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SUMMARY 

This study centered on flavor analysis of indigenous citrus fruits and 

Arabica coffee in the Asian region. In the search for novel and unique flavor 

profiles, several cultivars of pomelo (Citrus grandis (L.) Osbeck), calamansi 

(Citrus microcarpa) and Arabica coffee (Coffea arabica var.) were 

characterized (volatile and aromatic profiles) using gas chromatography-mass 

spectrometer/flame ionization detector (GC-MS/FID). As it is of much 

academic and commercial interest to identify and replicate the authentic 

aroma, the ultimate aim of this study was to approximate as closely as possible 

the authentic composition of natural flavors or process flavors. Therefore, 

different approaches and techniques were adopted as a means to achieve the 

specific objectives, which were to improve current extraction techniques, data 

interpretations and to obtain useful insights by correlating instrumental and 

sensory data. In addition, non-volatile components, which contribute to taste 

attributes and potential health benefits such as sugars, organic acids and 

phenolic acids, were examined by ultra-fast liquid chromatography-

photodiode array detector/evaporative light scattering detector (UFLC-

PDA/ELSD). 

Several sample extraction techniques were employed in this study. 

Solvent extraction was modified to improve the extraction yield, especially 

when handling complex juice matrices. Headspace-solid phase 

microextraction (HS-SPME) was employed to extract aroma compounds from 

the delicate samples such as pomelo blossoms in order to ensure minimal 



 xi

damage to the plant tissues. In addition, stir bar sorptive extraction (SBSE) 

coupled with programmable thermal evaporation system (PTV) was developed 

to quantify volatile compounds in model citrus beverage simultaneously. 

Pressurized liquid extraction (PLE) demonstrated the feasibility of producing 

coffee extracts under controllable extraction conditions in correlation with 

desirable sensory attributes. Further evaluation of pomelo peel extracts using 

gas chromatography-olfactometry (GC-O) provided more insights into the 

aroma-active compounds composing the uniqueness of pomelo flavor. These 

techniques are useful in analyzing different food matrices. 

Statistical approaches, i.e. principal component analysis (PCA), 

canonical discriminant analysis (CDA) and partial least square regression 

(PLSR) were used to interpret the instrumental data. Hence, the distributions 

of chemical compounds in different samples were correlated with their 

geographical origins and aromatic profile. It is believed that these findings 

provide substantial information on less common citrus varieties and Arabica 

coffee based on their chemical compositions and aromatic profile. It is also 

demonstrated the extraction capability of either improved solvent extraction 

method or relatively new SBSE method on different food matrices. The 

integration of statistical approaches into flavor analysis also facilitate the data 

interpretation of huge data set.  



 xii 

LIST OF TABLES 

Table Title Page 

2.1. Identifications of the volatile compounds and their relative GC 
peak area of Malaysian pomelo (Citrus grandis (L.) Osbeck, 
pink and white type) blossoms through HS-SPME analysis 

38-39 

2.2 Identifications of the volatile compounds and their relative GC 
peak area of Malaysian pomelo (Citrus grandis (L.) Osbeck, 
pink and white type) peels through HS-SPME analysis 

44-45 

3.1 Identifications of the volatile compounds and their relative GC 
peak area of Malaysian pomelo (Citrus grandis (L.) Osbeck, 
pink and white type) peel extracts 

53-54 

3.2 Aroma-active compounds with odor description identified in 
Malaysian pink pomelo peel extract achieved by means of 
GC-O 

58-59 

3.3 Aroma-active compounds with odor description identified in 
Malaysian white pomelo peel extract achieved by means of 
GC-O 

60-61 

4.1 Identification of volatiles and their concentrations (ppm) in 
Malaysian pomelo (Citrus grandis (L.) Osbeck pink and white 
type) juice extracts 

76-77 

4.2 Identification of volatiles in Malaysian pomelo (Citrus 
grandis (L.) Osbeck pink and white type) juices through HS-
SPME (relative percentages of FID peak area) 

78-79 

4.3 Physicochemical properties, sugars composition and organic 
acids content of Malaysian pomelo (Citrus grandis (L.) 
Osbeck pink and white type) juices 

81 

4.4 Percentage of variation explained in the first two components 
of PLSR  

86 

5.1 Identification of volatile compounds and their concentrations 
(ppm) of calamansi (Citrus microcarpa) peel extracts from 
Malaysia, the Philippines and Vietnam through hexane and 
dichloromethane 

96-99 

5.2 Free and bound phenolic acids content (mg/kg) of the 
calamansi (Citrus microcarpa) peel from Malaysia, the 
Philippines and Vietnam 

110 

6.1 Identification of volatiles and their concentrations (ppm) in 
calamansi (Citrus microcarpa) juices from Malaysia, the 
Philippines and Vietnam 

119-121 



 xiii

6.2 Physicochemical properties, sugars, organic acids and 
phenolic acids of calamansi juices from Malaysia, the 
Philippines and Vietnam 

124 

7.1 RSM model and method validation for all volatile compounds 135-137 

7.2 Central composite design for three factors 140 

7.3 Experimental domain for screening significant factors 
affecting extraction of SBSE. 

142 

8.1 Volatiles and their concentrations (ppm) of dichloromethane 
extracts of coffee varieties from different geographic origins. 

162-168 

8.2 Phenolic acid components and their respective concentrations 
(mg/g dry wt.) of coffee beans from different geographic 
origins 

174 

8.3 Antioxidant activity of coffee beans from different geographic 
origins 

176 

9.1 Face-centered central composite design (CCD) 182 

9.2 Identification of volatiles and their concentrations (ppm) in 
coffee beans extracted using hexane, dichloromethane and 
methanol 

187-188 

9.3 Odour description, polynomial equation, R2, probability 
values, lack-of-fit and significance probability of regression 
coefficients in the final reduced models 

191-192 

9.4 Validation of response surface model 197 

 

  



 xiv

LIST OF FIGURES 

Figure Description Page 

2.1 Sensory profile of intact Malaysian pomelo (Citrus grandis (L.) 
Osbeck, pink and white type) blossoms: Pink pomelo blossom; White 
pomelo blossom 

46 

3.1 Sensory profile of Malaysian pomelo (Citrus grandis (L.) Osbeck, 
pink and white type) peel extracts: (—) Pink pomelo peel extract; (---
) White pomelo peel extract 

55 

3.2 GC-MS chromatogram (top) and aromagram (bottom) attained by 
performing the AEDA on Malaysian pomelo peel extract 

56 

3.3 Flavor profile analysis of Malaysian pink pomelo peel extract and the 
reconstituted aroma model 

60 

3.4 Flavor profile analysis of Malaysian white pomelo peel extract and 
the reconstituted aroma model 

61 

4.1 Sensory attributes of fresh pomelo juices: (a) orthonasal and (b) 
retronasal 

83 

4.2 Biplot of volatile and non-volatile compounds of pink (□) and white 
(∆) pomelo juice  

85 

4.3 PLSR loading plots of volatile compounds correlated with orthonasal 
attributes (a) and non-volatile compounds correlated with retronasal 
attributes (b) 

87 

5.1 PCA of calamansi (Citrus microcarpa) peel extracts ((∆) Malaysia; 
(○) the Philippines; (□) Vietnam)) using dichloromethane. (a) Score 
plot PC 2 against PC 1; (b) Score plot PC 3 against PC 2; (c) PCA 
plot on volatile variables of PC 3 against PC 2 

103 

5.2 PCA of calamansi (Citrus microcarpa) peel extracts ((∆) Malaysia; 
(○) the Philippines; (□) Vietnam)) using hexane. (a) Score plot of PC 
2 against PC 1; (b) Score plot of PC 4 against PC 3; (c) PCA plot of 
volatile variables of PC 4 against PC 3 

105 

5.3 Canonical discriminant analysis employing country origin as 
grouping criterion. Projection of volatile variables on the 
discriminant space, selecting the two discriminant functions as axes: 
(a) Dichloromethane; (b) Hexane 

106 

5.4 Sensory profiles of calamansi (Citrus microcarpa) peel extracts: (a) 
Dichloromethane; (b) Hexane 

108 

 

 

  



 xv 

6.1 PCA analysis of calamansi (Citrus microcarpa) juice 
dichloromethane extracts [(∆) Malaysia; (○) the Philippines; (□) 
Vietnam]: (a) Score plot of PC 2 against PC 1; (b) Variables plot of 
PC 2 against PC 1 

130 

7.1 Effect of splitless time on the quantitation of each class of volatile 
compounds 

144 

7.2 Typical profiles of surface response generated from a quadratic 
model in the optimization of three variables (thermal desorption time, 
desorption flow and cryofocusing temperature): (a) Constant − 
exemplified by linalool; (b) Linear − exemplified by methyl 
jasmonate; (c) Quadratic with minimum response− exemplified by 
decyl acetate; (d) Quadratic with maximum response − exemplified 
by ocimene 

147 

7.3 Pareto chart of the statistical analysis of the screening of factors for 
the extraction step of (a) alcohols; (b) aldehydes; (c) esters; (d) 
hydrocarbons; and (e) others. The vertical line indicates the threshold 
value for proclaiming the statistical significant terms on the effect of 
(A) ionic strength; (B) stirring speed; (C) extraction time; (D) 
temperature; (E) pH 

151-152 

7.4 FID peak areas of SBSE extraction on different matrices 156 

8.1 PCA score plot (PC 2 against PC 1) of coffee (Coffea arabica) 
extracts of dichloromethane (a); PCA biplot (PC 2 against PC 1) of 
coffee (Coffea arabica) extracts (b): (O) Sidikalang Kopi Luwak; (+) 
Sidikalang; (∆) Doi Chang and (*) Yunnan 

172 

8.2 Correlation between FRAP and DPPH assays with the total 
polyphenol content of coffee 

177 

8.3 Aroma sensory profile of coffee (Coffea arabica) extracts using 
dichloromethane 

178 

9.1 Response surface plots showing the effects of temperature, pressure 
and static extraction time of selected compounds: 1. maltol; 2. 
furfuryl mercaptan; 3. 2,6-dimethylpyrazine. (a) interaction between 
temperature and pressure; (b) interaction between temperature and 
time; (c) interaction between pressure and time 

195 

9.2 Sensory profiles of coffee extracts under three optimized extraction 
conditions 

198 

 

 

  



 xvi

LIST OF ABBREVIATIONS 

Abbreviation Caption 

AEDA Aroma extract dilution analysis 

ANOVA Analysis of variance 

CIS Cooled injection system 

CDA Canonical discriminant analysis 

ELSD Evaporative light scattering detector 

FD Flavor dilution 

FID Flame ionization detector 

GC Gas chromatography 

GC-FID Gas chromatography-flame ionization detector 

GC-MS Gas chromatography-mass spectrometry 

GC-O Gas chromatography-olfactometry 

HS Headspace 

LRI Linear retention index 

MS Mass spectrometry 

NIST National Institute of Standards and Technology 

OAV Odor activity value 

PCA Principal component analysis 

PDA Photodiode array detector 

PDMS Polydimethylsiloxane 

PLE Pressurized liquid extraction 

PLSR Partial least square regression 

PTV Programmed temperature vaporization 

RFA Relative flavor activity 

SBSE Stir bar sorptive extraction 

SPME Solid phase microextraction 

TA Titratable acidity 

TDU Thermal desorption unit 

TSS Total soluble solid 

UFLC Ultra-fast liquid chromatography 

  



 xvii 

LIST OF PUBLICATIONS  

1. Refereed Journal Publications 
  

Cheong, M. W.; Loke, X. Q.; Liu, S. Q.; Pramudya, K.; Curran, P.; Yu, B., 
Characterization of volatile compounds and aroma profiles of Malaysian 
pomelo (Citrus grandis (L.) Osbeck) blossom and peel. Journal of 
Essential Oil Research 2011, 23(2), 34-44. 

 
Cheong, M. W.; Liu, S. Q.; Yeo, J.; Chionh, H. K.; Pramudya, K.; Curran, P.; 

Yu, B., Identification of aroma-active compounds in Malaysian pomelo 
(Citrus grandis (L.) Osbeck) peel by gas chromatography-olfactometry. 
Journal of Essential Oil Research 2011, 23(6), 34-42. 

 
Cheong, M. W.; Chong, Z. S.; Liu, S. Q.; Zhou, W. B.; Curran, P.; Yu, B., 

Characterisation of calamansi (Citrus microcarpa) Part I: volatiles, 
aromatic profile and phenolic acids in the peel. Food Chemistry 2012, 
134, 686-695. 

 
Cheong, M. W.; Zhu, D.; Sng, J.; Liu, S. Q.; Zhou, W.; Curran, P.; Yu, B., 

Characterisation of calamansi (Citrus microcarpa). Part II: Volatiles, 
physicochemical properties and non-volatiles in the juice. Food 
Chemistry 2012, 134, 696-703. 

 
Cheong, M. W.; Liu, S. Q.; Zhou, W.; Curran, P.; Yu, B., Chemical 

composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) 
juice. Food Chemistry 2012, 135, 2505-2513. 

 
Cheong, M. W.; Tong, K. H.; Ong, J. J. M.; Liu, S. Q.; Curran, P.; Yu, B., 

Volatile composition and antioxidant capacity of Arabica coffee. Food 
Research International 2013, 51, 388-396. 

 
Cheong, M. W.; Lee, J. Y. K.; Liu, S. Q.; Zhou, W.; Nie, Y.; Kleine-Benne, 

E.; Curran, P.; Yu, B., Simultaneous quantitation of volatile compounds 
in citrus beverage through stir bar sorptive extraction coupled with 
thermal desorption-programmed temperature vaporization. Talanta 
2013, 107, 118-126. 

 
Cheong, M. W.; Tan, A. A. A.; Liu, S. Q.; Curran, P.; Yu, B., Pressurised 

liquid extraction of volatile compounds in coffee bean. Talanta (In 
press). 



 xviii

 
 
 
2. Conferences/ proceedings  

 
Cheong, M. W., Chong, Z. S., Zhou, W., Liu, S. Q., Curran, P. and Yu, B. 

Characterisation of volatile compounds in calamansi (Citrus 
microcarpa) from Southeast Asia. 11th ASEAN Food Conference held in 
Bangkok, Thailand on 16-18 June 2011. 

 
Cheong, M. W.; Tan, A. A. A.; Ong, J. J. M.; Tong, K. H.; Liu, S. Q.; Curran, 

P.; Yu, B., Assessment of chemical and aromatic profiles of Asian 
coffee. Separation Science Asia 2012 held in Kuala Lumpur, Malaysia 
on 27-28 June 2012. 



 1 

CHAPTER 1 INTRODUCTION AND LITERATURE 

REVIEW 

1.1. Background  

Flavor has been part of the quest in preparing food and beverage in our 

daily life. In fact, food is a complex system which provides a multimodal 

stimulus and flavor is a multimodal sensory experience (1). In a scientific 

context, flavor can be defined as a biological sensation which combines the 

perceptions of taste, aroma and trigeminal (2, 3). These perceptions are the 

aggregate of the characteristics of the material that produces the sensation of 

flavor, which is one of prior sensory perceptions for consumers in choosing 

food products (2-5). With the development of commercial food processing, 

quality consistency of food products has become an important issue. Thus, a 

more science-based route has been taken to create flavor ingredients that could 

be incorporated into the mass production of food in order to ensure quality 

consistency. 

Flavor science is a multidisciplinary field that focuses on the interplay of 

physical and chemical properties of food with physiological taste and smell 

receptors (6). Flavor compounds are comprised of essential oils, oleoresins, 
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protein hydrolysates, or any product of pyrolysis or enzymolysis derived from 

a plant or animal source, whose significant function in food is flavoring rather 

than nutritional (7). Though flavor compounds are usually present in trace 

amounts in a food system (less than 0.1% of total weight), they are one of the 

important elements in a food system. Thus, flavor research is essential in 

providing substantive understanding and information of flavor compounds. 

Progress in flavor research has been an evolutionary process along with the 

growing demands in the flavor industry (8). Today, flavor research is 

expanding from analytical and synthetic chemistry (9-11) into areas including 

biotechnology (12-14), psychophysics (15-17), encapsulation (18-20), and 

addressing flavor problems of functional foods (6, 21-23). Nevertheless, flavor 

analytical chemistry continues to play a key role in flavor research (1).  

From an analytical perspective, the main challenges in flavor analysis 

are to obtain the genuine chemical profile and correlate the identified 

compounds with their flavor attributes (24). The presence of most potent odors 

is usually in trace amounts and/or reactive and unstable, making their profiling 

much more complicated (25, 26). Therefore, systematic flavor analysis is 

required to justify the findings from various aspects, especially when dealing 

with specific food matrices. Flavor compounds could exhibit different rates of 

flavor release when incorporated into different food matrices, e.g. in the 

presence of fats, proteins or carbohydrates (27-29). The interaction among 

flavor compounds in a particular food matrix might lead to an enhancement, 

synergy or suppression of their relative volatility that could change the way of 

aroma is perceived. 
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Conscientious flavor analysis enhances the identification and 

quantification of potent volatiles from different food sources and matrices. 

This is mainly due to the recent developments in analytical techniques with 

improved accuracy and enhanced limits of detection. Furthermore, sensory 

evaluation is necessary in order to correlate potent key odorants with their 

aroma profiles, to integrate the science and art of flavor creation and also to 

provide insights of flavor delivery systems. Among numerous studies in flavor 

chemistry, analysis of natural flavor (e.g. flavor/aroma emission from the fruit 

or blossoms) and process flavor generated during roasting of coffee beans are 

of major interest but yet to be fully understood. Analysis of citrus fruit and 

coffee flavor could be very different. Even analyses of different parts of plants 

(i.e. blossoms, peels and juices) require much effort in developing appropriate 

analytical methods. Hence, citrus and coffee analyses could be the models in 

developing flavor analytical methods for other complex food systems.  

The subsequent sections provide more detailed discussions on the 

developments of flavor science, analytical techniques and their implications. 

Furthermore, aroma evaluation techniques and applications of statistical 

analysis of analytical data in understanding flavor compositions will be 

discussed.  

 

1.2. Recent developments of flavor science   

 “The knowledge and use of plants as flavoring and seasoning to 

enhance the quality of foods, beverages and drugs is as old as the history of 

mankind” (12).  However, the use of essential oil was continuously expanding 

without deeper understanding on molecular knowledge of these ingredients 
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until the evolution of organic chemistry in the early 1800s. By the turn of the 

20th century, the progress of organic chemistry and scientific methodology has 

embarked much groundbreaking research in flavor industry. In the 1950's, 

there were about 500 compounds that had been characterized for their flavor 

attributes (30, 31). Due to the astonishing development of instrumentations 

(e.g. gas and liquid chromatography, mass spectrometry, nuclear magnetic 

resonance) in the late 1950s, the progress of flavor science in deciphering the 

novel molecules of flavor compounds was fostered (7). The importance of 

analytical chemistry in supporting the development of flavor research was also 

established. 

As flavor science continuously developed, investigations have evolved 

from the mere identification of volatiles to studies of other essential aspects of 

flavor chemistry. Detailed chemical characterization of aroma compounds and 

the assessment of their sensorial significance could distinguish and quantify 

those aroma-active compounds from the complex spectrum of flavor 

compounds (32). As will be seen below, several main aspects will be further 

elaborated.  

 

1.2.1. The search for novel flavor compounds   

It remains important for flavor companies to own their captive 

(proprietary) collections to create unique flavor blends that are suitable for 

mainstream acceptance, yet which have an authentic appeal. Hence, new 

sources of aroma and flavor compounds are consistently being sought (3). 

Flavor compounds are mainly derived from a wide range of natural sources 
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with very varied organoleptic characteristics such as fruit, dairy, cereal and 

vegetable sources of flavor (2, 3).  

 Many of these flavors rely on one of more functional groups in 

exhibiting their characteristic flavors, which are known as odor/aroma-active 

compounds (2). In many cases, particular compounds are essential flavor 

components and, without them, a distinctive flavor of the particular fruit or 

vegetable cannot be achieved (3). Even the flavors of citrus varieties within a 

family are composed by a diverse array of volatile compounds with disparate 

concentration. An artificial citrus flavor, for example, could contain from 70 

to 80 critical aroma-active compounds; collectively mimicking the taste and 

aroma of a real citrus, which contains hundreds of flavor compounds (33). 

Nevertheless, there can be a single predominant flavor chemical in some food 

responsible for the flavor quality; also known as character-impact compound 

such as benzaldehyde for cherry flavors and vanillin for vanilla flavors (3).  

Grapefruit from citrus family provides a very interesting example. It has 

been recognized that (R)-nootkatone, a sesquiterpene with a potent grapefruit 

flavor character and a low odor threshold of 1 μg/L, was also found to be 

important in pomelo (34, 35). More recently, it was discovered that a 

chemically different compound, ρ-menthene-8-thiol also gives grapefruit 

character at considerably low concentration (below 10 μg/L) with a 

remarkably low threshold of 0.00002 μg/L (3, 36). This demonstrates that a 

great variety and range of flavor compounds still remains undiscovered, even 

in seemingly familiar food. As the identification work on unique potential new 

flavor components with desired performance attributes continues to increase 

the range of innovative flavors, developing new improved analytical methods 



 6 

becomes a key aspect as well. Hence, there are long-established international 

organizations such as International Organization of the Flavor Industry (IOFI), 

which are actively involved in developing analytical methods and provide 

guidelines (37).  

 

1.2.2. Biogenesis of fruit aroma 

Fruit aroma varies widely though all fruits share a very high proportion 

of the same volatile compounds. Most volatile compounds in fruits contain 

aliphatic hydrocarbon chains, or their derivatives (esters, alcohols, acids, 

aldehydes, ketones, lactones). For instance, citrus fruits are rich in terpenoids 

whereas most non-citrus fruits, such as apple, raspberry, cranberry and 

banana, are characterized by esters and aldehydes (2). Fruit aroma compounds 

are mainly secondary products of various metabolic pathways as a result of 

degradation reaction during ripening (38). They are derived from an array of 

compounds including phytonutrients such as fatty acids, amino acids, 

carotenoids, phenolics and terpenoids (39).  

Many of the terpenoids are stored in fruits as non-volatile glycosides. 

When a glycosidase enzyme cleaves the sugar off the glycoside precursor, 

aromatic terpenoids will be released (40). Rearrangements and dehydrations of 

terpenoid compounds could occur under very mild conditions. The formation 

of a cation will easily rearrange non-cyclic terpenes into many different 

bicyclic species. Only a small amount of acid or base is needed to initiate 

double-bond shifts, cyclizations, and the loss of water. Thus, artifact 
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formations are a problem during flavor isolation as well as during the 

processing and storage of food products (2, 41). 

Aldehydes, alcohols and esters arise from the enzymatic degradation of 

lipids and/or are produced from free fatty acids, e.g. linoleic and linolenic 

acids via lipoxygenase activity or amino acids (such as acetaldehyde that 

comes from alanine) (39). The volatile esters are formed during the 

esterification (alcoholysis) of alcohols by alcohol acetyltransferase as the acyl 

donor during the ripening of many fruits including apples, citrus and melons 

(39, 42). When the lipid oxidation forms 4- or 5-hydroxy acids, lactones are 

usually formed which stabilize the hydroxyl fatty acid so further oxidation 

does not occur (2).     

Each type of plant has its own set of enzymes, pH and medium 

conditions (2). Apart from varietal differences, environmental factors, such as 

variations in growing temperatures, rainfall, irrigation and soil nutrients, can 

influence the compositions of flavor compounds present in similar varieties.  

 

1.2.3. Thermal generation of flavors 

 Process flavors, generated from the Maillard reactions (non-enzymatic 

browning) (43), can range from the major reaction flavors in nuts and 

chocolate to chicken and beef (44, 45). Other reactions such as the 

decomposition of fats and oils or caramelization also play an important role in 

the development of process flavors. Coffee flavor is one of the most studied 

process flavors with great commercial potential. Although most of the flavor 

compounds that characterize the coffee flavor are already known, there are 

many that needs to be discovered with the potential of some emerging new 
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technologies (25, 46-48). Roasted coffee flavors are mainly results from the 

thermal decomposition of carbohydrates and phenols, especially chlorogenic 

acids during roasting (3, 49). There are marked differences in flavor character 

caused by variations in composition of flavor compounds. This is due to the 

different varieties of coffee plants, ways of roasting and different brewing 

methods (26, 50, 51). With the understanding of these factors, insights on 

important aroma-active compounds in coffee could be gained. Semmelroch 

and Grosch (52) include the following chemicals as contributing to coffee 

flavor and aroma, i.e. acetaldehyde, propanal, methylpropanal, 2- and 3-

methylbutanals, 2-methyl-3-furanthiol, methanethiol, dimethyl trisulfide and 

2-ethenyl-3,5-dimethyl- and 2-ethenyl-3-ethyl-5-methylpyrazine which 

explain the complexity and individual variations of coffee flavors. However, 

coffee flavors are known to be extremely unstable. Much work has been done 

on isolation, separation and identification of these flavor compounds and will 

be discussed in the following sections (21).   

   

1.2.4. Flavor release in complex food systems 

 Flavor compounds could exhibit different rates of flavor release when 

incorporating into different food matrices, i.e. in the presence of fat, protein or 

carbohydrates (53). In fact, the interaction between flavor compounds in a 

food matrix might lead to an enhancement, synergy or suppression of their 

relative volatility that could change the way an aroma is perceived (54). For 

instance, changing the fat content can modify the overall perception of a 

mixture of flavor compounds from different chemical classes, especially 

hydrophobic flavor compounds resulting in noticeable effects on flavor 
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perception. As a result, a drastic shift of the overall flavor profile can result in 

different odor sensation, even if the changes in the fat content are small (27). 

In general, the retention of volatiles by protein is much lower than that by fat. 

In emulsions, however, the presence of protein at the oil/water interface 

induces a significant effect on flavor release and flavor perception of 

hydrophobic flavor compounds. Emulsification and droplet size also affect 

flavor release and perception (28). For starch, an extensively studied 

hydrocolloid, amylose has been shown to form complexes with aroma 

compounds (20). The physical state of carbohydrates is one parameter 

influencing flavor retention. However, the major effect of hydrocolloids seems 

to be a limitation for the diffusion of aroma compounds due to changes in 

viscosity (53). Studies proved that flavor compounds are delivered at different 

rates to the aroma receptors in a wide range of foods, e.g. sugar confectionery 

(55-57), strawberries (58) and tomatoes (59). More research is required on the 

effects of real food samples containing mixtures of different flavor 

compounds. Precise measurement therefore is an essential tool in 

understanding the matrix effect on flavor performance. 

 

1.3. Flavor isolation techniques  

One of the challenges in flavor analysis is the sheer number and range of 

chemical compounds present in a flavor. To date, there are about 2,500 known 

odorants and complex flavors. Coffee can contain up to 800 compounds (60-

63). Most flavors contain a smaller number of character-impact compounds 

which, when combined give a recognizable, if not perfect, flavor. Among 

these compounds, aroma-active compounds typically have low thresholds or 
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are relatively unstable. Thus, careful extractions are required to obtain genuine 

volatile profiles. 

The first few steps of flavor analysis usually involve isolation and 

concentration of volatiles and semi-volatiles from their original food matrices. 

These techniques are numerous and have been extensively review (64-68). 

Traditionally, volatile plant components are obtained as essential oil through 

hydrodistillation of leaves, flowers, stems, roots, the bark of aromatic plants, 

or by cold expression of the peel in the case of citrus fruits (69). However, 

hydrodistillation may cause partial decomposition and rearrangement 

processes in the case of labile compounds. On the other hand, cold expression 

will extract not only volatiles but also plant waxes, fatty oils and high boiling 

lipids that tend to contaminate the GC column (70). Although the 

fundamentals of modern organic chemical methods used in flavor chemistry 

have been established, details of modifications and extensions of existing 

methods must be worked out in order to solve specific problems (30). Isolation 

techniques such as solvent extraction methods and the relatively new sorptive 

extraction techniques are discussed in the following subsections (67, 71).  

 

1.3.1. Solvent extraction techniques 

With many flavor analytical methods, solvent extraction is the 

traditional method used, with direct contact between an extraction solvent and 

a sample. This is a complicated task as the isolation procedures require 

multiple steps and are time consuming (72). The chemical compounds in a 

food sample are pulled into the organic solvent, corresponding to a reflection 

of the amount of substances present in the sample. Further sensory evaluation 
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by sniffing through a smelling strip or olfactometer is also made possible with 

solvent extraction to correlate the instrumental data with its aroma profile.  

The choice of an organic solvent is the most critical element. An ideal 

solvent should have a maximal solubility for the analytes of interest and a 

minimal solubility for the matrix (73). Due to solvent polarity, which affects 

extraction efficiency on different groups of volatile compounds, the 

composition might be altered, resulting in discrimination towards different 

groups of volatile compounds during extraction. Common organic solvents 

include methanol, ethanol, dichloromethane, diethyl ether and hexane. 

Extraction of the process flavors or thermally generated compounds is 

challenging as many potent odorants are present in trace amounts and/or 

unstable become lost during the procedures (25, 26). This is valid, particularly 

for volatile sulfur compounds present in coffee flavor such as thiols, due to 

their susceptibility to oxidative degradation reactions (26). Moon and 

Shibamoto (44) identified volatile compounds in roasted ground coffee with 

dichloromethane and the results suggested that the liquid extraction method 

allowed the differentiation of different roasting conditions, with the 

identification of different major compounds. With a polarity index of 3.1, 

dichloromethane is the suitable solvent for flavor isolation, allowing more 

polar potent components to be dissolved. There is innovative work to reduce 

the time required by the isolation step, to automate the process with a 

programmed sequence, and to reduce consumption of organic solvents (72). 

The improved or newly developed methods are supercritical fluid extraction 

(SFE), pressurized liquid extraction (PLE).  
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PLE and SFE apply external pressure and/or heating to speed up the 

extraction process, especially when dealing with solid materials (73). Based 

on the use of compressed fluids as extracting agents, PLE and SFE are useful 

for sample preparation for food analyses, including fats, pesticide residues and 

toxins (72, 74-77). PLE, also referred to as accelerated solvent extraction, is 

performed at elevated pressure (1500-2000 p.s.i.) and temperature (50-200 °C) 

above the boiling point of the organic solvent (77). It was modified according 

to Soxhlet extraction but with the use of higher temperature, thus, increasing 

the ability of solvent to solubilize the analyte, decreasing the viscosity of 

liquid solvents and allowing better penetration of the solvent into the matrix 

(78-80). The use of higher pressure facilitates the extraction of the analytes 

from samples by improving the solvent accessibility to the analytes that is 

trapped in the matrix (81), thereby the extraction time and solvent 

consumption are significantly minimized compared to a typical Soxhlet 

extraction. Manipulation of isolation parameters could result in differences in 

the relative composition of the extracts because the extraction power of the 

applied solvents and the applied pressure and temperature parameters have a 

strong influence on the yield of each compound of the essential oil (70).  

SFE uses a variety of fluids (typically CO2, possibly modified with 

organic solvents), at higher pressure (2000-4000 p.s.i.) and temperature (50-

150 °C) than PLE (72). It has been promoted as an effective and virtually 

solvent-free sample pretreatment technique (74). Under certain conditions, 

supercritical CO2 is comparable to n-hexane in its polarity. Therefore, it may 

preferentially extract nonpolar compounds (70).  Nevertheless, SFE is heavily 
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matrix-dependent and even much more prominent than PLE, and hence, 

detailed method development is always required (82).  

 

1.3.2. Sorptive extraction techniques  

To enhance the identification and quantitation of potent volatiles from 

different food matrices, sorptive extraction techniques have been developed 

(64). Sorptive extraction is a solventless extraction and enrichment method 

based on sorption mechanisms for extracting the analytes from a liquid or 

gaseous matrix into a non-miscible liquid phase (83, 84). Nongonierma and 

coworkers (85) have extensively reviewed the effect of various parameters on 

the extraction of aroma compounds from foods using sorbents. The choice of 

an adsorbent is an important factor in determining the efficiency of extraction, 

including hydrophobicity of the analyte and the adsorbent, adsorbent structure, 

traps and fiber size. It is known that lipophilic volatiles have a higher affinity 

to the polymer (polysiloxanes of different polarities) coasted fused-silica fiber 

(70). These techniques can be categorized according to the types of adsorbent 

namely, open-tubular trapping (OTT), solid phase microextraction (SPME) 

and stir bar sorptive extraction (SBSE) (83, 84).  

The advent of static headspace (e.g. HS-SPME) and dynamic headspace 

(e.g. purge and trap) analyses have provided methodologies for understanding 

the relationships between the relative volatility of flavor compounds and the 

aroma perceived in different food matrices (54, 86, 87). Among these 

techniques, SPME has become a valuable tool in capturing volatiles from 

aqueous solutions or directly from the headspace (70). Furthermore, the HS-

SPME technique can directly be combined with gas chromatography without 
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any modification of injection port. This is very direct and rapid as the SPME 

fiber is directly transferred and desorbed into the hot injection port.  

Food matrix applications of HS-SPME include flavor analysis from a 

large variety of foods (88, 89);  aroma emissions from plant branches or 

blossoms (90, 91); and pesticides from fruits and vegetables (92). For 

example, HS-SPME had been used to successfully identify potent aromatic 

chemicals by coffee origins and varieties (93-95). However, due to the mass 

transfer between SPME fibers and sample matrices that complicates the 

quantification and causes poor reproducibility of the measurements, major 

challenges remain in quantifying the amount of analytes extracted from 

complex sample matrices.  

Dynamic headspace with trapping on a solid sorbent or in a cold trap is 

an alternative method for analysis of volatile compounds in foods (86, 87), 

airborne pollutants (96), and volatile organic compounds in water (97, 98).  A 

purge-and-trap technique involves an inert carrier gas that is bubbled through 

a liquid sample while solid samples can be warmed by an electrical heater or 

microwave to increase the fugacity of volatile compounds. The stripped 

volatiles are then trapped on a solid or liquid sorbent, in a cold-trap or in a 

solvent. This step can be carried out in an open- or closed-loop. In an open-

loop configuration, the non-trapped molecules are eliminated. In the closed-

loop method, the gaseous phase flows through the sample and the trap in a 

closed circuit (67). After desorption onto a sorbent, the trapped compounds are 

desorbed by heating and then cryofocused at the head of the GC-column (99). 

Detailed reviews on every aspects of dynamic headspace have been reported 

(67, 68, 100).  



 15 

In favor of acquiring values on the absolute amount of volatile 

compounds expressed, a quantitatively-based extraction method is required. 

HS-SPME might not be sufficiently comprehensive in quantitative analysis 

due to the selectivity and limited loading capacity of SPME sorbents, 

respectively (83, 84). Hence, this has led to developing more effective and 

versatile analytical methods to enhance the sensitivity and reproducibility with 

minimum discrimination of genuine volatile profiles.  

With a larger volume of sorbent materials used, the sensitivity of SBSE 

and sample capacity could be remarkably increased as compared to SPME 

(84, 101, 102). Furthermore, SBSE has been widely applied in environmental 

(84, 101-109) and biomedical analyses (104, 110, 111). SBSE is also gaining 

acceptance in flavor analysis, not only volatile profiling in wine (112-116), 

beer (117), fruit juices (118, 119), vinegar (120) but also elucidation of the 

changes of volatile metabolites in an intra-oral odor investigation (121). Apart 

from the advanced development of different flavor isolation techniques, 

instrumental analyses are also important for identification and quantification 

work. 

 

1.4. Instrumental methods of flavor analysis 

As mentioned earlier, flavor analytical research has made giant strides 

due to the technological developments of analytical instruments in improved 

sensitivity and selectivity. Most work has focused on volatile flavor 

compounds using gas chromatography as they give food products their 

characteristic aroma, whereas the availability of liquid chromatography 

contributes to narrowing the gap between the knowledge of the spectrum of 
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volatiles and the structures of the non-volatile conjugates (122). The following 

discussion will focus mainly on chromatographic separation techniques and 

mass spectrometric techniques as detection techniques (123).  

 

1.4.1. Chromatographic techniques 

Gas chromatography (GC) has been the most common and established 

technique in flavor analysis. It involves the separation of volatile analytes, 

which are subsequently submitted to different kinds of detectors, e.g. flame 

ionization detector (FID) (124). Traditional GC instrumentation has been 

subjected to a number of advancements over the past years, one of them being 

the evolution of capillary column technology (8, 125). Various polar and 

nonpolar fused silica capillaries, which are now commercially available and 

offer exceptional flexibility and higher thermal stability, improved the 

separation capability (125). Single column (one-dimensional) 

chromatographic analysis has been the method of choice and a standard 

separation tool in a broad variety of applications including food and 

environmental analysis. It provides satisfactory separation and rewarding 

analytical results for samples of low to medium complexity and it has been 

capable of resolving 100 – 150 peaks in a single run (126).  

Some terpenoids present in natural plant volatiles are chiral compunds, 

and either one of the two enantiomers or enantiomeric mixtures or, in case of 

more than one stereocenter, diastereomeric mixtures of both (70). Their 

proportions can be directly determined even from very complex mixtures by 

two-dimensional GC by transferring small sections of a GC peak from a 

conventional capillary column to an enantioselective capillary column (11). 
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Thus, heart-cutting two-dimensional GC-MS (2D GC-MS) can significantly 

improve the resolution of complex regions. Nevertheless, in certain cases, 2D 

GC-MS is not able to produce high quality mass spectra for the olfactory 

detected compounds (no peaks on the second dimensional total ion 

chromatogram (TIC) at the corresponding retention times), particularly when 

analyzing highly complex aroma compunds (127).  

Enantioselective capillary columns with high separation efficiency were 

introduced in the mid-1960s (124, 128). It was intriguing to find that the 

presence of a certain ratio of enantiomers in the natural oil could exhibit 

different physiological properties especially in odor and taste (71, 128). 

Reviews have been published regularly in this field (70, 71, 128). Studies have 

shown that the enantiomeric composition of chiral compounds of essential oils 

may vary considerably depending on origins and processing conditions 

(129, 130).  

The hyphenation of the chromatographic techniques to the different 

detecting instruments has proved highly successful in the resolution and 

identification of the molecules and further expands the capability of the 

chemical analysis of highly complex sample matrices (124). 

 

1.4.2. Gas chromatography-olfactometry 

 Gas chromatography-olfactometry (GC-O) is designed to couple the 

enormous separation power of capillary gas chromatography with the unique 

selectivity and sensitivity of the human nose (131-133). The aroma 

contribution of each compound to a flavor is estimated with two possible 

ways, namely odor activity value (OAV) and relative flavor activity (RFA). 
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OAV is the ratio of concentration to the odor threshold of the compounds. It is 

generally accepted that the compounds with higher OAV contribute more to 

the food aroma. Alternatively, RFA is derived from the ratio of log FD factor 

to the square root of weight percentage of the compound. Several aroma 

evaluation techniques have been introduced to investigate aroma impact 

compounds of a food flavor systematically and they have been reviewed 

extensively (32, 133-137).   

Generally, these techniques can be classified as dilution methods and 

intensity methods with the common goal of estimating the contribution of 

single volatiles to the overall aroma (138, 139). Dilution methods refer to the 

methods that produce quantitative estimates of relative potency for the aroma 

compounds of the diluted eluent of a gas chromatograph through successive 

dilutions such as CharmAnalysisTM or aroma extraction dilution analysis 

(AEDA). The main differences between CharmAnalysis and AEDA is that 

Charm measures the dilution value over the entire time the compounds elute 

(dilution value), whereas AEDA determines the dilution factor (FD), which is 

the last dilution at which an aroma-active compound is detected (138). In fact, 

the dilution value at the peak maximum in a Charm chromatogram is identical 

to the FD factor calculated on an AEDA basis (135). Because of its simplicity 

of use, AEDA method has been widely used to identify the key aroma 

components of Citrus (140-144). 

On the other hand, odor-specific magnitude estimation (OSME) is the 

method based on time-intensity, which was developed to measure the 

perceived odor intensity of a compound eluting from a chromatographic 

column, with assessors sniffing the non-diluted extracts (138, 139). The main 
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difference between dilution methods and time–intensity methods is that the 

latter are not based on odor detection thresholds but on odor intensity (135). 

However, high variability within and between panelists could occur with both 

dilution methods and intensity methods (139). In order to verify the correct 

concentration and intensity of the flavor compounds, aroma models are 

prepared on the basis of the OAV and omission experiment are essential and 

validate the analytical results (145).   

 

1.4.3. Mass spectrometric techniques 

Mass spectrometry (MS) is a powerful analytical technique that 

measures the mass-to charge ratio of ions. In general, MS is applied to 

elucidating the composition of a sample by generating a mass spectrum 

representing the masses of the sample components (146). The ability to 

elucidate structural conformation from collected fragmentation patterns of 

analytes has been proven for identification of unknown compounds. MS is the 

most widely applied analytical platform in identifying volatile organic 

compounds, especially if it is hyphenated to chromatographic instrumentation. 

To date, thousands of volatile compounds have been discovered and correlated 

with specific odor attributes. However, GC-MS approach is time-consuming 

and identification is limited or difficult to interpret when there are several 

compounds in a single peak of recorded mass spectra (124). There are several 

possible solutions, such as tandem mass spectrometer (MS × MS) to couple 

with GC and allow the separation of each compound of such complex peaks. 

In addition, latest developments in proton transfer reaction-mass 

spectrometry (PTR-MS) with soft ionization method allows quantitative on-
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line monitoring of volatile organic compounds and provides flavor analysis in 

real-time. Hence, the fragmentation of the analyte molecule is very much 

reduced and the mass spectra produced are much easier to interpret. Yet, PTR-

MS is a one-dimensional technique that characterizes compounds only via 

their mass, which is not sufficient for positive identification of the individual 

volatile organic compounds (146).   

 

1.5. Sensory evaluation  

“Sensory evaluation is the utilization of psychophysical techniques in 

the food industry for different purposes such as description, discrimination and 

affective/hedonics” (2). Flavors that we perceive is composed of complex 

volatile compounds that are present in concentrations above the sensitivity 

threshold (134). It should be noted that aroma evaluation techniques using 

GC-O based on odor threshold detections are functions of the odorants’ 

concentrations in the extract and are not psychophysical measures for 

perceived odor intensity. This is because a relationship between odorant 

concentration and odor intensity is not straightforward. To understand the 

flavor quality of a product, it is no longer the sole aim to identify the 

concentrations of each individual compounds, but to evaluate the perceptual 

interactions of aroma-active compounds in mixtures as detected by the human 

nose (137). 

Sensory evalutation methods can be classified into discriminative 

analysis and descriptive descriptive analysis (DA) is used to measure their 

ability to evaluate qualitative and quantitative characteristics of the product 

analysis. Discriminative analysis is a technique employed to detect differences 
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between the control and other products with trained panelists, whereas (147). 

Thus, DA is commonly used to map a product’s perceived attributes for the 

purpose of relating them to instrumental, chemical or physical properties (2). 

It is distinguished from other sensory methods by profiling all of the product 

aspects or perceived sensory attributes, e.g. for quality control purposes and 

sensory mapping on market products. A detailed discussion of the descriptive 

analysis methods is contained in an American Society for Testing and 

Materials (ASTM) publication (148). 

 Generally, there are several DA methods. Flavor profiling (FP) was 

first technique to assess the flavor and aroma impression of food products. 

Profile attribute analysis (PAA) is an extension of FP, which incorportates 

numerical aspects of sensory description. Quantitative descriptive analysis 

(QDA) was subsequently developed to address the problem of quantifying 

sensory description. The spider plot is used as a graphical tool for presenting 

the QDA results. On the other hand, the spectral descriptive analysis (SDA) 

method was developed to analyze the data obtained from a line scale anchored 

on both ends. Unlike other DA, the free-choice profiling is a popular method, 

which uses untrained judges for evaluating products (147, 149). To facilitate 

the description, the perceived attributes can also be quantified by repeated 

measures and statistical analysis is generally conducted using analysis of 

variance (150). In addition, statistical approaches like multivariate analysis of 

the sensory data, with other instrumental data, allow identification and 

correlation of characteristic compounds with their sensory attributes. Recently, 

several methods have been offered as alternatives to DA and were reviewed 

by Valentin et. al. (151).  
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1.6. Statistical analysis  

Proper experimental designs are important to maximize the information 

and ensure the validity of an experiment. Conventional approach in 

experimental design involves identifying various independent factors and 

levels, and later conducting the experiments by altering “one variable at a 

time” (OVAT), while keeping all others at a predetermined level is very 

inefficient as many experiments are required. Moreover, these OVAT designs 

often overlook the interactions among the variables.  

In contrast, multivariate experimental design methods that allow the 

simultaneous study of several control variables could be useful in optimization 

(44). One of the experimental design tools namely, responses surface 

methodology (RSM), has been increasingly applied in optimization. RSM, 

comprising a group of mathematical and statistical techniques, is based on the 

best fit of empirical models to the experimental data, through which 

interactions among experimental factors also become evident (152, 153). With 

RSM, the number of test runs is minimized and the interaction among effects, 

which may influence the experiments, is taken into account.  

Flavor is a multimodal sensory experience; it has been difficult to relate 

the concept of flavor with the chemical components of foods (1). To interpret 

complex data of citrus fruits, analysis of variance (ANOVA) is one of the 

most common statistical methods to assess the significance among various 

variables (e.g. cultivars and geographical origins), but these variables are 

normally interdependent and may interact with each other, which unavoidably 

leads to complications in extracting information (154). In order to gain a better 

insight into flavor perception, especially focusing on the correlation between 
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the chemical compositions and sensory perceptions (29, 155-157), 

chemometric is often employed to extract information from analytical data 

(154). Common methods are such as multivariate statistical analysis – 

principal component analysis (PCA), discriminant analysis (DA), partial least 

square (PLS) (46, 157-159).  

As a basic multivariate, PCA has been used to describe the data set 

composed of sample mean scores as observations and chemical components as 

variables (160). PCA has been applied as a data exploration tool, which allows 

visualizing correlations in datasets by compressing information in a low 

number of dimensions. PCA has been applied as a data exploration tool, which 

allows visualizing correlations in datasets by compressing information in a 

low number of dimensions. An important step in PCA is the determination of 

the number of latent variables, which contain relevant information (161). 

However, the determination of which components in the PCA can be 

attributed to noise is not at all straightforward.  

To assess the relationships between different origins, an adequate 

method should focus on between-group variability, while neglecting within-

group variation. This is precisely the rationale of discriminant analysis (DA) 

(162). DA defines a model to summarize the origin differentiation between 

groups, while overlooking within-group variation. The method therefore 

achieves the best discrimination of individuals into pre-defined groups 

(163, 164). In comparison to PCA, CDA has some unique features especially 

with regard to its capability to separate classes (164), which could compensate 

for the limitation of PCA as an unsupervised method.  
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Partial least square regression (PLSR) tends to be used for extensive 

model building exercises with a flexibility of exploring the best combination 

of X-variables (chemical components) to produce a good prediction of the Y-

data (intensity of flavor attributes) (165). It can be considered as a hybrid 

cross of multiple regression and PCA (166). Early references to its use in 

regard to sensory evaluation of foods include correlating instrument 

measurements to sensory meat quality data (167) and predicting the aged red 

wine aroma properties from aroma chemical composition (168). Furthermore, 

partial least-squares discriminant analysis (PLS-DA) provided evidence of the 

ability of the content of volatile compounds to discriminate among the 

different commercial categories of Sherry Brandies (169).   

  

1.7. Exploration of authentic and indigenous citrus and coffee flavors in 

Asia 

1.7.1. Pomelo (Citrus grandis (L.) Osbeck) and calamansi (Citrus 

microcarpa) 

Citrus fruits have been the source of distinctive flavors that have been 

esteemed by people for centuries (33). In view of their economic importance 

and varied scope of applications, the composition of citrus fruits has received 

much attention (170-172). Citrus fruits are largely processed for the juice as 

well as for the essential oil. On the other hand, citrus peel constitutes a major 

part of the fruit but is of much less importance than juice (132). Only peel oil 

and pectin are important peel products for human consumption, perfumery, 

and cosmetics.  
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South and Southeast Asia is believed to be the place of origin of citrus 

fruits (173). Apart from the most traded varieties such as mandarins, oranges 

and lemons, Southeast Asia produces many uncommon citrus fruits with 

distinct characteristics that can provide infinite possibilities in the production 

of innovative and novel flavors. However, consumer exposure to citrus flavors 

tends to center on the common citrus fruits due to the limited types produced 

on a large scale for consumption as fresh fruits, or for production of juices and 

natural aroma chemicals. Hence, common citrus fruits have been extensively 

studied (69, 132, 171, 174-177).  Recently, exotic citrus fruits have 

increasingly attracted attention worldwide due to their unique sensory 

attributes and health benefits (178). Until recently, only limited research has 

been undertaken to evaluate these exotic citrus such as Australian wild lime 

(179), Pontianak orange (Citrus nobilis var microcarpa) from Indonesia, 

Mosambi (Citrus sinensis var mosambi) from India and Dalandan (Citrus 

reticulata) from the Philippines (180). These obscure fruits (hybrids) can be 

utilized to develop flavors that are signature or differ organoleptically from 

leading citrus varieties and feature varying qualities depending on the time of 

year and maturation. The lack of knowledge about the chemical and aromatic 

profiles of these fruits may hamper their introduction into the flavor industry 

and subsequent commercialization. 

Pomelo (Citrus grandis (L.) Osbeck) is a citrus fruit native to Southeast 

Asia and the Indo-China regions. Other names for pomelo include pummelo, 

pommelo, Chinese grapefruit, limau bali and shaddock (33, 181). Being the 

largest citrus fruit, pomelo is classified as one of the basal species of edible 

citrus and also believed to be an ancestor of grapefruit. The peel of pomelo 
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may be greenish-yellow or pale-yellow while the pulp varies from greenish-

yellow or pale-yellow to pink or red (33, 181). The fruit is commonly eaten 

fresh; its taste varies from mildly sweet and bland to subacid or rather acid, 

and sometimes with a faint touch of bitterness (182). The main production 

areas of pomelo are southern China, southern Japan, Thailand, Vietnam, 

Malaysia and Indonesia. It is also cultivated in the United States of America 

(California and Florida), the Caribbean islands, and Africa 

(34, 122, 140, 183, 184).    

Moreover, in view of growing interests in the consumption of mandarin-

like fruits, hybridization in citrus species was obtained by artificially cross-

breeding various mandarin-like species (185, 186). Considered to be a natural 

hybrid of mandarin and oval kumquat (Citrus reticulate x Citrus japonica), 

calamansi (Citrus microcarpa), also known as calamondin, limau kastuari, 

kalamondin and kalamansi, has spread throughout Southeast Asia, India, 

Hawaii, West Indies, Central and North America. The fruit resembles a small 

and round lime with an average diameter of up to 4.5 cm. It has the orange 

color of a tangerine with a very thin green or orange colored peel 

(182, 187, 188).  

In contrast to major citrus fruits such as orange, lemon and lime, there 

is very little systematic study on the volatile compounds of pomelo and 

calamansi (34, 140, 176, 183, 184). Research on flavor profiles of Asian 

indigenous citrus shed new light on novel citrus flavors (143, 189).   

 



 27 

1.7.2. Arabica coffee in Asia  

Coffee is one of the most widely consumed beverages as seen from the 

rising trend of cafés offering coffee beverages of different origins, roasts and 

brews. Among the diverse varieties of coffee beans (from the Rubiaceae 

family), Arabica coffee (Coffea arabica) is highly esteemed with its superior 

quality and delightful taste; and accounts for two thirds of world coffee 

production (190, 191). The perception of coffee aroma and taste is dependent 

on the volatile as well as the non-volatile compounds present in the roasted 

coffee beans (192, 193), unique to cultivars, geographical regions and roasting 

conditions (194).  

Similar to the classic Arabica coffee like Jamaican Blue Mountain and 

Hawaiian Kona, Asian varieties are valued for their full body and smooth 

mouthfeel while offering alternative choices to coffee lovers. The coffee 

market has been gradually expanding in Asia owing to an increase in the 

number of urban dwellers in the region. As the third largest coffee producer, 

there are more than 20 varieties of Arabica coffee being grown commercially 

in Indonesia. Typica is one of the original cultivars, which has been rated with 

good cup quality. Unfortunately, much of the Typica was lost in the late 

1880s, when Coffee Leaf Rust swept through Indonesia. Bergandal and 

Sidikalang varieties of Typica cultivar from North Sumatra are a few that 

survived (195). Other countries have also begun producing their own coffee 

beans (196-198), where Yunnan is one of the major coffee bean producers in 

China while Thailand has introduced Arabica varieties into the existing 

Robusta coffee cultivation, in hope to improve the quality of its coffee 

exports. Agricultural and geographical variations are crucial to the aroma 
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differences among Arabica coffees. The soaring interest in these exotic and 

new coffees of different origins and processing methods has triggered the 

curiosity of flavor scientists for their volatile and aromatic profiles.  

The quality of a cup of coffee is also dependent on the non-volatile 

composition and quality of the green coffee beans used; the compounds within 

(the coffee beans) reacting during the roasting process to produce the flavor of 

the drink (191, 194). Some of the non-volatile components are also important 

as a quality control indicator. Chlorogenic acid, for example, confers 

undesired astringency to the final cup of coffee if it is poorer in quality 

(199, 200). Also, the organic acid content of roasted coffee beans can be used 

as an indicator of the degree of roasting. It was found that darker roasts would 

give rise to a lower organic acid content (63). 

On the other hand, health effects of coffee have always been 

controversial. Coffee is considered as a functional beverage with the potential 

health benefits due to antioxidant capabilities contributed by a diverse array of 

phenolic components. Phenolic acids are not only contribute to the acidity, 

bitterness and astringency (201), more importantly, they contribute to the 

radical scavenging capabilities. In addition, phenolic acids possibly contribute 

to neuroprotective effects which could prevent diseases like Alzheimer’s 

disease (202). Hence, several studies have been done to determine the 

antioxidant capacity of coffee (95, 202-204). 

Underlying the unique aroma of coffee is a profound complexity that 

involves more than 800 different chemical compounds (60-63). Although the 

extensive studies have been carried out, the determination of volatiles in 

roasted coffee bean is still a challenging task as many of the important 
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odorants are present in trace amounts and/or are reactive and unstable 

(62, 65, 93, 205). Furthermore, systematic assessment of volatile and non-

volatile components in coffee that directly affect the cup quality of coffee in 

terms of flavor and nutritional value is of utmost importance. This is to 

minimize any discrepancy arising from the geographic factors and processing 

conditions. 
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1.8. Objectives and research outline 

To explore the flavor potential and to characterize the varieties of 

indigenous citrus and Arabica coffee from the Asian region, much effort and 

work is still required. It is believed that the varieties of Asian citrus and coffee 

have distinct characteristics but are underutilized. Furthermore, classical 

solvent extraction or HS-SPME might not be comprehensive in flavor 

analysis. Hence, this has led to the need to develop more effective and 

versatile analytical methods to extend the detection range and to overcome the 

interferences from the complex matrix.  

As an attempt to diversify the range of citrus flavors and promote the 

utilization of new coffee varieties from Asia, the main objective of this 

research was to characterize the volatile components and aroma profiles in 

citrus and Arabica coffee from Asian countries. Four work themes were 

defined – each with its own specific aims, which are: -  

• To perform a complete characterization of both the volatile compounds 

and aromatic profiles of pomelo blossoms, peels and juices using different 

analytical techniques. 

• To characterize and correlate the volatile and aromatic profiles of 

calamansi from Southeast Asia through multivariate analysis. 

• To develop an extraction technique for complex food matrices such as 

citrus juice or simultaneous quantification of volatile compounds.  

• To assess the flavor profile of Asian coffee based on volatile and non-

volatile components using different extraction techniques and multivariate 

analysis.  
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1.9. Thesis outline 

Chemical compositions and aromatic profiles of selected citrus and 

coffee are presented in this thesis. The main body of this thesis consists of a 

general introduction on research background and literature reviews and overall 

conclusion as well as recommendations for future studies. Detailed 

methodologies and results are arranged according to the following chapters:-  

 

Chapter 2-4 are a series of study of Malaysian pomelo including blossoms, 

peels and juices regarding their chemical compositions, sensory profiles and 

exploration on the correlation between these chemical compositions and 

sensory profiles; assisted by Loke Xiu Qing as part of her Hons project. 

 

Chapter 5 and 6 report the characterization of calamansi peels and juices from 

Southeast Asian countries using multivariate analyses assisted by Chong Zhi 

Soon, Sng Jingting as part of their Hons projects and Zhu Danping as part of 

her MSc Chemistry by coursework project. 

 

Chapter 7 describes the development of stir bar sorptive extraction on dealing 

with the target analytes with highly diverse physicochemical properties (i.e. 

volatility and polarity) and disparate concentrations, assisted by Justin Lee 

Yong Kiang as part of his MSc Chemistry by coursework project. 

 

Chapter 8 and 9 study on characterization of Arabica coffee from Asia and 

development of PLE technique in order to enhance the extraction yield and 
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achieve desirable aromatic profiles, assisted by Tong Jia Xin, Jeremy Ong Jian 

Ming and Alena Tan Ann Ann as part of their Hons projects. 
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CHAPTER 2 CHARACTERIZATION OF VOLATILE 

COMPOUNDS AND AROMA PROFILES OF MALAYSIAN 

POMELO (CITRUS GRANDIS  (L.) OSBECK) BLOSSOM 

AND PEEL 

2.1. Introduction   

Citrus peel oil has received much attention for a long time due to their 

highly versatile application (206, 207). In the context of citrus blossom oils 

(e.g. neroli oil), their chemical compositions have been traditionally studied 

using blossom oils extracted via steam distillation (171, 208). In spite of the 

high recovery ratio and low cost of this approach, the heat applied during the 

process distorted or even deteriorated the original aroma of citrus blossoms. 

Since citrus blossoms are known for their fresh, pleasant and highly desirable 

aroma, there is much academic and commercial interest to identify and 

replicate the authentic aroma from intact citrus blossoms. However, 

information on the volatile constituents in intact citrus blossoms is scarcely 

reported. Literature research indicates that, to date, there have been only three 

reports on volatile compositions of intact citrus blossom (90, 209, 210). Of 
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these, Jabalpurwala et al. (90) mentioned that intact pomelo blossom produced 

the highest level of volatiles among the 15 citrus cultivars, particularly 1-

hexanol and linalool. 

Pomelo has been identified as one of Malaysia’s top exported fruit 

commodities. The best pomelo in Malaysia is reputed to be from Tambun, 

which is well known for their juiciness and tart taste. According to 

Department of Agriculture Malaysia (211), the popular cultivars of pomelo are 

PO 51 (white-fleshed pomelo) and PO 52 (pink-fleshed pomelo). Both 

cultivars are seedless and similar in appearance with the medium-thick rind, 

and are slightly pebbly, with PO 52 is slightly larger than PO 51. The 

knowledge of the chemical compositions and sensory profiles of their peels as 

well as blossoms would lead to better understanding of two cultivars of 

Malaysian pomelo. 

 The aim of this work was to determine the volatile compositions of 

Malaysian pomelo blossoms and peels through HS-SPME/GC-MS analysis as 

well as to identify their key aroma profiles by sensory evaluation.  

 

2.2. Experimental procedures 

2.2.1. Pomelo materials 

The blossoms and fruits of PO 51 (white pomelo) and PO 52 (pink 

pomelo) were collected from Tambun pomelo farm near Ipoh in the state of 

Perak, Malaysia in August 2009. Pomelo blossoms were either yellowish 

white or plain white, fragrant, solitary and around encompassed 2.5 cm in 

diameter. Only those blossoms at an early stage of budding development 

(determined by their partially opened petals) were picked to ensure uniform 
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sampling. Intact blossoms (including petal, pistil, stamen and a short pedicel) 

with the branch were cut together from the major stalk split, and were stored 

in a sealed icebox (around 5 °C) until further experiments were carried out 

within 12 hours. 

The mature fruits of each cultivar were harvested, and stored in a 

fridge (around 5 °C). After the pomelo fruits were washed with deionized 

water and dried under room temperature, the flavedo part was peeled off using 

a titanium fine grater (Fresco, ON, Canada), and then immediately used. 

 

2.2.2. HS-SPME sampling procedure 

One intact pomelo blossom (~2 g) and the grated peel (~2 g) were 

individually placed into a 20-mL glass vial with PTFE-coated silicone septum. 

In order to achieve better extraction efficiency, HS-SPME extraction 

conditions were optimized as described elsewhere (212) in terms of fiber type, 

sample volume, salt addition, extraction temperature and time (data not 

shown). A 85 μm Carboxen/PDMS StableFlex (Supelco, Bellefonte, PA, 

USA) was selected for this study due to being effective in the extraction of 

volatiles (212). Default extraction temperature was typically set at 40 °C, 

while 60 °C was also employed for the examination of high-boiling volatile 

compounds. After incubation for 30 min, the SPME fiber was inserted in a GC 

injector for 5 min, where the analytes were rapidly desorbed from the fiber 

under splitless mode and then were transferred to a GC column for subsequent 

separation and detection. The composition of each volatile was taken as the 

relative percentage of FID peak areas. 
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2.2.3. GC-MS analysis 

GC-MS analysis was carried out in an Agilent 6890N GC coupled with 

a flame ionization detector (FID) and a 5975 inert mass spectrometer detector 

(MSD) (Agilent Technologies, Palo Alto, CA, USA). The GC was equipped 

with the fused silica capillary column (60 m x 0.25 mm x 0.25 µm DB-FFAP, 

Agilent, Woodbridge, VA, USA). Helium was used as carrier gas at a flow 

rate of 1.2 mL/min. The injector was set at 250 °C. The GC oven temperature 

was programmed from 50 °C for 5 min, then was raised to 230 °C at 5 °C/min 

and held at this temperature for 60 min. FID temperature was set at 250 ˚C, 

and MSD was operated in the electron impact (EI) mode at 70 eV. 

Identification of the eluted compounds was achieved by matching the mass 

spectra against NIST 8.0 MS library (National Institute of Standards and 

Technology, Gaithersburg, MD, USA), and confirmed with Linear Retention 

Indices (LRI). LRI values on FFAP column were determined using two series 

of alkanes (C5–C20 and C21–C40) (Fluka, St. Louis, MO, USA) run under 

identical conditions. 

All standard compounds used in the identification of volatile 

constituents are obtained from Firmenich Asia Pte. Ltd.. 

 

2.2.4. Sensory evaluation 

Intact pomelo blossoms were evaluated using quantitative descriptive 

analysis by a panel of six assessors (3 females and 3 males) from Firmenich 

Asia and National University of Singapore. Panelists were mainly comprised 

of trained flavorists and were familiar with the procedure used to evaluate. 

Preliminary sensory evaluations were performed and sensory descriptors were 
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collected from terminology provided by Firmenich. After consensus among 

the panelists, the appropriate descriptive sensory terms were established. 

There were eight descriptors for intact pomelo blossoms: aldehydic, animalic, 

citrus blossom, floral, fresh, fruity, hay, waxy. Each panelist was presented 

with a 20-mL headspace vial containing one fresh blossom and the intensity of 

the attributes was rated using a 9-point scale from 0 (uncharacterized) to 8 

(very strong). The results were averaged for each attribute and plotted on a 

spider web diagram. 

 

2.3. Results and discussion 

2.3.1. Volatile composition of pomelo blossoms 

Common extraction methods for analyzing blossoms include steam 

distillation (171), dynamic and vacuum headspace sampling (213). In the early 

stage of sample preparation, pomelo blossom extracts were prepared in the 

manner of solvent extraction. However, the result indicated that the process of 

solvent extraction, somewhat deteriorated the aroma profiles of pomelo 

blossom extracts. Consequently, HS-SPME was applied to extract the volatiles 

of pomelo blossom. HS-SPME is a relatively simple and solvent-free 

extraction technique. Because of its sensitivity and reliability, HS-SPME was 

subsequently extended to flavor analysis of citrus blossoms (90, 209, 210).  

Table 2.1 lists the volatile compositions of pink and white pomelo 

blossoms. The identified compounds were categorized into hydrocarbons, 

acids, aldehydes, alcohols, esters, and others; and the relative amounts of 

volatile compounds were expressed as peak area percentages of the total area 

in FID.   
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Table 2.1. Identifications of the volatile compounds and their relative GC 
peak area of Malaysian pomelo (Citrus grandis (L.) Osbeck, pink and white 
type) blossoms through HS-SPME analysis 

Compounds LRI Pink 
pomelo 

White 
pomelo Identification FFAP Ref 

Hydrocarbons      
iso-Prene 510 - tr tr MS 
α-PineneI,II 1008 1007 0.03 0.09 MS, LRIb, STD  
Camphene 1039 - tr tr MS , STD 
β-PineneI,II 1102 1113 0.12 0.30 MS, LRIa, STD 
SabineneI,II 1104 1093 0.12 0.21 MS, LRIb 
δ-3-CareneI,II 1112 1180 0.21 0.58 MS, LRIa, STD 
β-MyrceneI,II 1161 1158 0.10 0.11 MS, LRIb, STD 
α-TerpineneI,II 1181 1178 2.51 2.75 MS, LRIa, STD 
LimoneneI,II 1188 1185 15.46 48.16 MS, LRIb, STD 
β-PhellandreneI 1198 1194 0.21 0.26 MS, LRIa 
trans-β-OcimeneI,II 1246 1242 0.14 0.18 MS, LRIa, STD 
cis-β-OcimeneII 1251 1252 3.99 11.99 MS, LRIa, STD 
γ-TerpineneI,II 1266 1274 0.05 0.04 MS, LRIa, STD 
ρ-CymeneI,II 1291 1267 0.32 0.27 MS, LRIb, STD 
allo-OcimeneII 1295 - 1.13 1.59 MS, STD 
TerpinoleneI,II 1298 - 0.13 0.22 MS, STD 
dehydro-ρ-Cymene 1323 - 0.11 0.05 MS 
ρ-1,3,8-Menthatriene 1339 1375 0.14 0.05 MS, LRIb 
4,8-Dimethyl-1,3,7 
Nonatriene 1349 - 2.00 0.47 MS 

Sabinene hydratec 1488 1465 0.04 0.03 MS, LRIa 
δ-Elemene 1502 - tr tr MS 
α-Copaene 1513 1536 tr tr MS, LRIa 
β-Elemene 1540 - tr tr MS 
γ-Elemene 1625 1625 tr tr MS, LRIa 
β-CaryophylleneI,II 1638 1657 0.08 0.12 MS, LRIa, STD 
α-Humulene 1669 - 0.01 0.01 MS,  
β -Farnesene 1695 1711 0.03 0.01 MS, LRIa, STD 
Germacrene D 1704 1722 0.03 0.02 MS, LRIa, STD 
β-Bisabolene 1762 1788 0.06 0.08 MS, LRIa 
α -FarneseneII 1772 1801 0.17 0.06 MS, LRIa, STD 
Squalene 2985 - tr* tr* MS 
Acids      
Acetic acid 1449 1451 tr tr MS, LRIb, STD 
Neric acid 2331 - tr* tr* MS 
Geranic acid 2383 - tr* tr* MS 
Myristic acid 2527 - tr* tr* MS, STD 
Palmitic acid 3091 - tr* tr* MS, STD 
Linoleic acid 3106 - tr* tr* MS, STD 
Oleic acid 3135 - tr* tr* MS, STD 
Alcohols      
EthanolII  958 936 8.89 13.78 MS, LRIb, STD 
HexanolII 1346 1351 0.01 0.01 MS, LRIb, STD 
trans-2-Hexenol 1401 - - 0.02 MS, STD 
LinaloolI,II 1533 1540 56.53 9.17 MS, LRIb, STD 
α-TerpineolI 1699 1711 tr tr MS, LRIa, STD 
CitronellolI,II  1790 1762 0.21 0.25 MS, LRIb, STD 
NerolI,II  1836 1825 0.36 1.48 MS, LRIb, STD 
GeraniolI,II 1847 1840 0.36 1.28 MS, LRIa, STD 
Benzyl alcoholI 1884 - 0.06 0.20 MS, STD 
Carveol** 1899 - 0.03 0.06 MS 
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Table 2.1. (Cont’d)      
2-Phenyl ethanol 1958 1903 tr tr MS, LRIb, STD 
Spathulenol 2014 - tr tr MS 
trans-NerolidolII  2079 - 0.14 0.10 MS, STD 
cis-FarnesolI,II 2396 2371 1.75 0.39 MS, LRIa, STD 
Phytol   2583 2593 tr tr MS, LRIa 
Aldehydes      
HexanalI 1058 1079 0.01 0.03 MS, LRIb, STD 
BenzaldehydeI,II 1532 1525 0.01 0.01 MS, LRIa, STD 
PhenylacetaldehydeI,II 1688 1706 tr tr MS, LRIa, STD 
NeralI 1718 1724 0.02 0.15 MS, LRIa, STD 
GeranialI,II 1742 1744 0.03 0.29 MS, LRIa, STD 
Perillic aldehyde 1832 - 0.01 0.03 MS, STD 
Esters      
Ethyl acetate 926 889 0.03 0.01 MS, LRIb, STD 
Ethyl butanoate 1016 1028 0.04 - MS, LRIb, STD 
Ethyl 2-methyl butanoate 1455 - 0.04 - MS, STD 
Hexyl 2-methyl butanoate 1665 - 0.05 0.05 MS, STD 
Citronellyl acetate 1679 - 0.01 0.01 MS, STD 
Methyl geranate 1732 - 0.32 0.35 MS, STD 
Neryl acetate 1752 1742 tr 0.01 MS, LRIa, STD 
Geranyl acetate 1790 1771 0.01 0.01 MS, LRIa, STD 
Methyl benzoate 1812 - - tr* MS, STD 
Ethyl benzoate 1819 - - tr* MS, STD 
Methyl salicylateII 1828 - 0.01 0.01 MS, STD 
Methyl cinnamate 2137 2056 tr* tr* MS, LRIb, STD 
Ethyl cinnamate 2189 2123 tr* tr* MS, LRIb, STD 
Methyl anthranilateI,II 2307 - 0.65 1.23 MS, STD 
Ethyl anthranilate 2336 - 0.01 0.12 MS, STD 
Others      
Dimethyl sulfide 846  tr tr MS, LRIb, STD 
AcetoneII  870 - tr tr MS, STD 
6-Methyl-5-hepten-2-oneI,II  1333 - 0.27 0.58 MS, STD 
trans-Linalool oxideI 1440 - tr tr MS, STD 
2-Methyl furanII 1441 - tr tr MS, STD 
cis-Linalool oxideI 1468 - tr 0.01 MS, STD 
γ-Butyrolactone 1680 - 0.01 0.02 MS, STD 
Carvone 1749 1715 tr tr MS, LRIa, STD 
Caryophyllene oxide 1992 1999 tr* tr* MS, LRIa 
Phenol 2058 - tr tr MS, STD 
2-methoxy-4-vinylphenol 2253 - tr tr MS 
2,6-dimethoxy phenol 2307 2307 tr tr MS, LRIa 
4-vinyl phenol 2450 - tr* tr* MS, STD 
IndoleI,II 2507 - 0.96 0.86 MS, STD 
Caffeine 3122 - tr tr MS, STD 
Total identified (%)   97.96 98.11  

Total peak area (all volatiles)   1.50E+0
9 

2.39E+
09  

Unless otherwise specified, HS-SPME extraction condition is 40 °C for 30 min.  
I Compounds reported in Ref. (171); II Compounds reported in Ref. (90). 
Identification method: MS= mass spectrum; Linear Retention Indices (LRI) are compared with 
references from standards (STD) or literature values (LRIa referred to the values in Ref. (214), LRIb 
referred to the values in Ref. (215)). 
“-“, not detected at 40 °C and 60 °C; tr trace level, GC peak area below 0.01%; *compounds detected 
only at HS-SPME extraction temperature of 60 °C for 30 min; ** unknown isomer. 
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A total of 88 compounds were identified in the headspace volatiles of pink and 

white pomelo blossoms, accounting for 97.96% and 98.11% of total peak 

areas respectively. Jabalpurwala et al. (90) detected 70 volatile compounds in 

intact grapefruit, sweet orange, sour orange, mandarin, lemon, lime and 

pomelo blossoms, of which 33 volatiles were for pomelo blossom. The likely 

explanation is due to the elevated HS-SPME extraction temperature in the 

present study. For pomelo blossoms, the group of hydrocarbons comprised 

predominantly of limonene, α-terpinene and ocimene. Further, white pomelo 

blossom contained much higher level of limonene (48.16%) than pink pomelo 

blossom (15.46%). Jabalpurwala et al. (90) found that pomelo blossoms 

differed from all other citrus cultivars in the highest level (13.6%) of ρ-

cymene, which was detected at low concentrations (<0.32%) in Malaysian 

pomelo cultivars. Moreover, an unusual acyclic C11 homoterpene, 4,8-

dimethyl-1,3,7-nonatriene (DMNT), rarely found in citrus blossoms, was 

detected here. DMNT was reported to be emitted by many species following 

herbivore damage and utilized in their chemical communication system. 

Biosynthesis of DMNT has also been shown to proceed via trans-nerolidol 

(216). 

Oxygenated compounds are more important for organoleptic quality. 

Linalool, significant in floral scent, is a typical terpene alcohol in citrus 

blossoms, and also appears to be major component of fragrant flowers, such as 

lavender, jasmine, and rose. As shown in Table 2.1, linalool is the most 

abundant terpene alcohol in pomelo blossoms, and the significantly higher 

content in pink pomelo blossom further differentiated this cultivar from white 

pomelo. Also, it is worth of note that the concentration of linalool was 
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inversely proportional to that of limonene in pomelo blossom. As reported by 

Jabalpurwala et al. (90), linalool and limonene were the volatiles that 

accounted for the maximum variance in the data among citrus cultivars. In 

addition, the chemical variability was also observed among the flower oil 

(neroli), leaf oil (petitgrain) and peel oils (bitter orange oil) of four sour 

orange provenances, which were submitted to the same pedoclimatic and 

horticultural conditions. Marked variability was reported within the sour 

orange group, mainly due to the high proportion of mutants, as also occurred 

in the entire groups and its readiness to produce hybrids either naturally or 

artificially (208). However, further investigation on the molecular basis of 

genetic differences that could link to distinctive biochemical characteristic 

between the pink and white pomelo is required. Trans-nerolidol, a floral, 

woody, and fruity compound, was the main sesquiterpene alcohol in pomelo 

blossoms. It was also detected at higher levels in pink pomelo blossom 

(1.75%). However, some other terpene alcohols, such as nerol, geraniol and 

citronellol, were found to be more abundant in white pomelo blossom. In 

addition, it appeared unusual that high concentrations of ethanol (13.78% and 

8.89%, respectively) were measured in pink and white pomelo blossoms. 

Ethanol may be formed as an artifact during the process of storage and HS-

SPME extraction. The reason for relatively high concentration is partly due to 

the high selectivity of Carboxen/PDMS fiber for ethanol (212).  

Aldehydes, such as hexanal, benzaldehyde, perillic aldehyde and citral, 

are commonly found in citrus blossoms (90, 171, 209, 210). Among them, 

citral normally occurs as a mixture of its stereoisomers (geranial and neral), 

which are the characteristic compounds of lemon and lime. Geranial and neral 
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were detected at low amounts in both pomelo cultivars, and relatively higher 

in pink pomelo blossom.  

Methyl anthranilate is a nitrogen-containing ester that naturally occurs 

in Concord grapes and was commonly detected in citrus blossoms 

(90, 171, 210). It is also proven as an avian repellent derived from natural 

flavorants (217). Compared to pink pomelo blossom, white pomelo blossom 

contained relatively higher levels of methyl anthranilate. Even more 

interestingly, methyl geranate was found in both pink and white pomelo 

blossoms (0.32% and 0.35%, respectively). This compound, with waxy, green 

and fruity-notes, is commonly found in blossoms of Araceae, Arecaceae, 

Berberidaceae, Ericaceae, Orchidaceae, Passifloraceae, Ranunculaceae, 

Rosaceae, Verbenaceae and Zamiaceae (214, 218). To my knowledge, this is 

the first time that methyl geranate has been reported in citrus blossoms.  

Indole is typically reported as one of the distinctive traits of citrus 

blossoms, and both pomelo cultivars also contained a tiny amount of indole. 

Essentially, indole should give a delicate floral character, but it is always 

misunderstood as a fecalic chemical. This is mainly because most of 

commercially available indole has traces of skatole that has an extremely 

strong fecalic note. In plants, it was reported to be formed by direct cleavage 

of the tryptophan precursor, indole-3-glycerol phosphate (218). 

 

2.3.2. Volatile composition of pomelo peels 

Table 2.2 shows that in pink and white pomelo peels, 85 and 88 

volatile compounds, accounting for 97.82% and 98.10% of total peak areas 

respectively. In contrast with pomelo blossoms, the main constituents in 
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pomelo peels were hydrocarbons, amounting for 98% of the total volatiles 

detected. Limonene is the most prominent, followed by α-pinene, β-myrcene 

and β-pinene. It was also found that some interesting chemicals (e.g. methyl 

geranate) detected in pomelo blossoms were absent in pomelo peels.  

Further, a wide range of aliphatic aldehydes (C8 to C14) were found in 

pink pomelo peel, particularly octanal and decanal known as character-impact 

constituents of orange (176). On the other hand, α- and β-sinensal, imparting 

ripe citrus notes, were detected at trace amounts in white pomelo peel, and 

virtually absent in pink pomelo peel. Nootkatone is the most important 

aromatic of pomelo and grapefruit peel oils.  

In this study, no nootkatone was detected at 40 °C. After the 

temperature was increased to 60 °C, nootkatone was measured at trace-level in 

white pomelo peel but not in pink pomelo peel. Minh Tu et al. (184) reported 

that the content of nootkatone in the pomelo peel oil could probably be used as 

a measurement of the fruit maturity, and so lag time was required for its 

development in the pomelo peel oil. Hence, under the present condition, it is 

possible that the pink pomelo peel was too fresh to reach a measurable level of 

nootkatone. 
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Table 2.2. Identifications of the volatile compounds and their relative GC 
peak area of Malaysian pomelo (Citrus grandis (L.) Osbeck, pink and white 
type) peels through HS-SPME analysis 

Compounds LRI Pink 
pomelo 

White 
pomelo Identification FFAP Ref 

Hydrocarbons      
α-PineneIII,IV,V,VI  1008 1007 0.39 0.38 MS, LRIb, STD 
α-ThujeneVI 1033 1031 tr tr MS, LRIa 
CampheneIII,IV,VI 1039 - 0.01 tr MS, STD 
β-PineneIII,IV,V,VI 1102 1113 0.09 0.01 MS, LRIa, STD 
SabineneIII,IV,V,VI 1104 1093 0.01 0.01 MS, LRIb 
δ-3-Careneiv 1112 1180 0.03 0.01 MS, LRIa, STD 
β-MyrceneIII,IV,VI 1161 1158 0.36 0.16 MS, LRIb, STD 
α-TerpineneIII,IV,V 1181 1178 tr tr MS, LRIa, STD 
LimoneneIII,IV,V,VI 1188 1185 96.07 96.90 MS, LRIb, STD 
β-PhellandreneIV,VI 1198 1194 0.03 0.03 MS, LRIb 
trans-β-OcimeneIV,VI 1246 1242 0.01 0.01 MS, LRIa, STD 
cis-β-OcimeneIV,VI 1251 1252 0.07 0.05 MS, LRIa, STD 
γ-TerpineneIII,V,VI 1266 1274 0.01 tr MS, LRIa, STD 
ρ-CymeneIII,VI 1291 1267 tr tr MS, LRIb, STD 
TerpinoleneIII,IV,V,VI 1298 - 0.03 0.03 MS, STD 
Sabinene hydrateVI 1488 1465 tr tr MS, LRIa 

δ-Elemene 1502 - 0.01 tr MS 
α-CopaeneIII 1513 1536 tr tr MS, LRIa 
β-ElemeneIII 1540 - tr tr MS 
γ-Elemene 1625 1625 tr tr MS, LRIa 
β-CubebeneIII,VI 1631 - 0.05 0.01 MS, STD 
β-CaryophylleneIII,IV,VI 1638 1657 0.04 0.03 MS, LRIa, STD 
α-HumuleneIV 1669 - tr tr MS 
β -Farnesene 1695 1711 0.04 0.03 MS, LRIa, STD 
Germacrene DIV,VI 1704 1722 tr tr MS, LRIa, STD 
β-Bisabolene 1762 1788 tr tr MS, LRIa,  
α -Farnesene 1772 1801 0.01 0.01 MS, LRIa, STD 
Acids      
Acetic acid 1449 1451 0.01 tr MS, LRIb, STD 
Alcohols      
Hexanol 1346 1351 0.01 0.01 MS, LRIb, STD 
cis-3-Hexenol 1354 1389 tr  tr MS, LRIb, STD 
trans-2-Hexenol 1401 - 0.02 0.03 MS, STD 
Octanol 1527 - tr tr MS, STD 
LinaloolIII,IV,V,VI 1533 1540 0.10 0.08 MS, LRIb, STD 
4-TerpinenolVI 1631 - tr tr MS, STD 
α-TerpineolIII,IV,V,VI 1699 1711 0.04 tr MS, LRIb, STD 
Decanol 1765 - tr tr MS, STD 
CitronellolIII,IV 1789 1762 0.02 tr MS, LRIb, STD 
NerolIII 1836 1825 0.05 0.05 MS, LRIb, STD 
GeraniolIII,IV 1847 1840 0.07 0.07 MS, LRIb, STD 
Dodecanol 1850 - tr tr MS, STD 
Carveol**IV,V 1899 - tr tr MS 
2-Phenyl ethanol 1958 1903 tr tr MS, LRIb, STD 
Perillic alcoholIV 2046 - tr tr MS, STD 
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Table 2.2. (Con’d)      
trans-NerolidolIII,IV,VI 2079 - 0.01 tr MS, STD 
Elemol**III,V 2120 - 0.02 0.02 MS, STD 
cis-Farnesol 2396 2371 tr tr MS, LRIa, STD 
Phytol  2583 2593 0.03 0.02 MS, LRIa 
Aldehydes      
Hexanal 1058 1079 0.01 - MS, LRIb, STD 
OctanalIII,IV,V,VI 1280 1280 0.01 - MS, LRIb, STD 
NonanalIII,V,VI 1390 1385 tr - MS, LRIb, STD 
CitronellalIII,IV,V,VI 1479 1485 tr tr MS, LRIa, STD 
DecanalIII,IV,V,VI 1516 1497 0.03 - MS, LRIb, STD 
NeralIII,IV,V,VI 1718 1724 0.02 tr MS, LRIa, STD 
GeranialIII,IV,V,VI 1742 1744 0.05 0.01 MS, LRIa, STD 
DodecanalIII,IV,V,VI 1744 1788 tr - MS, LRIa, STD 
Tridecanal 1759 - tr - MS 
trans,trans-2,4-Decadienal 1829 1804 tr - MS, LRIa, STD 
Perillic aldehydeIII,IV,V,VI 1832 - tr tr MS, STD 
TetradecanalV 1955 - tr - MS, STD 
β-SinensalV 2233 2249 - tr MS, LRIa, STD 
α-SinensalIV,V 2334 - - tr MS, STD 
Esters      
Methyl acetate 851 856 0.01 0.01 MS, LRIa, STD 
Methyl octanoate 1394 1378 tr tr MS, LRIa, STD 
Ethyl octanoate 1431 - tr tr MS, STD 
Methyl nonanoate 1450 - tr tr MS, STD 
Octyl acetateIII 1475 - tr tr MS, STD 
Methyl decanoate 1548 - tr tr MS, STD 
iso-Bornyl acetate 1594 - tr tr MS, STD 
Carvyl acetate 1738 - tr tr MS, STD 
Neryl acetateIV 1752 1742 0.01 tr MS, LRIa, STD 
Geranyl acetateIII 1790 1771 0.01 tr MS, LRIa, STD 
Methyl benzoate 1812 - tr tr MS, STD 
Methyl salicylate 1828 - tr tr MS, STD 
Methyl anthranilate 2307 - tr tr MS, STD 
Ethyl anthranilate 2336 - tr tr MS, STD 
Others      
Acetone 870 - tr tr MS, STD 
trans-Linalool oxideIV 1440 - tr tr MS, STD 
cis-Linalool oxideIV 1468 - tr tr MS, STD 
CarvoneV 1749 1715 0.01 0.01 MS, LRIa, STD 
Caryophyllene oxide 1992 1999 tr tr MS, LRIa, STD 
Phenol 2058 - tr 0.01 MS, STD 
2-methoxy-4-vinylphenol 2253 - tr tr MS 
OstholeVI 2355 - tr* tr* MS 
3-ethyl phenol 2425 - tr tr MS, STD 
4-vinyl phenol 2450 - tr tr MS, STD 
Indole 2507 - tr tr MS, STD 
NootkatoneIII,IV,V,VI 2568 - - tr* MS, STD 
Total identified (%)   97.82 98.10  
Total peak area (all volatiles)   3.90E+10 5.00E+10  
Unless otherwise specified, HS-SPME extraction condition is 40 °C for 30 min. 
III Compounds reported in Ref. (34); IV Compounds reported in Ref. (184); V Compounds reported in Ref. 
(122); VI Compounds reported in Ref. (219). 
Identification method: MS= mass spectrum; Linear Retention Indices (LRI) are compared with 
references from standards (STD) or literature values (LRIa referred to the values in Ref. (214), LRIb 
referred to the values in Ref. (215)). 
“-“, not detected at 40 °C and 60 °C; tr trace level, GC peak area below 0.01%; *compounds detected 
only at HS-SPME extraction temperature of 60 °C for 30 min; ** unknown isomer. 
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2.3.3. Sensory evaluation 

Compared to instrumental analysis, sensory evaluation provides insight 

into aroma profile of pomelo. The sensory profile of intact pomelo blossoms 

was described with eight attributes. The results are summarized in a spider 

diagram (Figure 2.1). Among the eight attributes, floral was evaluated as the 

most dominant note of both intact pomelo blossoms, followed by animalic and 

citrus blossom note. In additional, hay was the weakest note in both pomelo 

blossoms. Compared to white pomelo blossom, pink pomelo blossom 

exhibited higher scores of these two notes. However, white pomelo blossom 

was rated higher in fresh, fruity, aldehydic and waxy attributes than pink 

pomelo blossom. More significantly, white pomelo blossom had stronger 

citrus blossom attribute. This is in agreement with the analytical findings that 

pink pomelo blossoms had higher amount of linalool, trans-nerolidol and 

indole. On the other hand, volatiles namely limonene, citral, nerol and geraniol 

were found dominant in white pomelo blossoms represent the citrus attribute. 

 

Figure 2.1. Sensory profile of intact Malaysian pomelo (Citrus grandis (L.) 
Osbeck, pink and white type) blossoms: Pink pomelo blossom; White pomelo 
blossom 
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2.4. Conclusion 

The knowledge of the chemical compositions and sensory profiles of 

their blossoms and peels could lead to better understanding of two cultivars of 

Malaysian pomelo. This chapter was to determine the volatile compositions of 

Malaysian pomelo blossoms and peels through HS-SPME–GC/MS analysis 

and to identify the key aroma profiles of pomelo blossoms by sensory 

evaluation. Pink and white pomelo blossoms contained similar volatiles, 

which mainly consisted of limonene, cis-β-ocimene, α-terpinene, linalool, 

methyl anthranilate, and indole. The primary difference was in the 

concentration ratio between limonene and linalool. Major volatiles in pomelo 

peels were terpene hydrocarbons. Pink pomelo peel contained higher levels of 

aldehydes (e.g. octanal, decanal and citral), while some trace-level important 

compounds (e.g. b-sinensal, a-sinensal and nootkatone) were found only in 

white pomelo peel. Through sensory evaluation, both intact pomelo blossoms 

had similar aroma profiles, which comprised the dominant note of floral, 

followed by animalic and citrus blossom. The applicability of HS-SPME/GC-

MS to measure volatile compounds in two cultivars of Malaysian pomelo 

blossom and peel was demonstrated. While the information on pomelo 

blossom would enable better comparison between two cultivars of Malaysian 

pomelo, the study of pomelo peel itself may serve the purpose of 

characterization and will be further explored in next chapter. 
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CHAPTER 3 IDENTIFICATION OF AROMA-ACTIVE 

COMPOUNDS IN MALAYSIAN POMELO (CITRUS 

GRANDIS (L.) OSBECK) PEEL BY GAS 

CHROMATOGRAPHY-OLFACTOMETRY 

3.1. Introduction 

Malaysian pomelo has a unique and strong aromatic peel oil, which 

could be utilized in both flavor and fragrance industries but has not been 

systemically studied. In the previous chapter, the volatile compounds and 

aroma profiles of Malaysian pink and white pomelo blossoms and peels were 

extracted using HS-SPME and analyzed through GC-MS/FID. The volatile 

compositions of both cultivars were quite similar but differed in intensity. In 

addition, it was observed that the pink pomelo peel possessed a stronger citrus, 

green and grapefruit-like note than the white pomelo peel. Nonetheless, it was 

difficult to reconstitute pomelo flavor due to the complexity of original 

pomelo aroma. Therefore, the aims of this chapter were to isolate the volatile 

compounds in Malaysian pomelo pink and white peels using solvent 

extraction, and determine their aroma-active compounds by aroma extract 
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dilution analysis (AEDA), and reconstruct the aroma models with these 

identified compounds. 

So far, to my knowledge, only one study reported the utilization of GC-

O to evaluate aroma-active compounds in Tosa-buntan (Citrus grandis Osbeck 

forma Tosa), the most popular pomelo cultivated in Japan (140). From the 

result, flavor dilution (FD) factor can be determined. Finally, the synthetic 

blends of odorants (aroma models) can be prepared based on the detected 

concentration of aroma-active compounds. Aroma reconstruction is made to 

compare the resemblance of the synthetic mixture to original flavor.  

 

3.2. Experimental procedures 

3.2.1. Preparation of pomelo peel extracts 

Malaysian pink and white pomelos were collected as described in 

Chapter 2. Peels of white pomelo (3.8 kg) and pink pomelo (4.1 kg) were 

removed with a yield of 362 g and 370 g respectivley, and immediately 

covered with 1.0 L dichloromethane (Merck, Darmstadt, Germany). The 

mixtures were kept at 5 °C for four days, and stirred by vortex (TT3 digital, 

IKA, Staufen, Germany) for 30 min daily. After this, the mixtures were 

subsequently filtered through anhydrous sodium sulphate (Na2SO4, Sigma-

aldrich). Finally, the filtrates were concentrated using a TurboVap II (Caliper 

Life Science, Hopkinton, MA, USA) to 0.5 mL. Both peel extracts thus 

prepared were dark green. The extracts were stored at 5 °C, and their quantity 

and quality were examined by GC-MS before sensory evaluation and sniffing 

test. 
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3.2.2. GC-MS/FID analysis 

GC-MS/FID analysis was carried out as described in Chapter 2 

(Section 2.2.3). For the quantification of pomelo peel extracts, 1 µL of pomelo 

peel extracts were spiked in 1 μL 5-methyl-2-hexanone (100 ppm in 

dichloromethane, Sigma-Aldrich) as internal standard (IS) and directly 

injected by an autosampler (Gerstel Multi Purpose Sampler, Gerstel GmbH & 

Co. KG, Mülheim an der Ruhr, Germany) under splitless mode. The 

percentages were obtained from the FID area corrected with the use of the 

response factors, previously measured with standard compounds under the 

same conditions. The response factor RRFs were calculated as: RRF = 

(Masscompound × AreaIS) / (MassIS × Areacompound), where Masscompound and 

Areacompound are the mass and corresponding GC peak area of the compounds, 

MassIS and AreaIS are the mass and GC peak area of the internal standard. For 

the commercially unavailable components, the RRFs were assumed to be 1.00 

in the present study. Identification of the eluted compounds was achieved by 

matching the mass spectra against NIST 8.0 MS library.  

All experiments were carried out at least in triplicate. Results were 

reported as mean values. 

 

3.2.3. Sensory evaluation 

A set of coded smelling strips of pomelo peel extracts was evaluated 

by a panel of six assessors (3 females and 3 males) as explained in Chapter 2 

(Section 2.2.4). The selected attributes for pomelo peel extracts were: 

aldehydic, citrus, fresh, fruity, grapefruit, green, peely, woody. 
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3.2.4. Gas chromatography-olfactometry (GC-O) 

GC-O instrument comprised a Shimadzu GC-MS QP 5000 with the 

olfactometer ODO II (SGE, Ringwood, VIC, Australia). The separation of 

volatile compounds was performed in the fused silica capillary column (60 m 

x 0.25 mm x 0.25 µm DB-FFAP) coated with 0.25 μm film thickness of 

polyethylene glycol modified with nitroterephthalic acid. Helium was used as 

carrier gas at a flow rate of 1.2 mL/min. The temperature of injector was 250 

°C. Each sample was injected in 1 μL volumes in a split mode with ratio of 20: 

1.  The GC oven temperature was programmed from 50 °C for 5 min, then 

was raised to 240 °C at 5 °C/min and held at this temperature for 20 min. MS 

was operated in the electron impact (EI) mode at 70 eV. The outlet of the 

column was split into two ways using splitter and routed by deactivated fused 

silica capillaries to the mass detector and sniffing port, respectively. The 

sniffing port was always heated with a flexible heater to avoid condensation of 

the volatile materials in the glass tube. The carrier gas stream for sniffers was 

moistened at the outlet for sniffing to prevent the nose from drying out.  

Sniffing test is used to describe the aroma character of each 

component. The sensory panel was composed of four well-trained flavorists (2 

males and 2 females). The peel extracts were stepwise two-fold diluted with 

dichloromethane. All dilutions were sniffed twice by the panel until no odor 

was detected. The odor descriptors used here were based on Flavornet (220) 

and Leffingwell’s Flavor-Base (221). AEDA method was performed to 

determine flavor dilution (FD) factor, which is the highest dilution at which an 

individual compound could be detected. Furthermore, to determine the relative 

contribution of each compound to the aroma of pomelo peel extracts, odor 
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activity value (OAV) and relative flavor activity (RFA) were calculated. The 

FD-factor was expressed by powers of two (2n), and the RFA was calculated 

as log 2n/(weight percentage of the compound %)0.5. In order to obtain OAV, 

the concentration of the compound was calculated from its GC-FID peak with 

internal standard, while the corresponding odor threshold was referred to the 

published literature (221-224).  

  

3.2.5. Aroma model 

The blends of synthetic mixture (aroma models) were prepared with 

the aroma-active compounds identified in pink and white pomelo, respectively 

(as shown in Table 3.2 and 3.3) except trans-epoxy-ocimene, α-copaene and 

carveol. Triacetin was selected as a diluent for the aroma model. These models 

were presented to the panel to rate the following attribute intensity that used a 

9-point scale from 0 (uncharacteristic) to 8 (very strong) for aldehydic, citrus, 

fresh, fruity, grapefruit, green, peely, and woody attributes. The results were 

then averaged for each attribute and plotted on a spider web diagram.  

All standard compounds used in the identification and aroma model 

are obtained from Firmenich Asia Pte. Ltd.. 

 

3.3. Results and discussion 

3.3.1. Volatile composition of pomelo peel extracts 

Pomelo peel extracts were carefully prepared by solvent extraction and 

these extracts were examined by GC-MS/FID. A total of 96 compounds were 

identified as potential aroma-active compounds and listed in Table 3.1.  
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Table 3.1. Identifications of the volatile compounds and their relative GC 
peak area of Malaysian pomelo (Citrus grandis (L.) Osbeck, pink and white 
type) peel extracts 

Compounds LRI Pink 
pomelo 

White 
pomelo Identification FFAP Ref 

Hydrocarbons      
α-PineneIII,IV,V,VI 1008 1007 0.16 0.10 MS, LRIb, STD 
α-ThujeneVI 1033 1031 tr 0.01 MS, LRIa 
CampheneIII,IV,VI 1039 - tr 0.01 MS, STD 
β-PineneIII,IV,V,VI 1102 1113 0.05 0.02 MS, LRIb, STD 
SabineneIII,IV,V,VI 1104 1093 tr 0.01 MS, LRIb 
δ-3-CareneIV 1112 1180 tr 0.01 MS, LRIa, STD 
β-MyrceneIII,IV,VI 1161 1158 0.06 0.03 MS, LRIb, STD 
α-TerpineneIII,IV,V 1181 1178 0.01 0.04 MS, LRIa, STD 
LimoneneIII,IV,V,VI 1188 1185 93.11 95.40 MS, LRIb, STD 
β-PhellandreneIV,VI 1198 1194 0.03 0.07 MS, LRIb 
trans-β-OcimeneIV,VI 1246 1242 0.01 0.01 MS, LRIa, STD 
cis-β-OcimeneIV,VI 1251 1252 0.01 0.03 MS, LRIa, STD 
γ-TerpineneIII,V,VI 1266 1274 0.03 0.02 MS, LRIa, STD 
ρ-CymeneI,VI 1291 1267 0.02 0.04 MS, LRIb, STD 
allo-Ocimene 1295 - tr tr MS,  STD 
TerpinoleneIII,IV,V,VI 1298 - 0.03 0.03 MS, STD 
dehydro-ρ-Cymene 1323 - tr tr MS 
ρ-1,3,8-Menthatriene 1339 1375 tr tr MS, LRIb 
Sabinene hydrateVI 1488 1465 tr 0.01 MS, LRIa 

δ-Elemene 1502 - 0.10 0.10 MS 
trans-epoxy-Ocimene 1508 - - 0.01 MS, STD 
α-CopaeneIII 1513 1536 tr 0.01 MS, LRIa 

β-Elemene 1540 - 0.04 0.03 MS 
γ-Elemene 1625 1625 0.05 0.03 MS, LRIa 

β-CubebeneIII,VI 1631 - 0.06 0.04 MS, STD 
β-CaryophylleneIII,IV,VI 1638 1657 0.16 0.07 MS, LRIa, STD 
α-HumuleneIV 1669 - 0.03 0.01 MS 
β-Farnesene 1695 1711 0.04 0.03 MS,  LRIa, STD 
Germacrene DIV,VI 1704 1722 0.16 0.05 MS, LRIa, STD 
β-Bisabolene 1762 1788 tr 0.01 MS, LRIa 
α-Farnesene 1772 1801 0.01 0.02 MS, LRIa, STD 
Squalene 2985 - tr tr MS 
Acids      
Acetic acid 1449 1451 0.01 0.02 MS, LRIb, STD 
Hexanoic acid 1867 - 0.01 tr MS, STD 
Octanoic acid 2091 - 0.01 tr MS, STD 
Decanoic acid 2309 - 0.05 0.01 MS, STD 
Neric acid 2331 - tr tr MS 
Geranic acid 2383 - tr tr MS 
Myristic acid 2532 - 0.13 0.06 MS, STD 
Lauric acid 2533 - 0.18 tr MS, STD 
Palmitic acid 3091 - 0.93 0.67 MS, STD 
Linoleic acid 3106 - 0.37 0.27 MS, STD 
Oleic acid 3135 - 0.14 0.19 MS, STD 
Alcohols      
Ethanol 958 936 tr tr MS, LRIb, STD 
Hexanol 1346 1351 0.02 0.04 MS, LRIb, STD 
cis-3-Hexenol 1354 1389 0.05 0.08 MS, LRIb, STD 
trans-2-Hexenol 1401 - tr 0.01 MS, STD 
Octanol 1527 - 0.07 0.01 MS, STD 
Camphor 1529 - tr 0.01 MS, STD 
LinaloolIII,IV,V,VI 1533 1540 0.25 0.17 MS, LRIb, STD 
4-TerpinenolVI 1631 - 0.01 0.01 MS, STD 
α-TerpineolIII,IV,V,VI 1699 1711 0.17 0.14 MS, LRIb, STD 
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III Compounds reported in Ref. (34); IV Compounds reported in Ref. (184); V Compounds reported in Ref. 
(122); VI Compounds reported in Ref. (219). 
Identification method: MS= mass spectrum; Linear Retention Indices (LRI) are compared with 
references from standards (STD) or literature values (LRIa referred to the values in Ref. (214), LRIb 
referred to the values in Ref. (215)). 
“-“, not detected; tr trace level, GC peak area below 0.01%; ** unknown isomer. 
  

Table 3.1. (Cont’d)      
Decanol 1765 - 0.02 tr MS, STD 
CitronellolIII,IV 1789 1762 0.01 tr MS, LRIb, STD 
NerolIII 1836 1825 0.22 0.24 MS, LRIb, STD 
GeraniolIII,IV 1847 1840 0.28 0.27 MS, LRIb, STD 
Dodecanol 1850 - 0.02 0.01 MS, STD 
Benzyl alcohol 1884  tr tr MS, STD 
Carveol**IV,V 1899 - 0.08 0.06 MS 
2-Phenyl ethanol 1958 1903 0.01 0.01 MS, LRIb, STD 
Perillic alcoholIV 2046 - 0.04 0.04 MS, STD 
trans-NerolidolIII,IV,VI 2079 - 0.01 0.01 MS, STD 
Elemol**III,V 2120 - 0.11 0.10 MS, STD 
cis-Farnesol 2396 2371 0.02 0.01 MS, LRIa, STD 
Phytol 2583 2593 0.11 0.01 MS, LRIa 
Aldehydes      
Hexanal 1058 1079 0.06 - MS, LRIb, STD 
OctanalIII,IV,V,VI 1280 1280 0.04 - MS, LRIb, STD 
trans-2-Heptenal 1349 1305 tr - MS, LRIb, STD 
NonanalIII,V,VI 1390 1385 0.01 - MS, LRIb, STD 
CitronellalIII,IV,V,VI 1479 1485 0.01 tr MS, LRIa, STD 
DecanalIII,IV,V,VI 1516 1497 0.17 - MS, LRIb, STD 
NeralIII,IV,V,VI 1718 1724 0.06 0.03 MS, LRIb, STD 
GeranialIII,IV,V,VI 1742 1744 0.12 0.06 MS, LRIb, STD 
DodecanalIII,IV,V,VI 1744 1788 0.02 - MS, LRIa, STD 
Tridecanal 1759 - 0.01 - MS 
trans,trans-2,4-Decadienal 1829 1804 tr - MS, LRIa, STD 
Perillic aldehydeIII,IV,V,VI 1832 - 0.02 0.01 MS, STD 
trans-2-Dodecenal 1883 - tr - MS, STD 
Tetradecanalv 1955 - tr - MS 
Esters      
iso-Bornyl acetate 1594 - 0.01 0.01 MS, STD 
Carvyl acetate 1738 - tr tr MS, STD 
Neryl acetateIV 1752 1742 0.03 0.02 MS, LRIa, STD 
Geranyl aceateIII 1790 1771 0.03 0.03 MS, LRIa, STD 
Methyl palmitate 2289 - 0.14 0.13 MS, STD 
Ethyl palmitate 2376 - tr tr MS, STD 
Others      
Dimethyl sulfide 846 - tr tr MS, STD 
Acetone 870 - tr tr MS, STD 
Acetoin 1293 - tr tr MS, STD 
6-Methyl-5-hepten-2-one 1333 - tr tr MS, STD 
trans-Linalool oxideIV 1440 - 0.03 0.03 MS, STD 
2-Methyl furan 1441 - tr tr MS, STD 
cis-Linalool oxideIV 1468 - 0.03 0.03 MS, STD 
CarvoneIII 1749 1715 0.01 0.01 MS, LRIb, STD 
Caryophyllene oxide 1992 1999 tr 0.01 MS, LRIa 
Carvacrol 2223 - tr - MS, STD 
Osthole 2355 - 0.20 0.17 MS 
Total identified (%)   98.37 99.17  
Total peak area (all volatiles)   4.90E+10 1.60E+11  
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The identified volatile compounds were classified according to their 

functional groups: hydrocarbons, alcohols, aldehydes, acids, esters and others, 

as described in previous chapter. Pomelo peel extracts were then injected into 

GC-O for sniffing test, and their aroma-active compounds were determined by 

AEDA method.  

Following this, sensory evaluation was carried out for pomelo peel 

extracts. Figure 3.1 showed that pink pomelo peel extract was ranked highly 

for its grapefruit note at a score of 7.0, followed by green (6.0), citrus (6.0), 

aldehydic (5.0) and fruity (5.0) notes. The score for woody note was the 

weakest, being only 3. These attributes complied with the analytical results 

that pink pomelo peel have higher amount of citral, β-pinene, acetate ester, 

aliphatic aldehydes. On the other hand, white pomelo peel had a well-balanced 

aroma profile, mainly comprised of fresh (5.5), woody (5.0) and peely (5.0) 

notes.  

 

 

Figure 3.1. Sensory profile of Malaysian pomelo (Citrus grandis (L.) Osbeck, 
pink and white type) peel extracts: Pink pomelo peel extract; White pomelo 
peel extract 
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A GC-MS chromatogram together with an aromagram is shown in 

Figure 3.2. It clearly indicates that there is a significant difference between the 

responses of GC and sensory evaluation. Since volatile compounds exhibit 

various aroma activities, the potency of volatiles could be easily 

misinterpreted due to their absolute concentration (142). A trace-level potent 

aroma compound in GC chromatogram, cis,trans-2,6-nonadienal (peak 41), 

was detected as one of the most dominant peaks in the aromagram. 

 

 

Figure 3.2. GC-MS chromatogram (top) and aromagram (bottom) attained by 
performing the AEDA on Malaysian pomelo peel extract 

Labeled peaks: (1) α-Pinene; (2) β-Pinene; (4) Unknown; (5) β-Myrcene; (7) Limonene; (8) 
trans-β-Ocimene; (9) Octanal; (10) ρ-Cymene; (14) Hexanol; (16) cis-3-Hexen-1-ol; (20) cis-
Linalool oxide; (23) Decanal; (25) Linalool; (29) β-Caryophellene; (30) α-Terpineol; (31) 
Germacrene D; (33) Carvyl acetate; (34) Geranial; (39) Nerol; (40) Geraniol; (41) trans-2-
Dodecenal; (44) α-Farnesol; (45) trans-Nerolidol; (47) Carvacrol; (49) Indole; (50) 
Nootkatone 



 57 

Tables 3.2 and 3.3 show that 50 and 47 aroma-active compounds were 

detected in pomelo pink and white peel extracts respectively. It is noted that in 

general, compounds that had high FD factor also had high RFA. On the other 

hand, since OAV often depends on the literature values for odor threshold, 

which are always very uncertain, the application of OAV may be discrepant 

due to variations of operation conditions. In this study, the concept of RFA 

could be used as an alternative to identify potent aroma-active compounds, 

and was created to compensate the limitations of OAV in the identification of 

the important aroma-active compounds. 

In the pink pomelo peel extract, the compounds that exhibited 

strongest aroma activity (in decreasing order of RFA) were: trans-linalool 

oxide, cis,trans-2,6-nonadienal, octanal, citronellal, nonanal, trans-nerolidol, 

neryl acetate, indole, 6-methyl-5-hepten-2-one, terpinolene, trans-2-heptenal, 

perilla alcohol and nootkatone. The counterparts in the white pomelo peel 

extract were: terpinolene, α-copaene, 4-terpinenol, trans-nerolidol, trans-

linalool oxide, nootkatone, cis,trans-2,6-nonadienal, citronellol, elemol, carvyl 

acetate, 6-methyl-5-hepten-2-one, perilla aldehyde and indole.  

Hydrocarbon terpenes, such as limonene, α-pinene, β-pinene, sabinene, 

myrcene, trans-β-ocimene, were the predominant volatiles of Tosa-buntan 

pomelo peel extracts. However, most of them do not contribute significantly to 

aroma perception of pomelo peel extracts due to their high odor thresholds. 

Although limonene shows the highest FD-factor, it is not the key flavor 

compound in the both pomelo peel extracts due to a relatively low RFA value. 

Nevertheless, limonene is a necessary component of the following pomelo 

peel odor model. 
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Table 3.2. Aroma-active compounds with odor description identified in Malaysian pink pomelo peel extract achieved by means of GC-O 

No. LRI a Compoundb Odor descriptionc Conc (ppm) FDd Odor thresholde 
(ppm) OAV RFA Identificationf 

1 1010 α-Pinene Terpenic, woody 837.5 32 0.19II 4408 5.2 Odor, MS, STD, LRIb  
2 1105 β-Pinene Terpenic, woody 202.2 32 1.5II 135 10.6 Odor, MS, STD, LRIb 
3 1112 Unknown Fermented, sulfurous tr 1024 u - - Odor 
4 1116 Unknown Tropical, sulfurous tr 128 u - - Odor, MS, STD 
5 1164 β-Myrcene Herbaceous, woody 6121.8 128 0.1II 61218 2.7 Odor, MS, STD, LRIb 
6 1169 Unknown Nutty, pandan  tr 1024 u - - Odor 
7 1190 Limonene Citrus, terpenic 299823.1 16384 0.2II 1499115 0.8 Odor, MS, STD, LRIb 
8 1249 trans-β-Ocimene Green, terpenic 104.0 8 0.34II 306 8.9 Odor, MS, STD, LRIa 
9 1285 Octanal Aldehydic, peely 20.8 128 0.082II 253 46.2 Odor, MS, STD, LRIb 
10 1295 ρ-Cymene Oxidized lemon, woody 15.1 4 0.12II 126 15.5 Odor, MS, STD, LRIb 
11 1302 Terpinolene Lime, terpenic 11.4 8 0.41II 28 26.8 Odor, MS, STD, LRIa 
12 1305 Unknown Green, hazelnut-like tr 1024 u - - Odor 
13 1336 6-Methyl-5-hepten-2-one Green, lemony 10.1 8 1I 10 28.5 Odor, MS, STD 
14 1347 Hexanol Fresh, green 35.6 4 3.125I 11 10.1 Odor, MS, STD, LRIb 
15 1350 trans-2-Heptenal Fatty, intense green 17.3 1024 0.013III 13315 22.9 Odor, MS, STD, LRIb 
16 1359 cis-3-Hexen-1-ol Fresh, leafy green 135.2 128 3.625I 37 18.1 Odor, MS, STD, LRIb 
17 1396 Nonanal Aldehydic, citrus 23.8 128 0.1I 238 43.2 Odor, MS, STD, LRIb 
18 1405 trans-2-Hexen-1-ol Green, leafy 20.2 8 4.25I 5 20.1 Odor, MS, STD 
19 1446 trans-Linalool oxide Floral, tea-like 37.0 2048 0.32I 1094 55.5 Odor, MS, STD 
20 1472 cis-Linalool oxide Floral, tea-like 350.0 1024 0.32I 116 16.1 Odor, MS, STD 
21 1479 Octyl acetate Aldehydic, floral 34.9 2 0.45I 78 5.1 Odor, MS, STD 
22 1483 Citronellal Green, lemongrass 22.2 128 0.046I 482 44.7 Odor, MS, STD, LRIa 
23 1519 Decanal Aldehydic, citrus 678.0 2048 0.07I 9686 12.7 Odor, MS, STD, LRIb 
24 1532 Octanol Orange, waxy 545.5 32 0.875I 623 6.4 Odor, MS, STD, LRIb 
25 1536 Linalool Floral, woody 832.3 2048 0.028I 29725 11.5 Odor, MS, STD, LRIb 
26 1598 iso-Bornyl acetate Camphoraceous, woody 232.2 2 1.38I 168 2.0 Odor, MS, STD 
27 1609 Fenchol Camphoraceous, lime 496.0 32 1.2I 413 6.8 Odor, MS, STD 
28 1642 ρ-Menthene-8-thiol Grapefruit, sulfurous tr 32 u - - Odor, STD 
29 1645 β-Caryophellene Spicy, woody 494.9 16384 0.15II 3300 18.9 Odor, MS, STD, LRIa 
30 1705 α-Terpineol Citrus, lime 517.9 16384 15I 35 18.5 Odor, MS, STD, LRIb 
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Table 3.2. (Cont’d)        
31 1710 Germacrene D Hay, woody 594.7 8 u - 3.7 Odor, MS, STD, LRIa 
32 1725 Neral Fresh, lemon 271.7 128 0.1I 2717 12.8 Odor, MS, STD, LRIb 
33 1745 Carvyl acetate Green, herbaceous 626.2 2 0.0015I 417467 1.2 Odor, MS, STD 
34 1749 Geranial Fresh, lemon 587.1 128 0.1I 5871 8.7 Odor, MS, STD, LRIb 
35 1754 Dodecanal Aldehydic, waxy 1162.5 4 0.055I 21136 1.8 Odor, MS, STD, LRIa 
36 1760 Carvone Cooling, spearmint 118.9 2 0.067I 1774 2.8 Odor, MS, STD, LRIb 
37 1762 Neryl acetate Fresh, rosy 152.4 16384 2I 76 34.1 Odor, MS, STD, LRIa 
38 1839 trans,trans-2,4-Decadienal Fatty, vegetative 55.3 16 0.01I 55300 5.1 Odor, MS, STD, LRIa 
39 1848 Nerol Fruity, rosy 950.0 1024 0.68I 1397 9.8 Odor, MS, STD, LRIb 
40 1858 Geraniol Fruity, rosy 701.9 1024 0.01I 70190 11.4 Odor, MS, STD, LRIb 
41 1896 trans-2-Dodecenal Green, waxy 31.1 4 0.0014I 22214 10.8 Odor, MS, STD 
42 1941 cis,trans-2,6-Nonadienal Fatty ,vegetative 30.0 1024 0.00001IV 2997998 55.0 Odor, MS, STD 
43 2048 Perilla alcohol Green, spicy 46.6 32 7I 7 22.0 Odor, MS, STD 
44 2065 α-Farnesol Floral, tea-like 95.7 8 0.02III 4785 9.2 Odor, MS, STD 
45 2070 trans-Nerolidol Floral, woody 56.3 1024 2.25I 25 40.1 Odor, MS, STD 
46 2119 Elemol Floral, woody 1540.9 2048 0.1I 15409 8.4 Odor, MS, STD 
47 2212 Carvacrol Phenolic, spicy 210.4 128 2.29I 92 14.5 Odor, MS, STD 
48 2223 β-Sinensal Peely, sweet orange 9.1 4 0.082I 111 20.0 Odor, MS, STD, LRIa  
49 2501 Indole Animallic, floral 46.6 128 0.14III 333 30.9 Odor, MS, STD 
50 2562 Nootkatone Grapefruit, woody 49.1 32 0.28I 175 21.5 Odor, MS, STD 

LRI on column (DB-FFAP) determined with two series of n-alkanes.  
b Compounds are listed in their elution order on a DB-FFAP column.  
c Odor description based on the description of panelist and literature references. 
d Flavor dilution of the highest dilution at which an individual compound could be detected. 
e Odor threshold in water reported in IRef. (142); IIRef.(143); IIIRef. (144); IVRef. (214); "u" unidentified.  
f
 Identification method: Odor= comparison of odor descriptors to literature GC-O database; MS= mass spectrum; Linear Retention Indices (LRI) are compared with references from standards 
((STD) or literature values (LRIa referred to the values in Ref. (215), LRIb referred to the values in Ref. (220) 
 “Unknown” compounds tentatively identified without reference compound injection or no detection by MS 
“tr” trace level, GC-FID peak area unable to record  
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Table 3.3. Aroma-active compounds with odor description identified in Malaysian white pomelo peel extract achieved by means of GC-O 

No. LRI a Compoundb Odor descriptionc Conc (ppm) FDd Odor threshold 
(ppm)e OAV RFA Identificationf 

1 1010 α-Pinene Terpenic, woody 650.5 32 0.19II 3424 5.9 Odor, MS, STD, LRIb  
2 1090 Pentanethiol Guava-like, tropical  tr 128 u - - Odor, STD 
3 1105 β-Pinene Terpenic, woody 875.7 128 1.5II 584 7.1 Odor, MS, STD, LRIb  
4 1164 β-Myrcene Herbaceous, woody 3710.3 4 0.1II 37103 1.0 Odor, MS, STD, LRIb  
5 1190 Limonene Citrus, terpenic 167070.6 16384 0.2II 835353 1.0 Odor, MS, STD, LRIb 
6 1249 trans-β-Ocimene Green, terpenic 96.4 8 0.34II 284 9.2 Odor, MS, STD, LRIa  
7 1295 ρ-Cymene Oxidized lemon, woody 6.8 4 0.12II 57 23.1 Odor, MS, STD, LRIb  
8 1302 Terpinolene Lime, terpenic 4.8 256 0.41II 12 110.0 Odor, MS, STD, LRIa  
9 1305 Unknown Green, hazelnut-like  tr 128 u - - Odor 
10 1309 Unknown Cooked milk, creamy tr 2 u - - Odor 
11 1321 Unknown Beany, woody tr 8 u - - Odor  
12 1336 6-Methyl-5-hepten-2-one Green, lemon 2.1 4 1I 2 41.6 Odor, MS, STD 
13 1347 Hexanol Fresh, green 45.1 4 3.125I 14 9.0 Odor, MS, STD, LRIb  
14 1359 cis-3-Hexen-1-ol Fresh, leafy green 138.4 32 3.625I 38 12.8 Odor, MS, STD, LRIb  
15 1405 trans-2-Hexen-1-ol Green, leafy 15.1 8 4.25I 4 23.2 Odor, MS, STD 
16 1446 trans-Linalool oxide Floral, tea-like 15.7 256 0.32I 49 60.8 Odor, MS, STD 
17 1472 cis-Linalool oxide Floral, tea-like 53.2 32 0.32I 166 20.6 Odor, MS, STD 
18 1483 Citronellal Green, lemongrass 8.5 8 0.046I 185 31.0 Odor, MS, STD, LRIa  
19 1512 trans-epoxy-Ocimene Floral, woody 1127.4 32 u - 4.5 Odor, MS, STD 
20 1519 α-Copaene Spicy, woody 1.8 16 u - 89.8 Odor, MS 
21 1531 Camphor Camphoraceous, minty 7.6 4 4.6I 2 21.8 Odor, MS, STD 
22 1536 Linalool Floral, woody 300.0 32 0.028I 10714 8.7 Odor, MS, STD, LRIb  
23 1598 iso-Bornyl acetate Camphoraceous, woody 381.9 8 1.38I 277 4.6 Odor, MS, STD  
24 1638 4-Terpinenol Lime, musty 7.2 128 6.4I 1 78.5 Odor, MS, STD 
25 1645 β-Caryophellene Spicy, woody 110.6 16 0.15II 737 11.5 Odor, MS, STD, LRIa  
26 1687 Citronellyl acetate Fruity, rosy 80.4 8 0.00468 17182 10.1 Odor, MS, STD 
27 1705 α-Terpineol Lime, woody 206.7 128 15I 14 14.7 Odor, MS, STD, LRIb  
28 1710 Germacrene D Hay, woody 51.4 4 u - 8.4 Odor, MS, STD, LRIa  
29 1725 Neral Fresh, lemon  67.5 128 0.1I 675 25.7 Odor, MS, STD, LRIb  
30 1745 Carvyl acetate Herbaceous, spicy 11.3 32 0.0015I 7533 44.8 Odor, MS, STD  
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Table 3.3. (Cont’d) 
31 1749 Geranial Fresh, lemon 125.3 32 0.1I 1253 13.5 Odor, MS, STD, LRIb  
32 1760 Carvone Cooling, spearmint 5.9 8 0.067I 89 37.0 Odor, MS, STD, LRIb  
33 1762 Neryl acetate Fresh, rosy 206.7 256 2I 103 16.8 Odor, MS, STD, LRIa  
34 1798 Citronellol Rosy, woody 25.5 256 0.062I 412 47.7 Odor, MS, STD, LRIb  
35 1799 Geranyl acetate Fresh, rosy 41.6 32 0.15I 278 14.0 Odor, MS, STD, LRIa  
36 1822 Methyl benzoate Jasmine, phenolic 28.8 2 0.000845IV 34107 5.6 Odor, MS, STD, LRIb 
37 1839 Perilla aldehyde Citrus, spicy 13.7 32 0.062I 221 40.7 Odor, MS, STD 
38 1848 Nerol Fruity, rosy 444.1 256 0.68I 653 11.4 Odor, MS, STD, LRIb 
39 1858 Geraniol Fruity, rosy 261.3 256 0.01I 26134 14.9 Odor, MS, STD, LRIb 
40 1908 Carveol Spearmint, spicy 131.1 8 4I 33 9.1 Odor, MS 
41 1941 cis,trans-2,6-Nonadienal Fatty, vegetative 15.6 128 0.00001III 1560000 53.4 Odor, MS, STD  
42 2018 Benzothiazole Rubbery, sulfury 24.4 32 0.08III 305 30.5 Odor, MS, STD 
43 2070 trans-Nerolidol Floral, woody 9.9 256 2.25I 4 76.5 Odor, MS, STD 
44 2119 Elemol Floral, woody 28.2 256 0.1I 282 45.4 Odor, MS, STD 
45 2223 β-Sinensal Peely, sweet orange 33.6 4 0.082I 410 10.4 Odor, MS, STD, LRIa 
46 2501 Indole Animallic, floral 28.2 128 0.14III 201 39.7 Odor, MS, STD 
47 2562 Nootkatone Grapefruit, woody 14.9 128 0.28I 53 54.6 Odor, MS, STD 

a LRI on column (DB-FFAP)  determined with two series of n-alkanes.  
b Compounds are listed in their elution order on a DB-FFAP column.  
c Odor description based on the description of panelist and literature references. 
d Flavor dilution of the highest dilution at which an individual compound could be detected. 
e Odor threshold in water reported in IRef. (142); IIRef.(143); IIIRef. (144); IVRef. (214); "u" unidentified.  
f
 Identification method: Odor= comparison of odor descriptors to literature GC-O database; MS= mass spectrum; Linear Retention Indices (LRI) are compared with references from standards 
((STD) or literature values (LRIa referred to the values in Ref. (215), LRIb referred to the values in Ref. (220) 
 “Unknown” compounds tentatively identified without reference compound injection or no detection by MS 
“tr” trace level, GC-FID peak area unable to record   
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In contrast, the relatively low oxygenated terpenes content produce the 

most aroma activity. Relatively high intensity FD-factors belonged to the 

group of oxygenated terpenes, considered being the most expressive class of 

terpenes used in perfumery (225). Aldehydes, identified as the characteristic 

aroma of citrus fruits, are secondary metabolites formed during the process of 

maturation. Some aldehydes imparted pleasant fresh and citrus notes to both 

pomelo peel extracts, while others contributed to a fatty note. Moreover, citral 

(neral and geranial), possessing a fresh lemony note, was also found to be key 

aroma-active volatiles. β-sinensal exhibits peely and sweet orange-like odor. 

In addition, other fatty-acid degradation aldehydes: octanal, nonanal, decanal 

(aldehydic); trans-2-heptenal, trans-2-dodecenal, cis,trans-2,6-nonadienal, 

and trans,trans-2,4-decadienal also exhibite intense aroma activity (fatty, 

intense green and oily notes). Sawamura et. al. (140) had identified 2-

dodecenal to be a characteristic key compound of Tosa-buntan pomelo. 

Through careful sniffing, a solution of this compound below 2 ppm gave a 

pleasant and refreshing aroma. Trans-2-dodecenal was also detected in the 

pink pomelo peel extract, but it was not representative of the whole aroma 

profile even though it was approximately ten times higher at 31 ppm. This was 

probably due to the variation of volatile composition background among the 

different pomelo cultivars (34). Furthermore, other unsaturated aldehydes 

identified here were considered more impactful in aroma than trans-2-

dodecenal. Relative high amount of unsaturated aldehydes might form during 

the plant tissue disruption.  

The terpene alcohols (e.g. linalool, 4-terpineol, citronellol, farnesol, 

nerolidol, nerol and geraniol) are also key aroma compounds. As a group, they 
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impart floral, tea-like and woody flavor. Aliphatic alcohols that were present 

in small proportions also contributed to citrus perception. Hexanol, a fatty-

degradation alcohol, exhibits fresh and green notes. In addition, trans-2-

hexenol and cis-3-hexenol add a leafy-green note whereas higher aliphatic 

alcohols like octanol contribute to orange and waxy attributes. Sulfur 

compounds are always associated with key aroma chemicals in citrus and 

tropical fruits. They are commonly present at extremely low levels, but often 

have even lower odor thresholds (27-29).  

Based on LRI and odor perception, ρ-menthene-8-thiol was tentatively 

detected in the pink pomelo peel extract, whereas pentanethiol was found in 

the white pomelo peel extract (see Tables 3.2 and 3.3). Pentanethiol was found 

to be the main component responsible for the characteristic tropical aroma of 

guava fruit (Psidium guajava L.) (226, 227). ρ-menthene-8-thiol has a 

prominent grapefruit-like sensory attribute, and was identified as one of the 

major grapefruit aroma-active components (133, 228). While there were a few 

unknown compounds contributed to atypical notes, e.g. beery, meaty, guava-

like, tropical, and hazelnut-like. It is therefore suggested that some compounds 

with sulfur or nitrogen atom remain unidentified here. The present study has 

not been exhaustive with respect to these unknown. However, the source of 

these unknowns could be explained by the biosynthesis pathway that coincide 

in part with the route of the degradation of monoterpenes (e.g. limonene, β-

pinene, and β-myrcene) or/and the reaction of sesquiterpenes (e.g. α-humulene 

and β-caryophyllene) with some sulfur chemicals (e.g. dimethyl sulfide) that 

were presented in the obtained extract due to aging or prolong storage together 

with exposure to light or oxidation. 
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In order to verify the analytical data obtained by quantification, an 

attempt was made to reconstruct the flavor of the pomelo peel from its 

identified compounds. In this work, triacetin was employed as a solvent during 

the reconstitution, which can dissolve both hydrophilic and hydrophobic 

compounds. It is odorless and inert. The amount of each compound used in the 

reconstituted model was based on the concentration determined in the both 

Malaysian pomelo peel extracts (Tables 3.2 and 3.3). As the concentration of 

ρ-menthene-8-thiol could not be determined due to weak MS and FID signals, 

several trials were made in order to find out their most suitable concentration. 

Results indicated that 0.0005% w/w of ρ-menthene-8-thiol produced a close 

resemblance to natural pink pomelo peel extract. Further increment of ρ-

menthene-8-thiol had created overwhelmed sulfury and tropical notes. The 

aroma model was evaluated and found that the grapefruit note was 

significantly improved.  

 

As shown in Figure 3.3, the profile of the pink pomelo aroma model 

was found to be more aldehydic and woody than that of the original pink peel 

extract. Furthermore, it lacked fresh and green characters. While several 

odorants with these descriptors were identified during sniffing, only some 

could be attributed to compounds identified in the pink pomelo extract, thus 

suggesting that other significant contributors to pomelo peel flavor may 

remain as yet unidentified. 
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Figure 3.3. Flavor profile analysis of Malaysian pink pomelo peel extract and 
the reconstituted aroma model 

 

For white pomelo peel extract, aroma model was prepared with the 

compounds with OAV ≥ 1. It showed good agreement compared to white 

pomelo peel extract, but it was rated lowest in grapefruit note, less green but 

more aldehydic (Figure 3.4). Overall, the sensory evaluation deduced that 

there were some unidentified molecules that had strong tropical and woody 

notes. In addition, cis,trans-2,6-nonadienal was considered characteristic in 

the white pomelo peel. 
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Figure 3.4. Flavor profile analysis of Malaysian white pomelo peel extract 
and the reconstituted aroma model 

 

The above discussion was for the aroma model based on the analytical 

data. Similar sensory evaluation with various aroma models was also 

performed, which were prepared in the same manner but the proportion of 

each component was carefully adjusted. However, the effort on the 

reconstructing pomelo peel flavor by mixing the aroma-active compounds 

identified in the present study was not closely similar to the correspondent 

peel extracts, particularly for pink pomelo peel. So, under the present 

condition, some key aroma compounds to Malaysian pomelo peel flavors have 

yet to be chemically characterized. 
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3.4. Conclusion 

Using GC-MS/FID and gas chromatography-olfactometry (GC-O), 50 

and 47 aroma-active compounds were identified in pink and white pomelo 

peel extracts, respectively. On the basis of flavor dilution (FD) factor, odor 

activity value (OAV) and relative flavor activity (RFA), main odorants in pink 

pomelo peel extract: trans-linalool oxide, cis,trans-2,6-nonadienal, octanal, 

citronellal, nonanal, trans-nerolidol, neryl acetate, indole, 6-methyl-5-hepten-

2-one, terpinolene, trans-2-heptenal, perilla alcohol and nootkatone were 

determined, while the most intense aromas in the white pomelo peel extract 

were terpinolene, α-copaene, 4-terpinenol, trans-nerolidol, trans-linalool 

oxide, nootkatone, cis,trans-2,6-nonadienal, citronellol, elemol, carvyl acetate, 

6-methyl-5-hepten-2-one, perilla aldehyde and indole. Therefore, no single 

compound was determined as possessing a characteristic Malaysian pomelo 

like aroma. 



 

 68 

CHAPTER 4 CHEMICAL COMPOSITION AND SENSORY 

PROFILE OF POMELO (CITRUS GRANDIS (L.) OSBECK) 

JUICE 

4.1. Introduction 

In the previous two chapters, the volatiles of pomelo blossoms and peels 

indicated that the pomelo possessed a unique aroma and taste. Among the 100 

volatiles present in the pomelo peel, 50 aroma-active compounds (mainly 

unsaturated aliphatic aldehydes, terpene aldehydes, esters, terpene alcohols 

and nootkatone) were found characteristic for the complex pomelo flavor. 

Although some comparisons have been made on the volatile fractions of 

Nakon (183) and Chandler pummelo (177), the flavor profile of pomelo juice 

is still inexplicit. Therefore, the chemical composition and sensory profile of 

the pomelo juice were investigated in this chapter. Furthermore, the possibility 

of correlating instrumental data (volatile and non-volatile components) with 

the sensory profile through multivariate analyses (PCA and PLSR) was 

explored. 

Citrus juices are complex mixtures of aromatic volatiles (e.g. esters, 

aldehydes, ketones and alcohols) and non-volatile components (e.g. organic 
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acids and sugars) (132, 229). Although aromatic volatiles are normally present 

at trace levels (230, 231), they are essential to characterize the aroma of citrus 

juices (232). Moreover, the composition of non-volatile components (i.e., 

°Brix/acid ratio) significantly contributes to their flavor perception (233). 

Therefore, the interaction between the volatile and non-volatile components of 

foods has been widely studied (27, 234, 235).  

In order to better understand the relationship between the chemical 

composition and sensory profile, multivariate analyses (e.g. principal 

component analysis (PCA) and partial least square regression (PLSR)) have 

been widely applied to extract meaningful information from complex data 

sets. A study has been done to correlate the sensory profile of commercial 

orange juice with its aroma components during accelerated storage (236); 

however, there is still limited information on correlating chemical components 

with sensory perception of other citrus juices.  

 

4.2. Experimental procedures 

4.2.1. Chemicals  

Standards of 5-methyl-2-hexanone, organic acids (citric, malic, 

succinic and ascorbic acids) and sugars (glucose, fructose and sucrose) of 

HPLC grade from Sigma were used. Analytical grade dichloromethane, acetic 

acid, ethyl acetate, calcium chloride (CaCl2, ≥99%) and anhydrous sodium 

sulfate were supplied by Merck Pte Ltd. (Darmstadt, Germany). HPLC-grade 

methanol, hexane and diethyl ether were obtained from Tedia (Fairfield, OH, 

USA). Analytical grade ascorbic and ethylenediaminetetraacetic acids 
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(EDTA) (Sigma-Aldrich), sodium hydroxide (NaOH) (Schedelco, Singapore) 

and hydrochloric acid (HCl) (VWR, Radnor, PA, USA) were used.  

All standard compounds used in the identification of volatile 

constituents were obtained from Firmenich Asia Pte. Ltd. (Singapore). 

 

4.2.2. Preparation of pomelo juice 

Two batches of 50 kg mature pomelo fruits, Citrus grandis (L.) 

Osbeck PO 51 (white-fleshed pomelo) and PO 52 (pink-fleshed pomelo) were 

harvested in September and November 2010, respectively. The fruits were 

then transported and stored in a fridge (5 °C) before use. Pomelo juice was 

prepared by hand-squeezing the pulp after removing the peel to avoid 

contamination from the components in the flavedo and albedo. Freshly 

squeezed juice was immediately used for volatile extraction. Fifty millilitres of 

pomelo juice was subjected to centrifugation at 17,000 g for 15 min at 4 °C 

(Sigma 3-18K, Sartorius Mechatronics, Göttingen, Germany). The supernatant 

was directly used to determine its physicochemical properties. For HPLC 

analysis of sugars and organic acids, the supernatant was filtered through a 0.2 

µm regenerated cellulose (RC) filter (Minisart RC15, Sartorius Stedim 

Biotech, Aubagne, France) and then kept at -30 °C before analysis. 

 

4.2.3. Extraction of volatile compounds using HS-SPME 

HS-SPME, as a qualitative method, was adopted to monitor the 

volatiles of pomelo juices. Five grams of freshly prepared pomelo juice were 

added into a 20-mL glass vial, followed by 3 g of saturated CaCl2 solution. 

The glass vial was crimp-capped and subjected to headspace extraction. A 85 
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μm CarboxenTM/PDMS StableFlexTM (Supelco) SPME fiber was selected. 

The default extraction condition of HS-SPME was 40 °C for 30 min. The 

SPME fiber was then thermally desorbed into the GC injector (250 °C) for 5 

min. 

 

4.2.4. Extraction of volatile compounds using organic solvents 

The solvent extraction method used was modified from that of 

Takeuchi et. al. (237). Several parameters were optimized prior to extraction, 

i.e. solvent type, solvent volume to juice weight ratio, extraction speed and 

extraction time. Firstly, several common organic solvents or their mixture 

such as dichloromethane (86), hexane (188), diethyl ether (DEE) (189) and a 

mixture of hexane with DEE (89) were examined. Then, dichloromethane was 

chosen due to its good solubility over a wide spectrum of volatiles (e.g. 

decanal, citronellal, citral and trans-2-dodecenal). Further, in order to retain 

the original profiles of calamansi juice, the extraction temperature was 

maintained at low temperature (~4 °C). In addition to increase distribution 

coefficient and extraction efficiency, the ratio of solvent volume to juice 

weight, extraction speed and time were also optimized (data not shown). Ten 

grams of pomelo juice, spiked with 100 μL of 10,000 ppm internal standard 5-

methyl-2-hexanone, were extracted twice with 8 mL of dichloromethane. The 

mixture was vortex-mixed (Rotamax 120, Heidolph, Schwabach, Germany) at 

top speed for 30 min, and then centrifuged at 4,494 g for 5 min at 4 °C, where 

the aqueous phase was removed. The gel that formed at the interface was 

broken up and allowed to float to the surface. The collected organic phase was 

dried with anhydrous Na2SO4, and was filtered through a sintered filter and 
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concentrated to a final volume of 100 μL under a gentle stream of nitrogen. 

All extracts were stored at -30 °C before analysis. 

 

4.2.5. GC-MS/FID analysis 

  Analyses of the volatile compounds of pomelo juices extracted using 

HS-SPME and organic solvents were carried out in the same manner as 

described in Chapter 2 (Section 2.2.3).  

 

4.2.6. Physicochemical properties 

  Physicochemical properties of pomelo juices, i.e. pH, titratable acidity 

(TA) and total soluble solids (TSS), were determined. pH was measured using 

a pH meter (744 pH Meter, Metrohm AG, Herisau, Switzerland). TA was 

measured by titrating 1 g of the supernatant with 0.111 M NaOH and 

expressed as citric acid (g of citric acid/ kg of juice). The TSS content of the 

supernatant expressed as °Brix was determined with a refractometer (RX-

5000α, Atago, Japan).  

 

4.2.7. Ultra-fast liquid chromatography (UFLC) instrumentation 

  A Shimadzu Prominence UFLC system equipped with two pumps (LC-

20AD), an autosampler (SIL-20AC), column oven (CTO-20AC) and an 

evaporative light scattering detector (ELSD-LT II) for sugar analysis or a 

photodiode array detector (SPD-M20A) for the analysis of organic acids was 

used (Shimadzu, Kyoto, Japan). Default column temperature was set at 40 °C 

and sample injection volume was 10 µL. Data were acquired and processed 
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using LC solution version 1.24 SP1 software (Shimadzu). Sugars and organic 

acids were identified by matching the retention times and spectral 

characteristics of standards. 

 

4.2.7.1 HPLC analysis of sugars  

For sugar analysis, Agilent ZORBAX carbohydrate analysis column 

(150 mm x 4.6 mm, 5 µm) attached with ZORBAX NH2 analytical guard 

column (4.6 mm x 12.5 mm, 5 µm) was used. The mobile phase used was 

acetonitrile/water (80:20, v/v) with the isocratic flow rate set at 1.40 mL/min. 

Detection was performed with an ELSD-LT II at 40 °C, gain 5 and pressure of 

350 kPa. A series of standard solutions (ranging from 0.10 to 4.0 mg/mL of 

fructose, glucose and sucrose) were prepared. A standard curve with R2 

greater than 0.99 was plotted and the concentrations of the respective sugars in 

pomelo juices were quantified using the standard curves. 

 

4.2.7.2 HPLC analysis of organic acids  

Supelco Supelcogel C-610H ion exchange column (300 mm x 7.8 mm) 

with sulfonated polystyrene divinylbenzene packing was used for the 

separation of organic acids. Absorbance of the analytes was measured at 210 

and 260 nm. Detection of ascorbic acid was performed at 260 nm to avoid 

interferences from other acids. The mobile phase used was 0.10% H2SO4 with 

the isocratic flow rate set at 0.40 mL/min. Standard solutions were prepared 

with a serial concentration of malic, ascorbic and succinic acids at 0.30 - 3.00 

mg/mL and citric acid at 2.40 - 24.00 mg/mL. A standard curve with R2 
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greater than 0.99 was plotted and the concentrations of the respective acids 

were quantified using the standard curves. 

 

4.2.8. Sensory evaluation 

The sensory profiles of fresh white and pink pomelo juices were 

evaluated by six experienced flavorists from Firmenich Asia Pte. Ltd., 

Singapore as explained in Chapter 2 (Section 2.2.4). After reaching a 

consensus, the appropriate descriptive sensory attributes were established, i.e. 

acidic, citrusy, fresh, green, peely and woody as odor (orthonasal) attributes 

while bitter, sour and sweet as taste (retronasal) attributes. Attribute rating was 

used with ‘0’ indicating uncharacterized attribute intensity and ‘5’ indicating 

very strong attribute intensity. A set of coded tasting cup was presented to the 

panelists, and the intensity of each attribute was rated after sniffing and 

sipping each of the pomelo juices. The average score for each descriptive 

attribute was expressed in a plotted web diagram. 

All experiments were carried out in triplicate and the results were 

reported as the mean values. 

 

4.2.9. Statistical analysis 

Multivariate analysis was carried out using PCA based on the 

correlation matrix. Correlations between chemical compounds (X-variables) 

and sensory data (Y-variables) were investigated by partial least square 

regression (PLSR) analysis using Matlab version 7.6.0.324, R2008a software 

(The MathWorks Inc., MA, USA). PLSR was performed for each sensory 

variable. Not all the instrumental variables were measured on the same scale, 
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and they were standardized to have the same variance. This was not done for 

the sensory variables, since these were all measured using the same scoring 

scheme. The differences in physicochemical properties between the pink and 

white pomelo juices were analyzed by T-test (Microsoft Excel 2011, 

Microsoft Corporation, Washington D.C, USA). 

 

4.3. Results and discussion 

4.3.1. Volatile composition of pomelo juices 

In spite of extensive work done on common citrus fruits, limited studies 

have been conducted on pomelo juice. In the present study, pink and white 

pomelo juices had different volatiles, generally categorized as hydrocarbons, 

esters, acids, alcohols, aldehydes and others. Table 4.1 shows the volatile 

compounds of dichloromethane extracts from freshly squeezed pomelo juices. 

According to the relative concentration (ppm) obtained from the 

dichloromethane extracts, the pink pomelo juice contained a higher amount of 

total volatiles relative to the white pomelo juice. Hydrocarbons (mono- and 

sesquiterpenes) that are associated with citrus-based flavors were found in 

both pomelo juices. Up to 90% of limonene, β-pinene, β-myrcene and α-

terpinene constituted the major monoterpenes. The total amount of terpene 

hydrocarbons in the white pomelo juice was 1.5-fold higher than that of the 

pink pomelo juice. In contrast, the pink pomelo juice was characterized by 

higher amounts of alcohols and aldehydes. 
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Table 4.1. Identification of volatiles and their concentrations (ppm) in 
Malaysian pomelo (Citrus grandis (L.) Osbeck pink and white types) juice 
extracts  

Compoundsa 
LRI Odor 

descriptionc Pink White Identificationd FFA
Pb 

REF 

Hydrocarbons       
α-PineneI 1010 1007 Terpenic, woody 248.41 341.26 MS, STD, LRI 
β-PineneI 1105 1113 Terpenic, woody 348.71 19.57 MS, STD, LRI 
Sabinene 1107 1093 Terpenic, green 11.88 88.39 MS, LRI 

β-MyrceneI 1164 1158 Herbaceous, 
woody 41.10 141.94 MS, STD, LRI 

α-Terpinene 1183 1178 Terpenic, woody - 15.92 MS, STD, LRI 
LimoneneI 1190 1185 Citrus, terpenic 86.49 542.66 MS, STD, LRI 
β-Phellandrene 1198 1194 Citrus, spicy - 99.59 MS, LRI 
trans-β-OcimeneI 1249 1242 Green, terpenic - 10.10 MS, STD, LRI 
cis-β-Ocimene 1251 1252 Green, terpenic - 7.72 MS, STD, LRI 

ρ-CymeneI 1295 1267 Oxidized lemon, 
woody 

- 2.25 MS, STD, LRI 

TerpinoleneI 1302 - Lime, terpenic - 4.57 MS, STD 
4,8-dimethyl-
1,3,7-nonatriene* 1349 - Mild woody 20.50 4.47 MS 

δ-Elemene 1502 - Balsamic, mild 
woody 

- 37.90 MS 

β-Elemene 1540 - Herbaceous, 
woody - 8.07 MS 

β-CaryophylleneI 1566 - Spicy, woody 24.57 39.88 MS, STD, LRI 
γ-Elemene 1608 1625 Woody - 9.59 MS, LRI 
α-Humulene 1669 - Earthy, spicy - 3.62 MS 
Germacrene DI 1685 - Hay, woody - 3.01 MS, STD, LRI 
α-Selinene 1696 - Woody 27.41 - MS 
Esters       
Neryl acetateI 1762 1742 Fresh, rosy - 38.69 MS, STD, LRI 

Ethyl palmitate 2346 - Faint, waxy, 
sweet 144.00 - 

MS, LRI 

Acids       
Acetic acid 1449 1451 Acidic 155.06 - MS, STD, LRI 
Palmitic acid 2889 - Waxy - 8.20 MS, LRI 
Oleic acid 3129 - Weak waxy - 1.89 MS, LRI 
Linoleic acid 3140 - Fatty, oily - 4.34 MS, LRI 
Alcohols       
2-ethyl-1-hexanol 1390 - Citrus, floral 162.51 - MS 
LinaloolI 1507 1533 Floral, woody 92.52 69.30 MS, STD, LRI 
NerolI 1836 1825 Fruity, rosy 4.54 2.94 MS, STD, LRI 
GeraniolI 1847 1840 Fruity, rosy 11.70 3.04 MS, STD, LRI 
CarveolI* 1899 1899 Spearmint, spicy - 9.40 MS 
trans-NerolidolI 1991 - Floral, woody 8.42 2.90 MS, STD 

Eugenol 2020 - Clove-like, 
honey 

76.61 - MS, STD 

Aldehydes       

OctanalI 1262 1280 Aldehydic, 
peely 20.50 70.22 MS, STD, LRI 

NonanalI 1365 1385 Aldehydic, 
citrus 155.06 3.25 MS, STD, LRI 

DecanalI 1469 1497 Aldehydic, 
citrus 

- 62.10 MS, STD, LRI 

CitronellalI 1511 1485 Green, 
lemongrass 162.51 4.01 MS, STD, LRI 

NeralI 1656 - Fresh, lemon - 102.69 MS, STD, LRI 
GeranialI 1676 - Fresh, lemon 26.91 123.86 MS, STD, LRI 
trans,cis-2,4-
DecadienalI 1737 - Fatty, vegetative 195.92 2.59 MS, STD, LRI 

DodecanalI 1758 1788 Citrus, waxy 50.09 29.44 MS, STD, LRI 
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Table 4.1. (Cont’d)    
Perilla aldehydeI 1768 - Fatty, spicy - 2.32 MS, STD, LRI 
trans,trans-2,4-
DecadienalI 1806 1804 Fatty, vegetative - 1.20 MS, STD, LRI 

trans-2-
DodecenalI 1849 - Green, waxy - 5.56 MS, STD 

cis-trans-2,6-
nonadienalI 1945 - Fatty, vegetative - 2.01 MS, STD 

Octadecanal 2179 - Fatty, tallow 189.10 - MS, STD 
Others       

Limonene oxide 1416 - Citrus, faint 
spearmint 

- 0.53 MS, STD 

Dimethyl sulfone 1793 - Sulfurous  5.55 - MS, STD 
1,10-
Dihydronootkato
ne 

2217 
- Strong 

grapefruit-like 3.39 
- MS 

IndoleI 2507 - Animallic, floral 6.08 1.58 MS, STD 

NootkatoneI 2601 - Grapefruit, 
woody 58.20 1.79 MS, STD 

Osthole 3145 - Herbal, musty 27.72 54.14 MS 
Total identified 
(ppm)    

2457.99 1988.48  
a Compounds are listed in their elution order on a DB-FFAP column.  
b Linear Retention Indices (LRI) on column (DB-FFAP) determined with two series of n-alkanes.  
c Odor description based on the Leffingwell’s Flavor-Base (221) and Flavornet 
(220)(220)(220)(220)(220)(220)(220)(219)(218)(217)(216)(215)(215)(214)(213)(212)(211)(210)(210)(210)(210)(210
)(209)(209)(210)(209)(209)(209)(209)(209).  
d Identification method: MS = mass spectrum; STD = comparison with standard compound; LRI is compared with 
references from standards or literature values. I Compounds were reported in pomelo peel extract; “-” not detected; * 
unknown isomer 
 

 

The volatile compounds extracted by HS-SPME demonstrated some 

discrepancies between the pink and white pomelo juices (Table 4.2). This 

might be due to the different affinity of each molecule for the SPME fiber 

coating material and competition among the molecules to achieve 

thermodynamic equilibrium in the headspace and on the SPME fiber. Several 

volatiles were detected at trace levels that could contribute to the pomelo 

flavor profile. Although sesquiterpene hydrocarbons were the second most 

abundant group of volatiles detected by HS-SPME, only α-selinene was 

detected in the pink pomelo juice extracted with dichloromethane. Among the 

sesquiterpenes, valencene was perceived as an important aroma compound in 

distinguishing the citrus types (177). 
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Table 4.2. Identification of volatiles in Malaysian pomelo (Citrus grandis (L.) 
Osbeck pink and white types) juices through HS-SPME (relative percentages 
of FID peak area)  

Compoundsa LRIb Odor descriptionc Pink White Identificationd 
Hydrocarbons      
α-PineneI 1010 Terpenic, woody tr 3.24 MS, STD, LRI 
β-PineneI 1105 Terpenic, woody 0.14 2.33 MS, STD, LRI 
Sabinene 1107 Terpenic, green 0.13 0.83 MS, LRI 
β-MyrceneI 1164 Herbaceous, woody 3.84 0.85 MS, STD, LRI 
α-Terpinene 1183 Terpenic, woody 2.03 0.27 MS, STD, LRI 
LimoneneI 1190 Citrus, terpenic 49.43 31.34 MS, STD, LRI 
β-Phellandrene 1198 Citrus, spicy 0.33 tr MS, LRI 
trans-β-OcimeneI 1249 Green, terpenic 1.01 0.35 MS, STD, LRI 
cis-β-Ocimene 1251 Green, terpenic 1.97 0.19 MS, STD, LRI 
ρ-CymeneI 1295 Oxidized lemon, woody 1.30 1.50 MS, STD, LRI 
TerpinoleneI 1302 Lime, terpenic 0.92 0.33 MS, STD 
dehydro-ρ-Cymene 1323 Citrus, herbaceous 6.79 0.49 MS 
ρ-1,3,8-Menthatriene 1339 Green, herbaceous 1.05 0.37 MS, LRI 
4,8-dimethyl-1,3,7-
nonatriene* 1349 Mild woody 1.52 6.32 MS 

δ-Elemene 1502 Balsamic, mild woody 0.16 3.57 MS 
α-Copaene 1513 Woody, spicy - 0.02 MS, LRI 
β-CaryophylleneI 1566 Spicy, woody 1.75 0.61 MS, STD, LRI 
γ-Elemene 1608 Woody 0.08 0.44 MS, LRI 
α-Humulene 1669 Earthy, spicy 0.29 0.62 MS 
Germacrene DI 1685 Hay, woody 0.35 0.47 MS, STD, LRI 
Valencene 1689 Citrus, ripe orange 0.19 0.68 MS, STD, LRI 
β-Selinene 1691 Herbaceous 0.04 0.58 MS 
α-Selinene 1696 Woody 0.33 0.83 MS 
allo-Aromadendrene 1709 Woody 0.16 0.58 MS 
α-Farnesene 1715 Citrus, herbaceous - 0.96 MS, STD, LRI 
δ-Cadinene 1759 Spicy, woody - 0.96 MS 
Calamene 1809 Herbaceous, spicy 0.11 0.96 MS 
Calacorene 1893 Woody 0.12 0.15 MS 
γ-Gurjenene 2190 Balsamic, woody 0.04 0.61 MS 
Esters      
Neryl acetateI 1762 Fresh, rosy - 0.91 MS, STD, LRI 
Ethyl palmitate 2346 Faint, waxy, sweet 0.50 0.11 MS, LRI 
Acids      
Acetic acid 1449 Acidic 0.16 - MS, STD, LRI 
Octanoic acid 2017 Fatty, sweaty - 0.21 MS, STD, LRI 
Nonanoic acid 2116 Fatty, nutty 0.11 0.21 MS, STD, LRI 
Decanoic acid 2230 Fatty, waxy 0.18 0.73 MS, STD, LRI 
Alcohols      
Ethanol 967 Alcoholic - 3.71 MS, STD, LRI 
Prenol 1290 Fruity, green 2.83 - MS 
HexanolI 1346 Fresh, green 4.02 4.17 MS, STD, LRI 
cis-3-HexenolI 1350 Fresh, leafy green 5.49 2.59 MS, STD 
2-ethyl-1-hexanol 1390 Citrus, floral 0.50 0.99 MS 
LinaloolI 1507 Floral, woody 0.24 - MS, STD, LRI 
OctanolI 1532 Orange, waxy 0.52 1.66 MS, STD, LRI 
NerolI 1836 Fruity, rosy 0.13 0.94 MS, STD, LRI 
GeraniolI 1847 Fruity, rosy 0.13 0.26 MS, STD, LRI 
CarveolI* 1899 Spearmint, spicy 0.22 0.33 MS 
trans-ρ-Mentha-2,8-
dienol 1938 Green, cooling 0.09 - MS, STD, LRI 

trans-NerolidolI 1991 Floral, woody 0.03 0.16 MS, STD 
Aldehydes      
Hexanal 1024 Fatty-green, grassy 0.81 3.93 MS, STD, LRI 
trans-2-Hexenal 1193 Fruity, leafy green 1.27 1.42 MS, STD 
DecanalI 1469 Aldehydic, citrus 0.23 - MS, STD, LRI 
NeralI 1656 Fresh, lemon 0.83 1.75 MS, STD, LRI 
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Table 4.2. (Cont’d) 
GeranialI 1676 Fresh, lemon 0.06 0.20 MS, STD, LRI 
Perilla aldehydeI 1768 Fatty, spicy - 0.57 MS, STD, LRI 
trans-2-DodecenalI 1849 Green, waxy 0.14 - MS, STD 
cis-trans-2,6-
nonadienalI 1945 Fatty, vegetative 0.07 - MS, STD 

α-SinensalI 2353 Peely, sweet orange 0.25 0.21 MS, STD, LRI 
Others      
6-Methyl-5-hepten-2-
oneI 1333 Green, lemony 0.38 0.25 MS, STD 

trans-Linalool oxideI 1440 Floral, tea-like - 1.92 MS, STD 
cis-Linalool oxideI 1468 Floral, tea-like 0.86 0.76 MS, STD 
Isopiperitenone 1843 Fruity, herbal, sweet - 3.24 MS, STD 
Phenol,2,4-bis(1,1-
dimethylethyl) 2058 Phenolic 0.12 0.23 MS, STD 

Benzophenone 2212 Geranium-like, rose-like 0.17 0.26 MS, STD 
1,10-
Dihydronootkatone 2217 Strong grapefruit-like 0.27 1.48 MS 

NootkatoneI 2601 Grapefruit, woody 0.70 2.71 MS, STD 
Total identified (%)   95.38 96.47  
a Compounds are listed in their elution order on a DB-FFAP column.  
b Linear Retention Indices (LRI) on column (DB-FFAP) determined with two series of n-alkanes.  
c Odor description based on the Leffingwell’s Flavor-Base (221) and Flavornet (220)  
d Identification method: MS = mass spectrum; STD = comparison with standard compound; LRI is 
compared with references from standards or literature. 
I Compounds were reported in pomelo peel extract; “-” not detected; * unknown isomer; “tr” trace 
 

Aldehydes were present at comparatively high concentrations in both 

juices. It is clearly recognized that aldehydes play a major role in 

characterizing citrus flavor (238). The amount of aldehydes detected in the 

pink pomelo juice (c.a. 800 ppm) was 2-fold higher than that of the white 

pomelo juice (c.a. 409 ppm). Saturated aliphatic aldehydes (e.g. octanal, 

nonanal and decanal) are known to impart peely and citrus-like notes, and 

have been implicated as important contributors to citrus flavor, e.g. orange. 

 Typical isomeric monoterpenic aldehydes (e.g. neral and geranial) were 

also found. On the other hand, unsaturated aliphatic aldehydes (e.g. cis,trans-

2,4-decadienal, trans,trans-2,4-decadienal and cis,trans-2,6-nonadienal) that 

typically contribute intense green, waxy odors have been identified as aroma-

active compounds in characterising both white and pink pomelo peels. These 

compounds were also reported to be responsible for the separation between 

Chandler pummelo and other citrus varieties (Powell Navel orange, 



 

 80 

Clemenules mandarine and Fortune mandarine) (177).  

Esters are important aroma components in many fruits, including 

citrus. In contrast to Nakon pummelo (183), both pink and white pomelo 

juices had much less fruity aroma. Nevertheless, several prominent esters were 

found in both pink and white pomelo juices. Nootkatone, a sesquiterpene 

ketone, possesses a grapefruit-like aroma with woody and bitter tastes. 

Another compound, 1,10-dihydronootkatone, was found to possess 

approximately 3.5 times more intense grapefruit aroma than pure nootkatone 

at equimolar concentrations (239). Both compounds constitute an important 

trait for grapefruit and its parental fruit (35, 240). Apart from being one of the 

most important grapefruit aromatic compounds, nootkatone is also found to 

decrease the somatic fat ratio (241). Therefore, pomelo may be a viable and 

sustainable source of nootkatone production, which is highly demanded by the 

flavor, fragrance and cosmetic industries. Detailing the volatile composition of 

pomelo juices, it is noted that there were 36 volatiles that were aroma-active 

compounds contributing to the pomelo profile. 

 

4.3.2. Physicochemical properties and non-volatile composition of pomelo 

juices  

Physicochemical properties (i.e. TSS (°Brix), TA and pH) are crucial 

parameters in determining the maturity and quality of citrus fruits. Considered 

as a liquid-solid suspension system, citrus juices consist of a mixture of 

soluble and suspended solids. It has been reported that the physicochemical 

properties such as sugars and pulp in citrus juices alter headspace 

concentrations and aroma thresholds of many citrus volatiles (132). Table 4.3 
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summarizes the physicochemical properties, organic acids and sugars content 

of both pomelo juices.  

 

Table 4.3. Physicochemical properties, sugars composition and organic acids 
content of Malaysian pomelo (Citrus grandis (L.) Osbeck pink and white 
types) juices 

 Pink White 
Physicochemical properties   
pH*** 3.67 ± 0.02 6.07 ± 0.06 
Titratable acidity (g citric acid /kg)*** 0.94 ± 0.04 0.04 ± 0.00 
Total soluble solids (°Brix)*** 10.90 ± 0.09 10.45 ± 0.21 
   
Sugars (mg/mL)   
Fructose** 13.41 ± 1.50 11.02 ± 0.62 
Glucose** 13.13 ± 1.42 10.43 ± 1.43 
Sucrose 49.91 ± 8.91 56.51 ± 4.71 
Total 76.45  77.96  
   
Organic acids (mg/mL)   
Ascorbic 0.22 ± 0.13 0.39 ± 0.20 
Citric* 14.15 ± 8.18 0.14 ± 0.08 
Malic* 0.75 ± 0.42 1.94 ± 0.97 
Succinic** 0.05 ± 0.02 0.39 ± 0.18 
Total 15.17 2.86 
T-test significantly different *p <0.05; ** p <0.01; ***p <0.001 
 

 

Among these qualities, the difference between the TSS content and 

sugar content were insignificant between the two cultivars. The TSS contents 

(°Brix) of both pomelo juices were similar and comparable to other common 

citrus juices. On the other hand, the pH value and TA were the more 

distinguishing trait for the two cultivars. White pomelo was characterized by 

mild acidity and a higher pH value, while pink pomelo was found to be higher 

in the organic acid content, of which, citric acid was the main organic acid 

present. The total acid content and TA of pink pomelo juice were comparable 

to those of grapefruit juice, which was also pigmented (242, 243). However, 
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the white pomelo juice was exceptionally low in the organic acid content 

compared to other citrus fruits. As mentioned earlier, non-volatiles play an 

important role in determining the organoleptic profile and acceptability. 

 

4.3.3. Sensory evaluation and correlation with instrumental data using 

multivariate analysis  

As one basic principle in developing sensory techniques, multivariate 

analysis plays an elementary part in such sensory array. Pattern recognition 

and/or multivariate calibration methods are used to interpret complex signals 

and thus, producing qualitative and quantitative data (156). Specifically, PCA 

with the capability of distinguishing variations could visualise the degree of 

contribution of each interdependent chemical variable to the overall variability 

in a large data set. PLSR could assess the correlation between the sensory 

attributes and analytical data (244).  Descriptive sensory analysis, also known 

as sensory profiling, is a technique of relating individual or a group of aroma 

volatiles to sensory perception (245).  

Figure 4.1 (a) illustrates the distinctive orthonasal and retronasal 

attributes of freshly squeezed pomelo juices. For the orthonasal odor, seven 

attributes were selected, namely acidic, citrusy, fresh, green, peely and woody. 

The retronasal attributes selected for freshly pomelo juices were bitter, sour 

and sweet. The pink pomelo juice received higher scores for all of the 

orthonasal attributes, except for the woody note. The white pomelo juice with 

a higher amount of terpene hydrocarbons was rated 4.3 for the woody note 

compared to the pink pomelo juice (2.5).  
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Regarding the retronasal attributes, the white pomelo juice with higher 

sucrose content was rated higher at 4.0 for sweetness, while the pink pomelo 

juice was rated higher in bitter and sourness notes. It is agreed that both 

orthonasal and retronasal attributes were distinctive to aroma and taste 

profiles. Therefore, these sensory attributes have been directed towards 

relating the level of aroma volatiles to the sensory profile. 

 
(a) 

 
(b) 

 

Figure 4.1. Sensory attributes of fresh pomelo juices: (a) orthonasal and (b) 
retronasal  
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Prior to the multivariate analysis, pre-screening was done by sniffing 

pomelo juice extracts (data not shown). It was noted that the aroma-active 

compounds that characterized pomelo juices closely resembled those of 

pomelo peel extracts. Hence, the 29 identified aroma-active compounds 

presented in pomelo juice were selected in order to understand the 

contributions of each variable to the overall variation. PCA was employed to 

understand the contributions of aroma-active compounds to the sensory 

attributes of pomelo juices. Two principal components (PCs) were obtained 

from the dichloromethane-extracted pomelo juice data sets, accounting for 

98.4% of the cumulative percentage of total variations, where PC 1 and PC 2 

accounted for 85.2% and 9.8% of the variance, respectively. Figure 4.2 

illustrates the PCA biplots of pink and white pomelo juices with selected 

aromatic volatiles and non-volatile compounds. As the chemical profiles of 

both pink and white pomelo juices were significantly different, the score 

points were distant. It can be seen that the aromatic volatiles were the major 

differentiating factors reflected in PC 1, where the variations in the non-

volatile compounds were shown in PC 2. Furthermore, more information 

could be retrieved through the biplot, which loadings implied that certain 

aromatic variables were closely clustered to each pomelo cultivar. As the 

score points were scaled to fit within the unit square, only their relative 

locations to the variables were determined from the plot. As indicated by the 

biplot, each loading contributed equal coefficient to the variance, none of the 

aroma-active compounds were eliminated. 
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Figure 4.2. Biplot of volatile and non-volatile compounds of pink (□) and 
white (∆) pomelo juice  

Variables explained: (1) α-Pinene; (2) β-Pinene; (3) β-Myrcene; (4) Limonene; (5) trans-β-
Ocimene; (6) ρ-Cymene; (7) Terpinolene; (8) β-Phellandrene; (9) Germacrene D; (10) Neryl 
acetate; (11) Linalool; (12) Nerol; (13) Geraniol; (14) trans-Nerolidol; (15) Octanal; (16); 
Nonanal; (17) Decanal; (18) Citronellal; (19) Neral; (20) Geranial; (21) tran,cis-2,4-
Decadienal; (22) Dodecanal; (23) Perilla aldehyde; (24) trans-trans-2,4-Decadienal; (25) 
trans-2-Dodecenal; (26) cis,trans-2,6-Nonadienal; (27) 1,10-Dihydronootkatone; (28) Indole; 
(29) Nootkatone; (30) Fructose; (31) Glucose; (32) Sucrose; (33) Ascorbic acid; (34) Citric 
acid; (35) Malic acid; (36) Succinic acid 
 

To further correlate the instrumental data with the sensory attributes, 

PLSR was employed. As a recent technique that can generalise and combine 

features from both PCA and multiple regression, PLSR can analyse a set of 

dependent variables from a set of independent variables (166). Table 4.4 

presents the percentage of variations explained and the R-squared values for 

the PLSR analysis that included either 29 volatiles or 11 non-volatiles as 

dependent variables, in which the explanatory variables matrix comprised 10 

sensory attributes (i.e. 7 orthonasal and 3 retronasal). Overall, the percentage 

explained of the orthonasal attributes was not as good as the retronasal 

attributes.  
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Table 4.4. Percentage of variation explained in the first two components of 
PLSR  

Sensory variables Percentage explained R-squared 
Orthonasal   
Acidity 68.38 0.6838 
Citrusy 26.22 0.2622 
Fresh 60.70 0.6070 
Green 53.56 0.5356 
Peely 72.70 0.7269 
Woody 21.59 0.2122 
Retronasal   
Bitter  25.86 0.2586 
Sour 86.37 0.8637 
Sweet 78.34 0.7834 
 

In addition, not all sensory variables were well defined with the first 

two components, notably citrusy, woody and bitter. Therefore, it suggests that 

these attributes were not fully elucidated in the current PLSR model. As it can 

be seen from Figure 4.3(a), two correlated attributes were located closely to 

each other, namely citrusy and fresh notes; of which, potent aroma compounds 

such as terpene alcohols (linalool, trans-nerolidol, geraniol and nerol), 

aldehydes (citronellal, nonanal, trans,cis-2,4-decadienal) and nootkatone were 

situated around. The peely note was mainly correlated with octanal, decanal 

and geranial. On the other hand, sourness that was mainly influenced by the 

citric acid content was located far apart from other retronasal notes of 

sweetness and bitterness (Figure 4.3(b)). The PLSR analysis indicated that the 

present model is of little value in correlating bitterness. Finally, the effect of 

phenolic components on the bitterness of pomelo juice has yet to be 

investigated. 

 

  



 

 87 

 (a) 

 

(b) 

 

Figure 4.3. PLSR loading plots of volatile compounds correlated with 
orthonasal attributes (a) and non-volatile compounds correlated with 
retronasal attributes (b)  
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4.4. Conclusion 

The juices of two cultivars of pomelo fruits from Malaysia were 

characterized through measuring their physicochemical properties, volatile 

and non-volatile components. As a pigmented variety, the pink pomelo juice 

shared a closer resemblance to grapefruit chemically in contrast to the white 

pomelo. Moreover, the more terpenic white pomelo juice with a milder acidity 

and lesser amounts of volatiles was suggested to be a kind of atypical citrus 

fruit. Both the chemical composition and sensory profiles were further 

correlated with the aid of multivariate analysis. Using PCA, the main 

variations of both cultivars were contributed by their aroma-active 

compounds. PLSR indicated that the most aroma-active compounds 

contributed to the sensory perception of acidic, fresh and peely notes while the 

non-volatile components were correlated with the sour and sweet tastes. 

Hence, this finding may benefit future work correlating sensory perception 

with instrumental data. 
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CHAPTER 5 CHARACTERIZATION OF CALAMANSI 

(CITRUS MICROCARPA): VOLATILES, AROMATIC 

PROFILE AND PHENOLIC ACIDS IN THE PEELS 

5.1. Introduction   

There have been limited studies on the volatile constituents of calamansi 

peel. Of these, the earliest study was performed by Nigam et al. (246) as a 

preliminary analysis of the calamansi peel from India. Further, Moshonas and 

Shaw (188) used hexane to extract the calamansi peel originated from United 

States, and detected 56 volatiles. Also using hexane, Takeuchi et al. (237) 

identified a trace amount of methyl-N-methyl anthranilate (characteristic 

mandarin-like aroma) in the calamansi peel obtained from the Philippines. 

More recent work compared the volatile composition of the calamansi peel 

with its leaf using hydro-distillation method (247). However, there is still a 

lack of systematic knowledge of calamansi peel, especially its sensory 

information. 

Besides their characteristic flavor, the health-promoting properties of 

citrus fruits have been ascribed to their inherent phenolic compounds, 

including coumarins, flavanoids, lignins, phenolic acids and tannins (248). 
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Moreover, several studies of phenolic acids (e.g. caffeic, p-coumaric, ferulic 

and sinapic acids) in citrus fruits have been confined mainly to understand 

their distributions among the cultivars during maturation and exploration of 

their nutritional properties (249-252). To date, there is no report of phenolic 

acids content in calamansi peel. Therefore, the objective of this study was to 

characterize and compare calamansi peel through measuring its volatiles and 

aromatic profiles of calamansi from different geographical origins. The 

obtained data (volatiles and phenolic acids) was systematically studied using 

three statistical tools. In addition, the phenolic acids content could provide 

some information about the antioxidant capacity of calamansi peel. 

 

5.2. Experimental procedures 

5.2.1. Calamansi materials and chemicals 

Based on the preliminary screening (i.e. examination on their physical 

qualities, e.g. fruit size, maturation date; comparative sensory analysis of their 

aromatic profiles; screening their volatiles using headspace solid-phase 

microextraction (HS-SPME)), calamansi fruits (Citrus microcarpa) from three 

locations (Johor Bahru, Malaysia; Quezon City, the Philippines; Hanoi, 

Vietnam) were chosen in the present study, and three batches of each location 

were collected on September 30 2010, November 26 2010 and February 20 

2011, respectively. Only mature calamansi fruits were selected, and then 

cleaned with deionized water before use. Their thin peels (flavedo parts) were 

separated and cut into small pieces manually. For all calamansi fruits, each 

batch (c.a. 1300 g) was weighed to give c.a. 200 g of calamansi peel. Some 

were immediately used for extraction of volatiles, and others were vacuum-
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dried (Shel Lab, Cornelius, OR, USA) at 40 °C until constant mass. The dried 

peel was ground into fine powder in a blender (Braun, Kronburg, Germany) 

for phenolic acid extraction. 

All standard compounds used in the identification of volatile 

constituents were obtained from Firmenich Asia Pte. Ltd., Singapore. 

 

5.2.2. Extraction of volatile compounds 

A 100 g sample of calamansi peel was covered with 150 mL of 

dichloromethane. The mixture was then stirred using a vortex shaker at 300 

rpm for 1 h. Solid residues were then separated from the extract by filtration. 

Excess anhydrous sodium sulfate was added into the filtrate to remove 

moisture. The extract was then filtered and concentrated to 0.5 mL using a 

TurboVap II rotary evaporator. The concentrate was dark green. Finally, the 

peel extract was diluted to 15 mL with dichloromethane, dispensed into amber 

sample vials and stored at -70 °C before being analyzed by GC-MS/FID and 

sensory evaluation. Another similar series of extraction experiments were 

performed using hexane (Tedia), and yellow-greenish extract was obtained. 

 

5.2.3. GC-MS/FID analysis  

The volatiles of calamansi peel extracts were detected using an Agilent 

6890N GC coupled with FID and a 5975 inert MSD. For quantitative analysis 

of calamansi peel extracts, a similar procedure was carried out with spiking of 

5-methyl-2-hexanone as described in Section 3.2.2 of Chapter 3, except at a 

split ratio of 1:2. The concentration of the compounds was expressed as parts 

per million (ppm) based on the relative FID peak area of each compound 
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against internal standard with the response factor, previously measured with 

standard compounds under the same conditions.  

 

5.2.4. Extraction of phenolic acids 

Phenolic acids were isolated from calamansi peel according to the 

method described by Bocco et al. (253). For free phenolic acids, 10 g of 

calamansi peel powder was extracted twice with 40 mL of 80% methanol 

through vortexing at a speed of 300 rpm for 30 min. The mixture was filtered, 

and then was evaporated to dryness under reduced pressure at 45 °C (Büchi 

Labortechnik AG, Flawil, Switzerland). Finally, the dried residue was 

reconstituted by dissolving in 10 mL of methanol and later filtered with a 0.20 

μm PTFE filter (Agilent Technologies) for the determination of free phenolic 

acids. 

For the isolation of bound phenolic acids, 10 g of the above dried was 

hydrolyzed with 80 mL of 2 M NaOH containing 10 mM EDTA and 1% 

ascorbic acid (w/v) under nitrogen for 4 h. By adding EDTA and ascorbic acid, 

degradation of phenolic acids during alkaline hydrolysis can be prevented 

(254). The aqueous phase was filtrated and then acidified with 6 M HCl to pH 

2.0. The acidified water phase was extracted 3 times with 80 mL of ethyl 

acetate. Excess of anhydrous Na2SO4 was added to remove moisture. The 

extract was filtered prior to evaporation to dryness under reduced pressure at 

45 °C. Finally, the dry residue was reconstituted by dissolving in 20 mL of 

methanol and later filtered with a 0.20 μm PTFE filter for further analysis. 
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5.2.5. UFLC/PDA analysis of phenolic acid content 

The phenolic acid content of calamansi peel was measured using a 

Shimadzu Prominence UFLC system equipped with two LC-20AD pumps, a 

SIL-20A autosampler injector, CTO-20AC column oven and a SPD-M20A 

photodiode array detector. A C18 reverse-phase silica column coated with a 

dense monolayer of dimethyl-n-octadecylsilane stationary phase (150 mm x 

4.6 mm x 5 µm ZORBAX Eclipse Plus C18) with a guard column (4.6 mm x 

12.5 mm, 5 µm) was used for the separation of phenolic acids. The column 

oven temperature was set at 40 °C. Sample injection volume was 10 μL and 

flow rate was 1.0 mL/min. The mobile phase consisted of two solvents: 

solvent A, 0.1% acetic acid and solvent B, 100% methanol.  The solvent 

gradient in volume ratio was as follows: 0 - 1 min, from 10% B to 16% B; 1 - 

3 min, from 16% B to 42% B; 3 - 25 min, from 42% B to 65% B; 25 - 26 min, 

from 65% B to 20% B; 26 - 27 min, from 20% B to 10% B; 27 - 30 min, from 

16 % B to 10 % B, followed by washing and reconditioning the column. 

Identification of phenolic acids was achieved by matching the retention time 

and UV-visible spectra of standards. External standards were used for 

phenolic acids quantification: chlorogenic and ferulic acids (Aldrich), caffeic 

and p-coumaric acids (Sigma), and sinapic acid (Fluka). The calibration 

curves were obtained within a concentration range of 1 to 400 mg/L. 

 

5.2.6. Statistical analysis  

One-way ANOVA (SPSS, Statistical Package for the Social Sciences 

Version 16.0, IBM Corporation, Armonk, NY, USA) was selected to 

determine the significant difference of the volatiles and phenolic acids data 
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sets obtained from calamansi peel extracts. Significant differences between the 

mean values were determined by Duncan’s multiple range tests with the 

probability value of p<0.05. In additional, multivariate analysis of the same 

volatile data sets was carried out using PCA and CDA (Matlab, version 

7.6.0.324, R2008a). A score plot of PCA was used to study the distribution of 

the volatiles relative to the overall variability of the data sets obtained from the 

three countries. Obtained from the volatile data, representations expressed a 

strong correlation in PCA and corresponded to significant F and p values. 

Furthermore, CDA was applied to verify the selected group of volatiles 

showing the maximum capacity of these discriminations. The detailed 

procedure was reported by Trujilo-Ortiz et al. (255). 

All experiments were carried out in triplicate and the results were 

reported as the mean values. 

 

5.2.7. Sensory evaluation  

Sensory evaluation was carried out as described in Chapter 2 (Section 

2.2.4). Selected descriptive sensory attributes include fatty, fruity, green, juicy, 

mandarin-like, peely, sweet and woody. A 9-point scale was used with ‘0’ 

indicating unperceived attribute intensity and ‘9’ indicating very strong 

attribute intensity.   
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5.3. Results and discussion 

5.3.1. Volatile components of calamansi peel 

Considering solvent efficiency in the extraction of volatiles from food 

matrices (256), both polar organic solvent (dichloromethane) and non-polar 

organic solvent (hexane) were selected. According to Table 5.1, it is 

noteworthy that the volatiles obtained in hexane peel extracts were relatively 

higher than those in dichloromethane peel extracts. This is likely due to 

solvent polarity, which affects extraction efficiency on different groups of 

volatile compounds and compositions. In comparison to hexane, 

dichloromethane has a relatively higher extraction affinity towards polar 

oxygenated volatile chemicals, resulting in a different aromatic profile 

(discussed below).  
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Table 5.1. Identification of volatile compounds and their concentrations (ppm) of calamansi (Citrus microcarpa) peel extracts from Malaysia, 
the Philippines and Vietnam through hexane and dichloromethane 

Compounds LRI Hexane F p Dichloromethane F p MAS PHIL VIET MAS PHIL VIET 
Hydrocarbons            
α-PineneI,II,III 902 34.93 ± 10.1 49.63 ± 20.1 69.52 ± 20.0 17.683 0.000 31.24 ± 10.1 47.39 ± 40.7 50.79 ± 13.3 10.515 0.001 
Camphene 937 0.55 ± 0.1 0.62 ± 0.3 0.73 ± 0.1 4.407 0.028 0.73 ± 0.3 0.59 ± 0.6 0.70 ± 0.3 3.885 0.040 
β-PineneI,II,III  972 41.72 ± 18.9 50.47 ± 12.8 65.45 ± 6.3 15.968 0.000 35.56 ± 14.4 44.22 ± 15.4 46.29 ± 6.4 6.152 0.009 
SabineneI,II,III  983 18.04 ± 6.4 22.75 ± 7.3 30.88 ± 4.7 16.130 0.000 15.84 ± 5.9 21.28 ± 11.8 22.89 ± 1.4 6.669 0.007 
δ-3-CareneI 1109 2.67 ± 1.2 2.63 ± 1.6 5.01 ± 2.3 19.071 0.000 2.83 ± 1.6 2.19 ± 1.2 4.24 ± 1.9 13.563 0.000 

β-MyrceneI,II,III  1124 173.65 ± 
63.9 

226.75 ± 
103.7 

320.95 ± 
109.8 15.874 0.000 158.16 ± 

66.1 228.22 ± 170.0 257.04 ± 71.3 6.081 0.010 

LimoneneI,II,III  1176 8638.38 ± 
3213.6 

10980.04 ± 
5070.0 

15629.51 ± 
5219.8 16.129 0.000 7651.41 ± 

3247.3 
10979.72 ± 
8068.9 

12375.75 ± 
3234.7 6.097 0.010 

β-PhellandreneII 1182 29.06 ± 13.8 35.23 ± 15.9 51.89 ± 22.0 16.851 0.000 26.09 ± 11.8 38.36 ± 36.4 41.03 ± 14.3 5.961 0.010 
trans-β-OcimeneII,III 1204 0.41 ± 0.1 0.66 ± 0.8 0.73 ± 0.6 3.594 0.049 0.45 ± 0.1 0.45 ± 0.4 0.69 ± 0.6 7.623 0.004 
γ-TerpineneI,II,III  1217 0.36 ± 0.1 0.51 ± 0.5 0.83 ± 0.7 5.080 0.018 0.54 ± 0.3 0.43 ± 0.5 0.60 ± 0.5 3.965 0.037 
cis-β-OcimeneII,III 1221 3.82 ± 0.8 4.04 ± 2.0 5.16 ± 1.6 4.167 0.033 3.99 ± 1.4 3.94 ± 2.4 4.09 ± 0.4 1.668 0.216 
ρara-CymeneI,II 1242 0.52 ± 0.2 0.40 ± 0.2 0.50 ± 0.4 2.354 0.124 0.61 ± 0.3 0.49 ± 0.4 0.55 ± 0.4 3.254 0.062 
TerpinoleneI,II  1255 0.81 ± 0.3 1.04 ± 0.7 1.34 ± 0.7 8.320 0.003 0.67 ± 0.15 0.91 ± 0.7 1.04 ± 0.5 6.713 0.007 
allo-Ocimene 1382 tr tr tr - - tr tr tr - - 
α-Cubebene 1421 0.56 ± 0.4 0.35 ± 0.2 0.62 ± 0.3 2.037 0.159 0.94 ± 0.5 0.38 ± 0.3 1.10 ± 0.3 10.903 0.001 
δ-ElemeneI,II 1441 13.78 ± 4.5 16.76 ± 8.6 23.25 ± 6.4 1.436 0.264 16.10 ± 3.8 21.26 ± 11.9 23.61 ± 1.9 11.257 0.001 
Bicycloelemene 1452 1.39 ± 0.2 1.48 ± 0.5 2.09 ± 0.3 1.067 0.365 2.02 ± 0.8 1.79 ± 0.4 2.45 ± 0.6 5.990 0.010 
α-CopaeneII 1461 0.33 ± 0.2 0.19 ± 0.1 0.26 ± 0.1 2.837 0.085 0.28 ± 0.1 0.22 ± 0.2 0.30 ± 0.2 2.812 0.087 
β-Bourbonene 1493 0.48 ± 0.2 0.33 ± 0.2 0.49 ± 0.3 1.767 0.199 0.47 ± 0.1 0.39 ± 0.2 0.58 ± 0.2 6.451 0.008 
β-ElemeneI,II,III 1561 3.64 ± 1.4 4.31 ± 2.8 6.27 ± 2.3 10.671 0.001 5.21 ± 1.5 5.43 ± 2.8 6.87 ± 1.4 5.051 0.018 
β-CaryophylleneI,II 1566 1.12 ± 0.3 1.39 ± 0.6 1.89 ± 0.4 0.886 0.429 2.13 ± 0.8 1.88 ± 0.9 2.24 ± 0.3 2.380 0.121 
γ-ElemeneII 1608 1.51 ± 0.2 1.93 ± 0.8 2.96 ± 0.6 2.329 0.126 1.93 ± 0.8 2.17 ± 0.7 2.95 ± 0.4 5.389 0.015 
β-Cubebene 1612 0.58 ± 0.4 0.35 ± 0.4 0.44 ± 0.4 5.564 0.013 0.85 ± 1.0 0.41 ± 0.61 0.54 ± 0.84 2.519 0.109 
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Table 5.1. (Cont’d)           
β-FarneseneII 1628 1.03 ± 0.4 0.65 ± 0.6 1.00 ± 0.8 1.377 0.278 1.18 ± 0.3 0.91 ± 1.2 1.00 ± 0.8 12.349 0.000 
α-HumuleneII 1642 1.79 ± 0.4 1.37 ± 0.6 2.83 ± 1.3 3.601 0.048 1.67 ± 0.4 2.46 ± 3.2 2.55 ± 0.4 17.842 0.000 

Germacrene DI,II  1685 146.39 ± 
38.5 

137.45 ± 
75.0 

202.92 ± 
75.9 0.710 0.505 140.64 ± 

41.7 179.62 ± 140.9 169.14 ± 83.0 0.266 0.769 

β-SelineneI,II  1689 6.18 ± 5.6 6.22 ± 7.2 10.96 ± 12.5 1.330 0.289 5.76 ± 4.57 9.64 ± 15.3 36.97 ± 69.9 1.524 0.245 
α-SelineneII 1696 6.50 ± 2.9 6.38 ± 3.1 9.62 ± 4.3 11.579 0.001 7.23 ± 3.4 7.47 ± 3.31 10.32 ± 4.72 9.379 0.002 
BicyclogermacreneI 1609 14.52 ± 1.1 12.04 ± 5.2 17.08 ± 5.2 1.082 0.360 14.48 ± 2.5 15.84 ± 11.2 16.70 ± 2.6 4.392 0.028 
α-FarneseneII 1715 3.08 ± 2.0 2.49 ± 2.2 2.54 ± 1.0 1.318 0.292 2.84 ± 2.1 3.40 ± 4.5 2.89 ± 1.2 2.531 0.107 
Germacrene B 1823 2.89 ± 1.5 2.22 ± 2.0 2.34 ± 2.0 1.158 0.336 2.71 ± 0.8 2.84 ± 4.1 2.11 ± 1.8 1.933 0.174 
Alcohols            
HexanolI 1316 0.24 ± 0.1 0.17 ± 0.1 0.17 ± 0.1 1.993 0.165 0.90 ± 0.5 0.50 ± 0.3 0.32 ± 0.2 9.541 0.001 
cis-3-HexenolI,II 1350 6.12 ± 1.6 3.33 ± 2.0 4.34 ± 0.6 1.722 0.207 25.31 ± 7.3 13.43 ± 6.8 13.29 ± 0.5 21.257 0.000 
LinaloolI,II,III 1507 32.61 ± 9.6 25.27 ± 10.8 36.53 ± 7.2 2.003 0.164 37.64 ± 6.4 29.99 ± 18.3 39.02 ± 5.4 10.144 0.001 
Sabinene hydrateI 1514 0.72 ± 0.5 0.30 ± 0.2 0.77 ± 0.7 2.392 0.120 0.91 ± 0.5 0.39 ± 0.3 1.09 ± 0.6 6.892 0.006 
OctanolI,II,III  1532 12.68 ± 4.1 13.42 ± 8.5 27.95 ± 4.5 8.480 0.003 14.00 ± 2.8 17.13 ± 13.7 26.26 ± 1.0 12.841 0.000 
NonanolI,II 1617 3.81 ± 1.8 3.82 ± 2.2 8.40 ± 3.8 10.900 0.001 3.62 ± 1.9 4.42 ± 2.3 6.49 ± 2.9 10.370 0.001 
α-TerpineolI,II,III  1664 13.96 ± 4.7 11.52 ± 5.3 16.62 ± 3.6 1.167 0.334 20.44 ± 4.1 17.79 ± 10.9 22.34 ± 4.1 7.480 0.004 
CitronellolI 1723 1.96 ± 1.0 1.75 ± 0.8 2.44 ± 1.1 8.320 0.003 2.26 ± 1.3 1.74 ± 0.6 2.47 ± 1.3 5.461 0.014 
trans-2-Decenol 1799 0.90 ± 0.6 0.49 ± 0.3 0.91 ± 0.5 1.895 0.179 1.22 ± 0.7 0.82 ± 0.4 1.63 ± 1.1 5.025 0.018 
Carveol* II 1848 tr tr tr - - tr tr tr - - 
Perilla alcohol 1972 2.43 ± 2.1 0.97 ± 0.5 1.59 ± 0.8 3.434 0.055 1.68 ± 0.9 0.99 ± 0.4 2.00 ± 0.9 5.567 0.013 
trans-NerolidolI 1991 2.43 ± 1.5 1.04 ± 0.5 2.51 ± 0.8 4.866 0.020 2.35 ± 1.5 1.36 ± 0.9 2.18 ± 0.5 4.472 0.026 
Elemol*I,II,III  2042 14.98 ± 3.7 15.95 ± 8.7 25.17 ± 5.9 2.373 0.122 17.32 ± 3.2 18.45 ± 8.5 24.93 ± 4.5 12.131 0.000 
γ-EudesmolI 2076 4.13 ± 1.6 2.26 ± 1.6 5.14 ± 2.3 5.644 0.013 3.62 ± 1.0 2.74 ± 2.7 5.12 ± 2.3 8.265 0.003 
α-EudesmolI,II 2190 6.97 ± 1.9 5.42 ± 8.9 9.22 ± 3.4 3.366 0.057 5.61 ± 1.5 6.16 ± 5.5 8.40 ± 2.4 9.383 0.002 
β-EudesmolII 2200 17.87 ± 4.6 15.57 ± 8.9 25.34 ± 8.1 10.442 0.001 15.54 ± 3.1 18.09 ± 15.5 21.90 ± 4.8 9.007 0.002 
PhytolI 2572 11.44 ± 11.6 1.44 ± 0.6 5.28 ± 4.0 5.245 0.016 12.67 ± 7.8 2.62 ± 2.8 8.53 ± 9.9 6.005 0.010 
Aldehydes            
OctanalI,II,III  1262 3.80 ± 2.7 4.43 ± 4.5 7.02 ± 2.1 1.579 0.233 5.12 ± 2.3 6.69 ± 8.5 11.35 ± 4.2 13.255 0.000 
NonanalI,II,III 1365 5.42 ± 5.3 5.83 ± 5.5 9.39 ± 4.2 15.543 0.000 6.36 ± 4.9 8.42 ± 11.8 12.36 ± 6.9 11.531 0.001 
DecanalI,II,III  1469 10.14 ± 7.4 12.79 ± 11.4 21.65 ± 12.1 18.270 0.000 10.48 ± 5.8 17.19 ± 19.9 23.68 ± 10.2 11.738 0.001 
UndecanalI,III  1573 4.15 ± 1.1 4.61 ± 2.3 7.72 ± 2.9 8.603 0.002 4.90 ± 1.4 6.22 ± 5.25 8.25 ± 2.6 8.431 0.003 
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Table 5.1. (Cont’d)           
trans-2-DecenalI 1616 2.51 ± 0.6 3.10 ± 1.7 3.57 ± 0.7 1.820 0.191 3.12 ± 1.5 3.41 ± 2.3 4.53 ± 1.0 6.716 0.007 
NeralIII 1656 1.29 ± 0.5 1.04 ± 0.9 1.67 ± 0.6 1.559 0.237 1.23 ± 0.3 1.32 ± 1.4 1.93 ± 0.8 5.796 0.011 
GeranialIII 1676 1.94 ± 0.8 1.56 ± 1.3 2.50 ± 0.9 8.250 0.003 1.84 ± 0.5 1.98 ± 2.1 2.90 ± 1.2 5.796 0.011 
trans,cis-2,4-DecadienalI,II 1737 1.87 ± 1.7 1.24 ± 1.8 2.13 ± 2.7 3.007 0.075 1.94 ± 1.0 0.73 ± 0.4 2.65 ± 3.0 7.266 0.005 
Perilla aldeyhdeI,II,III  1768 2.23 ± 0.9 1.98 ± 2.6 2.09 ± 0.9 4.609 0.024 2.00 ± 0.5 2.13 ± 3.1 2.87 ± 1.7 4.533 0.025 
trans,trans-2,4-
DecadienalI,II  1806 2.16 ± 0.9 2.11 ± 0.9 3.14 ± 1.6 4.558 0.025 1.72 ± 1.1 2.58 ± 3.3 3.01 ± 1.7 5.745 0.012 

trans-2-Dodecenal 1849 1.18 ± 0.4 0.59 ± 0.3 2.11 ± 2.8 10.080 0.001 1.35 ± 0.3 1.30 ± 1.6 2.45 ± 2.1 2.790 0.088 
trans,cis-2,6-dodecadienal 1860 1.30 ± 0.6 0.67 ± 0.4 1.24 ± 0.7 6.754 0.006 0.94 ± 0.7 1.25 ± 1.5 2.69 ± 2.9 2.169 0.143 
Esters            
cis-3-Hexenyl acetate 1287 6.12 ± 0.5 3.33 ± 0.7 4.34 ± 0.4 7.409 0.004 25.31 ± 0.4 13.43 ± 1.0 13.29 ± 0.3 17.701 0.000 
Heptyl acetateI,III  1342 0.55 ± 0.3 0.48 ± 0.2 0.68 ± 0.1 11.931 0.001 0.74 ± 0.3 0.50 ± 0.3 0.77 ± 0.2 9.048 0.002 
Ethyl octanoate 1443 tr tr tr - - tr tr tr - - 
Octyl acetate  1446 0.73 ± 1.3 0.69 ± 1.7 0.93 ± 1.9 2.340 0.125 0.73 ± 1.2 0.99 ± 2.5 0.64 ± 1.1 1.755 0.201 
Citronellyl acetateII,III  1625 1.03 ± 0.7 0.80 ± 0.6 1.33 ± 1.3 2.786 0.088 0.80 ± 0.2 1.12 ± 1.7 1.20 ± 1.0 3.045 0.073 
Decyl acetate 1646 1.31 ± 0.8 1.14 ± 1.2 1.94 ± 2.0 1.843 0.187 1.54 ± 0.8 1.54 ± 2.2 1.85 ± 1.7 3.370 0.057 
Geranyl acetateIII  1719 34.39 ± 8.0 31.89 ± 11.0 52.27 ± 9.0 1.736 0.204 29.90 ± 10.5 38.27 ± 21.4 46.38 ± 3.7 7.835 0.004 
Methyl salicylateIII 1761 2.77 ± 0.9 1.34 ± 0.7 2.56 ± 0.7 14.952 0.000 3.18 ± 1.0 1.69 ± 1.0 3.09 ± 0.7 11.978 0.000 
Geranyl propionate 1804 1.64 ± 1.0 1.19 ± 0.9 2.82 ± 1.3 8.056 0.003 1.67 ± 0.9 1.63 ± 1.2 2.57 ± 0.6 12.668 0.000 
Dodecyl acetate 1854 0.99 ± 0.3 0.32 ± 0.2 0.79 ± 0.4 7.481 0.004 0.98 ± 0.5 0.86 ± 1.0 1.61 ± 1.6 1.713 0.209 
Perillyl acetate 1935 2.07 ± 1.1 1.06 ± 0.6 2.29 ± 0.7 8.311 0.003 1.87 ± 0.8 1.45 ± 1.2 2.04 ± 0.7 4.423 0.027 
Methyl-N-methyl 
anthranilate I,II  2061 3.27 ± 3.0 0.84 ± 0.8 2.37 ± 2.0 2.290 0.130 2.43 ± 1.9 0.94 ± 0.6 2.11 ± 1.7 4.358 0.029 

Acids            
Acetic acid 1421 0.19 ± 0.1 0.02 ± 0.0 0.38 ± 0.2 8.108 0.003 0.30 ± 0.2 0.25 ± 0.2 0.54 ± 0.3 10.536 0.001 
Octanoic acid  2017 4.09 ± 2.8 1.12 ± 0.8 3.49 ± 1.0 5.583 0.013 3.80 ± 2.1 2.27 ± 2.41 4.61 ± 2.3 3.984 0.037 
Nonanoic acidIII 2116 3.97 ± 2.4 1.44 ± 0.2 2.90 ± 1.4 2.759 0.090 3.45 ± 1.8 2.14 ± 0.3 4.01 ± 2.2 3.879 0.040 
Decanoic  acid 2230 2.04 ± 3.2 0.82 ± 0.2 2.11 ± 1.4 6.026 0.010 2.38 ± 2.8 1.14 ± 1.9 3.09 ± 3.6 2.389 0.120 
Myristic acid** II,III  2659 0.39 ± 1.0 2.27 ± 2.0 6.96 ± 3.5 14.329 0.000 1.11 ± 2.9 2.72 ± 4.8 14.05 ± 13.0 9.392 0.002 
Palmitic acid** II,III  2889 24.39 ± 20.6 5.05 ± 7.0 14.66 ± 9.7 6.527 0.007 36.10 ± 13.4 15.86 ± 23.5 30.17 ± 39.2 3.079 0.071 
Stearic acid** 3109 21.09 ± 26.7 2.50 ± 3.0 17.81 ± 19.8 3.067 0.071 48.18 ± 31.6 16.84 ± 8.0 46.40 ± 60.8 2.543 0.107 
Linoleic acid** 3140 0.98 ± 2.6 3.27 ± 4.5 14.99 ± 10.0 45.903 0.000 17.92 ± 11.2 7.40 ± 10.0 12.11 ± 10.2 4.578 0.025 
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Table 5.1. (Cont’d)           
Others            
Limonene oxideII 1416 0.28 ± 0.3 0.40 ± 0.6 0.23 ± 0.3 1.101 0.354 0.37 ± 0.12 0.35 ± 0.7 0.31 ± 0.3 8.110 0.003 
Camphor 1498 0.35 ± 0.1 0.29 ± 0.2 0.47 ± 0.3 1.979 0.167 0.47 ± 0.2 0.32 ± 0.3 0.48 ± 0.2 4.617 0.024 
IsopiperitenoneI,II  1843 1.12 ± 0.7 1.47 ± 3.3 1.05 ± 0.5 7.671 0.004 1.15 ± 0.7 1.73 ± 3.6 2.28 ± 2.3 2.124 0.149 
CarvoneI,II,III 1762 tr tr tr - - tr tr tr - - 

Total identified (ppm)  9.43E03 ± 
3.38E03 

1.18E04 ± 
5.44E03 

1.68E04 ± 
5.53E03   8.53E03 ± 

3.39E03 
1.19E04 ± 
8.76E03 

1.36E04 ± 
3.42E03   

Overall total identified (%)  98.80 99.72 99.46   98.46 99.56 99.21   
I Compounds reported in Ref. (247); II Compounds reported in Ref. (237); III Compounds reported in Ref. (188).   
“-“, not detected; “tr“, trace; * unknown isomer; ** semi-volatile compounds detected; MAS, Malaysia; PHIL, the Philippines; VIET, Vietnam. 
LRI on column (DB-FFAP) determined with two series of n-alkanes (C5–C20 and C21-C40). 
p-values in bold indicate compounds were significantly different (p<0.05) among countries of similar solvent extraction. 
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Moreover, in the hexane extracts, total volatile amounts ranged from 

16844 ppm (Vietnam), 11,775 ppm (the Philippines) to 9,435 ppm (Malaysia), 

respectively. These compounds were categorized into the groups of 

hydrocarbons, alcohols, aldehydes, esters, acids and others. Hydrocarbons 

were dominant compounds in calamansi peel extracts, regardless of their 

geographical origins. The group of hydrocarbons comprised predominantly of 

monoterpenes (e.g. limonene, β-myrcene, β-pinene, α-pinene, β-phellandrene 

and sabinene) and sesquiterpenes (e.g. elemene, farnesene and germacrene 

isomers), which were also commonly reported in other citrus fruits 

(184, 237, 247, 257). Germacrene D and bicyclogermacrene were the 

important volatile components that characterize the unique flavor of Japanese 

yuzu (Citrus junos) and daidai (Citrus aurantium) (257, 258). A previous 

study reported that these two compounds could be used to indicate the quality 

and freshness of the peel extracts because they are susceptible to isomerization, 

oxidation and rearrangement processes during storage (258, 259). 

Among 16 identified alcohols, linalool and elemol were major terpene 

alcohols. In addition to hexanol, cis-3-hexenol and trans-nerolidol are 

common in citrus fruits. As a group, they can impart floral, green and fresh 

notes. Some aldehydes exhibit intense aroma of citrus. For instance, both of 

citral stereoisomers (geranial and neral) are thought to be important for the 

aroma of kumquat, one parent hybrid of calamansi (206). Furthermore, a wide 

range of aliphatic aldehydes (C8 to C12) was found here. Hexanal, by-product 

formed from fatty acid degradation, was reported in the mandarin peel oil and 

the Philippines calamansi peel (176, 237, 260), but was not detected in any of 

the calamansi peel extracts. Other fatty acid degradation aldehydes, such as 
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trans,cis-2,4-dodecadienal and trans,trans-2,4-dodecadienal (intense green, 

fatty and oily notes), were identified in each of the peel extracts. Among all, 

Vietnam peel extract had the highest aldehydes. Moreover, eleven ester 

compounds were detected here, particularly methyl-N-methyl anthranilate (a 

key characteristic mandarin-like volatile). Also, methyl salicylate was reported 

as an important component, due to its green and minty properties (188). 

Besides straight-chain acetate esters (i.e. cis-3-hexenyl acetate and heptyl 

acetate), terpenes esters (i.e. geranyl acetate, geranyl propionate, citronellyl 

acetate and perillyl acetate) could attribute to fresh, fruity and green notes. 

 

5.3.2. Statistical analysis 

Being a classical statistic tool, ANOVA is often performed before 

chemometrics. Hibbert (154) recommended standard statistical tests for 

normality and outliers in order to find out the significant differences between 

variables. However, ANOVA is sensitive to non-normal distributions, which 

is a typical trend in aromatic volatiles or essential oil data. There was one 

study reported by Butcher (261) which concluded that ANOVA was not 

appropriate to be used on ratios of terpenes from 109 samples of tea tree oil 

(Melaleuca alterifolia).  

In the present work, the variations of volatile compounds among 

different locations were evaluated via ANOVA. Nevertheless, it is noted that 

the variation between analytical analysis and sensory perception could not be 

expressively correlated. This might due to some potent aroma-active 

compounds that are present at trace levels, which might be quantitatively 

insignificant among different geographical origins but overwhelmed by the 
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synergistic effects among aromatic volatiles. Hence, the segregation and 

distribution of the volatile variables among the peel extracts were subjected to 

PCA without removing the insignificant variables via ANOVA. 

Three principal components (PCs) were obtained from 

dichloromethane extract data sets, accounting for 80.52% of the cumulative 

percentage of total variations, whereby PC 1, PC 2 and PC 3 accounted for 

56.54%, 15.66% and 8.32% of the variance, respectively. The first PC axis 

was not especially effective in separating the calamansi from Malaysia and the 

Philippines (Figure 5.1(a)). Although there was some information in the data 

sets related to the first PC, limited discrimination ability of PCA caused the 

correlation to the origin of calamani to be only visible in the latter PCs (262). 

In spite of this limitation, the peel extracts of different origins were easily 

distinguished via the score plot of PC 3 vs. PC 2 (Figure 5.1(b)). Each of 

volatile variables that differentiated the data sets in Figure 5.1(b) is 

represented in Figure 5.1(c) by a vector, in which the direction and length of 

vector indicate the contribution of variable to PC 2 and PC 3. Regardless of 

their origins, the peel extracts were characterized by oxygenated compounds, 

which had larger positive coefficients in PC 2, such as citronellol, nonanol, 

perillyl acetate, decyl acetate and trans-2-decenol.  

Moreover, methyl-N-methyl anthranilate had the highest coefficient in 

PC 2, indicating its strong influence as a characteristic compound in calamansi 

peel. This is in agreement with the sensory evaluation that calamansi peel 

extract exhibited a characteristic mandarin-like note (see discussion below). 

Variables such as α-pinene, sabinene, β-myrcene, limonene, β-phellandrene, 

heptyl acetate and octyl acetate were negatively associated with PC 2. 
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Figure 5.1. PCA of calamansi (Citrus microcarpa) peel extracts ((∆) 
Malaysia; (○) the Philippines; (□) Vietnam)) using dichloromethane. (a) Score 
plot PC 2 against PC 1; (b) Score plot PC 3 against PC 2; (c) PCA plot on 
volatile variables of PC 3 against PC 2  

Volatile variables explained: (1) α-Pinene; (2) Sabinene; (3) δ-3-Carene; (4) β-Myrcene; (5) Limonene; 
(6) β-Phellandrene (7) Bicycloelemene; (8) γ-Elemene (9) β-Cubebene; (10) α-Selinene; (11) Hexanol; 
(12) cis-3-Hexenol; (13) Sabinene hydrate; (14) Nonanol; (15) Citronellol; (16) trans-2-Decenol; (17) 
Perilla alcohol; (18) trans-Nerolidol; (19) Decanal; (20) trans,cis-2,6-Dodecadienal; (21) Heptyl acetate; 
(22) Octyl acetate; (23) Decyl acetate; (24) Perillyl acetate; (25) Methyl-N-methyl anthranilate; (26) 
Acetic acid; (27) Octanoic acid; (28) Decanoic acid. Other volatile variables listed in Table 1 are not 
shown due to their low loading factors in the linear combinations. 
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For hexane extracts, four PCs were obtained for PCA, accounting for 

87.70% of cumulative variations of hexane extract data sets. The contributions 

for PC1, PC2, PC3 and PC4 were 44.36%, 21.75%, 13.05% and 8.54%, 

respectively. Similar to dichloromethane extract data sets, no separation for 

geographical differences was obtained in the first two PCs (Figure 5.1). 

However, the score plot of PC 4 against PC 3 clearly indicated the existence of 

three clusters within the peel extracts of Malaysia, the Philippines and 

Vietnam with respect to the volatile variables that segregate along PC 3 and 

PC 4 axes (Figure 5.2(b)). The contribution of each volatile variable to the 

score points in PC 3 and PC 4 is shown in Figure 5.2(c). By observing the 

loading factors of each variable in PC 3, the most important oxygenated 

compounds are methyl salicylate, nonanoic acid, octanoic acid, perillyl 

alcohol and phytol that expressed strong positive correlation to PC3, where 

terpene hydrocarbons (e.g. α-pinene, sabinene, β-myrcene and limonene), 

heptyl acetate and octyl acetate were found negatively correlated with PC 3. 

As shown above, PCA is a useful tool in disclosing variances among 

volatiles or characteristic compounds. These compounds may be effective in 

accounting for the variances in the total data sets, but they may or may not be 

effective in discriminating between samples of different geographical origins. 

Thus, volatile compounds, of which had significant F values and p values 

(Table 5.1), were employed using CDA to verify the discrimination of the 

volatiles that showed strong correlations in PCs. In Figure 5.3, two canonical 

components (discriminant functions) contributed to class differentiation 

(p<0.05) for both dichloromethane and hexane extracts. So, the result 
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indicated that the volatile compounds with strong coefficients in PCA were 

confidently the discriminant among geographical origins. 

 

Figure 5.2. PCA of calamansi (Citrus microcarpa) peel extracts ((∆) 
Malaysia; (○) the Philippines; (□) Vietnam)) using hexane. (a) Score plot of 
PC 2 against PC 1; (b) Score plot of PC 4 against PC 3; (c) PCA plot of 
volatile variables of PC 4 against PC 3 

Volatile variables explained: (1) α-Pinene; (2) β-Pinene; (3) Sabinene; (4) δ-3-Carene; (5) β-
Myrcene; (6) Limonene (7) trans-β-Ocimene; (8) ρara-Cymene; (9) Bicycloelemene; (10) 
Hexanol; (11) Nonanol; (12) Citronellol; (13) Perilla alcohol; (14) Geranial; (15) 
perillaldehyde; (16) trans,cis-2,6-Dodecadienal; (17) cis-3-Hexenyl acetate; (18) Heptyl 
acetate; (19) Octyl acetate; (20) Methyl salicylate; (21) Dodecyl acetate; (22) Octanoic acid; 
(23) Nonanoic acid.  Other volatile variables listed in Table 1 are not shown due to their low 
loading factors in the linear combinations. 
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Figure 5.3. Canonical discriminant analysis employing country origin as 
grouping criterion. Projection of volatile variables on the discriminant space, 
selecting the two discriminant functions as axes: (a) Dichloromethane; (b) 
Hexane 
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5.3.3. Sensory evaluation  

In addition to instrumental analysis, sensory evaluation is another 

useful technique to evaluate the human perception of flavor attributes (132). 

The aromatic profiles of calamansi peel extracts were presented in Figures 

5.4(a) (dichloromethane peel extracts) and (b) (hexane peel extracts). 

Detailing the peel extracts obtained with the same solvent, volatile compounds 

having significant differences (p<0.05) among the three countries largely 

contributed to different aromatic profiles. For instance, Malaysia peel extract 

with the lowest amount of straight-chain aldehydes (octanal, nonanal, decanal 

and undecanal) that exhibited sweet and peely attributes was rated the lowest 

score in sweet attribute (4.5). However, this interpretation did not fully agree 

with other attributes. For example, Malaysia peel extract was rated high in 

peely (6.5) and waxy (7.0) attributes.  

The sensory profile of calamansi dichloromethane extracts revealed that 

Malaysia calamansi peel extract was ranked highly for peely note (6.5), 

followed by juicy note (6.0) and mandarin-like note (6.0) with woody note 

being the weakest (3.5). This could be partly attributed to relatively higher 

amount of acetate ester that was positively correlated in PCA, the highest 

amount of methyl-N-methyl anthranilate, and significantly less (p<0.05) 

amounts of terpene hydrocarbons.  

On the other hand, the calamansi peel extract originated from the 

Philippines had a well-balanced aromatic profile with the attributes mainly 

comprised of peely (6.5), sweet (6.0) and woody (5.0) notes. Compared to 

Malaysia and the Philippines, Vietnam peel extract exhibited the highest score 

of green (4.5) and fatty (7.0) notes. Fatty note was mainly attributed to the 
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presence of unsaturated aldehydes and fatty acids, which was in agreement 

with the analytical findings that Vietnam calamansi peel had a significantly 

higher (p<0.05) content of trans,trans-2,4-decadienal, trans-2-dodecenal, 

perilla aldehyde, octanoic acid and nonanoic acid. Apart from the common 

sensory attributes (i.e. peely, green, woody and fatty) perceived from citrus 

peel, juicy attribute was selected here, which originated from a group of 

alcohols, aldehydes and esters (e.g., geranyl propionate, linalool, neral and 

geranial). 

 (a) 

 

(b) 

Figure 5.4. Sensory profiles of calamansi (Citrus microcarpa) peel extracts: 
(a) Dichloromethane; (b) Hexane 
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Similarly, another series of sensory evaluation was performed for 

calamansi hexane extracts. The aromatic profile of hexane extracts appeared to 

be less representative to its natural profile with higher hydrocarbon content but 

a significantly lower amount of carbonyls. By taking advantage of the 

differences in polarity, characterization of this complex citrus volatile profile 

could be complemented and more complete. Among nine aromatic attributes, 

woody, peely and mandarin-like notes were more expressive, of which 

mandarin-like note was the most dominant for all the hexane extracts of 

different origins with fatty note being the weakest, except for Vietnam peel 

extract in which floral (2.5) note had the lowest score (Figure 5.4(b)). In 

contrast to Malaysia and the Philippines aromatic profiles, asymmetrical 

attribute scores were observed in Vietnam peel extract, with scores ranging 

from mandarin-like (7.5), peely (7.0) and sweet (5.0) to floral (2.5) notes. On 

the other hand, a higher score of juicy (6.5) and green (4.5) notes was ranked 

for Malaysia peel extract. It suggested that oxygenated compounds such as 

methyl salicylate, perillyl alcohol, cis-3-hexenyl acetate and hexanol 

correlated positively with the flavor leading to the possibility of a synergistic 

effect in the Malaysia extract. 

 

5.3.4. Phenolic acid content  

Besides investigating the volatiles and aromatic profiles, four types of 

phenolic acids (caffeic, p-coumaric, ferulic and sinapic acids) in calamansi 

peel were listed in Table 5.2. A recent study done by Kashiwagi et al. (263) 

reported that the addition of antioxidants to Citrus peel oils can prevent the 

deterioration of flavor quality by inhibiting the formation of oxidation 
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artefacts. This finding indicated that phenolic acids, as antioxidants, might be 

important in maintaining the complex mixture of the volatile chemical 

substances. Under the present condition, calamansi has lower concentrations 

of free phenolic acids than bound phenolic acids. This implied with literatures 

that most of phenolic acids in citrus are bound to the fruit cell walls through 

the formation of ester and glycosidic linkages (249). It is observed that the 

phenolic acids contents of calamansi peel were statistically different among 

the three countries (p<0.05), except for the bound ferulic acid content of 

Malaysia and Vietnam calamansi peel. Moreover, p-coumaric acid was the 

most dominant free phenolic acid, but ferulic acid was one in the bound one. 

Ferulic acid is known to be the precursor of p-vinyl guaicol, an off-flavor 

product in citrus fruits (264). It can be derived from p-coumaric and caffeic 

acids as well as be converted to sinapic acid via enzymatic biotransformation. 

 

Table 5.2. Free and bound phenolic acids content (mg/kg) of the calamansi 
(Citrus microcarpa) peel from Malaysia, the Philippines and Vietnam 

Compounds 
Retention 
time 
(min) 

Malaysia Philippines Vietnam 

Free phenolic acids 
Caffeic acid 10.88 4.20a ± 0.65 5.55b ± 0.45 1.89c ± 0.16 

p-Coumaric acid 15.38 194.83a ± 7.53 162.33b ± 12.41 106.31c ± 7.59 

Ferulic acid 17.42 45.29a ± 0.92 48.99ab ± 3.07 30.07c ± 1.82 

Sinapic acid 18.17 118.89a ± 0.47 28.64b ± 1.30 32.63c ± 4.67 

 
Bound phenolic acids 
Caffeic acid 10.88 4.80a ± 1.35 25.75b ± 0.82 11.75c ± 0.48 

p-Coumaric acid 15.35 131.49a ± 20.00 263.25b ± 4.93 173.69c ± 15.12 

Ferulic acid 17.39 275.35a ± 31.59 410.92b ± 19.17 272.52a ± 10.71 

Sinapic acid 18.15 109.79a ± 13.20 88.66b ± 7.70 76.75c ± 4.58 

Different superscripts within the same row indicate the statistical differences (p<0.05). 
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5.4. Conclusion 

In this study, the volatiles and phenolic acids in calamansi peel were 

extracted and measured. With the aid of ANOVA, variations among these 

volatiles and phenolic acids were found to be significant (p<0.05) among three 

geographical origins (Malaysia, the Philippines and Vietnam). Furthermore, 

PCA and CDA approaches were employed to understand the correlation and 

segregation among these volatile compounds. Through sensory evaluation, the 

aromatic profiles of the calamansi peel extracts were identified and expressed 

in nine attributes, which could lead to a better insight. Moreover, the 

knowledge of phenolic acids provided the information of nutrition on 

calamansi fruit. This approach may also prove to be effective in studying the 

discrimination of citrus from different origins. 
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CHAPTER 6 CHARACTERIZATION OF CALAMANSI 

(CITRUS MICROCARPA): VOLATILES, 

PHYSICOCHEMICAL PROPERTIES AND NON-VOLATILES 

IN THE JUICE 

6.1. Introduction  

Calamansi juice has the combination of a sweet mandarin-like aroma 

with a zesty taste of lime, a slightly peely note of orange and a hint of acidic 

astringency. It has been used as a seasoning in food, and is also often used as a 

flavoring or as a food additive to enhance iron absorption. Literature search 

indicated that, to date, there have only been four reports on calamansi juice 

(237, 265-267).  

Measurement of volatiles in citrus juice still remains a challenge. For 

example, to preserve the authentic aromatic profile of citrus juice during 

extraction, it is virtually impossible to obtain a high aroma compound 

recovery (268). This is partly due to the complex matrix and a scarce amount 

of volatile compounds present in citrus juice. In addition to various bacterial 

and enzyme activities, desirable yet unstable aroma compounds are easily 
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transformed while some off-flavor compounds are also quickly formed during 

extraction (238). In previous reports, citrus juice was commonly prepared 

through pressing citrus fruit with the peel together. Due to the incorporation of 

peel oil, this resulted in the intensified flavor of citrus juice, but interfered its 

original aroma profile (238, 269).  

Besides the volatiles, the aroma and taste of citrus juice also depend on 

the balance between sugars and organic acids, which are among the major 

non-volatiles. Their nature and concentrations significantly influence the 

organoleptic quality of citrus juice (270). Hence, the detection and 

measurement of sugars and organic acids in calamansi juice warrant detailed 

exploration.  

Phenolic acids are also major components that widely distributed in the 

different parts of citrus fruit, such as flavedo, albedo, endocarp and juice sacs 

(253, 267, 271). Peleg et al. (249) reported various phenolic acids in each part 

of orange and grapefruit and found that a concentration gradient of phenolic 

acids appeared to exist from the peel, and especially flavedo towards the juice. 

Furthermore, Gattuso et al. (272) reviewed a collection of phenolic 

compounds in citrus juice using different extraction methods, from which 

most of the juice samples were prepared by hand-squeezing in a domestic 

juicer or a commercial extraction process along with the peel. Mechanical 

pressure of the whole citrus fruit definitely caused the unintentional 

penetration of phenolic acids from its peel into the juice, increased their 

concentrations in the juice, and potentially caused the objectionable flavor 

during storage (264).  
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Therefore, the objective of this study was to characterize calamansi juice 

from selected geographical origins, focusing not only on the volatile 

compounds, but also on the non-volatiles (sugars, organic acids and phenolic 

acids) and other physicochemical properties. Through multivariate analysis, it 

is believed that information about calamansi juice would be more 

comprehensive and insightful. 

 

6.2. Experimental procedures 

6.2.1. Calamansi materials and chemicals 

  Prior to squeezing, calamansi fruits were washed with deionized 

water and wiped dry with paper serviettes; the peel and visible albedo of 

calamansi fruits were carefully peeled off. Calamansi juice was then obtained 

by squeezing manually with the use of a stainless steel sieve. Some of the 

freshly squeezed juice was immediately used for extracting volatiles, and the 

rest was subjected to centrifugation at 17,000 g for 15 min at 4 °C (Sigma 3-

18K). Some of the supernatant was directly used to determine the 

physicochemical properties, and the remaining was filtered through a 0.2 µm 

regenerated cellulose (RC) filter (Minisart RC15), and then kept at -30 °C 

until further analysis of sugars and organic acids. 

All standard compounds used in the identification of volatile 

constituents were obtained from Firmenich Asia Pte. Ltd., Singapore. 

Chemicals and organic solvents were stated in Chapter 5 (Section 5.2.1.). 
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6.2.2. Solvent extraction of volatiles  

To avoid contaminating freshly squeezed juice with peel oil, calamansi 

peel was carefully removed prior to juicing. Moreover, based on the total 

concentration of volatiles and sensory profile, hand squeezing was selected 

here instead of mechanical squeezing. A solvent extraction method modified 

from that of Takeuchi et al. (237) was detailed in previous chapter (Section 

4.2.2.).  

 

6.2.3. Headspace-solid phase microextraction (HS-SPME)  

Five grams of freshly prepared calamansi juice were added into a 20-

mL glass vial, followed by three grams of saturated CaCl2 solution. The glass 

vial was crimp-capped and subjected to headspace extraction. The optimized 

extraction condition of HS-SPME analysis was finally set at 40 °C for 30 min, 

and the SPME fiber was inserted into the GC injector for 5 min for thermal 

desorption.  

 

6.2.4. GC-MS/FID analysis  

Analysis of the volatile compounds of calamansi juice was carried out 

using an Agilent 6890N GC coupled with a FID and a 5975 inert MSD as 

described in Section 4.2.4. of Chapter 4 .  
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6.2.5. Physicochemical properties  

Physicochemical properties of calamansi juice, i.e. pH, titratable 

acidity and total soluble solids (TSS) were determined as described in Section 

4.2.6. of Chapter 4. 

 

6.2.6. Extraction of phenolic acids  

The extraction procedure was modified from that described by Peleg et 

al. (249). In the present study, calamansi juice was first centrifuged at 5,000 g 

for 20 min at 4 °C (Harrier 18/80, MSE, London, UK). For the extraction of 

free phenolic acids, five grams of the supernatant were extracted with 10 mL 

of methanol by vortexing for 5 min. The methanol-juice mixture was then 

centrifuged at 5,000 g for 10 min at 4 °C and the top layer of extract was 

removed. The extraction process was then repeated. The top layer of extract in 

each mixture was pooled and dried with five grams of anhydrous Na2SO4. 

Subsequently, the combined extract was filtered and concentrated to about 1 

mL under reduced pressure at 35 °C. The concentrate was then diluted with 

methanol to 5 mL. The extract was filtered with a 0.20 µm PTFE filter prior to 

analysis. 

For the determination of bound phenolic acids, hydrolytic procedures 

were modified from those described in the literature (249, 251, 254). Five 

grams of the centrifuged juice were hydrolysed using 5 mL of 2 M NaOH 

(containing 1% ascorbic acid and 10 mM EDTA) under nitrogen for 4 h at 

room temperature. After which, the mixture was acidified to pH 2.0 using 6 M 

HCl and centrifuged at 14,000 g for 15 min at 4 °C. The supernatant obtained 

was extracted using the same procedures as those for the extraction of free 
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phenolic acids, but 15 mL of methanol was used here. Bound phenolic acids 

were determined by comparing the differences before and after alkaline 

hydrolysis. 

 

6.2.7. Ultra-fast liquid chromatography (UFLC) analysis  

Analysis of non-volatiles was performed using a Shimadzu 

Prominence UFLC system equipped with two pumps (LC-20AD), an 

autosampler (SIL-20AC), column oven (CTO-20AC), an evaporative light 

scattering detector (ELSD-LT II) for sugar analysis, and a photodiode array 

detector (SPD-M20A) for the analysis of organic acids. The default column 

temperature was set at 40 °C and the sample injection volume was 10 µL. 

Data were acquired and processed using LC solution version 1.24 SP1 

software. Sugars and organic acids were identified by matching the retention 

times and spectral characteristics against standards as detailed in Section 4.2.7. 

of Chapter 4 . 

 

6.2.8. Statistical analysis  

Comparison of physicochemical properties, organic acids, sugars and 

phenolic acids in calamansi juices (Malaysia, the Philippines and Vietnam) 

was performed using ANOVA and Duncan’s multiple range tests with the 

probability value of p<0.05. Further, multivariate analysis was carried out 

using PCA based on the correlation matrix as explained in Chapter 5 (Section 

5.2.6.). 

All experiments were carried out in triplicate and the results were 

reported as the mean values. 
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6.3. Results and discussion 

6.3.1. Volatile components of calamansi juice 

A total of 60 volatile compounds in calamansi juice were detected, 

identified and are listed in Table 6.1. Apart from the components reported in 

previous studies ((229, 237, 256, 265), 17 compounds were reported here for 

the first time (e.g. geranyl propionate, trans-2-decenol, neral and trans-2-

dodecenal). The Vietnam calamansi juice gave the highest amount of total 

volatiles, up to three-folds higher than others. However, the volatiles in the 

Vietnam juice mainly consisted of hydrocarbons that contributed relatively 

little to aroma due to their high odor threshold values. In contrast, the 

Philippines calamansi juice with the lowest amount of total volatiles consisted 

of the highest acids, alcohols and aldehydes. 

Terpene hydrocarbons are known to be the major components of citrus 

essential oils, which contribute to characteristic citrusy and woody notes. It is 

noted that the calamansi juice from the three countries shared the same 

monoterpene and sesquiterpene profiles, which were also detected in the 

calamansi peel (Table 5.1.).  

For all the calamansi juices, the group of hydrocarbons comprised 

predominantly of limonene, germacrene D and β-myrcene. Previous studies 

suggested that β-selinene and limonene, together with small amounts of 

oxygenated terpenes, were responsible for the aroma of calamansi fruit 

(265, 273). 
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Table 6.1. Identification of volatiles and their concentrations (ppm) in calamansi (Citrus microcarpa) juices from Malaysia, the Philippines and 
Vietnam  

No.a Compounds LRI Malaysia Philippines Vietnam Identificationc 
  FFAPb REF     
 Hydrocarbons       
1 α-PineneI,III,IV 902 - 6.76a ± 0.23 4.92b ± 0.02 12.84c ± 0.03 MS, STD 
2 β-PineneII,III 972 - 8.18a ± 0.18 10.11b ± 1.11 16.84c ± 0.35 MS, STD 
3 Sabinene 983 - 2.76a ± 0.08 2.04b ± 0.08 6.23c ± 0.16 MS 
 δ-3-Carened, I,II,III,IV 1070 - tr tr tr MS, STD 
4 β-MyrceneI,II,III,IV 1124 1158 28.67a ± 0.85 18.98b ± 0.29 68.59c ± 0.49 MS, STD, LRI 
 α-Terpinened 1168 1178 tr tr tr MS, STD, LRI 
5 LimoneneI,II,III,IV 1176 1185 1353.65a ± 45.30 922.00b ± 12.64 3323.62c ± 1.25 MS, STD, LRI 
6 β-PhellandreneII,III 1182 1194 4.41a ± 0.16 3.18b ± 0.13 10.36c ± 0.05 MS, LRI 
7 trans-β-OcimeneIII 1204 1242 1.61a ± 0.14 2.05a ± 2.07 2.25a ± 0.02 MS, STD, LRI 
 cis-β-Ocimened 1210 1252 tr tr tr MS, STD, LRI 
8 ρara-CymeneIII 1242 1267 0.02a ± 0.00 0.03a ± 0.01 0.05a ± 0.01 MS, STD, LRI 
9 TerpinoleneI,II,III 1255 - 0.23a ± 0.02 16.66b ± 18.87 0.41a ± 0.01 MS, STD 
 dehydro-p-Cymened 1289 - tr tr tr MS 
 4,8-dimethyl-1,3,7-nonatriened 1347 - tr tr tr MS 
10 δ-ElemeneII,IV 1441 - 18.82a ± 1.51 25.59b ± 1.50 17.53a ± 0.02 MS 
11 Bicycloelemene 1452 - 1.88a ± 0.09 0.24b ± 0.09 0.73b ± 0.02 MS 
12 β-Bourbonene 1493 - 0.09a ± 0.02 0.10a ± 0.03 0.03a ± 0.00 MS 
 α-Copaened,III 1528 1536 tr tr tr MS, STD, LRI
13 β-ElemeneII 1561 - 2.32a ± 0.22 2.94b ± 0.06 1.81c ± 0.02 MS 
14 β-CaryophylleneII,III 1566 - 1.87a ± 0.14 1.99a ± 0.09 3.20b ± 0.02 MS, STD 
15 γ-Elemene 1608 1625 3.57a ± 0.33 3.13a ± 1.72 4.48b ± 0.07 MS, LRI 
16 β-CubebeneII 1612 - 1.03a ± 0.06 2.95a ± 2.61 2.97a ± 0.03 MS, STD 
17 β-FarneseneII 1628 1711 0.35a ± 0.30 1.93b ± 0.20 0.65a ± 0.01 MS, STD, LRI 
18 γ-Cadinene 1631 - 0.41a ± 0.02 0.18b ± 0.06 0.08c ± 0.01 MS 
19 α-Humulene 1642 - 0.82a ± 0.41 1.08a ± 0.59 1.71b ± 0.02 MS 
20 Germacrene DII,IV 1685 1722 47.04a ± 3.10 51.49a ± 2.03 71.53b ± 0.06 MS, STD, LRI 
21 β-SelineneIV 1689 - 1.43a ± 0.09 1.03b ± 0.05 3.40c ± 0.07 MS 
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Table 6.1. (Cont’d)      
22 α-Selinene 1696 - 0.18a ± 0.02 0.14a ± 0.01 0.42b ± 0.04 MS 
23 Bicyclogermacrene 1609 - 3.74a ± 0.29 4.39b ± 0.17 0.38c ± 0.01 MS 
24 α-FarneseneIII 1715 1772 0.14a ± 0.06 1.81b ± 0.74 0.36a ± 0.04 MS, STD, LRI 
25 δ-CadineneII,III,IV 1759 - 0.44a ± 0.05 0.70b ± 0.08 0.40a ± 0.01 MS 
26 Germacrene BII 1823 - 0.69a ± 0.07 1.02b ± 0.52 0.76a ± 0.04 MS 
 Esters       
27 Heptyl acetateIV 1342 - 0.09 ± 0.01 - 0.13 ± 0.04 MS, STD 
28 Octyl acetateII,III,IV 1446 - 1.74a ± 0.28 1.00a ± 1.05 2.10b ± 0.08 MS, STD 
29 Citronellyl acetateIII 1625 - 0.07a ± 0.02 0.75b ± 0.78 0.28b ± 0.01 MS, STD 
30 Decyl acetateII,IV 1646 - 1.26a ± 0.67 1.46a ± 0.65 1.48a ± 0.01 MS, STD 
31 Geranyl acetateI,III,IV 1719 - 5.03a ± 0.26 2.10b ± 0.26 13.17c ± 0.09 MS, STD 
32 Geranyl propionate 1804 - 0.21a ± 0.01 0.95a ± 0.98 0.81a ± 0.02 MS, STD 
33 Perillyl acetate 1935 - - - 0.16 ± 0.01 MS, STD 
 Acids       
34 Decanoic acidIV 2230 - - - 0.69 ± 0.06 MS, STD 
35 Palmitic acid 2889 - 19.28a ± 0.92 27.36b ± 0.01 18.24a ± 0.01 MS 
36 Stearic acid 3109 - 16.97a ± 0.19 16.19a ± 1.53 16.77a ± 0.09 MS 
37 Linoleic acid 3140 - 5.04a ± 0.04 5.28a ± 0.37 4.62b ± 0.10 MS 
 Alcohols       
 Ethanold,I 967 936 tr tr tr MS, STD, LRI 
38 cis-3-HexenolIV 1350 1389 0.43a ± 0.08 3.02b ± 0.03 0.41a ± 0.04 MS, STD, LRI 
39 LinaloolI,III,IV 1507 1540 7.41a ± 1.36 11.16b ± 0.11 8.01a ± 0.02 MS, STD, LRI 
40 OctanolII,IV 1532 - 1.19a ± 0.04 3.50b ± 0.31 1.60a ± 0.02 MS, STD 
 4-Terpineola,I,III,IV 1608 - tr tr tr MS, STD 
41 NonanolII,IV 1617 - 0.10 ± 0.01 - 0.14 ± 0.02 MS, STD 
42 α-TerpineolI,III,IV 1664 - 2.47a ± 0.20 12.41b ± 0.10 3.37a ± 0.09 MS, STD 
43 trans-2-Decenol 1799 - - 0.96 ± 0.18 0.29 ± 0.02 MS, STD 
44 Perilla alcoholIV 1972 - - - 0.42 ± 0.00 MS, STD 
45 β-ElemolII 2042 - 2.12a ± 0.12 1.83a ± 0.01 5.92b ± 0.05 MS, STD 
46 γ-EudesmolIV 2076 - 0.24a ± 0.06 0.22a ± 0.08 0.59b ± 0.05 MS 
47 α-EudesmolIV 2190 - 0.60a ± 0.06 0.52a ± 0.43 1.65b ± 0.01 MS 
48 β-EudesmolII,IV 2200 - 2.09a ± 0.10 0.61b ± 0.08 3.34b ± 0.13 MS 
 Carvacrold 2218 - tr tr tr MS, STD 
49 Phytol 2572 - 0.34 ± 0.04 1.03 ± 0.07 - MS 
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Table 6.1. (Cont’d)      
 Aldehydes       
50 OctanalI,II,IV 1262 1280 0.63 ± 0.63 - 2.41 ± 0.04 MS, STD, LRI 
 trans-2-Heptenald 1345 1305 tr tr tr MS, STD, LRI 
51 NonanalI,II,III,IV 1365 1385 0.03 ± 0.00 0.08 ± 0.06 - MS, STD, LRI 
52 DecanalI,II,III,IV 1469 1497 0.52a ± 0.02 0.37a ± 0.08 6.30b ± 0.01 MS, STD, LRI 
53 UndecanalII 1573 - 1.33a ± 0.07 0.24b ± 0.10 0.08c ± 0.02 MS 
54 trans-2-DecenalII 1616 - 0.31a ± 0.02 0.97b ± 0.19 0.35a ± 0.02 MS, STD 
55 Neral 1656 - - - 0.61 ± 0.06 MS, STD 

56 trans,cis-2,4-DecadienalIV 1737 - 0.19a ± 0.01 0.38a ± 0.19 0.47a ± 0.01 MS, STD 

57 Perilla aldeyhdeI,IV 1768 - 0.22a ± 0.02 5.30b ± 0.06 0.15a ± 0.03 MS, STD 

58 trans,trans-2,4-DecadienalIV 1806 1804 0.22a ± 0.01 0.10a ± 0.02 1.66b ± 0.01 MS, STD, LRI 

59 trans-2-Dodecenal 1849 - - - 0.54 ± 0.02 MS, STD 

 Others       
60 IsopiperitenoneIV 1843 - 0.71a ± 0.02 5.71b ± 0.07 0.28a ± 0.01 MS 
 Total identified   1610.78 1166.92 3649.05  
ICompounds reported in Ref. (265); IICompounds reported in Ref. (266); IIICompounds reported in Ref. (229); IVCompounds reported in Ref. (237).  
a Compounds listed as in principal component analysis (PCA) 

b LRI on column (DB-FFAP) determined with two series of n-alkanes (C5–C20 and C21-C40). 
c Identification method: MS = mass spectrum; STD = comparison with standard compound; LRI is compared with references from standards or literature values. 
d Compounds only detected at HS-SPME; “tr” , trace; “-”, not detected. Different superscripts within the same row indicate the statistical differences (p<0.05). 
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As shown in Table 6.1, linalool and α-terpineol were the major 

oxygenated compounds identified with varied amounts according to the 

geographical origins of calamansi fruits. The amounts of both compounds 

present in citrus juice determine the organoleptic quality of citrus juice (274). 

Linalool is a typical terpene alcohol found in citrus fruits that imparts a 

characteristic floral attribute of citrus blossom, while α-terpineol is 

transformed from linalool through oxidation and cyclisation, indicating the 

poor flavor quality of citrus juice. Among the three countries, linalool, cis-3-

hexenol and octanol were found at higher levels in the Philippines calamansi 

juice. On the other hand, β-elemol and β-eudesmol were detected at higher 

levels in the Vietnam calamansi juice. As a group together with other alcohol 

compounds such as octanol, cis-3-hexenol, β-elemol, and β-eudesmol, they 

impart a well-balanced juice profile with floral, fresh, fruity, green and woody 

perceptions. 

Aldehydes (e.g. decanal, nonanal, octanal, undecanal, and perilla 

aldehyde, etc), contributing to aldehydic, fatty, green and peely notes, were 

detected with a similar profile to that of some previous reports 

(229, 237, 265, 266). Moreover, it was intriguing to find a trace amount of 

neral in the Vietnam calamansi juice (0.61 ppm). As neral is the characteristic 

compound of lemon and lime, the Vietnam calamansi juice was described as 

having a slight lemon-like note. 

Ester compounds with low odor thresholds are also important in 

contributing to floral, waxy and aldehydic notes with green and fruity nuances. 

For the total ester compounds, the Vietnam calamansi juice had a higher 

amount (18.92 ppm) than those of the Malaysia (9.47 ppm) and the 
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Philippines (3.04 ppm) juices. However, the highest proportion of esters in the 

Malaysia calamansi juice (0.6%) could make esters more perceptible, as 

compared to those from other countries. 

Besides solvent extraction, HS-SPME was adopted to extract 

compounds at trace levels and to study the original volatile profile with 

minimum changes to that of the fresh juice. To this end, extraction 

temperature was set at 40 °C to give an original volatile profile of the fresh 

calamansi juice close to that at room temperature while achieving satisfactory 

extraction efficiency. Although a salting-out effect had not profoundly 

increased the yield of volatile release, a saturated calcium chloride solution 

was added into the juice to inhibit the enzymes and bacterial activity. There 

were 10 trace compounds that were detected only by HS-SPME, namely, δ-3-

carene, α-terpinene, cis-β-ocimene, dehydro-p-cymene, trans-4,8-dimethyl-

1,3,7-nonatriene, α-copaene, ethanol, 4-terpineol, carvacrol and trans-2-

heptenal.   

 

6.3.2. Physicochemical properties of calamansi juice  

Physicochemical properties including pH, titratable acidity and total 

soluble solids play a significant role in taste, color and microbial stability of 

juice. For the pH of calamansi juice, it was found that the Vietnam calamansi 

juice had a significantly lower pH value (Table 6.2). The pH value of a 

solution may not be directly related to its titratable acidity as pH is only a 

measurement of free hydrogen-ion activity while titratable acidity measures 

the total acid concentration (275). oBrix value is a measurement of total 

soluble solids, which includes organic acids and sugars in the juices. It was 
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found that the Malaysia calamansi juice had the lowest oBrix value, followed 

by the Philippines and Vietnam juices, respectively. 

 

Table 6.2. Physicochemical properties, sugars, organic acids and phenolic 
acids of calamansi juices from Malaysia, the Philippines and Vietnam  

 Malaysia Philippines Vietnam 

Physicochemical properties   

pH 2.57a ± 0.02 2.54ab ± 0.03 2.50b ± 0.03 
Titratable acidity (% citric acid) 5.72a ± 0.19 5.66a ± 0.07 6.14b ± 0.15 
Total soluble solids (°Brix) 7.56a ± 0.11 8.04b ± 0.31 8.09b ± 0.08 
Sugars (%)   
Fructose 0.22a ± 0.04 0.302b ± 0.04 0.27c ± 0.01 
Glucose 0.20a ± 0.03 0.243b ± 0.04 0.28c ± 0.01 
Sucrose 0.29a ± 0.03 0.306a ± 0.07 0.27a ± 0.02 
Total 0.71a ± 0.04 0.85b ± 0.05 0.81b ± 0.02 
Organic acids (%)  
Ascorbic 0.030a ± 0.00 0.036ab ± 0.01 0.052a ± 0.01 
Citric 5.287a ± 0.26 4.997b ± 0.23 5.518a ± 0.27 
Malic 0.228a ± 0.04 0.213a ± 0.01 0.211a ± 0.06 
Succinic 0.070a ± 0.02 0.148b ± 0.03 0.077a ± 0.02 
Total 5.62a ± 2.59 5.40b ± 1.62 5.86a ± 2.71 
Free phenolic acids (mg/kg)    
Caffeic acid 1.60a ± 0.13 2.54b ± 0.44 1.59a ± 0.073 
p-Coumaric acid 18.03a ± 1.14 22.52b ± 2.37  23.74b ± 1.05 
Ferulic acid 1.27a ± 0.15 1.79b ± 0.26 1.29a ± 0.22 
Sinapic acid - - - 
Bound phenolic acids (mg/kg)    
Caffeic acid - - 2.72 ± 0.64 
p-Coumaric acid 21.84a ± 2.16 26.44b ± 2.25  27.05b ± 2.07 
Ferulic acid 22.65ab ± 3.74 25.40b ± 2.04 21.77a ± 2.51 
Sinapic acid 5.24a ± 0.28 6.03b ± 0.31 6.55b ± 1.22 
Different superscripts within the same row indicate significant differences (p<0.05). 
 

6.3.3. Sugar content of calamansi juice  

The main components of carbohydrates in citrus fruits are three simple 

sugars: sucrose, glucose and fructose (233). As shown in Table 6.2, glucose 

and fructose contents of calamansi juices were statistically different (p<0.05). 
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For the fructose and glucose contents, the Philippines calamansi juice had the 

highest concentration, followed by the Vietnam and Malaysia juices. In 

contrast, the sucrose contents of calamansi juices were not statistically 

significant (p>0.05). Fructose, glucose and sucrose in calamansi juices were 

found to be in similar proportions with lower contents in my study, compared 

to a previous study (265). The differences in the sugars composition could be 

due to the maturity and origin of calamansi fruits. 

 

6.3.4. Organic acid content of calamansi juice 

Organic acids are widely distributed in citrus fruits, and contribute to the 

tartness of citrus fruits (242, 250, 270, 276). Similar to other citrus fruits, citric 

acid was determined to be the major organic acid in calamansi juices while 

ascorbic and succinic acids were at much lower levels (Table 6.2). Although 

dehydroascorbic acid was detected in calamansi juices, the level was too low 

to be quantified. In general, the Philippines calamansi juice had the lowest 

amount of organic acids, notably citric acid, while the Vietnam calamansi 

juice had the highest amount. L-Malic acid was the second most abundant 

organic acid, and was not statistically different among the three countries 

(p>0.05). Compared to a previous study where citric and malic acids in 

calamansi juices were determined (265), my results showed a higher citric 

acid content while malic acid content was similar. Additionally, the 

Philippines calamansi juice had the highest amount of succinic acid (0.15%), 

and its concentration was about twice as high as those of the Malaysia and 

Vietnam calamansi juices.  
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6.3.5. Phenolic acid content of calamansi juice  

Although the phenolic acids composition of calamansi juices has not 

been investigated, studies on the phenolic composition of other citrus juices 

such as grapefruit, orange and mandarin have been conducted 

(249, 250, 252, 277-280). Table 6.2 shows the free phenolic acids extracted 

from calamansi juices. The Malaysia calamansi juice had the lowest amount of 

free phenolic acids content. Similar to calamansi peel, p-coumaric acid was 

found to be the major free phenolic acid. The free phenolic acids composition 

obtained in this study differed from that of a mandarin juice (280). The total 

concentrations of free phenolic acids extracted from the calamansi juices were 

notably higher than those of mandarin juice except for ferulic acid (see Table 

6.2). On the other hand, free sinapic acid was not detected in all of the 

calamansi juices. While free sinapic acid was not detected in the calamansi 

juices, 0.11 mg/kg was found in orange juice sacs (249). This could be due to 

the difference in the extraction solvent used. Although many studies used 

ethyl acetate for the extraction of phenolic acids (249, 254, 281), some other 

reports showed that extraction with methanol improved yields and prevented 

the formation of troublesome emulsions (282). Furthermore, my initial trials 

also indicated that methanol was a better solvent as it gave a higher extraction 

yield. Therefore, methanol was used in this study.  

After alkaline hydrolysis, the total levels of phenolic acids increased 

significantly by 138%, 115% and 108% in the Malaysia, the Philippines and 

Vietnam calamansi juices, respectively. In all calamansi juices, the largest 

increase was observed in the level of ferulic acid, indicating that it was one of 

the two major phenolic acids in calamansi juices after hydrolysis, the other 
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being p-coumaric acid. Calamansi is a different citrus hybrid, whose phenolic 

acids composition would be different from that of other citrus fruits. Unlike 

mandarin (280), orange juice (249, 251, 252) and grapefruit juice (250), the 

most abundant free phenolic acid in the calamansi juices was found to be p-

coumaric acid. As hydrolysis also released bound sinapic acid, the sinapic acid 

content in the Malaysia, Philippines and Vietnam calamansi juices was 

determined to be 5.24 mg/kg, 6.03 mg/kg and 6.55 mg/kg, respectively (Table 

6.2). In general, the Philippines calamansi juice had the highest content of 

phenolic acids. Moreover, the Malaysia calamansi juice had the lowest 

concentrations of p-coumaric and sinapic acids, while the Philippines 

calamansi juice had the highest concentration of ferulic acid.  

Caffeic acid was not detected in the Malaysia and Philippines calamansi 

juices after alkaline hydrolysis, although bound caffeic acid in the Vietnam 

calamansi juice was found to be 2.71 mg/kg. This could be due to the loss of 

caffeic acid during alkaline hydrolysis as they contained the reactive ο-

dihydroxy phenols (249). Although the addition of EDTA and ascorbic acid 

could reduce the loss of caffeic acid (254), some loss of caffeic acid could still 

have occurred during 4-hour alkaline hydrolysis. Hydrolysis was also 

performed under nitrogen as phenolic acids were unstable in alkaline 

hydrolysis in the presence of oxygen (281, 283). One study on orange (Citrus 

sinensis (L) Osbeck var Shamuti) juice determined the phenolic acids after 

hydrolysis, and sinapic, ferulic, coumaric and caffeic acids in orange juice 

sacs were 8.57 mg/kg, 27.95 mg/kg, 5.30 mg/kg and 3.47 mg/kg, respectively 

(249). In comparison, present findings indicated that the level of p-coumaric 
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acid was significantly higher in calamansi juices, while sinapic, ferulic and 

caffeic acids were slightly lower after hydrolysis (Table 6.2).  

In grapefruit and orange juices, most of phenolic acids were present in 

the bound forms (249). For the calamansi juice, this did not apply to all types 

of phenolic acids (Table 6.2). For p-coumaric acid, it almost exclusively 

existed in the free form as the level of p-coumaric acid only increased to a 

small extent after hydrolysis. On the other hand, most of ferulic acid existed in 

the bound form as hydrolysis greatly increased the level of ferulic acid in 

calamansi juices. Different extraction methods, maturity and varieties may be 

responsible for these divergences (248). 

 

6.3.6. Principal component analysis (PCA) 

PCA was conducted to understand the correlation and segregation 

among the volatile compounds obtained from the calamansi juices. Through 

PCA, four principal components (PC) were obtained accounting for 89.65% of 

the total variance. Figure 6.1 illustrates the correlations between chemical 

variables and the first two dimensions using PCA built on the normalized 

variables. Observing the score plot of PC 1 and PC 2, three clusters were 

observed in the segregation of volatile compounds according to their 

geographical origins (Figure 6.1(a)). The Vietnam calamansi juice was 

grouped at the upper right quadrant suggesting that it was strongly and 

positively correlated to PC1, whereas the Malaysia calamansi juice was 

negatively correlated with PC 2. The Philippines calamansi juice exhibited a 

positive correlation with PC 2 and a negative correlation with PC 1. Upon 

further analysis of variable loadings, it was found that the dense loading of 
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variables was located at the upper left and right quadrants of PCA plot (Figure 

6.1(b)), indicating their positive correlations with PC 1 and PC 2. Several 

major terpene hydrocarbons (e.g. limonene, β-myrcene, α-pinene, β-pinene 

and germacrene D) and oxygenated compounds (e.g. decanal, octanal, neral 

and geranyl acetate) had positive correlations to PC 1, which might be 

attributable to the higher volatile contents in the Vietnam calamansi juice.  

Similar observation was found in the Philippines calamansi juice that 

was positively correlated to PC 2; of which, several sesquiterpenes (e.g. 

elemene isomers and β-farnesene), cis-3-hexenol, linalool, octanol, nonanal 

and other compounds were detected in higher amounts in the Philippines juice. 
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(a) 

(b) 

 

Figure 6.1. PCA analysis of calamansi (Citrus microcarpa) juice 
dichloromethane extracts [(∆) Malaysia; (○) the Philippines; (□) Vietnam]: (a) 
Score plot of PC 2 against PC 1; (b) Variables plot of PC 2 against PC 1  

Volatile variables explained according to the identified compounds in Table 6.1. 
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6.4. Conclusion  

Using the improved extraction method, 17 volatile compounds that had 

not been reported in calamansi juice were identified in the present study. Two 

principal components of calamansi juice volatiles that accounted for variances 

of 47.27% and 23.12% were selected as two axes, enabling major 

differentiation between the calamansi juices from Malaysia, the Philippines 

and Vietnam, although the physicochemical properties and non-volatiles 

(sugars, organic acids and phenolic acids) from different geographical origins 

were insignificantly different. Thus, this approach may be useful in 

understanding the characteristic properties of citrus juices.
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CHAPTER 7 SIMULTANEOUS QUANTITATION OF 

VOLATILE COMPOUNDS IN CITRUS BEVERAGE 

THROUGH STIR BAR SORPTIVE EXTRACTION 

COUPLED WITH THERMAL DESORPTION-

PROGRAMMED TEMPERATURE VAPORIZATION 

7.1. Introduction   

Quantitation of flavor compounds in food samples still remains a 

challenging task due to their highly diverse physicochemical properties (i.e. 

volatility and polarity) and disparate concentrations.  As discussed in previous 

chapters, distinctive flavors of citrus juices are contributed by aroma-active 

volatile compounds ranging from ppm to ppb levels while some potent polar 

oxygenated compounds are present at low ppt levels (132, 284). Indeed, there 

is still limitation on extracting volatiles from citrus juices with current 

extraction techniques, of which a method that enables the correlation between 

instrumental data and sensory evaluation could be better. Moreover, the 

various soluble solids (e.g. acids, sugars, and pectins) that are usually found in 

citrus beverages give rise to matrix effects that would further complicate the 
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extraction process (285). Hence, this has led to the need to develop a more 

effective and versatile SBSE method for flavor analysis.  

SBSE could be generally viewed as a two-step process − the first step 

involves partitioning of analytes from aqueous phase into sorbent materials; 

the second step is to desorb the extracted analytes through thermal desorption 

or solvent dissolution, with the former being more commonly employed. The 

thermally desorbed analytes can be transferred into a gas chromatograph 

through a programmed-temperature-vaporization (PTV) inlet, which could 

focus the compounds in a cryofocusing trap before transferring them into the 

column (286). The combination of SBSE and TD-PTV injection is a sensitive 

yet complicated technique. To improve the performance of SBSE-TD-PTV 

method, different approaches were attempted in previous studies with one-

variable-at-a-time univariate approach (108, 113, 115, 117). However, 

response surface methodology would be more appropriate in optimising 

multiple experimental factors whether extraction conditions only were 

optimized (117) or both important extraction and GC conditions were treated 

together in a set of sequential experimental designs (120, 287). In preliminary 

experiments, it was found that the effects of SBSE extraction conditions and 

TD-PTV injection parameters were basically unrelated (data not shown). In 

fact, the process of experimental design, all variables should be 

interrelated/correlated among themselves. Otherwise, the interpretation on the 

responses could disregard certain unfavourable conditions/ discrimination 

towards certain group of analytes (120, 287). Thus, these factors should be 

separately optimized by examining the response of each compound and took 

advantage of multi-responses optimisation approach to maximize these 
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responses. Through understanding the influence of TD-PTV factors (i.e. 

thermal desorption time, flow and cryofocusing temperature) and extraction 

parameters (i.e. extraction time, temperature stirring speed, electrolyte 

concentration and pH) on the performance of each compound, analyte 

discrimination could be alleviated. The targeted compounds are significantly 

different in physiochemical properties (e.g. boiling point, solubility, etc.). 

Therefore, the objective of this chapter was to develop a SBSE-TD-PTV 

method for simultaneous determination of a wide range of volatile compounds 

using model citrus beverage. RSM was applied to understand the interactive 

parameters in the TD-PTV process, while partial factorial was used to 

prescreen extraction condition. Furthermore, the optimized method was 

evaluated and validated through various performance parameters (i.e. linearity, 

repeatability, precision and limit of detection).  

 

7.2. Experimental procedures 

7.2.1. Materials and sample preparation 

Milli-Q water was generated from a Millipore water system (Milford, 

MA, USA). Analtyical grade ethanol 96% was obtained from Gadot-Lab, 

Hezlia, Israel and methanol from VWR International Ltd., Poole, UK; HPLC 

grade dichloromethane was purchased from Tedia. 

A group of 36 common food flavorings was obtained from Firmenich 

Asia, Singapore (Table 7.1). Then, these compounds were diluted with ethanol 

(10 mg mL-1) as flavoring for further analysis. For each SBSE extraction, 10 

µL of this flavoring was spiked into 10.00 mL of Milli-Q water.  
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Table 7.1. RSM model and method validation for all volatile compounds 

Compound 

Default 
extraction 
concentration 
(µg/ L) 

MPa 
(°C) 

BPb 
(°C) log Ko/w 

c RSM model 

Precision (%RSD) 
Linear Range 
(µg/L) R2 LOD 

(µg/ L) 
LOQ 
(µg/ L) 

Repeatability 
(Intra-day; 
n=6) 

Intermediate 
(Inter-day; 
n=5) 

Hydrocarbons            

Limonene 100 −74 176 4.38 Quadratic with 
positive interaction 4.96 13.20 1.00 - 10.00 0.996 0.80 2.67 

Ocimene 40 50 100 4.80 (est.) Quadratic 4.00 16.32 0.50 - 4.00 0.991 0.50 1.65 

β-Myrcene 20 <-10 166-168 4.17 Quadratic with 
positive interaction 4.22 15.80 0.20 - 2.00 0.997 0.15 0.50 

ρ-Cymene 20 −68 177 4.1 Quadratic with 
positive interaction 4.01 15.45 1.00 - 10.00 0.998 0.61 2.02 

α-Pinene 10 −64 155 4.44 Quadratic with 
positive interaction 5.10 17.06 0.10 - 1.00 0.999 0.03 0.09 

Terpinolene 10 n.a. 183-185 4.47 Quadratic with 
positive interaction 4.57 20.67 1.00 - 10.00 0.996 0.81 2.71 

β-Caryophyllene 10 n.a. 262-264 6.30 (est.) Constant 4.23 13.23 0.20 - 2.00 0.998 0.12 0.40 
Valencene 10 n.a. 271 6.3 (est.) Constant 5.48 12.87 0.25 - 5.00 0.999 0.19 0.23 
Aldehydes            

Octanal 40 12-15 171 2.78 (est.) Quadratic with 
positive interaction 1.98 13.60 2.00 - 20.00 0.998 1.16 3.87 

Citral 40 n.a. 229 3.45 Constant 2.40 6.42 0.50 - 5.00 0.997 0.37 1.24 

Nonanal 20 −18 195 3.27 (est.) Quadratic with 
positive interaction 2.37 4.56 0.50 - 10.00 0.999 0.36 1.19 

Decanal 20 n.a. 207-209 3.76 (est.) Constant 2.67 4.86 0.20 - 2.00 0.995 0.18 0.60 
Dodecanal 20 12 184-186 4.75 (est.) Constant 4.09 7.08 1.00 - 10.00 0.998 0.57 1.91 
Perillic aldehyde 10 n.a. 237 3.13 Constant 2.24 5.25 0.10 - 2.50 0.999 0.07 0.25 

Decatrienal 10 n.a. 252 3.12 (est.) Quadratic with 
negative interaction 2.44 3.35 0.19 - 1.00 0.979 0.19 0.62 
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Table 7.1. (Cont’d)           
Alcohols            
Ethanol 259 −114 78 −0.31 Linear 13.90 20.53 2.59 – 25.90 0.997 1.76 5.88 

Borneol 40 208 213 2.69 Quadratic with 
positive interaction 7.58 21.09 3.00 - 20.00 0.999 1.07 3.58 

α-Terpineol 40 18 219 3.28 Constant 3.17 3.63 0.40 – 4.00 0.996 0.31 1.03 

1,4-Cineole 20 n.a. 172-174 2.97 Quadratic with 
positive interaction 1.89 5.11 0.20 - 2.00 0.994 0.20 0.66 

Eucalyptol 20 1.5 176-177 2.74 Quadratic with 
positive interaction 2.60 12.30 0.20- 2.00 0.999 0.08 0.27 

Linalool 20 <-20 198-199 2.97 Constant 3.25 4.59 0.50 - 5.00 0.998 0.26 0.85 

Citronellol 20 n.a. 225 3.91 Quadratic with 
negative interaction 3.80 2.93 0.20 - 4.00 0.996 0.31 1.03 

Geraniol 20 15 229 3.47 Quadratic with 
negative interaction 2.87 4.58 0.20 - 2.00 0.998 0.12 0.41 

Nerol 10 n.a. 224-245 3.47 Quadratic with 
negative interaction 3.56 4.39 0.25 – 2.50 0.999 0.09 0.29 

Nerolidol 
10 n.a. 121 

(at 3mm 
Hg) 

5.68 (est.) 
Linear 4.43 3.35 0.25 - 5.00 0.999 0.18 0.60 

Esters            

Ethyl butyrate 40 −93 120-121 1.85 (est.) Quadratic with 
positive interaction 9.16 10.56 0.42 - 10.00 0.999 0.42 1.38 

Citronellyl 
acetate 

20 n.a. 240 4.56 (est.) Quadratic with 
negative interaction 2.70 3.27 0.20 - 2.00 0.996 0.16 0.52 

Linalyl acetate 10 85 220 3.93 Quadratic with 
negative interaction 4.80 21.35 0.10 - 1.00 0.999 0.02 0.07 

Decyl acetate 10 n.a. 244 4.79 (est.) Quadratic with 
negative interaction 4.96 6.45 0.25 - 2.50 0.999 0.12 0.39 

Styrallyl acetate 10 n.a. 357 2.50 (est.) Quadratic with 
negative interaction 2.78 5.66 0.10 - 0.75 0.993 0.09 0.29 

Geranyl acetate 10 <25 240-245 3.98 Quadratic with 
negative interaction 1.48 3.76 0.25 - 2.50 0.996 0.20 0.66 

Methyl jasmonate 
10 <25 88-90 

(at 0.1 
mmHg) 

2.76 (est.) 
Linear 2.44 4.70 0.25 - 2.50 0.998 0.15 0.51 
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Table 7.1. (Cont’d)           
Methyl-N-
methyl  
anthranilate 

10 17-19 255-256 2.81(est.) Quadratic with 
negative interaction 2.28 5.46 0.25 - 5.00 0.999 0.13 0.45 

Others            

Nootkatone 20 36 170 4.88 (est.) Quadratic with 
negative interaction 2.99 3.57 1.83 - 20.00 0.998 1.83 6.09 

β-Ionone 10 −49 126-128 4.42 (est.) Quadratic with 
negative interaction 1.62 6.42 0.25 - 5.00 0.999 0.19 0.63 

Methyl-N-
methyl  
anthranilate 

10 17-19 255-256 2.81(est.) Quadratic with 
negative interaction 2.28 5.46 0.25 - 5.00 0.999 0.13 0.45 

Indole 1 52-54 253-254 2.14 Quadratic with 
positive interaction 6.65 9.89 3.89 - 10.00 0.971 3.89 12.98 

a Melting point at 760 mm Hg. 
b Boiling point at 760 mm Hg. 
c Expressed by the estimated logarithm of the n-octanol/water partition coefficient (from KOWIN v.1.67). 
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7.2.2. SBSE procedure  

Stir bars coated with 24 µL of polydimethylsiloxane (PDMS) (10 mm 

length × 0.5 mm thickness) were purchased from Gerstel GmbH & Co. KG. 

Prior to use, stir bars were conditioned for 1 h at 300 °C in a flow of helium at 

80 mL min-1. Reconditioning of stir bars was done after use by soaking in 

Milli-Q water and a mixture of dichloromethane-methanol (1:1) for 2 h, as 

described elsewhere (117) SBSE was performed using a multiple position 

magnetic stirrer (Variomag Poly15, Thermo Fisher Scientific, MA, USA). 

Prior to optimization, the extraction time profile was examined by stirring 

solutions spiked with the flavoring (10 mg mL-1) at room temperature at 800 

rpm for durations between 10 min and 24 h. After extraction, the stir bars were 

dried with a lint-free tissue and placed in a glass thermal desorption tube.  

 

7.2.3. Analytical procedure  

TD−PTV–GC–MS/FID analysis was performed using a thermal 

desorption unit (TDU) coupled with an Agilent 7890C gas chromatograph 

with a 5975C mass-selective detector and a flame ionization detector with 

two-way splitter kit (Agilent Technologies). Thermal desorption unit (TDU) 

was mounted on top of a cooled injection system (CIS-4), a programmed-

temperature-vaporization (PTV) type universal GC inlet (Gerstel). The entire 

system was operated under Maestro (Gerstel) integrated with Chemstation 

(Agilent Technologies). 

Initially, the default condition for TD-PTV was set based on the 

recommendation by Gerstel, where stir bar was thermally desorbed from 

40 °C (held for 1 min) to 250 °C (held for 5 min) at 720 °C min-1 with the 
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desorption flow of 60 mL min-1. Using a glass wool liner (ID 2.0 mm), the 

desorbed compounds were cryofocused inside the CIS-4 at −100 °C. After 

desorption, CIS-4 was programed from −100 to 250 °C (held for 5 min) at 

12 °C s-1 to transfer the trapped compounds into the analytical column. 

Splitless transfer of analytes was performed through solvent vent mode, and 

the effect of splitless time on the peak areas obtained was predetermined by 

varying opening time of split valve between 1 min to 7 min.  

The separations were carried out on a DB-FFAP fused-silica capillary 

column of dimensions 60 m × 320 µm and 0.25 µm film thickness (Agilent 

Technologies). The oven temperature was programmed from 40 °C (held for 5 

min) to 145 °C at 5 °C min-1, then to 178 °C at 3 °C min-1, and finally to 

230 °C (held for 23 min) at 5 °C min-1. Helium was used as the carrier gas at a 

flow rate of 1.3 mL min-1. The mass spectrometer was operated in the scan 

mode with electron ionization of 70 eV. 

 

7.2.4. Optimization of TD-PTV injection process  

As shown in Table 7.2, three interactive parameters were desorption 

flow (40 – 80 mL min-1), thermal desorption time (5 – 15 min) and 

cryofocusing temperature in the PTV injection system (–120 – –40 °C). 

Central composite design (CCD) was applied in this work, where a total of 20 

experimental runs were constructed with 6 central points, 8 cubic points and 6 

axial points at α value = 1.68 using Design Expert Version 6.0.10 software 

(Stat-Ease, MN, USA) (152, 153). 

 



 

 140 

Table 7.2. Central composite design for three factors 

Factor 
Experimental levels 

−α −1 0 1 α 

A Desorption flow (mL/ 
min) 26.36 40.00 60.00 80.00 93.64 

B Thermal desorption time 
(min) 1.59 5.00 10.00 15.00 18.41 

C Cryofocusing 
temperature (°C) −147.27 −120.00 −80.00 −40.00 −12.73 

 

The experimental data were fitted by multiple regression equation 

including up to the second-order polynomial terms and interaction terms (153). 

The generalized response surface model to describe the variations in response 

variables is given as follows (153):  

 

where y is the predicted response; βo is a constant; βj is the linear regression 

coefficient;  βjj is the quadratic coefficient, βij is the interaction coefficient; and 

xi and xj are independent variables. The adequacy of the model was 

determined by evaluating the coefficient of determination (R2) and lack-of-fit 

tests obtained from the analysis of variance (ANOVA), while statistical 

significance of the model and model terms were determined at 95% 

confidence level. The terms found to be non-significant (p > 0.05) were 

dropped from the initial model and refitted with the significant (p < 0.05) 

independent variables in order to obtain the final reduced model. However, 

some insignificant linear terms were retained in the model if a quadratic or 

interaction term containing these variables was significant. Three dimensional 

response surface plots were used to visualize the modeled region and to 

determine the optimal experimental conditions. 
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Simultaneous optimisation was carried out through an objective function 

in the Design Expert software. With the objective function, individual 

desirability of each response variable was combined (288), as follow: 

  

               

where di is the individual desirability value of ith response, the value of yi min 

and yi max are the minimum and maximum acceptable value of yi, overall 

desirability (D) with  n is the total number of responses and wi, is the 

individual response importance, in our case wi=1 as desirability function was 

set as linear. 

 

7.2.5. Partial factorial design for SBSE extraction 

A partial factorial experimental design (25-1) was used to evaluate the 

significance of the extraction conditions, as well as the interactions between 

them. The factors investigated were ionic strength (sodium chloride 

concentration), stirring speed (rpm), extraction time (h), temperature (oC) and 

pH. Extraction was carried out in a temperature controlled water bath. All 

variables were evaluated at two levels, low (denoted as −1) and high (denoted 

as +1). The significant factors were indicated by the Pareto chart, which was 

obtained after multiple linear regression and analysis of variance (see Table 

7.3). 

D = di
wi

i=1

n
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1
wi∑ = di
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n
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⎠⎟

1
n
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Table 7.3. Experimental domain for screening significant factors affecting 
extraction of SBSE 

 Factor Low (−) High (+)  

 A: Ionic strength (% w/v NaCl) 0 30  

 B: Stirring speed (rpm) 300 900  

 C: Extraction time (h) 2 6  

 D: Temperature (oC) 24 60  

 E: pH 2 7  

 

7.2.6. Model evaluation and validation on model citrus beverage  

Linearity was determined over an eleven-point calibration with citrus 

flavoring spiked Milli-Q water ranging from 10.3 to 515 μg L-1. The 

calibration curves were prepared by calculating FID absolute peak areas 

against concentrations was obtained for individual compounds, with a 

correlation coefficient R2 of at least 0.99. Based on the calibration curves 

obtained, figures of merits such as linearity, limit of detection (LOD) and limit 

of quantification (LOQ) were also determined for each compound. The LOD 

and LOQ for each compound were established by using the equations: LOD = 

3sy/b and LOQ = 10sy/b, where sy is the SD of the peak areas obtained from at 

least five different concentrations within the linear range and b is the slope of 

the calibration curve. 

Model citrus beverage was prepared by spiking 0.10 g of the citrus 

flavoring (10 mg mL-1) into a 100.00 g synthetic juice matrix, which was 

made of Milli-Q water (88.82 g), sucrose (10.80 g, SAFC, St. Louis, MO, 

USA), anhydrous citric acid (0.26 g, SAFC), pectin (0.05 g, Grindsted® 

AMD783, Danisco, Lakeland, FL, USA), sodium citrate dihydrate (0.04 g, 
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SAFC), ascorbic acid (0.03 g, SAFC). Ten milliliter of model citrus beverage 

was used for SBSE extraction.  

All experiments were carried out in triplicate and the results were 

reported as the mean values together with standard deviations. 

 

7.3. Results and discussion 

7.3.1.  Optimisation of TD-PTV injection process 

Through allowing compounds to be injected under temperature 

controlled conditions, PTV technique alleviates the problems of compound 

discrimination and decomposition, which always occur when analytes are 

flash vaporized in a hot split/splitless injector (289). In this work, PTV solvent 

vent mode was chosen to allow a suitable high desorption flow rate for 

desorption of the analytes into PTV and consecutively maximize the transfer 

of desorbed analytes into the GC column through splitless injection. Moreover, 

the split valve of CIS was closed during desorption, and remained close after 

desorption until the transfer of analytes was complete. The time period was 

defined before the split vent valve opens as splitless time. The duration of 

splitless time should be carefully set to ensure the complete transfer of 

analytes into the column. An insufficient splitless time could lead to an 

incomplete transfer of analytes and resulted in poor reproducibility of peak 

areas, as well as the discrimination for high boiling compounds.  

Figure 7.1 shows the effect of splitless time on the peak areas of the 

various classes of volatile compounds. Most classes of compounds were 

maximally transferred into the column after opening the split vent time at 3 

min, except for aldehydes and esters, which required a splitless time of 5 min. 
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On the other hand, a progressive loss of the compounds with lower boiling 

points was observed after a longer splitless time of 5 min, suggesting that 

prolonged vent time could be a disadvantage or discrimination against these 

compounds. Thus, a vent time of 3 min was set as the default to ensure the 

quantitative transfer of a good majority of the compounds, while minimizing 

the loss of more volatile compounds. 

 

Figure 7.1. Effect of splitless time on the quantitation of each class of volatile 
compounds 

 

The mode of the injection could affect the quantification of volatiles 

where thermal desorption process could be the most critical part in enhancing 

quantification proficiency. Previous studies that focused on the optimisation of 

PTV operating parameters have identified that injection temperature, 

desorption flow, vaporization temperature, vaporization time and cryofocusing 

temperature could significantly affect the efficiency of thermal desorption 

(290-292). A preliminary screening resulted in three interrelated factors (i.e. 

desorption flow, thermal desorption time and cryofocusing temperature) being 

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

9.00E+07

1.00E+08

0 1 2 3 4 5 6 7

Pe
ak

 A
re

a

Splitless Time (min)

Hydrocarbons Alcohols Aldehydes Esters Others



 

 145 

selected for further optimization using RSM (data not shown). The common 

practice to optimize an extraction process using RSM is to observe total 

responses or total peak areas (152, 153, 289, 290). However, such an approach 

does not account for differences among peak areas in contributing towards 

extraction efficiency of different compounds. In contrast, these compounds 

were studied by establishing the relationship between the response of each 

compound in terms of peak area and three operating parameters.  

Figure 7.2 illustrates the response surface plots of three representative 

responses − constant, linear and quadratic, where the nature of the response 

surface system depends on the signs and magnitudes of the coefficients in the 

model terms. The estimated responses for all compounds are also listed in 

Table 7.1. In order to increase the model’s predictive accuracy, a stepwise 

approach was applied to fit the full response surface and eliminate the terms 

not significant at the p = 0.05 level.  

Although no clear-cut relationship between the models obtained for each 

compound and its physicochemical properties could be identified, it was 

observed that those compounds with constant models generally had lower Ko/w 

values and higher solubility in water (e.g. citral, alpha-terpineol and linalool), 

suggesting that they were poorly extracted by SBSE. Therefore, a constant 

response reflected that the corresponding compound was non-responsive 

towards the parameters, while a linear response was obtained when the 

detected peak area was in proportional to the main parameters. The significant 

first-order terms of ethanol, nerolidol and methyl jasmonate reflected the fact 

that the lower cryofocusing temperature was due to their low boiling points. 

However, extreme low cryofocusing temperature (i.e. -150 °C) could possibly 
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crystallize other higher boiling compounds and the glasswool in the TDU inlet 

liner. Thus, those less volatile compounds would be trapped before they 

reached the column. 

In addition, as suggested by Tredoux et. al (112) a trapping temperature 

of -100 °C instead of -150 °C greatly improved the peak shapes for early 

eluting compounds. It is believed that faster heating of the liner to the 

injection temperature leads to reduced injection times and therefore less band 

broadening. On the other hand, quadratic models with significant second-order 

coefficients (pure quadratic and interaction terms) played a vital role in 

estimating the responses and could shed some light on the thermal desorption 

behavior of these analytes. For instance, decyl acetate with a high boiling 

point decreased in its peak area as cryofocusing temperature decreased; while 

peak area of ocimene with a low boiling point showed an increase in response 

to a decrease in cryofocusing temperature.  

Among the compounds with quadratic models, most of them did not 

have strong interaction effects, but did have strong quadratic terms on main 

effects. Among these three main effects, cryofocusing temperature had the 

greatest influence on the analytical responses. Nevertheless, a sufficient 

thermal desorption time and a high purge flow rate were important to 

maximize the transfer of analytes (e.g. terpinolene).  
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(a)             (b) 

        

(c)             (d) 

         

Figure 7.2. Typical profiles of surface response generated from a quadratic model in the optimization of three variables (thermal desorption 
time, desorption flow and cryofocusing temperature): (a) Constant − exemplified by linalool; (b) Linear − exemplified by methyl jasmonate; (c) 
Quadratic with minimum response− exemplified by decyl acetate; (d) Quadratic with maximum response − exemplified by ocimene 
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The response models also revealed that the dissimilarity of responses was 

mainly due to the physicochemical properties. Compounds with low boiling 

point (e.g. limonene, ocimene, beta-myrcene, octanal and ethyl butyrate) 

resulted in a maximum response, so they favored a moderate desorption 

temperature and a sufficiently low cryofocusing temperature. In contrast, a 

minimum value indicated the thermal desorption was operated under a 

condition remote from the optimum (e.g. decatrienal, citronellol, nootkatone). 

Hence, due to their low volatilities, these analytes required a longer desorption 

time. 

Several studies have been done on wine whether focused on volatile 

phenols (113) or major wine volatiles (112, 114, 115, 293), however, to the 

best of my knowledge, there was none of the reported study optimized the 

operating condition based on all target analytes. In addition, it is often 

necessary to use constrained optimization to attain the best operating condition. 

This is particularly true in the present work to avoid the optimum point to fall 

outside the operating parameters.  

The optimized factors were determined based on maximizing the 

desirability of the responses for the flavoring as a whole, which combined the 

individual desirability of each response into the objective function. The 

desirability of the response for each compound ranged from 0.00 to 1.00, 

corresponding to the increase from lowest to the highest in the response values 

obtained by the experiments. The optimized values of the three factors were A 

= 74.00 mL min-1, B = 5.00 min and C = −120.00 °C, with an overall 

desirability of 0.54. Compared to the default thermal desorption method prior 

to the optimisation with overall desirability of 0.32, some of the peak 
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responses were suppressed while some were enhanced, thereby the peak 

responses of each target analytes varied from −35% − 100%, with an average 

enhancement of 32%. This reflected that under the optimized set parameters 

the variability of peak responses among the analytes was less discriminated.  

 

7.3.2. Understanding of SBSE extraction 

From the extensive reviews on SBSE, the recovery of an analyte could 

be approximated by its partition coefficient between PDMS and water 

(KPDMS/W) and the phase ratio of PDMS phase/sample volumes (84, 117, 294). 

Moreover, previous studies revealed that some other experimental factors (e.g. 

extraction temperature, rate of agitation and salt content) could also affect the 

efficiency of SBSE (108, 113, 120). From a preliminary study on extraction-

time profile, most of the compounds were recovered substantially after first 2 

h of extraction and then gradually increased up to about 4 h. The increase in 

the amount extracted became less pronounced beyond 4 h and equilibrium was 

reached after about 6 h, except for hydrocarbons (data not shown).  

The differences in equilibration time for different classes of analytes 

were thus suggested that kinetic aspect is also important to achieve 

equilibrium though the uptake rate is mainly determined by diffusion 

constants, stirring conditions, sample volume etc. (101). Even though an 

extraction time of 12 h could ensure the maximum recovery of all the 

compounds, such a long extraction time would simply be unrealistic for 

routine extraction. In addition, equilibration during the extraction process was 

not necessary in practice since calibration could be carried out for any 
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consistent extraction time (117). Hence, extraction time of 2 h was chosen as 

the default extraction time in this study.  

Subsequently, a partial factorial experimental design was chosen to 

investigate the effects of the extraction factors on the efficiency of SBSE. The 

level of extraction time, temperature and stirring speed took into account the 

consideration on the sample throughput and minimal evaporation of the 

analytes for a combination of the extremes of these variables (at 900 rpm, 

60 °C for 6 h). The sample pH was studies in the between range of 2 to 7 

referring to the pH range of different food beverages. The sodium chloride 

concentration range studied involved no addition to saturation.  

Under the present condition, according to the Pareto charts shown in 

Figure 7.3, extraction time, temperature and stirring speed had no significant 

effects on enhancing the extraction of SBSE. Nonetheless, pH had a positive 

effect, especially alcohol group and the other compounds like nootkatone and 

indole, which was in contrast to the insignificant enhancement on the 

extraction of volatile phenols from wine (293). On the other hand, highly 

positive effect of ionic strength was observed for alcohol group, since the 

addition of sodium chloride reduces the water solubility of polar analytes. 

Thus, this resulted in the increased partitioning coefficient between the 

PDMS and analytes (101). Finally, esters and hydrocarbons were negatively 

affected by ionic strength. This could be due to the higher solute concentration 

increased viscosity of the solution and hinder the diffusion efficiency of 

analytes. During extraction, the solutes should migrate from the sample into 

the PDMS coating (101). In such case, sufficient convection or stirring speed 

is important, so that diffusion efficiency of analytes will not be affected. 
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Figure 7.3. Pareto chart of the statistical analysis of the screening of factors 
for the extraction step of (a) alcohols; (b) aldehydes; (c) esters. The vertical 
line indicates the threshold value for proclaiming the statistical significant 
terms on the effect of (A) ionic strength; (B) stirring speed; (C) extraction 
time; (D) temperature; (E) pH 



 

 152 

  

 

 

Figure 7.3. (Cont’d) Pareto chart of the statistical analysis of the screening of 
factors for the extraction step of (d) hydrocarbons; and (e) others. The vertical 
line indicates the threshold value for proclaiming the statistical significant 
terms on the effect of (A) ionic strength; (B) stirring speed; (C) extraction 
time; (D) temperature; (E) pH 
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7.3.3. Method evaluation and validation  

With the aid of RSM, solute discrimination during thermal desorption 

and cryofocusing was reduced. Furthermore, SBSE extraction was found to be 

more favourable in neutral pH, while temperature and stirring speed were not 

the major factors as long as there was sufficient extraction time. In addition, 

extraction efficiency of polar organic analytes can be improved by increasing 

ionic strength. In the following experiment, sample matrix was not altered in 

order to maintain the true ratio in the flavoring. 

In order to validate the multiple regression equations obtained, FID peak 

responses of each compound was examined under two combinations within 

the experimental range: (1) A = 74.00 mL min-1, B = 15.00 min and C = 

−120.00 °C; (2) at A = 48.00 mL min-1, B = 5.00 min and C = −54.00 °C. 

Results indicated that the values of the peak areas obtained from the actual 

experiments fall within 95% confidence interval of the predicted range of the 

regression model. 

The precision of each compound was evaluated in terms of its 

repeatability and reproducibility. Repeatability was reported as the RSD of the 

peak area obtained from six consecutive analyses within the same day, 

whereas intermediate precision was reported as the RSD of the peak areas 

obtained from five consecutive analyses on different days. Table 7.3 shows the 

repeatability and intermediate precision for each compound. RSD of 1.7% and 

6.3% were obtained for the total peak areas from intra-day and inter-day 

analyses, respectively.  

A linear relationship of absolute peak areas against concentrations was 

obtained for individual compounds, with a correlation coefficient R2 of at least 
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0.99. Based on the calibration curves obtained, the linearity, limit of detection 

(LOD) and limit of quantification (LOQ) were also determined for each 

compound (see Table 7.3). All the compounds had low LOD values from 0.03 

to 3.89 µg L-1. This data indicated that the analytical method developed could 

facilitate the simultaneous quantitation of nearly all of the compounds present 

when the flavoring was spiked in water. 

In contrast to previous studies that semi-quantified the extracted aroma 

compounds using internal standard (118) or estimated the relative levels of 

target compounds in wine samples from the ratios of their MS areas to that of 

the relevant internal standards using scan mode (116), all the above 

discussions were based on the absolute FID peak area. In the present study, 

two internal standards (i.e. n-undecane and 6-methyl-5-hepten-2-one) were 

selected in an attempt to determine the concentration of each compound. 

However, owing to the diversity of compounds in citrus flavoring, the peak 

responses obtained for the two selected internal standards were not 

proportional to those obtained for all compounds (data not shown). Hence, this 

would have given rise to an over-estimation or bias when the concentrations of 

all the compounds were calculated based on normalizing their responses 

against the internal standards.  

 

7.3.4. Matrix effect of model citrus beverage on SBSE extraction  

The results presented thus far were obtained from experiments carried 

out by extracting citrus flavoring from a blank matrix (aqueous solution only) 

to develop the analytical method with minimum interferences from the matrix. 

A recent study determined the presence of nine synthetic musks using SBSE 
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in four kinds of aqueous matrices (i.e. effluent and influent of wastewater 

treatment plant, effluent of a reverse osmosis treatment plant and river water) 

which no matrix effect was observed (295). 

 On the other hand, the presence of ethanol in a model wine sample 

matrix resulted in decreased sensitivity of the SBSE method toward most of 

the volatile compounds (118). Beverage products usually contain different 

types of soluble solids (e.g. acids, sugars, and pectins) give rise to matrix 

effects that would further complicate the extraction process (285). The 

presence of flavor-hydrocolloid interaction does have an impact on the amount 

of volatile compounds released from the food matrix (64, 285, 296). As there 

is limited information of the flavor-hydrocolloid interaction on SBSE 

efficiency, therefore, a model citrus beverage was prepared to evaluate the 

matrix effect on SBSE extraction. To verify the applicability of the developed 

analytical method in real citrus beverage, the method was applied to the model 

citrus beverage. 

Among food hydrocolloids, high-ester pectin is one the most commonly 

used. Hydrocolloids can be used as emulsifying and stabilizing agents in 

various applications such as acidified beverages (285). Sucrose and high-ester 

pectin were two main ingredients that could alter the rheological properties of 

the matrix and influence flavor partitioning in an emulsion system. The 

presence of sucrose and high-ester pectin generally resulted in changes of 

liquid partition coefficients. The salting-out effect was likely to be the reason 

for this phenomenon, whereby the sugar interacted with water, enhancing the 

concentration of flavor compounds. On the other hand, pectin was added in 

model citrus beverage with a pH value of 3.25, a weak gel network was 
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formed with hydrogen bonds and hydrophobic interactions. This 

macromolecular network could form flavor-matrix interactions with the 

volatile compounds and thereby enhancing or suppressing the release of the 

compounds to be extracted by SBSE (285).  

From observations in this study, the variance of volatile extractions 

between the model citrus beverage and blank matrix was insignificant, except 

for hydrocarbons and alcohols (Figure 7.4). This could be explained by the 

hydrophobic interaction between non-polar terpenes and pectin network, 

thereby reducing their availability for extraction by SBSE. A previous study 

has demonstrated that both orthonasal and retronasal odor thresholds were 

much higher in reconstituted orange juice than in water (284). On the other 

hand, the noticeable enhancement of alcohol extraction could be due to the 

reduced water activity with the presence of soluble solids, thus, alcohol could 

be more easily absorbed by PDMS. 

 

Figure 7.4. FID peak areas of SBSE extraction on different matrices 
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7.4. Conclusion 

A systematic approach was applied to understanding the factors that 

would affect SBSE-TD-PTV analysis of a complex mixture. Detailing the 

responses of different flavor compounds, cryofocusing temperature was found 

to be the most influential factor among three TD-PTV parameters. 

Consequently, variability of GC peak responses among the analytes was 

alleviated. Furthermore, through partial factorial design, the results of SBSE 

extraction indicated the positive influence of ionic strength and neutral pH on 

the extraction of alcohol compounds. Finally, the optimized method was 

evaluated and validated through measuring linearity, the detection limits and 

repeatability values. Therefore, this methodology may be effective in 

improving the performance of SBSE-TD-PTV analysis. 
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CHAPTER 8 VOLATILE COMPOSITION AND 

ANTIOXIDANT CAPACITY OF ARABICA COFFEE 

8.1. Introduction   

Because of the scarcity and unique aroma, Sidikalang coffee is highly 

sought after by exporters and coffee drinkers today (195). Civet-treated 

Sidikalang coffee or Kopi Luwak is one of the most valued and most 

expensive types of coffee beans to be produced (297). In addition, highland 

arabica coffee, which grows on the foothills of the Himalaya in Yunnan and 

Doi Chang in Northern Thailand have been highly rated for their unique and 

distinctive flavors. However, there is limited information on these exotic and 

new coffee varieties. In view of the agricultural and geographical 

considerations relative to aroma differences, it is worth to explore the volatile 

and aromatic profiles of Asian coffee.  

Green coffee beans are increasingly used in beverages due to a growing 

trend to create low-calorie refreshments with green coffee extracts. Hence, 

measuring the phenolic acid content and antioxidant activity of these beans 

would help assess their potential as a source of natural antioxidants (298). 

Since there is no standardized method for such tests, more than one test is 
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usually employed for antioxidant activity determination to take into account 

the different mechanisms of the antioxidants (299). Common in vitro 

antioxidant assays used include the Folin-Ciocalteu method, diphenyl-1-picryl 

hydrazyl assay (DPPH), 2,2’-azinobis(3-ethylbenzothiazoline-6-suslfonic 

acid) (ABTS) assay, and ferric reducing antioxidant potential (FRAP) assay 

(298, 300-302). Their mechanisms are generally based on a hydrogen atom 

transfer, a single electron transfer or both (303, 304).  

The objective of this study was to evaluate and compare the chemical 

compositions and antioxidant capacities of four varieties of Asian Arabica 

coffee as potential Asian-grown specialty coffees. 

 

8.2. Experimental procedures 

8.2.1. Coffee beans and chemicals  

Four varieties of green coffee beans were collected, i.e. Doi Chang 

(Coffea arabica L. cv. Catimor) from Doi Chang village located in Chiang Rai 

province of Northern Thailand, Sidikalang (Coffea arabica L. cv. Typica) and 

civet-treated Sidikalang (Kopi Luwak) from Dairi district, North Sumatra 

Indonesia and Yunnan (Coffea arabica L. cv. Catimor) from Pu'er district in 

Yunnan province of China. 

 Among these varieties, the Typica coffee is known for elongated oval 

shaped of bean compared to the Catimor coffee, while the Yunnan coffee 

beans had smaller bean sizes compared to the Sidikalang coffee beans. They 

were stored away from light at 25 °C. A sample of 150 g of green beans with 

initial moisture content of 7.2 – 9.6% was roasted with a home coffee roaster 

(Imex, Seoul, Korea) for 12 min, and then cooled down by blowing in the 
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roaster for 4 min. Each batch of roasted beans was cooled on a tray prior to 

grinding using a coffee grinder (Braun KMM30, Braun, Melsungen 

Germany). The ground coffee was sifted into the size range of 1.77 – 2.36 mm 

(Coffee Grind Sizer, Coffee Chemistry, CA, USA) and then was sealed in 

aluminum pouches and refrigerated at -30 °C until use.  

Analytical grade acetone, dichloromethane, hexane, and methanol were 

from Tedia, and petroleum ether was from ACS Chemical Inc. (NJ, USA). 

Anhydrous Na2SO4 was used as a drying agent (Sigma-Aldrich) and acetic 

acid were purchased from Merck.  

An internal standard for coffee extract, 5-methyl-2-hexanone was from 

Sigma-Aldrich and a series of alkane standards (C8 – C40) was purchased 

from Fluka. External standards were used for phenolic acids quantification: 

chlorogenic and ferulic acids, caffeic and p-coumaric acids (Sigma-Aldrich), 

and sinapic acid (Fluka). All standard compounds used in the identification of 

the volatile compounds were obtained from Firmenich Asia Pte. Ltd., 

Singapore. 

 

8.2.2. Preparation of coffee extracts 

8.2.2.1  Extraction of volatile compounds 

Coffee extract was prepared from 10 g of ground coffee beans with a 

volume of 40 mL of solvent (i.e. methanol, hexane or dichloromethane). The 

suspension was stirred using a vortex mixer at 200 rpm and 25 °C for 1 h. 

Subsequently, the extract was filtered from the ground coffee beans and was 

dried with Na2SO4. The solvent was removed under a purified nitrogen stream 

using TurboVap II until the volume was reduced to approximately 1 mL. The 
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concentrated extract was dark brown. The sample was stored at -80 °C before 

use. 

 

8.2.2.2 Extraction of phenolic acids  

Ground green and roasted coffee beans were defatted with petroleum 

ether by soxhlet extraction. The defatted beans were collected and left to dry 

overnight in a fume hood and subsequently, freeze-dried in a freeze dryer 

(VirTis AdVantage, Genevac, SP Scientific, Ipswich, UK). The freeze-dried 

beans were stored in a desiccator. The extraction of phenolic acids was carried 

out as previously described by Krygier, et al. (305) with modifications. Two 

grams of defatted ground coffee beans were extracted with six portions of 40 

mL of an acetone-methanol-water (7:7:6) mixture. The extract was evaporated 

to dryness under reduced pressure using a Rota-Vap at 40 °C. The residue was 

then reconstituted with 50 mL of 80% aqueous methanol and stored at -80 °C 

prior to analysis.  

 

8.2.3. Instrumental analysis 

8.2.3.1  GC-MS/FID analysis 

GC-MS/FID analysis was carried out using Agilent 6890N GC coupled 

with FID and a 5975 inert MS. Identification and quantification of the eluted 

compounds were as described in previous chapter 3 (Section 3.2.2).  
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8.2.3.2 UFLC/PDA analysis 

Phenolic acid analysis was carried out using a Shimadzu Prominence 

UFLC system equipped with two LC-20AD pumps, a SIL - 20A autosampler 

injector, CTO-20AC column oven and a SPD-M20A PDA detector for 

phenolic acid analysis (Shimadzu). The HPLC system was controlled using 

the software, LabSolutions (Shimadzu). Phenolic acid extracts were filtered 

with a 0.2 μm PTFE filter (Agilent Technologies) prior to analysis, and were 

analyzed as described in Section 5.2.5. of Chapter 5.  

 

8.2.4. Determination of total polyphenol content 

The determination of total polyphenol content by the Folin-Ciocalteu 

method was based on the ISO method for tea (306). A sample of 0.1 mL of the 

phenolic extract was diluted to 5 mL with deionised water. One mL of the 

diluted extract was then mixed with 5 mL of 10% diluted Folin-Ciocalteu 

phenol reagent (Merck). The mixture was allowed to stand for at least 3 min 

before 4 ml of 7.5% sodium carbonate was added. The reaction mixture was 

then mixed and allowed to stand at room temperature. After 60 min, the 

absorbance of the solution was measured at 765 nm, using a 

spectrophotometer (Pharmaspec UV-1700, Shimadzu, Kyoto, Japan). The 

blank was prepared by replacing the sample solution with water. Standard 

solutions of gallic acid (Acros Organics, New Jersey, USA) with 

concentrations of 10 - 50 mg/L were used for calibration. 
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8.2.5. Determination of antioxidant activity 

8.2.5.1 DPPH assay  

The radical scavenging activity of the phenolic extract was tested 

according to the method described by Nebesny & Budryn (301) and Kelebek 

& Selli (307) with modifications. A sample of 3.9 mL of DPPH solution (7.5 

mg DPPH per 100 mL of methanol) was mixed with 0.1 mL of each phenolic 

extract and the mixture was left to stand in the dark at room temperature. A 

control was prepared by mixing 3.9 mL of DPPH solution with 0.1 mL of 

methanol. After 10 min, the absorbance of each mixture was measured at 517 

nm. Methanol was used as a blank. The radical scavenging activity for each 

solution was measured using the following formula: 

    100 

 

8.2.5.2 FRAP assay  

The FRAP assay was conducted according to the procedure described by 

Vignoli et al. (300). The FRAP reagent was first prepared by mixing 2.5 mL 

of 10 mM 2,4,6-tris-2-pyridyl-1,2,5-triazine (TPTZ) (Sigma) solution in 40 

mM HCl, 2.5 mL of 20 mM ferric chloride hexahydrate (GCE Laboratory 

Chemicals, Singapore) in deionised water, and 25 mL of 0.3 mM acetate 

buffer of pH 3.6. The mixture was incubated at 37 °C for 30 min. A 50 μL 

aliquot of the phenolic extract was diluted to 1 mL with deionised water and 

standard solutions of Trolox in ethanol with a concentration range of 100 – 

800 mg/L were prepared for calibration. The reducing power of the phenolic 

extracts was then measured by mixing 900 μL of freshly prepared FRAP 
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reagent with 90 μL of deionised water and 10 μL of the phenolic extract or the 

standard solutions. The mixture was incubated at 37 °C and its absorbance 

was measured at 595 nm. The reducing power of coffee beans was expressed 

in mg Trolox per g coffee beans. 

 

8.2.6. Statistical analysis 

One-way analysis of variance (ANOVA) was carried out to determine 

the significant difference of the non-volatile composition and antioxidant 

activity between the green and roasted coffee bean samples. Distribution of 

the volatiles relative to the overall variability of the data sets was attained 

using principal component analysis (PCA) as explained in Section 5.2.6 of 

Chapter 5. 

  

8.2.7. Sensory evaluation  

The aroma profiles of the four different coffee extracts were evaluated 

as described in Section 2.2.4 of Chapter 2. The corresponding coffee 

descriptors were berry-like, buttery, caramelic, nutty, roasted, smoky, spicy, 

sulfury, sweet and roasted. A 6-point scale was used with ‘0’ indicating the 

uncharacterized attribute intensity and ‘5’ indicating the very strong attributes 

intensity. 
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8.3. Results and discussion  

8.3.1. Volatile composition 

Three organic solvents were screened for extracting coffee volatiles 

(data not shown). Compared to hexane and methanol, dichloromethane with 

its polar aprotic property was the most suitable solvent by allowing the potent 

polar compounds to be dissolved and giving a more comprehensive profile of 

coffee volatiles (data not shown). Most of the potent odorants in roasted 

ground Arabica coffee are known to be polar (44). Therefore, dichloromethane 

was chosen for further study. 

The aroma of coffee is characterized by the diverse combinations and 

disparate concentrations of volatile compounds from different classes. The 

chromatograms of different coffee extracts showed similar volatile profiles but 

different in quantity. Among the hundreds of compounds identified, 62 aroma-

active compounds were categorized into different classes and are listed in 

Table 8.1.  

Sulfur-containing volatiles are known to be largely responsible for the 

roasty coffee aroma (190). Due to their low flash points and susceptibility to 

oxidative degradation reactions, sulfur compounds are usually present in trace 

amounts (less than 0.01% of the total amount of volatiles) but play a crucial 

role in the freshness of roasted coffee (44, 308); in which, 2-furfurylthiol is an 

important odorant with a low odor threshold of 0.05 ppb in air (93). The 

extracts from Yunnan and Doi Chang coffee beans were found higher in the 

amount of 2-furfurylthiol. Although the amounts of 2-furfurylthiol present in 

the different coffee extracts were relatively low, it displayed the greatest 

impact on aroma as revealed by subsequent sensory evaluation.  
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Table 8.1. Volatiles and their concentrations (ppm) of dichloromethane extracts of coffee varieties from different geographic origins. 
 

Compounds 
LRI Concentration (ppm) 

Identification  FFAP Literature Doi Chang 
(Thailand) 

Sidikalang 
(Indonesia) 

Yunnan 
(China) 

Kopi Luwak 
(Indonesia) 

 Acids     
1 Acetic acid I, III 1430 1468 33.80 ± 8.38 40.47 ± 3.40 17.21 ± 3.88 35.00 ± 4.43 MS, LRIb,c, STD 
2 Propanoic acid 1524 - 11.84 ± 0.75 12.77 ± 0.52 8.14 ± 0.95 9.97 ± 1.52 MS, STD 
3 Butanoic acid I 1609 - 2.53 ± 0.10 3.39 ± 0.08 2.94 ± 0.21 2.10 ± 0.25 MS, STD 
4 3-methylbutanoic acid I, II, III 1653 1687 18.06 ± 1.80 32.18 ± 0.76 24.23 ± 3.29 23.56 ± 1.92 MS, LRIb, STD 
 Furans        
5 Fufuryl methyl ester I 1233 1260 2.87 ± 0.25 2.21 ± 0.62 2.58 ± 0.06 1.95 ± 0.32 MS, LRIc 
6 Furfural I 1467 1473 13.86 ± 1.10 17.46 ± 1.09 5.88 ± 0.27 19.37 ± 1.47 MS, LRIa,c, STD 
7 Furfuryl formate I 1497 1507 6.42 ± 0.33 5.09 ± 0.14 5.52 ± 0.69 4.06 ± 0.36 MS, LRIa,b,c 
8 2-acetylfuran I 1515 1513 13.27 ± 1.69 15.84 ± 0.99 11.87 ± 1.26 13.52 ± 1.05 MS, LRIa,b 
9 Furfuryl acetate I 1538 1547 32.92 ± 2.15 32.14 ± 1.75 40.04 ± 6.55 24.52 ± 1.43 MS, LRIa,b,c, STD 
10 5-methylfufural 1581 1582 24.76 ± 1.60 32.87 ± 1.59 8.88 ± 0.76 31.79 ± 1.81 MS, LRIa,b,c 
11 Furfural propionate 1599 1626 4.52 ± 0.26 4.63 ± 0.61 5.51 ± 0.31 3.72 ± 0.18 MS, LRIc 
12 2,2’-methylenebis furan I 1615 1637 5.22 ± 0.59 6.38 ± 1.38 9.23 ± 0.89 4.56 ± 1.48 MS, LRIc 
13 5-methyl-2-acetylfuran 1634 1653 3.74 ± 0.30 5.70 ± 0.26 4.64 ± 0.33 3.42 ± 0.21 MS, LRIc 
14 Furfuryl alcohol 1644 1671 237.95 ± 20.38 186.95 ± 4.72 207.31 ± 47.20 152.81 ± 7.86 MS, LRIa,b, STD 
15 Furfuryl ether 1991 1996 9.87 ± 0.40 9.51 ± 0.71 14.52 ± 1.20 7.51 ± 0.79 MS, LRIa,c 
16 5-(hydroxymethyl)-2-furfural I 2493 2516 12.09 ± 9.35 14.64 ± 0.56 16.23 ± 5.67 22.60 ± 4.50 MS, LRIb 
 Furanones        
17 Dihydro-2-methyl-3(2H)-furanoneI 1255 1282 12.70 ± 1.20 15.36 ± 0.90 7.58 ± 1.27 13.60 ± 0.40 MS, LRIb,c 
18 2,5-dimethyl-3(2H)-furanone I 1513 - 4.06 ± 0.15 3.06 ± 0.87 4.54 ± 1.32 2.57 ± 0.25 MS, STD 
19 γ-butyrolactone V 1638 1637 47.65 ± 3.18 30.53 ± 3.41 65.82 ± 10.90 32.29 ± 2.31 MS, LRIa,b, STD 
20 3,4-dimethyl-2,5-furandione 1749 - 10.89 ± 0.50 10.50 ± 0.32 13.54 ± 2.26 8.49 ± 0.71 MS 
21 Furaneol  I, II, III, IV 2016 2062 11.93 ± 1.17 13.62 ± 0.232 11.59 ± 0.69 10.93 ± 1.60 MS, LRIb,c, STD 
22 5-hydromethyldihydrofuranone 2481 2516 19.03 ± 3.03 20.81 ± 2.13 28.64 ± 8.11 26.40 ± 6.90 MS, LRIb 
 Ketones & Lactones        
23 Acetoin I, V 1267 1291 7.16 ± 7.89 7.85 ± 0.76 29.0 ± 6.51 7.01 ± 0.71 MS, LRIa,b,c, STD 
24 1-hydroxy-2-propanone 1278 - 15.31 ± 1.25 17.50 ± 0.98 8.40 ± 1.38 21.37 ± 0.91 MS 
25 1-hydroxy-2-butanone I 1363 1361 6.57 ± 0.15 7.96 ± 0.27 6.15 ± 1.01 4.73 ± 0.22 MS, LRIa,b,c 
26 3-methyl-2-cyclopentenlone 1378 - 1.99 ± 0.35 1.80 ± 0.37 2.37 ± 0.29 1.29 ± 0.14 MS 
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Table 8.1. (Cont’d) 
27 1-(acetyloxy)-2-propanone 1461 1477 24.66 ± 1.82 24.59 ± 1.61 17.33 ± 2.06 21.37 ± 0.91 MS, LRIb 
28 1-(acetyloxy)-2-butanone 1534 - 5.05 ± 0.35 5.62 ± 0.33 3.66 ± 0.19 4.73 ± 0.22 MS 
29 2,3-dimethyl-2-cyclopentenlone 1553 1573 2.71 ± 0.17 3.59 ± 0.33 5.00 ± 0.07 2.47 ± 0.27 MS, LRIb 
30 1-(6-methyl-2-pyrazinyl)-1-ethanoneI 1716 - 4.86 ± 0.28 4.50 ± 1.16 6.12 ± 0.26 3.01 ± 0.35 MS 
31 3,5-dimethyl cyclopentadione 1790 - 8.87 ± 0.54 9.58 ± 0.64 12.38 ± 0.28 8.01 ± 0.94 MS, STD 
32 Maple lactone I, IV 1834 1857 16.83 ± 1.33 17.01 ± 0.23 19.87 ± 2.23 13.72 ± 1.81 MS, LRIb 
33 Ethyl maple lactone I 1894 - 10.01 ± 0.32 12.64 ± 0.79 14.72 ± 0.39 10.00 ± 0.31 MS 
34 γ -dodecalactone 2071 - 13.44 ± 1.95 11.40 ± 1.40 16.18 ± 4.49 9.70 ± 1.04 MS 
 Phenols        
35 Guaiacol  I, II, III, IV 1861 1871 12.78 ± 1.42 12.08 ± 0.39 17.97 ± 1.06 9.20 ± 0.82 MS, LRIa,b,c, STD 
36 Phenol I 1995 2030 11.74 ± 1.31 11.43 ± 0.70 20.50 ± 0.57 8.33 ± 0.34 MS, LRIb, STD 
37 4-ethylguaiacol  I, II, III, IV 2041 2065 14.88± 1.98 19.82 ± 1.50 24.80 ± 1.79 13.29 ± 2.33 MS, LRIc, STD 
38 p-vinylguaiacol I, II,  III, VI 2206 2225 41.65 ± 3.75 46.54 ± 2.43 55.48 ± 3.76 31.64 ± 3.97 MS, LRIb, STD 
 Pyrazines        
39 Pyrazine I 1208 1215 3.73 ± 10.56 2.31 ± 0.37 4.49 ± 0.89 1.95 ± 0.15 MS, LRIa,b,c 
40 2-methylpyrazine I 1261 1267 28.26 ± 2.85 18.78 ± 0.66 29.0 ± 6.51 13.25 ± 0.20 MS, LRIa,b,c, STD 
41 2,5-dimethylpyrazine I 1324 1324 11.39 ± 0.87 7.27 ± 0.40 11.73 ± 2.34 4.55 ± 0.13 MS, LRIa,b,c, STD 
42 2,6-dimethylpyrazine I 1329 1330 19.40 ± 2.64 16.12 ± 1.19 19.68 ± 4.56 11.94 ± 1.35 MS, LRIa,b,c, STD 
43 2-ethylpyrazine I 1333 1336 9.15 ± 0.58 6.07 ± 0.55 9.81 ± 0.54 5.53 ± 0.38 MS, LRIa,b,c 
44 2,3-dimethylpyrazine 1354 1348 2.73 ± 0.67 3.36 ± 0.18 6.10 ± 0.76 2.58 ± 0.25 MS, LRIa,b,c 
45 2-ethyl-6-methylpyrazine I 1405 1388 8.42 ± 0.42 6.92 ± 0.45 9.70 ± 1.40 5.51 ± 0.47 MS, LRIa,b,c 
46 2-ethyl-5-methylpyrazine I 1414 1394 6.26 ± 0.39 4.38 ± 0.20 6.94 ± 0.87 3.22 ± 0.36 MS, LRIa,b,c 
47 2,3,5-trimethylpyrazine I, II, III, IV 1428 1429 3.83 ± 1.08 - 6.29 ± 0.65 - MS, LRIb, STD 
48 Ethenylpyrazine I 1453 1447 - - 2.53 ± 0.07 - MS, LRIc 
49 2-ethyl-3,6-dimethylpyrazine I, IV 1478 - 5.18 ± 0.53 3.34 ± 0.53 5.98 ± 0.15 2.57 ± 0.78 MS 
 Pyridines        
50 Pyridine I 1179 1182 36.86 ± 4.08 27.4 ± 1.56 65.52 ± 14.64 21.28 ± 0.95 MS, LRIa,b,c, STD 
 Pyrroles        
51 2-acetyl-1-methylpyrrole I 1671 1663 7.28 ± 0.36 6.90 ± 1.01 11.96 ± 1.01 5.72 ± 0.79 MS, LRIa,b,c 
52 1-furfuryl pyrrole 1838 1839 11.20 ± 1.04 10.20 ± 0.64 16.92 ± 0.98 8.12± 1.38 MS, LRIa,c 
53 2-acetylpyrrole I 1970 1983 23.22 ± 3.63 21.73 ± 0.94 34.48 ± 1.47 16.26 ± 1.48 MS, LRIa,b 
54 1H-pyrrole-2-carboxyaldehyde I 2022 2038 16.52 ± 1.77 15.57 ± 0.77 16.87 ± 1.06 13.29 ± 1.45 MS, LRIa,b 
55 1-methyl-1H-pyrrole-2-

carboxyaldehyde I 2108 - 18.44 ± 8.31 13.42 ± 1.96 24.44 ± 6.81 11.64 ± 4.17 MS 
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Table 8.1. (Cont’d) 
 Sulfur containing compounds        
56 2-Furfurylthiol I, II, III, IV 1439 - 3.29 ± 0.82 3.06 ± 0.17 5.08 ± 0.24 2.80 ± 0.50 MS, STD 
57 Furfuryl methyl sulfide I, IV 1503 1506 5.03 ± 0.26 4.44 ± 0.64 7.55 ± 0.73 4.19 ± 0.47 MS, LRIa,c 
 Miscellaneous        
58 2,3-pentanedione I, II, III, IV 1070 1067 7.32±12.06 7.90 ± 1.28 3.54 ± 0.77 7.99 ± 0.23 MS, LRIa 
59 Methyl levulinate I 1566 - 2.85 ± 0.23 3.59 ± 1.18 2.53 ± 0.68 1.71 ± 0.15 MS 
60 Maltol I, IV 1967 2006 29.21 ± 2.51 30.04 ± 0.89 36.34 ± 2.49 20.25 ± 3.00 MS, LRIb,c, STD 
61 Acetanisole I 2028 - 9.07 ± 1.33 8.87 ± 0.86 12.18 ± 1.61 6.48 ± 1.60 MS, STD 
62 3,4-dimethoxystyrene 2052 - 16.23 ± 2.29 19.54 ± 0.23 20.51 ± 3.71 16.50 ± 2.74 MS 
 Total concentration   1084.18 1016.17 1239.04 845.53  
ICompounds reported in Ref. (63); II Compounds reported in Ref. (205); III Compounds reported in Ref. (93); IV Compounds reported in Ref. (190).  
Identification method: MS= mass spectrum; STD = standards and LRI=Linear Retention Indices obtained from references or literature values (LRIa referred to the values in Ref. (309), LRIb referred to the 
values in Ref. (44) and LRIc referred to the values in Ref. (51); “-“, not detected 
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Other major compounds like furans, pyridines and pyrroles are not 

considered as potent odorants owing to their high threshold values in air. As a 

group, furans impart burnt and caramel base notes while pyridines and 

pyrroles express smoky and burnt coffee aroma, respectively (310). The 

presence of carboxylic acids such as acetic, propanoic, butanoic and 3-

methylbutanoic acids accounts for the sourness of coffee (192). In contrast, 

pyrazines, furanones and phenolic volatiles are often known for their strong 

association with coffee aroma. 

Pyrazines are the second dominant volatiles found in the coffee extracts, 

which impart roasty and earthy aroma in roasted ground coffee (192). The 

most abundant pyrazine was 2-methylpyrazine characterized with a nutty odor, 

yet the most aromatic pyrazines were 2-ethylpyrazine, 2-ethyl-6-

methylpyrazine and 2-ethyl-3,6-dimethylpyrazine, which were present in 

relatively smaller amounts.  

Likewise, furanones also belong to an important group of volatiles in 

coffee aroma; of which, furaneol or 2,5-dimethyl-4-hydroxy-3(2H)-furanone 

is one of the key aroma compounds most frequently reported (205). The 

expression of this chemical was highest in the Sidikalang coffee extract, 

followed by Doi Chang, Yunnan and Sidikalang Kopi Luwak.  

Another member of the potent odorant group comes from volatile 

phenolic derivatives; among them, guaiacol, 4-ethylguaiacol and p-

vinylguaiacol were identified. The highest concentration of phenolics was 

detected in the Yunnan coffee extract with p-vinylguaiacol as the major 

compound. This suggests a larger amount of phenolic acids could be present in 

the green Yunnan coffee beans compared to other coffee types and they were 
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first degraded to phenol and later to guaiacol during roasting (192). In addition, 

γ-butyrolactone, having an oily note with fatty nuance, is known to be 

generated from a chlorogenic acid lactone (49) and an elevated amount of 

6582 ppm was detected in the coffee extract from Yunnan. Strecker aldehyde, 

2,3-pentadione is a key odorant responsible for the buttery aroma in coffee 

(310) whereas ketones are characterized as less sharp compared to aldehydes 

(311) such as maple lactone which is known to possess a sweet caramellic-

spicy scent.  

The volatile compositions were segregated by principal component 

analysis (PCA), which would further advance the knowledge of the coffee 

extracts from different geographic origins. The relationships between the 

amounts of volatile chemicals and their aroma profiles were also explored 

with sensory analysis subsequently. 

 

8.3.2. Principal component analysis (PCA) 

The application of PCA plot can ease the interpretation of data via 

visualization. The first two principal components (PC) accounted for 78.08% 

of the cumulative percentage of total variation and represented the dominant 

information underlying the volatile profiles. The segregation of coffee extracts 

at each observation (Figure 8.1) was clearly distinguished by plotting PC 2 

against PC 1. A distinct categorisation according to the total concentration of 

volatiles expressed in the extracts was observed along PC 1. The distance of 

clusters between each other corresponds to the proximity in the expression of 

volatile constituents.  
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As seen from Figure 8.1(a), the close proximity and distribution trend 

between Sidikalang coffees suggests a certain degree of similarity in aroma 

profiles, given that the coffees were of the same species and origin. 

Nevertheless, both were further discriminated by PC 2, suggesting a 

significant difference in the aroma profiles between each other. This is 

probably due to the fact that the proteolytic reactions that had occurred in the 

digestive tract of civet cats altered the amino acid content of green coffee 

beans, resulting in the differences of Maillard reaction products.  

To further understand the contribution of each volatile variable in 

distinguishing the overall chemical profile, a biplot is displayed in Figure 

8.1(b) where the direction and length of each variable (vector) indicated the 

contribution. Regardless of their origins and types, the coffee extracts were 

generally characterized by sulfur-containing compounds and pyrazines, which 

expressed larger positive coefficients in PC 1, such as 2-furfurylthiol, furfuryl 

methyl sulfide and 2-ethyl-6-methylpyrazine. In this work, 2,3,5-

trimethylpyrazine had the highest coefficient in PC 1, indicating its strong 

influence as a characteristic chemical in coffee aroma. This was in agreement 

with the finding that the aroma sensory data of coffee extracts from different 

geographical origins exhibited distinguishable levels of a nutty note. However, 

it was not possible to differentiate between the nutty note in non-treated and 

civet-treated Sidikalang coffee extracts due to the similar amount of pyrazines 

expressed. In addition, compounds 57-62 were furfuryl methyl sulfide, 2,3-

pentanedione, methyl levulinate, maltol, acetanisole, 4-dimethoxystyrene, 

respectively.  
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(a) 

 

 

 

 

 

 

 

 

 (b) 

 

Figure 8.1. PCA score plot (PC 2 against PC 1) of coffee (Coffea arabica) 
extracts of dichloromethane (a); PCA biplot (PC 2 against PC 1) of coffee 
(Coffea arabica) extracts (b): (O) Sidikalang Kopi Luwak; (+) Sidikalang; (∆) 
Doi Chang and (*) Yunnan 

Volatile variables explained: Numbering identical to Table 8.1. 
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It is observed that 2,3-pentanedione, methyl levulinate and maltol with high 

coefficients in PC 1 show closer correlations towards the Yunnan origin. 

However, compounds such as acetanisole and 4-dimethoxystyrene with low 

coefficients in PC 1 were distant from all sources of origins. It is thus 

suggested that these two compounds were less significant in distinguishing 

among the origins. 

 

8.3.3. Phenolic acid components 

Phenolic compounds are responsible for the astringency, flavor and 

antioxidative activity of food (312). The predominant type of phenolic acids in 

plants is chlorogenic acid and it is of importance to study its content in coffee 

beans (313). A previous study (200) found that the chlorogenic acid content in 

defective green coffee beans is more than that present in graded coffee beans. 

This may affect the quality of the coffee beverage (199). As observed in Table 

8.2, the phenolic acid content of both green and roasted coffee samples are 

statistically different except for the sinapic acid content in roasted coffee 

beans (201, 314). The major phenolic acid in all coffee samples was 

chlorogenic acid. However, while the quantity of this acid was similar for the 

green coffee samples, that the amount in roasted coffee samples was 

statistically different, with roasted Doi Chang and Kopi Luwak having the 

higher amounts of chlorogenic acid at 18.70 and 18.60 mg/g, respectively, 

while roasted Yunnan having the lowest content at 6.05 mg/g. Sinapic, caffeic 

and p-coumaric acids were present in small amounts in the roasted coffee 

samples. 
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Table 8.2. Phenolic acid components and their respective concentrations 
(mg/g dry wt.) of coffee beans from different geographic origins 

Compounds 

Green coffee beans 

Kopi Luwak 
(Indonesia) 

Sidikalang 
(Indonesia) 

Doi Chang 
(Thailand) Yunnan (China) 

      
Chlorogenic acid 30.19 ± 0.36a 30.76 ± 1.27ab 29.32 ± 1.10a 32.18 ± 0.97b 

p-Coumaric acid - - - - 

Ferulic acid 0.09 ± 0.00a 0.08 ± 0.01b 0.05 ± 0.00c 0.05 ± 0.00c 
Caffeic acid 0.57 ± 0.01a 0.38 ± 0.03b 0.18 ± 0.00c 0.17 ± 0.00c 

Sinapic acid - - - - 
Total 30.87 31.22 29.55 32.40 
 Roasted coffee beans 
Chlorogenic acid 18.60 ± 0.29a 13.69 ± 1.33b 18.70 ± 0.66a 6.05 ± 0.51c 
p-Coumaric acid 2.16 ± 0.19a 1.52 ± 0.17b 2.05 ± 0.17a 0.72 ± 0.08c 
Ferulic acid 0.03 ± 0.00a 0.08 ± 0.01b 0.03 ± 0.01a 0.10 ± 0.01b 
Caffeic acid 0.04 ± 0.02a 0.40 ± 0.03a 0.37 ± 0.05a 0.29 ± 0.02b 
Sinapic acid 0.07 ± 0.02a 0.06 ± 0.01a 0.08 ± 0.02a 0.05 ± 0.01a 
Total 20.90 15.75 21.23 7.21 
Mean values with different letters (a-c) in the same row within the green or roasted coffee 
bean samples indicate statistical differences at the 0.05 (p < 0.05) 
 

8.3.4. Antioxidant activity  

8.3.4.1 Determination of total polyphenol content  

As the measurement of the polyphenol content is based on a redox 

reaction, the Folin-Ciocalteu method can be considered as a general method of 

antioxidant activity determination (300). The total polyphenol content of the 

coffee beans from each origin is tabulated in Table 8.3. The lower polyphenol 

content found in roasted coffee beans (33.67 - 43.13 mg GA per g coffee) 

relative to green coffee beans (43.07 - 53.76 mg GA per g coffee) was 

observed. This can be attributed to their polymerization, auto-oxidation or 

degradation during roasting, leading to the decreased polyphenol level present 

(203). This corresponds to the higher amounts of chlorogenic acid in green 

coffee beans (Table 8.2). A statistical analysis of variance found that the 

polyphenol content in the samples from each country was statistically different 

for both green and roasted coffee beans. Among the green coffee beans, 
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Yunnan had the highest amount of polyphenols; while Sidikalang had the 

highest amount among the roasted coffee beans. 

 

8.3.4.2 Radical scavenging activity by DPPH assay  

The DPPH radical scavenging activity of different concentrations of the 

phenolic extract of each coffee sample was measured and the EC50 of each 

coffee sample was determined (Table 8.3). EC50 is known as the half maximal 

effective concentration and in this case, it is defined as the concentration of 

the coffee sample that causes a decrease in 50% of the initial DPPH 

concentration (303, 304). A lower EC50 value indicates a better antioxidant 

activity. The EC50 values obtained for roasted and green coffee beans, in 

general, had a range of 8.23 – 9.96 mg GA g-1 and 9.53 – 11.17 mg GA g-1 

respectively. This can be attributed to the higher total polyphenolic content of 

green coffee beans. A good correlation between the total polyphenol content 

and DPPH scavenging radical activity was expected (299). However, a low R2 

value of 0.33 was calculated (Figure 8.2) as the EC50 values for the samples 

were determined to be similar. This discrepancy could be due to a larger 

natural variation in the polyphenolic content such as melanoidins with apolar 

properties that were less soluble and extracted by the acetone-methanol-water 

mixture used in the current study. Furthermore, DPPH radical scavenging 

activity depends on the hydrogen donating ability of the extracted antioxidants 

(303). 
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Table 8.3. Antioxidant activity of coffee beans from different geographic 
origins 

 Kopi Luwak 
(Indonesia) 

Sidikalang 
(Indonesia) 

Doi Chang 
(Thailand) 

Yunnan 
(China) 

Green coffee beans 
Folin-Ciocalteu  
(mg GA/g) 49.88 ± 3.35a 48.51 ± 0.82a 43.07 ± 1.37b 53.76 ± 0.71c 

FRAP  
(mg Trolox/g) 123.40 ± 7.85a 147.46 ± 5.20c 128.29 ± 

5.68ab 
142.98 ± 
9.88bc 

DPPH, EC50  
(mg GA/g) 11.08 ± 1.57a 11.17 ± 1.03a 9.53 ± 0.74a 10.21 ± 0.42a 

     
Roasted coffee beans 
Folin-Ciocalteu  
(mg GA/g) 40.42 ± 1.24a 43.13 ± 2.99a 33.67 ± 0.69b 36.17 ± 1.60b 

FRAP  
(mg Trolox/g) 94.44 ± 2.67a 109.02 ± 5.20b 78.92 ± 3.75c 81.42 ± 5.47c 

DPPH, EC50  
(mg GA/g) 8.23 ± 0.81a 9.96 ± 2.00a 9.19 ± 0.53a 8.80 ± 0.50a 

Mean values with different letters (a-c) in the same row within the green or roasted coffee bean samples 
indicate statistical differences at the 0.05 (p < 0.05) 
GA: gallic acid; DPPH: diphenyl-1-picrylhydrazyl assay; FRAP: ferric reducing antioxidant power assay 
 

8.3.4.3 Ferric reducing antioxidant power by FRAP assay  

The ferric reducing capacity of each coffee sample was expressed in 

terms of Trolox equivalents and is tabulated in Table 8.3. A range of 123.40 – 

147.46 mg Trolox/g and 78.92 – 109.02 mg Trolox/g for green and roasted 

coffee samples were obtained, respectively, where Sidikalang showed the 

highest ferric reducing capacity among both the green and roasted coffee 

samples. A positive correlation was observed between the total polyphenol 

content and ferric reducing capacity of the samples (Figure 8.2) as expected. 

Even though both the FRAP and DPPH assays were used to determine the 

antioxidant activity of the coffee samples, differing results were obtained due 

to the nature of each antioxidant assay as each assay is based on a different 

reaction mechanism. The FRAP assay measures only antioxidants that 

transfers a single electron while DPPH measures antioxidants that transfers 

both a single electron and a hydrogen atom. Hence, it is difficult to obtain 
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good agreement between the results obtained from both assays (303). 

However, no one standardized test can be used to determine the antioxidant 

capabilities of a substance and more than one test should be carried out so as 

to take into account the different modes of actions of the antioxidants present 

in a food matrix (299, 304, 315). 

 

 

Figure 8.2. Correlation between FRAP and DPPH assays with the total 
polyphenol content of coffee 

 

8.3.5. Sensory evaluation  

The aromatic profiles (Figure 8.3) of the dichloromethane extracts of 

coffee from different origins (i.e. Doi Chang, Sidikalang, Yunnan and 

Sidikalang Kopi Luwak) revealed distinct sensory profiles, with descriptions 

such as roasted (3.5), caramelic (3.0), smoky (3.0) and sulfury (3.0) being 

highly ranked. The Sidikalang Kopi Luwak profile with a less smoky and 

well–balanced aromatic profile was more favourable relative to the untreated 

Sidikalang though the variations on the ratings of sensory attributes such as 
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nutty, spicy, sulfury and sweet notes were small. The aroma profiles of 

Sidikalang and Sidikalang Kopi Luwak were similar, which may be due to 

their close expression of volatile chemicals. Doi Chang and Yunnan coffee 

extracts exhibited the highest score for sulfury and nutty notes, respectively. 

The highly rated sulfury note could be mainly ascribed to the potent sulfur-

containing compounds such as 2-furfurylthiol.  

 

  

Figure 8.3. Aroma sensory profile of coffee (Coffea arabica) extracts using 
dichloromethane 

 

A distinctive roasted note may be mainly contributed by the high 

concentrations of pyrazines, however, no distinctive difference was perceived 

among the extracts, though Kopi Luwak contained only half of the amount 

relative to that in Yunnan. The buttery note in the Yunnan coffee extract was 

perceived as the lowest (0.5) among all. This may be due to its lowest 

concentration of 2,3-pentanedione in the Yunnan coffee extract. Similarly, the 
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Yunnan coffee extract exhibited the strongest nutty note, corresponding to its 

highest level of 2–methylpyrazine and 2-acetylpyrrole. The relationship 

between the volatile components and sensory evaluation facilitates 

understanding the aromatic profile of Arabica coffees from different 

geographical origins in Asia. 

 

8.4. Conclusion 

Based on the total volatile compounds identified, Yunnan coffee had most 

of its volatile chemicals abundantly expressed, given its largest total peak area. 

Sensory evaluation revealed a stronger sulfury note in the Doi Chang and 

Yunnan coffee extracts but a lower buttery note in Yunnan coffee. 

Furthermore, successful characterisation of coffee extracts was represented by 

the distinct segregation of volatile clusters in PCA plots. Chlorogenic acid as 

the major phenolic acid component was determined significantly different, 

indicating a difference for coffee beans from different geographical locations. 

The total polyphenol contents of the green coffee beans were similar while 

those of the roasted coffee samples were marginally different. The DPPH 

radical scavenging activity was insignificantly different among the green and 

roasted coffee samples. However, the ferric reducing capacity of the samples 

was statistically different and both green and roasted Sidikalang beans gave 

the best antioxidant activity. 
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CHAPTER 9 PRESSURIZED LIQUID EXTRACTION ON 

COFFEE BEAN 

9.1. Introduction   

Recent advancement in developing rapid and sensitive extraction 

techniques has become increasingly important (65, 76, 78-80, 316). PLE could 

be significantly increased the extraction yield with the decrease of extraction 

time. Extraction procedures become versatile by tuning different operating 

parameters (e.g. temperature, pressure, time, extraction cycles and solvent) 

(317). Nevertheless, even minor adjustments of PLE parameters could affect 

the composition of extracted compounds. Thus, a detailed optimization 

demonstrated the posibility of manipulating the composition of the extract by 

adjusting the extraction parameters (318). In contrast to other common PLE 

applications in environmental aspects (75, 79, 319-324), PLE has been found 

very limited reports in flavor isolation (317, 318). For example, PLE was 

applied to studying volatile compounds in tumeric leaves, where simultaneous 

optimization of several response variables was carried out based on the 

desirability function and evaluated the flavor intensity of tumeric leave 

extracts (318). To the best of my knowledge, there is only one study reported 
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on the PLE extraction of polycyclic aromatic hydrocarbon from coffee (75), 

and has yet to be applied on any other coffee volatiles.  

In this work, the objective was to extract volatiles in the coffee bean 

using PLE. Initially, the feasibility of PLE on extracting coffee volatiles was 

evaluated through comparison to solvent extraction. Furthermore, the factors 

affecting PLE extraction of volatiles in coffee beans were systematically 

optmized through response surface methodology (RSM). With the linear or 

square polynomial functions obtained from RSM, the significant effects of 

main factors as well as their interactive effects could be identified and 

predicted. Multiple responses of targeted compounds were transformed with 

different scalings into a desirability function in order to comphrehend the 

interactions between PLE parameters (153, 288). Under elevated temperature 

and pressure during PLE process, the composition of delicate aroma can be 

easily distorted majorly due to thermal degradation of labile compounds and 

some side-reactions. Hence, besides the optimization of operating parameters, 

thorough sniffing is required to identify and monitor the desirable flavor 

profiles of different extracted products that are concomitant to the analytical 

work (190, 325).  

 

9.2. Experimental procedures 

9.2.1. Coffee beans and chemicals 

In this study, Boncafé International Pte. Ltd., Singapore provided the 

roasted Sumatra Mandheling coffee (Coffea arabica L. cv. Catimor), which 

underwent a roasting process for 14 min with an initial temperature of 160 °C 

and discharged at 223 °C. Coffee beans were grounded and sieved into the 
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size range of 1.77–2.36 mm. The ground coffee was sealed in the aluminium 

pouch and stored at -20 °C until use.  

Acetone, dichloromethane, hexane and methanol from Tedia were of 

analytical grade. Anhydrous Na2SO4 purchased from Merck was used as a 

drying agent while hydro super gel diatomaceous earth (hydromatrix) obtained 

from Sigma-Aldrich was applied as drying agent and dispersing agent during 

extraction.  

All standard compounds used in the identification of the volatiles were 

obtained from the Firmenich Asia Pte. Ltd., Singapore. 

 

9.2.2. PLE procedure 

Ten grams of ground coffee were evenly mixed with 5 g of 

diatomaceous earth, and then packed into a 40-mL stainless steel cell secured 

with a neoprene filtration end cap. Extraction was performed with a Power-

Prep PLE (Fluid Management Systems, Watertown, MA, USA). The 

automated extraction cycle was operated using DMS6000 software as follows: 

the cell containing ground coffee was prefilled with extraction solvent (i.e. 

methanol, hexane, and dichloromethane), pressurized and heated for a static 

period (see Table 9.1).  

 

Table 9.1. Face-centered central composite design (CCD)  

Factor Low (-) High (+) Centre 

Temperature, x1 50 100 75 

Pressure, x2 1000 2000 1500 

Static extraction time, x3 5 15 10 

The design was a two-level full factorial design with 8 cube points, 6 centre points in cube, 6 
axial points and alpha value 1. 



 

 183 

The cell was then flushed with fresh extraction solvent and purged with 

a flow of nitrogen gas and the extracts were eluted out of the extraction cell 

into the collection bottle placed in an ice bath. The extract was cooled for 30 

min and dried by 10 g of anhydrous Na2SO4 before being concentrated to 1.0 

ml using TurboVap II. Finally, the extract was transferred to a 2-ml vial and 

stored at -30 °C until further analysis by GC-MS/FID and sensory evaluation. 

 

9.2.3. Solvent extraction 

Coffee extract was prepared from 10 g ground coffee with a volume of 

40 mL dichloromethane. The suspension was stirred by vortex shaker at 200 

rpm for 1 h. The extract was then filtered from the ground coffee beans and 

dried over anhydrous Na2SO4. The solvent was removed under purified 

nitrogen stream using TurboVap II until the volume of sample was reduced to 

1 mL. The experiment was performed in triplicate and stored at -30 °C until 

used for analysis. 

 

9.2.4. GC-MS/FID analysis  

GC-MS/FID analysis was carried out using Agilent 6890N GC coupled 

with FID and a 5975 inert MS. Identification and quantification of the eluted 

compounds were as described in previous chapter 3 (Section 3.2.2).  

 

9.2.5. RSM and statistical analysis 

A face-centered central composite design (CCD) was constructed and 

analyzed using the Design Expert Version 6.0.10 software (Stat-Ease, 
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Minneapolis, MN, USA), where the effects of three independent variables on 

the selected key odorants (62, 63, 93, 190, 205) were taken as the responses. 

Three main factors were selected as reported in the literature (321), i.e. 

temperature (x1, 50 – 100 °C), pressure (x2, 1000 – 2000 psi) and static 

extraction time (x3, 5- 15 min) (Table 9.1). The 20 runs were in triplicate in 

order to calculate the averages and standard deviations. Detailed responsed 

surface model was described in Section 7.2.4 of Chapter 7. 

 

9.2.6. Optimization and validation procedures 

Selective optimization based on individual desirability to response 

variables was obtained through an objective function. With the objective 

function, individual desirability of each response variable was combined 

(288), as follow: 

  

where di is the individual desirability value of ith response, the value of yi min 

and yi max are the minimum and maximum acceptable value of yi, overall 

desirability (D) with  n is the total number of responses and wi, is the 

individual response importance, in this case wi=1 as desirability function was 

set as linear. 

 

D = di
wi

i=1

n

∏⎛⎝⎜
⎞
⎠⎟

1
wi∑ = di

i=1

n

∏⎛⎝⎜
⎞
⎠⎟

1
n
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9.2.7. Sensory evaluation 

  Sensory profiles of the coffee extracts were evaluated as described in 

Section 8.2.7 of Chapter 8. The corresponding descriptive attributes were 

ashy, beany, berry-like, burnt, caramellic, earthy, nutty, roasted, 

smoky/phenolic and sulfury. A 6-point scale was used with ‘0’ indicating the 

uncharacterized attribute intensity and ‘5’ indicating the strongest attribute 

intensity.  

 

9.3. Results and discussion 

PLE is conducted under elevated temperature and pressure within short 

time period (78). Several factors, which may be interrelated, significantly 

influence PLE, mainly extractant, temperature, pressure and static extraction 

time (80, 321, 326). Generally, pressure helps to force liquid into the pores 

and maintain the solvent in liquid or condensed state at operating 

temperatures. Temperature can enhance the solvent wetting of the sample, 

permit the analytes to dissolve faster into the solvent, and then achieve an 

improved extraction process (80). With an improved diffusion rate and mass 

transfer process, it allows shorter extraction time and reduces the risk of 

degradation in the process of PLE. On the other hand, the selectivity of 

extraction could decrease at higher temperature due to the co-extraction of 

interfering matrix components such as fatty acids (327). In addition, 

degradation or evaporation of volatile components might occur at elevated 

temperatures. Therefore, a systematic assessment of the interrelated factors 

mentioned above is crucial. 
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9.3.1. Selection of extraction solvent, ratio of hydromatrix to sample and 

extraction cycle 

Optimization of an extraction process commonly begins with an 

appropriate choice of the extraction solvent, which is able to solubilize the 

analytes of interest and minimize the co-extraction of other matrix 

components (321). The main classes of volatile compounds identified in the 

coffee bean were acids, furans, phenols, pyrazines, pyridines and sulfur-

containing compounds. Among three selected solvents (i.e. hexane, 

dichloromethane and methanol), it is observed that methanol was more 

effective to extract polar compounds such as pyridine, acetic acid (Table 9.2). 

Regarding to the total extracted amount, dichloromethane provided the 

highest. In addition, some key volatile compounds (i.e. furfury mercaptan and 

furaneol) were only detected in dichloromethane extract. Therefore, for better 

extraction, dichloromethane is the preferable among three solvents. 

Subsequently, PLE extraction was compared with conventional solvent 

extraction, of which both extracts shared similar volatile profiles but PLE 

extracts consisted of nearly 3 times higher of total extracted amount. 

The suitability of PLE technique for the volatile analysis in ground 

coffee was also justified with the efficiency in the extraction time.  Other 

experimental parameters were further optimized. Hydromatrix, serving not 

only as a dispersing agent but also as a dehydrating agent might alter the 

extraction efficiency (326). 
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Table 9.2. Identification of volatiles and their concentrations (ppm) in coffee beans extracted using hexane, dichloromethane and methanol  

Compounds LRI  Solvent extraction  PLE Identification FFAP Ref  Dichloromethane  Hexane Dichloromethane Methanol 
Acids          

Acetic acid I 1444 1468  22.73 ± 2.51  10.20 ± 5.05 34.17 ± 7.81 152.93  ± 47.82 MS, LRIb, STD 
3-methylbutanoic acid I 1657 1687  13.18 ± 0.46  20.81 ± 8.21 41.31 ± 13.22 - MS, LRIb, STD 
trans-2-butenoic acid 1764 -  -  - 4.17 ± 1.64 - MS, STD 

Furans          
Furfural  I 1473 1473  4.99 ± 0.48  5.00 ± 2.34 11.19 ± 3.74 5.93  ± 1.96 MS, LRIa, STD 
Furfuryl acetate I 1538 1507  27.50 ± 3.82  40.35 ± 17.10 62.97 ± 18.42 14.01  ± 9.29 MS, LRIa, STD 

Furfuryl alcohol 1653 1671  141.47 ± 20.05  106.26 ± 14.36 415.80 ± 99.83 244.75  ± 
119.30 

MS, LRIa, STD 

2-acetyl-5-methylfuran  I 1623 1653  6.33 ± 3.77  4.16 ± 2.41 3.52 ± 1.42 0.78  ± 0.24 MS, LRIc 
Furfuryl ether 1987 1996  9.12 ± 1.03  10.91 ± 5.95 19.18 ± 7.68 2.40  ± 1.03 MS, LRIa 

Phenols          
Guaiacol I, II, III, IV 1865 1886  9.28 ± 2.04  13.12 ± 6.19 25.49 ± 12.50 6.14  ± 4.67 MS, LRIb, STD 
Phenol  I 2004 2030  12.33 ± 1.08  9.53 ± 5.05 26.98 ± 12.67 9.66  ± 6.37 MS. LRIb, STD 
4-ethylguaiacol  I, II, III, IV 2035 2065  17.00 ± 3.85  14.36 ± 7.43 28.23 ± 12.55 2.79  ± 1.44 MS. LRIc, STD 
p-cresol I 2090 -  -  2.03 ± 1.45 8.80 ± 7.93 0.57  ± 0.21 MS, STD 
p-vinylguaiacol I, III, VI 2206 2225  34.02 ± 5.20  46.03 ± 27.72 86.73 ± 29.30 12.02  ± 7.33 MS, LRIb, STD 

Pyrazines          
2-methylpyrazine I 1256 1267  21.35 ± 2.34  9.72 ± 2.54 32.24 ± 8.55 14.03  ± 5.74 MS, LRIa. STD 
2,5-dimethylpyrazine I 1308 1324  7.55 ± 1.23  12.09 ± 4.52 21.76 ± 8.51 5.07 ± 1.08 MS. LRIa, STD 
2,6-dimethylpyrazine I 1314 1330  9.60 ± 1.51  - 18.46 ± 5.23 5.99  ± 2.85 MS. LRIa, STD 
2,3-dimethylpyrazine 1339 1348  2.45 ± 0.42  5.00 ± 2.96 4.60 ± 1.63 1.46  ± 0.96 MS, LRIa 
2-ethyl-6-methylpyrazine I 1383 1388  5.91 ± 0.99  10.87 ± 5.27 10.03 ± 5.57 - MS, LRIa 
2-ethyl-5-methylpyrazine I 1392 1394  2.81 ± 0.49  5.55 ± 2.82 4.01 ± 3.70 2.10  ± 2.85 MS, LRIa 
2,3,5-trimethylpyrazine I, II, III, IV 1407 1429  5.41 ± 0.41  9.27 ± 4.83 9.27 ± 3.11 2.22  ± 1.43 MS. LRIb, STD 
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I Compounds reported in (63); II Compounds reported in Ref. (205); III Compounds reported in Ref. (93); IV Compounds reported in Ref. (190).  
Identification method: MS= mass spectrum; LRI=Linear Retention Indices obtained from references or literature values and STD = standards. LRIa refers to the values in Ref. (309), LRIb refers to the values in Ref. (44) 
and LRIc refers to the values in Ref. (51); “-“, not detected 
 

Table 9.2. (Cont’d) 
Pyridines          

Pyridine I 1176 1182  34.75 ± 3.90  1.66 ± 0.38 63.42 ± 13.59 63.50  ± 15.76 MS, LRIa, STD 
2-acetylpyridine I 1613 -  -  - - 0.28  ± 0.49 MS, STD 

Sulphur-containing compounds          
Furfuryl mercaptan  I, II, III, IV 1438 -  0.58 ± 0.35  - 2.31 ± 2.43 - MS, STD 
Furfuryl methyl sulfide V 1496 1506  3.05 ± 0.60  2.90 ± 1.42 2.55 ± 2.01 - MS, LRIb, STD 

Miscellaneous          
2,3-pentanedione  I, II, III, IV 1070 1067  2.6 ± 0.56  - 3.14 ± 0.52 - MS, LRIa 
Acetoin V 1270 1291  4.74 ± 0.44  - 14.64 ± 5.89 6.73  ± 2.42 MS, LRIa, STD 
γ-butyrolactone V 1645 1637  43.45 ± 7.95  19.11 ± 7.04 115.65 ± 32.42 59.58  ± 28.73 MS, LRIa, STD 
Maple lactone I 1830 1857  14.61 ± 3.32  - 25.37 ± 5.89 7.74  ± 3.03 MS, LRIb 
Maltol I,IV 1975 2004  16.52 ± 4.45  12.50 ± 3.50 37.57 ± 23.45 13.36  ± 10.89 MS, LRIb, STD 
2-acetylpyrrole I 1977 1983   21.70 ± 3.14  24.16 ± 9.57 27.66 ± 15.91 15.15  ± 8.48 MS, LRIa, STD 
Furaneol   I, II, III, IV 2028 2062  4.94 ± 1.46  - 9.59 ± 2.50 - MS, LRIb, STD 
2-pyrrolidinone 2055 -  9.59 ± 1.20  5.05 ± 3.28 45.19 ± 35.84 8.61  ± 6.91 MS 
Methyl palmitate I 2228 -  31.65 ± 1.95  39.52 ± 23.66 77.58 ± 33.76 74.16  ± 44.90 MS 
3-pyridinol I 2426 -  33.96 ± 1.77  10.74 ± 7.87 161.31 ± 66.88 72.28  ± 25.43 MS 

Total concentration    571.42  465.81 1473.80 806.93  
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Different ratios of sample to hydromatrix (i.e. 1:2, 2:1 and 1:1) were 

compared in order to understand its effect on the extraction efficiency. There 

was a slightly higher yield of volatiles extracted at a sample to hydromatrix 

ratio of 2:1 compared to the ratio of 1:2 and 1:1. It implied that a good 

approximation of phase ratio was required in order to aid the extraction 

process (data not shown here). 

All the above discussion was based on one extraction cycle. For 

comparison, the number of extraction cycle was also studied as an affecting 

factor. In general, an increment in the number of extraction cycle allows the 

exposure of the matrix to fresh solvents and favours the solvent-to-sample 

equilibrium, thereby improving compound partition into the solvent phase 

(320, 328). The percentage yield was obtained by dividing the concentration 

obtained in a particular cycle by the total concentration obtained in all 

successive cycles. 

Under the present condition, the first extraction cycle was able to extract 

more than 60% of the compounds, and the percentage yield of the compounds 

decreased as the number of extraction cycle increased. It was also noted that 

the aromatic profiles of extracts in subsequent cycles significantly changed 

and became undesirable (data not shown here). In the following experiments, 

the number of extraction cycle was set as one. 

 

9.3.2. Face-centered central composite design 

Considerations of the interrelated factors are crucial to the efficiency of 

PLE on volatile extraction. Fourteen compounds, reported as key volatiles in 

coffee bean (62, 63, 93, 190, 205), were selected for further optimization 
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(Table 9.3). These response variables were assessed as a function of main, 

quadratic and interactive effects of temperature (x1), pressure (x2) and static 

extraction time (x3). For regression coefficients, positive values indicate that 

the yield of the compounds is favored toward the increasing values of the 

respective variables within the range studied, while negative coefficients 

indicate the decrease of yield toward the increasing value of studied range 

(153). 

 

9.3.2.1 Effect of PLE operating parameters 

Table 9.3 summarizes the predicted functions, coefficient of 

determination (R2), along with the corresponding lack-of-fit test (F-and p-

values) and individual probability of the independent variables in the final 

reduced models. The results suggested that the final reduced models were 

significantly (p<0.05) fitted for 14 response variables studied with relatively 

high R2, ranging from 0.646 to 0.929. Moreover, extraction temperature was 

the most critical factor on PLE where most of the compounds were 

significantly affected (p<0.05). This further emphasized the volatile nature of 

these compounds as a slight change in extraction temperature affected their 

amount, which was especially significant (p<0.0001) for furfuryl mercaptan, 

furfural, furfuryl alcohol and maltol. Detailing the coefficient of the linear 

temperature factor (x1) with a negative sign indicated that the amount of 

furfuryl mercaptan and furaneol decreased as extraction temperature 

increased. This implied that temperature must be restricted for thermally labile 

volatile components.  
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Table 9.3. Odour description, polynomial equation, R2, probability values, lack-of-fit and significance probability of regression coefficients in 
the final reduced models 

Compound Odor description  Polynomial equation R2 Regression Lack-of-Fit Factors 
   p-value F-value p-value  p value 
Furfural Bread-like, caramellic, sweet Y= -22.38+0.52x1 +0.25x3 0.871 0.0021 1.80 0.2677 x1 < 0.0001 

x3 0.0046 
         

Furfuryl alcohol Caramellic, fruity, sweet Y= 1077.22+20.37x1+28.02x3 0.898 0.0007 2.21 0.2026 x1 < 0.0001 
x3 0.0022 

         
Guaicol Phenolic, spicy, vamilla Y= -16.53+0.31x1 0.646 0.1433 5.52 0.0421 x1 0.0117 
         

Phenol Phenolic, plastic, rubber Y= -14.08+0.088x1-0.26x3-+0.02x13 0.830 0.0071 4.50 0.0623 
x1 0.0003 
x3 0.0091 
x13 0.0406 

         

2-methylpyrazine Cocoa, nutty, roasted Y= -72.29+1.56x1+1.28x3 0.784 0.0203 1.21 0.4184 x1 0.0014 
x3 0.0192 

         

2,5-dimethylpyrazine Cocoa, roasted nut-like Y= -17.15+0.49x1+0.50x3 0.674 0.1060 1.73 0.2802 x1 0.0260 
x3 0.0469 

         

2,6-dimethylpyrazine Cocoa, nutty, roasted Y= -22.32+0.70x1+0.42x3 0.709 0.0690 1.06 0.4741 x1 0.0148 
x3 0.0385 

         

Pyridine Amine-like, fishy Y= -175.49+3.47x1+5.90x3 0.863 0.0027 1.42 0.3540 x1 0.0001 
x3 0.0037 
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Table 9.3. (Cont’d)        

Furfuryl mercaptan Coffee-like, roasted, sulfury 
Y= 0.79-0.02x1 +0.0006x2-
0.04x3+0.0002x1

2-0.000004x12-
0.00001x23 

0.863 <0.0001 - - 

x1 <0.0001 
x2 0.0230 
x3 0.0346 
x1

2 0.0041 
x12 0.0134 
x23 0.0314 

         

Acetoin  Caramellic, toasted grain-like Y= -19.68+0.33x1+0.006x2+ 
1.07x3-0.0008x23 

0.794 0.0167 4.38 0.0654 

x1 0.0002 
x2 0.3223 
x3 0.3452 
x23 0.0472 

         

Maltol Caramellic, fruity, sweet Y= -60.61+0.61x1+0.01x3 
+0.06x13 

0.929 0.0001 5.81 0.0381 
x1 < 0.0001 
x3 0.0006 
x13 0.0175 

         

2-acetylpyrrole Musty, sweet, walnut-like Y= -17.18+0.53x1+0.20x3 0.783 0.0204 2.92 0.1325 x1 0.0007 
x3 0.0303 

         

Maple lactone Fruity, maple, sweet caramel Y= -38.37+0.96x1-1.18x3 0.840 0.0054 3.44 0.1005 x1 0.0002 
x3 0.0070 

         

Furaneol Caramellic, fruity, strawberry Y= 19.51-0.25x1 -0.26x3+0.02x13 0.789 0.0184 4.31 0.0675 
x1 0.0006 
x3 0.0796 
x13 0.0277 

x1, x2 and x3: the main effects of temperature, pressure and static extraction time, respectively. x1
2, x2

2, x3
2: the quadratic effects of temperature, pressure and static extraction time, respectively. 

x12: the interaction effect of temperature × pressure, x13: the interaction effect of temperature × static extraction time, x23: the interaction effect of pressure × static extraction time. Model terms 
with statistical significance (p<0.05) are shown in bold. 
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The application of high pressure in PLE allows the use of extraction 

temperature above the boiling point of the solvent while maintaining the 

solvent in its liquid state. High pressure could also improve the solvent 

accessibility to the analytes that are bound within the matrix pores (79). 

However, single-factor pressure term was insignificant for most compounds 

except for furfuryl mercaptan (p>0.05). Under the present condition, pressure 

seemed to play a minimum role, as long as the solvent was maintained in a 

condensed phase. This result was in good agreement with previous work on 

essential oil extracted from herbal plants where the effect of pressure on the 

amount of most substances was almost negligible (329, 330). 

In PLE, static extraction time refers to the duration of the heat and 

maintenance of pressure step in the extraction cycle. It determines the time for 

the solute to equilibrate and partition between sample matrix and extraction 

solvent. Table 9.3 shows that the effect of static extraction time was 

significant for some compounds such as pyridine, 2,5-dimethylpyrazine, 2,6-

dimethylpyrazine and furfuryl alcohol (p<0.05). Thus, static extraction time to 

a certain extent affected the extraction of target compounds, but was less 

pronounced than temperature. 

 

9.3.2.2 Interaction between PLE operating variables 

The interaction of independent variables is especially important to 

promote PLE extraction. For instance, temperature helps to enhance solvent 

penetration inside sample matrix, pressure can improve the solvent 

accessibility to the analytes, and static extraction time facilitates equilibration 

between solvent and matrix. As shown in Table 9.3, most of the significant 
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interactions existed between temperature and static extraction time. Figure 9.1 

depicts the response surface plots of interaction effects between factors on the 

variation of selected responses (amounts extracted). For example, the amount 

of maltol was found to be a quadratic function of the temperature and time 

where the amount tended to increase with increasing temperature and time. 

These results could be associated with the increased ability of the solvent to 

solubilise maltol in the coffee bean matrix and the reduction of the viscosity of 

the extractant which allowed more effective penetration into the matrix at 

higher temperatures and prolonged heating. In contrast, furfuryl mercaptan 

was negatively correlated with the increase of temperature and time. By 

referring to the model terms, the amount of furfuryl mercaptan was 

significantly influenced by all three linear factors, quadratic effect of 

temperature and also interaction between temperature × pressure and pressure 

× static extraction time. In a particular study, it was reported that this 

compound was not stable as 40 day-storage at room temperature lowered its 

concentration by 81%, even though the coffee sample was vacuum-packed 

(192).
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Figure 9.1. Response surface plots showing the effects of temperature, pressure and static extraction time of selected compounds: 1. maltol; 2. 
furfuryl mercaptan; 3. 2,6-dimethylpyrazine. (a) interaction between temperature and pressure; (b) interaction between temperature and time; (c) 
interaction between pressure and time 
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9.3.2.3 Optimization of PLE operating variables 

Under elevated temperature and pressure, interfering substances may be 

extracted along with desired compounds during PLE extraction process. 

Moreover, it is worthy to note that no single experimental condition can be 

found under which the extraction of all volatile compounds is maximized due 

to the difference in physicochemical properties of the compounds (288). In 

order to assess the feasibility of PLE in flavor analysis, it was attempted to 

selectively maximise the target compounds while minimising the 

interferences, and thus several combinations were obtained through multi-

response optimisation to manipulate the compositions of coffee extracts. 

With the aim of maximising the total amount extracted, the optimal 

conditions obtained were 100 °C, 1000 psi and 15-min static extraction time 

with a desirability function of 0.731. In the second optimisation, the emphasis 

was placed on compounds that responded significantly in the response surface 

models. The results gave an optimal point of 75 °C, 1300 psi and 15-min static 

extraction time with a median desirability factor of 0.40. The optimal 

conditions and relatively low desirability were different from those obtained 

previously due to the differences in pre-selection of response goals.  

Some thermal labile compounds (e.g. furfuryl mercaptan and furaneol) 

are key odorants of coffee aroma. The importance of their contribution 

strengthens the necessity to maximise their concentration. Thus, the third 

optimisation was performed only for furfuryl mercaptan and furaneol. The 

optimal conditions derived were 50 °C, 2000 psi and 5 min with a desirability 

factor of 0.911. 

 



 

 197 

9.3.2.4 Validation of response surface model 

In order to assess the long-term variability of the response surface 

model, intermediate precision was validated by selecting two experimental 

points within the experimental range. Each experimental point was performed 

in triplicate and the averaged concentrations of the compounds, together with 

the standard deviations are tabulated in Table 9.4. The experimental points 

chosen were 75 °C, 1500 psi and 10 min (centre point) and 50 °C, 2000 psi 

and 15 min. Due to high variability, furfuryl mercaptan was not included for 

the validation. The average concentration obtained fell well within the 

predicted response range at 95% confidence level.  

 

Table 9.4. Validation of response surface model  

Compounds Concentration (ppm) 
Prediction 95% CI* low 95% CI* high Average 

75 °C, 1500 psi and 10 min 
Pyridine 85.83 76.77 94.89 82.44±5.67 
Acetoin  12.14 10.08 14.19 11.93±0.98 
2,5-dimethylpyrazine 16.32 14.95 17.68 15.28±1.33 
2,6-dimethylpyrazine 22.83 21.08 24.58 23.57±1.79 
2-methylpyrazine 40.36 36.28 44.43 37.95±2.81 
Furfural 14.26 12.83 15.68 13.96±1.05 
Furfuryl alcohol 552.43 497.71 607.15 533.30±36.33 
Maple lactone 23.43 20.43 26.43 21.27±3.48 
Guaiacol  16.47 14.67 18.28 16.26±2.19 
Maltol 59.47 53.74 65.19 57.63±10.65 
Phenol 20.95 18.80 23.10 20.98±0.70 
Furaneol  10.82 9.04 12.61 10.36±2.86 
2-acetylpyrrole 44.24 39.91 48.58 39.56±2.61 
50 °C, 2000 psi and 15 min 
Pyridine 55.88 32.41 79.35 63.86±20.02 
Acetoin  6.94 1.63 12.26 9.46±3.16 
2,5-dimethylpyrazine 14.24 10.70 17.78 14.73±4.56 
2,6-dimethylpyrazine 19.42 14.88 23.95 21.01±4.70 
2-methylpyrazine 30.24 19.69 40.80 33.27±9.95 
Furfural 8.92 5.21 12.62 10.40±2.66 
Furfuryl alcohol 337.48 195.72 479.24 383.98±113.65 
Maple lactone 17.06 9.28 24.84 17.79±5.29 
Guaiacol  13.63 8.96 18.30 14.23±3.51 
Maltol 35.07 20.24 49.89 37.77±10.70 
Phenol 14.39 8.82 19.96 14.81±4.52 
Furaneol  5.90 1.28 10.52 6.26±2.02 
2-acetylpyrrole 33.98 22.75 45.20 33.68±11.49 

*Confidence interval with 95% confidence level 
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9.3.3. Sensory evaluation 

The varying concentrations of the key odorants in the coffee bean 

extract give rise to its overall aroma and odor. During the three types of PLE 

optimization, different goals were set in order to obtain the optimal extraction 

condition required to yield coffee extracts with desirable aromatic profiles. 

Figure 9.2 reveals the notable differences in the aromatic profiles of the coffee 

extracts obtained under different extraction conditions. As 14 selected 

compounds possess distinctive attributes, odor descriptions are listed in Table 

9.3. Under the operating condition of 100 °C, 1000 psi and 15 min, all 

responses were given equal emphasis. The coffee extract obtained exhibited 

weaker perception, except for the attribute of caramellic (3.0). Thus, this 

suggested that although most of the target compounds were extracted 

maximally, the coffee extract lost its genuine aromatic profile especially nutty 

(1) and sulfury (0) notes. The high score of the caramellic note was possibly 

attributed to furfuryl alcohol, furfural, maple lactone, maltol and furaneol. 

 
Figure 9.2. Sensory profile of coffee extracts under three optimized extraction 

conditions 



 

 199 

On the other hand, the sensory profile of the coffee extract obtained at 

75 °C, 1500 psi and 10 min revealed an average score of 2.0 for ashy, burnt, 

earthy, nutty, roasted notes. However, a strong smoky/phenolic attribute (3.5) 

was perceived, which overwhelmed the other attributes. This could be due to 

the extraction condition being favourable to the extracted compounds that 

responded significantly to the RSM model, particularly phenol, which are 

known to be responsible for smoky and phenolic odors in coffee aroma. 

Due to the pre-set goal of maximising furfuryl mercaptan and furaneol, 

the sensory profile of the extract obtained at 50 °C, 2000 psi and 5 min 

revealed a higher sulfury note (1.5) compared to other sensory profiles. This 

was in accordance with the aim to develop an extraction condition suitable for 

furfuryl mercaptan exhibiting coffee-like, roasted and sulfury notes.  

 

9.4. Conclusion 

A novel approach to extraction of volatile compounds in coffee bean by 

PLE was demonstrated. RSM was applied to optimizing the PLE operating 

conditions (i.e. temperature, pressure and static extraction time). Temperature 

was clearly found to be the most important factor followed by pressure. 

Moreover, significant interactions existed between temperature and static 

extraction time. Through descriptive sensory analysis, the aromatic profiles of 

the coffee extracts under three different optimum conditions were expressed. 

Therefore, PLE is a convenient, reliable and flexible technique, which may be 

useful for flavor isolation. 
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CHAPTER 10 CONCLUSIONS, RECOMMENDATION AND 

FUTURE WORK   

In this research, characterization of the volatile and aromatic profiles in 

Asian citrus – pomelo and calamansi, and Arabica coffee varieties from Asia 

were carried out using different analytical approaches. In the initial study, the 

blossoms and peels of two Malaysia pomelo varieties (i.e. pink and white-

fleshed) were extracted and characterized. Some interesting chemicals were 

first detected in pomelo blossoms and calamansi juices. Through careful 

sniffing using GC-O and AEDA techniques, aroma-active compounds of 

pomelo peel extracts were first reported; however, no single compound was 

determined as possessing a characteristic Malaysian pomelo-like aroma. In 

addition, there were a few unknown compounds that contributed to atypical 

notes, e.g. beery, meaty, guava-like, tropical and hazelnut-like. It is therefore 

suggested that some compounds with sulfur or nitrogen atom remain 

unidentified. Further research in discovering novel compounds may require 

high throughput and higher sensitivity instruments such as high-resolution gas 

chromatographic, real time mass spectrometry, quadrupole time-of-flight to 

volatile compounds at a the level as low as picograms. This is especially 
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critical for volatile sulfur compounds, which can be easily transformed or arise 

from thermal breakdown or reaction in the injection port of a normal gas 

chromatograph.  

In order to understand the relationship between chemical composition 

and sensory profile of food, pomelo juices were used as a model to correlate 

between their chemical components and ten sensory attributes (i.e. 7 

orthonasal and 3 retronasal). Overall, the percentage explained of the 

orthonasal attributes was not as good as the retronasal attributes, notably 

citrusy, woody and bitter. Therefore, it is suggested that these attributes were 

not fully elucidated in the current PLSR model due to those unidentified 

compounds in pomelo. The effect of phenolic components on the bitterness of 

pomelo juice is yet to be investigated, thus, the present model is of little value 

in correlating bitterness. Correlation between instrumental data and sensory 

attribute is of extreme importance in deciphering aroma-active compounds. In 

view of the limitations present in current data analysis, improvements on 

extraction techniques and multivariate analyses, which can support flavor 

analysis, are needed. 

Subsequently, the chemical components (volatiles and non-volatiles) of 

calamansi peels and juices were characterized. Variations among the volatile 

compounds of calamansi peels and juices were found to be significant 

(p<0.05) among three geographical origins (i.e. Malaysia, the Philippines and 

Vietnam). However, differences in non-volatile components in juices (sugars, 

organic acids and phenolic acids) from different geographical origins were 

insignificant. Advance analytical insturments such as ESI LC/MS may be 
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applied for lower detection level and structural confirmation of non-volatile 

compounds, especially phenolic acid isomers. 

Due to disparate concentrations and physiochemical properties of 

volatile compounds present in food samples, some difficulties in terms of 

sensitivity and reproducibility were encountered. Extraction technique of 

SBSE-TD-PTV was developed. After optimization, this method can be applied 

as a very simple and fast technique with better sensitivity and reliability. This 

methodology could be extended to develop the analytical method for similar 

highly complex systems. However, the fundamental understanding of the 

diffusion coefficients of analytes with different physicochemical properties 

has yet to be fully resolved. Indeed, the interaction between flavor compounds 

and food components is very complex. Quantification of flavor being released 

is another important topic to precisely gauge the flavors perceived from food. 

Therefore, much research is required in order to understand the flavor release 

in the presence of fats, proteins, hydrocolloids and etc. It is believed that better 

insight can be gained through the combination of analytical techniques and 

mathematical modeling. 

Knowledge of the chemical compositions and antioxidant capacities 

would facilitate a better understanding of Asian coffee. Therefore, volatile and 

non-volatile constituents of four Asian coffee varieties were also studied. It 

was found that the Sidikalang Kopi Luwak coffee was most favourable with a 

well-balanced aromatic profile, though its overall profile was similar to that of 

Sidikalang. On the other hand, the total polyphenol content of the Sidikalang 

beans was the highest. Between the green and roasted coffee beans, the radical 

scavenging activity was similar, whereas the Arabica Sidikalang variety 
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registered the highest ferric reducing capacity (p<0.05). Furthermore, the 

extraction yield of Sumatra Mandheling coffee bean using PLE was nearly 

three times higher. PLE demonstrated the feasibility of producing a series of 

coffee extracts under controllable extraction conditions in correlation with 

desirable sensory attributes. This approach has not previously reported to 

characterize the aroma of coffee bean. 

In conclusion, the current study has demonstrated several approaches 

of flavor analytical techniques. With the aids of multivariate analysis, 

analytical data can be correlated to sensory data or classified by intrinsic 

(cultivars) and extrinsic factors (geographical origins). It is believed that 

chemical profiles obtained through the study could provide new insights of 

these indigenous citrus or new varieties of Arabica coffee. The knowledge 

could enrich the flavor spectrums of citrus fruits and Arabica coffee and could 

be utilized as flavoring for various food products. 
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