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Summary 

Since Kane’s proposal in 1998, many researchers have been investigating the 

different factors that affect the performance of a quantum bit (qubit). An 

important step in analyzing the Kane’s system is to model the dependency of 

nuclear magnetic resonance (NMR) frequency on the external voltage applied 

via metallic gates called A-gates. To establish this relation, we carry out a 

second order perturbation theory, including higher order terms up to 3d states. 

Another requirement in constructing the relation between the applied voltage 

and the NMR frequency is to accurately obtain the potential distribution inside 

the silicon substrate. In many previous studies, an analytical approach has 

been used which is only applicable to ideal structures of metallic gates. To 

design a quantum bit with an arbitrary gate structure, we use an 

electromagnetic simulation method to calculate the potential inside the 

substrate. Two new A-gate structures are proposed and investigated rigorously 

by a numerical simulation method. The first one is called the coplanar A-gate 

structure which has the advantage of easy fabrication, but it offers only a 

relatively weak voltage control over the nuclear magnetic resonance (NMR) 

frequency of the donor atom. However, this shortcoming can be overcome by 

doping the donor closer to the substrate interface. The split-ground A-gate 

structure, on the other hand, produces a similar potential distribution as that of 

the original Kane’s A-gate structure and provides a relatively stronger control 

over the NMR frequency of the donor atom. Both structures have the 

advantage of allowing device integration or heterostructure fabrication from 

below the silicon substrate. 
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1.1 Quantum Computation: Introduction and History  

Quantum computation and quantum information is the utilization of quantum 

mechanical systems for information processing purposes1. Since 1970s, the 

effort of obtaining a better control over the behavior of single quantum 

mechanical systems has been an important historical milestone which made a 

significant contribution to the development of quantum computation and 

quantum information. Before 1970s, this so called “control” was limited only 

to a bulk sample, ignoring all the microscopic phenomena involved in the 

large number of quantum mechanical systems contained in the sample. 

Although it was possible to gain some access to every single quantum 

mechanical system through devices such as “particle accelerators”, the control 

over the individual elements was still very limited. Since then, many methods 

have been developed to enable us in manipulating single quantum systems. 

For example, trapping a single atom in an “atom trap” makes it isolated from 

the surrounding world and allows us to investigate different behavior of its 

quantum mechanical state with high accuracy. Another technique that has 

been developed for controlling individual quantum systems is the “scanning 

tunneling microscope” by which we are able to move single atoms around to 

fabricate arbitrary structures.  Also, Electronic devices such as Single Electron 

Transistors 2 have been fabricated whose operational currents involve the 

transfer of only single electrons. 

Computer Science, in its modern format, experienced a magnificent 

breakthrough when the great mathematician “Alan Turing” published his 

remarkable paper in 1936 3. He introduced a mathematical platform of all the 
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machines which today we call “programmable computers”. This model of 

computation is called “Turing Machine” in his honor.  

It was not long after Turing’s paper, that first computers were developed and 

fabricated using electronic devices and components. All the electronic 

components constituting the Computer hardware has been growing at an 

amazing speed. This trend has been analyzed by “Gordon Moore” which has 

come to be known as Moore’s law 4 simply stating that roughly once every 

two years the computer power will double for constant cost. 

Moore’s Law has predicted this trend approximately true since 1960s. 

However, this amazing fit between the Moore’s law and industry was 

predicted to end sometime maybe as soon as the first two decades of the 

twenty first century. The main reason for this future mismatch is the belief that 

conventional methods in fabrication of computer components are facing 

serious issues against significant reduction in size of the samples. This is 

because of the emergence and interference of quantum effects as the electronic 

devices are made smaller and smaller.   

Moving from the conventional computing paradigm to a new one can be 

considered one of the possible solutions to the above-mentioned problem. This 

new paradigm is based on the rules of quantum physics instead of the classical 

physics which was previously used in classical computation methods. It’s been 

shown that although a classical computer is capable of simulating a quantum 

computer, it is unable to conduct this simulation in an efficient way. In other 

words, quantum computers provide us with a significant speed advantage over 

their classical counterparts. This advantage is caused intrinsically by classical 

computation not the state of advances in the current technologies and that’s 
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why many researchers in this field believe that even in the future, classical 

computation won’t be able to reach this level of speed and power.  

As an example, in 1992, Deutsch 5 defined a computational device for efficient 

simulation of an arbitrary physical system. As we know the ultimate laws 

which govern the nature are quantum mechanical, therefore Deutsch believed 

that this computational device should be based on principles of quantum 

mechanics. These new devices, the quantum version of all the Turing 

machines used in the past 50 years, resulted in the modern idea of a quantum 

computer. 

The article published by Deutsch5  was an important step in transition from 

classical to quantum computation. A decade later, his idea was even more 

improved by many people such as Peter Shor who, in 1994, demonstrated two 

significant problems 6: the problem of finding the prime factors of an integer 

and "discrete logarithm" problem which can be solved efficiently on a 

quantum computer. This dramatic discovery, led to the extensive interest in 

quantum computers since it is believed that these two problems have no 

efficient solution on a classical computer.     

1.2 Quantum Bit 

“Bit” is the fundamental constituent concept in classical computation and 

classical information. In a same manner, in Quantum computation and 

quantum information, this basic concept is called quantum bit or “qubit”. Just 

like the classical bit which has a state (either 0 or 1), a qubit also has a state. 

Two possible states for a qubit are represented by |0〉 and |1〉 and are the 

analogue versions of the states 0 and 1 in a classical bit. The main difference 

between a classical bit and a qubit is that the latter can be in a state which is 



5 
 

neither |0〉 nor |1〉. In other words, the state of a qubit can be linear 

superposition of states: 

 10    (1.1) 

 

In which the numbers   and   are complex numbers. In other words, 

considering the 0 and 1  states as the orthogonal basis states of a two-

dimensional complex vector space, an arbitrary state of a qubit is a vector in 

this space.  

A classical bit is like a coin; either heads or tails up. By contrast, a qubit can 

have a state between 0  and 1 . It should be emphasized that this is true only 

before the state of a qubit is observed. Put in another way, When we measure a 

qubit we get either the result 0, with probability 
2 , or the result 1, with 

probability 
2 . Basically, 1

22   , since the probabilities must add up 

to one. Considering the qubit in a geometrical representation, we can interpret 

this by the normalization of the qubit’s state to length 1. Therefore, in general 

a qubit's state is a unit vector in a two-dimensional complex vector space. 

Since 1
22   , we can rewrite equation (1.1) as: 

 

 
1

2
sin0

2
cos

 ie  (1.2) 

 

Where   and   are real numbers. This equation lead us to “block sphere 

representation” in which   and  define a point on the unit three-dimensional 

sphere also called as the “block sphere”. This sphere is shown in Fig. 1.1.  
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Figure  1.1.  Block sphere representation in which the qubit state is shown as a point 
on the unit three-dimensional sphere (block sphere). 

 

This representation has been shown as a useful method for geometrical 

visualization of a qubit’s state. Many different physical systems can be used to 

realize qubits such as the two different polarizations of a photon; the different 

alignments of a nuclear spin in a uniform magnetic field; and two states of an 

electron orbiting a single atom.  

1.2.1 Silicon Qubits 

In the past 50 years, silicon technology has been the principal cause for the 

fast growing advances in the field of microelectronics. Even after almost half a 

century of progress and development in this technology and using many new 

materials, silicon is still the main ingredient for fabricating classical 

computation devices. Besides, considering the paradigm shift from classical to 
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quantum computation discussed in the previous section, silicon is believed to 

be capable of playing an equally dominant role as the host material for this 

new generation of devices. These new structures incorporate the quantum 

properties of charges and spins. Quantum computers and spintronic devices 

are two major examples of this new category. 

The importance of silicon in these quantum applications is due to its weak 

spin-orbit coupling and the existence of isotopes with zero nuclear spin7. Also, 

magnificent progress in silicon technology since the development of classical 

computers has been another reason that makes silicon an ideal host for 

quantum mechanical-based devices. These factors, as well as the ability of 

quantum spin control, have attracted a vast interest in silicon-based quantum 

devices during the past years.   

Although there have been many realization methods for quantum information 

processing systems2,8, semiconductor-based quantum computers has attracted 

more interests due to their shared features with classical computers and 

classical electronics technology9,10. Since the study by Loss and DiVincenzo10 

in 1998, electron spins in quantum dots have received a significant attention 

which has led to considerable experimental and fabrication progress. Quantum 

dots in GaAs/AlGaAs heterostructures has been realized lithographically and 

experiments have shown different stages in the working cycle of a quantum 

computer, namely qubit initialization, single-shot single electron spin 

readout11, and coherent control of single-spin12 and two-spin13 states. The 

concept of coherence plays a central role in realization of quantum computers, 

since quantum computations tasks can only be carried out in perfectly isolated 

systems. In other words, any uncontrolled interference from the surroundings 
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cause the system to enter the decoherence stage in which the quantum 

algorithms cannot be precise and trustworthy9. One of the major drawbacks of 

using Al- GaAs/GaAs heterostructures is the intrinsic nuclear spins existing in 

the host material which ultimately result in short coherence and spin-

relaxation times. This is due to great interaction of host material spin with 

electron spins leading to uncontrolled behavior of the system. Therefore, using 

proper isotopes of silicon makes it possible to increase this coherent time by 

removing the magnetic nuclei from the host material. Natural silicon consists 

of 95% non-magnetic nuclei (92% 28Si and 3% 30Si). Purification processes 

can be utilized to obtain almost zero nuclear spin isotopes. There have been 

many studies considering the qubits based on electron spins embedded in 

donors14-17 doped inside Si and quantum dots18 in Si. In order to realize a spin 

quantum bit, whether we use a quantum dot or a donor, we have to find a way 

to confine single electrons. This process is quite challenging. Compared to the 

significant advances in the technology of classical field effect transistors 

(FETs), silicon quantum dots haven’t experienced as much progress mainly 

because of the high impact of epitaxial growth in lattice matched III-V 

materials on GaAs systems7. Many studies have investigated the 

controllability of individual spins and charges inside silicon single or double 

quantum dots and reported different quantum behaviors such as coulomb 

blockade, Pauli spin blockade and Rabi oscillations. Since in this dissertation 

we consider only the dopant quantum bits, we suffice to refer the reader to few 

works which have been done in the field of quantum dot systems19-29.  

Considering the dopants in silicon, a study by Fuechsle et al. investigated the 

valley excited states30. As mentioned above, the confinement of an electron is 
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an essential condition for realization of a qubit. Lansbergen et al31 achieved 

this confinement using external gates and by analyzing the transport spectra of 

donor atoms. Eventually we should mention about the studies on the 

fabrication of single atom transistor32 and single-shot read out33 relating to the 

embedded spin of phosphorus inside the silicon host. Considering the above-

mentioned results and investigations carried out during the past decade, 

potentiality of silicon as a key material in quantum computation systems is 

more evident.  

Although the priceless experiences of CMOS technology for several decades 

has eased the quantum bit fabrication in many stages34, the significance of 

current classical computer technology must not be overrated, as the issues 

existing in the process of integrated circuits design sometimes are entirely 

different when it comes to quantum bits and their scalability. For instance, 

usage of interfaces in classical ICs and transistors serves as a means of 

manipulating the threshold voltages while in quantum bit system, this interface 

can play a determinant role in the coherent time of the spin7. 

Before moving to the discussion on the main subject of this dissertation, 

donor-based spin qubits, it is worth mentioning that despite all the advantages 

of silicon as the platform for realization of quantum bit systems such as non-

magnetic isotopes and negligible spin-orbit coupling, there are also some 

shortcomings in the general understanding of Silicon. To name a few, we can 

mention about the effective mass and lattice constant of silicon and presence 

of multi-valley conduction band. During the past years, there have been a lot 

of investigations to grasp the new physics of these issues to facilitate the 

understanding of future silicon-based quantum systems.   
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1.2.2  Donor-based Spin Qubits  

Spin qubits linked with donor atom doped inside silicon are considered an 

ideal choice. This is due to the fact that electron and nucleus spins at the donor 

site experience a great level of coherence in temperatures below 4K since they 

are highly isolated from the surrounding silicon atoms35. The only remaining 

task is to construct a suitable and efficient method to manage the interactions 

of individual spins. These interactions can be of two major types: spin-spin 

interaction and interaction of spins with external agents such as electric fields. 

The general picture of incorporating donor atoms as a means of realization of 

qubits, is to find a way to harness the donor’s electron cloud distribution 

(electron wavefunction) using the external voltages and control the spins 

behaviors by exposing the qubit to externally applied magnetic fields. Whether 

we base the qubit states on the electron spin or nuclear spin, a common yet 

vital step in almost all the spin-based qubit proposals is the ability to control 

the wave function of the donor electron. This ability makes it possible to 

construct single-qubit and double-qubit quantum logic gates.       

 The original idea was proposed by Kane in which he introduced a quantum bit 

based on nuclear spin of the donor atom in silicon9. The original qubit 

structure proposed by Kane for realization of a quantum bit in a silicon host is 

shown in Fig. 1.2. It is a phosphorus atom (isotope 31P) doped in a silicon 

substrate (isotope 28Si). On top of the silicon substrate is an insulating layer of 

silicon dioxide. At the bottom of the silicon substrate is a metallic layer served 

as the ground, called the back gate. On top of the silicon dioxide layer there 

are two types of metallic strip, called the A-gate which controls the electron  
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Figure  1.2. Kane's qubit: The implementation for a solid-state quantum computer 
based on nuclear spin of the donor atom in silicon. Reproduced from Kane9. 

 

 

wavefunction and J-gate which control the exchange interactions. The concept 

of exchange interaction and J-gates are beyond the scope of this dissertation. 

Determined by the orientation of the applied electric field (positive or negative 

gate voltage), the electron cloud is either pulled toward the A-gate or is pushed 

away from it. In either case, the electron cloud of the phosphorus atom can be 

drifted by applying a voltage on the A-gate. The drift of the electron cloud can 

change the hyperfine interaction between the phosphorus nucleus and the 

outermost valence electron and hence change the Nuclear Magnetic 

Resonance (NMR) frequency of phosphorus. The control over the hyperfine 

interaction enables us to tune a particular donor into resonance with an 

externally applied oscillating magnetic field. Regarding a quantum system 

formed by donor nucleus and donor electron, we can write the spin qubit 

Hamiltonian when there is an excitation source driving the electric field 

through the A-gate9,36: 
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where B  is the Bohr magneton, ng  is the nuclear g-factor, and n  is the 

nuclear magneton. B is the static magnetic field which in this case is assumed 

to be along the z direction.   are the Pauli spin matrices (with eignevalues 

equal to +1 and -1).  

The contact hyperfine interaction constant (A) appearing in the above equation 

can be obtained if information about the electron wavefunction is provided. In 

other words, by applying an external voltage through A-gate, it is possible to 

drift the electron cloud, thus changing the electron wavefunction at the donor 

site which results in the alteration of hyperfine interaction constant based on 

the equation 1.4: 

 

 2
)0(

3

8
 nnB gA   (1.4) 

 

2
)0(  is the probability density of the electron wavefunction, estimated at 

the donor nucleus site. 

Estimating the effect of A-gate external voltage on the hyperfine interaction 

has been the subject of many studies right after Kane made his proposal in 

1998. In order to evaluate the hyperfine interaction constant as a function of 

the gate electric potential, as equation 1.4 suggests, first it is required to obtain 

the extent of displacement in the electron distribution caused by the interfering 

external voltage. Then, we are able to estimate the electron wavefunction at 
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the nucleus center. Besides the effect of electric field, it is worth noting that 

contact hyperfine interaction is highly affected by some other important 

factors such as the depth at which the donor atom has been doped.    

Since Kane, many approaches have been used to found a reliable relationship 

between hyperfine interaction constant and A-gate voltage. Using hydrogenic-

like wavefunctions merely weighted by silicon dielectric constant was among 

the first methods that have been used to build this relationship. Larinov et al.37 

adopted an analytical approach for obtaining the A-gate potential which means 

that it is only applicable to ideal structures of A gates (an ideal circular plate). 

Then perturbation theory was used to calculate the effect of gate voltage in 

changing the hyperfine interaction constant. Using the same method of 

hydrogenic orbitals (scaled for silicon), Wellard et al38 proposed a commercial 

software to solve the poisson equation and obtain the potential distribution 

inside the structure caused by the external voltage. This method provided more 

realistic results for the electric potential inside the substrate. Instead of using 

perturbation theory, they used an extensive set of hydrogenic orbitals basis to 

expand the electron wavefunction and used diagonalization to numerically 

solve the Hamiltonian. Later, a modification to this method was proposed by 

utilizing the non-isotropic orbital basis states39. As well as using group theory 

to describe the degeneracy of valley states, two studies40-42 also used 

perturbation theory to find the splitting in spectral lines of energy levels also 

known as stark shift. In order to evaluate the stark shift and/or hyperfine 

behaviors relating to the donor electron, other methods such as tight-binding 

have been used43,44. These studies also provide some information about the 

details of the Bloch structures.  
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 Furthermore, some techniques such as combined variational method45,46 and 

Gaussian expansion of the envelope function in EMT47 have been used to 

further develop the effective mass treatment.  Later, the direct diagonalization 

in K space (momentum domain) was employed48 to include the direct effect of 

the A-gate potential in the system Hamiltonian. This method was able to 

provide the same picture as the seminal tight-binding method of Martins et al44 

which showed the dependency of contact hyperfine interaction stark shift on 

the external applied electric field strength and also the depth of the donor site. 

At low fields, the k-space diagonalization scheme can be useful in the 

consistency check process for calculating the contact hyperfine interaction 

stark shift using real-space tight-binding method49. Also, it can be used for 

evaluation of theoretical convergence to a certain level in comparison with 

experiment50. One should note that despite all the advantages mentioned 

above, this method has not been computationally optimized7. Basically, the 

precise behavior and details of the hyperfine interaction at the nucleus site is 

not obtained by these descriptions. In fact, only the relative change of 

hyperfine interaction due to the external variation of the gate voltage is 

calculated and precise details about the contact hyperfine interaction can be 

studied in ab-initio theories51,52. Because of the recent advances in 

experimental measurement, many researchers have investigated the 

dependence of orbital wavefunction and electron quantum states on the 

location of the donor atom below the interface53-55. In an article by Lansbergen 

et al., tight-binding method was applied to an electron mediated donor system 

to evaluate the effect of donor depth and external voltage on the quality of 
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quantum confinement. This method was able to give an excellent picture of 

the lower lying donor states31.                 

Thanks to extensive studies in theoretical and engineering description of donor 

electron inside the device, we have a substantial knowledge on the 

wavefunction behavior of donor based systems. The original Kane’s article 

helped to modify many theoretical aspects of donor wavefunction including: 

local electric contacts and non-isotropic hyperfine interaction relations56,57 for 

calculating the effect of electric fields on wavefunction mapping58,  the effect 

of external magnetic fields and the effect of metallic gate in controlling the g-

factor59,60, molecular donor-based structures and their dynamics61-64, analysis 

of cross-talk interference in hyperfine interaction control65, designing 

continuous chain of ionized donors to develop a path for coherent single 

electron transport59, read-out mechanisms such as spin-to-charge 

technique61,66, and finally the estimation of donor energy states under the 

effect of supplementary nanostructures to modify the net potential distribution 

inside a single atom transistor30.  

1.3 Nuclear Magnetic Resonance (NMR) 

In 1896, Pieter Zeeman discovered that the optical spectral lines are split when 

exposed to an electromagnetic field67. Therefore, the splitting of energy levels 

due to an applied external magnetic field is called "Zeeman effect". This effect 

causes magnetic resonances which lie in the radio frequency range. In other 

words, two branches (or eigenvalues) of a particular energy level will split in 

an external magnetic field and the energy difference between these two states 

is measured in megahertz or gigahertz68. 

Around half a century later and shortly after the discovery of the electron 
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paramagnetic resonance by Jevgeni Konstantinovitch Savoiski, two groups 

simultaneously demonstrated the existence of nuclear magnetic resonance (NMR) 

which sometimes is called nuclear induction or paramagnetic nuclear resonance69.  

1.3.1 The Nuclear Resonance Effect  

Subatomic particles such as protons, electrons and neutrons are associated 

with a purely quantum mechanical concept called “spin”70. The overall effect 

of spins in protons and neutrons form the spin of different nuclei. Here we 

adopt the formulation provided by Freude68. The nuclear spin quantum 

number is represented by I. Spin angular momentum has an absolute value of: 

 

 )1(  IIL   (1.5) 

 

when an external magnetic field is applied, the component of spin angular 

momentum in the direction of the field is: 

 

  mIL zz   (1.6) 

 

A nuclear state with spin I is said to be (2I+1)-fold degenerate. It means that a 

nucleus of spin I will have 2I+1 possible orientations. Since the external field 

is usually along the z direction, the magnetic quantum number is represented 

by zI  or ݉ and therefore can have 2I+1 values: 

 

 IIIImI z ,1,...,1,   (1.7) 
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In the most important case for NMR, which is I=1/2, nucleus will have 2 

possible cases. In the absence of a magnetic field these states have same 

energy levels (degenerate states). However, applying a magnetic field will 

break this degeneracy. This splitting between nuclear spin levels is called 

Nuclear Zeeman Splitting. Fig. 1.3 sketches the nuclear Zeeman levels of a 

spin-1/2 nucleus as a function of the applied magnetic field. 

 

 

Figure  1.3. The nuclear Zeeman levels of a spin-1/2 nucleus as a function of the 
applied magnetic field 

 

The concept of magnetic moment can be described as follows: atomic nucleus 

carries electric charge and because of the spin angular rotation, a circular 

current is created. This circular current creates a magnetic moment ߤ. 

Applying an external magnetic field (B) results in a torque: 

 

 BT    (1.8) 

 

And the energy of this magnetic moment is:   
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 BE  .  (1.9) 

 

In order to relate the magnetic moment to the spin angular momentum, the 

gyromagnetic ratio ߛ is introduced. Gyration is the rotation of an electrically 

charged particle. The gyromagnetic ratio ߛ is defined by: 

 

ߤ  ൌ  (1.10) ܮߛ

 

As mentioned before we are interested in the z component of the nuclear 

magnetic moment. Thus, 

௭ߤ  ൌ ௭ܮߛ ൌ ௭԰ܫߛ ≡  ԰ (1.11)݉ߛ

The splitting of an energy level of a nucleus with nuclear spin quantum 

number of I and under the effect of an external magnetic field along the z-

direction ܤ଴ is associated with 2I+1 Zeeman levels. The energy difference 

between two cases with and without the magnetic field is:  

 

௠ܧ  ൌ െߤ௭ܤ଴ ൌ െ݉ߛ԰ܤ଴ (1.12) 

 

For the special case that we are interested in, when I =1/2, m = ± 1/2, we have 

two Zeeman levels with an energy difference of:  

 

ܧ∆ 
ି
ଵ
ଶ
,
ଵ
ଶ
ൌ ଴ܤ԰ߛ ൌ ԰߱௅ ൌ ݄߭௅ (1.13) 

 

Instead of dealing with energy difference between two levels, in the above 

equation, the Larmor frequency has been introduced. Joseph Larmor in 1897, 
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used this resonance frequency to describe the precession of orbital 

magnetization when influenced by an external magnetic field. To have a better 

insight of the Larmor frequency ߭௅  
(or Larmor angular frequency ߱௅) we can 

use a classical model: considering the magnetic dipole, we can define the 

torque as the derivative of the angular momentum with respect to time. 

Following along with equation (1.10) we have:  

 

 
ࢀ ൌ

ࡸ݀

ݐ݀
ൌ
1

ߛ

ࣆ݀

ݐ݀
 (1.14) 

 

Afer some manipulation and using eq. (1.8), ܶ ൌ ߤ ൈ   ,ܤ

 

ࣆ݀ 

ݐ݀
ൌ ߛ ࣆ ൈ  (1.15) ࡮

 

Magnetization is the overall effect of all the nuclear dipoles in the unit 

volume. Basically the magnetization is not aligned with the external magnetic 

field, thus we must solve the motion equation:  

ࡹ݀ 

ݐ݀
ൌ ߛ ࡹ ൈ  (1.16) ࡮

 

as assumed before, we consider the magnetic field to be in the z-direction 

ܤ) ൌ  ଴). We also assume that the initial conditions for the magnetization areܤ

defined as ܯሺݐ ൌ 0ሻ ൌ ሺsin|ܯ| ߙ , 0, cos  ሻ. Finally the solutions to theߙ

motion equation are: 

 

௫ܯ  ൌ |ܯ| sin ߙ cosω୐t (1.17) 
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௬ܯ ൌ |ܯ| sin ߙ sinω୐t 

௭ܯ ൌ  cosα|ܯ|

 

in which ߱௅ ൌ  ଴. Depending on the negative or positive value of theܤߛ

gyromagnetic ratio, gamma, the rotation vector is either in the same direction 

or the opposite direction of the magnetic field B0. Relating the magnetic field 

to the resonant frequency, Larmor relation is the most important equation of 

the NMR theory and commonly the negative sign is omitted to form an 

equation of magnitudes. 

 

 ߭௅ ൌ
ߛ

ߨ2
 ଴ (1.18)ܤ

 

The frequency of precession is the Larmor frequency which is same as the 

transition frequency between two spin states. Thus, If a nucleus of I=1/2 is 

excited by an energy package equal to the transition energy, the state of the 

nucleus will change which is equivalent to flipping the spin. For this to 

happen, a RF magnetic field is used. Flipping the spin of the nucleus under the 

applied RF magnetic field is called Nuclear Magnetic Resonance (NMR) and 

the frequency required for this resonance to happen is called NMR frequency. 

Fig. 1.4 shows the spin precession under the effect of a magnetic field. 
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Table  1.1. Some of the nuclei more commonly used in NMR Spectroscopy with the 
details of their unpaired protons, unpaired neutrons, net spin and gyromagnetic ratio. 

Nuclei  
Unpaired 

Protons  

Unpaired 

Neutrons  
Net Spin  ࢽ (MHz/T)  

1H  1  0  1/2  42.58  

2H  1  1  1  6.54  

31P  1  0  1/2  17.25  

23Na  1  2  3/2  11.27  

14N  1  1  1  3.08  

13C  0  1  1/2  10.71  

19F  1  0  1/2  40.08  

 

spins absorb energy and when the transition is from a higher energy state to a 

lower energy state, the spins emit energy. In this sense, the population of spins 

in each state is deterministic and the output signal is proportional to this 

population difference. NMR is a sensitive spectroscopy, since it’s capable of 

detecting very small differences in population. This sensitivity is due to the 

resonance, or energy exchange between the spins and the spectrometer which 

occurs at a specific frequency. 

1.3.2 NMR Solid State Quantum Computer 

Nuclear magnetic resonance provides a realistic environment to implement a 

quantum information processing (QIP) unit. Maturity of NMR spectroscopy is 

a key advantage in coherent manipulation of spin dynamics. Previously, for 

the sake of observation and understanding, the liquid state NMR has been used 

to conduct research and experiment with QIPs. However, the small number of 
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realizable qubits in a liquid-state NMR quantum computer, gave birth to the 

development of scalable solid state NMR quantum computers using spin 1/2 

particles.  

Before following along with the solid state NMR quantum computer idea, we 

review some of the advantages of this method compared to the liquid state 

NMR. Basically, a solid state NMR QIP has four advantages in this sense. 

First, to increase the sensitivity of the system required for read-out processes 

and exporting the results of computations among many qubits, the solid state 

NMR QIP offers a highly polarized system. Second, the solid state NMR QIP 

compared to its ancestor,  suffers from slower decoherencce rates. Third, inter-

spin couplings are stronger which enables the system to perform faster and 

more reliable computations. This permits the QIP unit to deal with algorithms 

with higher degrees of complexity. Finally, in the solid state designs, there are 

possible methods and dynamic mechanisms to reset the qubits to their initial 

conditions. This permits removing information from the system and also 

generates suitable groundwork to implement efficient error-correcting codes.  

 

 

Figure  1.5. The energy required to cause the spin-flip, ΔE,  depends on the magnetic 
field strength at the nucleus. 
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The Hamiltonian of the quantum system together with the suitable coupling to 

external RF fields provides all the required ingredients to construct a basic 

quantum gate. Single quantum gates can be realized by on and off resonant RF 

pulses provided that, the resonance frequencies of the involved spins are far 

apart. In addition, two-qubit qunatum gates can also be created by embedding 

an intentional delay between the pulses to exploit the coupling of qubits in the 

Hamiltonian of the system.   

 Single qubit manipulations would be done with the use of NMR. If we apply a 

static magnetic field, all the spins polarize in the direction of the applied field. 

For flipping the spins of phosphorus nuclei we apply a RF magnetic field , as 

show in Fig. 1.5, with certain frequency to drive the qubit into resonance. 

However, to avoid driving all the qubits at once, an off resonant RF field is 

applied and the active qubit (marked in red in Fig. 1.5) is tuned into resonance 

when desired by using the interaction with its electron spin (hyperfine 

interaction). The electron spin in turn is controlled by drifting the Phosphorus 

electron distribution with a voltage applied to a nearby gate, called the A-gate. 

The process of driving a qubit into resonance with the RF field, also called 

spin addressing, is illustrated in Fig. 1.6. 
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Figure  1.6. The process of driving the addressed qubit (marked in red) into resonance 
with the RF field. V0 is applied on the A-gate of the qubit and other qubits are left 
unexcited. 

 

The discovery of quantum mechanics showed the potential ability in 

manipulating information in a more powerful way than its classical model and 

can be considered as a revolution in the computation theory. In principle, the 

drawbacks of quantum information processing systems can be reduced as the 

accuracy threshold theorem suggests. These limitations are caused by 

interfering factors such as noise and decoherence. However, it should be noted 

that realizing a scalable quantum computer involves a lot of practical 

difficulties72. This process needs accurate implementation and fabrication 

techniques and so far, we have only been able to realize very small scale 

quantum computers.  

One possibility is that the required accuracies will never be achieved or on the 

other hand, we will not be able to introduce optimum and practical algorithms 

for quantum information processing. Nevertheless, as solid state NMR 

quantum has shown to be a suitable platform for controlling, manipulating and 

even observing around 100 spin coherences, this question arises that whether 
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or not we are able to efficiently preserve the information in the individually 

designed quantum bits72. This can lead to a more complex system since the 

stability of the QIP should be conserved. 

Finally, it is worth mentioning that by everyday progresses in the fields of 

quantum computation and quantum control, we may encounter new physics 

theories in the future which disprove the possibility of realizing a scalable 

quantum computer. Consequently, the close accompaniment of practical 

physics and principle theories is of great significance. 

1.4  Research Motivation 

Using the embedded spin in a silicon environment has been proposed 

previously to realize a qubit1. Following Kane's idea, many studies have 

investigated more on this design to accurately determine the relation of the 

gate voltage and nuclear magnetic resonance (NMR) frequency37,39,73-75. To 

establish this relation, several studies have applied the perturbation 

theory37,75,76 to this system, considering the applied voltage on the A-gate as a 

small perturbance affecting the original unperturbed structure with the silicon 

substrate and donor phosphorus.  However, in applying the perturbation 

theory, only perturbation of the first order has been considered previously75, 

except the article by Larionov et al.37. Nevertheless, even in the Larionov 

study, perturbance terms include only up to 2s orbitals for the hydrogenic 

wavefunctions. Basically, the major contribution of the A-gate potential is a 

linear perturbance. Hence, the inclusion of only 1s and 2s spherically 

symmetric wavefunctions results in a zero net effect. In other words, only the 

effect of the non-linear portion of the perturbance is reflected by s orbitals 

while major role of the linear perturbnace is neglected. In Hui75 study, first 
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order perturbation theory is used which is found to be insufficient since the 

perturbation theory of first order underestimates the nonlinear characteristic of 

the potential distribution inside the silicon layer. To improve the above 

mentioned issues in applying the perturbation theory, we formulate a second 

order perturbation analysis. To account for the effect of the external applied 

voltage as the perturbance to the system, we consider up to 3d hhydrogenic 

wavefunctions in our calculations. 

For the unperturbed system, the wavefunctions and energy levels of 

Hamiltonian obtained by Ning and Sah77 are well known and have been 

extensively used before. Their result is based on a modification to Effective 

Mass Theory (EMT) first proposed by Kohn and Luttinger42,78-80. The main 

advantage of Ning and Sah’s work is the use of single effective mass instead 

of two. Apart from the simplicity that this method offers, the energy levels 

obtained through this scheme present close agreement with the experimental 

values81. However, the value of the wavefunction of the ground state at the 

position of the donor needs to be modified by a “central-cell correction 

factor42” in order to make an agreement between this method and experimental 

results. To remove the "central cell correction factor" from our formulation we 

used the revised approach introduced in a recent report82 in which the correct 

forms of perturbed wavefunction are provided to obtain the magnitude squares 

of the electron state functions 
2

0( ) r  even at the position of the phosphorus 

donor.  

Another issue that is frequently found in the literature is the use of analytical 

methods for obtaining the potential distribution and assumption of linear 

potential profile inside the silicon substrate37. This assumption is only valid for 
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some ideal structures of the metallic strip. In our method, we first used the 

green function method to solve the Poisson equation and later for more 

complex structures we applied a computer-aided numerical method (CST83) 

which gives the exact potential distributions of the A-gate structures inside the 

silicon substrate. It should be noted that this EM simulator gives the three-

dimensional potential distribution inside the silicon substrate due to an 

arbitrary voltage excited on the A-gate lead. Using these methods, any 

geometric shape of an A-gate structure can be simulated to a very high 

accuracy, with no need of any kind of unrealistic assumptions.    

Studies14,15,17,84 have suggested that in realization of a quantum computer, the 

use of electron spin qubit as compared to the nuclear spin qubit lead to 

designing systems with faster clock speeds. However, in all of these studies, 

an accurate method for determining the conditions of operation in the electron-

spin quantum bit such as the magnetic resonance frequency of the electron 

spin and its dependence on the applied voltage is missing. We use the 

previously mentioned perturbation method together with the computer aided 

simulation software to investigate the details of this type of qubit. 

Due to the typical structure of the Kane's A-gate and its simplicity, especially 

for demonstration purposes, most of the studies following along Kane's 

idea75,85,86, adopted the original structure without any modification to the A-

gate geometry. Nevertheless, the existence of some drawbacks in Kane's A-

gate motivated us to make some improvements to the qubit structure. The first 

issue is that the ground plane at the bottom of the structure is not compatible 

with other electric-field- or magnetic-field-controlled devices12,87. Existence of 

ground gate and A-gate in the same plane, facilitate the fabrication of the qubit 
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and reduces the sensitivity of performance to the thickness of the silicon layer. 

In addition, it is easier to integrate the qubit unit with other ancillary devices 

(such as reading out devices), if the ground gate is not restricting the substrate 

from the bottom.       

Finally, the Kane's structure shows a poor efficiency in using the gate voltage 

for controlling the NMR frequency of the phosphorus nucleus. To reduce the 

effect of the above mentioned issues, we have introduced two new A-gate 

designs, coplanar A-gate and split-ground A-gate. The advantages and 

disadvantages of these new geometries have been discussed and their 

effectiveness in controlling the NMR frequency is compared with Kane's 

original design.  

1.5 Organization of the Thesis 

This thesis is directed towards the design, simulation and electromagnetic 

analysis of silicon quantum bits used in realization of a scalable solid state 

quantum computer. The scope of this thesis is first, to formulate the second 

order perturbation theory to obtain the wavefunction of the perturbed system. 

We have rigorously derived the necessary equations for the calculation of the 

magnetic resonance frequencies. Using this perturbation formulation and 

based on modified EMT theory we have analyzed two novel A-gate structures 

which can replace the original Kane's idea. 

In chapter 2 we present two principle theories we have used in our analysis. 

Firstly, The Effective Mass Theory has been introduced to provide the reader 

with an insight to the nature of unperturbed Hamiltonian eigenfunctions. 

Secondly, we have shown, in extensive details, the derivation of second order 
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perturbation terms used to obtain the perturbed wavefunction. Also, we have 

shown the application of perturbation formulas in our problem of interest. 

In chapter 3 we have discussed about the two simulation methods that have 

been used in this project. First, the green function method has been introduced 

which was used primarily to obtain the potential distribution inside the qubit 

structure. Later, as required by more complex A-gate structures, we used a 

computer simulation method 83 in order to calculate the exact potential profile 

caused by the newly proposed A-gate designs. The potential data is then 

exported to MATLAB for numerical estimation of perturbation coefficients. 

Chapter 4 presents the accurate analysis of Kane's and other qubit designs 

based on the discussions provided in chapter 2 and 3. In this section, using the 

CST software we simulate the Kane's structure to show the potential profile 

inside the silicon layer in the position of phosphorus atom. Also, the effect of 

changing the insulator on the potential profile is investigated by using an 

alternative material. Assuming that the information on the perturbed 

wavefunction is provided, we can use the relevant formulations to calculate 

the NMR frequency of the doped phosphorus.  

In chapter 5 we show some of the results related to the Electron Magnetic 

Resonance of the Kane's qubit structure such as electron magnetic resoannce 

frequency and tunable bandwidth. 

In chapter 6, two novel A-gate structures, coplanar A-gate and split-ground A-

gate, are proposed and analyzed based on the theoretical and numerical 

approaches introduced in the previous chapters. The advantages and 

disadvantages of these structures are discussed and their NMR frequencies are 

compared as we change the A-gate applied voltage. Also, the potential 



31 
 

distribution inside Kane's, coplanar and split-ground A-gates are shown for 

comparison. Finally, we show the effect of adjacent qubits on the performance 

of the main qubit for these three structures. 

In Chapter 7, after giving a summary of all the contributions of this 

dissertation we propose some of the possible future studies that can be 

considered for a more efficient analysis and design of spin-based 

semiconductor quantum bits.        
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In Kane’s model, an important step is to establish the relation between the 

applied A-gate voltage and the NMR frequency of the donor. Several studies 

have used the perturbation theory37,75,76, treating the A gate voltage as a small 

perturbance to the original unperturbed system with the donor phosphorus 

atom inside a silicon substrate. Another approach is to solve the changed 

Poisson equation including the A gate voltage term directly, usually by a 

numerical method39. For the perturbation approach, only first order 

perturbation has been considered previously75, except the study by Larionov et 

al.37. However the Larionov study adopted an analytical approach for 

obtaining the A-gate potential which means that it is only applicable to ideal 

structures of A gates (an ideal circular plate). Furthermore, for the second 

order perturbation theory considered by Larionov et al., the perturbance 

includes only up to the 2s term for the hydrogenic wavefuction. As we know, 

the major part of the A-gate voltage introduces a linear perturbance under 

which the inclusion of the 1s and 2s spherically symmetric hydrogenic 

wavefunctions only gives a zero net effect. Hence the mere inclusion of the 1s 

and 2s wavefunction terms only accounts for the non-linear perturbance 

introduced by the A-gate voltage, while the major linear perturbance has not 

been accounted for. For the study by Hui75, the perturbation theory was again 

used. However, this study considered perturbation up to the first order only. 

This was insufficient because due to a rather nonlinear nature of the external 

applied potential distribution inside the silicon substrate, the first order 

perturbation substantially under-estimates this effect. In order to improve on 

this, we carry out a second order perturbation analysis of the additional effect 
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due to the potential introduced by the A-gate voltage. We will consider up to 

the 2p, 3s, 3p, and 3d hydrogenic orbitals in our theory. 

The wavefunctions and energy levels of the unperturbed Hamiltonian ܪ଴ are 

well known and we use those obtained by Ning and Sah77 (Appendix I) who 

considered a modified effective-mass theory (EMT) proposed by Kohn and 

Luttinger42,78-8035-38. The advantage of Ning and Sah’s results is that they 

used a single effective mass instead of two. This substantially simplifies the 

formulation of the perturbation theory. Another reason is that the energy levels 

obtained from their results are in close agreements with the experimental 

values81. The disadvantage is that the value of the ground state wavefunction 

at the donor site has to be corrected by the so-called “central-cell correction42” 

in order to match with the experimental value. In order to remove this 

disadvantage,  we have used the revised unperturbed wavefunctions in the 

calculation of the perturbed wavefunction in (2) provided in a recent report27 

which formulated the correct unperturbed wavefunctions that correctly 

produce the magnitude squares of the wavefunctions 
2

0( ) r  at the donor 

nucleus position.  In essence, the report in Ref.82 provides a more accurate 

effective-mass-theory (EMT) equation for the wavefunction of a phosphorus 

donor in a silicon host by correctly taking into account of the inter-valley 

mixing effect of the silicon conduction band structure.  The most important 

result of this reformulated EMT equation is that the unperturbed 

wavefunctions (i.e., 
1
( )A r , 2 ( )s r  , and 3 ( )s r  in (2)) can be calculated 

accurately, not only their energy levels but also their specific values at the 

donor site 0r r .  This eliminates the usual practice of needing to artificially 

introduce a so-called central-cell correction factor to account for the difference 
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between the theoretically calculated and the experimental measured value of 

the magnitude squares of the wavefunctions 
2

0( ) r  at the donor site.  

2.1 Effective Mass Theory for Silicon-Based Devices 

The effective mass theory (EMT) has widely been used to describe the 

electron structure and excited states of shallow impurities in semiconductors. 

In the seminal proposal of Luttinger and Kohn78, the shallow impurity atom 

embedded inside the silicon was modeled as a hydrogen atom with the 

impurity ion playing the role of the hydrogen core. Later, it was shown42 that 

there are some inconsistency between the calculated results based on EMT and 

experimental values. This nonoccurrence was observed especially for the 

ionization energy (experimental value was 45.47 meV and calculated value 

based on EMT was reported to be 29 meV). For the calculation of the square 

modulus of the ground-state wavefunction at the donor position, หΨ୅భሺ0ሻห
ଶ
 the 

"central-cell correction" method had to be used to compensate for the 

difference between experimental and EMT-calculated results (4.1 ൈ 10ଶଽ m-3 

obtained from EMT and 4.4 ൈ 10ଶଽ m-3 obtained experimentally). Two main 

factors have been suggested to account for the above-mentioned mismatches: 

(i) the invalidity of the assumed impurity potential screened by the dielectric 

constant in the vicinity of nucleus which is far from a columbic potential and 

significantly affects the accuracy of calculation especially in 1S state, (ii) the 

negligence of inter-valley effects arising from the band structure of the silicon 

because of the presence of six conduction minima in the lowest conduction 

band. Later, these six minima were shown to be split into three different sub-

levels 88. Ning and Sah 77, proposed a new formulation for the EMT by using 
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variational method and taking into account the effect of inter-valley mixing. 

This study provided accurate results for the energies of the three sub-level 

ground states. Ever since, many studies have tried to improve Ning and Sah’s 

work 77 by more accurately investigating the effect of inter-valley mixing 

46,89,90. Most of the theories and formulations proposed so far, haven’t been 

able to predict accurately both the energy levels and  หΨ୅భሺ0ሻห
ଶ
 i.e. the ground 

state wavefunction of the impurity at the nucleus site39,45,73,91,92. In this 

dissertation we have used the theory proposed by Hui82 which enables us to 

accurately calculate both energy levels and donor-site wavefunction, even for 

the A1 state, which is the lowest lying sub-level of the 1S state. The details of 

this formulation can be found in Ref. 82. 

2.2 Perturbation Theory  

Similar to the case of classical mechanics, there are few realistic problems in 

quantum mechanics that can be solved for a closed-form solution. Therefore, 

making use of approximation methods is inevitable in nearly all of the 

physically worthwhile applications of the quantum mechanics theory. The 

Rayleigh-Schrodinger perturbation theory or perturbation theory in short, 

which studies the effect of a small disturbance to the unperturbed system, will 

be discussed below for a time-independent Hamiltonian.  

Let us assume that the Hamiltonian of an arbitrary time-independent system is 

stated as: 

ܪ  ൌ ଴ܪ ൅  (2.1) ′ܪߣ

 



37 
 

where ܪ଴ is the unperturbed Hamiltonian pertaining to the system without any 

disturbance which , we shall suppose, can be simply solved using an 

unperturbed Schrödinger equation: 

 

଴߰௡ܪ 
ሺ଴ሻ

ൌ ௡ܧ
ሺ଴ሻ
߰௡
ሺ଴ሻ (2.2) 

 

and ܪߣ′ is the term accounting for the perturbation. The parameter ߣ is a real 

quantity and introduces the order of perturbation. If ߣ goes to zero, the system 

Hamiltonian ܪ tends to the unperturbed system Hamiltonian, ܪ଴. On the other 

hand, we may choose ߣ to be 1 as its full value.  

Assuming that the eigenfunctions ߰௡
ሺ଴ሻ linked to the eigenvalues ܧ௡

ሺ଴ሻ of the 

unperturbed Hamiltonian ܪ଴ form an orthonormal set we can write:  

 

 ർ ௜߰
ሺ଴ሻ
ቚ߰௝

ሺ଴ሻ
඀ ൌ  ௜௝ (2.3)ߜ

 

where ௜߰
ሺ଴ሻ and ߰௝

ሺ଴ሻ are two arbitrary eigenfunctions from the above-

mentioned set and ߜ௜௝ is the Kronecker delta function and for simplicity of 

formulation we suppose the system is introduced by only discrete states. Since 

in the next chapters we will only deal with non-degenerate ground-states, in 

the following formulation of the perturbation theory we will assume all the 

energy levels to be non-degenrate. Consider the eigenvalue problem which we 

intend to solve 

 

௡߰ܪ  ൌ ௡ܧ ߰௡  (2.4) 
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Thus, we can start by assuming that ܧ௡
ሺ଴ሻ ,a particular energy level of the 

unperturbed Hamiltonian, is the nearest unperturbed level to the perturbed 

energy level ܧ௡ . This is because the perturbation ܪߣ′ is very small compared 

to ܪ଴. As ߣ approaches zero: 

 lim
ఒ→଴

௡ܧ ൌ ௡ܧ
ሺ଴ሻ (2.5) 

 lim
ఒ→଴

߰௡ ൌ ߰௡
ሺ଴ሻ (2.6) 

 

The general concept of the perturbation theory is to expand the perturbed 

eigenfunctions and eigenvalues in powers of ߣ, 

௡ܧ  ൌ෍ߣ௝ܧ௡
ሺ௝ሻ

∞

௝ୀ଴

 (2.7) 

 ߰௡ ൌ෍ߣ௝߰௡
ሺ௝ሻ

∞

௝ୀ଴

 (2.8) 

 

where j is the order of perturbation. Putting the expressions 2.8 and 2.7 into 

the Schrödinger equation 2.4 we obtain 

 

 

൫ܪ଴ ൅ ൯′ܪߣ ቀ߰௡
ሺ଴ሻ

൅ ௡߰ߣ
ሺଵሻ

൅ ଶ߰௡ߣ
ሺଶሻ

൅ ⋯ቁ 

=ቀܧ௡
ሺ଴ሻ

൅ ௡ܧߣ
ሺଵሻ

൅ ௡ܧଶߣ
ሺଶሻ

൅ ⋯ቁ ൈ ቀ߰௡
ሺ଴ሻ

൅ ௡߰ߣ
ሺଵሻ

൅ ଶ߰௡ߣ
ሺଶሻ

൅ ⋯ቁ 

(2.9) 

 

Equating the coefficient of the terms with same power of ߣ in both sides of the 

above equation we find that for ߣ଴ , the expected equation 2.2 appears. for ߣଵ 

we have 
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଴߰௡ܪ 
ሺଵሻ

൅ ௡߰′ܪ
ሺ଴ሻ

ൌ ௡ܧ
ሺ଴ሻ
߰௡
ሺଵሻ

൅ ௡ܧ
ሺଵሻ
߰௡
ሺ଴ሻ (2.10) 

 

while the coefficient for ߣଶ gives us 

଴߰௡ܪ 
ሺଶሻ

൅ ௡߰′ܪ
ሺଵሻ

ൌ ௡ܧ
ሺ଴ሻ
߰௡
ሺଶሻ

൅ ௡ܧ
ሺଵሻ
߰௡
ሺଵሻ

൅ ௡ܧ
ሺଶሻ
߰௡
ሺ଴ሻ (2.11) 

 

Generally for the case of ߣ௝ we have 

଴߰௡ܪ 
ሺ௝ሻ
൅ ௡߰′ܪ

ሺ௝ିଵሻ
ൌ ௡ܧ

ሺ଴ሻ
߰௡
ሺ௝ሻ
൅ ௡ܧ

ሺଵሻ
߰௡
ሺ௝ିଵሻ

൅ ⋯൅ ௡ܧ
ሺ௝ሻ
߰௡
ሺ଴ሻ (2.12) 

 

After some manipulations to equations 2.10 to 2.12  we obtain first-order 

energy term ܧ௡
ሺଵሻ as 

௡ܧ 
ሺଵሻ

ൌ ർ߰௡
ሺ଴ሻ
ቚܪ′ቚ߰௡

ሺ଴ሻ
඀ (2.13) 

 

This equation is simply the perturbation factor ܪ′ averaged over ߰௡
ሺ଴ሻ the 

unperturbed eigenfunction of the system.  

In a similar manner, we will find the second-order correction term to the 

energy of the system 

 

௡ܧ 
ሺଶሻ

ൌ ർ߰௡
ሺ଴ሻ
ቚܪ′ െ ௡ܧ

ሺଵሻ
ቚ߰௡

ሺଵሻ
඀ (2.14) 

 

It is worth mentioning that knowing the unperturbed state function ߰௡
ሺ଴ሻ  is 

sufficient for obtaining ܧ௡
ሺ଴ሻ and ܧ௡

ሺଵሻ, while calculating ܧ௡
ሺଵሻ need the 

knowledge of ߰௡
ሺଵሻ. As a general rule, knowing  ߰௡

ሺ଴ሻ, ߰௡
ሺଵሻ, …, ߰௡

ሺ௦ሻ, gives all 

the information needed to obtain the energy correction terms ܧ௡
ሺ଴ሻ, ܧ௡

ሺଵሻ,…, 

௡ܧ
ሺଶ௦ିଵሻ. 
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2.2.1  First Order Perturbation Theory 

By recalling equation 2.10 and following the Rayleigh-Schrödinger method, 

we expand ߰௡
ሺଵሻ as a superposition of basis states obtained from solving the 

unperturbed Hamiltonian equation: 

 

 ߰௡
ሺଵሻ

ൌ෍ܽ௡௞
ሺଵሻ

௞

߰௞
ሺ଴ሻ (2.15) 

 

Now, we substitute the above expansion into equation 2.10 to obtain 

 ሺܪ଴ െ ௡ܧ
ሺ଴ሻ
ሻ෍ܽ௡௞

ሺଵሻ

௞

߰௞
ሺ଴ሻ

൅ ሺܪ′ െ ௡ܧ
ሺଵሻ
ሻ߰௡

ሺ଴ሻ
ൌ 0 (2.16) 

 

After some manipulation of the above equation, we derive: 

 

 ܽ௡௟
ሺଵሻ ቀܧ௟

ሺ଴ሻ
െ ௡ܧ

ሺ଴ሻቁ ൅ ௟௡ܪ
′ െ ௡ܧ

ሺଵሻ
௡௟ߜ ൌ 0 (2.17) 

 

where we used ܪ௟௡′ ≡ ർ ௟߰
ሺ଴ሻቚܪ′ቚ߰௡

ሺ଴ሻ඀. Leaving the special case of ݊ ൌ ݈ for 

later, we find the expression for first-order perturbation coefficient ܽ௡௟
ሺଵሻ as 

 

 ܽ௡௟
ሺଵሻ

ൌ
௟௡ܪ
′

௡ܧ
ሺ଴ሻ െ ௟ܧ

ሺ଴ሻ
, ݈ ് ݊ (2.18) 

 

Later we return to finding the term ܽ௡௡
ሺଵሻ ൌ ർ߰௡

ሺ଴ሻቚ߰௡
ሺ଴ሻ඀ which is indeed the 

projection of  ߰௡
ሺଵሻ along ߰௡

ሺ଴ሻ and cannot be found from equation 2.18.  
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2.2.2  Second Order Perturbation Theory 

Following the same method we can expand the second order perturbation 

function as 

 ߰௡
ሺଶሻ

ൌ෍ܽ௡௞
ሺଶሻ

௞

߰௞
ሺ଴ሻ (2.19) 

 

And obtain an expression for the second order perturbation coefficients 

 ܽ௡௟
ሺଶሻ ቀܧ௟

ሺ଴ሻ
െ ௡ܧ

ሺ଴ሻቁ ൅෍ܪ௟௞
′ ܽ௡௞

ሺଶሻ

௞

െ ௡ܧ
ሺଵሻ
ܽ௡௟
ሺଵሻ

െ ௡ܧ
ሺଶሻ
௡௟ߜ ൌ 0 (2.20) 

 

For ݊ ൌ ݈ we have 

௡ܧ 
ሺଶሻ

ൌ ෍
௡௞ܪ
′ ௞௡ܪ

′

௡ܧ
ሺ଴ሻ

െ ௞ܧ
ሺ଴ሻ

௞ஷ௡

ൌ ෍
หܪ௞௡

′ ห
ଶ

௡ܧ
ሺ଴ሻ

െ ௞ܧ
ሺ଴ሻ

௞ஷ௡

 (2.21) 

 

Thus, the second order energy correction term is obtained by performing the 

above-mentioned summation. We should note that in the case of ground state, 

the term ܧ௡
ሺ଴ሻ െ ௞ܧ

ሺ଴ሻ is always negative for ݇ ് ݊; hence ܧ௡
ሺଶሻ, the second 

order correction of the energy is always negative. 

In summary, we can write the expression for a perturbed energy level by 

applying the perturbation theory to second order (we have set ߣ ൌ 1) 

௡ܧ  ൌ ௡ܧ
ሺ଴ሻ

൅ ௡௡ܪ
′ ൅෍

หܪ௞௡
′ ห

ଶ

௡ܧ
ሺ଴ሻ

െ ௞ܧ
ሺ଴ሻ

௞ஷ௡

 (2.22) 

 

Considering equation 2.20 and remembering that ܧ௡
ሺଵሻ ൌ ௡௡ܪ

′  , we obtain the 

expression for ܽ௡௟
ሺଶሻ when ݈ ് ݊ which is the general case, 
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ܽ௡௟
ሺଶሻ

ൌ
1

௡ܧ
ሺ଴ሻ

െ ௟ܧ
ሺ଴ሻ

෍
௟௞ܪ
′ ௞௡ܪ

′

௡ܧ
ሺ଴ሻ

െ ௞ܧ
ሺ଴ሻ

௞ஷ௡

െ
௡௡ܪ
′ ௟௡ܪ

′

ሺܧ௡
ሺ଴ሻ

െ ௟ܧ
ሺ଴ሻ
ሻଶ

െ ܽ௡௡
ሺଵሻ ௟௡ܪ

′

௡ܧ
ሺ଴ሻ

െ ௟ܧ
ሺ଴ሻ

 

(2.23) 

 

As mentioned previously about ܽ௡௡
ሺଵሻ , also ܽ௡௡

ሺଶሻ cannot be determined from 

equation 2.23. 

More generally we have 

 ܽ௡௡
ሺ௝ሻ

ൌ ർ߰௡
ሺ଴ሻ
ቚ߰௡

ሺ௝ሻ
඀ , ݆ ൒ 1 (2.24) 

 

where  ܽ௡௡
ሺ௝ሻ represents the component of ߰௡

ሺ௝ሻ along ߰௡
ሺ଴ሻ. Due to the loss of 

information on ܽ௡௡
ሺ௝ሻ, we are not able to use equations 2.21 to 2.23 to find these 

coefficients. Thus we can infer that these quantities are not physically valuable 

and choosing the appropriate coefficient can be determined merely by the 

assumptions on the perturbed wavefunction ߰௡. One way is to find these 

coefficients in a way that the perturbed wavefunction is normalized to 1, of 

course by making the assumption of expanding ߰௡ up to ݆݄ݐ order of ߣ, 

 

௡|߰௡ۧ߰ۦ

≃ ർ߰௡
ሺ଴ሻ

൅ ௡߰ߣ
ሺଵሻ

൅ ⋯൅ ௝߰௡ߣ
ሺ௝ሻ
ቚ߰௡

ሺ଴ሻ
൅ ௡߰ߣ

ሺଵሻ
൅ ⋯൅ ௝߰௡ߣ

ሺ௝ሻ
඀

ൌ 1 ൅ ࣩሺߣ௝ାଵሻ 

(2.25) 

 

where  ࣩሺߣ௝ାଵሻ is a type of error function of the order ߣ௝ାଵ. Thus, for first 

order correction we may write: 

 ർ߰௡
ሺ଴ሻ
ቚ߰௡

ሺଵሻ
඀ ൅ ർ߰௡

ሺଵሻ
ቚ߰௡

ሺ଴ሻ
඀ ൌ 0 (2.26) 
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or equivalently 

 ܽ௡௡
ሺଵሻ

൅ ܽ௡௡
ሺଵሻ∗

ൌ 0 (2.27) 

 

The above equation means that the real part of ܽ௡௡
ሺଵሻ should be zero. In a similar 

way, for second order correction we may write   

 ർ߰௡
ሺ଴ሻቚ߰௡

ሺଶሻ
඀ ൅ ർ߰௡

ሺଶሻቚ߰௡
ሺ଴ሻ
඀ ൅ ർ߰௡

ሺଵሻቚ߰௡
ሺଵሻ
඀ ൌ 0 (2.28) 

 

And therefore, 

 ܽ௡௡
ሺଶሻ

൅ ܽ௡௡
ሺଶሻ∗

൅෍ቚܽ௡௞
ሺଵሻ
ቚ
ଶ

௞

ൌ 0 (2.29) 

 

Again, the above equation gives the real part of  ܽ௡௡
ሺଶሻ like equation 2.27 which 

determined the real part of ܽ௡௡
ሺଵሻ. Since there is no information about the 

imaginary part of coefficients in equations 2.29 and 2.27, without loss of 

generality, we can set the imaginary parts to zero. Thus for second order 

correction we have, 

 ܽ௡௡
ሺଵሻ

ൌ 0, ܽ௡௡
ሺଶሻ

ൌ െ
1

2
෍ ቚܽ௡௞

ሺଵሻ
ቚ
ଶ

௞ஷ௡

 (2.30) 

 

And finally the perturbed wavefunction is obtained to second order by (ߣ ൌ 1) 

 ߰௡ ൌ ߰௡
ሺ଴ሻ

൅ ߰௡
ሺଵሻ

൅ ߰௡
ሺଶሻ (2.31) 

 

 Where  

 ߰௡
ሺଵሻ

ൌ෍
௟௡ܪ
′

௡ܧ
ሺ଴ሻ െ ௟ܧ

ሺ଴ሻ ௟߰
ሺ଴ሻ

௟ஷ௡

 (2.32) 
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and  

 

߰௡
ሺଶሻ

ൌ෍൦෍
௟௡ܪ
′

ሺܧ௡
ሺ଴ሻ െ ௟ܧ

ሺ଴ሻሻሺܧ௡
ሺ଴ሻ െ ௞ܧ

ሺ଴ሻሻ௞ஷ௡௟ஷ௡

െ
௡௡ܪ
′ ௟௡ܪ

′

ቀܧ௡
ሺ଴ሻ

െ ௟ܧ
ሺ଴ሻ
ቁ
ଶ቏߰௟

ሺ଴ሻ
 

െ
1

2
 ෍

หܪ௞௡
′ ห

ଶ

ቀܧ௡
ሺ଴ሻ

െ ௞ܧ
ሺ଴ሻ
ቁ
ଶ

௞ஷ௡

 ߰௡
ሺ଴ሻ 

(2.33) 

 

 Choosing the above method ensures that the perturbed wavefunction is 

normalized up to a particular order of  ݆. However, another method used for 

determining the coefficients ܽ௡௡
ሺ௝ሻ is 

 ܽ௡௡
ሺ௝ሻ

ൌ 0, ݆ ൒ 1 (2.34) 

Using the second convention, the first order perturbed wavefunction is 

normalized similar to the previous case. However, the higher order perturbed 

functions don’t obey this rule. Nevertheless, to solve this problem, we may 

need to introduce some normalization constant ܰሺߣሻ such that 

ሻ߰௡ۧߣሻ߰௡|ܰሺߣሺܰۦ ൌ 1. 

2.2.3 Implementation of Perturbation Theory in the Qubit 

Problem 

Performing a second order perturbation theory we have: 
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 

1 1

1 1 1

1 1

(1) 2 (2)

(1) 2 (2)
,

Norm ' ' '

1

Norm

A A

A A A

A norm A

 

 

      

    

      
 

(2.35) 

 

where 
1
A is the perturbed wavefunction for the ground states, 

1
A is the 

unperturbed ground-state wavefunction, Norm is the normalization constant 

and 
1,A norm is the normalized perturbed wavefunction for the ground state.  

We follow the perturbation theory method by expanding first and second order 

correction functions (1)  and (2)  in terms of unperturbed basis functions. In 

our method we have used unperturbed basis function up to 3d levels i.e. we 

have used basis functions A1, 2s, 2p, 3s, 3p and 3d. In addition since we are 

only interested in the wavefunction at the donor position we set the argument 

to zero. Recalling equation 2.15 and 2.19 we have 

 ߰ሺଵሻሺ0ሻ ൌ ஺ଵߙ
ሺଵሻ
߰஺ଵሺ0ሻ ൅ ଶ௦ߙ

ሺଵሻ
߰ଶ௦ሺ0ሻ ൅ ଷ௦ߙ

ሺଵሻ
߰ଷ௦ሺ0ሻ  (2.36) 

 

and 

 ߰ሺଶሻሺ0ሻ ൌ ஺ଵߙ
ሺଶሻ
߰஺ଵሺ0ሻ ൅ ଶ௦ߙ

ሺଶሻ
߰ଶ௦ሺ0ሻ ൅ ଷ௦ߙ

ሺଶሻ
߰ଷ௦ሺ0ሻ  (2.37) 

 

The reason we have only considered three of the basis functions and ignored 

the rest is the fact that only s orbital wavefunctions have a contribution at the 

origin and p and d wavefunctions vanishes at the nucleus position. Now we 

use the formulation of the previous section to determine the coefficient of 

perturbation terms. It should be noted that we have used a new method for the 
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normalization in which we first obtain the whole expression of the perturbed 

wavefunction and then normalize it.  
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 (2.38) 

 

After putting the expression for first and second order perturbation terms in 

eq. 2.38 we derive the Norm of the perturbed wavefunction 
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(2.39) 

 

Thus, for the perturbed wavefunction we have 
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    
1

1

,

(1) 2 (2) (1) 2 (2)
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1
(0) (0) (0)

Norm

A norm

A s s s s s s     



         
 (2.40) 

 

Following the same method as discussed before, all the coefficients and 

energy correction terms of the perturbed wavefunction in eq. 2.39 and 2.40 

can be obtained. These coefficients are presented in Appendix II. The only 

difference is that A1 state is not orthogonal to 2s and 3s states and this should 

be taken into account. 

 

2.3 Summary 

In this chapter, firstly, we have introduced the revised Effective mass theory 

that has been reported in a recent study. This method enables us to modify the 

previous EMT formulations and remove the so-called "central cell correction 

factor" from the perturbation analysis and to accurately calculate the 

unperturbed wavefunctions and energy levels even at the donor site 0r r . An 

introduction of previous EMT methods and their disadvantages has been 

given. Secondly, we have provided the details of second order perturbation 

theory and its implementation in our problem of interest. We first introduced 

the first order perturbation correction and then expanded this analysis to the 

second order. All the coefficient of the perturbed wavefunction are obtained 

by mathematical manipulations of the equations provided in this chapter and 

are presented in Appendix II. In order to expand the wavefunctions we have 

used up to 3d orbital basis states and finally the normalization method used in 

this project has been discussed.          
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3.1 Using Multi-layered Green Function to Solve the Integral Equation  

The determination of the NMR frequencies of the phosphorus donor consists 

of two steps.  The first step is to calculate the electric potential distribution 

V(r) inside the silicon substrate for a known A-gate voltage.  The second step 

is to calculate the change of NMR frequency.   

In order to solve the first problem, primarily we used the multilayered Green’s 

functions to solve an integral equation by the moment method88. The 

multilayered Green’s functions are obtained from the work of Li et al.93 for 

qubit structure and are presented in this section. 

In this method, the Poisson’s equation    2
SiV Q   r r  (where Si  is the 

permittivity of silicon) for the static electric potential V(r) induced by an 

arbitrary 3D A-gate structure is solved first by formulating an integral 

equation for the charge distribution  Q r  on the A gate as: 

 

    0 33 | ' ( ') '
S

V G Q ds r r r r  (3.1) 

 

where  33 | 'G r r  is the Green’s function40 for the potential on the A gate due 

to a unit charge on the A gate itself.  The Green’s function  33 | 'G r r  was 

obtained by considering a general multilayered planar structure93 with 

 33 | 'G r r  being formulated to satisfy all the boundary conditions on each 

layer (details in Ref.93).  Eq. (3.1) is solved numerically by the moment 

method94 for  Q r  with a given known potential  0 1 VV r  on the A gate.  
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Once the charge distribution  Q r  is known, the potential inside the silicon 

substrate is calculated by the following integration formula93: 

 

    13 | ' ( ') '
S

V G Q ds r r r r  (3.2) 

 

where  13 | 'G r r  is the Green’s function94 for the potential inside the silicon 

substrate due to a unit charge on the A gate.  Note that in (3.1), the field 

coordinate r is on the A-gate while in (3.2) r can be any location inside the 

silicon substrate.  From (3.2), it can be seen that the potential distribution V(r) 

is a complex function of both the highly localized Green’s function  13 | 'G r r  

and the charge distribution function  Q r  which result in V(r) being far from 

a linear distribution.  The use of a numerical method can accommodate an 

arbitrary geometry of the A gate, facilitating an engineering approach to solve 

this problem.   

Below is the list of green functions used for a three-layered structure in which 

the excitation source is placed on top of the second layer right in the interface 

of second and third layers. In the qubit problem, layer 1 is associated with the 

silicon substrate, layer 2 is the silicon dioxide layer and layer 3 is assumed to 

be the free space above the structure. in this formulation (x, y , z) represents 

the field coordinates while the source coordinates are shown with (x’ , y’ , z’) 

which both are local coordinates relating to each layer. Spectral domain 

kernel, which can be numerically calculated by Prony’s method, is then used 

to express the various green's functions. Finally the spatial Green's functions 
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are numerically obtained using the complex image method. Following is the 

list of above-mentioned three-layered Green's functions. 

 

 

 

 
      yxyxyx dkdkyyjkxxjkzzkkG

zyxzyxG

'(exp'(exp',,,
~

2

1

',','|,,

132

13

  








 (3.3) 

 

where the spectral domain kernel is 
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 (3.4) 

 

with 22
yx kk  .   ',','|,,13 zyxzyxG  is the Green’s function for the 

potential inside silicon layer (layer 1) produced by a unit charge in the metallic 

strip in layer 3.  The other two Green’s functions are 
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(3.5) 

 

where 
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Finally, the potential inside the free space above the structure (layer 3) is 

represented by another Green’s function produced by a unit charge on the 

metallic strip in layer 3, 
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where 
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 (3.8) 

 

Using the Green's function introduced above, the charge distribution )','( yxQ  

on the metallic A-gate strip as the result of a unit voltage on the A-gate can be 

calculated by numerically solving the following integral equation. This 

integral equation is solved using the moment method. 

 

   '')',','(0,','|0,,1 33 dydxzyxQyxyxG
S


 
(3.9) 

 

where S shows the area of the A gate strip.  assuming )','( yxQ  is obtained, the 

potentials in different layers due to a unit voltage on the A-gate strip can be 

calculated as: 
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     1layer in      ,'')','(0,','|,,,, 1313 dydxyxQyxzyxGzyxV
S


 
(3.10) 

 

     2layer in      ,'')','(0,','|,,,, 2323 dydxyxQyxzyxGzyxV
S


 
(3.11) 

 

     3layer in      ,'')','(0,','|,,,, 3333 dydxyxQyxzyxGzyxV
S


 
(3.12) 

 

3.2 Using Computer-Aided Simulation Method 

In order to analyze qubit structures with complex geometrical parameters, 

using the Green's function can be tedious and sometimes even impossible. To 

design the new A-gate structures (introduced later in chapter 6) and to 

characterize their performance, we use a computer-aided numerical method. 

First, the exact potential distributions of the A-gate structures inside the silicon 

substrate are obtained using an electromagnetic simulation tool - the CST 

Electrostatic Module83.  Note that this EM simulator gives the three-

dimensional potential distribution inside the silicon substrate due to an 

arbitrary voltage excited on the A-gate lead.  In this way, any geometric shape 

of an A-gate structure can be simulated to a very high accuracy, with no need 

of any kind of unrealistic assumptions.   

CST STUDIO SUITE is a multi-purpose electromagnetic simulation software. 

The foundation method of this simulator is the Finite Integration Technique 95, 

which was proposed for the first time by Weiland in 1976/197796. 

The Finite Integration Technique 95 provides a general spatial discretization 

method which is applicable to a wide range of electromagnetic problems. 
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These problems may be ranging from static field and low frequency 

simulations to high frequency calculations in both time and frequency 

domains. 

 

3.2.1  Finite Integration Method and Discrete Electromagnetism 

Unlike most of the numerical techniques which use differential form of the 

Maxwell's equations, the descretization scheme used in FIT involves the 

integral form of the Maxwell's equations:   
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(3.13) 

 

To find the numerical solutions to these equations, one should first define a 

finite simulation domain which encloses all the components of the problem 

structure. The next step is to divide this domain into small grid cells by 

choosing a suitable method for mesh generation. For sake of simplicity, we 

will first consider the orthogonal hexahedral mesh system. In CST, the 

primary mesh system can be chosen in a visual format. However, an internal 

dual mesh is defined by the software which is orthogonal to the primary mesh 

set. Finally, the Maxwell's equations are spatially descretized using these two 

orthogonal mesh systems and the integral values are used as the degrees of 

freedom. as shown in the following Fig. 3.1, the primary grid G is used for 

allocating electric grid voltages and magnetic side wall fluxes represented by e 

and b respectively.   
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On the other hand, the dual grid G ~ (represented by tilde) is used for the 

dielectric side wall fluxes d and magnetic grid voltages h: 

 

 

 

Figure  3.1. Two orthogonal mesh systems. the primary grid G is used for allocating 
electric grid voltages and magnetic side wall fluxes represented by e and b 
respectively. The dual grid G ~ (represented by tilde) is used for the dielectric side 
wall fluxes d and magnetic grid voltages h. This image is reproduced from CST 
advanced topics Manual83.  

 

The next step is to formulate the Maxwell’s equations for every cell face wall 

(facet) individually as shown in the Fig. 3.2. For Faraday’s Law, we can 

replace the closed integral on the left hand side of the equation with the sum 

total of four grid voltages. This simplification doesn’t introduce any error 

factor to our calculations. Therefore, the right hand side of the equation is 

equivalent to the time derivative of the magnetic flux integrated on the 

encircled primary cell facet as shown in the figure below. By carrying out the 

same procedure for all of the cell facets in the primary grid, we obtain a matrix 

representation. This topological matrix C, obtained by summarizing the 
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calculation rule in all the cell facets, is the discrete representation of the curl 

operator in the Faraday’s law. 

 

 

 

Figure  3.2. For Faraday’s Law, the closed integral on the left hand side of the 
equation can be replaced by the sum total of four grid voltages. The matrix 
representation of the Faraday's law is shown. This image is reproduced from CST 
advanced topics Manual83. 

 

Repeating the above-mentioned procedure for Ampere’s Law, it is required to 

define a dual discrete curl operator C ~ on the dual grid. Applying the same 

scheme for discretizing the remaining two divergence equations results in 

definition of discrete divergence operator pair: S and S~ which correspond 

respectively to the primary and dual grids. As mentioned before, these discrete 

matrix representations are merely composed of ‘0’, ‘1’ and ‘-1’ elements 

which carry topological information. The complete set of discrete Maxwell’s 

Grid Equations (MGEs) are: 
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(3.14) 

 

 

Comparing the above form of Maxwell’s equations to the continuous 

description confirms the similarity between the two representations. Once 

again it should be emphasized that up to this stage, no discretization error has 

been spotted in the change of representation.  One of the vital aspects of using 

FIT is that by discritizing the Maxwell’s equations in grid space, continuous 

operators (gradient, curl and divergence) still preserve their important 

properties. 

 

 
۱܁ ൌ ෨۱෨܁ ൌ 0 ⟺ div rot ≡ 0, 

෨்܁۱ ൌ ۱෨்܁ ൌ 0 ⟺ rot grad ≡ 0. 
(3.15) 

 

It should be pointed out that even in the case of discretizing a numerical 

algorithm there is a chance of long-term instability. Fortunately, referring to 

the fundamental relations presented above, it can be shown that such problems 

don’t affect the formulation used in FIT. This is because both energy and 

charge are conserved by using the set of discretized equations (MEGs)97.  

Although no supplementary error has been introduced so far, spatial 

discritization of the remaining material relations will cause an inevitable 

inaccuracy in the numerical results. In other words, definition of voltage and 

flux relations requires some approximation to be applied over the grid edges 

and cell areas to calculate their integral values. As a result, the final 
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coefficients depend on the material parameters averaged over the enclosed 

domain. In addition, the grid spatial resolution affects the final value of the 

parameters. Similarly, these coefficients can be summarized in matrix forms: 

 

 

ሬሬറܦ ൌ  ሬറܧߝ ܌ ൌ  ܍ఌۻ

ሬറܤ ൌ ሬሬറܪߤ                       ⟺                       ۰ ൌ  ܐఓۻ

റܬ ൌ ሬറܧߪ ൅ റ௦ܬ ܒ ൌ ܍ఙۻ ൅  ܛܒ

(3.16) 

 

Finally, all the necessary discretized matrix equations have been obtained for 

solving an electromagnetic problem on the grid space. Based on the discussed 

relations so far, it is evident that topological and metric information are 

presented in different matrix equations. This fact has critical consequences in 

theory, numerical and algorithmic calculations97.     

Generally, range of application of FIT is not limited to orthogonal hexahedral 

grids. It can also be employed for more subtle mesh types such as tetrahedral 

grids and irregular grids. As shown in Fig. 3.3, the electric voltages and 

magnetic fluxes are assigned to facets and edges of a tetrahedral mesh cell.   



59 
 

 

Figure  3.3. the electric voltages and magnetic fluxes assigned to facets and edges of a 
tetrahedral mesh cell. This image is reproduced from CST advanced topics Manual83. 

  

The details of generalized FIT applied to these more complicated mesh types 

can be understood by extending the basic scheme described above98.  

As shown in this section, we witnessed that FIT is a general formulation 

technique that can be applied to a wide range of electromagnetic problems 

from static and low frequencies to high frequencies.   

 

3.2.2  CST Electrostatic Solver 

If we consider the discretized Faraday’s Law and remove its time dependency 

together with the corresponding divergence equation, we obtain a set of linear 

equations for the electrostatic problem: 

 

݀ܽݎ݃ ߝ ݒ݅݀  ߶ ൌ െߩ ⟹ ෨܁ఌۻ෨܁
܍૎܂ ൌ  (3.17) ܙ

 

The electrostatic solver module is able to solve the problem with both 

hexahedral and tetrahedral mesh grids. 
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We use the CST Electrostatic Solver to simulate the qubit structure. In 

contrary to the unreliable analytical methods and tedious formulation of 

Green's functions, this module easily provides the 3D potential data inside the 

silicon substrate with high accuracy and without any unnecessary assumptions.  

 

In order to validate the data obtained from CST simulation, we first calculate 

the capacitance for a square section of a microstrip line for two cases of 

dielectric constants, ߳௥ ൌ9.6 and ߳௥ ൌ1. The computed values are normalized 

with respect to the capacitance of a parallel plate structure with dielectric 

constant of ߳ ൌ ߳௥߳଴. The normalization constant is ܹ߳ଶ/ܾ, where W is the 

side length of the square plate and b is the separation between the square plate 

and ground plate. The results are shown in Fig. 3.4 and show good agreement 

with the results obtained by Itoh et al99. 

 

 

Figure  3.4. Comparison of the calculated normalized capacitance for a square section 
of a microstrip line obtained using CST and Itoh et al. the square plate has a side 
length of W, and b is the separation between the plates. The comparison has been 
carried out for two values of relative permittivity, ߳௥ ൌ9.6 and ߳௥ ൌ1.  
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Furthermore in order to perform another validation for the potential 

distribution data, we simulate the Kane’s structure using another commercial 

software, COMSOL Multiphysics. The potential data obtained from these two 

softwares are almost indistinguishable as shown in Fig. 3.5. 

 

Figure  3.5. The comparison of potential data obtained from CST and COMSOL 
simulations. Potentials are obtained along a line drawn from A-gate lead down to the 
ground plane.  A static voltage of 5 V is applied on the A-gate lead.  For Kane’s A-
gate structure, the dimensions are: substrate thickness=100 nm, A-gate lead width=7 
nm, insulating layer (Si0.5Ge0.5) thickness=5 nm. The dielectric constant εr of Si is 
11.46 and that of SiGe is 13.95. 
 

After obtaining the potential information inside the silicon layer, data is 

exported to MATLAB in order to numerically solve for the perturbed 

wavefunction of the donor electron. By calculating the perturbed wavefunction 

we have 
1, 0( )A norm r  and subsequently we can calculate the hyperfine 

interaction and Magnetic Resonance Frequency as discussed in the next 

chapter. 
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3.3 Summary 

In this chapter we try to discuss two numerical and simulation methods we 

have been using in order to simulate the qubit structure and obtain the 

potential data inside the silicon substrate. Primarily, we formulated an integral 

equation from the Poisson equation which can be solved using multi-layered 

Green's Functions to obtain the voltage distribution inside the Kane's structure. 

The formulations and different Green’s functions are listed and solved by 

moment method. The advantage of this method compared to analytical 

approaches used before is that we don't need to make any unrealistic 

assumptions on the potential profile and its applicability is not limited to 

idealistic A-gate geometries such as circular plate A-gate. However, for the 

complex A-gate structures (as will be introduced in chapter 6), the Green's 

functions will be very difficult and time consuming to formulate and the 

process will be tedious. Therefore, we use an electromagnetic simulation 

software (CST Electrostatic Solver) to simulate the qubit unit and obtain the 

potential profile inside the structure. Since CST is based on Finite Integration 

Technique, an introduction to this numerical method has been provided in this 

chapter. CST software is able to easily and reliably export the 3D potential 

data that later can be used by MATLAB to solve the unperturbed 

wavefunction of the donor electron. 
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The use of a spin embedded inside a silicon host has been proposed to be a 

promising method for the realization of a qubit, the basic operation unit of a 

quantum computer1. Since Kane9 proposed the use of nuclear spins as the 

realization method of a silicon-based solid-state scalable quantum computer, 

there have been many studies on this realization method74,75,86,87,100-117. Instead 

of using the donor nuclear spins as qubits, one study8 showed the possibility of 

using the nuclear spin of a silicon isotope 29Si as the qubit. A digital 

implementation method100 was later suggested as an alternative to Kane’s 

original design. In order to overcome the oscillatory behavior of the electronic 

mediated exchange interaction between two neighboring phosphorus donors in 

a silicon host, several studies have proposed to make use of the Si/SiO2 

interface mode to perform the two-qubit operation53,54,101,102. Yet another study 

revealed the possibility of indirectly controlling the nuclear spins via 

anisotropic hyperfine interactions with an electron which undergoes spin 

transitions104. On the other hand, pursuing along Kane’s original proposed 

design, several studies have elaborated more details on Kane’s model such as 

more accurate determinations of the relation between the gate voltage and the 

nuclear magnetic resonance (NMR) frequency37,39,73-75, the determinations of 

the J-gate voltage on the exchange interaction66,86,105,106,108,109, and the study of 

the decoherence characteristics of the spin qubit structure110. Except these 

mainly theoretical studies, some initial-stage experimental studies115 on 

Kane’s proposal were also reported in the literature. 
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4.1 The Quantum Perturbation Method Combined With Accurate EM 

Simulation  

The original qubit structure proposed by Kane for realization in a silicon host 

is shown in Fig. 4.1. It is a phosphorus atom (isotope 31P) doped in a silicon 

substrate (isotope 28Si). On top of the silicon substrate is an insulating layer of 

silicon dioxide. At the bottom of the silicon substrate is a metallic layer served 

as the ground, called the back gate. On top of the silicon dioxide layer is a 

metallic strip, called the A gate, which carries a control voltage V through an 

excitation source on its other end. The dimensions of the A gate are as labeled 

in Fig. 4.1. The electron cloud of the phosphorus atom can be drifted by 

applying a voltage on the A gate. The drift of the electron cloud can change 

the hyperfine interaction between the phosphorus nucleus and the outermost 

valence electron and hence change the nuclear magnetic resonance frequency 

of phosphorus. 

 

 

Figure  4.1. The single qubit structure of the silicon-based solid-state quantum 
computer proposed by Kane. 
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Once the accurate potential distributions of the A-gate structures are known, 

we use the 2nd order perturbation theory92 to determine the effect of the 

potential distributions on the change of the hyperfine interaction and hence the 

change of NMR frequency of the donor phosphorus atom.  Note that except 

the perturbation theory, there have been a number of other methods for the 

evaluation of the effect of potential distributions on the hyperfine interaction.  

These include the variational effective mass theory45,118, the tight-binding 

calculations49,91, the density functional theory (DFT)52, and the numerical 

diagonalization of the donor Hamiltonian in the basis of the pure crystal Bloch 

functions48.  To use the perturbation method, the Hamiltonian of the donor 

valence electron is first written as: 

 

 0 VH H H   (4.1) 

 

where H0 is the Hamiltonian with a zero control voltage on the A gate and HV 

= eV is the additional electron Hamiltonian due to a control voltage V on the A 

gate (with e being the electron charge).  As given in chapter 2, the 2nd order 

perturbation theory finds the perturbed wavefunction 
1, 0( )A norm r  of (4.1) for 

the donor valence electron at the donor site 0( )r r  by the following formula: 
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where Norm is a constant for normalizing the perturbed wavefunction and (1)
2s

, (1)
3s  and (2)

2s , (2)
3s  are the first and second order coefficients for the 

perturbation terms (details in Appendix II).  The detailed forms of the 

unperturbed wavefunctions in (4.2), i.e., 
1
( )A r , 2 ( )s r  , and 3 ( )s r , are 

given in Appendix I, in which the general forms of these wavefunctions are 

expressed as a composite function of two parts: an envelope function part 

resulting from the effective-mass-theory equation and the Bloch wave function 

part accounting for the motion of the donor electron inside the periodic 

structure of silicon.  Note that Norm, (1)
2s , (1)

3s  and (2)
2s , (2)

3s  are all 

calculated numerically with the values of the potential distribution being 

known everywhere.  When 
1, 0( )A norm r  is known, the hyperfine interaction 

constant Ah is calculated by37: 

 

 
1

2

, 0 0

2
( )

3h A norm B N NA g    r  (4.3) 

 

where B  is the Bohr magnetron, Ng  is the nuclear g-factor for 31P, N  is the 

nuclear magnetron, and 0  is the permeability of free space.  Note that 

comparing the formula in (4.3) to the same formula in previous reports92, it 

can be seen that the correction factor, c, has been removed from (4.3).  The 

reason is that we have used the revised unperturbed wavefunctions in the 

calculation of the perturbed wavefunction in (4.2) provided in a recent report82 

which formulated the correct unperturbed wavefunctions that correctly 

produce the magnitude squares of the wavefunctions 
2

0( ) r  at the donor 
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nucleus position.  In essence, the report in Ref.82 provides a more accurate 

effective-mass-theory (EMT) equation for the wavefunction of a phosphorus 

donor in a silicon host by correctly taking into account of the inter-valley 

mixing effect of the silicon conduction band structure.  The most important 

result of this reformulated EMT equation is that the unperturbed 

wavefunctions (i.e., 
1
( )A r , 2 ( )s r  , and 3 ( )s r  in (2)) can be calculated 

accurately, not only their energy levels but also their specific values at the 

donor site 0r r .  This eliminates the usual practice of needing to artificially 

introduce a so-called central-cell correction factor to account for the difference 

between the theoretically calculated and the experimental measured value of 

the magnitude squares of the wavefunctions 
2

0( ) r  at the donor site.  The 

details of this formulation can be found in Ref.82.  After the hyperfine constant 

Ah is known, the nuclear spin magnetic resonance frequency f is calculated by 

(to the second order accuracy)9,39 

 

 
22

2 2 h
N N h

B

A
hf g B A

B



    (4.4) 

 

where h is the Planck’s constant and B is the applied static magnetic field. 

4.2  Potential Distribution Results 

For a common Kane's A-gate structure studied before by several authors with 

the dimensional parameters given by s = 5 nm, b = 60 nm, W = 7 nm,  r  of 

silicon = 11.46,  r  of silicon dioxide = 3.9 the potential distribution results are 

shown in Fig. 4.2.  As can be seen, for a practical A gate structure as shown in 
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Fig. 4.1, the potential distribution inside the silicon substrate is far from a 

linear one in contrast with the assumption of a linear voltage distribution 

across the silicon substrate in the previous studies. 

 

Figure  4.2. The nonlinear potential distribution inside the silicon substrate of the 
qubit structure shown in Fig. 4.1 with s = 5 nm, b = 100 nm, W = 7 nm,  r  of silicon 
= 11.46, and  r  of silicon dioxide = 3.9. 

 

From the electromagnetic analysis point of view, this nonlinear potential 

distribution is a result of the finite narrow width of the A gate metallic strip 

which causes the electric field to concentrate more along its surface rather than 

to extend evenly down to the back gate (the ground).  Furthermore, the 

presence of the barrier layer SiO2 with a much lower dielectric constant ( r  = 

3.9) just beneath the A gate will actually absorb most of potential drop from 

the A-gate, causing a very inefficient use of the applied voltage on the A gate.  

To solve this problem, we have proposed a method to be discussed later on 

this chapter. 

In Fig. 4.3, we calculate the perturbation energy ( (1)E + 2 (2)E  in (4)).  The 

dimensional parameters of the A gate structure are s = 5 nm, b = 100 nm, W = 

7 nm,  r  of silicon = 11.46, and  r  of silicon dioxide = 3.9 and the 

phosphorus atom is now placed at x = 20 nm, y = 0, and z = 50 nm.  This is to 
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anticipate the inclusion of the 3d sub-orbitals (which have a much larger 

spatial extent) in the calculation of the perturbed wavefunction.  The result is 

compared with the estimation obtained by using Kohn’s Stark shift formula42.  

It can be seen that the Stark shift estimation is much smaller than our 

calculations.  This is because the Stark shift formula in Kohn’s study42 is 

based on a linear potential distribution which results in all the first-order 

perturbation terms being vanished. 

0

1.00.80.60.40.20
A gate voltage (V)

-1.0

-2.0

-3.0 Current method
Kohn    (Stark shift estimation)42
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Figure  4.3. The perturbation energy with respect to the change in the A gate voltage.  
The phosphorus atom is at x = 20 nm, y = 0, and z = 50 nm.  The other parameters 
are: s = 5 nm, b = 100 nm, W = 7 nm,  r   of silicon = 11.46, and  r  of silicon 
dioxide = 3.9. 

 

However, in our method, the nonlinear potential distribution leads to non-zero 

first-order perturbation terms.  Another reason may be that we include more 

higher-order states (such as 2p, 3s, 3p, and 3d) in our calculation than Kohn’s 

study did.  Furthermore, as we can see, the greatest perturbation energy is only 

about -3 meV, which is much smaller than the energy level of the ground stage 

(~-45 meV).  This justifies the use of a perturbation theory to solve this 
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problem.  From the results in Figs. 4.3 and 4.2, it can be seen that the 

nonlinear potential distribution inside the silicon substrate is a significant 

consideration in designing practical A gates. 

For practical A gate structures, numerical studies75 have revealed the 

nonlinear potential distributions inside the silicon substrate.  Furthermore, for 

the material combination of Si/SiO2 (silicon substrate and silicon dioxide 

insulation layer), it was found75 that most of the applied A gate voltage is 

actually dropped across the SiO2 layer though it is much thinner than the 

silicon substrate.  This reduces the effectiveness of the A gate control and is 

not an optimum design.  In the original proposal of Kane’s quantum computer, 

Kane proposed an alternative9 to the Si/SiO2 design, the Si/SiGe combination.  

In this A gate structure, the SiGe material instead of SiO2 is used as the 

insulation layer.  SiGe has a much greater dielectric constant than SiO2.  One 

of the compounds of SiGe (Si0.5Ge0.5) has a dielectric constant119 of  r  

=13.95, much greater than that of SiO2 ( r  = 3.9).  A more similar dielectric 

constant of SiGe to Si ( r  = 11.46) will actually push a greater portion of A 

gate voltage being dropped across the silicon substrate and not the insulation 

layer.  This is shown in Fig. 4.4, which shows clearly that the combination of 

Si/SiGe results in a much larger portion (~67%) of the A gate voltage being 

dropped across the silicon substrate, compared with that for the case of 

Si/SiO2 ((~47%).   
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Figure  4.4. The potential distributions along the z direction at x = 20 nm and y = 0 
inside an A gate structure with different insulator barrier materials.  The dimensions 
of the A gate are: s = 5 nm, b = 100 nm, W = 7 nm, and  r  of silicon = 11.46.  For 
the SiO2 insulation barrier,  r  = 3.9.  For the SiGe insulation barrier,  r  = 13.95. 

 

 

4.3 Summary 

In this chapter by using the second order perturbation theory, Kane's solid 

state quantum bit is analyzed and its NMR frequency is investigated in details. 

Higher-order excited states (up to 3d modes) are included in our calculation of 

second order perturbation theory and the perturbation energies are obtained 

numerically. Potential distributions inside Kane's qubit are calculated using 

the numerical and simulation methods introduced in chapter 3. The results 

show that the potential profiles are far from linear ones. We also investigate an 

alternative A-gate structure using SiGe as the insulation barrier.  Our study 

shows that this A-gate structure offers a much more efficient utilization of the 

control voltage than the original A-gate structure using SiO2 as the insulation 

barrier. 
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Studies14,15,17,84 in quantum computer realization methods have suggested the 

use of electron spin as the qubit to achieve a much faster clock speed than that 

based on a nuclear spin. Obviously, except for the possibility to speed up the 

gate operation time, an electron-spin based qubit structure will have the 

additional advantages of easing the state read-out circuit design and 

facilitating the building of a CNOT gate. A method known as the “global 

control of the electron spin” has been proposed by Hill et al.15 to realize the 

fast gate operation time provided by the electron-spin qubit. Earlier than that, 

Vrijen et al.17 have proposed the design of an electron-spin-resonance 

transistor to use an electron spin as the qubit for a quantum computer. Sousa et 

al. 14 proposed to use the magnetic dipolar interaction between electron spins 

for the realization of a quantum computer. More recently, Tsai et al.84 reported 

to apply the gradient ascent pulse engineering approach to reduce the gate 

operation time of an electron-spin based quantum computer by almost three 

times compared to that achieved by the “global control of the electron spin” 

method. All these studies have demonstrated the possibility of using the 

electron spin to realize a “high speed” quantum computer. Notwithstanding 

these studies, an accurate determination of the operation conditions of an 

electron-spin based quantum computer such as the electron-spin magnetic 

resonant frequency and its relation to the external A gate voltage has not been 

obtained before. In this chapter, we use the previously introduced numerical 

method to investigate the relation between the externally applied A gate 

voltage and the magnetic resonant frequency of an electron spin. The electric 

potential distribution inside the qubit structure is accurately calculated by a 

rigorous electromagnetic field simulation method. The perturbation method is 
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then applied to determine the electron-spin magnetic resonant frequency. Our 

results show that for the same A gate structure as originally proposed by 

Kane9  for the nuclear spin qubit operation, the choice of the static magnetic 

field B is important in order to achieve a magnetic resonant frequency with a 

manageable tunable bandwidth.  

5.1 Perturbation Analysis for the Electron-Spin Magnetic Resonance 

Frequency  

The electron spin single qubit structure to be considered is the same as the 

nuclear spin single qubit structure originally proposed by Kane9 by doping a 

donor atom (isotope 31P) into a silicon host (isotope 28Si) as was previously 

shown in chapter 4 and is illustrated again in Fig.5.1 . By applying a voltage 

on the top A gate, the hyperfine interaction and so the magnetic resonance 

frequency of the electron spin of the donor phosphorus electron can be 

changed.  This enables the addressing of a particular qubit via an electric field 

control.  Note that though the magnetic resonance frequency of the donor 

nuclear spin also changes due to a change of the hyperfine interaction, the 

donor nuclear spin is only treated as a localization site for the donor electron 

and does not take part in the operation of the electron spin qubit.  
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Figure  5.1. The implementation for a solid-state quantum computer using phosphorus 
(31P) donor electron as the qubit. 

 

 The Hamiltonian equation for the valence electron wavefunction under the 

influence of an applied voltage V on the A gate is the same as the Hamiltonian 

for the nuclear-spin qubit. In fact, all the calculation leading to the derivation 

of perturbed wavefunction and hyperfine interaction constant are identical to 

those we have used for Kane's nuclear-spin qubit. 

 

When the phosphorus donor electron is in the ground state, its magnetic 

resonance frequency f0 is given by (to the second order accuracy)15,120  
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where h is the Planck’s constant, 2Eg  is the g-factor of the donor electron, 

and B is the applied static magnetic field. 
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Note that previous studies49,50,59,121 have shown that Eg  is in general not a 

constant under the action of externally applied electric and magnetic fields, 

which alter the wavefunctions of the donor electron, resulting in the so-called 

spin-orbit Stark shift, which changes the value of Eg from its free-electron 

value. The relation of the change of Eg  to the applied electric field was found 

to be quadratic in nature49,50,59. Furthermore, the application of an external 

electric or magnetic field breaks the symmetry of the six minimum valleys of 

the conduction band of the silicon host, giving rise to the anisotropic values of 

Eg 59. Hence the combined effect of an external electric and magnetic fields on 

the g-factor of the donor electron is a complicated one. But as reported in the 

literature49,50,121, the deviation of the electron g-factor in silicon form the free-

electron g-factor is actually very small, about several parts in 104. Given both 

the static electric and magnetic field strengths in the order of about 1V/μm and 

0.01 T, respectively, in this study, the spin-orbit Stark shift of Eg  will be very 

small and therefore not to be taken into account. 

 

5.2 Numerical Results 

To calculate the perturbation coefficients, we need the knowledge of the 

potential distribution V(r) inside the silicon substrate induced by an A gate 

voltage. Since the electron-spin qubit is exactly the same as nuclear-spin qubit 

structure we already have the potential distribution data obtained in the 

previous chapter. 
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Figure  5.2. The tunable bandwidth fw and the electron-spin magnetic resonance 
frequency f0 with the static magnetic flux strength B.  The dimensions of the A gate 
are s = 5 nm, b = 100 nm, W = 7 nm,  r  of silicon = 11.46, and  r  of silicon dioxide 
= 3.9.  phosphorus atom is at x = 20 nm, y = 0, and z = 50 nm. 

 

As mentioned in the study of Hill et al.15, in order for the detuning frequency 

of the electron spin to be large enough to achieve an acceptable level of 

fidelity, the rf magnetic field Bac must be reduced. We found that this is same 

for the static magnetic field B which must be small enough in order to produce 

a large tunable bandwidth for the magnetic resonant frequency of the electron 

spin. This is different from the case of using the nuclear spin as the qubit 

because the Bohr magnetron is three orders greater than the nuclear 

magnetron. The relation between the tunable bandwidth fw and the static 

magnetic flux strength B is illustrated in Fig. 5.2. The dimensions of the A 

gate (see Fig. 5.1 for the symbol labels) are s = 5 nm, b = 100 nm, W = 7 nm, ε 

r of silicon = 11.46, and ε r of silicon dioxide = 3.9. The phosphorus atom is at 

x = 20 nm, y = 0, and z = 50 nm (for the coordinate system shown in Fig. 5.1). 
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The tunable bandwidth fw is defined as the 95% of the maximum change in 

electron-spin magnetic resonant frequency for an A gate voltage change of 

0~0.5V. Shown in Fig. 5.2 is also the relation between the electron-spin 

magnetic resonant frequency f0 and the static magnetic flux strength B. It can 

be seen that both fw and f0 have a rather non-linear relationship with the 

applied static field B. To illustrate our study, we choose the operation point at 

B = 0.002 T. With this field strength, the electron-spin magnetic resonant 

frequency is f0 = 176.4 MHz and the tunable bandwidth is fw = 114.0 MHz. 

When the static magnetic flux B is greater than or smaller than 0.002 T, the 

magnetic resonant frequency f0 is higher than 176.4 M, leading to a reduced 

percentage tunable bandwidth. Particularly, when B is increased above 0.002 

T, the magnetic resonant frequency increases rapidly while the tunable 

bandwidth decreases continuously. For example, when B = 2 T (as suggested 

for the nuclear-spin qubit operation), f0 = 55986 MHz and fw = 55 MHz. The 

tunable bandwidth is only about 0.1% of the magnetic resonant frequency. 

This poses a great difficulty in controlling the error in the magnetic resonant 

frequency f0. This finding implies that a large static magnetic field B may not 

be a good choice for an electron-spin quantum computer. But on the other 

hand, a small magnetic field makes it difficult to achieve a complete 

polarization of the electron spins, and this means that an external method, for 

example the optical pumping method122, to polarize the electron spins is 

required. 
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5.3 Summary 

The electron-spin magnetic resonance frequency of an electron-spin qubit 

structure proposed for the realization of a quantum computer is rigorously 

investigated by a numerical method.  The potential distribution inside the 

silicon qubit structure is accurately calculated by an electromagnetic 

simulation method and the perturbation theory to the second order is 

formulated to obtain the magnetic resonance frequency of the phosphorus 

donor electron spin.  Our results showed that for the same qubit structure 

(Si:P) as originally proposed by Kane for the nuclear spin qubit quantum 

computer, a smaller static magnetic field B is in favor of producing a wider 

tunable bandwidth for the magnetic resonance frequency of the electron spin.   
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After Kane’s proposal9,35 of a scalable solid-state quantum computer based on 

the nuclear magnetic resonance (NMR) effect, there have been many studies 

investigating the different factors which affect the performance of the quantum 

bit (qubit).  Kane's original idea consists of rotating the spin of a donor atom 

(phosphorus) doped inside a silicon substrate by applying a global magnetic 

field while addressing a particular qubit by applying an electric field through a 

local gate called the A-gate9.  Kane's A-gate structure is a typical metallic lead 

(or a microstrip-line as known in the radio-frequency (RF) community) laid on 

top of a silicon substrate serving as the gate while the bottom side of the 

silicon substrate is a metallic layer serving as the ground (or the back-gate).  

This A-gate structure is so typical, especially for the sake of principle 

demonstration, that most of the subsequent studies39,85,106 almost all adopted it.  

Nevertheless, there are some intrinsic disadvantages in Kane’s A-gate that are 

worth our effort to make improvements.  The first issue is its having the 

ground plate at the bottom of the silicon substrate which is not in common 

with most other electric-field- or magnetic-field-controlled devices12,87 which 

favor the design of putting all the metallic structures (the gate and the ground) 

on one side of the substrate layer only.  One advantage of putting the gate and 

the ground on one side of the substrate is the ease of fabrication compared to 

the separate gate and ground structure.  Secondly, the presence of a back-gate 

on the bottom side makes the qubit’s performance very sensitive to the 

substrate thickness, since a change in the substrate thickness will change the 

position of the back-gate and thus changes the potential profile.  Thirdly, 

because of the second issue, there is in general a restriction being put on the 

thickness of the silicon substrate and this makes it difficult to integrate other 
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ancillary devices (such as reading out devices) from below the ground plane or 

for fabricating heterostructure devices.  Finally, as will be shown in this 

chapter, the original Kane’s A-gate structure is not the best one in terms of the 

efficiency of making use of the gate voltage to control the NMR frequency of 

the donor atom. 

To improve on the original Kane’s A-gate structure with respect to the above-

mentioned problems, we will introduce two types of new A-gate structures in 

this study.  The first type are the coplanar A-gate structures in which there is 

no back-gate and the ground lead is laid on the same surface as the A-gate 

lead.  These coplanar structures remove the restriction on the silicon substrate 

thickness, making it possible for the integration of the A-gate structure with 

other devices through extending the silicon substrate in the opposite direction.  

The second type of new structures are called the split-ground A-gate structures 

in which the ground is split into two halves and deposited on two sides of the 

A-gate but at a lower level.  These structures offer the advantage of a more 

effective voltage control on the NMR frequency as well as avoiding the 

restriction on the silicon substrate thickness, same as the coplanar structures.  

Effective voltage control is an important consideration in nuclear- or electron-

spin qubit design as it affects the fidelity of the performance of the quantum 

computer.  In this chapter, we will investigate the design and performance of 

these two new A-gate structures through a computer-aided numerical 

simulation method.  In the next section, the detailed geometries of these new 

A-gate structures will be explained, and the numerical and simulation methods 

mentioned in previous chapters is used to analyze and characterize the 

performance of these new structures. 
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6.1 The Proposed New A-Gate Structures 

The proposed new A-gate structures are shown in Fig. 6.1(a) and Fig. 6.2(a).  

Fig. 6.1(a) is a coplanar A-gate structure with both the ground lead and the A-

gate lead being laid on top of silicon substrate while the donor phosphorus 

atom is doped under the A-gate lead.  The isolation barrier is suggested to be a 

layer of high dielectric constant silicon-germanium SiGe instead of the usual 

material SiO2 whose dielectric constant (r=3.9) is much lower than that of Si 

(r=11.46).  A specific compound17 Si0.5Ge0.5 gives a dielectric constant of 

13.95, which is more similar to the dielectric constant of silicon.  This Si/SiGe 

system has been suggested before9,17 for the design of qubit structures.  

Compared to the Si/SiO2 system, the advantage of the Si/SiGe system is that a 

larger portion of the applied A-gate voltage will drop across the silicon 

substrate rather than the isolation layer due to the similarity of the dielectric 

constants between Si and SiGe.  A possible problem with the Si/SiGe system 

is the strain imposed on silicon near the interface due to lattice mismatch9.  

Doping the donor away from the interface region can be a possible solution to 

avoid this problem.  For the coplanar A-gate structure shown in Fig. 6.1(a), it 

has an advantage of easy fabrication and is commonly used in traditional 

radio-frequency (RF) circuit design or in some recent quantum-dot control 

circuit design12,87.  In traditional RF circuit design, the coplanar microstrip 

structure provides the great advantage that other circuits can be designed 

freely on the opposite side of the same substrate board.  The coplanar A-gate 

structure in Fig. 5.1 can be modified into several variants as shown in Figs. 

6.1(b) and 6.1(c) for different applications. 
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Figure  6.1. The proposed coplanar A-gate structures for the realization of the 
semiconductor quantum computer based on the nuclear spin of a phosphorus atom 
doped inside a silicon substrate, (a) the basic structure, (b) & (c) two possible 
variants. 

 

The structure in Fig. 6.2(a) is a split-ground A-gate structure.  The motivation 

for this structure is that its potential distribution may provide a more effective 

control on the NMR frequency.  Same as the coplanar A-gate structure in Fig. 

6.1(a), this A-gate structure can be fabricated from one side of the silicon 

substrate, thus offering a fabrication convenience and an advantage for 

downward integration with other structures or devices. 
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Figure  6.2. The proposed split-ground A-gate structures, (a) the basic structure, (b) & 
(c) two possible variants. 

 

Instead of on the same plane as the A-gate lead, the ground is split into two 

halves and lowered to the two sides of the A-gate lead.  In this way, the 

position of the doped donor phosphorus atom is at a higher level as the 

ground, resulting in a potential distribution under the A-gate lead region being 

similar to that in the Kane's A-gate structure.  Furthermore, the potential 

distribution under the A-gate lead region is to be controlled by a proper 

selection of the width of the A-gate lead, as denoted by Wp in Fig. 6.2(a).  

Same as the case of the coplanar A-gate structure in Fig. 6.1(a), there are 

several modified split-ground A-gate structures that can be designed to suit for 

different applications and they are depicted in Figs. 6.2(b) and 6.2(c).  In the 
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next section, we will compare and contrast the performance of this structure 

with that of the coplanar structure and Kane's structure. 

To design the proposed new A-gate structures and to characterize their 

performance, we use a computer-aided numerical method as illustrated in 

previous chapters.  First, the exact potential distributions of the A-gate 

structures inside the silicon substrate are obtained using an electromagnetic 

simulation tool - CST Electrostatic Solver.   

 

 

Figure  6.3. A typical 2D potential distribution of the coplanar A-gate structure shown 
in Fig. 6.1(a). 

 

Note that this EM simulator gives the three-dimensional potential distribution 

inside the silicon substrate due to an arbitrary voltage excited on the A-gate 

lead.  In this way, any geometric shape of an A-gate structure can be simulated 

to a very high accuracy, with no need of any kind of unrealistic assumptions.A 
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typical calculated potential distribution by CST Electrostatic Solver for the 

basic coplanar A-gate structure in Fig. 6.1(a) is shown in Fig. 6.3, which 

shows a highly non-linear potential inside the silicon substrate. 

6.2 The Performance of the New Structures 

6.2.1 The Potential Distributions 

The potential variation of the coplanar A-gate structure in Fig. 6.1(a) is shown 

in Fig. 6.4 in comparison with that of Kane's original A-gate structure.  These 

two potential profiles are obtained along a line drawn from the A-gate lead 

down to the silicon substrate with x=40 nm, y=0, and z=0 ~ -105 nm, while a 

static voltage of 5 V is being applied on the A-gate lead. The dimensions of 

the coplanar A-gate and Kane's A-gate are given in Fig. 6.4. From this figure, 

it can be seen that the slopes of the two curves are quite different.  For 

example, we can calculate the inverses of the slopes (which is proportional to 

the magnitude of the electric field intensity E) of these two curves at a position 

of z=-55 nm down the A-gate lead and they are approximately 0.014 V/nm for 

the coplanar A-gate and 0.022 V/nm for the Kane's A-gate.   
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Figure  6.4. The variation of the potential for the coplanar A-gate structure in Fig. 
6.1(a) along a line drawn from A-gate lead down to the silicon substrate with x=40 
nm, y=0, and z=0 ~ -105 nm.  A static voltage of 5 V is applied on the A-gate lead.  
The result is compared with that obtained with Kane’s A-gate.  The dimensions of the 
A-gate structure are: b=600 nm, s=5nm, w=7 nm, LG=LA=70 nm, and Ls=10 nm.  The 
dielectric constant εr of Si is 11.46 and that of SiGe is 13.95.  For Kane’s A-gate 
structure, the dimensions are: substrate thickness=100 nm, A-gate lead width=7 nm, 
insulating layer (Si0.5Ge0.5) thickness=5 nm. 

 

That means that the rate of change of the potential for the coplanar A-gate 

structure is substantially smaller than that for the Kane's A-gate structure.  

This difference has an impact on the rate of change of the NMR frequency 

with respect to the applied A-gate voltage, as will be shown later. The reason 

for this difference can be explained by the 2D potential profile in Fig. 6.3, in 

which the shift of the ground from the bottom of the substrate to the top of the 

substrate pushes more energy distribution into the air region above the A-gate 

structure, leading to a less rapidly decreasing potential distribution inside the 

silicon. 

The potential variation of the split-ground A-gate structure in Fig. 6.2(a) is 

shown in Fig. 6.5 in comparison with that of Kane's original A-gate structure.   
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Figure  6.5. The variation of the potential for the split-ground A-gate structure in Fig. 
6.2(a).  (a) The 1D variation along a line drawn from A-gate lead down to the silicon 
substrate with x = 40 nm, y = 0, and z = 0 ~ -105 nm and for different A-gate lead 
widths Wp, and (b) the 2D distribution of the electric field on a vertical cross section 
cut at x=40nm and for the case of Wp=60 nm.  The results are compared with that 
obtained with Kane’s A-gate.  The dimensions of the split-ground A-gate structure 
are: b1=100 nm, s=5 nm, L=100 nm, w=7 nm, Lp=40 nm, WS=100 nm, WG=25 nm, 
and b2=150 nm.  The dimensions of Kane's A-gate are same as those in Fig. 6.4. 

 

Same as that in Fig. 6.4, the potential profiles in Fig. 6.5 are also obtained 

along a line drawn from A-gate lead down to the silicon substrate with x=40 

nm, y=0, and z=0 ~ -105 nm, while a static voltage of 5 V is applied on the A-

gate lead.  The dimensions of the split-ground A-gate and Kane's A-gate are as 

given in Fig. 6.5.  Different from the case of the coplanar structure, the 

inverses of the slopes of the potential curves in Fig. 6.5 are rather similar (for 

the case of Wp=7 and 20 nm) to that of Kane's A-gate structure or even greater 

(for the cases of Wp=40 and 60 nm).  For example, the inverse of slope of the 

potential curve with Wp=40 nm at a position of z=-55 nm is approximately 

0.031 V/nm, which is much greater than that of the Kane’s A-gate (0.022 

V/nm) or that of the coplanar A-gate (0.014 V/nm).  This shows that the split-

ground A-gate virtually preserves the potential distribution characteristics of 

Kane's A-gate while at the same time does not restrict the silicon substrate 



91 
 

thickness.  This is an advantage for device integrations.  Fig. 6.5(b) shows the 

2D distribution of the electric field at the plane of x=40 nm and for Wp=60 

nm.  It shows that the electric field diminished quickly for the substrate region 

below the split grounds.  This is one of the favorable characteristics of this 

structure because the potential distribution in the donor region (between the A-

gate lead and the two split-grounds) is relatively unaffected by the thickness of 

the substrate below the grounds, providing the condition for downward device 

integrations as mentioned before.  Fig. 6.5(b) further shows that due to the 

lowered ground levels, electric fields are pulled down to the substrate region 

between the A-gate lead and the two split grounds.  This situation is similar to 

that of Kane's A-gate structure. 

 

6.2.2 The NMR Frequencies 

The potential distributions of the two new A-gate structures have significantly 

different effects on the NMR frequency of the donor.  We investigate this by 

placing a phosphorus donor atom at a position of x=40 nm, y=0 nm, and z=-55 

nm under the A-gate lead (unless otherwise stated).  A uniform static magnetic 

field of 2T is applied along the z direction.  Fig.6.6 shows the characteristic 

curves for the change of NMR frequency with A-gate voltage for the three 

different A-gate structures (Kane’s, the coplanar and the split-ground A-gate 

structures) operating under different A-gate dimensions or donor positions.  

First, it can be noticed that the characteristic curve for the coplanar A-gate for 

the case with donor position at z=-55 nm is very weak compared to that of 
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Kane’s A-gate, indicating that the voltage control on the NMR frequency for 

this structure is rather ineffective.     

Figure  6.6. The variations of the NMR frequency with applied A-gate voltage for the 
three different A-gate structures with a uniform static magnetic field of 2T along the z 
direction. The dimensions of the coplanar A-gate structure, the split-ground A-gate 
structure, and Kane's A-gate structure are same as those in Figs. 6.4 and 6.5.  For the 
coplanar A-gate structure, two donor positions are shown (at z=-35 nm and -55 nm).  
For the split-ground A-gate structure, results for two A-gate widths are shown (Wp=7 
nm and 40 nm). 

 

Yet, when we change the donor position to a shallower position at z=-35 nm, 

it shows that the characteristic curve is similar to or even better than that of 

Kane's A-gate in terms of effective voltage control. The reason for this 

difference may be probably due to the somewhat stronger potential variation 

along the x and y directions at the region near z=-35 nm.  Thus for the 

coplanar A-gate structure, the donor position should be chosen closer to the 

Si/SiGe interface but this may possibly lead to the increased chance of the 

donor valance electron being in strong interaction with the interface potential 

of Si/SiGe.  It may also cause our current analysis method less accurate for 

regions near the interface.  Next we observe that the curve of the split-ground 

A-gate structure with Wp=7 nm and donor position at z=-55 nm is almost 
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identical to that of Kane’s A-gate structure, suggesting the more effective 

voltage control on the NMR frequency by using this A-gate.  Further, when 

the width of the A-gate lead Wp is increased to 40 nm, the characteristic curve 

of the split-ground A-gate structure shows a much stronger voltage control on 

the NMR frequency than Kane’s A-gate.  For example, when the A-gate 

voltage is 5V, the NMR frequency is shifted to 52.5 MHz by the split-ground 

A-gate and to only 72 MHz by Kane’s A-gate.  This confirms our earlier 

potential calculations which indicate that the split-ground A-gate with a 

Wp=40 nm has a much steeper voltage slope (0.031 V/nm) than that of the 

Kane’s A-gate (0.022 V/nm). 

The comparison in Fig. 6.6 suggests that the split-ground A-gate is a more 

effective design than either Kane’s A-gate or the coplanar A-gate.  In Fig. 6.7, 

we further investigate the effectiveness of the split-ground A-gate with 

varying dimensions.  Fig. 6.7(a) illustrates the change of NMR frequency with 

the applied A-gate voltage with different substrate heights, b1, above the 

ground. The other dimensions are same as those in Fig. 6.5.  From the five 

characteristic curves shown, it can be seen that when b1 decreases from 120 

nm to 80 nm, the characteristic curve bends further downward, indicating a 

more effective voltage control on the NMR frequency.  For example, when the 

A-gate voltage is 5V, the NMR frequency changes from 57 MHz to 50 MHz 

(a 11% change) if the b1 changes from 120 nm to 80 nm.  However, a further 

decrease in the substrate height from 80 nm to 50 nm actually does not favor a 

more effective voltage control of the NMR frequency but rather causes a rapid 

loss of control, with the NMR frequency increases from 50 MHz to 63 MHz at 

an A-gate voltage of 5V, i.e., a 26% increase. Note that the phosphorus donor 
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is at a position of 55 nm down the A-gate lead (50 nm from the silicon 

substrate surface).  A substrate height too close to the donor depth inside the 

substrate (50 nm) will have an adverse effect on the effectiveness of the A-

gate voltage control. This can be seen from Fig. 6.5(b) in which the electric 

field distribution indicates a rather weak electric field region at around the 

ground level. Thus it shows that, for the split-ground A-gate structure, the 

substrate height has to be substantially greater the donor depth in order to 

achieve an effective voltage control on the NMR frequency.    

 

 

Figure  6.7. The variations of the NMR frequency with applied voltage for the split-
ground A-gate structure with a uniform static magnetic field of 2T along the z 
direction, (a) for different substrate heights, b1, above the ground, (c) for different 
widths, WP, of A-gate lead, and (c) for different substrate widths, Ws.  The 
dimensions of the split-ground A-gate structure are same as those in Fig. 6.5 except 
the ones being varied. Donor position is at z=-55 nm. 
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In Fig. 6.7(b), the characteristic curves are shown with the width of the A-gate 

lead, Wp.  It can be seen that Wp has a rather significant effect on the voltage 

control of the NMR frequency.  As Wp increases from 7 nm to 60 nm, the 

characteristic curve continuously bends downward, indicating a more effective 

voltage control on the NMR frequency.  This is not difficult to understand as 

an increase in the width of the A-gate lead will directly reduce the "fringing 

field effect" and pushes more electrical energy into the silicon substrate.  Thus 

a wider A-gate lead favors a more effective voltage control on the NMR 

frequency.  However, a wider A-gate lead also increases the degree of 

coupling with adjacent gates and is in general not in favor of increasing the 

packing density of A-gates on a certain fixed area.  In Fig. 6.7(c), the 

characteristic curves are plotted with different substrate widths, Ws.  It can be 

seen that as Ws decreases, the characteristic curve bends downwards, 

indicating an increasing effectiveness of the voltage control.  For example, 

when the applied A-gate is fixed at 5V, the NMR frequency shifts from 57 

MHz to 41 MHz as Ws decreases from 120 nm to 60 nm.  It should be noted 

that a smaller Ws is in favor of achieving a higher packing density of A-gates. 

Another important parameter to study is the effect of the thickness of the 

supporting substrate block, b2, extended beyond the ground for the split 

ground A-gate structure.  This will tell us whether the supporting substrate can 

be used to grow other devices/structures for device integration.  Our 

calculation results show that changing this dimension (b2) from 10 nm to 100 

nm causes a 5% change in the NMR frequency while for values of b2 greater 

than 100 nm the change is less than 1%, showing that the NMR frequency is 

rather insensitive to b2 once it is somewhat greater than about 50 nm. 
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6.2.3 The Effect of Adjacent Qubits 

For the integration of qubit structures in a scalable realization scheme of a 

quantum computer, it is important to know the effect of applying a voltage to 

the adjacent qubits on their NMR frequencies.  For this, we have studied the 

additional shift in NMR frequency of a qubit due to the application of a 

control voltage on an adjacent qubit.  This is the worse case studied among 

other possible situations due to the proximity coupling effect between adjacent 

qubits.  As shown in Fig. 8, we consider a three-qubit system for both Kane’s 

A-gate structure (Fig. 6.8(a)) and the split-ground A-gate structure (Fig. 

6.8(b)).  The dimensions of the A-gate structures are given in Fig. 6.8.  In both 

structures, a 5 V is applied to all three qubits and the separation between 

adjacent qubits is set to D=100 nm.   

 

 

Figure  6.8. The 2D potential profiles for three A-gate structures with two end gates 
being excited, (a) Kane’s A-gate structure, and (b) the split-ground A-gate structure. 
The separation between adjacent phosphorus donors (31P) are D=100 nm for both 
cases, and the donors are at a distance of 50 nm from the A-gate leads.  The 
dimensions for the split-ground A-gate structure are: b1=100 nm, b2=100 nm, W=7 
nm, s=5 nm, Wp=40 nm, Ws=80 nm, WG=20 nm, and L=100 nm.  The dimensions 
for Kane’s A-gate structure are same as those in Fig. 6.4. 

 

 

(a) (b)
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Some previous studies116 also suggested this separation for the design of 

adjacent qubits in Kane's A-gate structure.  Ideally (i.e., with no coupling 

effect), the NMR frequencies of an isolated Kane's A-gate is 72 MHz and that 

of an isolated split-ground A-gate is 47 MHz.   However, our calculation 

shows that the actual NMR frequency for the middle qubit of Kane's A-gate 

structure in Fig. 6.8(a) is shifted to 57 MHz while that for the split-ground A-

gate, the NMR frequency of the middle qubit is shifted to 44 MHz.  It can be 

seen that the frequency shift in Kane's A-gate structure is about 21% but that 

for the split-ground A-gate structure is only about 6%.  This shows that the 

split-ground A-gate structure is a much better design in terms of minimizing 

the coupling effect from adjacent qubits.  Note that a too large shift in the 

NMR frequency will make it difficult to design for a single NMR frequency 

for the operation of a semiconductor scalable quantum computer.  On the other 

hand, the rather isolated operation characteristic of the split-ground A-gate 

structure also allows it to have a smaller adjacent qubit separation so as to 

increase the number of qubits fabricated on a fixed substrate area.  However, 

modern electronic devices favor miniaturization.  If an even smaller qubit 

separation is required, the effect due to the adjacent qubit will be intolerable.  

Under such a situation, a compensation technique as demonstrated by 

Kandasemy et al65 can be used.  In Kandasemy's study65, the strong cross-talk 

effect between closely placed (20-30 nm apart) adjacent gates was shown to be 

limited by the application of compensation voltages to a series of gates.  Later 

it was shown that this compensation voltage technique was more effective if 

applied to a quasi-two-dimensional (2D) donor-based A-gate architecture as 

proposed by Hollenberg et al16. 



98 
 

Note that notwithstanding the above results being obtained from a theoretical 

study, the realization of the suggested alternative A-gate structures is made 

possible by the advances in the silicon fabrication methods.  For example, 

using the ion implantation method, donor atoms can be positioned inside a 

silicon substrate even at the level of single donors116.  Scanning probe 

techniques123 can be utilized for the fabrication of donor arrays or A-gate 

arrays.  More recent experimental techniques such as the single electron spin 

manipulation124, the experimental creation of the electron-nuclear spin-pair 

entanglement125, and the accurate fabrication of a single-atom transistor126 

further add to the possibility of realizing the proposed A-gate structures with 

better performance. 

 

6.3 Summary 

Two new A-gate structures for the realization of the qubit for the 

semiconductor quantum computer are proposed and investigated rigorously by 

the previously introduced numerical simulation method.  The coplanar A-gate 

structure has the advantage of easy fabrication but it offers only a relatively 

weak voltage control over the nuclear magnetic resonance (NMR) frequency 

of the donor atom.  However, this short-coming can be overcome by doping 

the donor closer to the substrate interface.  The split-ground A-gate structure, 

on the other hand, produces a similar potential distribution as that of the 

original Kane's A-gate structure and provides a relatively stronger control over 

the NMR frequency of the donor atom.  Both structures have the advantage of 

allowing device integration or heterostructure fabrication from below the 
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silicon substrate.  All simulations are carried out by a rigorous electromagnetic 

simulation tool plus a quantum mechanical perturbation theory. 
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7.1 Conclusions 

In this dissertation, the NMR frequency of a single qubit structure of Kane’s 

solid-state quantum computer is investigated by using a second-order 

perturbation theory. With higher-order excited states (up to 3d modes) 

included in our calculation, the perturbation frequencies and energies are 

obtained numerically.  To compute for arbitrary A-gate geometries, the 

perturbation potential inside the qubit structure is determined through an 

electromagnetic simulation method.  Calculations show that the potential 

distributions for realistic A-gate geometries are far from linear ones. Our 

method can be used to engineer A-gate structures of any shapes or geometries.  

We also investigate an alternative A-gate structure using SiGe as the 

insulation barrier.  Our study shows that this A-gate structure offers a much 

more efficient utilization of the control voltage than the original A-gate 

structure using SiO2 as the insulation barrier. 

Furthermore, we have determined by using the same rigorous numerical 

method the electron-spin magnetic resonance frequency of an electron-spin 

qubit structure (Si:P) proposed for the realization of a quantum computer.  

Again, the perturbation theory to the second order was utilized to obtain the 

magnetic resonance frequency of the donor electron spin using the potential 

distribution inside the silicon qubit. Our results showed that for the same qubit 

structure as originally proposed by Kane for the nuclear spin quantum 

computer, a smaller static magnetic field B was in favor of producing a wider 

tunable bandwidth for the magnetic resonance frequency of the electron spin.  

Finally, two new A-gate structures for the realization of the qubit for the 

semiconductor quantum computer are proposed and investigated rigorously by 
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the previously introduced numerical method.  The coplanar A-gate structure 

has the advantage of easy fabrication but if offers only a relatively weak 

voltage control over the NMR frequency of the donor atom.  However, this 

short-coming is shown to be overcome by doping the donor closer to the 

substrate interface.  The split-ground A-gate structure, on the other hand, 

produces a similar potential distribution as that of the original Kane's A-gate 

structure and provides a relatively stronger control over the NMR frequency of 

the donor atom.  Both structures have the advantage of allowing device 

integration or heterostructure fabrication from below the silicon substrate.  All 

simulations in this study are carried out by a rigorous electromagnetic 

simulation tool plus a quantum mechanical perturbation theory.  The proposed 

new A-gate structures are realistic and practical for the implementation as a 

semiconductor qubit operation unit or for the demonstration of a general 

spintronics device design optimized for the electromagnetic field control. 

 

7.2 Future Works 

7.2.1 More Efficient A-gate Structures 

As mentioned before, using the CST 3D simulation software we can simulate 

arbitrary A-gate geometries for obtaining a more linear potential distribution 

inside the qubit structure in order to effectively control the NMR frequency of 

the phosphorus donor electron. This is necessary because using the 

conventional gate structure causes a large portion of the applied voltage to 

drop across the insulating layer rather than the silicon substrate. By improving 

the efficiency in this sense, we can reduce the external applied voltage which 
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itself is a source of decoherence for the quantum system. Although two new 

structures have been proposed in this dissertation, it is worth the effort to 

perform further investigation on the A-gate geometry to improve the 

efficiency of the applied voltage in controlling the hyperfine behavior of the 

donor electron. 

7.2.2 Different Materials for Insulating Layer 

As discussed in Chapter 4 and 6, using SiGe instead of SiO2 (in the insulating 

layer) improves the efficiency of potential distribution by around 20%. An 

important step towards the realization of an efficient qubit is to find alternative 

materials to be used as the insulating layer. The new material should on one 

hand be more efficient as discussed, and on the other hand can be engineered 

easily and be grown on top of the silicon substrate using the present Silicon 

technologies. Similar to the gate geometry, an appropriate insulating material 

will help to decrease the decoherence factor by reducing the gate voltage. 

 

7.2.3 Multi-Qubit Structures and Exchange Gates 

For realizing a real quantum computer, we should be able to integrate several 

qubits together. As discussed in chapter 6, certain precautions should be taken 

into account in order to avoid the unwanted interaction between the adjacent 

qubits. Although new A-gate geometries, such as the split-ground structures 

proposed in chapter 6, show a better degree of isolation compared to 

conventional qubits, it is still worth the effort to search for more efficient A-

gate designs to improve the coherence of the quantum system. New 
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decoherence agents, finding the appropriate distance between two adjacent 

qubits, keeping the conditions as steady as possible in the multi-qubit system, 

and fabrication issues for an ideal control over the electron-mediated 

interactions are some of the important challenges in designing a multi-qubit 

operational system. Apart from multi-qubit structures for performing single 

qubit operations, we need to design exchange gates to realize two-qubit 

operational quantum gates. This should be further studied using exchange 

interaction concepts for controlling the interaction between two donor atoms 

and designing the corresponding exchange gates. By designing the exchange 

gates (J-gate), together with the multi-A-gate strcutures, we are able to 

construct a quantum computer capable of processing quantum information 

algorithms. 

7.2.4 Further Study on Perturbation Theory and Other Alternative 

Theories to Find the Wavefunction of the Donor Electron 

For many years, perturbation theory has been a well known solution to find the 

wavefunction of the donor electron in the presence of an external perturbance 

i.e. applied voltage. Since there hasn't been any report on the experimental 

results of NMR spin-based quantum bits, it is still a matter of debate that 

which of the proposed methods is more reliable in predicting the wavefucntion 

of the donor electron. While modifying the perturbation theory to include 

more hydrogenic orbitals may help to more accurately predict the donor 

electron wavefunction, it is worth to try other approaches such as variational 

methods, the tight-binding calculations, the density functional theory (DFT), 

and the numerical diagonalization of the donor Hamiltonian. 
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7.2.5 Further Study on Determinant Factors Affecting the 

Wavefunction of the Donor Electron 

 As discussed in chapter 6, many geometrical parameters are involved in the 

operation conditions of a qubit. Due to rather sensitive nature of a quantum 

computer, extensive care should be taken in designing qubit A-gate or J-gate 

geometries to avoid any instability in the operation and efficiency of the qubit. 

An important factor in determining the efficiency of hyperfine interactions is 

the doping depth of the donor atom. On one hand, reducing this distance may 

provide a greater portion of the external applied voltage to the donor atom 

which in turn increases the efficiency of controlling the hyperfine interaction. 

On the other hand, bringing the insulator interface too close to the donor atom 

will affect the electron cloud and wavefunction of the donor atom and the 

conventional perturbation theory does not hold anymore, not to mention the 

possibility of potential decoherence factors that may appear in the close 

proximity of the insulating layer. Therefore, other approaches such as 

variational methods can be considered to study the behavior of donor electron 

cloud in the vicinity of an interface. 
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Appendix I 

The electron wavefunctions and the energy levels of a donor phosphorus atom 

in a silicon host given below in table (I.1) and (I.2) were obtained by Ning and 

Sah after a modification to the effective-mass theory (EMT) proposed by 

Kohn and Luttinger.  The modification was mainly the consideration of the 

splitting of the degenerated 1s state due to the valley-orbit interaction effect, 

the so-called multivalley effective-mass theory (MEMT).  The most prominent 

difference of the MEMT from the original EMT is the splitting of the 

degenerated ground state (1s) into three separated states called A1, T2, and E 

states.  Ning and Sah further used the variational method to obtain the energy 

levels which were in close agreements with the measurement values. But the 

variational method resulted in different Bohr radii of the hydrogenic 

wavefunctions for the three splitted 1s states.  The consequence of the Ning 

and Sah’s variational analysis is the wavefunctions for the A1, T2, and E states 

are no longer orthogonal to the other high-order wavefunctions and this needs 

to be taken into account in the derivation of the perturbation theory.   

 

Table I.1. Electron Wavefunctions for of a donor phosphorus atom in a silicon 
host 
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†where  and  are the Bloch 

wavefunctions 

 

 

 

Table I.2. Electron energy Levels of a donor phosphorus atom in a silicon host 

State 
Energy Level (reference from conduction band minimum) (meV) 

Theory  Measurement  

   

   

   

2s *  

3s *  
 

*These values are obtained from a simple single-valley EMT instead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 = ( , , )r  r ( , ) (with , , )ik i x y z  r

 11s A
1

45.469AE  
1

45.47AE  

 21s T
2

33.740TE  
2

33.74TE  

 1s E 32.376EE   32.37EE  

2 7.469sE   2 6.33sE  

3 3.320sE   3 3.06sE  
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Appendix II 

The  perturbed ground-state wavefunction is expanded up to the 3s state while 

contributions from higher states are ignored.  Note that the expansion 

coefficients associated with the 
2T  and E  states vanish.  Contributions of 

 2 0p ,  3 0p , and  3 0d  at the phosphorus nucleus site are all zero.  

The remaining expansion coefficients in equation (2.40) are given below: 
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(II-5) 

 

 

In equations (II-1), (II-3), and (II-5), the additional expansion coefficients for 

the p and d sub-shells of the first order perturbation wavefunction are: 
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In the equations, (II-1)-(II-8), the various “H” terms are defined as below: 

 

 ,  where  and  stand for different statesH         (II-9) 

 

and 

 ( ) ( ) .V VH H    r r  (II-10) 

 

For example, 

 

1 1 1 1

1 1

0

1 1

1 1

1 1

1

( ) ( )

1 1* * *( ) ( ) ( ).[ ( , ) ( , )
6 6

* * * *( , ) ( , ) ( , ) ( , )].[ ( , )

( , ) ( , ) ( , ) ( , ) ( , )]

1 1*( ) ( ) ( )
6 6

VA A A V A

s s
A A x x

V

y y z z x

x y y z z

s s
A m A m m

m

H H

F F eV k k

k k k k k

k k k k k d

F F eV

 

    

    



  

  

     

       





r r

r r r r r

r r r r r

r r r r r r

r r r



1 1

1 1

1 1

1

1 1

1

* * * *[ ( , ) ( , ) ( , ) ( , )

* *( , ) ( , )]. ( , ) ( , ) ( , )

( , ) ( , ) ( , )]

1 1*( ) ( ) ( ) 6
6 6

*( ) ( ) ( )

N

x x y y

z z x x y

y z z

N
s s

A m A m m
m

N
s s

A m A m m
m

k k k k

k k k k k

k k k d

F F eV

F F eV

   

    

  







     

     

    

 

 









r r r r

r r r r r

r r r r

r r r

r r r  

(II-11) 

 

Here  is the volume of silicon unit cell, N is the number of unit cells in the 

silicon substrate layer (total volume is V0), and rm is the coordinate 

representing the center of the mth unit cell.  For further simplification of  Eq. 
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(II-10), the hydrogenic orbital wavefunction  and the potential 

distribution fucntion  due to the external A-gate voltage are assumed to 

be slow-varying functions with negligible variations inside a unit cell.  

In simplifying the result in Eq. (II-10), we have assumed that the hydrogenic 

wavefunction  and the potential function  due to the gate voltage 

are slow-varying functions and almost constant within a unit cell.  It should be 

noted that the Bloch wave functions represented here are ortho-normalized. If 

the potential distribution function due to the gate voltage V(rm) is known, 

equation (II-11) can be numerically calculated. 

Similarly, we have 
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The terms  and  are independent of the external 

applied A-gate voltage and can be numerically calculated. That is, 
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and 
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The energy of the ground-state 1AE , has been obtained before by Ning and Sah 

using the variational method and its value with respect to the conduction band 
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minimum is equal to 45.47 meV. The value of higher order excited states 

energies 2E  and 3E  are 7.5 meV and 3.3 meV, respectively, with respect to 

the conduction band minimum. 


