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SUMMARY 

Gene and cell-based therapies have been shown to successfully treat genetic 

disorders. However, the inability of current gene therapy vectors to direct transgene 

integrations precisely into safe genomic sites has been associated with oncogenic 

mutations and fatal leukemias. A major challenge is devising gene transfer techniques 

that are efficacious and result in durable transgene expression but are not mutagenic. 

Using hemophilia A as a disease model, we evaluated the potential of phiC31 

integrase and zinc-finger nucleases (ZFNs) to modify primary human umbilical cord-

lining epithelial cells (CLECs) to stably integrate and express a factor VIII transgene, 

with the ultimate aim of developing autologous treatment for pediatric patients with 

hemophilia A. 

PhiC31 integrase-mediated integration of a FVIII transgene cassette into the 

genome of CLECs achieved durable FVIII secretion for at least 2 months in vitro. 

Retrieved integration events mapped to 18 different pseudo attP sites in the genome, 

with 85% of cells having ≤ 2 copies of the transgene. Transcriptome array analysis of 

genome-modified cells revealed that 96.5% of genes were unaltered in expression. 

High-resolution copy number profiling identified 3 genomic regions with minor copy 

number changes that did not correlate with altered gene expression or integration 

sites. Spectral karyotyping revealed three different translocations that were rare and 

nonrecurrent. Integrase-modified cells were not tumorigenic in immunocompromised 

mice for at least 4 months. Xenoimplantation of FVIII-secreting CLECs in 

immunocompetent hemophilic mice achieved significant phenotypic correction.  

 Our phiC31 integrase study revealed that up to 40% of integrations occurred 

at a particular site within chromosome 8p22. Eight oligoclonal CLECs with transgene 

integration at the 8p22 site were evaluated for biosafety. A porcine/human hybrid 

FVIII construct that we assembled showed up to 5-fold increased FVIII expression 

compared to human FVIII, and was used in this study. Transgenic CLECs secreted 

high levels of FVIII, did not bear transcriptional profiles of transformed cells, did not 

have altered genome copy number profiles or gross chromosomal abnormalities, and 

were not tumorigenic when implanted into immunocompromised mice.  

We proceeded to evaluate site-specific ZFNs to promote homologous 

recombination-mediated integration of transgene cassettes into a proposed safe 

genomic harbor, the AAVS1 site, in a human cell line and primary human cells. 

Integration junction PCR and sequencing demonstrated site-specific integration of 

donor DNAs of up to 9-kb into intron 1 of PPP1R12C. A promoter trap strategy 

integrated donor DNA with splice-acceptor sequences and reduced endogenous 
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PPP1R12C expression. However, transcriptome data showed no effect on the 

expression of neighboring genes or potential interacting partners. Targeted integration 

of hybrid FVIII cassette into the AAVS1 locus induced durable FVIII secretion by 

CLECs. ZFNs were highly site-specific and only induced low frequency indels at a 

single intergenic region out of the ten most likely potential off-target sites evaluated 

by targeted deep sequencing. ZFN-modified CLECs had normal cellular morphology, 

growth characteristics and chromosomal karyotype. Our results demonstrate the 

potential of appropriately designed ZFNs as genome-modifying tools for a range of 

primary human cell types, and merit further development towards the future goal of 

clinical gene and cell therapy.    
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Chapter 1 

Introduction and literature Review 

1.1. Gene Therapy 

Progress in understanding the cellular and molecular bases of human health 

and disease in recent decades has spawned research in the fields of regenerative 

medicine and gene-based therapies. These novel approaches to medical treatments 

offer new  possibilities for mitigating, and even curing, a plethora of medical 

conditions ranging from rare inherited monogenic disorders, metabolic diseases, 

infections and even complex disorders such as  cancer. 

In a simplified form, gene-based therapy can be defined as any procedure 

aimed at genetically altering or modifying cells or tissues with exogenous genetic 

materials that encompasses RNA, DNA and even oligonucleotides. These molecules 

may be directly delivered in vivo into patients, often with the goal of targeting 

particular tissues (or organs).  Alternatively, a patient’s cells may be isolated, 

expanded and modified ex vivo before reimplantation into the same subject (Figure 

1.1.1).  

 

Figure 1.1.1  Gene-based therapy. Left: In vivo administration of vector to 
modify cells in target organs or tissues directly. Right: Ex vivo modification of 
primary somatic cells that are reimplanted into the same subject (autologous cell 
therapy). Cell therapy may also be allogeneic. Viral or non-viral vectors are used to 
deliver transgenes.  

Gene-based therapy was initially conceptualized for monogenic disorders 

such as adenosine deaminase (ADA), alpha-1-antitrypsin, ornithine 

transcarbamoylase (OTC) and clotting factor (factors VIII and IX) deficiencies. These 
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were considered ideal candidates as reconstitution of the missing protein in each case 

should alleviate or abolish the disease phenotype. Conventional gene therapy has 

since evolved into a range of approaches that increasingly encompass cell therapy. 

The therapeutic spectrum of gene-and cell-based applications now extends to every 

area of molecular medicine to include restoration of cellular and metabolic functions 

in various diseases, immuno-reconstitution of tumor cells in cancer immunotherapy, 

targeted cancer cell ablation in suicide gene therapy, treatment of infectious diseases, 

genetic manipulation and reprogramming of cancer and stem cell fate, reversing 

degenerative vascular and brain disorders, to name just a few.  

1.1.1. Historical perspectives 

The original conceptualization of treating diseases by genetic engineering 

dates back to the 1940s when Avery, MacLeod and McCarthy pioneered the notion 

and demonstrated that genes could be transferred in the form of nucleic acids1.  Gene 

transfer via viruses was first demonstrated in Salmonella in the early 1950s2, and in 

1962 by Szybalski in mammalian cells3. Early visionary investigators such as Tatum4 

envisioned “that viruses will be effectively used for man’s benefit, in theoretical 

studies in somatic-cell genetics and possibly in genetic therapy”. Indeed, virally 

transformed cells provided early indications of the feasibility of modifying somatic 

cell genomes. Replication of Rous sarcoma virus (RSV) in transformed cells and the 

presence of integrated simian virus 40 (SV40) viral DNA in SV40-transformed cells 

provided evidences for transmission of viral genes in eukaryotic cells5.   

Despite the very inefficient and crude methods of gene transfer of the 1960s, 

several groups were able to show that it was indeed possible to alter cellular 

phenotypes by transfer of whole cell genetic materials or isolated genes. For instance, 

Weisberger provided one of the earliest demonstrations of genetic correction of a 

disease phenotype when mRNA from normal bone marrow was incubated with 

immature erythrocytes of sickle cell subjects6.   

The early exposition of gene therapy, whilst still in its infancy, rather quickly 

led to premature exploits at gene therapy in human subjects that were sometimes 

controversial. The earliest experimentation of gene delivery in humans was carried 

out controversially by Rogers and collaborators who attempted to treat three patients 

with arginase deficiency using Shope papilloma virus7. A second unapproved and 

equally criticized human gene therapy trial was conducted in 1981 by Cline and co-

workers who infused thalassemic patients with autologous bone marrow cells that had 

been transfected with the normal β-globin gene by the calcium phosphate method7. 

http://wizfolio.com/?citation=1&ver=3&ItemID=622&UserID=8336&AccessCode=8F26ABD619274F53B9F4E87D0798C1F1&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=614&UserID=8336&AccessCode=8DE73997A64C4DFF834F6F6B4FFF78D5&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=833&UserID=8336&AccessCode=D999D19527454E3BBC8CF52AB6D32AB8&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=616&UserID=8336&AccessCode=B6C2F01EE8E749FBB149B8B94D89B050&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=621&UserID=8336&AccessCode=F9478B9D81E240C7B9ECADC5F6E7EBD0&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=1000&UserID=8336&AccessCode=625C8AEE60A7403D8B45CF9F8FBF5456&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=617&UserID=8336&AccessCode=E44D5FDF7C104553B16386A8652F4C79&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=617&UserID=8336&AccessCode=E44D5FDF7C104553B16386A8652F4C79&CitationSuffix=�
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Both trials did not provide positive evidence of therapeutic efficacy although the 

theoretical basis of gene replacement treatment was eventually proven to be correct. 

What transpired after these two unapproved trials was the formation of the U.S. 

National Institutes of Health (NIH) Recombinant DNA Advisory Committee to 

regulate and approve all future human gene therapy clinical trials.  

 The years that followed from 1970s to 1990s saw tremendous advances in 

recombinant DNA technology which enabled the identification, isolation and cloning 

of disease related genes. Concomitant progress in viral vector development and gene 

delivery techniques eventually made gene transfer and expression of therapeutic 

genes a routine task in the laboratory. Seminal findings by the groups led by Temin8, 

Scolnick9 and Weinberg10 resulted in the first generation viral vectors. These were 

retroviruses that could be augmented with therapeutically relevant genes and 

efficiently infected mammalian cells to induce stable expression of genes of interest. 

Such advances paved the way for the first approved human gene therapy clinical trial 

in 1990 for children with ADA deficiency11. By the turn of the millennium, almost 

4000 patients had been enrolled in more than 500 gene therapy clinical trials 

worldwide5, alas with variable and generally limited success. Nonetheless, these 

studies have contributed to the field by highlighting several areas for improvement 

and emphasizing the need to refine treatment methods to mitigate risks to patients. 

Initial high hopes that gene therapy could be readily translated into the standard 

clinical practice has yet to be fulfilled, partly because enthusiasm from a few clinical 

successes has been marred by the occurrence of adverse and serious iatrogenic 

complications in a small number of trial subjects12. Experience of these unexpected 

complications has reiterated the need to understand and evaluate genotoxicity and 

other risks of any given gene therapy approach, and for pertinent biosafety 

improvements to be incorporated into proposed treatment modalities.  

1.1.2. Approaches for gene therapy 

Gene delivery can be achieved using either viral vectors or non-viral vectors. 

The latter may be episomally maintained or integrated into the host genome. To date, 

five main classes of viral vectors have been tested for clinical applications. These 

include retroviruses, adenoviruses, adeno-associated viruses (AAV), lentiviruses and 

herpes simplex viruses (HSV)13. Non-viral vectors most often utilize plasmid DNA 

which can be delivered into cells or tissues by physical methods such as 

electroporation, gene-gun bombardment, sonoporation, hydrodynamic injection or by 

chemical methods that utilize calcium phosphate,  polymeric carriers, cell-penetrating 

http://wizfolio.com/?citation=1&ver=3&ItemID=835&UserID=8336&AccessCode=3C9C6B4522764212B6332025C1011A9D&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=837&UserID=8336&AccessCode=29B2A9C6D0A64E3BB77AFC9399212A7A&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=836&UserID=8336&AccessCode=E45B9B5EE1064318943A77C4C0DDE813&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=618&UserID=8336&AccessCode=B6D229B6F0C74156849971423DCCD0BA&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=621&UserID=8336&AccessCode=F9478B9D81E240C7B9ECADC5F6E7EBD0&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=594&UserID=8336&AccessCode=0587D49BCA554147AD2F51E406D006A8&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=791&UserID=8336&AccessCode=90E686D0933740B0BD43971FD0FDC637&CitationSuffix=�
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peptides, cationic and anionic lipids14.  Generally, gene therapy can be segregated into 

two main categories depending on whether the therapeutic gene is directly delivered 

in vivo to transduce or transfect cells in target organs and tissues; or whether specific 

cell types (allogeneic or autologous) are first expanded and gene-modified ex vivo 

before implantation into patients.  

1.1.2.1. In vivo gene delivery 

Transgene delivery by viral vectors is the most widely attempted gene 

therapy approach and exploits the natural process of infection by viral pathogens. 

Certain viral infections result in delivery and expression of viral genes in infected 

host cells. Pioneering scientists recognized this trait and envisioned that genetically 

modified viruses could be utilized to deliver and express therapeutic transgenes. This 

approach has several appealing characteristics namely, its non-invasive nature, the 

simplicity of direct vector delivery and known tissue-specific transduction efficiency 

of some viral vectors. Thus, it is no surprise that a majority of current in vivo gene 

delivery techniques involve intravascular delivery of viral vectors to achieve tissue-

specific (e.g. liver, muscle) or generalized effects.   Successful demonstration of in 

vivo viral vector delivery for correction of genetic disorders thus far include 

adenoviral delivery for correction of OTC deficiency15, intramuscular delivery of 

rAAV for clotting factor IX (FIX) deficiency16 and intramuscular delivery of rAAV1 

for lipoprotein lipase deficiency17.  

In vivo gene delivery has also been attempted with non-viral vectors 

employing hydrodynamic delivery of naked or chemically modified plasmid DNA, 

localized or systemic delivery of plasmid DNA in combination with physical gene 

transfer methods such as electroporation or sonoporation, aerosol-mediated plasmid 

delivery to the lungs and nanoparticle-mediated plasmid delivery to target tissues, to 

name just a few. While in vivo delivery of non-viral vectors has not been employed in 

clinical trials as extensively as viral vectors owing to low efficiencies of gene 

transfer, a notable example is localized transdermal injection of plasmid DNA 

combined with electroporation for eradication of solid tumours18.  

The main issues with regard to in vivo gene delivery can be summarized as 

follows. Firstly, is the issue of immunogenicity of some in vivo administered vectors.  

Secondly, in vivo gene delivery may result in the transduction of multiple cell types, 

including cells of the immune system, especially when delivered systemically. 

Unintended transduction of cells may be undesirable for certain gene therapy 

applications, such as tumor-targeted suicide gene delivery where stringent targeting 

http://wizfolio.com/?citation=1&ver=3&ItemID=789&UserID=8336&AccessCode=7A6651ABCC794FD8BD0DB50C2B0F2F01&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=838&UserID=8336&AccessCode=A6FB54269D6342DEB0D893B453FFE573&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=839&UserID=8336&AccessCode=3CC179A7949E4A4EBD228DF314A3BD1C&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=840&UserID=8336&AccessCode=9077A95A16D34794976229BE9FEAA89E&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=843&UserID=8336&AccessCode=8A59194D58FA4B798E05FDCA88D95BA9&CitationSuffix=�
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of therapeutic agents to cancerous cells is crucial. Where the inadvertent transduction 

is to cells of the immune system, there could be potential heightened risks of immune 

response towards the transgene product19. Thirdly, persistent concerns of germ-line 

transduction remain despite reports that have dismissed previously reported evidence 

for germ-line transduction in animals and even human subjects20. Lastly, the known 

risks for insertional mutagenesis and oncogenesis is a major reservation with the use 

of integrating vectors. Another caveat to in vivo delivery of vectors is that very little 

can be done to interrupt or abort gene delivery once the vector has been administered 

in vivo. Taken together, these concerns mandate long-term biosafety studies in animal 

models to evaluate oncogenicity and other adverse complications before embarking 

on clinical trials of in vivo gene delivery.   

1.1.2.2. Ex vivo cellular therapy 

The ex vivo cell therapy approach relies on derivation, ex vivo culture, gene 

modification and re-administration of patient-derived somatic cells to serve either as 

carriers for expressing a deficient protein, or for repairing or regenerating damaged 

tissues or organs (regenerative medicine). Successful engraftment followed by long-

term survival of implanted cells and durable transgene expression could, in theory, 

achieve long-term correction of the disease phenotype. Not restricted to the foregoing 

description, ex vivo cell therapy also encompasses cancer immunotherapy whereby 

genetically modified patient- or donor-derived cells are used as immunogens to 

educate and activate the immune system to eliminate cancerous cells. In suicide gene 

therapy, normal cells are modified to home in and kill cells within the tumor by 

expressing a gene product that converts a systemically administered prodrug into a 

cytotoxic agent.  

Over the past two decades, many ex vivo cell therapy approaches have been 

developed to correct genetic or metabolic deficiencies, the best studied and most 

successful of which are based on hematopoietic stem cells (HSCs) transplantations. 

Successful correction of various life-threatening diseases of the blood and immune 

systems such as ADA-severe combined immunodeficiency (SCID)21, IL2RG-SCID22 

(also known as SCID-X1), chronic granulomatous disorder23 (CGD), Wiskott-Aldrich 

syndrome24(WAS) have been reported with transplantation of genetically modified 

HSCs. Beside HSCs, other somatic and stem cell types are also under active 

investigation as cellular carriers for correcting monogenic disorders. Primary human 

fibroblasts25 and endothelial progenitor cells26 (EPCs) have been used to correct 

clotting factor deficiencies (FVIII, FIX), epidermal and limbal stem cells have been 

http://wizfolio.com/?citation=1&ver=3&ItemID=998&UserID=8336&AccessCode=1DF6FF31809B4F50A88A8DD7C7CCE59F&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=844&UserID=8336&AccessCode=6A913BFBFA2C413F9D45522E09951ACD&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=625&UserID=8336&AccessCode=D58CB25749184F45AD09D69D9BB1FF7E&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=620&UserID=8336&AccessCode=F7F901C1FA4D43C3ABE1A2CEE126DD96&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=314&UserID=8336&AccessCode=5F56582B62884C4299257530129455A0&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=817&UserID=8336&AccessCode=684BD352171D438684CE5E77FACE9E09&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=841&UserID=8336&AccessCode=AD2B4243144A4B7C9146E82EF8320FEF&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=503&UserID=8336&AccessCode=A1CFE450297A427D81787E2E9C1FF318&CitationSuffix=�
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used for ocular gene therapy27 and mesenchymal stem cells (MSCs)28 have found 

applications in regenerative therapy aimed at repairing defects of the heart, bones, 

ligaments and joints. More recent developments point to the potential of embryonic 

stem cells and induced pluripotent stem cells (iPSCs) for both cell-based gene 

therapies and regenerative medicine.      

The ex vivo cell therapy approach has several advantages over in vivo vector 

delivery.  Subjects are not directly exposed to gene therapy vectors with the attendant 

risks of adverse immune responses and germ-line transmission. Targeted modification 

of specific cell types is much more feasible as is the potential to comprehensively 

evaluate the biosafety of genome-modified cells before in vivo implantation. 

Important factors to consider when developing ex vivo cell-based therapy include the 

ease of isolating and expanding primary cells ex vivo to derive clinically meaningful 

cell numbers. The choice of cell type would depend upon the disease to be treated, 

and could often be the same or similar cell types that are affected by the disease. The 

availability and amenability of a particular cell type for ex vivo derivation, culture and 

gene modification as well as the ability to efficiently express or secrete a properly 

processed protein are key considerations in the choice of cell type. The choice of 

vectors for ex vivo cell modification is another important consideration. Vectors that 

integrate the transgene into the genome could theoretically allow for durable 

transgene expression that is desirable for certain diseases and essential for cells (e.g. 

HSCs) that replicate in vivo. Although most current approaches employ integrating 

viral vectors i.e. retro- and lentiviral vectors, non-viral integrating systems such as 

site-specific recombinases (transposons and phiC31 integrase) and site-specific 

nucleases (ZFNs, TALENs and meganucleases) have come to the fore recently as 

safer strategies29.  The known occurrence of insertional mutagenesis and oncogenic 

transformation is arguably the greatest challenge in clinical adoption of most 

integrating systems, whether viral or non-viral30. Non-integrating or episomally 

maintained vectors may be safer and could also allow for durable transgene 

expression in post-mitotic cells or even in dividing cells provided the vector is 

episomally maintained within replicating cells. Non-integrating vectors have yet to be 

successfully adapted for ex vivo cell therapy. Non-integrating viral vectors such as 

adenoviral and rAAV vectors have typically been used for in vivo gene delivery while 

non-viral episomal vectors have only been tested in vitro or in small animal models.       

1.1.3. Vectors used in gene therapy 

1.1.3.1. Viral vectors 
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Viral vectors are mainly used in current research to develop clinical gene 

therapy. The generally higher efficiencies of gene transfer in vitro and in vivo, and the 

wide range of cell types that can be efficiently transduced make viral vectors the 

agents of choice for most laboratory and clinical studies. The major classes of viruses 

that have found application in gene therapy include the gamma retrovirus, HIV-

lentivirus, HSV, adenovirus and rAAV13. These viruses can be further sub-

categorized as non-integrating (adenovirus, rAAV, HSV, integrase-deficient lenti- 

and retroviruses) and integrating (retrovirus, lentivirus) vectors31. 

1.1.3.1.1. Non-integrating viral vectors 

Non-integrating viral vectors are predominantly maintained within host cell 

nuclei as episomes and rarely integrate into the host genome.  They are especially 

useful for transfecting post-mitotic cells where vector loss as a consequence of cell 

division is less of a concern. Adenovirus, rAAV and HSV are commonly used non-

integrating viral vectors. 

Adenoviral vectors are a class of non-enveloped viral vectors with broad 

tissue tropism and are capable of transducing non-dividing as well as proliferating 

cells such as macrophages, fibroblasts, muscle, liver, neural cells and tumor cell 

lines31. They are predominantly maintained as episomes within the host cell nucleus 

and as such are considered safer than integrating vectors. Adenoviral vectors have 

been demonstrated to mediate persistent transgene expression in non-dividing cells. 

Gutless or helper dependent adenoviral vectors are improved versions of the first 

generation vectors in which most viral genes have been deleted, rendering them 

replication-incompetent, less immunogenic and toxic, and capable of accommodating 

DNA inserts of up to 37 kb. Adenoviral vectors have been used extensively for brain, 

muscle, lung and liver gene therapy studies with successful outcomes in several pre-

clinical studies for genetic disorders such as for cystic fibrosis32, hemophilia B33 and 

Crigler-Najjar syndrome34. They have applied for anti-cancer effects such as tumor 

ablation by adenoviral-mediated expression of suicide genes35 and expression of 

recombinant tumor suppressor, p5336. A major drawback of adenoviral vectors in vivo 

is the stimulation of innate immune responses directed at viral capsid proteins. 

Several strategies to counter this adverse complication, such as transient 

immunosuppression, modification of capsid proteins and viral dosage optimization, 

are being tested. .  

Recombinant AAV vectors37 are another widely utilized class of vectors that 

have been shown to successfully transduce a variety of tissues such as muscle, brain, 
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lung, liver and retina. These single stranded DNA viruses, belonging to the genus 

Dependoviruses, require expression of viral replication and assembly proteins from 

helper viruses for assembly and have a packaging capacity of around 5 kb. AAV 

vectors are capable of transducing dividing and non-dividing cells. However, unlike 

wild type AAV vectors which have a predilection for integrating into human 

chromosome 19, rAAV are maintained predominantly as episomes, although random 

integration has also been reported, albeit at very low frequencies38. Durable transgene 

expression following rAAV transduction has been found in post-mitotic tissues, such 

as muscle and liver39. The capsid protein sequences of the viruses define their 

serotype and determine different tropisms for specific cell types. Although 

approximately 110 primate AAV capsid sequences are known, thus far there are only 

12 commonly reported serotypes, AAV1 to AAV1237. AAV2, by far the most 

frequently utilized serotype, has been used successfully to transduce skeletal muscle, 

neurons and liver cells and was the chosen vector in several clinical trials, such as for 

expression of RPE65 gene in retina as treatment for Leber’s congenital amaurosis27, 

FIX expression in liver for hemophilia B16 and cystic fibrosis transmembrane 

conductance regulator (CFTR) expression in lung for cystic fibrosis40, to name just 

a few. Other AAV serotypes have also met with success in transducing specific cell 

types e.g. AAV6 for airway epithelial cells41, AAV1 and AAV5 for vascular 

endothelial cells42 and AAV8 for hepatocytes43.  In clinical trials, some efficacy was 

achieved by AAV1-mediated transduction of muscle to correct  α1-antitrypsin44 and 

lipoprotein lipase (LPL) deficiencies17, while encouraging results using AAV8 for 

liver transduction in hemophilia B patients was reported recently16. At present, 

humoral immunity against viral capsid proteins which has often reduced the 

effectiveness of rAAV-mediated gene transfer in vivo remains a major challenge to be 

resolved.  

Herpes simplex virus-1 (HSV-1)-derived vectors are another class of non-

integrating vectors45. Though less commonly used, they have specialized utility in 

oncolytic cancer gene therapy, neurological research and treatment of neurological 

disorders, given their natural neurotropism. HSV-1 vectors have the advantage of a 

large cloning capacity (40 – 150 kb) and may be engineered for latency in infected 

cells to achieve durable transgene expression. Conversely, wild type HSV-1 with a 

lytic life cycle could be beneficial for infecting and killing tumor cells. Current 

limitations of the HSV vectors are low in vivo transduction efficiencies, transient 

transgene expression and cellular toxicity.     

http://wizfolio.com/?citation=1&ver=3&ItemID=851&UserID=8336&AccessCode=46283DCC193040C8B10B42FC1E8935D9&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=332&UserID=8336&AccessCode=21FA23A670EB4B989092B49A8E29A683&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=329&UserID=8336&AccessCode=9A0D0B50DAB94314B633C11AF695B90F&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=842&UserID=8336&AccessCode=D026436AE26B4D29852E0427E06C68ED&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=839&UserID=8336&AccessCode=3CC179A7949E4A4EBD228DF314A3BD1C&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=852&UserID=8336&AccessCode=EE7158709820413A8386E3C1A3421DEC&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=853&UserID=8336&AccessCode=41159DD541B549C4B965E1E9D75142E9&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=854&UserID=8336&AccessCode=A4409636836B461EA22746CCB3276D40&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=855&UserID=8336&AccessCode=2D3D845AB7A14061AFA1B254B889B8DE&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=856&UserID=8336&AccessCode=4525BFB647E2454E863C57F6E71EE4DB&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=840&UserID=8336&AccessCode=9077A95A16D34794976229BE9FEAA89E&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=839&UserID=8336&AccessCode=3CC179A7949E4A4EBD228DF314A3BD1C&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=857&UserID=8336&AccessCode=2E7D498876044D91BA0C045F43BC8CA5&CitationSuffix=�


9 

 

 Integrase-deficient retroviral46 and lentiviral47 vectors can be considered as 

yet another class of non-integrating viral vectors. Engineered mutations of the viral 

integrase protein has yielded vectors with a highly reduced ability to integrate into the 

host genome. While a high percentage of such vectors is episomal in transduced cells, 

residual integrase activity may still enable vector integration into the genome.  

1.1.3.1.2. Integrating viral vectors 

To date, the most promising results in clinical trials have been attained using 

integrating viral vectors. Their propensity to stably integrate transgenes into the 

genome ensures stable maintenance of the transgene in actively dividing cells and 

potentially favors durable transgene expression thereby circumventing the need for 

repeated vector administration. Retroviral and lentiviral vectors are the major types of 

integrating vectors that have produced evidence in efficacy in pre-clinical studies and 

clinical trials. However, a major caveat is the risk of insertional mutagenesis given 

the propensity of certain integrating viral vectors to integrate preferentially into 

actively transcribed genes and close to transcription start sites30.  

Retroviruses are one of the earliest developed and extensively utilized 

integrating gene transfer vectors48. They are enveloped single-stranded RNA viruses 

that are reverse transcribed into double-stranded DNA in infected cells. Retroviruses 

integrate randomly in the genome, with a predilection for transcription start sites. 

Deletion of the viral gag, pol and env genes has enabled carriage of transgenes up to 

7.5 kb. The gag, pol and env proteins essential for viral assembly must be provided in 

trans by packaging and helper cell lines. Given that the nuclear membrane must break 

down for retrovirus entry, only dividing cells can be transduced by retroviral vectors. 

For gene therapy applications, replication-defective retroviruses are used and have 

been shown to effectively transduce a wide variety of actively dividing cells, such as 

fibroblasts, hepatocytes, bone marrow MSCs and HSCs. Most retroviral vectors are 

derivatives of the Moloney murine leukemia virus (MoMuLV), while others are 

modifications of RSV, avian sarcoma-leukosis virus (ASLV), human 

immunodeficiency virus (HIV) and human foamy virus (HFV). Retroviral vectors 

have been used with success in gene therapy clinical trials for several monogenic 

disorders e.g. SCID-ADA, SCID-IL2RG, WAS and CGD, although with regrettable 

iatrogenic adverse events in a few patients in trials for SCID-IL2RG49, 50, CGD51 and 

WAS (http://www.asgct.org/media/news-releases/?c=505). As with most integrating 

vectors, the major disadvantage of retroviral vectors is the risk of inducing insertional 

mutagenesis due to their aforementioned pattern of integration. More recent studies of 
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foamy retroviruses appear to suggest a safer integration profile, viz. reduced 

frequency of integration near transcription start sites52. Self-inactivating (SIN)-

retroviral vectors are being investigated as a means of reducing risks of insertional 

activation of neighboring genes53.   

Lentiviruses have an RNA genome and are a retrovirus subclass. They 

efficiently infect a wide variety of cell types and have an integration profile quite 

dissimilar to retroviruses in that they do not have a predilection for transcription start 

sites, although they preferentially integrate into active transcription units54. Unlike 

retroviral vectors, lentiviral vectors will transduce both dividing and non-dividing 

cells to deliver transgenes of up to 8 kb.  Most lentiviral vectors are developed from 

human immunodeficiency virus type -1 (HIV-1) although others are derivatives of 

HIV-2, simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV) 

and equine immunodeficiency virus (EIV)55. Lentiviral vectors have been used in 

several gene therapy clinical trials, thus far without reports of serious adverse 

events56. Successful clinical outcomes have been reported in lentiviral-mediated gene 

therapy of HIV57, X-linked adrenoleukodystrophy58, β-thalassemia59, among others. 

The development of SIN-lentiviral vectors have strengthened the safety profiles of 

these vectors and have increasingly advocated their replacement of retroviral vectors 

in gene therapy studies60. New clinical studies for SCID-X1, WAS and SCID-ADA 

using SIN-lentiviral vectors instead of retroviral vectors are currently ongoing or 

being initiated (clinical trials.gov). Despite the anticipated superior biosafety of 

lentiviral vectors, it should be noted that this is currently speculative because risks of 

insertional mutagenesis and inactivation of crucial genes or tumor suppressors 

remain, owing to their propensity to integrate randomly in active transcription units.        

1.1.3.2. Non-viral vectors 

Non-viral vectors are usually naked or modified plasmid DNA that are 

delivered to cells by chemical or physical transfection methods. Chemical 

transfection methods include the use of calcium phosphate, polyethylene glycol 

(PEG), cationic or anionic lipid reagents that conjugate to DNA and bring about their 

internalization, transit to the nucleus culminating in transgene expression by 

transfected cells. Physical methods of plasmid delivery include gene-gun 

bombardment, sonoporation, electroporation, and hydrodynamic gene delivery that 

deliver DNA into cells and eventually to the nucleus by invoking incompletely 

understood physical changes to the cell and/or nuclear membranes.  
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Plasmid DNA thus delivered is predominantly episomal in the transfected cell 

nucleus, unless co-delivered with a protein (such as a recombinase) that induces 

genomic integration of the plasmid. On the other hand, non-integrating plasmid DNA 

does not replicate in tandem with mitosis, with the exception of plasmids modified for 

episomal maintenance by tethering to host chromosomes and replicating with 

successive cell divisions61. As the work reported in this thesis used only non-viral 

vectors, they will be discussed in greater depth in the following sections.  

1.1.3.2.1. Episomal non-viral vectors 

One of the most apparent advantages of extra-chromosomal vectors as gene 

transfer agents is the exponentially decreased risks of insertional mutagenesis 

compared to integrating vectors. Episomal plasmids can be maintained at high copy 

number, have potentially higher levels of transgene expression and are less likely to 

undergo transgene silencing or exhibit positional variegation effects associated with 

genomic integrations61.  

The essential characteristics of extra-chromosomal vectors are episomal 

maintenance, autonomous replication and segregation into daughter cells. Episomal 

vectors can be categorized as either virus-based if they rely on viral origins of 

replication and other virally encoded proteins for replication and partitioning into 

daughter cells, or chromosome-based, if they depend on genomic elements. Examples 

of virus-based episomal vectors include those that use viral replicons of SV40, bovine 

papillomavirus (BPV) and Epstein-Barr virus (EBV) or that carry limited viral 

components such as oriP/EBV nuclear antigen 1 (EBNA1). Chromosome-based 

episomal vectors include the scaffold/matrix attachment region (S/MAR)-based pEPI 

vectors and artificial chromosomes61.  

Episomal non-viral vectors represent a class of vectors that could serve as 

efficient and safe gene therapy agents for long-term expression not only in ex vivo 

modified cells but also in vivo in tissues. The exciting possibility of utilizing them for 

gene transfer into adult and embryonic stem cells ex vivo as well as their superior 

biosafety warrants their investigation for clinical applications. However, caution must 

be exercised and, as with all other modalities, the minute but potential risk of random 

vector insertion62 must be evaluated and its likely implications studied. 

1.1.3.2.2. Integrating non-viral vectors 

Unlike integrating viral vectors, most non-viral vectors have no intrinsic 

capacity for genome integration except for rare random events, usually in genomic 
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break sites. However, genomic integration of non-viral vectors may be greatly 

enhanced by co-expression of bacteriophage- or virus-derived recombinases or 

integrases. Several well-studied recombinases and integrases are known to recognize 

distinct DNA motifs in both the genome as well as in non-viral vectors, and thereby 

mediate site-specific integration of vectors into genomic target sites, although 

recognition specificity is often not highly stringent. Common examples of 

recombinases are the bacteriophage P1-derived cre recombinase which mediates 

integration of loxP-containing vectors into pre-integrated loxP sites or pseudo loxP 

sites within the genome, Saccharomyces cerevisiae-derived flippase (Flp) 

recombinase which similarly recognizes and integrates into flippase recognition target 

(FRT) sites, and the integrase derived from the Streptomycete bacteriophage phiC31 

which integrates attB containing vectors into genomic attP or pseudo attP sites. There 

are also several transposons such as Sleeping Beauty, PiggyBac and Tol2 that mediate 

transposition of inverted terminal repeats (ITRs)-flanked transgene vectors into 

genomic regions often defined by TA and TTAA target sequences63,  64. Targeted 

integration of transgenes specifically into the AAVS1 site of the human genome has 

been demonstrated with the expression of AAV Rep78 or 68 proteins and AAV ITR-

flanked transgene vectors65,  66. Non-viral integrating systems that have generated 

considerable recent interest involve the use of site-specific nucleases that cleave the 

genome at a defined or unique region. Site-specific genomic cleavage by homing 

endonucleases (meganucleases), zinc-finger nucleases (ZFNs) and transcription 

activator-like effector nucleases (TALENs) enhance homologous recombination-

mediated integration of exogenous DNA sequences into pre-defined genomic sites. 

TALENs and ZFNs are currently being investigated for their accuracy and efficiency 

of transgene integrations into unique and safe sites within the genome.   

At present, a majority of clinical gene therapy studies are conducted with 

viral vectors, given their generally superior efficiency both in vivo and ex vivo. 

However, viral vectors are still plagued by concerns of immunogenicity, cytotoxicity 

and genotoxicity. Demonstrating efficient, effective and safe integration of transgenes 

with non-viral vectors could positively contribute to the eventual development of 

clinical gene therapy.  

1.1.4. Clinical trials – successes and failures 

As of 2013, the Journal of Gene Medicine clinical trials database recorded a 

total of 1843 gene therapy clinical trials, 64.4% of which were directed at cancer and 

related diseases (last accessed on 3rd January 2013) (Figure 1.1.2) . Given the greater 

depth of understanding of molecular virology, the broad tropism of viral vectors and 
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their superior efficiencies of gene transfer, transgene delivery via viral vectors has 

been the most favored option (66.8 % of all trials).  The demographics of clinical 

gene therapy trials worldwide are shown in Figure 1.1.2. 

 

Figure 1.1.2  Characteristics of clinical gene therapy trials. Categorization of gene 
therapy trials according to indications, vectors used, gene types transferred and 
annual number of approved trials. (Images reproduced from Journal of Gene 
Medicine clinical trials database 
(http://www.wiley.com/legacy/wileychi/genmed/clinical/)). 

Despite the impressive numbers of gene therapy trials, it is worth noting that 

only a small number had clinically meaningful outcomes. The first clinical success 

was treatment of X-linked severe combined immunodeficiency (SCID-X1)22, a 

disease characterized by arrested development of the immune system due to 

mutations in the interleukin-2 receptor common gamma chain gene (IL2Rγ). Nine of 

ten treated patients achieved long-term immune reconstitution and marked clinical 

improvement following implantation of gene-modified HSCs67. More success stories 

echoed from similar clinical trials in London, U.K., of the same disorder68. In the 

years that followed, long-term therapeutic efficacy was also reported in clinical trials 

for another form of SCID, SCID-ADA21,  69. In 2006, gene therapy scored more 

successes when impressive results were reported in two patients treated for CGD23, 

caused by inactivating mutations of gp91phox (CYBB) gene and characterized by 

neutrophil dysfunction and severe recurrent infections. More recent and notable cases 

of clinical success are treatment of hemophilia B16, WAS24, X-linked 

adrenoleukodystrophy (ALD)58, Leber’s congenital amaurosis70 and Parkinson’s 

disease (to restore dopamine expression in the subthalamic nuclei)71. 
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Although these impressive clinical outcomes provided incontrovertible proof-

of-principle, it soon became evident that treatment benefits could occur in tandem 

with significant adverse effects when serious iatrogenic complications were reported 

in a small number of patients. The first gene therapy death was reported in 1999 from 

an OTC clinical trial conducted at the University of Pennsylvania. This was ascribed 

to a massive immune response to the adenoviral vector used in that trial72. Gene 

therapy suffered the heaviest blows in the years 2003 to 2006, and attracted close 

scrutiny by regulatory authorities and the medical fraternity when five successfully 

treated SCID-X1 patients (from two different clinical trials) developed T-cell 

lymphoblastic leukemia, three to six years after treatment with autologous bone 

marrow-derived CD34+ hematopoietic cells transduced with a murine leukemia virus 

(MLV) gammaretroviral vector to express the IL2Rγ gene49, 50. Random integration of 

the MLV gamma retroviral vector that had strong enhancer elements in the long 

terminal repeat (LTR) regions resulted in insertional activation of the LIM domain 

only-2 (LMO2) proto-oncogene.  This mutagenic event likely promoted clonal 

proliferation of T cells that culminated in acute lymphoblastic leukemia. In a different 

trial in 2007, Targeted Genetics Corporation was forced to halt its gene therapy trial 

for rheumatoid arthritis involving intra-articular injection of an adenoviral vector 

expressing tgAAC94 following the death of a patient. In this case however, 

investigations by the US Food and Drug Administration (FDA) exonerated gene 

therapy as the direct cause of death73, although there was evidence of vector-induced 

immune response; and the trials have since recommenced. The inherent risks of 

insertional mutagenesis by viral vectors surfaced again in another clinical trial in 

2006 for treatment of CGD. Two adult CGD patients infused with granulocyte 

colony-stimulating factor (G-CSF)–mobilized peripheral blood CD34+ cells 

transduced with MLV gammaretroviral vector expressing gp91phox had markedly 

improved neutrophil functions and resistance to life-threatening infections. 

Regrettably, both subjects later developed myelodysplasia and one subject died from 

this complication51. Myelodysplasia probably developed from random integration of 

the gammaretroviral vector that activated the expression of a proto-oncogene, MDS-

EVI151. As of this writing, the most recent cases of adverse gene therapy outcome, 

brought to light by the American Society of Gene and Cell therapy 

(http://www.asgct.org/media/news-releases/?c=505 and ASGCT meeting May 2012) 

affected four of ten WAS patients treated at the Hannover Medical School using a 

gammaretroviral vector similar to that used in the SCID-X1 trials. These patients 
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were reported to have developed leukemia. Comprehensive clinical evaluations of 

these adverse events have yet to be disclosed. 

In summary, there is clear evidence that gene therapy can be clinically 

effective. Moreover, it offers the only treatment for certain serious life-threatening 

diseases that are currently untreatable or poorly treated. An important issue that must 

be addressed if gene therapy is to mature from experimental treatment to clinical 

standard of care is that of biosafety.  The occurrence of serious iatrogenic outcomes, 

albeit uncommon, has brought into sharp focus the inherent risks of genetic 

modifications.   
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1.2. Biosafety considerations of gene therapy 

The potential for genotoxicity in gene therapy is not unexpected. Initial 

studies investigating the integration site preferences of different viral vectors such as 

HIV, ASLV and MLV gammaretrovirus, drew attention to the potential for 

insertional mutagenesis arising from random or quasi-random genomic integrations, 

aggravated by the marked propensity of these vectors to target transcription start sites 

and active genes1. Even before reports of adverse events surfaced in clinical trials, a 

2002 in vivo retroviral gene marking study of murine bone marrow cells already 

reported a high frequency of vector-induced hematopoietic disorders, including 

leukemia, caused in part by insertional activation of an oncogene2. Different 

strategies are therefore being actively explored to reduce the genotoxic potential of 

current viral vectors, mainly focused on devising methods for: (a) appropriate tissue 

targeting of systemically delivered vectors; (b) disabling the capacity for generating 

replication-competent viruses; (c) mitigating immune responses to vectors and/or 

transgene products; (d) avoiding germline modifications; (e) preventing unintended 

vector dissemination; and (f) directing the integration of transgenes into genomic safe 

harbors.  

1.2.1. Immune response 

Immune responses against systemically delivered vectors or transgene 

products expressed by gene-modified cells may affect the efficacy of gene therapy 

and, in some instances, culminate in serious life threatening inflammatory response3 

or other health hazards. Adaptive immunity gained from life-long exposure to natural 

viruses may also reduce the efficacy of certain viral vectors due to the presence of 

pre-existing antibodies against common viral antigens4, 5. Adenoviruses are one of the 

more immunogenic viral vectors, given their propensity to invoke a repertoire of 

different immune responses, including cytotoxic T-lymphocyte (CTL) response 

against viral components or transgene products, antibody mediated humoral response 

and cytokine-mediated inflammatory responses towards viral capsid or other viral 

components4. Potent immune responses may eliminate transgene expressing cells and 

reduce efficacy of treatment or, in the worst case scenario, induce an acute 

inflammatory response and cytokine storm as was the case in the first reported 

clinical gene therapy death3. The development of helper-dependent and gutless 

adenoviral vectors which are devoid of most viral genes has helped diminish their 

immunogenicity to some extent; more specifically, the adaptive immune response 

towards these vectors6.  
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HSV vectors also induce cytopathic and inflammatory responses in human 

subjects7. Most other viral vectors, such as AAV, lentiviruses and retroviruses, are 

relatively less immunogenic compared to the aforementioned vectors. Recombinant 

AAV (rAAV) which are devoid of most viral genes may, however, invoke anti-AAV 

neutralizing antibodies against their capsid proteins which will prevent the possibility 

of re-administration of the same vectors if ever required5. Systemic delivery of naked 

plasmid DNA is also known to induce immune responses (due to antigenic 

unmethylated CpG motifs)8, albeit of milder severity than most viral vectors. This 

risk can theoretically be mitigated by modifying the administration protocols or by 

using CpG-free plasmids9. In general, implantation of cells after ex vivo gene 

modification can be expected to be associated with lower risks of invoking immune 

responses compared with direct in vivo gene delivery. The issue of immunogenicity 

directed against transgene products10 is a problem common to both viral and non-viral 

gene therapy that remains to be resolved through immunomodulation and 

immunotolerance induction strategies.  

1.2.2. Insertional mutagenesis/ oncogenesis 

Insertional mutagenesis is the induction of deleterious mutations to genes, 

promoters, enhancers or other regulatory elements that alter gene expression 

qualitatively or quantitatively as a consequence of exogenous vector integration into 

the genome. Although a major concern of integrating vectors, even non-integrating 

vectors have a low but finite possibility of random genomic integration11.  

Prior to cases of gene therapy-induced oncogenesis in recent clinical trials 

(section 1.1.4), the risk of malignant transformation from integrating vectors was 

considered theoretically plausible but unlikely to occur in practice.  With hindsight, 

treatment-induced malignancies could have been predicted on the basis that as many 

as 1% of genes encoded in the genome are implicated in one or more forms of 

cancer12.  Although oncogenesis is a process that requires multiple genetic hits, 

random integration of vectors into multiple genomic sites could be sufficient to 

generate the right “cocktail” of aberrations in different oncogenes and/or tumor 

suppressor genes13. Moreover, as the formerly regarded gene deserts are now known 

to be richly populated with different classes of non-protein-coding RNAs with key 

roles in cellular maintenance and cancer development14,  15,  evaluation of the 

genotoxic risk of integration events requires extra caution.  

Commonly used viral vectors do not integrate randomly but have a 

propensity for transcriptionally active units and transcription start sites in mammalian 
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cells1,  16. Studies of integration profiles have been instrumental in developing 

integration maps of different viruses from which the potential genotoxicity of each 

type of viral vector may be assessed. Aside from the known cancer genes, disruptive 

integrations into other genes such as those necessary for cell survival or metabolism 

may be deleterious. Thus, insertional mutagenesis is a real risk that needs to be 

seriously addressed rather than dismissed as an inconsequential concern, as was the 

attitude prior to reports of adverse outcomes in gene therapy clinical trials. 

Much has been learned about the molecular pathogenesis of oncogenesis 

associated with integrating viral vectors. MLV gammaretroviral vectors have a 

predilection for integrating close to transcription start sites1 and to perturb their 

expression possibly due to the strong enhancer effect  inherent in the LTRs17. 

However, this alone may not be sufficient for complete oncogenic evolution as ten 

patients treated with a similar MLV retroviral vector in a clinical trial for SCID-ADA 

did not develop untoward outcomes (median follow-up of 4 years)18. This has led to 

the speculation that other factors such as the nature of the expressed transgene (IL2Rγ 

versus ADA), the underlying disease, cell types selected for transgenic modification 

and other patient-specific intrinsic factors are necessary accessory factors to 

oncogenesis19. 

In contrast to retroviral vectors, no overt adverse events have been reported 

thus far from the use of other viral vectors such as lentiviral, adenoviral, HSV or 

AAV vectors. Some studies even suggest that lentiviral vectors pose significantly 

lower risks of insertional oncogenesis compared to retroviral vectors due to 

differences in their integration preferences20. Generally, non-integrating vectors such 

as adenoviruses, rAAV and HSV which are predominantly maintained as episomes 

are not considered to be mutagenic given their minute possibility of inducing rare 

random integrations in the genome. On the other hand, rAAV vectors which are 

largely maintained as episomes but are also known to integrate into the genome at 

low frequencies21, must be considered as having intermediate risks.   

Thus in summary, integrating vectors do bear potential risks of inadvertently 

affecting the genome. These can be in the form of deletions or large insertions in 

multiple genomic regions, dysregulation of endogenous genes, epigenetic effects 

and/or abnormal chromosome structures. Therefore, it is imperative that gene therapy 

modalities are comprehensively evaluated for potential genotoxicity. Therapeutic 

approaches that adopt ex vivo cell modification benefit from the advantage that 

biosafety assessments can be performed before in vivo implantation. Such biosafety 
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evaluations can be expected to reduce iatrogenic complications as treatment can be 

halted if significant risks are identified beforehand.  

1.2.3. Germline transduction 

An inherent disadvantage of in vivo gene delivery (especially with viral 

vectors) is the unintended dissemination of vectors to several tissues and organs with 

consequent transduction of several non-target cell types that could facilitate 

undesirable immune responses and genotoxicity. Generally, the main intent of gene 

delivery is to transduce a particular target population of cells relevant to the disease 

being treated, but more often than not this objective is difficult to realize with 

systemic delivery of vectors. Moreover, inadvertent  transduction of immune cells, 

such as antigen-presenting cells, may provoke  inflammatory responses22 as well as 

invoke immune responses towards the transgene products and resulting in elimination 

of vectors and/or the transgene expressing cells23. The use of tissue/cell-specific 

promoters may reduce transgene expression in unintended cells to some extent and at 

least partially circumvent immunogenic effects24. Furthermore, regional 

administration of vectors to target organs may usefully restrict delivery to tissues 

which are intended for transgene expression. Modifications to vector surfaces to 

recognize and transduce specific cell types have also proved useful in narrowing the 

range of cell types or tissues transduced by systemically delivered viral vectors24.  

Yet another serious concern of systemic in vivo vector delivery is risk of 

inadvertent transmission of the transgene and vector-induced genome modifications 

through the germline. This could, in turn, pose mutagenic risks to future progeny. 

Germline transmission became a concern in a clinical trial for hemophilia B when 

semen samples of six of seven studied subjects who received systemic AAV2 vectors 

proved to be positive for viral vector sequences. This unintended shedding of viral 

vector components and dissemination to gonadal tissues raised concerns of 

spermatogonial transduction and potential vertical transmission of viruses25. Long-

term follow-up allayed these fears as the presence of viral vectors in semen was found 

to be transient. Further studies in rabbits showed that AAV vectors could be present 

in seminal fluid without effectively transducing sperm cells26, i.e. vector was not 

detected in cellular fractions. Nonetheless, this episode serves as a caution that 

evaluating the risks of germline transmission is essential, especially when viruses are 

delivered systemically.  

1.2.4. Tools for evaluating potential for genotoxicity 
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The reality of vector-induced oncogenesis need not be a fatal impediment to 

the goal of clinical gene therapy if gene transfer approaches are rigorously evaluated 

for potential genotoxicity.  Tools are now available to interrogate transgenically-

modified cells ex vivo for genomic alterations and to evaluate their tumorigenic 

potential. The ability to perform comprehensive biosafety assessments ex vivo before 

proceeding to in vivo treatment is feasible and opens a way to exploit the benefits of 

gene replacement while minimizing treatment risks to a clinically acceptable level.  

A first step to genotoxicity analysis of any given modality is to review 

databases for adverse outcomes encountered in past or ongoing clinical trials which 

can be accessed at several websites e.g. Wiley clinical trials database 

(http://www.wiley.com/legacy/wileychi/genmed/clinical/), the US National Institutes 

of Health ClinicalTrials.gov (http://www.genetherapynet.com/clinicaltrialsgov.html) 

and Clinigene (http://www.clinigene.eu/search-published-human-gene-therapy-

clinical-trials-database/).  

The preceding section summarized complications that may arise from gene 

therapy. This section now focuses on the biosafety assessment of ex vivo gene 

modified cells, with an emphasis on key features to monitor and molecular biology 

tools that aid the evaluation. The importance of bioinformatic tools in biosafety 

evaluation cannot be overemphasized. This section will also highlight useful 

programs, internet resources and databases. 

1.2.4.1. Mapping genome integration sites 

It is imperative to document integration events in gene modified cells, and 

prudent to do so even for episomal vectors that have a low probability of random 

integration11,  27. Integration events are detailed with reference to their physical 

distance relative to promoter sites, transcription start sites, exons or introns, 

oncogenes, tumor suppressor genes, non-protein coding genes, CpG islands, 

repetitive elements and transcription factor and micro-RNA binding sites. Such 

integration profiles aid genotoxicity risk evaluation when comparing across vector 

types, modified cell types and the nature of transgenes. 
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Figure 1.2.1 Experimental recovery of integration events and computational 
analysis of integration site distribution in mammalian cell genomes. Left: 
Integration events in cells are retrieved by digesting genomic DNA with restriction 
enzymes that do not cleave within the vector sequences.  Appropriate adapters are 
ligated to restriction fragments to serve as priming sites for PCR amplification of 
integration junctions which can be cloned and sequenced. (Adapted from Ciuffi A, et 
al., 2009)28. Right: Vector flanking raw sequence data may be selected with 
programs such as IntegrationSeq and queried using UCSC-BLAT or NCBI-BLAST 
to retrieve relevant genomic information. Computational programs such as 
IntegrationMap, SeqMap and QuickMap automate the process of genome mapping 
and provide the necessary annotations for biosafety assessment. (Adapted from Peters 
B, et al., 2008)29. 

Integration events within cells can be experimentally retrieved and identified 

by plasmid rescue, ligation mediated PCR (LM-PCR)30, inverse PCR31 or linear 

amplification mediated PCR (LAM-PCR)32.  Sequence data can be analyzed for 

vector-flanking sequences by programs such as IntegrationSeq33 which may then be 

queried in genome database programs such as NCBI-BLAST 

(http://blast.ncbi.nlm.nih.gov/) or UCSC-BLAT (http://ww.genome.ucsc.edu/) to 

identify their genomic positions (figure 1.2.1). In recent years, several programs have 

been developed to automate the process of genome mapping. IntegrationSeq33, 

SeqMap29 and QuickMap34 are examples of web-based programs that are useful for 

annotating genome mapping information such as proximity to genes, neighboring 

gene identity, exon/intron localization, distance from transcription start sites, repeat 

element localization and Gene Ontology functions. Recently developed QuickMap 

(http://www.gtsg.org) provides a more comprehensive evaluation that includes 

information about proximity to oncogenes, pseudogenes, CpG islands,  fragile sites, 

transcription factor and micro-RNA binding sites. Identity of potential cancer genes 

can be derived from lists compiled from the human cancer gene census12 or the 
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retrovirus and transposon  tagged cancer gene database, RTCGD 

(http://variation.osu.edu/rtcgd/about_us.html). Another useful database with a 

comprehensive compilation of known oncogenes and tumor suppressor genes35 is 

hosted by the University of Pennsylvania School of Medicine 

(http://www.bushmanlab.org/links/genelists).   

Another use of profiling of genomic integration sites is for long-term 

monitoring of the clonality of in vivo implanted gene modified cells36. Integration 

profiles  determined pre-implantation can be periodically monitored post-implantation 

to detect the emergence of dominant clones. Deviation from a polyclonal pattern of 

growth could imply selection of a dominant clone by virtue of a survival advantage or 

a greatly increased proliferation rate. This ought to trigger close scrutiny for the 

likelihood of insertional oncogenesis. Gerrits et al. have recently developed tagged 

vectors with variable unique barcode signatures for tracking different clones in vivo37. 

Such innovative techniques could be applied to enhance monitoring the clonality of 

implanted cells in vivo and increase the sensitivity of detecting potential oncogenic 

alterations.     

1.2.4.2. Characterizing the modified genome 

There is a sound basis to expect that integrating and non-integrating vectors 

may alter genomic architecture. Copy number gains and deletions have been observed 

in transformed cancer cell lines and to a lesser extent in cells modified with gene 

transfer vectors27. Recent advances in array-based methods have made it possible to 

study genome-wide amplifications or deletions at high resolution with probes that tile 

the genome with an average inter-probe interval of 2.5 kb38. As with most array-based 

techniques, copy number analysis relies on a relatively homogeneous population of 

cells as alterations in a minor population within a polyclonal population may be 

masked or underrepresented in the analysis that would otherwise only reveal the copy 

number profile of the dominant cell population. 

Another type of potentially pathogenic genomic alteration of concern are 

numerical or structural chromosomal abnormalities, i.e. aneuploidy and/or structural 

abnormalities such as deletions, translocations and inversions, which are common 

hallmarks of transformed cells. Several studies have reported rare cytogenetic 

abnormalities in cells treated with rAAV39, retroviral vectors40 and non-viral vectors 

such as phiC31 phage integrase-mediated plasmid integration41, 42. The inciting causes 

of such cytogenetic abnormalities are unclear, namely whether from direct effects of 

vector integration and repair or from recombination events secondary to vector 
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integration. Also unclear is whether these rare cytogenetic changes are related to gene 

transfer manipulations or simply reflect the intrinsic low frequency of chromosomal 

anomalies that occur even in normal somatic cell populations43.  

Gross chromosomal rearrangements in gene modified cells can be evaluated 

by spectral karyotyping (SKY) or multi-color fluorescence in situ hybridization 

(FISH). Karyotyping requires examination of a sufficient number of good quality 

metaphase chromosomes if rare rearrangements are not to be missed. Array-based 

comparative genomic hybridization detects copy number abnormalities (deletions or 

amplifications) at high resolution, provided a fairly homogeneous cell population is 

analyzed. However, even high resolution copy number analysis will not detect 

aberrations in a rare subpopulation of cells. Genome sequencing to identify vector 

integration junctions can potentially identify translocations at the highest (single 

nucleotide level) resolution provided junctional fragments can be confidently 

identified. However, this method (currently performed at relatively high, albeit 

decreasing, cost) generates large datasets that require specialized bioinformatic 

analysis and awareness of technical artifacts44. Therefore effective cytogenetic 

analysis should be combined with sequencing techniques (for integration site 

retrieval), multi-color karyotyping, whole genome copy number profiling and 

possibly deep whole genome sequencing analysis as a complementary suite of 

techniques to completely characterize the genome of gene modified cells. 

1.2.4.3. Transcriptome and epigenome analysis 

A necessary complement to genome analyses is to determine effects of gene 

transfer (however accomplished, but especially if the transgene is known to have 

integrated) on the transcriptome of gene modified cells. In this regard, it is worth 

noting that vector insertions are often accompanied by deletions of genomic regions45 

that may in turn alter the epigenetic status of the cell if key histone proteins, histone 

modifying and DNA methylating enzymes are affected. Thus it may also be relevant 

to determine effects of gene transfer on the epigenome.  

Comparing the global transcriptomes of naïve and vector treated cells may 

help to identify genes whose expressions are perturbed. Many technical platforms 

based on hybridization to gene-specific oligonucleotide probes and RNA-Seq46 have 

been developed for genome-wide transcriptome analysis and, being unbiased, are the 

methods of choice.  Such data, in practice, reveal significantly altered gene 

expression mainly in the dominant cell population, though not necessarily in minor 

subpopulations. Characterizing the transcriptome of a homogeneous or, preferably, 
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clonal population of cells with a single known vector integration is ideal as it is more 

informative. The presence of multiple integration sites in a clonal population 

confounds attempts to distinguish effects attributable to any particular integration. 

Likewise, the study of a heterogeneous cell population could mask the transcriptional 

features of a minor subpopulation. To set stringent standards for biosafety 

assessment, microarray studies are useful only when a sufficient number of clonal 

populations from different integration sites are characterized. Given that viral vectors 

mediate integrations into multiple sites, such clonal studies are highly impractical. 

Clonal studies are especially important when integrations occur close to oncogenes 

and tumor suppressors. Transcriptome analysis aims not only to identify individual 

genes with significantly altered expression but should also map individual aberrations 

to molecular pathways. There is a plethora of non-proprietary microarray analysis and 

bioinformatic software tools for data evaluation and analysis. For example, useful 

tools are hosted by Gene Ontology 

(http://www.geneontology.org/GO.tools.microarray.shtml), Genomics and 

Bioinformatics Group from NIH (http://discover.nci.nih.gov/tools.jsp) and Database 

for Annotation, Visualization and Integrated Discovery (DAVID) 

(http://david.abcc.ncifcrf.gov/home.jsp).   

Epigenetic changes refer to alterations in the acetylation, methylation, 

sumoylation and phosphorylation patterns of histone proteins, which in turn may 

affect the dynamic chromatin architecture and determine the active or repressed status 

of genes. It also encompasses changes in CpG methylation near promoter regions 

which may influence gene expression. Transgene and vector integrations may directly 

attenuate gene expression or have negative or positive effects on genes based on their 

effects on histone modifying or DNA methylating enzymes. Global characterization 

of epigenomes presently combine global transcriptome analysis, cytosine methylation 

patterns, nucleosome positioning assays and chromatin immunoprecipitation (ChIP)-

based assays to determine transcription factor binding sites47. The on-going human 

epigenome project (http://www.epigenome.org/) that aims to document the DNA 

methylation patterns of all human genes is likely to provide invaluable insights into 

the role of epigenetics in human diseases. However, the study of epigenetics is 

currently hampered by a lack of simple, high quality and high-throughput techniques.  

Technical advances should deepen knowledge of this important domain of human 

genetics.   

1.2.4.4. In vitro and in vivo tumorigenicity studies 
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Transformed cells acquire altered phenotypes that can be detected in vitro. 

Anchorage independent growth, loss of contact inhibition, resistance to apoptosis, 

increased proliferation rate and extended cell passaging are common characteristics of 

transformed cells.   

Simple in vitro assays demonstrate anchorage independent growth and 

increased proliferation rates of cells. The soft agar colony formation assay involves 

enumerating colonies (clonal propagation of cells) formed from individual cells in the 

absence of substrate adhesion. Anchorage independent cells typically form colonies 

while normal cells do not as they rely on surface attachment for proliferation. Assays 

that quantify incorporation of bromo-deoxyuridine (BrdU), reduction of tetrazolium 

compounds (e.g. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and 

colony formation  are direct or indirect measures of cellular proliferation rates. 

Modlich and colleagues48 recently introduced the in vitro immortalization assay 

which tests tumorigenic potential of virally transduced murine HSCs based on their 

replating capacity, thus obviating the need for in vivo testing in animals.  

Most in vitro biosafety assays seek to evaluate deviations from normal 

cellular characteristics. A more clinically relevant evaluation of tumorigenicity would 

be to determine the potential to induce tumors in vivo.  Two main models are used for 

this purpose. In the first model, gene modified human cells are implanted into 

immunocompromised mice that are known to support the engraftment of xenogeneic 

cells.  It is helpful to know that different strains of immunocompromised mice have 

different capacities to mount immune responses depending on which components of 

the immune system are still functional. Mouse strains that are most severely 

immunocompromised can be expected to have high sensitivity as tumorigenic hosts 

because even low numbers of implanted cells could give rise to visible tumors. Such 

sensitive models are useful for the detection of rare populations of oncogenic cells in 

a heterogeneous population of otherwise untransformed cells. The absence of tumor 

formation should not immediately exonerate cells of their tumorigenic potential.  It is 

essential to establish from immunohistology of the implantation sites or in the case of 

HSCs implantation, immunocytometric blood analysis that the implanted cells have 

indeed engrafted in vivo in animals that fail to form tumors. The second model is 

useful to evaluate the genotoxic potential of HSCs transduced with different gene 

therapy vectors. It is based on the transduction and transplantation of HSCs derived 

from a tumor-prone mouse model that lacks the tumor suppressor, cyclin dependent 

kinase inhibitor 2A (cdkn2a) gene49. This assay thus evaluates tumorigenic risk in an 

already tumor-prone cell line and has been used to compare the oncogenic potential 

http://wizfolio.com/?citation=1&ver=3&ItemID=655&UserID=8336&AccessCode=1E4BCC64B0DA464BBFF0068F9B0D41E6&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=661&UserID=8336&AccessCode=DBE593FC621743A3BCE2B5D646740557&CitationSuffix=�


34 

 

of retroviral and lentiviral vectors, and to assess the benefits of incorporating SIN-

LTRs in these vectors. However, a caveat is that owing to the intrinsic oncogenic 

potential of the cdkn2-/- HSCs, the effects of subtle but relevant insertional mutagenic 

events may be masked or misinterpreted. Besides murine models, long-term studies 

can also be performed in pre-clinical animals such dogs and non-human primates50 

where the clonality of implanted cells can be dynamically monitored by documenting 

integration profiles of recovered cells to ascertain if dominant clones with clone-

specific integration patterns have emerged. 
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1.3. Recent enhancements in biosafety of gene therapy 

Comprehensive molecular studies that were undertaken in light of adverse 

outcomes in clinical trials of gene therapy have advanced our understanding of their 

likely mechanisms1. This has, in turn, spurred the development of safer approaches.  

In parallel, more sensitive genome-wide techniques now available for biosafety 

evaluations enable higher confidence in pre-clinical assessments before treatments are 

adopted in clinical trials. This section reviews recent developments in gene transfer 

by non-viral vectors that could potentially enhance biosafety. 

1.3.1. Improvements to integrating non-viral vectors 

Non-viral vectors have found useful applications largely in the laboratory and 

pre-clinical settings but represent only 24% of all vectors used in clinical gene 

therapy trials. The fact that viruses have evolved over millennia to become effective 

infectious agents understandably makes them superior in many aspects as gene 

transfer agents. The ultimate goal of designing synthetic non-viral vectors is to 

combine the positive traits of viruses without the negative threats of genotoxicity. 

Significant improvements have been made to methods of non-viral vector delivery2 

with reported efficiencies that rival those achieved with viral transductions. Two 

classes of non-viral vectors may contribute to improved biosafety of gene therapy, 

namely episomally maintained vectors and integrating vectors with safer integration 

profiles. In the context of treating diseases caused by a single gene defect, the 

ultimate goal of an ideal gene transfer vector is to deliver durable and appropriately 

regulated transgene expression either from an autonomously replicating artificial 

chromosome, episomal  plasmid or from transgenes integrated into safe genomic 

harbors. This section reviews recent progress in developing non-viral integrating 

vectors with safer integration profiles. 

1.3.1.1.  Transposase, recombinase and integrase 

Transposases and recombinases are two classes of site-specific genome 

modifying agents. These enzymes recognize and bind to short stretches of DNA 

sequences within the vector and in the genome to mediate the integration of 

exogenous vector DNA into the genome. Analysis of the integration spectrum of 

several transposases and recombinases identified some that mediate quasi-random or 

sequence specific integrations into the genome, a distinct advantage over randomly 

integrating viral vectors. Transposases and recombinases are also less immunogenic3, 

transposons have lower inherent enhancer/promoter activity on neighboring genes4 
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and induce fewer epigenetic effects at genomic integration sites5, relative to viral 

vectors. Given their activity in mammalian cells, these non-viral integrating systems 

evoke exciting possibilities for development into safer alternatives than randomly 

integrating vector systems. Several different classes and strains of transposases and 

recombinases have been discovered and studied as gene therapy agents. An important 

concern is their relatively relaxed stringency of site-specific integrations which again 

raises the spectre of insertional mutagenesis. Therefore, a major effort has been 

directed at improving specificity. Another cautionary note is the low risk of 

unintended integration of the transposase or recombinase, which could have 

deleterious effects on the genome. Such risks may be minimized or abrogated by 

using messenger RNA (mRNA) rather than DNA to deliver the recombineering 

proteins. The following sections highlight advances in the more commonly used 

transposases and recombinases.      

1.3.1.1.1. Transposases – Sleeping Beauty, PiggyBac and Tol2 

The Sleeping Beauty (SB) system was reconstructed from a molecular fossil 

in fish genomes. It belongs to the tc1/mariner superfamily and is one of the most 

widely investigated transposase systems to date. SB transposase mediates genomic 

integration of sequences flanked by an inverted tandem repeat (ITR) at each 

transposon end, preferentially into TA dinucleotides located within genomic regions 

with increased local bendability6, via a “cut-and-paste” mechanism. Integrations are 

quasi-random, without any preference for transcriptionally active regions7. Optimized 

SB has a transposition efficiency8 of 2.5 - 17%. Stable integration using this system 

has enabled long-term transgene expression in a variety of mammalian cells and 

animal models9, 10. Owing to the randomness of integrations, SB systems have been 

used also as tools for discovery of new oncogenes both in in vitro and in vivo 

models11. It is worth reiterating that these SB systems are different from those used in 

gene therapy applications. SB systems used in oncogene discovery are deliberately 

modified via incorporation of strong transcriptional enhancers and splice acceptor 

sites to be potently oncogenic11. Thus far, the use of SB as a gene therapy agent in 

animal models has not been associated with any evidence of tumorigenesis12. Inherent 

limitations of the SB system include limited cloning capacity, inhibition of 

transposition at high transposase concentrations and lack of targeting specificity of 

integrations.   

SB systems are prone to reduced transposition with increased cargo load. 

Zayed et al. demonstrated that it was possible to retain transposition with inserts 
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greater than 10 kb by using a sandwiched vector in which the gene of interest was 

flanked by two complete SB elements in inverted orientations13.   

Initial studies with naive SB system revealed their inherently low 

transposition efficiencies. Many modifications have since been introduced to create 

hyperactive versions of SB with increased transposition activity such as SB1014, 

SB1115 and SB100X16. The hyperactive SB100X, which was reported to have a 100-

fold increased transposition activity, was discovered by high-throughput screening of 

mutants created by a PCR-based DNA shuffling strategy. Using these improved 

versions of SB, efficient transposition has been reported in a variety of human 

primary cells such as cord blood derived CD34+ hematopoietic progenitor cells17,  

primary T cells7 and embryonic stem (ES) cells 18.  

The issue of non-specific targeting by SB has been another prime focus of 

research aimed at inducing site-specific integration. An ideal modification would 

enable SB to direct transposition to a single pre-defined “safe harbor” in the genome. 

Skewing the random integration pattern of SB towards a more targeted profile would 

be hailed as an improvement. Several groups have attempted to do this by 

incorporating specific DNA-binding domains (DBD) either to the SB transposase19 

(Figure 1.3.1; top panel), the transposon bearing the gene of interest20 or via a fused  

DBD-protein binding domain (PBD) that interacts with the transposase without 

modifying it21. The first strategy of fusing DBDs such as E2C (a synthetic zinc finger 

protein that recognizes an 18 bp target site in the 5’-untranslated region of the human 

ERBB2 gene) or Gal-4 to the transposase met with limited success. In a second 

strategy, Ivics and collaborators demonstrated re-targeted integrations by 

incorporating a fusion of two DBDs to direct the transposon bearing the gene of 

interest to specific genomic sites where transposition could be mediated by the 

transposase20 (Figure 1.3.1; bottom panel). A third strategy utilizing a fusion of 

peptides that interact with the genomic locus of choice (via DBD) and the transposase 

(via PBD) without compromising transposase activity has also been reported by the 

same group20 (Figure 1.3.1; middle panel). However, it must be noted that none of 

these site targeting modifications has yet been successfully translated to human gene 

therapy applications, probably because of the relatively poor efficiencies of re-

targeting specificity.  
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Figure 1.3.1  Re-directing targeting specificities of transposase/ transposons. 
Transposase can be re-targeted to a different specific genomic site by direct fusion 
with a (top panel) DNA-binding protein or (middle panel) indirectly via a protein-
binding domain. Targeting can also be achieved with (bottom panel) a pair of DBD-
fusion proteins recognizing specific sites in the genome and sequences within the 
transposon vector. (Adapted from Izsvak Z, et al., 2010; ref. 62). 

The lack of propensity of non-viral integrating SB systems for active 

transcriptional units may make them safer than retroviral and lentiviral vectors. This 

has generated the idea of hybrid vectors that combine SB transposition with improved 

delivery by integrase-defective lentiviruses22. However, until there are effective 

solutions for improving the specificity of integrations, the SB system may have only 

limited appeal for clinical gene therapy. The only human clinical trial (phase I/II, 

NIH-OBA no. 0804–922) utilizing the SB system aims to redirect the specificity of T-

cells by stable expression of CD19-specific chimeric antigen receptors mediated by 

the SB11 transposase system23. However, caution should be exercised before more 

transposon-based systems are translated to clinical applications, especially in light of 

the unexpectedly high copy number of random integrations of transposase plasmid in 

human primary T cells24.     

PiggyBac (PB) transposase, isolated from the cabbage looper moth 

(Trichoplusia ni), is another class of transposase which is active in human and murine 
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cells25. The PB system has been used to effectively reprogramme iPSCs26 and 

mutagenize mice for cancer gene discovery27. PB demonstrated higher transposase 

activity than SB11 and could also be modified to incorporate DBD without loss of 

transposase activity28. Several improved versions of PB have been reported. Liang et 

al.29  demonstrated increased chromosomal transposition with a codon optimized PB 

and, more recently, reported the development of a hyperactive PB with a 7-fold 

increase in integration activity and showed its application for generating murine 

iPSCs30.    

The Tol2 transposon of the hobo/Activator/Tam3 (hAT) family of elements, 

derived from the medaka fish (Orizyas latipes), is active in human cells31. Like PB, 

Tol2 also tolerates overproduction inhibition and, unlike the SB system, has a large 

cloning capacity (up to 18 kb). However, both PB and Tol2 systems have 

significantly increased integrations into transcription start sites (TSS), CpG islands 

and DNaseI hypersensitive regions. Not surprisingly, transcriptional levels of 

neighboring genes close to integration sites in human T cells were altered7. This 

suggests a greater risk of insertional mutagenesis/oncogenesis compared with the SB 

system. In this respect, the PB and Tol2 transposases may be better suited for 

applications where high frequencies of mutagenesis are desired, such as cancer gene 

discovery27.   

1.3.1.1.2. Cre-loxP/ Flp-Frt 

Cre (cyclization recombinase) recombinase, a tyrosine recombinase of the 

bacteriophage P1 family, catalyses site-specific DNA recombination at a 34 bp site 

called loxP, by strand cleavage, exchange and ligation. It can mediate the integration 

of a loxP-bearing vector DNA into pre-integrated loxP sites or endogenous pseudo 

loxP sites in the genome of eukaryotic cells32. The Cre/loxP system has found wide 

applications in ES cell engineering and in developing knock-in or knock-out 

transgenic mice. There have been efforts to engineer improved versions of Cre 

recombinases to expand their applications. For example, a modified Cre recombinase 

recognizes a novel loxH site33 in human chromosome 22. Other improved versions of 

Cre exhibit more efficient recombination34. Whilst the concept of Cre/loxP-mediated 

targeted gene integration appears ideal, certain biosafety concerns have impeded 

development of this system for clinical applications. These include evidence of 

genotoxicity and chromosomal translocations induced by high levels of Cre 

recombinase expression in mouse and mammalian cells, possibly due to 

recombination between endogenous cryptic loxP sites35,  36.Consequently, use of the 
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Cre/loxP system for genetic cell modifications remains confined to non-clinical 

applications.    

The flippase (Flp) recombination enzyme, a tyrosine recombinase from 

Saccharomyces cerevisiae, mediates recombination of DNA fragments between two 

flippase recognition target (FRT) sites by mechanisms similar to the Cre/loxP system 

and has been utilized to integrate vector DNA sequences flanked by FRT sites into 

pre-integrated FRT sites within the genome in human cells. Thus far, there are no 

reports of targeted integration of FRT-containing sequences into non-native FRT sites 

in human cells. However, Flp recombinase can be mutated to recognize non-native 

sequences37. Flp with increased thermostability and greater recombination activity has 

also been developed38 and applied in plant biotechnology. 

Cre and Flp are examples of site-specific recombinases (SSR) frequently used 

in recombinase-mediated cassette exchange (RMCE).These two well characterized 

systems have frequently been used in forward genetics for directed integrations of 

exogenous DNA into specific chromosomal sites where target recombination 

elements (loxP or FRT) have been pre-integrated by homologous recombination (HR) 

or in reverse genetics for marker gene excision or deletion. RMCE strategies are 

helpful in deriving and investigating isogenic panels (all harboring integrations at the 

same genomic locus) of cell lines and ES cells without confounding positional 

effects, as would occur with random integrations39. This has led to commercial tools 

such as the FLP-In system (Invitrogen Corporation) for generating stably expressing 

cell-lines. Similarly, targeting strategies have been useful for generating “knock-in” 

or “knock-out” transgenic mice using germ-line cells modified with the Cre or Flp 

systems. RMCE has also been applied to create large cloning vectors such as 

bacterial artificial chromosomes (BACs) and yeast artificial chromosomes 

(YACs)40, and to model human chromosomal translocations41. An inherent limitation 

of the Flp/Cre systems is their propensity to mediate reversible excision or inversion 

of integrated vectors from the genome owing to their continued expression. This has 

been partly overcome by using  heterospecific mutant loxP or FRT sites33,  37 and 

inverted orientations of recombination target sites42. In summary, the Cre and Flp 

systems have found greater applications in plant and animal biotechnology and 

transgenesis rather than as integrating agents for human gene therapy. The 

requirement for pre-integrated recombination target sites by homologous 

recombination into specific loci is not a trivial endeavor as it occurs at extremely low 

frequency (about 1 in 106 cells). Therefore deriving a sufficient number of ex vivo 

modified cells for gene therapy could be quite a challenge. The use of alternate SSRs 
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such as phiC31 integrase which mediate direct recombination into endogenous sites 

in genome or other agents that enhance integration of vector sequences by 

homologous recombination may therefore be more feasible approaches.     

1.3.1.1.3. PhiC31 bacteriophage integrase 

The phiC31 bacteriophage integrase is another class of SSR that has been 

quite thoroughly investigated for achieving therapeutic transgenesis. In its natural 

context, phiC31 integrase expressed by the bacteriophage of  Streptomyces lividans, 

mediates integration of the bacteriophage genome into the bacterial genome via a 

recombination process between short stretches of DNA sequences known as phage 

attachment site (attP, 39 bp) and bacterial attachment site (attB, 34 bp ). Several 

groups have shown that phiC31 integrase integrates plasmid vector sequences bearing 

attB sequences into either pre-integrated attP sites or pseudo attP sites naturally 

found in mammalian genomes43 (Figure 1.3.2). Based on a central 28 bp sequence 

thought to be crucial for recombination, the similarity between an attB and a wild 

type attP sequence was approximated to be 50% while that between the wild type 

attP and pseudo attP consensus sequences, derived from sequence analysis of 

retrieved phiC31 integrase-mediated junctions, was about 64% 44 (Figure 1.3.3).  

 

Figure 1.3.2 PhiC31integrase-mediated integration. (Top): Natural infection 
mechanism of Streptomyces lividans resulting in integration of bacteriophage genome 
into bacterial host genome following phiC31 integrase-mediated recombination 
between attP and attB sites in bacteriophage genome and bacterial chromosomes, 
respectively. (Bottom):  PhiC31 integrase mediated transgene integration following 
recombination between attB-bearing plasmid DNA and pseudo attP sites in 
mammalian genomes. In both cases, integration results in an irreversible insertion of 
vector sequences flanked by attL and attR half-sequences which are refractory to 
further recombination. (Figure taken from ref.45) 
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PhiC31 integrase, a 68 kDA protein encoded by 613 amino acids, is  a serine 

recombinase by virtue of serine residues within the catalytic domains that are 

essential for the recombination process. The protein consists of an N-terminal 

catalytic domain responsible for recombination and a C-terminal DNA-binding 

domain. PhiC31 integrase mediates site-specific recombination by initially binding to 

and forming a synaptic complex between recognition sequences, followed by a cut-

and paste mechanism to mediate unidirectional integration of an attB-bearing vector 

sequence to attP or pseudo attP sequences in mammalian genomes, without requiring 

any additional host factors. Genomic integration results in an irreversible insertion of 

vector sequences flanked by attL and attR sequences which are refractory to further 

recombination by the integrase, unlike the reversible Cre/Flp systems. Analysis of 

phiC31 integrase-mediated integration events revealed that cross-over or integration 

usually occurs over a central TTG sequence within the attP consensus sequence44 

(Figure 1.3.3). In most human cell studies, transgene integrations were typically 

reported to be single or low copy number events45.     

 

Figure 1.3.3 Sequence similarities between attB, attP and pseudo attP 
sequences. The minimal length wild type attB sequence (34 bp; depicted in red), wild 
type attP sequence (39 bp; depicted in blue) and pseudo attP consensus sequence (28 
bp; depicted in purple) are aligned and compared to estimate the percent identity 
between them. The percent identity to the central 28 bp pseudo attP consensus 
sequence is given on the right. Wild type attB has 50% identity to both wild type attP 
and pseudo attP consensus sequences. Identity between the two latter sequences (wild 
type and pseudo attP consensus) is 64%. Green lines indicate sequence similarities. 
The central TT core sequence where integration or cross-over occurs is boxed. 
(Figure taken from ref.44).      

The phiC31 integrase system has been effectively employed in RMCE studies 

to insert transgenes into pre-integrated wild type attP sites and also, more 

importantly, for stable gene transfer into endogenous pseudo attP sites in mammalian 

genomes. Its ability to mediate irreversible unidirectional site-specific recombination 
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into a limited number of chromosomal sites in human cells spurred intense interest as 

a relatively safer method for stable gene transfer for clinical applications. PhiC31 

integrase has been successfully employed both in vitro and in vivo to induce stable 

expression of therapeutic transgenes. Ortiz-Urda et al. demonstrated functional 

correction of type VII collagen deficiency and laminin V deficiency in skin samples 

from patients with recessive dystrophic epidermolysis bullosa46 and junctional 

epidermolysis bullosa47, respectively. Thyagarajan et al. generated ES lines with 

stable transgene expression48 and Ishikawa et al. showed the possibility of correcting 

X-linked SCID deficiency by expressing IL2 receptor gamma chain in T cell-lines 

from SCID-X1 patients49. Successful correction of deficiencies of 

fumarylacetoacetate hydrolase50, factor IX51 and dystrophin52 have also been 

demonstrated in murine models. Experimental data and bioinformatic analyses have 

suggested that phiC31 integrase could potentially mediate integrations into 370 

different genomic sites, (202-764 sites based on 95% confidence interval) 45. 

Furthermore, several studies have highlighted potential hot spots within mammalian 

genomes. For instance, integrations into 8p22 53 and 19q13.31 45 sites were frequently 

observed in human cells while frequent integrations into the murine locus, mpsl1, has 

also been reported often  53. The limited number of potential sequence-specific 

integrations coupled with the possibility for long term transgene expression suggests 

that phiC31 integrase could be a safer alternative to randomly integrating vectors. 

However, several studies have raised the possibility that phiC31 integrase may induce 

infrequent chromosomal translocations54,  55, possibly by promoting recombination 

between two endogenous pseudo attP sites in different chromosomes. Our data56 

suggest that the frequency of chromosomal aberrations is not fixed but rather may be 

influenced by the conditions in which the integrase acts e.g. may vary with different 

cell types. Using spectral karyotyping, we observed translocations in only 4 of 300 

metaphases of primary cells treated with phiC31 integrase, a frequency similar to the 

low background of chromosomal abnormalities reported in normal human somatic 

cells57. Moreover, chromosomal translocations have been observed in vitro in cells 

treated with vectors already approved for clinical trials such as the rAAV vector58, 

albeit without any pathological consequences in vivo. Concerns of potentially 

pathogenic chromosomal rearrangements have somewhat dampened interest in 

phiC31 integrase as an agent to be translated into clinical therapy. Although there is 

still a push develop gene therapy vectors with impeccable safety profiles, our work 

suggests that phiC31 integrase has a relatively benign biosafety profile compared to 

randomly integrating retroviral and lentiviral vectors. Attempts to increase the site-
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specificity of phiC31 integrase include mutagenised versions which display increased 

bias for integrating in  pseudo attP sites in chromosome 8p2259 or other genomic 

sites60, and versions with higher integration frequencies61.    

Thus, ex vivo gene therapy approaches utilizing phiC31 integrase could be 

rendered even safer by using integrases with greater site-specificity and pre-screening 

gene modified cells, preferably with high-throughput genome-wide methods, to 

exclude suspect cells and select cells with safe characteristics.  

1.3.1.2.  Targeted gene integration 

Although transposases and SSRs integrate vectors non-randomly,  some have 

questioned if these systems are truly sequence-specific or merely quasi-random as 

these systems are known to mediate integrations into degenerate sequences with very 

little homology to wild type sequences. The terms site-directed or targeted gene 

integration describe modifications designed to direct integration to specific genomic 

regions recognized by the modifying agent, usually a DNA-binding protein (DBP). 

Altering or skewing the integration preference of SSRs towards a particular locus is 

considered an advantage as it reduces the risk of off-target integrations into unsafe 

genomic regions. Gene targeting can be mediated by DNA-protein interactions or 

DNA-base pairing interactions. Naturally occurring DNA-binding proteins such as 

zinc finger proteins (ZFP) or viral peptides such as Rep have been deployed to favor 

DNA-protein interactions defined by their inherent specificities. Short 

oligodeoxynucleotides or short regions of homology have also been used to achieve 

homologous recombination in targeted regions (vide infra).   

Several strategies have been proposed to achieve targeting specificity with 

DBPs. One approach is to tether a DBP to a recombinase by direct fusion or protein-

protein interactions. This has the theoretical effect of enhancing local concentrations 

of the SSR at sites specified by the DBP and could more effectively restrict 

integration activity to a specific genomic region of choice. Care should be taken to 

ensure that the tethered SSR is not adversely compromised functionally. Another less 

frequently investigated approach relies on binding of a DBP to the vector sequence as 

a means of targeting vector sequences to the locus of interest62. The following 

sections review examples of targeted gene integration. 

1.3.1.2.1. Targeting via DNA-binding proteins 

A classical example of targeted gene integration are AAV vectors which have 

been reported to mediate 70 to 85% of integrations into the AAVS1 site in human 

chromosome 19q13.3. Site-specific integration of AAV requires viral Rep proteins 
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(Rep68/Rep78) that recognize Rep-binding elements (RBE) in the ITRs of AAV and 

in the AAVS1 genomic site63. This has led to the development of non-viral gene 

targeting using vector sequences flanked by AAV ITRs that can be recognized, 

nicked and integrated into AAVS1 sites by Rep proteins expressed in trans 64. 

Philpott and collaborators65 reported that a 138 bp P5 integration efficiency element 

within the ITR was sufficient for efficient Rep binding. More recently Feng et al.66 

showed that efficient RBE binding and targeted integration into AAVS1 could be 

achieved with vector sequences flanked by a 16 bp fragment within the ITR (RBEitr). 

Rep-based non-viral systems mediate AAVS1-specific integrations in in vitro clonal 

cultures64,  67,  68 at frequencies ranging from 12 to 60%. On this basis, these systems 

have been tested and shown to function also in vivo 69. In this sense, Rep protein may 

be regarded as a DBP that redirects vector sequences to a targeted genomic locus, 

notwithstanding the possibility of concurrent random integrations. The persistent 

potential for random gene integrations coupled with the need for antibiotic selection 

to isolate cells with the desired targeted integrations and the relatively low targeting 

efficiencies are possible reasons why this integrating strategy has not garnered much 

interest. Current versions of rAAV vectors do not express any viral proteins and 

hence are not intended to be integrating.  

Several groups have explored the possibility of combining the integration 

mechanisms of transposons, HIV-1 integrase, phage integrase or SSRs with the 

desired DNA-binding specificities of DBPs. Early gene targeting studies relied on the 

use of a handful of well studied naturally occurring DBPs such as yeast Gal4 (binds 

upstream activating sequences), Escherichia coli Lex A (binds to Lex A operator 

sequence)70, phage λ repressor (binds phage λ operator sites)71 and murine 

transcription factors such as Zif26872. Although Gal4, lex A and λ repressor proteins 

were instrumental in demonstrating the feasibility of targeted gene integrations in 

vitro, they were not adaptable to clinical applications as they lack natural binding 

sites in the human genome. However, they have been used to bind vector sequences 

bearing their recognition elements and, fused with other endogenous DBPs, can be 

engineered to recognize elements in the human genome20. Other naturally occurring 

cellular DBPs, such as scaffold attachment factor (SAF)20 and lens epithelium-

derived growth factor (LEDGF)21, also bind to several human genomic regions (albeit 

without precise sequence recognition) and facilitate integration in vitro. Recent work 

by Gijsbers and collaborators showed the potential for redirecting lentiviral 

integrations into transcriptionally inactive regions by modifying the natural 

LEDGF/p75-viral integrase interactions73. Such retargeting strategies could 
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potentially be adapted to engineer hybrid viral vectors with safer integration 

characteristics compared to current generations of viral vectors.     

Amongst transcription factors, the ZFPs are an especially favored class of 

DBPs, given that the human genome codes for an estimated 4500 ZFPs74. An inherent 

limitation of naturally occurring ZFPs is their tendency to recognize short DNA 

sequences which may be present at many sites in the genome. This prompted 

engineering artificial ZFPs that could be tailored to bind to unique genomic sites. The 

E2C-ZFP was one of the first synthetic ZFPs that was designed to bind to a unique 

sequence in the 5’ UTR of the ERBB2 gene. Tan et al. demonstrated a 10-fold 

enrichment of integrations into the E2C binding site in human cells transduced with a 

HIV-1 integrase fused to E2C-ZFPs75. Advances in protein structure analysis and 

high-throughput techniques for testing DNA-protein interactions have ushered in new 

possibilities of creating user-defined custom ZFPs to target specific loci in the human 

genome.  High expectations of the practical utility of customized ZFPs have spawned 

commercial investment in this technology, forming the business platform of Sangamo 

Biosciences which focuses on designing novel customized synthetic ZFPs as 

modulators of transcriptional control and as gene targeting agents in combination 

with nucleases (i.e. zinc finger nucleases). These artificial ZFPs could potentially 

redefine the integration spectrum of SSRs and viral integrases to enhance their 

biosafety.    

Although tethering DBPs to recombinases and transposases has enriched 

targeted gene integrations, such chimeric systems continue to suffer from the 

disadvantage of non-directed integrations owing to residual activity of the 

recombinase/transposase and its inherent specificity. The holy grail of gene targeting 

is integration exclusively at a single user-defined safe harbor that does not incur the 

disruptive consequences of insertional mutagenesis/oncogenesis. This ideal may now 

be within reach with the advent of synthetic ZFPs, although the combination of such 

synthetic ZFPs with existing recombinases and transposase has not yet been 

rigorously evaluated. Recent years have also seen the development of other gene 

targeting systems based on homologous recombination which promise highly 

accurate gene integration but whose effectiveness has yet to be proven.   

1.3.1.2.2.  Site-specific homologous recombination 

The transgene integration strategies discussed thus far rely on the activity of 

an enzyme or protein to direct and mediate the integration of vector DNA into the 

genome randomly or with limited specificities. Another highly site-specific strategy 

that has been utilized for many years to create transgenic cells and animals with 
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targeted genome modifications exploits endogenous repair mechanisms of host cells 

to execute homologous recombination, thereby incorporating exogenous DNA into 

specific genomic sites. Effective homologous recombination requires transgenic DNA 

to be flanked by sequences homologous to the genomic sequences into which they are 

to be integrated. These exogenous DNA sequences are templates in the process of 

homologous recombination and are subsequently replicated along with the genomic 

locus during host cell divisions. The basal frequency of homologous recombination 

involving exogenous DNA is very low, occurring in 1 out of 105 - 107 treated cells. 

However, this frequency can be enhanced 1000-fold by creating site-specific nicks in 

the genome76, thereby stimulating DNA repair at these sites. DNA is repaired by one 

of two main mechanisms i.e. non-homologous end joining (NHEJ) or homologous 

recombination (HR), although variations of these mechanisms are also possible. Error 

prone NHEJ results in genomic DNA repair without transgene integration while HR 

may result in site-specific integration of the transgene into the desired locus. In the 

context of gene therapy, the prospect of exploiting homologous recombination is 

appealing as it holds the potential for targeted gene repair and precise transgene 

integration into safe genomic loci. A patient’s cells could in theory be modified ex 

vivo to correct disease-causing mutations or to integrate a transgene for long term 

expression of a deficient or defective protein before reimplanting into the same 

patient (autologous cell therapy). Recent advances exploring such strategies will be 

discussed in this section.            

1.3.1.2.2.1. Meganucleases 

A more efficient and reproducible strategy for gene editing or integration that 

has been the focus of recent research is the use  of highly site-specific endonucleases 

to induce double-stranded DNA breaks in specific genomic sites to stimulate 

deletions via non-homologous end joining or homologous recombination of 

exogenously delivered DNA into these sites. Three main classes of engineered 

endonucleases have emerged: zinc finger nucleases which are chimeras of ZFPs and 

the catalytic domain of Fok I restriction endonuclease; chemical endonucleases which 

consist of chemical or peptidic cleavers fused with DNA recognizing polymers; and 

meganucleases (homing endonucleases) which are capable of recognizing and 

cleaving target DNA sequences, usually 14 -40 bp in length. HO endonuclease which 

mediates mating type switch in Saccharomyces cerevisiae,  I-CreI and I-SceI 

meganucleases are examples of naturally occurring homing endonucleases. However, 

applications of naturally occurring meganucleases have been limited either by the 

lack of recognition sites or by the presence of more than a single site in the human 
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genome. The LAGLIDADG family of meganucleases includes I-SceI and I-CreI 

which are the largest and best characterized meganucleases, and are active as 

monomers or homodimers. Their catalytic cleavage centers are embedded within the 

DNA-binding domains, thus making non-specific cleavage very unlikely. Elucidation 

of the protein structures of endonucleases such as SceI and CreI have accelerated 

engineering of meganuclease variants with unique genomic recognition sites. Most 

effort has been directed at developing I-CreI and I-SceI variants with unique 

specificities and reduced off-target cleavage activity. Thus far two engineered 

meganucleases cleaving unique genomic loci in the human XPC 77 and Rag1 genes 78 

have been reported. Other improvements have been to engineer variant CreI 

(naturally homodimeric) meganuclease to function as obligate heterodimers79 or as 

single-chain derivatives80. Computational approaches81 have integrated structural and 

high-throughput screening data to identify the cleavage properties of 18000 

engineered meganucleases,  based mostly on CreI meganuclease82.  

Thus far, homologous recombination involving transgenes with 

meganucleases has been demonstrated in only a few cell types and a comprehensive 

evaluation of their genotoxic potential is awaited. The future development of 

engineered variants that collectively offer a wide spectrum of unique integration sites 

may be useful but will need careful evaluation. At present, there is a need to engineer 

endonucleases for user-defined specificities. This requirement may be more readily 

fulfilled with zinc finger nuclease technology given the potentially broader spectrum 

of genome-specific ZFPs that can be custom engineered.   

1.3.1.2.2.2. Zinc finger nucleases 

Zinc finger nucleases (ZFNs), first conceptualized by a collaborative effort 

between the groups of Chandrasekaran and Carrol83, are synthetic chimeras composed 

of a tandem array of DNA-binding Cys2-His2 zinc finger proteins fused with the 

catalytic domain of Fok1restriction endonuclease via a short linker peptide. The 

Cys2-His2 zinc finger peptides, typically made up of 30 amino acids and usually 

containing two cysteine and histidine residues coordinated by a single zinc atom to 

form a ββα structure, are capable of specifically recognizing and binding to 3 

consecutive bases of DNA. Amino acids in the N-terminus of the α-helix interact 

specifically with bases in the major groove of DNA, with amino acids in positions -1, 

3, and 6 of each zinc finger peptide 84 (numbered relative to the start of helix) making 

contact with the 3’, middle and 5’ nucleotide bases in the recognized triplet 

sequences. In addition to these interactions, there is contact between an aspartate 
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residue in position 2 of the ZFP with either an adenosine or cytosine on the 

complementary strand immediately preceding the triplet recognition sequence of the 

ZFP84 (Figure 1.3.4). ZFNs are typically designed as a pair, each consisting of 3 to 6 

ZF monomers recognizing 12 to 18 consecutive bases on each strand with a spacer 

region of about 5 to 7 bases between the neighboring ZFN pair targeting sequences on 

complementary DNA strands. The full DNA recognition site for a given pair of ZFNs 

is given by sequences encompassing the two ZFN half sites and spacer region, and is 

typically around 30 to 40 bases in length. Theoretically, a 30 bp sequence occurs only 

once per 1.15 x 1018 nucleotides. Given that the human genome is made up of 

approximately 3 x 109 bases, the occurrence of a 30 bp sequence ought to be unique. 

FokI endonuclease is only active as a dimer, being non-functional in its monomeric 

state, as is the case where only a single ZFN binds to its target site. The requirement 

for dimerization of two monomeric FokI nucleases from each protein of a ZFN pair 

ought to ensure DNA cleavage only when both proteins of a ZFN pair bind to the 

correct target sequence. The ensuing dimerization and activation of FokI nuclease 

then induces a double-stranded DNA break within the spacer region between the two 

ZFN proteins. First generation ZFNs formed FokI homodimers that bound to similar 

adjacent half sites, thus resulting in off-target FokI-induced DNA cleavage that 

caused significant cellular toxicity. This has been partly overcome by redesigning the 

FokI dimerization domains to form obligate heterodimers. Work by two separate 

groups showed that different amino acid substitutions within the FokI domain of each 

protein in a ZFN pair generated electrostatic repulsion of between identical FokI 

domains, thereby minimizing ZFN homodimers and reducing their off-target effects 
85, 86.          
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Figure 1.3.4 Schematic of ZFN binding to target sequence.  ZFNs consist of a 
tandem array of Cys2His2 zinc finger peptides fused at the C-terminal via a short 
linker sequence to the catalytic domain of monomeric FokI endonuclease. ZFNs are 
designed as protein pairs that bind to adjacent DNA sequences on complementary 
DNA strands and are usually separated by 5 to 7 bases in order to allow for 
dimerization of FokI monomers. The dimer creates a double-stranded DNA break 
within this spacer region. DNA binding specificity is determined by the amino acid 
sequences of each ZFP that specifically recognizes and binds to 3 consecutive bases. 
Amino acids in position -1, 3 and 6 within the α-helix of each ZFP with a ββα 
structure typically make contact with the 3’, middle and 5’ bases, respectively, of the 
recognized triplet within a single DNA strand. There is an additional interaction 
between an aspartate residue in position 2 of the ZFP with either an adenosine or 
cytosine base in the complementary strand immediately preceding the triplet 
recognition sequence. The full ZFN recognition site is given as the sequence 
encompassing two ZFN binding sites plus the spacer sequence. (Figure taken from 
ref.84).    

The design of site-specific ZFNs is based on naturally occurring zinc finger 

transcription factors such as the murine Zif268 or human specificity protein 1 (SP1) 

which provide the scaffold in which each Cys2-His2 zinc finger that specifically 

recognizes a base triplet can be replaced to derive a novel ZFP capable of binding to 

unique genomic sequences of choice. Such polydactyl ZFP have been assembled by 

modular assembly 87 in which individual ZFs are combined as a succession of 

modules to form an array capable of recognizing a length of DNA sequence. 

Alternative strategies such as oligomerized pool engineering (OPEN) 88 or context-

dependent assembly (CoDA)89 take into account the context dependence of each 

individual ZFs relative to its neighboring partners in sequence recognition and 

binding. The main function of ZFNs is to function as highly site-specific molecular 

scissors to create double-stranded DNA breaks at user-specified genomic loci. 

Double-stranded DNA breaks (DSDB) in the genome are systematically detected by 

intracellular DNA damage sensing proteins and ultimately repaired by NHEJ or 

homology directed repair (HDR). These repair mechanisms are crucial for 

maintaining the genomic integrity of cells that constantly encounter exogenous or 

endogenous stresses that damage DNA.    

NHEJ is one of the key processes that repairs  double-stranded DNA breaks 

in the genome. NHEJ is thought to be the major pathway of repair and is most active 

in the G0-G1 and early S-phase of the cell cycle90. The NHEJ pathway of repair can 

simply be summarized as a homology independent process which joins two ends of a 

double-stranded break, often creating small deletions or insertions at the sites of 

repair. The NHEJ pathway has been well elucidated and involves key DNA damage 

sensing and repair proteins (Figure 1.3.5). Very briefly, the Ku70/Ku80 (Ku) proteins 

are responsible for binding to DNA termini and aligning the DNA ends for ligation. 
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DNA-PKcs (DNA-dependent protein kinase catalytic subunit) recruited to DNA-bound 

Ku heterodimers at damaged ends, together with Artemis protein, stimulates 

processing of DNA ends. Recessed DNA ends are finally joined together by the 

XRCC4 (X-ray repair complementing defective repair in Chinese hamster cells 4)-

DNA ligase IV complex to complete the NHEJ repair process91. 

       

Figure 1.3.5  NHEJ pathway.  Schematic summarizing the key proteins involved 
in the NHEJ pathway of DNA repair. Induction of repair of resected ends of DNA is 
initiated by binding of Ku70/80 heterodimers which in turn recruit DNA-PKcs. Upon 
binding, DNA-PKcs is activated by autophosphorylation. This allows Artemis and 
other proteins to bind to the DNA repair complex and stimulate processing of DNA 
ends. X4-L4 complex consisting of XRCC4 and DNA ligase IV together with XLF 
mediate ligation of the processed DNA ends to repair the DSDBs. (Figure taken from 
ref.91.) 

HR or HDR is another key DNA damage repair process during which 

information from sister chromatids or exogenously provided homologous DNA 

templates are copied into the newly synthesized DNA strand, ensuring that integrity 

of DNA sequences in the repaired strands is maintained92 (Figure 1.3.6). Unlike the 

NHEJ pathway, HR or HDR is usually results in error-free and precise repair, and 

functions more prominently in the late S- to G2-M phases of the cell cycle 93. The 

MRX (MRE11-RAD50-XRS2) complex is thought to play an important role in HDR 

pathway. In  HDR repair, the MRX complex binds to break sites and together with a 

5’-3’ resection exonuclease converts the double-stranded (ds) DNA ends to single-

stranded (ss) DNA with 3’-hydroxyl overhangs. Secondary structures on resected 

ssDNA are eliminated by binding of RPA (replication protein A) to the ssDNA. 
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Rad52 binds to the RPA-coated ssDNA and recruits Rad51 which extends onto 

ssDNA mediated by Rad55/Rad57 and, in the process, displaces RPA from the 

ssDNA. The Rad51 nucleoprotein complex is also thought to be involved in 

homology search for the repair DNA template. Rad54, via its interaction with Rad51, 

promotes chromatin remodeling, DNA unwinding and strand annealing between the 

Rad51 nucleoprotein coated ssDNA and a suitable homologous DNA repair template. 

DNA synthesis using homologous DNA as the repair template ensues, followed by 

strand displacement or resolution. Although there are several different models to 

explain the resolution of the newly synthesized DNA, it is believed to occur mainly 

through the synthesis dependent strand annealing (SDSA) pathway in somatic 

mammalian cells. In SDSA, the newly synthesized strand displaces from the repair 

template and anneals with the other end of the DNA break 91. HR or HDR thus serve 

as a mechanism to correctly repair a DNA break in the genome and can be exploited 

to copy exogenous DNA sequences (flanked by homologous sequences) into a 

particular genomic locus for site-specific transgene integration.  

 

Figure 1.3.6  HDR pathway. DSDBs are recognized and bound by the Mre11-
Rad50-Nbs1 (MRN) complex. Human exonuclease I (hExoI) resects the broken ends 
of DSDBs to convert them to 3’ single-stranded ends which are then bound and 
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stabilized by ssDNA binding protein, replication protein A (RPA). By a process 
mediated by Rad52, Rad55 and Rad57, Rad51 replaces RPA on the resected single-
stranded DNA, thereby forming a nucleofilament that participates in homology search 
and homologue pairing with sequences in either a sister chromatid or an exogenous 
DNA template.  Rad54, belonging to SWI-SNF family of helicases, is thought to 
induce an open chromatin configuration and participate in strand invasion and 
dissociation of Rad51 from bound DNA. The invading DNA strand results in a D-
loop structure that primes DNA synthesis by DNA polymerases. Newly copied DNA 
sequences may subsequently be resolved with or without crossover of genetic 
material between homologous DNA strands.  (Figure taken from ref.92.)       

Two major therapeutic applications of ZFNs are permanent gene disruption 

by creating insertions/deletions during error-prone NHEJ repair or site-specific 

transgene insertion via repair by HR or HDR (Figure 1.3.7). 

 

Figure 1.3.7 Genome editing with ZFNs. Site-specific cleavage of genomic 
DNA by ZFNs can be repaired by homology-directed repair to correct or induce point 
mutations, or to insert single or multiple transgenes (in the presence of donor DNA).  
Repair by NHEJ results in gene disruption caused by small insertions and/or 
deletions. Site-specific insertion of molecular tags and generation of large genomic 
deletions may also be achieved with ZFN-mediated cleavage of genomic DNA. 
(Adapted from Urnov FD, et al., 2010.)94 

Since the turn of the millennium, ZFN technology has been harnessed to 

demonstrate feasibility of targeted gene corrections, transgene insertions and gene 

disruptions, in addition to pioneering a new approach for deriving transgenic plants 

and animals. ZFN technology has been used to derive transgenic crops with improved 

traits by mutagenesis of genes or targeted integration of herbicide resistance genes in 

species such as Arabidopsis thaliana, Nicotiana tabacum and Zea mays95,  96 and to 

derive specific gene knock-out strains of mice and rats97. Given the ability to 

permanently disrupt specific genes, ZFNs have proved useful for elucidating gene 
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functions during embryogenesis and development. Heritable targeted gene disruption 

has been demonstrated in human embryonic stem cells, Danio rerio and Drosophilia 
98‐100. ZFN-mediated gene knock-out has been effectively employed to disrupt the C-

C chemokine receptor type 5 (CCR5) locus in human HSCs as a possible therapeutic 

strategy to confer resistance to HIV-1 infection by adoptive cell therapy in vivo 101. 

The use of ZFN-modified T-cells is currently being tested in three phase I human 

clinical trials - for HIV-1 treatment (NCT00842634, NCT01044654) and 

glioblastoma (NCT01082926)94. Targeted disruption of several other genes such as 

Bax and Bak has also been shown in human cells102. More recently, Liu et al. showed 

the feasibility of generating triple gene knock-outs in cell-lines using ZFNs103. The 

ability to correct single-base genetic mutations and the theoretical potential for 

exquisitely precise site-specific gene insertions has opened a plethora of possibilities 

for gene therapy applications. Porteus and Baltimore first reported the possibilities of 

targeted ZFN-mediated genome editing in human somatic cells with gene correction 

of a pre-integrated GFP reporter gene104. Work by Urnov et al. has also been 

influential in demonstrating efficient correction of a IL2Rγ gene mutation in human 

cells, pointing to the prospect of future therapy for SCID-X1105. Others have shown 

the feasibility of integrating exogenous DNA up to 8 kb into the same locus 106, and 

other human genomic genes such as PIGA, PPP1R12C and POU5F1 in primary cells 

such as mesenchymal stem cells (MSCs)107, cord blood derived CD34+ HSCs108, 

embryonic stem cells and induced pluripotent stem cells (iPSCs)98, 109. 

A current limitation of ZFN technology for site-directed transgene insertion is 

concern about unintended genomic modifications and possible biological hazards 

therefrom. Although several groups have demonstrated that the likelihood of off-

target genomic modifications is low, there has been no comprehensive genome-wide 

analysis to date to rigorously support these claims. Potential off-target interactions of 

ZFNs must be evaluated by genome-wide techniques such as array-based methods 

combined with deep sequencing in order to detect rare integration events. Long term 

monitoring of ZFN-modified cells is essential, using small and large animal models to 

assess fully any potential genotoxicity. The current efficiency of targeted gene 

insertion using ZFNs is still relatively low and may not warrant its broad application 

in human gene therapy. This awaits more specific ZFNs with robust and efficient 

genome targeting activity. Several useful resources are currently available in the 

public domain to aid the design, construction and testing of specific ZFNs. Helpful 

information and software tools pertaining to ZFN design and construction as well as a 

collection of ZFN plasmids and reagents for constructing and testing ZFNs are readily 
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available to the research community at The Zinc Finger Consortium 

(http://www.zincfingers.org). Information on individual C2H2 zinc fingers and 

engineered zinc finger arrays have been compiled into databases such as the Zinc 

Finger Database110 (ZiFDB; http://bindr.gdcb.iastate.edu/ZiFDB). Web-based 

resources such as Zinc Finger Targeter111 (ZiFiT; http://bindr.gdcb.iastate.edu/ZiFiT/) 

and more recently ZFNGenome112 (http://bindr.gdcb.iastate.edu/ZFNGenome) and 

ZFN-Site113 (ccg.vital-it.ch/tagger/targetsearch.html) provide excellent tools to aid the 

identification of potential ZF binding sites in user supplied target regions. They 

include software that calculates strengths of predicted ZFNs to be engineered by 

modular assembly or the OPEN method, and also give information regarding 

potential off-target binding sites. Furthermore, Sangamo Biosciences and several 

other groups have described assays to evaluate the functional specificities of user-

designed ZFNs. Recent improvements to ZFNs have also used FokI variants with 

increased cleavage activities, in an attempt to increase the rate of genome 

modifications114, 115. Higher ZFN cleavage activity, possibly due to increased protein 

stability, was also achieved by conditioning cells to transient mild hypothermia116. 

Recently, ZFN variants (ZFNickases) that induce single-stranded nicks instead of 

double-stranded DNA breaks have been engineered and shown to suppress DNA 

break repair by the error-prone NHEJ pathway, thus increasing the frequency of HR 

mediated repair 117,  118. Although ZFNickases seem, their significantly lower 

efficiency of gene integration compared to ZFNs limits enthusiasm at the current 

stage of their development. Further improvements to ZFNickases are necessary 

before they can be considered serious candidates for targeted gene integration 

applications.    

We need to better understand the factors that influence the efficiency of 

homologous recombination and learn how to exploit them to increase gene targeting 

efficiencies to levels that are clinically meaningful. More work is needed to identify 

and test safe harbors in the human genome and to design ZFNs targeting them. Lastly, 

improvements to vector designs such as CpG-free vectors, the use of suitable 

physiological promoters, codon-optimized transgenes and incorporation of relevant 

insulator and enhancer elements would be pertinent features to promote durable 

transgene expression and minimize risks of insertional gene mishaps.   

An ideal gene-based treatment for some monogenic disorders would be to 

derive self-renewing cells expressing a corrected version of the defective gene via 

site-specific integration in a safe genomic locus. Such gene modified cells could be 

exhaustively evaluated for their genotoxic potential ex vivo before being administered 
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into patients. Given the lexicon of site-specific ZFNs that is being developed, this 

could be a real possibility in the near future with ZFN-modified stem cells. 

1.3.1.2.2.3. TALENs 

Transcription activator-like effector nucleases (TALENs) are a recently 

introduced class of site-specific nucleases that function in plant and mammalian 

cells119. Transcription activator-like effector (TALE) proteins were first identified as 

pathogenic proteins, secreted by plant pathogens of the Xanthomonas genus, that 

were able to modulate host gene expression in infected plant cells by acting as DNA-

binding transcription factors. TALE proteins are made up of highly conserved and 

modularly assembled 33- to 35- amino-acid repeat sequences, known as TALE 

repeats or monomers, capable of binding DNA specifically. Naturally occurring 

TALE proteins are composed of 1.5 to 33.5 repeat elements with an average of 34 

amino acids per TALE repeat 120. Two variable amino acids in the 12th and 13th 

positions of each TALE repeat, known as repeat-variable di-residues (RVD), bind 

specifically to a single DNA base and confer the DNA-binding specificity to each 

TALE monomer. In 2009, back to back publications in Science reported the 

successful deciphering of the “TALE codes” that govern the DNA-binding specificity 

of TALE proteins. Two groups demonstrated that DNA-binding specificity could be 

modulated by changing the RVD sequences within each repeat element of modular 

TALE proteins 120,  121. Following the successful precedent of combining zinc finger 

peptides with nucleases for targeted genome modifications, attempts were made to 

develop similar site-specific nucleases composed of TALE proteins. TALENs were 

first successfully engineered by combining modularly assembled TALE repeat 

elements with the catalytic domain of FokI nuclease 122. TALENs are typically 

designed as pairs to recognize and bind to between 12 to 24 bases of DNA on 

opposing DNA strands (with a separating spacer of around 14-20 bases). Like ZFNs, 

TALENs allow dimerization and activation of FokI nuclease monomers, enabling 

generation of DNA double-stranded breaks at user-specified sites in the genome. 

Given their highly repetitive modular structure and considerably larger size compared 

to ZFNs, cloning TALENs proved to be more challenging. Some of these technical 

limitations have now been overcome by the Golden Gate cloning method123 and fast 

ligation-based automatable solid-phase high throughput (FLASH) systems 124. The 

number of genomic loci and genes successfully targeted and modified with site-

specific TALENs has steadily increased over the few years since the inception of 

TALENs. The major advantage of TALENs is the ability to design TALENs targeting 
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practically any possible DNA sequence in the genome compared to ZFNs which are 

restricted by rules governing successful design of efficient ZFNs, such as the 

requirement for 5’-GNN-3’ and 5’-ANN-3’ triplet sequences 125. Some preliminary 

results also suggest that TALENs are as efficient as ZFNs in site-specific cleavage, 

while having less off-target activities126 . In summary, although TALENs are a more 

recent innovation than ZFNs and have not been extensively evaluated, they appear to 

have considerable potential as genome editing agents for gene- and cell-based 

therapy.  

 

Figure 1.3.8  Schematic of site-specific nucleases Meganucleases (blue) bind to 
target sites (12-18 bases) as dimers.  Heterodimeric ZFNs, composed of tandem 
arrays of ZF peptides (orange) fused with monomeric FokI nuclease (green), bind to 
adjacent target sites (separated by 5 to 7 bases) on opposing DNA strands (each ZF 
peptide binds 3 consecutive bases). TALENs, composed of tandem arrays of TALE 
repeats (pink) fused with monomeric FokI nuclease (green), bind to adjacent target 
sites (separated by 12-30 bases) on opposing DNA strands (each TALE repeat binds 
to a single base).  (Figure taken from ref.127.)127.   

1.3.2. Potential safe harbors in the human genome for transgene integration 

While stable expression of transgenes from genomic integration appears to be 

an appealing objective for gene therapy, iatrogenic oncogenic complications due to 

insertional mutagenesis reiterate the real dangers associated with random integration 

and emphasize the need to direct transgene integrations into safe regions within the 

genome. Although there are no standard definitions of a “safe genomic harbor”, given 

the untoward consequences of genomic disruptions, one can attempt to propose 

characteristics of a safe harbor. Thus, it should be a locus that is distant or insulated 

from endogenous genes whose altered expression is known to be associated with 

diseases, or to induce abnormal cell physiology and/or genome instability. Although 

it would be appealing to envisage non-coding, non-gene rich or extragenic regions as 

good candidates for integrations, these regions are often associated with 

heterochromatic signatures which may not be permissive for transgene expression.  

Heterochromatin may not be readily accessible to transgene integration processes, 

and even in the event of integration, may silence transgene expression. The role of 

non-coding regions in gene regulation and their contribution to disease phenotype is 

http://wizfolio.com/?citation=1&ver=3&ItemID=879&UserID=8336&AccessCode=7DAF8210CD8843A993CC08121FD2A747&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=880&UserID=8336&AccessCode=53982C5A111A401D91886EF2205ACAED&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=881&UserID=8336&AccessCode=251835F1CE7449D9BC1D77E4E7A5175F&CitationSuffix=�


63 

 

another reason to be circumspect in assuming non-coding regions to be general safe 

harbors. An important exclusion criterion of safe harbors is close proximity to 

oncogenes, tumor suppressor genes and other key disease-associated genes, whose 

perturbation as a consequence of integration could have highly regrettable 

consequences. Targeting an endogenous gene, if absolutely necessary, should be one 

whose disruption is known to have inconsequential effects. In summary a favorable 

genomic region for integration should ideally not disrupt the cellular transcriptome, 

should not perturb neighboring gene expressions and should allow for durable 

transgene expression without disrupting cellular functions or inducing adverse 

outcomes128.  

1.3.2.1. CCR5 locus 

The chemokine (C-C motif) receptor 5 gene (CCR5), encoding a co-receptor 

for HIV that is also a surface receptor for chemokines expressed by immune cells 

such as T cells, monocytes, macrophages and microglia, has been selected as a 

genomic site for targeted transgene integration. Initial interest in this locus on 

3p21.31 arose because targeted disruption of CCR5 could protect against HIV 

infection. As an extension of this idea and given that the CCR5 gene is also expressed 

in non-immune cells, there have been attempts to integrate therapeutic transgenes into 

the CCR5 locus for sustained expression. For instance, Benabdallah and co-authors, 

reported durable erythropoietin secretion from MSCs integrated with the 

erythropoietin (EPO) transgene at the CCR5 locus 107. However, it should be noted 

that the function of CCR5 in non-immune cells such as neurons, endothelium and 

smooth muscle cells, and the effects of its disruption have not been well studied. A 

phase I clinical trial of autologous implantation of CCR5 disrupted T cells into 

patients has thus far not reported any adverse consequences, suggesting potentially 

benign effects, if any, of disrupting endogenous CCR5 gene expression.     

1.3.2.2. Human ribosomal DNA 

The human 45S ribosomal DNA (rDNA) which codes for over 400 copies of 

the 45S pre-RNA (rRNA) is clustered within the short arms of acrocentric 

chromosomes 13, 14, 15, 21 and 22. In humans, loss or gain of short acrocentric 

chromosomal arms has not been associated with phenotypic abnormalities, suggesting 

that targeting transgenes into these loci could be relatively benign. Furthermore, a 

considerable level of redundancy and capacity for compensation of rDNA gene 

function is likely given the presence of more than 400 copies of rDNA genes in the 

genome. Targeting these multiple loci could theoretically allow for multiple 
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integrations which would translate to higher overall transgene expression. Durable 

transgene expression would also be anticipated from integrations into rDNA sites 

given their transcriptionally active status. A handful of investigators have 

successfully demonstrated expression of transgenes, such as clotting factors VIII and 

IX (FVIII and FIX, respectively) in human cells by targeted integration into rDNA 

loci 129. The main caveat is that there is actually no site-specificity and transgenes 

could be integrated in any of the 400 regions encoded by rDNA. Risks of an adverse 

event occurring could be related to number of integration events occurring within a 

cell. At present, gene targeting to rDNA locus still relies on using conventional 

homologous recombination targeting strategies, making it relatively inefficient.       

1.3.2.3. Human ROSA26, ENVY and HPRT locus 

The human ROSA26 locus in chromosome 3p25.3, first identified by Irion et 

al., is the human homolog of the murine ROSA26 locus which is a common locus for 

targeted transgene integrations, especially in studies of murine ES cells. Whilst 

targeted transgene integration and expression has been demonstrated in the human 

ROSA26 locus 130, relatively little is known of the endogenous gene functions and 

consequences of its dysregulation. As the ROSA26 locus is gene dense, it is essential 

to evaluate effects of transgene integrations on the expression of neighboring genes. 

More studies are needed to evaluate the feasibility of utilizing this locus for targeted 

transgenesis. 

The ENVY 131 and HPRT 132 loci have been targeted in human ES cells for 

transgene integration and studies have shown durable transgene expression from this 

locus as well as normal differentiation of transgenic ES cells. Gene targeting events at 

the X chromosome-linked HPRT gene result in disruption of the hypoxanthine 

guanine phosphoribosyl transferase (HGPRT) enzyme. Such cells can be selected 

based on their resistance to 6-thioguanine and 8-azaguanine, followed by rescue of 

the inactivated purine salvage pathway with hypoxanthine-aminopterin-thymidine 

(HAT) selection media. While the functional consequences of ENVY gene inactivation 

is uncertain, disruption of the HPRT gene, at least in neuronal cells, is linked with the 

neurogenetic Lesch-Nyhan syndrome. While ENVY and HPRT loci may be suitable 

for ES cell studies, they may not fulfill the criteria of safe genomic harbors.     

1.3.2.4. AAVS1 locus 

The AAVS1 locus in chromosome 19q13.42 is another putative safe harbor in 

the human genome. The pseudonym AAVS1 originated from the observation that 

wild type AAV2 virus, in the presence of viral Rep68/78 proteins, frequently 
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integrates its provirus into a Rep78 binding site in chromosome 19. This region, later 

called the AAVS1 site, is actually located within the promoter region of a poorly 

characterized gene, protein phosphatase 1 regulatory subunit (PPP1R12C) also 

known as myosin-binding subunit 85 (MBS85), whose function is thought to involve 

the regulation of actin-myosin fiber assembly133. The fact that a relatively large 

population of humans may have been naturally infected with AAV and possibly carry 

viral integrations at the AAVS1 site without pathological consequences has been used 

to support the notion that this site could indeed be a safe harbor for targeting 

transgene integrations134. The PPP1R12C gene is ubiquitously expressed in several 

cell types, suggesting an open chromatin configuration of the AAVS1 locus that 

could theoretically be amenable for gene targeting by allowing access to specific 

targeting proteins that interact with and modify this locus. Furthermore, a 

transcriptionally active locus should theoretically better support durable transgene 

expression in contrast to a transcriptionally inactive region where 

heterochromatinization would likely lead to transgene silencing. In vitro studies in 

cell lines, ES cells and primary cells have demonstrated durable expression of 

transgenes integrated into the AAVS1 locus135. The presence of native insulator 

elements136 is also thought to contribute to sustained expression of integrated 

transgenes while also preventing trans-activation of neighboring genes. Studies 

performed thus far in ES98 and iPS137 cells suggest no gross abnormalities or 

differentiation deficits arising from transgene integration into the AAVS1 locus. 

Mono- and biallelic modifications of the locus have no reported functional 

consequences in the modified cells, although biallelic modifications disrupted 

endogenous PPP1R12C expression 138. Thus far, the cellular and organismal 

consequences of disrupting endogenous PPP1R12C expression are unclear and not 

well elucidated.  Given the foregoing caveat, the ability to support sustained 

transgene expression without known adverse consequences thus far makes the 

AAVS1 locus an appealing locus for gene targeting.       

1.3.3. Suicide genes as safety mechanisms for treatment modalities 

The benefits of gene therapy for life threatening diseases for which there is 

currently no effective or affordable treatment justify their continued evaluation in 

clinical trials despite the known risks of iatrogenic complications. It is clear from the 

preceding sections that most research efforts have been directed at enhancing the 

biosafety of gene therapy vectors. An additional strategy to intervene and reverse 

adverse vector effects is to incorporate secondary safety mechanisms capable of 
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rapidly triggering the selective elimination of rogue transgenic cells. Suicide gene 

therapy or gene-directed enzyme prodrug therapy relies on the expression of 

transgene products from “suicide genes” that convert inactive prodrugs into cytotoxic 

drugs, thus selectively eliminating transgenic cells that express the suicide gene. 

Several suicide genes such as Herpes simplex virus thymidine kinase (HSV-TK), 

bacterial cytosine deaminase (CD), bacterial carboxypeptidase-G2 (CPDG2), purine 

nucleoside phosphorylase (PNP) and nitroreductase (NR) and their cognate prodrugs 

have been tested for their efficacy as agents of selective cell destruction139. Problems 

such as suicide gene silencing, incomplete elimination of targeted cells, cytotoxicity 

to non-gene expressing cells and immune response to suicide genes have reduced the 

efficacy of such approaches. Continued improvements to existing suicide genes and 

prodrugs as well as development of novel genes capable of selective elimination of 

cells with reduced cytotoxicity to normal cells are necessary improvements to suicide 

gene therapy for clinical applications. Recent developments in suicide gene therapy 

strategies will be briefly discussed in this section. 

1.3.3.1.  HSV thymidine kinase 

The HSV-TK suicide gene and its prodrug, gancyclovir (GCV) is one of the 

most extensively studied and the only clinically validated suicide gene/prodrug 

system. HSV-TK phosphorylates the non-toxic acyclic analogs of deoxyguanosine 

such as GCV and acyclovir (ACV) into a toxic form that becomes incorporated into 

DNA. This leads to eventual cell death by inhibiting DNA synthesis and disrupting 

DNA replication in sensitive cells. The use of HSV-TK has found broad applications 

in vitro as negative selection in homologous recombination studies and has been 

successfully used in phase I-II clinical trials for prevention of graft versus host 

disease following allogeneic stem cell transplantation140. It has also been investigated 

extensively in cancer gene therapy to eliminate tumor cells. An ongoing phase III 

clinical trial by Ark Therapeutics (www.arktherapeutics.com) is evaluating HSV-TK 

combined with surgery and chemotherapy in patients with high grade gliomas (cited 

by Preuß E, et al., 2010). However, there are certain disadvantages of the HSV-

TK/GCV system. These include GCV toxicity at clinical doses, insensitivity of HSV-

TK expressing cells to GCV due to inactive spliced HSV-TK variants141, cellular 

toxicity of high levels of HSV-TK  that phosphorylate endogenous thymidine142 and 

the inherent immunogenicity of viral epitopes presented by HSV-TK protein143. 

Several improvements have been made to improve the performance of HSV-TK such 

as splice-corrected variants144, improved GCV sensitivity145 and decreased affinity for 
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endogenous thymidine142. Notable HSV-TK variants with improved sensitivity to 

GCV include the SR39145 and Q7530A146 mutants. Splice corrected versions of HSV-

TK (scHSV-TK) have been derived by mutating internal splice sites within wild type 

HSV-TK gene to prevent the emergence of GCV-resistant cells expressing inactive 

HSV-TK splice variants144. Another recent development is the use of a codon-

optimized HSV-TK A168H mutant, TK007, which causes faster and more robust 

GCV mediated killing of cells while having less non-specific cytotoxicity147 due to its 

reduced affinity for endogenous thymidine. These improved versions of HSV-TK 

could function effectively as benign suicide genes that could be activated to 

selectively eliminate implanted gene modified cells in the event of a serious adverse 

complication e.g. oncogenic transformation. However, outstanding issues such as 

immunogenicity of HSV-TK and the possibility of immune-mediated rejection of 

gene modified cells reiterate the need to investigate other novel human-based and 

possibly non-immunogenic suicide genes as better alternatives.   

1.3.3.2.  Cytosine deaminase and thymidylate kinase 

Another widely used system for gene-directed enzyme prodrug therapy is the 

bacterial enzyme, cytosine deaminase. Cytosine deaminase preferentially deaminates 

5-fluorocytosine to 5-fluorouracil which is converted by cellular enzymes to 

fluorodeoxyuridylate, an irreversible inhibitor of thymidylate synthase.  This leads to 

a block in dTTP synthesis, DNA replication arrest and ultimately to apoptosis. 

However, this system may be better suited for cancer gene therapy, such as 

eradicating cancer cells from tumor beds, rather than for selective elimination of gene 

modified cells given that the prodrug product is freely diffusible across cell 

membranes and displays a localized general toxicity or bystander effect on 

neighboring cells148.  

A novel suicide enzyme is human thymidylate kinase which phosphorylates 

and converts the prodrug 3'-azido-3'-deoxythymidine (AZT) into toxic AZT-

triphosphate (AZT-TP) and inhibits DNA replication in eukaryotic cells. Engineered 

mutants of thymidylate kinase have over 200-fold increased activity of conversion 

and inducing apoptosis by the mitochondrial death pathway149. 

1.3.3.3.  Suicide genes in development 

The immunogenic nature of non-mammalian suicide genes such as HSV-TK 

and cytosine deaminase and the unintended immune mediated elimination of suicide 

gene expressing cells has prompted the search for novel human and/or non-
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immunogenic genes able to function as suicide genes. A human T cell surface 

antigen, CD20, was one of the first human suicide genes to be investigated for its 

capacity to eliminate CD20 expressing T cells using anti-CD20 antibodies. The 

CD20/anti CD20 mAb may be suitable for use in gene modified HSCs but requires 

high cellular expression of CD20 antigen and may also deplete normal CD20-

expressing140. Other systems that could be useful include the FK-506-binding protein 

(FKBP-FAS)/AP20187, AP1903 dimerization system that relies on the selective 

induction of apoptosis by expressing pro-apoptotic Fas-ligand molecules 

intracellularly, to be activated by non-toxic chemically induced dimerization of the 

FKBP-FAS molecules. Another notable non-immunogenic system (iCasp9) relies on 

activating apoptosis in selected cells by fusing the death domains of Caspase-9 with 

FKBP elements, which can be induced to dimerize and activate apoptosis150. This 

system is currently being evaluated in an ongoing clinical trial for graft versus host 

disease (cited by Lupo-Stanghellini MT,  et al., 2010).  

In summary, the incorporation of safety switches in the form of suicide genes 

to eliminate gene modified cells would be essential and beneficial features in future 

clinical gene therapy. Ongoing efforts to develop suicide genes with increased 

prodrug sensitivity and reduced toxicity, as well as exploring novel systems to 

selectively induce cell death ought to be helpful adjuncts to improving the biosafety 

of  human gene therapy – currently mainly in clinical trials.    
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1.4. Hemophilia A as a model disease for gene therapy 

1.4.1. Coagulation pathway and bleeding disorders  

Evolution has equipped all mammals with a conserved mechanism for 

maintaining hemostasis and evading life threatening bleeds. Coagulation, the process 

by which blood turns into an insoluble clot of fibrinogen, serves as the secondary 

hemostasis mechanism in vivo, immediately following primary hemostasis provided 

by platelets that are recruited to and form a plug at the damaged endothelium of blood 

vessels. The coagulation cascade refers to the series of biochemical events that 

culminate in fibrin clot formation. It involves the near-instantaneous and sequential 

activation of several zymogen proteases (inactive precursors) and their glycoprotein 

cofactors which in turn catalyze the activation of other proteins (clotting factors) that 

are essential in the eventual formation of fibrin polymers that strengthen platelet 

plugs at sites of vascular injury.  

Coagulation can be broadly separated into two pathways, the primary 

pathway being the tissue factor or extrinsic pathway1 and the other being the contact 

dependent or intrinsic pathway2. These two pathways converge on a final common 

pathway that involves factor X (FX), thrombin, factor XIII (FXIII) and fibrinogen, 

culminating in the polymerization and cross-linking of fibrin monomers to form a clot 

(Figure 1.4.1). In the extrinsic pathway, damage to blood vessels or extravascular 

tissues exposes an integral membrane protein, called the tissue factor (TF), to binding 

by a circulating plasma protein, factor VII (FVII), thereby activating the latter and 

initiating the coagulation process. Activated FVII (FVIIa), in the presence of calcium 

ions and phospholipids, activates FX to FXa which, together with activated factor Va 

(FVa), cleaves inactive prothrombin to form activated thrombin. Activated thrombin 

in turn cleaves fibrinogen into fibrin monomers which are covalently polymerized by 

activated FXIII (FXIIIa) to form a fibrin clot. Thrombin is also responsible for the 

activation of FV, FVIII, FXI, FXIII and another protein, protein C, which is involved 

in the down-regulation of the coagulation cascade. Activated FVIII (FVIIIa) and FIX 

(FIXa) are two essential clotting factors that serve to greatly amplify the activation of 

FXa and thus the coagulation process. Whilst the tissue factor pathway is initiated by 

the presence of tissue factors from tissue injury, the intrinsic pathway is activated by 

contact of blood with surfaces such as collagen on damaged vascular wall or any 

charged or wettable surfaces such as glass2. The binding of high molecular weight 

kininogen (HMWK) and prekallikrein to collagen, initiates the activation of FXII to 

FXIIa which kick starts the coagulation cascade by activating FXI to FXIa, in turn 

converting FIX to FIXa.  The contact activation pathway converges with the tissue 
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factor pathway with the activation of FX to FXa by FVIIIa and FIXa, culminating in 

formation of a fibrin clot. The process by which fibrin clots are eventually broken 

down and resorbed is known as fibrinolysis and this is controlled mainly by another 

plasma protein known as plasmin. 

 

Figure 1.4.1  Coagulation cascade. Coagulation is activated either by contact 
activation of blood with surfaces such as collagen on damaged vascular walls 
(intrinsic pathway) or by binding of tissue factor (TF) from injured blood vessels 
(extrinsic pathway) to  circulating plasma protein, factor VII. In the intrinsic pathway, 
activated FIXa and FVIIIa in association with phospholipids and divalent calcium 
ions (tenase complex) serve to activate a key constituent of the clotting cascade, FX. 
In the extrinsic pathway, activated FVIIa is responsible for the activation of FX. 
Activated FXa together with FVa, catalyzes conversion of prothrombin to thrombin.  
Thrombin is necessary for amplification of other components of the coagulation 
cascade (green dotted lines) and for breakdown of fibrinogen to fibrin monomers 
which are polymerized by activated FXIIIa to form a fibrin thrombus clot. Negative 
regulators of the coagulation cascade (red lines) include activated protein C and 
antithrombin. (Figure taken from ref. 3.)3 

Given the involvement of several clotting factors, it is easy to appreciate that 

deficiencies in key clotting factors will perturb normal hemostasis and cause bleeding 

disorders of varying phenotypic severities. The most common bleeding disorders due 

to coagulation factor deficiencies are the hemophilias A and B which are caused by 

deficiencies in clotting factors FVIII and FIX, respectively. FXI deficiency is very 

rare and results in a milder bleeding disorder characterized by trauma and soft tissue-
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related hemorrhage4 while FXII deficiency is not associated with clinically significant 

bleeding diathesis5.    

1.4.2. Brief history of hemophilia A 

Hereditary hemophilia A is an X-chromosome linked recessive monogenic 

bleeding disorder affecting 1 in 5000 -10000 males6. This genetic disorder, arising 

from mutations in FVIII gene, results in impaired coagulation due to either a deficient 

or dysfunctional FVIII protein and is characterized by sporadic, uncontrolled and 

unarrested bleeding7. Although males are primarily affected, female heterozygous 

carriers bearing a defective FVIII gene may also manifest clinical FVIII deficiency 

depending on other factors such as inactivation of the normal X chromosome and 

maternal or paternal inheritance of the defective X chromosome. Acquired 

hemophilia A is less common, occurs mainly among the elderly and is caused by 

autoinhibitory antibodies against FVIII protein rather than FVIII gene mutations8.  

Cases of familial bleeding disorders were recorded in Jewish rabbinical 

writings as early as the 2nd century AD when male babies were spared circumcision if 

there had been previous deaths in the family from this procedure. One of the first 

modern day descriptions was an 1803 publication by John Conrad Otto entitled “An 

account of a hemorrhagic disposition existing in certain families.”(Otto, JC et al. 

1803) The term hemophilia itself was first used to describe a bleeding disorder at the 

University of Zurich in 18289. The best known cases of hemophilia have been traced 

to the royal families in Europe. Queen Victoria of England (1837 – 1901), was 

historically thought to have harbored  mutations in the FVIII gene, that was 

eventually passed on to several of her royal descendents, eventually affecting several 

royal families throughout Europe – most notably the family of Nicholas II, the last 

Czar of Russia, with tragic consequences7. However, new evidence shows that the 

‘royal disease’ was more likely due to mutations in the FIX gene rather than the FVIII 

gene. As early as the 1940s, scientists via blood transfusion studies linked this 

bleeding disorder to a deficiency of a “certain factor” in the blood. In 1937, Harvard 

University doctors Patek and Taylor identified a plasma extract, they termed anti-

hemophilic globulin, that was capable of correcting coagulation defects10. Thus, up 

till the 1950s and 1960s, hemophilia A and other bleeding disorders were treated with 

whole blood or fresh plasma infusions. It was not until the mid-1960s that FVIII was 

purified as a highly concentrated cryoprecipitate which enabled a more practical and 

efficient form of FVIII replacement therapy11. 
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1.4.3. Anti-hemophilic factor, FVIII  

FVIII is a plasma protein synthesized mainly in the liver by hepatocytes and 

hepatic sinusoidal endothelial cells. Infused FVIII has a mean physiological half-life 

of 12 hours in plasma where it is stabilized and protected from proteolytic 

inactivation by its non-covalent association with vonWillebrand factor (VWF), 

another plasma protein secreted by endothelial cells and megakaryocytes12. Activated 

FVIII (FVIIIa) together with activated FIX (FIXa) serves as a cofactor for activation 

of  FX to Xa in the intrinsic (contact activation) coagulation pathway.  Lack or 

absence of functional FVIII protein results in a clinical bleeding disorder of varying 

severity. Severity of the bleeding diathesis correlates with levels of plasma FVIII 

activity. Thus, hemophilia A is classified as mild (5-40 % FVIII activity), moderate 

(1-5% FVIII activity) or severe (<1 % FVIII activity)13. Individuals with hemophilia 

A often bleed spontaneously, especially into gums, large joints such as the knees, 

ankles and elbows, and less often but with greater morbidity into the hips, muscles, 

intra-abdominal and intra-cranial cavities. Bleeding into the latter sites can be life 

threatening and fatal. Complications arising from chronic bleeding include pain, 

numbness, hemophilic pseudo-tumors (blood cysts), hemarthrosis (joint bleed), 

hemophilic arthropathy (joint damage and disfigurement), muscle wasting and 

crippling deformities and debilitating arthritis13. 

The FVIII gene which spans a 186 kb genomic region in Xq28 was 

successfully cloned and sequenced in 198414, 15. It comprises 26 coding exons that are 

transcribed to yield a 9-kb mRNA which is translated to a glycosylated precursor 

polypeptide of 2351 amino acids having a signal peptide of 19 amino acids. The 

mature FVIII protein consisting of 2332 amino acids has the domain structure, from 

N- to C-terminus, of A1-a1-A2-a2-B-a3-A3-C1-C2. It is secreted and circulates as a 

heterodimer bound to VWF comprising A1-A2-B heavy chain (90-210 kD) non-

covalently bound to the A3-C1-C2 light chain (80 kD). Circulating FVIII is activated 

by thrombin which catalyzes limited proteolysis to form heterotrimeric FVIIIa 

consisting of A1, A2 and A3-C1-C2 subunits 16. The B-domain, which is involved in 

intracellular processing of the primary FVIII protein, is functionally dispensable for 

blood coagulation.  It is thus not a component of activated FVIII protein in plasma.   
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Figure 1.4.2 Structure of FVIII protein. FVIII protein consist of domains A1 
(residues 1-336), A2 (373-710), B (741-1648), A3 (1690-2019), C1 (2020-2172) and 
C2 (2173-2332) which are separated by acidic regions (a1,a2 and a3). Presence of 
predicted and know disulphide bridges, free cysteine-residues, sulphated tyrosine and 
N-linked glycosylation sites within the FVIII protein are indicated. (Figure source; 
ref. 16)   

FVIIIa dissociates from VWF and interacts with FIXa, phospholipid and FX to 

convert FX to FXa, thereby activating the clotting cascade. FVIII catabolism, its 

breakdown and removal from circulation, is thought to involve hepatocytes through 

binding to endocytic receptors such as low-density lipoprotein receptor-related 

protein (LRP) and low-density lipoprotein receptor (LDLR)17. This is facilitated by 

binding to cell surface heparan sulphate proteoglycans (HSPG), glycoprotein 

components of the extracellular matrix, which serve to concentrate FVIII on the cell 

surface for LRP mediated clearance18. Plasma FVIII levels are also thought to be 

regulated by binding to other members of low-density lipoprotein (LDL) receptor 

superfamily such as megalin which are expressed in kidney and very-low-density 

lipoprotein (VLDL) which are expressed in endothelial cells19.   

1.4.4. Genetic mutations and FVIII deficiency  

FVIII deficiency or dysfunction is caused by mutations of the FVIII gene 

which result in significantly reduced production of active FVIII protein, production of 

an inactive (often truncated) form of FVIII protein or a total lack of functional FVIII 

protein. Owing in part to its large size, the FVIII gene has a high mutation rate20 

ranging from 2.5 x 10-5 to 4.2 x 10-5. These mutations are approximately 3.6 times 

more prevalent in male compared to female germ cells. Amongst these genetic 

abnormalities, inversion of intron 22 is most prevalent, occurring in as many as one-

third of patients. This is followed by missense mutations which account for 38% of 

cases, small deletions and insertions in 10%, nonsense mutations in 9%, while about 

one-third of patients have novel mutations. This diversity of gene abnormalities is 
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reflected in the phenotypic variations of functional defects of mutated FVIII gene 

products. In addition to the common intron 22 inversion, 40% of point mutations 

usually occur in one of 70 CpG sites within the FVIII gene and about 25% of small 

deletions are concentrated within exon 1420. A comprehensive catalog of all FVIII 

mutations can be found in the Hemophilia A Mutation, Structure, Test and Resourse 

Site (HAMSTeRS:  http://hadb.org.uk). In rare cases, hemophilic phenotypes can also 

arise from mutations in genes other than FVIII. For instance, mutations affecting 

FVIII binding sites on VWF give rise to type 2N von Willebrand disease (VWD)21, 

characterized by  a severely decreased half-life of circulating FVIII. Another 

phenotype may be caused by combined deficiency of FV and FVIII (F5F8D)22 as a 

result of mutations to LMAN1 and MCFD2. The latter two genes encode proteins 

involved in the secretory pathway and cause defective secretion of FV and FVIII 

when mutated.  

1.4.5. Treatment options for hemophilia A 

1.4.5.1. Early history to present day treatment 

As early as the 1940s, scientists and physicians had already attributed 

bleeding disorders to deficiencies of certain factors in blood. Replacement of these 

deficient factors in patients with hemophilia using whole blood or fresh plasma from 

normal patients was the common treatment until the 1950s to 1960s9. However, 

owing to the low quantities of coagulation factors present, treatment required infusion 

of impractically large volumes of blood or plasma in order to arrest a serious bleeding 

episode.  

It was not until the production of FVIII as a highly concentrated 

cryoprecipitate from plasma by Judith Pool in 1964 that a more practical and effective 

FVIII replacement therapy was introduced11. By the 1970s, the availability of 

lyophilized FVIII cryoprecipitates prepared from pooled donor plasma samples 

radically improved hemophilia treatment and made home FVIII replacement 

procedures feasible. Regular FVIII administration pioneered by Inge Marie Nilsson 

and Ake Ahlberg23 improved severe hemophilia to a milder form, and aimed to 

prevent rather than only treat serious bleeding episodes. For the first time, these 

advances gave patients options to elect for surgical procedures such as for correction 

of musculoskeletal complications.  

The golden era of hemophilia treatment suffered a major setback during the 

early 1980s, when many hemophiliacs were found to have been infected with viruses 

that contaminated plasma-derived FVIII products, specifically hepatitis B and C, and 
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HIV24. Lack of donor screening and without methods to eradicate or inactive viruses 

had inevitably resulted in FVIII concentrates prepared from infected donor samples, 

casting a pall on hemophilia treatment. Since then, the safety of plasma-derived FVIII 

concentrates has improved markedly from stringent screening of blood donors for 

exposure to viruses and equally, from technical advances in methods for inactivating 

viruses and other pathogens in plasma-derived products. This is evident from the fact 

that there have been no new cases of transmitted hepatitis virus or HIV infection from 

plasma-derived FVIII concentrates in the past 25 years 23. However, eradication of 

other blood-borne pathogens, such as B19 parvovirus25 and transmissible prion 

protein causing new variant Creutzfeldt-Jakob disease (nvCJD) remains at least a 

theoretical concern26. Though such risks are probably low due to improved 

purification procedures, they have not been completely abolished.  

Advances in recombinant DNA technology and cloning of the FVIII gene in 

198214, 15  proved to be major steps forward for hemophilia treatment as they paved 

the way for large scale production of recombinant FVIII, free from the risks of blood-

borne pathogens but are extremely costly. 

The advent of safe FVIII concentrates has thus enabled life-long treatment 

options for people with hemophilia who now benefit from improved life expectancy 

that is predicted to be only 10 years shorter than normal unaffected males (i.e. 50-60 

years). This is a significant improvement considering that the mean life expectancy 

was only 11.4 years prior to the availability of effective treatments27. Current 

treatment options available for hemophilia care will be discussed in greater detail 

below. However, there remain major challenges for hemophilia care that need to be 

resolved. Up to 25% of patients with hemophilia A develop neutralizing or inhibitory 

antibodies against FVIII that make replacement therapies ineffective28. There is 

currently no consistently effective method to induce immune tolerance to FVIII 

protein or to make FVIII less immunogenic. Although hemophilia care has greatly 

improved over the decades, two-thirds of patients live in developing countries and 

most have poor or no access to proper hemophilia care29. This powerfully motivates 

development of alternative options such as gene therapy that could potentially offer 

long term and affordable treatment for people with hemophilia throughout the world.    

1.4.5.2. FVIII replacement therapy 

Currently, FVIII replacement therapy via intravenous infusion of plasma 

derived or recombinant FVIII concentrates is the mainstay of hemophilia A treatment. 

Cost aside, the dose and frequency of FVIII replacement is determined by the severity 
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of the disease. FVIII infusions may be administered prophylactically to prevent 

bleeding as well as on-demand (episodic) to treat serious bleeding episodes by trained 

professionals at hospitals, specialized clinics and comprehensive treatment centers or 

even by trained individuals at home. There is now evidence to support the view that 

prophylactic FVIII replacement from an early age, if affordable, should be the 

standard of clinical care30. Based on pharmacokinetic studies it has generally been 

established that there is a 2 -2.5% increase in FVIII activity for every unit of FVIII 

per kg body weight infused, thus establishing a factor of 0.5 IU/kg body weight31. 

The dosage of FVIII required to achieve a desired increase in plasma FVIII level thus 

can be calculated by the general formula: 

Dose of FVIII required (IU) = Desired increase in FVIII (%) x Body weight (kg) x 

0.5 (IU/kg)   

A more detailed formula to calculate the steady state concentration of plasma FVIII at 

any given time following a single infusion of FVIII concentrate is the following32:  

FVIII (t) = Dose x IVR x e-k x (t-1) 

where FVIII (t) is the concentration of plasma FVIII (IU) at any given time (t) in 

hours post-infusion, Dose is the concentration of FVIII infused per kg body weight 

(IU kg-1), IVR is the measured in vivo recovery (IU dL-1 per IU kg-1) and k is the 

elimination rate constant (In2/half-life).  

Prophylactic treatment entails infusion of FVIII concentrate every 2 to 3 days 

to ensure trough plasma FVIII are maintained above 1% (1 IU dL-1). The Medical and 

Scientific Advisory Committee of the National Hemophilia Foundation33  

(http://www.hemophilia.org/NHFWeb/MainPgs/MainNHF.aspx?menuid=57&content

id=1007,  Accessed November 2012) and the World Health Organization34 

recommend prophylactic treatment for severe hemophilia. Several studies have shown 

the benefits of prophylactic FVIII treatment 35 to include prevention or decreased 

frequency of sporadic bleeding episodes, reduced pain, reduced risk of developing 

debilitating hemophilic arthopathy and improved quality of life enabling patients to 

participate in normal activities of daily living including various sports. The observed 

beneficial effects correlate with compliance to prophylactic regimes and maintenance 

of trough levels of plasma FVIII. 

However at current prices of recombinant FVIII and other high quality FVIII 

products, the cost of prophylactic treatment is extremely high, viz. in the range of 

US$100, 000 per annum for plasma-derived FVIII concentrates to US$300,000 per 

annum for recombinant FVIII 35. Furthermore, lack of quality FVIII concentrates in 

some countries restricts patients to episodic FVIII infusions for acute bleeds rather 
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than to prevent them. The goal of on-demand FVIII replacement treatment is to 

increase plasma FVIII levels to 50% in order to arrest hemorrhage, the dose required 

will vary depending on the extent and location of the bleed.          

1.4.5.2.1. Plasma-derived FVIII concentrates 

Plasma-derived factor concentrates are purified from pooled plasma and are 

usually provided as lyophilized FVIII/vWF coprecipitates,  stabilized with albumin or 

sucrose. Their purity depends on the methods used such as conventional cold ethanol 

precipitation, ion exchange chromatography, heparin affinity or immunoaffinity 

purification, of which the latter two methods yield higher purity concentrates.  

The safety of plasma-derived factor concentrates has improved quite 

significantly over the years. Much of the initial hazards of iatrogenically transmitted 

viral infections from contaminated donor plasma samples have been effectively 

eliminated. Nucleic acid testing and other PCR-based methods are routinely 

employed to screen and quarantine plasma samples thought to carry pathogenic 

elements36. The use of dry/wet heating, solvents/detergents and combinations of 

virucidal methods (low pH treatment, sodium thiocyanate treatment) ensure the 

elimination and inactivation of HIV, hepatitis C and other non-enveloped viruses, if 

any present, in donor plasma samples37. Improved fractionation techniques such as 

selective precipitation and size exclusion chromatography used to purify and 

concentrate FVIII also minimize the risks of co-purifying contaminating prion 

proteins, thereby reducing concerns of transmissible encephalopathies from blood-

borne infectious prions. In summary the current state of plasma-derived FVIII 

concentrates ensures an unparalleled level of safety compared with earlier products, 

but in no way ensures complete protection from other transmissible pathogenic 

agents.      

Owing to the high cost and limited availability of recombinant FVIII, the use 

of plasma-derived FVIII concentrates still dominates as much as 20-30% of the FVIII 

replacement therapy market, even in affluent and developed countries36. Two other 

important but debatable factors favoring the use of plasma-derived FVIII are the 

lower incidence of FVIII inhibitor formation and higher rate of tolerance induction 

with the use of plasma-derived compared to recombinant FVIII38. 

1.4.5.2.2. Recombinant FVIII concentrates 

In 1984, four back-to-back articles in Nature reported the sequence of the 

human FVIII gene39, protein structure of FVIII14, cloning of its full length cDNA15 
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and demonstrated the capacity of recombinant FVIII protein to correct clotting 

deficiency in FVIII-deficient plasma40. These groundbreaking discoveries allowed for 

the first time an opportunity to treat patients with hemophilia A without having to rely 

on donor plasma. This became a reality in 1989 when clinical efficacy was shown  in 

two patients with severe hemophilia treated with recombinant FVIII41. Soon 

thereafter, the industrial manufacture of recombinant FVIII starting from the early 

1990s ushered in a new era of potentially safer hemophilia treatment.         

Recombinant FVIII is prepared from conditioned culture media of transgenic 

mammalian cells (usually baby hamster kidney cells or Chinese hamster ovary cells) 

genetically modified to secrete either full-length or B-domain deleted FVIII. The 

FVIII protein is usually purified by chromatography such as ion-exchange, gel 

filtration and immunoaffinity purification, undergoes viral inactivation and is 

concentrated, lyophilized and formulated with stabilizers such as human albumin or, 

more recently, sucrose42. Over the years, the manufacture and purification of 

recombinant FVIII has significantly improved owing to improved protein purification 

and virucidal techniques, and avoidance of all human or animal proteins during the 

manufacture processes.  

Several recombinant FVIII products are now marketed, differing in the nature 

of the FVIII protein (full-length or B domain-deleted), method of production (cell 

lines used; CHO or BHK), purification, viral inactivation and eventual formulation 

(stabilizers used such as albumin, sucrose, trehalose). Unlike most plasma-derived 

FVIII concentrates (except those purified with monoclonal antibodies), most 

recombinant FVIII products lack VWF. Although debatable43, it is thought that VWF 

binding to FVIII may reduce its immunogenicity via epitope masking and may protect 

it from endocytosis by antigen-presenting cells thereby contributing to an overall 

lower immunogenicity of FVIII and lower risk of alloantibody formation against 

FVIII44. 

 The use of recombinant FVIII is more prevalent in affluent and developed 

countries especially in Western European and North American countries given its 

superior safety profile. However the high cost of recombinant FVIII, which may be as 

much as 20-50% higher than plasma-derived FVIII36, makes it an unaffordable option 

for a majority of patients around the world. Recent years have seen the attempts to 

bioengineer variant FVIII with improved characteristics45 such increased synthesis 

and expression, improved bioactivity, extended half-life and reduced antigenicity. If 

successful, future development of improved versions of bioengineered recombinant 

FVIII with desirable characteristics such as longer half-life and reduced 
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immunogenicity would certainly be heralded as a step forward for hemophilia 

treatment and could help to moderate the cost of treatment provided it translates to 

requiring lower and less frequent doses of FVIII replacement.               

1.4.5.3. Synthetic drugs for hemophilia treatment 

The discovery in 1977 that desmopressin (1-deamino-8-D-arginine 

vasopressin, DDAVP) could be used to increase plasma FVIII levels in mild 

hemophilia and patients with Von Willebrand disease was yet another significant 

contribution towards hemophilia treatment. Desmopressin, a synthetic analog of the 

antidiuretic hormone L-arginine vasopressin (AVP), mediates the release of FVIII, 

VWF and plasminogen activator from storage sites. It therefore serves as an effective 

but temporary means to elevate plasma FVIII levels 2 to 3 times above basal levels in 

patients with mild and moderate hemophilia and has been effectively used to halt 

hemorrhages. However, efficacy is limited by endogenous levels of factor FVIII and 

the time required to regenerate these factors in vivo42. 

Antifibrinolytic drugs46 are another class of compounds commonly used for 

control of hemostasis. As the name suggests, these agents prevent or reduce 

fibrinolysis (the breakdown of fibrin clots). Aprotinin, a bovine-derived protease 

inhibitor which directly inhibits the fibrinolytic enzyme plasmin, is an FDA-approved 

hemostatic drug used to reduce bleeding during coronary artery bypass surgery. 

Epsilon-amino-caproic acid (EACA, Amicar) and tranexamic acid are lysine 

analogues which bind to fibrin and promote clot stability by inhibiting the activation 

of a plasminogen, are often used to control bleeds from mucosal surfaces.  

Fibrin sealants, mixtures of fibrinogen and thrombin, which are capable of 

controlling hemostasis by forming fibrin clots when applied to sites of mucosal 

bleeds, are often used in procedures such as dental extraction and circumcision. 

Calcium alginate, a polysaccharide extract from brown seaweed, is used as a 

hemostatic agent in wound dressings or for treating epistaxis, given its ability to 

control bleeding by exchanging sodium ions at sites of bleed with its calcium ions. 

Other drugs that can be used to control the severity of bleeds are danazol47, an 

attenuated androgen, which increases FVIII levels in mild hemophilia; prednisone, an 

anti-inflammatory synthetic glucocorticoid that has been successfully used for 

treating hematuria48.; and aminoglycosides, such as gentamycin, which increase FVIII 

levels in patients with nonsense/frameshift FVIII mutations by correcting premature 

stop codons via alternate usage of amino acids49.         

1.4.5.4. FVIII bypass treatment 
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In recent years, the use of FVIII bypass agents to restore normal hemostasis 

has became available and is being actively explored especially in patients with FVIII 

inhibitors that render conventional FVIII replacement therapy ineffective. 

Approximately a third of severe hemophilia A patients develop inhibitory antibodies 

against FVIII and, depending on the severity of inhibiter formation, could benefit 

from FVIII bypass agents. The rationale of FVIII bypass treatments using Activated 

Prothrombin Complex (aPCC) or Factor Eight Inhibitor Bypassing Activity (FEIBA) 

concentrates 50 is to activate the coagulation cascade without the requirement for 

FVIII activity.  These concentrates, consisting of plasma-derived factor II 

(prothrombin), FVII, FIX and FXa, directly initiate thrombin generation.      

Recombinant activated FVII (FVIIa, NovoSeven)51, which initiates 

coagulation without the requirement for FVIIIa, has been tested in clinical trials and 

shown to function as an effective bypass agent for hemophilia. FVIIa activates a key 

coagulation factor, FX, by binding to TF in subendothelial layers of exposed and 

injured blood vessels or by directly binding to membranes of activated platelets 

recruited to sites of vascular injury, thereby leading to thrombin generation and 

hemostasis. The use of recombinant activated FVII appears to be the best line of 

treatment for patients with severe hemophilia complicated by high titer inhibitory 

autoantibodies.  

While these bypass agents are generally safe, their use has been associated 

with thrombosis, pulmonary embolism and cardiovascular complications46.           

1.4.5.5. Gene and cell therapy for hemophilia A 

Advances and innovations in medical sciences have significantly improved 

the quality of life and life expectancy of people with hemophilia around the world. 

What was once considered a life limiting disease is now regarded as a manageable 

disorder having a median life expectancy of about 63 years with proper treatment, 

even in severe hemophilia.27 . However despite significant progress in hemophilia 

care, it is estimated that two-thirds of patients in developing countries are either 

undiagnosed or, if diagnosed, receive no or suboptimal treatment and care29. 

Prohibitively high costs of FVIII replacement therapy combined with unavailability 

of quality products in developing nations have prompted many researchers to 

investigate gene and cell therapy approaches as potential curative options. Thus, with 

the discovery and cloning of FVIII cDNA, in the early 1980s, the battle to develop a 

cell and gene therapy cure for hemophilia A began to take shape. As of 2013, many 

techniques for tackling FVIII deficiencies have been tried in laboratory experiments. 
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To date, a total of three phase I clinical trials have been attempted to treat human 

subjects52.   

Several features of hemophilia A make it an ideal candidate for gene therapy. 

The monogenic nature of the disease makes gene augmentation with a functional 

version of FVIII gene a straightforward and compelling strategy, especially for 

treating severe hemophilia. Unlike other single protein deficiencies such as insulin, 

where tight physiological regulation of expression is important, FVIII expression is 

not finely regulated. Thus, constitutive expression of transgenic FVIII could offer 

significant phenotypic correction and clinical benefits even with a modest increase in 

plasma FVIII levels to about 5%,. This alone would improve severe hemophilia to a 

milder phenotype. A successful gene therapy regime for hemophilia A could be 

expected to reduce bleeding diathesis and decrease the need for FVIII replacement 

products. Thus could the high cost of treatment be mitigated and the limited supply of 

quality FVIII products become of much less concern; these being the two main 

barriers to good hemophilia care in developing countries. Constitutive FVIII 

expression by gene therapy will also reduce the requirement for regular venous access 

for FVIII infusions, an inconvenient, invasive and traumatic experience, especially 

for children. Several in vitro and in vivo gene transfer studies have shown that FVIII 

can be synthesized and secreted as a fully functional protein by several cell types 

suggesting that ultimately several different organs may be targeted for gene transfer 

and transgene expression. The existence of various animal models of severe 

hemophilia A53 (mice, dogs and sheep) that closely mimic the human disorder  

provides a sound platform for researchers to test potential therapies and monitor long 

term safety, thus easing the transition from exploratory research to clinical trials.                                 

1.4.6. Gene therapy options being explored 

Apart from liver transplantation, gene therapy to supply deficient clotting 

factors appears to be the only other feasible approach that could potentially provide a 

long term cure for hemophilia. Kaufman and colleagues demonstrated for the first 

time in 1990 in vitro secretion of FVIII from cell lines that had been retrovirally 

transduced to express human FVIII cDNA54, thus providing experimental evidence to 

support the feasibility of recombinant FVIII production technologies, and gene and 

cell therapy for hemophilia. What followed over the decades were the development 

and testing of various gene therapy strategies to express FVIII either directly in target 

organs and tissues in vivo or in various different cell types ex vivo that could 

ultimately serve as cellular vehicles for FVIII expression when implanted in vivo. 
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Various viral and non-viral methods of gene transfer were evaluated for efficacy and 

safety. The potential gene therapy options currently being explored for hemophilia 

treatment will be reviewed in this section.         

1.4.6.1. In vivo vector delivery 

Direct in vivo gene transfer usually utilizing a viral vector, or less frequently, 

a non-viral vector, to transduce or transfect tissues and organs, mainly liver and 

muscle, to express and secrete transgenic FVIII is one of many options that has been 

actively explored. Greater success to varying degrees has generally been reported 

with viral vectors, namely retroviral, lentiviral, adenoviral and adeno-associated viral 

vectors. To a lesser extent, non-viral methods such as sonoporation, electroporation 

and hydrodynamic gene delivery of plasmid vectors have also been successfully 

applied in vivo.  

One of the most frequently utilized viral gene delivery approaches is systemic 

administration of MoMLV gamma retroviral vectors. Retroviral vectors effectively 

transduce a wide variety of cell types, and can theoretically enable durable transgene 

expression owing to their integration into the genome. Retroviruses encoding human 

FVIII cDNA have been successfully utilized for durable liver directed expression of 

transgenic FVIII in animals such as the mice, rabbits and dogs55. Based on promising 

results in animal models, a clinical trial of gamma retroviral vectors for gene transfer 

of FVIII cDNA was conducted  in severe hemophilia A patients56. Stable transgene 

integration was documented in peripheral blood mononuclear cells but the desired 

therapeutic efficacy was not achieved. Retroviruses are more effective in transducing 

actively dividing cells and thus in vivo delivery and expression strategies using these 

viruses, in general, have not met with much success. Retroviruses may be more 

appropriate for ex vivo cell transduction, although there are justifiable concerns 

regarding their potential oncogenicity. 

Adenoviruses, which are mainly maintained as episomes and can effectively 

transduce non-dividing and dividing cells, have also been employed in vivo to target 

FVIII transgene expression mainly in liver and muscle of FVIII-deficient mice and 

dogs57. A major drawback of the early generation adenoviral vectors was the tendency 

to elicit strong inflammatory responses and hepatotoxicity when delivered in vivo58. 

Improved versions of adenoviruses, known as high capacity (HC) adenoviruses, are 

devoid of most viral genes and shown to be safer59. HC adenoviral vectors have been 

used to express FVIII in murine and canine models of hemophilia A, although the 

observed therapeutic effects were only transient in some animals owing either to the 
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development of neutralizing FVIII antibodies or immune-mediated destruction of 

gene modified cells. A clinical trial of adenoviral vectors for liver directed FVIII 

expression was prematurely terminated after treating only a single patient with severe 

hemophilia because of vector related immune response and toxicity52. Given the 

adverse systemic complications reflected by transaminitis (liver toxicity) and 

thrombocytopenia (bone marrow toxicity) reported with HC adenoviral vectors in at 

least two other clinical trials for other disorders58, 60, the risks associated with the use 

of these vectors must be carefully re-evaluated until further improvements reduce 

their immunogenicity. 

Recombinant adeno-associated viral (rAAV) vectors appear to provide the 

most promising evidence for efficient and safe in vivo transduction and long term 

transgene expression in both preclinical animal models (rodents, dogs and non-human 

primates) and human subjects. AAV which is inherently non-pathogenic and non-

replicating can transduce a variety of cell types depending on the serotype and 

generally maintains transgenes as episomes without genomic integration. AAV261 and 

AAV862 have been used successfully to express transgenes such as FIX in the muscle 

and liver, respectively. Although muscle directed AAV-mediated expression tends to 

elicit a local immune response leading to antibody production correlated with vector 

dose, this could be circumvented with transient immunosuppression and by 

intravascular delivery63 of AAV to transduce a widespread area of muscle to obviate 

the need for multiple localized intramuscular injection of the virus. Most recently, 

successful and durable liver directed FIX expression was reported in six hemophilia B 

patients treated with FIX encoding AAV8 vectors62. A caveat to using AAV vectors 

is the potential for immune response against the capsid proteins which may render the 

treatment ineffective64. For instance, the high prevalence infection by naturally 

occurring AAV2 and AAV3 in human populations may preclude efficient gene 

transfer with this AAV serotype due to the preexistence of neutralizing antibodies 

against the AAV2 capsid. Alternate AAV serotypes such as AAV4 and AAV8 which 

have limited cross reactivity towards AAV2 serotype may be used to circumvent this 

problem. Despite promising results, immune clearance of transduced hepatocytes, 

transaminitis and inflammatory responses are still relevant concerns with this class of 

vectors64. 

Of the non-viral vector systems and methods being developed and tested for 

in vivo delivery of FVIII, it is worth noting two promising approaches. One is the 

hydrodynamic intravenous delivery of naked plasmid DNA targeting expression in 

the liver and muscle; another is the use of integrating non-viral vectors such as 
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Sleeping Beauty transposons that could potentially mediate long term transgene 

expression. However, although both approaches have successfully been used in 

combination to achieve efficacy in hemophilic mice65, results in larger animal models 

have been less than satisfactory. A general strategy for improving gene transfer to 

selective organs such as specific segments of the liver or muscle are being tested in 

large animal models such as the dogs, non-human primates and pigs. Minimally 

invasive hydrodynamic gene delivery to liver segments has also been demonstrated in 

humans66. Continuous improvements to in vivo gene delivery as well as derivation of 

superior non-viral integrating vector systems hold promise for development of 

feasible non-viral gene therapy for disorders such as hemophilia.                     

1.4.6.2. Ex vivo gene-based cellular therapy 

While direct in vivo transduction of target tissues and cells appears to be an 

appealing gene augmentation approach for correcting protein deficiencies, these 

approaches also carry undesirable potential risks such as invoking immune response, 

unrestricted dissemination of vectors and transduction of unintended organs and cells. 

In contrast, ex vivo gene transfer strategies enable manipulation of specific cell types 

(depending on disease being treated and protein being expressed) under controlled 

conditions and, more importantly, allows gene modified cells to be comprehensively 

characterized and evaluated for genotoxic potential before administration to patients. 

Unlike the essential irreversibility of direct in vivo transduction, treatment plans can 

be aborted if danger signals are identified ex vivo. 

Gene delivery, either with viral vectors or by non-viral means such as 

electroporation or chemical-based transfection, has been successfully performed in a 

variety of primary human cell types67‐71. With respect to hemophilia therapy, FVIII 

cDNA has been delivered and maintained as episomes72 or integrated into the genome 

using retroviral73 and lentiviral vectors,74 and non-viral vectors integrated by SB-

transposons and phiC31 integrase75.  

The future of ex vivo cell based therapy for correcting genetic deficiencies 

appears to be cautiously promising. Demonstration of long term correction of several 

genetic disorders such as ADA-SCID76, IL2RG-SCID77, CGD78 and WAS79 lends 

credibility to the feasibility of ex vivo cell therapy. However, issues pertaining to 

biosafety of some of the approaches need to be carefully evaluated and ironed out to 

prevent a repeat of adverse events that have plagued several of these clinical trials. 

The use of viral vectors with reduced immunogenicity and with safer biosafety 

profiles such as foamy viruses80 and SIN-viruses81 may prove to be crucial in 
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developing safer vectors. ZFNs82 and TALENs83 capable of inducing homology-

directed integration of transgenes may also be developed as novel non-viral 

approaches for safe integration and durable expression of transgenes. With much 

research focus in induced pluripotent stem cells, conventional ex vivo cellular therapy 

approaches utilizing somatic or stem cells may in future also include well 

characterized iPSCs84.   

The source of cell type for ex vivo cell therapy depends on the disease being 

treated, the type (e.g. the need for post-translational protein modification) and 

localization of the transgenic protein (e.g. whether expressed intracellularly in 

specific cells or secreted systemically) and on the availability and ease of isolation, 

culture and expansion of cells to be used for therapy. The section below summarizes 

the cell types that have been successfully used in ex vivo cell therapy approaches to 

date, and reviews potential cell types that could be of use in the future.                 

1.4.6.2.1. Dermal fibroblasts and epidermal keritinocytes 

Primary dermal fibroblasts were an obvious choice for cell therapy as they 

are easily obtained, cultured and expanded to numbers relevant for therapeutic 

applications. Early studies also showed that these cells efficiently synthesize, process 

and secrete transgenic FVIII70. Given these favorable characteristics, it is not 

surprising that fibroblasts were chosen for the first ex vivo clinical trial for hemophilia 

A treatment85. However, it was noted that the therapeutic efficacy did not last beyond 

the first 10 months  after treatment, in this clinical study. Apart from reporting FVIII 

expression in hemophilic mice from direct transduction of epidermal keratinocytes86, 

no further progress has been reported with either fibroblasts or keratinocytes for 

FVIII expression.  

1.4.6.2.2. Hematopoietic stem cells 

Gene modified hematopoietic stem cells have been successfully used in ex 

vivo cell therapy for treatment of several immunodeficiency disorders such as ADA 

and IL2RG-SCID, CGD and WAS. Prospects for using HSCs as cellular carriers of 

transgenes are appealing because gene modified HSCs have the ability to self-renew 

in vivo and thus could persist for a lifetime. Efficient gene transfer can be achieved in 

HSCs using retroviral or lentiviral vectors and, to a lesser degree, with non-viral 

methods such as nucleofection of plasmids. HSCs transfected or transduced with 

FVIII cDNA have been reported to secrete FVIII, albeit at lower levels compared to 

non-hematopoietic cells74. This shortcoming has been partly addressed by engineered 
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FVIII variants which have superior expression characteristics87‐90. Long term 

correction of murine hemophilia by implantation of stably transduced, FVIII-

expressing HSCs has been reported91. Besides HSCs, differentiated hematopoietic 

cells such as megakaryocytes/platelets and monocytes have also been evaluated for 

FVIII expression92. While megakaryocytes and monocytes efficiently secreted FVIII, 

platelets were found to predominantly store FVIII in granules but did partially 

improve blood clotting times in hemophilic mice even in the presence of high-titer 

anti-FVIII inhibitory antibodies, presumably due to ectopic expression of FVIII at 

sites of vascular injury93. In summary, hematopoietic stem cell therapy (HSCT) 

appears to be an attractive option for hemophilia treatment and there are plans to test 

this approach in human clinical trials52. However, a caveat to HSCT is that effective 

engraftment and in vivo reconstitution of HSCs requires pre-conditioning of the 

patients by radiation or chemotherapeutic agents in order to kill off resident HSCs 

and induce the process of reconstitution. Oncogenicity arising from insertional 

mutagenesis associated with retroviral and lentiviral vectors is another prevailing 

concern with current HSCT protocols.        

1.4.6.2.3. Blood-outgrowth endothelial cells 

Blood-outgrowth endothelial cells (BOECs), also known as endothelial 

progenitor cells (EPCs), belong to a unique family of endothelial marker-expressing, 

highly proliferative adherent cells derived from long term culture of cord or 

peripheral blood. While there remain some disagreements with respect to their origin, 

proliferative potential and differentiation capacity, several groups have demonstrated 

successful isolation, culture and expansion of BOECs. Estimated to be present in 

0.0001% of the mononuclear cell population in peripheral blood, BOECs are collagen 

adherent cells that exponentially proliferate after an initial lag phase of two weeks in 

culture. BOECs, initially described by Hebbel and colleagues94, have been 

characterized by their expression of endothelial markers such as VE-cadherin, 

thrombomodulin, VWF, flk-1, PECAM, CD34, P1H12 and CD36, and have excellent 

proliferative capacity in vitro95. Several studies have estimated 1.2 x106-fold 96 to 3.4 

x 1012-fold expansion of these cells in culture which, if correct, means that up to 1016 

to 1019 cells (sufficient for most cell therapy applications) may be produced from x 50 

ml of peripheral blood, 94,  97. Efficient gene transfer (with both viral and non-viral 

methods) and expression of FVIII has been described for these cells69, 98. The efficacy 

of using BOECs stably secreting FVIII has been successfully demonstrated in 

hemophilic mice for up to 6 months97. Although BOECs have several appealing 
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characteristics that warrant their serious consideration for cell therapy applications, a 

search of the literature indicates that the feasibility of translating such an approach to 

a larger animal model has not yet been attempted with equal success.      

1.4.6.2.4. Bone marrow stromal cells 

Bone marrow stromal cells (BMSCs) are another unique group of 

multipotent, clonogenic, adherent, fibroblast-like cells that have potential for multiple 

therapeutic applications. BMSCs can readily be harvested by simple non-invasive 

aspiration of bone marrow, established in culture and expanded extensively through 

multiple population doublings in vitro to derive about 0.5 x 108 cells in less than a 

month99. Efficient gene transfer to BMSCs by non-viral means such as 

nucleofection100 or with retro- and lentiviral vectors73 has been extensively reported 

as has the potential for gene modified BMSCs to efficiently secrete transgenic FVIII. 

Several studies have demonstrated the potential for durable FVIII secretion and long 

term phenotypic correction in hemophilic mice101  and sheep102 implanted with 

autologous gene modified BMSCs. Given the ease of isolation and culture, capacity 

for deriving sufficient cell numbers, efficient gene transfer, and propensity for 

durable FVIII secretion coupled with demonstration of efficacy in preclinical animal 

models, BMSCs could be ideal cellular vehicles for FVIII replacement therapy in 

humans. Ex vivo cultured BMSCs have safely been used in human subjects for 

regenerative therapy of bone, cartilage and muscle defects103. In summary, MSCs 

have a broad range of potential applications in gene and cell therapy of various 

genetic and degenerative medical conditions.  Impressive results from studies of 

preclinical animal models of hemophilia lend credence to attempts to develop similar 

therapies for human subjects. However, there are unresolved and controversial issues 

such as heterogeneity between donor samples, amenability for ex vivo expansion and 

genomic stability of long term cultured cells104 (malignant transformation subsequent 

to clonal selection of cells extensively cultured ex vivo) to be carefully addressed 

before MSCs find widespread therapeutic uses in human subjects.      

1.4.6.2.5. Cord-lining epithelial cells 

Neonatal cells derived from the umbilical cord are another source of 

potentially useful cell types that could be developed for autologous cell therapy, 

especially for pediatric patients with inborn genetic disorders. Umbilical cord blood 

and placenta have long been rich sources of stem cells such as CD34+, mesenchymal, 

epithelial and endothelial progenitor cells, to name just a few. Stem cells isolated, 
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expanded and cryopreserved from umbilical cords of newborn infants may serve as 

useful reserves of autologous cells to be used for future gene and cell therapy, if the 

need arises. The challenge with umbilical cord derived cells, as with all other adult 

cells, is the need for ex vivo expansion of these cells to numbers that are realistic for 

therapeutic applications. This is estimated to be in the range of 1 to 10 x107 cells, and 

even more if repeated treatment is envisaged. Dr. Phan Toan Tang and colleagues 

have described the isolation and characterization of a novel epithelial-like cell type 

derived from the outer lining membrane of human umbilical cords105, 106. Cord-lining 

epithelial cells (CLECs) have several favorable characteristics that make them 

putative candidates  for autologous cell therapy. CLECs grow as anchorage dependent 

cells in vitro, express pluripotency markers such as Oct-4 and Nanog and have 

excellent proliferative capacity. Approximately 6 x 109 fresh CLECs can be harvested 

from a single umbilical cord and these can be expanded for another 30 to 40 

population doublings to yield cell numbers that are more than sufficient for 

therapeutic applications. The use of umbilical cord-derived cells also does not attract 

the same ethical and safety issues as embryonic stem cells. CLECs can be efficiently 

transfected by non-viral means and my work has shown them to be capable of 

synthesizing, processing and secreting FVIII at therapeutically meaningful levels 

when transfected with FVIII cDNA75. Immunological characterization of CLECs 

showed that these cells express immunomodulatory proteins such as HLA-E and 

HLA-G. Furthermore, CLECs were demonstrated to inhibit T lymphocyte response in 

a mixed leukocyte reaction assay105 suggesting their potential also for allogeneic cell 

therapy. To date, CLECs have been investigated for various potential applications 

such as epidermal reconstitution107, ocular surface regeneration for treating ocular 

disorders106  and as bio-implants for treating metabolic and genetic disorders75,  105. 

Banking of cord-lining stem cells for future application are now available in several 

countries such as Vietnam (MekoStem), Taiwan (Stemcyte) and Singapore (Cordlife).            

1.4.7. Bioengineered superior variants of FVIII 

One of the challenges with transgenic FVIII expression in vitro and in vivo is 

the difficulty in obtaining sufficiently high levels of the transgenic protein. 

Transgenic FVIII expression levels are 2 to 3 orders of magnitude lower than other 

proteins of similar size. Biochemical features inherent in FVIII contribute to 

inefficient transcription, poor translation, folding and secretion of the protein108. Cis-

elements which act as transcriptional repressors109  and dominant inhibitors of RNA 

accumulation110 contributing to inefficient mRNA transcription have been reported in 
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FVIII cDNA. Misfolding and premature degradation of primary translation products 

are hypothesized as reasons for low expression levels 111. FVIII secretion is also 

thought to be inefficient due to retention in the endoplasmic reticulum (ER) through 

interaction with ER chaperone proteins such as immunoglobulin-binding protein 

(BiP), calnexin and calreticulin108. Furthermore, transit of FVIII from ER to the Golgi 

apparatus, which is speculated to be the rate-limiting step in secretion, requires a 

facilitated transport mechanism via interaction with mannose-binding lectin 1 

(LMAN1)22. These factors collectively contribute to an inefficiently synthesized and 

secreted FVIII protein, a shortcoming that contributes to high cost of recombinant 

FVIII production and which undermines gene therapy approaches that require FVIII 

expression. Another limitation of the FVIII protein is its shortlived activity, a 

consequence of proteolytic inactivation that follows immediately after its activation 

by thrombin. Having identified the molecular mechanisms contributing to low FVIII 

expression, several investigators attempted to bioengineer FVIII variants with 

enhanced characteristics such as improved transcription and secretion, increased 

resistance to inactivation and extended plasma half-life. Another favorable 

characteristic worth modifying is to reduce the antigenicity and immunogenicity of 

FVIII protein.   

The first improved FVIII variant reported was derived by deleting the entire 

B-domain which is encoded by 38% of full length FVIII cDNA. This not only 

reduced the FVIII cDNA size to one that facilitated cloning into viral vectors with 

limited cargo capacity but also increased both the mRNA and secreted FVIII protein 

levels by 20-fold and 3-fold, respectively112.  A single mutation that converts 

phenylalanine at position 309 in the A1 domain of FVIII to serine (F309S) or alanine 

(F309A) significantly improved FVIII secretion by approximately 3-fold. Transit of 

FVIII from ER to Golgi and its subsequent secretion is limited by its interaction with 

BiP. This is exacerbated by the requirement of high intracellular levels of ATP for its 

release. The F309S mutation which resides within the BiP-interacting domain was 

shown to reduce the ATP requirement for release of FVIII protein from BiP, and thus 

improve its secretion88.  

Previous studies have shown that LMAN1 facilitates transport of FVIII from 

ER to Golgi via interaction with N-linked oligosaccharides (glycosylation sites) in the 

B domain. Miao and colleagues showed that retaining a minimum of 6 to 8 N-linked 

glycosylation sites within the B domain (approximately 33% of the B domain) could 

improve FVIII secretion by 4- to 9-fold compared to a FVIII with a completely 

deleted B domain90. 
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Improved FVIII expression has also been reported after codon optimization 

of human B domain-deleted (BDD)-FVIII cDNA113 and with the use of BDD-hybrid 

FVIII comprising human and porcine FVIII 114. The former modification improved 

FVIII expression by up to 44-fold compared with unmodified human FVIII, while the 

latter modification of replacing human A1 and A3 domains with homologous porcine 

domains resulted in 10- to 100-fold increased FVIII expression114, 115 presumably due 

to more efficient post-translational transit of the hybrid FVIII protein through the 

secretary pathway116.      

FVIII variants with enhanced stability and resistance to inactivation have 

been derived by replacing charged residues in the A2 domain with hydrophobic ones 

at the interface of the A1 and A3 domains117. Inactivation-resistant FVIII, known as 

IR8, with A2 domain covalently linked to the light chain (A3-C1-C2) was derived by 

partial amino acid deletions (794-1689) that create missense mutations at cleavage 

sites for thrombin and activated protein C. IR8 was shown to retain FVIII activity 

significantly longer in vitro and retained the ability to bind to VWF111. FVIII 

engineered with disulfide bonds between A2 and A3 domains (C664 and C1826) also 

had more stable FVIII activity due to slower dissociation of the A2 domain, and thus 

slower proteolysis and inactivation118. 

Attempts have also been made to engineer variants with longer plasma half-

life. FVIII is cleared from circulation by binding to hepatic endocytic receptors such 

LRP and HSPG. FVIII variants modified to weaken or abolish LRP (A2 domain 

amino acid residues 484-509 and C2 domain) or HSPG (A2 domain amino acid 

residues 558-565) have improved plasma half-lives. Similar effects were obtained 

with anti-C2 domain monoclonal antibodies such as ESH4 which inhibit LRP binding 

to FVIII17. Another strategy for improving plasma half-life involves conjugation of 

FVIII to PEG polymers. PEGylation blocks interaction with clearance receptors and 

reduces formation of neutralizing antibodies119. 

Continuous efforts are being invested in developing and testing FVIII with 

reduced immunogenicity and antigenicity in order to reduce the risk of inhibitory 

autoantibodies against FVIII. For instance, recombinant BDD-porcine FVIII (OBI-1) 

is being evaluated in a clinical trial of patients with inhibitory antibodies120 . Variants 

with reduced antigenicity are being developed by replacing key residues within the 

A2 domain that are common epitopes for inhibitory antibodies. 

R484A/R489A/P492A mutant FVIII with mutations in the A2 domain were less 

immunogenic in hemophilic mice compared to BDD-FVIII121.                 

http://wizfolio.com/?citation=1&ver=3&ItemID=975&UserID=8336&AccessCode=DDEC155CBDB1483997285FC23CA8D994&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=569&UserID=8336&AccessCode=95CEA48528D243078E31B46C0C9FD1F5&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=569&UserID=8336&AccessCode=95CEA48528D243078E31B46C0C9FD1F5&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=492&UserID=8336&AccessCode=F7503632309E4213A3C4E10C2780A884&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=976&UserID=8336&AccessCode=07867CFF8EB248D4A7A98242F2EAFD5C&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=534&UserID=8336&AccessCode=1BB665F46B6B45F5882BA13E21E5C539&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=977&UserID=8336&AccessCode=8E7D488F540C414BBEF04D69D5E6946B&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=978&UserID=8336&AccessCode=D5BEE5D7579845CE920623C1F586B799&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=902&UserID=8336&AccessCode=DF3F685B96EE4ADFBDDA8C0887BF5CEF&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=979&UserID=8336&AccessCode=54BE11521038416A94E5E85A09E76B4F&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=980&UserID=8336&AccessCode=4E1C8E671FD7482F99933C3568AACB68&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=981&UserID=8336&AccessCode=4726FCE8FD024A6DB14BB1A08296EBE8&CitationSuffix=�


107 

 

1.4.8. Gene and cell therapy clinical trials for hemophilia A 

Encouraged by durable expression of high levels of transgenic FVIII in vitro 

in several primary human cell types as well as in vivo in murine and canine 

hemophilic animal models, three independent corporate-sponsored phase I human 

clinical trials for hemophilia A were initiated with much enthusiasm. 

The first trial, initiated by Transkaryotic Therapy Inc., involved implantation 

of six patients with severe hemophilia  with transgenic FVIII-secreting autologous 

dermal fibroblasts that had been electroporated with a BDD-human FVIII cDNA. 

Clonal cells with stable integration of the transgene and demonstrating high levels of 

FVIII secretion were expanded and surgically implanted into the omentum. The trial 

reported a modest but significant increase in plasma FVIII levels (0.5 – 4% of 

normal) in four of 6 patients and concomitant reduced bleeding episodes and 

decreased requirements for FVIII replacement for up to 10 months after treatment85. 

Although the reasons for lack of therapeutic efficacy beyond 10 months were not 

determined, turnover and eventual death of implanted cells as well as 

promoter/transgene silencing could be speculated as possible reasons. 

The second clinical study, a phase I clinical trial conducted by Chiron Inc., 

employed intravenous delivery of MoMLV retroviral vectors encoding BDD-human 

FVIII in 13 adults with severe hemophilia. Peripheral blood mononuclear cells 

showed evidence of vector DNA up to 1 year post-treatment. However, apart from the 

rare and occasional transient rise in plasma FVIII levels, potentially fewer bleeding 

episodes and slightly diminished requirements for FVIII replacement, no sustained 

FVIII expression was observed in all the treated patients during the course of the 

study56. 

The third and last hemophilia A trial by GenStar Therapeutics Inc., involved 

intravenous delivery of a HC adenoviral vector encoding full length human FVIII 

cDNA with the intent of targeting the liver for transgene expression. Plasma FVIII 

levels in the range of 1% were detected for several months in the single and only 

patient recruited for this trial52. However, the trial was halted indefinitely because of 

vector related adverse events (fever, transient hepatotoxicity, thrombocytopenia) that 

were probably consequences of immune responses evoked by the adenoviral vector. 

Lessons learned from these early gene therapy attempts to treat hemophilia 

were the need to develop strategies that minimize the risk of eliciting a strong 

immune response and which achieve higher and sustained expression of FVIII protein 

at therapeutically relevant levels. Viral vectors with improved safety profiles capable 

of transducing a wide range of cell types are being developed and tested. Strategies 
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involving implantation of ex vivo transduced primary cell types including induced 

pluripotent stem cells and embryonic stem cells are also actively being explored in 

preclinical animal models for long term efficacy. Novel FVIII molecules 

bioengineered for lower immunogenicity, extended half- life and improved secretion 

or activity are being investigated.  

Despite the disappointing results from the aforementioned clinical trials, 

novel and improved gene and cell therapy approaches for hemophilia treatment are 

continually being developed and tested, with some poised for preclinical and clinical 

studies. Very recently, encouraging results were reported in a clinical trial for 

hemophilia B. Patients with severe hemophilia B treated with AAV8 vector encoding 

human FIX expressed sustained FIX levels between 2% to 11% for up to 16 

months62, with only minor side effects, if any. While such optimistic results could 

rejuvenate interest in developing more gene therapy clinical trials for hemophilia, 

exercising caution on behalf of safety would be prudent. Given that hemophilia is a 

disease that can be treated with conventional protein replacement therapy, the risks of 

gene and cell therapy approaches must be carefully weighed against the benefits they 

bring. Bio-safety and efficacy of candidate approaches must be carefully and 

objectively evaluated in preclinical models before advancing to human trials.  
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1.5. Rationale, objectives and scope of project 

Durable restoration of FVIII secretion in vivo holds much potential to correct 

FVIII deficiencies and will bring about significant clinical benefits to patients with 

hemophilia A. Implantation of autologous cells stably modified to express and secrete 

FVIII is the goal of several research groups. Durable and clinically meaningful 

reconstitution of FVIII expression with negligible genotoxicity could theoretically be 

achieved by integrating the transgene into a specifically targeted and safe genomic 

locus. The inability of current gene therapy vectors to direct transgene integrations 

precisely into safe genomic sites has been associated with oncogenic changes and 

fatal leukemias in recent clinical trials.  

We hypothesized that safe and targeted gene integration could be achieved 

with non-viral, site-directed genome-modifying agents such as phiC31 phage 

integrase and zinc-finger nucleases. If genome-modified cells are shown to be safe 

and capable of durably secreting transgenic FVIII at therapeutically meaningful 

levels, they could potentially be developed as autologous bioimplants for hemophilia 

A treatment. Genome modification using phiC31 integrase or ZFNs could be 

instrumental in developing approaches that could have wider application to other 

monogenic and metabolic disorders. 

Cord-lining epithelial cells possess several characteristics that make them 

ideal as cellular vehicles for transgenic protein expression. Transgene-modified 

CLECs could be particularly helpful as autologous implants for treating pediatric 

patients. 

The primary aims of my project were to evaluate (a) the biosafety of 

modifying cord-lining epithelial cells with phiC31 integrase and AAVS1-ZFNs; and 

(b) the feasibility of developing genome-modified cells as bioimplants for hemophilia 

A treatment.  

We first proposed to establish and evaluate the efficacy, accuracy and 

biosafety of transgene integration in primary human cells mediated by phiC31 

integrase and ZFNs. The project progressed from a comprehensive in vitro 

assessment of the genomic accuracy and genome-wide effects of transgene 

integration to in vivo transplantation of FVIII transgene-expressing cells to evaluate 

the efficacy, durability and safety of cellular therapy. This project was executed in the 

following phases: (1) investigation of phiC31 integrase-modified CLECs; and (2) 

investigation of ZFN-modified CLECs.  
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The specific aims of the project were: 

1. Investigation of phiC31 integrase-modified CLECs 

1.1 To clone and test bioengineered human FVIII cDNA expression from 

different promoters 

1.2 To integrate human FVIII cDNA into genome of CLECs using phiC31 

integrase and donor plasmid 

1.2 To document durability of FVIII secretion from genome-modified cells 

1.3 To implant transgenic FVIII-secreting cells into hemophilic mice and 

demonstrate phenotypic correction 

1.4 To identify transgene integration sites in modified CLECs 

1.5 To perform a comprehensive genotoxicity study to evaluate effects of 

transgene integration on transgene-modified cells. More specifically, we 

investigated the effects on: (a) the transcriptome; (b) whole genome copy 

number profile; (c) chromosome structures by spectral karyotyping; (d) in 

vitro proliferation; and (e) in vivo tumorigenicity of transgene-modified cells. 

1.6 To clone and evaluate hybrid FVIII cDNA expression  

1.7 To investigate the biosafety profile of selected oligoclonal cells integrated 

with hybrid FVIII cDNA at chromosome 8p22, specifically to document: (a) 

transgene integration into chromosome 8p22 by integration junction PCR and 

fluorescence in situ hybridization (FISH); (b) effects on DLC1 expression at 

8p22 by RT-PCR; (c) effects on the transcriptome; (d) effects on whole 

genome copy number profile; and (e) durability of FVIII expression and in 

vivo tumorigenicity of transgene-modified cells by implanting into 

immunocompromised mice.      

1.8 To test feasibility of phiC31 integrase-mediated integration of hybrid FVIII 

cDNA in other primary human cell types and to monitor durability of FVIII 

expression.  

2. Investigation of ZFN modified CLECs 

2.1 To clone and express AAVS1 ZFNs in primary human cells 

2.2 To demonstrate ZFN-mediated site-specific genomic cleavage   

2.3 To optimize conditions for expression of AAVS1 ZFNs  

2.4 To determine size limitations of donor DNA integration into the AAVS1 site  

by AAVS1 ZFNs  

2.5 To evaluate the accuracy of ZFN-mediated transgene integration in CLECs 

2.6 To investigate potential off-target genome modifications mediated by 

AAVS1 ZFNs 
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2.7 To integrate hybrid FVIII cDNA into the AAVS1 site in CLECs and to 

evaluate accuracy and efficiency of site-specific integration 

2.8 To evaluate effects of transgene integration on (a) endogenous PPP1R12C 

gene expression; (b) whole transcriptome; (c) chromosomal karyotype 

2.9 To test durability of FVIII secretion in vitro from modified cells with AAVS1 

site-specific transgene integrations 

2.10 To test and compare ZFN-mediated genome modification in other primary 

human cell types  
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Chapter 2 

Results and Discussion 

2.1. PhiC31 bacteriophage integrase modification of cells 

Progress towards developing cell-based therapy for hemophilia requires 

stringent evidence of biosafety, such as lack of tumorigenicity and genotoxicity of 

genome-modified cells and efficacy i.e. durable FVIII expression in vivo, at clinically 

meaningful levels.  

We utilized phiC31 bacteriophage integrase1 initially to mediate stable 

integration of attB-bearing plasmid DNA constructs into the genome of CLECs. We 

attempted to retrieve and identify all genomic integration events to evaluate if the 

integrase system supports sequence-specific integration of donor DNA into a limited 

number of genomic sites as reported2 and more importantly to assess potential 

genotoxicity of such genomic integration events. Experiments were performed to 

determine if genome modifications and long term in vitro culture adversely affected 

the biosafety profiles of these cells. Concurrently, we evaluated phiC31 integrase-

modified CLECs for durable in vitro expression of human FVIII and tested them as 

bioimplants to correct FVIII deficiency in a murine model of hemophilia A.         

2.1.1. Characterization of CLECs 

CLECs are potential autologous cells for treating patients whose cords were 

used to derive these cells. CLECs show some stem cell characteristics such as 

extended proliferation, capacity to self-renew and for multilineage differentiation3‐5. 

Others and we have previously been shown that CLECs express pluripotency 

markers such as Oct-4, Nanog and Sox23,5. We therefore characterized CLECs 

derived from 5 different donors for expression of Oct-4 and Nanog, two key markers 

of pluripotency.   

Total RNA isolated from cell lysates were analyzed by reverse-transcription 

(RT) -PCR using gene-specific primers (Appendix 1) for Oct-4 (exon-4; 159 bp) and 

Nanog (exon-5; 212 bp) mRNA. Total RNA from a human embryonic stem cell line, 

HUES, served as positive expression controls for both transcripts. Gel 

electrophoresis of RT-PCR products showed Nanog and Oct-4 expression in CLECs 

from all 6 donor samples (Figure 1).  Densitometric measurements of RT-PCR 

products were normalized to transcript levels of α-actin and compared to transcript 

levels in HUES. Nanog transcript levels were 50.4% -58.3% relative to HUES, while 

Oct-4 transcript levels ranged from 46.2% - 56.4%. 

http://wizfolio.com/?citation=1&ver=3&ItemID=310&UserID=8336&AccessCode=578D64A42E2A41A990A64C469B859763&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=313&UserID=8336&AccessCode=2B15E00748F74F38A03EA24B4B1912FF&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=968&UserID=8336&AccessCode=D8B89C003F184384BA302955F1492706&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=967&UserID=8336&AccessCode=F8164741DFC14FDC8087492E0A25D5F2&CitationSuffix=�
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Cell lysates from CLECs, HUES (positive control) and primary human 

fibroblasts (negative control) were immunoblotted with specific antibodies to 

confirm the expression of Nanog (35 kDa) and Oct-4 (45 kDa) proteins. α-Actin 

served as protein loading control. Nanog and Oct-4 proteins were detected in all 6 

CLEC samples, albeit at lower and variable levels compared to HUES (Figure 1). 

The weaker signal for α-actin in the HUES cell lysate indicated lower total protein 

loading for this sample, and suggested an overall higher level of Oct-4 and Nanog 

expression in HUES which is known to be pluripotent, relative to CLECs6. By way 

of contrast, no pluripotency markers were detected in a differentiated cell type, 

primary human fibroblasts.  

The lower but significant levels of Nanog and Oct-4 proteins corroborated 

mRNA transcript levels detected by RT-PCR in CLEC samples. Taken together, 

these data showed that CLECs express at least some key pluripotency genes that 

might explain their capacity for proliferation and multilineage differentiation.  
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Figure 1 Characterization of CLECs for pluripotency markers.  RT-PCR 
and immunoblot analysis of different CLEC samples (1-6), human embryonic stem 
cell line (HUES, positive control) and human primary dermal fibroblasts (negative 
control) for expression of the pluripotency markers, Oct-4 and Nanog and a 
housekeeping gene, α-actin. Negative control for RT-PCR was a minus template 
PCR. Shown below RT-PCR gel images are quantitative levels of Oct-4 and Nanog 
transcripts (normalized to actin) relative to the HUES sample. 
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2.1.2. Optimizing conditions for electroporating CLECs 

We resorted to electroporating CLECs with plasmid DNA as lipid-based 

transfection reagents were inefficient (data not shown). Conditions were optimized 

using a BTX ECM 830 electroporator and 10 μg of pEGFP-C1 plasmid DNA. We 

investigated the effect of pulse voltage, pulse duration and electroporation buffer 

composition on transfection efficiency (percentage of GFP-positive cells) and cell 

viability (propidium iodide unstained cells) by flow cytometry 1 day post-

electroporation.  

   CLECs were electroporated with pulse voltages (Figure 2A) from 160 V to 

280 V, pulse durations (Figure 2B) from 10 ms to 40 ms and with different 

electroporation buffers (Figure 2C). The best setting from each experiment was that 

which gave the highest percentage of GFP-positive cells and least cell death. Based 

on these criteria, the optimal electroporation condition was determined to be a single 

240 V pulse delivered for 30 ms with cells suspended in NC electroporation buffer7. 

With these settings, approximately 13% of treated cells were transfected with 89% 

viability. This protocol was used for all phiC31 experiments.     
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Figure 2 Optimization of electroporation conditions. Effect of (A) voltage 
(B) pulse duration and (C) electroporation buffer composition on gene transfer 
efficiency (percent GFP +ve) and cell mortality (percent propidium iodide +ve) of 
CLECs electroporated with 10 μg pEGFP-C1 plasmid in solution NC (unless 
otherwise indicated) and a single pulse delivered with a BTX electroporation device. 
Pulse duration was fixed at 25 ms for voltage optimization while voltage was fixed at 
600 V/cm for pulse duration optimization. Electroporation buffer optimization was 
performed with a single 30 ms pulse at 600 V/cm. Representative brightfield and 
fluorescence images taken 1 day post-electroporation are shown (original 
magnification x100). Flow cytometric analysis for GFP expression and propidium 
iodide uptake was performed 1 day post-electroporation on trypsinised cells stained 
with 1 μg/ml propidium iodide. Data are reported as percent GFP +ve and percent PI 
+ve, respectively.    
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2.1.3. Evaluation of promoter strength on FVIII expression in CLECs 

Having optimized gene transfer conditions for CLECs, we next tested their 

ability to secrete human FVIII in vitro and evaluated different promoters to drive 

human FVIII expression in these cells.  

CLECs transfected transiently (day 3) or stably (day 15) with B-domain 

deleted (BDD)-human FVIII F309S plasmids expressed from simian virus 40 (SV40), 

elongation factor 1 alpha (EF-1α), cytomegalovirus (CMV) or human ferritin light 

chain (hFer) promoters were assayed for FVIII activity from overnight conditioned 

culture media (Figure 3). CLECs electroporated with pEGFP-C1 plasmid served as a 

negative control for FVIII expression. The percentage of GFP-positive cells by flow 

cytometry was 42 ± 2.5% (mean ± SEM; n=3).  

For both transient (day 3) and stable (day 15) gene transfer, significantly 

greater levels (P<0.05) of FVIII were secreted from cells in which FVIII cDNA was 

expressed from human ferritin light chain promoter (day 3: 51.88 ± 2.38 mUnits/106 

cells/24 hr; day 15: 350 ± 13.18 mUnits/106 cells/24 hr, mean ± SEM; n=3) compared 

to CMV (day 3: 19.29 ± 2.51 mUnits/106 cells/24 hr; day 15: 107.8 ± 4.92 mUnits/106 

cells/24 hr, mean ± SEM; n=3) or EF-1α promoter (day 3: undetectable; day 15: 

12.41 ± 4.12 mUnits/106 cells/24 hr, mean ± SEM; n=3). No FVIII activity was 

detected from CLECs transfected with SV40 promoter. For EF-1α, CMV and hFer 

promoters, higher levels of FVIII (P<0.05) were secreted from G418-selected CLECs 

stably expressing FVIII (day 15) compared to transiently transfected CLECs (day 3). 

This was not surprising because G418 selection enriched the culture with cells 

harboring the integrated FVIII transgene.  

As the human ferritin light chain promoter induced the highest FVIII 

secretion, all subsequent experiments used the plasmid, pattB Hfer BDD-human 

FVIII F309S. 
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Figure 3 Comparison of FVIII expression from different promoters in 
CLECs. FVIII activity in conditioned media of unselected and G418-selected 
CLECs, 3 (orange bars) and 15 days (grey bars) after electroporation with a control 
plasmid (GFP) or BDD-human FVIII F309S cDNA expressed from SV40, EF-1α, 
CMV or human ferritin L promoter. Data are mean ± SEM (n=3).  
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2.1.4. Evaluation of integration frequency 

PhiC31 integrase has been reported to mediate stable site-specific genomic 

integration of attB-bearing plasmids in a variety of cell lines and primary cells1. We 

investigated its ability to stably modify CLECs by co-electroporating an attB-bearing 

reporter plasmid, pEGFP-C1 attB, with or without a plasmid expressing phiC31 

integrase. EGFP-expressing CLECs were FACS-sorted, seeded into 10 cm tissue 

culture dishes at initial densities of 5000 cells or 2000 cells per dish, subjected to 

G418 selection for 7 days after which the number of G418-resistant GFP-expressing 

cell colonies were enumerated using a fluorescence microscope.  

From an initial seeding of 5000 cells/dish (in triplicate dishes), scoring of 

colonies indicative of stable genomic integration of pEGFP-C1 attB plasmid, yielded 

134 ± 11 colonies (mean ± SD) when co-electroporation was performed with 

integrase compared to 8 ± 5 colonies when transfection was performed without 

integrase. Data from parallel seeding of 2000 FACS-sorted GFP-expressing CLECs 

(also in triplicate) showed 68 ± 12 stable colonies with integrase, and 8 ± 4 without 

integrase. These data showed an average integration frequency of 3.0% with integrase 

compared to 0.3% without integrase. Figure 4 shows that G418 selection of 

integrase-modified cells resulted in a highly enriched population of GFP-expressing 

CLECs.  
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Figure 4 PhiC31 integrase-modified CLECs stably expressing EGFP.  
(Left) Brightfield and (right) fluorescence images of CLECs co-electroporated with 
10 μg of pEGFP-C1 attB and 1.5 μg of pCMV-Int phiC31 integrase plasmid DNA, 
(top) 1 day post-electroporation and (bottom) 15 days after selection with G418 
(original magnification x100). 
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2.1.5. Integration profiles of genome-modified CLECs 

We next proceeded to determine the integration profiles of phiC31 integrase 

modified, G418-resistant, GFP-expressing CLECs stably integrated with pEGFP-C1 

attB plasmid. A plasmid rescue method (detailed in section 4.3.4.1) was used to 

recover integration events which were then sequenced with vector specific primers to 

identify genomic regions at integration junctions. Workflow for identification of 

phiC31 integrase-mediated integrations in the genome is outlined in Appendix 4. 

Sequences and corresponding chromatograms from a single recovered integration 

event in chromosome 8p22 is illustrated as an example (Appendices 4 and 5).  

We documented 44 independent integration events that mapped to 18 

cytobands (Table 1) by sequencing 90 and 200 plasmid rescued clones from a mixed 

and clonal population, respectively, of genome-modified CLECs. An integration 

event was considered to be independent if chromosomal sequences flanking the 

integration site were different from all other integrations retrieved. Alignment of 

integration site sequences using the Multiple EM for Motif Elicitation (MEME) 

program revealed a shared motif among 12 cytobands (E = 5.9 × 10−10) (Figure 5) 

that was 75% identical to a 28-base motif previously identified2, thus reaffirming the 

sequence specific integrations mediated by phiC31 integrase. Integrations into the 

8p22 site accounted for >40% of all integrations, confirming previous reports of 

frequent integrations into this locus2, 8. 
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Figure 5  Site specificity of phi C31 integrase-mediated transgene 
integration. (a) Output of MEME motif finder from 100 bp sequences surrounding 
each cross-over junction identifies a common motif of endogenous attP sequences. A 
motif of 41 nucleotide bases (width) was identified among 12 aligned sequences 
(sites), with a log likelihood ratio (llr) of 243 and E-value of 5.9 x 10-10. The 
simplified position-specific probability matrix scores for each nucleotide at the 
specified position within the motif are given (“:” represents a score of 0).  The 
information content diagram depicts the degree of conservation of each nucleotide 
base at a specific motif position and reports their corresponding frequency of 
occurrence (measured in bits). Columns are color coded according to the majority 
category of nucleotides occurring at a specific location among the aligned sequences 
(black if no nucleotide has a frequency above 0.5). Multilevel consensus sequence 
shows the most conserved nucleotide at each motif position. The multilevel consensus 
sequence (E = 5.9 x 10-10) and corresponding P-values for the 12 different  integration 
sites are ranked in order of significance. (b) Sequence logo of the 33 bp sequence at 
cross-over junctions in CLECs (weblogo.berkeley.edu). 
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We next analyzed genomic site categories of phiC31 integrase-mediated 

integrations. Of the 44 integration events, 30 were intronic, 7 intergenic, 2 exonic and 

5 within repeat elements. Most integrations were intronic (30 of 32 events) and only 2 

were exonic (both were 7p14.1 integrations into exon 15 of GLI3). Moreover, >70% 

of these integrations were >50 kilobases (kb) away from transcription start sites, 

unlike retroviral vectors that have a predilection for integrating in close proximity to 

transcriptional start sites9  where others have reported effects on altering gene 

expression10. However, our data showed that the expression of nearly all genes 

located within a 1 megabase (Mb) window centered on each integration site in 

integrase-modified CLECs was comparable to wild-type CLECs. The sole exception 

was a two-fold increase in LNX1 expression, located 476 kb from the 4q12 integration 

site (Table 1). Transgene integrations close to or within known oncogenes or tumor 

suppressor genes raise serious concern. In our study, three independent integration 

events were within potential oncogenes or tumor suppressor genes (DLC1, FOSL2, 

and GLI3). Fifteen oncogenes and tumor suppressor genes were 

located within a 1 Mb window among 44 independent integration sites at a median 

distance of 224 kb (range 2–463 kb). Despite this, none of these genes showed 

significantly altered expression by transcriptional profiling. 
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Table 1  Phi C31 integrase-mediated transgene integration sites in CLECs   

Cytoband Number of 

independent 

integrations 

(clonal or 

mixed 

population) 

Integration 

sites 

Target gene 

(Intragenic 

integration) 

Nearest gene 

(Intergenic 

integration) 

Transcriptional effect 

Target gene/ 

Nearest gene 

1 Mbp Window 

1p36.31 1 mixed Intron 1 NPH4 (1.5 kb)  NA No change 

2p23.2 4 mixed Intron 2 FOSL2 (1.3 kb)  No change No change 

4q12 3 mixed Intergenic  CHIC2 (129 kb) No change LNX1 (increased) 

6p21.1 

1 mixed 

1 clonal 

Repeat  NCR2 (17 kb) No change No change 

7p14.1 2 mixed Exonic GLI3 (274 kb)  No change No change 

8p22 

16 mixed 

2 clonal 

Intron 7 DLC1 (384 kb)  No change No change 

8q24.22 1 mixed Repeat  NDRG1 (56 kb) No change No change 

9q21.13 1 mixed Intron 4 THEM2 (28 kb)  No change No change 

9q22.33 1 mixed Intergenic  C9Orf156 (0.07kb) No change No change 

10p12.31 2 mixed Intron 12 DNAJC1 (247 kb)  No change No change 

10q22.3 1 clonal Intron 1 ZMIZ1 (2 kb)  NA No change 

10q26.11 1 mixed Repeat  PDZD8 (17 kb) NE No change 

12p13.33 2 mixed Intergenic  FBXL14 (62 kb) No change No change 

15q25.3 1 mixed Intergenic  AGBL1 (185 kb) No change No change 
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17q21.2 1 mixed Intron 19 JUP (149 kb)  NE No change 

19q13.31 1 mixed Intron 2  ZNF 223 (7.8 kb) No change No change 

20q11.23 1 mixed Intron 1  LOC 128434 (15 kb) NA No change 

Xq22.1 1 mixed Repeat  DRP2 (23.7 kb) No change No change 

Vector integration sites were retrieved by plasmid rescue from genomic DNA of mixed and clonal populations of CLECs stably integrated 
with pattBEGFP-C1. Integration site sequences were mapped to the reference human genome sequence and their corresponding cytobands 
(genome.ucsc.edu). Transcriptional effects refer to the target gene for intragenic (intronic or exonic) integrations or to the nearest gene for 
intergenic integrations (distance from integration site to the transcription start site is indicated within parentheses). Transcriptional effects on 
all genes within a 1Mb window centered on each integration site are also shown. NA denotes genes for which the Affymetrix Human 
Genome U133 Plus 2.0 arrays did not have probe sets. NE denotes genes that were not expressed in wild type CLECs.   
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2.1.6. Transcriptome analysis of genome-modified CLECs 

We performed microarray expression profiling experiments to compare the 

transcriptomes of naïve and phiC31 integrase-modified CLECs to determine if 

transgene integrations altered the expression profiles. Comparison of the 

transcriptomes of wild-type and a mixed population of stably integrated CLECs 

showed no difference in the expression levels of >96.5% transcripts. Of 11,947 

CLEC-expressed genes, 94 (0.8%) showed increased expression and 57 (0.5%) 

showed decreased expression (defined for both as more than two-fold difference) in 

genome-modified CLECs compared to wild-type CLECs (Table 2). Functional 

annotation using DAVID (http://david.abcc.ncifcrf.gov) did not reveal significant 

association of these 151 dysregulated genes to specific pathways except for activation 

of p53 signaling (CDK2, CCNB1, and IGFBP3) and cell cycle (CCNA2, CCNB1, 

Cdc20, TTK) (Fisher’s exact P-value modified for gene enrichment = 0.02) (Figure 

6). Given that DAVID utilizes a default significant P-value of <0.01, a P-value of 

0.02 for our analysis suggests that the identified KEGG pathways are not significant.  

A major concern of integrating vector DNA into the genome is the potential 

for oncogene activation or inactivation of tumor-suppressor genes. We therefore 

scrutinized our list of altered genes to determine if they belonged to the categories of 

oncogenes or tumor suppressors. Cross-referencing the 151 transcriptionally altered 

genes in genome-modified CLECs identified 15 in a database of 1650 possible 

oncogenes and tumor suppressor genes11 (Table 2; Gene symbols underlined and in 

italics). None of the identified 15 genes clustered to any particular cellular pathways 

by DAVID functional annotation analysis. Furthermore, three were tumor suppressor 

genes (BRCA2, RAP1A, and TOP2A) whose increased expression would be expected 

to promote cell death rather than proliferation. The remaining 12 genes were mainly 

involved in cell cycle regulation or cell adhesion.   
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Table 2  Transcriptionally altered genes in stably integrated CLECs 

GENE ONTOLOGY CLASSIFICATIONS OVEREXPRESSED GENES 

Apoptosis BIRC5 

Cell cycle ANLN, ASPM, CCNA2, CCNB1, CCNB2, CDCA1, CDKN3, CENPF, CEP55, DLG7, 

HCAP-G, NUSAP1, RAP1A, SOCS3, TCBA1, CDC20 

Development COL13A1, DDEFL1, S100A4 

DNA repair APOBEC3B, BRCA2, EIF4A1, NUDT1, RRM2, TK1, TOP2A 

 

Immune response C9orf26, PF4V1 

Metabolism ACAT2, CLN6, ENTPD4, GYS1, KYNU, PTGS1, SCD 

 

Signal transduction ABCB6, ADAMTS6, CNTNAP3, DEPDC1, HSPB6, HTRA4, IL11, JAK3, KIF14, 

KIF18A, KIF20A, LRP8, MMP19, MPP1, PACS1, PBK, PLK4, PLXNA2, PPM1K, PSD4, 

PSRC1, RAB7B, RALGPS2, TMUB1, TTK, TUBB3, ZNF236 

Transcription AARSL, ARHGAP22, FOXM1, GATA4, LASS6, LNX1, MAEL, MED12, MYOCD, 

PHF19 

Others CASC5, CLDN11, EMILIN1, FRMD4A, GLIPR1, HMMR, METT10D, NSUN4, SHCBP1, 

TM4SF1 

Unknown C21orf34, FAM83D, HEATR3, HSPCO49, KIAA1524, KIAAO101, LOC441061, 

LRRC17, LRRTM4, SAMD9, WDR69 

GENE ONTOLOGY CLASSIFICATIONS UNDEREXPRESSED GENES 

Cell cycle CCPG1, EPDR1, GPNMB, LAMP3 

Development DLK1, GPC4, GPM6B, SGCG, TSGA10 
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GENE ONTOLOGY CLASSIFICATIONS UNDEREXPRESSED GENES 

DNA repair UBE2B 

Immune response ELMOD1, IL1RL1 

Metabolism CHI3L1, PTGDS 

Signal transduction ABCF2, ABCG1, ADAMTS5, B3GALT2, C20orf23, CENTD1, CLGN, CYP4V2, GNG7, 

IGFBP3, ITGB8, MCTP1, MFAP3L, MMP1, MMP3, MS4A6A, SLC36A1, SLC40A1, 

SLC03A1, SYPL2, TMEM118, TMEM148, TMTC2 

Transcription EGR2, MKX, ZFYVE21, ZNF441 

Others COL14A1, EPB41, HNT, ICAM1, LAMA1, SPON1 

Unknown BEX2, C10orf58, ENY2, HRASLS, KIAA1211, KIAA1450, LOC221091, RP5-875H10.1 

Gene Ontology classification of genes whose expression was ≥ 2-fold different compared to wild type CLECs. Transcriptome profiling 
(Affymetrix Human Genome U133 Plus 2.0 array) was performed on a mixed population of CLECs one month after phiC31 integrase-
mediated stable transgene integration. Potential oncogenes and tumor suppressor genes are underlined and italicized. 
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Figure 6 Functional annotation charts (KEGG pathways) of dysregulated 
genes identified by DAVID analysis. Dysregulated genes analyzed by DAVID 
functional annotation tools were identified (marked by red stars) to cluster to two 
main KEGG pathways. (Top) Cell cycle and (bottom) p53 pathways are depicted in 
these functional annotation charts. Fisher’s exact P-value modified for gene 
enrichment analysis = 0.02 for both functional annotation charts suggests that the 
identified genes may not be significantly associated to the pathways given that the 
default DAVID P<=0.01 is considered significant.    
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2.1.7. Copy number change analysis of genome-modified CLECs 

In order to ascertain if transgene integrations caused major amplification or 

deletions in the genome, we performed genome-wide copy number change analyses. 

High-resolution analyses of genomic DNA of naive and a mixed population of stably 

integrated cells showed that transgene integration into CLECs had quite minimal 

effects on genome copy number. Modest copy number gain was identified in two loci 

and copy number loss in one locus - none of which was a transgene integration site 

(Figure 7A, B). Moreover, genes residing within 1 Mb intervals centered on each 

copy number change region were unaltered in their expression. Further afield, we 

noted from our transcriptome data a 2.1- and 2.5-fold increase in the expression of 

PSRC1 and SYPL2, respectively (Table 2). However, given the distance of these 

genes from the regions of copy number gain (Figure 7B), these transcriptional 

changes were probably independent of copy number gains. The data above are 

consistent with infrequent copy number changes in stably integrated CLECs, in 

contrast to multiple changes commonly observed in cancer cells. 
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 Figure 7 High resolution copy number change analysis of phiC31 
integrase-modified CLECs. (A) Genome-wide copy number profile of a mixed 
population of CLECs stably integrated with pattBEGFP-C1 generated on Affymetrix 
Human Mapping 500K Array Set. Human chromosomes are shown on the horizontal 
axis. Log2 signal intensity ratios are on the vertical axis. Horizontal lines are normal 
copy number boundaries. Dotted vertical lines demarcate individual chromosomes. 
(B) Characteristics of copy number change loci. The cytoband of genomic regions 
(with 3 or more consecutive probe-sets) showing significant changes in log2 signal 
intensity ratios are identified, characterized as gains or deletions and indicated by the 
average copy number per cell. The average sizes of the affected loci (in kilobases) are 
listed and indicated as to whether they are transgene integration sites. Effects on 
transcription (2-fold or more difference compared to wild-type CLECs, as determined 
by Affymetrix HU133 plus expression profiling experiments) of genes in a 1 Mb 
window centered on each copy number change locus is shown. *The number of 
consecutive probe sets for each copy number change locus.. #Distance of gene from 
copy number change locus. 
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2.1.8. Fluorescence in situ hybridization (FISH) 

Integrations of  a large number of copies of the transgene could be beneficial 

where a high level of transgene expression is required. However, multiple 

integrations into the genome also increase the risk of adverse events as a result of 

integrations into undesirable loci (close to oncogenes, tumor suppressor genes, 

regulatory elements, fragile sites, etc.). We therefore performed interphase FISH 

using probes specific to the integrated vector to determine the number of integrations 

per cell. Examination of >200 stably modified CLECs revealed that >85% harbored 

either one or two integrations per cell (Figure 8). The technique employed did not 

differentiate monoallelic from biallelic integrations in cells that had ≥2 integrations. 

The low number of integrations per cell is advantageous as it reduces the likelihood 

of integration into high-risk sites and paves the way for selecting single cell clones 

that had integrations in safe genomic harbors. 
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Figure 8 Copy number of transgene integration in CLECs. Frequency 
distribution of copy number of integrated transgene in CLECs determined by 
fluorescence in situ hybridization of a fluorescein-labeled vector-specific probe. 
Representative image of integrated transgene (green signals) in DAPI-stained 
interphase nuclei of CLECs. Original magnification ×1000. Bar = 5 μm.  
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2.1.9. Karyotype and spectral karyotype analyses  

We spectrally karyotyped mixed populations of naive and stably integrated 

CLECs to determine whether phiC31 integrase induced chromosomal 

rearrangements. Although no chromosomal translocations or aneuploidy was detected 

in naive cells (40 metaphases), four of 90 metaphases from a mixed population of 

stably integrated cells had chromosomal translocations. Two translocations were 

observed only once [46XX t(7:13) (p21:q22); 46XX t(1:19) (q25, q13.3)]. A third 

translocation was observed twice [46XX t(1:18) (q25, q12)] (Figure 9). These led us 

to further analyze eight clonal populations of stably integrated cells in which we 

found no structural or numerical chromosomal abnormalities in >210 metaphases. 

The presence of nonrecurrent translocations is consistent with the known low 

background of chromosome aberrations in normal human somatic cells12, 13. That the 

mixed population of stably modified CLECs showed no evidence of clonal expansion 

of cells harboring translocations also indicated that such affected cells, when present, 

had no cellular growth or survival advantage. 
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Figure 9 Spectral karyotyping of phiC31 integrase-modified CLECs. 
(Upper panel) Normal spectral karyotype in 296 of 300 metaphases of integrase-
modified CLECs. (Lower panel) Rare chromosomal translocations, t(7:13)(p21:q22) 
and t(1:19) (q25, q13.3), were each observed in 1 of 300 metaphases. A third 
translocation, t(1:18) (q25, q12), was observed in 2 of 300 metaphases. 
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2.1.10. Tumorigenicity potential of genome-modified CLECs 

2.1.10.1. In vitro colony formation 

Oncogenic cells usually have increased in vitro proliferation capabilities and 

thus we investigated for this possibility by performing a colony formation assay. The 

number of colonies formed from an initial seeding of 100 or 200 untreated naïve 

CLECs and CLECs stably integrated with GFP were counted following crystal violet 

staining (Figure 10). PhiC31 integrase–mediated transgene integration did not alter 

the proliferative behavior of CLECs as assessed by in vitro colony forming assays 

[From initial seeding of 100 cells; 26.0 ± 0.5 (wild-type) versus 25.7 ± 0.3 (transgene- 

integrated) colonies (P = 0.643); From initial seeding of 200 cells; 37.0 ± 4.6 (wild-

type) versus 38.67 ± 1.9 (transgene- integrated) colonies (P= 0.753), data are mean 

colony counts and standard error of the mean of triplicates]. 
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Figure 10 Proliferation capacity by in vitro colony formation assay. Crystal 
violet staining of cell colonies 14 days after initial seeding (in triplicate wells) with 
either 100 or 200 (top; CLEC WT) naive untreated CLECs or (bottom; CLEC 
GFP) phiC31 integrase modified CLECs stably integrated with EGFP transgene. 
Images of culture dishes containing crystal violet stained cells. For each seeding 
density, the number of colonies were enumerated and expressed as mean colony 
counts ± SEM. 
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2.1.10.2. In vivo implantation in immuno-compromised mice 

The innate oncogenic activity of integrase-modified CLECs was evaluated by 

implantation into the nuchal subcutaneous region (n = 6) and renal subcapsular space 

(n = 4) of NOD-SCID mice. To exclude death of implanted cells, we demonstrated 

the survival of implanted cells by immunochistochemical staining for human cells 

from excised tissues at implantation sites (Figure 11A-D) and derived secondary 

cultures of the implanted cells recovered from excised implants which were 

subsequently identified by immunohistochemical staining (Figure 11D). Despite 

engraftment of viable CLECs at the implantation sites, no tumors developed in any of 

the implanted mice that were monitored for up to 4 months.  
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Figure 11 Immunohistochemical staining of engrafted phiC31 integrase–
modified CLECs.  Immunostaining with antihuman vimentin antibody shows renal 
subcapsular engraftment of CLECs (A) 1 month and (B) 3 months after implantation 
in NOD-SCID mice. (C) Engraftment of CLECs, 1 month after injection into nuchal 
subcutaneous region. Original magnification ×200. (D) Immunostaining of cultured 
CLECs from explants recovered from subcutaneous regions of mice 1 month after 
implantation. Original magnification ×100. Bar = 100 μm. 
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2.1.11.  FVIII secretion and phenotypic correction of hemophilic mice 

We co-electroporated CLECs with pattB HFer BDD-human FVIII F309S and 

pCMV-Int to derive FVIII-expressing cells. FVIII was readily detectable in 

conditioned media on day 3 (51.88 ± 2.38 mUnits per 1 × 106 cells per 24 hours) and 

day 15 (350 ± 13.183 mUnits per 1 × 106 cells per 24 hours; mean ± SEM; n = 3) 

after electroporation (Figure 3). CLECs stably integrated with pattB HFer BDD-

human FVIII F309S secreted FVIII unabated for at least 5 weeks in vitro (Figure 12) 

whereas FVIII secretion from CLECs transfected with the same donor plasmid but 

without pCMV-Int never lasted >1 week (data not shown). 
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Figure 12 Durability of FVIII expression in phiC31 integrase-modified 
CLECs. FVIII activity (mUnits per 106 cells per 24 hours) in conditioned media of 
unselected (day 3) and G418 selected CLECs (days 14 to 37) that had been 
electroporated with  BDD-human FVIII F309S cDNA expressed from human ferritin 
L promoter on day 0. Data are mean ± SEM (n=3).  
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In vivo secretion of transgenic FVIII was shown when subcutaneous 

implantation of 8 × 106 Matrigel-encapsulated, stably integrated CLECs significantly 

raised plasma FVIII antigen levels of hemophilic mice from 0.21 ± 0.06 %  to 3.27 ± 

0.56 % (mean ± SEM; n = 5) 3 days after implantation (P = 0.002 compared to 

control FVIII deficient mice) (Figure 13A). These levels significantly improved the 

bleeding phenotype. Control hemophilic mice implanted with naive CLECs had a 

mean blood loss of 797 ± 89 mg in the tail-clip assay, whereas hemophilic mice 

implanted with unencapsulated or encapsulated CLECs stably integrated with FVIII 

cDNA lost 418 ± 43 mg and 363 ± 28 mg of blood (P = 0.03 and 0.001, respectively 

as compared to control FVIII-deficient mice) (Figure 13B). 
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Figure 13 Detection of transgenic human FVIII in murine plasma and 
correction of bleeding phenotype following xenoimplantation of FVIII-secreting 
CLECS. (A) Plasma FVIII antigen levels of hemophilic mice implanted 
subcutaneously with 8 × 106 stably integrated FVIII-secreting CLECs that were either 
unencapsulated or encapsulated with Matrigel. Control animals were implanted with 
Matrigel-encapsulated wild-type CLECs. Plasma FVIII antigen levels were measured 
using an ELISA technique specific for human FVIII. FVIII levels of treated 
hemophilic mice were significantly higher (P < 0.05) on days 1 (orange bars) and 3 
(black bars) compared to day 0 values (yellow bars). Data are mean ± SEM; n = 5 per 
group. (B) Assessment of bleeding phenotype correction. The amount of blood loss 
during a 15 minute period following a tail clip was determined for FVIII-replete 
C57BL/6 mice, hemophilic mice implanted subcutaneously with Matrigel-
encapsulated wild-type CLECs, hemophilic mice implanted with unencapsulated or 
Matrigel-encapsulated FVIII-secreting CLECs. Blood loss was significantly reduced 
(P<0.05) in treated mice compared to control hemophilic animals. Data are mean ± 
SEM; n = 5 per group.  
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2.2. Evaluation of oligoclonal CLECs with hybrid FVIII cDNA integration in 

chromosome 8p22 

We sought to make three major improvements to refine our study of CLECs 

that had been genome-modified using phiC31 integrase, First, we sought to improve 

FVIII expression from genome-modified cells by expressing a hybrid FVIII which 

others have shown to be more efficiently secreted1. Second, we attempted to improve 

survival of xenogeneic human cells by implanting them into a more severely 

immunodeficient murine strain, the NSG mice. Third, we hypothesized that it might 

be possible to screen and characterize a number of genome-modified clonal CLECs 

that could prove to be safe for clinical cell therapy. To this end, we specifically 

investigated clonal CLECs with transgene integration at chromosome 8p22. 

2.2.1. Hybrid human-porcine FVIII is expressed at higher levels in CLECs 

We have previously shown secretion of a B-domain deleted (BDD) human 

FVIII variant in transfected CLECs. In an attempt to increase the level of secreted 

FVIII, we designed and constructed a hybrid FVIII cDNA that was similar to a 

construct reported to induce 10-fold higher FVIII expression2. We assembled a 

plasmid encoding a BDD-hybrid FVIII cDNA comprising A1 and A3 domains of 

porcine FVIII, and A2, C1 and C2 domains of human FVIII cDNA. In order to 

compare the efficacy of the human/porcine hybrid FVIII construct, CLECs were co-

electroporated with an EGFP plasmid and a plasmid encoding either the BDD-human 

FVIII F309S  cDNA or BDD-human/porcine hybrid FVIII cDNA, both driven from 

the human ferritin light chain promoter. FVIII secretion from cells electroporated 

with either construct was determined by chromogenic FVIII assay while transfection 

efficiency was determined by the percentage EGFP-positive cells measured by flow 

cytometry. Comparison of FVIII levels normalized to 1% of GFP-positive cells 

revealed an approximately 5.5-fold higher level of secreted FVIII (P=0.003) (Figure 

14) by CLECs electroporated with the BDD-human/porcine hybrid FVIII compared 

with BDD-human FVIII F309S.  Duplicate experiments confirmed these results 

although the fold-difference between hybrid FVIII and human FVIII transfected 

samples normalized for transfection efficiency was found to be even higher, up to 20-

fold. Given the significantly superior FVIII levels achieved, all further experiments 

were done using the hybrid FVIII. 
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Figure 14 Enhanced secretion of human/porcine hybrid BDD-FVIII in 
transfected CLECs. FVIII activity (Coamatic® FVIII assay, Chromogenix) in 
conditioned media of naïve CLECs or CLECs co-electroporated with an EGFP 
reporter gene and either a human BDD-FVIII F309S or human/porcine hybrid BDD-
FVIII. Data are expressed as mU/ml normalized to transfection efficiency. Each data 
point shows the mean of triplicate assays of a single experiment. An average 5.5-fold 
increase in FVIII levels (P = 0.003; Student’s unpaired t-test) was detected with the 
hybrid FVIII cDNA compared to human FVIII cDNA. 
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2.2.2. Biosafety analyses of genome-modified oligoclonal CLECs 

2.2.2.1. Screening for oligoclonal CLECs with 8p22 integration 

Analysis of a bulk population of integrase modified CLECs suggested that 

there might be a small fraction of cells which acquire chromosomal aberrations as a 

consequence of phiC31integrase treatment. However, further analysis of 10 clonal 

populations of genome-modified CLECs showed that none of these analyzed clonal 

cells had any chromosomal abnormalities. We thus hypothesized that it might be 

possible to screen and characterize a number of genome-modified clonal CLECs to 

provide greater assurance of biosafety. These clones could then be expanded and used 

for in vivo cell therapy. Our earlier studies established that almost 45% of all 

integrations were single copy integrations and that close to 40% of all recovered 

integration events were at chromosome 8p22. Thus we sought to specifically 

investigate clonal CLEC populations with transgene integration at chromosome 8p22. 

Our main objective was to investigate whether clonal cells with FVIII transgene 

integration at chromosome 8p22 could prove to be safe and capable of sustaining 

durable FVIII expression. 

A bulk population of G418-selected CLECs treated with pattB Hfer hybrid 

FVIII and phiC31 integrase was analyzed for durability of FVIII secretion and for 

evidence of transgene integration at the chromosome 8p22 locus. FVIII activity assay 

(Figure 15B) of conditioned media showed durable FVIII expression from G418-

selected CLECs that were transfected with pattB Hfer hybrid FVIII and phiC31 

integrase (day 6: 298.30 ± 19.01 mUnits FVIII/ 106 cells/ 24 hr; day 25: 377.1 ± 

28.42 mUnits FVIII/ 106 cells/ 24 hr) but not those that were similarly transfected but 

not G418 selected (day 6: 298.30 ± 19.01 mUnits FVIII/ 106 cells/ 24 hr; day 25: 

20.42 ± 4.01 mUnits FVIII/ 106 cells/ 24 hr), indicating that G418 selection enriched 

for cells with stable genomic integration of the FVIII transgene. CLECs that were 

transfected only with pattB Hfer hybrid FVIII and not G418 selected also showed a 

steep decline in FVIII levels from day 6 to day 25 (day 6: 89.02 ± 9.77 mUnits FVIII/ 

106 cells/ 24 hr; day 25: 3.33 ± 0.71 mUnits FVIII/ 106 cells/ 24 hr), consistent with 

loss of episomal FVIII plasmid with successive cell divisions and negligible genomic 

integration in the absence of the integrase. 

A bulk population of CLECs that was electroporated with pattB Hfer hybrid 

FVIII and phiC31 integrase and G418 selected was screened for transgene integration 

at chromosome 8p22 by junction PCR using primer pairs that recognized sequences 

within the FVIII vector and within a previously identified pseudo attP site in 

chromosome 8p223. PCR amplification of both left and right integration junctions 
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provided evidence for site-specific integration of FVIII transgene cassette at the locus 

of interest (Figure 15A). Integration junction PCR products were sequenced to 

confirm that transgene integration had occurred at the previously identified hotspot in 

chromosome 8p22. Sequence analysis showed that there was a 6-bp deletion in the 

vector sequence and a 7-bp deletion in the genomic region at the left and right 

integration junctions, respectively (Appendix 5). 
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Figure 15 Evidence of transgene integration at 8p22 locus and durable 
FVIII secretion from CLECs treated with pattB Hfer hybrid FVIII and phiC31 
integrase. Stable G418-resistant CLECs derived by electroporation with pattB Hfer 
hybrid FVIII and phiC31 integrase were screened by junction PCR for evidence of 
integration at chromosome 8p22 and for FVIII activity in conditioned media. (A) 
Genomic DNA (200ng) extracted from a bulk population of genome-modified CLECs 
was amplified with primer pairs specific for the vector and chromosome 8p22 
genomic DNA to detect the presence of left and right integration junctions indicative 
of correct integration at the pseudo attP site in chromosome 8p22 (done in 
duplicates). “–ve” denotes minus template PCR amplification while “+ve” denotes 
amplification from genomic DNA isolated from a clonal line of CLEC previously 
identified to have integration at 8p22 locus. Control PCR amplified a 900 bp region in 
chromosome 19q13.42 (AAVS1 locus). Amplified products were resolved 1% 
agarose gel electrophoresis and imaged using BioRad® Gel Doc 2000 transilluminator 
and QuantityOne software. (B) Overnight conditioned media of genome-modified 
CLECs (pattB hybrid FVIII; no G418 selection, pattB hybrid FVIII + integrase; no 
G418 selection, pattB hybrid FVIII + integrase; G418 selection) was assayed for 
FVIII activity on day 6 (before G418 selection), day 25 and day 36 (after G418 
selection; where indicated) post- electroporation. Data are mean ± SEM; n=3 per 
group.    
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Evidence that genome-modified cells with 8p22 integrations were present in 

the bulk-transfected population prompted us to derive clonal populations of genome-

modified CLECs having this specific integration. We examined oligoclonal CLECs 

obtained by flow sorting 4 cells into each well of 96-well plates for evidence of 8p22-

specific transgene integration by direct in situ PCR. Using primer pairs specific to the 

vector sequence and sequence at the 8p22 hotspot, genomic DNA from in situ lysed 

cells were screened by PCR for presence of left and right integration junctions, 

indicative of complete transgene integration. A control PCR amplifying a genomic 

region in chromosome 19q13.42 served to verify integrity of genomic DNA and the 

PCR efficiency between samples. Our analysis of 72 oligoclonal populations revealed 

66 that were positive for control PCR amplification indicating presence of intact 

genomic DNA in those samples. Of these 66 samples, 16 (24%) amplified both left 

and right integration junctions at the 8p22 hotspot (Figure 16A).  

We next proceeded to test clonal CLECs with transgene integration at 8p22 

for FVIII expression (Figure 16B). Of 13 clonal populations screened for FVIII 

secretion capacity, 10 secreted supraphysiological levels of FVIII (2610 – 5724 

mUnits FVIII/ 106 cells / 24 hr), while 3 clonal cultures (#30, #18, and #47) that did 

not secrete FVIII were also negative for transgene integration at 8p22 (Figure 16A). 

High levels of FVIII expression detected 40 days post-electroporation support the 

hypothesis that transgene integration at 8p22 is compatible with durable FVIII 

secretion by genome-modified cells.  
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Figure 16  Identification of oligoclonal CLECs with transgene integration at 
8p22 locus and FVIII secretion. (A) Oligoclonal cells (4 flow-sorted cells per well) 
from a bulk population of G418-selected CLECs electroporated with pattB hybrid 
FVIII and phiC31 integrase were investigated by direct in situ PCR for transgene 
integration at the chromosome 8p22 hotspot. In situ lysed cells were screened using 
Phusion® human specimen direct PCR kit (state manufacturer) and primers specific 
for vector and genomic sequences at chromosome 8p22 integration site to detect the 
presence of left and right integration junctions. Control genomic PCR amplified a 900 
bp region in chromosome 19q13.42 (AAVS1 locus). “–ve” denotes minus template 
PCR amplification while “+ve” denotes amplification from genomic DNA isolated 
from a previously identified clonal CLEC with integration at 8p22 locus. Amplified 
products were electrophoresed on 1% agarose gels and imaged using BioRad®Gel 
Doc 2000 transilluminator and QuantityOne software. Red box highlights samples 
which were positive for left and right integration junctions and control PCR. (B) 
CLECs that were electroporated without any plasmid DNA (EP only), CLECs from a 
bulk culture of phiC31 integrase-mediated integration of hybrid FVIII cDNA (INT 1) 
and clonal CLECs that were positive for transgene integration at 8p22 locus (# 10, 15, 
16, 28, 39, 40, 50, 59, 62, 68, 69) as well as 3 clonal populations that were negative 
for 8p22 transgene integration (#18, 30, 47) were evaluated for FVIII secretion (day 
40 post-electroporation). Overnight conditioned media were assayed for FVIII 
activity using a Coamatic FVIII kit. Data are mean ± SEM; n=3 per group. 
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We performed FISH with probes specific to chromosome 8 centromere and 

the integrated transgene to confirm integration at chromosome 8p22 and to determine 

transgene copy number in oligoclonal cells. Single copy transgene integration was 

noted in the vast majority of cells for each oligoclonal cell population analyzed. 

Figure 17 shows the close proximity of FISH signals specific to chromosome 8 

centromere and the integrated transgene could be taken as evidence of integration at 

chromosome 8p22, consistent with our results from junction PCR and sequencing. 

However, we noted that all of the oligoclonal populations screened also had cells with 

transgene integrations in other chromosomes. Thus, the oligoclonal populations were 

mixtures of cells with integrations at 8p22 and other chromosomes. We were 

compelled to use oligoclonal cells owing to the difficulty of deriving monoclonal cell 

lines by flow-sorting single cells. Given that oligoclonal cells were derived from an 

initial sorting of 4 cells per well and assuming all transgene integrations were single 

copy events, a  maximum of 4 different integration sites could be expected for each 

oligoclonal population. Nonetheless, screening oligoclonal cells for tumorigenic 

potential could be considered an improvement compared to evaluating a much more 

heterogeneous bulk population we have shown to consist of cells with single and 

multiple transgene integrations and integration sites.        
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Figure 17 FISH to verify transgene copy number and integration at 
chromosome 8p22 in oligoclonal cells. Genome-modified oligoclonal CLECs 
identified by junction PCR to be positive for transgene integration at chromosome 
8p22 were screened by FISH. Fluorescence images of DAPI-stained cells hybridized 
with FITC-labeled probes specific to integrated vector (green signal) and Texas Red-
labeled centromeric probes specific to chromosome 8 (red signal) are shown (original 
magnification 600x). Integration of transgene at chromosome 8p22 is indicated by the 
close proximity of the vector specific green signal and chromosome 8 centromere red 
signal.    
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2.2.2.2. RT-PCR analysis of DLC1 transcript in oligoclonal CLECs with 8p22 

integration 

As the transgene integration site in chromosome 8p22 is situated within an 

intron of a tumor suppressor gene, DLC14, it was pertinent to determine if DLC1 

expression was perturbed by the integrated transgene. We performed quantitative-RT-

PCR to determine if DLC1 transcript levels (exon 1 and exon 8) in clonal CLECs 

with transgene integration at 8p22 were different relative to control CLECs 

(electroporated without any plasmid DNA but having undergone the same number of 

population doublings in culture). The mean fold changes in GAPDH-normalized 

DLC1 transcript levels in CLECs with transgene integration in 8p22 expressed 

relative to normalized DLC1 transcripts levels of control CLECs are shown in Figure 

18. Normalized DLC1 transcript levels in clonal CLECs with 8p22 integrations 

ranged between 0.58 to 1.603 (exon 1) and 0.851 to 1.38 (exon 8) of normalized 

transcript levels in control CLECs, suggesting minimal perturbations to DLC1 

expression as a consequence of transgene integration at 8p22.   
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Figure 18 Quantitative RT-PCR of DLC1 transcript levels in 8p22 
oligoclonal CLECs. Quantitative RT-PCR was performed on control CLECs that had 
been electroporated without any DNA and oligoclonal CLECs with transgene 
integration at 8p22 to quantify DLC1 transcript levels (exon 1 and exon 8) and 
GAPDH expression. The mean fold change in GAPDH-normalized DLC1 expression 
levels in clonal samples (exon 1 and exon 8) are shown relative to that of control 
CLECs as determined by the 2-ΔΔCt method5. Horizontal black line demarcates no 
change in normalized DLC1 transcripts relative to control. A relative mean fold 
change in DLC1 levels of ≥2 was considered significant. Data are mean ± SEM; n=3 
experiments per group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://wizfolio.com/?citation=1&ver=3&ItemID=997&UserID=8336&AccessCode=A22BC0E4D63A4EB3A74DB26518BA57CD&CitationSuffix=�


170 

 

2.2.2.3. Transcriptome analysis of oligoclonal CLECs with 8p22 integration 

The extent to which transgene integration at 8p22 altered the transcriptome of 

oligoclonal CLECs was investigated by transcriptome profiling on Affymetrix 

PrimeView expression arrays. Transcripts that differed by 2.5-fold or more compared 

to CLECs that were electroporated without plasmid DNA and cultured under similar 

conditions and length of time were identified.  

Transcriptome analysis identified a total of 341 genes that were commonly 

altered in expression in all 8 oligoclonal CLECs with 8p22 integration compared to 

control CLECs (Appendix 7). Of these, 93 genes were up-regulated and 248 genes 

were down-regulated by 2.5-fold or greater. No significant changes were detected in 

the expression of DLC1 gene at chromosome 8p22 or genes that mapped within a 1 

Mb window (LONRF1, KIAA456, C8orf48) centered on 8p22 integrations for all 8 

oligoclonal CLECs. Significantly altered genes were classified and clustered 

according to their biological functions and their proportional categorizations are 

depicted in Figure 19. Intriguingly, up to 40% of the genes with down-regulated 

expression were involved in cell cycle regulation, suggesting that proliferation of 

oligoclonal CLECs with 8p22 integration could be reduced compared to control 

CLECs. A potential reason for such growth retardation could be the increased 

metabolic burden from overexpression of a transgenic protein6. Given that the 

oligoclonal CLECs were cultured continuously in vitro for at least 2 months, 

induction of senescence associated with down-regulation of cell cycle genes could not 

be excluded. In either case, down-regulation of cell cycle genes and slower cell 

proliferation would be in direct contrast with the behavior of transformed cells. 

The list of genes with altered expressed were submitted to DAVID pathway 

mapping analysis and compared against a list of oncogenes7.  This clustered down-

regulated genes (46 genes) mainly to cell cycle and DNA repair pathways (KEGG  

pathway database) (Appendix 8). Genes with up-regulated expression were not 

significantly clustered to any pathway. Comparisons of the altered genes with a list of 

potential oncogenes identified 9 and 31 oncogenes among the list of genes that were 

up-regulated and down-regulated, respectively (Appendix 7).  

In summary, transcriptome analysis of oligoclonal CLECs with transgene 

integration at 8p22 locus did not bear signatures of transformed cell lines. This was 

evident by the fact that a large majority of cell cycle genes were down-regulated, 

consistent with slower growth of these genome-modified cells as opposed to 

accelerated growth of transformed cells.     
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Figure 19 Classification of significantly altered genes according to 
biological process. Categorization of genes which differed in their expression by 
≥2.5-fold in all 8 oligoclonal CLECs relative to control CLECs. The percentage of 
(top) significantly up-regulated and (bottom) significantly down-regulated genes 
categorized according to their biological functions are depicted.  
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2.2.2.4. Molecular cytogenetic analysis of oligoclonal CLECs with 8p22 integration 

We next evaluated oligoclonal CLECs with 8p22 integrations for global copy 

number changes by performing a high density SNP array hybridization (Affymetrix 

CytoScan HD array). Our global analysis for copy number change revealed no 

significant change in all 8 oligoclones tested except for a single amplification event 

(copy number state of 3) in the peri-centromeric region of chromosome 19 (spanning 

4118 kb and identified by a total of 442 probes) in clone#10 (Figure 20).  Only a 

single gene, ZNF254, resided within this affected region but its expression was not 

significantly changed.  
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Figure 20 Copy number change observed at chromosome 19 in CLEC 
oligoclone #10.  (A) Copy number profile of chromosome 19 of CLEC oligoclone 
#10 with transgene integration at chromosome 8p22 generated on Affymetrix 
Cytoscan HD Array Set. Weighted log2 signal intensity ratios and copy number state 
across chromosome 19 are depicted on the vertical axis, and cytobands and distance 
from the start of chromosome on the horizontal axis. A single locus with significant 
amplification (identified by at least 50 consecutive probes showing concordant 
change) has been circled (in red). (B) Characteristics of the significantly amplified 
genomic region. The genomic location, physical size, number of probes and copy 
number state across the affected region in chromosome 19 as well as the single gene 
residing within this region are tabulated.  
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2.2.2.5. Investigation of tumorigenicity and durability of FVIII expression of 

genome-modified CLECs in NSG mice 

The tumorigenic potential of hybrid FVIII-expressing clonal CLECs with 

transgene integration at 8p22 locus was investigated by implantation into  NOD-

SCID IL2Rγ null (NSG) mice. The survival and engraftment of implanted cells was 

monitored by measuring levels of transgenic hybrid FVIII (secreted by implanted 

CLECs) in murine plasma using a FVIII-antigen capture ELISA assay specific for 

human but not murine FVIII. Untreated mice and mice implanted with CLECs that 

received electroporation only served as negative controls for tumor formation and 

plasma hybrid FVIII measurements, respectively. NSG mice implanted with a 

tumorigenic cell line (Hs746T) served as positive controls for tumorigenicity studies. 

Hybrid FVIII was readily detected at high levels in murine plasma 3 days 

post-implantation (335.65 ± 19.98 mUnit/ml) (Figure 21A). However, a decline in 

plasma hybrid FVIII levels was detected on days 7 (236.9 ± 24.67 mUnits/ml) and 14 

(40.17 ± 6.29 mUnits/ml) post-implantation. Although day 14 plasma FVIII levels 

were significantly higher (P<0.05) in mice implanted with FVIII-secreting CLECs 

(40.17 ± 6.29 mUnits/ml) compared with untreated mice (10.5 ± 2.45 mUnits/ml) or 

mice implanted with unmodified CLECs (8.67 ± 1.06 mUnits/ml), plasma FVIII 

levels were no longer different from these control mice by day 30 post-implantation. 

Given the highly immunodeficient nature of these mice, the likely reason for decline 

in FVIII levels could be a failure of implanted cells to efficiently engraft. 

Angiogenesis is crucial for cell survival and engraftment. Poor vascularisation (rather 

than development of inhibitory antibodies in immunodeficient mice) and loss of cell 

viability at implantation sites are potential reasons for the decline of plasma hybrid 

FVIII levels. Untreated mice and mice receiving CLECs that were electroporated only 

(without plasmid DNA) had very low levels of plasma hybrid FVIII (6 – 11 

mUnits/ml), that were taken to be background levels detected of the assay method. 

 Although loss of viability of implanted cells could be inferred from the 

decline in plasma FVIII levels observed over the 30-day period following 

implantation, we were able to demonstrate the presence of CLECs at implantation 

sites by immunohistochemical staining for human vimentin.  Figure 21B shows 

human vimentin staining of excised Matrigel implants from implanted mice at 1, 2 

and 3 months post-implantation. We were also able to derive secondary cultures of 

the implanted cells from recovered Matrigel implants which were subsequently 

shown to be human vimentin positive by immunohistochemical staining (Figure 

21C) and to be secreting FVIII (1304 ± 34.05 mUnits FVIII/ 106 cells/ 24 hr) in 
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culture. Collectively, these data suggest that a proportion of the initially implanted 

cells do survive and establish long-term engraftment but are not sufficiently 

numerous to secrete detectable levels of transgenic FVIII in murine plasma. While no 

tumors were observed for up to 3 months post-implantation from implantation of 3 x 

106 unmodified or FVIII-expressing CLECs (n=20 mice), large nodular  tumors were 

readily observed in mice implanted (n=4) with similar numbers of the tumorigenic 

cell line, as early as 3 weeks post-implantation (Figure 21D). These data suggest that 

oligoclonal CLECs with transgene integration at 8p22 locus which had been cultured 

in vitro for at least 2 months prior to implantation were unlikely to be tumorigenic.    
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Figure 21 Assessment of in vivo FVIII secretion and tumorigenicity 
following implantation of CLECs stably secreting transgenic hybrid FVIII in 
NSG mice. (A) Plasma FVIII levels of NSG mice that were unimplanted (n=4) or 
implanted subcutaneously with (i) Matrigel-encapsulated CLECs that received 
electroporation only (EP only, n=4); or (ii) FVIII-secreting oligoclonal CLECs (n=16) 
with hybrid FVIII cDNA integrated at 8p22 locus (3 x 106 cells per animal) were 
measured using an ELISA based on antigen capture specific for human FVIII, on 
days 3, 7, 14 and 30 post-implantation. Plasma FVIII levels of mice implanted with 
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FVIII-secreting cells were significantly higher (P < 0.05) on days 3 (yellow bar), 7 
(orange bar) and 14 (grey bar) compared to control mice that were either unimplanted 
or implanted with cells  electroporated without any plasmid DNA (EP only). Data are 
mean ± SEM. (B) Immunohistochemical staining of Matrigel implants retrieved from 
implanted mice at the indicated time points post-implantation show evidence (brown 
staining) for the presence of engrafted CLECs expressing  human vimentin. (C) 
(Left) Brightfield view of outgrowth cells from a culture of Matrigel implants 
retrieved 2 months post-implantation; and (right) immunohistochemical staining of 
explant cultured cells for human vimentin expression. (D) No tumors were observed 
in mice implanted with Matrigel encapsulated 3 x106 genome-modified CLECs at day 
90 post-implantation (left) while nodular tumors were observed in mice implanted 
with equal numbers of Matrigel-encapsulated a tumorigenic cell line, Hs746T, 1 
month post-implantation (right). Arrow points to Matrigel implant.   
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2.2.3. Stable transgene integration and expression in human dermal 

fibroblasts, bone marrow-derived and adipose-derived stromal cells 

Having documented the capacity for site-specific transgene integration and 

stable expression of hybrid FVIII in primary human CLECs, we next investigated if 

other adult primary human cell types could also be modified using the phiC31 

integrase to stably integrate and durably express the hybrid FVIII transgene.  

Bone marrow-derived stromal cells (BMSC), adipose-derived stromal cells 

(ADSC) and normal dermal fibroblasts (NF123) (all primary cultures) were co-

electroporated with pattB Hfer hybrid FVIII and phiC31 integrase plasmids, and 

subsequently selected with G418 to derive stable cell cultures. Integration junction 

PCR performed on genomic DNA extracted from these stable cell cultures provided 

evidence for site-specific transgene integration at 8p22 locus (Figure 22A), showing 

that phiC31 integrase-mediated transgene integration into the 8p22 locus was feasible 

in a range of adult primary human cell types.   

Consistent with stable transgene integration into the genome, durable FVIII 

expression was observed in vitro in all three stable cell cultures for up to 1 month 

post-electroporation (duration of this experiment) (Figure 22B). These results suggest 

that the human ferritin light chain promoter was not silenced and could stably drive 

hybrid FVIII expression following transgene integration into genomic regions to 

support durable transgene expression. We are cognizant that different cell types may 

require different promoters for optimal activity.    

 Thus, the results suggest that phiC31 integrase-mediated transgene 

integration can induce durable transgene expression and that this may be applicable 

for cell- and gene-based therapies for hemophilia A delivered via a range of different 

primary adult human cell types.  
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Figure 22 Transgene integration at the 8p22 locus and durable FVIII 
secretion in phiC31 integrase-modified primary adult human cells. (A) G418-
resistant stable cells derived from primary cultures of bone marrow-derived stromal 
cells (BMSC), adipose-derived stromal cells (ADSC) and normal dermal fibroblasts 
(NF123) co-electroporated with pattB hybrid FVIII and phiC31 integrase were 
examined for evidence of transgene integration at 8p22 locus by left and right 
integration junction PCR. “-ve” refers to minus template amplification. Left and right 
integration junctions were amplified with vector-specific and genomic DNA-specific 
primers while control genomic PCR was performed with a pair of genome specific-
primers amplifying a 900-bp region within chromosome 19. Amplified products were 
electrophoresed on 1% agarose gels and imaged using BioRad®Gel Doc 2000 
transilluminator and QuantityOne software. Black arrows indicate the predicted 
integration junction PCR amplified bands. (B) FVIII activity in overnight conditioned 
media of untreated (Wt) and G418-resistant (phiC31 integrase-modified) BMSC, 
ADSC and NF123, determined 1 month after co-electroporation with pattB hybrid 
FVIII and phiC31 integrase. Data are mean ± SEM; n= 3 per group.  
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2.3. AAVS1 ZFN cell modification  

Data detailed in the preceding sections showed that phiC31 integrase could 

stably modify CLECs for durable transgene expression and raised the possibility of 

developing FVIII-secreting CLECs as bioimplants for hemophilia therapy. Although 

most of our genotoxicity data suggested minimal risk for adverse outcomes following 

phiC31 integrase-mediated transgenesis, the known capacity of this system for 

integrations into multiple genomic regions and our observation of low frequency 

chromosomal translocations prompted us to evaluate ZFNs as a more precise and thus 

safer alternative for site-directed transgenesis into a potentially safe genomic harbor, 

the AAVS1 locus1.    

2.3.1. AAVS1 ZFN-mediated homologous recombination in K562 cells 

 Initial optimization and evaluation of AAVS1 ZFNs to integrate donor DNA 

of varying sizes was evaluated in a human chronic myelogenous leukemia cell line, 

K562, which other investigators have shown to be permissive for ZFN-mediated 

transgene integrations at high efficiencies2. Our initial studies were performed with 

commercially purchased AAVS1 ZFN mRNA (Sigma-Aldrich).    

2.3.1.1. Integration of 50-bp donor DNA into AAVS1 locus 

The first evidence of site-specific integration at the AAVS1 locus of K562 

cells was the demonstration of integration of a 50-bp donor DNA fragment following 

co-transfection with AAVS1 ZFN mRNA and pZDonor plasmid. The transfection 

efficiency as assessed by flow cytometry following nucleofection of an EGFP 

reporter gene was 49.54 ± 0.26 % (Data are mean ± SEM, n=3). 

Junction PCR analysis using a vector-specific primer and AAVS1 genomic 

DNA specific primer provided evidence for site-directed integration of the 50-bp 

donor DNA in K562 cells only when co-electroporated with pZDonor and AAVS1 

ZFNs (Donor + AAVS1 D4) and not when only pZDonor (Donor only) was 

electroporated. Treated cells (Donor + AAVS1 ZFN) analyzed on day 4 and day 16 

post-treatment were positive for site-specific integration, demonstrating stable 

modification of cells (Figure 23, junction PCR). Control genomic PCR amplifying a 

common AAVS1 locus present in all cell populations (Donor only and Donor + 

AAVS1 ZFN), verified the integrity of genomic DNA template and served as a 

positive PCR control. 

Site-specific integration of 50-bp donor DNA at the AAVS1 locus was 

confirmed by RFLP assay. The two faster migrating bands (Figure 23,  RFLP assay, 

http://wizfolio.com/?citation=1&ver=3&ItemID=355&UserID=8336&AccessCode=660342E485C0488BB130A0E42B9638D5&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=385&UserID=8336&AccessCode=6E1142241018432EA41826CBC895DDD9&CitationSuffix=�
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Donor + AAVS1 ZFN D4), restriction enzyme-digested PCR products, provided 

evidence for site-specific integration of a 50-bp donor DNA fragment carrying a 

novel restriction enzyme site not present at the endogenous AAVS1 locus. Genomic 

DNA extracted from K562 cells electroporated with donor DNA only were negative 

for RFLP PCR products (Figure 23,  RFLP assay, Donor only), indicating absence 

of site-specific integration of donor DNA without co-electroporation of ZFN. Site-

specific double-stranded DNA breaks induced by AAVS1 ZFNs are required to 

greatly enhance homologous recombination (HR) and site-specific integration of 

donor DNA. Densitometric measurements of cleaved, restriction digested RFLP PCR 

products (two faster migrating bands) expressed as a percentage of total DNA 

(cleaved products and uncleaved DNA) gave an estimate of the percentage of K562 

cells that attained site-specific integration. Such an analysis revealed approximately 

52.64 ± 0.85 % of treated K562 cells (data are mean ± SEM, n=2) attaining site-

specific donor DNA integration when co-transfected with donor DNA and AAVS1 

ZFN.   
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Figure 23 ZFN-mediated site-specific integration of 50-bp donor DNA into 
AAVS1 locus in K562 cells. K562 cells were co-electroporated with pEGFP-C1 and 
pZDonor plasmid DNA with or without AAVS1 ZFN mRNA. (Left): Brightfield and 
fluorescent images of transfected K562 cells. PCR spanning the integration junction 
(top) was performed (in duplicates or triplicates) on genomic DNA from cells treated 
with donor DNA only (4 days post- treatment) or with donor DNA and AAVS1 ZFN 
(4 and 16 days post-treatment), with genome specific (AAVS1 R) and vector specific 
primers (MCS F). Control genomic PCR amplified an adjacent 900-bp region of the 
AAVS1 locus. Amplified products were electrophoresed on 1% agarose gels and 
imaged using BioRad®Gel Doc 2000 transilluminator and QuantityOne software. 
(Bottom): RFLP assay was performed (in duplicate) by digesting genome amplified 
PCR products (amplified with genome-specific primers spanning the integration site) 
with Hind III restriction enzyme followed by electrophoresis in a 5% polyacrylamide 
gel. Site-specific integration of 50-bp DNA results in introduction of a Hind III 
recognition site which is evident by the appearance of two cleaved, faster migrating 
DNA bands. Densitometric measurements (performed with Quantity One software) of 
digested bands (modified) expressed as a percentage of undigested (unmodified) and 
digested bands gave the estimated site-specific integration frequency. 
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2.3.1.2. Optimization of ZFN activity and HR frequency 

To optimize ZFN activity and improve HR frequency, we evaluated the 

effects of mild hypothermic incubation and different AAVS1 ZFN variants on the 

efficiency of ZFN-mediated site-specific transgene integration.   

2.3.1.2.1. JPCR evaluation on the effects of AAVS1 ZFN variants and mild 

hypothermia  

Commercially purchased AAVS1 ZFN mRNAs which were costly and of 

limited quantity were compared against AAVS1 ZFNs cloned as plasmids and 

expressed from the CMV promoter in this project. ZFNs were mutated to function as 

obligate heterodimers3 (OH ZFNs), further modified to enhance FokI cleavage 

activity4 (Sharkey ZFNs) and modified with a third mutation5 to further improve 

nuclease activity (termed enhanced Sharkey ZFNs). We also compared the effect of 

expressing left and right ZFNs from a single vector compared to expressing each ZFN 

from its own plasmid. Site-specific integration of a 50-bp donor DNA from pZDonor 

was evaluated by junctional PCR analysis and RFLP assay. 

Junctional PCR band intensities normalized to corresponding control 

genomic PCR band intensities and expressed as a percentage of AAVS1 ZFN mRNA 

treated samples showed increased site-specific integrations mediated by enhanced 

Sharkey ZFNs (84%) and Sharkey ZFNs (52%) compared to obligate heterodimeric 

ZFNs (36%) (Figure 24). Given the lower probability of 2 single vector ZFNs being 

transfected into the same cell by electroporation compared to a single vector 

expressing both ZFNs, it was not surprising to observe an almost two-fold increase in 

site-specific integration when Sharkey ZFNs were delivered as a dual expression 

cassette (Sharkey Dual ZFN, 94%) compared to 2 single vector ZFN plasmids 

(Sharkey 2 single ZFNs, 52%). Incubation of cells under mild hypothermic 

conditions6 (OH 2 single ZFNs 30°C) resulted in an almost 2-fold increase in site-

specific integration (80% vs 43%) compared to incubation at 37°C (OH 2 single 

ZFNs 37°C), as reported previously6. 
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http://wizfolio.com/?citation=1&ver=3&ItemID=607&UserID=8336&AccessCode=7430361C28814CB99414795295827D94&CitationSuffix=�


185 

 

 

Figure 24 Optimization of site-specific integration with different AAVS1 
ZFN plasmids.  K562 cells co-transfected with 10 μg of pZDonor and different 
combinations of AAVS1 ZFNs (5 μg in total) were examined by junction PCR 4 days 
post-treatment (incubated at 37°C unless otherwise indicated) for site-specific 
integration of a 50-bp donor DNA.  AAVS1 ZFNs were delivered as mRNA (Sigma) 
or as obligate heterodimeric (OH) ZFNs, Sharkey ZFNs and enhanced Sharkey ZFNs 
delivered from 2 single vector plasmids or Sharkey ZFNs delivered as a dual 
expression vector. Control genomic PCR amplified a 900-bp region of the AAVS1 
locus and minus template PCR (-ve) served as a negative PCR control.  Amplified 
products were electrophoresed on 1% agarose gels, imaged using BioRad®Gel Doc 
2000 transilluminator and analyzed by densitometric measurements using 
QuantityOne software. Densitometric measurements of junctional PCR bands were 
normalized to their corresponding control genomic PCR bands. For each treatment, 
the normalized band intensities was expressed as a percentage of the AAVS1 ZFN 
mRNA sample.  
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2.3.1.2.2. RFLP evaluation on the effects of AAVS1 ZFN variants and mild 

hypothermia  

Results of junctional PCR analyses were confirmed by performing RFLP 

assays on K562 cells treated with either AAVS1 ZFN mRNA or ZFN variant 

plasmids delivered from a dual expression vector. The effect of incubation in mild 

hypothermic conditions was also investigated. Figure 25 shows RFLP products 

resolved on PAGE gels and quantified by densitometry to calculate percent donor 

DNA integration shown in panel B.  

Densitometric measurements of RFLP assay products showed that at 37°C, 

K562 cells treated with enhanced Sharkey ZFNs (25.29 ± 0.58%) and Sharkey ZFNs 

(19.89 ± 0.58%) achieved significantly greater integration of donor DNA (P<0.05)  

compared to OH ZFN treated samples (12.22 ± 1.83%). For all 3 ZFN variants, 

significantly improved donor DNA integration (P<0.05)  was achieved when cells 

were transiently (2 days) incubated at 30°C [OH 30°C: 26.97 ± 1.35%; Sharkey 30°C: 

30.73 ± 1.7%; enhanced Sharkey 30°C: 32.39 ± 0.53%] compared with 37°C [OH 

37°C: 12.22 ± 1.83%; Sharkey 37°C: 19.89 ± 0.58%; enhanced Sharkey 37°C:25.29 ± 

0.58%]. The effect of mild hypothermic incubation was more pronounced for cells 

treated with OH ZFNs (2-fold) compared with Sharkey (1.5-fold) or enhanced 

Sharkey ZFNs (1.3-fold), suggesting saturation of ZFN cleavage activity under 

conditions of mild hypothermia plus enhanced Sharkey ZFN treatment. Furthermore, 

at 30°C enhanced Sharkey ZFN resulted in significantly greater site-specific 

integrations compared to only OH ZFN (P = 0.02) but not Sharkey ZFN (P>0.05) 

treatment. Overall, optimal conditions for site-specific integration of donor DNA 

were treatments with either Sharkey ZFNs or enhanced Sharkey ZFNs combined with 

mild hypothermia. 

Direct comparison of AAVS1 ZFN variant plasmid DNAs to commercially 

purchased AAVS1 ZFN mRNA was not possible because of significant difference in 

transfection efficiency. Further analysis by normalizing percent donor integration to a 

common transfection efficiency of 60% revealed that at 37°C, only enhanced Sharkey 

ZFN treatment resulted in significantly (P = 0.0007) increased donor integration (1.3-

fold) compared to AAVS1 ZFN mRNA treatment. It was not possible to determine 

whether any of our AAVS1 ZFN DNA variants were superior to commercially 

purchased mRNA because the eventual absolute quantity of ZFN transcripts (mRNA) 

generated from delivered ZFN plasmid DNA constructs was unknown. Thus, the 

difference in frequency of donor DNA integration between the mRNA and DNA 

versions of ZFNs may be due to differences in the final mRNA quantity and eventual 
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protein amount expressed in treated cells. Nevertheless, due to cost constraints of  

using AAVS1 ZFN mRNA, all further experiments were performed using plasmid 

constructs encoding enhanced Sharkey ZFNs combined with mild hypothermia. 
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Figure 25 Effect of ZFN variants and mild hypothermia on site-specific 
donor DNA integration in K562 cells. (A) Genomic DNA extracted from K562 
cells co-electroporated with plasmid encoding EGFP, pZDonor and the following 
AAVS1 ZFN variants; AAVS1 ZFN mRNA, OH (obligate heterodimer), Sharkey 
(OH modified according to Guo J., et al)4 or enhanced Sharkey (Sharkey ZFN variant 
further modified according to Doyon Y., et al)5 and cultured at either 37°C or 30°C, 
were amplified with primers spanning the AAVS1 locus, digested with HindIII, 
electrophoretically resolved in 5% polyacrylamide gels, stained with ethidium 
bromide and imaged using BioRad®Gel Doc 2000 transilluminator and QuantityOne 
software. The values displayed at the bottom of the gels are mean densitometric 
measurements (of triplicates) of the modified locus expressed as a percentage of the 
unmodified and modified locus combined (Data are mean ± SEM; n = 3). (B) 
Percentage of K562 cells (as determined by densitometric measurements of RFLP 
assay products) attaining AAVS1-specific integration of a 50-bp donor DNA (left 
axis) and the percentage of GFP-positive cells (right axis) as analyzed by FACS are 
shown. Data are mean ± SEM (n=3). Percent integration was significantly greater 
(P<0.05) for cells incubated at 30°C compared to 37°C for all treatment groups. At 
37°C, significantly greater integration was achieved with enhanced Sharkey (P = 
0.0024) and Sharkey (P = 0.03) compared to OH. At 30°C, enhanced Sharkey was 
significantly different (P = 0.02) from OH but not from Sharkey.      
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2.3.1.3. Integration of 4-kb EGFP transgene cassette 

 Having optimized conditions for efficient ZFN expression we next attempted 

integration of a larger donor DNA fragment, a 4 kb cassette consisting of EGFP and 

neomycin resistance cDNAs (pZDonor EGFP), into the AAVS1 locus of K562 cells.  

 Left and right integration junction PCR analysis on genomic DNA extracted 

from unselected or G418-selected K562 cells co-electroporated with pZDonor-EGFP 

and enhanced Sharkey ZFN, provided evidence for integration of the 4-kb donor 

DNA at the AAVS1 locus (Figure 26). Increased intensities of left and right 

junctional PCR amplicons in G418-selected cell samples (K562 + AAVS1 ZFN + 

selection) indicated enrichment of K562 cells stably integrated with the transgene at 

the AAVS1 locus.  

 Sequencing and analysis of integration junction PCR amplicons revealed 

precise integration of vector sequences into the AAVS1 genomic locus recognized 

and cleaved by AAVS1 ZFNs (AAVS1 recognition sequences underlined in red and 

integrated vector sequences in blue).  
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Figure 26 ZFN-mediated site-specific integration of a 4-kb DNA cassette 
encoding EGFP donor DNA into AAVS1 locus in K562 cells.  K562 cells were co-
electroporated with pZDonor EGFP plasmid DNA (4-kb EGFP cassette) and a 
bicistronic plasmid encoding both left and right AAVS1 ZFNs (enhanced Sharkey). 
(Left) Genomic DNA from untreated cells (WT K562) and K562 cells treated with 
donor DNA and AAVS1 ZFN with or without G418 selection were investigated for 
site-specific integrations of the vector DNA by integration junction PCR. Left and 
right integration junctions were amplified with vector specific and genomic DNA 
specific primers while control genomic PCR was performed with a pair of genome-
specific primers amplifying a 900-bp region adjacent to the ZFN-targeted site in the 
AAVS1 locus (all done in duplicates). (Right) DNA sequence chromatograms of 
(top) left and (bottom) right junctional PCR amplicons. Vector sequences are 
underlined in blue while AAVS1 ZFN recognition half-sites are underlined in red.  
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2.3.1.4. Integration of 9-kb hybrid FVIII transgene cassette 

 Our goal with ZFN-mediated transgenesis was to integrate a 9-kb DNA 

fragment encoding a B-domain deleted hybrid-FVIII and neomycin resistance cDNA 

at the AAVS1 locus.  

 We were able to achieve AAVS1 site-specific integration of the 9-kb donor 

DNA fragment in G418-selected K562 samples co-transfected with pZDonor hybrid 

FVIII and enhanced Sharkey ZFNs (with mild hypothermia incubation). Left and 

right junction PCR screening (Figure 27) showed positive amplifications (indicative 

of vector integration) in cells co-transfected with ZFNs (K562 + Donor + AAVS1) 

but were absent in samples transfected with donor DNA alone (K562 + Donor only), 

demonstrating the requirement for ZFN activity in mediating site-specific integration.  

 Sequencing of junction PCR amplicons showed no deletions to either the 

genomic DNA or integrated donor at the AAVS1 locus, thus verifying the precise 

nature of transgene integration.  
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Figure 27 ZFN-mediated site-specific integration of a 9-kb DNA cassette 
encoding hybrid FVIII donor DNA into AAVS1 locus in K562 cells.  K562 cells 
were either electroporated with donor plasmid DNA (9-kb hybrid FVIII cassette) only 
or co-electroporated with a bicistronic plasmid encoding both left and right AAVS1 
ZFNs. (Left) Genomic DNA from untreated cells (WT K562) and K562 cells treated 
with donor DNA only or with AAVS1 ZFNs were investigated for site-specific 
integrations of the vector DNA by integration junction PCR. Left and right 
integration junctions were amplified with vector-specific and genome-specific 
primers, while control genomic PCR was performed with a pair of genome-specific 
primers amplifying a 900-bp region adjacent to the ZFN-targeted site in the AAVS1 
locus (all done in duplicates). (Right) DNA sequence chromatograms of left (top) 
and right (bottom) junctional PCR amplicons. Vector sequences are underlined in 
blue while AAVS1 ZFN recognition half-sites are underlined in red.  
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2.3.1.5. Efficiency of site-specific integration 

The efficiency of ZFN in mediating site-specific integration of a 9-kb donor 

DNA was estimated by performing direct integration junction PCR analysis on 

random clonal populations of K562 cells from a bulk population of unselected or 

G418-selected K562 cells treated with pZDonor Hybrid FVIII and enhanced Sharkey 

AAVS1 ZFNs. Single cells sorted into individual wells of a 96-well plate were 

expanded in culture, lysed in situ and used as crude genomic template for PCR 

amplification using Phusion® Human Specimen Direct PCR kit. The efficiency of 

site-specific integration was given by the percentage of total analyzed clonal cells 

positive for site-specific integrations (identified by right integration junction PCR). 

Only control PCR positive samples were considered valid.  

Direct PCR for site-specific integration was performed on 40 unselected and 

79 G418-resistant clonal K562 cells. Our analyses identified 4 of 40 (10%) of 

unselected K562 clones (Figure 28A) and 22 of 79 (27%) of G418-resistant clones 

(Figure 28B) as positive for site-specific integrations of the 9-kb donor DNA.  Thus, 

G418 selection resulted in an almost 3-fold enrichment for cells with site-specific 

integration. However, integration junction PCR could not be used to distinguish 

monoallelic from biallelic transgene integrations. Moreover, K562 cells are trisomic 

for chromosome 19. Lack of complete G418 selection of suspension cultures of K562 

cells or selection of cells with random transgene integrations could account for 63% 

of G418-selected clones being negative for site-specific integration. 

We further analyzed clones that were positive for the left integration junction 

by screening for the right integration junction (Figure 28C). Intriguingly, our results 

showed that of 22 such clones, only 13 had both integration junctions. This raised the 

possibility of deletion of either genomic or vector DNA that resulted in the loss of 

primer binding sites at integration junctions. Of more serious concern was the 

possibility that some clones may have sustained only partial integration of the 

transgene cassette which would render them useless for transgene expression. This 

possibility of partial transgene integration of the transgene was later evaluated in 

CLECs by segmental PCR to determine if all the essential components of the donor 

vector for FVIII transgene expression were present in clonal cells that had either a 

single or both integration junctions (section 2.3.2.8).     
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Figure 28 Investigation of a clonal population of K562 cell-line for site-
specific integration of hybrid FVIII DNA cassette at the AAVS1 locus. Left 
integration junction PCR and control PCR (amplifying a -kb genomic region at 
AAVS1 locus) were performed on FACS-sorted clonal populations of either (A) 
unselected or (B) G418-selected K562 cells integrated with pZDonor hybrid FVIII 
plasmid. (C) Clones from G418 selected K562 which were identified as positive for 
left integration junctions were analyzed for right junction PCR. In situ lysed cells 
were starting materials for PCR amplification using Phusion® Human Specimen 
Direct PCR kit. Amplification products were electrophoresed on 1% agarose gels and 
imaged using BioRad®Gel Doc 2000 transilluminator. Positive (+ve) and negative (-
ve) controls for junction PCR were genomic DNA sample from a pooled population 
of K562 with pZDonor Hybrid FVIII integration and minus template, respectively. 
For each gel, red rectangles demarcate the predicted position (i.e. size) of positively 
amplified integration junction amplicons.   

 

 

 

 

 

 



195 

 

2.3.2. Evaluation of AAVS1 ZFN-mediated HR in primary human cells 

2.3.2.1. Optimization of gene transfer to CLECs 

High efficiency gene transfer is essential for optimal ZFN-mediated 

transgenesis. Given the modest gene transfer achieved with electroporating CLECs 

using the BTX® electroporation system (phiC31 integrase study), we explored 

electro-gene transfer of CLECS using the Amaxa® Nucleofector™ I or Nucleofector 

™ 4D devices.  

Figure 29A summarizes data comparing the Nucleofector™ I device and 

BTX® electroporation system based on percent GFP-positive cells and percent viable 

cells achieved. Compared with initially optimized settings using the BTX® 

electroporation system, significantly improved gene transfer (percent GFP, P = 

0.0003) and cell survival (percent viability, P<0.0001) were achieved using the 

Nucleofector™ I device, with program T-23 (percent GFP: 47.69 ± 1.96%; percent 

viability: 51 ± 0.67%; data are mean ± SEM, n=3) giving the best results. 

Comparatively, electroporation using optimized BTX® electroporator settings 

resulted in only 29.94 ± 0.56% of GFP-positive cells with 24 ± 2.31% of all treated 

cells being viable (Data are mean ± SEM, n=3). Thus, subsequent gene transfer 

studies were done using Nucleofector® I device and program T23. 

During the course of this study, technological improvements were made to 

Nucleofector™ devices which led us to evaluate the most recent gene transfer 

equipment from Amaxa®, i.e. Nucleofector™ 4D device. Figure 29B summarizes 

gene transfer and viability data of CLECs electroporated with a Nucleofector ™ 4D 

device using several programs . Compared with results achieved with T23 program of 

the Nucleofector ™ I device, electroporation of  CLECs using Nucleofector ™ 4D 

device and program CM113 resulted in an overall improved gene transfer efficiency, 

with 58.37 ± 0.23% of treated cells being GFP-positive (P = 0.0025) and 62.16 ± 

1.88% of all cells being viable (Data are mean ± SEM, n=3)(P = 0.055). Thereafter, 

CLECs were electroporated using Nucleofector ™ 4D and program CM113. 
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Figure 29 Optimization of electroporation with Amaxa™ Nucleofector I 
and 4D programs. CLECs electroporated with 10 μg of EGFP-C1 reporter plasmid, 
using solution NC and a single 30 ms pulse delivered at 600 V/cm with a BTX® 
electroporator, or using Amaxa® Basic Nucleofector™ kit for primary mammalian 
epithelial cells and pulses delivered by the indicated programs (S-05, T-23, U-17, T-
13, T-20) with (A) Amaxa®Nucleofector™ I device; or (B) Nucleofector™ 4D device 
using Nucleofector™ Primary cell solution P1 and programs CM102, CM113, 
EA104, ED100, DS109. Electroporated CLECs, were analyzed 1 day post-
electroporation for GFP expression by flow cytometry (percent GFP, yellow bar) and 
for viability (percent viability, grey bar) by trypan blue exclusion cell counts. Data 
are mean ± SEM (n=3). Representative brightfield and fluorescence images taken 1 
day post-electroporation are shown (Original magnification x100).  
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2.3.2.2. Evaluation of CLECs for PPP1R12C transcript expression  

An open chromatin configuration may be an essential factor for ZFNs to 

successfully target, bind and induce double-stranded DNA break at a specific 

genomic locus. Previously, we were able to demonstrate efficient ZFN-induced site-

specific integration of donor DNA of varying sizes into the AAVS1 locus of K562 

cells. We investigated if high expression of the endogenous PPP1R12C gene at the 

AAVS1 locus, reflective of an open chromatin configuration, correlates with efficient 

site-specific genomic cleavage and integration into the AAVS1 site. PPP1R12C 

transcript levels (exons 4-6) in K562 cells, primary human dermal fibroblasts, CLECs 

and a human embryonic stem cell line (HUES) were evaluated by quantitative RT-

PCR (Figure 30).  

Our data indicated approximately 2-fold lower PPP1R12C transcript levels in 

HUES and CLECs and 2-fold higher levels in dermal fibroblasts compared to K562 

cells.  Concordant with relatively lower PPP1R12C transcript levels, site-specific 

integration of a 50-bp donor DNA (as determined by RFLP assay) was at least 10-

fold lower in CLECs compared to K562 cells (CLECs: 3.39 ± 0.1 %; K562: 32.39 ± 

0.53%) (Figures 25 and 34). Dermal fibroblasts showed a higher frequency of 

genome cleavage than CLECs by Cel-1 nuclease assay (CLECs: 43.01 ± 1.93%; 

Fibroblast: 64.97 ± 3.48)(Figures 33 and 54), that was also associated with higher 

levels of PPP1R12C expression in fibroblasts. HUES cells were not tested for site-

specific integration. Although our results suggest that transcriptional activity 

promotes efficient site-specific genome cleavage and integration, this should be 

verified by evaluating a wider range of different cell types. Moreover, it is likely that 

factors other than an open chromatin configuration may also be highly influential in 

determining the efficiency of site-specific integration of donor DNA.  
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Figure 30 Quantitative RT-PCR analysis of PPP1R12C transcript levels in 
various cell types. Quantitative RT-PCR was performed on K562 cells, a human ES 
cell line (HUES), CLECs and primary human dermal fibroblasts to quantify 
PPP1R12C transcript levels (exon 4 -6) and GAPDH expression. GAPDH- 
normalized PPP1R12C expression levels (as determined by the 2-ΔΔCt method) are 
shown relative to that of K562 cells. Data are mean ± SEM, n=2 experiments per 
group and 4 replicates per sample.  
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2.3.2.3. Evidence of ZFN expression and activity in CLECs 

Before investigating ZFN-mediated transgenesis in CLECs, we first 

evaluated the capacity for CLECs to express the ZFNs (mRNA and protein) following 

transient transfection with plasmids encoding either the left or right AAVS1 ZFNs. 

We further confirmed the site-specific endonuclease activity of AAVS1 ZFNs by 

evaluating the target locus for evidence of site-specific genomic cleavage and repair 

(Cel-1 mismatch nuclease assay).      

2.3.2.3.1. RT-PCR analysis of ZFN transcripts 

Reverse transcription-PCR of total RNA from treated CLECs using primers 

specific to left and right AAVS1 ZFN, showed evidence for expression of left and 

right ZFN mRNA transcripts (Figure 31). Densitometric measurements of RT-PCR 

bands were normalized to α-actin levels and expressed as a percentage of levels 

detected at 8 hours. Expression of both ZFN transcripts was detected from 8 to 144 

hours post-electroporation, with levels decreasing to approximately 50% of initial 

levels (taken as 8 hours) at 144 hours post-electroporation. Greatest expression of 

both left and right ZFNs was observed between 8-24 hours post-electroporation.    
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Figure 31 ZFN mRNA transcripts in CLECs following electroporation of 
plasmids encoding individual ZFNs. Total RNA, isolated from transfected CLECs 
at the indicated time points post-electroporation with plasmid DNA encoding either 
(top) left ZFN or (bottom) right ZFN were analyzed by RT-PCR with primers 
specific to the (top) left ZFN, (bottom) right ZFN or gamma-actin. The control 
reaction omitted reverse transcription (Minus RT PCR). Amplification products were 
electrophoresed on 1% agarose gels, imaged using BioRad®Gel Doc 2000 
transilluminator and quantified using QuantityOne software. Densitometric 
measurements of ZFN transcript bands were normalized to their respective actin 
levels and expressed as a percentage of ZFN mRNA levels observed at 8 hours 
(indicated in each gel). 
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2.3.2.3.2. Immunoblot identification of ZFN protein 

Immunoblot detection using anti-FLAG antibodies confirmed the expression 

of ZFN proteins in CLECs transfected with plasmid DNA encoding AAVS1 ZFN 

fused with a FLAG tag but not in untransfected CLECs (WT) (Figure 32).  

Incubation of cells under mild hypothermic conditions (30°C for 3 days or 

37°C for 1 followed by 30°C for 2 days) resulted in higher levels of ZFN protein 

expression in transfected CLECs compared with incubation at 37°C for 3 days. 

Control immunoblot for β-actin expression in all samples demonstrated equal loading 

of total protein amongst the groups of cells analyzed. These results were consistent 

with the hypothesis that mild hypothermic conditions6 may reduce the turnover rate 

(proteolysis) of proteins thereby resulting in higher ZFN levels under these conditions 

compared to conventional conditions. 
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Figure 32 Immunoblot detection of FLAG-tagged ZFN protein in 
transfected CLECs. CLECs transfected with a plasmid vector encoding both left and 
right ZFNs were incubated at either 37°C or in mild hypothermia (30°C) for the 
indicated number of days. Cell lysates were analyzed (in duplicate) for levels of (top) 
FLAG-tagged ZFN proteins by immunoblotting with a monoclonal anti-FLAG 
antibody, rabbit anti-mouse IgG–horse radish peroxidase conjugate, detected with a 
chemiluminescence substrate and imaged with X-ray film on a Kodak processor. 
Untransfected CLECs (WT) were negative for expression of FLAG-tagged ZFN 
protein. (Bottom) Immunoblot for β-actin served as loading control. 
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2.3.2.3.3. Site-specific endonuclease activity at AAVS1 locus in CLECs 

Having demonstrated the expression of AAVS1 ZFNs (mRNA and protein) 

in CLECs following transient transfection with ZFN-encoding plasmid DNA, we next 

sought evidence for site-specific endonuclease activity of the expressed AAVS1 

ZFNs. CLECs were transiently transfected with either two separate plasmid 

constructs (each encoding left or right AAVS1 ZFN; hereafter termed single 

constructs) or a single dual plasmid DNA encoding both left and right ZFNs 

(hereafter termed dual construct). Transfected CLECs were incubated at 37°C for 3 

days or 37°C for 1 day followed by 30°C for 2 days, before genomic DNA was 

extracted for evaluation of AAVS1 site-specific genomic cleavage.  

Genomic cleavage at AAVS1 locus and subsequent repair by the NHEJ 

pathway would be expected to form indels at sites of repair. We employed a Cel-1 

mismatch nuclease assay (as detailed in Methods section 4.4.2.8.1) to screen PCR 

amplicons spanning the AAVS1 site for evidence of indels. Cel-1 nuclease only 

cleaves heteroduplex DNA. The presence of cleaved DNA products in the Cel-1 

digested PCR amplicons (Figure 33) was evidence for indels at the AAVS1 locus of 

CLECs electroporated with AAVS1 ZFNs. The data indicated that the expressed 

ZFNs were fairly active in CLECs and induced site-specific genomic cleavage at the 

AAVS1 locus and repair by the NHEJ pathway. Based on densitometric 

measurements of cleaved and uncleaved PCR products, an estimate of the percentage 

of mutant cells (a measure of genomic cleavage efficiency) for CLECs treated with 

two single construct ZFNs at 37°C was 29.08 ± 3.70%; two single construct ZFNs at 

30°C was 35.03 ± 1.83%; dual construct ZFN at 37°C was 37.16 ± 4.12% and dual 

construct ZFN at 30°C was 43.01 ± 1.93% (Data are mean ± SEM, n=3). A 

significantly greater proportion (P = 0.045) of mutant cells was observed only for 

CLECs treated with dual construct ZFN compared to two single construct ZFNs and 

incubated at 30°C. Differences in the proportion of mutant cells obtained with all 

other treatment combinations and conditions were statistically insignificant (P>0.05).   
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Figure 33 Site-specific cleavage and repair of AAVS1 genomic locus in 
CLECs. A genomic region spanning the AAVS1 ZFN target site was amplified from 
CLECs transiently electroporated with either two separate plasmid constructs 
encoding left or right AAVS1 ZFNs (2 single ZFNs) or a single dual construct 
plasmid encoding both left and right AAVS1 ZFNs (Dual ZFN). Cells were incubated 
at either 37°C for 3 days (37°C) or 37°C for 1 day followed by 30°C for 2 days 
(30°C). Cel-1 nuclease digested (+) or undigested (-) PCR amplicons were 
electrophoretically resolved in a 10% polyacrylamide gel, imaged and quantified 
using BioRad®Gel Doc 2000 transilluminator and QuantityOne software. A PCR 
amplicon provided by the SURVEYOR® mutation detection kit served as a positive 
control for Cel-I nuclease digest. Estimates of the proportion of mutant cells (ZFN 
cleaved and repaired with indels) in the bulk treated population based on 
densitometric measurements are reported below respective gel images for each of the 
samples.    
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2.3.2.4. Optimization of site-specific integration in CLECs 

One of the key goals of the project was to study the potential for utilizing 

AAVS1 ZFNs to mediate site-specific integration of a transgene of interest into the 

genome of CLECs. A major effort was therefore invested in optimizing conditions for 

site-specific integration of donor DNA at the AAVS1 locus in CLECs. Initial 

optimization experiments attempted to integrate a 50-bp donor DNA at the AAVS1 

locus. Subsequently, we investigated site-specific genomic integration of two 

transgene cassettes, 4-kb (EGFP driven from CMV promoter) and 9-kb (hybrid FVIII 

cDNA driven from hFer promote) in size.      

2.3.2.4.1. Integration of 50-bp DNA in CLECs 

CLECs co-electroporated with pZDonor (consisting of 50-bp donor DNA 

flanked by 800-bp sequences homologous to the AAVS1 genomic locus) and AAVS1 

ZFN enhanced Sharkey variant, using conditions optimized for nucleofection with a 

Nucleofector™ I device (program T23) (Figure 34), were analyzed for evidence of 

site-specific integration by RFLP assay and junction PCR analysis.  

Junction PCR showed positive amplification with a pair of vector specific 

and genomic specific primers only in CLECs co-electroporated with donor and ZFN 

plasmids (Donor + AASV1 ZFN) but not with donor plasmid alone (Donor only) 

(done in triplicate). Control genomic PCR served to show the integrity of genomic 

DNA and similar PCR amplification efficiency for both samples analyzed.  

Similarly, RFLP assay (done in duplicate) was also positive for the diagnostic 

pattern of the cleaved amplicon, indicative of site-specific integration of the 50-bp 

donor DNA, only in CLECs co-treated with ZFNs (Donor + AAVS1 ZFN) but not 

when treated with donor only. Based on densitometric measurements of RFLP assay 

products, an estimated 3.39 ± 0.1 % of treated CLECs (Data are mean ± SEM, n=2) 

achieved site-specific integration of the 50-bp donor DNA. 
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Figure 34 ZFN-mediated site-specific integration into the AAVS1 locus of 
CLECs. CLEC#33 electroporated with pEGFP-C1 and  pZDonor with (“Donor + 
AAVS1 ZFN”) or without (“Donor only”) enhanced Sharkey plasmid was evaluated 
for gene transfer by fluorescence microscopy (left: original magnification x100) and 
for site-specific integration of a 50-bp donor DNA by integration junction PCR and 
RFLP assay. (Center) Integration junction PCR was performed (in triplicate) with a 
pair of vector specific and genome specific primers to amplify a 1 kb region spanning 
the integration junction. Control genomic PCR amplified a 900-bp region of the 
AAVS1 locus. Amplified products were electrophoresed on 1% agarose gels and 
imaged using BioRad®Gel Doc 2000 transilluminator and QuantityOne software. 
(Right) RFLP assay was performed (in duplicate) by digesting genome amplified 
PCR products (amplified with genome specific primers spanning the integration site) 
with Hind III restriction enzyme followed by electrophoresis in a 5% polyacrylamide 
gel. Site-specific integration of 50-bp DNA results in insertion of a novel Hind III 
restriction enzyme site which is evident by the presence of the two cleaved, faster 
migrating DNA bands (indicated by arrows). Densitometric measurements 
(performed with Quantity One software) of digested bands (modified AAVS1 locus) 
expressed as a percentage of total band intensities (modified + unmodified AAVS1 
locus) gave the estimated site-specific integration frequency (reported in the text). 
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2.3.2.4.2. Screening of different CLEC samples 

Having positively demonstrated the potential for ZFN-induced site-specific 

integrations in CLECs from a single donor sample (CLEC#33), we next tested CLEC 

samples from 6 different donors.  

Transfection efficiencies based on flow cytometric analysis of GFP-positive 

cells ranged from 22.4 to 71.3% across different samples (median transfection 

efficiency of 45.3%). Of a total of 7 CLEC samples tested, 4 were demonstrated by 

RFLP assay to be positive for site-specific integration of 50-bp donor DNA, 

following co-treatment with AAVS1 ZFNs (Figure 35). The percentage of donor 

DNA modified cells ranged from 12.1 to 22.2 % (median percentage of 16.5%, based 

on triplicate measurements for each sample). Transfection efficiency did not correlate 

with the percentage of genome-modified cells (R2 = 0.1).  

The effect of mild hypothermia on the percentage of genome-modified cells 

was evaluated by RFLP assay for two CLEC samples (CLEC#33 and CLEC#16). 

Although a modest 1.2-fold increase (P>0.05) in the percentage of modified cells was 

observed for CLEC#33 when incubated at 30°C (13.0 ± 0.5%) compared to 37°C 

(10.6 ± 0.9%, Data are mean ± SEM, n=3), the same trend was not observed in 

another sample tested, CLEC#16. Based on our earlier results with K562 cells and 

greater ZFN protein levels detected in CLECs after mild hypothermia, we used mild 

hypothermic incubation for all subsequent ZFN treatments of CLECs. 

Although higher percentage of gene modification was observed with 

CLEC#35 (19.9 ± 0.5%) and #36 (22.2 ± 0.9%), all further experiments were done 

with CLEC#33 (13.0 ± 0.5%) which had greater proliferative capacity and offered 

ease of generating large numbers of cells for experiments.   
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Figure 35 Evaluation of different primary CLEC samples for ZFN-
mediated site-specific integration of a 50-bp donor DNA into the AAVS1 locus. 
CLECs isolated from different donor samples (#16, 31, 33, 35, 36, 37, 52) were co-
electroporated with pEGFP-C1, pZDonor plasmid DNA with or without bicistronic 
AAVS1 ZFN variant (enhanced Sharkey) plasmid DNA. Transfected cells incubated 
at 37°C for 4 days or 37°C for 1 day followed by 30°C for 3 days (labeled as 30°C) 
were evaluated for GFP expression (1 day post-electroporation) by fluorescent 
microscopy and FACS analysis and for targeted integration of 50-bp donor DNA (4 
days post-electroporation) by RFLP assay. (Left panel) Brightfield and fluorescence 
images  of the indicated transfected CLEC samples (original magnification x100) and 
(center panel) percent GFP-positive cells as determined by FACS are shown (data 
are mean ± SEM; n = 3 per CLEC sample). Right panel shows RFLP assay products 
electrophoresed on 5% polyacrylamide gels, stained with ethidium bromide, imaged 
and quantified using BioRad®Gel Doc 2000 transilluminator and Quantity One 
software. Site-specific integration of the 50-bp donor DNA resulted in insertion of a 
Hind III restriction enzyme site, cleavage at which generated two cleaved, faster 
migrating DNA bands. Densitometric measurements of digested bands (modified 
AAVS1 locus) expressed as a percentage of total band intensities (unmodified + 
modified AAVSI locus) gave the estimated site-specific integration frequency (shown 
below the gel images for each sample) or indicated as “Negative” where no site-
specific integration was detected. 
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2.3.2.4.3. Effect of donor DNA dose 

In order to test if the percentage of modified cells could be increased by 

increasing donor DNA dose, we co-electroporated CLECs with increasing amounts of 

pZDonor DNA while fixing AAVS1 ZFN DNA dose at 5 μg and a reporter plasmid 

(EGFP) at 2 μg. We screened for site-specific integration by junction PCR and for 

overt signs of genotoxicity by monitoring if the percentage of GFP-positive cells 

drastically decreased after treatment (Day 4 versus Day 1). Flow cytometric analysis 

for phosphorylated histone H2AX served as an indicator of double-stranded DNA 

breaks7, an indirect marker of genotoxicity (Figure 36).  

Due to limited amounts of genomic DNA from treated cells and poor RFLP 

data, junction PCR products were normalized for PCR efficiency and expressed as a 

percentage of their respective control PCR amplicons. These data were used to 

compare site-specific integration efficiencies among groups. No junction PCR 

products were observed for samples treated with donor DNA only. Significantly 

greater normalized junction PCR amplification was observed in samples treated with 

30 μg of donor DNA and ZFN (11.8 ± 0.3 %) compared with 20 μg (9.8 ± 0.2 %, P = 

0.0085) or 10 μg (9.3 ± 0.3 %, P = 0.01) of donor DNA and ZFN.  

    The proportion of GFP-positive cells on day 4 expressed as a percentage of 

GFP-positive cells on day 1 post-treatment was used as an indicator of cellular 

toxicity. When compared with cells electroporated with pZDonor plasmid only (87.99 

± 0.42 %), significant decrease in GFP-positive cells was observed only in cells co-

electroporated with ZFN plasmid and either 20 μg (80.79 ± 0.24 %, P = 0.0001) or 30 

μg (72.2 ± 0.23 %, P<0.0001) of pZDonor plasmid DNA and not when co-

electroporated with 10 μg of pZDonor plasmid (87.72 ± 0.92, P = 0.80, data are mean 

± SEM, n=3). These results suggested that co-electroporation of ZFN plasmid 

resulted in significant cellular toxicity only when pZDonor plasmid DNA exceeded 

10 μg.  

Phosphohistone H2AX FACS analysis revealed that compared to donor only 

electroporated cells (3.85 ± .31 %) there was a significant increase (P<0.05) in the 

percentage of cells with double-stranded DNA breaks in samples co-electroporated 

with ZFN irrespective of donor DNA dose. For co-electroporation groups, while no 

significant difference was observed between 10 μg (6.24 ± 0.37%) and 20 μg (6.85 ± 

0.24 %) donor DNA dose, electroporation with 30 μg (8.87 ± 0.24 %) of donor DNA 

resulted in significant increase in phosphohistone H2AX-positive cells compared with 

both 10 μg and 20 μg donor DNA doses (P<0.05 for comparison of 30 μg donor DNA 

dose with 20 μg and 10 μg donor DNA dose). These results suggested that significant 
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DNA breaks could be induced when ZFN activity was combined with a high dose of 

donor DNA, i.e. 30 μg.  

Taken together, although a slight but significant increase in gene targeting 

was observed with 30 μg donor DNA, significant toxicity was also demonstrated at 

this DNA dose. To minimize cellular toxicity, we performed co-electroporation of 

ZFN with amounts of donor DNA between 10 to 20 μg.   
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Figure 36 Investigation of donor DNA dose on gene targeting and cellular 
toxicity. Untreated CLECs (CLEC WT) and CLECs co-electroporated with 2 μg of 
pEGFP-C1 and varying doses of pZDonor plasmid DNA with (Donor + ZFN) or 
without (Donor only, 30 μg) a bicistronic AAVS1 ZFN variant (enhanced Sharkey) 
plasmid DNA (6 μg) were evaluated for gene transfer efficiency, targeted gene 
integration and for evidence of double-stranded DNA breaks. (A) Genomic DNAs 
extracted from CLECs 4 days post-electroporation were evaluated for site-specific 
integration of 50-bp donor DNA by integration junction PCR (all done in triplicate, 
except Donor (10 μg) + ZFN which was done in duplicate). “-ve” refers to minus 
template amplification while “+ve” refers to amplification of a K562 genomic DNA 
sample known to be positive for pZDonor site-specific integration. Control genomic 
PCR amplified a 900-bp region of the AAVS1 locus. Amplified products were 
electrophoresed on 1% agarose gels and imaged using BioRad®Gel Doc 2000 
transilluminator and QuantityOne software. Black arrow indicates the expected 
integration junction PCR amplicon. Densitometric measurements of junction PCR 
bands are given as percentage of the respective control PCR bands (indicated on gel 
image) [data are mean ± SEM, n=3 for all groups except “Donor (10 μg) + ZFN”, 
n=2]. (B) Flow cytometric analysis for GFP-positive cells was done on days 1 and 4 
post-electroporation. Compared to cells electroporated with pZDonor DNA only 
(Donor only), significantly fewer GFP-positive cells were observed on day 4 
compared to day 1 for groups treated with 20 and 30 μg of pZDonor DNA and ZFN 
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(P<0.0001). Data are mean ± SEM; n= 3 per group. (C) Proportion of cells positive 
for phosphorylated histone H2AX, a marker for double-stranded DNA breaks, was 
quantified by flow cytometry following incubation with Phospho-Histone H2AX 
(Ser139) (20E3) rabbit mAb (Alexa Fluor® 647 conjugate). Compared to cells 
electroporated with donor DNA only, a significantly greater proportion of cells (P< 
0.05) were phosphoH2AX-positive when co-electroporated with ZFN. Data are mean 
± SEM; n= 3 per group.       
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2.3.2.4.4. Effect of ZFN dose 

The effect of increasing ZFN dose on targeted gene integration and cellular 

toxicity was investigated (Figure 37). CLECs were co-electroporated with pZDonor 

DNA (10 μg) and 2 μg of GFP reporter only or together with increasing doses of 

ZFNs (5 μg, 10 μg, 20 μg). Junction PCR demonstrated targeted integration of 50-bp 

donor DNA fragment only in samples co-electroporated with ZFNs. Band intensities 

of junction PCR amplicons were similar, suggesting that  increasing amounts of ZFNs 

did not enhance the frequency of site-specific integration events. Control amplicons 

in all samples had comparable band intensities. 

Genotoxicity and cellular toxicity were assessed by 3 different assays. Firstly, 

the proportion of GFP-positive cells remaining on day 4 expressed as a percentage of 

initial levels on day 1 was used as a measure of overt cell toxicity. Compared with 

cells treated with pZDonor DNA only (105.1 ± 0.18 %), significantly fewer 

(P<0.0001) GFP-positive cells were observed on Day 4 after treatment with 5 μg 

(88.37 ± 1.14 %), 10 μg (78.89 ± 0.54 %) and 20 μg (63.82 ± 0.66 %) of ZFN. 

Increasing ZFN dose from 5 μg to 10 μg (P = 0.0017) and to 20 μg (P<0.0001) 

resulted in significant reduction in GFP-positive cells on day 4. Secondly, the 

percentage of cells positive for phosphorylated histone H2AX determined by flow 

cytometry was used as a measure of DNA damage. Compared to cells electroporated 

without any DNA (1.09 ± 0.12 %) or with pZDonor DNA only (1.38 ± 0.13 %), 

significant increases (P<0.05) in H2AX-positivity were detected in cells co-

electroporated with 5 μg (9.34 ± 0.14 %), 10 μg (9.87 ± 0.32 %) and 20 μg (14.19 ± 

0.17 %) of ZFNs. Electroporation of CLECs with 20 μg of ZFN resulted in 

significantly increased (P<0.05) phosphorylated H2AX-positive cells compared with 

the two lower ZFN doses. The third assay, an MTS assay based on colorimetric 

reduction of a tetrazolium compound by mitochondrial dehydrogenase activity was 

used as an indirect indicator of cell viability. An equal number of cells from each 

treatment group was seeded and absorbance at 490 nm was measured after incubation 

with the tetrazolium compound and an electron coupling reagent. A standard curve of 

absorbance readings against different cell numbers yielded a linear and positive 

correlation (R2 = 0.9776). Thus, raw absorbance readings were used in comparisons 

between groups. Compared with cells electroporated with donor DNA only (0.632 ± 

0.013), significant decreases (P<0.0001) in absorbance readings were noted for cells 

co-electroporated with ZFNs at all doses (5 μg: 0.433 ± 0.017; 10 μg: 0.446 ± 0.009; 

20 μg: 0.472 ± 0.013). Higher ZFN doses did not significantly alter cell viability.  
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Taken together, our results set the ZFN dose between 5 to 10 μg, and not 

exceeding 20 μg, to avoid overt cellular toxicity.  
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Figure 37 Effects of ZFN dose on gene targeting and cellular toxicity. 
Untreated CLECs (CLEC WT) and CLECs co-electroporated with 2 μg of pEGFP-
C1, 10 μg  pZDonor plasmid (Donor EP) alone or with (Donor + ZFN) varying doses 
of a bicistronic AAVS1 ZFN variant (enhanced Sharkey) plasmid DNA (5, 10, 20 μg) 
were evaluated for gene transfer efficiency, targeted gene integration, cell viability 
and double-stranded DNA breaks. (A) Genomic DNA extracted from CLECs 4 days 
post-electroporation were evaluated for site-specific integration of 50-bp donor DNA 
by integration junction PCR. “-ve” refers to minus template amplification while 
“+ve” refers to amplification of a K562 genomic DNA sample previously identified 
to be positive for pZDonor site-specific integration. Control genomic PCR amplified 
a 900-bp region of the AAVS1 locus. Amplified products were electrophoresed on 
1% agarose gels and imaged using BioRad®Gel Doc 2000 transilluminator and 
QuantityOne software. Black arrow indicates the predicted integration junction PCR 
amplicons. (B) Flow cytometric analysis for GFP-positive cells on days 1 and 4 post-
electroporation. Compared to cells electroporated with pZDonor DNA only (Donor 
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EP), significantly fewer GFP-positive cells were observed on day 4 compared to day 
1 for groups treated with all doses of ZFN (p<0.0001). Data are mean ± SEM; n= 3 
per group. (C) Proportion of cells positive for phosphorylated histone H2AX, a 
marker for double-stranded DNA breaks, was quantified by flow cytometry following 
incubation with Phospho-Histone H2AX (Ser139) (20E3) rabbit mAb (Alexa Fluor® 
647 conjugate). Compared to cells electroporated with donor DNA only, a 
significantly greater proportion of cells (p< 0.05) were H2AX-positive when co-
electroporated with ZFN. Data are mean ± SEM; n= 3 per group. (D)  MTS assay 
(CellTiter 96®Aqueous One solution cell proliferation assay kit) (O.D. 490 nm) was 
performed on untreated CLECs (CLEC WT), CLECS electroporated with pZDonor 
only (Donor EP) or with pZDonor and varying doses of ZFNs, 1 day post- treatment. 
Data are mean ± SEM; n= 4 per group. Significant decrease in O.D. 490 nm was 
observed in cells electroporated with ZFN, compared to Donor only cells (p<0.05). 
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2.3.2.5. Integration of 4-kb EGFP cassette 

Having successfully integrated a 50-bp donor DNA into the AAVS1 locus in 

CLECs following ZFN treatment, we next used optimized conditions to integrate a 4-

kb donor DNA fragment consisting of an EGFP reporter gene driven from a CMV 

promoter and a neomycin resistance selection marker.  

CLECS were co-electroporated with 15 μg of pZDonor EGFP and 7 μg of 

bicistronic plasmid encoding for both left and right AAVS1 enhanced Sharkey ZFNs 

using T20 and CM102 programs of the Amaxa® Nucleofector™ I and 4D devices, 

respectively. Stably transfected cells, selected by G418 resistance, were screened by 

left and right integration junction PCR on extracted genomic DNA (Figure 38). 

CLECs electroporated with CM102 program were positive for both left and right 

integration junction PCR while electroporation with T20 program resulted in only a 

positive right integration junction PCR. The absence of the left integration junction in 

these cells raised the possibility of partial integration of the transgene cassette, 

possibly due to incomplete homologous recombination-mediated repair. However, as 

our previous results had already shown a lower efficiency for amplifying the left 

integration junction, a negative left junction PCR amplicon could have resulted from 

a lower integration efficiency when T20 program was used. Sequencing of the 

integration junction PCR amplicons showed precise integration of the donor DNA 

(without indels) adjacent to the AAVS1 site cleaved by ZFNs. 

The demonstration of left and right integration junctions by PCR was taken as 

evidence of precise integration a 4-kb donor DNA into the AAVS1 locus mediated by 

ZFN treatment.      
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Figure 38 Integration of pZDonor EGFP into AAVS1 locus of CLECs. 
(Top) Schematic showing homologous recombination-mediated integration of 
pZDonor EGFP vector into AAVS1 locus and the primer sets (right junction: AAVS1 
Forward; CMV Reverse, left junction: Neo Forward; AAVS1 Reverse) used for 
integration junction PCR analysis of site-specific integration.  (Bottom) CLEC#33 
co-electroporated with pZDonor EGFP plasmid DNA (4-kb EGFP cassette) and with 
a bicistronic plasmid encoding both left and right AAVS1 enhanced Sharkey ZFNs 
(+) were selected with G418. Genomic DNA extracted from stably transfected cells 
was analyzed by integration junction PCR for evidence of donor DNA integration at 
the AAVS1 locus. CM102 and T20 refer to two different Amaxa electroporation 
programs used to electroporate CLECs. “-ve” refers to minus template PCR 
amplification, while “+ve” refers to amplification of a K562 genomic DNA sample 
previously identified to be positive for AAVS1 site-specific integration of the 4-kb 
GFP cassette. (Right): Left and right integration junctions were amplified with vector 
specific and genome specific primers while control genomic PCR was performed 
with a pair of primers amplifying a 900-bp region of the AAVS1 locus (all done in 
duplicate). Amplified products were electrophoresed on 1% agarose gels and imaged 
using BioRad®Gel Doc 2000 transilluminator and QuantityOne software. (Left): 
Representative brightfield and fluorescence images taken 1 day post-electroporation 
(Original magnification x100).   
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2.3.2.6. Integration of 9-kb hybrid FVIII cassette 

Site-specific integration of a hybrid FVIII cassette together with a neomycin 

resistance gene was one of the main goals of our project. Having demonstrated 

integration of 50-bp and 4-kb DNA donors, we were encouraged to attempt 

integration of a 9-kb hybrid FVIII transgene into the AAVS1 locus of CLECs (Figure 

39). 

CLECs electroporated with pZDonor hybrid FVIII only or together with 

AAVS1 enhanced Sharkey ZFNs using programs T23, T20 (with a Nucleofector™ I 

device) or CM102 (with Nucleofector™ 4D device) were selected with G418. Stably 

transfected CLECs derived from electroporating pZDonor hybrid FVIII plasmid only 

without any ZFNs (CM102 FVIII only) were negative for site-specific integration. 

G418-resistant cells derived from electroporation with program T20 were positive for 

both integration junctions by junction PCR analysis, while cells electroporated with 

CM102 were only positive for the right integration junction. Positive amplification of 

the left junction from T20 but not from CM102 treated CLECs raised two 

possibilities. The first was that the efficiency of site-specific integration attained with 

CM102 was not sufficient to allow  PCR detection of the left integration junction 

which we knew to be less efficiently amplified compared to the right integration 

junction. The other possibility was that under certain circumstances, incomplete or 

only partial integration of the transgene cassette was achieved, resulting in only the 

formation of the right integration junction but not the left. Stable CLECs derived from 

electroporation with T23 program failed to show any evidence of site-specific 

integration (negative for both left and right junction PCR) suggesting that for that 

particular experiment, homologous recombination-mediated transgene integration 

was not achieved at all. Amplification from a control genomic locus served as the 

positive control for PCR and was comparable among all groups.  

Collectively, these results suggest that although electroporation conditions 

and transfection efficiencies are important factors for successful ZFN induction of 

site-specific genomic cleavage, subsequent homologous recombination-mediated 

transgene integration also requires an intrinsic ability of cells to mediate DNA repair; 

and this latter capacity could possibly be a limiting factor. The ability of cells to 

repair DNA breaks and integrate transgenes by homologous recombination could also 

be influenced by other factors such as the cell cycle status at the point when DNA 

damage should occur. Such factors may be crucial determinants of successful 

integration of the whole transgene cassette in ZFN-treated CLECs. 
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Figure 39 Integration of pZDonor hybrid FVIII into AAVS1 locus of 
CLECs. (Top) Schematic showing homologous recombination-mediated integration 
of pZDonor hybrid FVIII vector into AAVS1 locus and the primer sets (right 
junction: AAVS1 Forward; CMV Reverse; left junction: Neo Forward; AAVS1 
Reverse) used for integration junction PCR analysis of site-specific integration.  
(Bottom) CLEC#33 co-electroporated with pZDonor hybrid FVIII donor plasmid 
DNA (9-kb hybrid FVIII cassette) with (+ ZFN) or without a bicistronic plasmid 
encoding both left and right AAVS1 enhanced Sharkey ZFNs were selected with 
G418. Genomic DNA extracted from the resulting stable cell populations were 
analyzed by integration junction PCR for evidence of donor DNA integration at the 
AAVS1 locus. T23, T20 and CM102 refer to 3 different Amaxa electroporation 
programs used. “-ve” Refers to minus template amplification while “+ve” refers to 
amplification of a K562 genomic DNA sample previously identified to be positive for 
AAVS1 site-specific integration of the 9-kb hybrid FVIII cassette. Left and right 
integration junctions were amplified with vector specific and genome specific primers 
while control genomic PCR was performed with a pair of primers amplifying a 900-
bp region of the AAVS1 locus (all done in duplicate). Amplified products were 
electrophoresed on 1% agarose gels and imaged using BioRad®Gel Doc 2000 
transilluminator and QuantityOne software. Black arrows indicate the predicted 
integration junction PCR amplicons.  
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2.3.2.7. Durable FVIII secretion from site-specific integration of FVIII transgene at 

the AAVS1 locus 

 Having demonstrated the potential for site-specific integration of the FVIII 

transgene into the AAVS1 locus, we proceeded to monitor the durability of FVIII 

secretion from a bulk population of CLECs that had evidence of site-specific FVIII 

transgene integration.  

 CLECs co-electroporated with pZDonor hybrid FVIII donor plasmid DNA 

(9-kb hybrid FVIII cassette) and a bicistronic plasmid encoding for left and right 

AAVS1 enhanced Sharkey ZFNs, with or without G418 selection, were examined for 

evidence of AAVS1-site specific integration 3 weeks post-electroporation. We 

demonstrated site-specific integration of hybrid FVIII transgene in CLECs samples 

that had been selected with G418 but not in unselected CLECs. Left and right 

integration junction PCR (Figure 40A) showed correct amplicons consistent with 

integration of the hybrid FVIII donor into the AAVS1 locus in G418-selected CLECs. 

In contrast, the inability to amplify both integration junctions in unselected CLECs 

suggested that very few or no cells had sustained site-specific integrations. 

Amplification of a control locus from both G418 selected and unselected cells were 

clearly and similarly positive in both groups, showing that genomic DNA samples 

were of comparable quality.   

 Consistent with stable and site-specific integration of FVIII transgene in 

G418-selected CLECs, comparable FVIII expression (day 6: 357.18 ± 1.85 mUnits/ 

106 cells/24 hr; day 23: 278.09 ± 7.55 mUnits/ 106 cells/24 hr; day 30: 317 ± 9.23 

mUnits/ 106 cells/24 hr) was evident from FVIII activity in conditioned media of 

treated cells from days 6 to 30 post-electroporation (Figure 40B). By way of contrast, 

CLECs that were not selected with G418 and in which electroporated plasmid was 

nearly all episomal had greatly reduced FVIII levels (day 6: 357.18 ± 1.85  mUnits/ 

106 cells/24 hr; day 23: 15.45 ± 0.875 mUnits/ 106 cells/24 hr) by day 23 post-

electroporation. 

 Collectively, these data showed that ZFN-mediated FVIII transgene 

integration into the AAVS1 locus conferred durable FVIII expression in CLECs. 

However, to exclude the possibility that random integration of FVIII transgene was 

the source of sustained FVIII expression, we undertook further analysis on a clonal 

population of CLECs to confirm that durable FVIII expression originated from 

AAVS1-specific integration of the FVIII transgene.     
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Figure 40 Evidence of ZFN-mediated site-specific integration of 9-kb donor 
DNA into the AAVS1 locus of CLECs correlates with durable FVIII secretion. 
(A) CLEC#33 co-electroporated using program CM113 with pZDonor hybrid FVIII 
donor plasmid (9-kb hybrid FVIII cassette) and a bicistronic plasmid encoding both 
left and right AAVS1 enhanced Sharkey ZFNs were either unselected (no selection) 
or selected with G418. Genomic DNA extracted from the resulting cell populations 
was analyzed by integration junction PCR for evidence of donor DNA integration at 
the AAVS1 locus. “-ve” Refers to minus template amplification, while “+ve” refers 
to amplification of a K562 genomic DNA sample previously identified to be positive 
for AAVS1 site-specific integration of the 9-kb hybrid FVIII cassette. Left and right 
integration junctions were amplified with vector specific and genome specific 
primers. Control genomic PCR was performed with primers amplifying a 900-bp 
region of the AAVS1 locus. Amplified products were electrophoresed on 1% agarose 
gels and imaged using BioRad®Gel Doc 2000 transilluminator and QuantityOne 
software. Black arrows indicate the expected integration junction PCR amplicons. (B) 
CLECs electroporated without any plasmid (EP only) or co-electroporated with 
pZDonor hybrid FVIII donor plasmid DNA and bicistronic plasmid encoding both 
left and right AAVS1 enhanced Sharkey ZFNs with (G418) or without (no selection) 
a 7-day G418 selection beginning 7 days post-electroporation were analyzed for 
durable FVIII expression. FVIII activity in conditioned media from the indicated 
treatment groups assayed on days 6, 23 and 30 post- electroporation (Coamatic® 
FVIII assay, Chromogenix) are shown. Data are mean ± SEM; n= 3 per group, except 
for day 6 samples from pZHybrid F8 ZFN no selection group, where n=1.  
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2.3.2.8. Oligoclonal cells with partial integration of 9-kb hybrid FVIII 

cassette 

 A puzzling phenomenon of our study of ZFN-mediated modification of 

CLECs with pZDonor hybrid FVIII vector were occasions when only a single 

integration junction, often the right junction, could be detected in the bulk CLEC 

population (Figure 41).  To delve into these intriguing observations, we screened 

oligoclonal populations for the presence of both left and right integration junctions to 

determine if there had been incomplete integration of the 9-kb donor DNA.    

 We performed direct PCR to detect the right integration junction at the 

AAVS1 locus on 72 G418-resistant oligoclonal CLECs, of which 22 were positive 

(Figure 42). Further screening of positively amplified right junction PCR amplicons 

by a nested PCR confirmed that of the 22 positive clones, only 13 were positively by 

nested PCR. Surprisingly, all 72 clones were negative for the left integration junction.  

 We investigated if all the essential components of the integrated donor (Hfer 

promoter, FVIII cDNA, poly A sequences and neomycin resistance gene) necessary 

for FVIII expression were present in 5 selected clones (clone#1, 10, 36, 40 and 48) 

that were right junction positive but left junction negative. Direct PCR was used to 

screen in situ lysed clonal cells for presence of (1) AAVS1 Left junction and hfer 

promoter; (2) FVIII porcine A1 domain; (3) FVIII human A2 and B-domains; (4) 

FVIII porcine A3 domain; (5) FVIII human C1 and C2 domains; and (6) neomycin 

resistance gene cDNA, as depicted and numbered in Figure 43A. The results show 

that while all the above donor DNA components were present in CLECs positive for 

both integration junctions, all 5 selected clones had very few donor components, 

except for neomycin cDNA (labeled as -6) and perhaps FVIII C1 and C2 domain 

(labeled as -5) (Figure 43B), confirming that the presence of a single junction by 

PCR was indicative of partial integration of donor DNA. Such partial integration 

would be expected to induce no FVIII expression. Consistent with this, FVIII activity 

was very low or undetectable in such clonal CLEC populations. This also explained 

the drastic reduction in FVIII expression by day 42 post-electroporation in G418-

resistant but unscreened bulk populations of pZDonor Hybrid FVIII and ZFN-treated 

cells (Figure 41B), unlike stably modified cells that were screen positive for both left 

and right integration junctions (Figure 40B).  

 While the actual reasons for incomplete or partial vector integration were 

unclear, positive results from earlier experiments (section 2.2.2.8) suggest that initial 

bulk screening of ZFN-treated cells for evidence of both left and right integration 

junctions is useful for identifying desirable oligoclones with complete transgene 
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integration in future. Factors that were difficult to control such as cell cycle status at 

time of DNA damage repair or even the manner in which Holliday junctions were 

resolved could have contributed to the incomplete transgene integration phenomenon 

that we encountered in some instances.     
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Figure 41 Bulk CLEC population which was positive only for the right 
integration junction following integration of pZDonor hybrid FVIII vector. (A) 
Genomic DNA extracted from a bulk population of G418-selected CLECs treated 
with either pZDonor hybrid FVIII only or in combination with AAVS1 ZFNs 
(pZDonor hybrid FVIII + ZFN) were analyzed by PCR for the presence of left and 
right integration junctions (done in triplicate). Control genomic PCR amplified a 1-kb 
region close to the AAVS1 locus on chromosome 19q13.42. Amplification products 
were electrophoresed on 1% agarose gels and imaged using BioRad®Gel Doc 2000 
transilluminator. Negative control (-ve) was amplification from a minus template 
PCR while positive control (+ve) was amplified from genomic DNA  of K562 cells 
with a known complete integration of pZDonor hybrid FVIII. (B) FVIII activity in 
conditioned media of a bulk population of G418-selected CLECs electroporated with 
pZDonor hybrid FVIII with or without ZFNs was assayed on days 6, 20 and 42 post-
electroporation. Data are mean ±  SEM, n=3 per group.    
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Figure 42 Screening of oligoclonal CLECs for AAVS1 site-specific 
integration of pZDonor hybrid FVIII vector. Flow sorted oligoclonal (4 cells per 
well) populations of G418-selected CLECs treated with pZDonor hybrid FVIII and 
ZFN were lysed in situ and analyzed for left and right integration junctions and a 
control genomic locus (1 kb region close to chromosome 19q13.42) using Phusion® 
Human Specimen Direct PCR kit.  Amplification products were electrophoresed on 
1% agarose gels and imaged using BioRad®Gel Doc 2000 transilluminator. Negative 
control (-ve) was amplification from a minus template PCR while positive control 
(+ve) was amplification from genomic DNA of K562 known to have a complete 
integration of pZDonor hybrid FVIII. Red rectangles demarcate the predicted position 
of the right junction amplicon.  
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Figure 43 PCR analysis of selected oligoclonal CLECs for completeness of 
integration of pZDonor hybrid FVIII vector. (A) Schematic illustrating hybrid 
FVIII transgene integrated at the AAVS1 locus (top) and the domains of hybrid FVIII 
cDNA (bottom). Arrows and boxed numbers highlight regions that were investigated 
by PCR. PCR reaction #1 amplified from AAVS1 genomic region (5’ 
ttcgggtcacctctcactcc3’) to the end of human ferritin promoter 
(5’ttatggtgcgccggccctcg3’); reaction #2 amplified from the signal peptide 
(5’gccgctagcgatgcaaatagagctctcca3’) to the end of FVIII porcine A1 domain 
(5’aggatgcttcttggcaactgagcggatttggataaagggaga3’); reaction #3 amplified from the 
start of FVIII human A2 domain (5’tctccctttatccaaatccgctcagttgccaagaagcatcct3’) to 
the end of partial B-domain (5’gcgggggctctgattttcatcctc3’); reaction #4 amplified 
FVIII porcine A3 domain (5’agctttcagaagagaacccgacac3’; 
5’tcccaggggagtctgacacttcttgctgtacaccaggaaagt3’); reaction #5 amplified from FVIII 
human C1 domain (5’actttcctggtgtacagcaagaagtgtcagactcccctggga3’) to the end of C2 
domain (5’agtgctagctcagtagaggtcctgtgcc3’); and reaction #6 amplified neomycin 
resistance cDNA (5’ttgcacgcaggttctccggc3’; 5’ggcgtcgcttggtcggtcat3’). (B) Selected 
clones (#1, 10, 36, 40, 48) of G418-selected CLECs treated with pZDonor hybrid 
FVIII and ZFN were investigated by direct PCR for the presence of the different 
segments of the integrated transgene with primer pairs (shown in the schematic) as 
indicated by hyphenated numbers. Negative control (-ve) was amplification from a 
minus template PCR while  positive control (+ve) was amplified from genomic DNA 
of K562 cells known to have completely integrated pZDonor hybrid FVIII. 
Amplification products were electrophoresed on 1% agarose gels and imaged using 
BioRad®Gel Doc 2000 transilluminator. 
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2.3.3. A promoter trap strategy for site-specific transgene integration  

 In our initial exploration, cells with stable transgene integration were selected 

on the basis of G418 resistance conferred by expression of neomycin resistance gene 

driven from a constitutive exogenous promoter. However, such a selection strategy 

inevitably resulted in contamination by cells with random transgene integrations 

amongst a minor population of cells with the desired AAVS1 site-specific integration, 

thereby complicating downstream evaluations of the accuracy of site-specific 

transgene integration, biosafety and durability of transgene expression. We attempted 

to reduce the admixture of cells with random and site-specific integrations using a 

promoterless puromycin resistance gene plasmid construct with a splice acceptor site 

and self-cleaving 2A peptide sequence whereby puromycin resistance gene would be 

expressed only when driven off an endogenous promoter in the event of integration 

close to such a promoter. As the AAVS1 ZFN-induced genomic cleavage site is close 

to the endogenous PPP1R12C promoter, we anticipated that the majority of cells with 

AAVS1 site-specific integration would express puromycin resistance expressed from 

the endogenous PPP1R12C  promoter and thereby substantially enrich the population 

for the desired site-specific integration using puromycin selection. Using this strategy, 

we tested for ZFN-mediated integration of pAAVS1-SA-2A-puro-pA donor1 (1-kb 

donor insert), pAAVS-CAGGS-EGFP1 (4.2-kb donor insert) and pAAVS1-SA-2A-

puro-Hybrid FVIII (9-kb donor insert) vectors at the AAVS1 locus.  

2.3.3.1. AAVS1 site-specific integration of a complete 1-kb  puromycin 

cassette in CLECs  

 Stable cultures of puromycin resistant CLECs derived by co-electroporation 

with pAAVS1-SA-2A-puro-pA donor and a bicistronic plasmid encoding both left 

and right AAVS1 enhanced Sharkey ZFNs were investigated for evidence of donor 

DNA integration at the AAVS1 locus. PCR amplification of both left and right 

integration junctions from genomic DNA isolated from puromycin-resistant stable 

CLECs provided strong evidence for site-specific integration of both the donor DNA 

vectors. Complete integration of pAAVS1-SA-2A-puro-pA donor (1 kb) at the 

AAVS1 locus was demonstrated by PCR amplification of the entire integrated vector 

(3 kb) using genome-specific primers overlapping the integration site (Figure 44). 

Comparatively, very weak amplification of the unmodified endogenous AAVS1 locus 

(Endogenous locus) suggested that the majority of puromycin-selected cells had 

biallelic integration of the puromycin cassette at the AAVS1 locus. Sequencing of the 

http://wizfolio.com/?citation=1&ver=3&ItemID=355&UserID=8336&AccessCode=660342E485C0488BB130A0E42B9638D5&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=355&UserID=8336&AccessCode=660342E485C0488BB130A0E42B9638D5&CitationSuffix=�
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amplified fragments verified complete donor integration and moreover showed no 

insertions or deletions at the integration junctions. 
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Figure 44 Complete integration of SA-2A-puro-pA donor into AAVS1 locus 
of CLECs. (A) Schematic showing homologous recombination-mediated integration 
of AAVS-SA-2A-puro-pA donor into AAVS1 locus and the primer sets (left junction: 
Puro LF; Puro LR, right junction: Puro RF2; AAVS1 R) used for integration junction 
and overlapping PCR (Puro LF; AAVS1 R) analysis of site-specific integration. (B) 
CLEC#33 co-electroporated with AAVS-SA-2A-puro-pA donor plasmid DNA (1 kb 
puromycin cassette) and with a bicistronic plasmid encoding both left and right 
AAVS1 enhanced Sharkey ZFNs were selected with puromycin. Genomic DNA 
extracted from the resulting stable cell populations were analyzed by integration 
junction PCR and overlapping PCR for evidence of donor DNA integration at the 
AAVS1 locus. Left (Left JPCR; 1.1 kb) and right (Right JPCR; 1.6 kb) integration 
junctions were amplified with vector specific and genome specific primers as 
indicated above, while control PCR was performed with genome specific primers for 
a 900-bp region of the AAVS1 locus (all done in duplicate). PCR overlapping the 
integration site (Long PCR; amplicon of unmodified locus without 
integration/endogenous locus - 2 kb; amplicon of locus integrated with donor DNA- 
3kb) was performed with genome specific primers close to the integration site. 
Similar PCR performed on unmodified wild type CLECs served as controls for the 
unmodified locus. Amplified products were electrophoresed on 1% agarose gels and 
imaged using BioRad®Gel Doc 2000 transilluminator and QuantityOne software. 
Identity of junction PCR products and long PCR products were confirmed by 
sequencing. 
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2.3.3.2. AAVS1 site-specific integration of complete 4-kb CAGGS EGFP 

cassette in CLECs 

 Integration of pAAVS-CAGGS-EGFP vector was shown by integration 

junction PCR as well as by two long PCR with vector specific and genome specific 

primer pairs (Figure 45B) covering most of the integrated transgene except a GC-rich 

1-kb region within the transgene (CAGGS promoter) that could not be amplified. 

Amplified fragments were sequence verified and found not to have incurred deletions 

or insertions at integrations sites. CLECs with stable integration of EGFP cDNA at 

the AAVS1 locus expressed EGFP stably for up to 33 days in culture, when the 

experiment was terminated (Figure 45C). This showed that efficient selection and 

enrichment of cells with site-specific integration could be achieved using a promoter 

trap strategy with a promoterless construct. These experiments further demonstrate 

the capacity to integrate complete transgene inserts of up to 4.2 kb in size at the 

intended AAVS1 locus. 
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Figure 45 Complete integration of AAV-CAGGS-GFP into AAVS1 locus of 
CLECs. (A) Schematic showing homologous recombination-mediated integration of 
AAV-CAGGS EGFP into AAVS1 locus and the primer sets (left junction: Puro LF; 
Puro LR; right junction: GFP RF; Puro RR) used for integration junction and 
overlapping PCR (Long PCR Left: Puro LF; CAGGS R, Long PCR Right: GFP F; 
Puro RR) analysis of site-specific integration. (B) CLEC#33 co-electroporated with 
AAV-CAGGS EGFP plasmid DNA (4.2-kb fragment consisting of promoterless 
puromycin resistance cDNA and CAGGS promoter -EGFP cDNA) and a bicistronic 
plasmid encoding both left and right AAVS1 enhanced Sharkey ZFNs were selected 
with puromycin. Genomic DNA extracted from the resulting stable cell populations 
were analyzed by (left) integration junction PCR and (Right) long PCR for evidence 
of donor DNA integration at the AAVS1 locus. Left (Left JPCR amplicon; 1 kb) and 
right (Right JPCR amplicon; 1.3 kb) integration junctions were amplified with vector 
specific and genome specific primers as indicated above, while control PCR was 
performed with genome specific primers amplifying a 900-bp region of the AAVS1 
locus (all done in duplicate). Two different long PCR encompassing most of the 
integrated transgene (Long PCR Left; 2.3 kb; Long PCR Right, 2.5 kb) were 
performed with vector specific and genome specific primers as indicated above. 
Similar PCR reactions performed on unmodified wild type CLECs served as controls 
showing lack of donor integration. Amplified products were electrophoresed on 1% 
agarose gels and imaged using BioRad®Gel Doc 2000 transilluminator and 
QuantityOne software. Identity of junction PCR products and long PCR products 
were confirmed by sequencing. (C) Brightfield and fluorescence images of CLECs on 
day 1 post-electroporation, and on days 9, 21 and 33 (i.e. on completion of puromycin 
selection) with AAV-CAGGS EGFP plasmid DNA.  
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2.3.3.3. AAVS1 site-specific integration of complete 9-kb Hfer hybrid FVIII 

cassette in CLECs 

 Having demonstrated the capacity to target transgene integration into the 

AAVS1 locus and to enrich for cells with such integration using a promoter trap 

strategy, we proceeded to evaluate if complete integration of the 9-kb hybrid FVIII 

cassette was possible and whether site-specific transgene integration at the AAVS1 

locus would support durable FVIII expression.  

 Integration junction PCR and long PCR done on genomic DNA extracted 

from puromycin-resistant cells derived following co-electroporation with pSA-2A-

puro-Hybrid FVIII and a bicistronic plasmid encoding both left and right AAVS1 

enhanced Sharkey ZFNs provided evidence for site-specific integration of the entire 

9-kb hybrid FVIII transgene cassette at the AAVS1 locus (Figure 46B). Sequencing 

of the two long PCR products encompassing the AAVS1 genomic region and the 

integrated vector confirmed integration of the entire transgene cassette without loss of 

any vector or genomic DNA sequences at the integration junctions or within the 

integrated vector (Appendix 6). 

 Cells electroporated with pSA-2A-puro-hybrid FVIII with or without ZFNs 

(indicated as “Puro FVIII ZFN” and “Puro FVIII”, respectively in Figure 46C) but  

not puromycin-selected were incapable of durable FVIII expression as evident by 

undetectable levels of FVIII at day 37 post-electroporation. This was consistent with 

loss of episomal pSA-2A-puro-Hybrid FVIII vector in the absence of transgene 

integration (“Puro FVIII”) and failure to enrich for cells with transgene integration in 

the absence of puromycin selection (“Puro FVIII ZFN”). On the other hand, durable 

FVIII expression was observed for at least 37 days post-electroporation in 

puromycin-resistant cells derived from electroporating pSA-2A-puro-Hybrid FVIII 

and a plasmid encoding both left and right AAVS1 enhanced Sharkey ZFNs (“Puro 

FVIII ZFN selected”). Puromycin-resistant cells had FVIII expression levels of 2131 

± 17.47  mUnits/ 106 cells/ 24 hr at day 37 post-electroporation compared to initial 

FVIII levels of 952.1± 8.365  mUnits/ 106 cells/ 24 hr from unselected cells at 1 day 

post-electroporation, showing  durable FVIII expression after puromycin selection 

enriched for FVIII-expressing cells (Figure 46C). These data collectively showed 

that transgene integration at the AAVS1 locus could support durable transgene 

expression and corroborated with our earlier findings of durable EGFP expression 

following transgene integration at this locus (Figure 45C) as well as other reports 

that the AAVS1 locus is permissive for durable expression of integrated transgenes8‐

10.  
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 In order to estimate the ratio of off-target to on-target integrations, we 

performed integration junction PCR and vector-specific PCR on genomic DNA 

extracted from CLECs stably integrated with Puro FVIII vector following ZFN 

treatment (Puro FVIII ZFN selected cells). PCR products were quantified by 

densitometry. The band  intensities of vector PCR products (vector PCR FVIII A3 

domain and vector PCR FVIII C1 domain), reflecting on-target and off-target 

integrations  were expressed as a ratio of integration junction PCR products, 

reflecting on-target integration (Left integration junction). A ratio close to 1.0 would 

indicate mainly on-target integration while ratios below or greater than 1.0 might 

suggest vector deletion or significant off-target integrations, respectively. Our 

analysis determined that the ratio of vector PCR FVIII A3 domain: integration 

junction PCR was 0.91 and that of vector PCR FVIII C1 domain: integration junction 

PCR to be 1.16 (Figure 46D). Given that both ratios were close to 1.0, it could be 

inferred that off-target integrations or vector deletions were not major features in 

these cells, although neither could be definitively excluded from these data.  

 The proliferative capacity of naive ZFN-untreated CLECs, CLECs 

electroporated with pSA-2A puro-hybrid FVIII cDNA only and stable CLECs derived 

from co-electroporation of pSA-2A-puro-hybrid FVIII and a bicistronic plasmid 

encoding both left and right AAVS1 enhanced Sharkey ZFNs were evaluated by in 

vitro colony formation assay and MTS assay. As assessed by the MTS assay (Figure 

46F) proliferation of untreated CLECs (O.D 405 nm = 0.563 ± 0.027) and stable 

CLECs with Puro FVIII integration (O.D 405 nm = 0.484 ± 0.03) was not statistically 

different (P = 0.094). Comparatively, CLECs transiently electroporated with pSA-

2A-puro-hybrid FVIII cDNA only (O.D 405 nm = 0.723 ± 0.027) were significantly 

more proliferative (state P value here). Data from in vitro colony formation assay 

(Figure 46E) corroborated MTS assay data. There was no significant difference (P = 

0.387) in the number of colonies formed from initial seeding of 100 naive untreated 

CLECs (Wt CLECs = 6.0 ± 0.6) or stable CLECs integrated with pSA-2A-puro-

hybrid FVIII (Puro FVIII ZFN = 8.7 ± 2.2) but significantly more colonies formed 

from CLECs transiently electroporated with Puro FVIII only (Puro FVIII = 11.0 ± 

1.0) (state P value here). In summary, data from both MTS and in vitro colony 

formation assays indicated comparable growth rates of stable CLECs with genomic 

integration pSA-2A-puro hybrid FVIII and untreated naive CLECs.  
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Figure 46 Complete integration of pSA-2A-puro-hybrid FVIII into AAVS1 
locus of CLECs. (A) Schematic showing homologous recombination-mediated 
integration of pSA-2A-puro-hybrid FVIII into AAVS1 locus and the primer sets (left 
junction: Puro LF, Puro LR; right junction: C1F, Puro RR) used for integration 
junction and overlapping PCR (Long PCR Left: Puro LF; BDR; Long PCR Right: 
A3F; Puro RR) analysis of site-specific integration. (B) CLEC#33 co-electroporated 
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with pSA-2A-puro-hybrid FVIII plasmid DNA (8.9-kb fragment consisting of 
promoterless puromycin resistance cDNA and human ferritin promoter-hybrid FVIII 
cDNA) and a plasmid encoding both left and right AAVS1 enhanced Sharkey ZFNs 
were selected with puromycin. Genomic DNA extracted from the resulting stable cell 
populations were analyzed by (left) integration junction PCR and (right) long PCR  
for evidence of donor DNA integration at the AAVS1 locus. Left (Left JPCR 
amplicon, 1 kb) and right (Right JPCR amplicon, 3.187 kb) integration junctions were 
amplified with vector specific and genome specific primers as indicated above, while 
control PCR amplified a 900-bp region of the AAVS1 locus (all done in duplicate). 
Two different long PCR encompassing the entire integrated transgene (Long PCR 
Left, 6.859 kb; Long PCR Right, 4.156 kb) were performed with vector specific and 
genome specific primers as indicated above. Identical PCR performed on unmodified 
wild type CLECs served as controls for absence of donor integration. Amplified 
products were electrophoresed on 1% agarose gels and imaged using BioRad®Gel 
Doc 2000 transilluminator and QuantityOne software. Identity of junction PCR 
products and long PCR products were confirmed by sequencing. (C) Conditioned 
media of CLECs that were either unelectroporated (WT) or electroporated with pSA-
2A-Puro-hybrid FVIII (Puro FVIII), pSA-2A-Puro-hybrid FVIII and a plasmid 
encoding left and right AAVS1 enhanced Sharkey ZFNs with (Puro FVIII ZFN 
selected) or without (Puro FVIII ZFN) a 7-day puromycin selection starting 1 week 
after electroporation were assayed for FVIII activity on days 1 and day 37 post-
electroporation (Coamatic® FVIII assay, Chromogenix). Data are mean ± SEM; n=3 
per group. (D) CLECs integrated with Puro hybrid FVIII cDNA were evaluated for 
the ratio of on-target to off-target integrations by a genomic PCR method. Band 
intensities by densitometry of PCR products from integration junction PCR (on-target 
integration events) and vector PCR (combination of on-target and off-target 
integration events) were expressed as a ratio of vector specific PCR product: 
integration junction PCR product. (E) Crystal violet staining of cell colonies 14 days 
after initial seeding (in triplicate wells) of 100 (top; Wt CLECs) naive untreated 
CLECs, (middle; Puro FVIII) CLECs electroporated with Puro hybrid FVIII cDNA 
only  or (bottom; Puro FVIII ZFN) stable CLECs derived from co-electroporation 
of Puro hybrid FVIII and ZFN. Images of culture dishes containing crystal violet 
stained cells. For each seeding density, the number of colonies were enumerated and 
expressed as mean colony counts ± standard error of triplicates. (F) Naive untreated 
CLECs (Wt CLECs), CLECs electroporated with Puro hybrid FVIII cDNA only 
(Puro FVIII) or stable CLECs derived from co-electroporation of Puro hybrid FVIII 
and ZFN (Puro FVIII ZFN) were seeded at an initial seeding density of 100 cells per 
well (96 well plate) and quantified 7 days later for cell proliferation using the MTS 
assay (CellTiter 96®Aqueous One solution cell proliferation assay kit), Data are mean 
absorbance readings ± SEM; n=6 per group.   

   

. 
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2.3.3.4. Effect of transgene integration at AAVS1 locus on endogenous 

PPP1R12C transcription  

 Insertion of splice acceptor (SA) sequences into the genome by integrated 

vectors may potentially alter endogenous gene expression. To investigate if this 

occurred at the AAVS1 locus, endogenous PPP1R12C transcripts were assessed in 

unmodified CLECs (Wt CLECs) and CLECs with stable ZFN-mediated integration of 

donor vectors (AAVS1 SA-2A-puro-pA donor, AAVS-CAGGS-EGFP and pSA-2A-

puro-hybrid FVIII) by RT-PCR for changes in expression levels.  

The mean GAPDH-normalized PPP1R12C transcript levels in stable CLECs 

integrated with AAVS1 SA-2A-puro-pA donor, AAVS-CAGGS-EGFP and pSA-2A-

puro-Hybrid FVIII were determined to be 0.005 ± 0.0006, 0.461 ± 0.39 and 0.443 ± 

0.03, respectively, of the normalized PPP1R12C transcripts levels of control CLECs 

(Wt CLECs) (Figure 47). This translates to a 200-fold (AAVS1 SA-2A-puro-pA 

donor) and approximately 2-fold (AAVS-CAGGS-EGFP and pSA-2A-puro-Hybrid 

FVIII) decrease in PPP1R12C transcript levels as compared to control CLECs, 

consistent with  bi-allelic and mono-allelic transgene integrations in the respective 

stable cultures (P<0.05). These data were concordant with genomic PCR data  

(Figure 44B; “Long PCR”) which showed strong amplification of the integrated 1-kb 

puromycin cassette and much weaker amplification of the endogenous locus, 

consistent with predominantly bi-allelic integration of AAVS1 SA-2A-puro-pA donor 

in this population. Other investigators have indeed reported similar declines in 

PPP1R12C transcription following integration of donor vectors with splice acceptor 

(SA) sequences into AAVS1 locus9, 11. Although no adverse consequences have been 

reported following complete disruption of the endogenous PPP1R12C gene, it may be 

useful and interesting to determine if biologically meaningful global transcriptional 

changes arise when endogenous PPP1R12C gene expression is extinguished.  
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Figure 47 Endogenous PPP1R12C transcription in transgene-integrated 
CLECs.  Quantitative RT-PCR was performed on control untreated CLECs (Wt 
CLECs) and puromycin-resistant stable CLECs, derived from co-electroporation with 
AAVS1 SA-2A-puro-pA donor, AAVS-CAGGS-EGFP or pSA-2A-puro-hybrid 
FVIII and a plasmid encoding for AAVS1 enhanced Sharkey ZFNs to assay 
PPP1R12C (exon 4 -6) and GAPDH transcript levels. GAPDH- normalized 
PPP1R12C expression levels (as determined by the 2-ΔΔCt method) are shown relative 
to that of control CLECs (Wt CLECs). Data are mean ± SEM, n=3 experiments per 
group and 3 replicates per sample.  
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2.3.3.5. Transcriptome analysis of CLECs with transgene integration at 

AAVS1 locus 

 The transcriptome of naive unmodified CLECs and a bulk population of 

puromycin-resistant, ZFN-treated CLECs with targeted integration of puro hybrid 

FVIII cassette were analyzed on Affymetrix HU133 plus 2.0 arrays. Genes whose 

expression differed by greater than 2-fold compared to unmodified CLECs were 

analyzed further.  

 Targeted transgene integration into intron 1 of the PPP1R12C gene has the 

capacity to perturb the expression of the endogenous gene8, 9, 11 and may even affect 

the expression of its potential interacting partners, other protein phosphatases within 

the same family, potential downstream effector genes12‐15 and neighboring genes 

within the vicinity of transgene integration. We thus focused analysis of the 

transcriptome data to a close scrutiny of the endogenous PPP1R12C transcript and 

other genes of the protein phosphatases family (n=75), potential interacting partners 

of PPP1R12C predicted by Gene Network Central™ 

(http://www.sabiosciences.com/genenetwork/genenetworkcentral.php) and String 9.0 

(http://string-db.org/) (n=24), potential downstream effector genes (n =63) and 

neighboring genes within a 1 Mb window of transgene integration site (n=45). 

Selected genes were evaluated by quantitative RT-PCR to verify transcriptome data.  

 Concordant with RT-PCR (Figure 47), transcriptome data also showed a 2.2-

fold decline in endogenous PPP1R12C expression. The insertion of a new splice-

acceptor sequence into intron 1would very likely have truncated the endogenous 

PPP1R12C transcript, thus reducing its level. Given the 2-fold reduction in 

PPP1R12C transcription, it would be reasonable to postulate that the majority of cells 

had attained monoallelic rather than biallelic integrations, since the latter would more 

likely completely extinguish PPP1R12C expression. It is worth noting that as ES/iPS 

cells tolerate biallelic disruption of PPP1R12C 1,  10,  there appears to be functional 

redundancy of its role in cells . The normal morphology and growth characteristics of 

genome-modified CLECs despite a 50% reduction in PPP1R12C expression further 

supports a less than crucial role of PPP1R12C for cell survival and growth, since 

partial or even complete disruption of this gene is also tolerated by CLECs. 

 We next examined the effects of PPP1R12C down-regulation on its potential 

interacting partners as predicted by Gene Network Central™ and String 9.05. A total 

of 24 genes were analyzed, of which only 4 showed significant changes in expression 

in genome-modified CLECs compared to control CLECs [Up-regulated: CDC6 (2-

fold), DUSP6 (5.5-fold) ; Down-regulated: DUSP16 (5.3-fold), DUSP1 (2.4-fold)]. 
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However, quantitative RT-PCR could verify a significant change in only one of these 

4 genes, DUSP6, which was up-regulated by 4.2–fold in genome-modified CLECs 

compared to control CLECs (Figure 48). Over-expression of Dual Phosphatase 6, 

DUSP6, has been associated with reduction of cellular proliferation and induction of 

apoptosis16  in a lung cancer cell line and would be expected to have tumor 

suppressive roles rather than oncogenic effects. No significant changes in transcript 

levels were detected by quantitative RT-PCR for the remaining 3 genes.   

 As PPP1R12C is a regulatory subunit of myosin-binding protein phosphatase 

1 delta, we further evaluated all potential myosin-related transcripts (n=31) as well as 

predicted downstream effector genes (n=32) based on limited publications on 

PPP1R12C 12‐15. Of 63 potential genes analyzed, 7 had significant changes in 

genome-modified CLECs compared to control CLECs [Up-regulated: MYL12A (3.2-

fold), MYH15 (14-fold); Down-regulated: CDC42 (2.6-fold), CDC42EP4 (2.3-fold), 

MYH8 (7.7-fold), MYLIP (3.6-fold)]. Altered expressions of these significantly 

altered genes are not known to be associated with any known disease phenotype, by 

reference to the OMIM database. We cannot exclude the possibility that at least some 

of the transcriptional alterations observed directly or indirectly resulted from 

PPP1R12C down-regulation. This question could be resolved by complete knock-

down studies of PPP1R12C expression.  

 Another key concern of integrating vectors is the potential to perturb the 

expression of genes neighboring the integration site. We therefore analyzed our 

transcriptome data for perturbation of genes located within a 1 Mb window centered 

around the integration site in intron 1 of PPP1R12C. Of 43 genes in this window, 

only 7 were expressed in CLECs and none were altered in expression. Quantitative 

RT-PCR results corroborated the transcriptome data for all 7 genes (Figure 48). This 

finding was not unexpected, given that our integrating vector did not contain any 

enhancer elements and the presence of natural insulator elements at the AAVS1 

locus17. 

 We further extended our analysis to 75 genes of the protein phosphatase 

family (PPP1 to PPP6). Analysis of the transcriptome data revealed that 5 genes 

within this family showed changes in gene expression in genome-modified CLECs 

compared to control unmodified CLECs [Up-regulated: PPP2R2A (2.2-fold), 

PPP4R2 (3-fold), PPP4R4 (2.7-fold); Down-regulated: PPP2R5A (2.7-fold), 

PPP1R36 (2.7-fold)]. It is highly speculative as to whether changes in other members 

of the large protein phosphatase family were direct effects of or compensatory 

responses to PPP1R12C down-regulation or were completely unrelated. 
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 Lastly, all the above-mentioned genes with significant changes in expression 

were mapped to a database of potential oncogenes. This revealed that none of the 

altered genes are potential oncogenes. 

 At present, the PPP1R12C gene has not been well-studied, and its functions 

and downstream effects are thus poorly understood. While we could not confidently 

identify if any functional pathways were directly affected as a result of PPP1R12C 

down-regulation from transgene integration, perturbations in gene expression were 

noted in a limited number of transcripts directly or indirectly associated with 

PPP1R12C. The functional effects of changes to these limited number of genes 

remains to be evaluated, although they exerted no effect on cell growth or 

morphology. Appendix 9 is a complete list of all genes evaluated in this 

transcriptome study. 
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Figure 48 RT-PCR to verify transcriptional changes to selected genes 
identified by genome-wide transcriptome profiling.  Quantitative RT-PCR was 
performed on control untreated CLECs and a bulk population of CLECs with ZFN-
mediated integration of Puro Hybrid FVIII transgene at the AAVS1 locus. Data show 
transcript levels of neighboring genes residing within 1-Mb of the AAVS1 integration 
site, predicted interacting partners of PPP1R12C which were deemed to be 
significantly altered by transcriptome analysis and a housekeeping gene, GAPDH. 
GAPDH-normalized transcript expression levels (as determined by the 2-ΔΔCt method) 
in treated CLECs are shown relative to that of control untreated CLECs. Data are 
mean ± SEM, n=2 experiments per group and 3 replicates per transcript.  
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2.3.3.6. Deep-sequencing of top-10 potential off-target sites for AAVS1 

ZFNs 

 Although ZFNs are designed to be highly specific and to target a unique site 

in the genome, the possibility for off-target binding and activity elsewhere in the 

genome cannot be excluded. There remains a rare possibility that ZFNs pairs may 

bind as homo- or heterodimers and cleave at genomic regions having similar 

sequence as the intended target recognition sites. Such off-target effects would be 

anticipated to create new indels following NHEJ repair. We thus evaluated the 

precision of AAVS1 ZFN-mediated transgene insertion in CLECs by massively 

parallel sequencing of the 10 most likely off-target sites for AAVS1 ZFNs 

bioinformatically predicted by SELEX analysis1 (Appendix 10).  

 The endogenous AAVS1 locus and aforementioned top-10 potential off-

target sites were amplified from genomic DNA of naive untreated CLECs and a bulk 

population of puromycin-resistant ZFN-treated CLECs with targeted integration of 

Puro FVIII vector. PCR amplicons were sequenced using Illumina MiSeq to perform 

150-bp paired-end deep sequencing. Sequence data were analyzed for indels at 

potential ZFN recognition sites within each amplicon. PCR amplicons specific to the 

AAVS1 locus targeted by AAVS1 ZFNs served as positive controls for indel 

detection. In order to determine the sensitivity of the deep sequencing platform for 

detecting indels, the unmodified AAVS1 amplicon was spiked with a synthetic 

mutant AAVS1 amplicon having a 5-bp deletion at the AAVS1 ZFN target site at 

ratios of 1:10 (10% mutant), 1:100 (1% mutant), 1:500 (0.2% mutant) and 1:1000 

(0.1% mutant).  

 Targeted deep sequencing consistently detected indels at all concentrations of 

the spike-in controls (0.1% - 10% mutants) and gave a highly positive linear 

correlation (R2 = 0.999) between the actual percentage of spike-in controls and 

experimentally detected percentage of indels (Appendix 11). The spike-in-control 

experiments established the feasibility of targeted deep-sequencing to detect mutants 

(5-bp deletions) in as few as 0.1% of the population. Thus it was reasonable to accept 

that rare off-target events (manifest as indels) present in even 0.1% of a mixed 

population of ZFN-treated stable CLECs with puro FVIII transgene integration would 

be detected by targeted deep-sequencing. 

 Our analysis of the top-10 potential off-target sites (OT1 – OT10) in CLECs 

showed that the AAVS1 ZFNs did indeed induce indels at low frequencies in only 1 

of the 10 potential off-target sites. Two different types of indels, viz. a 4-bp deletion 

(UCSC position 141507040) and a 1-bpdeletion (UCSC position 141507072), were 
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found at OT1, an intergenic region in chromosome 8q24.3, at frequencies listed in 

Table 3. It is possible that indels common to both untreated CLECs and CLECs with 

Puro FVIII cDNA integration were technical artifacts introduced either during PCR 

generation and/or sequencing of amplicons. Aside from indels detected in OT1, no 

other indels specific to CLECs with Puro FVIII cDNA integration were detected at 

significant levels. Low frequency indels at OT6 were common to both untreated 

CLECs and ZFN-treated CLECs and thus could not be attributed to the off-target. 

Evaluation of our transcriptome data failed to reveal any change in transcript levels 

between untreated CLECs and ZFN-treated CLECs for off-target intronic sites (OT3, 

OT6, OT7, OT8, OT9 and OT10).  

 In summary, targeted deep sequencing appears to be a useful and sensitive 

tool for evaluating the precision of ZFNs designed for locus specificity. The use of 

AAVS1 ZFNs in CLECs resulted in low frequency indels at OT1. However, as OT1 

is  intergenic and substantially distant from protein-coding genes, low frequency 

cleavage and repair at this off-target site may be functionally silent.



245 

 

Table 3 Deep sequencing of top-10 potential off-target sites  

Site Chromosomal 
locus 

UCSC 
chromosomal 
location 

Untreated CLECs Puro FVIII ZFN stable CLECs Transcriptional 
change 

Indels 
(frequency) 

Total 
reads 

% 
Indels 

Indels (frequency) Total 
reads 

% 
Indels 

 

AAVS1 Chr 19 
Intron 1 of 
PPP1R12C 

55627135 
55627136 
55627114 

None detected 92804 0 
 

1 bp del (2285) 
11 bp del (298) 
41 bp del (83) 

34974 
35037 
33195 

6.53 
0.85 
0.25 

 

OT1 Chr 8 
Intergenic 

141507040 
141507072 
141507072 
141507045 
141507072 
141507072 

 
1 bp del (883) 
2 bp del (32) 
 
1 bp insertion (60) 
2 bp insertion (15) 

 
11707 
11707 
 
11707 
11707 

 
7.54 
0.27 
 
2.83 
0.13 

4 bp del (143) 
1 bp del (532) 
 
1 bp del (143) 
1 bp insertion (212) 

10500   
8393 
 
10434 
8393 

1.36 
6.34 
 
1.37 
2.53 

 

OT2 Chr 10 
Intergenic 

 None detected 82178 0 None detected 93049 0  

OT3 Chr 4 
Intron 1 of 
RGS12 

 None detected 49810 0 None detected 67083 0 Not expressed 

OT4 Chr 10 
Intergenic 

 None detected 104186 0 None detected 110320 0  

OT5 Chr 9  
Intergenic 

138563405 1 bp del (84) 
 

53278 
 

0.16 
 

None detected 
 

94464 0 
 

 

OT6 Chr 14 
Intron 1 of 
BEGAIN1 

101033142 1 bp del (72) 40570 0.18 1 bp del (65) 45737 0.14 Not expressed 

OT7 Chr 7  
Intron 14 of 

 None detected 108022 0 None detected 107522 0 No change 
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GRB10 
OT8 Chr 16 

Intron 2 of 
NPIPL1/ Exon 
1 of LAT 

 None detected 89961 0 None detected 130644 0 NPIPL1 (Not 
expressed) 
LAT (Not 
expressed) 
 

OT9 Chr 19 
Intron 7 of 
STK11 

1224724 1 bp del (74) 57423 0.13 None detected 97637 0 No change 

OT10 Chr 12 
Intron 4 of 
FAIM2 

 None detected 97602 0 None detected 86660 0 Not expressed 

The AAVS1 ZFN binding site (AAVS1) and the top-10 potential off-target sites (OT1 to OT10) of untreated CLECs and ZFN-treated CLECs with stable 
integration of Puro hybrid FVIII cassette (Puro FVIII ZFN stable CLECs) were evaluated by targeted deep-sequencing. Chromosomal locus of the target sites 
investigated and corresponding USCS chromosomal location numbers, total mappable reads analyzed, the types and frequencies (given in parenthesis) of 
indels detected and their corresponding percentages are summarized. Where off-target sites occurred within a protein-coding gene, effects on the 
corresponding genes were evaluated by reference to the transcriptome datasets for transcriptional changes. For off-target sites without any significant indels 
and where no UCSC chromosomal numbers are reported, total reads refer to the sum of all mapped sequencing reads analyzed for that particular locus. Where 
UCSC chromosomal locations are reported, the total reads refer to mapped sequencing reads specific to that particular chromosomal location. 
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2.3.3.7. Spectral karyotyping of stable CLECs with Puro hybrid FVIII 

cassette integration at the AAVS1 locus 

 ZFN-treated CLECs with stable integration of Puro hybrid FVIII transgene 

cassette at the AAVS1 locus, were investigated for chromosomal rearrangements by 

spectral karyotype analysis. Evaluation of 23 metaphases revealed normal karyotype 

(Figure 49) and no evidence of structurally abnormal chromosomes within the 

resolution of this technique18. These data suggested that ZFN treatment did not induce 

gross chromosomal abnormalities and that CLECs do not incur chromosomal 

anomalies during the course of  puromycin selection or continuous in vitro culture for 

up to 1 month.  
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Figure 49 Spectral karyotype of ZFN-treated CLECs. A representative  
image of chromosomes from a single metaphase (out of 23 metaphases analyzed) 
showing 46 chromosomes, XX genotype and normal spectral karyotype.  
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2.3.4. Evaluation of HSV-thymidine kinase as a suicide gene to 

eliminate cells with off-target integrations 

In a previous section, we provided evidence for site-specific integration of a 

9-kb hybrid FVIII donor DNA in G418-selected CLECs. However, G418 selection 

enriches not only for cells with stable AAVS1 site-specific integration but also for 

cells in which random integrations have occurred. We considered that incorporation 

of a HSV-thymidine kinase gene cassette into the donor vector in combination with 

gancyclovir selection could eliminate cells with off-target integrations. The HSV-TK 

cassette was cloned into the pZDonor hybrid FVIII construct outside the AAVS1 

homology arms so that HSV-TK cassette would be retained only in the genome of 

cells where random integrations had occurred. Gancyclovir selection should kill cells 

expressing HSV-TK (random integration) while not affecting cells which do not 

express HSV-TK (site-specific integration).       

2.3.4.1. Effect of gancyclovir elimination of TK007-expressing CLECs 

 We first compared the efficacy of gancyclovir selection to kill CLECs stably 

and randomly integrated with either wild type HSV-TK or a codon-optimized and 

improved HSV-TK007 cassette19. CLECs stably expressing HSV-TK or HSV-TK007 

were first selected for G418 resistance, and then exposed to increasing concentrations 

of gancyclovir. The readout of this trial experiment was cell viability assessed by the 

MTS assay.  

    RT-PCR analysis (Figure 50A) of stable cell cultures derived from HSV-

TK and HSV-TK007 electroporated samples confirmed expression of the HSV-TK 

and HSV-TK007 transcripts, respectively. PCR analysis of genomic DNA from the 

same stable cultures also showed genomic integration of both HSV-TK and HSV-

TK007 expression vectors. Taken together, these results confirmed expression of the 

respective versions of HSV-TK in stable cell cultures before testing for gancyclovir 

sensitivity.  

 MTS analysis (Figure 50B) showed decreased viability of CLECs expressing 

HSV-TK or HSV-TK007 when exposed to increasing concentrations of gancyclovir. 

Naive CLECs which did not express HSV-TK were resistant to gancyclovir. Their 

viabilities were not significantly reduced even at 10 μM gancyclovir i.e. 92.18 ± 5.49 

% compared to without gancyclovir treatment. In contrast, CLECs expressing HSV-

TK and HSV-TK007 had significantly reduced cell viabilities (P<0.05) at gancyclovir 

concentrations ranging from 0.1 to 10 μM compared to pre-treatment viabilities (no 

gancyclovir). Comparison between HSV-TK and HSV-TK007 showed significantly 
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reduced (P<0.05) cell viabilities with the latter at gancyclovir concentrations of 1 to 

10 μM. At 1 μM gancyclovir, CLECs expressing HSV-TK007 had a viability of 

20.61 ± 1.52% which was significantly lower (P = 0.0002) than the viability of 

CLECs expressing HSV-TK (56.25 ± 3.98%). Increasing gancyclovir concentrations 

beyond 1 μM further reduced viabilities of CLECs expressing HSV-TK and HSV-

TK007 but a significant decline in viability was also noted for naive CLECs. As such, 

the optimal gancyclovir concentration for eliminating CLECs expressing HSV-TK 

was taken as 1 μM. Furthermore, since HSV-TK007 was more effective in mediating 

cell death in the presence of gancyclovir, it was incorporated in the final version of 

FVIII donor construct, pZDonor hybrid FVIII TK007. 
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Figure 50 Effectiveness of gancyclovir in eliminating HSV-TK-expressing 
CLECs. (A) Samples from naive CLECs (Wt CLEC) and CLECs stably expressing 
either wild type HSV-TK (TK-CLEC) or codon-optimized HSV-TK007 (TK007-
CLEC) were evaluated for expression of HSV-TK/TK007 transcripts and genomic 
integration of HSV-TK/TK007 cDNA by RT-PCR and genomic PCR, respectively, 1 
month post-electroporation. “+RT” and “-RT” refer to 1st strand cDNA synthesis by 
reverse transcription reaction performed with or without reverse transcriptase, 
respectively. “+ve” Refers to amplification of HSV-TK cDNA cassette from a 
plasmid template while “-ve” refers to minus template amplification. Control PCR 
amplified a housekeeping gene, gamma-actin, from either genomic DNA (Genomic 
PCR) or reverse-transcribed 1st strand cDNA (RT-PCR) from the indicated samples. 
Amplification products were electrophoresed on 1% agarose gels and imaged using 
BioRad®Gel Doc 2000 transilluminator. (B) Naive CLECs (Wt CLEC) and CLECs 
stably expressing either wild type HSV-TK (TK-CLECs) or codon-optimized HSV-
TK007 (TK007-CLECs) were cultured at various concentrations of gancyclovir for 6 
days and evaluated by MTS assay for viable cells. Data are mean ± SEM; n = 4 per 
concentration evaluated. The mean absorbance readouts for untreated cells from each 
group were used to assign a viability value of 100%. For each group, percent viability 
was the absorbance measurements of cells treated at various gancyclovir 
concentrations expressed as a percentage of the mean absorbance of untreated cells. 
Significantly greater cell killing was observed for TK007-CLECs (compared to TK-
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CLECs) at gancyclovir concentrations of 1 to 10 μM (Student’s t-test, p<0.05).  (C) 
Crystal violet staining of naive CLECs (Wt CLEC) and CLECs stably expressing 
either wild type HSV-TK (TK-CLECs) or codon-optimized HSV-TK007 (TK007-
CLECs) after 6 days of culture in normal culture media (No treatment) or in culture 
media supplemented with the indicated gancyclovir concentrations show unaffected 
cell viability in naive CLECs but greatly reduced viability in CLECs expressing 
HSV-TK or TK007 selected with gancyclovir at the indicated concentrations. 
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We attempted to enrich for cells with HR-mediated site-specific integration 

of the pZDonor hybrid FVIII TK007 by negative selection of G418-resistant CLECs 

with gancyclovir. Although our initial results with CLECs stably expressing TK007 

indicated that selection with 1 μM gancyclovir could effectively eliminate TK007 

expressing cells, subsequent studies with CLECs integrated with pZDonor hybrid 

FVIII TK007 showed that gancyclovir concentrations had to be higher than 2.5 μM 

before effective cell killing was achieved (Figure 51B). Untreated CLECs were 

unaffected by gancyclovir concentrations up to 100 μM (Figure 51A). Although 

gancyclovir selection eliminated CLECs expressing TK007, we repeatedly found that 

cells surviving the selection were non-proliferative and in a senescence-like state 

(Figure 51D). This senescence-like phenotype was not observed in G418-resistant 

CLECs prior to gancyclovir selection (Figure 51C). With this unexpected effect of 

high gancyclovir, we were unable to determine if incorporation of a suicide gene was 

effective in enriching for cells with HR-mediated site-specific transgene integration.  

All subsequent ZFN studies were therefore based on pZDonor hybrid FVIII construct 

rather than the pZDonor hybrid FVIII TK007 construct. Further work will be required 

to uncover the basis of quiescence and senescence induced by high gancyclovir 

concentration.       
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Figure 51 Gancyclovir selection of untreated and pZDonor hybrid FVIII 
TK007 construct integrated CLECs. Brightfield images of (A) untreated CLECs 
and (B) CLECs stably expressing MC1-HSV-TK007 following a 7-day selection with 
gancyclovir at the indicated concentrations shows effective killing of CLECs 
expressing HSV-TK007 at concentrations ≥2.5 μM. Brightfield images of G418-
selected CLECs treated with pZDonor hybridF8-TK007 and ZFN (C) before 
gancyclovir selection show healthy and proliferative cells while (D) a senescence-like 
appearance is noted in quiescent cells that survived a 7-day selection with 100 μM 
gancyclovir.  
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2.4. Evaluation of other primary cell types 

Whilst CLECs could potentially be developed for autologous cell therapy of 

pediatric patients, developing autologous cell therapy for most adults would other 

patient-derived primary cell types. Here we present a preliminary evaluation of 

primary human bone marrow-derived stromal cells (BMSCs), adipose-derived 

stromal cells (ADSCs) and dermal fibroblasts for their amenability for targeted gene 

integration at the AAVS1 locus, proper FVIII processing and secretion. These 

alternative cell types were chosen for their ease of isolation and culture, as well as 

their capacity to be expanded in vitro to clinically meaningful numbers.  

2.4.1. Optimization of electroporation conditions for dermal fibroblasts, 

ADSCs and BMSCs 

We first established electroporation conditions for efficient gene transfer to 

primary human dermal fibroblasts, ADSCs and BMSCs. Cells were electroporated 

with recommended Amaxa® solutions and an EGFP plasmid using different pre-set 

electroporation programs in an Amaxa® Nucleofector™ I. The transfection efficiency 

was the proportion of GFP-expressing cells determined by flow cytometry. Percent 

viability (where indicated) was calculated by trypan blue exclusion cell counts 

performed 24 hours post-electroporation.  

We used primary human fibroblasts, commercially purchased primary human 

foreskin fibroblasts (Hs68), human patient-derived dermal fibroblasts KF1 and 

NF123 to optimize electroporation conditions. Figure 52 summarizes gene transfer 

and viability (where available) data of human fibroblast cells. Hs68 was used in initial 

trials from which highest gene transfer efficiency was achieved with program U23 

(32.1 % ± 0.40, Data are mean ± SEM, n=3). However, this program also resulted in 

lowest cell survival (25% viability). In order to recover as many electroporated cells 

as possible for downstream studies, all subsequent fibroblast electroporations were 

performed with program A24 which gave the best cell survival ( 66.5% viability) 

while having albeit with more modest transfection efficiency of 15.9 % ±0.03 (Data 

are mean ± SEM, n=3). It was of interest to note that transfection efficiencies of 

fibroblasts from different human donors such as KF1 (74.84% ± 0.161) and NF123 

(24.43% ± 0.171) varied considerably although electroporated in identical conditions. 

This suggested that electroporation may need to be individually optimized. . 

We used commercially purchased primary human bone marrow mesenchymal 

stem cells (Lonza MSC), human patient-derived bone marrow stromal cells (BMSC1, 

BMSC2 and Gan BM) and adipose-derived stromal cells (ADSC1) to establish 
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electroporation conditions from stromal cells. Figure 53 summarizes gene transfer 

and viability (where available) data of cells electroporated with a Nucleofector™ I 

device using recommended programs. Lonza MSCs electroporated with the two 

recommended programs, C16 and U23, gave transfection efficiencies of 9.47% ± 

1.154 and 39.53% ± 0.427 (Data are mean ± SEM, n=3) with survival rates of 46% 

and 33%, respectively. Subsequent electroporation of BMSC1, BMSC2 and ADSC1 

were done using program U23 because it gave relatively high transfection efficiencies 

of 87.39% ± 0.242, 90.22% ± 0.06 and 76.54% ± 0.4, respectively. However, a 

gentler program, C17, was used to electroporate Gan BM cells to obtain transfection 

efficiency of 60.95 % ± 0.09, as they survived poorly with program U23. The variable 

transfection efficiencies among stromal cells from different human sources again 

pointed to the need to customize electroporation conditions to different cell types and 

from different donors.  
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Figure 52 Optimization of electroporation conditions for primary human 
fibroblasts. Primary human foreskin fibroblasts (Hs86) and dermal fibroblasts (KF1 
and NF123) were electroporated with 10 μg of EGFP reporter plasmid in an Amaxa® 
Nucleofector™ I device and the indicated electroporation programs. Representative 
brightfield and fluorescence images taken 1 day post-electroporation are shown 
(original magnification x100). Flow cytometric analysis for GFP expression (percent 
GFP +ve) and percent viability as determined by trypan blue exclusion cell counts 
were performed 1 day post-electroporation. (ND – not determined) 
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Figure 53 Optimization of electroporation conditions for primary human 
bone marrow- and adipose-derived stromal cells. Primary human bone marrow-
derived stromal cells (Lonza MSC, BMSC1, BMSC2, Gan BM) and adipose-derived 
stromal cells (ADSC1) were electroporated with 10 μg of EGFP reporter plasmid 
with a Nucleofector™ I device and the indicated electroporation programs. 
Representative brightfield and fluorescence images taken 1 day post-electroporation 
are shown (original magnification x100). Flow cytometric analysis for GFP 
expression (percent GFP +ve) and percent viability as determined by trypan blue 
exclusion cell counts were performed 1 day post- electroporation. (ND – not 
determined) 
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2.4.2. Evidence of site-specific genomic cleavage in adult primary human cells 

Having optimized electroporation conditions for BMSC, ADSC and dermal 

fibroblasts, we next investigated if these adult primary human cell types were 

amenable to ZFN mediated site-specific genome cleavage.  

Two samples of each cell type (BMSC: BMSC 1,2; ADSC: ADSC 1,2; 

dermal fibroblast: NF123, KF1) were electroporated with plasmid encoding enhanced 

Sharkey ZFNs and incubated under mild hypothermic condition of 30°C for 2 days 

after an initial overnight incubation at 37°C. Genomic DNA harvested from 

electroporated cells 4 days post-electroporation was used for PCR amplification of 

the AAVS1 locus resulting in a 469-bp amplicon which was used for the Cel-1 

nuclease assay for heteroduplex DNA as evidence of genomic cleavage and repair. 

The presence of indels at the AAVS1 site is indicated by Cel-1 nuclease mediated 

cleavage of the 469-bp amplicon into two fragments of 287 bp and 182 bp. 

Densitometry of modified (Cel-1 cleaved) and unmodified genomic locus (uncleaved) 

revealed targeted genome modification efficiencies of 26.15 ± 3.34 % for BMSC1, 

22.38 ±  0.79% for BMSC2, 22.05 ± 1.17% for ADSC1, 19.69 ± 1.61 %, for ADSC2, 

64.97 ± 3.48% for NF123 and 21.33 ± 0.60% for KF1 (Figure 54). Genome 

modification efficiencies did not appear to be correlated with transfection efficiency. 

Significantly higher levels of genome modification were observed for human 

fibroblast sample NF123 (64.97 ± 3.48%) compared to another fibroblast sample, 

KF1 (21.33 ± 0.60%), despite similar transfection efficiencies. Intrinsic differences 

specific to the cell samples may underlie differences in genome modification 

efficiencies achieved.       

In conclusion, our data suggests that using ZFNs to induce site-specific 

genomic cleavage and promote homologous recombination-mediated integration of 

exogenous donor DNA into a specific genomic site may also be expanded to these 

adult primary human cell types.          
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Figure 54 Site-specific genome cleavage in primary adult human cells. (Top) Brightfield and fluorescence images of primary human 
cells, 1 day post-electroporation with an EGFP plasmid. (Bottom) Genomic region spanning the AAVS1 locus was amplified from genomic 
DNA extracted from BMSCs (samples #1 and 2), ADSCs (samples # 1 and 2), dermal fibroblast (NF123 and KF1) and CLECs transiently 
electroporated with plasmid encoding for both left and right AAVS1 ZFNs (enhance Sharkey ZFNs), incubated at 37°C for 1 day followed by 
30°C for 2 days. Cel-1 nuclease digested (+) or undigested (-) PCR amplicons were resolved electrophoretically in a 10% polyacrylamide gel, 
imaged and quantified using Gel Doc 2000 system and QuantityOne software. Integration control refers to PCR amplicon from a positive 
genomic control provided in the CompoZr® targeted integration kit (Sigma-Aldrich). Transfection efficiency determined by flow cytometry 
analysis of GFP-positive cells and genome modification efficiency determined by densitometry of cleaved and uncleaved amplicons are 
reported. Data are Mean ± SEM, n=3 per group. 
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2.4.3. Evidence of site-specific integration in other primary human cells 

Given that targeted and site-specific cleavage of genomic DNA could be 

achieved with ZFNs specific to AAVS1 locus, we next investigated BMSC (BMSC1 

and Gan BM), ADSC (ADSC1) and dermal fibroblasts (KF1) for their capacity to 

attain site-specific integration of a 50-bp donor DNA at the AAVS1 locus following 

co-electroporation with pZDonor DNA (provides 50 bp donor fragment for 

integration) and with (+) or without (-) plasmid DNA encoding AAVS1 enhanced 

Sharkey ZFNs (Figure 55). Junction PCR performed with a pair of vector specific 

and genome specific primers indicated the presence of the expected amplicon in all 

cell types tested when co-electroporated with DNA encoding ZFN, indicating that 

homologous recombination-mediated integration of an exogenously provided DNA 

could be achieved in these primary human cell types. Control genomic PCR with 

genome specific primers amplified an AAVS1 specific locus present in both modified 

and unmodified cells and served to demonstrate integrity of genomic DNA. Genomic 

DNA from K562 cells co-electroporated with the same pZDonor and ZFN plasmid 

DNAs served as a positive control (+ve) for integration junction PCR.  It is 

noteworthy that the relatively weak amplicon signals in all four cell samples tested 

may indicate that site-specific integration is rare in these cell types under the 

conditions we employed. Due to the low efficiency of site-specific integration, it was 

not possible to confirm integration of the 50-bp DNA by RFLP assay. Further 

optimization will be required to increase the efficiency of site-specific integration of 

donor DNA in these cell types if they are to be developed for gene targeting 

applications.   
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Figure 55 Site-specific integration of donor DNA in other primary human 
cell types.  Two hundred ng of genomic DNA extracted 4 days post-electroporation 
from human adipose-derived stromal cells (ADSC1), human dermal fibroblasts (KF1) 
and human bone marrow-derived stromal cells (Gan BM and BMSC1) co-transfected 
with 10 μg of pZDonor and with (+) or without (-) 5 μg of enhanced Sharkey ZFNs 
was used for investigation of site-specific integration by junction PCR. “-ve” Refers 
to minus template amplification while “+ve” refers to amplification of a K562 
genomic DNA sample previously identified to be positive for pZDonor site-specific 
integration. Control genomic PCR amplified a 900-bp region of the AAVS1 locus. 
Amplified products were electrophoresed on 1% agarose gels and imaged using Gel 
Doc 2000 system and QuantityOne software. 
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2.4.4. FVIII secretion from modified primary cells 

Human BMSC, human ADSC, human CLEC and canine BMSC co-

electroporated with plasmids encoding EGFP and  hybrid BDD-FVIII cDNA 

expressed from a CMV promoter were investigated their capacity to secrete FVIII 

(Figure 56). Gene transfer efficiency (% GFP-positive cells in parenthesis) was 

estimated by FACS analysis to be: human BMSC1 (77.25 % ± 0.165), BMSC2 (30.08 

% ± 0.187), ADSC2 (39.9 % ± 0.817), canine BMSC (73.27 % ± 0.224) and human 

CLECs (29.23 % ± 0.344) (Data are mean ± SEM, n=3). FVIII activity in overnight 

conditioned media of transfected BMSC1 (0.101 ± 0.0096 Units/ 106 cells/ 24 hr), 

BMSC2 (0.033 ± 0.005 Units/ 106 cells/ 24 hr), ADSC2 (0.056 ± 0.001 Units/ 106 

cells/ 24 hr), CLEC (0.153 ± 0.0168 Units/ 106 cells/ 24 hr) and canine BMSC (0.179 

± 0.011 Units/ 106 cells/ 24 hr) measured using the Coamatic® chromogenic assay 

revealed that all the tested cell types were capable of processing and secreting FVIII. 

No FVIII activity was detected in media of untransfected wild type cells except from 

canine BMSC where trace levels of FVIII activity was detected (0.007 ± 0.0003 

Units/ 106 cells/ 24 hr).  

The capacity for adult primary cell types to secrete FVIII provides optimism 

that these cell types may potentially be developed for future gene- and cell-based 

therapy for adults with hemophilia A. The demonstration of FVIII secretion from 

canine cells opens up possibilities for testing cell-based approaches in natural canine 

models of hemophilia A before embarking or not on human clinical trials. Lastly, 

site-specific ZFNs that target a safe harbor in the genome could be used to engineer 

primary human cells that may prove to be safe and capable of durable secretion of 

transgenic FVIII.  
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Figure 56  Comparison of FVIII secretion in different primary cell types. 
Primary human bone marrow stromal cells (BMSC1 and BMSC2), human adipose-
derived stromal cells (ADSC2), human cord-lining epithelial cells (CLEC) and canine 
bone marrow-derived stromal cells (canine BMSC) were co-electroporated with 2 μg 
of an EGFP reporter plasmid and 15 μg of plasmid encoding hybrid BDD-FVIII 
cDNA expressed from a CMV promoter. (Top) Brightfield and fluorescence images 
of the electroporated cells. (Bottom) The percentage of GFP-positive cells (diamond 
symbols) determined by FACS analysis and FVIII activity (bars) in overnight 
conditioned media determined by the Coamatic® chromogenic assay and expressed as 
units/ 106 cells/ 24 hr. Data are the means of triplicate wells.  
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Chapter 3 

Discussion 

3.1. Rationale for ex vivo cell and gene based-therapy for hemophilia A 

Gene and cell-based therapy, a scientific concept mooted less than 50 years 

ago, has forayed into the frontiers of medical science as potential treatment options 

for genetic diseases which otherwise have no effective or affordable treatments. 

Evidence of clinical successes for different ailments such as a SCID-IL2RG1, SCID-

ADA2, WAS3, CGD4, ALD5, β-thalassemia6, Leber’s congenital amaurosis7 and 

hemophilia B8 have rejuvenated interest in developing gene and cell-based therapies 

for other genetic disorders that could equally benefit. However, iatrogenic adverse 

events that have surfaced even in successfully treated patients’ have raised serious 

concerns regarding potential genotoxicity risks associated with current clinically 

utilized gene therapy vectors and treatment modalities3,  9‐12. It is generally accepted 

that oncogenic events observed in most clinical gene therapy studies were a 

consequence of insertional mutagenesis and oncogenesis induced by integrating viral 

vectors that were used in clinical trials13. Given the propensity of most integrating 

viral vectors to preferentially integrate into transcriptionally active regions within the 

genome14,  15, the risks of transactivation of oncogenes or inactivation of tumor 

suppressor genes remains a real concern for most integrating viral vectors. While 

non-integrating viral vectors such as the adenoviral and AAV vectors have shown 

some measure of success in clinical trials, risks of immunological complications 

persist with the in vivo applications of some of these vectors9, 16.  

With these concerns in mind, we explored an ex vivo cell therapy approach to 

modify primary human cells using non-viral means to stably integrate a transgene of 

interest for durable transgene expression. An ex vivo based strategy would allow for 

the comprehensive evaluation of modified cells for potential genotoxicity before they 

are advanced into clinical studies. The potential for immune complications associated 

with in vivo delivery of vectors would also be averted. In our study, we evaluated two 

different non-viral strategies to stably and precisely modify the genome of primary 

human cells. In the initial study, we investigated phiC31 integrase-mediated 

sequence-specific transgene integration into limited sites in the genome. We later 

progressed to ZFN-mediated site-specific transgene integration into a single targeted 

genomic site. Targeted transgene integration holds potential for circumventing most 

of the concerns associated with random integrations and the attendant risks of 

mutagenesis associated with most viral and even non-viral vectors. Genome-modified 
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cells were comprehensively evaluated for potential genotoxicity arising either as a 

consequence of genome modification or from long-term culture in vitro. In our study, 

we evaluated the effects of transgene integration on the global transcriptome of cells 

and employed high resolution techniques to investigate the genomic architecture of 

genome-modified cells to determine if there were amplifications or deletions of 

genomic regions. Genome-modified cells were spectrally karyotyped to check for 

gross chromosomal abnormalities.  Tumorigenic potential of cells was evaluated by 

comparing their growth properties in vitro by colony formation assay and in vivo by 

their capacity to form tumors when implanted into immunodeficient mice. 

Collectively, in our study, we aimed to provide evidence for lack of tumorigenicity 

and drastic alteration of the transcriptome or genomic environment as a result of the 

gene-modification process.  

We chose hemophilia A as a disease model for developing a gene and cell-

based therapy for durable expression of FVIII from genetically modified primary 

human cells. Although several studies have demonstrated the feasibility and efficacy  

of utilizing in vivo viral vector delivery for FVIII expression in hemophilic animals17, 

18 and to a lesser extent in human subjects19, issues pertaining to the use of viral 

vectors remain. Ex vivo cell and gene therapy has also been evaluated for hemophilia 

A. To date, several cell types have been genetically modified and tested; these include 

bone marrow-derived stem cells20, blood outgrowth endothelial cells21, long-term 

hematopoietic repopulating cells22 and skin fibroblasts23, among others. Generally, 

the choice of cells used for ex vivo cell therapy approaches depends on the disease 

being treated, with a preference to use gene-modified cells that are as similar as 

possible to those causing the disease phenotype. The rationale here would be to 

ensure the proper processing and expression of the transgene products from gene-

modified cells. However, factors such as the availability ease of isolation and culture 

of these cells as well as the capacity to derive sufficient quantities for clinical 

applications usually broadens the choices to include other cell types as surrogates for 

efficiently and properly expressing the deficient transgene products.  

Our study focused on a novel cell type that can be consistently and readily 

obtained in quantity from the lining membrane of umbilical cords. These cells, termed 

CLECs, were epithelioid, expressed some key markers of pluripotency and 

demonstrated a capacity for self-renewal and long-term propagation in culture24,  25. 

The ability to derive an estimated 6 × 109 cells from a single healthy cord even before 

expansion in culture indicates the feasibility of producing clinically relevant 

quantities of CLECs for cell therapy. These characteristics, coupled with their lack of 
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tumorigenicity and ethically uncontroversial derivation, make CLECs a suitable cell 

type for developing ex vivo autologous cell therapy mainly for pediatric patients with 

hemophilia. We envisioned that if proven successful in CLECs, the same genome 

modification approach could be expanded to adult primary human cell types for 

treating adult patients. 

The inherently poor expression of human FVIII due to mRNA instability26, 

transcriptional inhibitory sequences within the FVIII cDNA27 and highly complex 

processing and secretory process that requires FVIII transversing from the 

endoplasmic reticulum to the Golgi apparatus28,  29 have been well documented. 

Recombinant FVIII is known to be secreted 104-fold lower than other recombinant 

proteins of similar size30,  31. In an attempt to increase FVIII expression, we firstly 

introduced the F309S mutation31 to human FVIII cDNA which was shown to reduce 

the ATP requirements for FVIII release from its association with its chaperone, 

immunoglobulin-binding protein (BiP), in the endoplasmic reticulum and thereby 

increased FVIII secretion by 3-fold31. A second modification was done to retain 8 N-

glycosylation sites within the B-domain while deleting the rest of the B-domain of 

human FVIII cDNA. This modification improved FVIII secretion by ensuring its 

association with LMAN1 (lectin mannose binding-1) that facilitates ER-Golgi 

transport of FVIII protein. When comparing human and porcine FVIII cDNA, 

Doering et al., identified that porcine A1 and A3 domains conferred higher FVIII 

expression levels32.  In a later phase of our study, we assembled and tested a porcine-

human hybrid BDD-FVIII cDNA having 93% similarity at the amino acid level to 

human FVIII cDNA, and demonstrated up to 5-fold improved FVIII secretion 

compared to the bioengineered BDD- human FVIII F309S cDNA that was used in 

our earlier experiments. Although the precise molecular mechanism for improved 

FVIII secretion from porcine FVIII is not well elucidated, studies by Doering et al. 

point to post-translational events in the ER such as reduced unfolded protein response 

that may account for superior secretion compared to human FVIII33. Recombinant 

porcine FVIII has been used successfully in the past for treating human hemophilic 

subjects who developed high titers of inhibitory antibodies34. Human and porcine 

FVIII proteins have similar immunogenicity in animal models35. Thus, it is possible 

that the hybrid FVIII used in this study may not be more immunogenic than its human 

FVIII counterpart. 

3.2. PhiC31 integrase study 
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The use of phiC31 integrase to integrate transgenes into limited pseudo attP 

sites within the genome has been well documented36. In our initial study, the phiC31 

integrase was utilized to integrate CMV-driven GFP reporter gene, human ferritin 

promoter driven BDD-human FVIII F309S and human/porcine hybrid FVIII 

expression cassettes into the genome of CLECs. Durable FVIII expression consistent 

with transgene integration was observed in vitro for more than 2 months in genome-

modified CLECs. PhiC31 integrase has been predicted to mediate site-directed 

integrations into an estimated 370 pseudo-attP sites in the human genome, although 

there is evidence that this actually occurs in only a small subset of sites37. In this 

study we identified 44 independent integration events and confirmed the previously 

reported conserved sequence motif37 at a majority of integration sites. Forty per cent 

of recovered integrations occurred at 8p22, confirming the observations made when a 

therapeutic transgene, COL7A1, was integrated into human primary epidermal 

progenitor cells38. Our data suggest that the 8p22 integration site is likely to be safe as 

no chromosomal translocations were detected in >132 metaphases from 5 clonal 

populations bearing 8p22 integrations and no changes were detected in the expression 

of genes that mapped within 1 Mb intervals centered around 8p22 integrations. This 

tendency to integrate at 8p22 could be further enhanced by developing integrase 

variants of higher target site specificity39, 40. Given the high propensity to integrate at 

8p22, we embarked on a study to further evaluate genotoxicity potential of clonal 

CLECs with transgene integration at 8p22.  We envisioned that well characterized 

clonal CLECs with known integration sites would be more readily accepted for 

clinical applications compared to heterogeneous populations of genome-modified 

cells that harbor integrations at multiple genomic sites. However, given the difficulty 

of establishing pure monoclonal CLEC cultures by flow sorting single cells (probably 

due to poor survival and growth after flow sorting), our clonal studies were based on 

oligoclonal cells derived from initially sorting 4 cells.  

One of the possible adverse effects of integrating vectors is dysregulation of 

the function of genes at or close to integration sites41‐43. We determined the influence 

of transgene integration on the transcriptome of a bulk population of phiC31 

integrase-modified CLECs. The technique employed had a detection sensitivity44 of 1 

transcript per 200000 and thus could accurately reflect transcriptional changes in even 

a small proportion of genome-modified CLECs. Our analysis of transcriptome data 

with reference to retrieved integration events revealed no significant perturbations in 

the expression of genes close to integration sites or within 1 Mb intervals centered 

around these sites, with the single exception of LNX1, thus confirming the 
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transcriptionally benign effects of these integrations. It was noteworthy that even 

potential oncogenes and tumor suppressor genes in these regions showed no 

perturbation of expression. Transcriptome analysis of 8 oligoclonal CLECs with 

transgene integration at 8p22 locus also did not reveal any significant changes in the 

expression of the endogenous DLC1 gene or neighboring genes that mapped within 1 

Mb intervals centered around the 8p22 integration site. These data are reassuring in 

that transgene integration at 8p22 did not alter transcriptional landscape of 

neighboring genes.   

Global transcriptome analysis did reveal that 1.3 % of total expressed genes 

had significant changes (≥ 2-fold) in the bulk population of genome-modified CLECs. 

A major biosafety concern of genome modification is the risk of mutating or 

dysregulating oncogenes or tumor suppressor genes41,  45.  In our phiC31 integrase 

work, 15 of 151 transcriptionally altered genes were either potential oncogenes or 

tumor suppressor genes. Pathway mapping of these 151 transcriptionally altered 

genes identified only three genes that mapped significantly to a single pathway (p53 

signaling; P = 0.02). Similarly, analysis of 8 oligoclonal CLECs with transgene 

integration at 8p22 locus identified 9 potential oncogenes with up-regulated 

expression and 31 potential oncogenes with down-regulated expression. Given that 

45% of the 250 genes that had significant down-regulated expression belonged to the 

category of cell-cycle genes, reasonable assumptions would suggest retardation of 

proliferation in genome-modified CLECs as opposed to uncontrolled proliferation 

associated with transformed cells. The likelihood that genome-modified CLECs were 

transformed was judged to be low based on unaltered colony-forming activity in vitro 

and absence of tumor development in immunocompromised mice in vivo. 

Previous reports have shown the association of phage integrase-mediated 

integrations with deletions of up to a few thousand basepairs and insertions of up to a 

few hundred basepairs at integration sites46. In our study however, DNA sequence 

analysis revealed microdeletions of vector DNA (≤37bp) at recovered integration 

junctions. Using high-resolution genome copy number data (Affymetrix Human 

Mapping 500K array set) of a mass culture of genome-modified CLECs showed 

significant copy number changes (two deletions and one gain) in only 3 genomic 

regions that were not integration sites. Similarly, our evaluation of oligoclonal 

CLECs using a higher density SNP array (CytoScan HD array) with an average probe 

spacing of 1148 bp revealed no significant alteration of the genomic architecture in 7 

of 8 oligoclonal CLECs that were investigated. Minor amplification of a 4118 kb 

centromeric region was noted in chromosome 19 of a single clone but without any 
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transcriptional effects on the gene in close proximity, ZNF254. Thus, no major 

deletions or insertions could be ascribed to phiC31 integrase-mediated transgene 

integrations and the few copy number changes detected had minimal transcriptional 

effects of uncertain functional relevance. 

Another major concern from studies of phiC31 integrase in human cells to 

date is the occurrence of chromosomal translocations in up to 15% of stably modified 

cell lines46, primary human embryonic and adult fibroblasts47,  48. However, our 

analysis of >300 spectral karyotypes of phage integrase modified cells revealed only 

2 cells with non-recurring chromosomal translocations and 2 cells harboring the same 

translocation. These rearranged chromosomes were only detected in mass cultures of 

CLECs and none was found in 8 oligoclonal populations. The frequency of observed 

translocations in this study (4 of 300 metaphases) was lower compared to other 

reports (15% - 30%) and may be related, in part, to the different cell types used by 

other investigators for phiC31 integrase modification46‐48. Surveys of two large series 

of prenatal genetic screening have shown de novo chromosomal translocations in 

amniocytes, chorionic villus and fetal blood samples. In one study, normal infants 

were born of pregnancies that were not terminated on the basis of abnormal 

karyotypes49; while in the other study, the risk of congenital malformations was 

sufficiently close to the background rate that it did not support a relationship of 

chromosomal rearrangements to somatic abnormalities50. While both studies are 

limited with respect to accurate risk assessment, it remains true that at least some de 

novo chromosomal translocations are functionally silent and inconsequential51.  Our 

data are consistent with the proposition that translocations in phiC31 integrase 

modified cells are uncommon stochastic events that do not confer either a survival or 

proliferative advantage to the affected cell(s). Had this not been the case, the 

translocations we identified in modified CLECs would have been the dominant 

karyotype in a mass culture, rather than the highly sporadic events actually observed. 

Oligoclonal CLECs were evaluated for chromosomal aberrations using the high 

resolution Cytoscan HD array which is more sensitive than conventional spectral 

karyotype techniques which have a resolution52 of around 1Mb. Our array data 

revealed no evidence of gross deletions, insertions or translocations in all 8 

oligoclonal CLECs that were analyzed.  

Although translocations are a cause for concern, it is axiomatic that malignant 

transformation results from multiple, rather than single, genetic and genomic 

alterations53. Moreover, specific rather than random translocations are associated with 

hematologic and solid tissue malignancies 54. Robust defenses against neoplastic 
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transformation in the form of cell cycle arrest, apoptosis and senescence are activated 

by the genotoxic stress of unrestrained cell proliferation induced by mutations and/or 

genomic aberrations55. Operation of these innate tumor suppressive mechanisms 

probably explain the fact that mass cultures of phiC31 modified CLECs did not 

develop clonal dominance of cells harboring chromosomal translocations.  

The benign safety profile of phiC31 integrase modified CLECs suggested by 

in vitro analyses was confirmed by lack of in vivo tumorigenicity when these cells 

were implanted into immunocompromised NOD-SCID mice. Oligoclonal CLECs 

with transgene integration at 8p22 locus also showed no evidence of tumorigenicity 

for at least 4 months even when implanted into the more severely immunodeficient 

NSG strain of mice, whereas parallel implantation of a tumorigenic epithelial cell line 

(Hs746T) resulted in tumor formation within 3 weeks. Although there was evidence 

of loss of implanted cells as indicated by declining levels of transgenic FVIII, 

immunohistochemical staining for human vimentin did show the presence of 

engrafted CLECs in explants as well as from cultures re-established from explants. 

Given that tumor formation could be observed in NOD-SCID mice implanted with as 

few as 100-1000 cancer cells56,  57, tumorigenic CLECs even if present in small 

numbers should have given rise to tumor formation in NSG mice. Failure of 

implanted CLECs to form tumors reiterates other data pointing to their intrinsic lack 

of tumorigenicity.  

Implantation of human FVIII-secreting CLECs raised plasma FVIII levels 

and partially corrected the bleeding phenotype in hemophilic mice, suggesting the 

potential for developing non-genotoxic cellular therapy that could be especially 

effective for autologous or allogeneic applications58. Modest increase in plasma FVIII 

levels could be attributed to the known short circulating half-life of human FVIII in 

mice (74 minutes cf. 12 hours in humans)59 and sub-optimal engraftment and 

vascularization of implanted human cells in a xenogeneic host. Oligoclonal CLECs 

secreting hybrid FVIII resulted in 10-fold higher plasma FVIII levels even when 

implanted with 2-fold fewer cells into NSG mice. This is consistent with higher FVIII 

levels attained with hybrid FVIII compared with human FVIII and possibly lower 

immunogenicity in NSG mice. The eventual decline of plasma FVIII levels to 

background levels by day 30 could have been due to loss of implanted cells because 

of sub-optimal engraftment and vascularization in a xenogeneic host. A 

comprehensive evaluation of durable FVIII expression in vivo will require long-term 

engraftment of genome-modified cells in an autologous model such as testing 

autologous canine cells in a canine model of hemophilia. 

http://wizfolio.com/?citation=1&ver=3&ItemID=279&UserID=8336&AccessCode=1880616A73BA40BDBF1BAB0C40D1A36E&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=1016&UserID=8336&AccessCode=0F2F79C344784CBEA5AAFE64DB91F8EB&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=1017&UserID=8336&AccessCode=B7FA08E8D9DA46ECA231BB6787298355&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=1087&UserID=8336&AccessCode=60D689253D3346F088A3478400904C96&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=275&UserID=8336&AccessCode=933047269EBE4D2398C9B937EA14B31E&CitationSuffix=�


275 

 

Despite being successfully utilized for genome modification of several 

mammalian cell types, the phiC31 integrase has not made much progress towards 

clinical applications. The potential to induce chromosomal translocations and the 

capacity to mediate transgene integrations into multiple genomic sites are major 

limiting factors associated with the use of phiC31 integrase. In this study, we show 

that phage integrase modified CLECs expanded as polyclonal mass cultures appear to 

have sustained few or no potentially oncogenic genomic alterations. This approach 

could be rendered even safer by implanting clonal populations such as those with 

integrations only at 8p22 locus, pre-screened ex vivo for biosafety using a range of 

assays such as those we employed. Moreover, our demonstration that phiC31 

integrase can modify primary adult human cells such as fibroblasts, ADSCs and 

BMSCs to stably secrete FVIII in vitro opens up possibilities of expanding this 

approach for developing gene and cell -based therapy for adult hemophilic patients. 

The relatively high frequency and safety of transgene integrations into the 8p22 locus 

also opens up the possibility for screening and selecting clonal cells with this 

particular site-specific integration. The use of integrases with greater specificity39, 40, 

high-throughput screening methods for selecting safe clones60 and the use of cells 

with high proliferation capacity could make this approach more acceptable for 

clinical adoption. 

3.3. ZFN study 

Currently utilized integrating gene therapy vectors mostly integrate randomly 

and into multiple sites within the genome, thus incurring significant risks of inducing 

mutagenesis and oncogenesis. Vector systems such as Sleeping Beauty transposons 

and phiC31 integrase should only be considered quasi-site-specific as integrations 

have been observed to occur into sites with little conserved sequence specificity. Our 

interest in zinc finger nucleases arose from their supposed capacity to target and 

cleave unique sites within the genome and to mediate site-specific integration of 

exogenous donor DNA by homologous recombination.  

The choice of genomic region for targeted transgene integration is an 

important consideration given the propensity of transgene integration to activate or 

inactivate endogenous and/or neighboring gene(s) at or in the vicinity of sites of 

integration. The AAVS1 locus has been proposed as a potential safe harbor within the 

human genome given the lack of pathological consequences in patients with natural 

AAV2 viral vector integration at this locus61. No functional consequences have been 

reported from inactivation of the endogenous PPP1R12C gene62,  63, whose function 
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has not been fully elucidated but is thought to involve the regulation of actin-myosin 

fiber assembly as the protein appears to be a regulatory subunit of a myosin-binding 

protein phosphatase64. Furthermore, it has been suggested that natural insulator 

elements at AAVS1 could prevent transgene silencing and transactivation of 

neighboring genes65. Several studies have supported this notion by demonstrating 

durable transgene expression from genomic integration of transgenes at the AAVS1 

locus62, 63, 66. We investigated ZFNs specific for the AAVS1 locus to site-specifically 

integrate a human ferritin promoter driven human-porcine hybrid FVIII cassette into 

the AAVS1 site of CLECs with the intent of developing these cells as durable FVIII 

secreting bioimplants for gene and cell-based hemophilia treatment. This part of the 

study primarily focused on evaluating the efficiency of targeted transgene integrations 

at the AAVS1 locus, durable transgene expression from targeted transgene 

integrations, the extent of off-target cleavage by ZFNs and potential and actual 

genotoxicity associated with transgene integration.  

Successful genome modification with the use of ZFNs depend on several 

factors such as the quality and specificity of the ZFNs used, high gene transfer 

efficiency, and accessibility of the ZFN protein to the genomic region of interest The 

latter, in turn, is influenced by chromatin configuration of the genomic region 

(condensed or heterochromatin configuration versus open euchromatin 

configuration), intrinsic capacity of the cells to repair DNA damage by either NHEJ 

or HR pathways and tolerance to cellular toxicity from expressed ZFNs.  

ZFNs have been designed and constructed using various strategies such as the 

modular assembly method67, oligomerized pool engineering (OPEN) assembly 

method68 and context-dependent assembly (CoDA) method69. Commercial service 

providers are another source of customized ZFNs, such as Sangamo Biosciences 

whose proprietary design schemes (CompoZr) may be contracted to assemble highly 

specific ZFNs. Given that the success rate of designing a highly efficient and specific 

ZFN varies with the different methods of assembly, we chose to assemble our ZFNs 

based on a previous publication from Sangamo Biosciences which showed high 

targeted genome cleavage activity63. The AAVS1 ZFN pairs assembled in our lab 

were codon-optimized and expressed as a single plasmid vector to improve the 

stoichiometric expression of each monomer in mammalian cells. We further modified 

the catalytic subunits of FokI endonuclease to have higher nuclease activity70,  71. 

These modifications to ZFNs in combination with transient mild hypothermic 

incubations72 indeed resulted in more efficient genomic cleavage activity probably by 

retarding ZFN protein degradation in K562 cells, CLECs and other primary human 
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cell types. In cell types that require higher levels of ZFN activity, it may be possible 

to further increase ZFN activity by expression from cell type specific cellular 

promoters such as the human ferritin promoter used for expression of FVIII 

expression in CLECs. The use of proteasome inhibitors such as MG132 to reduce 

ZFN degradation and thus increase ZFN activity has also been reported as another 

feasible strategy73. 

Efficient expression of ZFNs is predicated on achieving high gene transfer 

efficiencies in the cell types tested. Given the inherent difficulty of transfecting 

primary human cells, each cell type used in this study had to be first optimized for 

gene transfer efficiency using an EGFP reporter gene and the Amaxa®Nucleofector™ 

system. Gene transfer efficiencies of greater than 60% were achieved in most cells 

types used in this project. While this should ensure higher levels of ZFN expression 

and activity, intriguingly, in some cell types such as fibroblasts, ZFN activity did not 

correlate with gene transfer efficiencies. Thus, factors intrinsic to cell types and 

sources of cell types also influence ZFN activity.  

It is plausible to anticipate that ZFN binding and activity in different cell 

types may be influenced partly by epigenetic factors such as the chromatin 

configuration of the genomic site being targeted. Chromatin accessibility may be a 

critical determinant of ZFN binding and activity, and may explain the differences in 

genome modification activities reported in different cell types. Thus, there could be a 

higher likelihood of targeting ZFNs to a euchromatic locus with an active chromatin 

configuration compared to heterochromatic regions with predominantly inactive 

chromatin configuration74,  75. However, it is noteworthy that even transcriptionally 

silent loci have been modified by ZFNs63. 

One of the current limitations of using ZFNs to mediate targeted transgene 

integration is the relatively low frequency of HR achieved in primary human cell 

types. Differences in the intrinsic capacity for NHEJ or HR repair could explain 

differences in the frequency of gene insertion or indel formation in different cell types 

treated with ZFNs. The phase of the cell cycle during which DNA damage is detected 

and repair initiated has been thought to influence the choice of repair pathways as 

well. Generally, the NHEJ pathway which may result in indel formation predominates 

in G1 although it is known to function throughout the cell cycle, whereas HR is 

thought to occur exclusively during late S to G2/M phases76,  77. Transient cell cycle 

arrest and cell cycle synchronization have been experimentally shown to alter the 

ratio of HR/NHEJ mediated repair following double-stranded DNA breaks76,  77 and 

may be manipulated to enhance HR mediated transgene integration in ZFN studies78. 
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ZFNs modified to function as single-stranded DNA nicking enzymes have been 

shown to favor HR over NHEJ repair, and could yet be another strategy for enhancing 

HR frequencies for targeted gene integration studies79, 80.               

Cellular toxicity arising from ZFN expression in cells has been reported in 

some studies. While part of the toxicity has been ascribed to the off-target effects on 

the genome presumably when functioning as homodimers, cellular toxicity may also 

be related to the intrinsic capacity of cells to tolerate and repair double-stranded 

breaks, and could explain differences in toxicity observed in different cell types. In 

our study, ZFNs specific to the AAVS1 locus63 were cloned and optimized to 

function as obligate heterodimers81 to reduce off-target genomic effects and mitigate 

cellular toxicity. Transfection studies using obligate heterodimer ZFNs showed that 

CLECs could tolerate ZFNs at doses of 5 to 10 μg without significant cellular toxicity 

as determined by monitoring EGFP-expressing cells, quantification of phosphorylated 

histone H2AX (a marker for double–stranded DNA damage) and by MTS assay. 

Modulating ZFN levels with small-molecule proteasome inhibitors and further 

improvements to heterodimer ZFN variants have also been proposed as ways to 

further minimize ZFN toxicity82. Unlike the phiC31 integrase study, no gross 

chromosomal abnormalities were observed with the use of ZFNs. Analysis of 23 

metaphases by spectral karyotyping revealed no chromosomal abnormalities in stable 

CLECs with transgene integration at the AAVS1 locus.      

The capacity for AAVS1 ZFNs to target, cleave and repair the AAVS1 

genomic locus by either NHEJ (in the absence of donor DNA) or HR (in the presence 

of exogenous donor DNA) were evaluated by Cel-1 mismatch nuclease assay and 

RFLP assay, respectively. Cel-1 nuclease assay has been estimated to have detection 

sensitivity83 of 1:32. Having determined the capacity to target and cleave the AAVS1 

genomic region and induce homologous recombination of short donor DNA (50-bp), 

we were able to demonstrate site-specific integration of donor DNA of progressively 

increasing size i.e. 1-kb, 4-kb and 9-kb. Positive selection (either neomycin or 

puromycin) was usually necessary to enrich for cells with integration of donor DNA. 

Site-specific donor DNA integrations were reliably detected by integration junction 

PCR using primer pairs anchored to the genomic region and integrated vector and 

confirmed by sequencing. ZFN-mediated HR repair of donor DNA was found to be 

highly accurate with no evidence of deletion of either vector or donor DNA at the 

integration junctions. In addition to integration junction PCR, we employed long-

range PCR and sequencing to evaluate the complete integration of 1-kb, 4-kb and 9- 

kb donor DNA. Sequencing of these genome amplified regions showed no evidence 
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of deletion or rearrangements within the vector itself, reiterating the accuracy of HR 

mediated repair. However, in our ZFN study, we did encounter targeted transgene 

integration events in which only one integration junction could be detected, raising 

the possibility of partial or incomplete integration. It should be emphasized that these 

anomalous targeted integration events were only observed in experiments where the 

neomycin resistance gene was expressed from an exogenous promoter. However, 

both integration junctions were readily detected in later experiments that used the 

promoter trap strategy to express the puromycin resistance gene from the endogenous 

PPP1R12C promoter. We postulate that expression of the positive selection gene 

from an endogenous cellular promoter was a more stringent technique for selecting 

cells that had integrated the transgene at the correct locus. In contrast, expression of 

the positive selection gene from its own exogenous promoter selected cells with 

random integration as well as targeted integration events, and even when incomplete 

integration may have occurred. Thus, the use of a promoterless puromycin selection 

construct was effective in reducing mis-selection of cells with undesired genotypes. 

We used an end-point PCR method and densitometric measurements to quantitate and 

estimate the ratio of on-target integration and total integration. These methods 

generally suffer from low sensitivity and lack of dynamic range of detection and thus 

should be supplemented with more sensitive and specific methods such as real-time 

PCR or digtal PCR.  

The use of suicide gene expression for negative selection could also serve as 

a complementary strategy to eliminate cells with random integration. Cells with 

targeted integration would not be expected to incorporate the suicide gene whereas 

cells with random transgene integration would be expected to express the suicide 

gene whose expression is used to convert a non-toxic prodrug into a toxic cytotoxic 

agent. We explored the use of a codon-optimized HSV-TK007 suicide gene84 to 

eliminate cells with random integration when combined with gancyclovir selection. 

CLECs expressing codon-optimized HSV-TK007 were more effectively eliminated 

by gancyclovir compared to cells expressing HSV-TK. However, we noted that when 

positively selected (with neomycin) CLECs with transgene integration were exposed 

to gancyclovir, surviving cells entered into a non-dividing senescence-like state. 

Further evaluation and modification of such a positive-negative dual selection 

strategy will be required in CLECs, if considered necessary. An alternative suicide 

system such as one utilizing the caspase system to induce apoptosis85  could be more 

effective in eliminating undesirable cells. Ideally, clonal cells should be screened by 

FISH, genomic PCR or Southern blotting techniques to identify those which only 
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have targeted transgene integration and no random integrations. We have shown that 

CLECs could potentially be expanded from oligoclonal cell cultures and sufficient 

cells could potentially be derived from screening and identifying a number of safe 

clones. The unlimited proliferative capacity of iPS cells could be very useful in such 

situations where safe clonal cells are chosen for expansion provided that the risks of 

terotoma formation from undifferentiated iPS cells are overcome. 

Off-target genome modification is another concern associated with the use of 

ZFNs86. Cleavage and repair by error prone NHEJ elsewhere in the genome besides 

the targeted region could result in frameshift mutations, which could be of serious 

consequence if it occurs within crucial regulatory or transcript-coding regions. The 

use of well designed and obligate heterodimeric ZFNs has been shown to 

significantly reduce the potential for off-target binding and activity of ZFNs81,  82,  87. 

Gaj et al.88, described fewer off-target effects of ZFNs when delivered as purified 

proteins compared to expression from nucleic acids. Potential off-target effects can be 

bioinformatically predicted by programs such ZFN-Site89, experimentally determined 

by assays such as SELEX63 or by retrieving integration events following co-treatment 

with ZFNs and an episomal vector such as the integrase-defective lentiviral vector90. 

In our study of AAVS1 ZFNs, we evaluated previously identified top-10 potential 

off-target sites63 for indels by deep sequencing. Our data confirm the potential for 

AAVS1 ZFNs to induce low frequency indels at one of the predicted off-target sites 

(OT1) in CLECs. Given that OT1 resides within an intergenic region distant from 

protein coding regions, it is unlikely that these low frequency deletions and/or 

insertions of very short nucleotides (<5 nucleotides) would be consequential. 

Previous studies utilizing ZFNs targeting the AAVS1 locus evaluated these off-target 

sites by the less sensitive Cel-1 mismatch assay in a different cell type and found no 

evidence of off-target effects. Our control studies performed by spiking a wild type 

amplicon with known concentrations of a synthetic amplicon with mutations (5 bp 

deletion) established that deep sequencing could detect mutants present in as low as 

0.1% of a normal population. Thus deep sequencing could prove to be a more reliable 

and sensitive method for detecting rare cells with indels in a mixed population of 

normal cells following ZFN treatment. Evaluation of clonal cells would not be 

anticipated to require as high a depth of sequencing coverage for indel detection. In 

our study, we only evaluated the previously reported top-10 potential off-target sites. 

The possibility of off-target effects elsewhere in the genome cannot be excluded and 

whole genome sequencing would provide a complementary, comprehensive and 

thorough evaluation.  
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Besides off-target evaluation at the genomic level, we performed 

transcriptome analysis to determine if transgene integration had perturbed the 

expression of critical genes and pathways. The use of targeting vector with splice-

acceptor sequence and 2A peptide down-regulated expression of the endogenous 

PPP1R12C gene as expected, and was confirmed by RT-PCR and transcriptome 

analysis. Our RT-PCR results showed a 50% reduction in PPP1R12C gene 

expression in CLECs with stable transgene integration compared to unmodified 

CLECs, suggesting that most cells were monoallelic for the integrated transgene. 

Although endogenous PPP1R12C gene expression was reduced, expression of 

neighboring genes within 1 Mb of the integration site remained unaffected as were 

the majority of potential interacting partners and downstream effector genes 

associated with PPP1R12C. Furthermore, proliferation and cellular morphology of 

genome-modified cells appeared normal. Studies have shown normal cell physiology 

and growth even with biallelic disruption of the PPP1R12C gene, suggesting that this 

gene function may not be crucial for cell survival and function or that other related 

genes are able to compensate for its reduced expression91. Others have reported that 

targeted transgene integration could be achieved at the AAVS1 locus without 

disruption of PPP1R12C gene expression by integrating into the opposite non-coding 

strand of PPP1R12C gene; this may be considered if it proves important to avoid 

disruption of the endogenous gene expression92.  

In summary, we were able to derive stable CLECs with site-specific 

transgene integration at the AAVS1 locus and demonstrate durable FVIII transgene 

expression. These genome-modified cells had normal growth characteristics, 

unaltered transcriptome of neighboring genes, potential interacting partners and 

downstream effector genes, normal chromosomal karyotype and lacked significant 

off-target effects at potential off-target ZFN binding sites. Our data are consistent 

with the notion that ZFN modified cells may be safe for gene and cell therapy 

applications. Further studies are required to comprehensively profile the biosafety of 

ZFN edited cells and will be discussed in section 3.6. 

3.4. Clinical relevance of ZFN-modified cells 

The use of non-viral vectors for development of ex vivo cell therapy for 

hemophilia A treatment is a strategy that has been explored by several other groups 

before. Successful therapeutic effects, albeit at low levels and for up to 10 months, 

were reported in at least 1 clinical trial for severe hemophilia A patients that  

implanted FVIII plasmid transfected autologous primary fibroblasts23. This provided 
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proof-of-concept for ex vivo gene and cell-based therapy of hemophilia A. We 

postulate that the lack of durable therapeutic effect in the aforementioned clinical trial 

may have been due partly to random integration of the FVIII transgene cassette into 

unfavorable genomic loci that failed to sustain expression. Alternatively, the 

integrated transgene may have been silenced by prokaryotic elements present in the 

vector. With respect to the former, our strategy of utilizing zinc finger nucleases to 

site-specifically integrate the FVIII transgene into a genomic locus capable of 

supporting durable expression might be considered an improvement in terms of 

achieving biosafety as well as therapeutic durability. Further improvements to FVIII 

expression with the use of hybrid FVIII cDNA driven from a strong cellular promoter 

resulted in high expression of FVIII and may translate eventually to requiring fewer 

cells for implantation. Calculations based on our best FVIII expression from CLECs 

(2131 mUnits FVIII/ 106 cells/ 24 hr) estimate that approximately 100 to 400 million 

cells would be required to achieve a steady-state FVIII level of 10% in a 20 - 40 kg 

child. Given the high proliferative capacity of CLECs and the potential to derive up to 

6 x 109 cells from a single umbilical cord, genome-modified CLECs could be 

expanded to sufficient numbers and potentially serve as useful source of autologous 

cells for treating pediatric and young hemophilic children. It should be noted that this 

could only be feasible in clinical situations where the family history alerts the parents 

and medical attendants to the probability of the birth of a baby with hemophilia, in 

which case the umbilical cord can be collected at birth and processed appropriately.   

The gene targeting strategies highlighted in this project utilizing CLECs may 

be expanded to other adult cell types to treat adult hemophilic patients. Besides 

hemophilia A, other genetic ailments such as hemophilia B, epidermolysis bullosa, 

lysosome storage diseases such as Pompe disease and Gaucher disease and diseases 

caused by deficiency of a secreted protein may potentially benefit from ex vivo gene 

and cell therapy. ZFNs appear to be useful tools for mediating targeted integration of 

relevant transgenes for safe and durable expression in suitable adult somatic cells or 

stem cells for developing ex vivo gene and cell therapy for some of these disorders.   

3.5. Conclusions 

Our results showed that phiC31 integrase could efficiently integrate transgenes 

in a sequence-specific manner into limited sites within the human genome to generate 

genome-modified CLECs capable of durable FVIII expression. Genome-modified 

CLECs were non-tumorigenic and not associated with any overt signs of 

transcriptional alterations or copy number changes characteristic of transformed cells. 

We were able to further show that clonal CLECs with transgene integration at 
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chromosome 8p22 could be isolated and expanded in culture, and had few features of 

potential genotoxicity as ascertained by high resolution copy number change analysis, 

transcriptome analysis and tumorigenicity studies in immunodeficient mice.  

Our study showed that CLECs were capable of secreting high levels of 

bioactive transgenic FVIII and demonstrated potential for expansion to very large cell 

numbers, even from very modest initial cell numbers, reiterating their potential value 

for cell therapy applications. Consistent with previous studies, we were able to 

confirm that transfecting a hybrid FVIII cDNA consisting of porcine and human 

FVIII domains resulted in cells secreting 5- to 10-fold higher levels of FVIII 

compared to human FVIII cDNA.  

In the second part of our study, we successfully demonstrated ZFN-mediated  

site-specific integration of transgene cassettes in CLECs. AAVS1 ZFNs were highly 

site-specific and lacked significant off-target genome cleavage activity of concern. 

Integration of hybrid FVIII transgene cassette into the AAVS1 locus of CLECs 

resulted in durable FVIII secretion without affecting the expression of neighboring 

genes, and with very little or no perturbation of potential interacting partners and 

downstream effector genes of PPP1R12C. ZFNs may be useful agents for site-

directed transgenesis in a broader range of primary human cell types such as 

fibroblasts, bone marrow- and adipose-derived stromal cells that could be developed 

for ex vivo cell therapy.  

In conclusion, CLECs are a useful cell type for developing ex vivo cell therapy 

applications for pediatric patients. Hybrid FVIII cDNA resulted in superior FVIII 

production compared to human FVIII cDNA. Stable FVIII expression could be 

achieved by genomic integration of FVIII transgene cassette using either phiC31 

integrase or ZFNs. Whilst both systems showed low genotoxicity potential, the ZFN 

system which is highly site-specific and allows user-defined selection of genomic 

integration site could be superior. ZFNs merit further development as useful tools for 

developing non-viral ex vivo cell therapies. 

3.6. Future work 

In this study, we demonstrated that CLECs could be modified using the phiC31 

integrase and ZFN systems to stable integrate and durably express FVIII transgene. 

We further show that the same genome modifying agents could be applied to other 

primary human cell types such as fibroblasts, bone marrow- and adipose-derived 

stromal cells, which are more appropriate for developing cell-based therapy for adult 

patients. Most of the work in this project was directed at modifying CLECs, a cell 

type mainly relevant for treating pediatric patients. Therefore one direction to pursue 
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in future is to extend these approaches to primary cell types that are readily procured 

from human adults, as mentioned above. As ZFNs are superior to phiC31 integrase in 

their ability to modify unique user-specified sites in the genome, it would make more 

sense to focus on the capacity of ZFNs to modify primary adult human cell types. The 

choice of relevant cell types must not only be made on the basis of the ability to 

efficiently modify their genomes but also on the capacity to expand genome-modified 

cells to levels that are clinically relevant. In this respect, it would be of interest to 

include iPS cells in future work, as these cells have unlimited proliferation potential 

under appropriate conditions of culture. iPS cells can be derived and used in an 

autologous manner and would not be limited by factors such as the age of the donor 

and cell senescence. Furthermore there are now efficient methods to generate iPS 

cells using techniques that do not directly modify the genome. In theory, clonal iPS 

cells having been comprehensively evaluated for low or no genotoxicity may be 

expanded to derive sufficient cell numbers and differentiated into a relevant cell type 

for therapeutic applications, although risks pertaining to teratoma formation from 

undifferentiated iPS cells must be overcome. Genotoxicity studies on ZFN modified 

cells would be more meaningful if complemented with whole genome sequencing to 

screen for off-target effects of ZFNs on an unbiased genome-wide scale.  

Aside from potential off-target effects, another issue associated with the use of 

ZFNs is the generally low efficiency of double-stranded break achieved at targeted 

genomic sites in primary human cell types. Thus, it would be useful to compare the 

genome editing effects of other site-directed nucleases such as the TALE nucleases93 

and RNA-guided CRISPR-Caspase9 systems94. Besides comparing the genomic 

cleavage activity of these nucleases, it will be important and informative to compare 

potential off-target effects among the different genome-editing methods. The capacity 

to efficiently and accurately create site-directed DNA breaks in the genome could be 

combined with HR promoting strategies, such as cell-cycle synchronization and 

creation of single-stranded DNA nicks instead of double-stranded DNA breaks to 

enhance targeted gene integration.     

Current animal studies based on xenogeneic implantation of gene-modified 

human cells into immunodeficient mice are not ideal for long-term tumorigenicity 

assessment due to failure to achieve long-term engraftment of sufficient number of 

cells either due to immune response or lack of vascularization. Long-term monitoring 

of implanted cells would thus be ideal in an autologous setting where the issues 

related to immune response are absent. As such an ideal model to show efficacy and 

safety for ex vivo cell therapy for hemophilia A would be one based on autologous 
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implantation of gene modified canine cells into hemophilic dogs. Bone marrow cells, 

fibroblasts and iPS cells could be suitable cell types for these studies. However, gene 

modifying agents targeting a suitable locus in canine cells need to developed de novo 

and tested in order to proceed with these studies. Studies in a large animal model will 

also test the feasibility of scaling up autologous cell therapy for human applications.  

A final outstanding issue with genome modification is the identification and 

testing of potential safe genomic harbors for targeted gene integration in addition to 

the AAVS1 site. Some studies have noted transcriptional dysregulation to either 

endogenous genes at the sites of integration or to neighboring genes close to 

integration sites91, 92, 95, although no untoward effects have been reported. It would be 

useful to investigate other genomic loci, such as the 8p22 region (intron 1 of DLC1) 

that we had highlighted in our integrase study, where transgenesis and durable 

transgene expression can be achieved without effects on endogenous or neighboring 

genes. Whole transcriptome analysis should be performed using more up-to-date 

technologies such as RNASeq96 to yield more comprehensive and accurate reflection 

of transcriptional changes in genome modified cells. The inclusion of insulator 

elements within the integrating vector may be necessary to prevent transgene 

silencing as well as effects on neighboring genes. The overall strategy of integrating 

transgenes into the genome could benefit from inclusion of reliable suicide genes97 

into the integrating vector, to be effectively activated when and if necessary to 

eliminate rogue cells.  

In summary, future work should focus on testing different adult human cell 

types for amenability to genome modification, should evaluate different genome 

modifying agents and different genomic loci for safe and efficient transgenesis. 

Whole genome sequencing may be crucial for evaluating off-targets of nucleases as 

an unbiased genome-wide assessment. Long-term genotoxicity monitoring and 

evaluation of in vivo efficacy should ideally be tested in an autologous manner in 

large pre-clinical animals such as the canine models before transiting to human 

clinical trials.  
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Chapter 4 

Materials and Methods 

4.1. Materials 

4.1.1. Chemicals and reagents 

 All chemicals and reagents were of analytical or ultrapure grade and cell-

culture tested where appropriate. The following suppliers (in square parentheses) 

were sources of: ampicillin, gancyclovir, kanamycin sulfate, thymidine, apidicolin, 

mimosine, hydroxyurea, nocodozole, etoposide,  monoclonal anti-FLAG M2 

antibody, monoclonal anti-β-actin antibody, streptavidin-peroxidase polymer 

(ultrasensitive), DPX mount solution, Mayer’s hematoxylin, RNA sample loading 

buffer, phenol:chloroform:isoamylalcohol 29:28:1, dimethyl sulfoxide, Iscove’s 

modified Eagle’s medium, Dulbecco’s modified Eagle’s medium (DMEM) and 

CompoZr® targeted integration kit [Sigma-Aldrich, USA]; phospho-histone H2AX 

(Ser139) rabbit monoclonal antibody Alexa Fluor®647 conjugate [Cell Signalling 

Technology, USA]; BigDye® Terminator v3.1 cycle sequencing kit [Applied 

Biosystems, USA]; Surveyor™ mutation detection kit [Transgenomic Inc., USA]; 

Coatest® SP4 FVIII kit [Chromogenix, Sweden]; VisuLize™ FVIII antigen kit 

[Affinity Biologicals™ Inc., Canada]; Phusion® Human Specimen direct PCR kit and 

DyNAzyme EXT  DNA polymerase [Finnzymes, USA]; BD Matrigel™ basement 

membrane matrix and APC BrdU flow kit [BD Biosciences, USA]; anti-vimentin 

clone V9 [Zymed® Laboratories Inc., USA]; crystal violet [BDH chemicals, UK]; Pfu 

Ultra high-fidelity DNA polymerase, Pfu Turbo DNA polymerase, Max efficiency 

DH5α competent cells and QuikChange™ Lightning Multi Site-Directed 

Mutagenesis kit [Stratagene, USA]; RNaseOut™ recombinant ribonuclease inhibitor, 

SuperScript™ II reverse transcriptase, G418 (Geneticin®), hygromycin, 

Bioprime®DNA labelling kit, and One Shot®Top10 competent cells [Invitrogen, 

USA]; shrimp alkaline phosphatase, RQ1 RNase-free DNase, Ultrapure™ DNase-

RNase free distilled water, Oligo (dT)15 primer and CellTiter 96®Aqueous One 

solution cell proliferation assay kit [Promega, USA]; 

North2South®Chemiluminescent hybridization and detection kit, BCA protein assay 

kit and M-PER®Mammalian protein extraction reagent [Pierce, USA]; Hybond N+ 

nylon membrane, ECL™ Western blotting analysis system and high performance 

autoradiography film (Amersham hyperfim™ MP) [Amersham Biosciences, GE 

Healthcare, USA]; nitrocellulose membrane, tetramethylethylenediamine (TEMED), 

ammonium persulfate, 30% acrylamide/bis solution and iScript™ Advanced cDNA 



297 

 

synthesis kit [BioRad, USA]; T4 DNA ligase, quick blunting kit and all restriction 

endonucleases [New England Biolabs Inc., UK]; SKY painting probes [Applied 

Spectral Imaging, Germany]; Tris-acetate-EDTA (TAE), Tris-borate-EDTA (TBE), 

10x phosphate-buffered saline (PBS) and agarose [1st Base, Singapore]; fetal calf 

serum [Hyclone, USA]; TriPure isolation reagent and Expand Long Range dNTP 

pack [Roche Applied Science, USA]; all DNA ladders (50 bp, 100 bp and 1 kb ) and 

dNTP mix [MBI Fermentas, USA]. HotStar HiFidelity polymerase kit, all plasmid 

DNA, RNA and genomic DNA isolation kits and PCR purification kits were from 

Qiagen (Hilden, Germany).  

4.1.2 Plasmids 

 pEGFP-C1, encoding enhanced green fluorescent protein (EGFP) expressed 

from CMV promoter and pSEAP2-control, encoding secreted alkaline phosphatase 

expressed from SV40 promoter were from Clontech, USA. pCR®2.1-TOPO® TA 

cloning kit, pcDNA3.1™3.1(+) and pBudCE4.1 were from Invitrogen Life 

Technologies, USA. StrataClone™ blunt PCR cloning vector (pSCB) and pKO 

Scrambler NTKV 1904, encoding Herpes simplex virus thymidine kinase (HSV-TK) 

expressed from MC1 promoter were from Stratagene, USA. pVitro2-mcs was from 

Invivogen, USA. pSP64-VIII, encoding full-length human factor VIII cDNA, was 

from the American Type Culture Collection (ATCC), USA. pCMV-Int1, encoding 

phiC31 integrase expressed from CMV promoter and pTA-attB, bearing the 300 bp 

attB fragment, were gifts from Michele P. Calos (Stanford University, USA). MP71- 

tCD34 –TK.0072, encoding codon-optimized TK007 was a gift from Boris Fehse 

(University Medical Centre Hamburg-Eppendorf, Germany). pST1374, a mammalian 

expression vector for FokI (expressed from CMV promoter), pAAVS1 SA-2A-puro-

pA donor 3  (Addgene plasmid 22075), a promoterless puromycin resistance gene 

expression vector with splice acceptor (SA) site and self-cleaving 2A peptide 

sequence, pAAVS-CAGGS-EGFP3  (Addgene plasmid 22212), an expression vector 

similar to pAAVS1 SA-2A-puro-pA donor with an additional EGFP cDNA expressed 

from chicken actin promoter, and zinc finger consortium expression vector kit v1.0  

were purchased from Addgene (USA). The key plasmids used in this study are 

depicted in Appendix 2.   

4.1.3 Primers and oligonucleotides 

 All primers and oligonucleotides (synthesized at 1st BASE Pte. Ltd., 

Singapore) used in this study were designed using the following online primer 
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designing tools: Primer3 (v.0.40) (http://frodo.wi.mit.edu/primer3/) and Primer-

BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Oligonucleotide 

sequences are listed in the body of the thesis and Appendix 1.  

4.1.4 Cell-lines and primary cells 

 All cell and tissue cultures used in this study were grown in cell culture grade 

dishes and flasks (Corning®, USA) incubated at 37°C (unless otherwise stated) with 

5% CO2. Unless otherwise stated, cells were cultured in the indicated media 

supplemented with 10% fetal bovine serum (FBS) (Hyclone Laboratories, USA) in 

the presence of  penicillin 100 (IU/ml) and streptomycin (100 μg/ml) (Gibco®, USA), 

with media change every three days. Adherent primary human cell types were 

detached with Accutase™ (eBiosciences, USA) at 37°C for 5 minutes. 

 K562 (ATCC# CCL-243), a human chronic myelogenous leukemia cell line, 

Hs746T (ATCC# HTB-135), a gastric carcinoma cell-line and Hs68 (ATCC# CRL-

1635, Hs68), normal human foreskin fibroblast cells were purchased from ATCC. 

K562 was cultured in Iscove’s modified Eagle’s medium (Sigma-Aldrich) 

supplemented with 10% FBS while Hs746T and Hs68 were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM-25 mM glucose; Sigma-Aldrich) supplemented 

with 10% FBS. Poietics™ Human mesenchymal stem cells (#18183) purchased from 

Lonza Biosciences (Singapore) were cultured in mesenchymal stem cell basal 

medium containing growth supplements (SingleQuots®, Lonza Biosciences).   

 Primary human dermal fibroblasts (KF1 and NF123), human adipose-derived 

stromal cells (ADSCs), human bone marrow-derived stromal cells (BMSCs) and 

CLECs were provided by CellResearch Corporation, Singapore. Dermal fibroblasts, 

ADSCs and BMSCs were cultured in DMEM-25 mM glucose (Sigma-Aldrich, USA) 

supplemented with 10% FBS. CLECs were cultured in Medium 171 (Cascade 

Biologicals, USA) supplemented with 50 ng/ml insulin-like growth factor-1, 50 ng/ml 

platelet-derived growth factor-BB, 5 ng/ml transforming growth factor-β1, and 5 

ng/ml insulin (all from R&D Systems®, USA). 

4.1.5 Animals  

C57BL/6J mice (Laboratory Animal Centre, National University of 

Singapore) and exon 16-disrupted FVIII-deficient mice4 (gift from H. Kazazian, 

University of Pennsylvania, Philadelphia, PA) were housed in the animal holding 

units, National Cancer Centre, Singapore (NCCS). Severe combined 

immunodeficient, non-obese diabetic mice (NOD-SCID; NOD.CB17-Prkdcscid) 

(Animal Resources Centre, Murdoch, Australia) and NOD-SCID-IL2R gamma null 
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mice (NSG; NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) (Jackson Laboratory, USA) were 

housed in specific pathogen-free animal holding units in NCCS. Mice were housed at 

20o-24°C in 12-hour light:dark cycles. All animal handling procedures and 

experimental protocols were approved by the SingHealth Institutional Animal Care 

and Use Committee. Unless otherwise stated, eight to ten week old mice were used 

for all experiments. 

4.2 Plasmid construction and mutagenesis 

4.2.1 Assembly and mutagenesis of B domain-deleted human FVIII constructs 

The precursor full length human FVIIII cDNA sequence including the signal 

peptide is 7055 bp in length and encodes 2351 amino acids (aa). The mature FVIII 

peptide, 2332 aa long5, consists of A1 (aa 1-336), A2 (aa 373-710), B (aa741-1648), 

A3 (aa 1690-2019), C1 (aa 2020-2172) and C2 (aa 2173 -2332) domains. 

We assembled a B domain-deleted human FVIII construct from full length 

FVIII cDNA sequence (NM_000132.3) previously cloned in the plasmid, pSP64-F8. 

Nucleotides corresponding to B domain aa 1007 to 1648 (NP_000123.1) were deleted 

in the final version of the FVIII construct, whilst retaining 266 amino acids of the B 

domain6 (with 8 glycosylation sites). Briefly, FVIII sequences were PCR amplified 

(primer sequences given in parentheses below), using high fidelity PfuTurbo DNA 

polymerase, in two separate segments and individually cloned into pCR®2.1-TOPO® 

TA vectors. The first segment was a 3 kb fragment encoding the A1, A2 domains and 

part of the B domain (forward primer 5’ tgtagcgctagcatgcaaatag 3’; reverse primer 5’ 

gaataaggcgatatctttagtcaa 3’) while the second segment was a 2.1 kb fragment 

encoding part of the B domain, A3, C1 and C2 domains (forward primer 5’ 

gcaaagcccgggaggactgaa 3’; reverse primer 5’ cagtggctcgaggtcagtagaggt 3’). The 

preceding primer sequences incorporated recognition sites for NheI, EcoRV, SmaI 

and XhoI used in cloning. DNA sequencing (Big dye terminator v3.1 cycle 

sequencing kit, Applied Biosystems) was performed with appropriate primers to 

confirm the correct FVIII sequences of the amplified nucleotide fragments. The two 

segments were then ligated to generate a single fragment in pCR®2.1-TOPO® TA 

(blunt ligation of EcoRV and SmaI/XhoI digested fragments) before transferring to 

pcDNA3.1 (+) (Invitrogen) bearing the CMV promoter (via NheI and XhoI sites). 

F309S substitution7 in the A1 domain was performed by site-directed mutagenesis 

using  mutagenic primers (forward 5’ agtttctactgtcttgtcatatctct 3’ ; reverse 5’ 

agagatatgacaagacagtagaaact 3’), PfuTurbo DNA polymerase and DpnI, according to 

the manufacturer’s protocol. The single point mutation was confirmed by sequencing 
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with the sequencing primer (5’ gtcttcatgctgttggtg 3’). This construct was designated 

pCMV BDD-human FVIII F309S.  

4.2.2 Assembly of attB bearing constructs 

A 350 bp attB fragment was PCR amplified from pTA-attB to incorporate 

MluI ends and cloned into pCR®2.1-TOPO® TA. The attB fragment was transferred to 

the MluI site of pEGFP-C1 and designated pEGFP-C1 attB. 

The attB fragment was cloned upstream of the CMV promoter in pcDNA3.1 

(+) at the BglII site to derive pattB pCDNA3.1 (+). We assembled pattB CMV BDD-

human FVIII F309S by ligating the NheI/XhoI digested 5.1 kb BDD-human FVIII 

F309S fragment (from pCMV BDD-human FVIII F309S) downstream of the CMV 

promoter in pattB pCDNA3.1 (+). 

A 1.1 kb EF1α promoter fragment was PCR amplified from pBudCE4.1, 

cloned into pCR®2.1-TOPO® TA and subsequently replaced the CMV promoter of 

pattB pCDNA3.1 at BglII and NheI sites. pattB EF1α BDD–human FVIII F309S was 

derived by ligating NheI/XhoI digested 5.1 kb BDD-human FVIII F309S fragment 

downstream of the EF1α promoter.  

pattB SV40 BDD-human FVIII F309S was assembled by replacing EF1α 

promoter in the pattB EF1α BDD–human FVIII F309S construct via MunI/NheI with 

a 209 bp SV40 promoter that had been PCR amplified from pSEAP2-control plasmid 

and cloned into pCR®2.1-TOPO® TA. 

pattB Hfer BDD-human FVIII F309S was assembled by replacing EF1α 

promoter in the pattB EF1α BDD-human FVIII F309S construct via MunI/NheI with 

a 1.6 kb human ferritin promoter (modified to consist of CMV enhancer, human 

ferritin light chain promoter and 5’UTR of chimpanzee elongation factor 1) that had 

been PCR amplified from pVitro2 plasmid and cloned into pCR®2.1-TOPO® TA. 

4.2.3 Assembly of hybrid FVIII cDNA constructs 

The precursor full length porcine factor VIII cDNA sequence 

(NM_214167.1) including the signal peptide is 6401 bp in length and encodes 2133 

amino acids (NP_999332.1), whereas the mature FVIII protein is 2113 aa long. The 

hybrid porcine-human FVIII consisted of porcine A1 and A3 domains and human 

signal peptide, A2, B (partial), C1 and C2 domains. Porcine FVIII domain cDNAs 

were derived by RT-PCR of porcine liver RNA. An overlap PCR strategy was used to 

construct the hybrid FVIII cDNA. The schematic of the cloning strategy is depicted in 

Appendix 3. 
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Total RNA was isolated from frozen porcine liver tissues using Trizol RNA 

extraction protocol. First strand cDNA synthesis was performed with 500ng of total 

RNA, oligo (dT)15 primers and SuperScript™ II reverse transcriptase according to 

standard protocols. Porcine A1 and A3 domain cDNAs were PCR amplified using 

PfuTurbo DNA polymerase and the following primer pairs: porcine A1 domain (A1 

forward 5’  

atgcaaatagagctctccacctgtttctttctgtgtcttttgcgattctgctttagtgccatcaggagatactacctgggcgcagt

ggaactgt 3’ ; A1 reverse 5’ aggatgcttcttggcaactgagcggatttggataaagggaga 3’); porcine 

A3 domain (A3 forward 5’ agctttcagaagagaacccgacac 3’; A3 reverse 5’ 

tcccaggggagtctgacacttcttgctgtacaccaggaaagt 3’). Porcine A1 domain forward and 

reverse primers were designed to contain additional sequences corresponding to 

human FVIII signal peptide and 5’ region of human A2 domain, respectively. Porcine 

A3 reverse primer was designed to contain additional sequences corresponding to 5’ 

region of human C1 domain. Human A2 and C1 to C2 domains were amplified from 

pSP64-F8 plasmid with the following primer pairs: A2 to partial B domain (A2 

forward 5’ tctccctttatccaaatccgctcagttgccaagaagcatcct 3’; B domain reverse 5’ 

gcgggggctctgattttcatcctc 3’); C1 to C2 domains (C1 forward 5’ 

actttcctggtgtacagcaagaagtgtcagactcccctggga 3’; C2 reverse 5’ 

agtgctagctcagtagaggtcctgtgcc 3’). Human A2 and C1 domain forward primers were 

designed to contain additional sequences corresponding to 3’ regions of porcine A1 

and A3 domains, respectively. A second round of overlapping PCR amplification 

(NheI forward 5’ gccgctagcgatgcaaatagagctctcca 3’; B domain reverse 5’ 

gcgggggctctgattttcatcctc 3’) was performed using a mixture of porcine A1 and human 

A2 domain amplicons as the PCR templates. A separate PCR amplification (A3 

forward 5’ agctttcagaagagaacccgacac 3’; C2 reverse 5’ agtgctagctcagtagaggtcctgtgcc 

3’) was performed using a mixture of porcine A3 and human C1 to C2 domain 

amplicons as the PCR templates. Both overlapping PCR products (porcine A1-human 

A2 and porcine A3-human C2) were cloned into StrataClone™ blunt PCR cloning 

vector (pSCB) and sequenced with appropriate primers to confirm accuracy of 

amplified sequences. Porcine A3-human C2 fragment excised with NheI and EcoRV 

and blunt ended using NEB quick blunting kit was ligated with pSCB-porcine A1-

human A2 construct at the EcoRV site. The full length hybrid FVIII was subsequently 

digested with NheI, blunted using NEB quick blunting kit and cloned by blunt 

ligation to replace BDD-human FVIII sequence (removed with NheI/XbaI digestion) 

in pattB Hfer BDD-human FVIII F309S construct to derive pattB Hfer hybrid FVIII.  

4.2.4 Assembly of Herpes simplex virus thymidine kinase-bearing constructs 
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Codon optimized thymidine kinase (TK007) cDNA was excised from MP71- 

tCD34 –TK.007 plasmid2 with NcoI and HindIII digest, blunt-ended using NEB 

Quick blunting kit and ligated to PmeI digested pCDNA3.1 (+) plasmid to derive 

pCDNA3.1 HSV TK.007.  

MC1 promoter was PCR amplified (forward 5' gtcgcgagtcgagcagtgtggtt 3’; 

reverse 5' ggctagcacgcgcttctacaag 3') from pKO Scrambler NTKV 1904 and cloned 

into pCR®2.1-TOPO® TA. The cloned MC1 promoter was inserted at NruI and Nhe 

sites into pCDNA3.1 HSV TK.007 to replace the CMV promoter and to derive 

pMC1 HSV TK.007. 

The entire cassette comprising MC1 promoter, HSV TK.007 cDNA and BGH 

poly A signal sequences was excised with NruI and XmnI and cloned into PsiI and 

NaeI digested pZDonor-AAVS1 (CompoZr® targeted integration kit) to derive 

pZDonor-AAVS1-HSV TK.007.  

4.2.5 Assembly and mutagenesis of AAVS1 ZFN constructs 

Commercially purchased pST1374 plasmid encodes the catalytic domain of 

the FokI endonuclease driven from a CMV promoter. Zinc finger peptides cloned into 

this plasmid are expressed as a fusion protein together with the FokI catalytic domain. 

FokI is only functional as a dimer and has previously been modified to function as an 

obligate heterodimer8, in order to minimize homodimerization which is likely to 

increase off-target cleavage.  

We introduced two point mutations to each FokI monomer as previously 

described by Miller J.C. et al.8, using PCR mutagenesis. The FokI nuclease to be 

fused to the right AAVS1-specific ZF was sequentially mutagenised (with mutagenic 

primers indicated in parenthesis) to incorporate the following changes to the peptide 

sequence; E490K (forward primer 5' gcaacgatatgtcaaagaaaatcaaacacg 3'; reverse 

primer 5' cgtgtttgattttctttgacatatcgttgc 3') and I538K (forward primer 5' 

cacgattaaatcataagactaattgtaatggagc 3'; reverse primer 5' 

gctccattacaattagtcttatgatttaatcgtg 3') and was designated E490K; I535K FokI. 

Similarly, the FokI nuclease to be fused to the left AAVS1-specific ZF was 

sequentially mutagenised (with mutagenic primers indicated in parenthesis) to 

incorporate the following changes to the peptide sequence; Q468E (forward primer 5' 

ccaagcagatgaaatggaacgatatgtcgaag 3'; reverse primer 5' ctt 

cgacatatcgttccatttcatctgcttgg 3') and I499L (forward primer 5' 

cacgaaacaaacatctcaaccctaatgaatgg 3'; reverse primer 5' ccattcattagggttgagatgtttgtttcgtg 

3') and was designated as Q468E; I499L FokI. 
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DNA encoding a pair of zinc finger peptides specific for the AAVS1 locus3 

were codon-optimized and commercially synthesized (DNA2.0, USA) and cloned 

into XbaI/BamHI digested E490K; I535K FokI and Q468E; I499L FokI plasmids to 

derive the following constructs, AAVS1 right E490K; I535K FokI and AAVS1 left 

Q468E; I499L FokI. The entire AAVS1 left Q468E: I499L FokI cassette comprising 

CMV IE promoter, AAVS1 left zinc finger, Q468E:I499L FokI and BGH poly A 

signal sequence was PCR amplified using PfuUltra high fidelity DNA polymerase to 

incorporate XhoI and XbaI ends and cloned into a StrataClone™ blunt PCR cloning 

vector (pSCB); the resulting construct was designated pSCB AAVS1 left Q468E: 

I499LFokI. The AAVS1 left ZFN cassette was digested from pSCB AAVS1 left 

Q468E: I499L FokI with XhoI and XbaI and cloned into AAVS1 right E490K; I535K 

FokI plasmid that had been digested with SmaI and subsequently dephosphorylated 

with shrimp alkaline phosphatase (sALP). The resulting dual construct expressing 

AAVS1 right E490K; I535K FokI and AAVS1 left Q468E; I499L FokI was hereafter 

known as obligate heterodimer (OH) ZFN.  

Guo J et al.9 had previously reported enhanced cleavage activity from a FokI 

nuclease variant having the following amino acid substitutions, S418P and K441E. 

We incorporated the S418P (forward primer 5' 

attgaaattgccagaaatcccactcaggatagaattctt 3'; reverse primer 5' 

aagaattctatcctgagtgggatttctggcaatttcaat 3') and K441E (forward primer 5' 

gtttatggatatagaggtgaacatttgggtggatcaagg 3'; reverse primer 5' 

ccttgatccacccaaatgttcacctctatatccataaac 3') to introduce both substitutions into the 

AAVS1 right E490K; I535K FokI and pSCB AAVS1 left Q468E: I499L FokI 

constructs. The mutagenised constructs were designated AAVS1 right Sharkey 

E490K; I535K FokI and pSCB AAVS1 left Sharkey Q468E; I499L FokI. The 

AAVS1 left Sharkey ZFN cassette was next digested from pSCB AAVS1 left 

Sharkey Q468E: I499L FokI with XhoI and XbaI and cloned into AAVS1 right 

Sharkey E490K; I535K FokI plasmid that had been SmaI digested and 

dephosphorylated with sALP. The resulting dual expression plasmid was hereafter 

known as Sharkey ZFN. 

A second publication reported further improvements to FokI activity by 

engineering the catalytic domain. Doyon et al.10 showed that single amino acid 

changes to each monomeric nuclease domain could restore cleavage activity that is 

reduced in the obligate heterodimeric forms of FokI. Accordingly, we modified the 

AAVS1 right Sharkey E490K; I535K FokI construct (forward primer 5' 

cagcttacacgattaaatcgt aagactaattgtaatgga 3'; reverse primer 5' 
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tccattacaattagtcttacgatttaatcgtgtaagctg 3') to introduce a H537R amino acid 

substitution and the pSCB AAVS1 left Sharkey Q468E; I499L FokI construct 

(forward primer 5' gaagaaaatcaaacacgagacaaacatctcaaccctaat 3'; reverse primer 5' 

attagggttgagatgtttgtctcgtgtttgattttcttc 3') to create a N496D substitution. These 

modified constructs were designated AAVS1 right Sharkey E490K; I535K; H537R 

FokI and pSCB AAVS1 left Sharkey Q468E; I499L;N496D FokI. The AAVS1 left 

Sharkey ZFN cassette was excised from pSCB AAVS1 left Sharkey Q468E; 

I499L;N496D FokI with XhoI and XbaI and ligated into AAVS1 right Sharkey 

E490K; I535K; H537R FokI plasmid that had been SmaI digested and 

dephosphorylated with sALP. This final ZFN construct was hereafter known as 

Enhanced Sharkey ZFN. 

4.2.6 Assembly of donor constructs for AAVS1 ZFN work 

The pZDonor-AAVS1 construct provided by the CompoZr®Targeted 

Integration Kit – AAVS1 (Sigma-Aldrich) contains 1500 bp homologous to the 

genomic region spanning the AAVS1 target site, bisected by a 50 bp multiple cloning 

site into which DNA sequences or genes of interest can be cloned. DNA fragments 

cloned between the homology arms are integrated into the AAVS1 site during 

homologous recombination mediated repair following ZFN induced DNA breaks in 

the genome.  

A stuffer fragment encoding recognition sites for NdeI, MfeI, PacI and 

BstZ17I was created by denaturing equimolar mixtures (10 μM each) of 

5’phosphorylated oligonucleotides (forward 5’ 

agcttcatatgcaattgttaattaagtatacccaccgagacc 3'; reverse 5' 

tcgaggtctcggtgggtatacttaattaacaattgcatatga 3') for 10 min at 95°C, followed by 

annealing at room temperature for 10 min. The stuffer fragment was inserted into the 

pZDonor construct digested with HindIII and XhoI to derive pZDonor-AAVS1 

stuffer.  

An entire 3.75 kb DNA fragment (consisting of CMV promoter, EGFP, SV40 

poly A, SV40 promoter, kanamycin/neomycin resistance gene and HSV TK poly A) 

was excised from pEGFP-C1 with AseI and BsaI, and cloned into NdeI/BsaI digested 

pZDonor-AAVS1 stuffer construct to derive pZDonor EGFP.  

Similarly, pZDonor hybrid FVIII construct was derived by cloning a 9.123 kb 

MfeI/BstZ17I digested fragment (consisting of CMV enhancer, human ferritin light 

chain promoter, hybrid FVIII cDNA, BGH poly A, neomycin resistance gene, SV40 

poly A) from pattB Hfer hybrid FVIII into MfeI/BstZ17I digested pZDonor-AAVS1 

stuffer.  
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The 9.123 kb MfeI/BstZ17I digested hybrid FVIII mentioned in the preceding 

paragraph was also cloned into MfeI/BstZ17I pZDonor-AAVS1-HSV TK.007 

plasmid to derive the construct pZDonor hybrid FVIII TK.007. 

Lastly, pSA-2A-Puro-Hybrid FVIII construct was cloned by ligating a blunt-

ended, 7.877 kb MfeI/AvrII digested fragment (consisting of CMV enhancer, human 

ferritin light chain promoter, hybrid FVIII cDNA, BGH poly A) from pattB Hfer 

hybrid FVIII into SalI digested, blunt-ended and dephosphorylated pSA-2A-Puro-pA 

donor plasmid.   

4.3. PhiC31 integrase modification of CLECs 

4.3.1. Isolation, culture and characterization of CLECs 

The isolation and culture of CLECs has been described previously  11‐14 

(International publication number W0 2006/019357A1 and UK patent GB2432166). 

Briefly, fresh umbilical cords from uncomplicated pregnancies were transported in L-

15 medium supplemented with 50 IU/ml penicillin, 50 μg/ml streptomycin, 250 μg/ml 

amphotericin B (Fungizone) and 50 μg/ml gentamicin, and processed in sterile 

conditions. Blood was removed by flushing the cannulated cord with phosphate-

buffered saline (PBS) supplemented with 5 IU/ml heparin (Sigma-Aldrich). The cord 

was next cut into 2 cm segments, washed with PBS, disinfected with 70% ethanol and 

washed again with antibiotic-containing PBS. The amniotic membrane was dissected 

free from other cord contents, cut into 0.5 cm2 squares and placed in a cell culture 

dish filled with 5 ml of Medium 171 (Cascade Biologics). Explants were cultured at 

37 °C/5% CO2, with media change every 3 days. Outgrowing cells were trypsinized 

(0.0125% trypsin/0.05% EDTA) and seeded at a density of 1 × 106 cells/dish in 

complete medium as detailed in section 4.1.4. Cells were subcultured at 70% 

confluency and expanded or cryopreserved. 

 CLECs were analyzed by reverse transcription (RT)-PCR and protein 

immunoblotting for expression of pluripotency markers. A human embryonic stem 

cell line (HUES) and human primary dermal fibroblast cells served as positive and 

negative controls, respectively, for these characterization experiments. RNA extracted 

from cells (RNeasy mini kit; Qiagen) was treated with DNAse I (MBI Fermentas), 

reverse transcribed (SuperScript™ II reverse transcriptase) and amplified using 

GoTaq qPCR master mix (Promega) and the following PCR primers: Nanog (forward 

primer 5′ ttccttcctccatggatctg 3′; reverse primer 5′ tctgctggaggctgaggtat 3′), Oct-4 

(forward primer 5′ ggttctatttgggaaggtattcag 3′; reverse primer 5′ ggtttctgctttgcatatctc 

3′) and γ-actin (forward primer 5′ accactggcattgtcatggactct 3′; reverse primer 5′ 
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atcttgatcttcatggtgctgggc 3′). Amplified products were electrophoresed on 2% agarose 

gels, imaged using GelDoc 2000 transilluminator (Bio-Rad Laboratories, Hercules, 

CA) and quantified by densitometry using QuantityOne software.   

For protein immunoblot analysis, cells were lysed with M-PER mammalian 

protein extraction reagent (Pierce, Waltham, MA); 20–50 μg protein from each cell 

lysate was separated by 14% SDS-PAGE under reducing conditions, electroblotted 

onto nitrocellulose membrane (Bio-Rad Laboratories) and probed with specific 

antibodies against human Oct-4 and Nanog (sc-5279; Santa Cruz Biotechnology, 

Santa Cruz, CA and ab21624; Abcam, Cambridge, UK, respectively). Antibody 

binding was visualized by horseradish peroxidase-conjugated goat anti-mouse or goat 

anti-rabbit secondary antibodies (Promega and Santa Cruz Biotechnology, 

respectively) and a chemiluminescence-based photoblot system (Amersham 

Biosciences, Piscataway, NJ). 

4.3.2. Gene transfer 

Gene transfer studies for the phiC31 integrase work were performed mainly 

using the BTX electroporation system. For optimization studies, 2 million CLECs in 

400 μl of solution NC 15 were electroporated with 5 μg of pEGFP-C1 plasmid DNA 

in a 0.4 cm cuvette. Electrotransfer was performed with a single pulse delivered by 

BTX ECM 830 electroporator (Genetronics, San Diego, CA). For voltage 

optimization, pulse duration was fixed at 25 ms at different voltages from 160 V to 

280 V. For pulse duration optimization, the voltage was maintained at 240 V while 

the pulse duration varied from 10 to 40 ms. For evaluating different electroporation 

buffers (RPMI 1640/10% FCS, Mirus solution, solution NC and OptiMEM), the 

voltage and pulse duration were fixed at 240 V and 30 ms, respectively.   

For phiC31 integrase work, CLECs were co-transfected by electroporating 2 

× 106 cells with 10 μg pattB Hfer BDD-human FVIII F309S or pEGFP-C1 attB and 

1.5 μg of pCMV-Int in 400 μl of RPMI 1640/10% FCS medium with a single pulse 

delivered at 165V and 55 ms. Mixed populations of stably integrated CLECs were 

selected by culture in medium containing 0.6 mg/ml G418 for 7 days. 

4.3.2.1. Transfection efficiency 

Observation and imaging of GFP-positive cells on culture flasks was done 

using a Nikon TE-300 inverted fluorescence microscope equipped with a filter for 

FITC (excitation= 425nm; emission= 500nm) and Nikon ACT-1 software. 

Electroporated cells were detached from culture flasks by incubating with 

Accutase™ solution at 37°C for 5 min and spun down at 1500 rpm for 5 min 
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(Eppendorf 5810R centrifuge) to obtain a cell pellet that was resuspended in 500 μl of 

PBS containing 1μg/ml propidium iodide and transferred to 5 ml round bottom BD 

Falcon™ polystyrene tubes (FACS tubes) (BD Biosciences, USA). The percentages 

of GFP-positive cells and propidium iodide-positive cells were determined by flow 

cytometry (BD FACSCalibur; BD Biosciences, USA) using a 488 nm argon ion laser 

for excitation and 530/30 nm bandpass filter in the FL1 channel for GFP detection 

and 585/42 nm bandpass filter in the FL2 channel for propidium iodide detection. 

Results were analyzed using FlowJo v7.22 software to determine percentage of cells 

positive for GFP (transfection efficiency) and propidium iodide (percent mortality).  

4.3.2.2. Integration frequency 

The percentage of cells integrated pattBGFP following treatment with phiC31 

integrase was estimated from the number of stable integrants from seeding FACS-

sorted EGFP-expressing CLECs (2,000 and 5,000 cells) into 10 cm petri dishes (done 

in triplicate) followed by G418 selection. The number of GFP+ cells/clones 

remaining after 7 days of selection was scored manually by visualizing under a 

fluorescence microscope to obtain the average integration frequency.  

4.3.3. Factor VIII measurements 

FVIII levels in conditioned media were determined using a chromogenic 

assay which measures FVIII activity, while an ELISA-based method was used to 

quantify human-specific FVIII antigen levels in murine plasma.  

4.3.3.1. Chromogenic FVIII assay 

The principle of the chromogenic FVIII activity assay is as follows. The rate 

of conversion of factor X to factor Xa, in the presence of excess factor IXa, calcium 

and phospholipid, is directly proportional to the activity of the cofactor, factor VIIIa. 

Factor Xa hydrolyses a chromogenic substrate, S-2765, to liberate a chromophoric 

group, pNA, which is quantified spectrophotometrically at 405 nm. The intensity of 

the color of released pNA from the hydrolyzed substrate generated by factor Xa is 

proportional to factor VIII activity in the sample.  

Factor VIII levels were measured using a Chromogenix Coamatic®Factor 

VIII kit (Chromogenix, Sweden) according to manufacturer’s protocol. Conditioned 

media were either used directly or frozen at -80°C until assayed. Generally, a 

standard curve was obtained by diluting factor VIII standards (Dade Behering, 

Germany) to concentrations ranging from 1 IU/ml to 0.01 IU/ml.  The various 

standards and samples were diluted 1:80 (or at a higher dilution when necessary) and 
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assayed in a Costar® 96-well flat-bottom microplate (Corning®, USA). End point 

absorbance readings at 405 nm were measured using a Dynex MRX II plate reader 

(Dynex Technologies Inc., USA). FVIII levels of test samples were determined 

from the standard curve in which levels of FVIII standards (IU/ml) were plotted 

against absorbance readings at 405 nm.        

4.3.3.2. ELISA FVIII assay 

Visulize™ FVIII antigen ELISA kit (Affinity Biologicals, Canada) consists 

of a 96-well microplate coated with sheep polyclonal antibody against human FVIII. 

Antibody-bound human FVIII antigen in test samples is detected by peroxidase-

labeled anti-FVIII antibodies that convert the peroxidase substrate 

tetramethylbenzidine (TMB) to a blue colored product that is spectrophotometrically 

measured at 450 nm. Standards (provided in the kit) and citrated test plasma samples 

were diluted 1:4 prior to assay according to manufacturer’s protocol and absorbance 

readings at 450 nm were measured using a Dynex MRX® II plate. A standard curve 

derived by plotting levels of FVIII standards to absorbance readings at 450 nm was 

used to determine FVIII antigen levels in test samples. 

4.3.4. Documenting integration sites 

Integration profile of CLECs treated with phiC31 integrase was determined 

by sequencing donor DNA-genomic DNA fragments retrieved by a plasmid rescue 

method. Genomic cross-over junctions identified by the presence of attB sequences 

flanking donor vector sequences were assigned to specific genomic locations by 

bioinformatic analyses and evaluated for chromosomal abnormalities, such as 

insertions or deletions, at the integration junctions. We sought to characterize the 

genomic profile of recovered integration events as described in the following 

sections.   

4.3.4.1. Plasmid rescue 

The plasmid rescue method uses a combination of restriction enzymes to 

fragment genomic DNA without digesting within the donor vector sequences such 

that these digested fragments can be circularized by ligation, transformed into 

bacterial hosts and re-isolated as circular plasmids for sequencing and further 

characterizations to yield a genomic snapshot of integration events (Appendix 4A).  

Genomic DNA from phiC31 integrase modified CLECs (either from clonal or 

pooled populations of cells) was isolated using Qiagen Blood and Cell Culture 

Miniprep Kit and digested overnight with a combination of either SpeI, XbaI and 
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NheI or BamHI and BglII (10 U of each enzyme per µg of genomic DNA). Digested 

DNA was extracted with 25:24:1 phenol-chloroform-isoamylalcohol (Sigma-

Aldrich), precipitated with one-tenth the volume of 3 M sodium acetate at pH 5 and 

two volumes of 100% ethanol. Precipitated DNA was washed with 70% ethanol 

before redissolving in nuclease-free water. Digested DNA was circularized by 

ligating under dilute conditions (1-10 ng/μl) with 1U of T4 DNA ligase (NEB) at 

16°C overnight. Ligated products were ethanol precipitated, cleaned up with phenol-

chloroform clean-up, washed with 70% ethanol and redissolved in 10 µl of nuclease-

free water before being electroporated (1-5 µl of ligated products) into 50 µl of 

electrocompetent DH10B E.coli (Invitrogen) at 1.85kV, 25µF and 200Ω using a 1 

mm cuvette in a Gene Pulser (Bio-Rad Laboratories). Electroporated cells were 

recovered into 700 µl of SOC medium, incubated at 37°C for an hour with shaking at 

900 rpm in a thermal mixer (Eppendorf), pelleted by centrifugation at 7000 rpm 

(Eppendorf) for 3 min before resuspension in 50 µl of SOC media, plating on Luria-

Bertani (LB)-agar plates containing 50 µg/ml kanamycin and cultured overnight at 

37°C. Antibiotic-resistant bacterial colonies were picked into 5ml of LB-media 

containing 50 µg/ml of kanamycin and cultured overnight at 37°C.  Plasmids were 

isolated from bacterial cultures using Qiagen Plasmid Midi kits and quantified using a 

Nanodrop®ND-1000 Spectrophotometer (Thermo Scientific, USA).    

4.3.4.2. Characterization of retrieved integration events 

4.3.4.2.1. Sequencing of rescued plasmids 

Rescued plasmids (500 ng) were sequenced with BigDye®Terminator v3.1 

Cycle Sequencing kit (Applied Biosystems) and a primer (CHOSeq R: 

5’tcccgtgctcaccgtgaccac3’) which was specific to the attB sequence and used to read 

into the genomic region adjacent to a cross-over (integration) site16. 

4.3.4.2.2. Characterizing integration sites 

DNA sequences were mapped to the reference human genome 

(GRCh37/hg19) using the BLAT program (http://genome.ucsc.edu) and cross-over 

junctions (genomic integration sites) were identified by aligning retrieved sequences 

to the attB sequence (Appendix 4B). The identified integration sites were mapped to 

chromosome cytobands and characterized by their position within exons, introns, 

repeat elements or intergenic regions, and distance to the nearest transcription start 

site. Identified integration sites were also noted for their proximity to potential 

oncogenes and tumor suppressor genes from a compilation of 1650 possible 

oncogenes and tumor suppressor genes (http://www.bushmanlab.org/links/genelists). 
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Further analyses determined if there were insertions or deletions of either genomic 

DNA or donor vector at the cross-over junctions.  

4.3.4.2.3. Motif search at recovered integration sites 

To determine whether the recovered integration sites shared a common motif 

at the cross-over junction, 100 bp of genomic DNA sequences flanking the cross-over 

point of integration events were retrieved from the reference human genome sequence 

(version hg 19) and analyzed using the motif search program Multiple Em for Motif 

Elicitation (MEME; http://meme.nbcr.net), which detects sequence similarities and 

generates a common motif (with probability e-values), if present. 

4.3.4.2.4. Screening of CLECs for integration of pattB Hfer hybrid FVIII 

at 8p22 locus 

CLECs electroporated with 12 µg of pattB Hfer hybrid FVIII only or together 

with 2.5 µg pCMV-Int plasmid using nucleofector primary cell solution P1 (setting 

CM113) and a nucleofector 4D device (Lonza) were either cultured unselected or 

selected with 1 mg/ml of G418 for 5 days starting from day 6 post-electroporation. 

FVIII activity assay (Coamatic®Factor VIII kit, Chromogenix) was performed on 

overnight conditioned media of genome-modified CLECs seeded at 100 000 cells per 

well (12-well plate, Nunc) in 500 µl of culture media on days 6 and 25 post-

electroporation.  

Genomic DNA was extracted from bulk population of genome-modified 

CLECs using QIAamp DNA mini kit. Junctional PCR was performed on 200 ng of 

genomic DNA using DyNAzyme EXT DNA polymerase. Left integration junction 

PCR (454 bp) was performed using primer pairs specific to a locus on chromosome 

8p22 (forward: 5’ gggctctggagtaaaggtgaaa 3’) and donor vector (reverse: 5’ 

gttcgccgggatcaactacc 3’). Right integration junction PCR (333 bp) was performed 

using primer pairs specific to the vector sequence (forward: 5’ tcgacgatgtaggtcacgg 

3’) and chromosome 8p22 genomic DNA (reverse: 5’ gcatggcctcatttccgtct 3’). 

Control genomic PCR (900 bp) was performed with AAVS1 genomic primers 

(forward: 5’ aagaagcgcaccacctccaggttct 3’; reverse: 5’ atgacctcatgctcttggccctcgta 3’). 

All PCR was set up in a 20 μl reaction volume and amplified for 30 cycles using a 

PTC-200 Peltier gradient thermal cycler (MJ Research Inc., USA) at an annealing 

temperature of 56°C and extension time of 1 min per cycle. Amplified products were 

electrophoresed on 1% agarose gels and imaged using BioRad®Gel Doc 2000 

transilluminator and quantified using QuantityOne software. 

http://meme.nbcr.net/�
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To screen clonal CLECs for transgene integration at chromosome 8p22 

locus17, G418-resistant stable population of CLECs (pattB Hfer hybrid FVIII + 

pCMV Int, G418 selected) were flow sorted (4 cells per well) into individual wells of 

96-well plates (Nunc) and allowed to expand in culture. A replica plate for further 

analysis of clones was established by detaching and re-seeding cells into a second 96-

well plate. Cells for 8p22 integration screening (in 96-well plates) were lysed in situ 

with 60 µl of lysis buffer and screened by Direct PCR (section 4.4.1.6) for the 

presence of integration junctions using Phusion Human Specimen Direct PCR kit and 

the same sets of primers mentioned earlier in this section. Clones identified to be 

positive for transgene integration at 8p22 locus were retrieved from the replica plate 

and analyzed for FVIII activity and for transgene copy number by fluorescence in situ 

hybridization (FISH) (section 4.3.7). Further studies were performed on selected 

clones that had high levels of FVIII expression and single copy transgene integration. 

4.3.4.2.5. Reverse transcription and quantitative PCR to determine 

changes in DLC1 transcript levels 

Reverse transcription (RT)-quantitative PCR was employed to determine 

changes in DLC1 transcript levels in clonal CLECs with transgene integration in 

8p22. CLECs electroporated without plasmid DNA and of the same number of 

population doublings were controls. 

Total RNA was extracted from approximately 1 x 106 cells using TriPure 

isolation reagent as detailed in section 4.5.2, treated with DNase I to remove 

contaminating genomic DNA and purified using RNeasy® Mini kit. Reverse 

transcription was performed on approximately 1µg of DNAse-treated RNA using 

iScript™ Advanced cDNA synthesis kit (Bio-Rad Laboratories), according to the 

manufacturer’s instruction. Quantitative-PCR (Q-PCR) was performed using 2 µl of 

1st strand cDNA in a 20 μl reaction volume using GoTaq® qPCR Master Mix and 45 

cycles at an annealing and extension temperature of 62°C using CFX96™ Real-Time 

PCR detection system (Bio-Rad Laboratories). Intron-spanning exonic primers were 

used to amplify DLC1 exons 1-2 (F: 5’-tcctgccccaatggaatgtc-3’; R: 5’-

gttggtgtgcctgatggaga-3’), exons 8-9 (F: 5’-gaaggggatgcagcggatag-3’; R: 5’-

agcagggccgttagctttag-3’) and a housekeeping gene, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) exon 6-7 (F: 5’-gcctcctgcaccaccaact-3’; R: 5’-

cgcctgcttcaccaccttc-3’). DLC1 transcript levels were normalized to GAPDH 

expression levels and the fold-change in DLC1 transcript levels in clonal CLECs with 

8p22 integration was reported relative to DLC1 transcript levels in control CLECs, 

using the ‘delta-delta C(T) method’18.   
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4.3.5. Transcriptional profiling 

Total RNA isolated from naive and genome-modified CLECs served as 

starting material for transcript profiling on Human Genome U133 Plus 2.0 Arrays 

(Affymetrix, Santa Carla, CA) while those from genome-modified oligoclonal 

CLECs with integrations at 8p22 were evaluated  using GeneChip® PrimeView™ 

Human Gene Expression array (Affymetrix), following the recommended protocols. 

Transcription expression data were analyzed using GeneChip Operating Software 

(Affymetrix). Transcripts whose expression levels differed significantly (determined 

by Wilcoxon signed-rank test) by more than two-fold in genome-modified CLECs 

compared to naïve CLECs were considered significantly altered and were further 

analyzed. DAVID (Database for Annotation, Visualization and Integrated Discovery) 

2.1 Functional Annotation Tool (http://david.abcc.ncifcrf.gov) was used to ascribe 

functions and other annotations for significantly altered transcripts and for pathway 

mapping.  

Genes in which integration sites occurred and genes within a 1MB window 

centered on integration sites were analyzed to determine for significant alterations in 

their transcripts levels.  Altered transcripts were also referenced to a compilation of 

known proto-oncogenes and tumor suppressor genes 

(http://www.bushmanlab.org/links/genelists) in order to identify if they belonged to 

either category.  

4.3.6. Genome copy number change analyses 

High-resolution copy number profiling was performed on genomic DNA of 

naive and genome-modified CLECs using the Human Mapping 500K Array Set 

(Affymetrix) [data analyzed using GeneChip Chromosome Copy Number Analysis 

Tool] while oligoclonal genome-modified CLECs with 8p22integrations were 

evaluated using a higher resolution and newer array, Cytoscan® HD array 

(Affymetrix) [data analyzed using Chromosome Analysis Suite]. Regions of copy 

number gain or loss were defined as having ≥3 consecutive SNPs or ≥ 50 consecutive 

probes concordant for significant copy number abnormalities when analyzed using 

the Human Mapping 500K Array and Cytoscan HD array, respectively. Log2 signal 

intensity ratios >0.3 and ≤-0.3 were criteria for significant copy number gain and loss, 

respectively.  

Integration sites and non-integration sites associated with significantly altered 

transcripts were compared to copy number profiling data to determine if there were 

any significant copy number gains or losses at these loci. 

http://david.abcc.ncifcrf.gov/�
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4.3.7. Fluorescence in situ hybridization 

Fluorescence in situ hybridization (FISH) to detect integration of pAttB GFP 

and pAttB Hybrid FVIII vectors were performed on interphase nuclei of genome-

modified CLECs with fluorescein-12-dUTP (PerkinElmer, Waltham, MA) labeled 

probes generated by PCR amplification of EGFP cDNA from pattB EGFP-C1 (740 

bp PCR product: forward primer 5’ ccggtcgccaccatggtgag ; reverse primer 5’ 

ctgagtccggacttgtacag 3’) and PCR amplification of neomycin cDNA from pAttB 

Hybrid FVIII (817 bp PCR product: forward primer 5’ ttgcacgcaggttctccggc 3’; 

reverse primer 5’ ggcgtcgcttggtcggtcat 3’),  respectively. For investigation of 

transgene integration into 8p22, Texas-Red-5-dUTP labeled human chromosome 8 

centromeric probes (Children’s Hospital Oakland Research Institute) were used. All 

probes were labeled by random prime labeling (BioPrime DNA Labeling System, 

Invitrogen), cleaned with ChargeSwitch PCR Clean-up kit (Invitrogen) to remove 

excess fluorochrome, ethanol precipitated and resuspended in 15 μl of hybridization 

solution (50% formamide and 10% dextran sulphate in 2 x SSC). Suspensions of 

CLECs in fixative solution consisting of 3 parts methanol and 1 part acetic acid (v/v) 

at -20°C, were spread onto clean polylysine-coated glass slides (Thermo Scientific) 

by the dropping method19 and the slides were aged overnight at 56°C. Slides were 

treated with pepsin (12 μl of 100mg/ml pepsin in 0.1 M HCl) at 37°C for 10 min, 

fixed in 1% formaldehyde for 10 min at room temperature, dehydrated sequentially in 

70%, 80% and 100% ethanol (2 min each) and air dried. Slides were incubated at 

70°C for 2 min to denature nuclear DNA and subjected to further sequential 

dehydration in 70%, 80% and 100% ethanol (2 min each) before air drying. Labeled 

probes were denatured at 72°C for 6 min before adding to slides which were then 

cover-slipped and sealed with rubber glue prior to hybridization at 37°C in a 

humidified chamber for 48-72 hours. Hybridized slides were washed sequentially in 

solutions containing 50% formamide/2xSSC, 2xSSC and 0.1xSSC, air-dried, 

counterstained with 4,6-diamino-2-phenylindole (DAPI) and enumerated for probe 

signals by visualizing with an Olympus BX61 epifluorescence microscope (Olympus, 

Tokyo, Japan).   

4.3.8. Karyotype and spectral karyotype 

Conventional G-banding karyotype and spectral karyotype (SKY) studies 

were performed on cells arrested at metaphase by 0.1 µg/ml colcemid (Invitrogen), a 

microtubule depolymerising mitotic inhibitor drug, for 3 hrs at 37°C. Mitotic cells 

detach from adherent cell culture and could be harvested, washed with PBS and 
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incubated in hypotonic 0.06 M KCl at 37°C for 10 min. Cells were pelleted by 

centrifugation at 900 rpm for 12 min and washed thrice with fixative solution (3 parts 

methanol and 1 part acetic acid, v/v) before final resuspension and storage in 0.5 ml 

of fixative at -20°C. Metaphase preparations were spread onto polylysine-coated glass 

slides by the dropping method19 and the slides were aged for 3 to 21 days (in a closed 

container) at room temperature before use. 

G-banding was performed on slides containing metaphase preparations aged 

for at least 1 week. Slides were incubated in 2 x SSC at 65°C for 1-2 hrs, transferred 

to 0.85% (w/v) NaCl solution at room temperature for 5 min, drained and incubated 

horizontally in 0.85% NaCl containing 0.025% trypsin for 15 -20 s followed by a 

rinse in 0.85% NaCl before staining with Giemsa stain (1 part Giemsa stain/3 parts 

Gurr’s phosphate buffer, v/v, pH 6.8) for 2 min. Slides were rinsed with Gurr’s 

buffer, air-dried and mounted with DPX mount solution, and cover-slipped before 

imaging with an Olympus BX61 epifluorescence microscope  and BandView® 

software (Applied Spectral Imaging, Germany). 

Spectral Karyotyping was also performed on slides of metaphase preparations 

aged for at least 1 week. Slides were pre-treated with 2 x SSC for 2-3 hrs at 37°C, 

incubated in 0.01 M HCl with 15 μl of pepsin (100 mg/ml) at 37°C for 7 min, washed 

sequentially twice with PBS and once with PBS/0.05 M MgCl2 before incubation in 

1% formaldehyde at 25ºC for 10 min. Slides were then washed once with PBS, 

dehydrated sequentially in 70%, 80% and 100% ethanol and air-dried. Chromosomal 

DNA was denatured by incubating slides at 70°C for 2 min in 70% formamide in 2 x 

SSC, pH 7.0. Slides were immediately subjected to sequential dehydration in cold 

70%, 80% and 100% ethanol (2 min each) before drying in air. SKY paint reagent 

(vial#1) was denatured at 80°C for 6 min, allowed to re-anneal at 37°C for 1 hr before 

being adding to slides, which were then cover-slipped and sealed with rubber glue 

prior to hybridization at 37°C in a humidified chamber for 48 hours. Hybridized 

slides were washed sequentially in solutions containing 50% formamide/2xSSC, 

1xSSC and 4xSSC/0.1% Tween 20 and air-dried. Slides were next blocked with 60 μl 

of blocking reagent (SKY reagent vial#2) at 37°C for 30 min, rinsed in wash solution 

III and drained dry. About 60-80 µl of SKY paint reagent [CAD kit vial#3 (Applied 

Spectral Imaging) diluted as follows; 500 μl of 4xSSC + 2.5 µl anti-Digoxin (Sigma, 

#D8156) + 2.5 μl Cy5 Strep Avidin(CAD kit vial#3 )] was added to slides which 

were incubated (with cover-slipping) at 37°C for 1hr. After a triple wash in solution 

III (4xSSC/0.1% Tween20) at 45°C, 60 -80 μl of SKY paint reagent (CAD kit vial#4 

(Applied Spectral Imaging) diluted as follows; 500 μl of 4xSSC + 2.5 μl Cy5.5 anti 

mouse (CAD kit vial#4 )] ) was added to slides which were incubated at 37°C for 1 
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hr. Slides were then washed thrice in wash solution III at 45°C, rinsed in distilled 

water, allowed to air-dry before counterstaining with 4,6-diamino-2-phenylindole 

(DAPI), cover-slipped and sealed with nail polish. SKY reagent labeled metaphase 

chromosomes were imaged with an Olympus BX61 epifluorescence microscope and 

analyzed using BandView® software. A minimum of 40 metaphases were examined 

for each sample.         

4.3.9. Tumorigenicity assessment 

Long term ex vivo culture or genetic modification of cells may induce cellular 

transformation characterized by unlimited proliferation in vitro, loss of contact 

inhibition, adherence independence and tumor formation in immunocompromised 

mice models. Tumorigenicity assessment studies are pertinent to evaluate gene 

modified cells for acquired oncogenicity.   

4.3.9.1. In vitro colony formation assay 

In vitro colony formation assay is a crude quantitative assessment of the 

proliferative characteristics of clonal cell populations based on the number and size of 

colonies formed.  

Typically, untreated or stably modified cells were plated at a low seeding 

density (2000 or 5000 cells) in a 10 cm dish and allowed to grow for 14 days, with 

medium change every 3 days. Cultures were then washed with PBS, fixed in 10% 

formalin for 15 min at room temperature, rinsed with PBS and stained with 1% (w/v) 

crystal violet (BDH Chemicals, UK) for 30 min at room temperature. Following three 

rinses with PBS and air drying, dishes with stained colonies were imaged with an 

inverted microscope (Axiovert 25CFC, Carl Zeiss). The number and sizes of colonies 

were manually scored using KS400 software (Carl Zeiss ).     

4.3.9.2. In vivo tumorigenicity assay 

Tumorigenicity potential of cells may be evaluated by implantation into 

immunocompromised mice models (SCID, Nude, NOD-SCID) and observing for 

tumor formation. 

The tumorigenic potential of genome-modified CLECs was assessed in 

NOD-SCID mice by subcutaneous nuchal and renal subcapsular implantation of 5 × 

106 cells suspended in 50 μl PBS. Mice were visually inspected weekly for the 

appearance of subcutaneous tumors for 4 months, and killed after 1 and 3 months to 

check for renal subcapsular tumors. Survival and engraftment of cells at implantation 

sites were shown by immunohistochemical staining of tissue sections taken from 
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implantation sites using an antibody directed against a suitable marker for human 

cells. 

4.3.9.3. Immunohistochemistry  

Basically, tissues were excised from implantation sites, fixed overnight in 

10% formalin, processed through an ethanol series (70%, 80% and 100% ethanol) in 

a tissue processor (Leica Microsystems, Germany) and embedded in paraffin wax. 

Five micron sections of paraffin-embedded tissues were prepared using a microtome 

(Leica Microsystems), placed on microscope slides and baked at 56°C overnight for 

immunohistochemical staining.  

Typically, slides were deparaffinized by two incubations in xylene for 5 min, 

hydrated by sequential incubation in 100%, 95% and 70% ethanol, rinsed in tap water 

and blocked with 10% serum (from the host species of secondary antibodies) for 30 

min. Tissue sections were rinsed thrice with PBS and after each of the incubation 

steps mentioned below. Tissues were incubated with 1:3 diluted (DAKO REAL 

antibody diluent) mouse anti-human vimentin antibody (Clone V9, Zymed)  for 1 hr 

at 37°C followed by 30 min incubation with 1:2 diluted (same diluent as above) 

DAKO REAL EnVision rabbit/mouse HRP-conjugated secondary antibody. 

Following thorough rinsing with PBS, DAB chromogen (1 part DAB chromogen + 3 

parts DAKO REAL substrate buffer) was added to slides and incubated until a brown 

color was visible in the tissue sections. Excess chromogen was rinsed off with PBS, 

slides counterstained with Mayer’s hematoxylin for 3min, rinsed under running tap 

water, dehydrated by sequential incubation in 70%, 95% and 100% ethanol, incubated 

with xylene before coverslipping with DPX mount solution. Tissue sections were 

visualized and imaged with an inverted microscope (Axiovert 25CFC, Carl Zeiss, 

Germany) under 20x magnification, using the KS400 software.     

4.3.10. Factor VIII study 

CLECs stably integrated with a donor construct expressing BDD-human 

FVIII F309S cDNA from a human ferritin promoter were selected on the basis of 

G418 resistance. Culture supernatants were assayed for FVIII activity using the 

Coatest® SP4 FVIII kit. 

4.3.10.1. Implantation of FVIII-secreting cells 

Approximately 8 x 106 CLECs stably secreting FVIII were implanted either 

unencapsulated or encapsulated with Matrigel™ basement membrane matrix  into the 

subcutaneous nuchal region of anesthetized hemophilic male mice (n=5 for each 
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group). Control mice were implanted with a similar number of naive, Matrigel™-

encapsulated CLECs.   

4.3.10.2. Phenotypic correction/blood loss assay 

Blood samples for FVIII assays were collected before, 1, 3, 6 and 15 days 

after cellular implantation. Blood was obtained by puncturing the retro-orbital venous 

plexus with heparinised capillary tubes and collected in 0.1 volume of 0.1 mol/L 

sodium citrate. Plasma was obtained by centrifugation at 20,000xg at 4°C for 10 min 

and stored at -80°C until the time of assay.   

Human FVIII antigen levels in mouse plasma samples were determined using 

a human FVIII-specific ELISA kit as described in section 4.3.3.2. Assessment of 

phenotypic correction was performed by determining the volume of blood loss in 

hemophilic mice following a hemostatic challenge as described previously20. 

Typically, the tail was warmed to 37 °C for 2 min, then severed 2 cm from the tip 

with a sharp blade and immediately placed in a microfuge tube containing 0.5 ml PBS 

at 37 °C for 15 min, after which bleeding was arrested by cauterization using a 

Gemini cautery system kit (Harvard Apparatus, USA). The difference in the weight of 

the tube before and after blood collection quantified blood loss (expressed as mg of 

blood loss).   

4.4. AAVS1 ZFN modification of cells 

We attempted to evaluate site-specific genomic integration of donor inserts of 

varying sizes (50 bp, 1 kb, 4 kb and 9 kb) into  intron 1 of the PPP1R12C gene 

(AAVS1 site) using AAVS1 ZFNs that were either commercially purchased (Sigma-

Aldrich) or with ZFNs that we assembled as detailed in section 4.2.5. Three donor 

plasmids with neomycin resistance antibiotic selection marker that were used in the 

initial study to integrate DNA fragments of increasing size (sizes indicated in 

parenthesis) were: 

pZDonor-AAVS1 (50 bp multiple cloning site)  

pZDonor GFP (3.75 kb fragment consisting of CMV promoter, EGFP, SV40 

poly A, SV40 promoter, kanamycin/neomycin resistance gene and HSV TK poly A) 

 pZDonor hybrid FVIII (9.123 kb fragment consisting of CMV enhancer, 

human ferritin light chain promoter, hybrid FVIII, BGH poly A, neomycin resistance 

gene, SV40 poly A).  

Initial optimization studies were performed on a leukemia cell line, K562, 

while subsequent studies focused on different primary human cell types.  
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Subsequent studies were performed with donor vectors with a promoterless 

puromycin selection cassette, splice-acceptor sequence and self-cleaving 2A-peptide 

sequence3, which resulted in more efficient selection of cells with targeted transgene 

integration. Commercially purchased pAAVS1 SA-2A-puro-pA donor and pAAVS-

CAGGS-EGFP, result in targeted integration of a 1 kb- puromycin cassette and 4.2 kb 

cassette (comprised of puromycin cDNA, BGH poly A, CAGGS promoter, EGFP 

cDNA and poly A), respectively. pSA-2A-Puro-Hybrid FVIII donor vector, 

assembled in our lab by inserting the hybrid FVIII cassette into the pAAVS1 SA-2A-

puro-pA donor vector results in targeted integration of a 8.85 kb donor sequence 

(comprised of puromycin cDNA, BGH poly A, human ferritin light chain promoter, 

hybrid FVIII cDNA and BGH poly A).  

4.4.1. Optimization in K562 cells 

4.4.1.1. Gene transfer and selection 

K562 cells were electroporated with 10 µg of donor plasmid DNA (pZDonor-

AAVS1, pZDonor GFP or pZDonor hybrid FVIII) and either 5 µl of AAVS1 ZFN 

mRNA (Sigma-Aldrich) or 5 µg of AAVS1 dual ZFN plasmid DNA constructs in 100 

µl of Amaxa®Cell Line Nucleofector®Kit V solution (Lonza) using an Amaxa® 

Nucleofector™ I device at setting T-016. An additional 2 µg of EGFP plasmid DNA 

was used to gauge transfection efficiencies in experiments where pZDonor-AAVS1 

or pZDonor hybrid FVIII plasmids were used. 

K562 cells with stable transgene expression were typically selected by 

culturing in media supplemented with 0.8 mg/ml of Geneticin® for 14 days before 

withdrawal of the selective drug.     

4.4.1.2. Assessing gene transfer efficiency 

4.4.1.2.1. Flow cytometry 

Gene transfer efficiencies were typically evaluated 24 hours post-

electroporation by fluorescence-activated cell sorting analysis using a BD 

FACSCalibur™ flow cytometer. 

Generally, cells were spun down at 500xg for 5 min, resuspended in 600ul of 

PBS, filtered through 40 micron nylon filter mesh into FACS tubes and analyzed for 

GFP expression using 488 nm argon laser and 530/30 bandpass filter. FlowJo v7.22 

software was used to estimate the total percentage of GFP positive cells.    
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4.4.1.3. Integration junction PCR 

Integration junction PCR was performed on 200 ng of genomic DNA using 

DyNAzyme EXT DNA polymerase and primers specific to the integrated vector and 

adjacent genomic locus at the integration site. The plasmids electroporated and 

primers used to evaluate respective integration junctions are listed in the Table 4 

below. 

 

Figure 4.1  Schematic of integration junction PCR. Left and right integration 
junctions were amplified using a primer specific to genomic DNA adjacent to the 
integration site and a primer specific to the integrated vector.   

Control PCR was performed with AAVS1 genomic primers (forward: 5’ 

aagaagcgcaccacctccaggttct 3’; reverse: 5’ atgacctcatgctcttggccctcgta 3’). All PCR was 

set up in a 20 μl reaction volume and amplified for 30 cycles using a PTC-200 Peltier 

gradient thermal cycler (MJ Research Inc., USA) at an annealing temperature of 62°C 

and extension time of 1 min per cycle. Amplified products were electrophoresed on 

1% agarose gels and imaged using BioRad®Gel Doc 2000 transilluminator and 

quantified using QuantityOne software. Integration junction PCR products were 

sequenced with appropriate primers to verify their identity. 
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Table 4  Primer sequences used for amplifying AAVS1-specific genomic 
integrations of different donor DNAs 

Plasmid 
electroporated 

(insert/ 
junction being 

detected) 

Forward primer 
(5’ → 3’) 

Reverse primer 
(5’ → 3’) 

Size of 
PCR 

amplicons 
(bp) 

pZDonor (50 bp 
MCS) 

agcttgaattctctagaaatatt
ctcgaggtttaaacgtcgacg
c  

ggaacggggctcagtctg  1026 

pZDonor-EGFP 
(Left junction) 

ggccctggccattgtcactt 3’ cgtcaatagggggcgtacttg
gcatatgatac  

1237 

pZDonor-EGFP 
(Right junction) 

gacatagcgttggctacccgt
gatattgctgaagagc  

ggaacggggctcagtctg  1356 

pZDonor-hybrid 
F8 (Left 
junction) 

ggccctggccattgtcactt  cgtcaatagggggcgtacttg
gcatatgatac  

1237 

pZDonor-hybrid 
F8 (Right 
junction) 

gacatagcgttggctacccgt
gatattgctgaagagc  

ggaacggggctcagtctg  1356 

pAAVS1-SA-
2A-puro-pA 
donor 
(Left junction) 

ggccctggccattgtcactt  cggtcatctcgagcctaggg  1103 

pAAVS1-SA-
2A-puro-pA 
donor 
(Right junction) 

tcaccgagctgcaagaact 
  

ggaacggggctcagtctg 1621 

pAAVS1-SA-
2A-puro-pA 
donor (Long 
PCR) 

ggccctggccattgtcactt cttggccacgtaacctgaga 3084 

pAAVS-
CAGGS-EGFP 
(Left junction) 

ctggccattgtcactttgcg cggtcatctcgagcctaggg 1099 

pAAVS-
CAGGS-EGFP 
(Right junction) 

ctactcccagtcatagctgtc cttggccacgtaacctgaga 1370 

pAAVS-
CAGGS-EGFP 
(Long PCR 
Left) 

ctggccattgtcactttgcg gatggggagagtgaagcaga
acg 

2382 

pAAVS-
CAGGS-EGFP 
(Long PCR 
Right) 

aaacggccaccagttcagcg cttggccacgtaacctgaga 2517 
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4.4.1.4. Restriction fragment length polymorphism 

RFLP assay is used to estimate the frequency of site-specific integration of a 

50 bp donor fragment (present in pZDonor-AAVS1) into the AAVS1 site. It gives an 

estimate of the percentage of the population that had successfully attained site-

specific genome modifications.    

 

Figure 4.2   Schematic of RFLP to identify AAVS1 locus modified by site-specific 
integration of donor DNA.  ZFN-mediated integration of 50 bp donor DNA from 
pZDonor results in novel restriction enzyme sites (HindIII in this example) in the 
PCR amplicons. Genome modification is identified by restriction enzyme digest and 
the appearance of smaller cleaved bands on gel electrophoresis. 

 Basically, approximately 200 ng of  genomic DNA extracted from cells 4 

days post-treatment with 10 μg of pZDonor-AAVS1 in the absence or presence of 

ZFNs was amplified with a pair of genomic primers spanning the AAVS1 integration 

site (forward: 5’ ggccctggccattgtcactt 3’; reverse: 5’ ggaacggggctcagtctg 3’) using 

DyNAzyme EXT  DNA polymerase. Novel restriction enzyme sites present in the 50 

bp fragment of the pZDonor-AAVS1 are incorporated into the AAVS1 genomic site 

in cells which attain site-specific integration and will be present in the PCR 

amplicons if a cell population includes a subset of cells having the desired integration. 

PCR amplicons were digested with 1 U of HindIII  at 37°C for 1 hr, resolved in 8% 
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polyacrylamide gels, stained with 10 µg/ml ethidium bromide and visualized with a 

BioRad®Gel Doc 2000 transilluminator. Unmodified genomic DNA was identified 

by a 1.9 kb amplicon, while site-specific genome integration was identified by the 

presence of 1 kb and 0.9 kb fragments. Band intensities were determined by 

densitometry (QuantityOne software).  

4.4.1.5. Densitometric measurements 

Electrophoresed junctional PCR products and RFLP products imaged with 

BioRad®Gel Doc 2000 transilluminator were quantified by densitometry, when 

necessary. The intensity and volume of DNA bands highlighted with the band volume 

contour tools were calculated using the QuantityOne software.  

For junctional PCR, the intensity ratio of site-specific amplicon: control 

genomic amplicon expressed as a percentage was used as a quantitative estimate of 

integration efficiency. 

For RFLP assay, the intensity of bands corresponding to genome 

modification (1 kb plus 0.9 kb fragments) expressed as a percentage of unmodified 

genome amplicon (1.9 kb) was used as a quantitative estimate of integration 

efficiency. 

4.4.1.6. Direct PCR 

Single cells from a bulk population of either unselected or G418/Gancyclovir 

selected cells were sorted by FACs into individual wells of 96-well plates and 

allowed to expand in culture.  

Cells were lysed by incubating at 98°C for 10 min in 60 µl of cell lysis buffer 

with DNA release additive (1 part DNA release additive: 40 parts dilution buffer). 

Integration junction PCR and amplification of a control locus were performed on 2 µl 

of cell lysates using the Phusion Human Specimen Direct PCR kit and the following 

cycling parameters: 98°C for 5 min, 35 cycles of 98°C for 10s, 62°C for 10s and 72°C 

for 1 min, followed by a final extension at 72°C for 5 min. Primers used in the direct 

PCR assay were similar to those listed in section 4.4.1.3, depending on the cell 

population that was tested (with pZDonor EGFP or pZDonor hybrid FVIII 

integration). Amplified products were resolved by electrophoresis in 1% agarose gels 

(with 10 μg/ml of ethidium bromide) and imaged using a BioRad®Gel Doc 2000 

transilluminator. 
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4.4.1.7. Evaluation of ZFN construct variants and mild hypothermia 

Three different ZFN variants, OH (obligate heterodimers), Sharkey (OH 

modified according to Guo J. et al 9) or Enhanced Sharkey (Sharkey ZFN variants 

further modified according to Doyon Y. et al 10) were tested to compare their ability 

to induce site-specific genomic cleavage and promote homologous recombination of a 

50 bp donor DNA provided from pZDonor-AAVS1 plasmid DNA. K562 cells were 

co-electroporated with 2 μg of pEGFP-C1 and 10 μg of pZDonor-AAVS1 only or 

with 5μg of one of the following AAVS1 ZFN variants; OH (obligate heterodimers), 

Sharkey or Enhanced Sharkey ZFN and cultured at either 37°C for 4 days or at 37°C 

for 1 day followed by 30°C for 3 days. Junctional PCR and RFLP assays were 

performed to determine homologous recombination of donor DNA at the AAVS1 

locus. Densitometric measurements of RFLP products were used to estimate the 

proportion of cells that attained targeted gene integration.  

4.4.1.8. Evaluation of donor insert size and ZFN dose 

The ability to integrate larger donor DNA fragments at the AAVS1 locus was 

investigated by co-electroporating K562 cells with pZDonor EGFP (3 kb donor 

fragment) or pZDonor hybrid FVIII (9 kb donor fragment) and Enhanced Sharkey 

AAVS1 ZFN plasmid DNA. Cells electroporated with donor DNA only served as 

negative controls. Electroporated cells were either unselected or selected with 1mg/ml 

G418 for 7 days before being expanded for 1 month. Genomic DNAs extracted from 

treated cells were templates for integration junction PCR (left and right junctions) and 

control PCR.   

4.4.2. Evaluation of ZFN modification of primary cells 

The ability to induce AAVS1 site-specific genomic cleavage and promote 

homologous recombination-mediated integration of donor DNA was investigated in 

primary human CLECs, bone marrow-derived stromal cells and adipose-derived 

stromal cells by co-electroporating 10 μg of pZDonor-AAVS1 and 7 μg of Enhanced 

Sharkey AAVS1 ZFN plasmids using optimized electroporation settings. Junctional 

PCR was used to determine site-specific integration. Where there was evidence of 

homologous recombination, RFLP assay was performed to estimate the proportion of 

cells attaining site-specific integration of donor DNA.   
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4.4.2.1. Primary cells and culture conditions 

Culture conditions for CLECs, BMSCs, ADSCs, fibroblast and HSCs are 

described in section 4.1.4.   

4.4.2.2. Gene transfer 

Gene transfer was performed by electroporation, initially using an Amaxa® 

Nucleofector™ I device and later using an Amaxa® 4D Nucleofector™ device and 

their respective cuvettes. Generally, 2 to 10 million cells were electroporated with 2 

to 10 µg of plasmid DNA in 100 µl of the indicated Amaxa solutions. 

CLECs were nucleofected using either Amaxa™ Basic primary mammalian 

epithelial cell solution and one of the following settings; S-05, T-23, U-17, T-13 or T-

20 using the Nucleofector™ I device or in nucleofector Primary cell solution P1 and 

with one of the following settings; CM102, CM113, EA104, ED100 or DS109 using 

the Nucleofector™ 4D device. The optimal setting for Nucleofector™ I and 

Nucleofector™ 4D devices were determined to be T-23 and CM113, respectively.  

Four different lines of primary human bone marrow stromal cells (Lonza 

MSC, BMSC1, BMSC2, Gan BMSC) and adipose-derived stromal cells (ADSC1, 

ADSC2) were electroporated using Amaxa™ Basic primary mammalian bone 

marrow cell solution and pulses delivered by the indicated program settings (C16, 

C17, U-23) with a Nucleofector™ I device. 

Three different lines of primary human fibroblasts, Hs68, KF1 and NF123, 

were electroporated using Amaxa™ Basic primary mammalian fibroblast cell 

solution and pulses delivered by the indicated program settings (A-24, U-23, T-16, V-

13) with a Nucleofector™ I device. 

4.4.2.3. RT-PCR evaluation of PPP1R12C transcript expression 

Expression of PPP1R12C transcripts in K562 cells, primary human 

fibroblasts, a human embryonic stem cell line (ES) (cells provided by Dr. Mark 

Richards, Nanyang Polytechnic, Singapore) and CLECs were evaluated by RT-PCR. 

RNA extracted from cells (RNeasy mini kit) was treated with DNAse I, reverse 

transcribed (SuperScript™ II reverse transcriptase) and amplified using 

DynazymeEXT DNA polymerase and the following PCR primers (see Appendix 1): 

PPP1R12C exons 4 – 6 (forward primer 5′ agaggaattgctccttcatgacac 3′; reverse 

primer 5′ caacaggctcagtacttcctcatc 3′); PPP1R12C exons 8 - 12 (forward primer 5′ 

gagctctgtgtgtcgtctg 3′; reverse primer 5′ ccgtggaggctgtgggga 3′); and γ-actin (forward 

primer 5′ accactggcattgtcatggactct 3′; reverse primer 5′ atcttgatcttcatggtgctgggc 3′). 
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Amplified products were electrophoresed on 2% agarose gels and imaged using 

BioRad®Gel Doc 2000 transilluminator and quantified using QuantityOne software.  

4.4.2.4. Evaluation of AAVS1 ZFN mRNA and protein expressions 

CLECs electroporated with plasmid DNA encoding both left and right 

AAVS1 ZFNs were investigated for expression of ZFN mRNA transcripts and 

protein by RT-PCR and immunoblotting, respectively. 

A time course study (8  – 144 hr post-electroporation) was performed to 

determine the temporal profile of ZFN mRNA. Total RNA extracted at the indicated 

time points were DNAse treated, reverse-transcribed and PCR amplified using 

primers indicated in Appendix 1). Samples which had not been reverse transcribed 

(minus RT) were PCR amplified as above. Amplified products were electrophoresed 

on 1% agarose gels, imaged using BioRad®Gel Doc 2000 transilluminator and 

quantified using QuantityOne software. Densitometric measurements of ZFN 

transcript bands were normalized to the respective actin levels and expressed as a 

percentage of ZFN mRNA levels observed at 8 hours. 

For evaluation of ZFN proteins, transfected CLECs were incubated either at 

37°C for 3 days, 30°C for 3 days or 37°C for 1 day followed by 30°C for 2 days, prior 

to protein extraction. Detection of FLAG-tagged ZFN protein and β-actin protein (as 

loading control) was by immunoblotting with 1:1000 diluted monoclonal ANTI-

FLAG® M2 antibodies and 1:2000 diluted monoclonal anti-β-actin antibody, 

respectively, as detailed in section 4.5.5.  

4.4.2.5. Evaluating site-specific genomic cleavage using Cel-1 nuclease  

In the absence of donor DNA, ZFN-mediated site-specific cleavage of 

genomic DNA is usually repaired by the error-prone NHEJ pathway that results in 

indel formation at sites of genomic cleavage and repair. The capacity for NHEJ 

mutagenic repair was evaluated by performing a Cel-1 nuclease assay using the 

Surveyor™ mutation detection kit (Transgenomic Inc., USA) according to the 

manufacturer’s protocol. The Cel-I mismatch nuclease only cleaves when a mismatch 

is present in amplicons 21 and has a reported sensitivity of detecting mutants as 

infrequent as 1 in 10000 copies. AAVS1 genomic region to be evaluated was 

amplified using the following primer pair: Cel-1 forward 5’ ttcgggtcacctctcactcc 3’; 

Cel-1 reverse 5’ ggctccatcgtaagcaaacc 3’. Approximately 200 ng of gel-purified PCR 

amplicon was denatured at 95°C for 5 min and reannealed by cooling to room 

temperature followed by Cel-1 digest at 42°C for 40 min. Cel-1 digested reactions 

were resolved in 10% polyacrylamide gel, post-stained with 10 μg/ml ethidium 
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bromide and visualized with a BioRad®Gel Doc 2000 transilluminator. Band 

intensities were determined by densitometry (QuantityOne software). Unmodified 

genomic DNA was identified by a 469 bp amplicon while site-specific genome 

cleavage and repair was identified by the presence of 287 bp and 182 bp fragments. 

The proportion of cleaved bands to uncleaved PCR products gave an estimate of the 

proportion of mutant cells that arose from NHEJ repair, and thus, by inference, the 

efficiency of genomic cleavage. 

  
 
Figure 4.3  Schematic of Cel-1 mismatch nuclease assay. Site-specific double-
stranded DNA breaks are repaired by error prone non-homologous end joining 
(NHEJ) resulting in insertions and/or deletions (indels) at sites of repair. The genomic 
locus to be evaluated for evidence of genomic cleavage and repair is amplified using 
a pair of genome specific primers (Cel-1 F and Cel-R). Amplicon DNA is denatured 
and annealed to allow heteroduplex formation, digested with Cel-1 mismatch 
nuclease and resolved polyacrylamide gel electrophoresis. In this example, genomic 
DNA cleavage and subsequent NHEJ repair is identified by cleaved fragments (287 
bp and 182 bp) that result from the presence of a mismatch in the unmodified (i.e. 
uncleaved) 469 bp PCR amplicon.   

4.4.2.6. Evaluating site-specific integration 

Site-specific integration of pZDonor-AAVS1 (50 bp donor), pZDonor EGFP 

(4 kb donor), pZDonor hybrid FVIII and pZDonor hybrid FVIII TK007 (both 9 kb 

donors), AAVS1-SA-2A-Puro-pA (1kb donor) , AAVS-CAGGS-EGFP (4.2 kb 
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donor) and pSA-2A-Puro-Hybrid FVIII (8.85 kb donor) were evaluated following co-

transfection with a bicistronic AAVS1 ZFN variant (Enhanced Sharkey) plasmid 

DNA. CLECs with stable integration of pZDonor GFP, pZDonor hybrid FVIII and 

pZDonor hybrid FVIII TK007 resulted in stable expression of the neomycin 

resistance gene and were selected 4 days post-electroporation with 1 mg/ml G418 for 

7 days. Similarly, CLECS with integration of AAVS1-SA-2A-Puro-pA , AAVS-

CAGGS-EGFP and pSA-2A-Puro-Hybrid FVIII which were puromycin-resistant 

were selected 4 days post-electroporation with 0.5 µg/ml puromycin for 7 days. Cells 

integrated with the pZDonor hybrid FVIII TK007 were further selected by culturing 

in medium containing 1 µM gancyclovir for 7 days. Cells with random integration of 

the donor vector expressed TK007 and therefore will be killed by gancyclovir, while 

cells with site-specific integration of donor DNA by homologous recombination do 

not retain the TK007 cassette and are resistant to gancyclovir selection. Genomic 

DNA was extracted from approximately 2 million stable cells using either 

FavorPrep™ Blood genomic DNA extraction mini kit (Favorgen Biotech Corp., 

Taiwan) or QIAamp® DNA Blood mini kit. Site-specific integration of the various 

plasmid vectors were evaluated by integration junction PCR and/or RFLP assay as 

described in sections 4.4.1.3 and 4.4.1.4.  

4.4.2.7. Efficiency and accuracy of integration 

The efficiency or frequency of site-specific integration of pZDonor-AAVS1 

was evaluated by densitometric measurements of RFLP assay products as described 

in section 4.4.1.4. Efficiency of site-specific integration of pZDonor hybrid FVIII or 

pZDonor hybrid FVIII TK007 was evaluated by direct integration junction PCR on 

FACS sorted clonal cells. In brief, either transiently or stably transfected cells derived 

by G418 or gancyclovir selection were FACS sorted (4 cells per well) into 96-well 

flat bottom tissue culture plates and allowed to expand for 10 days. Direct PCR to 

amplify the right integration junction and control locus were performed on the sorted 

cells as detailed in section 4.4.1.6. The proportion of clonal cells positive for 

integration junction compared to those positive for control locus amplification was 

the estimated frequency of cells attaining site-specific integration. The effect of G418 

and gancyclovir selections in increasing the frequency of cells with site-specific 

integrations was tested using this method.  

Integration junction PCR products were sequenced with vector and genomic 

DNA specific primers to confirm their identity and to determine if any deletions or 

insertions had occurred at the integration junctions. 
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4.4.2.8. Durability of FVIII secretion in vitro 

Cells (bulk population or clonal) stably modified by integrating hybrid FVIII 

cDNA and identified as positive for site-specific integration by both left and right 

integration junction PCR were monitored for durable FVIII secretion in vitro. 

Approximately 100000 cells were seeded onto a single well of a 12-well tissue 

culture plate (done in triplicate) and cultured in 500 µl of medium overnight. Cell 

culture supernatant was harvested 24 hours later and stored at -80°C until time of 

assay. Re-seeding of the same cells and collection of conditioned media were 

repeated weekly for the 1st month followed by once per fortnight for the following 

month. FVIII activity in conditioned media was quantified using the Coamatic FVIII 

assay described in section 4.3.3.1. Naive CLECs, CLECs transfected with episomal 

plasmid only and CLECs with random integration of hybrid FVIII were also 

monitored for durability of FVIII secretion.   

4.4.2.9. RT-PCR and genomic PCR evaluation for HSV-TK and HSV-TK.007 

transcript and genomic integration 

Expression of HSV-TK and HSV-TK.007 transcripts in transfected CLECs 

were evaluated by RT-PCR. RNA extracted from cells (RNeasy mini kit) was treated 

with DNAse I, reverse transcribed (SuperScript™ II reverse transcriptase) and 

amplified using DyNAzyme EXT  DNA polymerase and PCR primers indicated in 

Appendix 1. Samples which were not reverse transcribed (minus RT) were PCR 

amplified as above. Genomic integrations of HSV-TK and HSV-TK.007 were 

evaluated by PCR of 200 ng of genomic DNA using the same primers above. 

Amplified products were electrophoresed on 2% agarose gels and imaged using 

BioRad®Gel Doc 2000 transilluminator and quantified using QuantityOne software. 

4.4.3.             Biosafety evaluation of ZFN modified cells 

ZFN modified cells (bulk or clonal culture) identified as positive for 

site-specific integration of hybrid FVIII cDNA were selected for evaluation of 

potential genotoxicity acquired during the course of genome modification and 

cell expansion in vitro.  

4.4.3.1. Immunofluorescence staining for histone H2AX 

Phosphorylated histone H2AX (S209) is an established marker for double-

stranded DNA breaks (DSDB) and serves as an indicator of genotoxicity. 

Electroporated cells were assessed for DSDBs by immunostaining for phosphorylated 
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H2AX 2 days post-treatment. Cells were trypsinized, fixed with 3.7% formaldehyde 

in PBS for 10 min and 90% methanol at -20°C for 2 hrs, permeabilized (0.5% Triton-

100,  2% BSA in PBS) for 10 min and incubated with 1:40 diluted (in 2% BSA) anti-

phosphohistone H2AX (Ser139) (20E3) rabbit mAb (Alexa Fluor® 647 conjugated) 

(Cell Signalling Technology®, USA) for 1 hour at 25oC. Cells were washed twice 

with PBS, resuspended in 500 μl of PBS, filtered through 40 micron nylon filter mesh 

into FACS tubes and analyzed using 633 nm He-Ne laser for excitation and 661/16 

nm bandpass filter for detection. FlowJo v7.22 software was used to determine the 

percentage of phosphoH2AX-positive cells. Untreated cells served as negative 

controls while cells treated with 10 μM etoposide for 1 hour served as positive 

controls for DSDB.    

4.4.3.2. Viability assay, MTS assays and in vitro colony formation assay 

Cell viability was assessed either by trypan blue exclusion manual cell counts 

or  MTS assay 24-48 hours post-electroporation. Adherent cells were detached, 

washed once with PBS and resuspended in 1 ml of PBS.  

For trypan blue exclusion cell counts, 10 µl of an equal mixture of cell 

suspension and trypan blue was loaded by capillary action into a Neubauer 

hemocytometer. The number of unstained cells that did not take up trypan blue (live 

cells) and number that stained blue (dead cells) were counted. The number of live and 

dead cells in each sample was determined in triplicate. Viability was expressed as the 

percentage of live cells to the total cell number.  

For MTS assay (CellTiter 96® AQueous One Solution Cell Proliferation 

Assay), approximately 500-1000 cells in 100 µl of culture medium were seeded into 

each of quadruplicate wells of a flat bottom 96-well tissue culture plate. Naive wild 

type cells, cells electroporated without any DNA or with donor DNA only served as 

controls to compare against cells electroporated with both donor DNA and ZFN. 

Twenty-four hours later, 20 µl of CellTiter 96® AQueous One Solution reagent was 

added to each well and incubated for 1-4 hours at 37°C in a humidified 5% CO2 

incubator, after which reduction of the tetrazolium compound, MTS, to a colored 

formazan product was quantified by absorbance readings at 490 nm in a Dynex MRX 

II 96-well plate reader. Dead cells are unable to reduce MTS, while metabolically 

active live cells reduce it through the action of mitochondrial reductases into a purple-

colored formazan product. 

In vitro colony formation assay was performed as detailed in section 4.3.2.9 

except that 100 cells were initially seeded into each well of a 6-well plate and allowed 

to grow for 14 days before crystal violet staining was performed. 
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4.4.3.3. RT-qPCR analysis of CLEC stables with puro FVIII transgene 

integration 

Reverse transcription (RT)-quantitative PCR was performed as detailed in 

section 4.3.4.2.5 and with primers indicated in Appendix 1 to determine changes in 

the levels of specific transcripts in ZFN-treated puromycin-resistant CLECs with 

transgene integration at the AAVS1 locus (derived from electroporating pAAVS1 

SA-2A-puro-pA donor, pAAVS-CAGGS-EGFP or pSA-2A-Puro-Hybrid FVIII). 

CLECs electroporated without plasmid DNA and of the same number of population 

doublings served as controls. Intron-spanning exonic primers were used to amplify 

the endogenous PPP1R12C transcript (exons 4-6), neighboring genes within 1-Mb of 

AAVS1 integration site (LILRB4, ISOC2, PPP6R1, NAT14, ZNF579, FIZ1 and 

RDH13), potential interacting partners of PPP1R12C predicted by Gene Network 

Central™ and Spring 9.05 which were identified by transcriptome data as 

significantly altered (DUSP1, DUSP6, CDC6 and DUSP16) and a housekeeping 

gene, glyceraldehydes-3-phosphate dehydrogenase (GAPDH). Transcript levels were 

normalized to GAPDH expression levels and the fold-change in transcript levels in 

CLECs with transgene integration was reported relative to transcript levels in control 

CLECs, using the ‘delta-delta C(T) method’18.   

4.4.3.4. Transcriptome analysis of stable CLECs with targeted integration of 

puro FVIII cassette  

Transcriptomes of naïve unmodified CLECs and bulk population of ZFN-

treated puromycin-resistant CLECs with targeted integration of hybrid FVIII cassette 

were determined using HU133 plus 2.0 array and analyzed using GeneChip Operating 

Software (Affymetrix). Transcripts whose expression levels differed significantly 

(determined by Wilcoxon signed-rank test) by more than two-fold in genome-

modified CLECs compared to naïve CLECs were considered significantly altered and 

were further analyzed. DAVID 2.1 Functional Annotation Tool 

(http://david.abcc.ncifcrf.gov) was used to ascribe functions and other annotations for 

significantly altered transcripts and for pathway mapping. Significantly altered 

transcripts were also referenced to a compilation of known proto-oncogenes and 

tumor suppressor genes (http://www.bushmanlab.org/links/genelists) in order to 

ascertain if they belonged to either category. Potential interacting partners of 

PPP1R12C were predicted using Gene Network Central™ 

(http://www.sabiosciences.com/genenetwork/genenetworkcentral.php) and String 9.0 

(http://string-db.org/).   

http://wizfolio.com/?citation=1&ver=3&ItemID=997&UserID=8336&AccessCode=A22BC0E4D63A4EB3A74DB26518BA57CD&CitationSuffix=�
http://david.abcc.ncifcrf.gov/�
http://www.sabiosciences.com/genenetwork/genenetworkcentral.php�
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4.4.3.5. Deep sequencing to evaluate top-10 potential off-target sites for ZFN 

activity 

Previously identified and published 10 most likely potential off-target sites 

for AAVS1 ZFNs3 (Appendix 10) were evaluated by massively parallel deep 

sequencing using Illumina MiSeq sequencing platform (150 bp paired-end 

sequencing). Amplicons for AAVS1 ZFN-binding site (AAVS1 locus) and the top-10 

potential off-target sites (OT1 – OT10) were amplified from genomic DNA extracted 

from naïve unmodified CLECs and ZFN-treated puromycin-resistant CLECs with 

targeted integration of hybrid FVIII cDNA at the AAVS1 locus using Dynazyme™ 

EXT DNA polymerase and primers listed in Appendix 1. Amplicons were resolved 

by agarose gel electrophoresis and purified using QIAquick Gel Extraction kit 

(Qiagen). A commercially synthesized synthetic DNA fragment (GenScript, USA) 

similar to the AAVS1 locus sequence except for a 5 bp deletion between the ZFN 

binding site was spiked into wild type AAVS1 locus amplicon at the following mass 

ratios of 1:10, 1:100, 1:500 and 1:1000 to determine the sensitivity of the method to 

detect indels. The amplicons we generated were outsourced to AITbiotech Pte. Ltd., 

Singapore for library construction (Nextera® XT DNA Sample Preparation Kit, 

Illumina), sequencing and bioinformatic analysis. 

Paired-end sequencing reads were aligned to the reference human genome 

assembly (version hg19) using Burrows-Wheeler Aligner22 (BWA). Indels were 

identified using SAMtools (http://samtools.sourceforge.net/). Indels that occurred 

within as well as 10 bp upstream or downstream of the SELEX predicted sequence 

(Appendix 10) were evaluated as potential off-target events. Normalized frequency 

of indels (indel frequency divided by total number of aligned reads at the position) 

determined from the spike-in experiment ranged between 0.0565 to 4.13. Thereafter, 

only indels with normalized frequency of over 0.05 were considered significant for 

both untreated CLECs and puro FVIII ZFN stable CLECs.     

4.5.             Molecular biology techniques 

4.5.1. Plasmid DNA isolation 

All plasmid DNA used in this study were prepared using Qiagen plasmid 

DNA isolation kits, according to the manufacturer’s protocol. Typically, cloned or 

commercially purchased plasmids were transformed by the heat-shock method into 

competent DH5α E. coli and plated on LB agar plates containing appropriate selective 

antibiotics. Starter cultures from a single bacterial colony, cultured for a minimum of 

8 hr at 37°C, were diluted 1:500 into LB media (usually 200 ml for a maxi 

http://wizfolio.com/?citation=1&ver=3&ItemID=355&UserID=8336&AccessCode=660342E485C0488BB130A0E42B9638D5&CitationSuffix=�
http://wizfolio.com/?citation=1&ver=3&ItemID=1085&UserID=8336&AccessCode=B6EEA82D95FD40CB9E33DE7658BC1AE9&CitationSuffix=�
http://samtools.sourceforge.net/�
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preparation) containing appropriate antibiotics and cultured overnight with shaking at 

37°C. Plasmid DNA harvested from bacterial cultures were dissolved in Ultrapure™ 

DNase-RNase free distilled water and stored at -20°C.   

4.5.2. RNA isolation 

Total RNA was isolated from cultured cells using either TriPure isolation 

reagent (followed by phenol-chloroform clean-up and sodium-acetate/ethanol 

precipitation) or using RNeasy® Mini kit (Qiagen) according to the supplier’s 

protocol. When necessary, total RNA (1 µg) was digested with 1U of RQ1 RNase-

free DNase at 37°C for 1 hr to eliminate co-purified DNA. DNase-treated RNA was 

then purified using RNeasy® Mini kit, eluted with Ultrapure™ DNase-RNase free 

distilled water and stored at -80°C. 

4.5.3. Genomic DNA isolation 

High molecular weight genomic DNA was isolated from cultured cells using 

Qiagen Genomic-tip 100/G (up to 100 μg of DNA) or QIAamp DNA mini kit, 

according to the manufacturer’s protocol, eluted in Ultrapure™ DNase- and RNase-

free distilled water and stored at -20°C.   

4.5.4. Polymerase chain reaction (PCR) 

 PCR was routinely used in this study for DNA cloning and diagnostic 

amplification/screening of 1st strand cDNA or genomic DNA. Generally, PCR was 

performed using DyNAzyme EXT DNA polymerase on 10 ng of plasmid DNA, 200 

ng of genomic DNA or 2 μl of 1st strand cDNA products in a total volume of 20 μl. A 

typical PCR setup consisted of 1x PCR reaction buffer with 1.5 mM MgCl2, 1 μM 

each of forward and reverse primers, 2 mM of each dNTP and 1U of DNA 

polymerase. PCR was performed using a PTC-200 Peltier gradient thermal cycler (MJ 

Research Inc., USA).    

4.5.5. Reverse transcription reaction 

Reverse transcription of RNA for 1st strand cDNA synthesis was generally 

performed on 500-1000 ng of total RNA using either oligo(dT)12-18 or random primers 

and SuperScript™ II reverse transcriptase or using iScript™ Advanced cDNA 

synthesis kit, according to the manufacturer’s protocol. 
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4.5.6. Protein immunoblotting 

 Protein samples for analyses were extracted from 2 to 10 million cells by cell 

lysis using M-PER mammalian protein extraction reagent (Pierce, USA) and 

quantified using a BCA protein assay kit. Twenty to 50 μg of protein from each cell 

lysate was mixed 4:1 with 5x bromophenol loading dye (60 mM Tris HCL at pH6.8, 

20% glycerol, 2% SDS, 0.01% bromophenol blue and 5% β-mercaptoethanol), 

denatured at 95°C for 10 min, resolved at 90V for 1 hour on 14% SDS-PAGE under 

reducing conditions using a BioRad Protean II vertical electrophoresis system. 

Proteins resolved by electrophoresis were electrotransferred at 4°C onto nitrocellulose 

membranes (Bio-Rad Laboratories) at 90 V for 1 hour using a BioRad Trans-blotting 

system.  Membranes were subsequently blocked with 5% non-fat milk in 0.1% (v/v) 

Tween 20 in PBS for 1 hour, rinsed with wash buffers (Tris-buffered saline, pH7.6, 

with 0.1% (v/v) Tween 20) and probed with specific primary antibodies diluted in 

PBS with 1% non-fat milk and 0.1% (v/v) Tween20 for 1 hour at room temperature. 

Membranes were washed four times with wash buffer before and after a 1 hour 

incubation with diluted horseradish peroxidase-conjugated goat anti-mouse or goat 

anti-rabbit secondary antibodies (Promega and Santa Cruz Biotechnology, 

respectively), incubated with a chemiluminescence-based photoblot substrate reagent 

(Amersham Biosciences, Piscataway, NJ) and developed in a dark room by exposing 

to autoradiography film (Hyperfilm ECL, Amersham) for 1 to 30 min before 

developing with a Kodak film processor. 

4.5.7. DNA sequencing 

 DNA sequencing was performed using BigDye Terminator v3.1 Cycle 

Sequencing kit (Applied Biosystem, Life Technologies Corp) with 3.2 pmol of 

appropriate primer and either 50-100 ng of purified PCR product or 150-300 ng of 

double-stranded plasmid DNA as the template. Briefly, each 20 μl sequencing 

reaction  was reacted for 30 cycles of 95°C for 10 sec, 50°C for 10 sec and 60°C for 4 

min. Reactions were terminated with 0.1 volume of 3M sodium acetate and 0.1 M 

EDTA, precipitated with 2 volumes of absolute ethanol, washed with 70% ethanol 

and vacuum dried. Sequencing reaction products were outsourced to 1st BASE Pte 

Ltd (Singapore) for electrophoresis and sequencing results were analyzed using 

BioEdit software. 
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4.5.8. Gel electrophoresis 

 DNA samples mixed with 6x DNA loading dye to a final working 

concentration of 1x (total volume <20 µl) were loaded onto 1% agarose gels with 10 

µg/ml of ethidium bromide and electrophoresed using a Subsystem 70 electrophoresis 

device (Labnet International, Inc., USA) at 90 V with power supplied from a BioRad 

power pack for approximately 30 min using Tris-acetate-EDTA buffer. The following 

DNA markers were used as appropriate: 1kb DNA ladder, 100 bp DNA ladder and 50 

bp DNA ladder. Electrophoresed samples were visualized and imaged using a 

BioRad®Gel Doc 2000 transilluminator. 

 RFLP assay and Cel-1 nuclease digest products were resolved in 5% 

polyacrylamide gels (30% acrylamide mix 29:1, 0.1% ammonium persulfate, 0.05% 

TEMED, 1xTBE) using Tris-borate-EDTA buffer in BioRad Protean II vertical 

electrophoresis cells system at 90V for approximately 1 hr, stained with 10 μg/ml 

ethidium bromide or 1x SyBr Gold for 30 min and imaged using a BioRad®Gel Doc 

2000 transilluminator. 

4.6. Cell biology techniques 

4.6.1. Microscopy 

4.6.1.1. Light and fluorescence microscopy 

A brightfield/phase contrast microscope (CK30-F200, Olympus) was used for 

routine experiments. Phase contrast mode was used to enumerate cells using a 

hemocytometer while bright field mode was used to view stained tissue sections, 

cytospun cells and G-banded metaphase chromosomal preparations. Imaging of 

stained tissue sections and cells was done with an Axiovert 25CFC microscope and 

KS400  software (Carl Zeiss). 

Inverted bright-field microscope (Nikon Eclipse TS100) was routinely used 

to monitor cell cultures for confluency and visual signs of microbial contamination. 

Bright-field images of cells were obtained using NIS-Elements 3.0 software. 

EGFP fluorescent cells were visualized and imaged using an inverted Nikon 

Eclipse TE-300 fluorescence microscope and Nikon ACT-1 software. SKY paint-

labeled chromosomes and cells hybridized with fluorescent probes for FISH studies 

were viewed and imaged using an Olympus BX61 epifluorescence microscope and 

analyzed using BandView® software.  

Unless otherwise stated, all general observations and viewing were done 

using either a 10x or 40x objective lens magnification. Where specified, imaging was 

done with 60x or 100x objective lens magnification.  
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4.6.2. Histology 

4.6.2.1. Tissue processing 

Tissues were rinsed with PBS and fixed in 10% formalin (in buffered PBS) at 

room temperature for at least 6 hours before mounting in tissue processing cassettes 

(Thermo Scientific) and processing in an automated Leica tissue processor. A typical 

tissue processing procedure for small tissues would include 5 min sequential 

dehydration in 70%, 80% and 90% ethanol followed by 4 sequential 10 min 

incubations in absolute ethanol and 3 sequential 10 min incubations in xylene, 

terminating in an overnight incubation in 60°C paraffin wax. Processed tissues were 

transferred to 60°C paraffin wax in a Leica tissue embedding station (Leica 

Microsystems), embedded in a tissue cassette with paraffin wax and cooled on a 4°C 

cooling platform for at least 15 min until the paraffin wax solidified. Tissue 

embedded paraffin blocks were stored at 4°C until tissue sectioning.  

4.6.2.2. Paraffin sectioning 

Tissue embedded paraffin blocks were cut into 5 or 10 micron sections using 

a microtome blade and Leica rotary microtome equipment (Leica RM2235). Paraffin 

sections were straightened by placing them on a microscope slide containing a small 

volume of absolute ethanol and allowed to float immediately on a 42°C water-bath. 

Tissue sections were then collected onto pre-cleaned poly-L-lysine coated microscope 

slides and baked overnight at 50°C before immunohistochemical staining.    

4.6.2.3. Preparation of cells by Cytospin protocol 

Cells required for immunohistochemical staining were fixed in 10% formalin 

for 10 min, rinsed and resuspended in PBS at a concentration of 50000 cells per ml. 

Approximately 500 μl of cell suspension was loaded onto a Cytospin chamber that 

was clamped onto a microscope slide and spun in a Shandon Cytospin centrifuge 

(Thermo Scientific, USA) at 1500 rpm for 15 min. Slides were stored in a humidified 

chamber at 4°C until use. 

4.6.2.4. Immunohistochemical staining 

Paraffin tissue sections on slides were de-paraffinized twice with xylene for 5 

min each and hydrated by sequential 2 min incubations in 100% ethanol, 95 % 

ethanol and 70% ethanol. Slides were then rinsed in tap water, and where antigen 

retrieval was necessary, heated (by microwaving) with 0.1M citrate buffer (10 mM 

citric acid, 0.05% Tween 20, pH 6.0) for 20-40 min. Slides were then treated with 3% 
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hydrogen peroxide for 15 min to inactivate endogenous peroxidase activity, rinsed 

with PBS and incubated at room temperature for 1 hour with diluted primary 

antibody. Sections were rinsed with PBS before and after a 30 min room temperature 

incubation with diluted secondary antibody. Dako REAL™ antibody diluent, used to 

dilute both primary and secondary antibodies, obviated the need for an additional 

blocking step. Antibody binding was visualized using Dako REAL™ EnVision™ 

detection system (Peroxidase/DAB+ rabbit/mouse) according to the manufacturer’s 

protocol. Excess DAB substrate was rinsed off with PBS and tissue sections were 

counterstained with Mayer’s hematoxylin for 3 min followed by a rinse in running tap 

water and sequential 2 min incubations in 70% ethanol, 95% ethanol, 100% ethanol 

and xylene. Slides were mounted with DPX solution, cover-slipped and observed for 

staining using a brightfield microscope.  

4.6.2.5. Immunofluorescence staining 

For immunofluorescence staining, formalin-fixed cells were cytospun onto 

microscope slides, further fixed in 90% methanol at -20°C for at least 2 hours, air 

dried and permeabilized (0.5% TritonX100, 2% BSA, 0.02% NaN3, PBS) at room 

temperature for 10 min. Cells were treated with Image-iT™ FX signal enhancer 

(Alexa Fluor® SFX kits, Invitrogen) for 30 min at room temperature, rinsed with PBS 

and blocked with blocking buffer (2% BSA, 0.2% Triton X-100 in PBS) for 30 min at 

room temperature. Cells were incubated with 1:50 diluted primary antibodies 

[(Phospho-histone H2A.X (Ser139)(20E3) rabbit mAb (Alexa Fluor®647 conjugate)] 

for 1 hr at 37°C, rinsed with 4 washes of 2xSSC and then incubated with 1:500 

diluted secondary antibodies (goat anti-rabbit IgG-Alexa Fluor® 594). PBS containing 

1%BSA and 0.1% Triton X-100 was used as diluent. Both incubations proceeded at 

37C for 1 hour. Following four washes with 2xSSC, cells were mounted with 

VECTASHIELD® Mounting Medium with DAPI (Vector Laboratories Inc., USA) 

and examined with an Olympus BX61 epifluorescence microscope (excitation =590 

nm, emission = 617 nm).   

4.6.3. Flow cytometry 

Flow cytometry using detection settings in parentheses was used in 

experiments where analyses of cells positive for GFP cells (FL-1), APC-BrdU (FL-2), 

H2AX  (FL-4) and propidium iodide (FL-2) were required.   

Generally, stained and unstained cells were pelleted at 500xg for 5 min, 

resuspended in 600 µl of PBS, filtered through 40 micron nylon filter mesh into 
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FACS tubes, analyzed in a FACSCalibur™ flow cytometer and FlowJo v7.22 

software. Samples were analyzed in triplicate.  

4.7. Animal studies 

 All animal studies were conducted in accordance with ethical and 

international animal use guidelines following approval by SingHealth Institutional 

Animal Care and Use Committee (IACUC).  

4.7.1. Anesthesia 

 Anesthesia was induced by intraperitoneal injection of 0.1 ml of a mixture 

consisting of equal parts of Hypnorm [fluanisone (10 mg/ml) and fentanyl citrate 

(0.315 mg/ml); Janssen Pharmaceutica, Berchem, Belgium] and Dormicum 

(midazolam, 5 mg/ml; Roche, Basel, Switzerland), diluted in two parts of water. 

Anesthetized mice were allowed to recover from surgery and anesthesia under a heat 

lamp for 4-6 hours. 

4.7.2. Retro-orbital venous blood sampling 

Capillary tubes flushed with 0.1M sodium citrate were used to collect 

approximately 0.05 ml of whole blood from the retro-orbital plexus of anesthetized 

mice into 1.5 ml tubes containing 5 µl of 0.1 M sodium citrate. Topical thrombin was 

applied at the site of retro-orbital puncture to stop bleeding. Plasma samples prepared 

from citrated whole blood samples by centrifuging at 10 000 rpm and 4°C for 10 

minutes were used immediately or transferred to a new tube, flash frozen and stored 

at-80°C until use.  

4.7.3. Implantation of cells and excision of tissues 

For sub-cutaneous implantation, the skin over the dorsal neck was shaved, 

cleaned with 70% ethanol and scrubbed with povidone iodine solution. Five to 20 

million cells in no more than 200 µl of PBS or Matrigel™ were injected beneath the 

epidermal layer into the subcutaneous region using a 22-G needle and syringe. 

For intramuscular implantation, anesthetized mice were shaved over a hind 

limb, swabbed with 70% ethanol and povidone iodine solution, and a skin incision 

made to expose the gastrocnemius or quadriceps muscles. Cells were injected into 

either the gastrocnemius or quadriceps muscle using a 27-G needle and syringe. The 

skin incision was closed with non-absorbable sutures and the sutured area swabbed 

again with povidone iodine solution. External sutures were removed after one week. 
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For implantation via intravenous injection, no more than 2 million cells 

suspended in 200 µl of sterile PBS was injected over 30s into the tail vein of 

anaesthetized mice using a 29-G needle and syringe. Mice were monitored for 

abnormal breathing and heart beat until recovery from anesthesia. 

At the termination of experiments, tissues at implantation sites were excised 

from euthanized mice using forceps and scissors, collected and stored in 10% 

formalin until processing. 

4.7.4. Tail-bleed phenotypic correction assay 

 Tail-bleed phenotypic correction assay was performed on mice 3 days post-

treatment as follows. The tail of an anesthetized mouse was placed in physiological 

saline solution at 37ºC for 2 minutes and then clipped 3 mm from the tip with a sharp 

sterile blade. The clipped tail was immediately placed in a fresh tube containing 500 

μl of physiological saline solution at 37ºC and allowed to bleed (or clot) without 

intervention for 15 minutes. The procedure was terminated after 15 minutes and the 

severed tail cauterized to stop bleeding. Blood loss was quantified by the hemoglobin 

content of the saline solution at the end of the 15-minute period determined by 

absorbance measurement at 575 nm using a spectrophotometer 20. 

4.8. Statistical analyses 

All statistical analyses were done using GraphPad Prism program (GraphPad 

Software Inc., USA). Results were usually expressed as mean ± SEM, with “n” 

indicating the total number of samples or measurements. Analysis of variance 

(ANOVA) and Tukey–Kramer test were used to compare the means of three or more 

groups. Student’s unpaired t- test with two-tailed P-values and 95% confidence 

interval was used for comparison between two groups (assumed to have equal 

variance), with Mann-Whitney test used when variances were not assumed to be 

equal. Fisher’s exact test with two-sided P- value was used to determine statistical 

significance between two proportions. A P-value of less than 0.05 was considered 

statistically significant.  
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APPENDICES 

Appendix 1 Complete list of primers used in this project 

Purpose 
Forward 
sequence  
(5’ → 3’) 

Reverse 
sequence 
(5’ → 3’) 

Amplicon 
size (bp) 

Annealing 
temperature 

(°C) 
Primers for phiC31 integrase study 

Primers for cloning of porcine/human hybrid FVIII cDNA 

Cloning human 
FVIII A1 – B 
domains 

tgtagcgctagcatg
caaatag 

gaataaggcgatatctt
tagtcaa 

3000 60 

Cloning human 
FVIII B – C2 
domains 

gcaaagcccggga
ggactgaa 

cagtggctcgaggtca
gtagaggt 

2100 60 

Introduction of 
F309S mutation 
to human FVIII 

agtttctactgtcttgt
catatctct 

agagatatgacaagac
agtagaaact 

Not 
applicable 

55 

Sequencing 
primer to 
confirm F309S 
mutation 

gtcttcatgctgttgg
tg 

 Not 
applicable 

 

Human signal 
peptide to 
FVIII porcine 
A1 domain 

atgcaaatagagctc
tccacctgtttctttct
gtgtcttttgcgattct
gctttagtgccatca
ggagatactacctg
ggcgcagtggaact
gt  

aggatgcttcttggcaa
ctgagcggatttggata
aagggaga 

1104 60 

Human FVIII 
A2 domain to 
partial B-
domain 

tctccctttatccaaat
ccgctcagttgccaa
gaagcatcct 

gcgggggctctgatttt
catcctc 

1854 60 

Porcine A3 
domain 

agctttcagaagaga
acccgacac 

tcccaggggagtctga
cacttcttgctgtacacc
aggaaagt 

1164 60 

Human C1 to 
C2 domains 

actttcctggtgtaca
gcaagaagtgtcag
actcccctggga 

agtgctagctcagtaga
ggtcctgtgcc 

936 60 

Primers for RT-PCR analysis of pluripotency genes 

Nanog  ttccttcctccatgga
tctg 

tctgctggaggctgag
gtat 

159 60 

Oct-4  ggttctatttgggaa
ggtattcag 

ggtttctgctttgcatatc
tc 

212 60 

Gamma-actin  accactggcattgtc
atggactct 

atcttgatcttcatggtg
ctgggc 

545 60 

Primers for detecting phiC31-mediated transgene integration 

CHOSeq R 
Sequencing 
attB integrants 

 tcccgtgctcaccgtga
ccac 

Not 
applicable 
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8p22 left 
integration 
junction PCR 

gggctctggagtaa
aggtgaaa 

gttcgccgggatcaact
acc 

454 60 

8p22 right 
integration 
junction PCR 

tcgacgatgtaggtc
acgg 

gcatggcctcatttccg
tct 

333 60 

Primers for RT-PCR of DLC1 transcript 

DLC1 exon 1-2 tcctgccccaatgga
atgtc 

gttggtgtgcctgatgg
aga 

305 62 

DLC1 exon 8-9 gaaggggatgcag
cggatag 

agcagggccgttagct
ttag 

390 62 

GAPDH exon 6 
- 7 

gcctcctgcaccac
caact 

cgcctgcttcaccacct
tc 

348 62 

Primers for FISH experiments 

FISH probe for 
detecting pattB 
EGFP-C1 

ccggtcgccaccat
ggtgag 

ctgagtccggacttgta
cag 

740 62 

FISH probe for 
detecting pattB 
Hhbrid FVIII 

ttgcacgcaggttct
ccggc 

ggcgtcgcttggtcggt
cat 

817 62 

Primers for AAVS1 ZFN study 

Primers for HSV-TK study 

Amplification 
of MC1 
promoter  

gtc gcg agt cga 
gca gtg tgg tt 

ggc tag cac gcg 
ctt cta caa g 

379 62 

HSV-TK RT-
PCR/genomic 
PCR 

gttcgaccaggctg
cgcgtt 

gtgttgtgtggtgtagat
gt 

280 62 

HSV-TK.007 
RT-
PCR/genomic 
PCR 

gcatgaccccccag
gccgtgc 

cacgttgtacaggtcgc
cg 

412 62 

Primers for mutagenesis of FokI endonuclease 

E490K 
mutation  

gca acg ata tgt 
caa aga aaa tca 
aac acg 

cgt gtt tga ttt tct 
ttg aca tat cgt tgc 

Not 
applicable 

55 

I538K mutation cac gat taa atc 
ata aga cta att 
gta atg gag c 

gct cca tta caa tta 
gtc tta tga ttt aat 
cgt g 

Not 
applicable 

55 

Q468E 
mutation  

cca agc aga tga 
aat gga acg ata 
tgt cga ag 

ctt cga cat atc gtt 
cca ttt cat ctg ctt 
gg 

Not 
applicable 

55 

I499L mutation cac gaa aca aac 
atc tca acc cta 
atg aat gg 

cca ttc att agg gtt 
gag atg ttt gtt tcg 
tg 

Not 
applicable 

55 

S418P mutation att gaa att gcc 
aga aat ccc act 
cag gat aga att 
ctt 

aag aat tct atc ctg 
agt ggg att tct ggc 
aat ttc aat 

Not 
applicable 

55 
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K441E 
mutation  

gtt tat gga tat 
aga ggt gaa cat 
ttg ggt gga tca 
agg 

cct tga tcc acc 
caa atg ttc acc tct 
ata tcc ata aac 

Not 
applicable 

55 

H537R 
mutation  

cag ctt aca cga 
tta aat cgt aag 
act aat tgt aat 
gga 

tcc att aca att agt 
ctt acg att taa tcg 
tgt aag ctg 

Not 
applicable 

55 

N496D 
mutation  

gaa gaa aat caa 
aca cga gac aaa 
cat ctc aac cct 
aat 

att agg gtt gag atg 
ttt gtc tcg tgt ttg 
att ttc ttc 

Not 
applicable 

55 

Primers for RT-PCR of PPP1R12C transcript 

PPP1R12C 
exons 4 - 6 

agaggaattgctcct
tcatgacac 

caacaggctcagtactt
cctcatc 

322 60 

PPP1R12C 
exons 8 -12 

gagctctgtgtgtcg
tctg 

ccgtggaggctgtggg
ga 

552 60 

GAPDH exon 6 
- 7 

gcctcctgcaccac
caact 

cgcctgcttcaccacct
tc 

348 60 

Primers for RFLP assay, Cel-1 assay and integration junction PCR 

AAVS1 ZFN 
left RT-PCR 

gcagacaggccctg
gaca 

cccaggttgtttctctg 180 62 

AAVS1 ZFN 
right RT-PCR 

agaaacttcatcctg
caga 

gtcagctggtcgtgtct 180 62 

Integration 
junction PCR to 
detect AAVS1 
ZFN 
integration of 
50-bp donor 
DNA 

agcttgaattctctag
aaatattctcgaggtt
taaacgtcgacgc 

ggaacggggctcagtc
tg 
 

1026 62 

RFLP PCR to 
detect AAVS1 
ZFN 
integration of 
50-bp donor 
DNA 

ggccctggccattgt
cactt 

ggaacggggctcagtc
tg 

1880 62 

Surveyor 
mutation 
detection PCR 
(Cel-1 assay) 

ttcgggtcacctctc
actcc 

ggctccatcgtaagca
aacc 

514 60 

Control PCR to 
amplify 
AAVS1 
genomic region 

aagaagcgcaccac
ctccaggttctc 

atgacctcatgctcttg
gccctcgta 

976 60 

Left integration 
junction PCR to 
detect 
integration of 
4-kb GFP 
donor DNA 

ggccctggccattgt
cactt 

cgtcaatagggggcgt
acttggcatatgatac 

1237 62 

Right 
integration 

gacatagcgttggct
acccgtgatattgct

ggaacggggctcagtc
tg 

1356 62 
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junction PCR to 
detect 
integration of 
4-kb GFP 
donor DNA  

gaagagc 

Left integration 
junction PCR to 
detect 
integration of 
9-kb hybrid 
FVIII donor 
DNA 

ggccctggccattgt
cactt 

cgtcaatagggggcgt
acttggcatatgatac 

1237 62 

Right 
integration 
junction PCR to 
detect 
integration of 
9-kb hybrid 
FVIII donor 
DNA 

gacatagcgttggct
acccgtgatattgct
gaagagc 

ggaacggggctcagtc
tg 

1356 62 

Left integration 
junction PCR to 
detect AAVS1-
SA-2A-Puro-
pA integration 

ggccctggccattgt
cactt 

cggtcatctcgagccta
ggg 

1103 62 

Right 
integration 
junction PCR to 
detect AAVS1-
SA-2A-Puro-
pA integration 

tcaccgagctgcaa
gaact 

ggaacggggctcagtc
tg 

1621 62 

PCR to detect 
complete 
integration of 
AAVS1-SA-
2A-Puro-pA 

ctggccattgtcactt
tgcg 

ggaacggggctcagtc
tg 

3084 62 

Left integration 
junction PCR to 
detect AAVS-
CAGGS-EGFP 
integration 

ctggccattgtcactt
tgcg 

cggtcatctcgagccta
ggg 

1099 62 

Right 
integration 
junction PCR to 
detect AAVS-
CAGGS-EGFP 
integration 

ctactcccagtcata
gctgtc 

cttggccacgtaacctg
aga 

1370 62 

Genomic PCR 
to detect left 
half of AAVS-
CAGGS-EGFP 
integration 

ctggccattgtcactt
tgcg 

gatggggagagtgaa
gcagaacg 

2382 60 

Genomic PCR 
to detect right 

aaacggccacaagt
tcagcg 

cttggccacgtaacctg
aga 

2517 60 
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half of AAVS-
CAGGS-EGFP 
integration 
Left integration 
junction PCR to 
detect SA-2A 
Puro hybrid 
FVIII 
integration 

ctggccattgtcactt
tgcg 

cggtcatctcgagccta
ggg 

1099 62 

Right 
integration 
junction PCR to 
detect SA-2A 
Puro hybrid 
FVIII 
integration 

actttcctggtgtaca
gcaagaagtgtcag
actcccctggga 

cttggccacgtaacctg
aga 

3187 60 

Genomic PCR 
to detect left 
half of SA-2A 
Puro hybrid 
FVIII 
integration 

ctggccattgtcactt
tgcg 

gcgggggctctgatttt
catcctc 

6859 60 

Genomic PCR 
to detect right 
half of SA-2A 
Puro hybrid 
FVIII 
integration 

agctttcagaagaga
acccgacac 

cttggccacgtaacctg
aga 

4156 60 

Primers to verify transcriptome data by RT-PCR  

LILRB4 ggacattggcccag
agacag 

gtcttcatcgtgtgggct
ct 

197 60 

ISOC2 tgacggagcagtac
ccacaag 

ggataagaacggggg
tccaagatg 

196 60 

PPP6R1 gcgctacaagtacc
ccagtg 

tccgaagaaaggacac
gagc 

215 60 

NAT14 gctcccgaaaccttg
tcgaa 

ccttcacgccggccttc 175 60 

ZNF579 aaggaggcgaggc
atggat 

gtaggggaaacggaa
gaggc 

184 60 

FIZ1 cagagggaggtag
agagccc 

ctgtgcttgaaaccctt
gcc 

235 60 

RDH13 ggtccccttcccagc
tgaa 

atgatgttgcctcctctc
ctg 

278 60 

DUSP1 ggatacgaagcgttt
tcggc 

ggccaccctgatcgta
gagt 

151 60 

DUSP6 acctggaaggtggc
ttcagta 

accatccgagtctgttg
cac 

197 60 

CDC6 agaagggccccatg
attgtg 

tgcagcattgtccagaa
cct 

296 60 

DUSP16 ctgcttgcaggtggg
tttg 

gcacacgcaggaaat
gagac 

271 60 

Primers for analysis of potential off-target sites of AAVS1 ZFN 
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AAVS1 locus ttcgggtcacctctc
actcc 
 

ggctccatcgtaagca
aacc 
 

469 60 

OT1 tttaagaactgtaacc
tattttccaaagtgttt
g 
 

cag cct ggc caa 
cat ggt gaa ac  
 

389 62 

OT2 aaggtgtaagtgga
gccacaaggct 
 

tgtggtccttgctggatc
aggaa 
 

308 60 

OT3 ttggaaataagaccc
atttgttgatgaga 
 

ctggctcattccaacgt
ccatgt 
 

389 58 

OT4 gacttggtggttggc
agaatacacc 
 

gggtaaggtcagatag
ggctgtaagactc 
 

601 60 

OT5 ggaacaaggcacct
ggctcc 

 

ccattcccgggagaaa
tctc 
 

353 58 

OT6 tgagtttgggcctga
ggtcatc 
 

ggcttggaaacaccca
ggtg 
 

320 60 

OT7 ctttgagtttagcagc
ttccaggaacc 
 

gttttatcttcataaggta
gtgggcagatgg 
 

631 60 

OT8 ggtcctcaccccatc
ttcatc 
 

aaagagagggctggt
gaggc 
 

375 60 

OT9 gttgcgagagtccct
actgg 
 

agcctgaagttgagcct
gtc 
 

348 60 

OT10 cacagagttcaggg
gatcgt 
 

gccactttgtattgggtg
gt 

 

650 60 
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Appendix 2 Plasmids used in this project 

Plasmids used in PhiC31 integrase study 
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Plasmids used in the AAVS1 ZFN study 

AAVS1 ZFN plasmids 

 

Donor plasmids for AAVS1 ZFN study 
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Donor plasmids (promoterless puromycin resistance cDNA) for AAVS1 ZFN study 
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Plasmids used in the HSV-TK007 study 
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Appendix 3 Cloning strategy for human/porcine hybrid FVIII  
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Appendix 4A Workflow for identifying phiC31 integrase-mediated integration 
events 
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Appendix 4B Workflow for identifying phiC31 integrase-mediated integration 
events 
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Appendix 5 Sequences of integration junction amplicons for phiC31 
integrase- modified 8p22 oligoclones 

 

 

 

Top: AttB vector sequence highlighted to show cross-over region. Middle: 
Illustration of genomic sequence (in green) with integrated attB vector sequence (in 
red). Bottom: DNA sequence chromatograms of left and right integration junction 
PCR products showing genomic sequence and vector sequences (underlined in 
green).  
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Appendix 6 Sequences of AAVS1 integration junction amplicons for pSA-2A-
puro hybrid FVIII stables 

 
DNA sequence chromatograms of left and right integration junction PCR products  
showing genomic DNA sequences, AAVS1 ZFN recognition half sites (underlined in 
red) and vector sequences (underlined in green).   
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Appendix 7 List of genes that were significantly altered (≥2.5-fold) in all 8 oligoclonal CLECs with transgene integration at 8p22 locus compared 
to unmodified CLECs 

GENE ONTOLOGY 

CLASSIFICATIONS 

OVEREXPRESSED GENES 

Apoptosis BCL2A1, CLU, FOXQ1, TNFRSF21 

Cell cycle PLCB1 

Cell adhesion COL7A1, NEGR1 

Cellular transport KCNE4, NALCN, SCN2A, SLC12A8, SLC22A3, SLC46A3, SLC7A8 

Differentiation and 

development 

CHN2, DCN, HOXD10, MAB21L1, PDZRN3, RBP4, SHOX2, SPAG4, SULF1 

Immune response ADSSL1, ALOX5AP, C3, HLA-B, IFI44L, LY96, SAA1, SAA2-SAA4, SAMSN1, TNFAIP3 

 

Metabolism ABCA8, ABCC3, ADAM12, AKR1C1, AKR1C2, C1R, C1S, CHI3L2, COX7A1, GALNT5, HSD11B1, 

HSD17B2, KYNU, PAMR1, PAPPA, PGM2L1, PLCB4, TTC3, TYRP1, XYLT1 

 

Signal transduction ANGPTL1, CXCL6, DEPTOR, FGF7, FGF11, GPR155, INSR, IQGAP2, ITGA1, LRRK2, MAP3K8, MYOCD, 

PDGFRL, PDZRN4, PELI2, QPCT, SORBS2, SPOCK3, ST6GALNAC5 

 

Others ACTA2, BCHE, C10orf10, C4orf47, CCDC102B, CHN2, F8, FAM117B, HTRA3, KIAA1324L, 

LOC100129518, LOXL4, NCKAP5, P4HA3 
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GENE ONTOLOGY 

CLASSIFICATIONS 

UNDEREXPRESSED GENES 

Apoptosis C11orf82, KCNMA1, LMNB1, PEG10, PMAIP1, TPX2 

Cell cycle 

 

 

ANLN, ASPM, AURKA, AURKB, BIRC5, BLM, BUB1, BUB1B, C15orf23, C2orf18, CASC5, CCNA1, CCNA2, 

CCNB1, CCNB2, CCNF, CDC20, CDC25A, CDC25C, CDC45, CDC6, CDC7, CDCA3, CDCA5, CDCA8, 

CDK1, CDKN3, CENPE, CENPF, CENPI, CENPK, CENPM, CENPN, CENPP, CENPV, CEP, CKAP2, 

CKS1B, DHFR, DLGAP5, DNA2, ERCC6L, ESPL1, EZH2, FAM83D, FBX05, FEN1, FOXM1, GINS1, GINS2, 

GINS4, GPSM2, GTSE1, HAUS8, HJURP, IQGAP3, KIF18A, KIF20A, KIF23, KIF2C, KIFC1, KNTC1, LIN9, 

MAD2L1, MASTL, MIS18A, MELK, MLF1IP, NCAPG, NCAPG2, NCAPH, NDC80, NEK2, NUSAP1, OIP5, 

PLK4, POLA1, POLA2, POLE2, PRC1, PRIM1, RACGAP1, RRM2, SASS6, SGOL1, SGOL2, SKA1, SKA3, 

SMC4, SPAG5, SPC24, TOP2A, TYMS, UBE2C, ZWILCH, ZWINT 

Cell adhesion CLDN11, ITGBL1, TMSB15A, TROAP 

Cellular transport KIF4A, KIF4B, KIF11, KIF15, SLC39A4, SLC8A1, TMEM48, TRPV2, VAMP8 

DNA repair/replication BRAC1, BRAC2, BARD1, CDCA7, CDT1, CHAF1A, CHAF1B, CLSPN, DBF4, DBF4B, DSCC1, DTL, EXO1, 

FANCA, FANCD2, FANCI, GAS2L3, GINS3, MCM10, MCM2, MCM3, MCM4, MCM7, MCM8, MMS22L, 

MND1, MNS1, NEIL3, PARPBP, POLQ, PSMC3IP, RAD18, RAD51, RAD51AP1, RAD54L, RFC2, RFC3, 

RFC4, RFC5, RNASEH2A, TIPIN, TRIP13, UCHL5, UHRF1 

Differentiation and 

development 

BEX1, CCBE1, FIGNL1, HELLS, STIL, STMN1, TACC3, TIMP3 
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GENE ONTOLOGY 

CLASSIFICATIONS 

UNDEREXPRESSED GENES 

Immune response CD302, TNFSF4 

Metabolism APOBEC3A, APOBEC3B, ATAD2, ATP8B1, BACE2, BORA, CPS1, FAR2, GPAT2, HAS1, MKI67, NAGS, 

TK1 

Signal transduction ARHAP11A, CARD10, DEPDC1B, FAM129A, FLT1, HMGB2, MOK, PBK, PIF1, PMEPA1, PPM1F, PTPRD, 

RASIP1, RGS4, TTK, ST6GAL1 

Transcription ASF1B, DDX39A, DEPDC1, DNAJC9, E2F7, HOXB6, IRX5, KHDRBS3, MYBL1, PHF19, PRRX1, SMYD3, 

TBX18, TCF19, TIMELESS, TMPO, WHSC1 

Others C18orf54, C1orf115, C1orf135, C4orf46, CEP128, CKAP2L, DLEU2, DLEU2L, FAM54A, FAM64A, 

FAM72A, FRMF3, HMMR, KIAAO101, KIAAO0408, KIAA1524, KLHL23, KRTAP2-4, LETM2, 

LOC100509445, LY6K, PAQR4, PRR11, PTGFRN, S100A16, SAPCD2, SHCBP1, SLITRK4, TMEM106C, 

TRIM59, WDHD1, WDR76 

Gene Ontology classification of genes, common to all 8 oligoclonal CLECs with transgene integration at 8p22 locus, whose expression was ≥ 2.5-fold 
different compared to wild type CLECs. Transcriptome profiling (Affymetrix Primeview array) was performed with oligoclonal CLECs 2 months after 
phiC31 integrase-mediated stable transgene integration. Potential oncogenes and tumor suppressor genes are underlined and italicized.  
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Appendix 8 KEGG pathways of significantly down-regulated genes common 
to all 8 oligoclonal CLECs with transgene integration at 8p22 locus 

 

List of KEGG pathways derived from DAVID analysis of significantly down-
regulated genes common to all 8 oligoclonal CLECs with transgene integration at 
8p22 locus   
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Appendix 9 Evaluation of selected genes derived from transcriptome study of 
transgenic CLECs with targeted integration of Puro hybrid FVIII cassette at 
AAVS1 locus following ZFN treatment 

Gene symbol Change in expression 

compared to control 

CLECs 

Neighbouring genes within 1-Mb of AAVS1 locus 

BRSK1 Not expressed 

C19ORF51 (DNAAF3) Not expressed

COX6B2 Not expressed

EPS8L1 Not expressed

FAM71E2 Not expressed

FCAR Not expressed

FIZ1 No change 

GP6 Not expressed

HSPBP1 Not expressed

ISOC2 No change 

KIR2DL1 Not expressed

KIR2DL3 Not expressed

KIR2DL4 Not expressed

KIR2DS4 Not expressed

KIR3DL1 Not expressed

KIR3DL2 Not expressed

KIR3DL3 Not expressed

LILRA1 Not expressed

LILRA2 Not expressed

LILRB1 Not expressed

LILRB4 Up-regulated 1.6-fold 

LILRP2 Not expressed 

NAT14 Down-regulated 1.4-fold 

NCR1 Not expressed

NLRP2 Not expressed

NLRP7 Not expressed
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PPP6R1 Down-regulated 1.3-fold 

PTPRH Not expressed 

RDH13 Down-regulated 1.6-fold 

SBK2 Not expressed

SGK110 Not expressed

SHISA7 Not expressed

SSC5D Not expressed

SUV420H2 Not expressed

SYT5 Not expressed

TMEM150B Not expressed

TMEM190 Not expressed

TMEM238 Not expressed

TMEM86B Not expressed

TNN13 Not expressed

TNNT1 Not expressed

ZNF524 Not expressed

ZNF579 No change 

Predicted interacting partners of PPP1R12C as 

determined by Gene Network Central™ and String 

9.05 

BRAF No change 

CDC42BPA No change 

CDC45 Not expressed 

CDC5L No change 

CDC6 Up-regulated 2-fold 

CDC7 Not expressed 

DUSP1 Down-regulated 2.4-fold 

DUSP16 Down-regulated 5.3-fold 

DUSP6 Up-regulated 5.5-fold 

GMNN No change 

IL16 No change 

MAPK3 No change 
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MCM10 Not expressed 

MCM2 No change 

MPRIP No change 

MYL2 Not expressed 

PPP1CB No change 

PRKCE No change 

PRKCI No change 

RAF1 No change 

SMAD3 No change 

STK35 No change 

TNKS2 No change 

WIPF1 No change 

Predicted downstream effector genes identified from 

the literature 

CDC42 Down-regulated 2.5-fold 

CDC42BPA No change 

CDC42BPB No change 

CDC42BPG Not expressed 

CDC42EP1 Not expressed 

CDC42EP2 No change 

CDC42EP3 No change 

CDC42EP4 Down-regulated 2.3-fold 

CDC42EP5 No change 

CDC42SE1 No change 

CDC42SE2 No change 

EZR No change 

MYH1 Not expressed 

MYH10 No change 

MYH11 Not expressed 

MYH13 Not expressed 

MYH14 Not expressed 

MYH15 Up-regulated 14-fold 
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MYH16 No change 

MYH2 /// MYH4 Not expressed 

MYH3 Not expressed 

MYH6 Not expressed 

MYH7 Not expressed 

MYH7B Not expressed 

MYH8 Down-regulated 7.7-fold 

MYH9 No change 

MYL1 Not expressed 

MYL10 No change 

MYL12A Up-regulated 3-fold 

MYL12B No change 

MYL2 Not expressed 

MYL3 Not expressed 

MYL4 No change 

MYL5 No change 

MYL6 No change 

MYL6B No change 

MYL7 Not expressed 

MYL9 No change 

MYLIP Down-regulated 3.6-fold 

MYLK No change 

MYLK2 Not expressed 

MYLK3 Not expressed 

MYLK4 Not expressed 

RDX No change 

RHO Not expressed 

RHOA No change 

RHOB No change 

RHOBTB1 No change

RHOBTB2 No change

RHOBTB3 No change
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RHOC No change 

RHOD Not expressed 

RHOF No change 

RHOG No change 

RHOH Not expressed 

RHOJ No change 

RHOQ No change 

RHOT1 No change 

RHOT2 No change 

RHOU No change 

RHOV Not expressed 

ROCK1 No change

ROCK2 No change

Members of the protein phosphatase family 

PPP1CA No change 

PPP1CB No change 

PPP1CC No change 

PPP1R10 No change 

PPP1R11 No change 

PPP1R12A No change 

PPP1R12B No change 

PPP1R12C Down-regulated 2.3-fold 

PPP1R13B Not expressed 

PPP1R13L No change 

PPP1R14A Not expressed 

PPP1R14B No change 

PPP1R14C Not expressed 

PPP1R14D Not expressed 

PPP1R15A No change 

PPP1R15B No change 

PPP1R16A No change 

PPP1R16B Not expressed 
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PPP1R17 Not expressed 

PPP1R18 No change 

PPP1R1A Not expressed 

PPP1R1B No change 

PPP1R1C Not expressed 

PPP1R2 No change 

PPP1R21 No change 

PPP1R26 No change 

PPP1R27 No change 

PPP1R2P9 Not expressed 

PPP1R32 Not expressed 

PPP1R35 No change 

PPP1R36 Down-regulated 2.7-fold 

PPP1R37 Not expressed

PPP1R3A Not expressed

PPP1R3B No change 

PPP1R3C No change 

PPP1R3D Not expressed 

PPP1R3E No change 

PPP1R3F Not expressed 

PPP1R7 No change 

PPP1R8 No change 

PPP1R9A Not expressed

PPP1R9B Not expressed

PPP2CA No change

PPP2CB No change

PPP2R1A Not expressed 

PPP2R1B No change 

PPP2R2A Up-regulated 2.2-fold 

PPP2R2B No change 

PPP2R2C No change 

PPP2R2D No change 
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PPP2R3A No change 

PPP2R3B Not expressed 

PPP2R3B-AS1 Not expressed 

PPP2R3C No change 

PPP2R4 No change 

PPP2R5A Down-regulated 2.7-fold 

PPP2R5B No change 

PPP2R5C No change 

PPP2R5D No change 

PPP2R5E No change 

PPP3CA No change 

PPP3CB No change 

PPP3CC No change 

PPP3R1 No change 

PPP3R2 Not expressed 

PPP4C No change 

PPP4R1 No change 

PPP4R1L Not expressed 

PPP4R2 Up-regulated 3-fold 

PPP4R4 Up-regulated 2.7-fold 

PPP5C Not expressed 

PPP6C No change 

PPP6R1 No change 

PPP6R2 No change 

PPP6R3 No change 
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Appendix 10 Top-10 potential off-target sites for AAVS1 ZFNs 

 

Potential off-target sites, OT1 to OT10 were ranked according to their similarities to the consensus ZFN target site determined by SELEX. 
Score for each SELEX predicted sequence was derived from experimentally determined base-frequency matrices (Hockemeyer et al., 2009).

Site Score Chromosomal 
location 

SELEX predicted sequence Forward primer Reverse primer Amplicon size 
(bp) 

OT1 1.47E-09 chr8:141507033-
141507064 

GcTCCTGGCCCagTGCTG
GCCACTGTGGGTGC 

tttaagaactgtaacctatttt
ccaaagtgtttg 

cag cct ggc caa cat 
ggt gaa ac 

389 

OT2 8.39E-10 chr10:47635366-
47635397 

ACACCCACAGgGGCAGG
GGcAGGGCCAGGAcT 

aaggtgtaagtggagccac
aaggct 

tgtggtccttgctggatca
ggaa 

308 

OT3 5.76E-10 chr4:3303431-
3303461 

TTTCCTGTCCtTtACCTGC
CACTGTGGGTtT 

ttggaaataagacccatttgt
tgatgaga 

ctggctcattccaacgtcc
atgt 

389 

OT4 2.67E-10 chr10:117758694
-117758724 

TCACCCACAGatTTGTAA
TAGGGACAGGATT 

gacttggtggttggcagaat
acacc 

gggtaaggtcagataggg
ctgtaagactc 

601 

OT5 1.93E-10 chr9:138563409-
138563439 

GCACCCACAGcGcAGTGC
cAGGGCCAGGAAC 

ggaacaaggcacctggct
cc 

ccattcccgggagaaatct
c 

353 

OT6 1.24E-10 chr14:101033117
-101033148 

GgTCCTGTCCCTgTGGGA
CCCACaGTGGGgGC 

tgagtttgggcctgaggtca
tc 

ggcttggaaacacccagg
tg 

320 

OT7 1.13E-10 chr7:50670960-
50670990 

GTcCCTGTCCCTATATCC
ACACTGTGGcTGG 

ctttgagtttagcagcttcca
ggaacc 

gttttatcttcataaggtagt
gggcagatgg 

631 

OT8 9.84E-11 chr16:28996789-
28996820 

CATCCTGGCCaTgTTGAT
GgCACTGTGtGTGC 

ggtcctcaccccatcttcat
c 

aaagagagggctggtga
ggc 

375 

OT9 8.89E-11 chr19:1224727-
1224758 

TTTCaTGaCCCTgCTAAGC
CCACTGTGGGTGG 

gttgcgagagtccctactg
g 

agcctgaagttgagcctgt
c 

348 

OT10 6.35E-11 chr12:50284986-
50285017 

CCACCCACAGgGcAGCC
AGgAGGGACAGGATG 

cacagagttcaggggatcg
t 

gccactttgtattgggtggt 650 
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Appendix 11 Detection sensitivity of deep sequencing: Correlation between 
spike-in controls (mutant amplicons) and experimentally determined frequency 
of indels  

Ratio of 
mutant: wt 
amplicon 

Percent 
mutant (%) 
(spike-in 
control) 

Total reads 
mapped 

Indels 
(frequency) 

Percent 
Indels (%) 

1:10 10 60562 2504 4.13 

1:100 1 55315 222 0.40 

1:500 0.2 36029 40 0.11 

1:1000 0.1 79659 45 0.056 

 

 

(Top) Table showing ratio and percentage of mutant amplicons to wild-type 
amplicons, the number of experimentally retrieved mapped reads, and the number and 
percentage of indels detected in these mapped reads for each spike-in concentration. 
(Bottom) A high linear correlation (R2 = 0.999) was observed between the actual 
percentage of indels in the spike-in controls and percentage of indels that were 
experimentally determined by deep sequencing.    
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