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Abstract 

 

Human forensic identification is the process of establishing the identities of deceased 

persons from their remains. Dental records have been regarded as one of the primary 

identifiers from recovered remains under severe conditions and mass disasters when 

other biological samples, such as DNA and fingerprint, cannot be suitably obtained. 

The commonly used approach is through manual comparison of dental features in 

dental charts and radiographs, which is inefficient and prone to errors. The need for 

computer-facilitated dental identification becomes particularly significant when 

handling huge volume of samples taken from dental remains after mass disasters, such 

as the recent Asian tsunami and the earthquake in Japan. The primary objective of this 

thesis is to develop computer-based 3D identification approaches that overcome key 

hurdles in those based on 2D radiographs, including inaccurate tooth feature 

extraction from blurred images and the incorrect matching due to differences of 

imaging angles since radiographs are 2D projections of 3D objects.   

Three approaches are proposed and investigated: point-based matching and 

identification, arch-based matching and identification, and single-tooth classification 

and identification.  A primary performance index used in the evaluation of the 

approach is the identification accuracy based on the correctly identified Post-mortem 

(PM) samples relative to the total number of PM samples tested.   Matched Ante-

mortem (AM) samples are ranked, whereby rank-1 match using the evaluated 

technique indicates that the AM sample from the database has been identified to be 

the most likely match to the PM sample being identified.  If it is rank-2 matched, it 

means that it is the next likely match, and likewise for subsequent ranking. 

The point-based matching and identification approach is a pose invariant 

dental identification (PIDI) technique involving algorithms for feature extraction, 

description and correspondence on digitized dental casts. Salient point features are 

first extracted from mesh representations of the digitized dental casts. A saliency 

shape descriptor is assigned to each extracted point. Then a coarse-to-fine 

correspondence algorithm is developed to match PM records to a database of AM 

records.  60 PM samples and 200 AM samples taken from multi-ethnic Asian groups 

(Chinese, Indian and Malay) are used in the evaluation of the approach. The 60 PM 
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samples consist of 50 genuine PM samples (which mean that these samples have 

corresponding AM samples in the AM database) and 10 imposter PM samples (which 

do not have corresponding AM samples in the AM database). Three types of genuine 

PM samples are involved: 7 complete PM samples, 11 partial PM samples (with 

missing teeth compared to the corresponding AM samples), and 32 noisy PM samples. 

Using the approach, the rank-1 accuracy is 100% for the 7 complete PM sample. The 

rank-1 identification accuracy of matching 11 partial PM sample is 72.7% and 78.1% 

for 32 noisy PM samples.  

The proposed arch-based matching and identification approach aims to 

improve the identification speed of the point-based method, whereby dental arches are 

first extracted from the digitized dental casts using a developed Radial Ray Algorithm 

(RRA). A Hierarchical Ranking Identification Scheme (HRIS), using arch feature first 

and then point feature, in matching has been developed with improved identification 

speed.  Arch-based ranked matches serve as pre-filtered set for the more accurate 

point-based matching. The 7 complete samples achieved 100% rank-1 identification 

accuracy with a more than 6 times improved identification speed using HRIS. The 

rank-1 identification accuracy of matching 11 partial PM sample is 54.5% and 59.4% 

for 32 noisy PM samples.  

  The third proposed technique is targeted for 3D single-tooth identification. 

This is applied to cases where only significantly partial jaw features are found, 

typically with few teeth in the jaw. From previous partial sample identification 

experiments, it is very difficult to correctly align significantly partial PM jaws with 

AM samples. Eigenteeth feature and the K Nearest Neighbourhood (KNN) algorithm 

are applied to first classify different types of human teeth: anterior (incisor and 

canine), posterior (premolar and molar). Then Iterative Closest Point (ICP) is applied 

to identify a classified PM single tooth or tooth crown from an indexed AM sub-

database.  The classification accuracy achieved is 96% and the final rank-1 

identification accuracy is 76% in tooth crown identification experiment in the 2-class 

scheme. The classification accuracy achieved is 90% and the final rank-1 

identification accuracy is 80% in complete single tooth (crown and root) identification 

experiment in the 2-class scheme. The classification accuracy achieved is 88% and 

the final rank-1 identification accuracy is 68% in tooth crown identification 

experiment in the 4-class scheme. The classification accuracy achieved is 80% and 
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the final rank-1 identification accuracy is 70% in complete single tooth (crown and 

root) identification experiment in the 4-class scheme. 

In summary, the study and development of methods presented in this thesis 

aims towards effective 3D dental identification. They are suitable for computer-

facilitated decision support in dental identification by expert investigators. The study 

shows that identification of partial dental sets, noisy sets and single tooth is feasible in 

3D, with certain limitations that are discussed. Further studies, establishment of a 

comprehensive database, and the development of more robust approaches and 

techniques are needed to achieve high identification efficiency. The study also serves 

to provide some of the issues and challenges in computer-assisted dental identification 

when extending 2D dental identification to 3D dental identification. 
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Chapter 1 Introduction  

 

Human forensic identification is the process of establishing the identities of deceased 

persons from their remains. Dental records have been regarded as one of the primary 

identifiers from recovered remains under severe conditions and mass disasters when 

other biological samples, such as DNA and fingerprint, cannot be suitably obtained. 

This chapter begins with a brief survey of human forensic identification methods, and 

then introduces the development of forensic dental identification methods. Research 

gaps and problems are also stated. Finally, research objectives, scopes and 

contributions are presented.  

1.1 Human Forensic Identification 

Biometric identifiers have been exploited for decades for human forensic 

identification. Post-mortem (PM) identification is more difficult than Ante-mortem 

(AM) identification due to the fact that few biometric identifiers can be used. The 

objectives of human forensic identification are suspect identification and victim 

identification.  Evidence of biometric identifiers such as fingerprints, DNAs, and 

dental records are collected at crime scenes and disaster scenes.  The identities of 

suspects and victims could be established by matching the PM and AM records of the 

collected biometric identifiers. Figure 1.1 shows PM and AM records in human 

forensic identification.  

 Fingerprints 

Fingerprints have been a popular standard for human identification within the forensic 

community. Fingerprint identification is a valid and efficient technique in suspect 

identification, but it is not popular in victim identification, especially in disaster 

victim identification because in most cases it is impossible to obtain PM fingerprints 

from decomposed, burnt or skeletonized bodies. For instances, a body that remains 

immersed in fresh water can decompose rapidly; bodies found in 911 attacks, 2004 

Asian tsunami, 2010 Japan earthquakes, airplane crashes, hurricanes, wars were 

subject to high destructive energy disasters. In such cases, soft tissues of the human 
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body would have damaged to unidentifiable status; therefore fingerprints cannot be 

properly obtained for identification.  

 

 

 

(a) 

  

(b) 

 

(c) 

Figure 1.1 (a) forensic finger print identification[1] (b) forensic DNA identification [2] 

(c) forensic dental identification [3] 
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 DNA  

DNA identification has become an increasingly popular forensic technique and is 

considered to be an accurate identification method. The ability of acquiring AM DNA 

samples even after an individual’s death is an extraordinary advantage of DNA 

analysis over other ways of identification. A DNA sample from a close relative’s 

stored blood or material from the decedent's hairbrush or toothbrush may provide 

sufficient comparison material. However, the major limitations are the time required 

and the costs involved. In addition, DNA from any tissue is only useful if the DNA 

structure is not altered or destroyed through time, heat, chemical or other forces. 

 Dental records 

DNA matching is accurate but fragile compared to hard tissues such as bone and teeth 

for comparison with AM records. Shapes of teeth are likely to be recorded by dental 

plaster models or x-ray radiographs at medical hospitals and dental clinics when the 

subject is alive. Very often, the police will contact dental clinics to check for possible 

matching dental records. In this case, they will first use suitably found teeth or jaw 

bones. Shapes of individual teeth and bones are useful when there is an existing 

reference since teeth are more hardy and stable. PM identification requires use of 

biometric characteristics that resist early decay of body tissues. Statistics show that 20% 

of the 9/11 victims, identified in the first year, were manually identified using dental 

records [4]. Moreover, 75% of Tsunami victims in Thailand were similarly identified 

using dental records, compared to 0.5% identified using DNA [5]. Furthermore, 

dental identification combined with DNA identification is a powerful tool for human 

forensic science since dental records are also valuable sources of DNA as other parts 

of the body get destroyed or degraded in mass disasters Table 1.1 compares the 

biometric identifiers in terms of robustness to decomposition, accuracy, time and 

instrument requirement factors. 

The above three biometric identifiers are most prevalent forensic identification 

methods. Other identifiers such as personal items, gender, estimated age, height, build, 

color of skin, scars, moles, tattoos are also valuable for identification as well as 

medical evidence such as previous fractures or surgery, missing organs or implants. 

However, we must be aware that visual identification is one of the least reliable forms 

of identification and can be fraught with error. For example, facial and other 

characteristics can change due to trauma, swelling, fragmentation, and decomposition; 
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hair colour, skin colour, and other physical descriptors can be useful, but cannot be 

used alone to confirm identification when disfiguring has occurred which could lead 

to misidentification of the individual [6]. In such cases, most medical examiners will 

not attempt a visual ID since it may create significant emotional trauma to family 

members.  

Table 1.1 Biometric identifiers comparison 

 Dental DNA Fingerprint 

Robustness High Mid. Low 

Accuracy Mid. High High 

Time Short Long Short 

Instrument required Mid. High Mid. 

 

1.2 Forensic Dental Identification 

 Definition 

Forensic dentistry or forensic odontology is the examination of dental evidence, 

which will be presented in the interest of justice. It represents the overlap between the 

dental and the legal professions [7].   

 History 

“It is always tempting to suggest that the history of bitemark evidence (and hence 

forensic dentistry) began with the eating of forbidden fruit in the Garden of Eden.” [8] 

The earliest documented reference was recorded during the first century. “Agrippina 

the Younger, fourth wife of Emperor Claudius I and the ambitious mother by a 

previous marriage of Nero, contracted for the death of Lollia Paulina. To ensure that 

the contract was accurately concluded, Agrippina had Paulina’s head brought to her. 

The confirmation of identification was made based on dental misalignments and other 

peculiarities.” [9] 

 Legal and social reasons 

Forensic dental identification serves several legal and social requirements. (1)The 

criminal investigation cannot start before the victim has been identified; (2) 

remarriage is not allowed in several religions unless the partner is confirmed dead; (3) 

confirmation of death is also required by several religions before burial; (4) an 

http://en.wikipedia.org/wiki/Examination
http://en.wikipedia.org/wiki/Dentistry
http://en.wikipedia.org/wiki/Evidence
http://en.wikipedia.org/wiki/Justice
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identity is a basic premise to preserve human rights and dignity beyond life in most 

cultures; and (5) it helps to bring relief and proper closure to family members [7]. 

 Scopes 

There are six areas of practice of forensic dentistry: (1) Identification of found human 

remains (2) Identification in mass fatalities (3) Assessment of bite mark injuries (4) 

Assessment of cases of abuse (child, spouse, elderly) (5) Civil cases involving 

malpractice (6) Age estimation. This thesis focuses on the first two areas.  

 Procedure 

Many people know that dental identification is to compare the PM dental remains 

with AM dental records to confirm identity. Those records include written notes in 

dental chart, 2D radiographs, 3D dental casts, etc. However, few people understand 

the complexities and difficulties of dental identification. Usually, after human remains 

are found and reported, police will initiate a request for dental identification. Often 

personal items, such as a wallet or driving licence, may be found and thus help to 

corroborate the AM records. Geographical location and circumstantial evidence could 

also enable tentative identification. Currently, dental identification relies on a 

systematic dental chart prepared by forensic experts and manual radiograph 

comparison, which often take very long time before correct identity establishment. 

Tooth features include characteristics of teeth (e.g., tooth present or absent, dental 

pathology and restorations, crown and root morphology) recorded in dental charts. If 

AM dental record is available, tentative identity is established depending on the 

number of matches in the dental chart. Four conclusions can be drawn [10]:   

 Positive identification: the AM and PM data match in sufficient details, 

and are from the same individual.  

 Possible identification: the AM and PM data have consistent features but 

identity not established positively.  

 Insufficient evidence: The available information is insufficient to form the 

basis for a conclusion. 

 Exclusion: the AM and PM data are obviously inconsistent.  

If no AM dental record is available and no other possible ways of identification, 

PM dental profiling is carried out to limit the population search space. A PM 

profile will indicate age, ancestry background, sex and occupation, dietary habits, 

habitual behaviours and occasionally on dental or systemic diseases [7]. Forensic 

http://en.wikipedia.org/wiki/Body
http://en.wikipedia.org/wiki/Body
http://en.wikipedia.org/wiki/Malpractice
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dentists will assist forensic anthropologists to trace evidences under such 

circumstances. 

 Dental Radiograph 

Dental radiograph, also known as dental X-ray, is one of the major available sources 

for dental graph identification at present. It plays an important role in forensic dental 

identification. There are three types of dental radiographs as shown in Figure 1.2: 

bitewing, periapical and panoramic.  

Bitewing 

Bitewing radiographs are taken during most routine dental check-ups and are useful 

for revealing cavities in the teeth. The bitewing view is taken to visualize the posterior 

teeth, usually the molars and premolars. The name bitewing refers to a little tab of 

paper or plastic situated in the centre of the X-ray film, which when bitten on, allows 

the film to hover so that it captures an even amount of maxillary and mandibular 

information. It is shown in Figure 1.2 (a). 

Periapical 

The periapical view could be taken of both anterior and posterior teeth. The objective 

is to capture the tip of the root on the film. This is often helpful in determining the 

cause of pain in a specific tooth, because it allows a dentist to visualize the tooth as 

well as the surrounding bone in their entirety as shown in Figure 1.2 (b). One 

difference between periapical and bitewing radiographs is the imaging setup. For 

bitewing radiographs, the film is parallel to the teeth and the X-ray beam is 

perpendicular to both the teeth and the film. In contrast, periapical radiographs do not 

require that the film be parallel to the teeth. In some cases, the film and the teeth are 

deliberately set not to be parallel so that the whole tooth can be imaged on a small 

radiograph film. 

Panoramic 

Panoramic films are extraoral films, in which the film is exposed outside the patient's 

mouth. Panoramic X-rays give a broad overview of the entire dentition (the 

development of teeth and their arrangement in the mouth). They provide information 

http://en.wikipedia.org/wiki/Maxilla
http://en.wikipedia.org/wiki/Human_mandible
http://en.wikipedia.org/wiki/Commonly_used_terms_of_relationship_and_comparison_in_dentistry
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not only about the teeth, but also the upper and lower jawbones, sinuses, and other 

hard and soft tissues in the head and neck as shown in Figure 1.2 (c). 

 

                            (a)                            (b)                                      (c) 

Figure 1.2 Three types of dental radiographs: (a) A bitewing radiograph (b) a 

periapical radiograph (c) a panoramic radiograph [11]  

 

 

Figure 1.3 Forensic dentist Dave Antunovic of New Plymouth in the police uniform 

identifying bodies for the Christchurch coroner [12] 

 

An individual’s dentition is defined by the number of teeth present, the orientation of 

the teeth, and dental restorations. Figure 1.3 shows forensic dentist Dave Antunovic is 

identifying bodies for the Christchurch coroner using dental radiographs. 
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1.3 Research Gaps and Problem Statement 

As mentioned above, it is extremely difficult to build a dental chart automatically as 

every tooth condition has to be examined and recorded before identification, which is 

currently done by forensic experts manually. Identification efficiency is quite low. For 

this reason, since the last three decades, computer-aided identification is receiving 

more and more attention. There are software systems like Computer-Assisted Post 

Mortem Identification (CAPMI) [13], WinID [14] and Disaster And Victim 

IDentification (DAVID) [15] based on text-automated search, where the matched 

images (x-ray radiographs) are examined and verified manually. A prototype of 

radiograph-based Automated Dental Identification System(ADIS) [16-37] has been 

developed for a web-based application [38].   

However, the automated radiograph-based dental identification approach 

could not accurately identify blurred radiographs and radiographs obtained with 

different imaging angles. Since dental radiographs are 2D projections of the 3D 

shapes, changes in the imaging angle can result in significant variation in the 2D 

images that cannot be accounted for without 3D information of the teeth [34] as 

shown in Figure 1.4. Chen et al. [26] reported that 14 of the 25 subjects in their 

database could not be identified due to poor image quality, variation of the dental 

structure and insufficient number of AM images. When taking radiographic images of 

jaw fragments, care must be taken that the beam and film orientation (i.e., imaging 

angles) be the same as would be expected on a living subject. Otherwise, the teeth 

will be wrongly identified under incorrect film-orienting.  

In addition, user interaction was needed when the results went wrong during 

the preprocessing steps, therefore, making it a less automatic process.  

Furthermore, sample size and the types of radiographs used in existing study 

were limited, most of which are bitewing images. The identification with missing 

teeth case was still a hurdle to the 2D identification methodologies and has not been 

extensively explored.  Single tooth identification is a big challenge in this domain.  

As there is a trend in extending 2D identification scheme to 3D scheme 

because of emerging and available 3D scanning/imaging systems, this thesis targets at 

3D identification methodology development that can potentially overcome the 

http://www.acronymfinder.com/Computer_Assisted-Post-Mortem-Identification-(CAPMI).html
http://www.acronymfinder.com/Computer_Assisted-Post-Mortem-Identification-(CAPMI).html
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aforementioned limitations imposed by the 2D radiographs.  Further details and a 

comprehensive review of the current identification method, methodology, algorithms, 

and systems will be presented in next chapter. 

 

Figure 1.4 An example of mismatched X-ray tooth contours due to imaging angle 

change [34] 

 

1.4 Research Objectives and Scopes 

The primary objective of this thesis is to develop computer-based 3D identification 

approaches that overcome key hurdles in 2D identification. The hurdles include 

inaccurate tooth contour extraction from blurred radiographs and incorrect matching 

due to differences in imaging angles.  Partial identification and single tooth 

identification will be investigated. This 3D Automatic Dental Identification Scheme 

(3D-ADIS) is targeted for applications in cases of Missing and Unidentified Persons 

(MUP) and cases of Mass Disaster Victims (MDV). The Identification Flow Diagram 

of the proposed 3D-ADIS is shown in Figure 1.5.  There are two phases. In the 

enrolment phase, a feature database will be prepared by suitable extraction of features 

of models in the digital model repository. In the identification phase, given a PM 

dental record x, a list of matches, x1, x2,.., in order of best matches, retrieved from 

archived AM records  is made available for final determination by a forensic expert. 
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Figure 1.5 3D-ADIS identification overview flow diagram 

 

3D-ADIS involves investigation and development of solutions to several challenging 

problems in 3D digital image processing that are imposed by the nature of dental 

surface models: segmentation, classification, feature extraction, and image matching. 

As shown in Figure 1.5, 3D-ADIS consists of the following components.  

Data Preprocessing Component (DPC) This component provides digitized dental 

models. The digitized models are scanned and reconstructed dense mesh models. The 

preprocessing component involves mesh decimation and segmentation. 

Feature Extraction Component (FEC) This component archives different features 

extracted for dental models and registration scheme. Features include but not limited 

to curvature, perceptually salient points, dental arches, frequency domain 

characteristics. 

Potential Matches Component (PMC) This component involves suitable 

correspondence algorithms to use the extracted features to quickly obtain potentially 

good initial matches for the Final Matches Component. 
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Final Matches Component (FMC) This component computes the final matching and 

provides the ranked (in order of best match) candidate list. 

Digital Model Repository (DMR) This stores the digitized dental models that serve as 

the AM models. 

Feature Database (FD) This stores the feature suitably extracted from the DMR.  

The FEC, PMC and FMC are key components in 3D-ADIS.   

Figure 1.6 shows the scenarios and the three major parts of this research. There are 

two scenarios in forensic dental identification: teeth are found with jaws and teeth are 

found with highly partial jaws or without jaws. Point-based and arch-based 

identification techniques are developed for the teeth-with-jaw scenario and the single 

tooth identification is developed for the without-jaw and highly-partial-jaw scenario. 

 

Figure 1.6 Scenarios and scopes of study 

 

3D Automatic Dental 
Identification Scheme 

Tooth-in-jaw identification 

 
 

Point-based 

1.point extraction 

2. point 
description 

3. point 
correspondence  

Arch-based  

1. arch extraction 

2. arch correspondence 

3. a hierachical scheme 
for faster identifications 

Single tooth identification 

 
 

Single tooth  

1.   single tooth 
classification 

2. single tooth 
identification 



 

 

12 
 

1.5 Research Significance 

This research aims to overcome problems in traditional dental chart identification and 

2D radiograph-based automated dental identification, and provide a faster and more 

robust computer-facilitated identification process to facilitate expert investigation. 

More specifically, this study is significant for several reasons: 

 It could provide new vision into forensic dental identification as this is the first 

attempt at 3D dental identification through a systematic and comprehensive 

investigation.  

 It could contribute to a better understanding of the differences of 3D anatomic 

dental features among individuals. It could shed light on the validity of using 

those 3D anatomic dental features in identification. 

 It may provide the identification system guidelines, structures and database for 

other research work in 3D dental identification. 

1.6 Thesis Structure 

Chapter 2 provides a comprehensive literature survey of 2D dental identification 

scheme as well as the 3D identification trend.   

Chapter 3 presents the point-based matching and identification techniques for 3D 

dental identification and key issues such as point feature extraction and 

correspondence in 3D dental identification 

Chapter 4 introduces another useful dental feature in identification, the dental arch 

and arch-based matching and identification techniques. Arch feature extraction and 

correspondence techniques are developed. In order to promote the identification 

efficiency, a hierarchical ranking identification scheme which eliminates a large 

number of imposter matches is developed to speed up identification process. 

Chapter 5 examines discriminative characteristics regarding four types of human teeth: 

incisor, canine, premolar and molar.  Eigenteeth features are extracted and classified 

to deal with the challenging single tooth identification problem. 

Chapter 6 concludes the thesis with suggestions for future work. 
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Chapter 2 Literature Review 

 

As the primary objective of this thesis is to develop 3D dental model matching and 

identification techniques for dental identification that overcome key hurdles in those 

based on 2D radiographs, the focus in chapter 2 is on a comprehensive survey of 

techniques in 2D dental identification scheme.  

2.1 Comparative Dental Identification Using Dental Chart  

The first step of traditional dental identification is to prepare a dental chat, fill up 

detailed written descriptions, and retrieve radiographs of the found PM dental record. 

Figure 2.1 shows an example of a dental chart which records the examination date, 

site, and tooth characteristics.  After a PM chart is obtained, it is used to compare and 

match with archived AM charts by a forensic expert or trained personnel. 

 

Figure 2.1 An example of PM dental chart [7] 

 

2.2 Dental Identification Using Computer-aided Software 

It has been recommended that any incident involving a number greater than 50 

victims would benefit from computer-assisted identification [39]. Statistics show that 
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identifying the 2,749 victims of 9/11 disaster took around 40 months [40]. The 

number of Asian tsunami victims identified during the first 9 months was only 2,200 

out of 190,000, which only constituted 1.16% of the total number of victims. It is also 

estimated that there are over 100,000 unsolved missing unidentified person (MUP) 

cases in the National Crime Information Center (NCIC), and 60% of these have 

remained unsolved for 90 days or longer. Recent disasters have led to greater attention 

to automatic methods of human identification. Dental information includes the dental 

charts and dental radiographs shown previously in Figure 1.2. There are computer-

aided software systems such as CAPMI [13], WinID [14] and DAVID [15]. In these 

systems, dental codes are searched and matched automatically but the dental 

radiographs are manually compared. These systems still involve a much manual 

intervention.  

 CAPMI  

Computer Assisted Post Mortem Identification (CAPMI) system was initiated in 1983 

by the US Army Institute of Dental Research (USAIDR) with its aim to improve the 

efficiency of forensic scientists. CAPMI produces ranked lists. Both non-dental and 

dental characteristics are incorporated in the comparison. CAPMI is a sorting tool, not 

an identification system, which is efficient and meaningful only when handling large 

numbers of cases. The list guides forensic odontologists to the most probable AM 

matches to the PM records, so that they can rapidly proceed with a positive 

identification by comparison of radiographs [13]. Friedman et. al. studied the dental 

characteristics of 7030 soldiers. Based on 363 simulations, they found that in 90% of 

the cases with two or more characteristics CAPMI gets a hit at the top of the candidate 

list, and that in 96% of the cases CAPMI gets a hit within the top 4 candidates [41]. 

WinID 

WinID [14] is a similar dental computer system that matches missing persons to the 

unidentified human remains using dental characteristics. Information about restored 

dental surfaces, physical descriptors, and pathological and anthropologic findings can 

be entered into the WinID database. The WinID dental codes are extensions of the 

CAPMI. WinID provides a visual representation of the dental codes in the form of a 

dental chart. Figure 2.2 shows an example of a dental identification using WinID3.  In 
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Figure 2.2(a), ID#, dead body found date, estimated age, post mortem condition, type 

of case, etc. are recorded and typed into the WinID system. Figure 2.2(b) shows some 

recorded identifiers of the body, including gender, height, weight, hair colour, eye 

colour and blood type. Figure 2.2 (c) shows the dental characteristics of the body and 

radiographs input into system. For example, ‘X’ means a missing tooth mark. Letters 

‘O’,’F’,’D’,’M’, and ’L’ represent ‘occlusal’, ‘frontal’, ‘distal’, ‘mesial’, and ‘lingual’ 

respectively, which are different surfaces of a single tooth. These marks are used to 

record tooth fillings on each particular surface. Once the data are prepared, a 

candidate list consisting of similar records will be retrieved by a best-matches search 

as shown in Figure 2.2(d).  Then manual examination on radiographs will be carried 

on by forensic experts. 

Both CAMPI and WinID use the same comparison algorithm and are equally capable 

of ranking possible identifications. However, only WinID is capable of generating a 

ranked list of non-dental identifier matches as well as a list of most restoration hits.  

WinID is also capable of displaying radiographs, which is very useful features of 

WinID over CAPMI as shown in Figure 2.2(e). The user can easily switch between 

English, French, German, Italian, Portuguese and Spanish language. 

 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

Figure 2.2 An example of a dental chart produced by WinID[14] 

 

DAVID  

In 1997 the Victorian Institute of Forensic Medicine (VIFM) Australia initialized an 

internally supported but unfunded pilot computer system development project. This 

system is for the storage, retrieval and tentative matching of the dental records. It 

combined the skills of the VIFM Information Technology systems manager (VW), an 

experienced odontologist (JGC) and an expert database designer (JC) [15]. The 

interface of DAVID is shown in Figure 2.3. The columns are the state of the AM 

tooth and the rows are the state of the PM tooth. The values are shown the cumulative 

score for the matching process. Later, some new features have been integrated into 

‘‘DAVID web’’. It enables the contrast and brightness adjustment of photographs, 

radiographs and to reveal features of interest.   
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Figure 2.3 Match matrix for DVI[15] 

 

2.3 A Radiograph-based Automated Dental Identification System (ADIS) 

In 1997, the Criminal Justice Information Services Division (CJIS) of the FBI created 

a dental task force (DTF) whose goal is to improve the utilization and effectiveness of 

the National Crime Information Center's (NCIC) Missing and Unidentified Persons 

(MUP) files. The CJIS of the FBI includes in its strategic plan the creation of an 

Automated Dental Identification System (ADIS), with similar goals and objectives to 

its Automated Fingerprint Identification System (AFIS) but using dental/teeth 

characteristics instead of fingerprints [20]. Research teams from West Virginia 

University (WVU), Michigan State University (MSU), and University of Miami (UM) 

are developing a research prototype of ADIS. ADIS aims to speed up the PM 

identification process. The benefit of ADIS will surpass saving millions of dollars to 

also include psychological benefits of families of missing persons when knowing the 

disposition of their loved ones without having to wait extended period of time [17]. 

ADIS uses state-of-the-art techniques from multi-disciplines that include but not 

limited to digital image processing, pattern recognition, soft-computing and internet 

technology [16]. A comprehensive literature review regarding technologies in ADIS 

system is presented and compared here. The architectural design of ADIS research 
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prototype is discussed in further detail in [16, 19]. The ADIS system structure is 

shown in Figure 2.4.  

 The Potential Matches Search (PMS) component (Coarse-grained matching in 

Figure 2.4) manages the archiving, searching and retrieval of dental records in 

order to produce a candidate list of matches. This component is developed by 

the research teams at MSU and UM and is primarily responsible for archiving 

and retrieval of dental records based on high-level dental features. These 

features include the number/position of teeth and shape properties of teeth 

among other features. The implementation of this component requires 

techniques for: dental film classification [19, 23]; teeth segmentation [19, 26], 

[16, 22] and [24]; extraction of teeth contour [19, 22, 26], and feature indexing 

[23].  

 The Image Comparison (IC) component registers and compares two sets of 

dental records and is used during the search process. The desirable features of 

this stage are speed and accuracy. This component is developed by the 

research team at WVU and is responsible for low-level comparison of the 

radiographs of a subject case against those of candidate reference cases. 

Realization of this component follows a pyramidal architecture for image 

matching [16, 19], and [35]. Image comparison is carried out in the following 

steps: preprocessing of images, where enhancement, segmentation and 

alignment are achieved to correct for possible geometric and/or intensity 

transformations [16, 19, 24] and [35]; decision making, where low-level 

features are extracted from corresponding regions in the subject and the 

reference radiographs and used as basis for computing a probability of match 

between the subject record and a reference record  [19] and [35].  

 The Digital Image Repository (DIR) this is the image and feature database 

component and is being developed by WVU and UM [16].  

Given a PM dental record, a short list of archived AM records will be 

retrieved which have a high similarity with that given PM record. With 

reference to ADIS shown in Figure 2.4, high-level dental features are firstly, 

used to generate a candidate list by the PMS component, then IC matching, 

where dental X-ray images of the subject PM record and the candidate list are 

examined to produce a ranked short match list. Finally, the short match list is 
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presented to a forensic expert to examine the radiographs of the PM subject 

against those in the short match list. Furthermore, to integrate internet sources, 

enable remote access and collaboration, a Web-ADIS was developed in 2007 

[38]. 

 

Figure 2.4 Systematic structures of ADIS [42] 

 

The approaches, advantages, disadvantages and performances are summarized, 

compared and analysed in the major four steps of 2D automated dental identification 

scheme: image segmentation, feature extraction, teeth classification (Atlas registration) 

and matching as shown in Figure 2.5.  
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Figure 2.5 Main components in ADIS and identification with user interaction [34] 

  

2.3.1 Image Segmentation 

With the development of medical imaging techniques, image segmentation in 2D and 

3D domains has received extensive attention in the last decade. Some recent research 

results show the variety of computer aided techniques in medical image segmentation. 

Li et al. [43] proposed a graph-theoretic approach for optimal surface segmentation in 

volumetric images. Jorge et al. [44] integrated information obtained from texture 

segmentation methods with boundary information and embedded that in a region 

growing strategy for brain tomographic image segmentation.  Chen et al. [45] 

developed a level set method based on the Bayesian risk classification error which is 

robust for various types of medical images. Han et al. [46] proposed a coarse-to-fine 

strategy for hand radiograph segmentation. The watershed transform is first applied to 

get metaphyseal regions, then noise removal, labeling, ellipse region fitting are 

performed to find the epiphyseal regions of interest. An active contour model 
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approach based on gradient vector flow (GVF) is used to get the fine level 

segmentation [46]. Tu et al. [47] proposed an auto-context learning algorithm for high 

level vision tasks and 3D brain image segmentation, which integrates low-level 

context information by fusing a large number of low-level appearance features with 

context and implicit shape information. The reported performance is higher than the 

state-of-the-art algorithms at that time and has the potential usage for structured 

prediction problems. 

Presently, most of the dental identification techniques are developed based on 

processing 2D x-rays radiographs. By matching the extracted tooth contours between 

an AM image and a PM image, a person’s identity is obtained. In dental identification, 

segmentation is often concerned with segmentation of a full jaw region (e.g., 

panoramic radiographs) with full set of teeth or partial jaw region (bitewing or 

periapical radiographs) focusing on individual tooth, isolating each tooth from the 

background, the jaw bones, the soft tissues and the neighbouring teeth. In order to 

extract the tooth contour, image segmentation is inevitable and it is crucial to the 

exact tooth contour extraction which would affect the final matching accuracy. 

However, most of the segmentation techniques are affected by different types of noise 

embedded in images due to poor lighting or low resolution. Several X-ray image 

segmentation approaches have been proposed in the last decade. Several researchers 

contributed to dental radiograph segmentation. Jain and Chen [22] used Y-axis 

projection histogram to segment the upper teeth and the lower teeth in bitewing and 

panoramic dental images by detecting the gap valley. An intensity integral projection 

was applied to isolate each tooth from its neighbouring teeth by detecting the gap 

between them.  However, their approach has to be manually intervened to specify an 

initial valley gap. Chen reported that by using the fast marching methods [48], the 

correct rate segmentation of the 611 x-ray radiographs was 61.1% . 38.9% of the 

images were of incorrect segmentation line between upper and lower teeth, under 

segmentation, over segmentation, or improper segmentation requiring manual 

corrections [34].  Nomir et al. [29] introduced a fully automated 4-step segmentation 

strategy. They first applied iterative thresholding to divide the image into teeth region 

and background region. Then the adaptive threshold was used to increase the accuracy 

and remove teeth interference. Next, horizontal integral projection is presented to 

separate the upper and lower jaw. Finally, vertical integral projection was applied to 
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isolate individual teeth.  Nomir and Abdel-Mottaleb [25] also introduced another fully 

automatic segmentation technique to improve the image contrast by utilizing 

mathematical morphology, and later window-based adaptive threshold and integral 

projection applied to segment the teeth and separate the upper and lower jaw. Said et 

al. [24] reported that segmentation accuracy was improved by applying a 

morphological filtering combined with 2D wavelet transform method. Later Said et al. 

[32] presented a technique to improve segmentation performance by using grayscale 

contrast stretching transformation beside a fully automated segmentation approach 

based on mathematical morphology. Table 2.1 lists research dealing with dental x-ray 

image segmentation and feature extraction, including the approaches, accuracy, 

advantages and disadvantages. 

 

Table 2.1 Tooth segmentation algorithm comparison 

Author 

/year 

/reference 

Approach No. /types 

of images  

Reported 

accuracy 

Advantages Disadvantages 

Jain et 

al.[21]2004 

histogram 

integral 

projection 

130 

bitewing  

failure rate 

2.61%  

simple and 

easy to 

implement 

semi-automated 

cannot handle 

poor quality 

images 

 

Nomir et 

al.[29]2005 

iterative and 

adaptive 

thresholding , 

integral 

projection 

117 

bitewing  

failure rate 

11.18%  

fully 

automated 

Adaptive 

thresholding 

improves 

iterative 

thresholding 

cannot handle 

poor quality 

images(eg. teeth 

at the borders) 

Zhou et 

al.[25]2005 

morphology , 

adaptive 

threshold, 

integral 

projection 

123  

Bitewing  

 

failure rate 

3.47 %  

fully 

automated 

the database is 

small 



 

 

24 
 

Said et 

al.[32]2006 

grayscale 

contrast 

stretching 

transformation 

morphology 

two sets of 

500 

bitewing 

130 

periapical  

failure rate 

1.27% 

 

fully 

automated 

High accuracy  

difficult to deal 

with poor quality 

images  

Said et 

al.[31]2006 

1) convolution 

filtering using 

point spread 

function (PSF) 

2) connected 

components 

labeling 

 

500 

bitewing  

 

failure rate 

1.141% 

fully 

automated 

low failure rate 

and high 

optimality  

partly 

correspondence 

failure because of 

background noise 

and mismatching  

 

Chen et 

al.[34]2007 

fast marching 611 in total 

Bitewing  

Periapical 

panoramic  

accuracy 

61.1%  

without user 

correction 

 

all types of 

dental 

radiographs  

semi-automated 

difficult to cannot 

handle poor 

quality images 

 

2.3.2 Feature Extraction  

The feature extraction in dental identification concerns the extraction of the crown 

and root contours of teeth as well as dental restoration contours. Chen et al. [21] 

proposed a semi-automatic contour extraction method.  Crown centre of the 

rectangular bounding box was manually specified for each tooth.  Then the crown and 

the root of a tooth are divided by drawing a line through the crown centre. In addition, 

Chen et al. [18] presented a dynamic energy term for directional snake to discriminate 

boundaries of adjacent teeth combined with an active contour model algorithm [49].  

Shah et al. [33] investigated that active contour models based on edges were driven by 

the gradient of the image intensities. However, the gradient between the teeth and the 

background was not prominent because there were bone and soft tissue regions. 

Therefore, accurate tooth contours could not be extracted. Furthermore, snake-based 

schemes utilize parametric representation of the contour which often fail to evolve in 

noisy conditions and there is a possibility that it fails to split and merge when local 

minima are presented [50].  They used an active contour without edges to extract 
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tooth contours in noisy condition. The comparison of the above methods is listed in 

Table 2.2. 

Table 2.2 Tooth contour extraction algorithm comparison 

Author /year 

/reference 

Approach No. /types 

of images  

Reported 

accuracy 

Advantages Disadvantages 

Chen et 

al.[21]2004 

Bayes rule 130 bitewing 

images 

not available simple  semi-automated 

Chen et 

al.[18]2004 

dynamic 

energy 

gradient 

vector flow 

and active 

contour 

models 

130 bitewing 

images 

not available improved 

based on[21]  

not accurate 

cannot deal with 

local minima 

Zhou et 

al.[25]2005 

active 

contour  

adaptive 

threshold 

123 

Bitewing  

 

not 

available  

fully 

automated 

cannot deal with 

overlapping teeth 

Shah et 

al.[33]2006 

active 

contour 

without edges 

340 teeth 

represented 

in images 

10 AM and  

10 PM 

records (60 

images) 

perfect 

contour 

extraction: 

58.10% 

Perfect 

crown 

contour 

extraction: 

12.83% 

very fast,  

0.16 second 

per tooth 

Robust against 

noise 

Contour is 

tight and 

smooth 

part of 

neighbouring 

tooth sometimes 

also included 

erroneously in the 

segmentation 

 

2.3.3 Tooth Classification  

The human dental atlas is a model describing the shapes of teeth and their relative 

positions.  A complete dental structure of an adult contains 32 teeth, 16 in each jaw. 

Every single tooth has a specific index (1-32) in the dental atlas.  For an automatic 

dental identification system, the tooth classification is important because it helps to 

decrease the search space by limiting the comparison of the teeth which have the same 

index number in the dental atlas.  
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Although not much effort has been put into tooth classification due to its complexity 

and difficulty, there are some pioneering contributions in 2D dental identification 

scheme. Mahoor and Abdel-Mottaleb [16] proposed a method to obtain the indices of 

teeth in bitewing images by using Bayesian classification. Two kinds of Fourier 

descriptors are compared to select the best for teeth classification. Two major 

limitations of their method are: (1) only molars and premolars are classified and 

numbered; (2) missing teeth case has not been considered, i.e., only jaws with 

complete set of teeth considered.  Jain and Chen [27] proposed a two-stage 

registration method. The first stage is to classify the teeth into three types: molar, 

bicuspid and incisor by applying support vector machine techniques to the Fourier 

descriptors of contours and other tooth features. In the second stage they use a Hidden 

Markov Model (HMM) as an underlying representation of the dental atlas to handle 

the problem of missing teeth and the three types of dental images. However, error 

occurs when identifying short sequence dental images which contain only 3 or 4 teeth 

and error also occurs when distances between neighbouring teeth are not 

representatives of the training data in dealing with missing teeth case. More recently, 

Lin et al. [51] presented a binary linear support vector machine technique to 

distinguish molars and premolars by using the skew-adjusted relative length/width 

ratios of both teeth and pulps and crown sizes as features. A numbering scheme which 

combines a missing teeth detection algorithm is also proposed. However, the images 

they used are only bitewing images which only contain molars and premolars. Table 

2.3 lists research dealing with tooth classification and outlines the key features, 

advantages and disadvantages: 
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Table 2.3 Tooth classification algorithm comparison 

Author /year 

/reference 

Feature Approach No. 

/types of 

images  

Reported 

accuracy 

Advantages Disadvantages 

Abdel-

Mottaleb et 

al.[16] 2003 

two 

Fourier 

descriptor

s of teeth 

contours  

bayesian 

classificatio

n 

50 

bitewing 

containing 

220 molar 

and 180 

premolar  

72%-

95.5% 

 

 

ability to 

correct 

misclassificatio

n 

missing teeth 

not considered 

only bitewing 

images 

Jain et 

al.[27]2005 

Fourier 

descriptor 

of teeth 

contours  

SVM 

HMM 

25 people 

1772 tooth 

contours 

82.9% 

upper teeth 

93.8% 

lower teeth 

three types of 

dental images 

fusion score of 

different 

features  

errors occur 

when  there are 

few teeth and 

when outliers 

appear in test 

data 

Nassar et 

al.[52] 2008 

eigenteeth 

 

least square 

error 

classifier 

PCA 

String 

matching 

 

507 

bitewing 

and 

periapical 

images 

 

87% Fast; 

four teeth  

types 

classification; 

Need tedioius 

view 

normalization 

and  validation 

Lin et al. 

[51] 2010 

length/wid

th ratios of  

both teeth 

and pulps 

and crown 

sizes 

binary linear 

SVM 

smith-

waterman 

algorithm  

47 

bitewing 

images 

with 369 

teeth in 

total  

Classificati

on 95.1%  

numbering 

98.0% 

Higher 

accuracy  

cannot deal 

with high 

similarity teeth 

sequences; 

inconsistency 

of jaw 

arrangement;  

overlapped 

teeth 

2.3.4 Matching  

Registration and retrieval is the process of transforming an image of an object and 

measuring its resemblance either to another image of the same object, or to an image 

of another object.  In dental identification, the extracted tooth contours with the same 

indices are compared by calculating the differences according to the convergence of 
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an optimal transformation or a measure of closeness to an optimal similarity metric.  

Nassar et al. [30] used a multi-resolution genetic algorithm to align the dental image 

by utilizing the location and orientation of the edge points. But they assumed that 

affine transformations sufficed to restore geometric discrepancies between two 

images of which the tested validity must be within a variation of 18 degrees. In 

addition, the testing images are 52 pairs of single tooth. The correction of 

misalignments is time-consuming.  Nomir et al.[53] present two matching techniques. 

The first technique represents high curvature points on the tooth contour using 

signature vectors, and then the signature vector distances are calculated. The second 

method uses hierarchical chamfer distance transformation to reduce the searching 

space and accordingly the retrieval time is reduced. They compare the results and 

show that the hierarchical chamfer distance outperforms the signature vectors. 

Furthermore, the results are fused both at the matching level and the decision level to 

improve the performance. A separate decision is made for each matcher. These 

decisions are then fused into a final vote at the decision level or stage[53]. The 

matching accuracy is 80% and 84% respectively. And they test their methods only on 

162 AM and 50 PM bitewing images, not including the panoramic and periapical 

images. Later, they investigated another matching technique [53], representing each 

tooth by the smallest of features extracted using the forcefield energy function and 

Fourier descriptors. They fuse results of the above three matching algorithms at 

matching level and decision level by using the Bayesian framework method to 

improve the overall performance. Nassar et al. [35] presented the use of learnable 

inherent dental image features for tooth-to-tooth image comparisons and the 

probabilistic models of class-conditional densities. An adaptive strategic search 

technique combined with back propagation to tackle with tooth-to-tooth binary 

classification problem is also proposed. The experimental results show that the 

matching accuracy exceeds 80% with low false rejection rate. They show potential 

robustness of their method that it is capable of dealing alignment imperfections within 

±5% of scaling and ±5° of rotation. However, the selection of ROI is carried out 

manually. In addition, this is a tooth-to-tooth matching scheme in which the useful 

information of teeth arrangement is not used.  Furthermore, the panoramic dental 

images are not included. Omaima and Abdel-Mottaleb [54] introduced a modified 

hierarchical chamfer distance algorithm with multi-representation of teeth contours. 
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The search space, computational load and the time complexity are significantly 

reduced. And this algorithm outperforms their previous one in [29]. Table 2.4 lists 

research projects dealing with image matching and outlines the key features, 

advantages and disadvantages: 

Table 2.4 Tooth matching algorithm comparison 

Author 

/year 

/reference 

Feature Approach No. /types 

of images  

Reported 

accuracy 

Advantages Disadvantages 

Jain et 

al.[21] 

2004 

Tooth 

contours 

Euclidean 

distance of tooth 

contour  

Affine 

Transformations  

 

 

38 PM 

130 AM 

images 

Bitewing 

Periapical 

 

65.8% for 

the rank 1 

 

 

Easy and 

simple 

Small database,  

cannot deal 

with poor 

image quality; 

partly visible  

tooth ; high 

similarity 

between 

different 

individuales 

Nomir et 

al.[29]2005 

Signature 

vector for 

salient 

points on 

tooth 

contours 

Euclidean 

distance of tooth 

contour  

Affine 

Transformations  

 

Bitewing 

43PM 

117AM 

First rank 

76% 

teeth 

74.4% 

images 

Automatic in 

every step 

Only bitewing 

images. 

Failure due to 

poor image 

quality 

Chen et 

al.[26]2005 

Tooth and 

dental 

work 

contours 

Euclidean 

distance of tooth 

contours area-

based metric to 

align dental 

work ;contours  

 

166PM 

235AM 

First rank 

72% 

Fusion 

matching 

scheme 

The accuracy is 

not high 

enough. 

Nassar 

[30]2006 

location 

and 

orientation 

informatio

n of edge 

points  

Multi-Resolution 

Genetic 

Algorithm (MR-

GA) 

Affine 

Transformations  

52 single 

teeth-pair 

images 

 

Algorith

m 

converge

s in  85%  

cases 

capable to 

fully correct 

misalignments 

of up to 18 

degrees within 

two minutes 

excessive 

misalignments 

decrease 

accuracy 
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Banumathi 

et al. 

[55]2007 

Tooth 

contour 

Affine 

transformation  

15PM 

30AM 

bitewing 

periapical 

70% Morphological 

contour 

detection is 

better than the 

Gaussian 

contour 

detection and 

semiautomated 

contour 

detection 

Low accuracy 

No panoramic 

images 

Nomir et 

al.[36] 

2007 

Tooth 

contour 

and  pixels 

within the 

tooth area 

Fourier 

descriptor for 

tooth contour; 

force energy 

function for 

tooth area 

50 PM  

162 AM  

bitewing 

86% Higher 

accuracy. 

Improvement 

in dealing with 

poor quality 

images when 

representing  

tooth by only 

the contour 

information 

A small 

database 

Nomir et 

al.[37] 

2007 

Curvature 

of contour 

points; 

 

Tooth 

distance 

map (DT) 

Root 

mean 

squares 

of 

signatur

e 

vectors 

 

Root mean 

squares of the 

distance maps 

 

162 AM  

50 PM 

Signature 

vectors 

Techniqu

e:  

80% 

 

 

Hierarchi

cal 

Techniqu

e:  

 84% 

The 

hierarchical 

technique 

decreases the 

searching 

space and 

reduces time  

 

Fusion to 

improve 

performance 

Accuracy is not 

high enough; 

bitewing 

images only 

 

Nassar et 

al.[35]2007 

Convolutio

n value of 

the ROI 

 

Class-

 Nonlinear filter 

discrete 

convolution 

Bayesian 

classification 

 

2000 pairs 

of single 

tooth 

 

80% capable of 

dealing small 

alignment 

imperfections  

Manual 

selection of 

ROI; 

Week in dealing 

with different 
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conditional  

densities 

Back 

propagation 

dynamic-range 

uni-variation of 

variables 

Bitewing 

Periapical 

 

views 

Nomir et 

al.[53] 

2008 

Curvature 

of contour 

points; 

 

Tooth 

distance 

map (DT) 

 

forcefield 

energy 

function 

and fourier 

descriptors 

of tooth 

contours 

Root mean 

squares of 

signature vectors 

 

Root mean 

squares of the 

distance maps 

 

Euclidean 

distance of 

feature vectors 

 

fusion at the 

matching, 

decision, and 

matcher level 

187 AM  

50 PM 

bitewing 

Signature 

vectors 

80% 

 

 

Hierarchi

cal 

84% 

 

Force 

field and 

FD 86% 

Fused 

biometric 

system has 

higher 

accuracy 

Tested only on 

bitewing dental 

images 

 

Segmentation 

requires good 

quality  

radiographs 

 

Contour 

misclassificatio

n  

 

 

Nomir  et 

al.[54] 

2008 

Multi-

resolution 

teeth 

contours’s 

hierarchica

l chamfer 

distance 

Multi-resolution 

representation of 

teeth contours; 

Hierarchical 

chamfer; 

Majority voting; 

187 AM  

50 PM 

bitewing 

84% Decreased 

search 

spaced; less 

computationa

l load; less 

time 

complexity  

Problems in 

matching low 

quality images; 

partial appeared 

teeth; 

 

2.5 Dental Identification Trend  

With the successful identification scheme developed in 3D face recognition and 3D 

ear recognition [56, 57], there is a trend towards using 3D techniques. Nowadays, the 

acquisition of 3D models has been made easier and fast due to the fast emerging real-

time scanning and 3D reconstruction technologies. In addition, there are dental 

research works in assisting 3D reconstruction of teeth from CT images [58] and 3D 

automatic tooth segmentation [59] for dental identification. However, these works 

remain in the preprocessing stage, i.e., preparing the data for 3D dental identification. 
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None of the aforementioned efforts has investigated the complete 3D dental 

identification process. This research aims to develop an automated 3D dental 

identification scheme with suitable identification methodologies and algorithms for 

retrieving matching digitized 3D dental casts as for 2D dental identification.   

2.6 Summary 

Chapter 2 provides a comprehensive literature survey of 2D dental identification 

schemes - from the dental chart identification to software-assisted identification, and 

also a prototype of automated dental identification based on x-ray radiographs. The 

approaches, advantages, disadvantages and performances are summarized, compared 

and analysed in the major four steps of computer-assisted 2D dental identification 

schemes: image segmentation, feature extraction, teeth classification and matching. 

The 3D identification trend is also presented to further elaborate the research gaps in 

dental identification.  
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Chapter 3 Point-based Matching and Identification 

 

3.1 Introduction 

Chapter 3 presents the development of a point-based matching approach. The point-

based matching and identification approach is a pose invariant dental identification 

(PIDI) technique involving algorithms for feature extraction, description and 

correspondence on digitized dental casts. 60 PM samples and 200 AM samples are 

used in experiments. Different shape descriptors (saliency, Gaussian curvature, 

integral volume) are proposed and compared with regard to pose invariant 

characteristics. 

A performance index used in the evaluation of the approach is the 

identification accuracy based on the correctly identified PM samples relative to the 

total number of PM samples tested.   Matched AM samples are ranked, whereby rank-

1 match using the evaluated technique indicates that the AM sample from the 

database has been identified to be the most likely match to the PM sample being 

identified.  If it is rank-2 matched, it means that it is the next likely match, and 

likewise for subsequent ranking. 

PC with two  Duo Core CPUs with a clock speed of 2.33 GHz and 1.96GB 

RAM is used throughout the tests for consistent computational time comparison. Unit 

of matching errors (alignment errors) in this thesis is millimeter (mm). 

3.2 System Approach Overview 

An overview of the point-based approach is shown in Figure 3.1. For every PM 

digitized dental model, it will retrieve from an AM database of 200 digitized dental 

models to find the closest match. The input is the digitized dental cast and the output 

is a ranked list of matched models. The digitized model is first decimated and 

segmented before feature point detection, description and correspondence. Finally the 

ranked list will be presented to forensic experts for further identity confirmation. 

Manual segmentation and auto segmentation are compared regarding the 

identification accuracy. Three shape descriptors are proposed and compared according 

to their pose invariant characteristics.  
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Figure 3.1 An overview of the point-based approach 

 

3.3 Algorithm Overview 

The three main components in pose invariant dental identification (PIDI) technique 

are feature extraction, shape descriptor definition and correspondence. Table 3.1 

shows the main steps. The details are elaborated in the following sections.   
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Table 3.1 Main steps of pose invariant dental identification (PIDI) technique 

 

Input: 60 PM surface model and 200 AM surface model 

Output: 60 ranked lists with each having 200 ranks 

Steps: 

1) Feature Extraction 

1. Compute bounding boxes of  one PM sample and one AM sample as shown in 
Figure 3.4 (a) 

2. Define the neighborhood points  xj of point iv  as ( , )iN v  which are points in 

Euclidean distance using iv  as the center point as shown in Figure 3.4(b) 

3. Apply the six scales of Gaussian filter as shown in Figure 3.4 (c) 
4. Compute the Difference-of-Gaussian (DoG) at each scale  
5. Search for the vertices within distance 2σ6 to the boundary vertices and set the 

saliency of all these vertices to zero 
6. Normalize the saliency value  
7. Set the saliency value to zero if it is not larger than the saliency of certain value of 

its neighboring vertices 
8. Add the saliency map at all six scales  
9. Extract a vertex as a feature point whose saliency value is a local maximum and 

larger than certain value of the global maximum 
 

2) Shape Descriptor Definition 
 

10. Use the computed saliency value in step 1-9 to compare with the Gaussian 
curvature descriptor and integral volume descriptor in pose variation experiment V. 
(Figure3.5) 
 

3) Correspondence 
 

11. For any feature point p in the PM sample, we choose a set of correspondence points 
(q1,…,qn) in AM sample according to a threshold value ( ) ( ) 0.1C p C q   . ( ) ( )C p C q，

denote the saliency value/Gaussian curvature/integral volume value at point p and 
q respectively 

12. For each pair of feature points (pi, pj) in the PM sample, choose any ( )i iq C p , 

( )j jq C p  and set the point pair (qi, qj) which minimizes the distance root mean 

squared (dRMS) error as the associated correspondence pair and sort in order of 
ascending dRMS error 

13. Add another point, and repeat step 12 to form correspondence tri-pairs. The tri-pair 
which minimize cRMS error is taken as the best tri-pair correspondence.  

14. Fine correspondence using ICP algorithm 
15. Repeat step 1-14 for matching the same PM sample to another AM sample in the 

AM database until finishing all of them. Sort the matching error 
16. Match another PM sample to all the AM samples by repeating step 1-15 
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3.4 Data Preparation 

The data samples used in this study are mandibular dental plasters obtained from 

National University Hospital. They are adult dentitions. These samples have multi-

race characteristics in Asian groups, belonging to the Chinese, Indian, and Malay 

ethnic groups. 

AM sample acquisition 

The AM set comprises 200 digitized plaster samples of the mandibular teeth.  These 

plaster samples are scanned by one investigator (X1) with the Minolta VIVID 900 

Surface Laser Scanner (Konica-Minolta Corporation, Osaka, Japan) for acquisition of 

the surfaces of the plaster samples. The scanning resolution is 0.02mm. The age range 

of the 200 AM samples is 12 to 35 years. The mean age is 23.6±5.4 comprising 111 

males and 89 females.  

PM sample acquisition 

The PM set consists of 60 digitized plaster samples of the mandibular teeth. There are 

two groups: 50 genuine and 10 imposter samples. These 60 samples were obtained 

independently by another investigator at another time (X2).  These 60 samples were 

scanned with the same Minolta VIVID 900 surface laser scanner and then categorized 

into four groups. The age range of the 60 PM sample is 12 to 34 years. The mean age 

is 21.4 ± 4.2 years comprising 24 males and 36 females.  

Figure 3.15 shows the digitization process. The dental plaster is placed on a rotating 

table facing the scanner. 6 angles (0 60 120 180 240 300) are used to obtain 6 scanned 

surfaces, which are then registered and pieced together to form a complete surface of 

digitized dental plaster. There are two categories of differences between the PM and 

AM dental records.  One category is the non-deformable changes in locations and 

shapes of the teeth (e.g., missing tooth crowns or entire tooth, disruption of 

anatomical location of teeth and damage to bony features etc. as shown in Figure 3.2 

(c). The other category belongs to those with changes during the preparation of the 

PM records (e.g., noises occurred during the preparation as shown in Figure 3.2 (d) 

and the orientations and appearances are different as shown in corresponding AM/PM 

sample pairs in Figure 3.2 (e)). This is to consider those samples prepared by different 
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investigators (such as by X1 and X2) at different time where the initial orientation and 

the mesh topology are not necessarily the same. The pose invariant dental 

identification approach aims to be able to handle the two aforementioned kinds of 

differences between the AM and PM samples. The detailed differences are shown in 

Figure 3.2. There are four groups of PM samples.  

Group one:  This group consists of seven complete samples as shown in 

Figure 3.2 (a). The first row shows the manually segmented PM samples and 

the second row shows the auto-segmented PM samples. This group of samples 

is to be tested in an increased AM sample database which comprises 200 AM 

samples. The identification accuracy will be compared in Experiment I 

described below. 

Group two: This group consists of 10 Imposter PM samples as shown in 

Figure 3.2 (b) which do not have corresponding AM samples in the AM 

database.  These are used to compare with the genuine match results to find a 

threshold for imposter sample detection in Experiment II. 

Group three: This group consists of 11 genuine PM samples with missing 

teeth and missing tooth crowns as shown in Figure 3.2 (c).  

PM8-one incisor, one canine and one molar were missing;  

PM9-left half teeth were lost;  

PM10-four incisors were lost;  

PM11-two molars were missing;  

PM12-three molars and two incisors were lost;  

PM13- only five molars left;  

PM14- four molars were lost;  

PM15- one molar and one lateral incisor were lost;  

PM16-one molar and one canine were missing;  
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PM17- right half teeth were lost;  

PM18-two molars and two canines were missing. 

Partial samples are commonly found after disasters. Each of the 11 partial PM 

samples is anatomically unique in the number and position of missing teeth as well as 

symmetry of the lower dental jaw to represent a range of anatomic variations for 

matching. The 11 manually segmented PM samples are shown in the top two rows 

and the auto-segmented PM samples are shown in the lower two rows.  

Group four: Figure 3.2 (d) shows two examples of noisy samples used in this 

group. Noise occurred during the scanning process. 32 out of 50 PM samples 

were found having noises. Comparing the noisy PM samples to their AM 

samples, the individual tooth shapes in PM samples are severely corrupted 

which can render visual matching difficult.  This group aims to show the 

robustness of the proposed approach in the presence of significant noise. 

Figure 3.2 (d) shows the orientation, appearance and topology differences of 

the genuine samples. 

Preprocessing 

To facilitate efficient and accurate matching of corresponding AM and PM surface 

images, preprocessing of the digital images is required to reduce the size of the 

images and to eliminate unnecessary data such as the bottom part of a dental plaster. 

Preprocessing is a two-step process which involves the decimation and segmentation 

of the PM samples and AM samples.  There are three operations in preprocessing: 1) 

decimation to 10% of the original points for all the AM and PM samples; 2) manual 

segmentation and auto PCA-plane segmentation for 60 PM samples; 3) auto PCA-

plane segmentation for 200 AM samples.  

1) Decimation The method of decimation reported by Schroeder et al. [60] is applied 

to the scanned digital surfaces. The size of each digitized sample is 14~30MB, 

comprising of 340k~400k triangles and so is decimated to 10% to achieve higher 

computational speed. Every surface image is decimated by 90% to achieve higher 

computational speed while preserving as accurately as possible the important original 

topology and geometry of shapes. Only 10% of the original mesh is used for 
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identification. It aims to show that competitive identification accuracy can be 

achieved by using the developed 3D identification scheme at a large-scale decimation 

level. All the samples shown in Figure 3.2  are decimated samples.  

2) Manual Segmentation After decimation, segmentation of the 60 PM surface mesh 

images is carried out manually using the software RAPIDFORM 2006 (INUS 

Technology, Seoul, South Korea) to delineate the shapes of the crowns of the 

mandibular teeth at the level of the gingival margins.  Segmentation is the most 

tedious and time-consuming step both in 3D and 2D dental biometrics. For a large 

database, automatic segmentation is required. Moreover, segmentation for a sample 

taken from a dry skull is different from that for a living subject. The reasons have 

been described in details in [61]. The crowns are delineated based on a presumption 

of a healthy gingival margin level across the tooth crowns as shown in Figure 3.3 (b) 

the dot line indicates.  These delineated crown shapes from the PM sample are the 

rigid non-deformable elements that are used for matching with the AM samples.  

3) Auto Segmentation Kondo et al. [62] proposed a semi-automatic tooth 

segmentation method. However, an initialization is needed to calculate the range 

image and four reference points need to be manually specified by users at the 

beginning. Kronfeld et al. [63] presented a highly automatic segmentation method for 

segmentation of teeth from the mesh model by applying an active contour algorithm. 

However, they reported that manual adjustment is still needed when the initial snakes 

are not appropriately located at the transition between teeth and gum, and also manual 

corrections of some parameters are inevitable. Both methods fail where the boundary 

between tooth and gum is very smooth and where the teeth are overlapping with each 

other. Instead of single-tooth segmentation, an automatic processing method is 

proposed for a large database to eliminate the bottom part of the plaster which does 

not contain tooth information. The Principal Component Analysis (PCA)-plane 

passing through the centroid of the plaster is first calculated.  The dental plaster is 

then segmented by its PCA-plane into the crown part and bottom part as illustrated in 

Figure 3.3 (d-f).  It costs 15 seconds on average per sample in the MATLAB 

programming environment (version R2007a The MathWorks, Inc., running on a PC 

with two  Duo Core CPUs with a clock speed of 2.33 GHz and 1.96GB RAM), 

including sample import and export time.  As compared with the manually segmented 
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samples, a portion of tooth gum and dental plaster is still attached to the mesh as it is 

shown in Figure 3.2 (a-c) bottom row. Detail descriptions of Figure 3.2 are shown 

below. 

 

(a) Top row: manual segmented seven complete PM samples; bottom row: auto 

segmented seven complete PM samples   

 

(b) Top row: manual segmented 10 imposter PM samples; bottom row: auto 

segmented 10 imposter PM samples 

 

(c) Top two rows: manual segmented 11 partial samples; bottom two rows: auto 

segmented 11 partial samples 
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(d) Top row left to right: decimated sample AM19; auto segmented sample AM19; 

decimated sample PM19; manual segmented sample PM19; auto segmented sample 

PM19; bottom row left to right: decimated sample AM21; auto segmented sample 

AM21; decimated sample PM21; manual segmented sample PM21; auto segmented 

sample PM21 

  

(e) Difference in genuine samples in two scans(left to right): AM sample; PM sample; 

front view of different initial positions of AM and PM samples; side view of different 

initial positions of AM and PM samples; mesh topology difference 

Figure 3.2 Sample illustration 
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(a)                            (b)                            (c) 

 

(d)                             (e)                            (f) 

Figure 3.3 Manual segmentation of a human skull (a) a human skull (b) the expected 

detected interstices (solid line) and the interstices obtained by minima curvature rule 

(dash line) (c) a set of manual segmented mandibular teeth of a human skull (d) PCA-

plane (e) segmented tooth crown (f) bottom part of a dental plaster 

 

3.5 Dental Feature Point Extraction 

The feature extracted in this study is geometric invariant and visually salient feature 

point [64, 65]. A multi-scale feature extraction algorithm is presented to extract these 

feature points on digitized dental surfaces.  Steps for feature point extraction list 

below. 

a. Gaussian multi-scale representation  

The first step is to compute the bounding box to define a neighbourhood for each 

vertex v  on the dental surface. σi{1ε, 2ε, 3ε, 4ε, 5ε, 6ε }, where ε is 0.3% of the 

length of the diagonal of the bounding box of the dental surface as shown in 

Figure3.4(a).  For each vertex v , the neighbourhood ( , )N v  is point x i within 

distance   as shown in Figure3.4(b). Equation 

 ( , ) , : vertexN v x x v x                                                           (3.1) 
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is used for calculating the neighbourhood points. Six Gaussian filters are applied on 

the dental surface. A representation of the surface model ( , )G v   was computed using 

equation 

2 2

( ,2 )

2 2

( ,2 )

exp / (2 )
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.                                       (3.2) 

b. Saliency computation  

The second step of feature extraction is the mesh saliency of the dental surface.  

Difference-of-Gaussian (DoG) for each vertex v  is defined:  

                    ( ) ( , ) ( , )i iDoG v G v G v k                                                             (3.3) 

as the difference between its Gaussian representation at scale ( i ) and scale ( ik ). 

The constant factor k is set 2. In order to extract the small number visually distinct 

feature points, each saliency map is normalized using the non-linear suppression 

operator S proposed by Itti et al [66]. To observe the difference of the Gaussian filters 

on the dental surface, one molar is shown in Figure 3.4(c). 

c. Boundary removal  

The third step is to remove the feature points on the boundary of the dental surface. 

The dental surface is not a closed surface after segmentation.  The multi-scale 

representation is Gaussian average of the neighbourhood points, the boundary 

points are possibly detected as feature points since they have only one side 

neighbourhood points.  Those false feature points are redundant information for 

correspondence. Therefore, in order to remove the boundary effect, the following 

algorithm is applied: 1) search for the boundary vertices which have 

neighbourhood points on one side 2) search for the vertices within distance 2σ6 to 

the boundary points 3) set the saliency of all these vertices to zero 

As shown in Figure 3.13(a), boundary points are detected as feature points by the 

existing work [64, 65]. Usually, more feature points require more computational time 

in finding correspondence. The number of extracted points and the total time in 

matching genuine samples and imposter samples are compared in [61]. It is about six 



 

 

44 
 

times faster using feature point detection algorithm in this work in matching one PM 

sample to its genuine AM sample.  

d. Feature point extraction  

The fourth step is to suppress more points and extract the most visually distinct 

points.  The saliency value of a point at each scale is set to zero unless it is larger 

than the saliency of 85% of its neighbouring vertices. The saliency value at all six 

scales are added up followed by a normalization process. Finally, a vertex whose 

saliency value is a local maximum and larger than 60% of the global maximum is 

detected as a feature point. 
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(a)                                                             (b) 

 

(c) 

Figure 3.4 Bounding box and diagonal length of a dental surface (b) neighbourhood 

determination using a query ball for vertex v (c) 6 differently Gaussian-filtered 

models of a molar from the dental arch  

 

3.6 Point Feature Descriptions 

After feature extraction, a shape descriptor needs to be assigned to each feature point 

for correspondence in the matching stage.  The descriptor determination is important 

since different descriptors exhibit different correspondence capabilities. In this study, 
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the performance of three descriptors is compared: the saliency value, the Gauss 

curvature, and the integral volume.  

Option 1 Saliency value descriptor 

The feature points are extracted based on their saliency values in the last section. The 

saliency value could also be used to determine the degree of correspondence as shown 

in Figure 3.5 (a). 

Option 2 Gaussian curvature descriptor 

Curvature is often used in 3D mesh processing because it is one of the geometric 

invariant characteristics of mesh model.  The Gaussian curvature is computed using 

the method in [67]. Gaussian curvature map on dental surface is shown in Figure 3.5 

(b) 

Option 3 Integral volume descriptor 

Integral volume at point p is defined as the intersection volume of a ball of radius r 

centered at point p with the interior of the surface model as shown in Figure 3.5(c). 

The integral volume can be computed using techniques based on convolution of the 

occupancy voxel grid [68]. However, in their study, only models with distinct features 

in the benchmark database were tested, for example, dragon model with sharp claws 

and tail tips, the bunny model with ear tips, the David head model with an obvious 

nose tip, which are quite different from the dental surfaces taken from the real humans 

and have highly irregular shapes. In this study, a method based on the mean curvature 

estimation [69] is adopted and simplified to compute the integral volume. 
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(a)                                                (b) 

 

(c) 

Figure 3.5 (a) Saliency descriptor (b) Gaussian curvature descriptor(c) Integral 

volume descriptor 

 

The integral volume descriptor at vertex p associated with the local mean curvature 

could be computed using equation (3.4) [68] as 

( )3 4 52
( ) ( )

3 4

p
r

H
V p r r O r


                                                               (3.4) 

Where ( )pH  is the local mean curvature at vertex p and r is the radius of the ball. The 

first term is the half volume of the ball, while the second term involves the mean 

curvature H  at vertex p. In this study, the integral volume descriptor is normalized by 
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the volume of a ball 34

3
r  to form equation (3.5). Therefore, it becomes the ratio 

between the volume of the intersection and the volume of the entire ball. Thus its 

value is within range [0, 1]. 

2
( )

1 3
( ) ( )

2 16
r pV p H r O r                                                                      (3.5) 

To estimate the mean curvature, equation (3.6), (3.7) and (3.8) are used. 

       
1
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3

ne
j i jj

i

v v

H v

A









                                                                        (3.6)         

where j  is the angle between the normal of the two faces adjacent to edge (vi, vj) as 

shown in Figure 3.6. ne is the number of edges adjacent to vi. A is the sum of the 

faces area around vi. 

 

Figure 3.6 One ring connectivity for mean curvature estimation 

               
,

ij

i max

-g

g

ijw = e                                                                                         (3.7)   

where i jw  in equation (3.7) is a weighted factor between the centre vertex vi  and 

neighbour vj  and ijg  is the Euclidian distance between vi and vj. ,i maxg  is the max 

Euclidian distance from vertex vi  to the other vertices in a query ball as shown in 

Figure 3.4(b). 
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           1

( ) ( )
n

i i j j
j

H v w H v


                                                                              (3.8) 

where n is the number of neighbour vertices which is searched by the query ball as 

shown in Figure 3.4(b). 

3.7 Coarse-to-fine Matching 

Let P’ and Q’ be the feature points extracted from the PM dental surface and the AM 

dental surface respectively. For each feature point 'ip P  and 'iq Q , the respective 

descriptor values (saliency, Gaussian curvature, integral volume) ( )iS p  and ( )iS q  are 

calculated. The following steps are for finding three feature points both in PM and 

AM samples with similar values and similar relative positions in Euclidean space for 

correspondence. 

 For any feature point 'p P , select the salient point q as potential 

correspondence if ( ) ( )S p S q   , where ε is threshold value and set to be 0.1 

from tests. Therefore, a set of potential correspondences for each feature point 

are determined and designated as (C(p1), …, C(pn)).  

 For each pair of feature points (pi, pj), choose any ( )i iq C p , ( )j jq C p  and set 

the point pair (qi, qj) which minimizes the distance root mean squared (dRMS) 

error defined in equation  

2 2

2
1 1

1
( ', ') ( )

n n

i j i j
i j

dRMS P Q p p q q
n  

                                            (3.9) 

       as the associated correspondence pair, resulting in a set E2 of two-point 

correspondences. ||.|| denotes the Euclidian distance of these two feature points. 

E2 is then sorted in order of ascending dRMS error. Any 2e E  whose dRMS 

error is larger than threshold dRMS  is discarded.  

 For each two-point correspondence 2e E , add another potential 

correspondence pair (pk, qk) which minimizes the dRMS error. In this way, a 

set E3 of triplet-point correspondence is formed. E3 is then sorted in order of 

ascending dRMS error. Any 3e E  whose dRMS error is larger than a 

threshold dRMS  is discarded. 
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 For each triplet-point correspondence in E3, a rotation and translation matrix 

can be obtained by Singular Value Decomposition (SVD) method and the 

corresponding coordinate root mean square (cRMS) error is then computed 

using equation  

22

, 1

1
( , ) min

n

i i
R t i

cRMS P Q Rp t q
n 

   .                                                   (3.10) 

  Finally, E3 is sorted in order of cRMS error.  

The first triplet-point correspondence in E3 corresponding to minimal cRMS error is 

taken as the best triplet-point correspondence.  With the estimated initial position by 

feature points correspondence, the fine comparisons are achieved by utilizing iterative 

closest point (ICP) algorithm which was first developed by Besl and Mckay [70], 

Chen and Medioni [71]. ICP is an algorithm for minimizing the difference between 

two point clouds. It is simple and is commonly applied in real-time for 2D/3D surface 

reconstruction, robot localization and optimal path planning. The following thresholds 

are specified in the experiments. The maximum number of iterations is 30, the 

minimum error change is smaller than 1e-12 and the minimum coordinate change is 

smaller than 1e-12 between iterations. When one of the above mentioned thresholds is 

met, the algorithm stops and it is considered to have converged.  The differences of 

genuine sample identification and imposter sample identification are shown in Figure 

3.7.  The comparison shows that genuine samples require less iterations and the final 

matching error is much smaller.  

  

(a)                                  (b) 

Figure 3.7 Differences in genuine sample identification and imposter sample 

identification (a) genuine sample (b) imposter samples. 

 

http://en.wikipedia.org/wiki/Algorithm
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3.8 Experiments and Discussion 

Experiment I  Complete Sample Identification 

In Experiment I, seven samples shown in Figure 3.2(a) are tested with 100 AM 

samples and 200 AM samples. The comparison is shown in Table 3.2 and Table 3.3. 

The first four ranks of the average errors are compared in Table 3.4. The average error 

is calculated as the arithmetic mean error of the correctly matched results at each rank. 

Comparing Table 3.2 and Table 3.3, all the samples achieve rank-1 accuracy by using 

this work in contrast with that only 5 out of 7 achieving rank-1 accuracy by using 

existing algorithm ICP alone. Rank of sample PM2 and PM3 slightly decreases using 

ICP due to the fact that increasing the sample size may lead to inclusion of more 

dentitions that are similar and thus lead to more mismatches; however, this work is 

more robust to AM sample size increase as every correct match is still retrieved at 

rank-1 after AM sample size increase.   

The rank-1 identification accuracy of auto-segmented complete PM samples in 

this work is 100% by dividing the number of correct matches at rank-1 by the total 

number of PM sample, which is 7/7*100%=100%. This accuracy is to be compared 

with results in Chapter 4. 

It can be concluded from Table 3.4 that much lower rank-1 error is achieved 

by using this work compared to that using ICP. If the error change ratio is defined as 

the quotient of three successive ranks, for example, μ12/23 and μ23/34 are used to denote 

the error change ratio between rank1-2 and rank3-4 in matching manually segmented 

sample using this work, then μ12/23 = (0.924-0.522)/(0.935-0.924)=36.5, in contrast 

with  μ23/34  = (0.935-0.924)/ (0.954-0.935)=0.59. The rank1-2 slope is bigger using 

this work both for manually and auto segmented samples, thus this work is more 

discriminative to differentiate the genuine sample from the rest in the database by 

comparing the error change ratio. The error change rate of genuine manually 

segmented sample e= μ12/23 / μ23/34 =61.9 (36.5/0.59) by using this work. The 

comparison is shown in Figure3.8. 
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Table 3.2 Identification of 7 genuine PM complete samples from 200 AM samples 

 PM 1 2 3 4 5 6 7 

Manually 

Segmented 

Rank 

ICP 1 1 1 1 1 1 1 

This 

Work 

1 1 1 1 1 1 1 

Auto 

Segmented 

Rank 

ICP 1 9 3 1 1 1 1 

This 

Work 

1 1 1 1 1 1 1 

 

Table 3.3 Identification of 7 genuine PM complete samples from 100 AM samples 

 PM 1 2 3 4 5 6 7 

Manually 

Segmented 

Rank 

ICP 1 1 1 1 1 1 1 

This 

Work 

1 1 1 1 1 1 1 

Auto 

Segmented 

Rank 

ICP 1 3 2 1 1 1 1 

This 

Work 

1 1 1 1 1 1 1 

 

Table 3.4 Genuine matching error at first four ranks (7PM vs 200AM) 

  Rank1 Rank2 Rank3 Rank4 

Manually 

Segmented  

ICP 0.710 0.972 1.028 1.038 

This Work 0.522 0.924 0.935 0.954 

Auto 

Segmented  

ICP 0.992 1.130 1.180 1.215 

This Work 0.646 1.084 1.103 1.140 
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Figure 3.8 Matching error comparison of genuine samples at first four ranks 

 

Experiment II Imposter Sample Identification 

Consider an actual situation of PM sample identification that when a jaw is found, 

forensic experts do not know whether it has a corresponding record in the AM 

database. This is often called open-set identification in biometrics. During 

identification, it is good if certain thresholds, trends or graphs could indicate that 

corresponding record of this sample is present or absent in the AM database, i.e., is a 

genuine or imposter sample. In most 2D radiograph literatures [25-30, 35, 36, 51-54, 

72-76], imposter identification has not been well investigated. Proper thresholds have 

not been discussed to indicate the presence and absence of victims in AM database.  

This experiment is designed to find an appropriate error threshold for the 

system to identify imposter samples. 10 imposter samples in Figure 3.2 (b) which do 

not have their corresponding AM samples in the AM database are matched against 

200 AM samples. Average matching errors at first four ranks are shown in Table 3.5 

and Figure 3.9.  μ’12/23 and μ’23/34 are used to denote the error change ratio between 

rank1-2 and rank3-4 in matching manual segmented imposter sample using this work, 

then μ’12/23 = (0.921-0.883)/(0.937-0.921)=2.4, in contrast with  μ’23/34  = (0.937-

0.921)/(0.956-0.937)=0.84. The error change rate of imposter manually segmented 

sample using this work denoted as e’= μ’12/23 / μ’23/34 =2.9 (2.4/0.84). We observe that 

there is not much difference between using ICP and this work in imposter 
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identification.  As calculated in Experiment I, the error change rate of genuine 

identification is 61.9 which is much larger than the error change rate of imposter 

identification. Therefore, the system could distinguish imposter samples at a threshold 

of 0.8 according to the rank-1 error and the error change rate. 0.8 is determined by 

comparing the arithmetic mean rank-1 errors of genuine samples and imposter 

samples in Table 3.4 and Table 3.5.  

Table 3.5 Imposter matching error at first four ranks (10PM&200AM) 

  Rank1 Rank2 Rank3 Rank4 

Manual 

Segmented  

ICP 0.882 0.919 0.936 0.960 

This Work 0.883 0.921 0.937 0.956 

Auto 

Segmented  

ICP 1.036 1.087 1.127 1.138 

This Work 0.998 1.060 1.091 1.115 
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Figure 3.9 Matching error comparison of imposter samples at first four ranks 

 

Experiment III Partial Samples Identification 

In the PM samples, it is common to see that the lower jaws of victims are broken into 

pieces or some teeth are missing due to violence or other forces. It is more 

challenging to identify partial PM samples when full PM samples of teeth are not 

available. In the presence of missing teeth, it will be difficult for the matching 
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algorithm in 2D to correctly correspond the tooth sequences in AM and PM images if 

the missing teeth have not been properly detected. It is also reported that matching 

algorithm cannot properly align AM and PM radiographs if they do not contain the 

same number of teeth [34]. Mahoor and Abdel-Mottaleb [28] proposed Bayesian 

classification method using Fourier descriptors to obtain the indices of teeth in 

bitewing images. The classification accuracy is high, 72%~95.5% for molar and 

premolar classification in maxillary and mandibular jaws. However, their work deals 

with bitewing images, which only include two classes of teeth: molars and premolars. 

Furthermore, it is assumed that there are no missing molars or premolars in the 

images. Anil Jain et al. [27] developed a hybrid model involving the Support Vector 

Machine (SVM) and the Hidden Markov Model (HMM) for the representation and 

classification of teeth. It deals with all three types of dental radiographs (bitewing, 

periapical, and panoramic images) and it considers all three classes of teeth (molars, 

bi(cuspids), and incisors). However, the accuracy is not high. For fully automatic 

extraction of tooth contours, the reported rank-1 accuracy is 60.1%[34]. 

 In this experiment, ε is adjusted to 0.25% of the length of the diagonal of the 

bounding box of the dental surface as shown in Figure 3.4(a) due to the fact that 

partial samples need more detailed description. The results are shown in Table 3.6. 

Both manual and auto segmented samples are used. Starting from the same initial 

orientation, correct and higher ranks are obtained by using this work compared to 

those of applying ICP alone. However, it is observed some samples are not perfectly 

matched.  It is probably because sample PM9 and PM13 are the most partial ones 

among the eleven which only contain five teeth. Partial identification is more difficult 

because a correct matching cannot be guaranteed with the same ε value for every PM 

sample (ε determines the neighborhood size). Namely, ε should be adjusted according 

to how partial the PM sample is. If the ε is adjust to 0.15% of the length of the 

diagonal of the bounding box, sample PM9 and PM13 are correctly matched and 

rank-1 accuracy is achieved in both identification processes as shown in Figure 3.10 

(a-g). Figure 3.10 shows some of the non-rank-1 matching results and their 

corresponding corrected results with different ε values using this work compared to 

those using ICP. Most of the samples are well-aligned with corrected ε values as 

shown in Figure 3.10 (c, f, h, j) except auto-segmented PM8 as shown in Figure 3.10 
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(l). This may due to the fact that partial auto-segmented sample is more likely to stay 

at local minima. The rank-1 identification accuracy of auto-segmented partial PM 

samples in this work is 72.7% by dividing the number of correct matches at rank-1 by 

the total number of PM partial sample, which is 8/11*100%=72.7%. 100% 

identification is achieved at rank-4.  

 

Table 3.6 Identification of 11 PM genuine partial samples from 200 AM samples 

 PM 8 9 10 11 12 13 14 15 16 17 18 

Manual 

Segmented 

Rank 

ICP 1 89 1 1 1 162 1 83 1 166 1 

This 

Work 

1 6 1 1 1 81 1 1  1 1 1 

Auto 

Segmented 

Rank 

ICP 196 1 1 3 54 12 1 1 3 148 1 

This 

Work 

3 1 1 4 1 3 1 1 1 1 1 

 

 

(a)                      (b)                   (c)                      (d)                  (e)                    (f) 

 

(g)                         (h)                      (i)                      (j)                   (k)                        (l)                          

Figure 3.10 (a) manual PM9 ICP (b) manual PM9 this work ε=0.25% (c) manual PM9 

this work ε=0.15% (d) manual PM13 ICP (e) manual PM13 this work ε=0.25% (f) 

manual PM13 this work ε=0.15%  (g) manual PM15 ICP (h) manual PM15 this work 

ε=0.25% (i) manual PM17 ICP (j) manual PM17 this work ε=0.25% (k) auto PM8 

ICP (l) auto PM8 this work ε=0.25% and ε=0.15% 
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Experiment IV Noisy Sample Identification 

Figure 3.11 shows the specific rank of each noisy sample (PM19-PM50). ‘ManN’ 

denotes the manual segmented noisy sample and ‘AutoN’ denotes auto segmented 

noisy sample. In experiment IV, ε is adjusted to 0.2% of the length of the diagonal of 

the bounding box of the dental surface as shown in Figure 3.4(a) because severe 

corrupted samples need much more detailed description. Figure 3.12 shows some of 

the non-rank-1 matching results aligned using this work comparing to those using ICP. 

However, samples in Figure 3.12 (c-f) almost have the same alignment error using 

different matching algorithms and they are equally well-aligned but they are not rank-

1 samples. This is due to the segmentation differences and the noises. The PM 

samples have extra points and surfaces when superimposing with their corresponding 

AM samples as indicated in Figure 3.12 (c-f) and all these extra parts will be 

calculated as matching error.  

The rank-1 identification accuracy of auto-segmented noisy PM samples in 

this work is 78.1% by dividing the number of correct matches at rank-1 by the total 

number of noisy PM sample, which is 25/32*100%=78.1%. 100% identification is 

achieved at rank-30. 

1920212223242526272829303132333435363738394041424344454647484950

ManN Rank(ICP) 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 88

ManN Rank This Work 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1

AutoN Rank(ICP) 1 1 2 2 2 1 1 1 1 3 33 1 1 1 1 2 1 1 4 1 1 1 1 1 1 1 1 2 1 1 1210
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Figure 3.11 Noisy sample specific rank 
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       (a)                  (b)                      (c)                (d)                     (e)                     (f) 

Figure 3.12 (a) manual PM50 ICP error=1.39 (b) manual PM50 this work error=0.67 

(c) auto PM29 ICP error=1.08 (d) auto PM29 this work error=1.05 (e) auto PM50 ICP 

error=1.42 (f) auto PM50 this work error=1.24 

 

The Cumulative Match Characteristic (CMC) Curve 

Overall accuracy of 50 genuine PM samples is also calculated and compared. 

Cumulative Match Characteristic (CMC) curve is a standard statistical method used to 

evaluate the performance of the closed-set identification (A biometric task where an 

unidentified individual is known to be in the database and the system attempts to 

determine his/her identity) experiment. It plots the rank versus identification rate. 

Identification of 50 PM genuine samples from 200 AM samples, each sample has 200 

possible ranks. The x axis represents the rank of retrieved subjects. The y axis 

indicates the percentage of cumulated number of correct retrievals at certain rank. The 

faster the CMC curve approaches one, the better the matching algorithm. The overall 

identification accuracy of Experiment I, III, and IV of the 50 genuine PM samples 

which include 7 complete sets, 11 partial sets and 32 noisy sets is compared in Figure 

3.13.  The manual identification verifications were carried out on the retrieved results 

to serve as the correct benchmark matches in Experiment I, III, and IV. The 

identification of manual-segmented samples using this work has the highest 94% 

rank-1 accuracy. With a fully automated process, the rank-1 accuracy decreases to 

80%.   In contrast, identifications using ICP only achieve 86% and 64% rank-1 

accuracy in manual and auto process respectively.   
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Figure 3.13 Identification accuracy comparison of 50 genuine samples 

 

Experiment V Feature Extraction Comparison 

Figure 3.14 shows the differences of feature points extracted on complete, partial and 

noisy dental surfaces using this work and the existing work in literature [64, 65]. More 

feature points usually require more computational time in finding correspondence, 

making this work especially more suitable for partial and noisy sets. The 

computational time for finding correspondence is significantly reduced (six times 

faster) by applying the extraction algorithm in this work. The redundant points are 

indicated with red circles as shown in the top row. Those redundant points could also 

cause mismatching sometimes.  
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Figure 3.14 Feature points on complete, partial and noisy dental meshes (left to right): 

upper row existing work; lower row: this work 

 

Experiment VI Correspondence Algorithm Comparison 

In Experiment VI, the existing greedy correspondence (GC) algorithm [68] is 

compared with the proposed triplet correspondence (TC) algorithm. The GC 

algorithm first finds the best correspondences for each pair of feature points. Then it 

combines the pairs to form best corresponding sets of four points, and then combines 

fours into eights and so on. Three manual segmented samples in Figure 3.2 are 

selected: complete sample PM1, partial sample PM9 and noisy sample PM19. In fact, 

any of the complete samples and noisy samples in Figure 3.2 (a) and Figure 3.2 (d) 

can be used to compare, however, partial sample PM9 is selected. These three 

samples are compared under 30 to 180 degree rotation variations with 30 incremental 

degrees each time.  Figure 3.15 shows the possible initial rotations during sample 

acquisition process. The initial orientation cannot be exactly the same during two 

acquisitions even if the sample is scanned by the same investigator. The dental plaster 

is placed on a wedge to face the scanner. Then the wedge and the plaster are placed on 

a rotatable disk. Thus the possible rotations of the initial orientation are about the 

rotation axis from 0 to 360 degree.  The rotate axis is the principal axis with the 

smallest Eigen value calculated by principle component analysis. If the rotation axis is 

represented using unit vector (u, v, w, where u
2
 + v

2
 + w

2
 = 1), the rotation about this 

axis by the angle θ could be specified as matrix R [77], where 
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R=

2 2

2 2

2 2

(1 )cos (1 cos ) sin (1 cos ) sin

(1 cos ) sin (1 )cos (1 cos ) sin

(1 cos ) sin (1 cos ) sin (1 )cos

u u uv w uw v

uv w v v vw u

uw v vw u w w

    

    

    

      
 

      
 

       

 (3.11) 

 

Figure 3.15 Possible initial rotations 

 

The results are shown in Table 3.7. The left column shows the results obtained using 

existing method [68], and the right column shows the results obtained using the 

correspondence algorithm in this study. Three symbols were used to quickly index the 

matching results.  

        -A smiling face means perfect matches 

        -A neutral face indicates matches achieve approximately right positions but not 

perfect matches 

        -A sad face implies bad matches 

The following two conclusions could be drawn from the results shown in Table 3.7. 

Obviously, fewer and noisy points in samples often mean more difficulties in getting 

the right matches. Comparing the results in Table 3.7, correct matching is achieved 

for sample PM1 and PM19 in every case using the method in this work (TC) when 

existing method (GC) fails to correctly align these samples in most cases. This work 
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is also more robust in partial identification as shown in 30
ο
 and 90

ο
 rotations. The 

improved corresponding algorithm in this work is less sensitive to pose variations. 

This is because the existing method was mostly developed for closed surfaces without 

boundary which have significant salient features, such as the finger and nose tip of 

humans, the ear tip and the claw tip of animal models, but not for corresponding 

dental mesh with highly similar convex and concave, saddle shapes. However, failure 

cases are observed in matching partial PM9 under 120
 ο

, 150
 ο

 and 180
 ο 

rotations. It 

could be concluded that if the PM sample is too partial and asymmetrical, human 

interaction is needed or single tooth identification scheme is to be developed which 

will compare single PM tooth to single AM tooth.  

Table 3.7 Correspondence algorithm comparison 

Sample Existing work[68] This work 

Rotation 30
ο
 

PM1 

complete 

  

PM9 

partial 

 
 

PM19 

noisy 

  

Rotation 60
ο
 

PM1 

complete 

   

PM9 

partial 
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PM19 

noisy 

  

Rotation 90
ο
 

PM1 

complete 

  

PM9 

partial 

  

PM19 

noisy 

  

Rotation 120
ο
 

PM1 

complete 

  

PM9 

partial 

  

PM19 

noisy 

 
 

Rotation 150
ο
 

PM1 

complete 

  

PM9 

partial 
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PM19 

noisy 

  

Rotation 180
ο
 

PM1 

complete 

  

PM9 

partial 

  

PM19 

noisy 

  

 

Experiment VII Shape Descriptor Comparison Regarding Pose Variations  

In Experiment VII, the three shape descriptors are compared regarding pose variations. 

The same three manual segmented samples in Experiment VI are used: complete 

sample PM1, partial sample PM9 and noisy sample PM19. These three samples are 

compared under 60 to 180 rotation variations with 60 incremental degrees each time 

as shown in Table 3.8. In matching complete sample PM1, saliency and Gaussian 

curvature descriptors have equal performance when integral volume fails in 60
 ο 

rotation. In matching partial sample PM9, three descriptors have equal performance. 

In matching noisy sample PM19, saliency descriptor in this work is more robust to 

pose variations than the other two descriptors. 

Table 3.8 Shape descriptor comparison 

Sample Shape 

descriptor 

Rotation 60
ο
 Rotation 120

ο
 Rotation 180

ο
 

PM1 

 

Saliency 

   



 

 

65 
 

Gaussian 

Curvature 

   

Integral 

Volume 

   

PM9 

 

Saliency 

   

Gaussian 

Curvature 

   

Integral 

Volume 

   

PM19 Saliency 

   

Gaussian 

Curvature 

   

Integral 

Volume 

 
  

 

3.9 Computational Time  

Towards developing an automated system, not only identification accuracy should be 

considered but also the identification speed. As mentioned earlier, all the experiments 

are tested in MATLAB programming environment (version R2007a The MathWorks, 
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Inc., running on a PC with two Duo Core CPUs with a clock speed of 2.33 GHz and 

1.96GB RAM.) Table 3.9 lists the time required in each experimental step. Time is 

calculated as average time in Experiment I for the samples shown in Figure3.2 (a) 

lower row. For example, identifying 7 PM sample from 200 AM sample cost 18900 

seconds (5.25 hours) in total. Therefore, identifying 1 PM from 200 AM would cost 

2700 seconds (45 minutes) which includes time for data import, feature point 

extraction and matching. Time calculation is more or less the same in other 

Experiments (II-VII) although there are slight differences. For example, partial 

sample often require less time. Time unit in Table 3.9 is second. The difference 

between identification time and matching time is identification time includes time for 

data import, feature extraction and matching. 

Table 3.9 Computational time in Experiment I [Unit: Second (s)] 

Identifying 7 PM from 200 AM 18900 (5.25 hours) 

Identifying 1 PM from 200 AM 2700 (45 minutes) 

Data Import (per sample) 0.12  

Point Extraction (per sample) 10.8 

Matching 1 PM to 1 AM 2.53 

Matching 1 PM to 200 AM 506 (8.43 minutes) (Duo Core 2.33 GHz ) 

 

Chen [34] reported that it takes 7 hours  to retrieve one subject from 133 subjects (PC 

with a 2.99 GHz Pentium 4 processor) with 66% rank-1 accuracy, not including time 

for tooth contour extraction [34]. Although it is hard to compare the computational 

speed as different dataset and different hardware are used, the time listed in Table 3.9 

is to give an intuitive feeling of the computational time of this work. As far, no 

benchmark dental databases are available. Table 3.9 is useful for the comparison of 

identification speed in Chapter 4 using the same computer system. 

3.10 Summary 

A point-based approach has been proposed for human 3D dental identification. The 

(PIDI) algorithm includes algorithms for feature extraction, feature description and 

correspondence. 60 PM samples and 200 ante mortem samples are used in this study. 

These 60 samples consist of the 7 complete genuine samples, in addition, 11 partial 
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genuine samples, 32 noisy genuine samples and 10 imposter samples taken from 

multi-ethnic Asian groups (Chinese, Indian and Malay) are also included.  

The rank-1 identification accuracy of complete sample identification is 100%. 

The rank-1 identification accuracy of matching 11 partial PM sample is 72.7% and 

78.1% for 32 noisy PM samples.  

Overall accuracy of 50 genuine samples (complete, partial, and noisy) is also 

calculated and compared in experiments between manually segmented PM samples 

and auto-segmented PM samples. 94% rank-1 identification accuracy has been 

achieved in identification of 50 manually segmented PM samples and it decreases to 

80% in identification of 50 auto-segmented PM samples. In contrast, only 86% and 64% 

rank-1 accuracy have been achieved respectively in the above two identifications by 

applying the existing iterative closet point (ICP) algorithm alone. In addition, the 

proposed approach is more robust to obtain the correct identities when AM sample 

size is increased. Furthermore, based on the sample size used in this study, a matching 

error threshold of 0.8 has been identified to differentiate genuine and imposter 

samples. Compared to the literatures, this work makes the following contributions: 

1. Existing system based on 2D x-ray radiographs. Radiographs with poor 

contrast and exposure levels are unsuitable for identification, as it is 

difficult to extract tooth contours accurately with minimal geometric 

distortions. However, using 3D makes the identification more feasible 

even under large-scale decimation in noisy conditions. Samples with 

down to 10% of the scanned points and partial and noisy samples can be 

identified as demonstrated in the experiments.  

2. 2D images are projections of 3D objects. Differences in the radiographs 

arising from different imaging angles are often significant to cause 

incorrect matching. The extracted tooth contour which is used as an 

anatomic dental feature is not an accurate description of 3D tooth profile. 

Once different imaging angles are applied, tooth contours of the same 

sample are different in profiles. In contrast, no distortion of the tooth 

profiles occurs as projection from 3D to 2D is not required. The problem 

arising from different imaging angles in 3D is what we call pose 
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variation problem. Results in Experiment VI and VII demonstrate the 

capability of the proposed method in dealing with pose variations. 

3. Partial teeth identification is feasible in 3D without missing tooth 

detection or tooth classification.  

4. More salient points are extracted using the proposed feature extraction 

algorithm than existing work [64, 65] thus reducing time demand for 

correspondence in Experiment V. The feature descriptor and the 

correspondence algorithm are tested to be more robust to pose variations 

compared to existing work [68] in Experiment VI and VII respectively. 

5. The proposed approach takes 45 minutes (Duo Core CPUs with a clock 

speed of 2.33 GHz and 1.96GB RAM) to identify 1 PM subject from 200 

subjects. Based on existing 2D approaches, it takes 7 hours (PC with a 

2.99 GHz Pentium 4 processor) to identify 1 subject from 133 subjects 

[34].  

The disadvantages of the proposed technique are acknowledged as well since 

presently available dental source for identification is primarily 2D radiograph. 

However, the reported techniques are for 3D dental image of the victim, which may 

not be available in every case. In addition, impressions would have to be made of the 

victim and 3D scanning would have to be performed, adding to the cost of the 

comparison technique in this study. But there is a trend towards capture and 

repository of 3D dental records, facilitated by availability and decreasing cost of rapid 

3D scanners, such as 3Shape Dental System [78].  In a situation such as a mass 

disaster, where there may be hundreds of victims, it becomes feasible to also perform 

quick capture of dental impressions of remains. Other than text-recording of the 

victims’ teeth status which is typically done during onsite investigation, it is more 

intuitive to archive and exam the 3D tooth shapes. The technique proposed could be 

adjunctively used with the traditional 2D dental identification method.  
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Chapter 4 Arch-based Matching and Identification and A 

Hierarchical Ranking Identification Scheme (HRIS) 

 

Towards development of any automated scheme, the automated level, identification 

speed and identification accuracy are three factors should be considered and be 

balanced.  

As the results showed in Chapter 3 that it takes 45 minutes on average to 

retrieve one subject from 200 subjects, to improve identification efficiency, an arch-

based matching and identification approach is proposed and investigated. Dental arch 

extraction, arch feature description and arch matching techniques are described. A 

Radial Ray Algorithm (RRA) is proposed to extract dental arches. Then a 

Hierarchical Ranking Identification Scheme (HRIS), which combines the arch-based 

and point-based techniques, is proposed to speed up the retrieval of correct matches. 

Arch-based ranked matches serve as pre-filtered set for the more accurate point-based 

matching. Compared to the point-based technique alone, the HRIS is expected to 

improve the identification speed by excluding a large number of imposter AM 

samples at the arch matching level, while maintaining final identification accuracy.  

In Chapter 4, only auto-segmented AM and PM are used in experiments for a 

fully automated hierarchical identification scheme development. Manual-segmented 

samples are not considered. 

4.1 Introduction 

The dental arch form study has been receiving increasing attention both in dental 

science [79-81] and engineering [62] for orthodontic applications. Dental arch is the 

curve formed by the cutting edges and masticating surfaces of the teeth as indicated in 

Figure 4.1(a). To correct malocclusions and assisting in shaping teeth and jaws, the 

dental arch provides important reference for dental brace (arch wire) (Figure 4.1(b)) 

design and customized production in orthodontic applications.  



 

 

70 
 

 

(a) (b) 

Figure 4.1 (a) Dental arch (b) Dental brace 

In orthodontics, geometric morphology analyses of the dental arch form using 

mathematical functions such as thin-plate spline [81], beta function, natural cubic 

splines, polynomial equations, and Hermite cubic splines [80] under a normal 

occlusion assumption have been demonstrated in literatures. However, manual 

calibration and specification of feature points on every plaster model are required in 

the above mentioned studies, as illustrated in Figure 4.2, making mass extraction and 

fast retrieval of the dental arch infeasible. A comparison of the literature study on 

dental arch is presented in Table 4.1.  However, most of the listed studies require full 

and healthy adult dentitions which include the second molars. Calibration (Figure 4.2 

(a-b)) and manual specification of arch mark points (Figure 4.2 (c)) are also required. 

Although the arch shape is considered to be unique among individuals, the shape of 

dental arch is distorted in 2D radiographs, thus making it not suitable in 2D 

identification scheme in literatures [26, 53, 82].  

   

(a)                       (b)                                                 (c) 

Figure 4.2 Calibration (a, b) and manual arch mark point specification (c) in literatures 

[62, 80] 
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Table 4.1 comparison of the literature study on dental arch 

Year # of 

Subjects 

# of 

Arch  

Points 

Assumptions & 

Requirements 

Aims Conclusions 

1993

[83] 

90  14 sound dentitions 

 ideal natural 

occlusion  

manual arch mark 

point specification 

calibration 

size and shape 

differences in sexual 

dimorphism 

 

No difference in shape, 

male arches are slightly 

bigger 

2004

[62] 

34 Many 

Ridge 

points 

manual 4 reference 

point specification 

calibration 

 

3D tooth crown 

segmentation in dental 

casts 

Algorithm is robust and 

accurate  

2005

[81] 

50 14 adult dentition 

ideal natural 

occlusion 

manual arch mark 

point specification 

calibration 

Identification of the 

mean 

conFigureuration of 

the clinical arch 

 

No sexual dimorphism 

 

2008

[80] 

40  5 & 7 Normal occlusion 

manual arch mark 

point specification  

calibration 

mathematical analysis 

of dental arch 

curvature 

 

Fourth-order 

polynomial function may 

be used as a guide to 

fabricate customized arch 

wires 

 

4.2 System Approach Overview  

An overview of the Hierarchical Ranking Identification framework is shown in Figure 

4.3. For every PM digitized dental model, it will also retrieve from an AM database 

which consists of 200 digitized dental models to find the closest match: dental arch 

matching first and then point matching to the top 10%, 20%, 50% ranks in arch-

ranked List. The same pre-processing has been applied to new PM samples. They 

were first decimated and auto-segmented before arch detection and correspondence. 

There are two major steps in arch matching, as shown in Figure 4.3: the dental arch 
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extraction and correspondence. The details are elaborated in the following sections.  A 

Radial Ray Algorithm (RRA) is proposed to automatically extract dental arch with the 

following features: 

 It is fully automatic and fast; 

 No need for manual specification of the occlusal plane and reference points; 

  No need for pre-alignment and calibration of samples; 

 Easy implementation; 

AM Plaster
Casts

PM Plaster
Casts

AM Digitized
Model

PM Digitized
Model

Auto PCA-plane Segmentation

Auto PCA-plane Segmentation
Decimation

to 10%

Decimation
to 10%

AM Arch
Extraction

PM Arch
Extraction

Correspondence
Arch Matching Score

and Arch Rank List

Preprocessing

Arch Matching and Identification

Get the First (10%, 20%, 50%, 3 Experiments) Ranks in the Arch Rank
List to continue Point-based Matching (Methods in Chapter 3)

Final Rank
List

Hierarchical Ranking Identification Scheme (HRIS)

 

Figure 4.3 An overview of Arch-based Identification and A Hierarchical Ranking 

Identification Scheme 
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4.3 Algorithm Overview 

The two main components of arch-based matching and identification framework are 

arch extraction and correspondence. Table 4.2 shows the main steps of the Radial Ray 

Algorithm (RRA) and the Hierarchical Ranking Identification Scheme (HRIS). The 

details are elaborated in the following sections.  

Table 4.2 Main steps of Radial Ray Algorithm (RRA) and the Hierarchical Ranking 

Identification Scheme (HRIS) 

 

Input: 81 PM surface model and 200 AM surface model 

Output: 81 rank lists with each has 20, 40 or 100 ranks by using T10, T20, T50 respectively  

Steps: 

Radial Ray Algorithm (RRA) 

 Arch Extraction 

1) PCA Alignment of principal axes x, y, z to the Euclidian coordinate X, Y, Z for both 

PM and AM samples (Figure4.5) 

2) Boundary points computation for both AM and PM samples (Figure4.7(a)) 

3) Arch opening direction constraint (Figure4.7(b-c)) 

4) Extract middle points of boundary points by RRA (Figure4.8) 

 

 Arch Feature Description 

5) Starting from the middle extracted points, 10 points on each side are used to 

describe arch feature. So the total number of points 21 is specified (Figure4.10) 

 

 Arch matching  

6) Flip effect constraint: flip extracted PM samples about Y axis (Figure4.11) 

7) Match both original and flipped PM arches to 200 AM arches by calculating 
rotation and translation using 21 points (Figure4.12) 
The outcome is 81 arch rank lists with each having 200 ranks. (Table 4.3) 
 

Hierarchical Ranking Identification Scheme (HRIS) 

8) Get the first 10% (T10), 20% (T20) and 50% (T50) ranks in the arch rank lists to 

continue more detailed point-matching as demonstrated in Table 4.3 using 

methods in Table 3.1  

The outcome of using T10 threshold is 81 rank lists with each having 20 ranks 

The outcome of using T20 threshold is 81 rank lists with each having 40 ranks 

The outcome of using T50 threshold is 81 rank lists with each having 100 ranks 
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4.4 Data Preparation  

AM samples 

 The same 200 ante-mortem samples are used, comprising complete mandibular teeth 

that have been decimated and auto-segmented.  

PM samples  

The PM samples consist of 81 mandibular teeth as shown in Figure 4.4. The samples 

have been pre-processed and divided into five groups as shown in Figure 4.4 (a-e) 

respectively.  

 

 

(a) the 11 simulated PM samples (S1-S11) taken exactly from AM samples, a subset of 

AM samples which have the same orientation, same number of points and the same 

mesh topology with their AM samples. This group of samples is to test the feasibility 

of dental arch identification and to show inner-personal difference of dental arches.  

 

 

(b) the same 7 complete samples used in Chapter 3 with addition of four new complete 

samples (C8-C11).  

 

 

(c) the same 10 imposter samples (IM1-IM10) in Chapter 3. 
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(d) the same 11 partial samples (P1-P11) used in Chapter 3.  

 

 

(e) 3 of 38 noisy samples (N1-N3) with distorted individual tooth shapes that are not 

easily recognized even visually. 

Figure 4.4 Sample illustration 

4.5 Dental Arch Extraction 

As a dental sample could have any initial orientation, its orientation should be 

properly aligned with that of matching sample. In Chapter 3, the alignment is realized 

by matching pose invariant feature points. In this chapter, Principal Component 

Analysis (PCA) alignment is used to achieve fast alignment before arch extraction. 

The following steps are implemented for dental arch extraction. 

PCA Alignment  

Compute the rotation matrix using PCA as shown in Figure 4.5 and align principal 

axis x, y, z to the respective Euclidian coordinate X, Y, Z. Considering only rotation 

around the third principal axis, which is the most possible rotation during data 

preparation as illustrated in Figure 3.15, there are two possible results after PCA 

alignment as shown in Figure 4.6 (a-b). The x and y rotations are so small and are 

usually neglected. Principal axes do not have positive or negative directional property. 

To make it more robust, if x and y rotations are also considered, there are other two 
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possibilities as shown in Figure 4.6 (c-d). The blue models with their bounding boxes 

show the different initial orientations and the grey models show results after PCA 

alignment. The four possibilities are: 

 dental arch opening pointing towards positive Y and teeth surface pointing 

towards positive Z in Figure 4.6 (a) 

 dental arch opening pointing towards negative Y and teeth surface pointing 

towards positive Z in Figure 4.6 (b); 

 dental arch opening pointing towards positive Y and teeth surface pointing 

towards negative Z in Figure 4.6 (c) 

 dental arch opening pointing towards negative Y and teeth surface pointing 

towards negative Z in Figure 4.6 (d) 

It is interesting to find that the first principal axis is always aligned with x axis which 

is perpendicular to the Sagittal plane; second principal axis y is perpendicular to the 

Coronal plane; and the third principal axis z is perpendicular to the Transverse plane. 

The three planes are defined for human body anatomically as shown in Figure 4.7. As 

there are four possible orientations after PCA alignment, two constraints (I and II) 

will be added in order to achieve correct and consistent alignment to the Euclidian 

coordinates X, Y, Z before arch extraction. 

 

Figure 4.5 Principal axes 
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(a)                                                                                    (b) 

 

                                (c)                                                                            (d) 

Figure 4.6 Four possible results after PCA alignment 

 

Figure 4.7 Anatomical planes of human body 
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Constraint 1: arch opening direction constraint 

As shown in Figure 4.6 (a-d), the dental arch opening direction is either positive Y or 

negative Y. To get correct and consistent alignment, the following constraint is 

applied to get positive Y alignment. 

1) Compute the boundary points of the mesh model and project them onto the x-y 

plane as shown in  Figure 4.8 (a) 

2) The centroid is the origin of the projected boundary points as shown in Figure 

4.8 (b-c) and the centroid is found to be close to the anterior teeth. Let 

Lmax denotes the length from the centroid to maximum Y value of boundary 

points (dash line) 

Lmin denotes the length from the centroid to minimum Y value of boundary 

points (solid line) 

3)  If Lmax< Lmin (Lmax is shorter than Lmin) as shown in Figure 4.8(c), flip 

boundary points about X axis on X-Y plane. This may create a flipped dental 

arch about Y axis. This flipped effect will be discussed later. It will be 

eliminated by adding another constraint (constraint 2). 

 

 

(a) 
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  (b)                                                                    (c) 

Figure 4.8 Boundary points on X-Y plane 

 

Arch Extraction 

The arch extraction method is based on the middle points (black circles in Figure 4.8) 

extraction of boundary points (blue ‘+’ marks in Figure 4.9).  The following steps are 

implemented. 

1) Specify point B according to centroid A as shown in Figure 4.9.  

LAB is defined as the length between point B and the centroid A. LAB is 70% of 

the total length L (Lmax+Lmin in Figure 4.8(b)) of projected points along Y 

axis.  Point B should have a higher Y value than Y maximum of boundary 

points to guarantee that one radial ray (black lines emitted from B) only 

intersect with either left jaw teeth boundary or right jaw teeth boundary. The 

middle points will be placed in between the longest intersection ray and the 

shortest ray in each sub-divided area as shown in Figure 4.9. Also B should 

not have a much higher Y value than Y maximum of boundary points since 

that will not yield descriptive enough arch shape. We observed that the use of 

70% is the most suitable value for all the samples. 

2)  Start from positive X axis, divide the space into 50 sub-areas from 0 to 180 

degree 

The number 50 is also determined from observations. As reviewed in Table 

4.1, literatures used 5, 7, 14 points to interpolate a curve to describe the arch 

shape. Figure 4.10 upper row shows that if we use the same number of points, 
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the shapes are not smooth enough to describe real arch shapes.  For easy 

implementation and accurate arch description, no interpolation will be 

implemented as enough arch points could be computed to describe exact arch 

shape. It is true that more points will give more details of arch shape but it 

should not be over described. As the lower row middle and right figures show 

that when dividing 55 and 60 sub-areas, over described effect will appear. In 

each sub-area, the middle points will be placed in between the longest 

intersection ray and the shortest ray in each sub-divided area as shown in 

Figure 4.10. The middle ray length is calculated as the average length of these 

two. 

 

Figure 4.9 Dental arch extraction 
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Figure 4.10 Under described (upper row) and over described (lower middle and right) 

dental arches 

4.5 Arch Feature Description 

As stated in previous arch extraction section, no interpolation is implemented for 

extracted points since enough arch points could be computed to describe exact arch 

shape. When fourth-order polynomial function [80] is used to interpolate the extract 

points, over fitting often occurs as more points (40+ points) are used to describe the 

dental arch in this work compared to literatures (14 points). 

 

Figure 4.11 Extracted anterior dentition arch 

 

As can be seen in Figure 4.11, parts of dental cast in the auto-segmented 

sample can be seen attached to the pre-processed sample. Starting from the middle 
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extracted points, 10 points on each side are used during matching. The suitable 

number of points specified is 21 from observations.  As shown in Figure 4.11, the 

attached dental cast should be excluded, but there is no obvious boundary to separate 

the last molar to the attached casts. The 21 specified points include anterior teeth 

(incisors and canines), premolars and the first molar. All the arch points below the 

black line are used in identification. From samples tested, 21 points have been found 

to generally cover most of the anterior teeth while eliminating the attached dental cast 

at the posterior teeth, such as the one shown in Figure 4.11. There will be variation 

from samples to samples, but the 21 points will provide adequate allowance to ensure 

the extracted anterior teeth having the attached dental cast removed. Kieser et al. [84] 

indicated that anterior dentition are in fact unique. All anterior teeth are included. 

4.6 Dental Arch Matching  

Constraint 2: flip effect constraint 

As shown in Figure 4.6, there are four possible results after PCA alignment. By 

adding Constraint 1- arch opening direction constraint, two possibilities are excluded 

and leaving with either the case shown in Figure 4.6(a) or Figure 4.6(c).  However, 

the teeth may also flip about Y axis (left jaw teeth and right jaw teeth flip with each 

other) after PCA alignment. And as mentioned in Constraint 1 step 3) that if Lmax< 

Lmin as shown in Figure 4.8(c), boundary points are mirrored about X axis on X-Y 

plane which also create a flipped dental arch about Y axis.  To offset the flip effect, 

the extracted points are matched first, and then the flipped points are matched again. 

The points with smaller matching error will be taken as the correct match.  

The following two steps are implemented to match the dental arch. 

1) Calculate AM and PM dental arches and flip the PM dental arch as Figure 

4.12 shows.  

AM arch---red line with circle ‘o’ marker 

PM arch---blue line with star ‘*’ maker 

Flipped PM arch--- green line with addition ‘+’ maker 
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Figure 4.12 PM dental arch, flipped PM dental arch and AM dental Arch before 

matching 

 

(a)                                                            (b) 

Figure 4.13 (a) AM and PM arch matching (b) AM and flipped PM arch matching 

 

2)  Calculate the rotation matrix using 21 points, align the extracted dental 

arch then calculate the point-to-point Euclidian distance. The mean 

distance is the matching error. Figure 4.14(a) shows the matching error 

(0.9109) between AM and PM arches and Figure 4.14(b) shows the 

matching error (0.9459) of AM and flipped PM arches.  Those two errors 

do not have much difference since the jaw teeth has good symmetrical 

structure. Those two errors do not have much difference (< 1.0 error value 

as found for genuine matching from samples studied) as the jaw teeth in 

this case has good symmetrical structure. Other samples’ matching errors 
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may have much larger difference. The smaller error (0.9109) is used to 

rank dental arch matching results.  

3) Repeat the above process until all 200 AM samples have been matched 

and sort the matching errors in ascending order. The outcome is a ranked 

list which contains 200 ranks as shown in Table 4.3. Figure 4.14 shows 

some examples of the matching error difference when matching genuine 

sample and imposter samples. As it is shown in Figure 4.14, the genuine 

matching usually has smaller error. 

 

Figure 4.14 Difference of genuine arch matching error (top left) and imposter arch 

matching error (the other three) 

 

4.7 Demonstration of the Hierarchical Ranking Identification Scheme 

Table 4.3  1-200 arch rank list 

Arch 

Rank 

1 … 20(T10) … 40(T20) … 100(T50) … 200 

AM 

Index 

AM30 … AM28 … AM72 … AM66 … AM156 
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The outcome is a ranked list which contains 200 ranks with matching error in 

ascending order as shown in Table 4.3. The AM sample with smallest matching error 

is considered to be the correct match for a PM sample and will be ranked top as rank-

1. For example, for the ranked list shown in Table 4.3, most likely this PM sample has 

the same identity with AM30. However,  

1) dental arch is a two dimensional feature extracted from 3D samples, it may not 

be accurate enough; 

2) Also due to the variation in the data preparation procedures, PM arch and AM 

arch from the same person may not be exactly the same.  

As it is believed that 2D arch feature matching has certain level of accuracy but is not 

as accurate as the point-based 3D matching.  It saves time by choosing top ranks in 

the arch-ranked list for point-based matching instead of the entire 200 AM samples.  

For this, a proper threshold is needed. In this study, three thresholds are chosen: 10% 

ranks (T10=200*10%=20), 20% ranks (T10=200*20%=40), and 50% ranks 

(T50=200*50%=100). These three thresholds are tested for genuine PM samples in 

Figure 4.4 (b, d, e). For example, if the unidentified sample is PM1, as it is shown in 

Table 4.4, the top row of the arch matching outcome, Arch Rank indicates 1-200 

ranks with the smallest error rank the top; AM Index indicates the corresponding AM 

sample index at each rank. Next, if threshold T10 is defined, only the first 20 ranks 

will be matched against in a detailed level by applying the point-based approach 

mentioned in Chapter 3.  This will exclude 90% of the AM samples, thus saving 90% 

of time for point extraction and matching.  The same apply for threshold T20 and T50.  

4.8 Experiments and Discussion 

Experiment I  Feasibility of Dental Arch Identification  

This experiment aims to show the feasibility of using dental arch as an identification 

feature. Samples in Figure 4.4(a) which have the same orientation and same mesh 

topology with their corresponding AM samples are tested in Experiment I. Through 

matching the 11 completed simulated PM samples (which is an exact subset of the 

AM samples), inner-personal difference of arch feature are investigated. Table 4.4 and 

Figure 4.15 show the matching results. Since the PM samples are selected samples of 

the AM samples, it excludes errors which could happen during data preparation, such 
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as different initial orientations, different mesh topology and different segmentation 

results due to different preparations at different times.  Without the aforementioned 

errors, the results manifest that arch feature is a significantly discriminative feature 

with all simulated samples correctly identified at Rank 1. There is no need to carry out 

next level of detailed matching. In Figure 4.15, when comparing errors of rank 1 and 

rank 2 to the rest of the gradually increasing matching errors, it shows that genuine 

samples with matching errors close to 0, are highly differentiable from the rest of the 

imposter samples whose averaged matching errors hit above 1.  

Table 4.4 Arch identification of 11 simulated PM complete samples to 200 AM 

samples 

PM   1 2 3 4 5 6 7 8 9 10 11 

Arch 

Rank 

1 1 1 1 1 1 1 1 1 1 1 

 

 

Figure 4.15 Simulated arch averaged matching errors at the first 10 ranks 

 

Experiment II  Complete Samples Identification Using HRIS 

As mentioned in Experiment I, there are inevitable differences during data preparation 

that have to be considered, such as different initial orientations, different mesh 

topology and different segmentations. The difference has been illustrated in Figure 

3.2(f)-differences of PM and AM samples. As the number of points and mesh 

topology is different, the samples prepared by PCA segmentation and PCA alignment 

are also different. Figure 4.16 shows the differences. The AM and PM samples 

belonging to the same person have not been perfectly aligned with each other after 

0 

1.033 1.083 1.124 1.146 1.195 1.221 1.241 1.27 1.283 

Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 Rank8 Rank9 Rank10

Simulated Arch Matching Error (mm) 
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PCA alignment due to the above mentioned difference. Thus the arch matching has 

relatively larger error (1.1263) as shown in Figure 4.16(b-c) compared to that in 

Figure 4.13(a) whose PM and AM samples are better aligned.  This can be seen in 

only three PM samples in Table 4.5 being identified at rank 1 by applying arch 

matching alone.  

 

 

(a)                                                                                      

 

         (b)                                                                       (c) 

Figure 4.16 An example of samples are not identified at rank-1 after arch matching (a) 

PCA alignment of AM and PM samples (b) extracted arches before matching (c) 

arches after matching 

 

Table 4.5 shows the identification results taking the errors into consideration. 

The Arch rank indicates matching results by matching dental arch alone. The 

following three Final rank rows show the final results by applying the proposed 

Hierarchical Ranking Identification scheme.  The last column indicates final 

identification accuracy at each threshold. As it is shown in Table 4.5, only three 

samples are successfully identified at rank-1 after arch matching, but at rank 31, all 11 

PM samples are identified.  Therefore, we could indicate that top 15.5% ranked list 

(31/200) achieves 100% accuracy at arch matching level. Top 1% arch matching 
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accuracy is 54.5% (6/11); Top 2% arch matching accuracy is 63.6% (7/11); top 8% 

arch matching accuracy is 81.8% and top 10% arch matching accuracy is 90.9%. 

In next level of point matching, top 10% accuracy also achieves 90.9%.  Since 

threshold is set to T10, only the first 20 AM samples will be matched against.  The 

arch rank of PM11 is 31, so its corresponding AM sample is not included in the point 

matching level. Thus, it could not be successfully identified at top 10% accuracy with 

threshold T10. However, the top 20% accuracy achieves 100% and top 50% accuracy 

also achieves 100%. This indicates that the complete dental sample has highly 

discriminative identification characteristics.  

 

Table 4.5 Arch identification of 11 simulated PM complete samples to 200 AM 

samples 

Complete 

PM  

1 2 3 4 5 6 7 8 9 10 11  

Arch 

rank 

1 2 15 2 2 20 3 1 7 1 31  

T10 1 1 1 1 1 1 1 1 1 1 NA 90.9% 

accuracy 

T20 1 1 1 1 1 1 1 1 1 1 1 100% 

accuracy 

T50 1 1 1 1 1 1 1 1 1 1 1 100% 

accuracy 

 

To compare with the arch matching errors of the simulated PM samples in 

Figure 4.15, the average arch matching errors of PM sample PM1 PM8 and PM11 are 

used since other PM samples are not successfully identified at rank 1. The arch 

matching error is illustrated as the blue line with diamond markers as shown in Figure 

4.17. The other three lines indicate the averaged final point-matching errors of 11 PM 

samples at different thresholds. Figure 4.17 shows errors at the first 10 ranks. 
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Figure 4.17 Arch matching errors and final matching errors of complete PM samples 

 

Firstly, if we compare the blue lines in Figure 4.15 and Figure 4.17, rank 1 and 

rank 2 difference is decreased as data preparation difference is excluded in 

Experiment I, which is the ideal case. However, if data preparation difference is 

considered, the rank1-rank2 difference is still much bigger than that of any other two 

consecutive ranks in Experiment II as shown in Figure 4.17.   

Secondly, the other three final matching error lines for T10, T20 and T50 

thresholds follow the same trend in that rank1-rank2 difference is much bigger than 

that of any other two consecutive ranks. And the results in Figure 4.17 are also 

consistent with what have been discovered in Chapter 3 with most imposter matching 

error larger than 0.8 in Figure 3.8. The rank2 final matching error is all above 1 in 

Figure 4.17. In addition, at a particular rank, the error decreases as more AM samples 

included in the matching which is also consistent with what has been compared 

between Table 3.2 and Table 3.3. This indicates that when more AM samples are used 

in identification, more likely there are more similar samples to that particular PM 

sample. Threshold 0.8 has been found for the 200 AM samples. More AM samples 

could be used for future validation.  
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To compare with Chapter 3, the same 7 complete samples (1-7 samples in 

Table 4.5) achieved 100% rank-1 identification accuracy with a more than 6 times 

improved identification speed using HRIS. 

Experiment III Imposter Sample Identification Using HRIS 

Samples used in imposter sample identification are shown in Figure 4.4(c) 

which is the same set of samples as shown in Figure 3.2(b). These chosen PM 

samples do not have corresponding AM samples in the AM database.  

As what has been investigated in Experiment II in Chapter 3, a threshold of 

final matching error of 0.8 appears to be suitable to distinguish the genuine PM 

sample identification and imposter PM sample identification, based on the 200 AM 

samples and the tested imposter PM samples used. In Chapter 4, imposter sample 

identification experiment is design to investigate the arch threshold for the two groups 

and as well verify the matching error threshold.  The results are shown in Figure 4.18. 

 

Figure 4.18 Arch matching errors and final matching errors of 10 imposter PM 

samples 

 

Firstly, comparing Figure 4.17 (genuine) and Figure 4.18 (imposter), the most 

obvious difference is the difference between rank-1 and rank-2 errors. All of the four 

error lines are gradually increasing from rank1 to rank10. There is no obvious 
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difference between rank1-rank2 error and any other two consecutive ranks in imposter 

identification.   

Secondly, the rank1 errors are all below 0.8 in Figure 4.17 in contrast with 

those above 0.8 in Figure 4.18. In addition, at a particular rank, the error decreases as 

more AM samples are included in the matching. When more AM samples are used in 

identification, more likely there are more similar samples to that particular PM sample. 

Threshold 0.8 has been found for using 200 AM samples. More AM samples could be 

used for future validation. 

Experiment IV Partial Sample Identification Using HRIS 

Samples used in partial sample identification are shown in Figure 4.4(d). These 

samples are designed to the ability of the HRIS to identify partial samples. The results 

are shown in Table 4.6. The last column indicates the final identification accuracy at 

each threshold. 

The top 10% ranked list achieved is only 27.3% accuracy; top 20% ranked list 

achieved 45.5% accuracy and top 50% ranked list achieved 72.7% accuracy. This 

indicates that with half of the AM database is filtered after arch matching, 72.7% 

accuracy can be obtained. The rank-1 identification accuracy of matching 11 partial 

PM sample is 54.5% when half of the AM database is filtered.  

It is observed that partial samples that have higher arch rank (P1, P8, P11) 

often have less number of missing teeth and better left-jaw-and-right-jaw symmetry 

than those having lower ranks (P2, P3, P4, P5, P6, P7, P9, P10). Figure 4.19 shows 

the dental arches of partial samples P1, P8, P11 which are identified to be within the 

top 10%.  Even with some teeth missing, extracted dental arch looks crooked in 

Figure 4.19 (a); however, relatively high rank is still obtained if a sample has less 

number of missing teeth and better left-jaw-and-right-jaw symmetry.  
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Table 4.6 Identification of 11 PM partial samples from 200 AM samples (HRIS) 

Partial 

PM  

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11  

Arch 

rank 

7 74 34 34 124 96 124 1 94 152 12  

T10 2 NA NA NA NA NA NA 1 NA NA 1 27.3% 

T20 2 NA 1 1 NA  NA NA  1 NA NA 1 45.5% 

T50 3 1 1 1 NA 3 NA 1 1 NA 1 72.7% 

 

 

Figure 4.19 Dental arches of top 10% identified partial samples 

 

Experiment V Noisy Sample Identification Using HRIS 

 The number of noisy samples has been increased from 32 to 38. A few examples of 

noisy samples are shown both in Figure 3.2 (d) and Figure 4.4 (e).  Experiment IV in 

Chapter 3 and this experiment show that when a single tooth shape in the jaw has 

been severely distorted, it is still identifiable as long as the sample keeps its arch 

curve. Table 4.7 and Table 4.8 show the results of noisy sample identification using 

HRIS. ‘NA’ denotes rank ‘not available’ at certain threshold. 

The top 10% ranked list achieves 39.5% accuracy; top 20% ranked list 

achieves 55.3% accuracy and top 50% ranked list achieves 73.7% accuracy.  This 

indicates that if half of the AM database is filtered after arch matching, 73.7% 

accuracy can be obtained. 
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To compare with noisy sample identification accuracy in Chapter 3, the rank-1 

identification accuracy of matching 32 noisy PM samples (The first 32 samples in 

Table 4.7 and Table 4.8) is 59.4%.  

Table 4.7 Identification of noisy samples (1-19) from 200 AM samples (HRIS) 

Noisy 

PM 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Arch 

rank 

3 

 

9 

 

1 

 

7 

 

2 

 

8 

 

119 

 

26 

 

53 

 

2 

 

129 

 

30 

 

7 

 

107 

 

166 

 

142 

 

162 

 

3 

 

1 

 

 

T10 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

 

NA 

 

 

NA 

 

NA 

 

1 

 

NA 

 

 

NA 

 

1 

 

 

NA 

 

NA 

 

NA 

 

NA 

 

1 

 

 

2 

 

 

T20 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

 

NA 

 

 

1 

 

NA 

 

1 

 

NA 

 

 

1 

 

1 

 

 

NA 

 

NA 

 

NA 

 

NA 

 

1 

 

 

2 

 

 

T20 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

 

NA 

 

 

1 

 

NA 

 

1 

 

NA 

 

 

1 

 

1 

 

 

NA 

 

NA 

 

NA 

 

NA 

 

1 

 

 

2 
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Table 4.8 Identification of noisy samples (20-38) from 200 AM samples (HRIS) 

Noisy

PM 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

26 2

7 

2

8 

2

9 

3

0 

3

1 

3

2 

3

3 

3

4 

3

5 

3

6 

3

7 

3

8 

 

Arch 

rank 

3 1

3 

3

4 

1

0

2 

9 2

7 

115 7

7 

3

4 

1

2

8 

1

9 

7

2 

8

2 

7

6 

2

2 

1

0 

1

4

2 

4

4 

7

2 

 

T10 1 

 

1 

 

N

A 

 

N

A 

 

3 

 

N

A 

 

NA 

 

N

A 

 

N

A 

 

N

A 

 

1

6 

 

N

A 

 

N

A 

 

N

A 

 

N

A 

 

1 

 

N

A 

 

N

A 

 

N

A 

 

39.5% 

T20 1 1 1 N

A 

3 1 NA N

A 

3

7 

N

A 

3

2 

N

A 

N

A 

N

A 

1 1 N

A 

N

A 

N

A 

55.3% 

T50 1 1 1 N

A 

6 1 NA 1 9

4 

N

A 

8

0 

1 1 7

6 

1 2 N

A 

1 1 73.7% 

 

The Cumulative Match Characteristic (CMC) Curve 

Overall accuracy of 60 genuine PM samples is also calculated. As what has been 

evaluated after Experiment IV in Chapter 3, CMC curve (red line with triangle marker) 

is shown in Figure 4.20. There are 60 genuine samples which consist of 11 complete 

samples in Figure 4.4 (b), 11 partial samples in Figure 4.4 (d) and 38 noisy samples in 

Figure 4.4 (e). For each threshold, CMC curve is shown in Figure 4.20.  

 

Figure 4.20 Identification accuracy comparison of total samples in Chapter 3 and 

Chapter 4 
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The following interpretations of Figure 4.20 are stated. If all types of genuine samples 

(complete, partial, and noisy) are considered, by using HRIS,  

 46.67% identification accuracy achieves when 90% AM data could be excluded; 

 61.67% identification accuracy achieves when 80% AM data could be excluded; 

 78.33% identification accuracy achieves when 50% AM data could be excluded. 

For matching of complete samples (Figure 3.2 (a) lower row and Figure 4.4 (a)) are 

compared, as it is shown in Figure 4.21 that 

 90.9% identification accuracy achieved when using top 10% of arch-ranked AM data; 

 100% identification accuracy achieved when using top 20% of arch-ranked AM data; 

 100% identification accuracy achieved when using top 50% of arch-ranked AM data. 

 

Figure 4.21 Identification accuracy comparison of only complete samples in Chapter 

3 and Chapter 4 

 

4.9 Computational Time of HRIS  

The same set of complete samples in is used as those in Chapter 3. The number of 

complete sample has been increased from 7 to 11 as shown in Figure 4.4(b). Four new 
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samples PM8, PM9, PM10, and PM11 have been added. Table 4.7 is used to compare 

computational speed in Table 3.9 regarding identification speed for a single PM 

subject. 

As mention before, although it is hard to compare the computational speed 

with that in literature work as different dataset and different hardware are used, now it 

is feasible to compare identification speed using the same dataset and the same 

hardware but different identification schemes.  

As what is shown in Table 4.9 for computational time comparison in 

identification of complete samples between Chapter 3 and Chapter 4, it only needs 

about 7 minutes to achieve 90% identification accuracy while reducing more than 6 

times (45/7.1) of identification speed.  100% accuracy could be achieved when 

eliminating 80% of the imposter samples, thus reducing about 4 times (45/11.4) of 

identification speed.  

Comparisons of identification speed of partial and noisy samples are more or 

less the same except identification accuracy at each threshold decreases. Partial and 

noisy samples only achieve about 72.7% and 73.7% accuracy respectively when 

eliminating 50% of imposter samples as shown in Table 4.4-4.6. 

Table 4.9 Computational time comparison in identification of complete samples [Unit: 

Second (s)] 

Identifying 1 PM from 200 AM T10 

(Accuracy 90.9%) 

426.38  

(7.1 minutes) 

Identifying 1 PM from 200 AM T20 

(Accuracy 100%) 

703.78 

(11.7 minutes) 

Identifying 1 PM from 200 AM T50 

(Accuracy 100%) 

1535.98 (25.6 minutes) 

Compared to Chapter 3  

Identifying 1 PM from 200 AM 

(Accuracy 100%) 

2700  

(45 minutes) 
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Discussion  

1) Sample size  

Although the PM sample size in this study (60PM&200AM subjects) is rather limited 

compared to the actual cases, it nevertheless is considerably significant when 

compared to those mentioned in the literatures (e.g. 11PM &25 AM subjects [26], 29 

PM&133AM subjects [34]). It also serves to test and evaluate the ability of the 

proposed techniques.  Nevertheless, increasing AM sample size may lead to inclusion 

of more dentitions that are similar and thus more mismatches. More AM samples 

should be included in future investigation. 

2) Identification accuracy 

Although the dental arch matching accuracy is not sufficiently high , it is useful for 

providing a shortlist of ranked candidates and when judiciously selected through the 

use of error threshold identified, can enable the selection of suitable top percentage of 

the ranked list and reduce the need of complete matching of the entire AM database. 

Identification of the top 10% of the arch-ranked list of complete samples achieves a 

high 90.9% accuracy while for partial and noisy samples; accuracy achieved is a 

lower 72.7% and 73.7% respectively.   

3) Identification speed 

It takes only 11.7 minutes on average to retrieve one subject from 200 subjects with 

the developed HRIS framework which reduces identification speed to 26% compared 

to 45 minutes in Chapter 3 while achieving 100% identification accuracy. HRIS 

eliminates 80% of the imposter sample in the AM database.  

The limitations of the proposed technique are acknowledged as well.  Radial 

Ray Algorithm (RRA) and Hierarchical Ranking Identification Scheme (HRIS) are 

most applicable to complete arch matching and identification. For partial arch 

extraction and matching, the proposed techniques need to be improved. 

4.10 Summary  

Towards any automated scheme development, the automated level, identification 

speed and identification accuracy are three factors should be considered and be 
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balanced. Chapter 4 presents development of techniques for arch-based identification 

for a hierarchical ranking identification scheme (HRIS) that involves a faster arch-

based ranking followed by a more accurate point-based ranking. Key issues for the 

arch-based ranking, such as dental arch extraction, arch feature description and arch 

matching techniques, are presented. A Radial Ray Algorithm (RRA) is proposed to 

extract dental arches.  

PM database have been slightly increased to 60 PM samples (11 completed 

PM samples, 11 partial PM samples and 38 noisy PM samples) in Chapter 4. To 

compare with results in Chapter 3, accuracy is also calculated for the same 50 PM 

samples. The 7 complete samples achieved 100% rank-1 identification accuracy with 

a more than 6 times improved identification speed using HRIS. It takes about 7 

minutes on average to identify 1 complete PM sample from 200 AM samples using 

HRIS compared to that of 45 minutes using the first approach alone. However, the 

second approach is less effective in partial and noisy sample identification. The rank-

1 identification accuracy of matching 11 partial PM sample is 54.5% and 59.4% for 

32 noisy PM samples.  

The following contributions are made in Chapter 4: 

 The proposed Radial Ray Algorithm (RRA) is free of manual 

calibration and arch point specification. 

 The proposed fully automated Hierarchical Ranking Identification 

Scheme improves much of identification speed compared to Chapter 3 

by excluding a large number of imposter AM samples at the arch 

matching level for complete samples. 90.9% identification accuracy is 

achieved at threshold T10 when improving more than 6 times of 

identification speed in identification of 11 complete samples. Partial 

and noisy samples only achieve about 72.7% and 73.7% accuracy 

respectively when eliminating 50% of imposter samples as shown in 

Table 4.4-4.6. 
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 The discovered final matching error threshold 0.8 mm in Chapter 3 has 

been re-evaluated for distinguishing genuine identification and 

imposter identification. 

The sample size, identification accuracy and identification speed have been discussed. 

Sample size should be increased in future investigation. The limitations of the 

proposed technique are acknowledged as well.  Radial Ray Algorithm (RRA) and 

Hierarchical Ranking Identification Scheme (HRIS) are fully-automated but most 

applicable to complete arch matching and identification. For partial arch extraction 

and matching, the proposed techniques need to be improved as only 72.7% accuracy 

is achieved at threshold T50 which eliminates 50% imposter AM samples during 

matching. 
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Chapter 5 Single Tooth Classification and Identification 

 

The single tooth identification in this chapter is to investigate the distinctiveness of 

human single tooth and develop single tooth identification scheme which is useful 

when only very partial jaws with teeth are available. Two types of single tooth 

samples are used in experiments: tooth crown segmented from dental casts and entire 

single tooth (crown and root) reconstructed from Cone Beam CT images. Eigenteeth 

feature and K Nearest Neighbourhood (KNN) classifier are applied to classify tooth 

types – posterior (molar, premolar), anterior (canine and incisor).  Then iterative 

closest point algorithm (ICP) is applied to match PM and AM teeth.  

5.1 Introduction 

There are several situations when single tooth identification becomes important:  

1) only a few single teeth are found, e.g. at crime scene (Figure 5.1(a));  

2) a large number of single tooth are found scattered, e.g. after a disaster; 

3) little remained of the jaw sample, e.g. very few teeth on it or the jaw sample is 

heavily distorted except for one or more single teeth (Figure 5.1(b)).  As 

shown in Figure 3.10 (b), it is difficult to align a highly partial sample such as 

the one in Figure 3.10 with only 4 single teeth in the jaw.  

4) The full dental arch may change its shape due to natural growth or orthodontic 

surgery (Figure 5.1(d)) and the number of teeth is different but the individual 

tooth shape does not change much. 

In chapter 5, situations 3) and 4) will be investigated. Situatiosn 1) and 2) will be 

included in future work due to the lack of 3D single tooth database at present. 

Although a single tooth is not as unique to a person as a single fingerprint and 

DNA structure, it is instrumental in forensic dentistry because the size of tooth can be 

used for age estimation, ethnic group differentiation, and the wear and tear of a tooth 

could provide invaluable clues to a person’s eating habits and lifestyle, thus finally 

contributing to identity establishment. In anthropology and archaeology investigations 

as shown in Figure 5.1(c), the single tooth also plays a role in identification. A single 

tooth has helped in the identification of an ancient mummy as that of Queen 
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Hatshepsut. The archaeologist told Reuters "It is 100% definitive. It is 1.80 cm (wide) 

and the dentist took the measurement and studied a tooth. He found it fit exactly 

100%." [85]  

   

                   (a)                                   (b)                                         (c) 

 

(d) 

Figure 5.1 (a) a few pieces of single tooth are found at crime scene (b) a partial jaw 

with a few teeth (c) samples found in anthropology and archaeology investigations (d) 

arch shape change due to orthodontic surgery 

 

Dental numbering system 

Human teeth can be categoried into four types: incisor, canine, premolar and molar. 

There are multiple teeth in each type. Figure 5.2 illustrates the positions of these four 

types of teeth in the jaws.  
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Figure 5.2 Four types of teeth in jaws [86] 

 Incisors: the front four teeth in the upper (maxillary) and lower (mandibular) 

jaws. The two centre teeth are known as central incisors and the teeth on either 

side of them are known as lateral incisors. Incisors have single tooth root. 

 Canines (commonly known as eyeteeth): the two teeth located distal to the 

lateral incisors in each jaw. These teeth form the corners of the mouth. 

Canines have single tooth root. 

 Premolars (bicuspids): The four premolars in each jaw are located distal to 

each canine in the arch. These teeth are smaller than the molars. Premolars 

often have single root. Some have two roots. 

 Molars: the large six teeth located in the back of the mouth in each jaw. 

Molars often have three to four tooth roots. 

A unique number is used to label each tooth. There are several ways for tooth 

labelling. The most popular two are universal tooth numbering system (United States) 

and FDI (Fédération Dentaire Internationale) World Dental Federation Two-Digit 

Notation (International). Our study follows the universal tooth numbering system. 

There are 32 teeth in an adult dentition, starting with the upper-right third molar to the 

lower-right third molar as shown in Figure 5.3.  
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Figure 5.3 An adult dentition in universal tooth numbering system [87] 

 

5.2 System Approach Overview 

Figure 5.4 shows the single tooth identification flow chart. Input PM teeth are first 

classified into either anterior or posterior teeth using eigenteeth feature and then 

indexed PM sub-database will be used to search from its corresponding indexed AM 

sub-database using iterative closest point algorithm (ICP). The output is the PM 

victim index and tooth index. The classification is useful for decreasing the search 

space for identification. For example, if one PM tooth is classified as anterior tooth, it 

will match against the indexed anterior database only during identification, excluding 

posterior database. The classification is also useful for establishing a large AM 

database automatically at later-on stage. Figure 5.4 shows the different phases   

The four-tooth-type classification (molar, premolar, canine, and incisor) is also 

tested using the same techniques and it will be used to compare with the two-class 

classification (anterior teeth and posterior teeth) regarding classification accuracy, 

final identification accuracy and identification speed. 
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Figure 5.4 Single tooth classification and identification flow chart 

 

5.3 Classification Algorithm Overview 

Figure 5.5 shows main steps of tooth classification algorithm using eigenteeth. Details 

will be depicted and illustrated in Section 5.5.  

The main steps list as follows. 

1. Read AM set and PM set into TrainSet matrix  and TestSet matrix 

respectively and normalize the TrainSet matrix and TestSet matrix into same 

dimension  

2. Apply PCA to TraniSet matrix to calculate EigenVector and EigenValue 

I. Search from AM indexed anterior sub-

database 

III. Search from AM indexed 

posterior sub-database 

Input PM teeth 

I. Incisor II. Canine III. Premolar IV. Molar 

Classification (Eigenteeth) 

Identification (ICP) 

PM indices (Tooth index and victim index) 

 Anterior PM non-indexed teeth Posterior PM non-indexed teeth 

Anterior AM indexed teeth Posterior AM indexed teeth 
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3. Project both TrainSet and TestSet into new vector space using the calculated 

EigenVector to form projected train set ProTrain and projected test set 

ProTest. 

4. K Nearest Neighbourhood (KNN) Classifier is used to classify TestSet by 

using ProTrain, ProTest and TrainClass as input. TrainClass is predefined 

classes for Trainset. In this application, two TrainClass types are tested.  

If TrainClass = [1 (AM posterior teeth), 2 (AM anterior teeth)], the outcome 

TestClass = [1 (PM posterior teeth), 2 (AM anterior teeth];  

If TrainClass = [1 (AM molar teeth), 2(AM premolar teeth), 3(AM canine 

teeth), 4(AM incisor teeth)], the outcome TestClass = [1 (PM molar teeth), 

2( PM premolar teeth), 3(PM canine teeth), 4(PM incisor teeth)] 

                   

Figure 5.5 Single tooth classification algorithm 

 

5.4 Data Preparation 

Data used in Experiment I are segmented teeth from laser-scanned dental plasters, 

thus only containing tooth crowns as shown in Figure 5.6. Due to the deficiency of 3D 

single tooth database, orthodontic data are used in Experiment I as shown in Figure 

1 

TrainSet(AM Set) 

2 

 [EigenVector EigenValue ] 
=PCA[TrainSet] 

3 

 ProTrain=Projection[EigenVector 
TrainSet] 

1 

TestSet(PM Set) 

3  

ProTest=Projection[EigenVector 
TestSet] 

4  

Outcome 

TestClass=NNclassifier[ProTrain 
ProTest TrainClass] 
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5.1(d). The main goal of orthodontic surgery is to achieve a correct bite, an aesthetic 

face. People wear orthodontic braces for years to get their teeth arranged neatly. The 

elapsed time of AM sample and PM sample acquisitions can be from one to three 

years. Therefore, it is plausible to use orthodontic data to simulate forensic cases to 

some extent. The full dental arch may change its shape due to natural growth or 

orthodontic surgery and the number of teeth is different but individual tooth shape is 

usually preserved. 

         

      (a)                          (b)                            (c)                                   (d) 

Figure 5.6 Four types of segmented teeth from laser-scanned dental plasters (a) 

incisor (b) canine (c) premolar (d) molar 

 

No decimation is applied for both PM and AM samples since the tooth details 

needs to be kept high for single tooth crown comparison. Each tooth crown contains 

about 3000~5000 mesh points. An AM database containing 200 teeth and a PM 

database containing 50 teeth are established. Both lower jaw and upper jaw teeth and 

all four types of teeth are included as shown in Figure 5.6.  The details of tooth crown 

samples are listed in Table 5.1.  

Table 5.1 Tooth crown data details 

 Subject Total Upper Lower Molar Premolar Canine Incisor 

AM  15 200 116 84 58 60 30 52 

PM  15 50 36 14 12 8 11 19 

 

Experiment II is designed to investigate complete single tooth identification. Data are 

reconstructed from cone beam CT image using level set methods [88].  Tooth crown 

and tooth root are both available in a complete single tooth as shown in Figure 5.7. 

Both lower jaw and upper jaw teeth and all four types of teeth are included. An AM 
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database is built containing 100 single teeth and also a PM database containing 10 

single teeth. Figure 5.8 shows the 3D reconstruction process. The details of complete 

single tooth samples are listed in Table 5.2. 

 

             (a)                (b)                 (c)            (d) 

 

(e) 

Figure 5.7 Four types of segmented teeth from laser-scanned dental plasters (a) molar 

(b) premolar (c) canine (d) incisor (e) upper and lower jaw teeth reconstructed from 

CBCT image 

 

As shown in Figure 5.8 (a), one clear layer in CBCT is selected using Insight Toolkit 

(ITK) software.  Insight Toolkit (ITK) is an open-source software toolkit for 

performing registration and segmentation [89]. Then an initial contour is specified for 

level set evolvement in MATLAB environment as shown in Figure 5.8 (b) and a 

clearly defined edge is used to segment one tooth from the whole image as shown in 

Figure 5.8 (c-d). Due to the overlapping of tooth regions and blurriness of CBCT 
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image, usually certain regions are under-segmented (root) or over-segmented (crown) 

where manual correction are needed. And the correction is done in ITK. The 

reconstructed tooth surface is usually noisy and a post-processing software 

RAPIDFORM is used to smooth the surface as shown in Figure 5.8 (i-j). Post-

processing include smoothing and decimation.  An originally reconstructed complete 

single tooth contains about 40,000 points and 4000~6000 points are kept after 

decimation. 

 

       

(a)                                                                         (b) 

  

                            (c)                                                                         (d) 
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   ()  

          (e)                       (f)                                  (g)                                   (h) 

 

(i)                      (j) 

Figure 5.8 3D reconstruction of single tooth from CBCT image (a) one layer of CBCT 

image (b) specify an initial contour for level set evolvement (c) a clearly defined edge 

after level set evolvement (d) segmented part lighted in red (e) under segmentation (f) 

correction of under segmentation (g) over segmentation (h) correction of over 

segmentation (i) 3D mesh of a single tooth before smoothing (j) smoothed mesh 

 

There are not many people who have Cone Beam CT examination before tooth 

treatment thus far, primarily due to the high cost. CBCT examination is much more 

expensive than usual dental check using radiograph examination. Thus the number of 

complete single tooth data is quite limited in Experiment II. The details of complete 

single tooth samples are listed in Table 5.2.  

Table 5.2 Complete tooth data details 

 Subject Total Upper Lower Molar Premolar Canine Incisor 

AM  13 100 14 86 10 9 28 53 

PM  2 10 10 0 2 1 2 5 
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5.5 Eigenteeth Calculation 

Eigen feature is often used in face recognition. The term ‘Eigenteeth’ is extended 

from ‘Eigenfaces’ in face recognition. Eigenfaces based on 2D images have been 

proposed by Turk et al. in 1991[90] and applied to face recognition successfully. 3D 

Eigenfaces are investigated for face recognition by Xu et al. [91] to overcome 

problems in 2D face recognition such as the recognition accuracy is sensitive to 

lighting conditions, expressions, viewing position and varieties of subordinates such 

as hair, bear, and glasses. Later, this method was applied in dental identification based 

on identification of radiographs [92]. 

3D Eigenteeth is used for tooth classification based on 3D mesh model. The PCA 

method is used to obtain dominant eigen vectors, called Eigenteeth. Any new input 

mesh model can be represented with the linear combination of these Eigenteeth. Thus, 

one mesh model can be projected into the lower-dimensional space by these 

Eigenteeth. The K-NN (K Nearest Neighbourhood) classifier from [93] is then used to 

classify PM set (TestSet in Figure 5.5) 

 The main steps of eigenteeth calculation list as follows. 

1. Read AM set and PM set into TrainSet matrix and TestSet matrix 

respectively and normalize the TrainSet matrix and TestSet matrix into same 

dimension.  

Each tooth has different number of 3×n points which will be converted to a 

column vector to form one column in TrainSet matrix. Thus, if 100 AM teeth 

are used in training, the TrainSet matrix dimension is 3×n×100 (3×n rows, 100 

columns), where n is the value of the largest number of points in TrainSet and 

TestSet. Blanks are filled with zeros. If 10 teeth are to be identified, the 

TestSet matrix dimension is 3×n×10 (3×n rows, 10 columns). 

2. Apply PCA to TraniSet matrix to calculate EigenVector and EigenValue 

The average 3D mesh model Maver is calculated easily. Each mesh differs from 

the average with the vector Ai= Mi − Maver. Then one covariance matrix is 

constructed as follows  

C=AA
T                                                                                                               

(5.1) 
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The matrix C is 100 by 100 and we can obtain its eigenvalues and 

corresponding eigenvectors by using Singular Value Decomposition (SVD), 

Generally, we can obtain 99 non-zero eigenvalues and 99 orthogonal 

eigenvectors. We can select the first e (e < 100) largest eigenvalues to 

approximate the tooth geometric space and their corresponding eigenvectors 

are U1 , U2 ,…, Ue, which are called  eigenteeth. 

3. Project both TrainSet and TestSet into tooth geometric space using the 

calculated eigenvector to form projected train set ProTrain and projected test 

set ProTest. 

ProTrain = eigenvector
T
 ×TrainSet                                                         (5.2a) 

ProTest = eigenvector
T
 ×TestSet                                                           (5.2b) 

 

4. K Nearest Neighbourhood (K-NN) Classifier is used to classify TestSet by 

using ProTrain, ProTest and TrainClass as input.  K is set 5 in testing and 

Euclidean distance is used to measure difference of PM sample and AM 

sample to determine which classification the tested PM sample belongs to. 

TrainClass is predefined classes for Trainset. In this application, two 

TrainClass types are tested.  

 If TrainClass = [1 (AM posterior teeth), 2 (AM anterior teeth)], the 

outcome TestClass = [1 (PM posterior teeth), 2 (AM anterior teeth];  

 If TrainClass = [1 (AM molar teeth), 2(AM premolar teeth), 3(AM canine 

teeth), 4(AM incisor teeth)], the outcome TestClass = [1(PM molar teeth), 

2(PM premolar teeth), 3(PM canine teeth), 4(PM incisor teeth)]; 

5. Classification accuracy=Number of correctly classified TestClass/Total 

number of test sample                                                                                                                                                                                         

                                                                                 (5.3) 

Identification accuracy= Number of correctly identified TestClass/Total 

number of test sample 

(5.4) 

   Different K values (2~10) are used, however, classification accuracy 

does not change much. 
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5.6 Experiments and Discussion 

Experiment I Identification of single tooth crown 

In Experiment I and Experiment II, eigenteeth features are used to classify a PM tooth 

into 2 classes (anterior tooth crown and posterior tooth crown) and 4 classes (molar 

crown, premolar crown, canine crown and incisor crown) respectively. Classification 

accuracy, identification accuracy and computational time are then compared and 

discussed with reference to Table 5.3.  

 2-class classification of single tooth crown 

1) 200 AM tooth crowns are indexed as anterior (incisor and canine) tooth 

crowns and posterior (premolar and molar) tooth crowns. 

2) The tested 50 PM tooth crowns are also likewise classified into anterior 

(incisor and canine) tooth crowns and posterior (premolar and molar) tooth 

crowns 

3) PM anterior teeth will match against AM anterior database; and PM 

posterior teeth will match against AM posterior database 

 4-class classification of single tooth crown 

1) 200 AM tooth crowns are indexed as molar crowns, premolar crowns, 

canine crowns and incisor crowns. 

2) The tested 50 PM tooth crowns are likewise classified into PM molar 

crowns, PM premolar crowns, PM canine crowns and PM incisor crowns. 

3) PM molar crowns, PM premolar crowns, PM canine crowns and PM 

incisor crowns will match against AM molar crowns, AM premolar 

crowns, AM canine crowns and AM incisor crowns respectively. 

Figure 5.9 shows the differences in alignment errors in matching genuine 

crowns and imposter crowns. It took less iteration to achieve a much smaller 

minimum alignment error in matching genuine crowns. (Yellow: PM sample; 

Red: AM sample) 
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                                                       (a)                                                                 (b) 

Figure 5.9 (a) genuine tooth crowns (b) imposter tooth crowns 

 

 

Table 5.3 Identification of single tooth crown  

50PM  

200AM 

 

Classification 

Accuracy 

(%) 

Identification Accuracy at Each Rank before Reaching 

Highest Accuracy (%) 

Identification 

Speed (s) 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Total Per  

2 

classes 

96 76 82 88 92 92 92 92 94 94 94 96 3894s 

(~65 

minutes) 

78s 

 

4 

classes 

88 68 72 78 82 82 82 84 84 86 88 88 2020s 

(~34 

minutes) 

40s 

 

Table 5.3 shows that 96% and 88% classification accuracy are achieved in two 

classification schemes respectively. Therefore, in the later-on identification phrases, 

the highest final identification accuracy is 96% and 88% respectively.  

Matching 50 PM single tooth crowns to 200 AM single tooth crowns, the 

outcome is 50*200ranks. Each PM sample has 200 ranks.  

In 2-class scheme, 38 out of 50 PM samples are correctly identified at rank 1, 

thus it reaches 38/50=76% rank-1(R1) identification accuracy as shown in Table 5.3. 

The maximum identification accuracy reaches 96% at Rank 11(R11), which considers 
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correct match in all samples from Rank 1 to Rank 11. In contrast, lower rank-1 

accuracy of 68% and lower maximum accuracy of 88% is reached at Rank 10(R10) in 

4-class scheme. 

It is worth noting that maximum identification accuracy are achieved in early 

stage of identification since they are at top ranks (11/200=5.5%; 10/200=5%) in both 

schemes. Thus top 5.5% ranks achieve 96% in 2-class scheme while top 5% ranks 

achieve 88% in 4-class scheme. This means that high identification accuracy could be 

achieved when only top 5.5% candidates’ samples are selected to present to forensic 

experts.   

Identification speed is compared as shown in the last column in Table 5.3. 

Total time is counted for matching 50 PM to 200AM samples. Per time is the total 

time divided by the total number of PM samples (3894s/50=78s). It is the time for 

matching 1 PM sample to 200 AM sample. Although 4-class scheme has lower final 

identification accuracy, it is about twice faster than 2-class scheme. As it is mentioned 

in Chapter 4, identification accuracy and identification speed are two important 

factors to consider in a balance manner depending on the emphasis and focus of the 

experiment.   

Both results in the two schemes indicate there is distinctiveness in human 

single tooth crown with potential to establish correct identities.  Enriched tooth crown 

database will be needed for more comprehensive future validation. 

Experiment II Identification of complete single tooth 

Examples of samples in Figure 5.8 are used in Experiment II. Samples contain both 

tooth crowns and tooth roots. The same procedure in Experiment I is followed.  

 2-class classification of complete single teeth 

1) 100 AM complete single teeth are indexed as anterior (incisor and 

canine) complete single teeth and posterior (premolar and molar) 

complete single teeth. 

2) The tested 10 PM complete single teeth samples are classified into 

anterior (incisor and canine) complete single teeth and posterior 

(premolar and molar) complete single teeth 
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3) PM anterior teeth will match against AM anterior database; and PM 

posterior teeth will match against AM posterior database 

 4-class classification of complete single teeth 

1) 100 AM complete single teeth are indexed as molar, premolar, canine 

and incisor. 

2) The tested 10 PM complete single tooth samples are classified into PM 

molar, PM premolar, PM canine crown and PM incisor. 

3) PM molar, PM premolar, PM canine and PM incisor will match against 

AM molar, AM premolar, AM canine and AM incisor respectively. 

Table 5.4 shows that 90% and 80% classification accuracy are achieved in 

two classification schemes respectively.  

Figure 5.10 shows the differences in alignment errors in matching genuine 

complete single tooth and imposter complete single tooth. It took less iteration 

to achieve a much smaller minimum alignment error in matching genuine 

complete single tooth. (Yellow: PM sample; Red: AM sample) 

 

Figure 5.10 (a) genuine complete single tooth (b) imposter complete single tooth 
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Table 5.4 Identification of complete single tooth  

10PM  

100AM 

 

Classification 

Accuracy (%) 

Identification Accuracy at Each Rank 

before Reaching Highest Accuracy (%) 

Identification Speed 

(s) 

R1 R2 R3 Total Per   

2 

classes 

90 80 80 90 613s 

(~10 

minutes) 

61s 

 

4 

classes 

80 70 80 80 324s 

(~5 minutes) 

30s 

 

In 2-class scheme, there are 8 out of 10 PM samples are correctly identified at 

rank 1, thus it reaches 8/10=80% rank-1 identification accuracy. The maximum 

identification accuracy 90% reaches at Rank 3. In contrast, lower rank-1 accuracy of 

70% and lower maximum accuracy of 80% is reached at Rank 2 in 4-class scheme. 

Maximum identification accuracy are achieved in early stage of identification 

since they are at top ranks (3/100=3%; 2/100=2%) in both schemes respectively. Thus 

top 3% ranks achieves 90% accuracy in 2-class scheme while top 2% ranks achieves 

80% accuracy in 4-class scheme. This means that high identification accuracy could 

be achieved when only top 3% candidates’ samples are selected to present to forensic 

experts.  Sample size will be increased for future validation. 

Identification speed is compared as shown in the last column in Table 5.4. 

Total time is counted for matching 10 PM to 100AM samples. Per time is the total 

time divided by the total number of PM samples (613s/10=61s). It is the time for 

matching 1 PM sample to 100 AM sample. Again 4-class scheme has lower final 

identification accuracy, but it is about twice faster than 2-class scheme.  

Single tooth samples are valuable features in forensic identification. Both 

results in the two schemes have indicated distinctiveness in complete single tooth. It is 

possible to establish correct identities particularly when a few teeth are used.  Larger 

complete single tooth database will be needed for comprehensive future validation. 



 

 

117 
 

5.7 Summary 

This chapter presents an exploratory investigation and development of techniques for 

3D single tooth identification. Two types of single tooth samples are used: tooth 

crowns segmented from dental casts and entire single teeth (crown and root) 

reconstructed from Cone Beam CT images.  Eigenteeth feature and K Nearest 

Neighbourhood (KNN) classifier are applied to classify tooth types – posterior (molar, 

premolar), anterior (canine and incisor).  Then the iterative closest point algorithm 

(ICP) is applied to match PM and AM teeth. 50 PM tooth crowns, 200 AM tooth 

crowns, 10 entire PM single teeth and 100 entire AM single teeth are used in 

experiments. 

 Two classification schemes (2-class and 4-class) are tested single tooth crown 

identification and complete single tooth identification. The 2-class scheme classifies 

teeth into anterior (incisor and canine) and posterior (molar and premolar) classes. 

The 4-class scheme classifies teeth into molar, premolar, canine and incisor.  

In tooth crown identification, classification achieves 96% accuracy as shown 

in Table 5.3. Rank-1 identification accuracy achieves 76% and maximum 

identification accuracy 96% achieves at Rank 11. In contrast, classification achieves 

88% accuracy in 4-class scheme. Lower rank-1 accuracy of 68% and lower maximum 

accuracy of 88% is reached at Rank 10 in 4-class scheme. However, 4-class scheme is 

twice faster than 2-class scheme. 

In complete single tooth (crown and root) identification, classification 

accuracy achieves 90% as shown in Table 5.4. Rank-1 identification accuracy 

achieves 80% and maximum identification accuracy 90% achieves at Rank 3 in 2-

class scheme. In contrast, classification accuracy achieves 80% in 4-class scheme. 

Lower rank-1 accuracy of 70% and lower maximum accuracy of 80% is reached at 

Rank 2 in 4-class scheme. Also 4-class scheme is twice faster than 2-class scheme. 

In both experiments, maximum identification accuracy is achieved in early 

stage of identification since they are at top ranks (5.5% ranks and 3% ranks).  

Identification speed is fast. It takes 78 seconds in identifying 1 PM crown 

sample from 200 AM crown samples in 2-class scheme and 40 seconds in 4-class 
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scheme. It takes 61 seconds in identifying 1 PM complete single tooth sample from 

100 AM single tooth samples in 2-class scheme and 30 seconds in 4-class scheme. 

Single tooth crown and complete single tooth are valuable features in forensic 

identification. This investigation has shown that there is distinctiveness in the 

characteristics of single teeth that it is possible to use to establish identities.  Enriched 

AM and PM database will be needed for more comprehensive future validation. 
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Chapter 6 Conclusions and Future Work  

 

“Now this is not the end. It is not even the beginning of the end. But it is perhaps, the 

end of the beginning.”  

-Winston Churchill 

 

6.1 Conclusions  

The primary objective of this thesis is to develop computer-based 3D 

identification approaches that overcome key hurdles in 2D identification. The hurdles 

include inaccurate tooth contour extraction from blurred radiographs and incorrect 

matching due to differences in imaging angles. Three approaches are proposed and 

presented: point-based matching and identification, arch-based matching and 

identification and a Hierarchical Ranking Identification Scheme (HRIS), and single 

tooth classification and identification. Main achievements and contributions list as 

follows: 

1. A point-based matching and identification approach has been developed 

The (PIDI) algorithms include algorithms for feature extraction, feature 

description and correspondence. 60 PM samples and 200 ante mortem samples are 

used in this study. These 60 samples consist of the 7 complete genuine samples, in 

addition, 11 partial genuine samples, 32 noisy genuine samples and 10 imposter 

samples taken from multi-ethnic Asian groups (Chinese, Indian and Malay) are 

also included.  

The rank-1 identification accuracy of complete sample identification is 

100%. The rank-1 identification accuracy of matching 11 partial PM sample is 

72.7% and 78.1% for 32 noisy PM samples.  

Overall accuracy of 50 genuine samples (complete, partial, and noisy) is 

also calculated and compared in experiments between manually segmented PM 

samples and auto-segmented PM samples. 94% rank-1 identification accuracy has 

been achieved in identification of 50 manually segmented PM samples and it 



 

 

120 
 

decreases to 80% in identification of 50 auto-segmented PM samples. In contrast, 

only 86% and 64% rank-1 accuracy have been achieved respectively in the above 

two identifications by applying the existing iterative closet point (ICP) algorithm 

alone. In addition, the proposed approach is more robust to obtain the correct 

identities when AM sample size is increased. Furthermore, a matching error 

threshold of 0.8 has been identified to differentiate genuine and imposter samples.  

Compared to the literatures, this work makes the following contributions: 

 Existing approaches are primarily based on 2D x-ray radiographs. 

Radiographs with poor contrast and exposure levels are unsuitable for 

identification, as it is difficult to extract tooth contours accurately with 

minimal geometric distortions. However, using 3D makes the identification 

more feasible even under large-scale decimation in noisy conditions. Samples 

with down to 10% of the scanned points and partial and noisy samples can be 

identified as demonstrated in the experiments.  

 2D images are projections of 3D objects. Differences in the radiographs 

arising from different imaging angles are often significant to cause incorrect 

matching. The extracted tooth contour which is used as an anatomic dental 

feature is not an accurate description of 3D tooth profile. Once different 

imaging angles are applied, tooth contours of the same sample are different in 

profiles. In contrast, no distortion of the tooth profiles occurs as projection 

from 3D to 2D is not required. The problem arising from different imaging 

angles in 3D is what we call pose variation problem. The results also 

demonstrate the capability of the proposed method in dealing with pose 

variations. 

 Partial teeth identification is feasible in 3D without missing tooth detection or 

tooth classification.  

 More salient points are extracted using the proposed feature extraction 

algorithm than existing work thus reducing time demand for correspondence. 

The feature descriptor and the correspondence algorithm are tested to be more 

robust to pose variations compared to existing work. 
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2. An Arch-based matching and identification approach and a Hierarchical 

Ranking Identification Scheme (HRIS) have been developed.  

Key issues for the arch-based ranking, such as dental arch extraction, arch 

feature description and arch matching techniques, are presented. A Radial Ray 

Algorithm (RRA) is proposed to extract dental arches.  

PM database has been slightly increased to 60 PM samples (11 

completed PM samples, 11 partial PM samples and 38 noisy PM samples). To 

compare with results using the point-based approach, accuracy is also 

calculated for the same 50 PM samples. The 7 complete samples achieved 100% 

rank-1 identification accuracy with a more than 6 times improved 

identification speed using HRIS. However, the second approach is less 

effective in partial and noisy sample identification. The rank-1 identification 

accuracy of matching 11 partial PM sample is 54.5% and 59.4% for 32 noisy 

PM samples. In contrast, the rank-1 identification accuracy of matching 11 

partial PM sample using point-based approach is 72.7% and 78.1% for 32 

noisy PM samples. 

The following contributions are made: 

 The proposed Radial Ray Algorithm (RRA) does not require manual 

calibration and arch point specification. 

 The proposed fully automated Hierarchical Ranking Identification 

Scheme improves much of identification speed compared to the point-

based approach by excluding a large number of imposter AM samples 

at the arch matching level for complete samples. 90.9% identification 

accuracy is achieved with 6 times faster identification speed for 11 

complete samples. With 11 partial and 38 noisy samples only 72.7% 

and 73.7% accuracy is achieved respectively after eliminating 50% of 

imposter samples. 
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3. 3D single tooth classification and identification schemes have been 

proposed. 

Two types of single tooth samples are used: tooth crowns segmented from 

dental casts and entire single teeth (crown and root) reconstructed from Cone 

Beam CT images.  Eigenteeth feature and K Nearest Neighbourhood (KNN) 

classifier are applied to classify tooth types – posterior (molar, premolar), 

anterior (canine and incisor).  Then the iterative closest point algorithm (ICP) 

is applied to match PM and AM teeth. 50 PM tooth crowns, 200 AM tooth 

crowns, 10 entire PM single teeth and 100 entire AM single teeth are used in 

experiments. 

Two classification schemes (2-class and 4-class) are tested single tooth crown 

identification and complete single tooth identification. The 2-class scheme 

classifies teeth into anterior (incisor and canine) and posterior (molar and 

premolar) classes. The 4-class scheme classifies teeth into molar, premolar, 

canine and incisor.  

The main findings list as follows: 

 In tooth crown identification scheme, classification accuracy achieved 

is 96%. Rank-1 identification accuracy achieved is 76% and maximum 

identification accuracy achieved is 96% at Rank 11 when identifying 

50 PM crown samples from 200 AM crown samples. In contrast, 

classification accuracy achieved is 88% in 4-class scheme. Lower 

rank-1 accuracy of 68% is attained and a lower maximum accuracy of 

88% is attained at Rank 10 in 4-class scheme. However, 4-class 

scheme is twice faster than 2-class scheme. 

 In complete single tooth (crown and root) identification scheme, 

classification accuracy achieved is 90%. Rank-1 identification 

accuracy achieved is 80% and maximum identification accuracy 

achieved is 90% at Rank 3 in 2-class scheme when identifying 10 

complete PM single tooth samples from 100 complete AM single tooth 

samples. In contrast, classification accuracy achieved is 80% in 4-class 

scheme. Lower rank-1 accuracy of 70% is attained and a lower 
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maximum accuracy of 80% is attained at Rank 2 in 4-class scheme. 4-

class scheme is twice faster than 2-class scheme. 

The aforementioned have testified distinctive characteristics of human 

single tooth and that it is possible to establish correct identities when a few 

teeth are found during crime scene investigation.   

The following limitations are acknowledged. 

1. The 3D dental image is required, which may not be available in every case at 

present. In addition, impressions would have to be made and 3D scanning 

would have to be performed, adding to the cost of the comparison technique in 

this study presently.  

2. Radial Ray Algorithm (RRA) and Hierarchical Ranking Identification Scheme 

(HRIS) are most applicable to complete arch matching and identification. For 

partial arch extraction and matching, the proposed techniques need to be 

improved. 

3. Compared to the number of victims in mass disasters, the number of samples 

used in present study is limited.  

6.2 Future Work  

Investigations for comprehensive formulation and more efficient algorithms of 3D 

dental identification are always of interest. 

1. Establishment of enriched AM and PM database for future validation. 

The present study and developed techniques are based on matching 200 ante-

mortem samples. Increasing sample size is essential for robust validation. 

2. Investigation of identification accuracy under different decimation rate.  

Presently, 10% of the scanned points are kept for a faster computation. More 

comprehensive study on different decimation rate is needed to determine its 

effect on matching accuracy.  

3. Development of intelligent searching scheme.  

The matching error difference of rank-1 and rank-2 appears to be potential 

useful for identification of genuine and imposter samples. An intelligent 

searching approach could be developed together with a further study of these 

error differences.  
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4. Investigation of partial arch extraction and matching 

Radial Ray Algorithm (RRA) and Hierarchical Ranking Identification Scheme 

(HRIS) are most applicable to complete arch matching and identification. 

Robust partial arch matching approach is needed for recognition of partial 

tooth regions. 

5. Investigation of 3D dental work identification.  

Dental work (dental fillings) is also considered a unique feature for individuals 

which is used in 2D radiograph identification. Dental work feature and the 

proposed features could be fused to achieve a more robust identification. 
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