ the idea proposed in [75] to

decompose a graph into multiple sub-units like star. A star is defined as a

labelled, single-level and rooted tree which can be represented by a 3-tuple

st = (r, L, l), where r is the root, L is the set of leaves and l is a labelling

function. For each vi in the graph, we construct a star sti = (vi, Li, l), where Li

is the label set of vi’s neighbors. A graph g with |g| vertices can be decomposed

into a multiset of |g| stars. In Figure 3.2, two graphs g1 and g2 are transformed

into two star representations: S(g1) and S(g2). With this transformation, we

cite a lemma given in [75] to compute the edit distance between two stars.

Lemma 3.1. (STar Edit Distance)(STED) Given two stars st1 and st2, the

edit distance between them is computed as

λ(st1, st2) = T (r1, r2) + d(L1, L2)

where T (r1, r2) = 0 if l(r1) = l(r2), otherwise T (r1, r2) = 1.

d(L1, L2) =
∣∣|L1| − |L2|

∣∣+M(L1, L2)

M(L1, L2) = max{|ΨL1 |, |ΨL2 |} − |ΨL1 ∩ΨL2 |

ΨL is the multiset of vertex labels in L. Assuming that the alphabet Σ

of vertex labels has a total order, we can compute STED between two stars

in only Θ(n) time, if ΨL1 and ΨL2 are sorted. For example, to compute the

distance between st0 of S(g1) and st1 of S(g2) in Figure 3.2, it is obvious that

T (r1, r2) = 0, for l(r1) = l(r2) = a. Having |L1| = 4, ΨL1 = {b, b, c, c},
|L2| = 5, and ΨL2 = {b, b, c, c, d}, we can compute the STED as λ(st0, st1) =

0 + |4− 5|+ 5− 4 = 2.
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Figure 3.2: Mapping distance computation between g1 and g2

Definition 3.1. (Mapping Distance) Given two star representations S(g1) and

S(g2) with the same cardinality, assume P : S(g1)→ S(g2) is a bijection, then

the distance between them is defined as

µ(g1, g2) = min
P

∑
sti∈S(g1)

λ(sti, P (sti))

The computation of mapping distance is equivalent to finding an optimal

mapping between two star representations. Zeng et al. [75] constructs a weight-

ed matrix for each pair of stars from two graphs, and applies the Hungarian

algorithm [33] to get the optimal solution in cubic time. The weight between

two stars is the STED. If two graphs are of different size, ϵ node is inserted

for normalization. In Figure 3.2, the bottom left matrix M(S(g1), S(g2)) is the

weight matrix between star sets S(g1) and S(g2). Cells in gray denote the opti-

mal matching between S(g1) and S(g2), i.e. µ(g1, g2) = 2+0+2+0+0+5 = 9.

To have a clear view, two sets of stars are shown, and the optimal matching is

marked with solid arrows.

[75] shows that the mapping distance can be used to bound GED effectively,

and a lower bound Lm(g1, g2) and a upper bound Um(g1, g2) can be derived as

below.
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Lemma 3.2. Suppose µ(g2, g1) is the mapping distance between g1 and g2.

Then,

Lm(g1, g2) =
µ(g2, g1)

max{4, [max{δ(g1), δ(g2)}+ 1]}
≤ λ(g1, g2)

Lemma 3.3. Suppose P is a mapping between V (g1) and V (g2) obtained from

Hungarian algorithm when computing µ(g1, g2). Then Um(g1, g2) = C(g1, g2, P )

≥ λ(g1, g2), where C(g1, g2, P ) is the cost to transform g1 to g2 with P [31].

This work employs the above decomposing method to build the index, here-

after, a sub-unit refers to a star structure, and STED can also denote the

sub-unit edit distance. The sub-unit is also represented as a sequence of labels

for simplicity. For example, in Figure 3.5, “st0: abbcc” represents the sub-unit

st0 as its label sequence of “abbcc”. As shown above, computing mapping dis-

tance takes cubic time on graph size. The existing filtering strategy proposed

in [75] suffers from poor scalability as it has to scan a large graph database, and

compute mapping distance between each data graph and the query graph for

pruning. Facing this problem, two ways can be developed to enhance the graph

search: using dynamic mapping distance computation and a better filtering

strategy.

3.2.2 Dynamic Mapping Distance Computation

To reduce complex mapping distance computations, this work proposes a novel

computing method as below.

Theorem 3.1. Given two graphs g1 and g2 and their sub-unit representations

S(g1) and S(g2). Suppose S
′(g2) contains several sub-units derived from g2 and

S ′(g2) ⊆ S(g2). Then we have

µ(S(g1), S
′(g2)) ≤ µ(g1, g2)

In Figure 3.3, M(S(g1), S
′(g2)) is a different cost matrix defined for com-

puting µ(S(g1), S
′(g2)). For the ϵ sub-unit, we define its distance to any ex-

isting sub-unit sti in S(g1) as 0 instead of λ(sti, ϵ). We apply the Dynamic

Hungarian [60] to find the minimum cost and matching on M(S(g1), S
′(g2)).

After that, the incremental part for computing full µ(g1, g2) uses the original

definition of cost matrix with λ(sti, ϵ). With this definition, it is clear that

µ(S(g1), S
′(g2)) ≤ µ(S(g1), S(g2)).
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Figure 3.3: An example for computing µ(S(g1), S
′(g2))

This property allows us to compute bounds for the GED between two graphs

even if only a subset of a graph’s sub-units are available. If µ(S(q), S ′(g)) is

sufficiently large, there is no need to compute the bound based on the full set

of sub-units between graphs.

3.2.3 CA-based Filtering Strategy

To reduce the complex computations of GED bounds, it is natural for us to con-

sider a more efficient filtering strategy. In this work, we propose a novel search

strategy based on the paradigm of the TA and the CA methods proposed in

[15]. As far as we know, such TA and CA based methods had never been pre-

viously applied for matching complex structures like sequences (using qgrams)

[36], trees (using binary branches) [?], or graphs [22, 29, 70, 78, 10, 63]. This

is because all these previous methods simply use the number of exact matches

among the sub-units to bound the edit distance and compute the exact edit

distance for all candidate that pass through the filter. For cases in which such

filters are not effective (eg. range query with a very loose edit distance thresh-

old), our approach here provide an elegant way to avoid computing the exact

edit distance for large number of candidates.

Figure 3.4 shows a simple example that helps to illustrate our CA-based

filtering strategy for range query on the graph database in Figure 3.1. Consider

the three score sorted lists on the left which consist of sub-units from q. Each

entry in the lists records the graph identity gi and the STED between the

corresponding sub-unit in gi and the sub-unit of q. We use the summation of

STEDs as the score aggregation function and assume that for an unseen graph
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Figure 3.4: A simple example for CA-based filtering strategy

g, µ(g, q) ≥ ω where ω is the summation of STEDs seen currently (we also

call this assumption as monotonic assumption). Then, in this example, the

search algorithm halts when ω = λ1 + λ2 + λ3 = 5 > τ ∗ δ′(= 4). Hereafter,

we denote δ′ = max{4, [max{δ(q), δ(D′)} + 1]} where D′ is the set containing

all unseen graphs. Here, g4 and g5 are filtered out without computing their

mapping distances, since their values of µ are no less than ω. From Lemma 3.2,

for an unseen graph g with µ(g, q) > τ ∗ δ′, we have λ(g, q) > τ and g can be

safely filtered out.

Accordingly, our search strategy must overcome the following challenges: 1)

An effective indexing structure is needed for constructing the score-sorted lists.

2) Since graphs in score indexing lists are sorted according to their STEDs to

the sub-unit of the query, an efficient search algorithm must be developed to

obtain sub-units that are highly similar to the query sub-unit. 3) Score indexing

lists must be sorted to guarantee the correctness of halting based on monotonic

assumption of the TA or the CA based search strategy.

3.3 Two-Level Inverted Index

To handle the above problems, a two-level inverted index based on the sub-unit

decomposition is constructed.

3.3.1 The Upper-Level Inverted Index

Given a database with graphs and their sub-unit representations, an inverted

index can be constructed. For example, given a database of g1 and g2 in Figure

3.2, we can construct an inverted index for all sub-units derived from data
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graphs in this database as shown in Figure 3.5. This index is made up of two

main parts: an index for all distinct sub-units from the given database, and

an inverted list below each unit. Here, the sub-units are sorted in alphabetical

order. Each entry in the inverted lists contains the graph identity and the

frequency of the corresponding unit. All lists are sorted in increasing order of

the graph size. In Figure 3.5, since |g1| < |g2|, g1 is located before g2 in the

lists.

Figure 3.5: Upper-level inverted index for graphs

With this index, it is very convenient to fetch out graphs that contain a

given sub-unit. Then, given a query, if we can quickly access sub-units that

are highly similar to the sub-units from the query in increasing dissimilarity,

graphs can also be accessed in globally increasing dissimilarity to the query.

Therefore, a lower-level index for sub-units is built.

3.3.2 The Lower-Level Inverted Index

We construct the lower-level inverted index for all sub-units based on vertex

labels. A sub-unit is broken into a multiset of labels excluding its root label.

For example, st0 in Figure 3.5 is decomposed into Ψst0 = {b, b, c, c}. With this

decomposition, it is easy for us to build an inverted index for sub-units based

Figure 3.6: Lower-level inverted index for sub-units
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on labels. The index also contains two components: a label index in increasing

order and inverted lists below labels recording the sub-unit identities and the

frequencies of corresponding labels in the leaves of the sub-unit. Entries in each

list are first grouped based on the leaf size of |Ψst| and then sorted in decreasing

frequencies within each group. For example, in Figure 3.6, the list below label

b has three groups sorted in increasing leaf size. In the first group, st2, st5 and

st6 all have leaf sizes of 2. In the second group, st0 and st3 have leaf sizes of

4. In the last group, st1 and st4 have leaf sizes of 5. In each group, frequencies

are sorted decreasingly. Considering in the last group, the frequency of st1 is

2 which is larger than that of st4 (=1). Moreover, the last list without a label

index is an extended list storing the sizes of all sub-units in increasing leaf size.

With this index, it is convenient to search similar sub-units for a query

sub-unit based on the sub-unit edit distance. We will present the details of the

search algorithm in next section.

3.3.3 Index Maintenance

While employing a more complex two-level index in this work, it is worth noting

that both these levels are inverted indexes and the features like sub-units and

labels can be easily generated from individual graphs. As observed in [76], such

inverted indexes can be implemented either with a special purpose inverted list

engine or in commercial relational database systems. For the latter case, we

will be building on various query optimization, concurrency control techniques

that had been developed over the years 1 to update our indexes. For the earlier

case, we will describe our operations here.

There are essentially seven kinds of updates for graph data: (1) inserting a

new graph, (2) deleting a data graph, (3) inserting an edge into a graph, (4)

deleting an edge of a graph, (5) inserting a new vertex into a graph, (6) deleting

a vertex from a graph, and (7) relabelling a vertex in a graph. To support these

updates, four kinds of operations occur in our two-level inverted index:

1. Op1: Inserting or deleting the graph information into an inverted list

below a sub-unit in the upper-level index.

1This approach is also adopted in [24] where qgrams are stored in a relational database
to support approximate string join.
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2. Op2: Inserting or deleting the sub-unit information in an inverted list

below a label in the lower-level index.

3. Op3: Create a new list for a new generated unit, or delete a unit from

the upper-level index when its list is empty.

4. Op4: Create a new list for a new label, or delete a label from the lower-

level index when its list is empty.

Assuming that the inverted index is properly implemented and optimized

over a B-tree (or B+-tree) [11], all the operations above will take at most

O(logN) page accesses. Building on these operations, our index can easily

support various types of updates as below: 1) Inserting a graph needs us to

decompose this graph into a multiset of sub-units, and then perform Op1. For

a new generated unit, we will perform Op3 followed by Op2. If a new label is

detected, perform Op4. 2) Deleting a graph requires us to remove all the graph

information in the upper-level index. 3) Inserting or deleting an edge of a graph

affects two sub-units. Therefore, the graph information below two original sub-

units is removed and they are inserted into two new lists. Furthermore, sub-unit

information is also updated in the lower-level index. 4) Inserting or deleting

a vertex only affects one unit. The operations are similar to update 3). 5)

Relabelling a vertex will affect the sub-unit rooted by this vertex and those

sub-units rooted by its neighbors. These operations are similar to updates 3)

and 4).

3.4 Graph Similarity Search Algorithm

Based on the proposed two-level inverted index, we develop SEGOS, a cas-

cade query processing framework, to employ the dynamic mapping distance

computation and the filtering strategy proposed in Section 3.2 to enhance

the graph search. The novel framework contains two search steps: the top-k

sub-unit search and the graph similarity search. As shown in Figure 3.7, in

the lower level, top-k similar sub-units to each sub-unit of the query can be

returned quickly by using the TA search algorithm; in the upper level, graph

pruning is done based on the top-k results from the lower level. To support

continuous graph pruning, the CA graph search algorithm can be further divid-

ed into two stages: sorted list processing and dynamic graph mapping distance
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computation. In this step, sub-units for each data graph can be output with

round-robin scan through the score sorted lists, and used as input to run dy-

namic mapping distance computation for seen data graphs with the query. This

section will show how this framework work for graph pruning, and TA, CA, and

DC denote the three stages in our framework.

Figure 3.7: The cascade search framework

3.4.1 Top-k Sub-unit Query Processing Algorithm

Given a query graph q, we need to efficiently find sub-units that are highly

similar to each sub-unit from q in the TA stage. A full scan of the database

to compute the sub-unit edit distance (STED) between each sub-unit and a

query sub-unit can be very expensive. In this work, we propose a top-k sub-

unit searching algorithm based on TA method [15]. The TA filtering strategy

can help to avoid access to sub-units with high dissimilarity to the query sub-

unit, but the score-sorted lists constructed need to guarantee the correctness

of the TA halting monotonic assumption. From Definition 3.1 in Section 3.2.1,

the STED between a query sub-unit stq and any database sub-unit sti can be

represented as below.

λ(stq, sti) = {
T (rq, ri) + 2 ∗ |Lq| − (ψ + |Li|), if |Li| ≤ |Lq|
T (rq, ri)− |Lq| − (ψ − 2 ∗ |Li|), if |Li| > |Lq|

(3.1)

where ψ = |ΨLq ∩ ΨLi
| denotes the common leave labels between stq and

sti. From the above two equations, if we ignore the difference between the

roots of sub-units T (rq, ri), the STED increases when the value of (ψ+ |Li|) or
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(ψ− 2 ∗ |Li|) decreases. Therefore, two aggregation functions can be derived as

ω = 2∗ |Lq|− (ψ+ |Li|) and ω = −|Lq|− (ψ−2∗ |Li|) and we need to construct

two sets of score-sorted lists to apply the above two functions. That means,

sub-units with leaf sizes no more than |Lq| and those with leaf sizes larger than

|Lq| must be processed separately.

Fortunately, the lower-level index can be used to conveniently construct

these two sets of score-sorted lists. We know that each lower-level index list

has been grouped increasingly according to sub-units’ leaf sizes. Maintaining

a leaf size array denoted by AL pointing to positions of all leaf size groups,

it is easy to find the position that after which the leaf sizes are larger than

that of the query sub-unit in O(log |AL|) time. Since each group has been

sorted based on decreasing frequencies, all groups within a leaf size range can

be directly merged into one list in O(|AL| × |SL|) time (|SL| is the maximum

length of all leaf size groups). Generally, |AL| is a constant smaller number

compared to |SL|, so the merge complexity can be considered to be linear. The

detail of the merge function is given in Algorithm 3.1.

Algorithm 3.1: Merge function

Require: A list L and a size index array A of length n
Ensure: A score-sorted list SL
1: end← true, max← 0, p← 0
2: initialize an array A′ with values of A;
3: while true do
4: for i = 0 to n− 1 do
5: if A′[i] == A[i+ 1] then
6: continue;
7: end← false;
8: if max < L[A′[i]].freq then
9: max← L[A′[i]].freq;
10: p← i;
11: if end == true then
12: break;
13: SL.push back(L[A′[p]]);
14: A′[p] + +;

Figure 3.8 shows the score-sorted lists obtained for stq = abbcc using the

index in Figure 3.6. The query sub-unit stq has leaf labels b and c. For the label

b, we fetch out the inverted list under “b” in Figure 3.6. Then a size bound

larger than |Lq| = 4 can be found in position 5 pointing to (st1, 2). From
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Figure 3.8: A top-k sub-unit searching example for stq = abbcc

here, groups with leaf sizes no larger than 4 are merged into one single list

of {(st0, 2), (st2, 1), (st5, 1), (st6, 1), (st3, 1)}. Another list of {(st1, 2), (st4, 1)}
with leaf size larger than 4 is also formed. Similarly, two lists below c are

formed as {(st0, 2), (st3, 2)} and {(st4, 2)}. The size list is also split into two

parts, but the one with leaf sizes no larger than 4 should be reversely accessed

decreasingly.

Given the score-sorted lists for stq, suppose stq has m distinct leaf labels

with frequencies of (c1, c2, . . . , cm). We compute ψ = t(χ) as the number of

common leaf labels between stq and any sti.

t(χ) =
m∑
j=1

min{cj, χj}

where χj represents the frequency corresponding to sti in the jth score list

of stq. If sti does not appear in that list, χj = 0.

As shown in Alogirhtm 3.2, given m distinct label sorted lists and one size

sorted list for stq, the steps of our searching algorithm are:

1. Do sorted access in a round-robin schedule to each sorted list. If a sub-

unit sti is seen, compute λ(stq, sti). Maintain a queue of top-k sub-units

with the lowest λ values.

2. For each label list SLj, let χj
be the frequency last seen under sorted

access. Let L be the size last seen in the size list. For the score-sorted

lists with smaller size, ω = 2 ∗ |Lq| − (t(χ) + L). Otherwise, ω = −|Lq| −
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(t(χ) − 2 ∗ L). If the top-k values are at most equal to ω, then halt.

Otherwise, go to step 1.

Algorithm 3.2: Top-k sub-unit searching algorithm

Require: m sorted lists SL and 1 size list L for stq; low
Ensure: The top-k similar sub-units
1: top− k ⇐ ∅;
2: for all sorted lists with j = 1 . . .m+ 1 do
3: if j ≤ m then
4: stid ⇐ SLj.getNext();
5: χ

j
⇐ stid.freq;

6: else
7: stid ⇐ L.getNext();
8: L⇐ stid.size;
9: if stid is not seen before then
10: calculate λ(stq, stid);
11: if |top− k| < k then
12: Maintain top− k and continue;
13: if λ(stq, stid) < max{λ|λ ∈ top− k} then
14: Maintain new top− k;
15: if low is true then
16: ω = 2 ∗ |Lq| − (t(χ) + L);
17: else
18: ω = −|Lq| − (t(χ)− 2 ∗ L);
19: if ω ≥ max{λ|λ ∈ top− k} then
20: return top− k;
21: return top− k;

Now we show the correctness of Algorithm 3.2 as below.

Proof. We show that the algorithm really returns the exact top-k result to a

query sub-unit stq when halting. Suppose we have m sorted lists for stq. In

fact, this algorithm can halt on two conditions:

1) The value of ω is no less than the maximum value in top-k. Since the top-k

queue is maintained by the top-k minimum STEDs to stq, when halting, they

are naturally the top-k values among all sub-units having been retrieved. If

we can prove that all remaining unseen sub-units have STEDs no less than the

maximum value in top-k, the result is sure to be correct.
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1.1) When processing the lists with smaller size graphs, we have

ω = 2 ∗ |Lq| − (t(χ) + L) ≥ max{top− k}

For any unseen sub-unit sti, we have

λ(stq, sti) = T (rq, ri) + 2 ∗ |Lq| − (t(χ) + |Li|)

where T (rq, ri) ≥ 0. Since all lists in this case are sorted in decreasing orders,

we have

t(χ) + L =
m∑
j=1

χ
j
+ L ≥ t(χ) + |Li|

where all χx ∈ χ and Li are located below the halting positions. Therefore,

ω ≤ λ(stq, sti), i.e., unseen sub-units have λ ≥ ω ≥ max{top−k}. The top-k

results are the real k minimum values.

1.2) When running on sorted list with larger size graphs, we have

ω = −|Lq| − (t(χ)− 2 ∗ L) ≥ max{top− k}

In this case, for any unseen sub-unit sti, we have

λ(stq, sti) = T (rq, ri)− |Lq| − (t(χ)− 2 ∗ |Li|)

where T (rq, ri) ≥ 0. Since label lists are sorted decreasingly while size list is

sorted increasingly, we have

t(χ)− 2 ∗ L =
m∑
j=1

χ
j
− 2 ∗ L ≥ t(χ)− 2 ∗ |Li|

where all χx ∈ χ and Li are located below the halting positions. Therefore,

ω ≤ λ(stq, sti), i.e., unseen sub-units have λ ≥ ω ≥ max{top−k}. The top-k

results are correct to be the k minimum values.

2) Algorithm halts when all sorted lists have been accessed to the ends. In this

case, with post processing, the top-k result is sure to be correct because they

are the k minimum values among all sub-units.

Previous Figure 3.8 also shows an example to search top-2 similar sub-units

to stq = abbcc on score-sorted lists containing sub-units with lower leaf sizes.
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Sub-units are accessed in a round-robin way from the list below label b to

the size list. STED is calculated for each sub-unit seen and a top-2 queue

is maintained. Algorithm halts in the positions with gray shadows because

ω = 2 ∗ 4 − (1 + 2 + 2) = 3 ≥ 2, where 2 is the maximum value in the top-2

queue. Obviously, the top-2 results are returned without access to st6.

3.4.2 Score-Sorted Lists Construction

The above algorithm provides us an efficient way to return highly similar sub-

units to a query sub-unit. Then graph score sorted lists can be easily formed

by combining a set of lists fetched from the upper-level index below the corre-

sponding top-k results.

Given a query graph q, for each query sub-unit stq, its top-k queue is re-

turned from the lower-level TA stage. Then, for each sub-unit sti in the queue,

a graph inverted list indexed by sti can be directly fetched from the upper-

level index. Therefore, k graph lists will be returned for each query sub-unit

stq. Later the k graph lists will be split into two segments: those with graph

sizes larger than |q|, and those not. Segments within a graph size range will be

combined into one group. Within each group, graphs are naturally ordered in

terms of STEDs according to the top-k values. Furthermore, in the group with

smaller sizes, the segments having STED larger than λ(stq, ϵ) are discarded.

Since the upper-level index lists have been sorted by increasing graph sizes,

finding size range position takes O(log |GL|) time (|GL| is the maximum size

of all graph size index arrays).

For example, given a query q = g1 in Figure 3.1, the top-2 similar sub-

units for the query sub-unit st5 are st5 and st2, in Figure 3.9. Then two graph

lists indexed by st5 and st2 are extracted from the upper-level index in Figure

3.5: {(g1, 2), (g2, 2)} and {(g1, 1), (g2, 1)}. Since the query is of size 5, each

graph list is divided into two segments. For example, the list below st5 is split

into {(g1, 2)} with |g1| ≤ 5 and {(g2, 2)} with |g2| > 5. Similarly, the list

below st2 is split into {(g1, 1)} and (g2, 1)}. After that, segments {(g1, 2)} and
{(g1, 1)} with smaller sizes are combined into one list {(g1, 2), (g1, 1)}. Since

λ(st5, st5) = 0 ≤ λ(st5, st2) = 1, (g1, 2) is located before (g1, 1). In Figure

3.9, if a graph is fetched from a list below a sub-unit, it is connected to that

sub-unit using a dashed arrow.
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Figure 3.9: The sorted lists for q = g1

Based on the constructed graph score sorted lists, the CA stage accesses

sub-units for data graphs using a round-robin scan. Using the summation of

STEDS as an aggregation function, the halting condition and several aggrega-

tion bounds can be directly derived.

3.4.3 Bounds from Aggregation Function

Given m score lists of a query graph q, we compute the overall score of a graph

g having been seen, denoted by ζ(q, g) as

ζ(q, g) = t′(χ1, . . . , χm) =
m∑
j=1

χj

χj is a local minimum STED of graph g having been seen below the jth list of

q. The computation of χj is as below.

Definition 3.2. Let Sej = {e1, . . . , ex} including all STEDs of a graph g below

the jth list. Then the corresponding χj of g is computed as

χj = min
ei∈Sej

{ei}

Generally, if Sej is empty, χj = 0.

Example 3.1. As shown in Figure 3.10, a graph g1 has been seen blow three

lists GL1, GL2, and GL4 of q (this can be seen in cells with slashes in the
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figure). We have its local minimum STED in each list as χ1 = 0, χ2 = 0, and

χ4 = 1. Since Se3 is empty, χ3 = 0. Therefore, the overall score of g1 obtained

from q is ζ(q, g1) = 0 + 0 + 0 + 1 = 1.

Figure 3.10: An example for computing CA bounds

Suppose l(g) = {l1, . . . , ly} ⊆ {1, 2, . . . ,m} is a set of known lists of g having

been seen below q. Let χ(g) be the multiset of distances corresponding to the

distinct sub-units of g last seen.

• Aggregation Lower Bound denoted by Lµ(q, g) is obtained by substi-

tuting the missing lists j ∈ {1, 2, . . . ,m} \ l(g) with χ
j
(the distance last

seen under the jth list) in ζ(q, g). That is, χj = χ
j
when Sej is empty.

• Aggregation Upper Bound denoted by Uµ(q, g) is computed as Uµ(q, g)

= t′(χ(g)) + χ ∗ (max{|q|, |g|} − |χ(g)|).

Here, χ = maxst∈S(q)∪S(g){λ(st, ϵ)}. As shown in Example 3.1, we have

ζ(q, g1) = 1. Suppose the cells with gray shadows are the current positions

accessed, the distances last seen below the lists of q is {4, 3, 2, 1}. To replace

the unseen value χ3 of g1 with χ
3
= 2, Lµ(q, g1) = ζ(q, g1) + χ

3
= 1 + 2 = 3.

It can be seen from Figure 3.10, the distinct sub-unit set of g1 last seen is

χ(g1) = {st0, st7}. Suppose |g1| = 3, a remaining sub-unit st4 has not been

accessed (the cell with back slash), and the maximum distance between sub-

units in q and g1 is χ = maxst∈S(q)∪S(g1){λ(st, ϵ)} = 11. To substitute the

value of unseen sub-units from g1 to q with χ, Uµ(q, g1) = t′(χ(g1)) + χ ∗
(max{|q|, |g1|} − |χ(g1)|) = 0 + 1 + 11 ∗ (4− 2) = 23.
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Theorem 3.2. Let g1 and g2 be two graphs, the bounds obtained as above satisfy

the following:

ζ(g1, g2) ≤ Lµ(g1, g2) ≤ µ(g1, g2) ≤ Uµ(g1, g2)

Proof. From the aggregation bounds definitions in Section 3.4.3, it is clear

that ζ(g1, g2) ≤ Lµ(g1, g2) ≤ Uµ(g1, g2). Now we prove Lµ(g1, g2) ≤ µ(g1, g2).

Suppose P is an optimal alignment between S(g1) and S(g2). Then,

µ(g1, g2) =
∑

sti∈S(g1)

λ(sti, P (sti))

where P (sti) is each sub-unit in g2 aligned to sti in g1 and P (sti) ∈ S(g2)∪{ε}.
Let ζ(g1, g2) of g2 be the overall score obtained by computing the summation

of all local minimum STED of g2 below m sorted lists for g1.

1) For those lists below S ′(g1) including entries of g2, since they contain the

top-k lowest scores, we have∑
sti∈S′(g1)

min
ei∈Se
{ei} =

∑
sti∈S′(g1)

min
stj∈S(g2)

{λ(sti, stj)}

≤
∑

sti∈S′(g1)

λ(sti, P (sti))

2) For those below S ′′(g1) = S(g1)\S ′(g1):∑
sti∈S′′(g1)

min{χ
i
, λ(sti, ε)} ≤

∑
sti∈S′′(g1)

min
stj∈S(g2)∪{ε}

{λ(sti, stj)}

≤
∑

sti∈S′′(g1)

λ(sti, P (sti))

Accordingly, we obtain Lµ(g1, g2) and µ(g1, g2) as,

Lµ(g1, g2) =
∑

sti∈S′(g1)

min
ei∈Se
{ei}+

∑
sti∈S′′(g1)

min{χ
i
, λ(sti, ε)}

µ(g1, g2) =
∑

sti∈S′(g1)

λ(sti, P (sti)) +
∑

sti∈S′′(g1)

λ(sti, P (sti))

Therefore, Lµ(g1, g2) ≤ µ(g1, g2).

3) We prove Uµ(g1, g2) ≥ µ(g1, g2). As described in Aggregation Upper
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Bound, χ(g2) is a multiset of distances corresponding to the sub-units of g2

last seen in known lists without duplicates, and

χ = maxst∈S(g1)∪S(g2){λ(st, ϵ)}

Suppose S ′(g2) ⊆ S(g2) is the sub-units corresponding to χ(g2), and S ′(g1)

contains sub-units of g1 aligned to S ′(g2) due to χ(g2). If S
′(g2) ⊆ {P (sti)|sti ∈

S ′(g1)}, we have

t′(χ(g2)) =
∑

sti∈S′(g1)

λ(sti, P (sti))

χ ∗ (max{|g1|, |g2|} − |χ(g2)|) ≥
∑

sti∈S(g1)\S′(g1)

λ(sti, P (sti))

If S ′(g2) ̸⊆ {P (sti)|sti ∈ S ′(g1)}, we have

t′(χ(g2)) ≥
∑

sti∈S′(g1)

λ(sti, P (sti))

χ ∗ (max{|g1|, |g2|} − |χ(g2)|) ≥
∑

sti∈S(g1)\S′(g1)

λ(sti, P (sti))

Accordingly, we obtain Uµ(g1, g2) ≥ µ(g1, g2).

3.4.4 Graph Pruning Algorithm

Our graph pruning algorithm is a CA-based algorithm. Its filtering strategy is

similar to the top-k sub-unit search, while using a different aggregation function.

It also employs the above aggregation bounds and dynamic mapping distance

computation algorithm to reduce the graph mapping distance computation. A

simple example of graph sorted lists processing can be seen in Figure 3.4 in

Section 3.2. The detail of our CA-based algorithm are shown in Algorithm 3.3.

Given m sorted lists for a graph query q and a threshold τ , the main steps

are shown as below:

1. Perform sorted retrieval in a round-robin schedule to each sorted list. At

each depth h of lists:

• Maintain the lowest values χ
1
, . . . , χ

m
encountered in the lists. Main-

tain a distance accumulator ζ(q, gi) and a multiset of retrieved sub-
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units S ′(gi) ⊆ S(gi) for each gi seen under lists.

• For each gi that is retrieved but unprocessed, if ζ(q, gi) > τ∗δgi (δgi =
max{4, [max{δ(q), δ(gi)} + 1]}), filter out the graph; if Lµ(q, gi) >

τ ∗ δgi , filter out the graph; if Uµ(q, gi) ≤ τ ∗ δgi , add the graph to

the candidate set. Otherwise, if µ(S(q), S ′(gi)) > τ ∗ δgi , filter out

the graph. If all the above bounds are useless, run the Dynamic

Hungarian algorithm to obtain Lm(q, gi) and Um(q, gi) for filtering.

2. When a new distance is updated, compute a new ω. If ω = t′(χ) =∑m
j=1 χj

> τ ∗ δ′, then halt. Otherwise, go to step 1.

Algorithm 3.3: CA-based range query algorithm

Require: m sorted lists GL for q, τ and h
Ensure: All gi s.t. λ(q, gi) ≤ τ
1: candidate⇐ ∅; flag ⇐ false;
2: for all sorted lists GLj with j = 1 . . .m do
3: gid ⇐ GLj.getNext();
4: χ

j
⇐ gid.dist;

5: maintain the distance accumulator ζ(q, gid);
6: maintain the multiset for seen sub-units S ′(gid);
7: if scandepth%h == 0 then
8: for all gid seen and unprocessed do
9: if ζ(q, gid) > τ ∗ δgi then
10: filter it out and continue;
11: if Lµ(q, gid) > τ ∗ δgi then
12: filter it out continue;
13: if Uµ(q, gid) > τ ∗ δgi then
14: further compute other bounds;
15: if µ(S(q), S ′(gid)) > τ ∗ δgi then
16: filter it out and continue;
17: Filtering with Lm(q, gid) and Um(q, gid);
18: if ω = t′(χ) > τ ∗ δ′ then
19: flag ⇐ true and break;
20: if flag ̸= true then
21: post process the remaining graphs not appeared;

The correctness of Algorithm 3.3 is shown as below.

Proof. We prove that our candidate set includes all positive results when algo-

rithm halts.

1) The algorithm halts with ω > τ ∗ δ′.
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1.1) Running on the sorted lists with smaller size graphs, entries in each

list below stj ∈ q have distances χj ≤ λ(stj, ϵ). From the halting condition, we

have ω = t′(χ) > τ ∗ δ′. Then, for any unseen graph gi ⊆ D′, suppose P is the

optimal alignment between S(q) and S(gi). From Definition 3.1, we have

µ(q, gi) =
∑

stj∈S(q)

λ(stj, P (stj))

where P (stj) is each sub-unit in gi aligned to stj in q and P (stj) ∈ S(gi)∪{ε}.
Since |gi| ≤ |q|, and gi locates below halting positions of ω. We have χ

j
≤

λ(stj, P (stj)). Hence, ω ≤ µ(q, gi). Therefore, for any gi ⊆ D′, we have

Lm(q, gi) =
µ(q, gi)

δgi
≥ µ(q, gi)

δ′
≥ ω

δ′
> τ

Any unseen gj ⊆ D′ can be safely filtered out.

1.2) Similarly, if algorithm runs on the sorted list with larger size graphs,

any unseen gi ⊆ D′ also can be safely filtered out.

2) Algorithm halts when the ends of all sorted lists have been reached. In this

case, this algorithm will become a linear scan algorithm by postprocessing the

remaining unseen graphs, which guarantees that we have the correct candidate

set without false negative.

Obviously, the CA method performs the pruning test only for every h index

entries accessed, and aggregation bounds can be accumulated in constant time.

For data graphs having very similar sub-units to the query, aggregation upper

bounds are small enough to output them as candidates; while for those having

very dissimilar sub-units, aggregation lower bounds are large enough to prune

them. Therefore, aggregation bounds take negligible constant time for early

filtering.

As described before, our whole search strategy includes the TA, CA, and

DC stages. Previously, we have provided the complexity analysis of some steps.

Here, we present a more complete analysis. First, in the TA stage, constructing

sorted lists for each queried sub-unit is decided by the merge time, which takes

O(|AL| × |SL|) time as shown in Section 3.4.1, and a simple study of the TA

search complexity is in [15]. The worst case of this step takes O(kd|SL|) (k

is the value of top-k results and d is the average degree of sub-units) time
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for sorted access and takes O(N log k) (N is the number of graphs accessed)

time for maintaining a heap. Second, in the CA stage, graph sorted lists are

combined by top-k results. As stated in Section 3.4.2, it takes O(log |GL|) time.

Third, in the DC stage, the CA search complexity is similar to the TA search.

We compute the dynamic mapping distance in Θ(n3) (n is the average size of

graphs) time and do the sub-unit difference operation in O(log n) time.

3.4.5 Pipe-line Graph Similarity Search Algorithm

As shown in Figure 3.7, the above graph pruning algorithm can be divided

into two stages: graph sorted list processing (CA) and dynamic graph map-

ping distance computation (DC). In step 1, we only use aggregation bounds,

and output accessed graphs with seen sub-unit multisets to the separate DC

stage for mapping distance computations. The main advantage of our query

processing framework lies in reducing the complex GED bounds computations

by avoiding accessing highly dissimilar graphs.

Figure 3.11: The pipeline of query processing framework

Moreover, the proposed approaches can be further improved by pipelining.

It is easy to pipeline the whole query processing framework in Figure 3.7 into

three consecutive stages: TA, CA, and DC. As shown in Figure 3.11, given

graph queries, they are first decomposed into multiple sub-unit multisets. Then,

each sub-unit is input to the TA stage to get its top-k similar sub-units. The

output of top-k results for each query graph is fed to the input of the CA stage

for building the graph score sorted lists. After that, the CA stage retrieves

graph score sorted lists for each query graph in a round-robin schedule. When

CA halts or the ends of all lists have been reached, all the accessed sub-units

for seen data graphs are arranged to be the input of the DC stage. In the DC

stage, we compute partial mapping distance when the accessed sub-units for

the data graph are more than 50%, and run dynamic computation for graphs

which have been processed but not filtered out. Moreover, there is no need to
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further return top-k results in the TA stage when the CA halts.

The pipelining algorithm can avoid parameter tunings for the k value in

the TA stage and the h value in the CA stage. The k value can be fixed

as a small number like 20, and h is not needed since the CA stage does not

control the dynamic computations. To reduce dynamic computation overhead,

we run partial matching only when more than 50% sub-units of a graph have

been accessed. Further consideration will be illustrated in Section 4.6. Here-

after, SEGOS means our original CA search algorithm without pipeline, and

SEGOS-Pipeline refers to the pipelining one.

3.5 Experimental Study

In this section, we compare our methods with two state-of-the-art approaches

C-Tree [29] and κ-AT [63] on two real datasets. SEGOS was compiled with

gcc 4.4.3 in Red hat Linux Operating System, and all experiments were run on

a server with Quad-Core AMD Opteron(tm) Processor 8356, 128GB memory,

running RHEL 4.7AS. In the experiments, we randomly selected 20 graphs from

the dataset as query graphs and present the average result.

AIDS Dataset. This dataset is a DTP AIDS Antiviral Screen chemical

compound dataset, published by National Cancer Institute2. This dataset has

been widely used in many existing works [10, 22, 29, 63, 70, 78]. It consists of

42, 687 chemical compounds, with an average of 46 vertices. Compounds are

labelled with 63 unique vertex labels.

Linux Dataset. Program Dependence Graph (PDG) is an ideal static rep-

resentation of the data flow and control dependency within a procedure, with

each vertex assigned to one statement and each edge representing the depen-

dency between two statements. PDG is widely used in software engineering

for clone detection, optimization, debugging, etc (e.g., [18, 19]). Here, we use

CodeSurfer 2.1pl to generate the PDG dataset3. First we maximize the con-

figuration of the Linux kernel and then dump the Program Dependence Graph

using CodeSurfer 2.1pl with strict error limitation. This Linux kernel procedure

dataset has in total 48,747 graphs, with an average of 45 vertices. The vertices

of graphs are labelled with 36 unique labels, representing the roles of vertices

2http://dtp.nci.nih.gov/docs/aids/aids data.html
3http://www.grammatech.com
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in the procedure, such as “declaration”, “expression”, etc.

Taken from different applications, AIDS is a sparse database with near nor-

mal size distribution while Linux is that with near uniform size distribution.

Table 3.1 presents five major parameters used in our experiments, including

their descriptions and values (with default values in bold). Hereafter, the de-

fault values will be used in all the experiments if not particularly indicated.

Table 3.1: Parameter settings on graph similarity search
Parameter Description Value
ks k value for the TA stage 10, 20, ..,100, 200, .., 1000
h h value for the CA stage 10, 20, .., 100, 200, ..,1000
|D| dataset graph number 5K,10K,15K,20K,25K,..,40K
|q| query vertex number 10, 20, 30, 40, 50, 60, 70, 80
τ distance threshold 0, 2, 4, 6, 8,10, 12, 14, 16, 18, 20

3.5.1 Sensitivity Study

We first conduct a series of parameter sensitivity analysis on our non-pipeline

algorithm SEGOS. The impact of different parameters on the access number

and the response time is presented. Access number here is defined as the number

of graphs accessed to compute mapping distances for a query graph.
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Figure 3.12: Sensitivity test on AIDS dataset

In Figure 3.12 SEGOS-k and SEGOS-h respectively correspond to the

sensitivity of parameters ks and h. It can be seen that, when ks is small, the

lists of top-k sub-units are quite short. In this case, our algorithm filters out
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few graphs after scanning through the lists, and the dynamic algorithm has to

be applied on more sub-units for the remaining graphs. As ks increases from

50 to 100, the lists of top-k sub-units become larger for the CA stage and more

graphs are pruned off early. When ks is larger than 100, there is little change

in the access number, since CA has reached its halting conditions.

Meanwhile, when h is small, the chance of retrieving the whole set of sub-

units is low. As h grows, more sub-units will be seen, allowing more graphs to

be pruned without being fully accessed. As such, both the response time and

the access number decrease as h increases from 10 to 100. The response time

will be stable when h is large enough to hit the halting condition of CA stage.

We exclude results on the Linux dataset since it shows very similar trends.

However, the sensitive values for ks are larger in this dataset because its size

distribution is more uniform than the AIDS dataset. Generally, our method

achieves good performance by setting ks as about 1% of the total sub-unit

number and h as in the order of a few hundred. Without loss of generality,

we simply use the default values in Table 3.1 for both two real datasets in the

following experiments.

3.5.2 Index Construction Performance

In this subsection, we evaluate index construction performance of SEGOS,

κ-AT and C-Tree w.r.t the dataset size. To build the index for κ-AT, we

first conduct a sensitivity test and find that κ-AT performs the best by setting

κ = 2.

Figure 3.13 and 3.14 show the index size and index construction time on

both datasets, with |D| varying from 5K to 40K. We can see that SEGOS

needs the shortest construction time and takes up the smallest space among

all the three index structures, for it is sufficient for SEGOS to build two

simple inverted indexes with only one dataset scan. For the other two index

strategies, we find that κ-AT has to scan the dataset up to κ times to build

a κ-layer feature table for each graph, and index these elements in all feature

tables, and C-Tree uses one complex R-Tree like index structure, making it

the most expensive one in index construction and the largest one in index size.

In summary, SEGOS outperforms κ-AT and C-Tree in terms of index size

and build time.
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Figure 3.13: Index size vs. |D|
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Figure 3.14: Construction time vs. |D|

3.5.3 Query Performance

We next investigate the performance of our range query algorithms compared

against those of C-Tree and κ-AT. Figure 3.15 and 3.16 show the results of

range queries with τ varying from 0 to 20, |D| = 20K.

From Figure 3.15 we can see that SEGOS always returns the smallest

number of candidates while incurring shortest response time. On the AIDS

dataset, it outperforms κ-AT by up to two orders of magnitude in terms of

candidate set size, and beats C-Tree in terms of filtering efficiency by two

orders of magnitude.

Figure 3.16(b) shows that κ-AT has the poorest filtering ability, although

it is the fastest one when it comes to filter as shown in Figure 3.16(a). Even

when τ is as small as 6, κ-AT gives 800 more candidates than SEGOS. Here
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Figure 3.15: Range queries on AIDS dataset
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Figure 3.16: Range queries on Linux dataset

we can conclude that although the simplistic filtering adopted by κ-AT gives

it higher efficiency, it’s filtering power is however much weaker than the other

two. In a more concrete term, κ-AT is fast simply because it does not do much

filtering. Compared to C-Tree, it is clear that SEGOS dominates C-Tree

w.r.t response time and candidate size. The superiority of SEGOS becomes

more significant when τ grows larger. We can see that C-Tree returns 2K

more candidates than SEGOS, which is about 1/10 of the entire dataset size.

There are two reasons for the best result of our algorithm in Figure 3.15(a).

First, the number of accessed graphs for mapping distance computation is much

smaller on the AIDS dataset than the Linux dataset. Second, the randomly

selected queries include graphs with smaller sizes or with high dissimilarity to

most graphs in the AIDS dataset which can be fast completed in SEGOS.

Note that candidates verification using the GED is an extremely expensive
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process (NP-Hard). If we take into consideration that the GED computation

for each of acquired candidates (of average size 40) is in thousand of seconds,

then the extra candidates generated by κ-AT (eg. 800) will cost an additional

hundreds of thousands seconds. From our observation, the total response time

including filtering and verification time increases as the candidate number be-

comes larger. As such, it makes sense to sacrifice a little more time to filter out

as many candidates as possible, as SEGOS does.

3.5.4 Scalability Study

We conduct two groups of experiments to evaluate the scalability of our algo-

rithm in terms of the dataset size over two real datasets.

Figure 3.17 and 3.18 illustrate the scalability of the algorithms with respect

to the dataset size |D|, ranging from 5K to 40K. Here, we choose τ = 2 for

Linux dataset, and τ = 10 for the AIDS dataset. This is because there are

many similar graphs in the Linux dataset and a small τ is sufficient to show the

difference in performance (SEGOS also performs better than the others when

τ is large). On the contrary, since the AIDS dataset does not have that many

similar graphs, a larger τ is more appropriate to reveal the difference.
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Figure 3.17: Scalability of range queries on AIDS dataset

Figure 3.17 shows that SEGOS outperforms the other two algorithms over

the entire range of dataset sizes. Furthermore, as the dataset size grows, SE-

GOS’s response time increases only from 8ms to 40ms, which is only 0.1%

that of C-Tree and 50% that of κ-AT. On the Linux dataset, SEGOS is still

the most effective one in candidate filtering and costs moderate response time.
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From these two figures, we can see that SEGOS is better than κ-AT on the

AIDS dataset, and C-Tree on both the AIDS and the Linux datasets. Though

SEGOS needs more time than κ-AT on the Linux dataset, it prunes more

graphs than κ-AT, by two orders of magnitude.
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Figure 3.18: Scalability of range queries on Linux dataset

3.5.5 Effects of SEGOS on C-Star

To show how much SEGOS can enhance C-Star, we conduct a set of exper-

iments to see the response time and the access ratio of SEGOS, compared

to C-Star. 20K graphs are randomly selected from two real datasets, and 10

graphs are extracted as queries. Figure 3.19 shows that SEGOS can enhance

C-Star by dramatically reducing mapping distance computations by two or-

ders of magnitude on average. We also investigate queries which have a mass

of similar graphs in the database, since in this special case our method may

degrade to the linear case of C-Star while taking extra overhead for the TA

stage. However, we find that the overhead can be negligible, even in the worst

case, this overhead takes less than 0.1% of the overall response time. A result

showing the overhead with various ks values is presented in Figure 3.20.

3.5.6 Effects of the Pipelining Algorithm

We also implement a simple pipelining algorithm for SEGOS, denoted by

SEGOS-Pipeline. Since this algorithm is implemented with multi-threading,

we only compare it to our non-pipeline method to study its effects. In our
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Figure 3.19: Quality of SEGOS

0.000

0.001

0.002

0.003

0.004

0.005

10 200 400 600 800 1000

R
es

po
ns

e 
T

im
e(

se
c)

Total Time
Top-k Time

(a) On AIDS dataset

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

10 200 400 600 800 1000

R
es

po
ns

e 
T

im
e(

se
c)

Total Time
Top-k Time

(b) On Linux dataset

Figure 3.20: Overhead testing of top-k sub-unit search on range queries

implementation, we dispatch two parallel threads to respectively run the TA

and the CA stage, and two threads to run the DC stage respectively for two

parallel parts: partial matching computations and sub-unit multiset difference

computations. With this, the overhead of SEGOS can be reduced by parallel

processing. SEGOS-Pipeline fixes the ks value to be 20, and CA feeds its

output into the DC stage when it finishes processing sorted lists constructed

by top-20 results from TA. Therefore, the h parameter can be removed. Figure

4.8 shows one group of results on range queries, varying τ from 0 to 20. In this

experiment, we randomly select 20K data graphs and 20 query graphs from two

real datasets. The results show that the pipelined algorithm can further speed

up the graph search. The access number for queries does not exceed 700, which

is not significant enough to show the high enhancement. However, the trend

shows that with τ increasing, the enhancement becomes higher and higher.
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Figure 3.21: Effects of pipeline on SEGOS

3.6 Summary

In this study, we investigate an important problem of GED based graph simi-

larity search. Different from previous works, we propose SEGOS, an efficient

indexing and pipeline query processing framework based on sub-units. A two-

level inverted index is constructed and preprocessed to maintain a global simi-

larity order both for sub-units and graphs. With this blessing property, graphs

can be accessed in increasing dissimilarity, and any GED based lower/upper

bound can be used as filtering features. With this, two algorithms adapted

from TA and CA are seamlessly integrated into the framework to speed up the

search, and it is easy to pipeline the proposed framework to process continuous

graph pruning. The top-k result in the TA stage is automatically fed into the

CA stage, and the accessed sub-units of each graph from the CA stage are out-

put to the DC stage. Experimental results on two real datasets show that the

proposed approach outperforms the state-of-the-art works with best filtering

power. Although κ-AT is fast to answer queries but its loose bound causes

it to suffer very poor filtering power. Since GED verification is extremely ex-

pensive, it makes sense to sacrifice a few more milliseconds to prune as many

candidates as possible. SEGOS also can highly improve C-Star by avoiding

accessing the whole database.
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KNN Sequence Search with

Approximate n-grams

To extend the graph index mechanism to support efficient sequence similarity

queries, we propose a novel pipeline framework. The work first introduces new

observations on the properties of gram distance which provide new bounds for

sequence edit distance. Then, a two-level inverted index is constructed to sup-

port the proposed pipeline search framework. The proposed algorithms exploit

new properties and offer new opportunities for improving query performance.

4.1 Overview

Given a query sequence, the goal of KNN sequence search is to find k sequences

in the database that are most similar to the query sequence. This work has

focused on the KNN search problem based on edit distance.

In the literature, existing algorithms have focused on either approximate

searching (e.g., [8, 35, 36, 48, 56, 61, 65]) or KNN similarity search [62, 74, 79].

Although range query has been extensively studied, KNN search remains a

challenging issue. Many efforts on answering KNN search utilize the filter-and-

refine framework [62, 74, 79]. The main idea is to prune off candidates by

utilizing the number of exact matches on a set of n-grams that are generated

from the sequences. An n-gram is a contiguous subsequence of a particular
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sequence (also called q-gram). Although such approaches are effective on short

sequence searches, they are less effective if there is a need to process sequences

that are longer like a page of text in a book. In this work, we further investigate

the KNN search problem from the viewpoint of enhancing efficiency.

In this work, we develop a novel search framework which uses approxi-

mate n-grams as the filtering signatures. This allows us to use longer n-grams

compared to exact matches which in turn gives more accurate pruning since

such matching is less likely to be random. We introduce two novel filtering

techniques based on approximate n-grams by relaxing the filtering conditions.

To ensure efficiency, we employ several strategies. First, we use a frequency

queue (f-queue) to buffer the frequency of the approximate n-grams to support

candidate selection. This can help to avoid frequent candidate verification. Sec-

ond, we develop a novel search strategy by employing the paradigm of the CA

method [15]. By using the summation of gram edit distances as the aggrega-

tion function, the CA strategy can enhance the KNN search by avoiding access

to sequences with high dissimilarity. Third, we design a pipeline framework

to support simple parallel processing. These strategies are implemented over

a two-level inverted index. In the upper-level index, n-grams that are derived

from the sequence database are stored in an inverted file with their references to

the original sequences. In the lower-level index, each distinct n-gram from the

upper-level is further decomposed into smaller sub-units, and inverted lists are

constructed to store the references to the upper-level grams for each sub-unit.

Based on the index, the search framework has two steps.

In the first step, given a query sequence and its n-grams, similar n-grams

within a range will be quickly returned using the lower-level index. In the second

step, the n-grams returned from the lower level can be automatically used as

the input to construct the sorted lists in the upper level. With the sorted lists,

our proposed filtering strategies are employed to enhance the search procedure.

Our contributions in this work are summarized as follows:

• We introduce novel bounds for sequence edit distance based on approxi-

mate n-grams. These bounds offer new opportunities for improving prun-

ing effectiveness in sequence matching.

• We propose a novel KNN sequence search framework using several efficient

strategies. The f-queue supports our proposed filtering techniques with a
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sequence buffer for candidate selection. The well-known CA strategy has

an excellent property of early termination for scanning the inverted lists,

and the pipeline strategy can effectively make use of parallel processing

to speed up our search.

• We propose a pipeline search framework based on a two-level inverted

index. By adopting a carefully staged processing that starts from search-

ing at the lower-level n-gram index to ending at the upper-level sorted

list processing, we are able to find KNN for long sequences in an easily

parallelizable manner.

• We conduct a series of experiments to compare our proposed filtering

strategies with existing methods. The results show that our proposed

filtering techniques have better pruning power, and the new filtering s-

trategies can enhance existing filtering techniques.

4.2 Preliminaries

Let Σ be a set of elements, e.g. a finite alphabet of characters in a string

database or an infinite set of latitude and longitude in a trajectory database. We

use s to denote a sequence in Σ∗ of length |s|, s[i] to denote the ith element, and

s[i, j] to denote a subsequence of s from the ith element to the jth element. The

common notations used in this work are listed in the “LIST OF SYMBOLS”

in Page xii.

In this work, we employ edit distance as the measure on the dissimilarity

between two sequences, which is formalized as follows.

Definition 4.1. (Sequence Edit Distance)(SED) Given two sequences s1 and

s2, the edit distance between them, denoted by λ(s1, s2), is the minimum number

of primitive edit operations (i.e., insertion, deletion, and substitution) on s1 that

is necessary for transforming s1 into s2.

We focus on k-nearest neighbor (KNN) search based on the edit distance,

following the formal definition as below.

Problem 4.1. Given a sequence database D = {s1, s2, ..., s|D|} and a query

sequence q, find k sequences {a1, a2, ..., ak} in D, which are more similar to q

than the other sequences, that is, ∀si ∈ D\{aj(1 ≤ j ≤ k)}, λ(si, q) ≥ λ(aj, q).
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4.2.1 KNN Sequence Search Using n-grams

In this section, we aim to introduce important concepts and principles of se-

quence similarity search using n-grams which is a common technique exploited

in existing studies.

Definition 4.2. (n-gram) Given a sequence s and a positive integer n, a po-

sitional n-gram of s is a pair (i, ng), where ng is a subsequence of length n

starting at the ith element, i.e., ng = s[i, i+ n− 1]. The set G(s, n) consists of

all n-grams of s, obtained by sliding a window of length n over sequence s. In

particular, there are |s| − n+ 1 n-grams in G(s, n).

In this work, we ignore the positional information of the n-grams. Such a

simplified 5-gram set of a sequence introduction, for example, is {intro, ntrod,
trodu, roduc, oduct, ducti, uctio, ction}. The n-gram set is useful in edit

distance similarity evaluation, based on the following observation: if a sequence

s2 could be transformed to s1 by τ primitive edit o perations, s1 and s2 must

share at least ϕ = (max{|s1|, |s2|} − n+ 1)− n× τ common n-grams [56].

Algorithm 4.1: A Simple KNN Sequence Search Algorithm

Require: The n-gram lists LG for q, and k
1: Initialize a max-heap H using first visited k sequences;
2: for Li ∈ LG do
3: for all unprocessed sj ∈ Li do
4: frequency[sj] + +;
5: τ = max{λs|s ∈ H};
6: ϕ = max{|sj|, |q|} − n+ 1− n× τ ;
7: if frequency[sj] ≥ ϕ then
8: Compute the edit distance λ(sj, q);
9: if λ(sj, q) < τ then
10: Update and maintain the max-heap H;
11: Mark sj as a processed sequence;
12: Output the k sequences in H;

Inverted indexes on the n-grams of the sequences are commonly used, such

that references to original locations of the same n-gram are kept in a list struc-

ture. Algorithm 4.1 shows a typical threshold-based algorithm using the invert-

ed index on the n-grams as well as an auxiliary heap structure. This algorithm

dynamically updates the frequency threshold using the maximum edit distance

maintained in a max-heap H (lines 6 - 7). The query performance depends on
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the efficiencies of two operations, the inverted list scan and the edit distance

computation for the candidate verification (lines 3 - 11).

Algorithm 4.1 could be improved by using optimization strategies, such as

length filtering [74] and MergeSkip [62]. The intuition behind length filtering is

as follow: if two sequences are within an edit distance of τ , their length differ-

ence is no larger than τ . Therefore, the inverted list scan is restricted to the

sequences within the length constraint. Inverted lists are thus sorted in ascend-

ing order of the sequence length. On the other hand, the MergeSkip strategy

preprocesses inverted lists such that the references are sorted in ascending or-

der of sequence id number. When the maximum entry in the max-heap H is

updated, it is used to compute a new frequency threshold ϕ, and those unpro-

cessed sequences with frequencies less than ϕ are skipped. As an example, in

Figure 4.1, sequence no. 10 is first visited and pushed to the top-1 heap. The

temporal frequency threshold is computed as ϕ = 3, and the candidate for next

visit is sequence no. 35. In this way, sequences 20 and 30 are skipped as their

frequencies are less than 3.
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Figure 4.1: Illustration of the MergeSkip strategy

Although such approaches may somehow improve the efficiency of list pro-

cessing, they may have limited performance since they are strictly relying on

the efficient processing of inverted lists. For example, the length filtering can

be useless in a database where most sequences are around the same length. In

Figure 4.1, the top-1 heap is updated when sequence no. 50 is visited, the new

frequency threshold is ϕ = 5, and the next visiting candidate is sequence no. 45.

In this case, no sequence may be skipped. The reason is that sequences from 35

to 45 are located in the grey area may have been processed as the frequencies of

their matched n-grams are larger than 3. As the frequency threshold is a loose

bound that can generate too many false positives, the candidate verification
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becomes the most time consuming step.

4.3 New Filtering Theory

Due to the limited pruning effectiveness of exact n-gram matching, we aim to de-

velop new theories for sequence search filtering by using approximate matching

between n-grams of the two sequences. This is motivated by the observations

that using exact n-gram matching will typically require n to be small (so that

the probability of having exact matching will not be too low) which will in turn

lower the selectivity of the n-grams. By allowing approximate matching for

these n-grams, we can increase the size of n without compromising the chance

of a matching taking place, thereby increasing selectivity of the n-grams and

reducing the length of the inverted list to be scanned. We will first define what

we refer to as gram edit distance.

Definition 4.3. (GRam Edit Distance)(GRED) Given two n-grams ng1 and

ng2, the edit distance between them, denoted by λ(ng1, ng2), is the minimum

number of primitive edit operations (i.e., insertion, deletion, and substitution)

to transform from ng1 to ng2.

Count filtering is the first pruning strategy we design based on gram

edit distance, It is an extension of the existing count filtering on exact n-gram

matchings. Basically, we want to estimate the maximal number of n-grams

modified by τ edit operations such that the gram edit distance between the

affected n-gram and the queried n-gram is larger than a certain value of t

(t ≥ 0). This leads to the new count filtering using approximate n-grams, as is

shown in the following proposition.

Propositon 4.1. Consider two sequences s1 and s2. If s1 and s2 are within

an edit distance of τ , then s1 and s2 must have at most η(τ, t, n) = max{1, n−
2× t}+ (n− t)(τ − 1) n-grams with gram edit distance > t, where t < n.

Proof. Let t = 0. Then η(τ, 0, n) = max{1, n−2×0}+(n−0)×(τ−1) = n×τ .
Intuitively, this holds because one edit operation can modify at most n n-grams.

Consequently, τ edit operations can modify at most n× τ n-grams (i.e., there

are at most n× τ n-grams between s1 and s2 with gram edit distance > 0).

Let t ≥ 1. We first analyze the effect of edit operations on the n-grams with

certain gram edit distance (GRED). We show the first edit operation in two
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An insertion A substitution

Figure 4.2: Effect of edit operations on n-grams

cases: it is applied on the first or last n-1 n-grams, and it is applied into other

positions not within the first or last n-1 n-grams. As shown in Figure 4.2, in

Case 1, one edit operation is applied in the position in the pink box. Two types

of edit operations will affect n-grams to have different distance distributions.

Obviously, one substitution will cause n n-grams to have GRED = 1; while

one insertion or deletion will cause one new n-gram and n-1 n-grams of various

GREDs. Consequently, the upper bound value of η(τ, t, n) will cause at least

1 n-gram with GRED = n. We now show the distribution of the GREDs. As

shown in the figure, two 5-grams ng1 and ng5 have GRED = 1 in Figure 4.2(a).

However, two 5-grams ng2 and ng4 can have GRED ≤ 2. Generally, one such

operation can cause at most n− 2× t n-grams to have GRED > t. Remember

that there are at least one new derived n-gram of GRED = n. Therefore, an

upper bound on the number of affected n-grams with GRED > t should be

max{1, n−2× t}. In case 2, one edit operation is applied to the first or last n-1

n-grams. The total number of affected n-grams, denoted by n′, is less than n,

and the number of affected n-grams have GRED > t should be less than that

of Case 1. It is obvious that the number of affected n-grams in Case 2 is less

than that in Case 1. It is indeed true that Case 1 can infer an upper bound

value on the affected n-gram number when the insertion or deletion operation

is applied.
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We now show how the distribution of edit operations will affect the max-

imum number of n-grams with GRED > t. Suppose E = {e1, e2, . . . , eτ} is a

series of edit operations that is needed to transform one sequence into another

sequence. Suppose the τ edit operations are evenly distributed in a sequence. It

is easy to show that the number of affected n-grams is maximized . As analyzed

above, one edit operation will affect at most n− 2× t n-grams to have GRED

> t. This is the boundary case where the edit operation is the first or the last

operation. It is clear that the number of affected n-grams with GRED > t, on

the left of the first edit operation and on the right of the last edit operation,

is at most max{1, n − 2 × t}. For the last τ − 1 edit operations, it is easy to

show that one new operation will cause n-t newly affected n-grams ahead its

previous edit position, as the boundary position will be affected only in this

case. Consequently, the maximum number of affected n-grams with GRED > t

would be η(τ, t, n) = max{1, n− 2× t}+ (n− t)(τ − 1).

Lemma 4.1. Consider two sequences s1 and s2. If s1 and s2 are within an edit

distance of τ , then s1 and s2 must share at least ϕt(s1, s2) = |s|−n+1−η(τ, t, n)
n-grams with gram edit distance ≤ t. Here, |s| is equal to max{|s1|, |s2|} and

the positional information is ignored.
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Figure 4.3: An example of the count filtering

The proposed count filtering offers new opportunities to improve the search

performance as it has a stronger filtering ability. As is shown in Figure 4.3, no

sequence is pruned using the count filtering with common n-grams of ϕ0 = 0.

By using the count filtering with n-grams of GRED = 1, sequence no. 40 can

be pruned by ϕ1 as its frequency (i.e., Freq.) of n-grams with GRED ≤ 1 is
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less than ϕ1. Similarly, the sequence 10 is pruned by using the count filtering

of ϕ2.

Mapping filtering is a more complicated pruning strategy, but provides

more effective pruning based on the gram edit distance. To begin with, we first

define the distance between two multi-sets of n-grams.

Definition 4.4. (GRam Mapping Distance)(GRMD) Given two gram multi-

sets Gs1 and Gs2 of s1 and s2, respectively with the same cardinality. The

mapping distance between s1 and s2 is defined as the sum of distances of the

optimal mapping between their gram multi-sets, and is computed as

µ(s1, s2) = min
P

∑
ngi∈Gs1

λ(ngi, P (ngi)), P : Gs1 → Gs2

The computation of gram mapping distance is accomplished by finding an

optimal mapping between two grams multi-sets. Similar to the work in [67],

we can construct a weighted matrix for each pair of grams from two sequences,

and apply the Hungarian algorithm [33, 60]. Based on gram mapping distance,

we show how a tighter lower bound on the edit distance between two sequences

could be achieved.

Lemma 4.2. Given two sequences s1 and s2. The gram mapping distance

µ(s1, s2) between s1 and s2 satisfies

µ(s1, s2) ≤ (3n− 2) · λ(s1, s2)

Proof. Let E = {e1, e2, . . . , eK} be a series of edit operations that is needed

to transform s1 into s2. Accordingly, there is a set of sequences s1 = M0 →
M1 → . . . → Mτ = s2, where Mi−1 → Mi indicates that Mi is the derived

sequence from Mi−1 by performing ei for 1 ≤ i ≤ K. Assume there are K1

insertion operations, K2 deletion operations and K3 substitution operations,

then we have K = K1 + K2 + K3. We analyze the detailed influence of each

type of edit operation as follows.

Insertion operation: When a character is inserted into the sequenceMi−1, at

most n n-grams are affected. The edit distance is less than 2 for (n−1) n-grams

, and n for one newly inserted n-gram. Thus, we conclude that µ(Mi−1,Mi) ≤
[2(n− 1) + n] = 3n− 2.
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Deletion operation: When one character is deleted from the sequence Mi−1,

thus a total number of n n-grams may be affected. The edit distance is less

than 2 for (n− 1) n-grams, and n for one newly deleted n-gram. Thus, in the

case of deleting one character, µ(Mi−1,Mi) ≤ [2(n− 1) + n] = 3n− 2.

Substitution operation: When a character in sequence Mi−1 is substituted

by another character, a total number of n n-grams are affected. Then, the edit

distance for each affected n-gram is equal to 1, and thus we have µ(Mi−1,Mi) ≤
n.

By analyzing the effect of the above three operations, we conclude that

GRMD and SED have the following relationship.

µ(s1, s2) ≤ (3n− 2) ·K1 + (3n− 2) ·K2 + n ·K3

≤ (3n− 2) · (K1 +K2 +K3)

≤ (3n− 2) · λ(s1, s2)

Lemma 4.2 naturally brings us a new lower bound estimation method on

the sequence edit distance. Given two sequences s1 and s2, and an edit distance

threshold τ , if µ(s1,s2)
3n−2

> τ , then λ(s1, s2) > τ . While the bound is effective,

it remains computational expensive if we directly apply the pruning theories

presented in this section. In this work, we employ this bound function to

compute the aggregation value in the CA filtering algorithms. That is, we use

the summation of gram edit distances as the aggregation function, instead of

directly computing the mapping distance. We will introduce new implementing

filtering strategies and algorithmic frameworks to make these theories practical.

4.4 Filtering Algorithms

Based on the filtering theories derived in the previous section, we introduce

new algorithms to support efficient filtering. Given a query sequence q, we

assume that there are existing inverted lists that support efficient search on the

n-grams under specified edit distance constraint, as shown in Figure 4.4 and

4.5 with LG = {L0, L1, ..., L|q|−n}.
We use a frequency queue (f-queue) to speed up our inverted list process-

ing. The basic intuition is that sequences that share higher number of matched
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approximate n-grams with the query sequence will be given preference for pro-

cessing. The f-queue is an unordered queue, which maintains the top-k′ unique

visited sequences with frequency of approximately matched n-grams larger than

a temporary frequency threshold.

Algorithm 4.2: KNN Search Algorithm Using the F-queue

Require: The n-gram lists LG with GRED = t for q, and k′

1: Initialize the f-queue as ∅;
2: Initialize a max-heap H using first visited k sequences;
3: for Li ∈ LG do
4: for all unprocessed sj ∈ Li do
5: frequency[sj] + +;
6: Update the top-k′ f-queue;
7: if k′ items in f-queue then
8: for all sc ∈ top− k′ do
9: τ = max{λs|s ∈ H};
10: η(τ, t, n) = max{1, n− 2× t}+ (n− t)(τ − 1);
11: ϕt = max{|sc|, |q|} − n+ 1− η(τ, t, n);
12: if frequency[sc] ≥ ϕt then
13: Compute the edit distance λ(sc, q);
14: Mark sc as a processed sequence;
15: if λ(sc, q) < τ then
16: Update and maintain the max-heap H;
17: Output the k sequences in H;

The f-queue is first initialized to be an empty set, and we perform access

to the inverted lists to count the frequency of approximately matched n-grams.

As shown in Algorithm 4.2, if the queue contains k′ unprocessed sequences,

our algorithm first sorts the visited sequences in ascending order based on the

frequencies. Subsequently, we verify the sequences in the f-queue using the tem-

porary frequency threshold (highest frequency first). Those sequences passing

the count filtering are verified with the exact edit distance computation, and

used to update the top-k heap. Note that the temporary frequency thresh-

old is immediately updated when a new value is inserted into the top-k heap.

Generally, the f-queue technique avoids frequent verifications on the visited

sequences. It offers new opportunities to employ count filtering with approxi-

mate n-grams. The f-queue can be used to improve the performance of existing

algorithms based on the length filtering or the MergeSkip strategy.

Figure 4.4 illustrates the idea of the f-queue and explains why it improves
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Figure 4.4: Illustration of the frequency queue

the MergeSkip strategy. The top-1 heap is initialized using the first sequence

which is visited i.e. sequence no. 10 and the frequency threshold is set as 3.

Here, we set the value of k′ as 2. After scanning the lists in the gray box,

two unprocessed sequences no. 41 and 50 are pushed into the f-queue since

the frequency of their approximately matched n-grams are higher than the

temporary frequency threshold. The f-queue is then traversed for candidate

verification, and sequence no. 50 is verified first since it possesses a highest

number of matching n-grams. As its edit distance is computed as 1, a new

threshold is computed for the top-1 matching and the top-1 heap is updated

accordingly, by discarding the sequence no. 10 and pushing sequence no. 50.

Finally, the new frequency threshold is 5, based on our update rule. Compared

against the standard method in Figure 4.1, our approach successfully skips the

sequences from 35 to 45.

As the novel count filtering can be applied without any constraint on the

gram edit distance, the list processing with the f-queue can continue until all

the sequences are processed. However, applying more count filters will mean

that more list processing time is required. To avoid having large overhead on

list processing, we use the CA based strategy [15] and use the summation of

gram edit distances as the aggregation function. As inverted lists of certain

GRED are fetched out separately, they are naturally sorted by the gram edit

distance (lowest distance first). Algorithm 4.3 shows the details of the CA

based filtering algorithm. We use Example 4.1 to illustrate the effectiveness of

the CA-based filtering framework for supporting the KNN search.

Example 4.1. In Figure 4.5, we consider the nine sorted lists for a query

70



CHAPTER 4. KNN SEQUENCE SEARCH WITH APPROXIMATE
N -GRAMS

Algorithm 4.3: KNN Search Algorithm Using the CA Method

Require: The n-gram lists LG with GRED = t for q
1: Initialize the f-queue as ∅;
2: Initialize a max-heap H using first visited k sequences;
3: Initialize ti = t with i = 0 . . . |q| − n;
4: for Li ∈ LG do
5: for all unprocessed sj ∈ Li do
6: frequency[sj] + +;
7: Update the top-k′ f-queue;
8: if The end of Li is visited then
9: ti = t+ 1;
10: if t > 0 then
11: τ = max{λs|s ∈ H};
12: τ(t) =

∑l=|q|−n
l=0 tl;

13: if τ(t) ≥ τ × (3n− 2) then
14: Terminate the list processing;
15: if k′ items in f-queue then
16: Apply the filtering strategy with the f-heap;
17: Output the k sequences in H;

sequence q. The length of the n-gram is set to be n = 5. Each list has three

groups of n-grams with various GREDs of 0, 1, and 2. Each entry in the lists

stores the sequence id number. Suppose we perform sorted access to each sorted

list Li. For each list Li, let ti be the GRED score of the last sequence visited

under sorted access. The CA threshold value is computed as τ(t) =
∑i=8

i=0 ti. As

soon as τ(t) ≥ max{λs|s ∈ top-k} × (3n − 2), CA halts and we stop scanning

the inverted lists. In the figure, CA halts at the positions at the bottom of the

grey area. In this case, each ti in the group of GRED = 1 is initialized to be

1. When we do sorted access to the list L4, each value of ti with i = 0, 1, .., 4

is set to be equal to 2 as no entry has distance of 1, and 2 is the smallest

score that can be obtained for unseen elements. Therefore, τ(t) is computed as∑i=8
i=0 ti = 2+ 2+ 2+ 2+ 2+ 1+ 1+ 1+ 1 = 14. Consequently, the CA halts as

τ(t) ≥ max{λs|s ∈ top-1} × (3n − 2) = 1 × 13. According to Lemma 4.2, the

unseen sequences 10 and 40 are safely pruned.
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Figure 4.5: An example of CA based filtering

4.5 Indexing and Query Processing

In the previous section, we developed our algorithms based on the assumption

that we can find the approximately matched n-grams efficiently and is thus

able to access the corresponding inverted list of these approximately matched

n-grams. In this section, we will explain how this can be done on top of a two-

levels inverted index. Based on this two-levels index, we will develop a pipeline

framework to support efficient KNN sequence search.

We build a two-levels inverted index based on n-grams with different gran-

ularity of n1 and n2 respectively. As shown in Figure 4.6, the index consists

of the upper-level index and the lower-level index. In particular, given a se-

quence database D, the upper-level is used to index the n1-grams that are

obtained from the original sequences in D, and the lower-level is used to index

the n2-grams that are obtained from n1-grams in the upper-level (n1 > n2).

There are two steps to build the index: 1) we extract n1-grams from se-

quences in D, and build the upper-level inverted index. The index is made up

of two main components: an index for all distinct n1-grams and an inverted list

below each n1-gram. In general, each entry in the inverted lists contains the

sequence identifier. 2) we further extract n2-grams from all distinct n1-grams,

and build the lower-level inverted index. Similarly, the index consists of two

main parts, which stores the n2-grams with the reference to the corresponding

n1-gram in the inverted lists. Generally, the inverted list entries in the upper-

level index are usually sorted into various orders when using different filtering
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Figure 4.6: An example of a two-level inverted index in a string database

techniques. For example, they are sorted into order of increasing sequence iden-

tifier for the MergeSkip strategy and increasing sequence length for the length

filtering. This paper will investigate the effect of the list order on the proposed

techniques in the experimental study.

4.5.1 A Simple Serial Solution

We first introduce a simple serial solution using the proposed two-level inverted

index. Our approach follows a filter-and-refine framework. Given a query

sequence q, it is first decomposed into a set of n1-grams Gq. As shown in

Figure 4.7, the serial algorithm works as follows.

1. GS: For each ngi ∈ Gq, the lower-level index is used to support the

sequence similarity search to return n1-grams with GRED ≤ t to ngi.

The returned list of n1-grams are naturally grouped based on the GRED

distance of 0, 1, ..., t.

2. DF: Given the output from the GS step, we fetch out the inverted lists

from the upper-level index for those matching n1-grams of distance 0. The

list merging algorithm with the proposed f-queue technique is employed

to support fast frequency aggregation and maintain the top-k queue for

processed sequences (See Algorithm 4.2 in Section 4.4).
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3. CA: If the DF step does not halt the algorithm, we further fetch the

inverted lists from the upper-level index for those similar n1-grams of dis-

tance t (t ≥ 1). Given the f-queue and the top-k queue from the output of

the DF step, the list merging algorithm will continue to accumulate fre-

quencies of similar n1-grams, and use the proposed count filtering bound

for further pruning. Noted that, the CA filtering bound will be employed

if a new gram edit distance appears (See Algorithm 4.3 in Section 4.4).

A query sequence

The n1-gram 

similarity search

Step 1: GS

KNN search with 

F-queue

Step 2: DF

CA- based KNN 

search with         

F-queue

Step 3: CA

Algorithm 

halts?

no
n1-gram of distance 0

n1-gram of distance t

The top-k queue

Figure 4.7: The simple serial query processing flow

In the GS step, we employ the fastest approximate string matching algorith-

m to support efficient n1-gram similarity search. In our implementation, we use

the traditional count filtering with exact n-gram matching to do pre-pruning.

The quality of the approximate string matching is sufficiently high to return

similar n1-grams with negligible query time.

We employ the proposed f-queue technique in the DF step and adopt a

CA based algorithm to do further pruning in the CA step if the previous pro-

cessing cannot terminate our search. The algorithm halts under the following

conditions: 1) All sequences in the database have gone through the candidate

verification; 2) The maximum value in the root of the top-k queue is within

an acceptable small distance. Generally, if the temporary frequency threshold

is equal to 0, those unseen sequences cannot be safely pruned and need post

processing. The algorithm will request for further list processing by relaxing

the distance threshold for n1-gram if these conditions are not met.

In general, the filter-and-refine framework can be evaluated using the cost

model with Tq = Tf + |Cq| × Tr, where Tf is the filtering time and Tr is the

verification time for each candidate. Our solution attempts to reduce the num-
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ber of false positives, as it is costly to verify the candidates for long sequences.

Compared with existing n-gram based methods, our approach offers new op-

portunities to speed up the query processing in the CA step by using our novel

count filtering.

4.5.2 A Novel Pipeline Framework

Next, we propose a dynamic method that is easy to be pipelined to enhance

query processing. The main idea is that similar n1-grams are dynamically

returned from the lower-level index for pruning in the upper-level index.

As shown in Figure 4.8, we adapt the CA step to perform the frequency

accumulation without processing sequences using the f-queue. We develop a

pipelined algorithm to execute the GS step and the CA step. In this way, the

DF step can process visited sequences in the f-queue by using the temporary

frequency thresholds that is computed from the approximate n1-grams, instead

of only using the frequency bound of common n1-grams. The pipelined exe-

cution offers new opportunities for reducing the overhead costs of employing

multiple filtering techniques.
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Figure 4.8: The pipelined query processing flow

4.5.3 The Pipelined KNN Search

To support efficient KNN search, the three stages are implemented differently

in the pipeline framework as described below.
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The GS stage are shown in Algorithm 4.4. The algorithm takes the n1-

gram set Gq obtained from a query q as the input. Given a constraint on the

maximum value of gram edit distance (GRED) value, this stage performs the

similarity search to return n1-grams with GRED = t to each ngi ∈ Gq. The

output of the query results will be fed into the CA stage.

Algorithm 4.4: The GS stage

Require: The n1-gram set Gq, a constraint of tmax

1: loop
2: Update the GRED threshold value of t;
3: if The halting signal is detected then
4: Terminate this stage;
5: else
6: for Li ∈ Gq do
7: Apply gramSimilaritySearch(ngi, t);
8: Pipe similar n1-grams with GRED = t to the CA stage;

Algorithm 4.5: The CA stage

Require: The global top-k heap H
1: loop
2: Update the GRED threshold value of t;
3: if The halting signal is detected then
4: Terminate this stage;
5: Obtain inverted lists LG from the upper-level index for all n1-grams;
6: for Li ∈ LG do
7: for all unprocessed sj ∈ Li do
8: frequency[sj] + +;
9: if The end of Li is visited then
10: ti = t+ 1;
11: if t > 0 then
12: τ = max{λs|s ∈ H};
13: τ(t) =

∑l=|q|−n
l=0 tl;

14: if τ(t) ≥ τ × (3n− 2) then
15: All unseen strings are safely pruned;
16: Send a global halting signal;
17: Terminate this stage;

In the CA stage, given the n1-gram set with GRED = t, the inverted lists are

fetched from the upper-level index, and scanned to accumulate the frequencies

for each visited sequence. The CA strategy is used to terminate the whole
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process if the CA threshold value of the gram edit distance summation is larger

than the temporary threshold computed from the top-k heap. It is convenient

to compute the new CA threshold value τ(t) with a summation of the gram

edit distance returned from the GS stage. For example, if the GRED for all

returned grams is equal to t, then we have τ(t) = t× |Gq|. However, this value
is updated when a new distance value appears. As shown in Line 9 and Line

12 in Algorithm 4.5, CA can enhance the total query processing by avoiding

access to those very dissimilar strings. If the halting condition with the CA

aggregation value has been found, this stage immediately stops and sends a

global signal to invoke the termination of the whole search. The details of the

CA stage are shown in Algorithm 4.5.

In the DF stage, we maintain a global max-heap H for storing the current

top-k similar sequences and use the maximum edit distance score in the root

of the heap to update the temporary frequency value. As shown in Algorithm

4.6 (lines 13 - 15), the distance value of the top element in the top-k heap is

selected as a new range bound for the CA stage and the DF stage.

4.6 Experimental study

We compare the performance of our proposed approach AppGram against

several state-of-the-art methods over a wide spectrum of real datasets.

4.6.1 Setup

The algorithms used in the following experiments are presented as below.

• Bed-tree [79] is proposed to support the string similarity queries using

a B+-tree based index structure. We use the implementation from the

authors.

• Flamingo [35] is an open-source data cleaning system which supports

approximate string search. We use the latest release 4.1. For existing

work [62] and [74], we use the implementation from the Flamingo, as it

has integrated the previous filtering techniques.

• TopkSearch [14] is the most recent method that is proposed to sup-

port top-k sequences similarity search with edit-distance constraints. We
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Algorithm 4.6: The DF stage

Require: A query sequence q
Require: The global top-k heap H
1: Initialize the f-queue as ∅;
2: Initialize a max-heap H using first visited k sequences;
3: Obtain the n1-gram set Gq from q
4: Obtain n-gram lists LG for all ngi ∈ Gq

5: for Li ∈ LG do
6: for all unprocessed sj ∈ Li do
7: if The halting signal is detected then
8: Terminate this stage;
9: frequency[0][sj] + +;
10: Update the top-k′ f-queue;
11: if k′ items in f-queue then
12: for all sc ∈ top− k′ do
13: τ = max{λs|s ∈ H};
14: η(τ, t, n) = max{1, n− 2× t}+ (n− t)(τ − 1);
15: ϕt = max{|sc|, |q|} − n+ 1− η(τ, t, n);
16: for all l = 0 . . . t do
17: frequency(sc)l =

∑m=l
m=0 frequency[m][sc];

18: if all frequency(sc)l ≥ ϕl with l = 0 . . . t then
19: Compute the edit distance λ(sc, q);
20: Mark sc as a processed sequence;
21: if λ(sc, q) < τ then
22: Update and maintain the max-heap H;
23: Output the k sequences in H;

obtain the executable binary file from the authors.

We use two real datasets that are available publicly. They cover different

domains and are widely used in previous studies. We use another paragraph

dataset obtained from an ebook reading system. The details of the datasets

are shown as follows, and the statistics are shown in Table 4.1.

• IMDB consists of movie titles which are taken from a public database of

IMDB1, and we use the dataset provided in paper [79].

• DBLP consists author names and titles of publications which are ex-

tracted from the DBLP Bibliography2, and we use the dataset provided

in paper [65].

1http://www.imdb.com
2http://www.informatik.uni-trier.de/∼ley/db
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• ANNOTEXT is a dataset containing annotated paragraphs. We extract

the paragraphs from a paper abstract collection that are taken from a

public citation database3. The annotated paragraphs are generated with

a random sampling method. We maintain the length distribution of this

dataset to be the same as the DBLP dataset.

Table 4.1: Sequence datasets
Dataset Size Avg. Len Max. Len
IMDB 1,553,914 19 240
DBLP 1,385,668 105 1626
ANNOTEXT 1,572,561 75 1250

The query files of the first two public datasets are also available in their

original work. Each query file includes 100 sequences, and we obtain them

from the authors together with the datasets. For the ANNOTEXT dataset, we

select 100 queries by random sampling. Table 4.2 presents major parameters

used in our experiments, including their descriptions and values (with default

values in bold). Hereafter, the default values will be used in all the experiments

unless otherwise stated.

Table 4.2: Parameter settings on KNN sequence search
Parameter Description Value
k k value for the search 1, 2,4, 6, 8, 10
|q| average query size 10, 20, 30, 40, 50
τ distance threshold 1, 2, 4, 8, 10, 16

AppGram was implemented in C++, and the pipeline algorithm is imple-

mented using pthread. In all the experiments, we only implement two threads

to support two pipelines. We compiled all the algorithms with gcc 4.4.6 in Red

hat Linux Operating System, and all experiments were done on a server with

Quad-Core AMD Opteron(tm) Processor 8356, 128GB memory, running RHEL

4.7AS.

4.6.2 Construction Time and Index Size

Table 4.3 and 4.4 show the construction time and the index size on the three

datasets. The n-gram length is set at n=5 for all datasets. In AppGram, the

3http://arnetminer.org/citation
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Table 4.3: Construction time (sec)
AppGram Bed-tree Flamingo

IMDB 13 57 25.59
DBLP 154.3 35 116.22
ANNOTEXT 89.3 45 64.12

Table 4.4: Index size (MB)
AppGram Bed-tree Flamingo

IMDB 108 63.2 159
DBLP 563 222.9 608
ANNOTEXT 444 183.7 492

gram length for the lower level is set at 3. As shown in the figure, the Bed-

tree takes less time and smaller space than AppGram and Flamingo. Since

the AppGram decomposes the sequences into n-grams without any prefix and

suffix, it takes slightly smaller space than the Flamingo. The AppGram takes

slightly more construction time than the Flamingo, as it needs to build the

lower-level index for the n-grams in the upper level. As the binary file for the

TopkSearch algorithm does not provide the preprocessing time and space costs,

we exclude the results on this method.
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Figure 4.9: Percentage of the index cost

To evaluate the space and time overhead on the extra lower-level index,

we present the percentage of total index cost on three datasets in Figure 4.9.

Obviously, the lower-level index has a very small ratio compared with the upper-
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level index. As shown in the figure, it represents 11.1% of the index size over

the IMDB dataset, and no more than 5% of the index size over the DBLP

and ANNOTEXT datasets. This small cost indicates that the overhead for

the lower-level processing with queries may be negligible compared to the total

time cost. We will present more results in the following subsections.

4.6.3 Quality of Count Filtering

We evaluate the quality of the proposed count filtering technique. The AppGram-

0 is the proposed algorithm which employs the common count bound with

n-grams of distance 0; while the AppGram-1 is one which uses not only the

common count bound but also the count filter with approximate n-grams of

distance 1. A query file of 10000 sequences are randomly sampled from each

dataset by reserving the original distribution. We vary the edit distance thresh-

old τ as 1, 2, 4, 8, 10, and 16. We accumulate number of sequences which are

pruned.
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Figure 4.10: Average filtering number vs. τ
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Figure 4.10 shows the average number of sequences that are filtered with

respect to the edit distance threshold on the three datasets. As shown in the

figure, the AppGram-1 can filter out more sequences than the AppGram-0,

which means that the proposed count filtering based on approximate n-grams

have better filtering power than the existing common count bound.

Generally, the filtering power of the AppGram-1 prunes about 10% more

sequences compared with the AppGram-0, and the improvement becomes more

significant when the edit distance threshold becomes larger. As shown in Figure

4.10(c), when the edit distance threshold becomes 8 and 16, the AppGram-1

can prune 20K sequences compared to 2K sequences that are pruned by the

AppGram-0. The difference even becomes larger if we further increase the edit

distance threshold value.
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Figure 4.11: Average accessed number of sequences on lists vs. k

4.6.4 Effect of Various Filters

We evaluated various ways to integrate our proposed filters with existing tech-

niques on the three datasets. We use the default query file containing 100

sequences. For each query, we execute the KNN search with various k values
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from 1 to 10, and count the number of accessed elements in the list processing

and the generated candidate size.

Figure 4.11 shows the average number of sequences on the query inverted

lists for various filter combinations. As shown in the figure, using only the

MergeSkip technique to support dynamic count filtering will access too many

sequence ids for processing the inverted lists. The length filtering technique is

useful in reducing the number of entries that are accessed for list processing. We

also design an algorithm to combine our proposed technique with the MergeSkip

technique and the length filter. It is obvious that, the combined technique can

significantly reduce the number of accessed entries in the processed lists.
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Figure 4.12: Average candidate size vs. k

Figure 4.12 shows the candidate size for each filter combination. The results

indicate that combining the MergeSkip with the length filter can help to reduce

the candidate size and improve the query performance. Our proposed filter can

further reduce the candidate size. Obviously, the proposed filtering technique

can help to enhance the query performance of the MergeSkip technique and the

length filter, as this filter combination need access to the smallest number of

entries in the invert lists and generates the smallest number of candidates.
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Figure 4.13: Average query time vs. k

4.6.5 Query Evaluation

We evaluate the query performance of the proposed approach compared to

exiting methods of Bed-tree, Flamingo, and TopkSearch. The KNN search are

conducted as follows. We vary k over 1, 2, 4, 8, and 16. For each k, we execute

the 100 queries, and compute the average of the query results.

Figure 4.13 shows the average query time with respect to k on three datasets.

It can be seen that the AppGram method outperforms all the competitive

techniques with k ≥2. The proposed f-queue and CA based filtering strategies

can reduce the cost of the candidate verification. When the k value is as small

as 1, Flamingo can run efficiently as it only needs to execute a range query

once to obtain the top-1 result. In this case, a small edit distance threshold

of 1 may be enough to report the top-1 sequence. Similarly, the TopkSearch

is also more efficient for k=1 as its range-based algorithm only needs to verify

a small number of entries in the dynamic matrix. However, when the k value

increases, our AppGram method indeed outperforms other algorithms, and has
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a stable average query time. Note that TopkSearch takes too long to run on

the long sequences of DBLP and the ANNOTEXT datasets and its results are

excluded.

Figure 4.14 compares the overhead of two query phases: the filtering time

and the candidate verification time. We randomly select five groups of queries

with various average lengths of 10, 20, 30, 40, and 50, and each group has 100

query sequences. For each group, we execute the KNN search, and compute

the average filtering time and verification time. It is clear that candidate ver-

ification is the most consuming step in the KNN search. That means that a

tighter bound is required for speeding up KNN search and it is reasonable to

sacrifice slightly higher filtering overhead to reduce the candidate sequences as

much as possible.
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Figure 4.14: Detailed analysis on the query cost vs. |q|
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4.7 Summary

In this paper, we study the problem of k-nearest neighbor sequence search

based on the edit distance. After surveying existing work, we find that such

approaches have limitations on the applications, and often suffer poor filtering

power and low query performance when sequences in the database are long. To

speed up the KNN sequence search, we propose a novel pipeline approach using

approximate n-grams. The approach follows a filter-and-refine framework. In

the filtering phase, we develop a novel filtering technique based on counting

the number of approximate n-grams, and experimental results show that this

technique has high quality for pruning unqualified candidates. We also design

an efficient searching algorithm with the frequency queue and the CA strategy.

The frequency queue supports our proposed filtering techniques by reducing

the number of candidate verification. By using the summation of gram edit

distances as the aggregation function, the CA based search has an optimal

feature of early termination which helps to invoke the halting condition of the

whole pipeline framework. Our proposed filtering strategies have significant

performance on the KNN search, and the pipeline framework is easy to support

parallelism strategies.
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CHAPTER 5

Readpeer: A Collaborative Annotation

Cloud Service for Social Reading

Our project on social reading systems requires a unified indexing and query

processing system to manage data resources and support real tasks, including

annotation cloud services, book detection and recommendation, and so on.

In general, data resources collected from such systems are often modeled as

complex structures. We have successfully designed inverted list based index

for supporting similarity queries on complex structure data like graphs and

sequences. Based on the graph model and sequence model, we propose a novel

data structure, denoted by nested structure, to model complex objects like

ebook documents for handling some real tasks. We also design a unified inverted

index for managing such complex and nested structures. The proposed 3-in-1

indexing system can provide a generic interface for inverted list storage, and

help to support various types of queries on complex structures.

5.1 Overview

Over the last year, we have designed, implemented, and deployed a social read-

ing system, denoted by Readpeer, for supporting users’ social reading ac-

tivities, such as online bookmarking, passage highlighting, comment sharing,

and annotation retrieval etc. We aim to provide a user-friendly information
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management and sharing tool by collecting and organizing valuable resources

such as highlights, annotations, sticky notes, documents, images, and videos,

etc. Figure 5.1 presents such a recent reading system including basic reading

features and social features. However, limited progress has been made because

the management of such data resources is challenging. Such data cannot be

simply organized using the traditional data management system such as rela-

tional databases. It poses new challenging research problems that do not exist

in traditional databases. For example, how to organize these data? How to

make them searchable for future retrieval? How to excite users with interesting

knowledge discovery?

e Library

Highlights

Sticky notes Annotations/

comments

Images

Documents

Videos

Figure 5.1: A recent social reading system

We demonstrate a working system that addresses these issues by providing

the collaborative annotation cloud service. To manage the data resources, we

use the complex structures to model various types of data. For example, we use

the graph model to represent the documents, and the sequence model to repre-

sent the highlights and annotations. Based on these representations, the book

detection problem could be formulated as the graph matching problem; while
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the annotation retrieval problem could be defined as the sequence similarity

search problem. Our previous works described in Chapter 3 and 4 have made

important progress to handle such problems. Our approach on graph similarity

search can support efficient document duplicate detection, especially for those

users with common interests who prefer to upload the same book. However,

sometimes this approach fails to detect those books with multiple editions. In

this case, different editions may have highly different graph representations. To

solve such problems, we use a novel data structure, denoted by nested struc-

ture, to model a book document. See the example provided in Figure 1.6 in

Section 1.1.4. A document can be modeled as a nested graph, whose vertices

are sequences of titles, author names, and headings etc. With the model, we

also define a similarity measure between two nested structures and design an

index mechanism to handle the above task.

Even when we have developed efficient algorithms to process various types of

complex and nested structures, it is still a waste of resources to design isolated

indexing and processing systems for each kind of data. In this work, we propose

a unified indexing system to support the storage and retrieval of all types of

data. The proposed index mechanism is based on inverted lists. The basic idea

is that we decompose original complex data into various types of sub-units, and

use inverted files to store them. For example, for sequence data, we employ the

n-gram decomposition and indexing method proposed in our previous work

in Chapter 4. While for graph data, we use the star based approach in our

previous work in Chapter 3. In general, a nested structure could be seen as

a two-layer graph model including vertices of smaller complex structures like

subgraphs and sequences. Therefore, a nested structure can be first decomposed

into substructures of its vertices. Then, each vertex which may be a subgraph

or a sequence, can be further decomposed into sub-units like stars or n-grams.

Based on the decomposition, we use a two-level inverted index to store all types

of sub-units. The proposed unified index structure can support various queries

for different types of complex and nested structures. We simply implement the

proposed indexing mechanism and use it to technically support the real tasks

in our Readpeer system.

With the technical support, our social reading system brings valuable en-

ticing features over existing systems, including 1) elegant storage of the data

resources; 2) powerful annotation retrieval from anywhere; 3) interesting book
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and annotation discovery and expertise recommendation; 4) user collaboration

with common interests. Our system provides a dream information manage tool

for both personal reading networks and public social reading systems.

Figure 5.2: System architecture

5.2 System Design

Figure 5.2 illustrates the architecture of our Readpeer system. The Readpeer

system employs a client-server architecture. We build a user-friendly informa-

tion management tool at the server-side, that supports the storage and retrieval

of the user data. While at the client-side, we set up a web site, create an iOS ap-

p, and develop web browser plugins, for users to add, share, view, and retrieve

annotations.

At the server-side, the collected user data are kept in a relational database

management system (RDBMS), MySQL Server 5.1. Such user data include the
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information of users, the metadata of ebooks, and the annotation data etc. In

addition, the original ebook files are stored in the file system. To provide flexible

and intuitive access to the data, we build an information management tool

between the relational database and the application layer. The tool employs the

associated techniques to model, store, compare, and query the user data. The

aim is to develop a unified indexing and query processing system to support

efficient annotation retrieval and ebook detection. As shown in Figure 5.3,

we implement the tool with three layers: the storage layer, the index layer,

and the application layer. In the storage layer, we use complex structures

to model the user data and store the complex structure databases in the file

system. In the index layer, we use inverted lists to index various types of

complex structures, based on the sub-unit decomposition method. We also

design unified inverted list processing method to support query processing for

various complex structures. The application layer is the processing layer where

each type of complex structure can build specific processor to communicate

with the other two layers.

Document 

storage

Highlight 

text storage

Annotation 

storage

Unified inverted index

Annotation retrieval Book detection

Storage layer

Application layer

Index layer

Figure 5.3: Information management tool architecture

5.2.1 Data Model

The implemented information management tool provides an appropriate storage

for the data collected from Readpeer. The data include passages, comment

texts, and documents etc. Various data structures are required to model various
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types of the data.

Passages and Comment Texts

Passages are collected from users’ highlighting texts. They are often attached

with several comments, notes, or media. Such passages and comment texts can

be simply modeled as sequences. As mentioned in previous Section 1.1.2, the

real application of such data models is the annotation search by snapping.

Documents

In general, documents are modeled as graphs. Figure 5.4 shows an example of

such a document graph. Typically, a document might contain a title, author

names, an abstract, and section headings. We build a simple document graph

with vertices of title and headings, and add edge from a preceding heading

to a succeeding heading. In this model, title and headings are hashed into

numeric labels of vertices. Therefore, the ebook duplicate detection task can

be supported using a graph range query algorithm. However, this model can not

handle the ebook edition detection task, as different editions may have different

graph representations. All the document elements including title and headings

may have been updated into a new version. We motivationally propose a novel

data model, denoted by nested structure, to model the document editions.

A nested structure is defined as a graph with vertices of sequences. See the

example in Figure 5.4. The difference between the nested structure and the

graph is that, the title and headings in the nested graph are represented as

sequences instead of hash codes in the simple graph.

Introduction Related work Preliminaries

KNN Search AlgorithmsAbstract

Figure 5.4: A document graph

5.2.2 Unified Inverted Index

We have used sequence, graph, and nested structure to model the collected data

like annotation texts and documents. Based on our previous works in Chapter

3 and 4, we know that the inverted list based index can support efficient query

processing for both graph model and sequence model. As shown in Figure 5.5,
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a unified 3-in-1 inverted index can be built by breaking non-nested complex

structures down into smaller units like stars (for graphs [67]), n-grams (for

sequences [68]), and binary branches (for trees [?]). With this index, searches

are performed by retrieving these smaller units individually and assembling

them for matching the queries.

Terms

stars n-grams binary branches

Documents

Graph data Sequence data Tree data

Unified inverted index

(Terms with posting list of document ids)

Figure 5.5: A unified inverted index structure

We investigate how to extend the above inverted index to support query

processing on nested structures. The basic idea is adapted from our previous

works on graph and sequence model. We build a two layer inverted index: 1)

In the outer layer, the nested document graph is first broken into a multi-set

of stars using the star decomposition method proposed in our previous work in

Chapter 3. Here, each vertex of the document graph is labelled using both the

hash code and the original sequence. The hash code is used as the labels in the

star structure, and an inverted index is also built to store the reference between

graphs and stars. 2) In the inner layer, for each vertex of the document graph,

we break its sequence into a multi-set of n-grams. An inverted index is built to

store the reference between vertex sequences and n-grams.

Obviously, the inverted index can be used to store all types of data includ-

ing sequences, trees, graphs, and nested structures. The need arises only to

support the storage of inverted files for efficient query processing. In this work,

we implement the unified storage on top of the Apache Lucene1. In our imple-

mentation, the index structure is organized as an inverted manner from terms

to the list of documents (which contain the term). The list (known as posting

list) is ordered by a global ordering (typically by document id). Each inverted

index is stored on disk as segment files which will be brought to memory during

the list processing.

1http://lucene.apache.org

93



CHAPTER 5. READPEER: A COLLABORATIVE ANNOTATION
CLOUD SERVICE FOR SOCIAL READING

5.2.3 Data Queries

We illustrate how to use the inverted index to support the similarity queries

on various complex structures. In this work, we implement a unified CA-based

list processing algorithm for our applications. The query is submitted from the

application layer with a configuration file to the index layer. The configuration

file includes all the required information for processing a specific query, such

as the location of index file, the location of data file, the similarity measure,

the similarity threshold value, the query type, and the aggregation function.

The index layer will load the corresponding index file into the memory with

the location provided in the configuration file. Then, list processing interface

is called to answer the query.

We illustrate how to evaluate the similarity between two nested structures

and use the proposed index structure to support the efficient query processing

on nested structures. In this work, we focus on the nested structures on doc-

ument graphs. We use graph edit distance to evaluate the similarity between

two document graphs. Given a query nested structure, we generate the hash

codes for each vertex, and decompose the query into a multi-set of stars. For

each vertex sequence, we decompose it into a multi-set of n-grams and perform

a KNN sequence search on the inverted index in the inner layer. The top-k

results for each vertex will be returned to the outer layer. Then, the top-k se-

quences will be considered as the matching vertices, especially when computing

the star edit distance. Finally, graph similarity search algorithms are employed

to support the final candidate verification.

In summary, we implement the unified indexing and query processing system

into the information management tool, which can efficiently support real tasks

in the Readpeer system.

5.3 System Demonstration

At the client-side, we have provided three types of accesses to use our Readpeer

system: web site, iOS app, and web browser plugin.
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5.3.1 Readpeer Web Site

The Readpeer web site is now launched in the first public version of Read-

peer.com2. It consists of important reader features, including ebook uploading,

passage highlighting, comment sharing, and annotation searching etc. It also

implements a number of social features, such as sharing comments with friend-

s, activating connections between users, presenting activity feeds, and creating

reading groups etc.

Figure 5.6: Current ebook reader

Pencil tool

Figure 5.7: Highlights with the pencil tool

Figure 5.6 presents an overview of the ebook reading interface. The current

design has three columns. To be a central, dominant component, the ebook is

rendering in the center column. We also present previous highlighted passages

2http://Readpeer.com
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in the current page. In the left column, we add a left sidebar to show user’s

friends who has highlighted something and share comments in the current page.

In addition, all previous annotations and comments are also presented here. In

the right column, the annotation box can automatically show up in the right

siding bar when the user has highlighted something in the current page. To

provide a more user-friendly interface, both the two siding bars can be opened

and closed, to hide and show corresponding contents.

The Readpeer system provides three types of canvas annotation tools: rect-

angle tool, ellipse tool and pencil tool. With these tools, users are convenient

to highlight passages and add annotations everywhere in the book. Figure 5.7

shows an example of using the pencil tool.

(a) Read a comment (b) Write a comment 

Figure 5.8: Current comment interface

When the user highlights something, the annotation box will open in the

right siding bar. The user can type in a note to attach comments to the

highlight. Comments may be public to all users, friends, groups, or private.

Some readers make private comments like sticky notes, while others use the

public comments to ask questions. The user also can attach associated web

pages, media, and blogs into the comments. Figure 5.8 (b) shows an example

to attach a video into a comment. When reading comments from others, the

user can click the comment button to reply others’ comments. Figure 5.8 (a)
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lists the comments in the current page. The use can like the annotations,

and share the interesting annotations to public social web sites like Facebook3,

Twitter4, and Sina Weibo5.

Beside the ebook reader, we also build a group reading system. Figure 5.9

presents a reading group created by a user in our site. In our system, users

can create many reading groups, invite friends or other users to join the group,

add new books to the reading list, and share comments within a book. The

group system provides a convenient connection way for users to find people

with common interests and share their ideas.

Figure 5.9: An example of reading group

Readpeer also provides a recommendation system based on knowledge dis-

covery on interesting book and annotation discovery. Four types of recommen-

dations, including the popular books, groups, expertise, and annotations, are

3https://www.facebook.com
4https://twitter.com
5http://www.weibo.com
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separately presented from Figure 5.10 (a) to Figure 5.10 (d). For books and

annotations, the ranking function is computed as rank = α×cl+β×ca. cl and
ca denote the number of likes and annotations. α and β denote the assigned

weights for them. We compute a score for a user with the total number of

posts and active conditions. For groups, the ranking function is computed as

rank = α× rmcm+β× rb× cb. Here, cm and cb denote the number of members

and books in this group. rm and rb are the average ranking scores of members

and books. α and β are the assigned weights.

(b) Popular groups (d) Popular annotations

(a) Popular books

(c) Popular expertise

Figure 5.10: Popular blocks

Content on Readpeer comes from various sources, including free public web

pages, ebooks, and slides etc. Much activity on Readpeer currently center on

slides from teachers and students in School of Computing in National University

of Singapore. Teachers and students upload their slides to our site, and add

comments or notes to their slides. Readpeer helps students to better capture

the gist of the teacher’s lecture, and provides teachers a better management

tool for managing their courses. It also can be used as an online component of

the classrooms in the university. Another important source for Readpeer is the

ebook library from Netease Cloud Reading6. They have provided a complete

elibrary of numerous books, newspapers, magazines, and web pages etc.

6http://yuedu.163.com/?act=rdwzb_20121221_01
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Annotation 

database

Web services

Physical textbook

Photo/Video

Extracted text 

from OCR

Relevant 

annotations

Figure 5.11: An example of annotation retrieval

(a) Select a snapshot (b) Extract text from OCR (c) Search the annotations (d) Read an annotation

Figure 5.12: Screen captures on the iOS app

5.3.2 The iOS App

We create an iOS frontend app to support efficient annotation retrieval and

recommendation. Our app provides an interesting feature to detect annotations

on physical books through augmented reality. Figure 5.11 shows an example of

the use of OCR to search for annotations. As mentioned before, an information

management tool is developed in the server side to provide web services for

annotation search. As shown in Figure 5.12, users can use the iOS app with

four steps as below.

• Select a snapshot: Users use mobile devices to snap a photo of page in

real books and pick a snapshot as a query photo, as shown in Figure 5.12

(a).

• Extract text from OCR: The query photo is then processed by an

optical character recognition (OCR) program which extracts the text from

the photo as a sequence, as shown in Figure 5.12 (b).
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• Search the annotations: The iOS app sends a request to the web

services to search associated annotations with the query sequence. Note

that the OCR program might generate errors within the sequence. The

information management tool needs to perform an approximate query

against the passages in the server to retrieve those passages that had

been annotated. The returned results are shown in Figure 5.12 (c).

• Read an annotation: Users also can click on one returned annotation

to view the details of annotated passage and related comments, as shown

in Figure 5.12 (d).

Figure 5.13: Current web browser plugin

5.3.3 Web Browser Plugin

To build a scale information management tool for collaborative cloud services,

it is important to provide an interface for collecting the user data as many as

possible. A web browser plugin can achieve such goals with a simple imple-

mentation. Figure 5.13 shows the interface of our current web browser plugin.

The plugin provides several useful functionalities for users: open annotation

sharing, tracking, and searching. Anyone can view previous open annotations
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in any public web page. Users are authorized using the the OAuth 2.0 protocol

with Readpeer accounts, or public social network accounts like Facebook or

Twitter. When passing the authorization, the user can add public annotation-

s and search associated annotations. As shown in Figure 5.13, the user can

highlight text from any public web page, attach comments or notes into the

highlight, and store the data with the page link into the Readpeer database.

If other users visit the same web page, previous annotations associated with

the link will be returned. Users can click the “Related Annotations” button to

track these comments and notes. If no result is returned for current page link,

a backend thread will be activated to send a request for searching associated

annotations. In this case, all texts in current web page are extracted to build

a long query sequence. The server side will process the query sequence, and

perform a KNN search to retrieve those passages that had been annotated. The

returned results will be automatically shown in an open side bar.

5.4 Summary

We presented our Readpeer system, which is a social reading system that sup-

ports a number of reader features and social features. The system follows a

server-client model. In the client side, we have built three access platforms to

use the Readpeer system, including the web site, the iOS app, and the we-

b browser plugin. Readpeer connects users across such reading platforms. It

provides the elegant interface to visualize users’ highlights and annotations. In

the server side, we have developed a powerful information management tool

to support the annotation retrieval, ebook duplicate detection, and ebook edi-

tion detection. To support efficient annotation retrieval, we employ the KNN

sequence search algorithm that is proposed in our previous work on sequence

similarity search. To support ebook duplicate detection, we use the graph

range query algorithm that is proposed in our previous work on graph simi-

larity search. To support ebook edition detection, we use a new data model,

denoted by nested structure, to model the documents. We also adapt the graph

range query algorithm to support the nested structure search. For the annota-

tion retrieval, the query performance has been evaluated in the ANNOTEXT

dataset in our previous work. As Readpeer executes the ebook detection tasks

as time-triggered actions, the query results will be finally verified by system ad-
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ministrators or project team members. Therefore, the efficiency of such tasks

is not our focus on this work. To avoid the waste of resources, we also develop

a unified 3-in-1 indexing system for supporting efficient storage and retrieval of

various complex or nested structures. In summary, the 3-in-1 system provides

an powerful information management tool for Readpeer.
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Conclusion and Future Work

This dissertation developed a unified 3-in-1 indexing system to support query

processing of various complex or nested structures, such as sequences, trees,

and graphs. Three works have been proposed to solve the similarity search

problems respectively on graphs, sequences, and nested structures. In the fol-

lowing subsections, we conclude three works based on the experimental results,

and then discuss the possible avenues that can be undertaken in the future.

6.1 Graph Similarity Search

To investigate an important problem of GED based graph similarity search, we

proposed SEGOS, an efficient indexing and pipeline query processing framework

based on sub-units. Experimental results on two real datasets showed that the

proposed algorithm returned the smallest number of candidates, by even 100

times less than the existing works. Compared to C-Tree [29], it is clear that

SEGOS dominates C-Tree w.r.t response time and candidate size. Although

κ-AT [63] answers queries using simple filtering techniques, it uses a very loose

bound which can result in very poor filtering power. Based on this result, it

makes sense to sacrifice a few more milliseconds to prune as many candidates

as possible, because the GED computation is extremely expensive.

Based on the experimental evaluation, the proposed approach can outper-

form the state-of-the-art works with the best query processing performance.
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The developed index structure extends previous work by reducing the access

to those very dissimilar graphs, and can improve previous work by speeding up

the graph search.

6.2 Sequence Similarity Search

To support edit similarity queries in a database with long strings, we proposed a

novel pipeline framework using approximate n-grams. To store the approximate

n-grams decomposed from database strings, a multi-level inverted index was

constructed. At search time, the proposed strategy has been proposed to follow

a parallel processing way with multiple pipelines. Extensive experiments over

three real datasets showed that the proposed framework had the smallest query

time in about 10 milliseconds in the KNN search. It was found that the new

pipeline framework can prune much more graphs than existing works. The

query processing time was found to be significantly reduced using the parallel

processing.

Nevertheless, the proposed framework works well on handling the KNN se-

quence search, which could be more important than the range query in practice.

The advantage of the novel search strategy in this work over conventional ones

is that the pruning power can be highly improved by relaxing the filtering con-

dition and the CA search algorithm provides a better framework for the parallel

query processing.

6.3 3-in-1 Indexing System

To investigate the properties of complex and nested structures based on graph

model and sequence model, we developed a unified 3-in-1 index framework for

various complex or nested structures. In the 3-in-1 system, a basic method

to retrieve smaller sub-units to generate inverted lists was proposed such that

all structures containing a particular sub-unit can be indexed by one of the

inverted lists. Since there could be a large number of inverted lists, additional

indexing mechanism has been developed to quickly access the relevant inverted

list for a query. It was found that the proposed nested structure model can

well represent complex objects in the real world. The results returned from

queries were shown to be interesting, and have practical usages in real systems.
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The developed indexing mechanism was found to be efficient and effective to

support similarity search.

This is the first work to develop a unified 3-in-1 system that can be useful

for supporting different complex structures. It also opens up new avenues that

involve the model and search for a variety of complex and nested structures.

This unified system has many applications in real life. We also present a real

social reading system in http://readpeer.com to show how to employ the

unified indexing and processing system to solve real problems in practice.

6.4 Future works

As the wide applications of complex structures, future works can be undertaken

as follows.

The similarity search on trees is not our focus in our unified system. The

reason is that we see a tree as a simple and specified graph. This makes sense

because it is easy to extend the graph search algorithms for supporting the tree

similarity search. Future works can be undertaken as how to extend the idea

of our first work to handle the similarity search problems on trees.

The direct extension of our first work on graph search is to adapt the pro-

posed bounds to theoretically support the sub-graph matching problems. In

the literature, the sub-graph matching problem is very important for its wide

applications in many research fields, like bio-informatics, chem-informatics, and

so on. However, no efficient method has been proposed to solve this problem

in all areas. It would be very useful if we can directly extend our work to

efficiently handle this problem.

The new avenues on the model and search for nested structures have signifi-

cant usages in practice. Since our third work is the first to address the problem,

many interesting topics need to be further investigated. For example, queries

like ”Is there a document containing images or figures showing characteristics

of cars?” cannot be simply represented as a traditional search pattern. How to

model this kind of queries remains an open problem. This dissertation selects

edit distance as the similarity measure between two complex structures. How-

ever, edit distance computation on nested structures can be very complex and

costly. As the wide usage of edit distance, it is the first choice to extend it for

measuring the similarity between two nested structures. While considering the

105



CHAPTER 6. CONCLUSION AND FUTURE WORK

complexity of edit distance, it would be more useful to define a more practical

similarity measure. Existing works have proposed simple similarity measure

like jaccard or cosine similarity. We also have a previous work on document

join problems with various similarity measures [51], it is interesting to further

investigate such issues on the document nested graphs.

In current Readpeer system, we implement the storage of the unified invert-

ed index by adapting the Apache Lucene index. However, to provide a more

powerful information management tool, we need to consider some important is-

sues in inverted index, including index compression, incremental updates, and

distributed query performance. There are many other database management

systems that have provided such support for storing the inverted index, such as

PostgreSQL1 and ElasticSearch2 etc. It is worthwhile to investigate such sys-

tems to support more effective storage of the inverted index. In particular, how

to implement our storage system on top of distributed system is an interesting

issue for improving the query performance.

Furthermore, our real social reading system is an ongoing and open project.

There are still many challenging and theoretical problems existing in the anno-

tation searching by snapping and the fast online text searching. Especially, as

more and more annotation data are collected, powerful storage and query pro-

cessing techniques are required. It is interesting and useful to further investigate

all these practical problems. Moreover, our current information management

tool cannot support processing the image and video data. However, such data

have wide usage on real social media systems. Therefore, a more interesting

and useful issue is to address the image and video processing problems using

the proposed inverted index system.

1http://www.postgresql.org
2http://www.elasticsearch.org
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