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Summary

The image inpainting problem is to recover degraded images with partial image

pixels being missing during transmission or damaged by impulsive noise. Most of

the existing inpainting techniques require knowing beforehand where the damaged

pixels are, either given as a priori or detected by some pre-processing. However, such

information neither is available nor can be reliably pre-detected in some applications.

As a result, by applying the wavelet regularization scheme, this thesis introduces

two wavelet frame based blind inpainting models to simultaneously identify and

recover the damaged pixels in the given corrupted images. Numerical experiments

on various image restoration tasks: recovering images that are blurry and damaged

by scratches, image denoising for noise mixed by both Gaussian and random-valued

impulse noise, show that our method is compared favorably against the two-stage

methods with pre-detecting of the damaged pixels.

As X-ray computed tomography (CT) is widely used in diagnosis of cancer and

radiotherapy, it is important to reduce the radiation dose as low as reasonably achiev-

able. For the CT image reconstruction problem, besides some popular un-regularized

methods, such as filtered back projection (FBP) method and the simultaneous alge-

braic reconstruction technique (ART), total variation (TV) and wavelet tight frame

regularization have been proposed to reconstruct high quality images from lower

projection dose. This thesis proposed two types of isotropic wavelet frame based C-

T image reconstruction methods to reconstruct the object images with most features

and least errors caused by noise and artifacts. Radon domain inpainting mechanism

and three-system structure were introduced to the proposed methods to improve the

robustness to the extremely insufficient measurement and the inaccurate projection

vii



viii Summary

matrix P . Numerical simulations show that the proposed method can outperfor-

m the FBP method, TV based methods and an existing anisotropic wavelet frame

based method in terms of visibility, relative error and mean structural similarity.

The present study is able to preserve the quality of reconstructed images with less

projection dose. Therefore, it is possible to reduce the X-ray exposure to the patients

in clinical applications without decreasing the accuracy of diagnosis.

The wavelet frame regularization scheme performs well in both image inpainting

and CT image reconstruction because of not only the representation of the singu-

larities by wavelet coefficients but also the approximation of smooth image pieces

by low frequency coefficients. In approximation theory, the quasi-projection oper-

ator has been a canonical and effective tool for almost forty years. It has been

proved that given an appropriate set of functions, the quasi-projection operators

can approximate smooth functions with high approximation order. In particular,

quasi-projection operators based on B-spline refinable functions can approximate

any smooth function with approximation order up to 2. This thesis has proved that

the approximation to the derivatives of smooth functions can be realized by B-spline

wavelets with arbitrarily high approximation order. The proof was deduced gener-

ally by constructing functions φm,l,n with which the integrated B-spline wavelets

ϕm,l can formulate a quasi-projector which can exactly reproduce higher order poly-

nomials. The result of the proof show that the wavelet frame decomposition can

approximate the function through different order of differential operators. More-

over, the improved approximation order in the proof can expand the application of

B-spline wavelets to the approximation of complicated functions.
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Chapter 1
Introduction

Nowadays, image restoration becomes more and more popular in signal transmis-

sion, scientific experiments and medical applications, etc. Usually, besides guaran-

teeing the fidelity, high quality restored images should preserve sharp edges, smooth

pieces and textures while suppressing the additive noises. The wavelet tight frame

decomposition (see [32, 68, 37]) can provide sparse representation of piece-wise s-

mooth images. Moreover, the coefficients of wavelet decomposition can provide good

approximation to underlying solutions and their derivatives in smooth pieces parti-

tioned by sharp edges. Therefore, the regularization in wavelet transform domain is

effective to obtain sparse solutions and clear images.

In this thesis, the wavelet tight frame will be introduced to two types of im-

age restoration problems: image inpainting and computed tomography (CT) image

reconstruction. Based on the split Bregman algorithm [50], the proposed wavelet

frame based methods can be fast solved by PC in less than 5 minutes. The numeri-

cal results verified the superiority of wavelet frame based image restoration methods

compared to other methods including the total variation (TV) based methods [69].

Additionally, this thesis also provided a proof showing that the coefficients of

wavelet decomposition can form quasi-projection operators to approximate the s-

mooth functions and their derivatives with arbitrarily high approximation order,

which demonstrates the preservation of smooth pieces during the execution of frame

regularized image restoration methods.

1



2 Chapter 1. Introduction

1.1 Background

This section is mainly devoted to the introduction of wavelet tight frames and

their applications to image restorations and approximation theories. A countable

set X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
h∈X

〈f, h〉h ∀f ∈ L2(R),

where 〈·, ·〉 is the inner product of L2(R). Given a finite collection of functions

Ψ = {ψ1, ψ2, ..., ψm}, define X = {ψn,k,i = 2n/2ψi(2
n · −k), 1 ≤ i ≤ mn, k ∈ Z}. If

X satisfies the condition of tight frame, then X can be called a wavelet tight frame

and Ψ is called the wavelet. The multi-resolution analysis (MRA) based wavelet can

be generated by the unitary extension principle (UEP) [68]. Given a 1-dimensional

framelet system for L2(R), the s-dimensional tight wavelet frame system for L2(Rs)

can be similarly generated by using tensor products of 1-dimensional framelets (see

e.g. [32, 37]).

In discrete sense, a discrete image u with totally s pixels is an s-dimensional

array. In this thesis, W denotes the fast tensor product framelet decomposition and

W> denotes the fast reconstruction. Then by the unitary extension principle [68],

we have W>W = I, i.e. u = W>Wu for any image u. We will further denote an

L-level framelet decomposition of u as

Wu = {Wl,i,ju : 1 ≤ l ≤ L, (i, j) ∈ I0},

where I0 is the index set of all framelet bands and only (i, j) = (0, 0) represents

the low-pass channel. In image processing models and algorithms, the singularities

such as the sharp edges and noises, can be reflected by wavelet coefficients or high

frequency coefficients. For most existed images in practice, the features such as

sharp edges correspond to large wavelet coefficients while the locally smooth parts

correspond to the wavelet coefficients equal or closed to zero. Therefore, for most

image restoration problems, besides the given fidelity conditions, it is reasonable to

approach a solution with sparse representation in the high-pass part of the wavelet

transformed domain. In fact, all the proposed wavelet frame based image restoration

models in Chapter 2 and 3 should include a regularization term ‖Wu‖1,p for p = 1, 2

to approach sparse solutions. Numerically, the regularization term ‖Wu‖1,p for
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p = 1, 2 is realized through the soft thresholding operator defined by (2.10) which

can preserve the large wavelet coefficients while removing the small ones. It should

be remarked that such thresholding operation is a non-linear approximation since

the κ-sparse vector subspace with κ > 0 is a non-linear space.

On the other hand, the sharp edges automatically make a partition of the im-

age to several smooth pieces. For each smooth piece, the approximation of wavelet

system guarantees that the low frequency coefficients Wl,0,0 provide a good approx-

imation of the underlying function. Therefore, the information in each smooth

piece of image can be preserved since the low frequency coefficients are not directly

changed during the execution of frame based image restoration algorithms. Inter-

ested readers can refer to [76, 37] for more details about the wavelet tight frame and

its applications.

In the following part of this section, the background of image inpainting problem

and CT image reconstruction problem will be provided. Some basic concepts and

definitions of wavelet approximation will be also given in the last part of this section.

1.1.1 Image Inpainting

The word ”inpainting” was proposed by museum restoration artists and such

word has been initially applied to digital image inpainting by [6]. In practice, there

are many images degraded from missing or damaged pixels, e.g., the ancient draw-

ings with missing portions by aging, the frame of old film which is damaged by

scratching, or the images corrupted by impulse noise due to noisy sensors or channel

transmission error. Thus, image inpainting methods are designed to estimate and

recover the missing information within the missing/damaged regions from incom-

plete observation of the images which may even be in presence of Gaussian noise or

other mixed noise. Regarding to the image inpainting problem, an ideal recovery of

an image in the corrupted regions should possess the smooth regions, sharp edges,

and periodical textures as these features observed. Moreover, it is necessary to sup-

press the noise and artifacts as much as possible in the inpainting result images.

In recent years, the model and algorithm for image inpainting has been remarkably

developed and improved. Interested readers can refer to [5, 6, 7, 26, 27, 24] for more

details about the development and application for image inpainting problem. In

particular, the wavelet frame regularization has also been successfully applied to the

image inpainting problem as in [22, 10, 11, 12, 76, 37, 25].
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Let an image be represented as a column vector in Rn, where n is the total

number of pixels. Then the image inpainting problem can be formulated as follows:

f(i) =

{
(Hu)(i) + ε(i), i ∈ Λ

v(i), i ∈ Λc,
(1.1)

where f is the observed image with missing/damaged pixels, u is the true image for

image inpainting problem, ε represents the additive noise which is most frequently

chosen as the regular Gaussian noise with zero mean, H is some degradation ma-

trix (identity operator for pure image inpainting and convolution operator for image

blurring), and Λ is the index set of the correct pixels of the image. The random-

valued vector v represents the intensity values of the missing/damaged pixels. The

vector v defined on the index set of missing/damaged pixels Λc can represent the

impulse noise (e.g. salt-and-pepper noise and random-valued impulse noise) or ran-

dom scratches with unknown intensities. The goal of the image inpainting is then

to estimate the original image u from the observation f .

The index set Λc = supp(v) is referred to as the inpainting domain or the po-

sition/region/domain of the missing/damaged pixels. In practice, the index set Λc

is usually given as prior knowledge or estimated beforehand using some numerical

detectors. With the true value or well estimated value of Λc, it is not a difficult prob-

lem to reconstruct the true image u from f with high peak signal-to noise (PSNR)

value even if the proportion of Λc is over 20%.

In some applications, however, the inpainting domain may not be readily avail-

able, or the detection of the Λc may have huge error by some separate process, e.g.

when the vector v in (1.1) is formed from random-valued impulse noise or scratch

with unknown intensities. As a result, the image inpainting problem without know-

ing of Λc is called the blind inpainting problem. Compared with the regular or

non-blind inpainting problems in which the index set Λ is generally known, it is

necessary to estimate both the index set Λ and the true image u in blind inpainting

problem from merely the observation f , which formulate a highly ill-posed inverse

problem.

1.1.2 Computed Tomography Image Reconstructions

In two dimensional case, the most common CT system is the fan-beam CT

system whose X-ray source is assumed as a point. This thesis will always focus on



1.1 Background 5

the fan-beam scanning geometry with the source and detector revolving around the

object in a fixed radius by 360 degrees. For a given angle θ and beamlet r, the X-ray

projection operator P θ,r is defined as follows:

P θ,r[u] =

∫ L(r)

0

u(xθ + nl)dl,

where u is the unknown two dimensional true image (X-ray attenuation coefficients),

xθ = (xθ, yθ) represents the cartesian coordinate of the X-ray source for each pro-

jection angle θ, n = (nx, ny) is the direction vector of beamlet r, and L(r) is the

length of the X-ray beamlet from the source to the corresponding intersection on the

imager. If P θ,r[u] is sampled with respect to different beamlet r for each angle θ, the

resulting data projection can essentially be written as a vector fθ. By collecting fθ

together for all different angles θ, we obtain an image denoted as f whose columns

are formed by fθ. An example of simulated NCAT phantom is shown in Figure 1.1.

Figure 1.1: The NCAT phantom and its corresponding measurement image f with
30 different projection angles.

With appropriate discretization of the the true image u, we can reinterpret the

CT image reconstruction problem as a linear inverse problem

Pu = f,

where P is a matrix represents the collection of discrete line integrations P θ,r with

different θ and r. In other words, the CT image reconstruction problem is essentially

to recover image u from its partial Radon transform f (see [67] for the details of
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Radon transform). Since the matrix P only depends on the location and direction

of each beamlet and is irrelevant to u, we can construct the huge sparse matrix P

beforehand. In this thesis, the matrix P is generated by Siddon’s algorithm [78]

which calculates the length of beamlet in each discrete image pixel.

In the CT reconstruction from real projection data, however, due to the error

caused by the imaging equipment itself, the actual measurement f does not equal

to Pu. In fact, the reconstruction problem can be redefined as:

(P + Pδ)u = f + ε, (1.2)

where Pδ represents the error of the projection matrix P caused by the error of

beamlet location and direction, and ε is the additive noise. Besides these instru-

ment error, insufficient projections or detector cells will cause the matrix P highly

undetermined, i.e. the matrix has much smaller number of rows comparing to the

number of columns. Therefore, it is difficult to identify the most appropriate u from

infinitely many solutions of the problem (1.2).

The current CT reconstruction methods can be categorized as un-regularized

methods or regularized methods. In the following part of this subsection, I will

briefly introduce two popular un-regularized methods and a regularized method

named total variation (TV) regularized method. In some sense, these methods lead

to the motivation of designing our models and algorithms.

The most classical and most commercially used CT reconstruction method is the

filtered back projection (FBP) method [44, 35, 64, 60] which is an un-regularized

method and first proposed in 1980s. Independently, the algebraic reconstruction

technique (ART) [51], another un-regularized method, is the earliest method based

on solving the linear system Pu = f by some simple methods such as the least

square method. Both the above methods use linear transform to the initial mea-

surement and the true image can be reconstructed by these methods with sufficient

measurement. However, these methods are zero robust to the instrument error and

the additive noise which can apparently reduce the quality of the reconstructed im-

ages. What is worse, these methods usually suffer from different shapes of artifacts

especially when the amount of measurement is insufficient.

To suppress noise and artifacts while preserving the features of the reconstructed

images, various differential operator based regularized methods have been proposed,
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among which the total variation (TV) regularized method is one of the most well-

known models and is proven to be effective both in theories and experiments. The

TV regularized model (known as the ROF model) was historically proposed by

[69] in the context of image denoising. Illuminated by the theoretical proof and

experiment results in [69], TV regularized method has been extended and applied

to other image processing and analysis tasks such as in [62, 70, 65, 19, 25]. In

particular, the TV regularized method has been initially applied to 3D X-ray cone

beam CT reconstruction in [80, 79] and later applied to 2D CT reconstruction in

[59]. The canonical form of TV-based CT reconstruction model is defined as follow:

min
u

1

2
‖Pu− f‖2

2 + λ‖∇u‖1. (1.3)

where the operator ∇ is the discretization of 2D gradient operator. The first term
1
2
‖Pu− f‖2

2 is called the fidelity term since it guarantees that Pu ≈ f . The second

term λ‖∇u‖1 is the regularization term which lead the solution u to be piecewise

constant. The parameter λ is determined by the noise level of the measurements

and the smoothness of the estimated object images.

Compared with the un-regularized methods, TV regularized method tends to

reconstruct piecewise constant images while most medical true images are piecewise

smooth, which is close to piecewise constant. Therefore, TV can roughly estimate the

true image with insufficient measurement in the presence of additive noise. However,

due to the simple regularization structure and lower approximation order, the TV

regularized method is likely to oversmooth the result images. As a result, some

important features which cannot be distinguished from noise and artifacts might also

be removed during the process of CT reconstruction, which is generally unacceptable

in clinical applications. Therefore, better regularization scheme is necessary for

pursuing higher quality result images for CT reconstruction problem as well as other

image restoration problems.

Fortunately, the generation of wavelet tight frames [32, 68, 33] and its related

framelets is a historical progress for better structure of regularization scheme. Sim-

ilar to the TV regularized model (1.3), the wavelet frame based approaches can be

applied to CT image reconstruction problem. Moreover, it has been shown in [13]

that one of the wavelet frame based approaches, named analysis based approach,

can be regarded as a finite difference approximation of a certain type of general

variational model, and such approximation will be exact when the image resolution
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goes to infinity. On the contrary, owing to the multi-resolution structure and re-

dundancy of wavelet frames, wavelet frame based models can adaptively choose a

proper differential operators in different regions for a given image according to the

order of the singularity of the underlying solutions. As a result, the discretizations

provided by wavelet frames were always shown to be superior than the standard dis-

cretizations for the TV-based model (1.3) in [58, 36] for CT reconstruction problem

and in [20, 22, 13, 37] for other general image restoration problems.

Note that wavelet based image restorations include three different kinds of ap-

proaches, namely the synthesis based, analysis based and balanced approaches

[20, 21]. The balanced approach is the one that balances the synthesis based and

analysis based approaches. In [36], it has been shown that the analysis based ap-

proach outperforms other wavelet based approaches in terms of relative error and

correlations. The analysis based approach regularization can be defined as in (1.4):

min
u

1

2
‖Pu− f‖2

2 + λ‖Wu‖1,p, (1.4)

where the norm ‖ · ‖1,p is defined as

‖Wu‖1,p =

∥∥∥∥∥∥
L∑
l=1

(
∑

(i,j)6=(0,0)

|Wl,i,ju|p)
1
p

∥∥∥∥∥∥
1

, p = 1, 2.

When p = 1, the norm ‖ · ‖1,1 is referred to as the anisotropic `1-norm which is the

standard `1-norm used for frame based image restoration problems. When p = 2,

the norm ‖ · ‖1,2 is referred to as the isotropic `1-norm of the frame coefficients. In

[36] it has been shown that the isotropic `1-norm regularization performs better in

CT reconstruction problems, which coincides with the theoretical analysis in [13].

1.1.3 Approximation

The quasi-projection (or quasi-interpolatory) operator of φ can be defined as:

Pjf = 2j
∑
α∈Z

〈f, φ(2j · −α)〉φ(2j · −α) f ∈ L2(R),
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where φ(2j · −α) represent the function φ with integer shift α and dilation 2j. Then

the quasi-projection operator Pj provides approximation order n if

‖f − Pjf‖2 = O(2−nj), (1.5)

where the function f may be restricted in some smooth spaces such as the Sobolev

spaces W s
p (R) with differential order s ≥ n.

The construction of various wavelet tight frames through the unitary extension

principle (UEP) was first provided in [68], in which the B-spline wavelet tight frame

can provide an approximation order never larger than 2 because the condition 1 −
|φ̂|2 = O(| · |)n, n > 2 is not hold if φ is merely the B-spline refinable functions.

In order to construct wavelet tight frames with satisfactory approximation order

of truncated frame series, the wavelet tight frames based on pseudo-splines were

generated in [33, 74]. The pseudo-splines, defined as a linear combination of finite

shifted B-spline functions, can bring out better quasi-projection operator Pr with

arbitrarily high approximation order for smooth functions [33]. The progress is

made by approaching the Strang-Fix condition and the approximation condition

1− |φ̂|2 = O(| · |)n with higher n. The detail of deduction from such two conditions

to (1.5) has been provided in [56, 37]. It should be remarked here that all the above

wavelet tight frames are all based on multi-resolution analysis (MRA) generated by

a refinable function φ ∈ L2(R).

1.2 The Goal and Contribution of the Thesis

Based on the existing application of wavelet tight frame to image restorations,

this thesis proposed some new wavelet frame based methods to solve the image

inpainting problems and CT image reconstruction problems. In the proposed meth-

ods, the multi-system method, which is based on different image parts having sparse

representation in different domains, is applied to separate the image into the car-

toon part, texture part, artifacts part and additive noise part. In particular, the

cartoon part and texture part should be contained in the restored image and the

remaining part should be discarded. Moreover, the isotropic wavelet frame regu-

larization [13], which treats the singularities in different directions equally, is also

applied in the proposed CT reconstruction methods. Moreover, the Radon domain
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inpainting mechanism is introduced for CT image reconstruction from highly in-

sufficient measurement. By using split Bregman algorithm, the proposed analysis

based approach method can be solved fast. The numerical simulations show that

the proposed method outperforms the existing wavelet frame based methods and

other image restoration methods.

Regarding to the approximation of wavelet tight frame system, besides the re-

vision of quasi-projection operators and the approximation of smooth functions by

low frequency coefficients, this thesis provided a proof to show that the wavelet

coefficients, or the high frequency coefficients, can approximate the derivatives of

underlying functions. Moreover, with the appropriate designation of dual functions,

the approximation order of smooth functions and their derivatives can be arbitrarily

high. The result of the proof will demonstrate that in smooth pieces of images, the

thresholding operation of high frequency coefficients which occurs in majority of

wavelet frame based image restoration methods, can preserve most of the intensity

information in the restored images.

1.2.1 Blind Image Inpainting

One goal of the thesis is to develop some novel computational models and corre-

sponding efficient algorithms for solving the blind image inpainting problem with-

out priori knowledge of the index set Λ of the missing/damaged pixels. A La-

grangian regularization approach will be used for the designation of the proposed

blind inpainting methods. In order to overcome the ill-posedness of the problem,

i.e, lacking the information of Λ, appropriate regularization terms on both the o-

riginal image u and the inpainting region Λc are necessary in the minimization

problem. The basic idea of our method is to utilize the sparsity priors of images

and random-valued vector v in different domains. Due to the success of applying

sparsity prior of images under tight wavelet frames in many image restoration tasks

([30, 17, 16, 28, 34, 41, 43, 18, 11, 76, 37]), our approach set the `1 norm of wavelet

tight frame coefficients of images is used as the regularization term. On the other

hand, since the inpainting domain Λc is nothing but the support of v, the regulariza-

tion on Λc can be done by regularizing the supp(v). Therefore, with the assumption

that v is sparse in spatial domain, we include the `1 norm of v in spatial domain

as the regularization term in our optimization model. Moreover, similar as the CT

reconstruction problem, the proposed minimization problem can be efficiently solved



1.2 The Goal and Contribution of the Thesis 11

via the split Bregman algorithm. The split Bregman algorithm first proposed in [50]

has already been proved to be successful in various image processing applications

such as [50, 49, 15]. The detailed form of the proposed models and the corresponding

algorithms can be seen in Section 2.1.

1.2.2 CT Image Reconstructions from Lower X-Ray Dose

Despite the progress made by isotropic wavelet frame regularization, it is still

impossible to reconstruct high quality images from very small number of projection

angles by the model (1.4), let alone the un-regularized methods and TV regular-

ized methods. In order to preserve the CT reconstruction quality with even smaller

number of projection angles, this thesis will introduce a Radon domain inpainting

mechanism which inpaints with respect to projection angles. For example, Figure

1.2 shows that the Radon domain inpainting mechanism can approximate the mea-

surement f with 20 projection angles (as the number of columns in Figure 1.2) from

the actual measurement f0 which only include 10 projections (as the even columns

of f). Although the 10 additional projections are merely estimated, the relative

error of the estimation can be controlled below 1.5 percent, which enables the CT

reconstruction result from the inpainted measurement f to outperform that from

original measurement f0.

In fact, to accomplish high quality CT reconstruction from less projection mea-

surement or lower X-ray projection dose, this thesis ultimately proposes an algo-

rithm based on alternatively optimize the object image u and the inpainted Radon

domain f . It can be proved that the alternating optimization algorithm is con-

vergent. Furthermore, the numerical simulation results indicate that our proposed

method performs better than all existing methods in terms of visual quality, relative

error and correlation. The details of Radon domain inpainting mechanism will be

illustrated and analyzed in Section 3.1.1.

Another problem which cannot be solved by model (1.4) is the robustness to

inaccurate projection matrix P caused by the error of beamlet location and direction.

To improve the robustness of wavelet frame based CT reconstruction methods, this

thesis will apply a three-system method [41, 12] to separate and treat different image

parts by different regularization terms. In this thesis, the images will be separated

to three different image parts: the information part we want to restore (or cartoon

part), the artifacts generated by the error of P , and the noise part. Correspondingly,
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Figure 1.2: The strategy of inpainting in Radon domain.

the three-system model can regularize the noise part with its sparsity in spatial

domain, artifacts part in discrete cosine transform (DCT) domain, and information

part in wavelet frame transform domain. Moreover, fast and convergent algorithms

can easily solve the three-system method to generate each image part. In particular,

the information part can be separated from the artifacts and the additive noise. As

a result, the three-system method can be robust to the instrument error including

the error of P . Since in clinical application, the instrument error is often very huge

and can apparently affect the result, the improvement of the robustness can enhance

the quality of reconstruction and possibility to further reduce the projection dose.

For further research of the multi-system wavelet frame based CT reconstruction

methods, readers can refer to Section 3.1.2 of this thesis.

1.2.3 Approximation by B-spline Wavelet System

In this thesis, besides the revision of the approximation of smooth function by

B-spline refinable function, a couple of theorems will be generated to show that the

B-spline wavelet with vanishing moment l can approximate the l-th order derivatives
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of smooth functions. i.e,

‖Ql,jf − f‖p = ‖al2j
∑
α∈Z

〈f, ψl(2j · −α)〉φ̃(2j · −α)−Dlf‖p = O(2−nj) (1.6)

where ψl is the B-spline wavelets with vanishing moment l, the function φ̃ is a

designed linear combination of finite shifted B-spline functions. If φ̃ is simply chosen

as the B-spline function φ, the approximation order for (1.6) is 2 if the order of

the corresponding B-spline is at least 2, i.e, the linear B-spline. With appropriate

construction of φ̃ and sufficient smooth condition of function f , the approximation

order n for (1.6) can be arbitrarily high for any fixed low order B-spline wavelet.

The method of constructing φ̃ is also applicable for approximation to the smooth

function itself and such method for pursuing higher approximation order is more

general than that in [33]. The approximation result (1.6) shows that for a smooth

function f which can be regarded as the locally smooth pieces of images, besides

the approximation of f itself by low frequency coefficients, the wavelet coefficients

can approximate various different order of derivatives (partial derivatives for 2-

dimensional case) of f .

Based on the approximation of functions and its derivatives in high approxima-

tion order, this thesis also generates several corollaries showing the approximation to

the Sobolev norms of smooth functions. The approximation order can be arbitrarily

high as well as the approximation of functions and their derivatives.

1.3 Outline of the thesis

The rest of this thesis will be organized as follows. In Chapter 2, we will propose

two sparsity-based regularization models for the blind image inpainting problem.

The summaries and conclusions for different research topics will be provided at the

end of all following chapters. In Chapter 3, we will propose two different techniques

for pursuing better quality of CT image reconstruction from low and inaccurate

projection dose. For numerical simulations, we will compare our result with most

popular methods such as FBP, TV regularized method and some existing wavelet

tight frame based methods. In Chapter 4, we want to give the explicit form of

the quasi-projection operator for arbitrary high order approximation to any order

derivatives of smooth functions.





Chapter 2
Blind Image Inpainting

In solving image inpainting problems, the index set Λc of the missing/damaged

pixels is usually given or estimated by pre-detectors. With a well estimated or exact

value of Λc, the image inpainting problem is called the non-blind inpainting problem

which can be restored with high quality by wavelet frame based method. In some

cases, however, the pixels corrupted by random-valued impulse noise are difficult to

be accurately estimated by pre-detectors if the image is also degraded by additive

Gaussian noise. As a result, it is necessary to solve the image inpainting problem

without priori knowledge of the index set Λc of the missing/damaged pixels. Such

image inpainting problem is called the blind image inpainting problem. In this

chapter, two wavelet frame based blind inpainting models, named the single-system

model and the two-system model, will be proposed for treating the random-valued

impulse noise without the prior knowledge of Λc. In particular, the two-system

model can intelligently preserve the textures while removing the scratches in the

image. Then, we will introduce the split Bregman algorithm and its specific forms

for solving the proposed blind inpainting models. At last, numerical simulations will

show that in the image restorations with random-valued impulse noise, the proposed

blind inpainting models are comparable or even better than the two-stage inpainting

methods with pre-detectors such as the ROLD detector [38].

2.1 Models and Algorithms

In this chapter, for notational convenience, the pixel-wise projection matrix AΛ

associated to Λ is set as an n×n diagonal matrix with the diagonal entries 1 for the

15
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indices in Λ and 0 for the indices in Λc. Under this notation, the image inpainting

problem (1.1) can be reinterpreted as

AΛf = AΛ(Hu+ ε) and AΛcf = AΛcv. (2.1)

By the definition in (2.1), the fidelity information is given by Hu + v ≈ f . Due to

the difficulty of accurate estimation of the index set Λc, we assume that the outlier

part v is sparse in spatial domain. Consequently, it is reasonable to use the `1 norm

regularization of v in the object function to separate the outlier from the restored

images. Combining the term ‖v‖1 together with the fidelity term 1
2
‖Hu+v−f‖2

2 and

appropriate regularization term of u in certain domain, the blind inpainting models

can be proposed as in the following subsections. The corresponding algorithms will

be provided after the definition of the proposed blind inpainting models.

2.1.1 Single-system Model

The single-system blind image inpainting model for (2.1) can be proposed as

follows:

min
u,v

1

2
‖Hu+ v − f‖2

2 + λ1‖Wu‖1 + λ2‖v‖1, (2.2)

where u is the true image for image inpainting problem, v is a random-valued vector

in the observed image f , the matrix H is some degradation matrix, and W is a

decomposition matrix associated to some tight framelet system. In general, the

model (2.2) is designed to recover an image u with sparse representation in the tight

frame transform domain, i.e. the coefficients ofWu are sparse; and simultaneously to

estimate a sparse random-valued vector v in image domain. As a convex relaxation

of `0-norm regularization, `1-norm is used on both Wu and v in (2.2) to measure

their sparsities in the corresponding domains.

In the proposed model (2.2), the vector v is explicitly regarded as an unknown

variable. On the other hand, some alternative approaches are available to handle

the random-valued vector v. Two of them appearing in [11, 54] are two-staged

approaches that estimates the inpainting region Λ before solving the solution of

u. As a result, the two-staged method can reduce (2.1) into a regular inpainting

problem:

min
u

1

2
‖AΛ(Hu− f)‖2

2 + λ‖Wu‖1. (2.3)
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The two-staged approach (2.3) has good performance with the accurate detection

of Λ, e.g. the detection of salt-and-pepper noise using adaptive median filter ([14]).

However, it is much more difficult to accurately detect general random-valued im-

pulse noise in images. Furthermore, the detection errors of Λ could hamper the

quality of the inpainting.

Another approach was first proposed by [3, 4] in the application of image de-

blurring with impulse noise. The approach can be defined as in (2.4).

min
u
‖Hu− f‖1 + λ‖Wu‖1. (2.4)

Compared to (2.2), the model (2.4) absorbs the outlier v in the fidelity term

Hu − f . Therefore, the model (2.4) uses `1 norm in the fidelity term Hu − f due

to sparsity of outlier in the image domain. As a matter of fact, the model (2.4) is

also applicable for blind image inpainting problems. In numerical simulations, the

model (2.4) has almost the same performance as the proposed model (2.2) if the

missing/damaged pixels are purely caused by impulsive noise. In practice, however,

image noise is usually from multiple sources. For instance, [52] identified totally

five major sources of image noise which have different statistical distributions but

frequently occurs simultaneously in many image restoration applications. In the

simultaneous presence of multiple types of noise such as the mixed impulse noise

and Gaussian noise, the model (2.2) performs better than (2.4), which can be seen

in the numerical simulations in the later part of this chapter. The reason of the

numerical result can be explained as below. First, our proposed model (2.2) has the

`1 norm regularization of v which can separate the sparse outlier part as well as the

`1 fidelity term in (2.4). What is more, the `2 norm fidelity term in our model (2.2)

can also optimally estimate the pollution of Gaussian noise while the model (2.4)

cannot.

2.1.2 Two-system Model

The model (2.2) has good performance for blind inpainting if the true image is

piecewise smooth and the outlier has sparse representation in image domain so that

the regularization of Wu and v correspond these properties. In some circumstances

in practice, the true images may exist rich texture features which are not piecewise

smooth but has good sparsity in image domain ([2, 23, 63]). Therefore the model
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(2.2) is likely to identify these textures as outlier and save them in the vector v,

which lead to the result image u not including these necessary textures.

To preserve the textures while suppressing the outlier, it is necessary to generate

another model with one more system to separate the texture out of the outlier part.

Since many types of textures, especially the periodical structure of textures, have

sparse representation in local discrete cosine transform (LDCT) domain (see the

applications in [41, 12, 16]), applying the multi-system method as well as the model

(3.4) in Chapter 3, the blind inpainting model with two systems can be proposed as

follows:

min
u1,u2,v

1

2
‖H(u1 + u2) + v − f‖2

2 + λ1‖Wu1‖1 + λ2‖v‖1 + λ3‖Du2‖1. (2.5)

where the matrix D denotes the LDCT transform, u1 and u2 are the cartoon part

and texture part of the true image u = u1 + u2. Compared to the model (2.2) with

single system, the two-system model (2.5) has better preservation of texture features

but nearly twice time and memory consumption. Therefore, it is better to choose

the model (2.2) for inpainting images with less textures to save computational time

and memory cost. On the other hand, model (2.5) is more suitable for images with

rich textures.

2.1.3 Split Bregman Algorithm

In this subsection, we give a brief introduction of the basic idea of split Bregman

algorithm which is applied for the blind inpainting method and all the proposed CT

reconstruction methods in Chapter 3. The split Bregman algorithm was initially

proposed in [50] and then was shown to be convergent and powerful in [50, 91] when

it is applied to various variational models for image restoration, e.g., ROF [69] and

nonlocal variational models [47]. Interested readers are referred to [50, 16] for more

details of the split Bregman algorithm.

Consider the following minimization problem

min
u

E(u) + λ‖Wu‖1,p, (2.6)

where E(u) is a smooth convex functional and W is the wavelet decomposition
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operator. Let d = Wu and then (2.6) can be rewritten as

min
u,d=Wu

E(u) + λ‖d‖1,p. (2.7)

Note that u and d are two variables connected by the constraint d = Wu. The

derivation of the split Bregman iteration for solving (2.7) is based on the Bregman

distance ([50, 16]). Recent research (see e.g. [42, 82]) showed that the split Bregman

algorithm can be derived by applying the augmented Lagrangian method (see e.g.

[48]) to (2.7). The connection between the split Bregman algorithm and the Douglas-

Rachford splitting was addressed by [75]. Skipping the detailed derivations, we

directly state the split Bregman algorithm solving (2.6) through (2.7) as follows
uk+1 = arg minuE(u) + µ

2
‖Wu− dk + bk‖2

2,

dk+1 = arg mind λ‖d‖1,p + µ
2
‖d−Wuk+1 − bk‖2

2,

bk+1 = bk +Wuk+1 − dk+1.

(2.8)

By the result from [39, 31], the second step is equivalent to a soft-thresholding

operation. Therefore, (2.8) can be rewritten as
uk+1 = arg minuE(u) + µ

2
‖Wu− dk + bk‖2

2,

dk+1 = T pλ/µ(Wuk+1 + bk),

bk+1 = bk + (Wuk+1 − dk+1),

(2.9)

where T pt is the soft-thresholding operator defined by

(T pt (v))l,i,j =


vl,i,j, if (i, j) = (0, 0)

vl,i,j
|vl,i,j |

max(|vl,i,j| − t, 0), if (i, j) 6= (0, 0), p = 1

vl,i,j
Rl

max(Rl − t, 0), if (i, j) 6= (0, 0), p = 2

(2.10)

with Rl = (
∑

(i,j)6=(0,0) |vl,i,j|2)
1
2 .

It can be seen that the first step of (2.9) usually involves the procedure of solving

linear systems, while the last two steps are relatively straightforward with O(1)

complexity.
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2.1.4 Blind Inpainting Algorithms

The single-system blind image inpainting model (2.2) can be efficiently solved

by the split Bregman algorithm. If we add a new variable d = Wu and rewrite (2.2)

as

min
u,v,d=Wu

1

2
‖Hu+ v − f‖2

2 + λ1‖d‖1 + λ2‖v‖1.

then the model can be solved in an outline shown as below:

uk+1 = arg minu
1
2
‖Hu+ vk − f‖2

2 + µ
2
‖Wu− dk + bk‖2

2,

vk+1 = arg minv λ2‖v‖1 + 1
2
‖v − (f −Huk+1)‖2

2,

dk+1 = arg mind λ1‖d‖1 + µ
2
‖d− (Wuk+1 + bk)‖2

2,

bk+1 = bk + (Wuk+1 − dk+1).

The detail of the split Bregman algorithm solving (2.2) is shown in the following

Algorithm 1.

Algorithm 1 Numerical algorithm for solving (2.2)

(i) Set initial guesses u0 = 0, v0 = 0, d0 = 0, b0 = 0. Choose an appropriate set
of parameters (λ1, λ2, µ).

(ii) For k = 0, 1, . . ., perform the following iterations until the stopping criteria is
‖dk −Wuk‖2 ≤ ε is met,

uk+1 = (H>H + µW>W )−1
(
H>(f − vk) + µW>(dk − bk)

)
,

vk+1 = Tλ2(f −Huk+1),

dk+1 = Tλ1/µ(Wuk+1 + bk),

bk+1 = bk + (Wuk+1 − dk+1).

(2.11)

Note that the linear system in the first equation of (2.11) is positive definite and

sparse, thus the linear system can be solved by the conjugate gradient (CG) method.

In our numerical simulations, only a few iterations of CG method are executed to

approach an approximate solution with the property ‖dk −Wuk‖2 ≤ ε .

Regarding to the two-system model, the corresponding split Bregman algorithm

is more complicated but the principle is the same. The details of the algorithm can

be generated similarly as in Algorithm 2. As well as in Algorithm 1, CG method is
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carried out when solving the linear systems for both u1 and u2.

Algorithm 2 Fast algorithm for solving (2.5)

(i) Set initial guesses u0
1 = 0, u0

2 = 0, v0 = 0, d0
1 = 0, b0

1 = 0, d0
2 = 0, b0

2 = 0.
Choose an appropriate set of parameters (λ1, λ2, λ3, µ1, µ2).

(ii) For k = 0, 1, . . ., perform the following iterations until the stopping criteria
‖d1

k −Wu1
k‖2 + ‖d2

k −Du2
k‖2 ≤ ε is met

u1
k+1 = (H>H + µ1W

>W )−1
(
H>(f −Huk2 − vk) + µ1W

>(dk1 − bk1)
)
,

u2
k+1 = (H>H + µ2D

>D)−1
(
H>(f −Huk+1

1 − vk) + µ2D
>(dk2 − bk2)

)
,

vk+1 = Tλ2(f −H(u1
k+1 + u2

k+1)),

dk+1
1 = Tλ1/µ1(Wu1

k+1 + bk1),

bk+1
1 = bk1 + (Wu1

k+1 − dk+1
1 ),

dk+1
2 = Tλ3/µ2(Du2

k+1 + bk2),

bk+1
2 = bk2 + (Du2

k+1 − dk+1
2 ).

2.2 Numerical Results

In this section, the general image degradation model including the possible im-

pulse and Gaussian noise pollution can be defined as follows:

f = Np(Hu+ ε),

where u is the ground truth image before corruption, f represents the corrupted

image. H is the blurring operation matrix which is uniquely determined by the blur

kernel, or identical matrix if the image is not blurred, ε denotes the i.i.d. Gaussian

white noise with zero mean. The operator Np for adding impulse noise can be defined

as follows:

Impulsive noise: a certain proportion of pixels (chosen randomly) are altered to

be an unknown value satisfies a certain probability distribution.

Np(xij) =

dij, with probability r,

xij, with probability (1− r),
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where r ∈ [0, 1] the level of random valued noise. If the Np specially stands

for adding random-valued impulse noise, dij becomes a uniformly distribution

random number in [dmin, dmax]. In this chapter, the dynamic range [dmin, dmax]

is always set as [0, 255].

In the following numerical simulations, the peak signal to noise ratio (PSNR)

measurement is used for quantitative evaluation of the restoration results. The

PSNR value is defined as follows:

PSNR(x̂, x) = 10 log10

2552

1
mn

∑m
i=1

∑n
j=1(x̂ij − xij)2

,

where m and n describe a size of the image, xij is the intensity value of the ground

truth image at the pixel location (i, j), and x̂ij represents the intensity value of the

restored image at location (i, j).

Through the numerical experiments, 100 iterations are executed in both Algorith-

m 1, Algorithm 2 when solving the proposed single-system and two-system models.

Regarding to the numerical simulations, running the MATLAB code of the proposed

models requires approximately 60 ∼ 120 seconds using a PC with 2GHz Intel Core

2 CPU. The time and memory consumption on the other compared methods is at

the same level as the proposed frame based blind inpainting models.

2.2.1 Removing Random-valued Impulse Noise

In practice, besides the Gaussian white noise which is most frequently seen, the

impulse noise also exists in many degraded images caused by transmission errors,

faulty sensors and etc. Generally, the impulse noise mainly contains two different

types, the salt-and-pepper noise and the random-valued impulse noise. Since the

pixels corrupted by the impulse noise contain no information of the true image,

removing impulse noise is essentially an image inpainting problem. The pixels cor-

rupted by salt-and-pepper noise have intensity value either 0 or 255. Therefore, the

index set of damaged pixels can be accurately identified by the adaptive median

filter (AMF) (see e.g. [29, 53, 15]). However, the random-valued impulse noise is

much more difficult to be accurately detected because of its undetermined intensity

value. The adaptive center-weighted median filter (ACWMF) [29] and ROLD de-

tection methods [38] are two possible method to roughly estimate the index set of

the damaged pixels where the latter one has relatively higher accuracy. The existing
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two-stage method is the combination of one noise detection method and the recon-

struction model (2.3). On the contrary, the blind inpainting models do not need

the priori knowledge of the index set of the missing/damaged pixels from the given

information or a detection pre-process.

This paragraph is devoted to the description of the parameter settings. In the

single-system model (2.2), the parameter λ1 ∈ {1.8, 2, 2.2, 3} and λ2 ∈ {5, 6} are

determined by the Gaussian noise level and the impulse noise level, respectively. In

the two-system model (2.5) , the parameters λ1 and λ2 is the same as the single-

system model (2.2). The parameter λ3 in model (2.5) is either 1 or 5 determined by

the amount of texture features in the true images.

The visual quality of some restored images are shown in Figure 2.1 and Figure

2.2. The PSNR values of all six methods can be seen in Table 2.1 and 2.2. The above

figures and tables show clearly that the ROLD detector outperforms the ACWMF

detector for images corrupted by random-valued impulse noise. However, even if for

the ROLD detector, the detection accuracy can apparently fall down if the random-

valued impulse noise is mixed with Gaussian white noise. As is seen in the above

figures and tables, the proposed blind inpainting models (2.2) and (2.5) outperform

the compared models (2.4) and (2.3) in terms of both the visual quality and PSNR

values, especially when the noise level of impulse noise is 10%. When the proportion

of damaged pixels increases, the sparsity of v decreases which reduce the performance

of the proposed blind inpainting models. However,when the impulse noise level is

20% or 40%, our proposed blind inpainting models can still generally outperform

the two-stage methods in terms of identifying the outlier v and restoring the image

u, especially for the cases of corruption by mixed Gaussian noise and random-valued

impulse noise.

It should be admitted that the proposed blind inpainting models are not appli-

cable for recovering image with more than 50% of pixels missing or damaged by

impulse noise. The reason can be explained as the automatic separation of outlier

v and piecewise smooth image u requires the sparse representation in correspond-

ing domains but the sparsity dose not exist if too many pixels are corrupted and

irrelevant to the ground truth image u. One better alternative method is to apply

a two-stage method which first detects the index set of pixels corrupted by random-

valued impulse noise (e.g, ACWMF or ROLD method) and then uses model (2.3)

to remove the impulse noise and estimate the true images.
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noisy images (2.3) + ROLD (2.4) (2.2)

Figure 2.1: Denoising results of cameraman image contaminated by both random-
valued impulse noise and Gaussian noise. Images in each column represent (from left
to right) corrupted images, results from (2.3) combined with ROLD pre-detection,
results from (2.4) and results from (2.2) respectively. The noise levels of corrupted
images (from top to bottom) are as follows. (1) 10% random-valued impulse noise
without Gaussian noise; (2) 10% random-valued impulse noise with Gaussian noise
of σ=10; (3) 20% random-valued impulse noise without Gaussian noise (4) 20%
random-valued impulse noise with Gaussian noise of σ = 10. The PSNR values of
the results are given in Table 2.1.
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noisy images (2.3) + ROLD (2.4) (2.2)

Figure 2.2: Denoising result of several images contaminated by random-valued im-
pulse noise of rate 10% and Gaussian noise of σ=10. Images in each column represent
(from left to right) corrupted images, results from (2.3) combined with ROLD pre-
detection, results from (2.4) and results from (2.2) respectively. The PSNR values
of the results are given in Table 2.2.
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Table 2.1: PSNR value (dB) of the denoising results for cameraman image from
all the three models from (2.3), (2.4) and (2.2) (our model 1), in the presence of
random-valued impulse noise with ratio r and Gaussian noise with std σ.

Ratio r and r = 10% r = 20% r = 40%
standard deviation σ=0 σ=10 σ=0 σ=10 σ=0 σ=10

ROLD-ERR Model in [38] 27.4 24.6 25.4 23.6 23.6 22.3

Model (2.3) + ACWMF 28.5 26.0 26.3 24.9 23.1 22.5

Model (2.3) + ROLD 28.4 27.5 26.3 25.8 23.7 23.3

Model (2.4) 29.9 27.5 27.1 26.0 23.1 22.9

Model (2.2) 30.3 28.4 27.4 26.6 23.6 23.3

Model (2.5) 30.3 28.4 27.4 26.6 23.6 23.3

Table 2.2: PSNR value (dB) of the denoising results for other images from all the
three models from (2.3), (2.4), (2.2) and (2.5), in the presence of random-valued
impulse noise with ratio r and Gaussian noise with std=10.

Image and r and Baboon Boat Bridge Barbara512
ratio 10% 20% 10% 20% 10% 20% 10% 20%

ROLD-ERR Model in [38] 23.0 21.6 24.7 23.8 23.3 22.1 25.3 23.9

Model (2.3) + ACWMF 23.3 22.2 26.6 25.1 24.2 22.9 26.0 24.6

Model (2.3) + ROLD 24.8 22.9 28.2 26.4 25.3 23.7 27.8 25.8

Model from (2.4) 24.5 23.2 27.6 26.1 25.0 23.4 27.0 25.5

Model from (2.2) 25.1 23.5 28.3 26.4 25.4 23.7 27.9 26.0

Model from (2.5) 25.2 23.5 28.2 26.4 25.4 23.7 27.9 26.0
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corrupted images (2.3) + ROLD (2.4) (2.2)

Figure 2.3: Deblurring result of several images in the presence of random-valued
impulse noise of rate 10% and Gaussian noise of σ=10. Images in each column
represent (from left to right) corrupted images, results from (2.3) combined with
ROLD pre-detection, results from (2.4) and results from (2.2). The PSNR values of
the results are given in Table 2.3.

2.2.2 Image Deblurring in Presence of Impulse Noise

The proposed blind inpainting algorithm is also applicable for the blurry image

corrupted by mixed Gaussian and random-valued impulse noise. The blurring matrix

H is equivalent to a 2D convolution with the blur kernel. In this subsection, the

blur kernel is chosen as the out-of-focus kernel of radius 6 pixels. The parameters

λ1, λ2 for both proposed blind inpainting models (2.2) and (2.5) are chosen from the

set {1, 10, 12}. Table 2.3 and Figure 2.3 show that the restored images from all five

different methods are more or less the same. In other words, the proposed models

(2.2) and (2.5) are comparable to the other three existing models.
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Table 2.3: PSNR value (dB) of the results from (2.3), (2.4), (2.2) and (2.5), for image
deblurring in the presence of random-valued impulse noise and Gaussian noise.

Image and r and Cameraman Goldhill Baboon
ratio 10% 20% 10% 20% 10% 20%

Model (2.3) + ACWMF 24.3 24.0 25.7 21.5 21.2 21.2

Model (2.3) + ROLD 24.3 24.1 25.8 21.6 21.3 21.2

Model (2.4) 24.1 23.9 25.5 21.2 21.2 21.1

Model (2.2) 24.2 24.0 25.7 21.4 21.2 21.1

Model (2.5) 24.2 24.0 25.7 21,4 21.3 21.2

2.2.3 Blind Inpainting from Multiple Degradations

Sometimes in practice, the images may be corrupted by simultaneous random-

valued impulse noise and scratches without knowing its intensity value beforehand.

Therefore, the index set of damaged pixels includes some discrete pixels corrupted by

impulse noise and some continuous pixels damaged by scratches. In this subsection,

the numerical simulations are related to the image restoration from degradation by

these multiple factors. For both the proposed models (2.2) and (2.5), the parameters

are always set to be λ1 = 3.5, λ2 = 5. Additionally, the parameter λ3 in (2.5),

which is related to the regularization in LDCT transform domain, is either 1/2 or 1

determined by the amount of textures in the true image.

In this subsection, the proposed blind inpainting models (2.2), and (2.5) are

compared with the two-stage method (2.3) with ROLD detection as pre-process.

From the PSNR values shown in Table 2.4 and the visual results indicated in Figure

2.4, it can be clearly observed that the two-system model (2.5) outperforms the

other two models especially for the images ”Barbara512” and ”Goldhill” with rich

textures.

Regarding to the other two models, for the images ”Goldhill” and ”Cameraman”

which have fewer textures, the single-system model (2.2) outperformed the two-stage

model (2.3) with ROLD detector. However, for the image ”Barbara512” which

has relatively more textures, the two-stage model (2.3) with ROLD detector has

better performance compared to the proposed single-system model. The reason for

the above result can be explained as follows. On one hand, the image restoration

quality of the two-stage method is directly determined by the accuracy of ROLD

detector which can be strongly disturbed by thick scratches or additive Gaussian

noise. Therefore, the advantage of single-system model (2.2) would dominate the
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corrupted images (2.3) (2.2) (2.5)

Figure 2.4: The blind inpainting results for images damaged by both impulse noise,
scratch and Gaussian noise with std=10. Three sample images are shown (from
top to bottom): ”Barbara”, ”goldhill” and ”cameraman”. Images in each column
represent (from left to right) corrupted image, restored image by (2.3) with ROLD
pre-detector, restored image by (2.2) and restored image by (2.5). The PSNR values
of the results are given in Table 2.4.

result if there is less textures. On the other hand, the disadvantage of the single-

system model (2.2) for the image ”Barbara512” is caused by misidentification of the

texture features together with the scratch as the outlier v. As an advanced version

of (2.2), the two-system model (2.5) can separate the texture features into the

LDCT system and preserve them in the restored image. Therefore, the preservation

of textures and better treatment with Gaussian white noise and random-valued

impulse noise leads to the best performance of two-system blind inpainting model

(2.5) among all three methods.
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Table 2.4: PSNR value (dB) of the results for inpainting experiments on images
degraded by mixed factors, where the rate of random-valued impulse noise is set as
10%.

Standard deviation σ
Image

of Gaussian noise
(2.3) with ROLD (2.2) (2.5)

0 25.2 24.6 25.2
Barbara512

10 24.7 24.3 24.7
0 25.6 26.5 27.2

Goldhill
10 24.4 26.0 26.4
0 23.4 24.8 24.9

Cameraman
10 23.3 24.5 24.6

2.3 Summary

This chapter focused on the blind image inpainting problem without knowing

the index set of missing/damaged pixel from given information or pre-detection.

Two wavelet frame based models and their corresponding fast algorithms have been

proposed for solving the blind inpainting problems. The models are generated based

on the sparsity of cartoon part in the wavelet transform domain and the sparsity

of the outlier part in image domain. Based on the split Bregman algorithm, the

different variables in the minimization problem can be alternatively optimized to

approach their optimal solutions. The numerical simulations show that compared

to the two-stage methods with pre-detection, the proposed blind inpainting models

perform equally or even better in the image restoration from damage by random-

valued impulse noise with possible Gaussian noise, blurring effect, or scratches.

Moreover, Subsection 4.2.3 shows that the proposed two-system method has special

advantage in protecting the textures when suppressing the noise and scratches. The

numerical results give an alternative way to restore or inpaint the images besides

the existing methods which mainly rely on the given index set of missing/damaged

pixels or the accuracy of the relative pre-detectors. For some cases such as removing

random-valued impulse noise with noise level less than 50%, the blind inpainting

scheme can generate an even better restoration result. However, the blind inpainting

models are still not robust to some types of noise such as the Poisson noise. In future,

the research of blind inpainting models should be focused on its robustness to more

different types of mixed noise or other sorts of image degradations. Another possible

direction of improvement is based on pursuing a better identification of outliers v

so that the quality of removing random-valued impulse noise can be improved from
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the current level.





Chapter 3
CT Image Reconstruction from Low Dose

In the clinical applications of X-ray Computed Tomography (CT), it is important

to reduce the X-ray dose while maintaining the quality of CT image reconstruction.

The widely used filtered back-projection (FBP) method [44, 35, 64, 60] and the

algebraic reconstruction technique (ART) method [51] cannot reconstruct a clear

image if the amount of measurement data is less than half of the anticipated image

resolution. The total variation (TV) regularized method [59] and the anisotropic

wavelet frame based method [58] have made a huge progress in preserving the quality

of reconstruction with reduced measurement.

In this chapter, we will propose two reinforced wavelet frame based methods to

further improve the quality of CT image reconstruction from even less amount of

measurement. First, the isotropic wavelet frame regularization, which treats the

singularities in different directions equally, is introduced to all the proposed models.

Then, the Radon domain inpainting mechanism is introduced to improve the re-

construction quality if the amount of measurement is highly insufficient. Moreover,

the multi-system method is proposed to treat with the artifacts generated by the

mechanical error of the projection matrix P . The alternating algorithms based on

the split Bregman algorithm will be proved to be convergent. The numerical sim-

ulations clearly showed the advantage of the isotropic wavelet frame regularization

and the Radon domain inpainting mechanism in terms of visual quality and numer-

ical evaluation. The numerical results also indicated that for the reconstruction of

both simulated phantom and the preclinical sheep lung, the multi-system method

outperforms the popular FBP and SART+TV methods in terms of relative error,

correlation, the contrast-to-noise ratio (CNR), and the mean structural similarity

33
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[90]. At last, this chapter showed that the proposed multi-system method is also

applicable to interior tomography.

3.1 Frame Based Models

This section is devoted to the proposition of two wavelet frame based CT image

reconstruction models. Both models applied the isotropic wavelet frame regulariza-

tion term which can be defined by (3.2) with p = 2. Since the artifacts generated

during CT image reconstruction do not necessarily have the vertical or horizon-

tal direction, the isotropic wavelet frame regularization should have better effect in

removing the artifacts and preserving the edges and features. The two proposed

models applied the Radon domain inpainting mechanism and the multi-system reg-

ularization scheme, respectively. The details and the purposes of the proposed CT

image reconstruction models are shown in the following subsections.

3.1.1 Radon Domain Inpainting Model

In this subsection, we denote f0 as the observed measurement defined on grid Λ

of size Nm × Np where Nm is the number of sample points on the X-ray detector

and Np is the number of projections for acquiring f0. Denote the higher resolution

projected image as f defined on the grid Ω ⊃ Λ. From a practical concern, we

will only consider inpainting with respect to projection angles (see Figure 1.1 in

Chapter 1). As a result, by our configuration, Ω will become an Nm × 2Np grid

whose even columns are the columns of Λ. Therefore, the number of projections for

the operator P that corresponds to f is 2Np. If we define the restriction operator RΛ

as (RΛv)[i, j] := v[i, j] for (i, j) ∈ Λ and zero elsewhere, the constraint of f should

satisfy RΛf = f0, meaning the inpainted high resolution measurement should be

consistent within the region of the observed measurement f0. In our model, however,

we would not enforce such constraint to be exactly satisfied since f0 is likely to

contain noise. We note that besides RΛ, some other similar operators for preserving

the data consistency have also been proposed in e.g. [66, 87].

The isotropic wavelet tight frame regularized CT image reconstruction model
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using Radon domain inpainting mechanism can be stated as follows:

min
f,u

1

2
‖R(Ω\Λ)(Pu− f)‖2

2 + λ1‖W1f‖1,p + λ2‖W2u‖1,p

+
κ

2
‖RΛf − f0‖2

2 +
1

2
‖RΛ(Pu)− f0‖2

2,

(3.1)

where the last term has the same weights 1
2

as the first term since they both represent

the fidelity in Radon domain. The norm ‖ · ‖1,p can be defined as

‖Wu‖1,p =

∥∥∥∥∥∥
L∑
l=1

(
∑

(i,j)6=(0,0)

|Wl,i,ju|p)
1
p

∥∥∥∥∥∥
1

, p = 1, 2. (3.2)

In the equation (3.2), when p = 1, the norm ‖ · ‖1,1 is called as the anisotropic

`1-norm of the wavelet tight frame coefficients, which is the standard `1-norm used

for majority of wavelet frame based image restoration problems. When p = 2, the

norm ‖ · ‖1,2 is called as the isotropic `1-norm of the wavelet tight frame coefficients,

which was first proposed in [13]. It was shown [13] that for some image restora-

tion problems, isotropic `1-norm outperforms anisotropic `1-norm for analysis based

approach in terms of both visual quality of the restored images and efficiency of

the corresponding numerical algorithm. In this thesis, it will be shown in Section

3.3 that for the CT image reconstruction problem, isotropic `1-norm also performs

better than anisotropic `1-norm.

In our proposed model (3.1), both the first term 1
2
‖R(Ω\Λ)(Pu−f)‖2

2 and the last

term 1
2
‖RΛ(Pu) − f0‖2

2 serve as the data fidelity terms. The simpler fidelity term
1
2
‖(Pu−f)‖2

2 is not used because f is the estimated projection data which is generally

not as reliable as f0. As a result, in the domain Λ where the actual measurement f0

is available, we should guarantee that Pu ≈ f0 on Λ. The term 1
2
‖RΛf −f0‖2

2 makes

sure that the recovered higher resolution projected image f is consistent with f0 on

Λ. The terms λ1‖W1u‖1,p and λ2‖W2f‖1,p are regularization terms which lead the

reconstructed images u and f to be piecewise smooth. The operator W1 denotes the

cubic B-spline framelet transform with 3 levels of decomposition, and the operator

W2 represents the linear B-spline framelet transform with 1 level of decomposition.

In fact, the model (3.1) is general and includes the analysis based approach for

CT reconstruction without Radon domain inpainting as a special case. If we let



36 Chapter 3. CT Image Reconstruction from Low Dose

Ω = Λ and κ =∞, the model (3.1) can be equivalently reinterpreted as

min
u

1

2
‖Pu− f‖2

2 + λ‖Wu‖1,p, (3.3)

where the operator W is equivalent to W2 in (3.1). When p = 1 in (3.3), model (3.3)

is the general analysis based approach [16, 41, 81]. In fact, the model (3.3) is the

duplication of (1.4). In the rest of this chapter, we shall refer to model (3.3) with

p = 1 as the anisotropic wavelet frame based model; and refer to model (3.3) with

p = 2 as the isotropic wavelet frame based model.

3.1.2 Multi-system Models

In this subsection, we propose another analysis based approach which is robust

for inaccurate estimation of projection matrix P . The robustness comes from the

application of a three-system method [41, 12] to separate and treat different image

parts by different regularization terms. In this thesis, the images can be separated

to three different image parts: the cartoon part we want to restore, the artifacts part

generated by the error of P , and the noise part. The three-system model can regular-

ize the noise part with its sparsity in Radon domain, artifacts part in discrete cosine

transform (DCT) domain, and information part in wavelet frame transform domain.

Such an idea was initially implemented in robust image deblurring with inaccurate

blur kernels ([55]), in which the inaccurate blur kernel is essentially the error of the

linear operator from the image to its corresponding measurement. Therefore, in this

paper the error of P is similar as the error of blur kernels. The robust analysis based

approach model is as:

min
u,a,n

1

2
‖P (u+ a) + n− f‖2

2 + λ1‖Wu‖1,2 + λ2‖Da‖1 + λ3‖n‖1, (3.4)

where u is the reconstructed image, a represents the estimated artifacts caused by

inaccurate P , and n stands for the additive noise in Radon domain. P is the pro-

jection matrix for the special method including totally Np projections. The matrix

W = {Wl,i,j : 1 ≤ l ≤ L, (i, j) ∈ {0, 1, 2} × {0, 1, 2}} is the 2D decomposition oper-

ator associated with the linear B-spline framelet system. For the wavelet systems,

l represents the layer and i, j represent the different windows of the frame coeffi-

cient, where only (i, j) = (0, 0) stands for the lower-pass coefficient. The operator



3.2 Algorithms 37

D represents the DCT transform. We assume the vector Da is sparse in the cor-

responding DCT transform domain and the noise vector n is itself sparse in image

domain. Since the model (3.4) is convex for all its variables u, a and n, it can be

alternatingly optimized to simultaneously converge to the optimized solution by [83,

Theorem 4.1]. In particular, the value of u is the true image and the value a and n

should be discarded ultimately.

Finally we want to note that regarding the interior tomography, the projection

lines in each projection angle would be truncated with the middle part. Therefore,

it essentially reduces the rows of the linear system Pu = f and the corresponding

model can be generated as well as (3.4) with different P with fewer rows and f with

shorter vector length.

3.2 Algorithms

Both proposed CT image reconstruction models (3.1) and (3.4) can be solved

through the alternating optimization algorithm. Each step of the alternating opti-

mization algorithm can be generated from the split Bregman algorithm as well as

the blind inpainting algorithms. This section is devoted to provide the outline and

the details for solving all the proposed models. The convergence analysis of the

algorithms are also given in the last part of this section.

3.2.1 Alternating Algorithms

To solve the model (3.1) with Radon domain inpainting mechanism, an alternat-

ing optimization algorithm is proposed as in Algorithm 3. Generally the convergence

of the alternating algorithm can be proved from [83, Theorem 4.1]. Since both the

variables u and f are convex in (3.1), the convergence of Algorithm 3 can be proved

although each step in Algorithm 3 provides an approximate solution. The details of

the proof is given in Subsection 3.2.2.

Using the split Bregman algorithm (2.8), Step 1 of Algorithm 3 can be solved as
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Algorithm 3 Wavelet Frame Based CT Image Reconstruction with Radon domain
inpainting mechanism

Step 0. Solve model (3.3) to obtain an initial reconstruction u0.
while stopping criteria is not met do
Step 1. Solve

fk+1 := arg min
f

1

2
‖R(Ω\Λ)(Pu

k − f)‖2
2 + λ1‖W1f‖1,p +

κ

2
‖RΛf − f0‖2

2.

Step 2. Solve

uk+1 := arg min
u

1

2
‖R(Ω\Λ)(Pu− fk+1)‖2

2 + λ2‖W2u‖1,p +
1

2
‖RΛ(Pu)− f0‖2

2.

end while

follows:
fk+1 := (R(Ω\Λ) + µ1I + κRΛ)−1(R(Ω\Λ)(Pu

k) + µ1W
>
1 (dk1 − bk1) + κRΛf0),

dk+1
1 := T pλ1/µ1(W1f

k+1 + bk1),

bk+1
1 := bk1 + (W1f

k+1 − dk+1
1 ).

(3.5)

If κ = 1, in the first equation we have R(Ω\Λ) + RΛ = I. The stopping criteria is

posed as ‖dk1 − W1u
k‖ ≤ εf with εf being a given tolerance. Conjugate gradient

method is used to solve the linear system in the first step of (3.5).

The algorithms for Step 0 and Step 2 of Algorithm 3 are almost the same except

the operator P corresponds to different number of projections and Ω = Λ for Step

0. The algorithms can be summarized as follows:
uk+1 := (P>P + µ2I)−1(P>(R(Ω\Λ)f + f0) + µ2W

>
2 (dk2 − bk2)),

dk+1
2 := T pλ2/µ2(W2u

k+1 + bk2),

bk+1
2 := bk2 + (W2u

k+1 − dk+1
2 ).

Similar as (3.5) the stopping criteria is posed as ‖dk2−W2u
k‖ ≤ εu where εu is a given

tolerance. The linear system in the first step can be solved by conjugate gradient

method.

The multi-system wavelet frame based CT reconstruction model (3.4) can also

be solved by a similar alternating optimization algorithm whose outline is summa-

rized in Algorithm 4 with variable ε being error tolerance. The convergence of the
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alternating optimization scheme can be similarly proved in Subsection 3.2.2.

Algorithm 4 Outline of the alternating optimization algorithm to solve (3.4)

Step 0. Set the initial values such that u−1 = −1, u0 = 0, a0 = 0, n0 = 0, k = 0.
while stopping criteria (k ≥ 1 and ‖uk − uk−1‖2

2 ≤ ε) are not met do
Step 1. Solve

uk+1 := min
u

1

2
‖P (u+ ak) + nk − f‖2

2 + λ1‖Wu‖1,2.

Step 2. Solve

ak+1 := min
a

1

2
‖P (uk+1 + a) + nk − f‖2

2 + λ2‖Da‖1.

Step 3. Solve

nk+1 := min
n

1

2
‖P (uk+1 + ak+1) + n− f‖2

2 + λ3‖n‖1.

Step 4. Let
k := k + 1.

end while

The Step 3 in Algorithm 4 can be easily solved by a simple one-time soft thresh-

olding operation as nk+1 := T 1
λ3

(f − P (uk+1 + ak+1)). Applying the split Bregman

algorithm (2.8), the steps 1 and 2 can be solved fast and accurately. A detailed

algorithm to solve (3.4) is summarized in Algorithm 5. Note that the corresponding

algorithm for interior tomography is the same as Algorithm 5 except the truncation

of P and f .

3.2.2 Convergence Analysis

The alternating optimization methods, sometimes also called the coordinate de-

scent methods, have already become a popular method to solve optimization prob-

lems with multiple variables. Based on the convexity condition of all the variables,

the convergence analysis has been well-studied in [8, 45, 61, 83, 84]. If the optimiza-

tion of each variable generates the precise solution, applying [83, Theorem 4.1] can

bring out the convergence of the alternating optimization method. In Algorithm 3,

the optimization of each variable is direct application of the split Bregman algorithm

whose convergence has been proved by [16, 46, 40]. In actual numerical simulation,
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Algorithm 5 Detailed Algorithm 4

Step 0. Set the initial values such that u0 = u−1 = 0, d0
u = 0, b0

u = 0, a0 = 0, d0
a =

0, b0
a = 0, n0 = 0, k = 0.

Step 1. Perform the following iterations until the stopping criteria (k ≥ 1 and
‖uk − uk−1‖2

2 ≤ ε) are met.

uk+1 := arg minu
1
2
‖P (u+ ak) + nk − f‖2

2 + µ1
2
‖Wu− dku + bku‖2

2

= (P>P + µ1W
>W )−1(P>(f − Pak − nk) + µ1W

>(dku − bku))
dk+1
u := T 2

λ1/µ1
(Wuk+1 − bku)

bk+1
u := bku + (Wuk+1 − dk+1

u )

ak+1 := arg mina
1
2
‖P (uk+1 + a) + nk − f‖2

2 + µ2
2
‖Da− dka + bka‖2

2

= (P>P + µ2D
>D)−1(P>(f − Puk+1 − nk) + µ2D

>(dka − bka))
dk+1
a := T 1

λ2/µ2
(Dak+1 − bka)

bk+1
a := bka + (Dak+1 − dk+1

a )

nk+1 := T 1
λ3

(f − P (uk+1 + ak+1))

where µ1 and µ2 are parameters which do not need to be rigorously chosen since
the value will not affect the optimal solution of the model and the convergence
of the algorithm. The thresholding operator T pt is defined by (2.10). Note that
W>W = I and D>D = I always hold. The conjugate gradient method can
be used to solve the above linear systems when solving uk+1 and ak+1 in each
iteration.
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however, Algorithm 1 cannot find the precise solution for each subproblem because

only finite iterations can be taken for the split Bregman algorithm and the error

always exists. Therefore, strictly speaking, [83, Theorem 4.1] is not applicable to

directly show the convergence of Algorithm 3. In this subsection, we will provide a

proof which can also be seen in [36] to show that the sequence {(uk, fk)}k is bounded

and any cluster point of {(uk, fk)}k is a solution to (3.1) given the fast decay of error

with respect to k.

Let F (u, f) : Rn ×Rm 7→ R be the objective function of (3.1), i.e.

F (u, f) =
1

2
‖R(Ω\Λ)(Pu− f)‖2

2 + λ1‖W1f‖1,p + λ2‖W2u‖1,p

+
κ

2
‖RΛf − f0‖2

2 +
1

2
‖RΛ(Pu)− f0‖2

2.
(3.6)

By the definition of the model, the parameters λ1, λ2 and κ are positive constants.

It can be easily observed that F (u, f) is a convex and continuous function with

respect to both variables u and f . The vector (ū, f̄) is defined as a coordinatewise

minimizer of F (u, f) if

F (ū, f̄) ≤ F (ū+ vu, f̄) and F (ū, f̄) ≤ F (ū, f̄ + vf ) ∀vu ∈ Rn, ∀vf ∈ Rm.

In general, a coordinatewise minimizer is not necessarily a global minimizer. How-

ever, with the condition that the object function of F (u, f) in (3.6) is a linear

combination of `1 and `2 norm terms with respect to u or f , a coordinatewise mini-

mizer of F (u, f) is also a global minimizer of F (u, f). This result shown as Lemma

3.1 is a direct application of [83, Lemma 3.1] thus the proof of the result is omitted

in this thesis.

Lemma 3.1. Any coordinatewise minimizer of F (u, f) defined by (3.6) is also a

global minimizer.

Since each subproblem of Algorithm 3 is not exactly solved, the function F (u, f)

is consequently not optimized. Therefore in the k-th iteration, given the error tol-

erance εk > 0 and δk > 0 for optimizing u and f respectively, we have the following

inequality:

F (uk+1, fk) ≤ F (u?k+1, f
k) + εk

F (uk+1, fk+1) ≤ F (uk+1, f ?k+1) + δk,
(3.7)
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where u?k+1 = arg minu F (u, fk) and f ?k+1 = arg minf F (uk+1, f). Then we can

deduce a convergence theorem regarding to the sequence {(uk, fk)}k defined by

(3.7).

Theorem 3.2. Given
∑∞

j=0 (εj + δj) <∞, the sequence {(uk, fk)}k defined by (3.7)

is bounded and any of its cluster points is a global minimizer of F (u, f).

Proof. By (3.7), we have

F (uk+1, fk+1) ≤ F (uk+1, f ?k+1) + δk ≤ F (uk+1, fk) + δk ≤ F (u?k+1, f
k) + εk + δk

≤ F (uk, fk) + εk + δk.

Summing this inequality from 0 to k, we have

F (uk+1, fk+1) ≤ F (u0, f 0) +
k∑
j=0

(εj + δj) .

By assumption, we have
∑∞

j=0 (εj + δj) < ∞. By the continuity and convexity of

F (u, f), it can be shown that all level sets of F , i.e. {(u, f) ∈ Rn ×Rm : F (u, f) ≤
C}, is compact. Therefore, the sequence {(uk, fk)}k is bounded and hence has a

convergent subsequence. Without loss of generality, we assume that the sequence

{(uk, fk)}k itself converges to a cluster point (ū, f̄). Applying (3.7) again, we will

have

F (uk+1, fk) ≤ F (uk+1 + vu, f
k) + εk ∀vu ∈ Rn

F (uk+1, fk+1) ≤ F (uk+1, fk+1 + vf ) + δk ∀vf ∈ Rm.

Let k →∞, (uk, fk)→ (ū, f̄) and using the continuity of F bring out F (uk, fk)→
F (ū, f̄). The assumption

∑∞
j=0 (εj + δj) < ∞ implies that εk → 0 and δk → 0.

Therefore, we have

F (ū, f̄) ≤ F (ū+ vu, f̄) ∀vu ∈ Rn

F (ū, f̄) ≤ F (ū, f̄ + vf ) ∀vf ∈ Rm.

As a result, the cluster point (ū, f̄) is a coordinatewise minimizer of F (u, f). Apply-

ing Lemma 3.1 we can prove that any cluster point (ū, f̄) is also a global minimizer

of F (u, f).
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3.3 Numerical Results

This section is devoted to showing the superiority of the proposed isotropic

wavelet frame based CT image reconstruction models to other alternating models.

Subsection 3.3.1 will indicate the advantage of isotropic wavelet frame regulariza-

tion to the anisotropic one. Moreover, Subsection 3.3.1 will also demonstrate the

improvement of image quality by Radon domain inpainting mechanism. Subsection

3.3.2 will show that the proposed multi-system method (3.4) outperforms the popu-

lar FBP method and SART+TV method for the reconstruction of both the simulated

phantom and the preclinical sheep lung. In particular, the proposed multi-system

method has better preservation of sharp edges and more accurate approximation of

smooth parts, which is consistent to the analysis of wavelet regularization to image

restoration at the very beginning of Chapter 1. Subsection 3.3.3 will give the ev-

idence showing that the multi-system method has good reconstruction quality for

interior tomography problems.

3.3.1 CT Reconstruction by Radon Domain Inpainting Mod-

el

In this subsection, the proposed isotropic wavelet frame based CT image recon-

struction models ((3.1) with p = 2 and (3.3) with p = 2) will be compared to the

TV-based model (1.3) and the anisotropic wavelet frame based CT reconstruction

model ((3.3) with p = 1). In particular, the model (3.1) with p = 2 includes the

Radon domain inpainting mechanism while the model (3.3) does not. All the pro-

posed and compared models are solved by the similar strategy of split Bregman

algorithm. Therefore, the purpose of this subsection is to show that the advantage

of isotropic wavelet frame regularization to the anisotropic wavelet frame and the

TV regularization. Another goal of this subsection is to show the Radon domain

inpainting can improve the quality of the reconstructed images.

In the experiments of this subsection, for the proposed model (3.1) with Radon

domain inpainting , the parameters are set as κ = 1, λ2 = 0.01, µ2 = 0.00002, µ1 =

1000. Only the parameter λ1 is dependent on the strength of the noise and the

number of projections. Stronger noise or less projection angles will correspond to

relatively larger λ1 as the optimal parameter settings. For the models (1.3) and

(3.3) with both p = 1 and p = 2, the parameter λ is set the same as λ1 in model
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(3.1). These models are tested using a digital NURBS-based cardiac-torso (NCAT)

phantom [73, 71, 72].

The projection data f for this subsection is generated by f = P (ũ) + ε, where

ε is some noise corresponding to an X-ray tube current of certain mA used in a

typical scanning protocol [9]. Generally speaking, the noise at each pixel satisfies

an Gaussian distribution with mean zero and a pixel-wise variance related to the

intensity of the pixel. The following numerical simulations include the ε of two

different noise levels: mild and strong noise levels (see Figure 3.1 for the noise

distributions for 20 projections as an example). To help with easier observation of

the noise level ε, we remark that the original intensity value of P (ũ) is in the range

of [0, 5.7613] with mean 2.3967.

In this subsections, the numerical comparison is based on the value of the relative

error, the correlation and the total computational time. Given the reconstructed

image u and the ground truth image ũ, the relative error and the correlation is

defined as follows:

err(u) =
‖u− ũ‖2

‖ũ‖2

(3.8)

corr(u) =
(u− ū)(ũ− ¯̃u)

‖u− u‖2‖ũ− ¯̃u‖2

(3.9)

where ū and ¯̃u denote the mean values of u and ũ respectively.

Figure 3.1: The distribution of the noise adding in the Radon domain with 20 pro-
jections. Images from left to right represent the mild and strong noise, respectively.

The reconstructed phantoms are shown in Figure 3.2 and 3.4, from which it can

be seen that the reconstruction of both the isotropic wavelet frame based models

((3.1) with p = 2 and (3.3) with p = 2) has much less artifacts compared to TV
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based model (1.3) and anisotropic wavelet frame based model ((3.3) with p = 1).

Regarding to the reconstruction of the features, take Np = 15 as an example, the TV

based model loses almost all the features inside the lung but the other methods can

recover some of the features. In particular, the isotropic wavelet frame based models

can reconstruct more structure than the anisotropic one because the isotropic `1-

norm can equally protect edges in all directions. Therefore, it has been demonstrated

that the isotropic wavelet frame regularization is better than the TV and anisotropic

wavelet frame regularization for CT image reconstruction problems.

Table 3.1 and 3.2 show the relative error and correlations for all the CT re-

construction models. It can be seen that the proposed Radon domain inpainting

method (3.1) always has the lowest relative error and the highest correlation among

all the models. Moreover, Figure 3.3 and 3.5 show the trend of the relative error

during the execution of split Bregman iterations for all models, which gives us a

conclusion that the Radon domain inpainting model (3.1) has the fastest decreasing

speed of relative error with respect to the number of iterations. However, the com-

putational time for Radon domain inpainting model (3.1) is nearly three times as

other three models. Therefore, the Radon domain inpainting scheme is applicable

for pursuing better quality of reconstruction with sufficient time limit. The isotropic

wavelet frame based model ((3.3) with p = 2) without Radon domain inpainting is

applicable for efficiently obtaining a good result although slightly worse than model

(3.1). It should be claimed here that both the isotropic wavelet frame based model

((3.1) with p = 2 and (3.3) with p = 2) are proposed in [36] and this thesis as well.

Finally, using the model (3.1) to inpaint Radon domain twice can further reduce

the relative error and improve the correlation while the time consumption will be

even more than inpainting in Radon domain once (see Table 3.3).

Table 3.1: Comparison of relative error (in percentage), correlation (in percentage)
and the running time (in seconds) of the algorithm with mild real noise.

TV-based Model Anisotropic Isotropic Inpainting Model (3.1)
Np error corr Time error corr Time error corr Time error corr Time
10 19.3 96.8 107 15.2 98.0 100 13.6 98.4 113 12.4 98.7 285
15 12.4 98.7 124 9.9 99.1 121 8.4 99.4 138 7.2 99.6 369
20 8.8 99.4 137 7.7 99.5 128 6.2 99.7 140 5.2 99.8 396
30 6.3 99.7 172 5.8 99.7 151 4.7 99.8 173 4.1 99.8 523
40 5.1 99.8 204 4.5 99.8 188 3.4 99.9 203 2.9 99.9 640
60 3.8 99.9 265 3.5 99.9 427 2.7 99.9 370 2.2 100.0 807
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Figure 3.2: The tomographic result with mild real noise. The image on top is
the true data ũ. The following rows represent the results using 15, 20, 30 and
40 projections, respectively. Images from left to right in each row are the results
obtained by TV-based model, anisotropic wavelet frame based model, our proposed
isotropic wavelet frame based model and our proposed model (3.1) with inpainting
in Radon domain.



3.3 Numerical Results 47

Figure 3.3: The change of relative error during the iteration for the cases with
mild real noise. The two graphs represent the results using 15 and 20 projections,
respectively.

Table 3.2: Comparison of relative error (in percentage), correlation (in percentage)
and the running time (in seconds) of the algorithm with strong real noise.

TV-Based Model Anisotropic Isotropic Inpainting Model (3.1)
Np error corr Time error corr Time error corr Time error corr Time
15 15.3 98.1 146 11.1 99.0 130 10.2 99.1 126 9.5 99.2 338
20 12.6 98.6 295 8.9 99.3 142 8.2 99.4 159 7.9 99.4 430
30 11.2 98.9 354 7.5 99.5 186 7.1 99.6 177 7.0 99.6 526
40 10.4 99.1 398 7.1 99.6 218 6.6 99.6 207 6.5 99.6 654

Table 3.3: Comparison of relative error (in percentage), correlation (in percentage)
and the running time (in seconds) of the multiple inpainting in Radon domain with
the regularization of wavelet frame for mild real noise.

Isotropic Inpainting Once Inpainting Twice
Np error correlation Time error correlation Time error correlation Time
10 13.6 98.4 113 12.4 98.7 285 12.3 98.7 411
15 8.4 99.4 138 7.2 99.6 369 7.0 99.6 550
20 6.2 99.7 140 5.2 99.8 396 5.0 99.8 818
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Figure 3.4: The tomographic result with strong real noise. The image on top is the
true data ũ. The following rows represent the results using 15, 20, 30 and 40 projec-
tions, respectively. Images from left to right in each row are the results obtained by
TV-based model, anisotropic wavelet frame based model and our proposed isotropic
wavelet frame based model and our proposed model (3.1) with inpainting in Radon
domain.



3.3 Numerical Results 49

Figure 3.5: The change of relative error during the iteration for the cases with
strong real noise. The two graphs represent the results using 15 and 20 projections,
respectively.

3.3.2 CT Reconstruction by Multi-system Model

This subsection is devoted to the evaluation of the robust wavelet frame based

model (3.4) by comparison to some popularly used methods such as the filtered back

projection (FBP) and the simultaneous algebraic reconstruction technique method

with total variation regularization (SART+TV). In this subsection, first a modified

Shepp-Logan phantom which simulates a human head was chosen for the numerical

simulations. The projection matrix P is generated from a typical SIEMENS fan-

beam geometry including 672 detector cells and 1160 projections for a full scan.

The measurements was polluted by Poisson noise which was simulated according to

the physical imaging chain based method [88]. While the strength of Poisson noise

is proportional to the number of photons, consequently the signal to noise ratio is

inversely proportional to the photon number. The vector f was downsampled to

using 75, 100, 150 and 200 projections from the original 1160 projections. After the

numerical simulations of the simulated phantom, a preclinical projection f of a sheep

lung scanned by a SIEMENS scanner [89] is also employed for the experiments.

In this subsection, similar as model (3.1), the parameters of (3.4) are also almost

fixed for both the simulated phantom and the preclinical measurement. For example,

the parameters for the artifacts and noise part is fixed as λ2 = 0.05, λ3 = 10 and

the tolerance parameter ε is always 0.00001. The only exception is the parameter λ1

which is dependent on the amount of features on the true image. In the numerical

simulations of this subsection, λ1 = 4.0 for the Shepp-Logan phantom and λ1 = 0.01
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for the preclinical sheep lung. The clear difference of the λ1 for these two images

is caused by that the preclinical sheep lung has more tiny features and less flat

regions so that the optimal regularity should be relatively less than that for the

Shepp-Logan phantom.

Besides the visual quality, the relative error (3.8) and the correlation (3.9), the

mean structural similarity (SSIM) [90] and the CNR values are also applied to

evaluate the quality of the CT image reconstructions. The structural similarity can

be generally defined as in (3.10). In this thesis as well as most literatures, the mean

SSIM is calculated by taking average of the SSIM values from different Gaussian

windows with hsize = 11 and σ = 1.5.

SSIM(x, y) =
(2µxµy + c1)(2σxσy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.10)

where µx and µy are the average of the image patches x and y, respectively. σx

and σy denote the variance of x and y. c1 and c2 are two constants to stabilize the

division with weak denominator and their settings in this subsection are c1 = 0.01

and c2 = 0.03.

The CNR value is defined as the ratio between the intensity difference of two flat

regions and the estimated noise standard deviation. Therefore, the CNR value is

specially for evaluate the reconstruction of flat regions. The regions chosen for both

the simulated Shepp-Logan phantom and the preclinical sheep lung are indicated by

the circles in Figure 3.6. The ground truth of the Shepp-Logan phantom is selected

as the phantom image. For the preclinical sheep lung study, reconstruction result

by the FBP method from full 1160 projections is regarded as the ground truth.

To reconstruct an optimal result image of the preclinical sheep lung (with res-

olution 512 × 512), the canonical FBP method only needs 1.5 seconds from 100

projections. The SART+TV method takes 750 seconds for the same CT image

reconstruction problem. Regarding to the proposed robust model (3.4), the total

computational time is 422 seconds since only 10 iterations is sufficient to find a good

object image.

Table 3.4 and 3.5 show the quantitative evaluation of the CT image reconstruc-

tion result. Compared to the FBP method and the SART+TV method, the proposed

robust wavelet frame based model (3.4) always has the lowest relative error and the

highest SSIM, correlation, and CNR value. The advantage of the proposed model

(3.4) can be explained by that the isotropic wavelet frame regularization and the
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Figure 3.6: The ground truth images for numerical simulations. The left one is a
modified Shepp-Logan phantom and the right one is a real sheep lung. The red
circles indicate the regions for calculating the contrast-to-noise ratio (CNR). The
white square indicates the magnified region of Figure 3.8. The green lines are the
positions of the profiles in Figure 3.9.

three-system structure can remove most of the artifacts in different directions and

protect most of the features such as the sharp edges. Moreover, Figure 3.7 and

3.11 visually show the advantage of the proposed model (3.4) which is consistent

to the quantitative result shown in Table 3.4 and 3.5. In particular, Figure 3.8

and 3.9 show that in the flat region of ROI, the proposed method (3.4) has less

error and standard deviation compared to the SART+TV method. Figure 3.10 also

shows that the proposed analysis based method can preserve the sharp edge of the

phantom while both the FBP method and the SART+TV oversmooth these edges.

Furthermore, Figure 3.12 demonstrates that the separation of the three systems is

appropriate. Figure 3.13 shows that the three-system method has less error than

the single-system method ((3.3) with p = 2) without the terms of a and n.

Finally there is a remark that the Radon domain inpainting scheme can also

improve the CT reconstruction results by removing more artifacts. However, such

scheme will complicate the model (3.4) and computation time would be consequently

increased to more than 4 times of the model (3.4) without Radon domain inpainting.

Moreover, the effect of Radon domain inpainting is reduced if more noise is added

to the initial measurement.
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Figure 3.7: The tomographic results (512X512) of the Shepp-Logan phantom recon-
structed from noisy projections with Poisson noise. The image on top is the ground
truth image. The following rows are the CT reconstruction results using 75, 100 and
150 projections, respectively. Images from left to right in each row are the results
obtained by FBP, SART with TV regularization and robust wavelet frame based
model (3.4), respectively.
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Figure 3.8: Zoom in images of a flat region of Figure 3.7 for 150 projections. The
region is indicated in FIG 3.6. The image on top row is the ground truth image.
For the bottom row, the images from left to right are the zoom in images obtained
by FBP, SART with TV regularization and robust wavelet frame based model (3.4),
respectively.

Table 3.4: Comparison of mean SSIM (Gaussian window of size 11 and standard
deviation 1.5), relative error, correlation and contrast-noise-ratio (CNR) for the
reconstructed results of the Shepp-Logan phantom from projections with Poisson
noise.

FBP method SART+TV method Robust method (3.4)
Np SSIM error corr CNR SSIM error corr CNR SSIM error corr CNR
75 0.623 0.582 0.865 509.4 0.946 0.246 0.969 1506.2 0.959 0.135 0.989 3015.4
100 0.637 0.548 0.883 569.8 0.949 0.228 0.969 1661.8 0.964 0.115 0.991 3389.0
150 0.658 0.500 0.899 651.4 0.950 0.227 0.969 1681.0 0.970 0.101 0.994 3938.1

Table 3.5: Comparison of mean SSIM (Gaussian window of size 11 and standard
deviation 1.5), relative error, correlation and contrast-noise-ratio (CNR) for the
reconstructed results of the preclinical sheep lung.

FBP method SART+TV method Robust method (3.4)
Np SSIM error corr CNR SSIM error corr CNR SSIM error corr CNR
100 0.651 0.250 0.942 696.9 0.712 0.308 0.923 615.2 0.873 0.077 0.994 2332.3
150 0.709 0.262 0.954 787.4 0.727 0.264 0.932 639.9 0.899 0.061 0.996 2870.9
200 0.747 0.209 0.959 848.1 0.730 0.255 0.936 640.6 0.909 0.055 0.997 3136.9
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Figure 3.9: Representative of the profiles of the green line in the images in FIG 3.7
reconstructed from 150 projections.

Figure 3.10: Zoom in images of the edge parts of Figure 3.7 for 150 projections. The
image on top row is the zoom in part of assumed ground truth image. For the bottom
row, images from left to right are the zoom in images obtained by FBP, SART with
TV regularization and robust wavelet frame based model (3.4), respectively.



3.3 Numerical Results 55

Figure 3.11: The tomographic results (512X512) of the real sheep lung. The image
on top row is the ground truth image and the corresponding greymap bar (Hounsfield
Unit). The following rows are the CT reconstruction results using 100, 150 and
200 projections, respectively. Images from left to right in each row are the results
obtained by FBP, SART with TV regularization and robust wavelet frame based
model (3.4), respectively.
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Figure 3.12: The separation of three parts of the image for real sheep lung re-
construction from 200 projections through the analysis based approach (3.4). The
images from left to right are the image part, artifacts part and the noise part in the
Radon domain.

Figure 3.13: The error for the CT reconstruction of the sheep lung from 200 projec-
tions. The left image is the error of the proposed three-system method (3.4) and the
relative difference is 0.055. The right image is the error and single-system method
minu

1
2
‖Pu− f‖2

2 + λ1‖Wu‖1,2 and the relative difference becomes 0.069.
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3.3.3 Interior Tomography Results

To simulate local projections for interior reconstruction, the middle 202 (30%)

detector cells in each projection are extracted. Figure 3.14 and 3.15 show the interior

tomography result for the Shepp-Logan phantom and the preclinical sheep lung,

respectively. As well as the global reconstruction, it can be seen that the robust

model (3.4) performs better than the FBP method and the SART+TV method.

As a result, it can be claimed that the proposed robust wavelet frame based CT

reconstruction model (3.4) is also applicable for the interior tomography problem.

3.4 Summary

In this chapter, two types of wavelet frame based CT reconstruction methods

were proposed to reconstruct high quality CT reconstructed images with low pro-

jection dose. Fast and convergent algorithms for the proposed methods were also

developed based on the split Bregman algorithm. Both numerical simulations and

preclinical application were performed for the evaluation of different models and al-

gorithms. It was shown in the numerical results that in terms of the visual quality,

relative error and correlations, the proposed frame based methods can outperform

anisotropic wavelet frame based method [58] and all TV regularized methods and

un-regularized methods. The present study gives the possibility of reducing the CT

projection dose while preserving the quality of the result images, which contributes

to improving the precision of clinical diagnosis and reducing the X-ray exposure to

the patients.

Regarding to the CT image reconstruction problem from highly insufficient num-

ber of projection angles, an isotropic wavelet frame based CT image reconstruction

model (3.1) with Radon domain inpainting mechanism has been proposed in Subsec-

tion 3.1.1. Model (3.1) includes both the equation Pu = f and the fidelity of Radon

domain inpainting. Efficient algorithm which alternatingly optimizes the result im-

age u and the inpainted Radon domain f was designed to solve the model (3.1). This

thesis has also proved the convergence of the alternating optimization algorithm, i.e.,

the value of u and f can approach the their optimal solutions. Numerical simula-

tions were executed using at least 10 projection angles of a digital NURBS-based

cardiac-torso (NCAT) phantom [73, 71, 72]. Compared with the TV regularized

method and anisotropic wavelet frame based method, the proposed method always
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Figure 3.14: The interior tomographic results (512X512) of the Shepp-Logan phan-
tom reconstructed from noisy projections with Poisson noise. The image on top
row is the ground truth image. The following rows are the CT reconstruction re-
sults using 75, 100 and 150 projections, respectively. Images from left to right in
each row are the results obtained by FBP, SART with TV regularization and robust
wavelet frame based model (3.4), respectively. The highlighted parts in white circles
centered at the middle of the phantom are the reconstructed ROI.
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Figure 3.15: The interior tomographic results (512X512) of the real sheep lung. The
image on top row is the ground truth image and the corresponding greymap bar
(Hounsfield Unit). The following rows are the CT reconstruction results using 100,
150 and 200 projections, respectively. Images from left to right in each row are the
results obtained by FBP, SART with TV regularization and robust wavelet frame
based model (3.4), respectively. The highlighted parts in white circles centered at
the middle of the phantom are the reconstructed ROI.
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has lower relative error and higher correlations for the measurement with any small

number of projections and any strength of additive noise in Subsection 3.2.1. Fur-

thermore, the proposed method with Radon domain inpainting mechanism has the

fastest decreasing speed of relative error. By applying Radon domain inpainting

mechanism, it is possible to reduce approximately half of projection dose to pre-

serve the same reconstruction quality compared with the TV regularized method.

Compared with the most commonly used FBP method, the proposed method (3.1)

can reduce even more proportion of projections while reconstructing images with

even higher quality and less relative errors, which is significant for controlling the

amount of radiation to the patients during cancer detection and radiation thera-

py. To be honest, the Radon domain inpainting mechanism inevitably complicates

the model and algorithm, which would increase the time and memory consumption.

The improved complexity of the model, however, could be accepted in the clinical

application in merely several years thanks to the continuous development of hard-

ware. Further research could investigate higher efficiency Radon domain inpainting

algorithm to reduce the number of iterations and the time consumption.

Another problem highlighted in this chapter is the robustness to the inaccurate

projection matrix P caused by the instrument error. To design an isotropic wavelet

frame based robust CT reconstruction model, a three-system structure was intro-

duced where the systems decompose the reconstructed images into three different

parts: cartoon, artifacts and noise. When applying the three-system structure, the

reconstructed images can be free from additive noise and artifacts caused by the

inaccurate P . Besides the proposal of the robust isotropic wavelet frame based

methods, this chapter also attempted to save more radiation dose by using the in-

terior tomography scheme [85, 86] which illuminates a region-of-interest (ROI). By

applying the corresponding efficient algorithms, this chapter accomplished some nu-

merical simulations to the reconstruction of a real sheep lung which contains more

complicated tiny features than the NCAT phantom. Numerical simulations showed

that given the same amount of real measurement from a X-ray scanning machine,

the proposed isotropic wavelet frame based methods were able to outperform two

popular methods such as filtered back projection (FBP) method and the simulta-

neous algebraic reconstruction technique (SART) with total variation (TV) regular-

ization (SART+TV) in terms of both the visibility and mean structural similarity.

Moreover, the zoom-in figures show that the proposed isotropic wavelet frame based

methods can preserve most of the useful tiny features when suppressing the noise
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and artifacts. Compared with the NCAT phantom, the real sheep lung is closer

to the current CT image reconstruction applications because of its complicated im-

age structure and inaccurate measurement. Therefore, the good performance of the

proposed isotropic wavelet frame based methods shown in Subsection 3.3.2 can im-

prove the feasibility of applying wavelet frame based method to clinical applications.

Furthermore, with the robustness of the proposed wavelet frame based CT image

reconstruction model, it is possible to reduce the projection dose even if the projec-

tion matrix P has apparent instrument error caused by inaccurate beamlet location

and direction. Additionally, Subsection 3.3.3 showed that our frame based models

are applicable for interior tomography which can reduce more projection dose.





Chapter 4
Wavelets Approximation

The fundamental task of approximation is to approach a possibly complicated

function called the target function by simpler functions. In particular, if the com-

plicated function f satisfies some smooth condition, e.g., f ∈ W k
p (Rs), then the

quasi-projection operators generated by piece-wise polynomials can approximate f

with certain approximation order. The quasi-projection operator has approximation

order n if it can exactly reproduce polynomials of degree n− 1 exactly. Section 4.1

will review the definition of quasi-projection operators and provide the conditions

for exact reproduction of polynomials.

With the definition of B-spline refinable functions and its corresponding wavelets,

the quasi-projection operator can be constructed by linear combination of B-spline

refinable functions with the coefficients generated by wavelet decompositions [68, 37].

Section 4.2 will show that the quasi-projection operator with low frequency coeffi-

cients can approximate the smooth functions. Moreover, the quasi-projection op-

erator with high frequency coefficients can approximate the derivatives of smooth

functions. With the similar construction of 2-dimensional quasi-projection opera-

tors by tensor products, the approximation to 2-dimensional smooth functions and

their partial derivatives can be similarly proved. The result of the approximation

shows that the wavelet frame based image restoration models with the thresholding

operation can generally preserve the information in the smooth image pieces. Since

the sharp edges and features can be represented by large and sparse wavelet coef-

ficients while the noises are represented by relatively smaller wavelet coefficients,

the thresholding operation can also remove the additive noise while maintaining the

63
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sharp edges. Therefore, the outperforming of wavelet frame based image restora-

tion methods, including the numerical results shown in Chapter 2 and 3, can be

theoretically explained.

In order to improve the approximation order of the quasi-projection operator

without changing the inner product form 〈f, ϕ∗m(· −α)〉 for P in (4.5) as well as the

inner product form 〈f, ψm,l(·−α)〉 for Ql in (4.8), it is necessary to design some new

dual functions φm,l,n whose construction is similar as the pseudo-splines [33, 74].

Section 4.3 will give a general form and some examples of the dual function φm,l,n

for pursuing higher approximation order n, where n can be arbitrarily high if the

target function f is sufficiently smooth.

4.1 Approximation by Quasi-projection Operators

First, the quasi-projection operator Q without dilation is given by

Qf =
∑
α∈Zs
〈f, φ̃(· − α)〉φ(· − α), f ∈ Lp(Rs), (4.1)

Then, the quasi-projection operator with dilation 2j can be defined as

Qjf = σ2−jQσ2jf = 2js
∑
α∈Zs
〈f, φ̃(2j · −α)〉φ(2j · −α), f ∈ Lp(Rs), (4.2)

where the dilation operator can be defined as σhf = f(·/h) for all h > 0. First, we

review the general theorem of approximation by quasi-projection operator proposed

in [57] as follows:

Theorem 4.1. ([57] Theorem 3.1) Suppose 0 ≤ h < n and φ is a compactly sup-

ported function in W h
p (Rs). Let Q and Qj be the quasi-projection operator and its

dilation defined as (4.1) and (4.2), respectively. If Qq = q for all q ∈ Πn−1, then

|f −Qjf |h,p ≤ C(2−j)n−h|f |n,p ∀f ∈ W n
p (Rs).

where ‖f‖n,p =
n∑
h=1

|f |h,p and |f |h,p =
∑
|µ|=h
‖Dµf‖p. In this chapter, ‖ · ‖n,p and

| · |j,p always represent the Sobolev norm and its corresponding semi-norms with

1 ≤ p ≤ ∞. Πn−1 represents all the polynomials with order less than or equal to

n − 1. To obtain the condition Qq = q for all q ∈ Πn−1, we have the following
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theorem whose condition is stated in Fourier domain.

Theorem 4.2. ([56, 37]) Let Q be the quasi-projection operator defined as (4.1).

Suppose that both of the following conditions hold:

1. φ̂(0) 6= 0, and Dµφ̂(2kπ) = 0, ∀k ∈ Z\{0} and |µ| < n, where D is the

differential operator.

2. Dµ(1− ˆ̃φφ̂)(0) = 0 ∀|µ| < n.

Then Qq = q for all q ∈ Πn−1.

The first condition (named Strang-Fix condition) can be equivalently stated as

[φ̂, φ̂] − |φ̂|2 = O(| · |)2n with [f, g](ξ) :=
∑

k∈Z f(ξ + 2πk)g(ξ + 2πk). The second

condition can also be equivalently stated as 1− ˆ̃φφ̂ = O(| · |)n.

4.2 B-spline Wavelet Approximation

This section is devoted to proving the approximation of smooth functions and

their derivatives by quasi-projection operators with B-spline refinable functions and

wavelets. First we will introduce the definition of B-spline refinable functions and

their corresponding wavelet functions. The Fourier transform of B-splines wavelet

of order m and vanishing moment l are defined as:

ψ̂m,l(ξ) := −ile−ij
ξ
2

√√√√(
m

l
)
cosm−l(ξ/4) sinm+l(ξ/4)

(ξ/4)m
(4.3)

where j = m mod 2. When l = 0, we denote the ψ̂m,0 as the Fourier transform of

the refinable function ϕ∗m and

ϕ̂∗m(ξ) = e−ij
ξ
2

sinm(ξ/2)

(ξ/2)m
(4.4)

it is clear that lim
ξ→0

ϕ̂∗m(ξ) = 1 and ϕ∗m ∈ W 1
p (R) for m ≥ 2. Moreover, regardless of

the denominator, we can find that for B-spline function of order m, the Strang-Fix

condition of order m must hold. Furthermore, consider the Taylor expansion of

sinm(ξ/2) = ξ
2
− m

6
( ξ

2
)3 +O(ξ5), we will know that for ϕ̂∗m, the Taylor expansionwill

have the form of e−ij
ξ
2 (a0 + a1( ξ

2
)2 + O(ξ2)) where a0 = 1 and a1 is a non-zero real

number. Moreover, the term e−ij
ξ
2 has absolute value 1. Therefore, we can only
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have that 1 − |ϕ̂∗m|2 = O(| · |)2. As a result, the B-spline functions of order m ≥ 2

can generate the approximation order 2.

Now we give the definition of quasi-projection operator P and its dilated form

Pj as follows:

Pf =
∑
α∈Z

〈f, ϕ∗m(· − α)〉ϕ∗m(· − α), (4.5)

Pjf = 2j
∑
α∈Z

〈f, ϕ∗m(2j · −α)〉ϕ∗m(2j · −α), j ∈ Z, (4.6)

where ϕ∗m is B-spline function of order m ≥ 2 defined in (4.4). Then the m-th order

Strang-Fix condition and 1 − |ϕ̂∗m|2 = O(| · |)2 implies that Pq = q for any linear

polynomial q and Pj can approximate f with the approximation order 2. From the

results above, we can state the theorem of approximation of smooth functions by

quasi-projection operator of B-spline functions (see also [37]).

Theorem 4.3. Suppose f ∈ W 2
p (R) and 0 ≤ h < 2. Let P and Pj be the quasi-

projection operator and its dilated form defined in (4.5) and (4.6). Then

|f − Pjf |h,p ≤ C(2−j)2−h|f |2,p. (4.7)

In particular, ‖f − Pjf‖p ≤ C(2−j)2|f |2,p for all f ∈ W 2
p (R). Combining the cases

of h = 0 and h = 1, we will have ‖f − Pjf‖1,p ≤ Ch|f |2,p ≤ Ch‖f‖2,p.

In the following part of this section, we focus on the approximation of derivatives

by B-spine wavelet coefficients. To approximate the l-th order derivatives of func-

tions, we define a quasi-projection operator Ql and its dilated form Ql,j as follows:

Qlf = al
∑
α∈Z

〈f, ψm,l(· − α)〉ϕ∗m(· − α), (4.8)

Ql,jf = al2
j
∑
α∈Z

〈f, ψm,l(2j · −α)〉ϕ∗m(2j · −α), (4.9)

where ϕ∗m is B-spline function of order m ≥ 1 defined in (4.4). ψm,l is the cor-

responding B-spline wavelets with vanishing moment l defined in (4.3). al is a

constant for the normalization of the quasi-projection operator. Then we want to

prove that Ql,j = σ2−jQlσ2j can approximate the l-th order derivative of functions

with approximation order of 2.
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Consider the case of l = 1, notice that using integration by parts, we have

〈f, ψm,1(· − α)〉 =

∫ ∞
−∞

f(x)ψm,1(x− α)dx =

∫ ∞
−∞

f(x+ α)d(ϕm,1(x))

= −
∫ ∞
−∞

Df(x+ α)ϕm,1(x)dx = −
∫ ∞
−∞

Df(x)ϕm,1(x− α)dx = 〈Df,−ϕm,1(· − α)〉,

,where Dϕm,1 = ψm,1. Therefore ϕm,1 = D−1ψm,1 which is a compactly supported

function and in the Sobolev space Wm
p (R) (since ψ1 ∈ Wm−1

p (R)). Correspondingly,

in Fourier domain, we have

ϕ̂m,1 = ψ̂m,1/(iξ) = −e−ij
ξ
2

√
m

4

cosm−1(ξ/4) sinm+1(ξ/4)

(ξ/4)m+1
= −e−ij

ξ
2

√
m

4

sinm−1(ξ/2)

(ξ/2)m−1

sin2(ξ/4)

(ξ/4)2
.

Since the Taylor expansions of both sinm−1(ξ/2)
(ξ/2)m−1 and sin2(ξ/4)

(ξ/4)2
have the form of 1+O(ξ2),

we have that

ϕ̂m,1(ξ) = −e−ij
ξ
2

√
m

4
(1 +O(ξ2)).

Together with the condition that ϕ̂∗m = eij
ξ
2

sinm(ξ/2)
(ξ/2)m

we have 1 − ̂(− 4√
m
ϕm,1)ϕ̂∗m =

O(ξ2). Since ϕ∗m also satisfies the Strang-Fix condition of order 2, by setting a1 =
4√
m

, we have the result that

Q1f =
4√
m

∑
α∈Z

〈f, ψm,1(· − α)〉ϕ∗m(· − α) =
∑
α∈Z

〈Df,− 4√
m
ϕm,1(· − α)〉ϕ∗m(· − α)

can exactly reproduce Df if Df ∈ Π1 or f ∈ Π2. For higher order derivatives, the

calculation is similar and

Qlf =
4l√√√√( m

l

)∑
α∈Z

〈f, ψm,l(· − α)〉ϕ∗m(· − α)

with al = 4l(
m

l
)−

1
2 can exactly reproduce Dlf if Dlf ∈ Π1. As a result, the

dilated quasi-projection operator Ql,jf defined in (4.9) can approximate Dlf with
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the approximation order never greater than 2, i.e.:

|Df−Ql,jf |h,p ≤ C(2−j)n−h|Dlf |n,p ≤ C(2−j)n−h|f |n+l,p ≤ C(2−j)n−h‖f‖k,p ∀f ∈ W k
p (R).

(4.10)

where k ≥ l and n = min(2, k − l). In particular, if k = 2 and h = 0, we have

‖Df − Q1,jf‖p ≤ C2−j|f |2,p with approximation order 1. Here it should be noted

that the idea of constructing the smooth fuction ϕm,1 by integrating ψm,1 was initially

proposed in [77].

It is known that Ψ2 = {ψ2,l, 0 ≤ l ≤ 2} with m = 2 form the linear B-spline

wavelet system whose 2-dimensional form is frequently applied in Chapter 2 and 3

and other image restoration problems. By the results shown in (4.7) and (4.10),

we can summarize the approximation of smooth functions and their derivatives as

follows:

(i) if f ∈ Lp(R), we can merely have the 0 order approximation of f as ‖f −
Pjf‖p ≤ C‖f‖p.

(ii) if f ∈ W 1
p (R), we can merely have the approximation of f as ‖f − Pjf‖p ≤

C2−r|f |1,p with approximation order 1. The approximation order of first order

derivative is |Df −Q1,jf |h,p ≤ C|f |1,p with approximation order 0.

(iii) if f ∈ W 2
p (R), we can merely have the approximation of f as ‖f − Pjf‖p ≤

C(2−j)2|f |2,p with approximation order 2. The approximation order of the

first order derivative is |Df −Q1,jf |h,p ≤ C2−j|f |2,p with approximation order

1. The approximation order of second order derivative is |D2f − Q2,rf |h,p ≤
C|f |2,p with approximation order 0.

(iv) if f ∈ W k
p (R) with even larger k, the approximation order of f cannot exceed

2. The approximation of the derivatives can be correspondingly improved but

also never greater than 2.

It can be easily observed that positive order of approximation implies the Lp con-

vergence of the approximation. For example, ‖f−Pjf‖p ≤ C(2−j)n|f |1,p with n > 0

implies lim
r→∞

Pjf = f in Lp sense. However, when n = 0, using the density of C∞0 (R)

in Lp space, we can prove that the equation lim
r→∞
‖Pjf − f‖ = 0 also holds.

For the two-dimensional case which corresponds to the applications of image pro-

cessing, by iteratively integrating the 2-dimensional wavelets ψm,l1,l2 , the integrated
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functions ϕm,l1,l2 can be similarly calculated since the wavelets are defined by ten-

sor product. The corresponding quasi-projector Ql1,l2,jf can also approximate the
∂f

∂x1l1∂x2l2
if f is sufficiently smooth. For the tight wavelet frame system, consider the

normalization, it is known that the intensity value of the image is essentially regard-

ed as 2j0/2〈f, φ̃(2j0 ·−α)〉 for some position vector α and resolution level j0. And one

layer of 2-dimensional linear B-spline wavelet decomposition can be regarded as:

Pj0f = Pj0−1f +
∑

0≤l1,l2≤2,l1l2 6=0

∑
α∈Z2

22(j0−1)〈f, ψ2,l1,l2(2
j0−1 · −α)〉ψ2,l1,l2(2

j0−1 · −α)

where b0(α) = 〈f, ϕ̃∗2(2j0−1 · −α)〉, α ∈ Z2 represent the 2(−j0+1)/2 multiple of the

low frequency coefficients and bl1,l2(α) = 〈f, ˜ψ2,l1,l2(2
j0−1 · −α)〉, α ∈ Z2 represen-

t the 2(−j0+1)/2 multiple of the wavelet coefficients or high frequency coefficients.

Now it has been shown that in each smooth piece of images, when the low fre-

quency coefficients b0 in Pj0−1f approximates f , the high frequency coefficients bl in

Ql1,l2,j0−1f simultaneously approximates the corresponding partial derivative. Such

result shows that the wavelet decomposition can bring out good approximations of

both functions and their derivatives in smooth image parts. Moreover, the wavelet

coefficients bl(α) can be regarded as good sample points of estimated derivative Dlf .

In practice of image restorations, the wavelet frame based image restoration methods

do not directly change the low frequency coefficients. Moreover, the high frequency

coefficients are usually very close to 0 therefore the thresholding operation would

not change these coefficients too much. Therefore, the smooth part of the image can

be preserved from the fidelity information.

Regarding to the non-smooth part, or the edges and singularities in the images,

although the above linear approximation theory is not applicable, the singularities

of the underlying solutions can be represented by large wavelet coefficients while the

remaining smooth pieces can be partitioned by these singularities. It is known that

the sharp edges would correspond to large but sparse wavelet coefficients and the

additive noise will bring a lot of small wavelet coefficients. Therefore, clear images

with edges and without additive noises can be obtained through solving a solution

only with a few large wavelet coefficients. In fact, in most popular wavelet frame

regularized image restoration methods, including all the frame based methods in

Chapter 2 and 3, there always exists one step called the shrinkage or thresholding

operation (see equation (2.10) as an example) which is a non-linear approximation

step to preserve the large wavelet coefficients, remove the small coefficients and
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consequently approach a solution with sparse representation in wavelet transformed

domain. Therefore, it is not surprising that the wavelet frame based image restora-

tion method can preserve the smooth regions, sharp edges while suppressing the

additive noise.

4.3 Higher Order Approximation

From Theorem 4.1 we know that given sufficiently smooth f , higher n for Qq =

q, q ∈ Πn−1 can correspond to higher approximation order. However, from equation

(4.10), if we just choose φ as the B-spline refinable function ϕ∗m as in previous

sections, the approximation order of functions and their derivatives by Pj and Ql,j

can be at most 2 due to not only the Strang-Fix condition but also the equation

1− ϕ̂m,lϕ̂∗m = O(ξn) being not true for number n > 2. To obtain the approximation

of Dlf with higher approximation order up to n, we define the new dilated quasi-

projection operator for functions and their derivatives as follows:

P n
j f = 2j

∑
α∈Z

〈f, ϕ∗m(2j · −α)〉φm,0,n(2j · −α)

Qn
l,jf = al2

j
∑
α∈Z

〈f, ψm,l(2j · −α)〉φm,l,n(2j · −α) (4.11)

where m ≥ 1 and 1 ≤ l ≤ m. Note that in (4.11), the inner product 〈f, ψm,l(2j ·−α)〉
represents the wavelet coefficients thus we should keep ψm,l unchanged and find a

better φm,l,n to satisfy both the Strang-Fix condition of order n and the equation

1− ϕ̂m,lφ̂m,l,n = O(ξn). It can be observed that the approximated function Qn
l,rf is

a piece-wise polynomial with degree n. In fact, if f ∈ W k
p (R), the approximation

order of Dlf by Qn
l,j can be improved to n = k− l which is identical to the maximal

approximation order of Dlf by piece-wise polynomials with piece size 2−j and degree

n = k − l (see the proof of Deny-Lions lemma in [1]).

4.3.1 Construction of Dual Functions

Here we first give the definition of φ̂m,l,n as follows:

φ̂m,l,n(ξ) = e−ij
ξ
2

sink(ξ/2)

(ξ/2)k

k−2∑
n=0

αn sinn(ξ/2) = e−i(j−j
′) ξ

2 ϕ̂∗nΘ(sin(ξ/2)). (4.12)
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where ϕ∗n is the B-spline function of order n and Θ(sin(ξ/2)) = Θ(sin(ξ/2))m,l,n is a

trigonometric polynomial, j = m mod 2 and j′ = n mod 2. Then in time domain,

φm,l,n is the finite linear combination of integer translated n-th order B-spline func-

tion therefore φm,l,n lies in W n−1
p (R) and has compact support. Furthermore, φm,l,n

satisfies the Strang-Fix condition of order n, i.e.:

[φ̂m,l,n, φ̂m,l,n]− |φ̂m,l,n|2 = O(| · |)2n. (4.13)

Notice that for l ≥ 0 (ϕm,0 := ϕ∗m), ̂(alϕm,l)(ξ) = e−ij
ξ
2

sinm−l(ξ/2)
(ξ/2)m−l

sin2l(ξ/4)
(ξ/4)2l

, and

sin2l(ξ/4) = (1−cos(ξ/2)
2

)l = ( sin2(ξ/2)
2(1+cos(ξ/2))

)l. Therefore we have

̂((−1)lalϕm,l)(ξ) = e−ij
ξ
2

sinm+l(ξ/2)

(ξ/2)m+l
(

2

(1 + cos(ξ/2))
)l

and the corresponding φ̂m,l,n(ξ) should approach

1

̂((−1)lalϕm,l)(ξ)
= e−ij

ξ
2

(ξ/2)m+l

sinm+l(ξ/2)

(1 + cos(ξ/2))l

2
.

Consequently, Θ(sin(ξ/2)) should approach

1

e−i(j−j
′) ξ

2 ̂((−1)lalϕm,l)(ξ)ϕ̂∗n(ξ)
=

e−ij
ξ
2

e−i(j−j
′) ξ

2 e−ij
′ ξ
2

(ξ/2)m+l+k

sinm+l+k(ξ/2)

(1 + cos(ξ/2))l

2

=
(ξ/2)m+l+k

sinm+l+k(ξ/2)

(1 + cos(ξ/2))l

2
.

Then we try to rewrite 1
̂((−1)lalϕm,l)(ξ)ϕ̂∗n(ξ)

by the power series of sin(ξ/2) which is

similarly occurred in [33].

Since arcsinω = ω +
∞∑
j=1

(2j−1)!!
(2j)!!(2j+1)

ω2j+1, we have

ξ/2 = sin(ξ/2) +
∞∑
j=1

(2j − 1)!!

(2j)!!(2j + 1)
sin2j+1(ξ/2)
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when ξ → 0. Similarly, we can find the Maclaurin series of

1 +
√

1− ω2 = 2 +
1

2
ω2 +

∞∑
j=2

(−1)j+1(2j − 3)!!

(2j)!!
ω2j.

As a result, we have

1 + cos(ξ/2) = 2 +
1

2
sin2(ξ/2) +

∞∑
j=2

(−1)j+1(2j − 3)!!

(2j)!!
sin2j(ξ/2)

when ξ → 0. Summarize these results, we have:

1

e−i(j−j
′) ξ2 ̂((−1)lalϕm,l)(ξ)ϕ̂∗n(ξ)

=

[
1 +

∞∑
j=1

(2j−1)!!
(2j)!!(2j+1)

sin2j(ξ/2)

]m+l+n

[
1 + 1

4
sin2(ξ/2) +

∞∑
j=2

(−1)j+1(2j−3)!!
2(2j)!!

sin2j(ξ/2)

]l (4.14)

Therefore, we need to approach the Maclaurin series of 1

e−i(j−j
′) ξ2 ̂((−1)lalϕm,l)(ξ)ϕ̂∗n(ξ)

by its corresponding truncated polynomials. For a arbitrarily given positive even

integer n, if we take Θ(sin(ξ/2)) to be the trigonometric polynomial of degree up to

n− 2, we will have the following result:

Θ(sin(ξ/2)) = 1

e−i(j−j
′) ξ2 ̂((−1)lalϕm,l)(ξ)ϕ̂∗n(ξ)

+O(sin(ξ/2)n) = 1

e−i(j−j
′) ξ2 ̂((−1)lalϕm,l)(ξ)ϕ̂∗n(ξ)

+O(ξn)

So we have

̂((−1)lalϕm,l)(ξ)φ̂m,l,n(ξ) = ̂((−1)lalϕm,l)(ξ)
(
e−i(j−j

′) ξ
2 ϕ̂∗n(ξ)Θ(sin(ξ/2))

)
=

(
e−i(j−j

′) ξ
2 ̂((−1)lalϕm,l)ϕ̂∗n

)
Θ(sin(ξ/2)) = 1 +O(ξn)

since e−i(j−j
′) ξ

2 ̂((−1)lalϕm,l)ϕ̂∗n → 1 when ξ → 0. Therefore, we already verified the

approximation condition

1− ϕ̂m,l(ξ)φ̂m,l,n(ξ) = O(ξn). (4.15)
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Combining condition (4.13) and (4.15), we can generate the following theorem.

Theorem 4.4. Suppose f ∈ W k
p (R) with k ≥ l. Let 0 ≤ n ≤ k − l and define the

quasi-projector Qn
l,j by (4.11), where the dual function φm,l,n is defined by (4.12). If

0 ≤ h < n, then

|Dlf −Qn
l,jf |h,p ≤ C(2−j)n−h|Dlf |n+l,p ≤ C(2−j)n−h|f |k,p ≤ C(2−j)n−h‖f‖k,p.

Note that the l and n can be arbitrarily large if k is large enough. In particular, take

h = 0 and n = k− l, we have the Lp-norm approximation as the following corollary:

Corollary 4.5. Suppose f ∈ W k
p (R) with k ≥ l. Let Qk−l

l,j defined by (4.11). Then

‖Dlf −Qk−l
l,j f‖p ≤ C(2−j)k−l|f |k,p ≤ C(2−j)k−l‖f‖k,p.

Summing up all the cases of l = 0, 1, 2, . . . , s ≤ m in Corollary 4.5, the approximation

of Sobolev norm ‖f‖s,p can be described in the following corollary.

Corollary 4.6. Given f ∈ W k
p (R) with k ≥ s+ n. Let Qn

l,j be defined as (4.11) for

approximation of l-th order derivative. Then∣∣∣∣ s∑
l=0

‖Qn
l,jf‖p − ‖f‖s,p

∣∣∣∣ ≤ s∑
l=0

∣∣‖Qn
l,jf‖p − ‖Dlf‖p

∣∣
≤

s∑
l=0

C(2−j)n|f |2+l,p ≤ C(2−j)n‖f‖2+s,p ≤ C(2−j)n‖f‖k,p.

4.3.2 Some Examples

Regarding to the form of φ̂m,l,n shown in (4.12), it is necessary to generate the

trigonometric polynomial Θ(sin(ξ/2)) by truncating the series shown in (4.14). Take

m = 2, l = 1, n = 4 as an example, ψ2,1 is the linear B-spline wavelets with vanishing

moment 1. Section 4.3 already shows that

Q1,jf = Q2
1,jf =

4√
2

2j
∑
α∈Z

〈f, ψ2,1(2j · −α)〉ϕ2(2j · −α)

can approximate Df with approximation order 2 for f ∈ W 3
p (R). If the function

f has better smoothness condition, e.g., f ∈ W 5
p (R), it is possible to enhance the

approximation order from 2 to 4. However, the improvement of approximation order

also needs to replace the last term ϕ2(2j · −α) by φ2,1,4(2j · −α). By checking the
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equation (4.14) and truncate the trigonometric polynomial sin2j(ξ/2) with power up

to 4− 2 = 2, we have the following statement:

1

̂((− 4√
2

)1ϕ2,1)(ξ)ϕ̂∗4(ξ)
=
[
1 + 1

6
sin2(ξ/2) +O(ξ4)

]7
[
1 + 1

4
sin2(ξ/2) +O(ξ4)

]1
= 1 + 17

12
sin2(ξ/2) +O(ξ4).

Note that ei(j−j
′) ξ

2 = 1 since j = m mod 2 = 0 and j′ = n mod 2 = 0. Therefore,

Θ(sin(ξ/2)) = 1 + 17
12

sin2(ξ/2) and the Fourier transform of the function φ2,1,4 can

be consequently defined as

φ̂2,1,4(ξ) = ϕ̂∗4(ξ)(1 +
17

12
sin2(ξ/2)) (4.16)

where ϕ∗4 is the cubic B-spline function. Observe that sin2(ξ/2) =
[
eiξ/2−e−iξ/2

2i

]2

=

eiξ−2+e−iξ

−4
= 1

2
− eiξ+e−iξ

4
. Moreover, the inverse Fourier transforms of complex func-

tions e±iξ are nothing but translation by distance ∓1, or shift by one unit to both

directions. In another word, the equation (4.16) can be equivalently described in

the time domain as follows:

φ2,1,4(x) =
41

24
ϕ∗4(x)− 17

48
(ϕ∗4(x− 1) + ϕ∗4(x+ 1)),

It can be seen that φ2,1,4(x) is also a compactly supported piece-wise cubic poly-

nomial. Moreover, the discontinuous points are all integer points, which is important

for the linear approximation theory and its application to discretized image process-

ing problems. As a result, the quasi-projection operator

Q4
1,jf = 2

√
2 · 2j

∑
α∈Z

〈f, ψ2,1(2j · −α)〉φ2,1,4(2j · −α)

has the property

|Df −Q4
1,jf |p ≤ C(2−j)4|Df |4,p ≤ C(2−j)4‖f‖5,p, ∀f ∈ W 5

p (R).

For the second example, we set m = 1, l = 1 and n = 4, which is to show that

given enough smoothness condition, the approximation order can be arbitrarily high
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for even the Haar wavelet. For this case, we can generate the following equations:

1

e−i(j−j′) ξ
2

̂((− 4√
1

)1ϕ1,1)(ξ)ϕ̂∗4

(ξ) =
[
1 + 1

6
sin2(ξ/2) +O(ξ4)

]6
[
1 + 1

4
sin2(ξ/2) +O(ξ4)

]1
= 1 + 5

4
sin2(ξ/2) +O(ξ4)

Since m is odd and n is even, we have e−i(j−j
′) ξ

2
=e−i

ξ
2 and

φ̂1,1,4(ξ) = e−i
ξ
2 ϕ̂∗4(ξ)(1 +

5

4
sin2(ξ/2)) (4.17)

In time domain, equation (4.17) can be rewritten as:

φ1,1,4(x) =
13

8
ϕ∗4(x− 1

2
)− 5

16
(ϕ∗4(x− 3

2
) + ϕ∗4(x+

1

2
))

where ϕ∗4 is the cubic B-spline function. The half shift existed at all the terms

since the Haar wavelet itself contains half shift. Based on this definition, the quasi-

projection operator

Q4∗
1,jf = 4 · 2j

∑
α∈Z

〈f, ψ1,1(2j · −α)〉φ1,1,4(2j · −α)

also satisfies

|Df −Q4∗
1,jf |p ≤ C(2−j)4|Df |4,p ≤ C(2−j)4‖f‖5,p, ∀f ∈ W 5

p (R)

although the Haar wavelets ψ1,1 has worse properties than linear B-spline wavelet

ψ2,1.

A final remark of this subsection is that the formula of φ4,0,4(0) can be similarly

calculated and the result Θ(sin(ξ/2)) = 1 + 4
3

sin2(ξ/2) is consistent to that in [33].

4.4 Summary

This chapter is devoted to the approximation of derivatives and Sobolev norms of

smooth functions via quasi-projection operators constructed from B-spline wavelets.

First, using the method from [77] we integrated the B-spline wavelet ψm,l by l times

to generate a smooth function ϕm,l with vanishing moment 0. Then we showed

that both the Strang-Fix condition [φ̂m,l,n, φ̂m,l,n] − |φ̂m,l,n|2 = O(| · |)2n and the



76 Chapter 4. Wavelets Approximation

approximation condition 1− ϕ̂m,lφ̂m,l,n = O(| · |)n hold for appropriately constructed

φm,l,n. In particular, k = max(2,m) if the φm,l,n is simply chosen as the B-spline

refinable functions ϕm. Moreover, Section 4.3 provided a general formula of φm,l,n

for pursuing arbitrarily high approximation order n. Given a wavelet ψm,l and n, the

constructed function φm,l,n, generated by finite linear combination of integer shifted

n-th order B-spline functions, is a n-th order piece-wise polynomial with compact

support. The approximation result can be further applied to the discrete case such

as in signal and image processing. Higher approximation order can obtain better

approximation to the singularities or features so that the wavelet decomposition

layers can be reduced to deduct time and memory consumption.
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