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Abstract

As complex systems are becoming ubiquitous and are growing, especially in terms of size
and interconnectivity, the study of emergence in such systems is increasingly important.
Emergence can be regarded as system properties that arise from the interactions of system
components, but that cannot be derived from the properties of the individual components.
Despite a long history of research on complex systems, there is still a lack of consensus on
the definition of emergence. A plethora of emergence definitions hinders the understanding
and engineering of complex systems. This thesis proposes a grammar-based set-theoretic
approach to formalize and verify the existence and extent of emergence without prior
knowledge or definition of emergent properties. Our approach is based on weak emergence
that is both generated and autonomous from the underlying components. In contrast to
current work, our approach has two main advantages. First, in formalizing emergence,
our grammar is designed to model components of diverse types, mobile components, and
open systems. Second, by focusing only on system interactions of interest and feasible
combinations of individual component behavior, and degree of interaction, state-space
explosion is reduced. Theoretical and experimental studies using the Boids model and
multi-threaded programs demonstrate the complexity of our formal approach. The Boids
model has been validated up to 1,024 birds. We also present and discuss open issues in
the study of emergence, and highlight potential research opportunities.
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Chapter 1

Introduction

Systems with a large number of components and intricate interactions are pervasive, in-

cluding natural systems, ranging from animal flocks [74] to human social systems [60],

as well as sophisticated artificial systems such as power grid [17], the Internet [3], social

networks [66], and large-scale distributed computer systems [62]. In these systems, the

interactions of components may lead to some properties that are not derivable from the

properties of individual components. These properties are often termed emergent properties

or emergence. The hallmark of emergence, “not derivable from individual components”,

typically results in a high degree of non-linearity, making emergence too difficult to be

solved using traditional analytical techniques [14]. Given an input, it is generally impossi-

ble to analytically know a priori what the expected output should be. Instead, the study

of emergence has motivated the adoption of some computational techniques to model and

analyze complex systems [44]. Emergence makes a system harder to analyze and design,

and requires a structural formal approach for detecting and reasoning about its causes

and nature [82, 84]. In this section, we introduce terminologies associated with complex

systems and emergence, and the relationship between them. In the scope of this thesis,
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for simplicity, we use the term emergence to refer to emergent properties, while other as-

pects of emergence such as emergent rules and emergent structures will be discussed in

Section 5.2.1.

1.1 Complex Systems

Despite a long history of complex system research, the definition of a complex system is

still not clear [49, 54]. Although it might be complicated to analyze and design a sys-

tem, this does not necessarily make the system complex. To be regarded as complex, a

system typically needs to possess the following characteristics [10, 44]: a large number of

components, no central control nor global visibility, simple behavior rules for individual

components, non-linear relationships of components, and emergent properties. A com-

plex system usually consists of many interacting components without any central control

or global visibility [44, 62]. These components interact with each other in the absence

of a central controller or organizer; each component has only local knowledge about its

neighborhood rather than a global view of the whole system.

A component is a stand-alone functional element that is defined by its input and output

behavior [43]. The behavior of a component is the sequence of state changes it undergoes

during a specified period of time [21]. Component behavior is characterized by a set of

behavior rules that govern how a component acts and directly interacts with its neighbors.

For example, a road traffic network includes vehicles and pedestrians that obey some

movement rules to avoid collision with others and maximize the traffic flow. Although

behavior rules can be paradoxically simple, interaction caused by these rules may be non-

linear [44]. This non-linearity distinguishes complex systems from complicated systems.

Intuitively, complex means non-independent, whereas complicated is the opposite of simple.
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A component/system has properties that are anything of the component/system that can

be detected. When many components come together to form a system, they, as a whole,

likely exhibit emergent properties that are more than the sum of the properties of the

constituent components [28]. Emergence is a crucial ingredient of complex systems. For

example, an accident at a point of a road may negatively result in a long traffic congestion,

which is largely known as an emergent property, involving a large number of vehicles for

several hours [28].

Complex systems are often characterized using information theory. The more complex

a system is, the more information we need to describe or reproduce it. The complexity of

a system can be evaluated in terms of system complexity measures or design complexity

measures [20]. On the one hand, system complexity measures capture how much infor-

mation is needed to describe the system itself. Design complexity measures, on the other

hand, relate to the design of system components and the relationships among them. Tradi-

tionally, in systems that are not complex, system complexity measures can be established

analytically from the design complexity measures. This inference is not applicable to com-

plex systems because of emergent properties that are unpredictable from the design of the

system. Emergence occurs when the system shifts from one level of design complexity to

another level of system complexity without any external input [16, 21].

1.2 Modeling Complex Systems

Computational modeling is a potential alternative to analytical modeling for understand-

ing complex systems [14]. There are three main approaches of computational modeling,

namely, macroscopic, mesoscopic, and microscopic [41, 62]. Differences among these ap-

proaches lie in the levels of system description at which abstraction/modeling occurs:
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macro level, meso level, and micro level. At the macro level, also referred to as global

level, details of the interactions of system components are often not concerned. The focus

is to examine the behavior of a system as a whole. In contrast, at the micro level, also

known as local level, the unit of analysis is individual components and their interactions.

Each component is rigorously characterized, in terms of its local properties and how it

interacts with other components. The meso level falls between the macro level and the

micro level in the sense that the meso level deals with the unit of a group of components

or the unit of individual components but at a lower level of detail compared to the micro

level.

In accordance to the above levels of system abstraction, there are three main compu-

tational modeling techniques. Macroscopic modeling simplifies details of components at

the micro level, but focuses on system management and control at the macro level. For

example, Moncion et al. [59] builds a dynamic graph to represent an interaction network of

components. At the micro level, there is no characterization of what behavior a component

has, and the interactions of components are simply represented by weighted labeled edges.

At the macro level, self-organization is largely examined and it likely forms when the mean

degree of the graph increases. While its simplicity is appealing, macroscopic modeling is

less powerful in getting insights of the system properties, including emergent properties,

because of its simplification of microscopic details.

Mesoscopic modeling describes a system by its individual components but at a lower

level of detail of components and their interactions compared to the micro level. Cellular

automata [89] is a well-known representative of this approach. Cellular automata model

dynamic spatial systems in which the environment is typically a 2D grid. Each component

is located in a cell of the grid, and changes its state based on the states of its neigh-

bors (including itself) with respect to a set of behavior rules. Moreover, time is treated
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discretely. Conway’s Game of Life is a widely studied example with discrete component

states, deterministic behavior rules, and a synchronous state updating scheme [36]. Cel-

lular automata have advantages such as appealing visualization, Turing-completeness [73],

and programming ease. However, they are not potential in representing the relationships

and interactions of components. In cellular automata, it is not straightforward to model

continuous spatial relationships among components because components are assumed to

be located in separate cells of the same size. Furthermore, components are typically ho-

mogeneous and simultaneously perform actions at constant time steps. This requirement

of homogeneity and synchronous updating might not applicable to many systems where

components are heterogeneous and autonomous.

Microscopic modeling looks at a system using a high level of detail of individual com-

ponents, enabling a behavioral-based description of the system. In contrast to cellular

automata, which only allow discrete environments in which an environment is divided into

non-overlapping cells, microscopic modeling does not make any assumptions about the

environment, i.e. the environment can be discrete or continuous. A class of microscopic

modeling that has been getting significant attention in the context of complex systems is

agent-based modeling (ABM) [41]. ABM models a system as a collection of autonomous

agents interacting in an environment. Agents interact with others and make decisions on

their own. One promising feature of ABM is that a system to be studied can be analyzed

at different levels of description, such as individual agents or groups of agents. A high

level of detail of system components offers a better understanding of the cause-and-effect

of emergent properties [39]. However, ABM requires a significant amount of efforts in

modeling and simulation. Fortunately, these issues are somewhat solved because of the

recently relevant advances in technology: data are organized into databases at finer levels

of granularity, popularity of object-oriented scheme, and increasing computational power,
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among others. Another challenging issue of ABM is validation. Compared to discrete-event

modeling, which tends to model the designed behavior of a system consisting of relatively

homogeneous components, validation in ABM is more difficult. This can be attributed

to the heterogeneity, autonomy, and emergent properties generated from interactions of

agents [70, 90].

1.3 Emergence

Not all properties of a complex system are trivial; some are emergent and others are

not. The Greek philosopher Aristotle stated that the whole is sometimes more than the

sum of its parts, and emergence is the difference between the whole and the sum. In

other words, emergence appears if “more is different” such that there are properties of a

system that cannot be explained by the properties of the individual components. Starting

out from philosophy, emergence eventually spread throughout several disciplines, ranging

from biology, chemistry, and social sciences to computer science. Consciousness is an

emergent phenomenon that is surprisingly a result of a large number of simple neurons.

In chemistry, the smell of rotten eggs of hydrogen sulphide is a property that neither of

its atoms, hydrogen and sulphur, possesses. Examples of emergence in social sciences are

social conventions in human societies, such as shaking hands when meeting someone, and

collective behavior happening in groups of people. Emergence is pervasive in computer

systems, in particular in artificial intelligence. A well-known example is the emergence

of patterns in the Game of Life (e.g. gliders, spaceships, and puffer trains) from simple

rules [36]. We also see flocking behavior in simulated birds [74], team behavior (foraging,

flocking, consuming, moving material, and grazing) in autonomous, mobile robots [5], and

the formation of a “highway” created by the artificial Langton ants, from simple movement
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rules [81].

Despite a plethora of ideas of emergence, we still lack of consensus on what emergence

is and where it comes from. In the literature, there are four main schools of thought of

emergence. First, emergence is defined as unexpected properties of the whole that are not

possessed by any of the individual components making up the whole [7, 13]. This definition

seems to be fairly broad in the sense that emergence includes aggregation properties that

can be calculated by summing the properties of fundamental components at the micro

level. Second, emergence is both unexpected and undesirable. In addition to being not of

the system design and users’ expectation, emergence should have negative effects on the

system [54, 58]. This definition, however, implies that emergence is totally harmful. Third,

emergence is unanticipated [29]. According to this perspective, emergence is something

that cannot be predicted through analysis at any level simpler than that of the system

as a whole, thus it is impossible to anticipate the system behavior before executing the

system. Finally, emergence lacks a reductionist explanation in the sense that it cannot be

derived from the individual components [52], although it is generated from the interactions

between them. In contrast to the first three views, which do not mention the causes and

nature of emergence, this view highlights the importance of interactions of components

while describing the discontinuous characteristic of emergence from the micro level.

Possible causes of emergent properties are listed below: interactions of components, a

large number of components, breaking threshold parameters, spontaneous synchronization.

Emergence is not imposed from the outside; it results from the interactions of components.

Interactions of components are widely accepted as the key source of emergence [44, 52].

Without component interaction, a system is simply a set of separate components acting

individually, and properties of the system can be fully understood given knowledge of its

components. Surprisingly, intricate interactions may originate from relatively simple rules.
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The flocking behavior of birds, which has aerodynamic advantages, obstacle avoidance,

and predator protection, is characterized by three simple rules [74]. Moreover, a small

number of laws in rule-governed systems can generate unpredictable system configurations.

For example, in traditional 3-by-3 tic-tac-toe, the number of distinct legal configurations

exceeds 50,000 [44]. In addition to interaction, a large number of components may result in

a very large number of legal system configurations, including those that go beyond what the

designer intends. These configurations likely exhibit emergent properties. Furthermore,

feedback loops between components may amplify changes in the system, thus breaking some

threshold parameters such as capacity limits [52, 68]. This un-designed situation is likely

the source of a new property. Examples are buffer overflows, epidemics with exponential

growth (disease, fads, DoS attacks), and cascade effects that involve unanticipated chains

of events (avalanche, waves at ball games, traffic jams), to name a few [34, 61, 68]. Another

source of emergence is the universal tendency to synchronize actions that can also violate

the threshold parameters in the system. London’s Millennium Footbridge had to be closed

on its first day because of “unexpected excessive lateral vibrations” that resulted from an

unexpected synchronization between the footfalls of pedestrians and the fluctuation of the

bridge [26].

Everything has advantages and disadvantages; and emergence is not an exception.

Indeed, the literature is moving from considering emergent properties as only unexpected

[14] to both desired and undesired [49]. The notion of “unexpected” makes the study of

emergence ambiguous in the sense that emergence is in the eye of the beholder. What is

a wholly unexpected property from one view may be obvious from another. To avoid the

dependence on the observer, emergence is considered from the perspective of its importance,

i.e. desired or undesired. On the one hand, emergent properties can be desired such

that they confer additional functionalities on the system [31]. Consequently, users adapt
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these functionalities to support tasks that designers never intended, making the products

more competitive. Some artificial intelligence computer applications, for example, utilize

emergent phenomena to model collective animation of a group of entities. Additionally,

emergence sometimes appears in the form of self-organization that transforms the system

from disorder to order, thus reducing the system complexity [21]. The ability to engineer

emergence makes a system more scalable and robust. On the other hand, due to its

unpredictable nature [76], emergence makes a system less credible and harder to analyze,

design, and control. In fact, it is difficult to anticipate what we have never seen before.

According to Dyson [29], emergent behavior cannot be predicted through analysis at any

level simpler than that of the system as a whole. Unforeseeable and unexpected failures

[58, 86] and security vulnerabilities [37] are examples. The main difficulty is to predict

this sort of emergent properties without prior knowledge of them. The problem becomes

challenging if the properties are substantially different from the past properties.

1.4 Objective

Given the importance and increasing attention on emergence from various research fields

due to the increasing demand on complex systems [12, 49, 58], there is a need for detecting

and reasoning about its cause-and-effect to make systems more credible and robust, and to

advance our understanding of emergence. It is important to detect undesirable phenomena

as soon as possible to minimize their potential negative consequences. Despite a long his-

tory of research on complex systems, most studies focus only on post-mortem observation

of emergence of an available system, rather than on detecting emergent properties on the

fly. This is because it is too difficult to formally define emergence [72]. Reasoning of emer-

gence, on the other hand, is even more challenging, but more appealing than detecting it.
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The system properties at the macro level can be far from the properties of its components

at the micro level due to interactions of the components. Reasoning of the cause-and-effect

of emergent properties is still in its infancy.

The study of emergence includes several challenges: lack of consensus on emergence

definition and an increase in the size and complexity of systems. There are different

perspectives of emergence [84], including observer-dependent [80], and others are associated

with theories in specific disciplines [35, 45, 85]. Although there are observer-independent

definitions that are operational and can be implemented, the computational simulation

suffers from increasing state-space explosion, especially when problem size increases and

the connectivity between components becomes non-trivial.

The objective of this thesis is to formalize emergence properties in complex systems.

This formalization comprises two main elements: a formal definition of emergence, and

a way to detect or identify emergence. The former specifies what emergence is and the

latter explains how emergence is exposed. The formalization unifies different emergence

concepts into a single formal operational view, at least with respect to the perspective of

science, in particular computer science. To be operational, emergence should be defined

in a way such that the mechanism for detecting emergence can be implemented, and the

state-space problem is mitigated.

1.5 Contributions

The key contributions of this thesis are:

1. Grammar-based Set-theoretic Approach to Determine Emergent Property

States

We extended Kubik’s approach to determine emergence in complex systems. Unlike
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Kubik’s approach, which regards emergent properties as system states, we consider

these system states as emergence, an emergent property state set, from which emergent

properties can be deduced. Given a system, emergence is defined as a set of system

states that arise from the interactions of the components of the system, but cannot

be derived by summing the state of individual components. We also extended Kubik’s

approach to consider different types of components and open systems. A system is

modeled as a multi-agent system of interacting agents of different types, including mobile

agents. The set of emergent property states is the difference between: the set of system

states reachable from the initial state due to interactions of agents, and the set of all

system states obtained by summing state of individual agents. We applied and validated

the proposed approach to derive bird flocking states and deadlock in multi-threaded

programs.

2. Reduction of Search Space

We proposed to reduce the state space to be searched in two aspects: the definition

of emergence and the derivation of emergent property states. Emergence is considered

with respect to the system designer’s interest, i.e. the system model, rather than to the

real system. The multi-agent model of the system abstracts only parts of the system

of interest, and ignores details that are not of the designer’s interest, thus constructing

a smaller state space. Furthermore, relied on the observation that the state space of

summing individual components is the key source of the state-space explosion problem,

but it does not contribute much to the derivation of emergence, we use degree of inter-

action of agents as an emergence criterion, thus eliminating the unnecessary calculation

of the sum. By associating agent interaction with system state, interaction degree is

defined as the difference between system states. This idea enables a measurable and
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computational manner of studying emergence.

1.6 Thesis Organization

The outline of this thesis is presented as follows.

Chapter 2 - Related Work

We present different perspectives of emergence, including philosophy, natural and social

sciences, and computer science. Our conclusion is that a scientific study of emergence

should be observer-independent, rely on agent-based simulation, and enable the reasoning

of the causes and effects of emergence. We also review several classifications of emer-

gence and propose a more comprehensive classification with respect to the feedback from

the macro level to the micro level. Three state-of-the-art formalizations of emergence:

variable-based, event-based, and grammar-based are discussed. Contrary to variable-based

and event-based approaches, grammar-based approach does not require prior knowledge

of emergence. Our proposed approach extends and addresses many limitations of the

grammar-based approach.

Chapter 3 - Grammar-based Set-theoretic Approach

We present our strategy to overcome limitations of the current grammar-based emergence

formalization. The main aim is to broaden the application domain and mitigate the state-

space explosion problem. Compared to current methods, our approach can deal with more

general systems in which components have different types, are mobile, and can join and

leave the system over time. The proposed approach considers only the behavior rules of

interest and eliminates the computation of system states that will never happen in practice,

thus reducing the system state space to be searched. We illustrate how to determine the

set of emergent system states that expose flocking phenomena of a group of birds of two
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types. The experimental results give us intuition of the state-space explosion problem.

We also propose a method to further mitigate the state-space explosion problem by

avoiding the calculation of the sum of states of individual components. Instead of deter-

mining the difference between the whole and the sum explicitly, we calculate the inter-

section between the whole and the sum without taking the sum into consideration. The

difference between the whole and the obtained intersection is the set of emergent property

states. This method relies on the degree of interaction of components, which is measured

as difference between system states. By applying the method, experiments are done up to

1,024 birds.

Chapter 4 - Example: Deadlock Emergence in Concurrent Programs

To minimize the critical drawback of our approach that emergent property states are

relative to the model of the system, multi-threaded programs are considered. In contrast

to the Boids model, a multi-threaded program is a more concrete specification of a problem

provided by a user. Given a multi-thread program, the main goal is to detect all (emergent

property) states that arise from the interleaving interactions among threads. As we will

see in this chapter, our approach detects deadlock states.

Chapter 5 - Conclusion and Future Work

We summarize the key contributions of this thesis and discuss some of the major open

issues, including the consensus on the definition of emergence, state-space explosion, emer-

gence reasoning, and emergence validation.
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Chapter 2

Related Work

2.1 Emergence Perspectives

Despite a long history of emergence research, there is no agreement on a definition of

emergence. Emergence is studied in both philosophy and science. Scientific studies of

emergence involve natural and social sciences, and computer science.

2.1.1 Philosophy

In philosophy, the key concept of emergence is surprise. The Greek philosopher Aristo-

tle puts forward a seminal idea of emergence: “the whole is more than the sum of its

parts”. The main implication of this idea is that emergence cannot be defined as simple

consequences of the underlying parts; it is something surprising [80]. The surprise comes

from the discontinuity between the observer’s mental image of the system’s design and

the observation of the system behavior [75]. Surprising, however, is observer-dependent.

Emergent properties are subjective product of both the unexpected behavior of complex

systems and the limitations of the observer’s knowledge [49]. Certain strange phenomena

14



cannot be detected or understood with a given set of tools and knowledge, but can be

detected or understood by exploiting newer tools and theories. Furthermore, the key in

understanding emergence is the observer rather than the system itself in the sense that a

phenomenon emerges when the observer begins to consider it at a certain scale [16]. For

example, an observer may not detect the structure of a city when walking in the streets,

whereas a satellite photograph of the city could reveal it [16]. The dependence on the eye

of the beholder makes the root of emergence vague.

2.1.2 Natural and Social Sciences

Authors from natural and social sciences criticize the idea of limitations of our knowledge

as it implies that we are scientifically unable to study emergent properties with the current

theories and technologies. Another problem of this idea is that it is based on a temporary

lack of knowledge of the observer. Instead, emergence should be observer-independent

[25]. According to Abbott [2], an observer’s surprise should be not associated with how

we understand a problem.

Emergent phenomena seem to be everywhere in nature and society [62]. Flocks of

birds, ant colonies, and schools of fish, among others, are examples of natural phenomena

that cannot be reduced to the properties of individuals. Bird flocking, in particular, is

frequently studied in the context of emergence [19, 74, 83, 84]. At the micro level, a bird

only knows the position and velocity of its neighboring birds. The movement of each bird

is governed by three simple flying rules: (1) separation - steer to avoid crowding neighbors,

(2) alignment - steer towards average heading of neighbors, and (3) cohesion - steer towards

average position of neighbors. At the macro level, a group of birds tends to form a flock,

which has aerodynamic advantages, obstacle avoidance, and predator protection. These

flocking properties are not obviously traced back from the individual birds with local
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knowledge about their neighborhood and the flying rules.

Social sciences attempt to answer the question of how human behavior arises from the

interactions of participants. Collective behavior of human, such as in stock markets [23],

social networks [66], and condense crowds [51], to name a few, has been investigated for

a long period [15]. Lane formation of pedestrians in shopping malls is another example

[51]. Pedestrians follow three simple movement rules: (1) try to stay close to the shortest

path between the source and the destination, (2) avoid collisions with obstacles and other

pedestrians, and (3) avoid sharp and rapid changes of direction. The pedestrians as a

whole, however, incidentally move in lanes.

Natural and social sciences mainly aim to understand and explain emergent properties

of complex systems in reality. Two main theories used for understanding emergence are self-

organization [85] and hierarchy [8]. Self-organization is a proof that individual autonomy

and global order can coexist. Emergence is defined as the formation of order from disorder

with greater coherence between components due to self-organization. When components

are highly connected, i.e. connected to many others, degree of regularity among agents

tends to increase, and the system likely generates certain form of structures or patterns,

for example spatial patterns, or patterns in the form of repeated sequences of behavior. In

fact, the notion of self-organization conforms to the idea that complex systems are neither

completely random nor completely ordered [13, 42, 53]. Instead, complex systems are

somewhere in between, being random and surprising in some aspects while predictable in

others. Figure 2.1 shows the relationship between coherence between components and the

probability that a system exhibits emergence in terms of structures or patterns.

In hierarchy theory, emergence is the difference between observing and describing a

system at multiple levels of abstraction (observation). Typically, emergence and hierarchy
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Figure 2.1: Self-organization

of observation are inseparable. A hierarchy of order N is given by:

SN = R(SN−1, ObsN−1, IntN−1, SN−2, . . .) (2.1)

where SN is the collection of components at level N , ObsN is the observation mechanism

for measuring the properties of components at level N [8, 50], and IntN is the interactions

of components at level N . The most common paradigm of hierarchy of observation is

micro-macro. A macro level in one context might be a micro level in another [8]. Ryan

[77] defines micro-macro relationship in terms of scope and resolution. The greater a scope

is, the more accuracy we have to sacrifice. A property is a macro property of another if it

has a smaller scope, a higher resolution, or both.

2.1.3 Computer Science

While emergence has been widely observed in natural and social sciences, it has been

largely ignored in computer science [14]. Contrary to natural and social sciences, which

focuses on understanding and explaining the world, computer science, as primarily an

engineering science, concentrates on designing and optimizing engineered systems. In the
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context of emergence, computer science attempts to detect, validate, and reason about the

causes and nature of emergent properties in order to make systems more reliable, scalable,

and robust. This aim is based on analyzing the system components’ specification and

the interactions of the system components. This analysis typically requires computational

modeling, i.e. simulation, because of the high complexity of the interactions. Furthermore,

as the simulation is done for a model instead of the real system, study of emergence in

computer science perspective is relative to system model.

Emergent phenomena abound in computer systems [12, 24, 33, 44, 49, 58, 71]. For

example, the distribution of links in the World Wide Web scales according to a power

law in which a few pages are linked to many times and most are seldom linked to [3]. A

related property of the network of links in the World Wide Web is that almost any pair of

pages can be connected to each other through a relatively short chain of links [4]. Another

example is priority inversion in operating systems. In priority-based scheduling, which

assigns processes with a fixed priority, a high priority process can be blocked due to a

resource held by a lower priority process. The unpredictable nature of emergence makes it

more interesting and increasingly important in software engineering, especially in systems

of systems that exploit emergence to achieve adaptability, scalability, and cost-effectiveness

[67].

System complexity is increasing in terms of size, connectivity, and geographic distribu-

tion [6]. This growth makes emergent properties more common in reality. The undesired

and unpredictable effects of emergent properties demand a formal and practical approach

to understanding and validating emergence. However, traditional analytical techniques for

addressing complex systems with non-linear processes are not readily available [12, 44, 48].

To support this view, Hyotyniemi [48] proposes a recursive non-linear function for the

kernel of system complexity. The result of this function is argued to be intractable using
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mathematical techniques when iterations cumulate. Instead, it requires some computa-

tional technique to observe and analyze the system gradually. Computational modeling,

i.e. simulation, is considered to be a potential solution for the formal study of emergence

[12, 27, 47]. For example, a practical method to check whether the so-called R pentomino,

which is a five-cell pattern in The Game of Life, has an upper bound is simulation. By

simulation, after 1,103 time steps we see that the R pentomino settles down to a stable

state that just fits into a 51-by-109 cell region [13]. Furthermore, according to Darley

[27], simulation is regarded as the most efficient way to predict emergent properties. A

system is emergent if and only if the amount of computation without simulation needed for

understanding the system is not smaller than the optimal amount of computation needed

to simulate the system. Hovda [47] quantifies emergence in the terms of the amount of

simulation needed to derive a fact.

Agent-based modeling (ABM) is believed to be an appealing approach to model and

simulate complex systems exhibiting emergence [44]. ABM, as discussed in Section 1.2,

provides a detailed description of the system, including its components and their interac-

tions, thus facilitating the detecting and reasoning of the cause-and-effect of emergence.

Moreover, ABM is relevant to complex systems in the sense that both rely on autonomous

individual objects interacting with each other. The increase of the popularity of object-

oriented paradigm and computational power fosters the potential of ABM in the field of

emergence. Table 2.1 summarizes the three perspectives.

2.1.4 Summary: Observer-independent Perspective

The science of studying complex systems can be classified into two broad streams: tradi-

tional science that does not deal with emergence and science of emergence that handles

emergent properties [63]. Table 2.2 presents a comparison between them.
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Perspective What How

Philosophy [14]
surprise - limitations of
our knowledge

observer at correct scale

Natural & Social Sciences [8, 25, 34] observer-independent
statistical techniques,
self-organization, hier-
archy

Computer Science [38, 52]

arise from component
interaction, relative to
model

agent-based simulation

Table 2.1: Emergence Perspectives

Criteria Traditional Science Emergence Science

Domain
simple systems (reductionism,
focus on components)

complex systems (holism, focus
on interactions)

Goal prediction understanding, explanation

Analysis top-down
bottom-up, different spatial and
temporal scales

Tools mathematics, measurement agent-based modeling, simulation

Table 2.2: Traditional Science and Emergence Science

First, traditional science focuses on simple systems in which the properties of the whole

system can be reduced to the properties of its components. This reductionism is due to

linear interactions of components, and can be studied in terms of traditional analytical

techniques. As a result, traditional science focuses on individual constituent components.

In contrast, the science of emergence looks at complex systems that are non-deterministic

and considers a system as a whole rather than at the level of individual components. Un-

like traditional science, which studies simple cause-effect relationships, emergence science

assumes that complex effects arise from simple causes through non-linear interactions of

components. It is therefore not surprising that emergence science focuses on interactions

of components. Second, the main aim of traditional science is predicting the behavior of

the system under study. In contrast, emergence science is a new field of science whose goal

is to understand and explain how non-linear interactions of components give rise to the

holistic behavior of the system. Third, due to reductionism, traditional science usually ap-
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plies top-down strategy to break down a system into separate components. The properties

of the whole system are then derived from the properties of its constituent components.

The top-down approach, however, cannot be applied to the study of emergence. Instead, a

system exhibiting emergence is usually considered bottom up, or in other words from the

components at the bottom to the holistic system at the upper level. For example, water is

a bottom up emergent property of hydrogen and oxygen. Furthermore, the science of emer-

gence looks at understanding indirect effects, both in space and in time, at different scales.

Local interactions of components and with the environment, may cascade in a non-trivial

way across different levels of space, ranging from local to global, as well as different levels

of time, ranging from a few to many simulation steps [36]. Finally, systems to be stud-

ied in traditional science are usually represented in some mathematical form that is then

solved to predict the system behavior. If the mathematical theory cannot be proved, some

experimental measurements are carried out to strengthen the theory. Complex systems

in science of emergence, as discussed earlier, are too sophisticated to be expressed using

mathematical methods, instead should be modeled as multi-agent systems and observed

through simulation [44].

2.2 Emergence Taxonomies

2.2.1 Current Taxonomies

In correspondence with several different perspectives of emergence, there are several types

of emergence [11, 13, 18, 34, 38]. Chalmers distinguishes between weak and strong emer-

gence [18]. Weak emergence is deducible but unexpected from the laws of the low-level

domain, while strong emergence is not deducible even in principle. Bedau describes de-

ducible feature of weak emergence in terms of derivability by simulation [13]. In addition
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to strong and weak emergence, Bedau also introduces the notion of nominal emergence.

As a general definition of emergence, nominal emergence is simply macro level properties

that cannot be found at the micro level. Further, Bar-Yam distinguishes between four

types of emergence: Type 0, Type 1, Type 2, and Type 3 [11]. The first three types roughly

correspond to nominal, weak, and strong emergence respectively. Type 3 defines emergent

properties regarding the interaction between the system and the environment. Similarly,

Fromm divides emergent properties into four categories: simple, weak, multiple, and strong

based on different types of feedback from the macro level to the micro level [34]. Simple

emergence contains no feedback. Weak emergence has positive or negative feedback, while

multiple emergence has both positive and negative feedbacks. Strong emergence is simi-

lar to that in Bedau’s taxonomy. Gore proposes an emergence taxonomy based on three

dimensions: reproducibility, predictability, and temporality [38]. Behavior can be classi-

fied to be deterministic or stochastic, predictable or unpredictable, and materializing or

manifested.

2.2.2 Downward Causation-based Taxonomy

Based on the classifications above, we introduce a comprehensive view of emergence with

respect to downward causation. Causation is the relationship between cause and effect.

The whole is generated from the parts through upward causation (UC), but the parts,

meanwhile, are somewhat affected by the whole through downward causation (DC) [13].

For example, cows interact directly with each other to form a herd (UC). The cows also

change the state of the environment such that they create a track when moving. The

presence of the herd and the track reinforces the tendency of moving in a herd of the

cows (DC). UC and DC define the mutual relationship between the macro and the micro

level. The causation loop between UC and DC, i.e. UC from the micro level to the macro
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level and DC in the converse direction, makes emergent properties irreducible from the

individual components.

The concept of DC, however, is contrary to reductionism, which reduces a complex

system to the interactions of its components. Thus, some authors regard DC as a defining

ingredient of emergence [12, 65]. Chalmers, corresponding to the notions of weak and

strong emergence, defines weak and strong DC [18]. The former is the causal impact of

the macro level on the micro level that is unexpected. The latter is not deducible even

knowing the governing laws at the micro level. Positive DC and negative DC are defined

in [34]. Positive DC reinforces UC while negative DC reduces the impact of UC on the

system properties.

We extend the existing classifications with three types of DC: positive, negative, and

complex. Positive DC amplifies UC and drives the system out of equilibrium, i.e. unsta-

ble states [69]. Systems with positive DC are sensitive to initial conditions in the sense

that small changes in initial conditions can lead to very different overall system behavior.

Second, negative DC weakens UC and stabilizes the system in equilibrium [74]. Lastly,

complex DC makes the underlying components change their behavior rules in reaction to

a changing environment. For example, living systems are known to have evolutionary pro-

cesses in which living entities evolve, for example through mutation, to survive and expand

in a new condition.

Figure 2.2 shows a taxonomy of emergence, consisting of simple, weak, and strong

emergence, based on downward causation. In simple emergence, DC is too weak (approx-

imately zero DC) to have significant effect on the underlying components. A property

is simple emergent if it is not exhibited by any underlying components. For example, a

large number of entities in aggregation are characterized by statistical quantities, which

are inapplicable to the constituents. Gases, for instance, have volume and temperature,
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Figure 2.2: Downward Causation-based Taxonomy of Emergence

which are not possessed by gas particles. Systems with simple emergence usually consist

of loosely coupled and equal components whereby a component’s state is independent of

the state of other components, the whole system, and the environment. In these systems,

component behavior is somewhat random in the sense that the components are largely

uncorrelated or their relationships are too chaotic to describe explicitly. Simple emergence

is mainly studied in natural and social science using theories from physics and chemistry.

Weak emergence involves positive or negative DC (single weak emergence), or both

(multiple weak emergence). Weak emergence is the notion of emergence that has gained

immense attention in science [13, 18, 52, 84]. For one thing, this notion is philosophically

acceptable because it meets the theory of cause and effect. A weak emergent property

is both generated (through UC) and autonomous from the properties of the underlying

components. Autonomy is expressed in the sense the causation loop between UC and DC,

i.e. UC affects DC and DC in turn affects UC, gradually changes the effects of UC, thus

making the macro level discontinuous and irreducible from the micro level. For another,

weak emergence does not require an introduction of new fundamental laws to study [18].
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Instead, weak emergence can be understood using the existing laws but with further levels

of description and explanation [18]. Finally, the concept of weak emergence is closely

associated with computation modeling or simulation, which is widely used in science. A

macro level property is weakly emergent if it can be derived from the micro dynamics but

only by finitely long simulation [12, 48].

Two types of single weak emergence are stable and unstable. In stable weak emer-

gence, negative DC weakens positive UC to keep the system in equilibrium such that

there is a balance between diversity, autonomy, and randomness through UC and unity,

self-organization, and order through DC. For example, ants have different unique contexts

(diversity) and make their own decision (autonomy) to explore every direction in a con-

stantly changing environment (randomness). Yet they have a collective goal (unity), e.g.

reaching the same destination, and move in a colony (self-organization) by following their

own pheromone trails (order). In unstable weak emergence, positive DC amplifies positive

UC, leading the system to unstable states. For instance, inflation keeps the price of goods

and services increasing: high prices of goods and services increase the cost of living, high

costs of living increase wages, and high wages increase high prices of goods and services.

Multiple weak emergence rests on the balance between positive and negative DC. For

example, stock market has a balance between UC that makes the market unstable and

DC that pulls the market back to equilibrium. When stocks are rising, investors tend

to buy; the stocks rise further, thus the market becomes unstable. At some point, the

stock market is highly unstable, and investors believe that the market is likely to fall,

they stop transactions, taking the market back to a more stable state. Strong emergence

is due to complex DC that changes the behavior rules of the underlying components to

accommodate external influences. Strong emergence is considered non-deducible, even in

principle, from laws of the micro level. Instead, this notion of emergence is most common
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in philosophy and natural sciences. From the philosophy perspective, strong emergence is

due to intricate interactions of components, limitations of the observer’s knowledge [49],

and the scale and level of abstraction under which the system is observed [16]. Limita-

tions of the observer’s knowledge imply that strong emergence requires the introduction

of new fundamental laws to explain it [13, 18]. In natural sciences, typically in biology,

strong emergence usually involves very large jumps in complexity [34] and some kind of

evolutionary processes. Evolutionary emergence has the highest degree of complexity in

the sense that components are capable of learning in order to adapt to new conditions and

evolve [34]. Typical examples are biological systems. Life, in particular, is an evolutionary

emergent phenomenon of genes, genetic code, and nucleic/amino acids.

2.3 Emergence Formalizations

The demand of understanding and engineering complex systems exhibiting emergent prop-

erties, and the lack of consensus on emergence definition have attracted immense interdis-

ciplinary interest for formalizing emergence [22, 44, 52, 82]. Formalization enables compre-

hensive analysis of complex systems, and thus advancing the reasoning of the cause-and-

effect of emergent properties. There are three main approaches of emergence formaliza-

tion: variable-based, event-based, and grammar-based, depending on the kind of emergence

analysis they employ: post-mortem or on-the-fly analysis. Post-mortem analysis refers to

detecting and reasoning about emergence by observing system states. This analysis needs

prior knowledge of emergence from experts. On-the-fly analysis, on the other hand, focuses

on detecting and validating emergence when it happens, thus does not require knowledge

of emergence to be defined in advance. Table 2.3 shows a comparison among the three

formalization approaches.
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Formalization Prior Knowledge Analysis
Variable-based [32, 57, 78] required post-mortem
Event-based [22] required post-mortem
Grammar-based [52] not required on-the-fly

Table 2.3: Emergence Formalizations

2.3.1 Variable-based

In variable-based methods, one variable is chosen to model the attribute space that de-

scribes the state of the observed system. This variable is then used to detect and measure

emergent properties [64]. Usually, emergence is measured using probability and informa-

tion theory [32, 57, 78]. For example, the change of the center of mass of a group of birds

may indicate the formation of flocking behavior.

Many variable-based efforts [35, 45, 57, 88] deploy Shannon entropy [79], which mea-

sures the uncertainty and unpredictability of a system with respect to one attribute. The

key idea is that emergence most likely occurs as the system self-organizes and exhibits some

kind of patterns or structures, thus resulting in lower entropy. Mnif and Muller-Schloer

[57] introduce emergence as the difference between the entropy at the beginning and at

the end. A system is said to exhibit emergence if the entropy difference is positive, i.e. the

entropy value decreases in the end. Despite simplicity, Shannon entropy only deals with a

single attribute with discrete values. To address systems containing many attributes with

continuous values, Fisch et al. [32] define multivariate divergence, “an unexpected or un-

predictable change of the distribution underlying the observed samples”, using Hellinger

distance [32] as an emergence measure. This measurement suffers from expensive com-

putation of density functions and high user intervention. Inspired by the idea that weak

emergence is both dependent upon and autonomous from the micro level causal factors,

Seth [78] proposes G-emergence as a measure of emergence based on two other non-linear

time series quantities: G-causality and G-autonomy, which compute the dependence and

27



autonomy of a variable with respect to a set of other variables respectively. A macro

variable M is G-emergent from a set of micro variables m if and only if M is G-caused

and G-autonomous with respect to m. However, a set of variables must be defined and

the computations of G-causality, G-autonomy, and G-emergence are expensive. One of the

most significant drawbacks of variable-based emergence formalization is that it requires

prior knowledge of emergence to define a variable manifesting the system behavior. This

variable needs to model the whole system rather than pertain to a specific part or a group

of parts.

2.3.2 Event-based

In event-based approaches [22], emergence is defined as complex events that can be reduced

to a sequence of simple events. An event is a state transition occurring at a particular level

of abstraction. A simple event results from the execution of a single state transition rule. A

complex event is either a simple event or two complex events satisfying a set of constraints

with respect to each other. A constraint could be a temporal, spatial, or component or

variable constraint. First, a temporal constraint defines the temporal relationship between

two events. Second, a spatial constraint defines the space within which an event should

occur relative to another. Finally, component or variable constraints define the relationship

between variables or components of the two events. Similar to variable-based approaches,

event-based approaches need the formalism of event types and emergent behavior to be

defined in advance, thus can be applied only for the post-mortem analysis of emergence.
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2.3.3 Grammar-based

Kubik [52] avoids the requirement of prior knowledge by defining emergence using grammar

systems. The grammar-based approach combines the idea of emergence relative to model

[75], Bedau’s notions of micro-macro relations [12], and agent-based modeling approach

to emergence advocated by Holland [44], to move towards a more formal theory with

well-defined meaning for farther study of emergence. The key idea is to determine a set

of system states ( Lξ) that result from the interactions of system agents and cannot be

produced by summing their individual states, thus formally describing systems properties

that are more than the sum of its parts.

Lξ = Lwhole \ Lsum (2.2)

where Lwhole denotes the set of system states when the agents act as a whole, and Lsum

denotes the sum of individual states of all agents when they act individually. The grammar-

based approach does not make any assumptions about the knowledge of emergence, and

moves much closer to a concept where emergence is observer-independent. Emergence

arises out of the interactions of components and can be computationally determined

in terms of system states without the presence of an observer. Furthermore, observer-

independence is the core idea behind computational approaches to emergence [44].

However, Kubik’s work has a number of limitations: (1) suffers from state-space ex-

plosion (Lsum), (2) cannot model agent types, (3) does not support mobile agents, (4)

only deals with closed systems with fixed number of agents, and (5) needs further work

for the summing operator. First, Lsum contains all permutations of individual states of

agents, including those that never exist in practice due to constraints among agents. Such

constraints are usually invariants that hold for the entire system life. For example, in a

one-way single lane road, a car A will never take over another car B in front. In other
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words, the system state in which car A is in front of car B is invalid. A large number of

invalid, unreachable system states will lead to the state-space explosion problem, even with

a small number of agents [84]. Additionally, the example used in Kubik’s paper, The Game

of Life, is a simple one, in which all agents are identical (have the same set of possible

states, the same set of state transition rules), stationary (always stay at the same cell).

Finally, Lsum is calculated using the superimpose operator that, according to the author

[52], is chosen because there is no better choice. Therefore, further work for a convincing

explanation of the superimpose operator or for a better way of summing is required.

We [84] addressed the first four limitations. To reduce the system state space, we ignore

the set of invalid permutations of individual states in Lsum based on constraints among

agents defined from the system specification, and propose a tighter notion of Lwhole. For

Lwhole, instead of dealing with the whole set of states of real system to be studied, this

work considers only a subset of it with respect to the system designer’s interest. Ideally,

if we knew all rules defining a system, we could completely understand and explain it.

However, in practice, this is not always the case. In fact, a system is typically modeled as

an abstract approximation of the real system with respect to mainly the system designer’s

interest, and other things such as computational power and simulation time constraint.

This paper also considered a general grammar-based formalization for the system that

supports agent types, mobile agents, and open systems (agents may enter and leave the

system over time). For agent mobility, an agent may have attributes that are closely related

with its location such as position, speed, moving direction, and so on.
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2.4 Summary

Emergence is gaining more interest from researchers in many fields, from philosophy to

science. Each perspective investigates emergent phenomena with different views and ap-

proaches. Philosophical studies explain the unpredictability of emergence to the limitations

of knowledge of observers while scientific perspectives, including natural and social sciences,

and computer science believe that emergence properties are observer-independent, i.e. a

feature intrinsic to the system. Computer science perspective, in particular, emphasizes

the key role of the interactions of components in the presence of emergent properties. This

perspective also asserts the great importance of agent-based simulation regarding the sys-

tem model to detect, validate, and reason about emergence. A quite complete taxonomy

of emergence based on downward causation is presented. This taxonomy contributes to

consolidate almost all other concepts of emergence in the literature. It also shows the

mapping between perspectives and categories of emergence. Based on this mapping, we

know what notion of emergence we should take out and what theories or techniques we

should use to study emergence in a specific perspective.

Formalization is probably the most significant but difficult part in the study of emer-

gence. Efforts are mainly variable-based, event-based, or grammar-based. While the first

two have to describe emergence in advance, grammar-based method, on the other hand,

does not. It exploits grammars to model the system to be studied and to expose emer-

gence. The outcome of the approach is a set of emergent property states that is simply

the difference when considering the interactions of components and when not. Eliminating

the posteriority drawback makes grammar-based formalization promising for automatically

detecting, and therefore, validating emergent properties.
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Chapter 3

Grammar-based Set-theoretic

Approach

Emergence formalization is an important step towards understanding and reasoning about

system behavior. This chapter presents a grammar-based set-theoretic approach for for-

malizing system components and their interactions, and deriving emergent property states.

The set of emergent property states is a source from which emergent properties could be

deduced. This chapter also presents a technique for reducing the state space accounted

for the calculation of emergent property states using degree of interaction between com-

ponents. The application and validation of our approach are discussed when determining

bird flocking and deadlock in multi-threaded programs.

3.1 Approach

The objective of our approach is to determine a set of emergent property states (Lξ) from

which emergent properties can be deduced. This is a multi-step process, starting with the

system to be studied, and come out with a set of system states that potentially exhibit
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emergent properties of interest (as shown in Figure 3.1). Given a problem to be studied,

FSA Composition

L  

Simulation

system model
system

specification

Modeling program

Grammar-based 

Formalization

system 

formalism

Problem

Figure 3.1: Grammar-based Set-theoretic Approach to Determine Emergent Property
States

we first need to model it or start with its specification. The model is an approximate

abstraction of the problem in relation to the modeler’s interest and purpose. On the

other hand, the specification is often a concrete program provided by a user. Whichever

the case, either the model or the specification is input to the next step, grammar-based

formalization, to formalize the system using context-free grammars. The output of this
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step, a grammar-based formalism is used to determine the set of emergent property states.

We consider two ways of deriving Lξ: (1) simulation and (2) Finite State Automata (FSA)

composition. The former is considered when the system behavior is deterministic in the

way that the simulation has only one possibility to move forward in the next step. In

addition, components are usually assumed to behave at the same time to transfer the

system to a new state. In Section 3.4, the Boids model that imitates the flying of a group

of birds is such a system. Given a system state and a set of rules for the flying of birds, the

next system state can be deterministically derived. In contrast, FSA composition is used

to calculate Lξ when the system behavior is non-deterministic. FSAs model components

that asynchronously interact with others. At a point of time, any of the components can

do activities and trigger the system to change to a new state. A multi-threaded program

(as seen in Chapter 4) allows all possible execution orders of interleaving threads. With

this arbitrary scheduling, different simulations starting with the same configuration may

give different outcomes. Therefore, simulation is not efficient and feasible to calculate a

huge number of reachable states from the initial system state. Asynchronous composition

of FSAs overcomes this problem as discussed in the next section. Whichever the case, we

finally obtain a set of emergent property states Lξ, which is the foundation for further

work. For example, given the specification of a known emergent property, we can retrieve

all system states that possess the concerned property. We can also trace back to the

execution paths leading to this emergent property and gain insights into the causes that

mainly contribute to the emergence of the property.

Our approach extends Kubik’s grammar-based approach [52] to determine emergent

property states that are due to the interactions of components but cannot be derived from

summing states of individual components. In Kubik’s work, the set of emergent property
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states is defined as the difference:

Lξ = Lwhole \ Lsum (3.1)

where Lwhole describes all possible system states due to agent-to-agent and agent-environment

interaction, and Lsum is the sum of all individual agents’ states, without considering agent

interaction. Given an initial system configuration, the system is simulated until it arrives

in a state that has already appeared before, and Lwhole is the set of all distinct states ap-

peared. On the other hand, Lsum is derived by superimposing states of individual agents

using a superimpose operator. Lξ contains the set of system states that are in Lwhole but

not in Lsum. This broad perspective of emergence leads to state explosion when determin-

ing Lsum and Lwhole. This is because all possible combinations of individual agent states are

considered following a defined superimposition operator, without including system-defined

rules.

We propose a new perspective that significantly reduces the state space for Lξ. Firstly,

it is important to highlight here that while Kubik refers to the difference Lwhole \ Lsum

as emergence, we refer to this set as the emergent states set, because it is the set from

which emergent properties can be deduced. Given this set, if we have knowledge of a

certain emergent property, for example its definition or the characteristics specifying it, we

can pick up all system states that possess the property and analyze its cause-and-effect.

Emergent property states that possess some emergent property that we already know are

called known emergent property states. Otherwise, they are called unknown emergent

property states. Secondly, we observe that the size of Lwhole is dependent of the number of

interactions and state transition rules defined by a modeler, and a subset of interest (to the

modeler) from all the rules in a given system. This would be the case, for example, when

we consider different kinds of rules in modeling a flock of birds: the entire rule set, or some
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rules of interest while ignoring others. As shown in Figure 3.2, Lwhole can be redefined as:

Lwhole = LI
whole ∪ LNI

whole (3.2)

where LI
whole is bounded by the number of interaction rules that are of interest to the

designer for the particular study, and LNI
whole represents the set of all possible system states

that are not of interest. The system designer’s interest in turn depends on the system to

be studied, knowledge of the system, and the objective of modeling. Instead of dealing

with the whole set of states of real system to be studied, LI
whole considers only a subset of

it regarding the system designer’s interest. Ideally, if we knew all rules defining a system,

we could completely describe, understand, and explain it. However, in practice, this is

usually not the case. In fact, a system is typically analyzed via its model, which is an

abstract approximation of the real system. This model is relative to the system designer’s

interest, and other things such as computational power and simulation time constraint.

    

 

Figure 3.2: Set of Emergent Property States

The size of Lsum increases exponentially with the number of agents as all possible

combinations of agent state are considered. Although it is mathematically possible to

derive Lsum, not all of these combinations can happen in practice. Some of them will never
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occur because of constraints among agents. An example is combinations in which two

agents are located at the same position. Therefore, Lsum can be split into two disjoint sets

as follows:

Lsum = LP
sum ∪ LNP

sum (3.3)

where LP
sum is a subset of feasible combinations of agents’ behavior that can happen in

practice, and LNP
sum is the set of combinations of agents’ behavior that will not exist in

practice.

Given the above, the set of emergent property states is reduced to:

Lξ = LI
whole \ LP

sum (3.4)

Emergent property states, with respect to a model of interest, are due to non-trivial inter-

actions of agents, and cannot be derived by summing individual agents’ states. As shown

in Figure 3.2, there are states in LI
whole that can be found in LP

sum, in other words,

LI
whole ∩ LP

sum 6= ∅ (3.5)

Intuitively, these states are resultant from agent computations that do not require inter-

actions, or from the interactions of agents that have no effect on agent behavior. For

example, in the flock of birds model detailed in Section 3.4, two individuals can be very

far apart and as such interaction rules between them have no effect.

Contrary to Kubik’s approach, which regards emergent properties as system states, we

do not consider that Lξ contains the emergent properties but only states that together,

following particular criteria, can form an emergent property. In the next step, we propose

to determine whether Lξ contains emergent properties that have been seen before, or that

are beneficial or harmful to the system. Towards this, we propose to use emergence criteria

derived from the system expert, as well as information obtained from LNI
whole.
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3.2 Grammar-based System Formalization

As discussed above, Kubik’s work has several limitations: (1) suffers from state-space

explosion, (2) cannot model agent types, (3) does not support mobile agents, and (4) only

deals with closed systems with fixed number of agents. Lsum is a mechanical combination

of individual states of agents, regardless of constraints among agents, thus resulting in

invalid permutations of agents’ states that will never happen in practice. A large number

of invalid, unreachable system states will lead to the state-space explosion problem, even

with a small number of agents as shown in Section 3.4. Moreover, the example used in

Kubik’s paper, The Game of Life, is simple in the sense that all agents have the same type

and are stationary.

The first limitation is addressed by reducing Lwhole and Lsum to LI
whole and LP

sum respec-

tively as presented in the previous section. Further reduction of state space is discussed

in Section 3.5. In this section, we propose a more general grammar-based formalization

of the system to address the three remaining limitations. Accordingly, we enhance the

grammar-based approach proposed by Kubik with three main extensions: (1) introduce

agent type (Aij denotes an agent of type i and instance j), (2) introduce mobile agents by

defining mobility as attributes of agents Pi = Pi mobile∪Pi others where Pi denotes the set of

attributes of agents of type i, and (3) model open systems whereby agents can enter and

leave system over time. These kinds of systems are ubiquitous in practice such as traffic

networks [55], social networks [40], and flock of birds [74], among others. Table 3.1 shows

the list of notation used in the formalization.

A multi-agent system consisting of an environment and a set of agents is formalized

as an extended cooperating array grammar system where context-free grammars represent

agents, and a two-dimensional array of symbols represents the environment. Each grammar
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Notation Description
System S(t) state of system at time t

Environment

VE set of possible cell states
Ve set of possible states of cell e

SE(t) state of environment at time t
se(t) state of cell e at time t

Agent Type
m number of agent types
ni number of agents of type i (1 ≤ i ≤ m)
VAi

set of possible states for agents of type i

Agent

n number of agents
Aij agent of type i (1 ≤ i ≤ m) and instance j (1 ≤ j ≤ ni)
VA set of possible agent states for all agent types
Pi set of attributes for agents of type i
Ri set of behavior rules for agents of type i

sij(t) state of agent Aij at time t
L(Aij) set of system states representing the behavior of agent Aij

Emergence

⊕ superimpose operator
LI
whole set of system states of interest due to agent interactions
LP
sum set of possible system states by summing agents’ states
Lξ set of emergent property states

Table 3.1: Glossary of Notations

has its own rewriting rules defining how the grammar cooperates with the other grammars

and with the array, i.e. rewrite the symbols on the array. A system of m agent types and

a total of n agents A11, . . . , A1n1
, . . . , Amnm

interacting in a 2D grid environment (E) of c

cells is defined as follows:

GBS = (VA, VE, A11, . . . , A1n1
, . . . , Amnm

, S(0)) (3.6)

where VA denotes the set of possible agent states for all agent types, VE denotes the set of

possible cell states, Aij denotes an agent of type i (1 ≤ i ≤ m) and instance j (1 ≤ j ≤ ni),

and S(0) denotes the initial system state. The system state at time t (S(t)), is composed

of state of the environment (SE(t)) and states of agents (sij(t)) at time t. Hence,

S(t) = SE(t)
⋃

∀i∀j

sij(t) (3.7)
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3.2.1 Environment

The environment is part of the system that lies outside the agents and can be regarded

as a platform for agent interactions. The environment is shared by all agents, and plays a

passive role in the sense that its state is changed by interactions with agents. For example,

ants communicate with each other to find the shortest path for food by leaving pheromone

trails for other ants to follow. In this situation, the environment consists of the ground and

the trails indicating shortest paths between the nest and sources of food. The interactions

of ants change the environment, i.e. the trails are changed over time.

The environment can also play an active role in a multi-agent system. The environment

can have its own properties and rules and it can provide feedbacks to agents. Changes of the

environment manifest or visualize the connections between agents, and impact the behavior

of agents. For example, a road traffic network consists of agents, including pedestrians and

vehicles, and the environment composed of roads and traffic lights. The traffic lights

have their own rules which specify how pedestrians and vehicles move on the roads. An

environment playing an active role in a system could be regarded as an autonomous agent.

For simplicity, we only consider passive environments and assume that environments have

no behavior rules and change only as a result of agent actions.

In the scope of this thesis, the environment E is modeled as a 2D grid1 that is subdivided

into c units called cells (e). Changes of the environment are therefore changes of the states

of the cells. For example, a cell turns from “occupied” to “free” when the agent that

occupies the cell moves to another cell. Ve denotes the set of possible states of cell e.

Similarly, VE denotes the set of possible cell states. For the environment (E),

1E can be easily extended to model other topologies.
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VE =
c
⋃

e=1

Ve (3.8)

In addition, the environment state is made up of the states of all cells in the environment.

The states of cell e and the environment E at time t are se(t) ∈ Ve and SE(t) ∈ V c
E

respectively.

3.2.2 Agents

In a multi-agent system, agents are autonomous entities. Agents are characterized by a

set of attributes, e.g. the location of an agent in a spatial environment or the distance an

agent travels in a time step. Values of these attributes at a point of time present the state

of an agent at that time. The state of an agent is changed because of the behavior of the

agent. Agents act and interact with other agents and the environment according to their

own rule set. Generally, a behavior rule is a function from agent state to agent state as

follows:

rule(condition) : s(t) → s(t+ 1) (3.9)

If the condition is fulfilled at time t, the agent will apply the rule to transform its current

state at time t (s(t)) to state at the successive time step (s(t + 1)). The condition of

rules includes the states of the neighbors of the agent and the state of the agent itself.

Neighbors of an agent are usually close to the agent in terms of proximity. Defining

neighborhood, i.e. proximity, is problem-specific. Different models of the same problem

may have different ways of specifying neighborhood. For example, cellular automata have

the two most common types of neighborhoods: von Neumann neighborhood and the Moore

neighborhood. The former consists of the four orthogonally adjacent cells. The latter

includes eight neighbors inhabiting the cells that are horizontally, vertically, and diagonally
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adjacent to the cell whose state is to be calculated.

Looking at agents from the point of view of aggregative statistics, there are two main

factors related to the presence of emergence: population size of agents and number of

types of agents. On the one hand, the population size of agents may be a requirement for

emergence. Emergent phenomena sometimes need a specific minimal number of agents to

happen. For example, a glider in The Game of Life requires five agents to form. Further-

more, a large population of agent results in more interactions taking place between agents,

thus increasing the chance of emergence. On the other hand, high heterogeneity of agents

can also increase the chance of emergence. This is because different types of agents with

different attributes and behavior rules would increase the complexity of agent interaction.

n agents are classified into m different types in which all agents of the same type have

the same attribute set and behavior rule set. Aij denotes an agent of type i (1 ≤ i ≤ m)

and instance j (1 ≤ j ≤ ni), where ni is the number of agent instances of type i, and

n1 + n2 + ... + nm = n. An agent of type i is characterized by three factors: a set of

attributes for agents of type i (Pi), a set of behavior rules for agents of type i (Ri), and an

initial state (sij(0)).

Pi consists of two main subsets: Pi mobile modeling the mobility of agents of type i

and Pi others modeling other attributes. Velocity and location are examples of mobility

attributes. We are interested in mobility because it is typically an important characteristic

of systems exhibiting emergence. Particularly, mobility is the prerequisite of the formation

of emergent patterns. In many systems, emergence often appears in form of patterns or

structures such as flocks of birds, schools of fish, colonies of ants, gliders and spaceships in

The Game of Life, and lanes of pedestrians crossing a road. It is important to distinguish

agent attributes from their values. An attribute is a characteristic that describes an agent,

while an attribute value is a value the attribute can take. An attribute can take a number
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of values, i.e. value set. For instance, attribute color has several values, such as red, yellow,

and green.

Agent behavior (L) is characterized by behavior rules (R) that define how agents act

and interact with other agents and the environment. For simplicity, we assume that no

evolutionary processes are involved in the system, i.e. behavior rules do not change over

time. Ri denotes the set of behavior rules of agents of type i. Similar to Pi, which consists

of Pi mobile and Pi others, Ri consists of Ri mobile that impacts agent mobility, i.e. changes

values of attributes of Pi mobile, and Ri others for the rest.

An agent changes its state because it is triggered by a rule that affects the agent itself

or one of its neighbors changes state. The state of Aij at time t, denoted by sij(t), is

defined by values of its attributes at time t. The initial state of Aij (sij(0)) is specified by

the values of all of its attributes at the beginning. Only the initial state sij(0) is specific

to the agent, while Pi and Ri are common to all agents of type i.

VAi
denotes the set of possible agent states for agents of type i. For the agents (A),

VA =

m
⋃

i=1

VAi
(3.10)

where VAi
denotes the set of possible states for agents of type i.

Agent of type i (1 ≤ i ≤ m) and instance j (1 ≤ j ≤ ni), Aij, is defined as follows:

Aij = (Pi, Ri, sij(0)) (3.11)

where Pi denotes the set of attributes for agents of type i, Ri denotes the set of behavior

rules for agents of type i, and sij(0) denotes the initial state of the agent. Pi is defined as:

Pi = Pi mobile

⋃

Pi others where

Pi mobile = {x | x is an attribute that models mobility}

Pi others = Pi \ Pi mobile
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Agents change their states according to behavior rules that are regarded as functions from

a set of agent states to the set itself. Some of these rules that affect the mobility of agents,

for example change location or speed, are defined as mobile rules.

Ri : VAi
→ VAi

Ri = Ri mobile

⋃

Ri others

Aij has an initial state sij(0) ∈ VAi
. Systems displaying emergent properties are usually

sensitive to initial configurations. Slight changes in initial conditions may result in no

emergence any more [44]. In other words, emergence is considered with respect to some

specific initial system states. For example, in The Game of Life, there are some system

configurations that never change over time, i.e. the system configuration is always identical

to its initial status, thus having no emergent patterns. Therefore, starting conditions should

at least enable state transitions that bring about changes in the state of the system.

3.3 Emergent Property States

Our approach computes two sets of system states corresponding to the two levels of ab-

straction defined above, namely, the macro level when regarding the system as a whole

and the micro level when regarding the system as an aggregation of its individual agents.

The difference between the two sets is a set of emergent property states that are due to

interactions of agents, but cannot be deduced from individual agents. As discusses above,

the set of emergent system states is defined as:

Lξ = LI
whole \ LP

sum

LP
sum can be determined by adding agent constraints among others but is not straightfor-

ward. We leave this as future work and for simplicity we use Lsum for the rest of this
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section. In addition, in the next section, we show that we no longer need LP
sum and Lsum,

and calculate Lξ using only LI
whole.

Taking the interactions of agents (denoted as GROUP ) into account, the system be-

havior of interest (LI
whole) returns a set of words (w) that represents the set of system states

reachable from the initial system state. Complex adaptive and non-linear systems with

strange attractors where system states vary continuously are not considered in this study.

LI
whole with respect to the initial state is therefore the set of all distinct states obtained as

follows:

LI
whole = {w ∈ V c+n | S(0) ⇒∗

GROUP w} (3.12)

Algorithm 1 presents the pseudo-code for the calculation of LI
whole. Given an initial state

S(0) (line 3), the system is simulated until it reaches a state that has already appeared

before (line 7). We stop the simulation when the system state repeats itself. LI
whole

comprises all distinct states S(t) obtained (line 18).

The sum of agents’ behaviors (Lsum) is defined as the set of words resulting from

superimposing behaviors of individual agents.

Lsum = ⊕(L(A11), . . . , L(A1n1
), . . . , L(Amnm

)) (3.13)

where L(Aij) denotes the behavior of agent Aij and ⊕ is the superimpose operator defined

in [52]. The superimpose operator ⊕ does a sum of the individual agents’ behaviors when

they do not interact with each other. Let w1 = a1a2 . . . ax, w2 = b1b2 . . . by be words of

symbols ai, bj , 1 ≤ i ≤ x, 1 ≤ j ≤ y over an alphabet (VA ∪ VE)
+, and ǫ denotes the

empty symbol. Hence, the superimposition of the word w1 on the word w2 is a function

⊕ : V ∗ × V ∗ → V ∗ that results in wsupimp = c1c2 . . . cz of symbols ck, 1 ≤ k ≤ z, defined as

follows:

1. z = max(x, y);
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Algorithm 1 Pseudo-code for LI
whole Calculation

1: procedure calculate LI
whole

2: t:= 0; //initialized clock
3: set S(0); //set initial system state
4: LI

whole:= ∅;
5: add S(0) to LI

whole;
6: repeat:= false;
7: while repeat false do
8: t:= t + 1;
9: ... //simulate next step
10: //use a for loop to compare states
11: for i = 0 to t− 1 do
12: if S(t) equal S(i) then
13: repeat = true;
14: exit for loop;
15: end if
16: end for
17: if repeat false then
18: add S(t) to LI

whole ;
19: end if
20: end while
21: return LI

whole;
22: end procedure

2. if ai ∈ VA then ck = ai;

3. if ai = ǫ then ck = bj ;

4. if bj = ǫ then ck = ai;

5. if ai ∈ VE and bi ∈ VE then ck = ai;

6. if ai ∈ VE and bj ∈ VA then ck = bj .

The superimposition is done over all permutations of n behaviors of agents. It is important

to note that ordering is important in the process of calculating the superimposition. The
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expression below shows the superimposition of three languages L1, L2, and L3.

⊕(L1, L2, L3) = L1 ⊕ (L2 ⊕ (L3)) ∪ L1 ⊕ (L3 ⊕ (L2))

∪ L2 ⊕ (L1 ⊕ (L3)) ∪ L2 ⊕ (L3 ⊕ (L1))

∪ L3 ⊕ (L1 ⊕ (L2)) ∪ L3 ⊕ (L2 ⊕ (L1))

Defining the sum of the individual agents’ behaviors is difficult. Ideally, the result should

contain exactly all designed system states that can be derived from the system specifi-

cation. Unfortunately, this is only true if agents are independent from the others in the

system. Given the initial system state, we obtain n states where each consists of one agent.

Considering only the agent in the system, the agent’s behavior returns a set of words (w)

that represents the set of system states reachable from the corresponding system state.

L(Aij) is defined as follows:

L(Aij) = {w ∈ V c+1 | (SE(0) ∪ sij(0)) ⇒∗ w} (3.14)

Agent symbols have priority over environmental symbols. Any non-empty symbol has

priority over the empty symbol ǫ. For example, consider VA = {a1, a2, a3}, VE = {o, f},

L1 = {fa1of}, L2 = {oa2ff}, L3 = {foffa3}. The superimposition of the agents’ behav-

iors will be the language Lsum = {fa1ofa3, oa2ffa3, fa1ffa3, fa2ffa3}.

In summary, the superimpose operator is a mechanical solution to sum agents’ states.

However, one of the major disadvantages of the superimpose operator is that it suffers

from state-space explosion problem. This is because superimposition takes into account all

permutations of agents’ states, including those that are invalid, i.e. conflict with constraints

among agents. As shown in Section 3.4, Lsum grows to be very large even with a small

number of agents. Section 3.5 presents an alternative to deducing Lξ without involving

Lsum. The key idea is to measure degree of agent interaction in order to derive Lξ from

LI
whole.
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To validate and evaluate the scalability of the proposed approach, we consider its

application to two examples: Boids model that simulates the flocking motion of a group of

birds in the next section, and deadlock in multi-threaded programs in the next chapter. In

the former, we illustrate how to formalize the interactions of birds using our grammar-based

formalization. Given the formalism of a group of birds, a set of emergent property states is

derived. This set consists of states that possess flocking patterns with respect to a certain

criteria of flocking and the others. The proposed approach is validated up to 1,024 birds

in a grid of 128 x 6,128 with the execution time less than five hours. This finding supports

scalability of the approach. The latter, deadlock emergence in multi-threaded programs,

considers deadlock states due to the interleaving among threads in a concurrent program.

Threads are formalized as grammar-based agents, and emergent property states, including

deadlock ones, are then derived. The proposed approach is validated to be applicable

to precisely detect all potential deadlock states when varying the number of threads and

thread types.

3.4 Example: Bird Flocking Emergence

In this section, we apply the proposed formalism to formalize birds’ interactions in terms

of grammar-based agents. The input to our approach is the Boids model and the output is

a set of emergent property states. The derived set of emergent property states allows users

to identify flocking patterns in accordance to their pre-defined criteria of flocking behavior.

In addition, the set has some states that might exhibit other surprising properties that go

beyond the flocking criteria. The experimental results (discussed in Section 3.4.4) show

that our approach is valid to detect flocking up to 1,024 birds in a 128 x 128 grid.
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3.4.1 The Boids Model

The Boids model [74] captures the motion of bird flocking and is a seminal example for

studying emergence [19]. At the macro level, a group of birds tends to move in a V-like

formation, which has aerodynamic advantages, obstacle avoidance, and predator protec-

tion, regardless of the initial positions of the birds. At the micro level, three simple rules

define how each bird flies: (1) separation - steer to avoid crowding neighbors, (2) align-

ment - steer towards the average heading of neighbors, and (3) cohesion - steer towards

the average position of neighbors.

To demonstrate our proposed approach, we extended the Boids model to include two

types of birds, ducks and geese. For ease of discussion, we model a multi-agent system with

ten birds with equal numbers of ducks and geese interacting in an environment represented

as a 2D grid of 8×8 cells. Each cell is occupied by a bird or free, and two birds cannot be

located at the same cell at the same time. Birds have two attributes position and velocity

which model birds’ mobility. The position of a bird is location of the cell occupied by that

bird. The velocity is a vector specifying moving direction and speed. Ducks can fly zero,

one, or two cells per time step in one of eight directions: north, north-east, east, south-

east, south, south-west, west, and north-west. Similarly, geese can fly at the maximum

speed of three cells per time step. The vector representation for velocity of ducks is shown

in Table 3.2. Birds behave according to three rules: (1) separation: avoid collision with

nearby birds, (2) alignment: fly as fast as nearby birds of the same type, and (3) cohesion:

stay close to nearby birds of the same type.
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Direction
Speed

0 1 2
North (0,0) (0,1) (0,2)
North-East (0,0) (1,1) (1,2), (2,1), (2,2)
East (0,0) (1,0) (2,0)
South-East (0,0) (1,-1) (1,-2) (2,-1), (2,-2)
South (0,0) (0,-1) (0,-2)
South-West (0,0) (-1,-1) (-1,-2), (-2,-1), (-2,-2)
West (0,0) (-1,0) (-2,0)
North-West (0,0) (-1,1) (-1,2), (-2,1), (-2,2)

Table 3.2: Vector Representation for Velocity of Ducks

3.4.2 System Formalism

The Boids model is formalized as:

GBSboid = (VA, VE, A11, . . . , A15, A21, . . . , A25, S(0))

where A1j denotes a duck instance j (1 ≤ j ≤ 5), and A2j denotes a goose instance j

(1 ≤ j ≤ 5), VA = VA1
∪ VA2

denotes the set of possible states for the ducks (VA1
) and the

geese (VA2
), VE denotes the set of possible cell states. S(t) ∈ (VA ∪ VE)

+ denotes system

state at time t, and S(0) denotes the initial system state at time zero.

For cell e, Ve = {o, f} where o means occupied and f means free, and se(t) ∈ Ve. For

the entire environment E, VE =

64
⋃

e=1

Ve = {o, f}, and SE(t) ∈ V 64
E , where 64 = 8×8 is the

number of cells.

A duck instance A1j(1 ≤ j ≤ 5) is defined as follows:

A1j = (P1, R1, s1j(0))

where

P1 = P1 mobile ∪ P1 others

P1 mobile = {position(g1j), velocity(v1j)}

P1 others = ∅
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VA1
= {(x, y)|1 ≤ x ≤ 8, 1 ≤ y ≤ 8} × {(α, β)| − 2 ≤ α ≤ 2,−2 ≤ β ≤ 2}

R1 = R1 mobile ∪ R1 others, R1 others = ∅

s1j(t) ∈ VA1

R1 mobile defines the update of the position g1j(t) and the velocity v1j(t) of duck A1j over

time. We limit the speed of ducks to two cells per time step so that they cannot fly

arbitrarily fast. Consequently, absolute values of the horizontal component (α) and the

vertical component (β) of the velocity vector are bounded to two cells. Let sign(α) and

sign(β) return signs of α and β, i.e. 1 for positive and -1 for negative, respectively. Both

position and velocity of birds are represented as 2D vectors; the update is therefore simply

vector additions.

(α, β) = v1j(t) + separation(A1j) + align(A1j) + cohesion(A1j)

v1j(t+ 1) = (sign(α)min(|α|, 2), sign(β)min(|β|, 2))

g1j(t+ 1) = g1j(t) + v1j(t + 1)

Separation: If duck a is close to another duck or goose b, i.e. within ǫ cells, then a flies

away from b.

separation(a) =
∑

distance(a,b)≤ǫ

a.position− b.position

Algorithm 2 presents the pseudo-code for the calculation of the separation vector of a duck.

The separation vector is the sum of the differences between the position of duck a and the

position of other close boids (within ǫ cells), regardless of agent type.

Alignment: Duck a changes its velocity by λ% towards the average velocity of its neigh-

boring ducks.

align(a) = (

k
∑

duck(b)
neighbor(a,b)

b.velocity

k
− a.velocity)× 1

λ
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Algorithm 2 Pseudo-code for Separation Rule

1: procedure separation(duck a)
2: vector c := 0;
3: for each boid b do
4: if |a.position - b.position| ≤ ǫ then
5: c := c - (b.position - a.position);
6: end if
7: end for
8: return c;
9: end procedure

Algorithm 3 presents the pseudo-code for the calculation of the alignment vector of a duck.

Algorithm 3 Pseudo-code for Alignment Rule

1: procedure alignment(duck a)
2: vector c := 0;
3: integer k :=0;
4: for each neighbor duck b do
5: k := k + 1;
6: c := c + b.velocity;
7: end for
8: c := c / k;
9: return (c - a.velocity) / λ;
10: end procedure

In this pseudo-code, we only consider ducks and do not care about geese (line 4) since birds

are supposed to fly in groups of birds of the same type. In other words, ducks tend fly

together with ducks and geese tend fly together with geese. Duck a gradually aligns its

velocity towards the average velocity of its neighboring ducks by λ% (line 9).

Cohesion: Duck a moves by γ% towards the center of its neighboring ducks.

cohesion(a) = (

k
∑

duck(b)
neighbor(a,b)

b.position

k
− a.position) × 1

γ

Algorithm 4 presents the pseudo-code for the calculation of the cohesion vector of a duck.

Similar to alignment, duck a gradually coheres towards the center of its neighboring ducks
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Algorithm 4 Pseudo-code for Cohesion Rule

1: procedure cohesion(duck a)
2: vector c := 0;
3: integer k :=0;
4: for each neighbor duck b do
5: k := k + 1;
6: c := c + b.position;
7: end for
8: c := c / k;
9: return (c - a.position) / γ;
10: end procedure

by γ% (line 9). The model for geese follows in a similar manner except that their maximum

speed is three cells per time step.

3.4.3 Simulation for Calculating Flocking Emergence States

Our proposed approach returns a set of emergent property states. To verify that these

states contain emergent properties, we show how the well-known flocking of birds emergence

is derived from Lξ. The initial system state is given as the state at time t = 0 in Figure 3.3.

For ease of visualization, we distinguish ducks from geese using a star (∗) symbol and bolded

cell. < j, (α, β) > denotes a bird instance j, with velocity (α, β).

Figure 3.3 shows a simulation of the system when ǫ = 2, λ = 10, and β = 8. We

observe that the birds keep flying in the same pattern from t = 4. Moreover, the system

gets back to the system state S(4) at time t = 12: S(12) = S(4). Hence, LI
whole =

{S(0), S(1), . . . , S(11)}.

Lsum is calculated using the superimpose operator as Lsum = ⊕(L(A11), . . . , L(A25)).

By definition and following our discussion above, Lsum tends to be very large, even for

small problem sizes. As such, we consider for illustration two geese A23 and A25. For

simplicity, the superimposition of two birds, L(A23) and L(A25), is shown in Figure 3.4.
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Figure 3.3: Snapshot of Emergent Property States
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Figure 3.4: Example of L(A23)⊕ (L(A25))
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⊕ (L(A23), L(A25))

= L(A23)⊕ (L(A25)) ∪ L(A25)⊕ (L(A23))

= {((2, (1, 1), (1, 1))fff . . . (2, (1, 2), (1, 0))fff . . .),

(fff . . . (2, (2, 2), (1, 0))fff . . .),

(fff . . . (2, (8, 2), (1, 0))fff . . . (2, (8, 8), (1, 1))}

L(A23) and L(A25) are behaviors of agent A23 and A25 respectively. f represents an empty

cell and a tuple < i, (x, y), (α, β) > represents the state of a bird of type i at cell (x, y)

with velocity (α, β). For example, < 2, (1, 2), (1, 0) > represents a goose locating at cell

(1, 2) with velocity (1, 0). The important point to note is that the x-axis is horizontal and

oriented from left to right, and the y-axis is vertical and oriented from bottom to top. In

the example of ten birds, Lsum contains one common state, S(0), with LI
whole. Therefore,

Lξ = {S(1), S(2), . . . , S(11)}.

So far, we have successfully determined the set of emergent property states, Lξ, which

consists of system states that are due to the interactions of birds, but cannot be derived

from the behavior of individual birds. However, we can go further by making these states

meaningful with respect to users’ perspective. In particular, the set of emergent property

states allow the users to identify emergent properties possessed in these states. These

properties are what the users are interested in and seek in relation to their knowledge

of emergent properties. More interestingly, users probably recognize additional surprising

properties that they do not intentionally look for. For example, if the users consider that

a group of birds form a flock if at least four birds of the same type fly together, with each

bird having at least one immediate neighbor of the same type, then ten emergent property

states from S(2) to S(11) have flocking emergent property. In addition, flocking patterns

in S(3), . . ., S(10), and S(11) are identical, regardless of different positions of the birds
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forming the flock. In other words, we have two types of flocking emergence that the users

have already known: one type in S(2) and one type in S(3), . . ., S(10), and S(11). One

interesting observation is that the second flocking type is more popular and stable than the

first one. This makes sense because the second flocking type visually seems to be superior

to the first in terms of aerodynamic efficiency, obstacle avoidance ability, and predator

protection power as shown in Figure 3.3.

The remaining emergent property state, S(1), is unknown with respect to the criteria

of flocking described above. In fact, it does not have any group of four birds of the same

type flying together. However, we observe that there are two groups of three birds, and

the birds already tend to fly at the same speed (of one cell per time step). Furthermore,

there are two additional birds of the same type near (distance of one cell) to each group.

Therefore, each group is close to a form of flocking since at the next step, the two birds

likely join their corresponding group of three to form a flock of five birds. As a result,

the unknown emergent property state, S(1), provides some clues that help predict the

flocking behavior of the group of birds as well as the process leading to flock formation.

In other words, unknown emergent property states give users the benefit of understanding

and predicting the system behavior as well as identifying emergent properties, although

they do not explicitly exhibit emergent properties regarding the users’ knowledge.

On the other hand, if a flock is defined as a group of at least three birds of the same

type flying together, S(1) becomes a known emergent property state, hence all emergent

property states are known. Consequently, there are three types of known flocking behavior:

in S(1), in S(2), and in S(3), . . ., S(10), and S(11). We see that different criteria of

describing flocking result in different views of emergence. What users perceive may slightly

vary, depending on their knowledge of emergence. However, whatever the case, the set of

emergent property states is the same, i.e. independent from the users. This set plays
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the key role in allowing the users to investigate to determine emergent properties of their

interest.

We also validate the proposed approach for a specific case of five ducks and give geese in

a grid of 16 x 16. According to the experimental results, LI
whole = {S(0), S(1), . . . , S(46)}

and Lξ = {S(1), S(2), . . . , S(46)}. If we define a flock as a group of at least three birds

of the same type flying together, all states of Lξ excepts S(9), S(10), and S(11) possess

flocking patterns. These exceptions are unknown emergent property states. In these states,

there is no flocking because birds have to separate, i.e. break their flock formed previously,

to avoid collision with others. However, the birds eventually gather and form flock again as

soon as there is no longer collision. In contrast to the example of 8 x 8 grid (see Figure 3.3)

in which the unknown emergent property state, S(1), allows to predict the future flying

behavior of the birds, the unknown emergent property states in this example of 16 x 16

grid provide a better understanding of how birds form a flock, avoid collision, and then

form a flock again. Another interesting finding is that S(22) starts to have two flocks of

three birds instead of one flock of three birds as the previous states. In other words, after

a number of steps, another type of birds finally builds up a flock.

On the other hand, if a flock is regarded as a group of at least 4 birds of the same type

flying together, starting from S(23), emergent property states exhibit flocking behavior.

The other states of Lξ are unknown emergent property states. Similar to the case of 8 x

8 grid, S(22) enables the prediction of the formation of flocking. Other states, S(1), S(2),

. . . , S(20) probably contain something interesting for further investigation. Finally, if we

define a flock as a group of five birds, the set of known emergent property states would

be {S(30), S(31), . . . , S(46)}. It is clear to observe the gradual development of flocking

from three birds, four birds, to five birds. The formation of a flock of five birds is a result

of a chain of improvements of the casual relationships among birds rather than a sudden
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occurrence.

3.4.4 Evaluation

In this section, we present a theoretical and experimental analysis of our approach. This

analysis provides a feel of the scalability of the grammar-based emergence formalization.

In particular, we show that the proposed approach scales well with the number of birds

and the environment size; and the execution time is less than five hours for 1,024 birds in

a 128 x 128 grid.

Since we derived the sets of states for LI
whole, Lsum, and Lξ, we measure the complexity

in terms of the number of states. We implemented our approach using a Java program,

and our experimental analysis quantifies the state size, by varying the number of birds.

Theoretical Analysis

The complexity of deriving Lξ (O(Lξ)) consists of two parts: complexity of LI
whole (O(LI

whole))

and complexity of Lsum (O(Lsum)).

O(Lξ) = O(LI
whole) +O(Lsum) (3.15)

Because detecting emergence is to differentiate system states that appear when taking into

account interactions of agents, but not when regarding them separately, it is reasonable to

use the number of system states as a complexity measure. Key complexity factors include:

the environment size (2D grid of size x by y), the number of agent types (m), the number

of agents (n), and the number of possible states an agent can take (s). We derive O(LI
whole)

and O(Lsum) in the worst case. Let n = n′ + n′′ where n′ is the number of mobile agents,

and n′′ is the number of stationary agents.

O(LI

whole
): Given a position, an agent can take one of s states. Moreover, stationary

agents are fixed in n′′ positions. There are
(

xy−n′′

n′

)

possibilities for allocating n′ mobile
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agents into the remaining xy − n′′ positions. Hence,

O(LI
whole) = O(

(

xy − n′′

n′

)

sn) (3.16)

O(Lsum): Without considering the interactions of agents, a mobile agent, in the worst

case, can arbitrarily move to any position (cell) in the environment. Hence, the upper

bound complexity of superimposing individual behaviors for all agents is:

O(Lsum) = O((xy)n
′

sn) (3.17)

For example in The Game of Life, agents are stationary, i.e. n′ = 0 and n′′ = n, and

O(LI
whole) = O(Lsum) = O(sn)). If all agents are mobile, i.e. n′ = n and n′′ = 0, then

O(Lsum) = O((xy)nsn), which is much larger than O(LI
whole) = O(

(

xy

n

)

sn). This is because

the summing operation involves all combinations of individual agents’ behaviors, including

those that could never happen in practice, as discussed before.

To reduce O(Lsum), we consider the fact that some results from the superimposition

cannot be possible due to system wide rules, so we eliminate these from the calculation.

For example, in a traffic junction model, car A following car B in a one-lane road cannot

move ahead of B at any point in time. Adding system constraints that can be obtained

from the system specification to the superimposition process to reduce Lsum to LP
sum is

part of our future work. The more known constraints we add, the smaller Lsum is.

Experimental Simulation Results

We implemented the Boids model as a Java simulator to further understand the relationship

among LI
whole, Lsum, and Lξ. We also analyzed how interactions of agents affect the size of

Lξ with respect to the size of LI
whole. As Lsum suffers from state-space explosion, we varied

the number of birds from four to ten, with equal numbers of ducks and geese. A difference

between ducks and geese is maximum speed, which is two cells per time step for ducks and
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three cells per time step for geese. Position and velocity of birds are initialized randomly.

Both ducks and geese follow three behavior rules defined above. Given an initial system

state, at some point of time t, the system will arrive in a state that has already happened

at time t′ < t because the number of possible system states is finite, even if it can be very

large. Due to the assumption that agents’ behavior rules do not change over time, the

simulation loops afterwards. As a result, the size of LI
whole is the number of distinct system

states obtained from the beginning until time t. Lsum, on the other hand, is computed over

all possible combinations of isolated agents’ behaviors with respect to the initial system

state. The initial system state belongs to both LI
whole and Lsum.

For every experiment, we ran the simulation ten times and took the average number

of states as shown in Table 3.3. The experiments are run using a 3.4GHz machine with

8GB RAM. As expected, the size of Lsum is large and increases exponentially with the

number of birds
number of states Lξ

LI

whole

execution time (s)
LI

whole
Lsum Lξ

4 13 767 6 0.46 0.3
6 18 70,118 12 0.67 3.7
8 13 509,103 9 0.69 446.2
10 26 13,314,066 23 0.88 3,092.1

Table 3.3: Size of LI
whole, Lsum, and Lξ

number of birds. For instance, Lsum grows by 90 times when the number of birds changes

from four to six. Another interesting observation is that Lξ/L
I
whole tends to increase with

the number of birds. In other words, more interactions (interdependences) of birds lead to

more emergent property states that cannot be derived by summing the independent agents’

behaviors. Furthermore, the number of common elements between LI
whole and Lsum is small.

Consequently, computation is wasted on calculating LNP
sum states that are not feasible in

practice. However, when the impact of neighboring agents on an agent is not strong, and

then LNP
sum tends to be small. For example, agents do not interact frequently because they
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are far from each other, such as when the number of agents is much smaller than the

number of cells in the environment. Finally, the execution time increases sharply when the

number of birds grows slowly. For example, the simulation takes barely 0.3 seconds for 4

birds while that is more than 45 minutes for 10 birds. This finding is reasonable in the

sense that Lsum increases exponentially in the number of birds, the significant difference

in execution time is mainly due to the calculation of Lsum.

3.5 Reduction of State Space

Section 3.4 showed that compared to Kubik’s work, even though we reduced the state space

for Lξ by eliminating the system states out of the system designer’s interest, our proposed

approach still significantly suffered from state explosion. From Equation 3.4, Lξ is deter-

mined by checking whether LI
whole is in LP

sum. L
P
sum is derived from Lsum, which is in turn

determined using a superimpose set operation that extrapolates all possible permutations

of agents’ behavior. The outcome of this extrapolation includes those permutations that

do not exist in practice, and thus Lsum can be very large even for a small number of agents.

In this section, we further reduce the state space for Lξ by excluding Lsum. We propose

a new method for splitting LI
whole into Lξ and Lo, which is the intersection between LI

whole

and LP
sum as shown in Figure 3.5.

    

Figure 3.5: Emergent and Non-emergent Property States

61



3.5.1 Degree of Interaction as an Emergence Measure

The key idea is to use degree of interaction of agents as a measure of emergence. It is largely

accepted that interaction is a key prerequisite of emergence [19, 44, 52]. Intuitively, the

stronger interactions of agents are, the higher chance of emergence. Emergence happens

when interactions of agents are “strong”, i.e. their degree is larger than a given threshold.

Lo is due to interactions that are not strong, and Lξ is due to strong interactions. There

are three possible categories of non-strong interaction, namely, no interaction (individual

agent behavior), interaction that cancels out and has no overall effect on the system, and

weak interaction. The first two have degree of zero, while the last category has degree of

less than or equal to the pre-determined threshold.

We propose to use system state change as a measure of degree of agent interaction.

This is because interactions trigger state changes. Intuitively, stronger interactions tend

to make more significant changes on the state of the system. This idea is based on the

outcome of an interaction rather than the process of the interaction. Note that, in the

scope of this thesis, we only consider systems in which interactions finally induce some

sort of state changes. Systems whereby interactions trigger agents to go through a decision

process, but not result in any state changes are not considered.

Interaction arises from neighboring rules that define how an agent interacts with other

agents, i.e. has at least one neighbor. For example, a bird changes its position because of

coordination (collision avoidance, alignment, and cohesion) with other neighboring birds.

Besides neighboring rules, an agent also has individual rules that govern the agent be-

havior when the agent acts individually without the neighbors. For example, a bird may

not change its speed for a period during which it is alone in the environment. As a

result, the difference between two system states S(t) and S(0) at time t and zero re-
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spectively, D(S(t), S(0)), is due to individual rules, DI(S(t), S(0)), and neighboring rules,

DN(S(t), S(0)).

D(S(t), S(0)) = DI(S(t), S(0)) +DN(S(t), S(0)) (3.18)

DN(S(t), S(0)) represents degree of interaction between agents. Because emergent prop-

erties arise from interaction, and agent interaction, in turn, arises from neighboring rules,

DN(S(t), S(0)) can be regarded as a measure or a criterion for determining emergence.

Consider system state S(t) in LI
whole:

S(t) ∈























Lo if DN(S(t), S(0)) = 0, no or cancel out interaction

if 0 < DN(S(t), S(0)) ≤ δ, weak interaction

Lξ otherwise

where δ (0 < δ < 1) is a pre-defined threshold that denotes degree of interaction. The

larger δ we set, the smaller number of emergent property states we obtain. Algorithm 5

presents the pseudo-code for deriving Lξ based on degree of agent interaction. Lo and

Lξ are initialized to empty sets (line 2 and line 3 respectively). The difference between

every state in LI
whole and the initial state is measured (line 5) and compared with the

pre-determined threshold δ. If the difference is less than or equal to δ, the corresponding

state is added to Lo. Otherwise, it is added to Lξ, i.e. an emergent property state. The

difference between S(t) and S(0) is accumulated from the difference between sij(t) and

sij(0) for individual agents (line 9). The for loop terminates as soon as the accumulated

difference is larger than δ (line 12).

DN(S(t),S(0)) Calculation

System state is composed of the states of all constituent agents and the states of the

environment. Therefore, we define:

DI(S(t), S(0)) =
1

n

∑

∀i∀j

dI(sij(t), sij(0)) (3.19)
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Algorithm 5 Pseudo-code for Lξ Calculation

1: procedure calculate Lξ

2: Lo = ∅;
3: Lξ = ∅;
4: set δ; //set weak emergence threshold
5: for each state S(t) ∈ LI

whole do
6: D(t, 0) := 0;
7: for each entity A in system do
8: call dA(t, 0); //entity state difference time t and zero
9: add dA(t, 0) to D(t, 0);
10: if D(t, 0) > δ then //Lξ state
11: add S(t) to Lξ;
12: exit for loop;
13: end if
14: end for
15: if D(t, 0) = 0 then
16: add S(t) to Lo; //no or cancel out interaction
17: else if D(t, 0) ≤ δ then
18: add S(t) to Lo; //weak interaction
19: end if
20: end for
21: return Lξ;
22: end procedure

DN(S(t), S(0)) =
1

n

∑

∀i∀j

dN(sij(t), sij(0)) +DN(SE(t), SE(0)) (3.20)

where n denotes the number of agents, dI(sij(t), sij(0)) and dN(sij(t), sij(0)) denote the

difference between Aij ’s states in S(t) and S(0) due to individual rules and neighbor-

ing rules respectively, and DN(SE(t), SE(0)) denotes the difference between states of the

environment at time t and zero. Let

d(sij(t), sij(0)) = dI(sij(t), sij(0)) + dN(sij(t), sij(0)) (3.21)

be the difference between Aij ’s states in S(t) and S(0) in total, i.e. due to both individual

and neighboring rules.

From Equation 3.20, to calculate DN(S(t), S(0)), we need dN(sij(t), sij(0)) which re-

quires d(sij(t), sij(0)) and dI(sij(t), sij(0)) as from Equation 3.21. We propose a method
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to measure d(sij(t), sij(0)) and dI(sij(t), sij(0)). The calculation of DN(SE(t), SE(0)) will

be discussed after that. Because the state of an agent is characterized by the values of its

attributes, which may have different units of measurement and different ranges, we need to

normalize agent attributes to the same range [0,1] with no units. For example, the speed

of a car may vary from 0 km/h to 100 km/h, while its travel time is measured in seconds.

Interval [0,1] of normalized attributes ensures that agent state difference dN(sij(t), sij(0))

and system state difference DN (S(t), S(0)) due to neighboring rules are also in interval

[0,1]. An attribute p is normalized using the following scaling formula:

p′ =
p− pmin

pmax − pmin

(3.22)

where pmin and pmax are the minimum and maximum values, respectively, of the attribute

p. In addition, we assume that all agent attributes can be measured in a numerical form.

Non-numerical attributes could be translated in to a numerical form. For example, consider

color attribute, we can translate its values green and blue into 0.1 and 0.2 respectively. This

translation is problem-specific, and we leave this issue for future work. Thus, d(sij(t), sij(0)

is defined as:

d(sij(t), sij(0)) =

∑

p∈Pi
|p′(t)− p′(0)|
|Pi|

(3.23)

where Pi denotes the set of attributes for agents of type i, and p′(t) denotes value of

normalized attribute p at time t. Algorithm 6 presents the pseudo-code for the calculation

of d(sij(t), sij(0)). This difference counts the differences of the values of attributes at time

t and zero. Agent attributes are normalized in line 4.

dI(sij(t), sij(0)) is due to individual rules, and defined as:

dI(sij(t), sij(0)) = d(s, sij(0)) (3.24)

where s is an agent state reached from sij(0) after t steps considering only individual rules
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Algorithm 6 Pseudo-code for d(sij(t), sij(0)) Calculation

1: procedure calculate d(sij(t), sij(0))
2: d(sij(t), sij(0)) := 0;
3: for each attribute p ∈ Pi do
4: add |(p(t)− p(0)|/(pmax − pmin) to d(sij(t), sij(0));
5: end for
6: d(sij(t), sij(0)) := d(sij(t), sij(0))/|Pi|;
7: return d(sij(t), sij(0));
8: end procedure

for Aij , i.e. Aij is alone in the system.

sij(0)
individual rules−−−−−−−−→

t

s (3.25)

If sij(0)
individual rules−−−−−−−−→

t

sij(t), then then d(sij(t), sij(0)) = dI(sij(t), sij(0)) and dN(sij(t), sij(0)) =

0.

For example, consider the Boids model. A bird has two attributes: position, which

is the location of the cell occupied by the bird, denoted by a 2D vector (x(t), y(t)), and

velocity, denoted by a 2D vector (α(t), β(t)). We assume that a bird does not change its

velocity when flying alone, and visits certain cells along its path with corresponding to its

velocity. Let
√
c be the width/height of the environment, where c is the size, i.e. number

of cells, of the square environment 2D grid. sij(0)
individual rules−−−−−−−−→

t

sij(t) if and only if:

1. x(t)− x(0) = 0 mod(
√
c) and y(t)− y(0) = 0 mod(

√
c);

2. (α(t), β(t)) = (α(0), β(0)).

where mod is the modulo operation.

DN(SE(t),SE(0)) Calculation

The difference between states of the environment at time t and time zero is defined as

followed:

DN(SE(t), SE(0)) = min(DN,Aij
(SE(t), SE(0))) (3.26)
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where DN,Aij
(SE(t), SE(0)) denotes the difference of states of the environment at time t

and time zero due to the behavior of agent Aij only. Considering Aij alone in the system,

DN,Aij
(SE(t), SE(0)) can be computed in a manner similar to Equation 3.23 with respect

to all attributes of the environment.

The strength of emergence is measured using the degree of interaction of agents, and

stronger interaction leads to a higher likelihood of emergence. Degree of interaction can

be measured as the change of system state because interactions trigger state changes. Our

degree of interaction is derived based on a number of entity attributes. As discuss in

the next Section, it is not always straightforward to select these attributes. As a result,

degree of interaction of agents at time t, DN(S(t), S(0)), is measured as the state difference

between S(t) and S(0). This difference consists of the difference between agents’ states

due to neighboring rules at time t and time zero, and the difference between environment

states at time t and time zero (as shown in Equation 3.20). The difference between the

two states of an agent is derived from the difference of values of the attributes of the agent

at the two respective time points. Agent attributes are normalized so that we can combine

attributes of different measurement units and magnitudes.

3.5.2 Evaluation

Similar to Section 3.4.4, in this section we evaluate the state space reduction technique, in

terms of both theoretical complexity and experimental results.

Theoretical Analysis

The complexity of deriving Lξ (O(Lξ)) consists of two main parts: (1) complexity of

calculating LI
whole (O(LI

whole)), and (2) complexity of classifying LI
whole into Lo and Lξ
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using the interaction degree (O(classification)).

O(Lξ) = O(LI
whole) +O(classification) (3.27)

Clearly, O(LI
whole) can be evaluated using Equation 3.16. Therefore, the main aim of this

section is to define O(classification). In contrast to previous approach, which involves

Lsum, by considering the interaction degree as an emergence measure, we eliminate Lsum,

and traverse all states in LI
whole to check whether they are emergent or not. Given a state

in LI
whole, we compute the difference between this state and the initial state in relation to

the behavior rules. The difference between these two system states is summed over the

difference of individual birds contained in these states. Finally, the difference between two

states of a particular bird is composed of the difference of its attributes in the two bird

states. As a result, the complexity of checking whether a system state is emergent, is linear

in the number of attributes. Thus the complexity of doing this checking for all states in

LI
whole is linear in the cardinality of LI

whole and the average number of attributes of birds.

Let P̄ be the average number of bird attributes. We have

O(classification) = O(|LI
whole|P̄ ) (3.28)

Compare O(classification) with O(Lsum) = O((xy)n
′

sn) (as shown in Equation 3.17). As

reasoned in Section 3.4.4, O(LI
whole) is typically much smaller than O(Lsum). Hence, if P̄

is small, O(classification) would be also much smaller than O(Lsum), i.e. the proposed

technique for reducing the state space to be searched is superior to the original approach,

which involves Lsum. For example, in our extended Boids model, P̄ is only two; the

calculation of Lξ should be theoretically reduced remarkably. The experimental results

presented below will support this statement.

Experimental Simulation Results

Due to state-space explosion, simulation experiments in the previous section are limited
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to ten birds. Even with such a small number of birds, Lsum already exceeds ten millions.

In this section, by eliminating Lsum, our experiments scale up to a larger number of birds

(1,024 birds) and a larger environment (128 x 128 grid). We set δ to 0.1 to consider that

emergence occurs when degree of interaction of birds is larger than 0.1. Other values

of δ are examined later. Position of birds in the grid is the only attribute concerned in

calculating degree of interaction as position is the result of applying all behavior rules,

thus changes in position demonstrate how strong birds’ interactions are. The simulator

is run using a 2.4GHz machine with 3GB RAM. Table 3.4 shows experimental results for

different numbers of birds with grids of 16 x 16, 32 x 32, 64 x 64, and 128 x 128. We keep

the population of ducks and geese equal. The purpose of the experiments is to analyze the

relationships among LI
whole, Lo, and Lξ. We are also interested in evaluating the scalability

of the new method of determining emergence.

The first observation is that when the number of birds increases doubly, LI
whole grows

as expected, but soon drops. For example, as can be seen in the table, for 128 x 128 grid,

LI
whole decreases sharply from 7,497 to 4,072 when the number of birds increases from 128

to 1,024. Similarly, LI
whole changes noticeably from 3,803 to 1,536 when bird population

varies from 128 to 1,024 in 64 x 64 grid. This tendency is probably because that a larger

number of birds encourage more interactions of birds, thus making the birds’ movement

more structured. Consequently, the more self-organized movement makes the simulation

repeat faster.

Second, for all four sizes of the environment, system states due to no/cancel out inter-

action and weak interaction are small, in particular maximum of 38, and tend to decrease

with the number of birds. This further clarifies the close relationship between bird popula-

tion and degree of bird interaction that more birds lead to more interactions, hence smaller

Lo. Furthermore, the number of system states due to no/cancel out interaction tends to
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number of birds LI

whole

Lo Lξ execution time (s)
no/cancel out weak

16 x 16 grid
4 18 2 1 15 small
8 44 1 2 41 small
16 65 1 1 63 small
32 127 1 1 125 0.2
64 220 1 1 218 0.6

32 x 32 grid
4 47 3 6 38 small
8 72 2 5 65 small
16 107 2 4 101 small
32 287 1 2 284 0.3
64 454 1 2 451 1.3
128 437 1 2 434 6.4
256 389 1 2 386 23.9

64 x 64 grid
4 50 7 12 31 small
8 83 4 7 72 small
16 211 1 11 199 0.1
32 271 1 8 262 0.3
64 2,573 1 6 2,566 9.3
128 3,803 1 6 3,796 66.2
256 2,340 1 5 2,334 184.5
512 1,785 1 5 1,779 780.4
1,024 1,536 1 5 1,530 5,392.6

128 x 128 grid
4 133 17 21 95 small
8 157 3 19 135 small
16 643 5 16 622 0.2
32 1,158 2 19 1,137 1.3
64 3,037 1 15 3,021 12.8
128 7,497 1 12 7,484 151.7
256 6,871 1 13 6,857 941.8
512 5,038 1 11 5,026 5,394.3
1,024 4,072 1 11 4,060 32,266.8

Table 3.4: Varying Number of Birds and Environment Size with δ of 0.1

reach one. This only state is actually the initial state. In other words, there is no system

state caused by interactions that cancel out when the bird population is large.
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Third, Lo is small compared to Lξ, especially when the number of birds is large. For

example, Lo

Lξ
is less than 1% when bird population is 64, 256, 512, and 1,024 in grid of 16

x 16, 32 x 32, 64 x 64, and 128 x 128 respectively. There are two possible reasons for this.

The first reason is that δ = 0.1 is a small value. If δ is set to a larger value, we likely

retrieve less emergent property states but with a higher degree of interactions. However,

there is a risk that some appealing emergent properties may reside in the other part that

we do not consider. The second reason is that more interactions of birds when the group

becomes more crowded amplify degree of bird interaction, thus making the degree larger

than δ for most system states.

In addition, by examining the execution times, we can see that the new proposed

method of identifying emergent property states is much more efficient than the original

method. In fact, eliminating Lsum enables experiments of much larger bird populations

and environment sizes (1,024 birds and 128 x 128 grid in the new method compared to

10 birds and 8 x 8 grid in the original method). In particular, for 1,024 birds and 128

x 128 grid, the experiment took about nine hours to run through 4,072 system states

and classify them into non-emergent and emergent property states based on degree of

interaction. Compared to the original approach of calculation of Lξ, which took about one

hour for only ten birds and 8 x 8 grid as shown in Table 3.3, we can see the high efficiency

of the proposed technique for reduction of state space.

To understand how strong interactions of agents are, and the relationship between Lξ

and δ, we do experiments for different numbers of birds, different values of δ in a 16 x 16

grid as shown in Table 3.5. The first obvious observation is that Lξ mainly occurs when

degree of interaction lies in two ranges [0.2, 0.3] and [0.3, 0.4]. For example, consider 64

birds, these two ranges accounts for about 97% of emergent property states. In addition,

[0.3, 0.4] seems to have more emergent property states than [0.2, 0.3] when bird population
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number of birds LI

whole

Lξ

0.0 0.1 0.2 0.3 0.4 0.5
4 18 3 3 6 5 1 0
8 44 3 4 21 13 3 0
16 65 2 2 22 33 6 0
32 127 2 2 20 93 10 0
64 220 2 1 31 183 3 0

Table 3.5: Size of LI
whole and Lξ for Different Numbers of Birds, Different δ with 16 x 16

Grid

increases. For instance, the ratio of Lξ in [0.3, 0.4] and [0.2, 0.3] grows from 0.8 to 5.9

when the number of birds increases from 4 to 64 respectively. One explanation is that

birds must conform to some pre-determined behavior rules to interact with others, thus

changes of the system state caused by their interactions tend to follow some distribution

in relation to the behavior rules. Based on the reasoning above, our hypothesis is that

the behavior rules of birds is observed to follow a particular distribution of degree of birds’

interaction but this has to be further investigated.

3.6 Summary

In this section, we formalized emergence using an extended cooperating array grammar

system so as to verify the existence and the size of emergent property states in multi-agent

systems. In weak emergence, the set of emergent property states for a given system (Lξ)

is derived by taking the difference between the set of observed system states due to agent

interactions (Lwhole), and the set of system states obtained by combining the states of

individual agents (Lsum). However, this broad definition suffers from state explosion.

We introduced a tighter definition of weak emergence to reduce the size of the system

state space. In studying a system, users focus only on modeling agent interactions of

interest (LI
whole < Lwhole). Though all combinations of Lsum are mathematically possible,
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a large number of these system states may not be feasible because of system constraints.

Thus, Lsum can be reduced to LP
sum, i.e. set of possible combinations of agents’ states.

We extended Kubik’s approach to a grammar-based formalism of emergence that mod-

els agents of different types, mobile and static agents, as well as open systems with agents

arriving and departing over time. Theoretical analysis reveals a number of observations,

e.g. the complexity of Lsum increases exponentially with the number of agents. These

observations were also verified experimentally using a Boids model with two types of birds.

In addition, we showed how a known emergent property such as bird flocking can be ex-

tracted from the emergent property states. In terms of system state-space size, preliminary

experimental results show that our simulator can handle Lsum of about 108 states. Lsum

can be further reduced by identifying system-specific constraints that eliminate impossible

states when summing individual agents’ states.

To reduce of the state space to be searched, we proposed an alternative to determining

Lξ without the calculation of Lsum. The key idea is to divide LI
whole into two subsets: Lξ -

the set of emergent property states and Lo - the set of system states in which interactions

of agents are weak, cancel out, or do not happen at all, using degree of interaction between

agents. This degree is measured as the difference between a system state under examination

and the initial state. The stronger agent interaction is, the more the system state changes

with respect to the initial state. The Boids model with various bird populations and grid

sizes were experimented. The results showed that the proposed reduction technique based

on the interaction degree is efficient. The simulation for 1,024 birds in 64 x 64 grid took

roughly the same amount of time (around one hour) compared to the original approach

(involving Lsum) for only ten birds in 8 x 8 grid. Lastly, we put forward a hypothesis that

behavior rules defines a particular distribution of interaction degree.
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Chapter 4

Example: Deadlock Emergence in

Concurrent Programs

One of the most challenging limitations of our work is that the proposed approach is relative

to the model of the system to be examined. Given a complex system, we have to abstract

the system, get rid of unnecessary details, and then come out with a model. This model is

the best representation of the system in relation to the designer’s interest. However, the

designer may not take into account behavior rules that contribute to emergence. In other

words, there may be emergent properties that occur in the system but not in the model of

the system. Consequently, our approach returns only a proportion of the whole emergent

property states. This proportion could be small compared to the part that is not modeled.

In this section, we try to lighten the limitation above by considering the situation when

the input to our approach is a concrete specification rather than a model of the system.

We analyze deadlock emergence in concurrent programs as an example.

The focus is to validate the proposed approach by deriving the set of emergent property

states, including deadlock states, and evaluate the scalability of the approach in context
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of multi-threaded programs. It is shown that our approach precisely detect all potential

deadlock states. Besides the deadlock states, the approach also detects other system states

that are due to interleaving among threads. These states are a useful source to determine

other properties of the system such as exceptions and bugs that facilitate the program

development. Although the proposed approach encounters state-space explosion because it

has to examine all possibilities of threads’ interleaving, its scalability could be significantly

improved with further investigations.

4.1 Multi-threaded Programs as Problem Specifica-

tion

Rather than modeling the problem to have a model as the input to our approach, for

example the Boids model in Section 3.4, we are provided with a system specification.

In particular, the specification is a multi-thread program coming from a user. A multi-

threaded program is largely different from the Boids model in several aspects as shown in

Table 4.1.

Criteria Boids Model Multi-threaded Programs
Representation system’s model system’s specification
Number of component types less than number of boids equal number of threads
System behavior deterministic non-deterministic
Component interactions component-component component-environment
Emergent properties flocking properties deadlock, livelock, etc.

Table 4.1: The Boids Model vs. Multi-threaded Programs

In contrast to the Boids model, which is a model of a group of birds, a multi-threaded

program is regarded as a concrete specification of the system. A multi-threaded program

consists of multiple threads interacting with each other. Each thread has local variables
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and statements that define how the thread acts and interacts with the other threads of the

program. Different threads typically have different local variables or statements, thus be-

longing to different types of thread. Therefore, the number of thread types approximates to

the number of threads. This is contrary to the Boids model in which several birds are often

grouped into a type. Threads are assumed to have the same priority and interleave, allow-

ing their execution in all possible orders relative to each other. This arbitrary execution

leads to a large number of possible program states and execution paths. The interleav-

ing model of computation makes the multi-threaded program non-deterministic. In other

words, different simulations starting with the exact same initial configuration may result

in different results. It is important to note that the Boids model and The Game of Life

are fully deterministic systems. In fact, both deterministic and non-deterministic systems

could exhibit emergent properties, as long as there are interactions between components.

The interactions of threads are manifested in changes of the shared environment, which

is visible to all threads. Typically, the environment is a set of shared variables. Shared

variables can be static variables (Java), global variables (C), and locks in the context of

concurrent programming, to name a few. These interactions are sort of indirect interaction

or component-environment since effects caused by the interactions are presented by a third

party, i.e. the environment, instead of the two interacting threads. The interactions in

the Boids model, on the other hand, are direct or component-component. A boid must

initially inquire to figure out the status of its neighboring boids, and then changes its state

accordingly. The changes made by the boid in turn directly influence the behavior of its

neighbors.

Deadlock is an undesired emergent property in concurrent systems. A deadlock is a

permanent blocking of a set of processes that either compete for resources (data resources

or communication messages) with each other. Figure 4.1 depicts a deadlock situation
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with two processes sharing two resources. Process 1 is in possession of resource 1 and

Process1 Process2

Resource1

Resource2

Figure 4.1: Deadlock with Two Processes and Two Shared Resources

requires additional resource 2, process 2 requires additional resource 1 and is in possession

of resource 2; neither process can continue.

Although deadlock arises from the interactions of processes, it cannot be derived from

the behavior of individual processes, and is often unpredictable until run time. Deadlock

makes a system less credible and harder to predict. However, currently existing techniques

can only address a proportion of the whole deadlock population. Model checking, in

particular, only detects certain deadlocks in accordance to a given deadlock specification.

There is no guarantee that other types of deadlock that have not been known do not exist.

4.2 Grammar-based Formalism of Multi-threaded Pro-

grams

In this section, we formalize a simple multi-threaded program using our grammar-based

approach. Figure 4.2 provides a Java code segment that potentially leads to deadlock.

The code segment consists of two threads sharing two variables. Thread 1 and thread 2
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final Object resource1 = "resource1"; 

final Object resource2 = "resource2"; 

Thread t1 = new Thread() { 

    public void run() { 

         // Lock resource 1 

         synchronized (resource1) { 

             synchronized (resource2) { 

             } 

        } 

    } 

}; 

Thread t2 = new Thread() { 

    public void run() { 

         // Lock resource 2 

         synchronized (resource2) { 

             synchronized (resource1) { 

             } 

         } 

    } 

}; 

t1.start(); t2.start(); 

Figure 4.2: Two Threads Sharing Two Variables

share two variables: resource1 and resource2. These two resources are mutual exclusive

in the sense that each resource can be used by only one thread at a time. Note that

these two resources are a representation of the lock concept in concurrent programming.

Thread 1 needs to hold resource 1, then resource 2, and finally releases both resources.

Similarly, thread 2 requires resource 2, then resource 1, and finally releases both resources.

The competition between two threads for the shared resources could result in deadlock in

which thread 1 possesses resource 1 and wait infinitely for resource 2 which is possessed

by thread 2. This situation could happen in practice when a thread, after successfully

requesting its first needed resource, pauses for a bit, for example because of the statement
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Thread.sleep(50) in Java, simulating some file I/O, and the scheduler gives the other thread

a chance to run.

Because emergence is due to the interactions of the threads, and these interactions

are manifested in changes of the environment, we simplify threads to consider only local

attributes and statements that affect the environment in one way or another. The program

above is formalized as:

GBSthread = (VA, VE, A11, A21, S(0))

where A11 denotes thread 1, A21 denotes thread 2, and VA, VE, and S(0) have the same

meaning as defined in Table 3.1. The environment is an array of two elements E = [e1, e2],

where ei ∈ {0, 1, 2}, where ei = 0 denotes resource i (i = 1, 2) is free, ei = 1 denotes

resource i (i = 1, 2) is hold by thread 1, and ei = 2 denotes resource i (i = 1, 2) is hold

by thread 2. The state of the environment is characterized by the values of the shared

variables, i.e. e1 and e2. Thread 1 is defined as follows:

A11 = (P1, R1, s11(0))

where P1 is the set of properties (local variables), R1 is the set of behavior rules, and s11(0)

is the initial state of thread 1. Clearly, P1 is empty since thread 1 has no local variables.

Thread 1 has three behavior rules: requests resource 1, additionally requests resource 2,

and finally releases the two resources. Hence, R1 = {e1 = 1, e2 = 1, e1 = e2 = 0}. The

state of a thread is characterized by the values of variables local to that thread. Because

thread 1 has no local variables, its states, in particular its initial state, is always empty.

Similarly, we can define the grammar-based formalism for thread 2. The state of the

program comprises states of all threads and the state of the environment representing the

shared variables. Two threads have an empty state, hence the state of the whole program
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is equivalent to the state of the environment. Initially, S(0) = (0, 0) as both resources are

free at the beginning.

4.3 Asynchronous Composition of FSAs of Threads

Given a multi-threaded program, our purpose is to determine LI
whole, and then derive Lξ.

LI
whole is a set of all reachable states with respect to the initial state. A reachable state refers

to a state that can be reached from the initial state after a finite number of transitions.

Note that a reachable state may or may not involve interactions among threads. Lξ is a

subset of LI
whole that consists of reachable states with interactions (via the environment -

shared resources) of at least two threads. A subset of Lξ is composed of deadlock states.

A deadlock state is a reachable state that is not terminating and cannot move out, i.e.

has no successors, because of interactions of threads. Figure 4.3 shows a diagram of four

state spaces, from the outer to the inner: all states due to interleaving of threads, LI
whole

(reachable states, with and without interactions), Lξ (reachable states with interactions),

and deadlock states.

Compared to the Boids model discussed in Section 3.4, in multi-threaded programs,

it is not feasible to use simulation to obtain LI
whole. In the Boids model, we assume that

all boids update their state synchronously. As a result, given a state, the state of the

system at the next time step is deterministic. However, a multi-threaded program is

non-deterministic. The calculation of LI
whole has to take into account all possibilities of

scheduling among threads that could be very large. A promising approach for handling

the non-deterministic scheduling in multi-threaded programs is to model threads as Finite

State Automata (FSAs) and use asynchronous composition to integrate them together as

a whole. A thread can be modeled as a FSA (q, q0, l, δ, qf), where
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all states due to 

interleaving of threads 

 (reachable states,  

             with and without interactions) 

 (reachable states with interactions) 

deadlock states 

Figure 4.3: State Diagram of Deadlock Emergence
.

• q is a finite, non-empty set of states of the thread.

• q0 is a set of distinguished initial states of the thread with q0 ⊆ q.

• l is a finite set of labels of transitions that change the thread from one state to another.

• δ is a set of transitions with δ ⊆ (q × l × q).

• qf is a set of final states of the thread with qf ⊆ q.

Usually, the cardinality of q0 is one, i.e. the thread has only one initial state, and l includes

statements of the thread. The asynchronous composition of two FSAs A and B is a FSA

A||B = (q, q0, l, δ, qf), where

• q is the Cartesian product A.q ×B.q
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• q0 is {(a0, b0) ∈ q | a0 ∈ A.q0 ∧ b0 ∈ B.q0}

• l is the union A.l ∪ B.l

• δ is {((a1, b), l, (a2, b)) ∈ q × l × q | (a1, l, a2) ∈ A.δ ∧ b ∈ B.q ∧ ¬me(l, b)}∪

{((a, b1), l, (a, b2)) ∈ q × l × q | a ∈ A.q ∧ (b1, l, b2) ∈ B.δ ∧ ¬me(l, a)}

• qf is {(af , bf ) ∈ q | af ∈ A.qf ∧ bf ∈ B.qf}

A.q and B.q denote the set of states of FSA A and B respectively. A.qo, B.qo, A.l, B.l,

A.δ, B.δ, A.qf , and B.qf have the similar meanings. me(l, s) = true iff l contains any

mutually exclusive variable that is being hold by s. The corresponding FSAs for thread

1 and thread 2 are presented in Figure 4.4. The asynchronous composition of these two

FSAs is presented in Figure 4.5.

q0 q1 q2

e1=e2=0e1=1 e2=1
q3

Thread 1

q'0 q'1 q'2
e1=e2=0e2=2 e1=2

q'3

Thread 2

Figure 4.4: FSAs of Thread 1 and Thread 2

Consider states that are crossed in Figure 4.5. These states are not reachable from

the initial state because of the constraints among threads. For example, state (q2, q
′
1) in

which thread 1 is holding resources 1 and 2, and thread 2 is holding resource 2, cannot be

reached from its predecessors, neither (q2, q
′
0) nor (q1, q

′
1). In fact, this state is invalid since

resource 2 cannot be shared by both threads at the same time. LI
whole, therefore, comprises
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Figure 4.5: Asynchronous Composition of FSAs of Thread 1 and Thread 2

all other states, i.e. non-crossed states, as shown in the figure.

LI
whole = {(q0, q′0), (q1, q′0), (q2, q′0), (q3, q′0),

(q0, q
′
1), (q1, q

′
1), (q3, q

′
1),

(q0, q
′
2), (q3, q

′
2),

(q0, q
′
3), (q1, q

′
3), (q2, q

′
3), (q3, q

′
3)}

Consider state S ∈ LI
whole, that are not filled with grey in the figure. We can see

that DN(S(0), S) = 0, where S(0) is the initial state (q0, q
′
0), because S can be reached

from S(0) by applying individual behavior rules of only one thread. For example, start-

ing from (q0, q
′
0), the system can move to state (q0, q

′
3) if thread 2 is scheduled to ex-

ecute in the following sequence: requests resource 2, requests resource 1, and releases

both resources 1 and 2. In this situation, only thread 2 acts and there is no interac-

tion between thread 1 and thread 2. Consequently, (q0, q
′
3) is not an emergent property
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state. Applying the similar argument for the other states not filled with grey, we have

L0 = {(q0, q′0), (q1, q′0), (q2, q′0), (q3, q′0), (q0, q′1), (q0, q′2), (q0, q′3)}. The remaining states that

are filled with grey involve interactions of threads, thus are likely to be emergent property

states. Whether a state of these states is emergent or not depends on the pre-determined

value of δ, which represents degree of weak interaction. We first show that these states

involve interactions of threads, and discuss δ after that. We pick up (q1, q
′
1), which is two

time steps from the initial state, as an example. The state of the program consists of the

states of two threads and the state of the environment. The threads have an empty state

since they do not have any local variables. The environment includes two shared variables:

resource 1 (e1) and resource 2 (e2).

DN((q0, q
′
0), (q1, q

′
1)) = DN((0, 0), (1, 2))

= min(DN,A11
((0, 0), (1, 2)), DN,A21

((0, 0), (1, 2)))

= min(1, 1) = 1

Note that, the difference between the two states is only counted for the change of the

state of the environment. Similarly, other states S filled with grey have DN(S(0), S) > 0.

Hence, if we set δ close to zero, then the set of emergent property states includes all states

filled with grey Lξ = {(q1, q′1), (q3, q′1), (q3, q′2), (q1, q′3), (q2, q′3), (q3, q′3)}.

In particular, we obtain a known emergent property state that exhibits deadlock.

(q1, q
′
1) is a deadlock state since it is a non-terminating (final) state and has no successor.

The deadlock happens when thread 1 holds resource 1 and waits infinitely for resource 2

while thread 2 holds resource 2 and is infinitely waiting for resource 1. The two threads

interact with each other through changing the state of the environment that involves the

states of the two resources.

To analyze the application of the proposed approach to deadlock emergence, we do
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experiments for different numbers of threads of two main types. A thread of type 1 requests

resource 1, then resource 2, and finally releases two resources. Conversely, a thread of type

2 requests resource 2, then resource 1, and finally releases two resources. We consider case

studies presenting different situations in which threads of the two types compete for two

shared resources. This competition potentially leads to deadlock. The case study of two

threads, thread 1 and thread 2, is what we discussed above. For three threads, we add

one more thread, thread 3 of type 1. Therefore, deadlock may occur between thread 1 and

thread 2, or between thread 3 and thread 2. Similarly, for four threads, we add the forth

thread, thread 4 of type 2. Deadlock in this case, becomes more complicated, that can be

due to thread 1 and thread 2, thread 1 and thread 4, thread 3 and thread 2, or thread

3 and thread 4. Similarly, we can have up to twelve threads. Whichever the case, each

thread has no local variables, three transition rules, and consequently four states. These

four states compose of the initial state, the final (stopping) state, and two intermediate

states in between. Table 4.2 shows the numbers of states obtained and simulation time

using asynchronous composition of FSAs. The simulator is run using a 2.4GHz machine

with 3GB RAM.

number of all states
LI

whole
Lξ

Deadlock execution time
threads due to interleaving Emergence (s)

2 16 13 6 1 small
3 64 36 26 4 small
4 256 96 83 16 small
5 1,024 240 224 48 0.1
6 4,096 592 573 144 0.3
7 16,384 1,408 1,386 384 0.8
8 65,536 3,328 3,303 1,024 3.3
9 262,144 7,680 7,652 2,560 18.0
10 1,048,576 17,664 17,633 6,400 79.6
11 4,194,304 39,936 39,902 15,360 404.7
12 16,777,216 90,112 90,075 36,864 1,463.0

Table 4.2: Varying Number of Threads
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As we can see from Table 4.2, the number of all states due to interleaving increases

exponentially in the number of threads. This number is the product of the number of

states of individual threads (16 = 4 x 4, 64 = 4 x 4 x 4, 256 = 4 x 4 x 4 x 4, and so on).

This is understandable because each thread can run at any point of time (we assumed that

all threads have the same priority). Clearly, we are considering the worst cases in which all

possibilities of threads’ interleaving are taken into account. In practice, the state space of

the problem to be traversed is probably much smaller because there could be constraints

among threads. For example, threads’ interleaving is not arbitrary. Instead, there is an

order among them in the execution flow of the program. In addition, we might think

of some techniques to reduce this state space to enable programs with larger numbers of

threads. One direction is to do research on techniques that are employed to reduce state

space in model checking.

Another observation is that the number of unreachable states grows rapidly with the

number of threads. For example, there are three unreachable states for two threads, while

that number is 28 for three threads, 160 for four threads, and 16,687,104 for twelve threads.

One explanation is that when the number of interacting threads increases, the number of

states that are invalid due to constraints of the manipulating order of the shared resources

grows up shapely. As a result, the state space to be searched is significantly reduced.

Furthermore, the ratio
Lξ

LI
whole

tends to increase when the number of threads increases.

Reasonably, this is because more threads lead to more interactions, hence more emergent

property states in comparison to the whole population of reachable states. Finally, deadlock

emergence increases exponentially with the number of threads. For example, the number of

deadlock states changes shapely from 1 to 36,864 when we increase the number of threads

from two to twelve. More specifically, for the case study of three threads, we detected two

deadlock states between thread 1 and thread 2, and two deadlock states between thread 3
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and thread 2. Similarly, for four threads, we detected four deadlock states between thread

1 and thread 2, thread 1 and thread 4, thread 3 and thread 2, and thread 3 and thread 4.

These deadlocks states are due to the competition among threads for the shared resources.

The resources play the role of a third party, the environment that reflects the interactions

of the threads. These experimental results are generated using our simulator and verified

by hands as well. We also intend to analyze our approach for larger problem sizes, i.e.

larger numbers of threads.

4.4 Comparison with Modeling Checking

Model checking is known as the most successful technique for automated verification [9].

Given a system model, typically in the form of a state transition graph, and a formal

temporal specification of the property of interest, modeling checking verifies whether the

system model satisfies the property or not. If the property does not hold in the system

model, counterexamples are returned.

After decades of model checking research with a huge number of efforts, model checking

is quite mature and has several variants, mainly including explicit-state model checking and

symbolic model checking [30]. The former is based on explicit state search where progress

is made one state at a time, while the latter is based on symbolic search strategy [56] that

examines sets of states in each step. More importantly, explicit-state model checking often

deals with asynchronous model of execution in which the execution of independent transi-

tions can be interleaved in all possible orders. This kind of execution model is very popular

in software, in particular in concurrent programs. In contrast, symbolic model checking

aims to synchronous model of execution in which all components are supposed to progress

simultaneously, for example in many hardware systems. Furthermore, explicit-state model
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checking uses linear temporal logic as in SPIN [46] and Java Pathfinder [87] model check-

ers, while symbolic model checking is based on Computation Tree Logic as in NuSMV

[1] model checker. Table 4.3 summarizes a comparison between the two main paradigms

of model checking. Because explicit-state model checking usually assumes asynchronous

execution model, and our multi-threaded program is also asynchronous, i.e. supports ar-

bitrary scheduling order among threads, we compare our approach with the explicit-state

model checking only.

Criteria Explicit-state Model Checking Symbolic Model Checking
Search Strategy explicit - one state/step symbolic - sets of states/step
Execution Model asynchronous (software) synchronous (hardware)
Temporal Logic Linear Temporal Logic (LTL) Computation Tree Logic (CTL)
Tools SPIN, Java Pathfinder NuSMV

Table 4.3: Explicit-state Model Checking vs. Symbolic Model Checking

In explicit-state model checking, a system is typically modeled as a Kripke structure.

A Kripke structure is basically a graph whose nodes represent the reachable states of

the system and whose edges represent state transitions. Kripke structures that model

the system and the negation of the LTL formula specifying the property to be studied

respectively are both converted into Buchi automata as the next phase of the verification

procedure. A Buchi automaton is a type of automata that extends a finite automaton to

infinite inputs. It accepts an infinite input sequence if and only if there exists a run of the

automaton that visits (at least) one of the final states infinitely often. For simplicity, we

refer model checking to explicit-state model checking afterwards.

A comparison between model checking and our approach regarding software verification

is presented in Table 4.4. Our approach is, to some extent, more general than model

checking in the sense that we determine a set of all emergent properties due to concurrency

rather than verifying a specific property as model checking aims to. Clearly, this set
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Criteria Model Checking Our Approach

Objective
verify a specific property,
e.g. deadlock

determine emergent prop-
erty states due to concur-
rency

Knowledge of Property
a formal specification of the
property to be verified

no prior knowledge of emer-
gent properties

State Space Size state-space explosion state-space explosion

Table 4.4: Model Checking vs. Proposed Approach

includes states that exhibit properties examined in model checking, such as deadlock. In

addition, while our approach does not require prior knowledge of emergent properties,

model checking needs a formal specification of the property it is looking at. Finally,

although the proposed approach and model checking both suffer from state-space explosion,

sources of the problem are different. In our approach, the complexity mainly comes from

two phases:

• Transform threads into FSAs: linear complexity in the number of threads, and the

number of local variables and statements.

• Asynchronously compose FSAs into a single one: exponential complexity in the number

of concurrent threads.

On the other hand, the state-space explosion in model checking is due to four main phases:

• Model a program as a Kripke structure (graph): exponential complexity in the num-

ber of concurrent threads, threads’ behavior (statements), and the number of variables

specifying the state of the system.

• Transform the Kripke graph to a Buchi automaton: linear complexity in the number of

nodes of the Kripke graph.

• Generate a Buchi automaton for the negated LTL formula: exponential complexity in

the size of the LTL formula.
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• Generate the product of the two Buchi automata: linear complexity in the size of the

two automata.

We can see that in both model checking and our approach, the number of concurrent

threads and the number of threads’ characteristics, i.e. local variables and statements, play

the key role in the state-space explosion. On the other hand, our approach only considers

variables and statements with respect to the interactions of threads, i.e. are related to the

shared variables. Consequently, the state-space explosion could become trivial compared

to model checking. Table 4.5 provides the number of states the approaches, model checking

and our approach, have to traverse to detect emergent property states and deadlock states

respectively. As shown in Table 4.5, vertically, the number of states visited in model

number of Model Checking Our Approach
threads visited states run time (s) visited states run time (s)

2 34 small 16 small
3 254 small 64 small
4 1,675 1.0 256 small
5 9,681 4.0 1,024 0.1
6 52,407 19.0 4,096 0.3
7 263,362 82.0 16,384 0.8
8 1,272,025 375.0 65,536 3.3

Table 4.5: State Space Examined and Run Time in Model Checking and Our Approach

checking goes up exponentially with the number of threads. This is because the tree to be

searched becomes wider, i.e. has more branches, when the number of threads increases.

Our approach also encounters the space explosion, but at a slower pace, particularly about

half of that in model checking. Horizontally, our approach is superior to model checking

in terms of the number of states to be visited. One explanation is that the grammar-based

formalization eliminates unimportant details and only considers parts that relate to the

interleaving among threads. Model checking, however, considers every statement of the

program as a trigger of state transition, thus resulting in a tree with a much higher depth
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of search. For example, the statement public void run() is ignored in our approach, but is

regarded as a transition trigger in model checking.

In addition, we observe that our approach takes much less time to run than model

checking because the number of visited states in our approach is much smaller than that

in model checking. For example, for eight threads, our approach (execution time of 3.3

seconds) is more than 100 times faster than model checking (execution time of around 375

seconds). However, the execution time of the two approaches increases rapidly with the

number of threads. In particular, the execution time of model checking seems to grow up

by a multiplier of four when the number of threads increases by one. As a result, state-

space explosion of analyzing deadlock in large concurrent problems is still a big issue for

both model checking and our approach; and further work is required.

4.5 Summary

With the advances of computer technology, highly concurrent systems are being developed.

The verification of such systems is a challenging task, as their state space grows exponen-

tially with the number of processes. In addition, existing studies only verify a few of known

properties due to interleaving among concurrent processes, such as some known types of

deadlock. Other types of deadlock that have not been seen before are simply ignored.

In this section, we explore the application of the proposed space reduction mechanism to

concurrent program verification. Given a multi-threaded program, the set of system states

containing both known and unknown emergent property states, such as deadlock, can be

determined. Threads are modeled as Finite State Automata (FSAs) and asynchronous

composition of all FSAs returns LI
whole - a set of program states reachable from the initial

state. From this set, we derive Lξ and observe an interesting emergent property state:
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a deadlock state. This approach compliments model checking where the main goal is to

verify predetermined behavioral properties of a given system.
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Chapter 5

Conclusion and Future Work

5.1 Thesis Summary

Emergent properties are a distinguishing feature of complex systems, and become pervasive

when system complexity increases in terms of system size, component types, and the

interactions of components. Due to its unpredictable nature, emergence makes a system

less credible and more difficult to design, analyze, and control. However, emergence is

not wholly undesirable; instead it can be beneficial to the system exhibiting it. A formal

definition, identification, and understanding the cause-and-effect of emergence are a key to

developing and engineering more complex, but more robust systems. Unfortunately, there

is still a lack of consensus on emergence definition. Even worse, current studies usually

assume prior knowledge of emergence or refer it to a closely related concept in a particular

domain. Another remaining challenge is state-space explosion. A complex system tends to

go through a large number of states, and some of these states manifest emergent properties.

In this thesis, we define emergence that as system states that result from interactions

of components, but cannot be derived by summing the state of individual components. We
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focus on addressing complex systems with mobile agents of different types. The reduction

of search space is implemented in both our new perspective of emergence and the technique

used for deriving emergent property states. The two major contributions of this thesis are:

(1) a set-theoretic approach for determining a set of all system states from which emergent

properties can be deduced, (2) a technique for reducing the state-space explosion problem.

5.1.1 Set-theoretic Approach to Determine Emergent Property

States

We proposed a formal definition of emergence and a computational set-theoretic approach

to determine it. Given a system, emergence is defined as a set of system states that arise

from the interactions of the components of the system, but cannot be derived by summing

the state of individual components together. The system is modeled as a multi-agent

system in which agents play role of the components, and agents have different types and

can move to enter and leave the system over time. As a result, the set of emergent property

states is the difference between two sets: LI
whole - the set of all system states reachable from

the initial state due to interactions of agents, and LP
sum - the set of possible system states

resultant from mechanically superimposing state of individual agents.

To demonstrate our approach, we extended the Boids model to include two types of

birds, ducks and geese. Our approach returns a set of emergent property states in which

some states of this set exhibit a well-known flocking behavior. In addition, the experimental

results showed that the size of the superimposition is large and increases exponentially

with the number of birds. Another interesting observation is that more interactions of

birds lead to more emergent property states. This emphasizes the key role of interaction

in the presence of emergence.
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In addition, considering a concurrent program as a concrete specification of the prob-

lem to be studied, we got rid of the limitation that abstraction makes emergence relative

to the system model rather than to the system itself. A case study showed that given a

multi-threaded program, our approach can be applied to derive the set of program states

from which emergent properties, for example deadlock, can be deduced. By modeling the

threads of the program as Finite State Automata (FSAs), LI
whole, which is a set of all

states reachable from the initial state, can be specified by composing the FSAs. Conse-

quently, Lξ is deduced from LI
whole that consists of reachable states due to interactions

of threads. These states potentially possess interesting properties due to concurrency, i.e.

the interleaving execution among threads. In particular, we applied the proposed approach

to multi-threaded programs to detect all deadlock states for different numbers of threads

sharing two resources. Compared to model checking, our approach is more general in the

sense that we can detect all types of deadlock rather than a particular type with respect to

the given deadlock specification. Furthermore, our approach is superior to model checking

in terms of the number of states to be visited.

5.1.2 Reduction of Search Space

The state space to be searched was gradually reduced in two steps: the definition of

emergence and the elimination of Lsum. On the one hand, the multi-agent system abstracts

aspects of the system of interest, and ignores details that are not of the designer’s interest,

thus constructing a smaller state space. On the other hand, relied on the observation that

Lsum is the key source of the state-space explosion problem, but it does not contribute

much to the derivation of Lξ, especially when agents interact frequently, we proposed

an alternative to determining emergent property states. The idea behind this method

is to use degree of interaction of agents as an emergence criterion, thus eliminating the
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unnecessary calculation of Lsum. In general, a property is emergent if agent interaction

producing that property is strong. In other words, compared to the situation where agents

behave independently, agents with interactions impose a remarkable effect on the system

state. Intuitively, more interactions lead to more changes of the state of the system. By

associating agent interaction with the state of the system, interaction degree is defined as

the difference between system states. This idea enables a measurable and computational

manner of studying emergence. The experimental results showed that the state space

reduction technique enables simulating a large number of agents, 1,024 birds, compared to

a simulation of 10 agents when not using this technique.

5.2 Future Directions

This thesis provides a first step towards advancing our understanding of emergence. Al-

though emergence occurs in many domains at different levels, research into emergence is

still in its infancy and poses several challenges that require further work to be done.

5.2.1 Consensus on Emergence

Complex systems research lacks of a consistent definition of emergent properties. It is

important to recall that emergence is a set of system states, while emergent properties

are system characteristics exhibited in these states. We proposed a new perspective of

emergence, but a definition of emergent properties is still controversial. Different stud-

ies have adopted different views and methods dealing with emergent properties. Indeed,

the study of emergent properties is an interdisciplinary field that ranges from surprise in

contemporary philosophy to the whole-parts relationships with agent-based modeling and

simulation in the field of computer science. Its occurrence in many disciplines in various
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forms makes emergent properties difficult to be captured in a single, explicit, and formal

definition. To enable a scientifically feasible study of emergent properties, we believe that

emergent properties should contain the following characteristics:

• observer-independent, i.e. viewed as part of the system;

• originate from the interactions of components;

• only predictable through simulation techniques.

Scientific research on emergent properties should avoid dealing with subjective observation

and should move towards a notion where they are considered intrinsic to the system, i.e.

a feature of the system, rather than dependent on the observer. Emergent properties arise

from interactions of the constituent components. The components are most likely loosely

coupled and autonomous without any central control or global visibility. However, multiple

components interact with others in a non-trivial way that should be analyzed using means

of modeling and simulation.

Another issue with the definition of emergent properties is that it is somewhat difficult

to distinguish among emergent properties, behavior, phenomena, rules, and structures.

This difficulty is a proof of Holland’s view: “Emergence will submit weakly to concise

definition” [44]. Besides the frequently discussed definitions of emergent properties/behav-

ior/phenomena in the literature, we can also have an idea on emergent rules and emergent

structures. Intuitively, emergent rules (or algorithms) are simply behavior rules defined

for individual components of the system whereby emergent properties inevitably appear.

Similarly, emergent structure is the structure of an emergent property. Usually, emer-

gent structures are the outcome of self-organization, which arises from feedback loops of

influences between components.
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5.2.2 State-space Explosion

State-space explosion is a challenging problem in the study of emergence. In the context of

grammar-based formalization, this problem may come from two sources: Lsum and Lwhole.

As shown, Lsum increases exponentially with the number of components [84]. Eliminating

invalid permutations of individual states based on the constraints between components

does not guarantee a computationally practical size of Lsum. Moreover, determining these

constraints from the system specification is non-trivial. Lwhole contains all distinct sys-

tem states reachable the initial state, for example obtained by simulation until the system

state repeats. However, a complex system probably goes through a large number of distinct

states, even infinite state space due to a large number of components or non-linear interac-

tions of them. As a result, detecting emergence may suffer from expensive computational

cost. Further work for reducing the state space, both Lsum and Lwhole, is required. On the

other hand, from the perspective of implementation, the way of representing system state

also considerably affects the potential of our approach. As our approach is both compute

and memory intensive, more efficient state representations, such as bit state hashing and

state vector compression used in model checking, should be taken into account.

5.2.3 Emergence Reasoning

While there have been many efforts in detecting emergence, reasoning about its cause-

and-effect is still in its infancy. The visible effects of emergence at the macro level can be

far from explainable from the causal relationships between the micro level interactions. In

other words, the state of a complex system can change drastically after a few transitions,

and cannot be easily traced back to the initial system configuration and transition rules

defining the behavior of individual components. This issue is even more challenging in
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living systems and hybrid systems than in non-living systems. emphLiving systems are

known to have evolutionary properties that may not be traced to component interactions.

Hybrid systems consist of human (living) that interacts/inter-operates with non-living

components. Such types of systems often present several amazing phenomena that seem

to have no connection with the underlying components.

Based on the fact that emergence arises from component interaction, a formal method

for reasoning of emergence should be bottom-up. This approach is opposite to the clas-

sical methods whereby systems are considered in a top-down manner and reduced to the

constituent components. In the end, we should have some idea of what emergence exactly

is, where it comes from, and how it develops, among others. In particular, it is important

to know which state transitions or interactions significantly contribute to the occurrence

of emergence.

5.2.4 Emergence Validation

The stochastic nature of emergence demands a new treatment of validating engineered

systems. Unlike simulation validation, which confirms that a simulation meets expected

behavior, emergent properties validation checks whether the properties are desirable or

undesirable, and reflect some design errors or represent additional features in the discipline.

Given a detected emergent property, it is important to determine whether the property

is desirable or undesirable. The exploitation of desired emergent properties can benefit

the development and performance of the system, making it more available, scalable, and

robust. Undesired emergence or “misbehavior” [58], on the other hand, is a more important

concern in the literature because it can significantly violate the performance of engineered

systems. As a result, solutions that guarantee that there are no undesired properties at

runtime are needed. If these cannot be achieved, it is important to detect the undesired
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properties as soon as possible during the system execution to minimize their side effects.

Moreover, the system designer should validate that an emergent property is due to

some design errors or is a new feature of the system. In the former case, the system

designer needs to fix the errors with a new design. The latter case should be analyzed to

understand its sources such that it can be further exploited to make the system more robust.

Somewhere in between are emergent properties that the designer intends but cannot be

able to specify in the design explicitly. Such an example is swarm behavior in birds, fish,

bees, robotics, etc. in which entities attract and avoid their neighbors in a coherent way

to achieve a common goal. Validating systems exhibiting this sort of emergent properties

is a challenge.

Finally, new techniques are needed to extract known emergent properties, and to iden-

tify new (or unknown) emergent properties from the set of emergent property states. For

example, if emergent properties are known, our formalism facilitates post-mortem emer-

gence analysis to determine the causes of emergence.

Despite the importance of emergence validation, to the best of our knowledge, no

comprehensive studies address the validation of emergence. This area of research is still

active.
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