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SUMMARY 

!
!

Our laboratory has recently demonstrated that Bordetella pertussis, the 

etiological agent of whooping cough, produces a surface polysaccharide 

microcapsule. Pertussis vaccination initiative over the past 60 years has led to 

significant reduction of incidence rate among young children. However, emergence of 

adult pertussis cases in recent years suggests that current vaccination fails to provide 

long-term protection and underscores the need to further study this disease and revisit 

the pertussis vaccination strategies. Polysaccharide capsules represent an important 

vaccine and antimicrobial target for many pathogens. The role of the polysaccharide 

capsule during B. pertussis infection has not been investigated. In this work, we have 

explored the role of the capsule genetic locus in pertussis pathogenesis. 

 

We first constructed B. pertussis mutants containing unmarked in-frame 

deletion in different ORFs within the capsule operon. None of these mutants produced 

the microcapsule at their surface, similar to KOcaps mutant deleted for the entire 

capsule operon. Deletion of the second ORF in the capsule operon, namely kpsT, 

predicted to encode the polysialic acid transport ATP binding protein, led to 

significant attenuation in colonization of the mouse lungs compared to the parental 

strain, which recapitulated the virulence defect observed with the KOcaps mutant. In 

contrast, mutants deleted for kspE, the putative capsule exporter gene and vipC, the 

putative capsule biosynthesis gene displayed modest and no virulence defects 

respectively. These findings suggested that the polysaccharide capsule exposed at the 

surface of B. pertussis bacteria does not play a role in pertussis pathogenesis. 

Consistently, the attenuated phenotype observed in kpsT-deleted mutant correlated 



!

! xi!

with the global down-regulation of a variety genes that are either related to bacteria 

virulence or that encode putative proteins in B. pertussis. Key virulence factors FHA, 

BrkA and PT were slightly down-modulated at both transcriptional and protein levels 

compared to the parental strain. Since the great majority of the virulence factors in B. 

pertussis is under the control of the two component system BvgA/S, we focused on 

studying the effect of kpsT deletion on the BvgS-mediated signal transduction. 

Interestingly, we demonstrated that the virulence defect observed with the kpsT-

deleted mutant was not observed in a B. pertussis mutant strain with constitutive 

activation of its BvgS sensor. This observation thus led us to propose that kpsT 

deletion impaired the function and activity of BvgS sensor. A BvgS pull down 

approach then revealed that BvgS sensor oligomerizes in parental B. pertussis strain, 

but not in the mutants deleted either for kpsT or for the entire capsule operon. This 

finding demonstrated that KpsT is involved in BvgS oligomerization, presumably 

BvgS dimerization, which is necessary for the sensor’s activity and regulation of bvg-

regulated genes. Sensitivity tests to antibiotic and chemical treatments supported that 

membrane associated KpsT protein participate to the plasma membrane integrity and 

permeability, which is crucial for the conformational integrity and optimal 

functionality of membrane proteins such as BvgS sensor. Collectively, our data 

demonstrate an alternative biological function of the capsular transporter KpsT in the 

central functioning of BvgS-mediated signal transduction in B. pertussis.  

 

In addition, we characterized the transcriptional regulation of the capsule locus 

in different B. pertussis strains. Both clinical and laboratory-adapted (BPSM) strains 

demonstrated increased expression of the capsule locus when the BvgA/S regulatory 

system is inactive (Bvg- phase) and vice versa (Bvg+ phase), supporting that the 
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capsule locus belong to the class of vrgs. We hypothesized that RisA may regulate the 

transcription of the capsule locus in both BPSM phases; however, over-expression of 

RisA approaches failed to lend support to this hypothesis. In parallel, risA gene 

deletion could only be obtained in the presence of a wild-type copy of risA on a 

plasmid, thus demonstrating the essentiality of this gene in BPSM. The expression 

pattern of the capsule locus was also analyzed during ex vivo infection (epithelial cells 

and macrophages) and in the mouse model of pertussis infection. We observed that 

the capsule locus is highly expressed and dynamically modulated during cellular 

invasion as well as during the course of in vivo infection, reflecting the response of 

the bacteria to the host microenvironments during infection. These findings prompted 

us to re-evaluate the genetic regulation of the capsule locus and other vrgs during host 

infection. 
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CHAPTER 1 INTRODUCTION 

!
1.1 PATHOGENESIS OF BORDETELLA PERTUSSIS 

!
1.1.1 B. pertussis Infection and Whooping Cough  

 

Bordetella pertussis is a Gram-negative, obligate aerobe and fastidious 

coccobacilli that can only be cultivated in an enriched media supplemented 

with blood. B. pertussis is a strict human pathogen and the sole etiological 

agent for pertussis disease, or commonly known as whooping cough; a 

respiratory disease that was highly prevalent amongst infants prior to the 

development of pertussis vaccine in the 1940s. First isolated in 1906 by 

French microbiologist Bordet and Gengou, B. pertussis has since then been 

widely studied and characterized on its pathogenic and virulence capabilities.  

 

The Bordetella genus comprises nine species, with four of them being 

phylogenetically closely related and all of them being respiratory pathogens of 

mammalian hosts (Diavatopoulos et al., 2005; Mooi, 2010). The four includes 

B. bronchiseptica, B. parapertussis, B. pertussis and B. holmessii. B. 

bronchispetica causes infectious bronchitis in a variety of mammals and 

although rarely, can be isolated from humans. The human-associated B. 

parapertussis and B. pertussis, which evolve from the former, causes pertussis 

in humans, while another sub-species of B. parapertussis has been reported to 

cause zoonotic respiratory tract infection in sheep (Diavatopoulos et al., 2005; 

Mooi, 2010).  
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B. pertussis is highly contagious with an attack rate of 80% among 

non-immunized population as it spreads easily via aerosolized droplets when 

coughed up by an infected host. The infected mammalian host, especially 

unvaccinated infants will ultimately develop chronic pertussis infection 

whereas adults will typically display an asymptomatic disease. During the 

course of infection, B. pertussis manifests its pathogenicity through multiple 

biological activities. The bacteria first establish infection by adhering to the 

ciliated epithelium linings at the upper respiratory tract by producing a group 

of virulence factors known as adhesins. Production and secretion of 

biologically active toxins from B. pertussis usually takes place at a later stage 

of infection, resulting in a more symptomatic and severe illness due to the 

destruction of mucosal epithelial lining by the toxins (Finger and von Koenig, 

1996). Severe, spasmodic coughs with continuous whooping sound and 

lymphocytosis are hallmarks of pertussis infection in infants (Finger and von 

Koenig, 1996; Mattoo and Cherry, 2005). Serious complications including 

bronchopneumonia, seizure and respiratory arrest frequently result in death 

among infants (Finger and von Koenig, 1996; Mattoo and Cherry, 2005). In 

addition, following the colonization of the respiratory tract, B. pertussis not 

only adheres to epithelial cells and multiplies extracellularly, it can also persist 

within epithelial cells and survive within macrophages (Bassinet et al., 2000; 

Lamberti et al., 2010; Masure, 1992). Such phenomenon indicates that both 

cellular and humoral mediated immunity are triggered in response to B. 

pertussis infection and elimination (Lamberti et al., 2010). 
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1.1.2 B. pertussis Treatment and Vaccine 

 

Pertussis disease and infectivity can be controlled and treated with 

common antibiotics including ampicillin, chloramphenicol, azithromycin and 

erythromycin (Bass et al., 1969; Lambert, 1979). Nevertheless, the 

development and widespread use of pertussis vaccine has been a primary 

focus to combat pertussis and has greatly reduced the disease burden among 

infants. Prior to the widespread use of pertussis vaccine in 1940s, pertussis 

was one of the most common causes of childhood morbidity and mortality 

with more than 200,000 cases reported annually in the United States alone 

according to the World Health Organization. Isolation and characterization of 

several virulence factors in B. pertussis has led to a better understanding of the 

pathogenesis of pertussis and immunity against the disease, which contributed 

to the development of acellular pertussis vaccines made of purified B. 

pertussis proteins. 

 

Development of the conventional, inactivated whole-cell pertussis 

vaccine used in combination with diphtheria and tetanus toxoid has 

dramatically reduced childhood mortality cases associated with pertussis for 

the past 60 years (Mattoo and Cherry, 2005). Despite the efficacy of the whole 

cell vaccine and its routine immunization since the early 1950s to early 1990s, 

it is no longer as widely used due to the presence of endotoxin component 

harbored by the bacteria resulting in adverse side effects in children (Cherry, 

1996; Cody et al., 1981). The acellular pertussis vaccine was refined in 1990s 

primarily as a booster for the whole cell vaccine and was subsequently 
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approved as primary pertussis vaccine due to its effectiveness and significant 

reduction in reactogenicity as compared to whole cell vaccine (Gustafsson et 

al., 1996; Olin et al., 1997; Zhang et al., 2011). The current five-component 

acellular pertussis consists of virulence factors filamentous hemagglutinin 

(FHA), inactivated pertussis toxin (PT), pertactin, fimbriae 2 and 3 subunits, 

all of which are major virulence factors that are either cell surface-associated 

or secreted (Gustafsson et al., 1996). The protective immunity of pertussis 

vaccine is highly dependent on cell-mediated and humoral immunity, with 

reports that acellular vaccine specifically drives the Th2 cell-mediated 

immunity (Mills et al., 1998; Watanabe et al., 2002). Recently, a live-

attenuated B. pertussis vaccine candidate known as BPZE1 has been 

developed through targeted genetic manipulation and has reached phase-I 

human clinical trial (ClinicalTrials.gov NCT01188512)(Skerry et al., 2009). A 

single nasal administration of live BPZE1 bacteria was shown to confer a 

long-lasting immunity and strong protection against virulent B. pertussis in a 

murine model of infection, thus promoting a viable and attractive alternative 

to the current acellular pertussis vaccine (Skerry and Mahon, 2011).  

 

1.1.3 Pertussis Epidemiology: A problem of re-emergence  

!

Despite the widespread use and protective efficacy of acellular 

pertussis vaccines, pertussis is not completely eradicated unlike many other 

vaccine-eradicated infectious diseases such as smallpox, polio and rubella. As 

of 2011, the World Health Organization estimated about 140,000 reported 

cases of pertussis globally and the estimated number of deaths in 1998 was 
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close to 200,000. Interestingly, an epidemiological shift of pertussis infection 

towards adolescents and adults has been increasingly reported in developed 

countries with high acellular pertussis vaccine coverage (Berbers et al., 2009b; 

Cherry, 2005; Gilberg et al., 2002; He and Mertsola, 2008; Lin et al., 2007; 

Mattoo and Cherry, 2005; Pebody et al., 2005). This group of pertussis 

susceptible hosts, which are often asymptomatic increases the risk of 

transmission of pertussis to unvaccinated newborn infants, to whom the 

disease may be life-threatening (Cherry, 2005; Crowcroft and Britto, 2002; He 

and Mertsola, 2008).  

 

Several hypotheses have been made with regards to factors 

contributing to the resurgence of pertussis in adolescence and adults. These 

include waning vaccine-induced immunity for both whole cell and acellular 

vaccine 10 years after the primary immunization, typically without booster 

against pertussis over time (Berbers et al., 2009b; Cherry, 2005). Thus, regular 

immunization booster schedule for pertussis vaccine has been reinforced 

among the adults and adolescents in developing countries (Berbers et al., 

2009b). In contrary to the whole cell pertussis vaccine, the major component 

of acellular pertussis vaccines was limited to five B. pertussis virulence 

factors; FHA, PT, pertactin, fimbriae 2 and 3 subunit, hence resulting in a 

narrow, and specific immune response against the bacteria (He and Mertsola, 

2008). The relatively specific immune response against the five major 

virulence factors may drive the emergence of antigenic variants among the 

circulating B. pertussis strains, indicating the adaptative capability of B. 
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pertussis isolates to overcome the current vaccination niche (Berbers et al., 

2009b; He and Mertsola, 2008; Mooi et al., 2001).  

 

Antigenic divergence between B. pertussis vaccine strains and the 

circulating B. pertussis clinical isolates has been reported in vaccinated 

populations, with evidences pointing at genetic polymorphisms and allelic 

variation in the components of current accellular vaccines, mainly the genetic 

elements encoding PT and pertactin (Berbers et al., 2009a; Cassiday et al., 

2000; Gzyl et al., 2001; King et al., 2001; Mooi et al., 1998; Mosiej et al., 

2011). In particular, the immunological memory derived from the vaccine 

strain may not protect against the circulating B. pertussis strains that has 

undergone changes in their genetic elements (Gzyl et al., 2001; King et al., 

2001). The resurgence of pertussis in adults has also been attributed to 

improved disease surveillance and diagnosis methods; from culture to ELISA 

serology and the widespread use of PCR testing, which resulted in increased 

detection sensitivity and hence the number of cases being reported (Crowcroft 

and Pebody, 2006; Wendelboe and Van Rie, 2006). Factors that affect the 

epidemiological shift of pertussis remain a subject of debate and the current 

long-term goal focuses on developing a pertussis vaccine that is safe and 

confers lifelong immunity in children and adults.   

 

1.1.4 Virulence Determinants of B. pertussis  

 

The expression of the known virulence factors in B. pertussis is 

essentially governed by the BvgA/S two-component signaling system, which 
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consists of a sensor protein, BvgS and a cognate response regulator BvgA 

(Section 1.3). Based on our current understanding, B. pertussis BvgA/S 

regulated virulence determinants can be broadly classified into three groups; 

namely the toxins, autotransporters and adhesins In this section, we will 

discuss one major virulence determinant for each class, namely pertussis toxin 

(PT), the BrkA autotransporter and the filamentous hemagglutinin (FHA). .  

 

Production of toxins by B. pertussis typically results in respiratory 

disease manifestation in infected host through irritation of ciliated epithelial 

cells and the impairment of ciliary function in the respiratory tract. The 

surface of B. pertussis bacteria is coated with the heat stable 

lipopolysaccharide endotoxin. In addition, B. pertussis secretes several 

exotoxins, which have been shown to cause a variety of toxic effects. These 

include PT, an ADP-ribosyl-transferase that interferes with G-protein 

signaling (Finger and von Koenig, 1996; Katada et al., 1983), the adenylate 

cyclase (AC) toxin, which increases cAMP levels thereby inhibiting immune 

effector cell functions (Hanski, 1989), the tracheal cytotoxin (TCT), which 

causes local damage and extrusion of ciliated epithelia (Wilson et al., 1991) 

and the dermonecrotic toxin (DNT), which results in modification of GTPases 

and consequently tissue destruction (Fukui and Horiguchi, 2004). One of the 

main secreted exotoxins, PT comprises of five different subunits, namely the 

S2, S3, S4 and S5 subunits each with carbohydrate recognition domains that 

are capable of binding onto host cell surface receptors (van't Wout et al., 1992; 

Witvliet et al., 1989). The enzymatically active S1 subunit interferes with 

cellular GTP and G-protein signaling events (Carbonetti, 2010; Finger and von 
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Koenig, 1996). PT is transported across the bacterial outer membrane via type 

IV secretion system encoded by the ptl operon, which is located downstream 

the ptx genes (Weiss et al., 1993).  The ability for B. pertussis to adhere onto 

host surface is dependent on the production of PT, primarily the S2 and S3 

subunits (Tuomanen et al., 1985; van't Wout et al., 1992). 

 

The filamentous hemagglutinin (FHA) is a highly immunogenic, 220 

kDa protein, which serves as the dominant adhesin essential for the initial 

establishment of infection in Bordetella sp. Although it is not the sole adhesin 

in B. pertussis, deletion of FHA alone results in dramatic impairment of 

bacterial colonization in a mouse model of pertussis infection, implying the 

importance of FHA in colonization. Specifically the carbohydrate recognition 

domain (CRD) is crucial for the attachment of B. pertussis onto the respiratory 

tract of its infected host (Kimura et al., 1990; Relman et al., 1989). FHA also 

carries the glycosaminoglycan-binding site, which allows it to bind to 

sulphated glycolipids and heparin commonly found on the surfaces of various 

eukaryotic cells (Hannah et al., 1994; Menozzi et al., 1991b). In addition, the 

Arg-Gly-Asp (RGD) motif promotes bacterial adherence to macrophages and 

monocytes and possible other leukocytes via the leukocyte integrins (Ishibashi 

et al., 1994; Saukkonen et al., 1991). Initially, FHA is synthesized as a large 

360-kDa FhaB precursor in the cytoplasm and transported into the periplasmic 

space via the Sec secretion pathway (Chevalier et al., 2004). At the outer 

membrane, the large FhaB is proteolytically cleaved by SphB protease at the 

C-terminus end and processed to form the mature 220 kDA FHA adhesin 

protein (Coutte et al., 2001). Mature FHA is then secreted into the 
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extracellular milieu or remains associated to the surface of B. pertussis 

through a specialized translocation system at the outer membrane known as 

FhaC (Guedin et al., 2000; Jacob-Dubuisson et al., 2013; Jacob-Dubuisson et 

al., 2001). 

 

Proteins that belong to the autotransporter family typically mediate 

their own export across bacterial cell envelope. As a large protein superfamily, 

autotransporters comprise of an N-terminal passenger domain and a conserved 

C-terminal domain, which folds into a beta-barrel channel resulting in the 

formation of a secretion pore at the outer membrane (Shannon and Fernandez, 

1999). Most autotransporters are proteolytically cleaved, resulting in a 

processed alpha domain that is either secreted into the extracellular milieu via 

the beta-barrel channel or remain non-covalently associated to bacterial cell 

surface (Dautin and Bernstein, 2007; Fink et al., 2001; Girard and Mourez, 

2006; Oliver et al., 2003; Suhr et al., 1996). BrkA autotransporter, involved in 

serum resistance, for example, is expressed as a 103 kDa precursor in B. 

pertussis, which is processed to yield a 73 kDa passenger domain and a 30 

kDa beta-barrel channel (Dautin and Bernstein, 2007; Shannon and Fernandez, 

1999). While BrkA has been implicated in adherence to and invasion of host 

cells in vitro, it also inhibits the classical complement pathway and 

accumulation of complement C4 proteins, which ultimately protects the 

bacteria against complement-mediated killing (Barnes and Weiss, 2001). 

 

1.2 BACTERIAL POLYSACCHARIDE CAPSULES 

!
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1.2.1 Properties, Structure and Classification  

 

Polysaccharide capsules form a discrete, mesh-liked or slimy layer 

surrounding the outermost structure of some bacteria species, thereby 

mediating the initial direct contact between the bacteria and the extracellular 

environment. First discovered and visualized under the microscope in the early 

1900s through various conventional positive and negative staining methods 

(Gerstley and Morton, 1954; Moller, 1951; Novelli, 1953), the polysaccharide 

capsule has been described as “a gelatinous ground substance between the 

micrococci which agglomerates” as illustrated from one of the earliest 

observations on Streptococcus pneumoniae (Austrian, 2011). Increasing 

evidence of the presence of a gelatinous structure surrounding a 

microorganism has led to the isolation of the polysaccharide capsules and 

detailed study of its role in pathogenesis.  

 

Bacterial capsules consist of long polysaccharide chains made of 

smaller repeating units, whose composition varies largely among bacterial 

species and among serotypes within the same species. For instance, almost 80 

different polysaccharide capsules, also known as K antigens, have been 

reported and described for Escherichia coli, but not all capsulated serotypes 

lead to the same pathological consequences (Orskov and Orskov, 1992; 

Roberts, 1996; Whitfield, 2006). The diversity of bacterial polysaccharide 

macromolecules conveys a diverse virulent potential and is distinguished by 

the individual polysaccharide chains or monosaccharide units, which are made 

up either from carbohydrate or non-carbohydrate moieties (Greenfield et al., 
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2012; Roberts, 1996; Vann et al., 1981; Whitfield, 1995). In general, 

polysaccharide capsule polymers are made up of repeating monosaccharide 

units linked together by glycosidic bond forming either hetero-polymers or 

homo-polymer as exemplified by the α-(28)`-linked sialic acid capsule of E. 

coli K1 strain (Vann et al., 1997). The Vi antigen of Salmonella typhi is 

organized in a linear homo-polymer of α-(14)-linked N-acetyl 

galactosaminuronic acid with a variable O-acetylation at the carbon 3 position 

(Martin et al., 1967; Yang et al., 2011).  

 

Among different bacterial species, polysaccharide capsules are 

distinguished by the nature of their branching pattern, chemical linkages and 

chemical modifications (Bentley et al., 2006; Shu et al., 2009). Although the 

overall biological and chemical structure of a polysaccharide capsule 

determines the antibody-mediated immune responses against the bacteria, 

antigenically similar capsules do not necessarily generate the same response. 

Chemically identical polysaccharide capsules expressed in different bacteria 

species such as S. typhi Vi antigen and E. coli K1 antigen were able to elicit 

cross-reactive antibody responses (Szewczyk and Taylor, 1983), whereas the 

structurally identical polysaccharide capsules in S. pneumoniae and Group B 

Streptococcus generated distinct anti-polysaccharide capsule response 

(Arjunaraja et al., 2012), suggesting the unlimited functional diversity of the 

polysaccharide capsules in the bacteria kingdom.  

 

The polysaccharide capsules polymer chains are firmly associated onto 

the bacteria cell surface, whereas those that are loosely connected on the 
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surface and often secreted into the extracellular milieu are known as 

exopolysaccharide or extracellular polysaccharide capsules (Figure 1.1) 

(Cuthbertson et al., 2009). For example, S. typhi forms shapeless slimy 

extracellular layer and releases its polysaccharide content into the extracellular 

milieu with limited association onto its cell surface (Daniels et al., 1989). In 

contrast, the E. coli surface polysaccharide capsule polymers are packed in 

matrices and establish into a discrete capsular structure, enveloping the entire 

outermost surface of the bacteria (Cuthbertson et al., 2009). Surface anchored 

polysaccharide capsules can also associate or interact with bacterial surface 

macromolecules or lipids such as phospholipids and lipid-A molecules to form 

a complex structure known as glycoproteins and glycolipids respectively 

(Whitfield and Valvano, 1993). In addition, for some Gram-positive bacteria, 

polysaccharide capsules also form an integral part of the bacterial cell surface 

through covalent interaction with the outer peptidoglycan layer (Sorensen et 

al., 1990). 
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Figure 1.1: Morphology of (A) extracellular polysaccharide capsules in 
Klebsiella pneumoniae serotype K20 and (B) polysaccharide capsules in E. 
coli serotype K30.  

The surface capsules for both bacteria are labeled with cationized ferritin. 
Although both bacteria have identical repeat-unit polysaccharide structures, 
the capsules of E. coli retains most of the polymer in a well-defined structure 
but the capsules of K. pneumoniae has limited association on the bacteria 
surface as substantial amounts of polymer was dispersed at the extracellular 
meliue as evident by the black arrows in the above micrographs. Adapted with 
permission (Cuthbertson et al., 2009). 
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1.2.2 Biosynthesis and Assembly  

 

Genetic and biochemical evidences have ascertained that the 

biosynthesis and transport machinery of polysaccharide capsules are broadly 

similar across different bacteria species. Essentially, three types of 

polysaccharide biosynthesis and assembly apparatus have been described 

widely in the literature for both Gram-positive and Gram-negative bacteria; 

namely the Wzy-dependent system, ATP-binding cassette (ABC) transporter 

dependent system and the synthase dependent system (Figure 1.2) (Whitfield, 

2006; Whitney and Howell, 2013; Yother, 2011). The Wzy and synthase 

dependent systems are widely characterized in both Gram-positive and Gram 

negative bacteria, whereas the ABC-transporter dependent system is mainly 

associated with the transport of capsules in Gram-negative bacteria (Whitfield, 

2006; Yother, 2011). In the Wzy-dependent system, the repeating 

carbohydrates moieties are linked and assembled into polymers at the 

cytoplasmic face of the inner membrane (Figure 1.2). In contrast, the ABC-

dependent pathway is characterized by the ATP-binding cassette transporter 

system that directs the elongated carbohydrate moieties that were synthesized 

and assembled independently in the cytoplasm (Figure 1.2). 

 



Chapter 1: Introduction 

! 15!

!

Figure 1.2: Mechanism of polysaccharide biosynthesis and secretion by 
the Wzy/Wzx, ABC-transporter and synthase dependent pathway. 

Abbreviations: OPX, outer membrane polysaccharide export; PCP, 
polysaccharide copolymerase; TPR, tetratricopeptide repeat proteins; IM, 
inner membrane; PG, peptidoglycan sacculus; OM, outer membrane; c-di-
GMP, bis-(3′-5′)-cyclic dimeric guanosine monophosphate; ABC transporter, 
ATP-binding cassette transporter. Adapted with permission (Whitney and 
Howell, 2013). 
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The prototypical biosynthesis and assembly of polysaccharide capsules 

in Gram-negative bacteria are mainly based from the biosynthesis and 

assembly model of group or type 1, 2, 3, and 4 capsules in E. coli (Table 1.1) 

(Whitfield, 2006; Whitfield and Roberts, 1999). More than 80 different 

serotypes of E. coli capsules or K antigens were grouped and classified based 

on their biochemical composition, structural properties, regulation of 

expression (as described in Table 1.1) and as well as the sequences of the 

capsule gene clusters (Whitfield, 2006; Whitfield and Roberts, 1999). In 

general, the mechanisms of polysaccharide capsule biosynthesis and chain 

translocation requires multi-protein complexes for co-expression with O-

antigen and other carbohydrate moieties (Table 1.1). Biosynthesis usually 

takes place at the cytoplasm or at the cytoplasmic inner membrane face of the 

bacteria. Prior to polymer chain elongation, the pool of activated 

monophospho and/or diphospho-sugar precursors in the cytoplasm first 

assemble into a nascent polysaccharide at the cytoplasmic inter-face of the 

inner membrane by biosynthesis enzymes (Whitfield, 2006). Depending on the 

transporter system (Figure 1.2), the nascent polysaccharide chain grows 

successively with aid of enzymes for the addition of carbohydrate units or 

chemical groups at the reducing or non-reducing end of the polymers (Vimr 

and Steenbergen, 2009). Concurrently, a translocation protein complex 

spanning the entire cell wall will translocate the elongating mature polymer 

through the perisplasm and across the outer membrane to the bacterial cell 

surface, a process typically coupled with ATP hydrolysis for the ABC-

transporter system (Figure 1.2) (Whitfield, 2006). 
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 Group 
Characteristic 1 2 3 4 
Co-expressed 
with O 
serogroups 

Limited 
range 

Many Many Often O8, O9 
but sometimes 
none 

Co-expressed 
with colanic 
acid 

No Yes Yes Yes 

Terminal lipid 
moiety 

Lipid A-
core in 
KLPS; 
unknown 
for capsular 
K antigen 

α-Glycero-
phosphate 

α-Glycero- 
phosphate
? 

Lipid A-core 
in KLPS; 
unknown for 
capsular K 
antigen 

Polymerization 
system 

Wzy-
dependent 

Processive Processive
? 

Wzy-
dependent 

Trans-plasma 
membrane 
export 

Wzx ABC-2 
exporter 

ABC-2 
exporter? 

Wzx 

Translocation 
proteins 

Wza, Wzc KpsD, KpsE 
(KpsF?) 

KpsD, 
KpsE? 

Unknown 

Thermo-
regulated (not 
expressed below 
20°C) 

No Yes No No 

Positively 
regulated by the 
Rcs system 

Yes No No No 

Model system Serotype 
K30 

Serotype K1, 
K5 

Serotype 
K10, K54 

Serotype K40, 
0111 

Similar to Klebsiella  Neisseria, 
Haemophilus 

Neisseria, 
Haemophi
lus 

Many genera 

 

Table 1.1: Classification of E. coli capsules 

E. coli capsules were classified into type 1, 2, 3 and 4 based on their 
biochemical properties, polymerization and transport-export system. Table 
adapted and modified with permission (Whitfield and Roberts, 1999). (?) 
denotes possible association.  
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1.2.3 Bacteria Polysaccharide Capsules As Virulence Determinants  

 

Historically, the surface polysaccharide capsule was perceived as a 

hydrated shield that envelops the bacteria and protects it against external 

environmental threats, including the harsh effect of desiccation and drastic 

osmolarity changes (Gibson et al., 2006; Ophir and Gutnick, 1994). Protection 

against drastic external changes in their natural growth environment is 

particularly relevant for the survival of pathogens and transmission from one 

host to another. For many bacteria species, surface polysaccharide capsules 

also play a significant part in defense against classical host-mediated 

immunity and promote bacterial adherence onto biotic (host surfaces) and 

abiotic surfaces, which is often associated with biofilm development (Beloin 

et al., 2008; Costerton et al., 1981; Reisner et al., 2006).  

 

The later developmental stages of complex biofilm structures from a 

community of bacteria typically display enhanced resistance to antimicrobial 

agents and antibiotics treatment (Otto, 2006). Interspecies polysaccharide 

capsule-associated biofilm matrices reinforce the survival, colonization and 

invasion of pathogenic bacteria at the site of infection. The variability in 

carbohydrate and chain modifications are some of the biochemical aspects that 

drive the functional diversity of the polysaccharide capsules. Whilst certain 

capsules are associated with adherence as exemplified in K. pnenumoniae and 

S. pneumoniae on human respiratory epithelial cells (Favre-Bonte et al., 1999; 

Hammerschmidt et al., 2005), the surface capsules are also capable of masking 

surface adhesins, such as fimbriae, crucial for the attachment of the bacteria to 
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host cells (Favre-Bonte et al., 1999; Schembri et al., 2004). The K1 capsule of 

the uropathogenic E. coli promotes formation of intracellular bacterial 

communities consisting of polysaccharide-associated biofilm-like matrices 

within the cytosol of the bladder epithelium (Anderson et al., 2010), resulting 

in the development of severe and invasive urinary tract infection (Dautin and 

Bernstein, 2007). The E. coli intracellular bacterial communities in turn 

enhance bacteria proliferation at a distant site of infection, therefore resulting 

in the recurrence of UTI infection within the gut (Anderson et al., 2010; Goller 

and Seed, 2010).  

 

The polysaccharide capsules are also capable of subverting host 

immune recognition, thereby pertinently allowing bacteria to inhibit and evade 

the host immune defense mechanisms. For instance, the surface capsule of 

Neisseria meningitides protects the bacteria against phagocytosis by inhibiting 

adherence and uptake into human dendritic cells (Unkmeir et al., 2002). Such 

anti-phagocytic strategies favor the capsulated bacteria to survive, persist and 

disseminate within their infected host. This probably explains why capsulated 

bacteria such as K. pneumoniae and Group A Streptococcus, N. meningitides 

and Staphylococcus aureus are able to circumvent host defenses and are able 

to invade host tissues and bloodstream (Barroso et al., 2013; Schrager et al., 

1996).  

 

The Vi polysaccharide of Salmonella enterica serotype Typhi or 

commonly known as Salmonella typhi is one of the major virulence 

determinants responsible for typhoid fever. The Vi polysaccharide or Vi 
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antigen is a linear homopolymer of α-1,4-linked N-acetylgalactosaminuronate 

(GalNAcA) with variable O-acetylation at the carbon 3 position; a chemical 

modification that is targeted by majority of the anti-Vi antibody response 

(Robbins and Robbins, 1984). The surface Vi antigen is one of the major 

virulent factors for S. typhi, which mediates enhanced resistance to innate 

immune response including phagocytosis and host complement-mediated 

killing (Robbins and Robbins, 1984; Wilson et al., 2011). It has also been 

proposed that the capsular Vi antigen prevents host-pathogen recognition 

event by concealing bacterial LPS recognition by the host pattern recognition 

receptors (Wilson et al., 2008).  

 

1.2.4 Bacteria Polysaccharide Capsules As Subunit Vaccines  

 

 Advances in the knowledge of polysaccharide capsules structure, 

biochemical properties and host-mediated immune responses ensued the 

development of vaccines targeting the polysaccharide capsules of pathogenic 

bacteria. Various polysaccharide capsule-based vaccines have been developed 

to protect against deadly bacterial diseases including those caused by 

pneumococci (S. pneumoniae), menigococci (N. menigitidis), Haemophilus 

influenzae serogroup b (Hib), group B streptococci (Streptococcus agalactiae) 

and S. typhi. Immune response, specifically the activation of B-lymphocytes 

against the large polymeric polysaccharide capsules is largely limited to T-

lymphocyte independent mechanisms (Kelly et al., 2004; Weintraub, 2003). 

The lack of T-lymphocyte memory against capsules is associated with poor 

immunogenicity, especially in infants and adolescents due to under-developed 
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B-lymphocytes subpopulation and T-regulatory cells (Weintraub, 2003). To 

circumvent such immune limitation in children, polysaccharide capsules based 

vaccines are generally conjugated with protein carriers to enhance 

immunogenicity and confer stronger protection against encapsulated pathogen.  

 

Whilst the type B polysaccharide capsules of Hib are poorly 

immunogenic, covalent conjugation with a protein carrier such as diphtheria 

and tetanus toxoid successfully boosted T-cell immunity and strong antibody 

responses against Hib polysaccharide capsules (Anderson, 1983; Schneerson 

et al., 1980). The strong efficacy of Hib polysaccharide capsule-protein 

conjugated vaccine successfully reduced Hib infection among adolescents for 

the past 20 years. Similar success was also achieved with the diphtheria 

toxoid-conjugated meningococcal polysaccharide capsule vaccine used for the 

prevention of N. menigitidis infection among adolescents (Anderson et al., 

1994). The currently available diphtheria toxoid-conjugated tetravalent 

polysaccharide vaccine protects against four different serotypes of N. 

menigitidis (Campbell et al., 2002; Kimmel, 2008). Like many other T-

lymphocyte independent polysaccharide capsule based vaccine, the purified S. 

typhi Vi capsular polysaccharide (TYPHIM ViTM) is only limited for active 

immunization against typhoid fever in children more than two years of age 

(Pulickal and Pollard, 2007). To protect children below two years of age, the 

principle of chemical conjugation between a carrier protein and the capsule Vi 

antigen was recently developed and subjected to clinical trials. This includes 

Vi-conjugates with the recombinant, inactivated exoprotein A of 

Pseudomonas aeruginosa, which confers good protection against typhoid 
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fever in adolescents (Lin et al., 2001; Thiem et al., 2011) and as well Vi-

conjugates with diphtheria toxoid (Cui et al., 2010; Rondini et al., 2011). 

 

1.2.5 Genetic Regulation of Bacterial Capsule Expression 

!

The regulatory system that directs the expression of polysaccharide 

capsule in pathogenic bacteria has been characterized in E. coli and S. typhi, as 

they are both regulated by the same Rcs two-component regulatory system. 

Detailed analysis of effectors and regulators involved in the control of 

transcriptional activity of the capsule locus and its implication in virulence has 

been extensively reported for both bacteria. 

 

1.2.5.1 Genetic regulation of extracellular polysaccharide capsule 

synthesis in Escherichia coli  

 

Over 80 chemically distinct capsular polysaccharides or K antigens 

were reported and characterized in E. coli alone, and they are collectively 

grouped in four different categories. As described in section 1.1.2, the process 

of biosynthesis, elongation and translocation at the bacterial surface of group 2 

and 3 capsules typically requires expenditure of energy. Therefore, production 

of polysaccharide capsule at the protein and transcriptional levels are tightly 

regulated and modulated depending on the environmental conditions 

encountered by the bacteria.  
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Expression of E. coli group 2 capsules is essentially thermo-regulated, 

with up-regulation of region 1 and 3 at normal physiological temperature of 

37°C, but not at temperature below 18°C (Cieslewicz and Vimr, 1996; 

Whitfield, 2006). Region 1 and 3 denote the conserved group 2 gene clusters 

involved in the transport and modification of repeating units of the 

polysaccharide polymers (Roberts, 1996; Whitfield, 2006). Several 

overlapping regulatory circuits have been shown to mediate the regulation of 

temperature sensitive capsule promoter in E. coli. The transcriptional activator 

RfaH is necessary for E. coli capsule expression at 37°C (Stevens et al., 1994), 

whereas the H-NS and BipA regulatory proteins play a dual role; both are 

necessary for activation of the capsule expression at 37°C and repression at 

18°C (Rowe et al., 2000). Another transcriptional regulator known as SlyA 

interacts with H-NS regulator to promote transcription of E. coli K5 capsule 

gene cluster at 37°C.  

 

Different serotypes of encapsulated E. coli regulate their capsule 

differently and involve different molecular events and different regulators. 

The major exopolysaccharide capsule, also known as colanic acid in E. coli 

K12, is essentially regulated by the Rcs two-component regulatory system. 

Members of the Rcs signaling pathway consist of RcsC, a trans-membrane 

sensor kinase, and RcsB, the cystoplasmic response regulator (Figure 1.3) 

(Gottesman and Stout, 1991; Majdalani et al., 2005). The signal output of 

RcsS requires RcsD, a phospho-transfer protein formerly known as YojN, to 

activate the response regulator RcsB via a phospho-transfer reaction (Figure 

1.3) (Takeda et al., 2001). Transcriptional regulation of the cps gene cluster in 
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E. coli K12 strain depends on an additional cytoplasmic regulator known as 

RcsA, which interacts with the response regulator RcsB to activate 

transcription of cps operon (Figure 1.3) (Majdalani et al., 2005). 

Phosphorylated RcsB either homodimerizes to activate a certain group of 

genes or heterodimerizes with the accumulating pool of RcsA to activate the 

capsule cps operon (Figure 1.3), resulting in over-expression of colanic acid 

and mucoid phenotype (Gottesman and Stout, 1991; Majdalani and 

Gottesman, 2005). RcsF, an alternative sensor kinase for RcsB located at the 

outer membrane transduces extracellular signals to RcsC in an unknown 

mechanism (Figure 1.3) (Majdalani et al., 2005). At temperature below 20°C 

and in the presence of divalent cations, the Rcs signaling system is activated 

and hence resulting in increased capsule expression (Hagiwara et al., 2003). 

Intriguingly, a regulatory cross-talk between the Rcs system and PhoP/Q 

signaling systems has been described for the regulation of extracellular 

polysaccharide capsule expression in E. coli in response to the in vitro 

presence of divalent cations (Hagiwara et al., 2003). The model of Rcs 

signaling system in regulating the capsule expression illustrates the 

complexity of signal transduction mechanisms that are responsible for the 

flexibility and adaptability of E. coli in response to its variable host 

microenvironments.  
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!

Figure 1.3: Model of Rcs signaling cascade in E. coli K12. 

The RcsB/C two-component system, including the RcsD phosphotransfer 
protein, RcsF sensor at the outer membrane and RcsA response regulator 
encompassed the complexity of the Rcs signaling mechanism in E. coli. 
Transcriptional regulation of the capsule cps gene cluster encoding the colanic 
acid polysaccharide capsule is essentially modulated by the Rcs signaling 
system. Figure adapted with permission (Majdalani and Gottesman, 2005).  
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1.2.5.2 Genetic regulation of capsule synthesis in Salmonella typhi  

 

S. typhi, the agent of typhoid fever, expresses the Vi polysaccharide 

capsule antigen or Vi antigen at its surface, which is an important virulent 

determinant for the bacteria during infection. Sequencing of the S. typhi 

genome revealed a large 134 kb pathogenicity island implicated in virulence, 

which inlcudes the locus required for biosynthesis and export of Vi antigen 

(Hashimoto et al., 1993; Seth-Smith, 2008). Expression of Vi antigen in S. 

typhi involves two genetic loci termed as viaA and viaB. The viaA locus, 

which encodes the TviA protein regulatory protein, is found in many other 

Salmonella serotypes, including in the Vi-negative strains and in other bacteria 

such as E. coli. The viaB operon, present only in the Vi-expressing strains, 

contains ten ORFs necessary for biosynthesis and export of Vi antigen to the 

cell surface (tviB to vexE) (Figure 1.4) (Hashimoto et al., 1991; Hashimoto et 

al., 1993; Kolyva et al., 1992).  

 

Interestingly, it has been shown that a similar RcsB/C regulatory 

system involved in colanic acid synthesis in E. coli (section 1.1.5.1) plays a 

role in activating the viaA locus in S. typhi under low osmolarity condition 

(Figure 1.4) (Houng et al., 1992; Virlogeux et al., 1996). The product of viaA 

locus, TviA positively regulates its own expression and acts as an auxiliary 

protein by interacting with RcsB, the response regulator of RcsB/C system in 

S. typhi, where both protein cooperatively modulate the expression of Vi 

antigen at the viaB operon, flagella and invasion proteins (Figure 1.4) (Arricau 

et al., 1998; Houng et al., 1992; Majdalani et al., 2005; Virlogeux et al., 1996). 
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 Interestingly, the osmo- sensitive OmpR/EnvZ two-component system 

in S. typhi has been shown to modulate Vi antigen expression TviA (Figure 

1.4) (Pickard et al., 1994). In addition, the alternative sigma factor RpoS, a 

stress response master regulator required for S. typhi survival under 

unfavorable conditions, has also been described as a repressor for Vi-antigen 

biosynthesis through the RcsB/C pathway (Figure 1.4) (Santander et al., 2008; 

Santander et al., 2007). Given the invasive properties of S. typhi, it is not 

surprising that this bacteria encounters a great diversity of microenvironments 

within the host and that various regulatory systems are involved in the 

expression of Vi antigen, leading to the complexity of the capsule synthesis 

regulation.  
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!
Figure 1.4: Regulatory network of Vi polysaccharide expression by Rcs 
and Enz/OmpR signaling system. 

The Rcs and OmpR/EnvZ two-component regulatory system are involved in 
the regulation of Vi antigen expression in S. typhi. Low osmolarity leads to an 
increased level of Vi antigen expression via TviA activation, whereas high 
osmolarity results in a negative regulation of Vi antigen expression via 
inhibition of rcsC expression. OM: Outer membrane; P: Periplasm; IM: Inner 
membrane. Figure adapted with permission (Santander et al., 2008). 
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1.2.5.3 Genetic regulation of polysaccharide capsule expression during 

infection 

 
 

Precise and temporal regulation of the capsule expression during the 

course of infection is crucial for bacterial adaptive response within the host 

environment. Regulation of polysaccharide capsule expression in vivo has 

been a topic of interest as it suggests the flexibility of bacterial regulons in 

responding to host factors, which in turn promotes bacterial survival and 

persistence. For instance, expression of S. typhi Vi-antigen biosynthesis gene, 

tviB was significantly up-regulated during invasion of intestinal epithelial cells 

in vitro (Tran et al., 2010). Moreover, in an in vivo bovine model of S. typhi 

infection, expression of Vi capsular antigen was shown to be induced upon 

invasion at the ileal mucosa (Tran et al., 2010). Over-expression of Vi antigen 

renders S. typhi less adherent and enhances phagocytic killing whereas, an 

optimal expression of Vi antigen is necessary for evasion of the host immune 

response, suggesting that a tightly controlled regulation of Vi antigen 

expression at different sites and times during infection is crucial for S. typhi 

pathogenesis (Janis et al., 2011; Robbins and Robbins, 1984; Waxin et al., 

1993).  

 

For group A Streptococcus, the expression of polysaccharide capsule 

was found immediately up-regulated at early stage of mucosal colonization in 

mice, which correlates with the bacterial enhanced resistance to opsonization 

and phagocytic killing by the host immune cells (Dale et al., 1996; Gryllos et 

al., 2001). In other pathogenic bacteria such as N. meningitides, expression of 
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the polysaccharide capsule was observed to be down-regulated at early stage 

of infection, upon interaction with epithelial cells to facilitate adherence and 

invasion of the bacteria (Deghmane et al., 2002; Grifantini et al., 2002). The 

remarkable flexibility of pathogenic bacteria to dynamically modulate its 

polysaccharide capsule expression highlights the basis of bacterial adaptability 

within its infected host environment and the important role played by the 

polysaccharide capsules for optimal infection. 

 

1.3 POLYSACCHARIDE CAPSULE OF BORDETELLA PERTUSSIS 

!
1.3.1 Sequencing and Characterization of The Capsule Operon  

 

Like many other encapsulated bacteria, the capsule locus of B. 

pertussis is organized in a single operon, which comprises of three genetic 

regions with ten open reading frames (ORF) involved in polysialic acid 

transport (black arrows), phospholipid modification/export (hashed arrows) 

and biosynthesis (open arrows) that encode a putative type II polysaccharide 

capsule (Figure 1.5) (Hot et al., 2003; Parkhill et al., 2003).  

 

The first and second genes of the B. pertussis capsule operon, kpsM 

and kpsT encode the putative polysialic acid transport and polysialic acid 

transport ATP-binding proteins respectively (Parkhill et al., 2003). The kpsM 

and kpsT genes are organized as a single transcriptional unit with an 

overlapping kpsM stop codon and kpsT start codon, implying that the two gene 

products are likely to be expressed in equal amounts. The polysialic acid 
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capsules are a subclass of surface capsules that are well characterized for their 

role in pathogenesis especially in E. coli K1 strain (Bliss and Silver, 1996). In 

E. coli K1, the polysialic acid chain translocation across the inner membrane 

is facilitated by the KpsMT transporter complex at the inner membrane. The 

KpsMT complex is only functional upon interaction of KpsT with KpsM 

coupled with the binding of ATP to KpsT (Figure 1.6) (Bliss et al., 1996; 

Nsahlai and Silver, 2003; Pavelka et al., 1994; Pavelka et al., 1991). Binding 

of ATP to KpsT leads to a conformational change such that the polysialic acid 

associated domain on KpsT can be inserted into the KpsM transporter (Bliss 

and Silver, 1996; Nsahlai and Silver, 2003). This compelling evidence 

suggests that KpsM/KpsT transporters play a central role to the functioning of 

the entire polysaccharide capsule biosynthetic, transport and export machinery 

in E. coli (Bliss and Silver, 1996). The presence of motifs conserved in 

KpsM/T from B. pertussis, E. coli and H. influenzae suggests that KpsM and 

KpsT produced in B. pertussis are likely to form KpsM/T complexes involved 

in ATP-dependent active transport of a polymers.  

 

Predictive sequence analysis of the third ORF in the capsule operon, 

kpsE reveals a putative polysaccharide capsule export inner membrane protein 

that resembles the polysaccharide capsule export KpsE protein of E. coli, the 

CtrB protein of N. meningitides and BexC of H. influenzea. KpsE is located at 

the inner membrane of E. coli, has significant exposure at the periplasmic face 

and directs the export of polysaccharide capsule across the bacterial inner 

membrane (Figure 1.6) (Bronner et al., 1993a; Rosenow et al., 1995). 

Moreover, it has been proposed that KpsE functions in concert with the 
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specialized ABC transporters KpsM and KpsT for a proper translocation of 

polymers across the inner membrane to the periplasmic face (Figure 1.6) 

(Higgins et al., 1990; Rosenow et al., 1995). 

 

The predicted products encoded by the capsular biosynthesis genes 

(Figure 1.5) are homologous to the S. typhi Vi capsular antigen biosynthesis 

enzymes, in particular WbpT and VipC display 33.15% and 23%  homology 

to S. typhi Vi polysaccharide biosynthesis protein TviE and TviD respectively. 

This implies that the products of the capsule locus may be antigenically 

similar to the N-acetyl galactosaminuronic acid Vi antigen polymer. Similar to 

S. typi TviE, WbpT harbors a conserved glycosyltransferease domain, which 

catalyzes the transfer of sugar moieties from activated donor to a specific 

acceptor ranging from lipid, protein or another carbohydrate compound via 

glcosidic bonds (Zhang et al., 2006). These proteins usually transfer UDP, 

ADP, or GDP linked sugars to a variety of substrates and are widely involved 

in the biosynthesis of polysaccharides (Zhang et al., 2006). Little is known 

about the role and function of TviD protein except that a functional TviD is 

required for Vi antigen synthesis in S. typhi (Virlogeux et al., 1995).  

 

In B. pertussis, the central part of the locus (BP1624-BP1631) is intact, 

but the 3' region underwent an inversion event and an insertional sequence 

element-mediated rearrangement, which consists of genes involved in 

export/modification. Therefore, it has been speculated that the capsule genetic 

locus is non-functional in B. pertussis Tahoma I strain due the 
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abovementioned mutations end of the locus (black cross) (Figure 1.5) (Parkhill 

et al., 2003). 

 

!
Figure 1.5: The B. pertussis capsule operon. 

The capsule operon of B. pertussis regulated under the capsule promoter is as 
shown. Black cross represents mutational insertion found at the 3’ end of the 
opeon. Black, hashed and white arrows represent genes involved in 
polysaccharide capsule transport, polysaccharide modification/translocation 
and polysaccharide biosynthesis respectively.  
 

 

 

                       !

Figure 1.6: A model of biosynthesis and assembly of group II capsules in 
E. coli. 

In this model, KpsT associate with polysialic acid polymers and translocate it 
via the ABC transporter complex; KpsM and KpsT at the inner membrane. 
The transport requires ATP expenditure. Translocation across the periplasm 
requires KpsE, possibly function as an adaptor protein. Figure adapted with 
permission (Whitfield, 2006).   
 

!

Inner 
membrane 
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1.3.2 B. pertussis Capsule Controversy 

 

Earlier literature has reported that B. pertussis is capsulated by direct 

visualization using modified Wright’s staining on virulent and avirulent strains 

(Lawson, 1939; Ungar et al., 1954). Nevertheless, the authors also noted that 

the capsular structure observed could not be distinguished from extracellular 

slime layer, thus raising doubts on the significance of this structure in B. 

pertussis (Ungar et al., 1954). Later on, staining with calcofluor exo-

polysaccharide dye revealed that virulent B. pertussis may produce a surface 

capsule that is polysaccharide in nature (Weiss et al., 1989). However, 

calcofluor stains for all types of polysaccharides and cellulose, and thus they 

are considered non-specific dyes in detecting capsular polysaccharides. 

Moreover, conventional capsule stain India ink was unable to conclusively 

reveal the presence of a capsule in B. pertussis. Due to the lack of a capsule-

deficient B. pertussis mutant in all the staining approaches above mentioned it 

is not possible to conclusively demonstrate the presence of a polysaccharide 

capsule produced at the surface of B. pertussis bacteria. Since then, no further 

studies have been reported on the characterization and isolation of the B. 

pertussis polysaccharide capsule.  

 

Transcriptional fusion studies indicated that the B. pertussis capsule 

locus belongs to a new class of vrgs (Antoine et al., 2000), with similar 

modulating profile compared to the group of classical bvg-repressed genes 

vrg6, vrg18, vrg24, vrg53 (Chapter 1.4.1.3) (Beattie et al., 1990; Beattie et al., 

1993). Transcription of the capsule locus was being repressed in the Bvg+ 
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phase but elevated in the presence of MgSO4 in Bvg- phase (Chapter 1.4.1.4) 

(Antoine et al., 2000). Whereas the capsule operon is intact in B. 

bronchiseptica, the genes at the 3’ end of the capsule operon that are involved 

in export/modification of the polysaccharide capsule across the cell wall are 

interrupted in B. pertussis (Parkhill et al., 2003). This observation has led to 

the assumption that B. pertussis is unable to produce an intact polysaccharide 

capsule which thus appeared to be dispensable for pathogenesis in mammalian 

hosts. Furthermore, the reduced expression of this locus in Bvg+ phase virulent 

B. pertussis also supports that the capsule may not be necessary for bacterial 

virulence in Bvg+ phase (Antoine et al., 2000). The controversy regarding the 

presence and functional properties of a polysaccharide capsule in B. pertussis 

has thus remains, which prompted us to undertake a comprehensive study that 

addressed the production and the role of the polysaccharide capsule in 

pertussis pathogenesis.  

 

1.3.3 Biofilm Structures on Bordetella 

!

The phenomenon of biofilm formation in Bordetella genus has been 

recently reported. Several groups have presented a phenotypic view of the 

formation of biofilm structures in vitro, primarily in the broad host range 

pathogen, B. bronchipseptica and the human pathogen, B. pertussis (Irie et al., 

2004; Mishra et al., 2005; Serra et al., 2007). These studies indicated that 

biofilm formation is dominant in Bvg+ and Bvgi phase, but not in Bvg- phase 

bacteria (Irie et al., 2004; Mishra et al., 2005). Irie and colleagues also 

suggested that co-existing adhesins FHA and fimbriae are necessary for 
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maximum biofilm formation in B. bronchiseptica and that formation of 

biofilm is growth phase-dependent, and particularly increased when bacteria 

reach the stationary phase (Irie et al., 2004; Irie et al., 2006). Although the 

expression of the biofilm-associated carbohydrate components is Bvg-

independent, it appears that the BvgA/S two-component contributes to biofilm 

formation via its regulation of FHA and fimbriae expression (Irie et al., 2006), 

suggesting that a network of one or more macromolecules are involved in the 

formation of Bordetella biofilms.  

 

The genetic element responsible for the biofilm formation was first 

reported in B. bronchispetica and it is known as the Bordetella polysaccharide 

locus or bpsABCD locus, which displays significant sequence similarities with 

the pgaABCD locus in E. coli responsible for the synthesis of poly!β!

1,6!N!acetyl!D-glucosamine (Parise et al., 2007). The nature of B. 

bronchiseptica biofilm is antigenically similar to the extracellular poly!β!

1,6!N!acetyl!D-glucosamine-like material structure which function as surface 

polysaccharide adhesin in E. coli (Parise et al., 2007). Impairment in biofilm 

production in both B. bronchiseptica and B. pertussis due to mutational 

deletion within the bps locus resulted in a reduced bacterial adherence to 

murine nasal cavity and trachea whereas the colonization of murine lungs was 

not affected (Conover et al., 2010; Sloan et al., 2007). The B. bronchiseptica 

bps locus was annotated as BB1769 (bpsA), BB1768 (bpsB) and BB1767 

(bpsC), which is located way upstream of its putative polysaccharide capsule 

locus (BB2918-BB2934). Similarly, the B. pertussis bps locus (BP1942-

BP1944) is physically distinct from the polysaccharide capsule locus (section 
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1.4.1). It was also reported that expression of the bps locus is not under the 

regulation of the BvgA/S two-component system (Conover et al., 2012; Parise 

et al., 2007; Parkhill et al., 2003). Therefore, the biofilm structures observed in 

B. bronchisptica and B. pertussis are independent from the products of the 

capsule locus.  

 

1.3.4 Evidence For An Intact Pertussis Capsule  

 

By constructing a B. pertussis Tohama I derivative mutant deleted for 

the entire 10 kb capsule operon (Parkhill et al., 2003), our laboratory has 

recently demonstrated that B. pertussis BPSM strain produces an intact 

polysaccharide capsule at its bacterial surface using Alcian blue staining 

visualized by transmission electron microscopy (Figure 1.7) and immuno-

detection methods (Neo et al., 2010). The fact that a greater signal was 

obtained when B. pertussis bacteria were grown in Bvg- phase further supports 

that the capsule locus belongs to the family of vrgs (Neo et al., 2010). We 

termed the polysaccharide capsule of B. pertussis as “microcapsule” as it can 

only be visualized by TEM upon Acian blue staining, but not by conventional 

staining and/or light microscopy. Our findings supported earlier studies 

reporting B. pertussis as a capsulated microorganism (Lawson, 1940; Neo et 

al., 2010; Weiss et al., 1989).  

 

We also demonstrated that the B. pertussis capsular polysaccharide is 

not involved in classical capsule-mediated defense mechanisms, including 

adherence to mammalian host cell, complement-mediated killing and 
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antimicrobial attack (Neo et al., 2010). The B. pertussis capsule operon 

belongs to the vrg family with maximal expression in Bvg- phase (Antoine et 

al., 2000; Hot et al., 2003). Despite being categorized as a vrg family member, 

we and others have observed that the capsule operon of B. pertussis was 

transcriptionally active with basal expression detected in Bvg+ phase bacteria 

(Nakamura et al., 2006; Neo et al., 2010). The fact that the capsule locus is 

expressed in virulent Bvg+ phase suggests that this locus may play a role in 

pertussis pathogenesis.  

!
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Figure 1.7: Visualization of the B. pertussis polysaccharide capsule by 
transmission electron microscopy.  
 
Wild-type B. pertussis BPSM and KOcaps bacteria grown in Bvg- phase 
conditions were fixed, stained with alcian blue, and processed for analysis by 
transmission electron microscopy. Black scale bar on the bottom right of each 
figures represent 100 nm. The images were captured at x120,000 
magnification and x100,000 (for KOcaps on the lower right panel). White 
arrowhead shows the surface microcapsule. Figure adapted with permission 
from Elsevier (Neo et al., 2010).  
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1.4 TWO-COMPONENT REGULATORY SYSTEM 

!
1.4.1 The bvg Regulon in B. pertussis 

!
1.4.1.1 Structure and function of BvgS 

!

BvgS is the 136 kDa virulence sensor protein and a member of the 

BvgA/S two-component system signaling in B. pertussis. The bvg locus was 

first identified as a virulence or vir locus crucial for maintaining B. pertussis 

virulent phenotype in vitro (Weiss and Falkow, 1984). It was later described in 

the late 1980s as the single genetic locus responsible for the regulation of the 

expression of major virulence factors in Bordetella sp. such as FHA, PT, AC 

toxin and DNT (Arico et al., 1989; Stibitz et al., 1989; Stibitz et al., 1988; 

Stibitz and Yang, 1991). The bvg locus encodes the BvgA/S two-component 

system, which comprises of BvgA protein, a DNA-binding transcriptional 

regulator and BvgS, the virulence sensor protein (Arico et al., 1989). 

Predictive sequence analysis suggests that bvg locus belongs to the family of 

environmentally sensitive bacterial regulatory systems involved in signal 

transduction in response to environmental stimuli (Ronson et al., 1987). 

Earlier findings have suggested that the BvgA/S system is sensitive to certain 

in vitro stimuli, such as changes in temperature and the presence of salts, for 

instance MgSO4 and nicotinic acid (Melton and Weiss, 1989; Miller et al., 

1989; Stibitz et al., 1988; Weiss and Falkow, 1984). Genetic inactivation on 

the bvgS locus demonstrated that a functional BvgS sensor is absolutely 

necessary for a full transcriptional expression of virulence factors in B. 
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pertussis thus conferring a virulent phenotype (Arico et al., 1989; Miller et al., 

1989; Weiss and Falkow, 1984). 

 

The structural features of BvgS protein comprise of unique multi 

domains segments corresponding to a histidine kinase sensor (Arico et al., 

1989). The BvgS sensor is considered an “unorthodox” histidine sensor 

kinase, as it has a four-step His-Asp-His-Asp phosphorelay transfer as 

opposed to a conventional histidine kinase sensor ubiquitously found in many 

Gram-negative bacteria comprising of two or three-step phosphorelay transfer 

mechanisms (Figure 1.8) (Arico et al., 1989; Stibitz and Yang, 1991; Stock et 

al., 2000). The amino acid sequence at the N-terminal end of BvgS contains 

consensus signal peptide, which harbors the Ala-Gln-Ala signal peptidase 

cleavage site (Ji et al., 1994; Stibitz and Yang, 1991). Adjacent to the signal 

peptide is the first trans-membrane domain of BvgS, transversing the inner 

membrane of B. pertussis in a helical manner, thus supporting the sub-cellular 

localization of BvgS at the inner membrane of the bacteria (Stibitz and Yang, 

1991). This is immediately followed by a large periplasmic domain folding 

into two tandem solute-binding cavities or grooves, presently known as the 

Venus Fly Trap 1 and 2 (VFT1 and VFT2) domains (Figure 1.8) (Herrou et 

al., 2009).  

 

The two VFT domains of BvgS have recently been characterized; they 

share sequence homology with bacterial solute-binding proteins and the 

periplasmic domain is apparently sensitive to BvgS modulators in vitro 

(Herrou et al., 2010; Martinez de Tejada et al., 1996). The ligand-binding 
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cavity within the VFT domains confer a hinge-bending motion; whereby it can 

either adopt an “open” or “close” ligand-binding pocket or cavity 

conformation, thus restricting the binding of specific solute(s) within the 

cavity (Herrou et al., 2010; Herrou et al., 2009; Quiocho and Ledvina, 1996). 

While VFT1 domain is insensitive to BvgS modulators, the VFT2 domain has 

been shown to display a high binding affinity towards a range of BvgS 

modulators, including nicotinic acid (Herrou et al., 2010). The flexibility of 

VFT ligand-binding cavity, and hence as the name “Flytrap” suggests, allows 

for a rapid response to environmental ligands. Unlike common solute-binding 

proteins for which binding of extracellular ligands or agonists at the 

periplasmic receptor results in a close conformational structure (Quiocho and 

Ledvina, 1996), BvgS VFT2 is by default active and adopts a close 

conformation even in the absence of ligands or signals (Herrou et al., 2010). It 

has been proposed that binding of negative signal ligands or antagonists from 

the milieu into VFT2 clef destabilizes and modifies the entire conformation of 

BvgS, resulting in an inactive sensor (Herrou et al., 2010). The unusually 

strong positive electrostatic potential within VFT2 cavity possibly explains for 

the paradoxical nature of this domain in attracting opposite, negatively 

charged organic carboxylates or inorganic ions (Herrou et al., 2010).  

 

Mutations within the PAS domain, or formerly known as the linker 

region located immediately after the second trans-membrane domain (Figure 

1.8), renders BvgS insensitive to environmental modulators, leading to the 

isolation of Bvg-constitutive mutants (Goyard et al., 1994; Manetti et al., 

1994; Miller et al., 1992). Although the exact function of PAS domain in B. 
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pertussis is relatively uncharacterized, however by homology, PAS domain in 

most Gram-negative bacteria responds to oxygen concentrations, redox 

potential, light and small ligands (Taylor and Zhulin, 1999). Mutations at the 

BvgS PAS domain (linker region) are dominant over specific mutations at the 

BvgS periplasmic domain (Goyard et al., 1994; Manetti et al., 1994; Miller et 

al., 1992), but this does not exclude the importance of the periplasmic domain, 

including the tandem VFTs domains in stimulus perception. It has been 

recently shown that the integrity of PAS domain of B. pertussis is required for 

communication of signals from the periplasmic to the downstream kinase 

domain of BvgS (Dupre et al., 2013).  

 

A signal integration model has been suggested for B. pertussis by 

which the periplasmic VFT domain initially perceive extracellular signals, 

while the PAS domain transduces the signal recognition events or information 

to the cytoplasmic histidine-kinase (HK) domain, also known as transmitter 

domain, thus initiating the autophosphorylation activity at the His residue on 

the HK domain (Herrou et al., 2010; Herrou et al., 2009; Martinez de Tejada 

et al., 1996). Moreover, biochemical and structural study in E. coli expression 

system reported that dimerization of BvgS takes place at the HK domain, 

which is a common dimerization interface domain for a classical two-

component system and at the receiver-output domain (Figure 1.8) (Beier et al., 

1995). Reconstitution of active phosphotransfer reaction in trans between 

BvgS domains further supports the dimerization capacity of BvgS in vivo 

(Beier et al., 1995; Perraud et al., 2000). Dimerization and higher order 

oligomerization of signaling complexes in general is important for intrinsic 
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phospho-transfer activity and activation of downstream regulator proteins 

(Maeda et al., 2006; Scheu et al., 2010).    

 

The phosphorylation event is successfully transferred downstream 

towards the C-terminal end of BvgS; from histidine-kinase domain to the Asp 

residue on the receiver domain, and next to the His residue on the histidine 

phosphotransfer (Hpt) domain and finally to the Asp residue on the receiver 

domain of BvgA response regulator (Figure 1.8) (Uhl and Miller, 1994). The 

primary output of such phosphorelay mechanism ultimately determines the B. 

pertussis virulence genes expression profile and consequently the virulent 

phenotype of the bacteria.   
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Figure 1.8: Model of an "unorthodox" BvgA/S two-component system in 
B. pertussis. 

The BvgA/S two-component system of B. pertussis, when in an active form, 
participates in a four-step phosphorelay event on B. pertussis BvgS sensor. 
The putative signal perception domain comprised of the periplasmic Venus 
flytrap domains, namely VFT1 and VFT2 domain and the cytoplasmic PAS 
domain. His-Kin denotes the cytoplasmic histidine-kinase and dimerization 
domain where autophosphoylation occurs, similar to a classical two-
component system. Following the autophosphorylation event at the His 
residue on His-Kin domain, the phosphate group is transferred to Asp residue 
on downstream receiver domain and then to the His residue on Hpt domain. 
Finally the phosphate group is transferred to Asp residue on the receiver 
domain of BvgA response regulator.  



Chapter 1: Introduction 

! 46!

!
1.4.1.2 Structure and function of BvgA 

!

As the response regulator or the final phosphate receiver for the 

BvgA/S two-component system, phosphorylation of BvgA would ultimately 

activate its function thus influencing the overall transcription of a group of 

genes known as bvg-regulated genes in B. pertussis (Roy and Falkow, 1991; 

Uhl and Miller, 1994). Phosphorylated BvgA (P-BvgA) auto-regulates its own 

transcription at the bvg promoter, implying a positive regulatory feedback on 

the bvgAS operon. Analysis of the BvgA amino acid sequence predicts a 23-

kDa cytoplasmic protein with an N-terminal phosphate receiver domain and a 

helical C-terminal DNA-binding domain homologous to bacterial DNA-

binding regulatory proteins such as FixJ and UhpA (Arico et al., 1989; 

Boucher et al., 1994; Stibitz and Yang, 1991).  

 

The presence of negative modulators in the extracellular milieu 

represses BvgS sensor activation, thus inhibiting the overall phosphorylation 

of BvgA. P-BvgA protein function as a dimer to activate transcription of bvg-

regulated genes (Scarlato et al., 1990) and the dimerization capacity of P-

BvgA was further supported by several experimental approaches by other 

groups (Beier et al., 1995; Boucher et al., 1994). The mechanism by which P-

BvgA differentially activates the transcription of bvg-regulated genes was 

deciphered from detailed analysis of a few bvg-regulated promoters in B. 

pertussis. DNase foot-printing assay on ptx and fhaB promoters showed 

variable length of protection, implying that each promoter carries multiple P-
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BvgA binding sites, which is consistent with the oligomerization of multiple 

P-BvgA dimers including the RNA polymerase enzyme at the promoter region 

to promote mRNA elongation (Boucher et al., 1997; Boucher and Stibitz, 

1995). The stability of P-BvgA and RNA polymerase complex interaction is 

dependent on the promoter architecture. Studies on fha promoter revealed that 

P-BvgA dimer initially binds to high affinity binding site located far upstream 

of the transcription start site followed by cooperative binding of another set of 

P-BvgA dimers and RNA polymerase to the next, downstream primary and 

secondary binding sites (Boucher et al., 2001a; Boucher et al., 2001b; Steffen 

et al., 1996). The unusually lengthy secondary binding site of ptx promoter 

requires even far more P-BvgA dimers to cooperatively sit on the promoter 

site as compared to fha promoter. Since occupancy of P-BvgA and RNA 

polymerase at the secondary promoter region is necessary to activate gene 

transcription, the ptx promoter is one of the earliest promoters to have its 

activity negatively affected when the levels of P-BvgA decreases (Zu et al., 

1996).  

 

1.4.1.3 Signal-transduction through BvgA/S two-component system: 

Regulation of bvg-activated and bvg-repressed gene 

 

Production and modulation of the great majority of virulence factors in 

B. pertusssis are coordinately regulated by the BvgA/S two-component 

system. It is essential for B. pertussis to rapidly program its cellular responses 

by modifying its genes expression to adapt to environmental changes (Melton 

and Weiss, 1989). As described in the above section, BvgA/S activation is 
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characterized by a sophisticated His-Asp-His-Asp phosphorelay transfer 

mechanism from the trans-inner membrane sensor; BvgS to the cytoplasmic 

transcriptional activator; BvgA (Cotter and Jones, 2003; Uhl and Miller, 

1994). In vitro, BvgA/S system is active when bacteria are grown at 37°C, 

corresponding to the normal human body temperature, and in the absence of 

known negative modulators such as MgSO4 or nicotinic acid. Under these 

conditions, also known as virulent Bvg+ phase, high intracellular 

concentrations of P-BvgA are reached thereby allowing the activation of bvg-

activated promoters, and leading to the up-regulation of a subset of genes 

important for virulence, referred to as bvg-activated genes (vag) (Figure 1.9A). 

The Bvg+ phase plays a central role in B. pertussis pathogenesis (Cotter and 

Jones, 2003; Cotter and Miller, 1994). In addition, transcription of another set 

of genes known as bvg-repressed genes (vrg) is repressed in Bvg+ phase by the 

vag-encoded transcriptional repressor protein, BvgR (See section 1.4.1.5) 

(Merkel et al., 2003). In contrast, the BvgA/S system is inactive when bacteria 

are grown at temperature lower than 26°C or in the presence of milimolar 

concentrations of MgSO4 or nicotinic acid in the culture media (Figure 1.9A) 

(Melton and Weiss, 1993). Under these culture conditions, B. pertussis 

bacteria are in avirulent Bvg- phase, which is characterized by minimal 

expression of vags and maximal expression of vrgs as well as outer membrane 

proteins of unknown function (Vra proteins) (Stenson and Peppler, 1995). 

However, gene products that are negatively regulated by the BvgA/S two-

component in B. pertussis such as Vrg6 and Vra proteins and in B. 

bronchiseptica such as flagella, sidephore alcaligin, urease do not appear to be 
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involved in pertussis pathogenesis (Akerley et al., 1992; Giardina et al., 1995; 

Knapp and Mekalanos, 1988; McMillan et al., 1996).   

 

Although the activity of BvgA/S two-component system can be easily 

tweaked under laboratory conditions, the true signals perceived by the BvgS 

sensor during host infection have yet to be defined. Current understanding of 

the BvgA/S-signaling pathway suggests that in vitro B. pertussis cultures do 

not require any positive signals to activate the BvgA/S two-component 

system, active by default. However, recent studies interestingly provided some 

evidence that BvgS is able to perceive a positive stimulus in the environment. 

Experiments by Hester and colleagues recently showed that Bordetella sp. 

bacteria are able to modulate the expression of virulence genes in response to 

experimental in vivo levels of carbon dioxide (Hester et al., 2012). By 

exposing B. pertussis and B. parapertussis to 5% carbon dioxide, an increase 

in the expression of virulence gene transcripts encoding FHA, AC toxin, 

fimbriae, pertactin and type III secretion system was observed (Hester et al., 

2012). In another study, BvgS response to potential in vivo stimulus, likely via 

the PAS domain has been directed to redox signals; for instance the kinase 

activity was abolished when purified truncated form of BvgS is exposed to 

oxidized ubiquinone (Bock and Gross, 2002). 

 

1.4.1.4 Phenotypic modulation 

 

Rather than an on/off switch, the phenotypic transition between Bvg+ 

and Bvg- phase functions like a rheostat and an intermediate phase, namely 
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Bvgi has more recently been described (Figure 1.9) (Cotter and Miller, 1997; 

Jones et al., 2005; Scarlato et al., 1991; Williams and Cotter, 2007). This 

distinct intermediate Bvgi phase between the Bvg+ and Bvg- phases can be 

observed experimentally when B. pertussis bacteria are grown in vitro at 

concentration of nicotinic acid and MgSO4 below those that induce the Bvg- 

phase (Cotter and Miller, 1997). This Bvgi phase is characterized by maximal 

expression of adhesins, surface localized factor, BipA as well as repression of 

toxins expression (Deora et al., 2001; Stockbauer et al., 2001). Interestingly, 

the Bvgi phase-locked mutant of B. pertussis was able to persist only at the 

upper murine respiratory tract, leading to the postulation that Bvgi phase is 

probably necessary for the transmission of B. pertussis from one host to 

another (Vergara-Irigaray et al., 2005). The role of the vrg-encoded products 

family in B. pertussis virulence has not been clearly established; a Bvg+ phase-

locked B. pertussis mutant has been described to colonize and establish 

infection in mice as efficiently as the wild-type strain, suggesting that the 

virulent Bvg+ phase is necessary and sufficient for respiratory infection 

(Martinez de Tejada et al., 1998). The bvg-mediated changes on the 

transcriptional profile in response to environmental signals are also referred to 

as phenotypic modulation (Figure 1.9).  
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Figure 1.9: Signal transduction through BvgA/S two-component system 
and regulation of vags and vrgs. 

(A) The BvgA/S two-component signalling event.! Left panel: BvgA/S 
system is inactive under modulating conditions in the presence of MgSO4, 
nicotinic acid and environmental temperature at 25°C, which is referred to as 
Bvg- phase. Right panel: BvgA/S system is active standard growth 
temperature, which ultimately leads to the transfer of phosphate group to the 
response regulator BvgA. Phosphorylated BvgA then binds to the promoter 
region of vags and activates its transcription, which is referred Bvg+ phase. 
Intermediate phase, referred to Bvgi phase where concentration of nicotinic 
acid and MgSO4 is below the concentration used to induced the Bvg- phase. 
(B) Phenotypic transition from Bvg- to Bvgi to Bvg+ phase. Each of the 
phases corresponds to differential expression level of various virulence genes.  
Figure adapted with permission (Jones et al., 2005). 
 
 
 
 

A 

B 
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1.4.1.5 BvgR: A repressor for bvg-repressed genes 

 

The fact that the group of vrgs are repressed in Bvg+ phase under 

37°C, but elevated at a Bvg- phase temperature below 25°C (presumably the 

temperature outside of the infected host), suggests that vrgs may be necessary 

for transmission of aerosolized bacteria into the outside environment from one 

host to another. The bvgR locus, located immediately downstream the bvgAS 

locus is directly and positively regulated by the BvgA/S two-component 

system in Bvg+ phase (Merkel et al., 1998). The bvgR locus encodes the BvgR 

repressor protein, which in turn mediates the transcriptional repression on vrgs 

promoter (Merkel et al., 1998; Merkel and Stibitz, 1995).  

 

In the presence of negative modulators Bvg- phase, BvgA/S system is 

inactive with low intracellular levels of P-BvgA thus resulting in low 

expression of the BvgR repressor. Repression on vrgs promoters is thus 

relieved; therefore allowing effective transcription of vrgs in Bvg- phase. In 

addition, a BvgA/S-independent transcriptional factor, RisA was found to 

promote the transcription of some vrgs in Bvg- phase (Section 1.4.2) (Croinin 

et al., 2005). However, there has been to date no direct experimental evidence 

demonstrating how BvgR mediates the repression of vrgs in B. pertussis. A 

direct DNA binding of BvgR onto the vrgs promoter region was postulated 

based on sequence homology with a putative transcriptional regulator (Beattie 

et al., 1993; Galperin et al., 2001). Alternatively BvgR might exert its 

repressive effect on vrgs expression indirectly through the modulation of the 

transcriptional regulator of vrgs, RisA. The protein sequence of BvgR 
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revealed a unique and conserved EAL domain (Merkel et al., 1998), which can 

be found in a variety of signaling proteins involved in controlling the levels of 

bacterial second messenger, c-di-GMP (D'Argenio and Miller, 2004; Galperin 

et al., 2001). By modulating the intracellular levels of c-di-GMP, the EAL 

domain has been implicated in regulating a diversity of bacterial phenotypes, 

including biofilm formation (Cotter and Stibitz, 2007). In B. pertussis, it is 

hypothesized that BvgR acts as a putative c-di-GMP phosphodiesterase, which 

modulates the activity of RisA through control of the intracellular levels of c-

di-GMP (Stibitz, 2001). Further experimental evidence is warranted to 

elucidate the crosstalk between c-di-GMP signaling with BvgR and RisA in B. 

pertussis.  

 

1.4.2 The ris Regulon in B. pertussis 

!
1.4.2.1 Discovery of RisA/S two-component system  

 

In addition to the BvgA/S regulatory system, a second two-component 

regulatory system known as the RisA/S system was identified in all Bordetella 

sp. (Jungnitz et al., 1998). The risA-risS locus shares a high degree of 

homology with the ompR-envZ locus in E. coli, which is involved in the 

regulation of genes in response to osmolarity, and to the S. typhi phoP-phoQ 

locus, which is required for bacterial survival within macrophages (Jungnitz et 

al., 1998; Zimna et al., 2001). A functional RisA/S system is required for B. 

bronchiseptica to resist against oxidative stress and regulating the production 

of acid phosphatase necessary for intracellular survival (Jungnitz et al., 1998; 
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Zimna et al., 2001). However, the RisA/S system of B. bronchiseptica is 

considered as an ortholog to E. coli OmpR-EnvZ system, as the RisA/S 

system does not respond to extracellular osmolarity signals (Stenson et al., 

2005). A risAS-deleted B. bronchispetica mutant strain displayed significant 

attenuation of its ability to colonize the mouse respiratory tract and reduced 

intracellular survival in macrophages, suggesting that the ris locus, 

presumably via the ris-regulated products are necessary for bacterial virulence 

(Jungnitz et al., 1998; Zimna et al., 2001).  

!

Sequence analysis of the risAS locus in B. pertussis Tohama I strain 

revealed a frameshift mutation within the risS locus with a pre-mature stop 

codon, suggesting that RisS in B. pertussis lacks the Enz-like transmitter and 

autophosphorylation domain (Stenson et al., 2005). However, the risS 

frameshift mutation is absent in B. bronschisptica strains. Located 

immediately downstream the risS locus is the risA locus, whose amino acid 

sequences share almost 65% identity with E. coli OmpR protein (Stenson et 

al., 2005), the risA locus is co-transcribed with the risS locus as a single 

operon. The risAS operon in B. pertussis BP536 strain was identified to 

govern and activate the full expression of bvg-repressed surface products 

VraA and VraB, under modulating conditions, but it does not regulate the 

expression of vags. Furthermore, the risA and risS locus expression is 

independent of BvgA/S regulation (Stenson and Peppler, 1995). 
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1.4.2.2 Regulation of vrgs by transcriptional factor RisA and repressor 

BvgR  

 

Purified transcriptional RisA was found to be able to bind onto the 

promoter of the bvg-repressed genes vrg6 and vrg18 in B. pertussis BP536 

strain (Croinin et al., 2005), suggesting that vrg6 is directly regulated by RisA. 

Due to the insolubility of BvgR protein, similar approach was not successful 

in an attempt to study the promoter binding capacity of the repressor protein 

(Croinin et al., 2005). However, results obtained with a bvgR-deleted mutant 

implied that BvgR is required for the repression of vrgs under Bvg+ phase, but 

does not regulate the expression of RisA (Croinin et al., 2005). It was 

speculated that repressor BvgR acts either by binding to the vrg6 promoter 

thus competing with the binding of RisA, or by affecting the function or 

activity of RisA protein via c-di-GMP signaling (section 1.3.1.5) (Croinin et 

al., 2005). However, the authors failed to fully demonstrate the conclusive 

relationship between BvgR and RisA on the regulation of bvg-repressed genes. 

As all B. pertussis strains display a frameshift mutation within the risS locus, 

risA activation is believed to be independent of RisS. Phospho-activation of 

OmpR in an envZ-deleted E. coli mutant suggests that OmpR can be 

phosphorylated by another regulatory system besides the EnvZ sensor kinase 

(Forst et al., 1990). It is unclear how RisA is activated and possible 

speculation includes activation through another sensor kinase via a molecular 

crosstalk either with the BvgA/S sytem or with another two-component 

system in B. pertussis. At this stage, it is unclear whether RisA and BvgR 

regulate the capsule locus expression in B. pertussis.  
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1.5 RATIONALE AND OBJECTIVES 

 

The first and major aim of this thesis is to address the role of the 

capsule locus in pertussis pathogenesis and characterize the mechanisms 

involved (Chapter 3). To do so, mutants deleted for ORF involved in the 

transport, export and biosynthesis of the capsular polysaccharide have been 

generated and their in vivo and in vitro phenotypes have been studied. A 

combination of molecular biology and biochemistry approaches has allowed 

us to demonstrate a novel and unique mechanism by which the capsule locus 

is involved in B. pertussis virulence.   

 

 In the second part of this thesis (Chapter 4), we aimed at characterizing 

the expression of the capsule locus in various environmental conditions that 

include in vitro, ex vivo (macrophage infection) and in vivo (mouse model of 

pertussis) conditions. Furthermore, there has been increasing evidence of some 

co-regulation between the BvgA/S (via BvgR) and RisA/S two-component 

systems to modulate the expression of vrgs in B. pertussis (see section 

1.3.2.2). However, the regulation of the capsule locus has not been 

investigated in details. We thus studied the regulation of the capsule locus 

expression by BvgR and RisA. 

 

 Re-emergence of pertussis cases in adult population has been 

increasingly reported, suggesting that current vaccination fail to provide long-

term protection against pertussis infection. Understanding how the capsule 
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locus in B. pertussis affects bacterial virulence opens up opportunities to 

exploit it, either by developing new vaccine, drug target or improving current 

vaccination strategies. Moreover, study on the regulation of a bvg-repressed 

locus will impel an entirely new field of investigation in B. pertussis 

pathogenesis.  
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CHAPTER 2 MATERIALS AND METHODS 
!

(A) ESCHERICHIA COLI WORK 

!
2.1 BACTERIAL STRAINS, PLASMIDS AND GROWTH 

CONDITIONS  

!
2.1.1 E. coli Strains and Plasmids 

!

 The E. coli strains and plasmids used or generated in this study are 

listed in the table below.  

Strain/ 
Plasmids 

Descriptiona Source/ 
Reference 

Strains 
One Shot® 
TOP10 

For general purpose cloning, blue/white 
screening without IPTG 

Invitrogen 

Backbone plasmids 
pCR® 2.1-
TOPO® 

Ampr, Kanr; high copy number TA 
cloning vector with single 3’thymidine 
overhangs and covalently-bound 
Topoisomerase I, LacZα gene for 
blue/white screening 

Invitrogen 

pBR322 Ampr, Tetr; medium to low copy number 
plasmid, used as an intermediate plasmid  

(Bolivar et al., 
1977) 

pJQ200mpl8-
rpsl 

Gmr, Sms; low copy number suicide 
vector, wild type rpsL thus is 
streptomycin sensitive 

(Quandt and 
Hynes, 1993) 

pBBR1MCS Cmr; broad-host-range cloning vector (Elzer et al., 
1995) 

pUC19 Ampr; High copy number cloning vector; 
LacZα gene for blue/white screening 

(Yanisch-Perron 
et al., 1985) 

pUC57 Ampr; high copy number E. coli cloning 
vector derived from pUC19 

Genescript 

Plasmids for ∆kpsT cloning 
TOPO-T1 Ampr, Kanr; TOPO® derivative 

containing the PCR1 (kpsM) insert 
This study 
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flanked by BamHI and NheI restriction 
sites  

TOPO-T2 Ampr, Kanr; TOPO® derivative 
containing the PCR2 (kpsE) insert 
flanked by NheI and HindIII restriction 
sites  

This study 

pBR-T1 Ampr, Tetr; pBR322 derivative 
containing the PCR1 insert flanked by 
BamHI and NheI restriction sites  

This study 

pBRT1-2 Ampr, Tetr; pBR322 derivative 
containing the PCR1 + PCR2 fragment 
flanked by BamHI and HindIII restriction 
sites  

This study 

pJQT1-2 
 

Gmr, Sms; pJQ200mp18-rpsl derivative 
containing the PCR1 + PCR2 flanked by 
BamHI and HindIII restriction sites, used 
for the construction of ΔkpsT 

This study 

Plasmids for ∆kpsE cloning 
TOPO-E1 Ampr, Kanr; TOPO® derivative 

containing the PCR1 (kpsT) insert 
flanked by EcoRI and HindIII restriction 
sites  

This study 

TOPO-E2 Ampr, Kanr; TOPO® derivative 
containing the PCR2 (wbpT) insert 
flanked by HindIII and BamHI restriction 
sites  

This study 

pBR-E1 Ampr, Tetr; pBR322 derivative 
containing the PCR1 insert flanked by 
EcoRI and HindIII restriction sites  

This study 

pBRE1-2 Ampr, Tetr; pBR322 derivative 
containing the PCR1 + PCR2 fragment 
flanked by EcoRI and BamHI restriction 
sites  

This study 

pJQE1-2 
 

Gmr, Sms; pJQ200mp18-rpsl derivative 
containing the PCR1 + PCR2 flanked by 
EcoRI and BamHI restriction sites, used 
for the construction of ΔkpsE 

This study 

Plasmids for ∆vipC cloning 
pJQV1-2 Gmr, Sms; pJQ200mp18-rpsl derivative 

containing the PCR1 + PCR2 flanked by 
EcoRI and BamHI restriction sites, used 
for the construction of ΔvipC 

This lab (Neo 
Y.L) 

Plasmids for complementation of ∆kpsT mutant  
pUC57-Pcaps Ampr; pUC57 derivative containing 866 

bp of native B. pertussis capsule 
promoter flanked by XbaI and BamHI 
restriction sites 

Genescript  

pBBR-kpsT 
 

Cmr; pBBR1MCS derivative containing 
B. pertussis kpsT ORF flanked by BamHI 

This study 
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and HindIII restriction sites 
pBBR::Pcapsk
psT 

Cmr; pBBR1MCS derivative containing 
native B. pertussis capsule promoter and 
kspT ORF flanked by XbaI and HindIII 
restriction sites 

This study 

Plasmids for KOcaps mutant expressing the kpsT and kpsMT ORFs 
TOPO-Pcaps2 Ampr, Kanr; TOPO® derivative 

containing 858 bp of native B. pertussis 
capsule promoter flanked by XbaI and 
BamHI restriction sites (using pUC57-
Pcaps as template) 

This study 

pBBR::Pcapsk
psT 

Cmr; pBBR1MCS derivative containing 
native B. pertussis capsule promoter and 
kspT ORF flanked by XbaI and HindIII 
restriction sites 

This study 

pUC57-kpsMT Ampr; pUC57 derivative containing 1529 
bp B. pertussis kpsM and kpsT ORFs 
flanked by BamHI and HindIII restriction 
sites 

This study 

pBBR-kpsMT Cmr; pBBR1MCS derivative containing 
1529 bp B. pertussis kpsM and kpsT 
ORFs flanked by BamHI and HindIII 
restriction sites 

This study 

pBBR::Pcapsk
psMT 

Cmr; pBBR1MCS derivative containing 
native B. pertussis capsule promoter and 
kspM + kpsT ORFs flanked by XbaI and 
HindIII restriction sites 

This study 

Plasmids for His6-BvgS cloning 
TOPO-
BvgAS-PCR1 

Ampr, Kanr; TOPO® derivative 
containing the PCR1 (bvgA and bvgS) 
insert flanked by BamHI and XbaI 
restriction sites  

This study 

TOPO-
BvgSHis6PCR
2 

Ampr, Kanr; TOPO® derivative 
containing the PCR2 insert flanked by 
XbaI and HindIII restriction sites  

This study 

pJQ-
BvgSHis6PCR
1+2 

Gmr, Sms; pJQ200mp18-rpsl derivative 
containing the PCR1 + PCR2 flanked by 
BamHI and HindI restriction sites  

This study 

pJQSY4 Gmr, Sms; pJQ200mp18-rpsl derivative 
containing the PCR1 + PCR2 flanked by 
SalI and EcoRI restriction sites, used for 
the construction of KOcaps mutant 

(Neo et al., 
2010) 

Plasmid for over-expression of risA 
TOPO-Pfha Ampr, Kanr; TOPO® derivative 

containing fha promoter insert flanked by 
KpnI and BamHI restriction sites  

This study 

TOPO-PrecA Ampr, Kanr; TOPO® derivative 
containing recA promoter insert flanked 
by HindIII and BamHI restriction sites  

This study 
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TOPO-risA Ampr, Kanr; TOPO® derivative 
containing risA insert flanked by BamHI 
and XbaI restriction sites  

This study 

pBBR::Pfha-
risA 

Cmr; pBBR1MCS derivative containing 
native fha promoter insert and risA ORF 
flanked by KpnI and XbaI restriction sites  

This study 

pBBR::PrecA-
risA 

Cmr; pBBR1MCS derivative containing 
native recA promoter insert and risA ORF 
flanked by HindIII and XbaI restriction 
sites  

This study 

Plasmid for cloning of ΔrisAS 
TOPO-RisAS-
PCR1 

Ampr, Kanr; TOPO® derivative 
containing the PCR1 (risA) insert flanked 
by BamHI and NheI restriction sites  

This study 

TOPO-RisAS-
PCR2 

Ampr, Kanr; TOPO® derivative 
containing the PCR2 (ahpC) insert 
flanked by NheI and HindIII restriction 
sites  

This study 

pJQrisAS1+2 Gmr, Sms; pJQ200mp18-rpsl derivative 
containing the PCR1 + PCR2 flanked by 
BamHI and HindIII restriction sites, used 
for the construction of ΔrisAS mutant 

This study 

 

Table 2.1: E. coli strain and plasmid 

!
2.1.2 Growth Conditions  

 

 All E. coli strains were grown at 37°C overnight in 3 ml of fresh Luria-

Bertani broth (Difco, Detroit, Mich.) with shaking at 220 rpm or on LB agar 

(Difco) plates. When appropriate, 100 µg/ml ampicillin, 50 µg/ml kanamycin, 

10 µg/ml gentamicin and 30 µg/ml chloramphenicol were added to select for 

antibiotic-resistant strains.  
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2.2 MOLECULAR BIOLOGY 

!

2.2.1 List of Primers  

 

 The list of primers that were used for cloning, screening and/ or 

sequencing in E. coli is as shown in Table 2.2. When necessary, primers used 

to amplify inserts had appropriate restriction sites added at their 5’ ends 

(shown in bold and underlined) to facilitate subsequent cloning work. 

Annealing temperature (Ta) was calculated according to the following 

equation:  [(4 x NG/C) + (2 x NA/T)]– 5, where NG/C is the number of G and C 

bases and NA/T is the number of A and T bases.  

Oligo 
name 

Sequence (5’ to 3’)  Description 

Primers for ∆kpsT cloning 
kpsM1F ttggatcctgtccaccaccatctacgtggtgt 
kpsM2R ttgctagccagctccatgccgcagatca 

Forward and reverse 
primers to amplify 
PCR1 (kpsM) fragment  

kpsE1F ttgctagccttggacgaaaccatcgcgc 
kpsE2R ttaagcttgccagctgcagattggcctc 

Forward and reverse 
primers to amplify 
PCR2 (kpsE) fragment !

Primers for ∆kpsE cloning 
kpsT1F ttgaattccgcatgatctgcggcatcga 
kpsT2R ttaagcttgacatactggtcggacgcaat 

Forward and reverse 
primers to amplify 
PCR1 (kpsT) fragment  

wbpT7F ttaagcttgaggccaatctgcagctggc 
wbpT6R ttggatcctatgcccgcggcgcggctt 

Forward and reverse 
primers to amplify 
PCR2 (wbpT) fragment  

Primers for ∆kpsT mutant complementation cloning/screening 
kpsTcomF ttggatcccgttgatggagacggccatg 
kpsTcomR ttaagctttcaggattgctcagcgtcgac 

Forward and reverse 
primers to amplify B. 
pertussis kpsT ORF 

Primers for KOcaps mutant expressing the kpsT and kpsMT ORFs 
PcapsXbaI
-F 

tttctagacgcgaatctgtcagtagctgc 

Pcap2.2Ba
mHI-R 

ttggatccacctgggctcccgatgcctgcaa 

Forward and reverse 
primers to amplify B. 
pertussis capsule 
promoter (Pcaps2) 
using pUC57-Pcaps as 
template 
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Primers for BvgS-His6 cloning 
BvgA-
BamHI-F 

ttggatcctgtactgagattcgccgtc 

BvgS-
XbaI-R 

tttctagagcttgcctgcgcgggc 

Forward and reverse 
primers to amplify 
PCR1 from 3’ end of 
bvgA ORF to 5’ end of 
bvgS signal peptide 
ORF 

BvgS-
XbaI-His6-
F 

tttctagacatcatcaccatcaccaccaggag
ctgaccctg 

BvgS-
HindIII-R 
 

ttaagcttggcgactacgcgaacgtcattgaa 

Forward and reverse 
primers to amplify 
PCR2 downstream of 
bvgS signal peptide 
sequence; forward 
primer carries 
nucleotides encoding 
for six histidines 

Primers for risA over-expression 
Pfha-F ttggtacctttgagtttcgtggcgag 
Pfha-R ttggatcccatattccgaccagcgaagtgaag 

Forward and reverse 
primers to amplify B. 
pertussis fha promoter!

PrecA-F ttggatccgtaaagtcctgtattgaag 
PrecA-R ttaagcttgcctgcgcagcacctcca 

Forward and reverse 
primers to amplify B. 
pertussis recA promoter 

BamHI-
RisA-F 

ttggatccatgaacacgcaaaaacacc 

XbaI-
RisA-R 

tttctagatcaactgccgccatccg 

Forward and reverse 
primers to amplify B. 
pertussis risA ORF 

Primers for ∆risAS cloning 
risA1.1Ba
mHI-F 

ttggatcccaccgcctcatgcgacac 

risA-NheI-
R 

ttgctagcagatcatcgacaggccatcctc 

Forward and reverse 
primers to amplify 
PCR1 (risA) fragment 

RisS-
NheI-F 

ttgctagcgtagaatttagggcttgag 

AhpC-
HindIII-R 

ttaagcttttacagcgtggcgccgcc 

Forward and reverse 
primers to amplify 
PCR2 (ahpC) fragment 

Prmers for sequencing 
M13-F gtaaaacgacggccag 
M13-R caggaaacagctatgac 

Forward and reverse 
primers to sequence 
TOPO® construct 
(Invitrogen) 

 

Table 2.2: Primers used for E. coli work 

!
!
!
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2.2.2 Polymerase Chain Reaction  

!
2.2.2.1 Polymerase Chain Reaction  

 

All PCR reactions were carried out using HotStarTaq® PCR kit 

(Qiagen, Hilden, Germany) or GoTaq® DNA polymerase (Promega, MA, 

Wisconsin) with suitable primer pairs (Table 2.2). A 50 µl reaction mix was 

set up for each of the PCR amplification according to the manufacturer’s 

instruction. Amplification was conducted in the GeneAmp® PCR system 2400 

thermal cycler (PE Applied Biosystem, CA, USA) with initial denaturation 

step of 95°C for 15 min or 2 min, followed by 25-35 cycles of DNA 

denaturation at 95°C for 45 s, primer annealing at suitable Ta for 50 sec -1 

min, and DNA elongation at 72°C for 1 min-2 min depending on the size of 

the product to be amplified (approx. 1 min / kb of DNA template). A final 

extension step of 5-10 min at 72°C was also included, after which the reaction 

was maintained at 4°C in the machine. !

 

2.2.2.2 Colony PCR screening  

!

A loopful of bacteria was dissolved in 30 µl of ultrapure water, heated 

at 95°C for 10 min and centrifuged at 13,000 rpm for 5 min. PCR was 

performed as described in Section 2.2.2.1 for 35 cycles, using 2 µl of the 

supernatant as template.  
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2.2.3 Restriction Enzyme Digestion  

!

DNA digestion was performed with appropriate restriction enzymes 

(RE) with their corresponding buffers (New England Biolabs, Ipswich, MA) 

following the manufacturer’s protocol. A one-step digestion of 1-2 h at 37°C 

was performed in case of single RE or when two REs share the same buffer. 

Sequential digestion was carried out when two or more REs have incompatible 

buffers. In this scenario, the first RE was heat-inactivated according to 

manufacturer’s instructions, followed by membrane dialysis (Millipore, 

Billerica, MA) against deionized water for 10 min prior to setting the digestion 

reaction with the second RE. The restriction profile was analyzed by DNA gel 

electrophoresis (Section 2.2.4). 

 

2.2.4 Agarose Gel Electrophoresis 

!

2.2.4.1 Gel migration 

 

DNA/RNA electrophoresis was performed using 0.8% to 1.5% agarose 

in 1x Tris-Acetate (TAE) running buffer (0.04 M Tris-Acetate and 0.0001 M 

ethylenedinitrilo tetraacetic acid (EDTA), pH 7.8). Each DNA/RNA sample to 

be analyzed was mixed with 1/5 volume of blue/orange 6x loading dye 

(Promega) containing 0.4% orange G, 0.03% bromophenol blue, 0.03% 

xylene cyanol FF, 15% Ficoll® 400, 10 mM Tris-HCl (pH 7.5) and 50 mM 

EDTA (pH 8.0) prior to loading into gel wells. 6 µl of 1 kb or 100 bp DNA 
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ladder (Promega) were used as markers to estimate bad sizes. Electrophoresis 

was carried out at 100 V for 45 min, after which the gel was stained in 0.5 

µg/ml of ethidium bromide (Invitrogen, Carlsbald, CA) for 15 min before 

visualization under a ultra-violet (UV) transilluminator (ChemiGenius, 

Syngene, UK). 

 

2.2.4.2 Gel extraction 

 

After agarose DNA electrophoresis, DNA fragments of interest were 

excised from agarose gel under low UV light (366 nm) to prevent DNA 

damage. The DNA fragments were purified directly using the QIAquick Gel 

Extraction and PCR Purification Kit (Qiagen) as described in the 

manufacturer’s protocol. 

 

2.2.5 Plasmid Extraction 

 

Plasmid DNA was isolated and purified using the QIAprep Spin 

Miniprep Kit (Qiagen) or GeneJET Plasmid Miniprep Kit (Thermo, Waltham, 

MA) according to the manufacturer’s instructions. High and low copy 

plasmids were eluted in 50 and 20 µl of elution buffer respectively. 

 

2.2.6 DNA Cloning 
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 Digestion with appropriate RE(s) was performed on plasmids to open 

up the cloning vectors and to generate DNA inserts. Both digested vectors and 

inserts were electrophoresed on agarose gel and the DNA bands of interest 

were excised and purified from the gel as described in Section 2.2.4.2. 

Cloning of inserts into the TOPO® vector was performed using the TOPO® TA 

Cloning Kit (Invitrogen), while DNA inserts were ligated into pBR322, 

pBBR1MCS and pJQ vectors using the Fast-Link DNA Ligation Kit 

(Epicentre Technologies, Madison, WI) or Takara DNA Ligation Kit (Otsu, 

Shiga, Japan) according to the manufacturer’s protocol. 

!

2.2.7 Transformation of Chemically Competent E. coli 

 

 Chemically competent One Shot® TOP10 E. coli (Invitrogen) were 

transformed with slight modifications from the manufacturer’s protocol. Half 

of the ligation mix (section 2.2.6) was added into one vial of TOP10 cells and 

mixed gently. The vial was incubated on ice for 30 min, followed by heat 

shock at 42ºC for 45 s. The tube was immediately transferred on ice and 500 

µl of LB medium without antibiotics was added to the mixture. After 

incubation at 37ºC for 1 h, 100 µl of the transformation mixture was plated on 

LB agar supplemented with appropriate antibiotics or on imMediaTM Amp 

Blue ready-mix agar (Invitrogen) for blue-white screening selection. The 

plates were incubated at 37ºC overnight.  

!

!

!
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!

2.2.8 DNA sequencing 

 
 

Plasmids from the recombinant clones were sent for DNA sequencing 

(AIT Biotech) with suitable primers (Table 2.2). Alignment of the obtained 

sequences with the relevant nucleotide databases was performed using the 

NCBI BLAST programme (http://blast.ncbi.nlm.nih.gov/) and the sequence 

alignment programme ClustalW (http://www.ebi.ac.uk/Tools/msa/clustalw2/).  

 

(B) BORDETELLA PERTUSSIS WORK 

!
2.3 BACTERIAL STRAINS AND GROWTH CONDITIONS 

!
2.3.1 B. pertussis Strains 

!

The B. pertussis strains used in this study are listed in the table below.  

Strain Description Source/ 
Reference 

BPSM TohamaI derivative, mutant rpsL; 
Sm resistance  

Pasteur Institute 
of Lille 

Tohama-I Clinical isolate from 1954, Japan  Dr. Frits Mooi, 
Centre for 
Infectious 
Diseases Control, 
The 
Netherlands 

18323 Clinical isolate from 1946, USA  Dr. Frits Mooi, 
Centre for 
Infectious 
Diseases Control, 
The 
Netherlands 

KOcaps BPSM carrying an in-frame (Neo et al., 2010) 
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deletion from kpsM to wcbO 
ORFs 

ΔkpsT  BPSM carrying an in-frame 
deletion in kpsT ORF 

This study 

ΔkspE  BPSM carrying an in-frame 
deletion in kpsE ORF 

This study 

ΔvipC  BPSM carrying an in-frame 
deletion in vipC ORF 

This lab (Neo 
Y.L.) 

ΔkpsTcom BPSM carrying an in-frame 
deletion in kpsT ORF containing 
vector pBBR::Pcaps-kpsT 

This study 

BvgS-VFT2 BPSM carrying amino acid 
substitution at F375E and Q461E 
at the periplasmic VFT2 domain  

(Herrou et al., 
2010) 

BvgS-VFT2-
ΔkpsT  

BvgS-VFT2 carrying an in-frame 
deletion in kpsT ORF 

This study 

KOcaps:kpsT KOcaps containing vector 
pBBR::Pcaps-kpsT 

This study 

KOcaps:kpsMT KOcaps containing vector 
pBBR::Pcaps-kpsMT 

This study 

BPSH BPSM derivative expressing his-
tagged BvgS at the N-terminal  

This study 

BPSH-KOcaps BPSH cotaining an in-frame 
deletion from kpsM to wcbO 
ORFs 

This study 

BPSH-ΔkpsT  BPSH carrying an in-frame 
deletion in kpsT ORF 

This study 

BPSH-
ΔkpsTcom 

BPSH carrying an in-frame 
deletion in kpsT ORF containing 
vector pBBR::Pcaps-kpsT 

This study 

BPSM-Pfha-
risA 

BPSM containing vector 
pBBR::Pfha-risA 

This study 

BPSM-PrecA-
risA 

BPSM containing vector 
pBBR::PrecA-risA 

This study 

BPSM-
pbbr1mcs 

BPSM containing vector 
pBBR1MCS 

This study 

ΔbvgAS BPSM carrying an in-frame 
deletion in bvgAS ORF 

This lab (Ho 
S.Y.) 

ΔbvgAS-
pbbr1mcs 

ΔbvgAS containing vector 
pBBR1MCS 

This study 

ΔbvgAS-PrecA-
risA 

ΔbvgAS containing vector 
pBBR::PrecA-risA 

This study 

ΔrisAS BPSM carrying an in-frame 
deletion in risAS ORF 

This study 

 

Table 2.3: B. pertussis strains 
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2.3.2 Growth Conditions  

!

All B. pertussis strains were grown at 37ºC on pre-warmed sterile 

Bordet-Gengou (BG) agar (Difco) supplemented with 1% glycerol and 10% 

defibrinated sheep blood or in pre-warmed sterile modified Stainer-Scholte 

(SS) medium containing 1 g/L 2,6-O-dimethyl-ß-cyclodextrin (Sigma) as 

described previously (Menozzi et al., 1991a). When appropriate, 10 µg/ml 

gentamicin, 100 µg/ml streptomycin, 30 µg/ml chloramphenicol or 0.05 µg/ml 

of erythromycin (Sigma) were added to select for antibiotic-resistant strains. 

For EDTA treatment assay, B. pertussis strains grown on BG agar for 24 h 

were adjusted to initial OD600nm of 0.02. The bacterial suspension (50 µl) was 

incubated with 1 or 2 mg/ml of EDTA for 2  h at 37°C. Treated and untreated 

controls were serially diluted and plated onto BG agar. The number of CFU 

(colony forming units) was determined after 3-4 days incubation at 37°C.  

 

2.4 MOLECULAR BIOLOGY 

2.4.1 List of primers  

!
The list of primers that were used for screening of B. pertussis strain 

and Southern blot analysis is as shown in Table 2.4. 

 

Primer 
name 

Sequence (5’ to 3’)  Description 

Primers for PCR screening of capsule-deficient mutants and 
complemented strains 
kpsTKO1F atcgagccgatcctgcacgt 

kpsTKO1R attgctcagcgtcgaccgtg 

Forward and reverse primers to 
amplify upstream of PCR1 
(kpsM) for screening 
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kpsTKO2F attctcgatgacgtgtcgttcga 

kpsTKO2R atggtcattgaggtccttgagct 

Forward and reverse primers to 
amplify downstream of PCR2 
(kpsE) for screening 

kpsEKO1F attctcgatgacgtgtcgttcg 

kpsEKO1R atcaccgtgtacagcacctgg 

Forward and reverse primers to 
amplify upstream of PCR1 
(kpsT) for screening 

kpsEKO2F ggagaaaacctatacaggcc 
kpsEKO2R ctcgagcaggtcgagaatcgt

  

Forward and reverse primers to 
amplify upstream of PCR2 
(wbpT) for screening 

kpsTF attctcgatgacgtgtcgttcga 

kpsTR ggcgaacacctcgagacacatt
tg 

Forward and reverse primers to 
amplify the middle portion of 
kpsT ORF 

mid-PcapsF gacggatgcgcggcattg 

mid-kpsMR gatgtccatgttggtgatcg 

Forward and reverse primers to 
amplify upstream of 5’ kpsM 

Primers for PCR screening of BPSH strain 
bvgShis6F tctcagaacatcatcaccatcac

acc 
bvgShis6R gggcgactacgcgaacgta 

 

Forward primer binds to the six 
histidine coding nucleotides 
and reverse primer bind 
downstream of His6 insertion 

bvgAhisSeqF ataacggcattgacgggctc 

bvgShisSeqR 
 

gcatcgccgatgaatacgtc 
 

Forward and reverse primers 
flanking the six histidine 
coding nucleotides used for 
sequencing  

Primers for PCR screening of B. pertussis strain over-expressing risA 
Pfha-F acttcacttcgctggtcggaa 

risA-R cgggttgaagggcttggaca 

Forward and reverse primers to 
screen for pBBR::Pfha-risA 
plasmid in BPSM  

precArisA-F ggatacgcatgcgtgcaacat 

precArisA-R cgggttgaagggcttggaca 

Forward and reverse primers to 
screen for pBBR::PrecA-risA 
plasmid in BPSM and ΔbvgAS 

Primers for PCR screening of ΔrisAS mutant strain 
Pfha-Fp acttcacttcgctggtcggaa 

risAKO-R ttggatccgtcgaacgcctcgta
ttcgc  
 

Forward and reverse primers 
flanking to screen for 
pBBR::Pfha-risA plasmid   

AhpD-Fp acgtacggataccaggtgtt 

risA-Rp ctgctggttctcgacctgatg 

Forward and reverse primers 
flanking the risAS deleted 
region 

Primers for Southern blot probe synthesis 

kpsTKO1F atcgagccgatcctgcacgt 

kpsT3R cgaacgacagctcatcgagaat 

Forward and reverse primers to 
amplify probe for screening of 
ΔkpsT, BvgS-VFT2-ΔkpsT and 
BPSH-ΔkpsT !

wbpT7-F ttaagcttgaggccaatctgcag
ctggc 

Forward and reverse primers to 
amplify probe for screening of 
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kpsEKO2-R ctcgagcaggtcgagaatcgt ΔkpsE mutant 
P1-F tgctcgccgttcttcgatcg 

P2-R 
 

tcctggacctcgcgcatatc 

Forward and reverse primers to 
amplify probe for screening of 
BPSH-KOcaps mutant 

 

Table 2.4: Primers used for B. pertussis PCR screening work and 
Southern blot 

!
!
2.4.2 Transformation of B. pertussis 

!
2.4.2.1 Preparation of electrocompetent cells 

 

10 ml of bacteria exponentially grown up to OD600 3 to 4 in SS 

medium were centrifuged at 7,000 rpm for 10 min at room temperature. The 

bacteria pellet was washed 3 times with 10 ml of sterile 10% glycerol. After 

the final wash, the pellet was re-suspended in 1 ml of 10% glycerol and the 

cells were immediately used for electroporation.  

 

2.4.2.2 Electroporation of plasmid DNA into B. pertussis 

!
!

About 1 µg of plasmid DNA was mixed with 200 µl of 

electrocompetent B. pertussis cells in an electroporation cuvette (0.2 cm) 

(Biorad) and incubated on ice for 5 min. An electrical pulse of 2.5 kV, 800 Ω 

resistance and 25 µF capacitance was administered. 1 ml of pre-warmed SS 

medium without antibiotics was added to recover the bacteria cells, which 

were then incubated for 5 h at 37°C with shaking. 200 µl of bacteria cells were 
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plated onto pre-warmed BG agar plates containing appropriate antibiotics and 

incubated for 5-7 days at 37°C. !

!

2.4.3 Selection of Transformants 

!

Gentamicin-resistant (Gmr) colonies obtained upon electroporation 

were patched first onto streptomycin then on gentamicin plates. Streptomycin 

sensitive (Sms) and Gmr clones were observed within 24 h and were identified 

as transformants that have successfully undergone first event of 

recombination. These intermediate transformants were then streaked onto a 

Sm plate to select for the second event of recombination. After incubation 5-7 

days at 37°C, isolated Smr colonies were then patched first onto Gm then onto 

Sm plates. Smr and Gms clones were observed within 24 h and were identified 

as transformants with completed second event of recombination. 

 

2.4.4 Analysis of True Recombinants 

 

 Colony PCR screening was performed on Sms and Gmr intermediate 

clones and Smr and Gms clones to distinguish between true recombinants from 

revertants at the genomic level. DNA template was harvested as described in 

section 2.2.2.2 except that B. pertussis bacteria were heated for 30 min instead 

of 10 min. PCR was carried out as described in section 2.2.2.1 for 35 cycles 

using appropriate primers (Table 2.4) followed by agarose gel electrophoresis 

(Section 2.2.4.1).   

!
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2.4.5 Chromosomal DNA Extraction 

!

10 ml of B. pertussis liquid culture grown in SS medium was 

centrifuged at 8,000 rpm for 10 min and DNA extraction was performed using 

Genomic-tip 100/G Anion-Exchange Resin and Genomic DNA Buffer Set 

(Qiagen) according to the manufacturer’s instructions. DNA was finally 

precipitated in 100% isopropanol and dissolved in 0.5-1 ml of ultrapure water 

at 4°C overnight. Alternatively, B. pertussis chromosomal DNA was harvested 

by phenol-chloroform extraction method.  2 ml of B. pertussis culture grown 

to mid-exponential phase in SS medium was centrifuged at 8,000 rpm for 10 

min, re-suspended in 600 µl of lysis buffer (3% SDS, 1 mM CaCl2, 10 mM 

Tris-HCl, 100 mM NaCl, pH 8.0) and heat-inactivated at 95°C for 30 min. 

Cell debris were pelleted by centrifugation at maximum speed for 10 min and 

the supernatant was mixed with EGTA to a final concentration of 2mM. The 

supernatant was transferred to a MaXtractTM High Density phase-locked 

Eppendorf tube (Qiagen). Equal volume of phenol/chloroform/isoamylalcohol 

(49:49:2, vol/vol/vol) (Invitrogen) was added to supernatant in the phased 

locked tube. The liquid mixture in the phase-locked tubes was mixed 

vigorously for 1 min to evenly mix the liquid phases. The phase-locked tubes 

were centrifuged at maximum speed for 5 min to separate the aqueous phase, 

inter phase containing MaXtractTM gel and the organic phase. The aqueous 

phase was transferred to a clean tube and 0.8 volume of 100% isopropanol and 

0.1 volume of 3 M sodium acetate were added for precipitation of 

chromosomal DNA. The mixture was centrifuged at maximum speed for 15 

min and the chromosomal DNA pellet was washed once with 70% ethanol, 
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air-dried at room temperature and dissolved in 1 ml TE buffer (10 mM Tris 

pH 8.0, 0.2 mM EDTA).  The extracted chromosomal DNA was quantified by 

NanoDropTM ND-1000 spectrophotometer (Thermo) and was visualized by 

DNA gel electrophoresis (Section 2.2.4.1).  

 

2.4.6 Southern Blot Analysis 

!
2.4.6.1 Synthesis of DIG-labeled probe  

!

 Probes for Southern blot analysis were PCR synthesized and labeled 

with digoxigenin (DIG) using the PCR DIG Probe Synthesis Kit (Roche) 

according to the manufacturer’s instructions. To estimate probe-labeling 

efficiency, an unlabeled control reaction without DIG-labeled dNTPs was 

included. Amplification of DIG-labeled probe was conducted in GeneAmp® 

PCR system 2400 thermal cycler (Biorad) with initial denaturation at 95°C for 

2 min, followed by 35 cycles of DNA denaturation at 95°C for 30 s, primer 

annealing at appropriate annealing temperature for 40 s and DNA elongation 

at 72°C for 1 min. An additional 7 min of DNA extension at 72°C was 

included, after which the reaction was maintain at 4°C. The synthesized 

probes, both labeled and unlabeled, were analyzed and quantified by gel 

electrophoresis (Section 2.2.4.1). 

 

2.4.6.2 Southern blot 

 

Approximately 1 µg of B. pertussis chromosomal DNA was digested 
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for 4 h with appropriate RE(s) as described in Section 2.2.3 and the digested 

chromosomal DNA was subjected to 0.8% agarose gel electrophoresis. The 

agarose gel containing the digested DNA was treated twice in depurination 

solution (0.25 M HCl) for 10 min with gentle agitation, rinsed in deionised 

water, soaked twice in denaturation solution (5% of 10 N NaOH and 8.75 % 

NaCl) for 15 min and finally soaked twice in neutralization solution (7.7 % 

ammonium acetate, 0.2 % 10 N NaOH solution) for 30 min. The DNA 

fragments were transferred for 2-4 h onto a nitrocellulose membrane 

(Milipore). Before the assembly as illustrated in Figure 2.1, the nitrocellulose 

membrane was pre-wet in neutralization solution. After transfer, the 

membrane was UV-fixed for 1 min and equilibrated with 10 ml of pre-heated 

DIG Easy Hyb solution (Roche) at 65°C for 20 min, with gentle agitation. For 

hybridization, about 5-25 ng/ml of heat-denatured DIG-labeled DNA probe in 

DIG Easy Hyb solution was incubated with the membrane overnight at 65°C. 

After hybridization the membrane was washed twice in 2xSSC (0.15 M NaCl 

and 0.015 M sodium citrate) containing 0.1% SDS for 5 min at room 

temperature, followed by 2 wash steps in 0.1x SSC containing 0.1% SDS for 

15 min at 65°C. Blocking and washing were done using the DIG Wash and 

Block Buffer Set (Roche) according to the manufacturer’s instructions. 

Detection was performed by incubating the membrane with alkaline 

phosphatase (AP)-conjugated anti-DIG antibody (Roche) at a dilution of 

1:5,000 for 1 h at room temperature. The membrane was developed using 

NBT/BCIP AP substrate (Chemicon) and reaction was stopped by washing the 

developed membrane in deionised water. 
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!!!!! !
 

Figure 2.1: Semi-dry transfer of nucleic acids onto nitrocellulose 
membrane. 

!

2.4.7 RNA Extraction 

!
2.4.7.1 RNA extraction from in vitro B. pertussis culture 

!

500 µl of mid-exponential bacterial culture was harvested into 1 ml of 

RNAprotectTM Bacteria Reagent (Qiagen). The mixture was immediately 

vortexed and incubated at room temperature for 15 min. The bacterial cells 

were centrifuged for 10 min at 8,000 rpm, and the supernatant was discarded. 

The bacterial pellet was first re-suspended in 100 µl 1x TE buffer (Tris-EDTA 

at pH 8) containing 20 mg/ml of lysozyme (Sigma) and was incubated at room 

temperature for 10 min, vortexed for 10 s for every 2 min of incubation. RNA 

extraction was carried out using the RNeasy Mini Kit (Qiagen) according to 

the manufacture’s protocol. The RNeasy clean up with an on-column DNase 

treatment was employed using the DNase-I set (Qiagen) as recommended by 

the manufacturer’s protocol. Finally, total RNA was eluted using 30-50 µl of 

DEPC-RNase free water (Invitrogen).  
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2.4.7.2 RNA extraction from B. pertussis infected eukaryotic cells 

!

10 ml of RNAprotectTM Bacteria Reagent (Qiagen) were added into the 

tissue culture flasks of B. pertussis infected mammalian cells. The cell 

monolayers were then mechanically scraped, pooled and centrifuged at 

maximal speed. The cell pellet obtained was then re-suspended in 2 ml of 

DPEC water, vortexed vigorously and incubated at 37ºC for 20 min for lysis 

of mammalian cells. Free bacteria and cell debris were then pelleted at 10,000 

rpm for 10 min, followed by re-suspension of the pellet in 300 µl of of 1 x TE 

buffer containing 50 µl of 20 mg/ml lysozyme. The RNA extraction procedure 

was similar to that described in section 2.4.7.1 except that the amount of RLT 

buffer and ethanol used per collecting tube was scaled up to 700 µl and 500 µl 

respectively. In addition, in-solution DNA digestion with DNase-I was 

performed according to the manufacturer’s protocol to further eliminate 

genomic DNA contaminants. The essentially cleaned RNA was then eluted in 

20-30 µl of DPEC water. !

!

2.4.7.3 RNA extraction from B. pertussis infected mice lungs 

!

B. pertussis-infected BALB/c mice (CARE) were  euthanized and their 

lungs were aseptically removed (as described in section 2.12) and immediately 

immersed in 3 ml of RNAprotectTM Bacteria Reagent (Qiagen) for 1 h in 4ºC. 

The stabilized lungs were homogenized using the High Shear homogenizer 

(Omni International, Reasearch Biolabs). The lung homogenates from 
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individual lungs were filtered through a cell strainer. The filtered suspension 

was centrifuged at 1,500 rpm for 7 min to pellet the remaining cell debris. The 

supernatant containing free bacteria was centrifuged at 10,000 rpm for 10 min. 

The bacterial pellet was again stabilized in 1 ml of RNAprotect Bacteria 

Reagent for 5 min at room temperature. Bacterial RNA was extracted using 

lysozyme and RNeasy Mini Kit buffer as described in section 2.4.7.1. In-

solution DNA digestion was performed with DNase-I, and finally total RNA 

was eluted in 20-30 µl of DPEC water. 

 

2.4.7.4 Quantification of total RNA 

!

The concentration of total RNA extracted was quantified by UV 

spectroscopy using the NanoDropTM Spectrophotmeter (Thermo). 

Quantification was done in an absorbance range from 220 nm to 750 nm. 2 µl 

of the total RNA extracted was placed onto the measurement pedestal to 

estimate its concentration in ng/µl and the ratio of absorbance measured at 260 

nm and 280 nm (A260/A280) was determined to assess RNA purity. RNA 

preparations with an absorbance ratio within the range of 1.8 to 2 are 

considered of satisfactory purity. The quality of the total RNA extracted was 

checked visually upon agarose gel electrophoresis as described in section 

2.2.4.1.   

!

2.4.8 Reverse-transcription Polymerase Chain Reaction (RT-PCR) 

!
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Total bacterial RNA extracted from in vitro culture (10 ng) from the 

infected cell lines (1 µg) and from infected mice lungs (1 µg) was subjected to 

RT-PCR to synthesize complementary DNA (cDNA) strands using the 

iScriptTM cDNA synthesis kit (BioRad) (Table 2.5). For each RNA sample, a 

reaction with (+RT) or without (-RT) reverse transcriptase was set up. 

Amplification was conducted in the iCyclerTM Thermal Cycler system 

(BioRad) with a pre-incubation at 25ºC for 5 min and cDNA amplification at 

42ºC for 40 min. Finally, the RT was inactivated at 85ºC for 5 min and 

reaction was kept at 4ºC.  

 

Component Volume per reaction (µl) 
5x iScript reaction mix 4 
iScript reverse transcriptase 1 
Nuclease-free water 10 
RNA template (10 ng-1 µg) 10 
Total volume 20 

 

Table 2.5: Reaction components for RT-PCR amplification per sample 
tube for RNA input less than 1µg. The reaction was scaled up to a final 
volume of 40 µl when using more than 1 µg of RNA. 

!
!
2.4.9 Real-Time Polymerase Chain Reaction 

!
2.4.9.1 Reaction setup 

 

iTaqTM SYBR Green Supermix with ROX cocktail (BioRad) was used 

in all real-time quantitative PCR (qPCR) reaction. A 50 µl singleplex PCR 

reaction mix was prepared according to the manufacturer’s instructions as 

shown in Table 2.6. 2-4 µl of cDNA template was added in triplicates into 
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each of the assigned wells in the MicroAmp® Optical 96-well Reaction Plate 

(Applied Biosystem). A master mix consisting of the iTaqTM cocktail, 

forward-reverse primers and DEPC water was initially prepared before adding 

48 µl of this master mix into each of the assigned optical wells containing 

either the cDNA sample, the no-template control as well as the –RT control. 

For no-template control, 2-4 µl of RNase-DNase free DEPC water was added 

into the optical well instead of the cDNA template, which is used to estimate 

the formation of primer-dimer and to ensure the PCR reaction proceeds in a 

contamination-free environment. The -RT control was used to estimates the 

amount of genomic DNA contamination present in the target samples. Passive 

reference ROX dye in the iTaqTM cocktail provides an internal fluorescence 

reference to which the reporter SYBR dye signal was normalized during data 

analysis. 

 

Component Volume per 
reaction (µl) 

Final 
concentration 

iTaqTM SYBR Green Supermix with ROX 25 1x 
Forward primer 0.5 500nM 
Reverse primer  0.5 500nM 
DEPC water 20-22  
cDNA template  2-4  
Total volume  50  

 

Table 2.6: Reaction components for Real-time PCR amplification per 
sample tube. 

!
!

Both forward and reverse primers were designed with the Applied 

Biosystem Primer Express® and OligoTech software. The list of primers is as 

shown in Table 2.7. Annealing temperature (Ta) was calculated according to 
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the following equation: (4 x nG/C) + (2 x nA/T) – 5 where nG/C and nA/T represent 

the number of G & C, and A & T bases respectively.  

 

bvgA TCCTCATCATTGACGATC
ACCC 

CGATGACTTCCAGCCCGTCC
A 

bvgR AACAGCTGCTGGCGCAGG
TT 

GCCGCAGGCTATGCAGGCTT 

brkA GTATCTCGATAGATTCCG
TCAAT 

CGTGTTGTCCCGTGGTCG 

fhaB TGTCCGCCATGGAGTATT
TCAA 

CCCAAATGTACTCGTAGCGA
TTC 

kpsT ATTCTCGATGACGTGTCG
TTCGA 

GGCGAACACCTCGAGACATT
TG 

ptx GCGTTGCACTCGGGCAAT
TC 

CAGATGGTCGAGCACATTGT
C 

recA GACGACAAAACCAGCAA
GGCC 

CGTAGACCTCGATCACGCGG 

risA CTGCTGGTTCTCGACCTG
ATG 

CGGGTTGAAGGGCTTGGACA 

sphB1 TGCTGCAGGACAACCTGT
ATTC 

TCAGGCCGGCCGAGACTTCG 

vrg6 AAGTGGTTCGTTGCTGCC
GG 

TACACCACCTGCGGGCGC 

BP3838 GCGAGTTCGACCTGGTAA
TG 

AATCGCGCACGTGCGACGT 

BP3818 CCATCGGGTTGCGCTACC AACAGATAGCCCGCGACCG 
 

Table 2.7: List of primers used for Real-time PCR. 

!
!

Amplification and relative quantification for gene expression was 

conducted using the Applied Biosystem Standard 7500 sequence detector. 

Both forward and reverse primers for selected targets and endogenous control 

is as listed in Table 2.7. The amplification begins with an initial denaturation 

step at 95ºC for 3 min, followed by PCR cycling for 45 cycles consisting of 

DNA denaturation at 95ºC for 15 s and primer annealing and extension steps 

at suitable Ta of various primers for 45 s. A dissociation stage was added for 
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melting curve analysis at 95°C for 15 s, 60°C for 15 s, and a slow ramp to 

95°C for 15 s. 

 

2.4.9.2 Configuring data analysis setting in real-time PCR 

!

The real-time data on gene expression quantitation or RQ was 

automatically collected by the Applied Biosystem Standard 7500 system 

throughout the PCR cycling process. At the end of the run, data analysis was 

done either on a single plate document or multi-plates document. SYBR green 

fluorescence intensity was depicted by the amplification curve generated from 

the system. Baseline value was set at initial stage of cycling where minimal 

change in SYBR green fluorescent signal was detected. Significant 

amplification was characterized by the point in time during cycling when 

amplification of a target is first detected above the set threshold value, which 

was set above the baseline and within the exponential part of the amplification 

curve. The threshold cycle (Ct) value was determined at which the 

amplification curve intersects with the set threshold value. The determination 

of Ct values across the samples is essential for subsequent relative quantitation 

assay. To quantify the relative expression of each gene, the average Ct values 

calculated from the triplicate samples was normalized against the endogenous 

reference gene, recA (equation 1 and 2). Normalization step is necessary to 

correct for fluorescence fluctuations caused by variations in template 

concentration or in volume from one well to another. The selected endogenous 

control recA was expected to be constitutively expressed in all the 

experimental samples. The ΔCt value obtained was then compared with a 
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calibrator, using the ΔΔCt method (equation 3). From the ΔΔCt values, the 

relative gene expression of target sample was calculated (equation 4). 

 

(ΔCttarget = Cttarget – CtrecA) ------------(equation 1) 

(ΔCtcalibrator = Ctcalibrator – CtrecA)-------(equation 2) 

(ΔΔCt = ΔCttarget - ΔCtcalibrator)---------(equation 3) 

(RQ= 2-ΔΔCt)------------------------------(equation 4) 

!

The calibrator sample was used as the basis for comparative gene 

expression in which its RQ value was set as 1. Consequently, an increase in 

gene expression would have an RQ greater than 1 whereas a decrease in gene 

expression would be reflected by an RQ < 1. Relative fold change was then 

calculated from the RQ values obtained. !

!

2.4.10 Microarray Analysis  

 

8 ml of mid-exponential bacterial culture was harvested at OD600nm 2 

and mixed with 2 ml of phenol-ethanol mixture containing 5% of UltraPure™ 

Buffer-Saturated Phenol (Invitrogen) and 95% Ethanol. The bacteria-phenol-

ethanol mixture was pelleted at 8,000 rpm for 10 min. The pellet was frozen 

and shipped to the Institute Pasteur Lille, France for whole genome 

transcriptomics analysis. In brief, long oligonucleotide probes were designed 

from the sequences of the 3554 open reading frames (all coding CDS except 

transposases of IS elements) of B. pertussis Tohama I genome using 

OligoArray v2.1 (Rouillard et al., 2003). Oligonucleotides were synthesized 
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by Sigma-Aldrich and spotted on Nexterion AL slides (Schott Nexterion) in 

1x SciSpot-AM buffer (Scienion) using a Q-Array II spotter (Genetix). For 

each sample, 15 µg of total RNA was reverse transcribed with 400 units of 

SuperScript III (Invitrogen) in presence of 100µM Cy3-dCTP or Cy5-dCTP 

(GE) and 300 mM of random hexanucleotide (Roche). The labelled cDNA 

was then NaOH treated to degrade RNA and purified on Qiaquick PCR 

purification kit (Qiagen). Hybridization was performed in 40% formamide, 5x 

Denhardt’s solution, 0.1% SDS, 1 mM sodium pyrophosphate and 5x SSC for 

14-16 h at 52°C under agitation. Slides were then washed sequentially in 2x 

SSC with 0.2% SDS for 5 min, 0.5x SSC for 10 min, 0.05x SSC for 5 min and 

0.01x SSC for 1 min before drying. Hybridized slides were scanned using an 

Innoscan 700 (Innopsys) microarray scanner and analyzed with Mapix v3.1 

(Innopsys). Normalisation and differential expression were carried out using 

the LIMMA package (Linear Models for Microarray Data) (Smyth et al., 

2003) running under the statistical language R v2.11.1. Identification of 

statistically significant regulation was performed using moderated t-statistic 

with empirical Bayes shrinkage of the standard errors (Lonnstedt and Speed, 

2002). Because of multiple testing, obtained P values were corrected using 

Benjamini & Hochberg method to controls the false discovery rate (Benjamini 

and Hochberg, 1995).!

!

2.5 PROTEIN EXPRESSION STUDIES 

!
2.5.1 Preparation of B. pertussis Samples for Protein Expression Studies 

!
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2.5.1.1 Supernatant 

 

10 ml of B. pertussis culture grown in SS medium were harvested in 

mid-exponential phase at OD600nm and centrifuged at 8,000 rpm for 10 min at 

room temperature. The supernatant was collected and subjected to further 

spinning for 10 min at maximum speed to remove any remaining cell debris. 

Equal volume of commercial protein loading buffer; the Laemmli Blue sample 

buffer (Biorad) mixed with 5% β-mercaptoethanol (Sigma) was added to 500 

µl of the clarified supernatant and the mixture was heated at 95°C for 15 min. 

When necessary the supernatant was concentrated up to 10 times using Ultra-4 

Centrifugal Filter Device (Amicon) according to the manufacturer’s 

instructions prior to adding the Laemmli Blue sample buffer and 5% β-

mercaptoethanol.  

 

2.5.1.2 Whole cell extract 

 

1 ml of B. pertussis culture grown in SS medium was harvested in 

mid-exponential phase at OD600nm and centrifuged at 8,000 rpm for 10 min at 

room temperature.  The pellet was re-suspended in 500 µl of RNases-free 

water, and an equal volume of Laemmli Blue sample buffer and 5% β-

mercaptoethanol was added before heating the mixture at 95°C for 15 min. 

Chomosomal DNA was sheared by passing the suspension through a 27G 

needle followed by heating at 95°C for 15 min.  
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2.5.2 Preparation of B. pertussis Samples for Protein Purification 

Studies 

 

2.5.2.1 Growth of bacteria 

!

A 10 ml pre-culture of B. pertussis culture grown in SS medium was 

used to inoculate 50 ml of SS medium to an initial OD600nm of 0.1. The culture 

was incubated overnight until OD600nm 2-2.5 was reached.  

!

2.5.2.2 Clarified whole cell extract 

 

50 ml of B. pertussis culture were centrifuged at 8,000 rpm for 10 min 

and washed twice with 25 ml of 1x PBS. The washed bacteria pellet was re-

suspended in 5 ml of lysis buffer A (containing 20 mM Tris-HCl pH7.9, 10 

mg/ml lysozyme, 50 µM KCL, 10% glycerol and 1xprotease inhibitor) and 

incubated at 37°C with rocking for 1 h. The bacterial cells were sonicated in a 

bioruptor closed system (Diagenode) for 15 min with 15 s ON/OFF interval. 

Cellular contents and debris were removed upon centrifugation at 8,000 rpm 

for 10 min. The bacteria pellet was re-suspended again in 5ml lysis buffer A, 

with an addition of 1% Triton-X-100. The bacterial cells were incubated at 

37°C with rocking for 1 h, prior to centrifugation at 10,000 rpm for 10 min. 

Finally, the supernatant was discarded and the bacteria pellet was solubilized 

in 5 ml of solubilization buffer (containing 20mM Tris-HCl, 50 µM KCL, 

10% glycerol and 6 M guanidine hydrochloride, pH 8) with rocking for 1 h at 
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4°C. The cellular lysate was clarified by centrifugation at maximum speed for 

15 min to pellet unsolubilized cells and debris. 

 

2.5.3 Protein Quantification Using Bicinchoninic Acid (BCA) Assay 

 

200 µl of BCA working reagent diluted 1:50 (Thermo) were added to 

10 µl of the sample cellular lysate and to a range of bovine serum albumin 

standards at 2 mg/ml, 1 mg/ml, 0.5mg/ml, 0.25 mg/ml and 0.125 mg/ml. The 

mixture was incubated at 37°C for 30 min and absorbance was measured at 

562 nm with Infinite200 Pro (Tecan, Switzerland) 96-well plate reader.  

 

2.5.4 Protein Purification Using Ni-NTA Column Chromatography 

 

400 µl of Ni-NTA slurry (Qiagen) were centrifuged at 5,000 rpm for 5 

min to remove slurry solution. The beads were pre-equilibrated with 400 µl of 

solubilization buffer containing 20 µM imidazole. Pre-equilibration of the Ni-

NTA beads was performed on a rocker for 10 min at room temperature. 

Approximately 5 mg of clarified lysate were mixed with imidazole to a final 

concentration of 20 µM. If obvious viscosity was observed, 20 units of 

TURBO DNase-I (Invitrogen) was added to the cell lysate. The cell lysate was 

then mixed with the pre-equilibrated Ni-NTA beads at 4°C overnight with 

rocking. The mixed lysate and Ni-NTA beads were loaded onto an empty 

Poly-PrepTM chromatography column (Biorad). The Ni-NTA beads were 

allowed to settle at the bottom of the tube before the bottom cap was opened 

for gravity flow purification. The Ni-NTA beads were washed with 5 column 
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volumes of wash buffer (containing 6 M urea, 100 mM NaH2PO4, 10mM Tris-

HCl and 20 µM of imidazole. pH6.3). Proteins bound to the Ni-NTA beads 

were batch eluted four times in elution buffer (containing 6 M urea, 100 mM 

NaH2PO4, 10mM Tris-HCl and 200 µM of imidazole. pH 4.5). Eluted proteins 

were aliquoted in batch and stored at -80°C. Prior to SDS-PAGE, defrost 

purified proteins were mixed with Laemmli Blue sample buffer alone and 

unheated or with β-mercaptoethanol and heated at 95°C for 15 min.  

 

2.5.5 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis 

(SDS-PAGE)  

 

Protein separation was conducted under denaturing conditions via 

SDS-PAGE using a vertical slab gel unit (Hoefer, USA) according to the 

manufacturer’s instructions. The slab gel consisted of a 5% polyacrylamide 

stacking gel and a 8%, 10% or 12% polyacrylamide resolving gel, both 

containing 10% SDS. Cell extract, supernatant samples or purified proteins 

were heated at 95ºC (or not for purified proteins) for 5-15 min immediately 

before loading onto the SDS-gels. 5 µl of BenchMarkTM Pre-Stained protein 

ladder (Invitrogen) or Spectra Multicolor Broad Range protein ladder 

(Thermo) were loaded as well as the molecular weight standard. 

Electrophoresis was conducted in 1xTris-Glycine SDS running buffer at 

constant 80 V for the first 20 min and increased to 100 V for protein 

separation in resolving gel for 2 h.  
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2.5.6 Coomassie Blue Staining 

 

To visualize the protein bands after electrophoresis, the PAGE gel was 

soaked in Coomassie Staining InstantBlueTM solution (Expedeon, Cambridge, 

UK) for 1-2 h with constant shaking until bands appeared. The PAGE gel was 

then destained in deionized water with constant shaking until the protein bands 

could be visualized as sharp blue bands against a clear background. The gel 

was placed on clear cellophane and scanned for record and analysis.  

 

2.5.7 Western Blot 

 

After SDS-PAGE, the separated proteins were electro-transferred to a 

methanol activated PVDF membrane (Bio-Rad) using either a semi-dry 

transfer system (Vann et al.) at 65 mA for 2-4 h or a wet transfer system 

(Biorad) at 30 V overnight. Prior to assembly for semi-dry transfer, the SDS-

PAGE gel, PVDF membrane and filter papers were soaked in transfer buffer 

containing 1xTowbin buffer made up of Tris-Glycine and methanol 

(containing 25 mM Tris, 192 mM glycine and 20% (v/v) methanol) for 15 

min. Similarly for wet transfer, the PVDF membrane and filter papers were 

soaked in 1xTowbin buffer containing 40% (v/v) methanol instead of 20% 

methanol. PVDF membranes from completed semi-dry or wet transfer were 

blocked in 5% skim milk (Bio-Rad) diluted in 1xTBS with 0.1% Tween20 at 

room temperature for 1 h. The membranes were then incubated with the 

appropriate primary antibody (Table 2.8) diluted in the same blocking buffer 

for 1 h at room temperature or at 4ºC overnight, followed by 3-5 washing 
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steps in an excess of washing buffer (containing 1xTBS, 0.1% Tween20) at 15 

min intervals. Thereafter, the membrane was incubated for 1 h with gentle 

shaking at room temperature, with the appropriate AP-conjugated or HRP-

conjugated secondary antibody (Table 2.8) diluted in blocking buffer, 

followed by washing as described above. Finally, the AP-conjugated antibody-

reactive bands were revealed by chromogenic detection upon addition of 

NBT/BCIP alkaline phosphatase substrate (Chemicon, Temecula, CA). For 

chemiluminescent detection, the membrane with HRP-conjugated secondary 

antibody was incubated with Amersham ECL Prime Western Blotting 

Detection Reagent (GE Healthcare, Waukesha, WI) and reactive bands were 

developed on CL-XPosure X-ray Film (Thermo). 

 

Primary antibody Dilution Secondary Antibody Dilution 
Rabbit anti-BrkA polyclonal 
antibody (New England 
Peptide, Gardner,MA) 

1:30,000 Goat anti-rabbit IgG 
AP conjugate (H+L) 
(Bio-rad) 

1:3000 

Mouse anti-FHA monoclonal 
antibody (National Institute 
for Biologica Standards and 
Control, UK) 

1:5000 

Mouse anti-PTX monoclonal 
antibody (National Institute 
for Biologica Standards and 
Control, UK) 

1:1500 

Goat anti-mouse IgG 
AP conjugate (H+L) 
(Bio-rad) 

1:3000 

Rat anti-BvgS polycolonal 
antibody (Kind gift from Dr. 
F. Jacob-Dubuisson, Institute 
Pastuer Lille)  

1:3000 Goat anti-rat IgG 
(H+L) HRP 
conjugate (Abcam, 
Cambridge, UK) 

1:5000 

Mouse anti-penta Histidine-
HRP conjugated monoclonal 
antibody (Qiagen) 

1:10,000 NA  

 

Table 2.8: Antibodies used in Western blot. 

!
!
!
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!
!
!
!
!
!

!
!

Figure 2.2: Western blot setup for semi-dry transfer. 

 

 

!
Figure 2.3: Western blot setup for wet transfer. 

!
!
!
!
!
!
!
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2.6 FLUORESCENCE ACTIVATED CELL SORTING (FACS) 

!
2.6.1 Preparation of B. pertussis Samples for FACS 

!

To detect surface polysaccharide capsule, 5 ml of B. pertussis strains 

grown in SS medium containing 50 mM MgSO4 were harvested at mid-

exponential phase and centrifuged at 8,000 rpm for 10 min. The bacteria pellet 

was washed twice with 2 ml of sterile HEPESG buffer (1xHEPES, 5% 

glycerol; 0.05% Tween80). Bacteria concentration was adjusted to 108 

CFU/ml in 2 ml of HEPESG. 500 µl of the bacteria were incubated with 

mouse anti-Vi antiserum (see section 2.10) diluted 1:50 for 2 h at 4°C with 

constant agitation. The bacteria-antibody complexes were centrifuged at 8,000 

rpm for 10 min and gently washed twice with 2 ml of HEPEG. The bacteria-

anti-Vi antibody complexes were then gently re-suspended in 500 µl of 

HEPESG with 1:100 dilution of FITC-conjugated goat anti-mouse IgG 

(Chemicon) for 1 h at room temperature with constant agitation. The 

suspension was centrifuged at 8,000 rpm for 10 min, washed twice with 2 ml 

of HEPEG and finally re-suspended in 100 µl of 1xHEPES with 4% 

paraformaldehyde to fix the bacteria cells.  

 

To evaluate bacteria membrane integrity with propidium iodide (PI) 

staining assay, B. pertussis strains grown on BG agar for 24 h were washed 

once with PBS and adjusted to initial OD600nm of 0.7 with SS media. 500 µl of 

bacterial suspension was incubated with or without 0.02% SDS for 2 h at 

37°C. 50 ng of PI (BD Pharmigen) was then added to! the culture and 
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incubated for 15 min at room temperature. Bacteria cells were washed twice 

with 1xPBS prior to fixing with 4% paraformaldehyde for 30 min and 

analyzed with LSRFortessa cell analyzer (BD Pharmigen).!

 

2.6.2 FACS Analysis 

 

100 µl of each sample were diluted with 700 µl of BD FACSFlowTM 

sheath fluid (Becton-Dickinson, Heidelberg, Germany) prior to FACS 

profiling and acquisition. A Coulter Epics machine (Beckman Coulter, Palo 

Alto, CA) was used for the flow cytometric study. Samples were analyzed 

with laser excitation at 488 nm, and data acquisition was performed using 

EXPO Version 2.0 software (Applied Cytometry Systems, Sheffield, U.K.) 

and analyzed with WinMDI-2.8 software. 

 

2.7 CELL BIOLOGY 

!
2.7.1 Cell Line and Culture Conditions  

!

J774.A1 murine macrophages (ATCC, TIB 67) were cultured at 37ºC 

and 5% CO2 atmosphere, and were maintained in Dulbecco’s modified 

essential medium (DMEM) medium supplemented with 10% heat-inactivated 

fetal calf serum (FCS) (Gibco, Invitrogen), 2% of 200 mM GlutaMAX-I 

(Gibco, Invitrogen) and 1% of 100mM sodium pyruvate (Gibco, Invitrogen). 

A549 human lung epithelial cells (ATCC, CCL-185) cells were cultivated in 

RPMI-1640 medium containing L-glutamine and 25 mM HEPES buffers 
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(Gibco, Invitrogen), supplemented with 10% heat-inactivated FCS (Gibco, 

Invitrogen), 2% of 200mM Glutamax-I (Gibco, Invitrogen) and 1x penicillin-

streptomycin (100U/ml of penicillin and 100 µg/ml of streptomycin) 

antibiotics (Gibco, Invitrogen). Both J774.A1 and A549 cells were cultivated 

in 25 cm2 and 75 cm2 tissue culture flasks. Upon 80% confluency, usually 

within 2-3 days, the spent medium was discarded and the cell monolayers 

were rinsed thrice with 10 ml sterile 1xPBS to remove dead cells. Cells were 

detached from the tissue culture flask surface by mechanical scraping. 

J774.A1and A549 cells were passage in a ratio of 1:3 in 75 cm2 tissue culture 

flasks.  

 

2.7.2 Trypan Blue Assay 

!

Single cell suspensions were mixed with equal volume Trypan blue 

dye (Sigma) and transferred to a cover slip chamber on a hemocytometer. 

Under the inverted light microscope, the viable and non-viable cells can be 

distinguished, whereby viable cells exclude the trypan blue dye whereas dead 

cells take up the blue dye. The number of viable (unstained) cells located in 

the 25 squares of the hemocytometer was counted and the cell concentration 

per ml was determined using the following calculation:  

   

 Cells per ml = the average count in 25 squares x dilution factor x 104 

 

2.7.3 Cell Culture Infection Assay 
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J774.A1 and A549 cells were grown as described in section 2.7.1. Two 

days before the infection assay, B. pertussis strains were plated on BG agar as 

mentioned in section 2.3.2. The bacterial lawns were harvested and washed 

once in 5 ml sterile 1x PBS, followed by centrifugation at 8,000 rpm for 10 

min at room temperature to remove traces of blood agar. Bacteria pellet was 

re-suspended in 1 ml of incomplete cell culture medium (without FCS) for OD 

measurement at 600 nm. The final bacterial concentration was adjusted with 

appropriate incomplete cell culture medium to allow a multiplicity of infection 

(M.O.I) of 100 for Real-time PCR analysis of bacterial gene transcripts 

(Section 2.4.9). In addition, 200 ul of the final bacterial suspension were 

serially diluted and plated on BG agar for quantification of the inoculums. 

 

Prior to infection assay, J774.A1 and A549 cell monolayers were 

washed with 10 ml of 1xPBS and 10 ml of bacterial suspension in incomplete 

medium were added into the 75 cm2 tissue culture flasks. Similarly, 10 ml of 

incomplete DMEM medium were added into the non-infected flask. The tissue 

culture flasks were incubated in 37ºC at 5 % CO2 atmosphere for 1.5 h. After 

1.5 h, bacterial suspension was removed from all flasks and the monolayers 

were rinsed thrice with 1xPBS. The monolayers were either lysed (time point 

1.5 h p.i.) or further incubated with medium containing 100 µg/ml of 

gentamicin for 2 h at 37ºC at 5 % CO2 atmosphere to kill extracellular 

bacteria. After 2 h, the flasks were washed thrice with sterile 1x PBS. Except 

for those cells, which are to be lysed immediately (time point 3.5 h p.i.), cell 

culture medium containing 20 µg/ml of gentamicin was added into the flasks. 

For each time point, prior to cell lysis, the flasks were washed thrice with 1x 
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PBS and the monolayers were immediately processed for bacterial RNA 

extraction as described in section 2.4.7.2. 

 

(C) ANIMAL WORK 

!
2.8 Ethics Statement 

 

All the animal experiments were approved by NUS IACUC under the 

protocol number 089/09. The animal experiments were carried out under the 

guidelines of the National Advisory Committee for Laboratory Animal 

Research (NACLAR) in the AAALAC-accredited NUS animal facilities. All 

efforts were done to minimize suffering of the animals and all non-terminal 

procedures were performed under anesthesia.  

 

2.9 Mouse Strain 

 

6-8 weeks-old pathogen-specific free (SPF) female BALB/c mice were 

purchased from Centre for Animal Resources (CARE), NUS Singapore. The 

mice were housed in individual ventilated cages (IVCs) in a ABSL2 facility. 

 

2.10 Generating Polyclonal Anti-Vi Antisera 

 

BALB/c mice were immunized intraperitoneally (ip.) with 5 µg (100 µl) 

of Typhoid Vi polysaccharide vaccine of S. typhi Ty2 strain (TYPHIM ViTM, 
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Aventis Pasteur SA, France) mixed with equal volume of incomplete Freund’s 

adjuvant (Calbiochem, San Diego, USA). Immunization was performed once 

and blood was collected from the sedated immunized mice by retro-orbital 

plexus puncture after 10 days and 17 days post-immunization. The blood was 

allowed to clot at 37°C for 30 min and 4°C for 1 h, followed by centrifugation 

at 3,500 rpm for 10 min at 4°C. The serum was collected and stored at -20°C 

until used. 

�

2.11 Intranasal Infection 

 

B. pertussis strains grown on BG agar at 37ºC for 3 days were re-

suspended in sterile PBST (containing 1x PBS, 0.05% Tween80) and adjusted 

to a final concentration of approximately 2.5x107 CFU/ml (for colonization 

assay) or 2.5x109 CFU/ml (for bacterial RNA extraction). Prior to infection, 

mice were sedated upon ip. administration of 150 µl per mouse of an 

anaesthetic cocktail (6% valium, 10% atropine, 20% ketamine, 64% 1x sterile 

PBS) . Infection was performed through the intranasal route with 20 µl of the 

bacterial suspension slowly deposited onto the nostrils of the animals. 

 

2.12 Murine Lung Colonization Study 

 

 Four mice per time point were sacrificed at the indicated time points 

after intranasal infection with various B. pertussis strains. The lungs from each 

individual mouse were aseptically removed and homogenized in 2 ml or 5 ml 
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sterile PBST using High Shear homogenizer (Omni International, Reaserch 

Biolabs). Serially diluted lung homegenates from individual mice were then 

plated onto BG agar supplemented with 100 µg/ml Sm and the total CFU per 

lung was counted after 4-5 days incubation at 37ºC.  

 

2.13 Statistical Analysis 

 

Statistical analysis of all results was performed using the unpaired 

Student t-test. Differences were considered significant at a P value of < 0.05. 
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CHAPTER 3 ROLE OF THE CAPSULE OPERON IN 

PERTUSSIS PATHOGENESIS 

!
(A) CHARATERIZATION OF B. PERTUSSIS MUTANTS CARRYING 

A SINGLE GENE DELETION WITHIN THE CAPSULE OPERON  

!
3.1 RESULTS 

!
3.1.1 Construction of B. pertussis kpsT, kpsE and vipC-deleted Mutants 

 

A non-polar single gene deletion was constructed for kpsT, kpsE and 

vipC ORFs via double homologous recombination at the chromosomal locus 

of wild-type BPSM. Approximately, 600-800 bp of genes, termed as PCR1, 

flanking from the 5’ internal region and PCR2, flanking from the 3’ internal 

region of the respective ORFs to be deleted, were PCR amplified from BPSM 

chromosomal DNA using the primers listed in Table 2.2 (Figure 3.1). The 

PCR1 and PCR2 fragments were cloned into TOPO vector for sequencing and 

then into pBR322 intermediate vector. PCR1+2 were eventually cloned into 

the Bordetella suicide vector pJQ200mp18rpsL, yielding pJQT1-2, pJQE1-2 

and pJQV1-2 respectively. Electrocompetent B. pertussis BPSM strain was 

electroporated with pJQT1-2, pJQE1-2 and pJQV1-2 plasmids as described in 

section 2.4.2. B. pertussis clones deleted for kpsT, kpsE and vipC genes, 

respectively, were selected as described in section 2.4.3 and colony PCR 

screening was performed using primers as listed in Table 2.4.  
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!
Figure 3.1: Schematic organization of the ORFs for B. pertussis capsule 
operon. !

The capsule operon of B. pertussis regulated under the capsule promoter is as 
shown. Black cross represents mutational insertion found in the locus. Black, 
hashed and white arrows represent genes involved in polysaccharide capsule 
transport, polysaccharide modification/translocation and polysaccharide 
biosynthesis respectively. The homologous PCR1 and PCR2 fragments 
indicated by the filled red and green arrowheads (ΔkpsT), dotted red and green 
arrowheads (ΔkpsE) and filled red and green rounded arrowheads (ΔvipC) 
were used for the construction of the respective mutants.  
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3.1.2 Obtaining The ΔkpsT, ΔkpsE and ΔvipC Mutants  

!
3.1.2.1 Southern blot analysis 

!

The BPSM-derivative knockout (KO) mutant strains designated as 

ΔkpsT, ΔkpsE and ΔvipC were further analyzed by Southern blot analysis. 

Chromosomal DNA from wild-type BPSM, ΔkpsT, ΔkpsE and ΔvipC strain 

was extracted and restriction digested as described in section 2.4.5 and 2.2.3. 

Southern blot strategy for ΔkpsT, ΔkpsE and ΔvipC mutant and the 

hybridization of DIG-labeled probes are as shown in Figure 3.2 A. The band 

sizes obtained for ΔkpsT (~2.7 kb), ΔkpsE (~3.9 kb) and ΔvipC (~3.4 kb) 

versus the BPSM counterpart confirms that kpsT, kpsE and vipC is deleted at 

the correct locus (Figure 3.2 B). 
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Figure 3.2: Southern blot analysis of ΔkpsT, ΔkpsE and ΔvipC 
chromosomal DNA. 

(A) Strategy for Southern blot analysis for ΔkpsT, ΔkpsE and ΔvipC 
mutant.  
Dotted triangle in panel indicate site of deletion that render each mutant non-
capsulated. The DIG-labeled probe binding region (black rounded arrow), 
restriction sites and size of restriction-digested chromosomal DNA for 
Southern blot analysis are as shown. 
(B) Southern blot analysis of B. pertussis chromosomal DNA.  
Chromosomal DNA of ΔkpsT was digested with EcoRI, whereas chromosomal 
DNA of ΔkpsE and ∆vipC was digested with HindIII and NcoI. Chromosomal 
DNA of BPSM was used as control and digested with the same RE used for 
each of the respective mutants. Restriction-digested chromosomal DNA from 
BPSM, ∆kpsT, ∆kpsE and ∆vipC were electrophoresed, transferred onto a 
nitrocellulose membrane and hybridized with the DIG-labeled probe (Figure 
3.2 A showed probe binding site). Panel a, EcoRI-restricted BPSM and ∆kpsT 
DNA yielded 2.7-kb and 3.2-kb respectively. Panel b, HindIII-NcoI restricted 
BPSM and ∆kpsE DNA yielded 4.8-kb and 3.9-kb respectively. Panel c, 
HindIII-NcoI restricted BPSM and ∆vipC DNA yielded 4.8-kb and 3.4-kb 
respectively. M, DIG-labeled DNA ladder.  
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3.1.3 Construction of B. pertussis ΔkpsT-Complement Strain 

!

An 866 bp DNA fragment corresponding to the native capsule 

promoter in BPSM was synthesized and cloned into XbaI and BamHI digested 

pUC57 plasmid (GenScript, Piscataway, NJ), yielding pUC57-Pcaps. A 764 

bp DNA fragment corresponding to the kpsT ORF was PCR amplified from 

purified BPSM chromosomal DNA using primers listed in Table 2.2. The kpsT 

ORF was cloned into pBBR1MCS to form pBBR-kpsT. The 866 bp capsule 

promoter fragment from pUC57-Pcaps was cloned upstream kpsT ORF in 

pBBR-kpsT, yielding pBBR::PcapskpsT.  

 

3.1.4 Obtaining the ΔkpsT-Complemented Strain 

 

 Electrocompetent B. pertussis ΔkpsT bacteria were electroporated with 

pBBR::PcapskpsT replicative plasmid. Complemented ΔkpsT clones were 

selected on Cm–containing BG plates. Using primers as listed in Table 2.4, B. 

pertussis ΔkpsTcom (complemented) strains were further confirmed by PCR 

screening based on the presence of full-length kpsT ORF (Appendix 1). 

 

 

 

 

 

 



Chapter 3: Role of The Capsule Locus 
 

! 105!

3.1.5 Transcriptional Analysis of Downstream Genes in ΔkpsT, ΔkpsE 

and ΔvipC Mutants 

 

To confirm that the in-frame deletion of these individual ORFs does 

not terminate the transcription efficacy of the downstream ORFs within the 

capsule operon, reverse transcription-PCR was performed on total RNA 

purified from ΔkpsT, ΔkpsE and ΔvipC strains grown in Bvg- phase using 

primers mapping in downstream ORFs of the respective deleted regions. The 

KOcaps mutant strain (Neo et al., 2010) for which the entire capsule operon 

has been deleted was used as negative control. Specific PCR products were 

obtained for both parental BPSM and ΔkpsT, ΔkpsE and ΔvipC strains (Figure 

3.3). Taking into account the variation in loading levels for risA in Figure 

3.3B and Figure 3.3C, these variations probably lead to the observed changes 

in the intensity level observed for the PCR products amplified from wbpT and 

wbpO region (Figure 3.3 B and C). This study suggests that deletion of the 

respective kpsT, kpsE and vipC ORF does not affect transcription efficacy of 

the downstream ORFs within the capsule operon.  
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Figure 3.3: Reverse transcription-PCR on downstream gene.  

Total RNA extracted from exponential SS liquid cultures of BPSM, KOcaps 
and (A) ΔkpsT, (B) ΔkpsE and (C) ΔvipC was reverse-transcribed followed by 
PCR amplification using primers specific to the endogenous control gene recA 
and primers mapping to the respective downstream region of the deleted 
ORFs. The KOcaps strain which was deleted for the entire capsule locus was 
used as a negative control. 
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3.1.6 In vitro Fitness of ΔkpsT, ΔkpsE and ΔvipC Mutants 

!
3.1.6.1 Growth kinetics 

 

To determine the in vitro fitness of B. pertussis ΔkpsT, ΔkpsE and 

ΔvipC mutants, their growth kinetic was determined and compared to the 

wild-type BPSM in virulent (Bvg+) culture conditions. All the mutant strains 

displayed similar growth profiles to BPSM, except ΔvipC, which showed a 

delay in growth at the mid-logarithmic growth phase. Nevertheless, all of 

mutant strains were able to multiple up to a maximum OD600nm of more than 5 

at the late growth phase, indicating that the in-frame single gene deletion of 

the kpsT, kpsE and vipC ORF does not affect the in vitro growth abilities 

(Figure 3.4). 
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   !
Figure 3.4: Growth kinetics for BPSM, ΔkpsT, ΔkpsE and ΔvipC mutant. 

SS liquid medium was inoculated with BPSM (closed circles), ΔkpsT (open 
circles), ΔkpsE (closed triangles) and ΔvipC (open triangles) at initial OD600nm 
of 0.5 at time-point 0 h. OD600nm was monitored throughout 52 h of incubation 
at 37ºC. The growth kinetics assay was performed twice independently for 
each strain and each culture conditions. The data shown is a representative of 
two independent experiments. 
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3.1.7 Expression of Surface Polysaccharide Capsule 

!
3.1.7.1 FACS analysis 

 

Based on homology mapping, KpsT and KpsE are membrane proteins 

predicted to be involved in the transport-export of the polysaccharide capsule 

accross the bacterial cell wall, whereas VipC is cytoplasmic and involved in 

capsule biosynthesis. Therefore, the absence of KpsT, KpsE and VipC 

proteins in ΔkpsT, ΔkpsE and ΔvipC strains, respectively, is expected to result 

in the absence of the capsule at the bacterial surface, due to the lack of 

effective capsule polymer transport and biosynthesis, respectively (Pavelka et 

al., 1994). To confirm this hypothesis, FACS analysis was performed on non-

permeabilized bacterial cells using the cross-reactive anti-Vi antigen immune 

sera as previously described by our laboratory (Neo et al., 2010) and as 

described in Chapter 2.10. The parental BPSM and capsule-deleted mutant 

KOcaps strains were used as positive and negative controls, respectively 

(Figure 3.5 A and B). All the strains were grown in Bvg- phase culture 

conditions to allow optimal expression of the capsule operon, which is known 

as a vrg (Hot et al., 2003). Whereas approx. 20% of the parental BPSM cells 

exhibited a substantial shift in fluorescent signal compared to isotype control; 

KOcaps, ΔkpsT, ΔkpsE and ΔvipC cells displayed background levels of 

fluorescent shift, indicating the absence of polysaccharide capsule at the 

surface of these mutant bacteria (Figure 3.5 C, D and E). ΔkpsTcom displayed 

approx. 18% shift in the detection of surface capsule, similar to that of 

parental level (Figure 3.5 F).  
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Altogether, these results indicate that deletion of the single ORF kpsT, 

kpsE or vipC within the capsule locus is sufficient to prevent the production of 

the polysaccharide capsule at the bacterial surface.  
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!
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Figure 3.5: Detection of the polysaccharide capsule at the surface of B. 
pertussis strains.  

Mouse polyclonal anti-Salmonella typhi Vi antigen immune serum was co-
incubated with non-permeabilized (A) BPSM, (B) KOcaps, (C) ΔkpsT, (D) 
ΔkpsE, (E) ΔvipC and (F) ΔkpsTcom bacteria strains grown in avirulent (Bvg-) 
phase, followed by anti-mouse FITC-conjugated secondary antibody. Isotype-
matched controls are incubated with an anti-mouse antibody as shown in 
black/grey. The fluorescent cells were detected by flow cytometry, with 
20,000 events counted for each sample. A representative experiment is shown, 
with percentage of fluorescent cells indicated in each panel.  
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3.1.8 Lung Colonization Profile of ΔkpsT, ΔkpsE and ΔvipC Mutants 

 

To investigate whether the B. pertussis polysaccharide capsule plays a 

role during infection, Balb/c mice were nasally infected with wild type BPSM, 

KOcaps, ΔkpsT, ΔkpsE and ΔvipC strains, and the bacterial loads in the lungs 

were monitored over time. The parental BPSM showed typical lung 

colonization profile with a multiplication peak at 7 days post-infection (p.i.) 

followed by a progressive reduction in bacterial load over the next 3 weeks p.i. 

(Figure 3.6 A). In contrast, mice infected with KOcaps bacteria displayed no 

peak of multiplication, and instead a rapid decrease in the bacterial load was 

observed as early as 3 days p.i. with complete clearance within 17 days 

(Figure 3.6 A), indicating that deletion of the 10-kb capsule operon in B. 

pertussis greatly impaired its colonization efficiency, thus supporting that the 

polysaccharide capsule plays a role during pertussis pathogenesis.  

 

Since the ΔkpsT, ΔkpsE and ΔvipC mutants do not produce any surface 

polysaccharide capsule; a similar attenuated phenotype was expected to be 

observed in the mouse model. Consistently, the ΔkpsT mutant displayed a 

colonization profile comparable to that observed with KOcaps (Figure 3.6 B). 

The complemented strain ΔkpsTcom displayed a colonization profile similar to 

that of BPSM (Figure 3.6 B), demonstrating that kpsT deletion is responsible 

for the attenuated phenotype observed with the ΔkpsT mutant. Interestingly, 

since kpsT complementation was achieved using the pBBR1MCS replicative 

plasmid (Elzer et al., 1995; Kovach et al., 1994), substantial loss of the 

plasmid occurred during in vivo bacterial replication as evidenced by the 
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increasingly reduced percentage of colonies recovered over time from the 

infected mouse lungs that have retained the plasmid construct (Appendix 2). 

Nevertheless parental colonization efficacy was observed with the ΔkpsTcom 

strain at all the time points analysed, suggesting a bystander or paracrine effect 

whereby bacteria that have retained the plasmid are able to support the 

colonization of those that have lost the plasmid, likely through the secretion of 

critical virulence factors such as PT and FHA as reported before (Alonso et 

al., 2001). The lung colonization profile observed in mice nasally infected 

with ΔkpsE bacteria was also significantly attenuated throughout the course of 

infection compared to the parental BPSM strain (Figure 3.6 C), albeit to a 

much lesser extent than the KOcaps and ΔkpsT strains. In contrast, the 

colonization efficiency of the ΔvipC mutant was comparable to the parental 

BPSM strain, with the exception of a lower bacterial load at day 17 p.i. 

(Figure 3.6 D).  

 

Taken together, it appears that although the capsule was absent from 

the cell surface of all the mutant strains, their colonization profile substantially 

differed ranging from drastic (KOcaps and ΔkpsT) to moderate (ΔkpsE) or no 

(ΔvipC) attenuation. This observation thus suggests that the presence of the 

polysaccharide capsule at the bacterial surface does not play a critical role in 

pertussis pathogenesis. Instead, we propose that the membrane-associated 

polysaccharide transport proteins KpsT and to a lesser extent KpsE, are 

specifically involved in B. pertussis ability to colonize the mouse respiratory 

tract.  
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Figure 3.6: Lung colonization profile by B. pertussis BPSM, ΔkpsT, ΔkpsE 
and ΔvipC strains.  
 
Balb/C mice were infected intranasally with 5x105 CFU of B. pertussis BPSM 
(solid circles) and (A) KOcaps (open circles), (B) ΔkpsT (open circles) and 
ΔkpsTcom (open triangles), (C) ΔkpsE (open circles) and (D) ΔvipC (open 
circles). At the indicated time points, four infected mice per group were 
euthanized and their lungs were harvested, homogenized and plated on blood 
agar to determine the total number of CFU per lung. The results are expressed 
as the mean ± SEM of four mice per group. ** p value < 0.01 and * p value < 
0.05 relative to BPSM. Results are representative of two independent 
experiments. 
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3.1.9 Expression of Virulence Factors in ΔkpsT, ΔkpsE and ΔvipC 

Mutants 

!
3.1.9.1 Western blot analysis 

 

To further investigate the mechanism(s) involved in the capsule-

mediated virulence in B. pertussis, we examined the production of several 

major virulence factors responsible for bacteria colonization including the 

adhesin filamentous hemagglutinin; FHA, the serum resistance protein; BrkA, 

and pertussis toxin; PT in ΔkpsT, ΔkpsE and ΔvipC mutants compared to wild 

type BPSM strain all grown in virulent (Bvg+) phase in order to mimic the 

growth conditions in vivo. All bacteria cultures were harvested at OD600nm 3. 

Compared to BPSM, production in the ΔkpsT mutant for FHA, BrkA and PT 

in the whole cell lysate or in the concentrated and non-concentrated culture 

supernatant were markedly reduced (Figure 3.7 I A, B and C). However, 

taking into account the slight variation in ΔkpsTcom whole cell lysate loading 

control analyzed by Coomassie-stained SDS-PAGE (Figure 3.8), 

production/secretion level of FHA, PT and BrkA was concluded to be partially 

restored to parental level in ΔkpsTcom strain (Figure 3.7 I A, B and C), 

implying that a negative feedback event occurs in the ΔkpsTcom. 

 

A 40% reduction in the production BrkA and secretion of PT in the 

ΔkpsE mutant (Figure 3.7 II B and C) was observed compare to wild type 

BPSM. ΔvipC mutant also displayed similar fold reduction in BrkA 

expression, while expression of FHA and PT remains comparable to wild type 
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BPSM (Figure 3.7 II B). From the protein expression analysis between the 

wild-type and capsule-deleted mutant strains, we propose that the absence of 

the membrane-associated KpsT protein and to a lesser extent KpsE, results in 

reduction of the production and/or secretion of key virulence factors in B. 

pertussis. Nevertheless, it is unlikely that such mild reduction observed in 

these three virulence factors in ΔkpsT and ΔkpsE could compromise the 

overall bacteria virulence and lung colonization ability observed in vivo.  
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Figure 3.7: Production of bvg-regulated virulence proteins in capsule-
deficient mutants.  
(I) BPSM, ΔkpsT and ΔkpsTcom strains and (II) BPSM, ΔkpsE and ΔvipC 
were exponentially grown in virulent (Bvg+) phase. Western blot analysis was 
performed on 10x concentrated or non-concentrated culture supernatants, and 
whole cell lysates using (A) anti-FHA, (B) anti-BrkA or (C) anti-PT primary 
antibodies. The results are representative of three independent experiments. 
Molecular weights are indicated on the right side. Densitometry plot 
corresponding to the each of the blots is plotted as percentage of fold change 
relative to wild type BPSM.   
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Figure 3.8: Coomassie blue-stained 12% SDS-PAGE of whole cell lysates.  
 
(A) BPSM, ΔkpsT and ΔkpsTcom strains and (B) BPSM, ΔkpsE and ΔvipC 
strains were exponentially grown in virulent (Bvg+) phase. Equal amount of 
protein from whole cell lysate was loaded in each well. SDS-PAGE and 
Coomassie blue staining was performed to estimate equal loading of protein 
content, as indicated by the band intensity as shown by the black arrowhead. 
Molecular weights are indicated on the left side.  
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3.1.10 Transcriptional Analysis of Virulence Genes Expression 

!
3.1.10.1 Real-time PCR analysis 

 

To gain further insights in the mechanisms responsible for the lower 

production and/or secretion of key virulence factors observed with the ΔkpsT 

mutant, the relative expression of the corresponding genes in ΔkpsT namely 

brkA, ptx, and fhaB was measured by real-time PCR. Relative quantification 

of these transcripts in ΔkpsT was compared to that obtained with wild type 

BPSM grown in virulent (Bvg+) phase at early logarithmic phase. Consistent 

with the Western blot analysis (Figure 3.7), the transcriptional activity of 

brkA, ptx and sphB1 was significantly down-regulated about 10-fold, 4-fold 

and 2.5-fold, respectively in ΔkpsT compared to BPSM (Figure 3.9). The clear 

transcriptional down-regulation of brkA and ptx does not seem to correlate 

with the modest down-modulation of the corresponding protein levels (Figure 

3.7 I), as the translation efficiency in ΔkpsT appears almost as efficient as in 

wild-type BPSM. However, it is to be noted that the sensitivity of the methods 

employed to monitor the transcriptional and translational activities 

respectively is significantly different. It is thus not surprising that a 2-3 fold 

difference observed by real-time PCR is not reflected by a 2-3 fold difference 

by Western blot analysis. The expression level of brkA, ptx and sphB1 genes 

in the complemented strain ΔkpsTcom was partially restored up 2-fold for 

brkA, 2-fold for ptx and 1.25-fold for sphB1 compared to BPSM (Figure 3.9). 

Consistently, the corresponding protein expression level observed in 

ΔkpsTcom was close to the parental level (Figure 3.7 I).  
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Instead, expression of the fhaB gene in ΔkpsT was not significantly 

different from that measured in the parental BPSM and ΔkpsTcom strains, 

supporting the expression of FHA detected by Western blot analysis in the 

whole cell lysate of BPSM, ΔkpsT and ΔkpsTcom (Figure 3.7 I A). The lower 

levels of FHA detected by Western blot in the culture supernatant of ΔkpsT 

but not in the total cell lysate (Figure 3.7 I A) could imply that the secretion of 

FHA but not its production may be impaired in ΔkpsT. Alternatively, fhaB 

translational efficiency and/or post-translational modification aberration in 

ΔkpsT may also result in FHA degradation and secretion impairment. Since, 

the FHA, BrkA and PT encoding genes are regulated by the two-component 

system BvgA/S, we also investigated the transcriptional activity in the ΔkpsT 

mutant of the bvgAS locus (Antoine et al., 2000; Roy and Falkow, 1991) and 

bvgR (Merkel et al., 2003). Comparable transcriptional activities of bvgAS and 

bvgR were obtained in ΔkpsT, ΔkpsTcom and BPSM strains (Figure 3.9), 

suggesting that the lower expression of ptx and brkA in ΔkpsT is not directly 

correlated to a lower expression of the bvgAS locus.  

 

Together, these data indicate that deletion of the kpsT ORF in the 

capsule locus altered the expression of at least two key bvg-regulated genes 

(brkA, ptx and sphB1) at the transcriptional level, as well as the secretion of 

FHA.  

 

 

 



Chapter 3: Role of The Capsule Locus 
 

! 122!

  

 

 

      

Figure 3.9: Relative transcriptional activity of vags in BPSM, ΔkpsT and 
ΔkpsTcom in virulent phase.  
 
Total RNA was extracted from BPSM (solid bars), ΔkpsT (dotted bars) and 
ΔkpsTcom (stripped bars) strains grown in virulent Bvg+ phase. Real-time 
PCR analysis was performed using primers mapping in the brkA, ptx, fhaB, 
bvgA and bvgR genes. recA gene was used as the endogenous control. Results 
are expressed as average relative quantification (RQ) vs wild type BPSM 
(RQ=1). Results are expressed as the average relative quantification RQ ± SD 
of triplicate versus BPSM. Results are representative of 3 independent 
experiments.  
 

 

!
!
!
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3.1.10.2 Microarray analysis  

 
 

To further explore the effect of kpsT deletion on the expression of bvg-

regulated genes, the global transcriptional profile in the ΔkpsT mutant was 

determined and compared to its parental counterpart BPSM using DNA 

microarray technology which screens for a total of 3554 B. pertussis ORFs. 

Mid-exponential Bvg+ phase BPSM and ΔkpsT strains (OD600nm 2) were 

harvested and processed for RNA extraction and microarray hybridization as 

described in section 2.4.10.  

 

The global transcriptional profiling revealed a large number of genes 

that were significantly (adjusted P value < 0.01) down-regulated in the ΔkpsT 

mutant (Appendix 3). The down-regulated transcripts included genes coding 

for autotransporters (vag8, brkA), serine protease (sphB1), putative RNA 

polymerase sigma factor (brpL), components and effector of the type 3 

secretion system T3SS (bcrD, bscD, bopD, bopN, bsp22), pertussis toxin 

accessory genes (ptxABDE), tracheal colonization factor A (tcfA), outer 

membrane porin (ompQ) and components for iron acquisition (hemC, bfrD) 

(Figure 3.10). Furthermore, consistent with our Real-time PCR analysis, 

expression of the bvgAS locus and fhaB was not found to be down-regulated in 

the ΔkpsT mutant (Appendix 3). Notably, expression of the loci BP0454 and 

BP0455, which encode for the hypothetical tripartite ATP-independent 

periplasmic transporters (TRAP) was strongly down-modulated in ΔkpsT 

mutant (Appendix 3). The energy dependent TRAP is ubiquitous in gram-

negative bacteria and plays a crucial role in bacteria physiology and virulence 
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by driving carboxylate sugar and sialic acid uptake into bacteria cell across the 

inner membrane (Mulligan et al., 2011).  

 

The transcriptomic analysis also revealed a gene cluster (BP3812-

BP3838), which exhibited an increased amount of transcripts in a range from 

1.7 to 4 fold in ΔkpsT compared to parental BPSM (Appendix 3). A search 

from GeneDB database (Sanger Institute) revealed that this particular gene 

cluster is flanked by short insertional sequence element (ISE), also known as 

transposable element that encodes transposase. To address whether up-

regulation of this gene cluster is due to kpsT deletion, Real-time PCR analysis 

was performed on BPSM, ΔkpsT and ΔkpsTcom strains with two different sets 

of primers mapping within the BP3812-BP3838 cluster. Consistent with the 

microarray data, increased transcript levels compared to BPSM were observed 

for ΔkpsT (Figure 3.11). However, comparable expression levels were 

obtained for both ΔkpsT and ΔkpsTcom strains, thus indicating that the 

increased expression of the BP3812-BP3838 gene cluster in the ΔkpsT strain is 

independent of kpsT deletion (Figure 3.11). It is possible that this cluster has 

undergone some genetic rearrangement in the ΔkpsT mutant. 

 

In addition to support our Real-time PCR analysis, the microarray data 

revealed that the absence of KpsT affects negatively the expression of a large 

number of bvg-regulated genes. Such overall down-regulation is likely to be 

responsible for the attenuated phenotype observed with the ΔkpsT mutant in 

mice. These observations led us to draw the hypothesis that the BvgA/S-

mediated gene regulation is affected in the ΔkpsT mutant.  
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!

 
Figure 3.10: Microarray analysis of relative expression levels of selected 
genes that was down-modulated in ΔkpsT mutant.  
 
Total RNA was extracted from BPSM and ΔkpsT strains grown in virulent 
Bvg+ phase. Microarray gene expression values were selected based on log2 
fold change < -0.8, with adjusted P value <0.01. Results are expressed as 
average fold change ΔkpsT compared to BPSM, negative value indicates gene 
repression. Solid bars represent fold change ± SD of 2 independent 
experiments.  
!

!
!
!
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!
!
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!
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Figure 3.11: Relative transcriptional activity of BP3818 and BP3838 
ORFs in BPSM, ΔkpsT and ΔkpsTcom in virulent phase.  
 
Total RNA was extracted from BPSM, ΔkpsT (black bar) and ΔkpsTcom (grey 
bar) strains grown in virulent phase. Real-time PCR analysis was performed 
using primers mapping in the BP3818 ORF and BP3838 ORF. recA gene was 
used as the endogenous control. Results are expressed for each target gene as 
average fold change ± SD of triplicate Ct values obtained ΔkpsT and 
ΔkpsTcom versus the Ct value obtained with BPSM strain. The results are 
representative of 3 independent experiments. 
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 (B) ROLE OF KPST AND THE POLYSACCHARIDE CAPSULE 

TRANSPORT-EXPORT COMPLEX IN THE VIRULENCE OF B. 

PERTUSSIS 

!
3.2 RESULTS  

!
3.2.1 Construction of The B. pertussis KOcaps Strains Expressing kpsT 

and kpsMT Under The Control of Native Capsule Promoter 

!
!

Since deletion of the kpsT ORF did not affect the expression of the 

upstream and downstream ORFs in the capsule operon, it is expected that the 

corresponding proteins involved in polysaccharide capsule transport-export 

and biosynthesis are still being produced in the ΔkpsT mutant. We postulate 

that the role of KpsT on the modulation of bvg-regulated virulence factors 

may require the presence of some other capsule locus-encoded proteins, in 

particular those located in the bacterial envelope, thus susceptible to affect the 

function of BvgS sensor located within the inner membrane. To test this 

hypothesis, kpsT ORF was expressed in KOcaps mutant (deleted for the entire 

capsule operon) under the control of native capsule promoter. Plasmid 

pBBR::PcapskpsT  was electroporated into KOcaps strain and selected based 

on Cm resistance and PCR screening.  

 

In addition, in E. coli, KpsT is a peripheral inner membrane protein 

that binds ATP for active transport of capsule polymers from the cytoplasm to 

the periplasmic face through the integral inner membrane KpsM, forming the 
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KpsMT transporter (Bliss et al., 1996; Pigeon and Silver, 1994). Thus, we 

reasoned that similarly in B. pertussis, KpsM and KpsT may form the KpsMT 

transporter and instead of KpsT alone, KpsMT could interact with the BvgA/S 

signaling pathway. To address this possibility, kpsMT was expressed into the 

KOcaps mutant under the control of native capsule promoter. This strain was 

obtained upon electroporation of the KOcaps mutant with the 

pBBR::PcapskpsMT plasmid construct. 

 

3.2.2 Lung Colonization Profile 

 

To evaluate whether KpsT and/or KpsMT alone is sufficient to restore 

bacterial virulence when expressed in KOcaps, the lung colonization profile of 

KOcaps:kpsT and KOcaps:kpsMT strains was determined in mice and 

compared with wild type BPSM and KOcaps mutant. The KOcaps, 

KOcaps:kpsT and KOcaps:kpsMT strains displayed a significant reduction in 

CFU counts at 3 days and 7 days p.i. compared to BSPM (Figure 3.12). 

However, significantly higher CFU counts were obtained with KOcaps:kpsT 

and KOcaps:kpsMT at 3 days p.i. compared to KOcaps mutant but far lower 

than those observed with BPSM  (Figure 3.12). The results here support that 

neither KpsT alone nor the KpsMT complex is sufficient to restore a parental 

colonization efficacy of the KOcaps mutant, suggesting that the role of KpsT 

on the modulation of bvg-regulated factors and the overall virulence requires 

the entire polysaccharide capsule transport-export machinery. Moreover, it is 

plausible that absence of KpsT at the inner membrane may compromise 

structurally the overall capsule transport-export complex across the cell wall 
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and consequently affect the bvg-mediated virulence, as single gene deletion of 

kpsT leads to bacterial attenuation in vivo and decreased transcriptional 

activity of bvg-regulated genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Role of The Capsule Locus 
 

! 130!

 

 

!!!!!!!! !
!
Figure 3.12: Lung colonization profile by B. pertussis BPSM, KOcaps, 
KOcaps:kpsT and KOcaps:kpsMT strains.  
 
Balb/C mice were infected intranasally with 5x105 CFU of B. pertussis BPSM 
(solid bars), KOcaps (striped bars), KOcaps:kpsT (dotted bars) and 
KOcaps:kpsMT (open bars). At the indicated time points, four infected mice 
per group were euthanized and their lungs were harvested, homogenized and 
plated on blood agar to determine the total number of CFU per lung. The 
results are expressed as the mean ± SEM of four mice per group. ** p value < 
0.01 relative to KOcaps. Results are representative of two independent 
experiments.  

!
!
!
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(C) STUDY OF THE ROLE OF THE CAPSULE LOCUS IN BVG-

MEDIATED SIGNAL TRANSDUCTION 

!
3.3 RESULTS 

!
3.3.1 Effects of kpsT Deletion In a Bvg-Constitutive Background 

!
3.3.1.1 Construction of the B. pertussis kpsT-deleted mutant in a Bvg-

constitutive active strain, BvgS-VFT2 

!

Our data so far demonstrate that bvg-regulated gene expression is 

altered in the absence of KpsT. Given the predicted localization of KpsT at the 

inner membrane, we hypothesized that KpsT may directly or indirectly exert 

its effect on the BvgS sensor, an integral plasma membrane protein, thus 

affecting the overall BvgS-mediated phosphorelay and signal transduction. To 

test this hypothesis, we introduced the kpsT deletion in a BPSM-derivative 

Bvg+ phase-locked mutant (Herrou et al., 2009). Such mutant, termed as 

BvgS-VFT2, contains amino acid substitutions at the periplasmic solute-

binding Venus Fly Trap 2 (VFT2) domain of the BvgS sensor, which becomes 

insensitive to environmental modulator MgSO4, thereby resulting in the 

constitutive expression of vags in both modulating and non-modulating 

conditions (Herrou et al., 2010; Herrou et al., 2009). The BPSM derivative 

BvgS-VFT2 strain was kindly provided by Dr. F. J. Dubuisson from Institute 

Pasteur Lille, France.  
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Electrocompetent B. pertussis BvgS-VFT2 strain was electroporated 

with pJQT1-2 plasmid used for the construction ΔkpsT as described in section 

3.1.1. The recombinant pJQT1-2 construct was integrated into BvgS-VFT2 

genome via double homologous recombination, leading to an in-frame 

deletion of the kpsT ORF. Using primers as listed in Table 2.4, BvgS-VFT2 

clones deleted for kpsT were selected by colony PCR screening based on the 

integration into the correct locus. Positive clones were propagated and 

subjected to Southern blot analysis using the same probing strategy as 

described in Figure 3.2 A for the construction of ΔkpsT strain. Southern blot 

reveals a larger fragment size for BvgS-VFT2 and a smaller fragment size for 

BvgS-VFT2-ΔkpsT mutant. The size obtained for BvgS-VFT2-ΔkpsT (~2.7 

kb) versus BvgS-VFT2 (~3.2 kb) counterpart confirms kpsT deletion in the 

capsule operon (Figure 3.13).  
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Figure 3.13: Southern blot analysis of BvgS-VFT2-ΔkpsT chromosomal 
DNA.  
Restriction-digested chromosomal DNA from BvgS-VFT2 and BvgS-VFT2-
ΔkpsT were electrophoresed, transferred onto a nitrocellulose membrane and 
hybridized with the DIG-labeled probe (Refer to Figure 3.8 A showed probe 
binding site). EcoRI-restricted BvgS-VFT2 and BvgS-VFT2-ΔkpsT 
chromosomal DNA yielded 2.7-kb and 3.2-kb respectively. M, DIG-labeled 
DNA ladder. 
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3.3.1.2 Production and expression of virulence factors  

 

The production of the three major virulence factors FHA, BrkA and PT 

in BvgS-VFT2-∆kpsT was compared to that observed with the single mutants, 

BvgS-VFT2 and ∆kpsT, as well as wild type BPSM strains grown in both 

virulent (Bvg+) and avirulent (Bvg-) culture conditions. As previously reported 

(Herrou et al., 2010; Herrou et al., 2009), the BvgS-VFT2 Bvg+ phase-locked 

mutant displayed a constitutive production of the three virulence factors in 

both virulent and avirulent phases (Figure 3.14 A). Expectedly, production of 

the virulence factors BrkA and PT was clearly down-modulated in avirulent 

phase for BPSM and ∆kpsT compared to the virulent phase (Figure 3.14 A). 

Interestingly, higher amounts of BrkA, PT and to a lesser extent FHA were 

detected with the BvgS-VFT2-∆kpsT double mutant compared to ∆kpsT single 

mutant in virulent phase, with band signal intensities comparable to those 

observed for wild type BPSM (Figure 3.14 A). This observation thus suggests 

that deletion of kpsT alone in a BvgS-constitutive mutant does not affect the 

production of virulence factors.  

 

Furthermore, real-time PCR analysis was conducted and showed that 

down-regulation of the brkA, ptx and sphB1 genes observed with the ∆kpsT 

single mutant was not observed in the BvgS-VFT2-∆kpsT double mutant 

(Figure 3.14 B). The western blot and real-time PCR analyses thus indicated 

that deletion of kpsT in a Bvg+-phase locked mutant does not affect vag 

expression and that VFT2 mutation in the BvgS sensor is dominant over the 

kpsT deletion.  
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      A 

 

Figure 3.14: Production and expression of virulence factors in BvgS-
VFT2-ΔkpsT mutant. 
 
(A) Production of bvg-regulated virulence proteins in BvgS-VFT2-ΔkpsT 
mutant.  
BPSM, BvgS-VFT2, ΔkpsT and BvgS-VFT2-ΔkpsT strains were 
exponentially grown in virulent (Bvg+) and avirulent (Bvg-) phase. Western 
blot analysis was performed on whole cell extract (panel a) and 10x 
concentrated (panel b) or non-concentrated (panel c) culture supernatants 
using (a) anti-BrkA, (b) anti-PT or (c) anti-FHA primary antibodies. The 
results are representative of three independent experiments. Molecular weights 
are indicated on the right side.  
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B 

          
 
Figure 3.14: (B) Relative transcriptional activity of vags in BvgS-VFT2, 
ΔkpsT and BvgS-VFT2-ΔkpsT versus BPSM in virulent phase.  
 
Total RNA was extracted from BPSM, BvgS-VFT2 (solid bars), ΔkpsT 
(striped bars) and BvgS-VFT2-ΔkpsT (dotted bars) strains grown in virulent 
phase. Real-time PCR analysis was performed using primers mapping in the 
brkA, ptx, and sphB1 genes. recA gene was used as the endogenous control. 
Results are expressed for each target gene as average fold change ± SD of 
triplicate Ct values obtained with BvgS-VFT2, ΔkpsT and BvgS-VFT2-ΔkpsT 
versus the Ct value obtained with BPSM strain. The results are representative 
of two independent experiments.  
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3.3.1.3 Lung colonization profile 

!

To assess whether the restoration of the production of virulence factors 

in the BvgS-VFT2-∆kpsT double mutant (Figure 3.15) is able to re-establish 

bacterial virulence, the lung colonization profile was determined in mice and 

compared to that of BvgS-VFT2 and ΔkpsT single mutants. BvgS-VFT2 strain 

was able to persist and multiply in the mouse respiratory tract up to 7 days p.i. 

at least, in contrast to the ∆kpsT mutant, which displayed an attenuated lung 

colonization profile as early as day 3 p.i. (Figure 3.15). The BvgS-VFT2-

∆kpsT double mutant displayed a colonization profile similar to that observed 

with BvgS-VFT2 (Figure 3.15), demonstrating that the kpsT deletion-

associated attenuation phenotype is lost in a BvgS-VFT2 constitutive mutant. 

Altogether, the results indicate that a bvgS constitutive mutation is able to 

restore the production and expression of bvg-regulated virulence factors in 

∆kpsT, and hence restoring the virulence of the bacteria in vivo. The results 

here suggest for a potential crosstalk between the membrane-associated KpsT 

protein and the BvgA/S signaling pathway. 
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Figure 3.15: Lung colonization profile by B. pertussis BvgS-VFT2, ΔkpsT 
and BvgS-VFT2-ΔkpsT strains.  

Balb/C mice were infected intranasally with 5x105 CFU of B. pertussis BvgS-
VFT2 (solid bars), ΔkpsT (striped bars) and BvgS-VFT2-ΔkpsT (dotted bars). 
At the indicated time points, four infected mice per group were euthanized and 
their lungs were harvested, homogenized and plated on blood agar to 
determine the total number of CFU per lung. The results are expressed as the 
mean ± SEM of four mice per group. ** p value < 0.01 relative to BPSM. 
Results are representative of two independent experiments. 
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3.3.2 Study of The Interaction Between the Capsule Locus Members 

and BvgS  

 

3.3.2.1 Construction of the B. pertussis BPSH strain expressing histidine-

tagged BvgS  

!
!
 Our findings so far indicate that KpsT is required for proper expression 

of bvg-regulated virulence factors and the entire polysaccharide capsule 

translocon spanning the cell envelope is crucial for B. pertussis virulence. 

Based on these findings, we proposed that the polysaccharide capsule 

transport-export complex, including KpsT, directly or indirectly influences the 

activity of BvgS sensor. To date, interaction between a large translocon 

complex with a two-component sensor within the inner membrane of a 

bacteria has never been described. To decipher whether the BvgS sensor 

protein physically interacts with the polysaccharide transport-export 

machinery and/or KpsT at the inner membrane, we constructed a B. pertussis 

recombinant strain expressing the histidine-tagged BvgS as “bait” protein for 

in vivo affinity purification studies. While the conventional strategy of 

detecting interacting partners involves “bait” protein over-expression, 

isolation and purification from E. coli system followed by in vitro binding 

assay with B. pertussis total cell lysate, it was not particularly relevant in our 

study as we aim to pull down potential interacting partners within the 

membrane envelope of B. pertussis. Moreover, due to its high molecular 

weight (137 kDa) and hydrophobic nature, over-expression of full-length 

BvgS membrane protein in E. coli may not be feasible and has been reported 
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to be toxic to the bacteria cell (Wagner et al., 2006). To construct the B. 

pertussis strain expressing a histidine tag at the N-terminal end of BvgS, six 

histidines encoding sequences were inserted downstream of bvgS signal 

peptide (Figure 3.16). The final plasmid constructed using primers listed in 

Table 2.2, termed as pJQ-BvgSHis6PCR1+2 was electroporated into 

electrocompetent wild-type BPSM. The His6PCR1+2 sequence was integrated 

into the bvgS chromosomal locus via allelic exchange, leading to in-frame 

insertion of histidines coding sequence downstream of the signal peptide 

sequences at the N-terminal end. This is to ensure that the membrane insertion 

of BvgS directed by the signal peptide will not be interfered. The rationale of 

cloning the histidines coding sequences nearer to the N-terminal is to avoid 

interfering with the phopho-transfer reaction that occurs at the C-terminal end 

of BvgS where the phosphate receiver and output domain are located (Figure 

3.16). The resulting strain was named BPSH, where His-tag is fused and 

expressed at the N-terminal end of BvgS. 

 
 

 
 
Figure 3.16: Schematic diagram of His-BvgS chimera. 
 
The amino acid residue numbers are specific for B. pertussis Tohama I BvgS, 
figure adapted and modified from UniProt database P16573 (BVGS_BORPE). 
Yellow region represents the position of His-tag insertion in BvgS. 
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To ensure that insertion of six His at the N-terminal end of BvgS 

sensor does not impair its function and activity, expression of several bvg-

regulated virulence genes such as brkA, ptx, fhaB, bvgR and as well as the 

capsule operon, was accessed in BPSH strain by real-time PCR of the 

expression level of these genes was found comparable to that of parental 

BPSM, suggesting that the presence of six His at the BvgS N-terminal end 

does not interfere with the overall function of BvgS (Figure 3.17). 
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Figure 3.17: Relative transcriptional activity of vags and kpsT in BPSM 
and BPSH in virulent phase.  
 
Total RNA was extracted from BPSM (solid bars) and BPSH (stripped bars) 
strains grown in virulent Bvg+ phase. Real-time PCR analysis was performed 
using primers mapping in the brkA, ptx, fhaB, bvgR and kpsT genes. recA gene 
was used as the endogenous control. Results are expressed as the average 
relative quantification (RQ) ± SD of triplicate vs Bvg+ phase BPSM. Results 
are representative of 2 independent experiments.  
!
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3.3.2.2 Optimization of His-BvgS solubilization  

!
 

Bioinformatics tools predict that BvgS protein consists of two trans-

membrane helical domain nearer to the N-terminal end, suggesting that the 

sensor is membrane-associated (Figure 3.16). Prior to elucidate whether the 

BvgS sensor physically interacts with the polysaccharide transport-export 

machinery and/or KpsT at the inner membrane, we first optimized the cell 

extracts preparation enriched in BvgS protein in B. pertussis. According to the 

protocol described by Zaretzky and co-workers, B. pertussis outer and inner 

membrane fraction can be separated by ultracentrifugation and differential 

solubilization in presence of 2% Triton-X-100 (Zaretzky et al., 2002). The 

purpose of separating the membrane fraction from total cellular lysates is to 

enrich the fraction in His-BvgS proteins and to reduce contamination with 

other proteins from the cytoplasmic extract prior to Ni-NTA pull down assay.  

 

Total cell extract was harvested from mid-exponential virulent phase 

bacteria grown in 50 ml of SSAB medium as described in section 2.5.2. BPSH 

cells were sonicated in lysis buffer containing 10mg/ml of lysozyme, followed 

by centrifugation at low speed; 4000 x g for 10 min to remove unbroken cell 

debris. The supernate was subjected to ultra-centrifugation at 100, 000 x g for 

1 h to pellet the total membrane fraction containing both inner and outer 

membrane. The total membrane fraction was dissolved in 2% Triton-X-100 on 

a rotating shaker overnight at 4°C. A small aliquot of each fraction obtained 

from low speed centrifugation (cell pellet and crude supernatant in lysis 

buffer) and ultra-centrifugation (insoluble membrane pellet and solubilized 
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membrane proteins in the supernatant) was mixed with Laemelli blue SDS 

loading buffer containing β-mercaptoethanol. Each of these fractions was 

heated at 95°C and analyzed by Western blot using anti-His and anti-BvgS 

antibody for the detection of His-tagged BvgS protein (Figure 3.18).  

 

Despite a thorough enzymatic and mechanical lysis of B. pertussis, 

BvgS was not released into neither the supernatant nor the membrane-enriched 

fraction obtained by ultra-centrifugation and solubilization with 2% Triton-X-

100 (Figure 3.18). Instead, the 137 kDA BvgS was mainly detected in the cell 

pellet fraction consisting of cellular debris and insoluble proteins after 

sonication and low-speed centrifugation, indicating that BvgS is highly 

insoluble and hydrophobic in nature (Figure 3.18). Nevertheless, the detection 

here confirms that the His-BvgS fusion is successfully expressed in BPSH 

strain, and that the level of expression is comparable to the parental BPSM 

(Figure 3.18). The findings here also suggest that insertion of His-tag at the N-

terminal end of BvgS does not affect its expression at the protein level in B. 

pertussis.   
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Figure 3.18: Western blot analysis for the detection of His-tagged BvgS. 
 
50 ml of BPSH grown in SS medium was harvested in mid-exponential phase. 
Cells were lysed by sonication using a bioruptor, followed by a brief low-
speed centrifugation (4000 x g) for 10 min and ultracentrifugation (100, 000 x 
g) for 1 h. Each of the fractions was heated to 95 °C for 15 min and analyzed 
under reducing 10% SDS-PAGE. Lanes: 1; BPSM, 2; BPSH. MW markers are 
indicated on the left.  
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Due to the insolubility of BvgS under mild lysis treatment, His-BvgS 

from BPSH was solubilized under denaturing conditions. The washed 

bacterial pellet was lysed by mechanical disruption and incubation with 

lysozyme, Triton-X-100 detergent and finally in 6 M urea as described in 

section 2.5.2.2. Total protein content in the solubilized lysate was measured by 

BCA assay. A total of 5 mg of protein from the solubilized lysate was mixed 

with charged Ni-NTA agarose beads and a final concentration of 20 µM of 

imidazole prior loading to a column chromatography. Purification scheme was 

first optimized with lysate from BPSH bacteria as described in section 2.5.4. 

After 5 rounds of stringent washes through the chromatography column with 

wash buffer containing 20 µM imidazole at pH 6.3 to remove unbound 

proteins, His-BvgS was released in batch from the Ni-NTA beads with the 

urea elution buffer containing 250 µM imidazole at pH 4.5.  

 

A small aliquot of the solublized “input” lysate, column flow-through 

and eluted fractions were mixed with equal volume of Laemelli blue SDS 

loading buffer containing β-mercaptoethanol and heated at 95°C for 15 min. 

Each of these fractions was analyzed by Coomassie blue staining (Figure 3.19 

A) and Western blot (Figure 3.19 B). Untag parental control, BPSM was 

harvested and purified concurrently with BPSH. His-BvgS was successfully 

purified from the solubilized cellular extract of BPSH under denaturing 

conditions on a Ni-NTA chromatography column, with a majority of the His-

BvgS protein detected in the second (E2) and third elution (E3) fractions as 

evidenced by the detection of a band of an apparent molecular weight (MW) 

of 140 kDa which corresponds to monomeric His-BvgS (predicted size of 137 
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kDa) on a Coomassie blue stained SDS-PAGE denaturing gel (Figure 3.19 A). 

Western blot analysis using anti-His and anti-BvgS antibodies further 

confirmed the identity of the 140 kDa eluted protein as His-BvgS monomers 

in E2 and E3 from BPSH but not from BPSM extracts (Figure 3.19 B). A band 

at 50 kDa MW was also observed in E3 and E4 from both BPSM and BPSH, 

suggesting that this unknown protein bound to the Ni-NTA agarose beads may 

correspond to a histidine-rich protein (Figure 3.19 A).  
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Figure 3.19: Expression and purification of His-BvgS by Ni-NTA 
chromatography.  
 
5 mg of solubilize cell lysate harvested from BPSM (untag control) and BPSH 
was mixed with Ni-NTA agarose beads prior to loading onto a 
chromatography column. Solubilized lysate input, flow-through and batch 
eluted fractions were heated to 95 °C for 15 min and analyzed under reducing 
10% SDS-PAGE.  
(A) Coomassie blue staining, Lane IP; Input, FT; Flow through, E1; Eluted 
fraction 1, E2; Eluted fraction 2, E3; Eluted fraction 3, E4; Eluted fraction 4. 
Molecular weights are indicated on the right side.  
(B) Western blot analysis with anti-His and anti-BvgS antibodies. Lane IP; 
Input, FT; Flow through, E2; Eluted fraction 2, E3; Eluted fraction 3. 
Molecular weights are indicated on the right side. 
 
 

!
!
!
!
!
!
!
!
!
!
!
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3.3.2.3 Detection of purified His-BvgS under reducing and non-reducing 

conditions 

 

A comparative analysis for the formation of protein complexes from 

purified His-BvgS was analyzed by denaturing SDS-PAGE and Western blot 

in the presence and absence of reducing agent β-mercaptoethanol. Western 

blot analysis revealed the presence of a high MW protein complex (greater 

than 260 kDa) which reacts with both anti-His and anti-BvgS antibodies and 

disappears under reducing conditions and/or upon heat treatment (Figure 3.20 

A). Concomitantly, a stronger signal intensity of the 140 kDa band was 

observed under reducing conditions (Figure 3.20 A). The observation here 

thus strongly suggests that BvgS is able to form high MW complexes that 

dissociate upon heat treatment and/or addition of β-mercaptoethanol. The 

denaturing mechanism of urea and guanidine hydrochloride mainly targets the 

intramolecular hydrogen bonds, thus weakening the overall hydrophobic 

structure of a protein (England and Haran, 2011). Given the denaturing 

conditions used for purification of BvgS, it unexpected that such high 

molecular complexes were still detected upon Ni-NTA column elution in the 

absence of heat and reducing agent. This observation may be explained by the 

presence of several functionally important amino acid residues within the 

hydrophobic core of BvgS involved in inter- and intramolecular interactions 

for example covalent, peptide and disulphide bonds that may be involved in 

maintaining the conformational tension of the sensor kinase. 
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To further investigate the nature of the high MW complexes that are 

resistant to guanidine hydrchloride treatment, the corresponding band gel was 

excised from a Coomassie-blue stained non-reducing SDS-PAGE gel and 

subjected to Triple-TOF mass spectrometry analysis (Figure 3.20 B). MS 

analysis further confirmed with high confidence that majority of the protein 

complex consists of BvgS protein with no detection of any of the membrane 

proteins from the capsule transport machinery (Table 3.1). Nevertheless, the 

possibility that KpsT or any other membrane proteins involved in the capsule 

transport machinery interacting physically and directly with BvgS should not 

be disregarded based on this pull-down assay, as potential interacting partner 

for BvgS may be lost under denaturing conditions. The high MW complexes 

captured from His-BvgS purification likely consist of BvgS multimers, 

confirming previous reports on the possible homodimerization of truncated 

domains of BvgS in E. coli (Beier et al., 1995; Perraud et al., 2000).  

 

Due to the solubility of BvgS under denaturing condition which may 

result in the loss of association between proteins, we have attempted another 

alternative pull-down scheme, whereby both BPSM control and BPSH strain 

were treated with cross-linking agent to link potential interacting partners with 

His-BvgS. The solubilized bacteria lysate was subjected to Ni-NTA column 

chromatography as described in Figure 3.19. However, pull-down of His-

BvgS from cross-linked BPSH samples could not be distinguished from 

BPSM untag control due to high non-specific binding to the Ni-NTA column 

(Data not shown). Chemical cross-linkers are known to link protein(s) that are 

in close proximity with the  “bait” protein, leading to high background 
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consisting of non-specific binding partners (Kaake et al., 2010; Klockenbusch 

and Kast, 2010). Thus, a number of membrane proteins spanning the cell 

envelope of B. pertussis were likely cross-linked to His-BvgS and hence co-

purfied with BvgS despite having no true interaction with BvgS. More 

stringent washes conditions before elution from the column could potentially 

help reduce aspecific binding and enrich for true interacting partners with 

BgvS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Role of The Capsule Locus 
 

! 152!

 

 
Figure 3.20: Detection of purified BvgS by Western blotting and SDS-
PAGE. 
 
(A) Detection of BvgS associated oligomers and BvgS monomer by 
Western blotting.  
Purified His-BvgS from BPSH cells were mixed with equal volume of 
Laemmli Blue sample buffer containing either no reducing agent (0% β-
mercaptoethanol) or increasing concentrations (2.5% and 5% β-
mercaptoethanol). The proteins samples were then subjected to either no heat 
or heat denaturation at 95°C for 15 min prior to SDS-PAGE analysis and 
Western blotted with anti-His or anti-BvgS antibody. Molecular weights are 
indicated on the right side.  
(B) Non-reducing SDS-PAGE analysis of purified His-BvgS.  
Purified His-BvgS batch eluted from fraction 2 and 3 are subjected non-
reducing SDS-PAGE and Coomassie blue staining. BPSM was used as untag 
control. The asterisk labelled regions of above 260 kDA corresponding to the 
Western blot signals was gel excised for Triple-TOF MS analysis. Lane 1; 
BPSM, Lane 2; BPSH. Molecular weights are indicated left side.  
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Table 3.1: Protein summary report generated by ProteinPilot software.  
 
Based on Figure 3.20 B, high molecular weight complex observed on the 
Coomassie blue stained SDS-PAGE gel from elution fraction 2 and 3 of His-
BvgS purified from BPSH were gel excised and sent for Triple-TOF mass 
spectrometry analysis, a service provided by the Protein and Proteomics 
Centre, Department of Biological Science, NUS. Identities and scoring were 
analyzed using ProteinPilotTM software.  
!

!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Elution 
fraction 

Unused 
score 

Total 
score 

%  
Coverage 

Pubmed 
accession 
number Name 

Peptides 
(95%) 

Elute 2 57.56 57.56 29.2 
gi| 

34978356 

Virulence 
sensor 
protein 
BvgS 36 

Elute 3 76.01 76.01 34.6 
gi| 

34978356 

Virulence 
sensor 
protein 
BvgS 54 
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3.3.2.4 Construction of the BPSH strain deleted for kpsT or the entire 

capsule operon 

 

In the context of the bacterial cell wall, the structural stability of 

membrane proteins forming oligomers is fundamental for their function, and 

in this case the stability of BvgS oligomers in signal integration and 

transduction from the extracellular environment. To extend our understanding 

whether the products of the capsule locus affect BvgS oligomerization, 

deletion of the entire capsule operon and kpsT was introduced into the BPSH 

strain.  

 

To construct B. pertussis BPSH strain deleted for the entire capsule 

operon and kpsT, suicide vector pJQSY4 (Neo et al., 2010) and pJQT1-2 

(Section 3.1.1) were used for allelic exchange in BPSH. pJQSY4 and pJQT1-2 

were separately integrated into the B. pertussis genome via double 

homologous recombination, leading to in-frame deletion of the capsule operon 

and kpsT gene, respectively. Positive clones were expanded and subjected to 

Southern blot analysis using the DIG-labeled probing strategy as depicted in 

Figure 3.21 A for the confirmation of BPSH-KOcaps strain, and Figure 3.2 A 

under section 3.1.2 for the confirmation of BPSH-ΔkpsT mutant.  

 

Southern blot analysis revealed the expected sizes for both BPSH-

KOcaps (~1 kb) and BPSH-ΔkpsT (~2.7 kb) relative their wild-type 

counterpart (Figure 3.21 B), thus confirming the deletion of the 10 kb capsule 

operon and kpsT at the correct region. To complement the BPSH-ΔkpsT 
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mutant, pBBR::PcapskpsT plasmid (section 3.1.3) was electroporated into the 

electerocompetent BPSH-ΔkpsT, yielding the chloramphenicol resistant strain 

designated as BPSH-ΔkpsTcom. 
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Figure 3.21: Southern blot analysis of BPSH-KOcaps and BPSH-ΔkpsT 
chromosomal DNA.  

(A) Strategy for Southern blot analysis for BPSH-KOcaps mutant.  
The DIG-labeled probe binding region (black rounded arrow), restriction sites 
and size of restriction-digested chromosomal DNA for Southern blot analysis 
are as shown. 
(B) Southern blot analysis of B. pertussis chromosomal DNA.  
Restriction-digested chromosomal DNA from BPSH, KOcaps and BPSH-
KOcaps or BPSH-∆kpsT were electrophoresed, transferred onto a 
nitrocellulose membrane and hybridized with the DIG-labeled probe (Refer to 
Figure 3.32 A showed probe binding site for BPSH-∆kpsT). Panel a, SalI-
restricted BPSH, KOcaps and BPSH-KOcaps DNA yielded 4.1-kb and 935 bp 
respectively. Panel b, EcoRI restricted BPSH and BPSH-∆kpsT DNA yielded 
2.7-kb and 3.2-kb respectively. M, DIG-labeled DNA ladder. 
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3.3.2.5 Purification of His-BvgS from BPSH, BPSH-KOcaps and BPSH-

ΔkpsT strains 

 

Affinity purification of His-BvgS from BPSH, BPSH-KOcaps and 

BPSH-ΔkpsT strains was performed as described in section 3.3.2.3. Purified 

His-BvgS fractions from all of the constructs were subjected to Western blot 

analysis under reducing and non-reducing conditions. Strikingly, Western blot 

analysis revealed that under non-reducing conditions, the signal intensity of 

the high MW band >260 kDa was much lower for the BPSH-KOcaps and 

BPSH-ΔkpsT compared to BPSH (Figure 3.22 A, B). Instead, a higher signal 

intensity of the 140 kDa band was observed for both mutants compared to 

BPSH under non-reducing condition. The complemented BPSH-ΔkpsTcom 

displayed a partial parental BPSH phenotype in non-reducing condition 

whereby a greater signal intensity of the high MW band was observed with 

BPSH-ΔkpsTcom compared to BPSH-ΔkpsT (Figure 3.22 B). Under reducing 

conditions, expectedly, the high MW band disappeared and comparable signal 

intensities of the 140 kDa band were observed for all the strains (Figure 3.22 

A, B), suggesting that the capsule locus, including KpsT, is fundamental for 

BvgS oligomerization. Taken together, these pull-down approaches further 

support a link between the capsule locus (KpsT in particular) and BvgS 

oligomerization in B. pertussis.  
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Figure 3.22: Detection of BvgS associated oligomers and BvgS monomer.  

(A) Detection of BvgS associated oligomers and BvgS monomer in BPSH 
and BPSH-KOcaps.  
Equal amount of purified His-BvgS from BPSH and BPSH-KOcaps cells were 
mixed with Laemmli blue sample buffer containing either no reducing agent 
or with 5% β-mercaptoethanol. The proteins samples were then subjected to 
either no heat or heat denaturation at 95°C for 15 min. Equal amount of 
protein were loaded for each well for SDS-PAGE analysis and Western 
blotted with anti-BvgS antibody. Molecular weights are indicated on the right 
side.  
(B) Detection of BvgS associated oligomers and BvgS monomer in BPSH, 
BPSH-ΔkpsT and BPSH-ΔkpsTcom by Western blotting.  
Equal amount of purified His-BvgS from BPSH, BPSH-ΔkpsT and BPSH-
ΔkpsTcom cells were mixed with Laemmli Blue sample buffer containing 
either no reducing agent or with 5% β-mercaptoethanol. The proteins samples 
were then subjected to either no heat or heat denaturation at 95°C for 15 min. 
Equal amount of protein were loaded for each well for SDS-PAGE analysis 
and Western blotted with anti-BvgS antibody. Molecular weights are indicated 
on the right side.  
!
!
!
!
!
!
!
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3.3.3 Assessment of Membrane Integrity In kpsT-Deleted Mutant  

 

We postulated that absence of KpsT and the polysaccharide capsule 

transport-export machinery may alter the overall cell envelope structure and/or 

the cellular membrane integrity, thus affecting the ability of BvgS to sense and 

integrate extracellular signals, thereby altering the dimerization of BvgS 

and/or signal transduction to downstream regulator protein BvgA. The 

putative KpsM and KpsT protein sequences of B. pertussis are highly similar 

to an ABC transporter protein family, with KpsM harboring the predictive 

trans-membrane domain and KpsT the nucleotide ATP-binding domain. 

Several studies have suggested that alteration of the ABC transporter structure 

or function and absence of the ATP-binding protein cognate partner induces 

membrane stress and damage (Attia et al., 2010; Zhong et al., 1996). 

Therefore, it is conceivable here that the absence of KpsT in B. pertussis may 

alter the inner membrane environment and/or integrity thereby affecting the 

function of other membrane proteins such as BvgS sensor. 

 

To test this hypothesis, we compared the sensitivity of BPSM, ΔkpsT 

and ΔkpsTcom to erythromycin, a large hydrophobic macrolide, and one of the 

most commonly used antibiotics to treat pertussis (Bergquist et al., 1987; 

Trollfors, 1978; Zackrisson et al., 1983). To reach its cytoplasmic target the 

50s ribosomal subunit, erythromycin must cross the bacterial envelope and 

inner membrane. We reasoned that the absence of KpsT protein may modify 

the diffusion rate of erythromycin across the plasma membrane thereby 

leading to a different sensitivity of ΔkpsT mutant to this antibiotic. While the 
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in vitro growth profiles of BPSM, ΔkpsT and ΔkpsTcom in the absence of 

erythromycin were comparable (Figure 3.23, left panel), growth of ΔkpsT was 

completely inhibited in the presence of sub-lethal concentration of 

erythromycin 0.05 µg/ml (Zackrisson et al., 1983), as opposed to parental 

BPSM and ΔkpsTcom which kept multiplying over time (Figure 3.23, right 

panel). The increased susceptibility of ΔkpsT mutant to erythromycin may 

therefore reflect some structural changes and perturbed integrity of the 

bacterial plasma membrane.  

 
 

To further investigate this possibility, ΔkpsT was subjected to other 

chemical treatments known to perturb the bacterial membrane integrity (Attia 

et al., 2010; Baud et al., 2009; Plesa et al., 2006). BPSM, ΔkpsT and 

ΔkpsTcom were incubated with 0.02% SDS for 2 h to induce membrane 

permeabilization and analyzed by flow cytometry for the uptake of propidium 

iodide (PI), a membrane impermeant and DNA specific dye. The results 

indicated a significantly higher percentage of PI+ ΔkpsT bacteria compared to 

the parental and complemented strains (Figure 3.24 A). The increased 

sensitivity to SDS seen with ΔkpsT thus provides further support to the idea 

that in this mutant the membrane integrity and permeability are perturbed.  

 

Cationic chelating agent EDTA induces membrane permeabilization, 

irreversible destabilization and release of LPS from Gram-negative bacteria 

(Leive, 1965; Vaara, 1992). BPSM, ΔkpsT and ΔkpsTcom bacteria were 

incubated with sub-lethal concentrations of EDTA for 2 h and bacteria 

viability was assayed by CFU counting. At both EDTA concentrations of 
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2mg/ml and 1mg/ml, it was found that parental BPSM survived significantly 

better than ΔkpsT mutant (Figure 3.24 B). Parental susceptibility to EDTA-

mediated killing was observed with ΔkpsTcom strain (Figure 3.24 B). It must 

be noted however, that although ΔkpsT mutant is more susceptible to killing 

and permeabilization by these agents, our data do not rule out the possibility 

that absence of the surface capsule polysaccharide may also be a factor that 

may be involved in the increased sensitivity to erythromycin, SDS and EDTA. 

Taken together, these findings support that the membrane associated KpsT 

protein could possibly contribute to B. pertussis plasma membrane integrity.  
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!
Figure 3.23: Growth kinetics of BPSM, ΔkpsT and ΔkpsTcom in the 
presence of erythromycin.  

SS liquid medium was inoculated with BPSM (closed circles), ΔkpsT (open 
circles) and ΔkpsTcom (open squares) at initial OD600nm of 0.1 at time-point 0 
h without (left panel) and with 0.05µg/ml erythromycin (right panel). 
OD600nm was monitored throughout incubation at 37ºC. A representative of 3 
independent experiments is shown.  
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A

 
 
B  

!
Figure 3.24: Effect of SDS and EDTA on BPSM, ΔkpsT and ΔkpsTcom 
strain.  

(A) Effect of SDS on BPSM, ΔkpsT and ΔkpsTcom strain.  

BPSM, ΔkpsT and ΔkpsTcom strain were incubated with 0.02% SDS (white 
histogram) and without SDS (grey histogram). Both SDS-treated and 
untreated bacteria were stained with propidium iodide (PI). The fluorescent 
cells were detected by flow cytometry, with 20,000 events counted for each 
sample. A representative experiment is shown from 3 independent 
experiments, with percentage of fluorescent cells indicated in each panel with 
respect to the untreated control for each sample.  

(B) Effect of EDTA treatment on BPSM, ΔkpsT and ΔkpsTcom viability. 
BPSM, ΔkpsT and ΔkpsTcom strains were incubated with 2mg/ml and 1mg/ml 
of EDTA for 2 h. Viable bacteria were enumerated on BG agar after 3 days of 
incubation. Data is expressed as the mean ± SEM from 3 independent 
experiments. * p value < 0.05 relative to the indicated experimental group. 

 
 
 

!
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3.4 DISCUSSION 

!
3.4.1 Construction of B. pertussis Capsule Deficient Mutants  

!
!

The biological role of the polysaccharide capsule, a complex structure 

often associated with microbial virulence and an important vaccine target for 

many pathogens, remains uncharacterized in B. pertussis. In a previous work, 

our lab showed that B. pertussis bacteria produces an intact and distinct 

polysaccharide capsule at the bacteria surface, and demonstrated that this 

structure does not participate in the classical capsule-defense mechanisms 

including phagocytosis, complement-mediated killing and antimicrobial 

peptides attack (Neo et al., 2010). Although classified as a bvg-repressed gene 

(vrg) with maximal expression in Bvg- growth phase (Antoine et al., 2000; 

Hot et al., 2003), substantial transcriptional activity of the capsule operon was 

detected when bacteria are grown in virulent Bvg+ phase (Nakamura et al., 

2006; Neo et al., 2010), implying that the capsule operon is expressed during 

the virulent phase and may play a role in pertussis pathogenesis.  

 

The role of B. pertussis polysaccharide capsule was investigated by 

constructing an unmarked in-frame deletion of kpsT, kpsE and vipC ORFs 

within the capsule operon of B. pertussis Tohama I derivative strain, BPSM. 

The predicted amino acid sequence of B. pertussis KpsT protein exhibits 

significant degree of homology with several other proteins responsible for 

active transport of capsular polysialic acid polymers, including KpsT from E. 

coli (40% identity) and HexA from Pasteurella multocida (44% identity), 
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supporting that B. pertussis KpsT performs a similar function (Parkhill et al., 

2003). B. pertussis KpsE has been proposed to function as the capsular 

polysaccharide exporter across the periplasmic space, a function similar to that 

of KpsE from E. coli (27% identity) and CtrB of N. meningitides (30% 

identity). Using HMMTOP 2.0 trans-membrane topology prediction software 

(Tusnady and Simon, 2001), KpsT was found to adopt six transmembrane 

spanning domains whereas KpsE has two trans-membrane domains. The B. 

pertussis VipC protein instead does not harbor any trans-membrane domain 

and is homologous to the Vi polysaccharide biosynthesis protein TviD of S. 

typhi (23% identity), thus suggesting a role of VipC in the polysaccharide 

biosynthesis.  

 

Immuno-detection method using anti-Vi antigen antibodies as 

previously described (Neo et al., 2010), suggested that deletion of either ORF 

namely kpsT, kpsE and vipC is sufficient to prevent the detection of a capsular 

structure at the bacterial surface, a similar phenotype observed in ΔkpsT or 

ΔkpsE of E. coli mutant strains (Bronner et al., 1993b; Pavelka et al., 1994). It 

is conceivable that the polysaccharide capsule transport-export process might 

be defective in B. pertussis kpsT and kpsE deleted mutants, thus resulting in 

the accumulation of polysaccharide polymers within the cytoplasm. It has 

been reported that deletion of kpsT in E. coli lead to accumulation of 

polysaccharide polymers at the inner cell periphery due to defect in the 

transport process (Bliss et al., 1996; Pavelka et al., 1994). Similarly, 

intracellular polysaccharide accumulation may also occur in the B. pertussis 

∆kpsT and ∆kpsE strains, which may affect the cell viability and overall 
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fitness. However, no in vitro growth defect was noticed for these mutants. In 

addition, the B. pertussis KOcaps mutant deleted for the entire capsule locus 

and for which polysaccharide accumulation does not occur, displayed an 

attenuation profile in vivo comparable to that seen with the ∆kpsT mutant. 

These observations therefore do not support the hypothesis that intracellular 

accumulation of capsule polysaccharide polymers occurs in the ∆kpsT and 

∆kpsE strains and is responsible for the in vivo attenuated phenotype observed 

with these mutants, which is further discussed in the next section 3.4.2.  

 

3.4.2 Attenuation of B. pertussis Capsule Deficient Mutants  

!

Mice lung colonization profile revealed that the membrane-associated 

KpsT and to a lesser extent KpsE are required for optimal and efficient B. 

pertussis colonization whereas VipC is dispensable. This is a key observation 

that indicates that rather than the surface-exposed capsule itself, the 

membrane-associated protein KpsT and to a lesser extent KpsE, is important 

for pertussis pathogenesis. In addition, Western blot and Real-time PCR 

approaches have shown that the production and/or secretion of key virulence 

factors such as BrkA, PT and FHA essential for bacterial colonization were 

slightly impaired in ΔkpsT, and to a lesser degree for BrkA and PT in ΔkpsE, 

whereas the ΔvipC mutant displayed parental levels of PT and FHA 

production. While the transcriptional activity of ptx and brkA was significantly 

reduced in the ∆kpsT mutant, transcription of bvgA/S, bvgR and fhaB was not 

affected. Importantly, complementation of ΔkpsT was not fully restored to a 

parental level expression at the transcript and protein level.  The reason for the 
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partial restoration of these genes expression in ΔkpsTcom is unclear whereas 

complete restoration of the in vivo phenotype was observed. It is possible that 

expression of kpsT ORF from a multicopy replicative plasmid (pBBR1MCS) 

(Elzer et al., 1995) may alter the KpsM/ KpsT protein ratio to form an ABC 

transporter complex, which may in turn result in sub-optimal transcriptional 

and/or translational feedback onto these genes.  

 

 The differential down-regulation of these bvg-regulated genes in 

∆kpsT likely reflects the different affinities of each promoter for 

phosphorylated BvgA (P-BvgA), the transcriptional regulator of the BvgA/S 

two component system (Zu et al., 1996). As such, a decrease in P-BvgA levels 

will first affect the bvg-regulated promoters with low affinities for P-BvgA. 

Consistently, the ptx promoter was shown to require higher concentrations of 

P-BvgA than the fhaB and bvgA promoters to activate their transcription 

(Steffen et al., 1996). The affinity of the brkA promoter for BvgA-P has not 

been studied in details, but it appears from our study that it might be rather 

low as evidenced by the 10-fold reduction of brkA transcriptional activity in 

the ΔkpsT mutant.  

 

Nevertheless, the mild attenuation in the production of FHA, BrkA and 

PT is unlikely to account for the in vivo attenuation observed. It is instead 

more plausible that a general effect may occur in the ∆kpsT mutant leading to 

the significant attenuated in vivo phenotype. Indeed, genome wide microarray 

analysis conducted on ∆kpsT mutant further revealed significantly reduced 

transcriptional activity of a number of bvg-regulated genes, in particular those 



Chapter 3: Role of The Capsule Locus 
 

! 168!

that encode virulence factors associated with bacterial colonization. In 

addition to fhaB, brkA and ptx, the tcfA gene coding for the tracheal 

colonization precursor factor A shown to play a role in bacterial adherence to 

the mouse trachea (Finn and Stevens, 1995), was found down-regulated. Vag8 

encoding the autotransporter Vag8 involved in in vivo colonization (Elder and 

Harvill, 2004; Finn and Amsbaugh, 1998) was also down-regulated in the 

∆kpsT mutant. Interestingly, also down-regulated was sphB1 encoding the 

autotransporter subtilisin-like serine protease SphB responsible for the 

proteolytic cleavage of FHA at the bacterial surface (Coutte et al., 2003; 

Coutte et al., 2001). SphB down-regulation likely explains the lower amounts 

of FHA detected in the culture supernatant but not in the bacterial lysates of 

∆kpsT, supporting that FHA secretion, but not production is impaired in this 

mutant. Altogether, the microarray data thus support that the down-regulation 

in ∆kpsT of a number of virulence genes involved in the colonization efficacy 

is likely responsible for the attenuated phenotype observed in mice. Moreover, 

previous work has shown that, whereas the absence of a single virulence factor 

in B. pertussis resulted only in mild or no attenuation, multiple deletions in 

genes encoding adhesins and toxins significantly impaired the ability to 

colonize the mice lungs, supporting some degree of functional redundancy 

among the different virulence factors (Alonso et al., 2001; Carbonetti et al., 

2005).  

 

In addition to the known vags that have been well studied, other bvg-

regulated genes that might be involved in pathogenesis of B. pertussis were 

also found negatively regulated in the ∆kpsT mutant. Previous studies have 
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suggested that bfrD encoding the TonB-dependent receptor for iron transport 

and hemC encoding the putative iron scavenger, both regulated by the BvgA/S 

system, were up-regulated in wild-type B. pertussis under iron starvation 

condition (Brickman et al., 2011). Down-modulation of these iron-scavenging 

genes in ∆kpsT may suggest that this mutant is impaired in its iron acquisition 

ability, which may likely affect its survival within the host. The T3SS locus 

consisting of bsp22, bopA, bscD and bcrD genes was also found down-

regulated in ∆kpsT. This locus has been reported in several B. pertussis 

clinical isolates and B. bronchiseptica to be necessary for optimal bacterial 

colonization and persistence, and to be involved in host immunomodulation 

(Fennelly et al., 2008; Skinner et al., 2005). However, although 

transcriptionally active under the control of bvg regulation, the T3SS locus in 

the laboratory-adapted B. pertussis Tohama I strain was not translated, as 

opposed to that of B. pertussis clinical isolates, with reports suggesting that 

long-term laboratory passage, minimal contact with host cells and large-scale 

genomic re-arrangements have led to post-transcriptional silencing of the 

T3SS locus (Fennelly et al., 2008; Mattoo et al., 2004). Therefore, the 

attenuated colonization profile displayed by the BPSM Tohama I derivative 

∆kpsT mutant cannot be attributed to the down-modulation of the T3SS locus. 

 

3.4.3 Molecular Cross-talk Between the B. pertussis Capsule Locus and 

bvg-Mediated Signal Transduction  

!
!

The predominant molecular events that were observed in ∆kpsT mutant 

suggest that bvg-mediated mechanism(s) may be compromised in this mutant. 
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Therefore, this prompted us to elucidate whether the bvg-mediated mechanism 

is dependent or independent of KpsT. Deletion of kpsT in a Bvg+ phase-locked 

background did not lead to reduced vag expression and impairment of in vivo 

virulence as observed with the parental ∆kpsT mutant, thus suggesting a 

regulatory link between KpsT and the BvgA/S-mediated signal transduction 

pathway. Moreover, failure to restore parental colonization of the KOcaps 

mutant by expressing KpsT alone or the KpsMT complex suggested that other 

protein members from the capsule operon are necessary.  

 

The model of a two-component system comprises of a sensor kinase 

and response regulator, which are often thought to organize in a linear mode 

of action, from the perception of stimulus to downstream phosphorelay 

activation and transcriptional responses. Many other studies, however, have 

shown that the complexity of a bacterial two-component system was generally 

overlooked. Direct and/or indirect cross-talk between two-component systems 

and its non-cognate partners have been widely reported as a new paradigm in 

bacterial signal transduction (Casino et al., 2010; Eguchi and Utsumi, 2005; 

Fink et al., 2012; Jung et al., 2012; Krell et al., 2010; Mitrophanov and 

Groisman, 2008). They affect the downstream phosphorylation activity of the 

senor and response regulators, thus modulating the overall output of the two-

component system (Mitrophanov and Groisman, 2008). Furthermore, and 

more relevant to our own observations, reports of inner membrane proteins 

interacting physically and influencing a two-component sensor kinase activity 

have been recently described in different pathogens (Eguchi et al., 2007; Jung 

et al., 2012; Lippa and Goulian, 2009). 
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We initially predicted that within the context of cell envelope, the 

polysaccharide capsule transporter-exporter complexes in B. pertussis might 

have a functional or interactional effect on the trans-membrane BvgS sensor. 

In this study, we purified BvgS directly from B. pertussis strains grown in 

Bvg+ phase. Prior to purification, a series of conditions were optimized to 

ensure that BvgS is fully solubilized and released from B. pertussis cellular 

membranes. We noted that full length BvgS was insoluble under native lysis 

buffer even with strong mechanical disruption, unlike the truncated BvgS 

domain previously expressed in E. coli (Beier et al., 1995; Dupre et al., 2013). 

Denaturation of BvgS by guanidine hydrochloride ultimately solubilized His-

BvgS proteins and could be purified via Ni-NTA column. Under such harsh 

denaturing conditions, BvgS is expected to be in unfolded state due to the 

breakage of hydrogen bonds and hydrophobic interactions upon guanidine 

hydrochloride treatment. Nevertheless, we still observed by SDS-PAGE the 

presence of BvgS-associated oligomers, which dissociated into BvgS 

monomers upon heat treatment or upon addition of a reducing agent. While it 

is surprising that such high molecular weight structure is resistant to strong 

denaturant such as guanidine hydrochloride, it has been reported that large 

hydrophobic proteins, in particular membrane proteins or proteins that contain 

proline rich homeodomain are resistant to denaturation by urea or guanidine 

hydrochloride (Gokhale et al., 1996; Makino et al., 1981; Shukla et al., 2012). 

BvgS sensor contains two separate alanine-proline rich regions within the 

cytoplasmic histidine kinase and receiver domains (Miller et al., 1992; Uhl 

and Miller, 1996), and it has been reported in eukaryotic system that proline 
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rich regions mediate protein dimerization and oligomerization (Shukla et al., 

2012; Soufi et al., 2006). Whether these features are responsible for 

maintaining the conformational tension between BvgS oligomers in B. 

pertussis remain to be investigated. In the context of chemical bonds within 

BvgS oligomers interface, it is also plausible that strong covalent bonds and 

disulphide bonds exist within the macromolecular structure associated with 

BvgS oligomers.  

 

Our data demonstrate that the entire polysaccharide capsule translocon 

machinery and KpsT is essential for the oligomerization, presumably 

homodimerization, of the BvgS sensor. Biochemical and structural evidences 

have indeed confirmed that BvgS homodimerizes at two domains within the 

C-terminal cytoplasmic region, namely the transmitter and receiver-output 

domains (Beier et al., 1995). Moreover, active phosphotransfer could be 

reconstituted in trans between BvgS domains, thus further supporting the 

dimerization capacity of BvgS in vivo (Beier et al., 1995; Perraud et al., 2000). 

Dimerization and higher order oligomerization of signalling complexes in 

general and BvgA/S in particular are believed to be important for intrinsic 

phospho-transfer activity and activation of downstream regulator proteins 

(Maeda et al., 2006; Scheu et al., 2010). Our work is the first experimental 

demonstration of the existence of BvgS oligomers in the B. pertussis bacteria 

since all the previous studies were performed in E. coli with truncated BvgS 

proteins (Beier et al., 1995; Perraud et al., 2000).  
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It is conceivable here that the absence of KpsT and the polysaccharide 

capsule transport-export machinery may alter the inner membrane 

environment and integrity such that it affects its ability to sense and integrate 

extracellular signals, thereby altering the dimerization of BvgS and/or signal 

transduction to downstream regulator protein BvgA, which in turn fine tune 

transcriptional regulation of genes involved in pathogenesis. Fine tuning of 

virulence gene expression during B. pertussis in vivo infection is crucial for 

bacterial virulence during different stages of infection within the host 

environment (Beier and Gross, 2006; Strauss, 1995; Veal-Carr and Stibitz, 

2005). From a different perspective, some unknown post-translational 

modification(s) that are involved in the synthesis and dissociation of chemical 

bonds such as covalent bonds, peptide bonds and disulphide bridges, may 

eventually lead to the variation in BvgS oligomerization observed between the 

wild-type bacteria and ΔkpsT mutant.  

 

The precise mechanisms underlying the role of KpsT in BvgS 

oligomerization are intriguing and we reasoned that it might have an indirect 

effect via its role on the overall membrane integrity. Our further observations 

on the sensitivity of ∆kpsT towards erythromycin, SDS and EDTA, compared 

to the parental BPSM strain, seem to land support to the above hypothesis. 

However, the absence of the surface polysaccharide capsule in ΔkpsT mutant 

may also be responsible for these latest phenotypes observed. To distinguish 

between these two possibilities, the ΔvipC mutant should be included in in this 

assay. Indeed, ΔvipC mutant was shown to be capsule-free but did not display 

a drastic in vivo phenotype in the mouse model of pertussis. Should ΔvipC 
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display sensitivity to erythromycin, SDS and EDTA that is similar to that 

observed with ΔkpsT, it will indicate that the PS capsule at the bacterial 

surface is primarily responsible for these phenotypes. Instead, should ΔvipC 

display a parental phenotype, it will support the idea that KpsT is specifically 

involved in the bacterial resistance to these treatments and may therefore 

contribute to the plasma membrane integrity. Absence of KpsT, the ATPase 

cognate partner of the integral membrane KpsM, may indeed eventually lead 

to a complete disorganization of the entire capsule transport machinery within 

the cell envelope which may affect the overall membrane integrity and 

permeability. This is further supported by the observation that in vivo 

attenuation was seen with a ΔkpsE mutant, and that re-introduction of KpsT or 

KpsMT into the KOcaps mutant was not sufficient to restore a parental 

phenotype. Collectively, these findings support that absence of KpsT in the 

ΔkpsT mutant may actually affect the trans-envelope complex formed by the 

PS capsule transport proteins. Further structural analysis would be necessary 

to strengthen this hypothesis.   

 

3.4.4 Role of The Capsule Locus, a bvg-Repressed Factor in Pertussis 

Pathogenesis  

!

The pathogenesis of B. pertussis has been extensively studied and 

reviewed for the past 25 years, including the characterization of numerous 

bacterial factors responsible for virulence. As an obligate human pathogen, B. 

pertussis has evolved favorably by expressing a wide variety of virulence 

factors that promote its life cycle, transmission, colonization and defense 
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against host immune responses in the upper respiratory tract. It has been well 

established that the Bvg+ phase-locked B. pertussis and B. bronchiseptica, a 

close relative of B. pertusiss, were able to colonize the respiratory tract as 

efficiently as the wild type strains, indicating that the bvg-activated genes, 

namely the vags are sufficient for B. pertussis virulence (Cotter and Miller, 

1994; Martinez de Tejada et al., 1998). In contrast, the avirulent Bordetella 

variants such as the Bvg- phase-locked mutant, characterized by high 

expression levels of vrgs and low expression levels of vags, displayed an 

attenuated phenotype in vivo (Cotter and Miller, 1994; Martinez de Tejada et 

al., 1998). However, it is necessary to note that transcription and expression 

levels of the capsule locus, albeit reduced, are not totally inhibited in virulent 

bacteria.  

 

Although vrg6 was first reported to play a role in B. pertussis virulence 

(Beattie et al., 1992), later reports disputed that the attenuated phenotype 

observed in mice was actually due to a secondary mutation (Martinez de 

Tejada et al., 1998). Thus, there had been no firm evidence of a possible role 

of a vrg during pertussis pathogenesis. Our work here demonstrates for the 

first time and unambiguously that a vrg locus (the capsule locus) plays a 

critical role in pertussis pathogenesis. Rather than playing a direct and 

conventional role in pertussis pathogenesis such as the adhesins and toxins, 

the determinants involved in polysaccharide capsule transport and export 

affects Bordetella virulence in an indirect manner, via the BvgA/S two-

component regulatory system. 
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3.5 CONCLUSIONS AND FUTURE DIRECTIONS 

!
!

Our work here provides the evidence that the B. pertussis capsule locus 

is instrumental for optimal expression of the pathogen’s virulence factors and 

represents the first report of a vrg locus that is clearly involved in pertussis 

pathogenesis. Rather than the surface polysaccharide capsule, our findings led 

to a novel concept that KpsT and the capsular transporter-exporter system in 

B. pertussis are necessary for bacterial virulence. Specifically, the products of 

the capsule locus, in particularly KpsT, play a role in the regulation of Bvg-

mediated genes in B. pertussis. Mechanistically, KpsT and the capsular 

transporter-exporter system influence the dimeric and oligomeric state of 

BvgS necessary for optimal signal sensing and/or transduction. Our findings 

led us to contemplate that KpsT and the capsular transporter-exporter 

complexes may be responsible for maintaining the plasma membrane integrity 

and permeability, which are crucial for the conformational integrity and 

optimal functionality of membrane proteins such as BvgS sensor.  

 

Therefore, future studies could progress towards elucidating the 

BvgA/S signaling output in ΔkpsT and KOcaps mutant. Perhaps the most 

pertinent strategy is to analyze the phosphorylation state of the response 

regulator BvgA in these mutants compared to wild-type B. pertussis. We 

hypothesized that the pool of phosphorylated BvgA may be compromised in 

ΔkpsT and KOcaps mutant, which correlates with the changes in the bvg-

regulated gene expression. Our preliminary analysis on the pool of P-BvgA 

dimer in B. pertussis cell lysate by SDS-PAGE and Western blot was 
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unsuccessful due to poor specificity of the polyclonal anti-BvgA antibodies. 

However, a group recently reported that by employing the latest Phos-tagTM 

technology, they were able to distinguish the pool of BvgA monomer from its 

phosphorylated counterpart (P-BvgA) in B. pertussis total cell lysates by 

Western blot analysis (Boulanger et al., 2013). Hence, such alternative method 

of detection/quantification of P-BvgA proteins in B. pertussis would provide 

further support, that the sensing and/or transduction of extracellular signals are 

impaired in ΔkpsT and KOcaps mutant.  

 

Moreover, additional controls should be included in several of the 

above-mentioned experiments to refine the overall relationship between BvgS 

and the products of the capsule locus. Given the lack of complete 

understanding on the bonds that maintain BvgS homodimers, the 

oligomerization capacity of BvgS observed in situ in B. pertussis could be 

further confirmed by targeted site-directed mutagenesis on BvgS cysteine 

residues or the alanine-proline residues whose substitutions may abolish BvgS 

dimerization in BPSH strain. Such experimental concepts will provide further 

support on the existence of chemical bonds that are responsible for the 

oligomerization of BvgS and its possible interaction with capsular transporter-

exporter proteins. 

 

It is also worthwhile to construct the recombinant His-BvgS tag fusion 

in the BvgS-VFT2 background strain to leverage on the observation of BvgS 

oligomerization in BPSM and its capsule-deleted counterpart. As the BvgS-

VFT2 mutant contains constitutive active BvgS sensor and hence constitutive 
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dimerization, it is nevertheless a necessary control to address the structural 

interactions associated with BvgS and to support our hypothesis that BvgS 

oligomerizes in B. pertussis. Finally, inclusion of ΔvipC mutant in the 

erythromycin, SDS and EDTA sensitivity assays is necessary to support the 

claim that the cellular membrane integrity affects the conformational changes 

of BvgS sensor. 
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CHAPTER 4 GENETIC REGULATION OF THE 

CAPSULE OPERON IN B. PERTUSSIS 

 

The genetic organization of the putative type II polysaccharide capsule 

operon in B. pertussis Tohama I (ATCC BAA-589) strain has been fully 

sequenced by the Sanger Institute, UK (Parkhill et al., 2003). In Chapter 3, we 

have shown that the products of the capsule locus, in particularly KpsT, 

influence the oligomeric state of BvgS necessary for optimal signal sensing 

and/or transduction. However, the genetic regulation of the capsule locus has 

remained largely unexplored. Thus far, the capsule locus in B. pertussis is only 

known as a bvg-repressed gene or vrg, i.e its expression is optimal in Bvg- 

phase. We have also previously reported that the capsule locus is expressed at 

a basal detectable level in Bvg+ phase (Neo et al., 2010). In this chapter, we 

provide some additional information on the regulation of the expression of the 

B. pertussis capsule locus in vitro, ex vivo and in vivo.  

 

(A)  ANALYSIS OF THE TRANSCRIPTIONAL REGULATION OF 

THE CAPSULE LOCUS IN IN VITRO B. PERTUSSIS CULTURE 

!
4.1 RESULTS  

!
4.1.1 Transcriptional Analysis of The Capsule Locus in B. pertussis 

Clinical Isolates  

!
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To gain better insight into the regulation of the capsule expression in 

B. pertussis, we systematically analyzed the transcriptional pattern of the 

capsule locus (represented by kpsT) and other transcripts including vrg6, risA 

and bvgR in several B. pertussis clinical isolates grown in in vitro culture of 

Bvg+ and Bvg- phase. For comparison, the laboratory-adapted strain BPSM 

was also included in the study. As previously reported, expression of the 

capsule locus in BPSM, represented by kpsT gene, and another bvg-repressed 

gene vrg6 was significantly elevated in the presence of modulators MgSO4 

which switch the bacteria to Bvg- phase, while basal expression was observed 

in the absence of MgSO4 (Bvg+ phase) (Figure 4.1, black and green bars) 

(Croinin et al., 2005; Neo et al., 2010; Stenson et al., 2005). Unlike bvgR 

whose transcripts were strongly down-regulated in Bvg- phase, expression of 

risA was not significantly modulated between the two Bvg phases (Figure 

4.1), confirming that transcription of risA is independent of BvgA/S 

modulation (Stenson and Peppler, 1995).  

 

Two different clinical strains isolated from pre-vaccination era were 

assessed for the levels of expression of their capsule locus; Tohama I, a Japan 

isolate from year 1954 and strain 18323, a USA isolate from year 1946. 

Tohama-I displayed a similar trend of expression for risA, vrg6 and greater 

expression of the capsule locus in both phases when compared to BPSM 

(Figure 4.1, grey and red bars). However, the levels of bvgR in Bvg- phase 

Tohama-I is not completely repressed unlike in BPSM strain, suggesting a 

BvgA/S-independent basal level of expression of bvgR in Bvg- phase in 

Tohama I. Alternatively, a differential sensitivity of the BvgS sensor to 
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MgSO4 modulator between Tohama I and BPSM may exist. However, despite 

the presence of some bvgR expression in Bvg- Tohama I, significant up-

regulation of vrgs (vrg6 and kpsT) can be observed and to the same extent as 

what is observed with BPSM. This observation suggests the existence of a 

potential transcriptional activator of vrg6 and kpsT that outcompetes BvgR.   

 

Strikingly, expression of risA in strain 18323 was strongly down-

regulated in both Bvg+ and Bvg- phase compared to BPSM and Tohama I 

strains (Figure 4.1, stripped grey and stripped red bars). Consistently, the vrg6 

and kpsT transcripts were significantly reduced in strain 18323, particularly in 

the Bvg- phase compared to BPSM (Figure 4.1). In fact, the vrg6 and capsule 

locus seem to be constitutively expressed in strain 18323 regardless of the 

presence of modulators (Figure 4.1). However, bvgR was modestly enhanced 

to 3-fold in Bvg+ phase, and completely repressed in Bvg- phase in strain 

18323 compared to BPSM (Figure 4.1).  

 

The results here suggest that the reduced levels of risA may account 

for the reduced vrgs expression (kpsT and vrg6) in strain 18323 in both Bvg+ 

and Bvg- phase, as compared to BPSM and Tohama I strains. In addition, the 

variability of vrgs expression, in particular the capsule locus, observed 

between laboratory-adapted and clinical isolates highlight the possibility of 

selective genetic regulation between distinct B. pertussis strains. 

!
!

!
!
!
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!
!

!
!
!
Figure 4.1: Relative transcriptional activity of risA, vrg6, bvgR and the 
capsule locus in BPSM, Tohama I and 18323 strain in virulent and 
avirulent phase.  
 
Total RNA was extracted from BPSM, Tohama-I and 18323 strains grown in 
virulent (Bvg+) and avirulent (Bvg-, in the presence of 50mM MgSO4) phase, 
as indicated on the figure legend on the top left of the graph. Real-time PCR 
analysis was performed using primers mapping in the risA, vrg6, kpsT and 
bvgR genes. recA gene was used as the endogenous control. Results are 
expressed as the average relative quantification RQ ± SD of triplicate versus 
Bvg+ phase BPSM. Results are representative of 2 independent experiments. 
Dotted line represents RQ equal to 1 in relative to Bvg+ phase BPSM.  
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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4.1.2 Transcriptional Analysis of The Capsule Locus in ΔbvgAS Mutant 

 

It was previously shown that deletion of bvgR in strain 18323 led to a 

constitutive expression of bvg-repressed gene vrg6 and surface proteins 

VraA/B in both Bvg+ and Bvg- phase (Croinin et al., 2005; Merkel et al., 

1998), demonstrating the role of BvgR as a repressor for vrgs expression in B. 

pertussis. We initially took a similar approach to study the expression level of 

the capsule locus. However, after several attempts we were unable to obtain a 

bvgR-deleted mutant in BPSM strain, suggesting that in this strain, bvgR is an 

essential gene. Assuming that in a ΔbvgAS mutant expression of bvgR will be 

constitutively repressed, we thus performed a transcriptional profile analysis 

on the capsule locus and a few selected genes including risA, vrg6 and bvgR in 

a ΔbvgAS BPSM derivative mutant grown in both Bvg+ and Bvg- phase. The 

parental strain BPSM grown in Bvg+ phase was used as the calibrator for gene 

expression analysis.  

 

We first monitored the expression of risA in wild-type BPSM and 

ΔbvgAS mutant. Expression of risA was not significantly modulated in 

ΔbvgAS and in the presence of modulators, supporting that regulation of risA 

is BvgA/S-independent (Figure 4.2 A) (Jungnitz et al., 1998; Stenson et al., 

2005). As expected, BPSM strongly repressed the expression of bvgR in Bvg- 

phase, but the magnitude of repression was lesser than in the ΔbvgAS mutant 

(Figure 4.2 B). This is a surprising observation, as deletion of the bvgAS locus 

is known to lock the bacteria into a Bvg- phase phenotype and that expression 

of bvgR, a bvg-regulated factor, should be completely repressed (Martinez de 
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Tejada et al., 1998). The basal level of bvgR expression in ΔbvgAS mutant was 

consistently observed in a few independent experiments,# suggesting that a 

basal BvgA/S-independent expression of bvgR exists in BPSM.#As expected 

expression of vrg6 and the capsule locus were up-regulated in Bvg- phase 

BPSM (Figure 4.2 C, D). While the expression level of vrg6 was similar in 

both Bvg+ and Bvg- phase in ΔbvgAS (Figure 4.2 C), expression of the capsule 

locus remained distinctly modulated, where the expression of the capsule 

locus is significantly higher in Bvg- phase compare to Bvg+ phase ΔbvgAS 

(Figure 4.2 D).##

#

The results of this analysis indicate that the lower level of bvgR 

expression in ΔbvgAS mutant (Figure 4.2 B) leads to up-regulation of the 

capsule locus in Bvg+ phase (Figure 4.2 D, BPSM vs ΔbvgAS), but not to the 

level observed in Bvg- phase (Figure 4.2 D, ΔbvgAS Bvg+ vs Bvg- phase). This 

implies the existence of a transcriptional activator present in the Bvg- phase 

that up-regulates the expression of the capsule locus. Additionally, another 

factor repressed in the ΔbvgAS mutant would account for the repression of the 

capsule locus in Bvg+ phase BPSM. It has been formally demonstrated that 

RisA binds to the promoter of vrg6 and activates its transcription in BP536 B. 

pertussis strain (Croinin et al., 2005). Similarly, we postulate that RisA might 

act on the capsule locus promoter. Whether RisA directly modulates the 

expression of the capsule locus in BPSM remains to be investigated.   
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Figure 4.2: Relative transcriptional activity of risA, bvgR, vrg6 and the 
capsule locus in BPSM and ΔbvgAS strain in virulent and avirulent 
phase.  
 

Total RNA was extracted from BPSM (black bars) and ΔbvgAS (dotted bars) 
strains grown in virulent Bvg+ phase and avirulent Bvg- phase. Real-time PCR 
analysis was performed using primers mapping in the risA, vrg6, kpsT and 
bvgR genes. recA gene was used as the endogenous control. Results are 
expressed as the average relative quantification RQ ± SD of triplicate versus 
Bvg+ phase BPSM. Results are representative of 2 independent experiments. 
Dotted line represents RQ equal to 1 in relative to Bvg+ phase BPSM. 
!
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4.1.3 Transcriptional Analysis of The Capsule Locus by The Ris-

Regulon 

!
4.1.3.1 Construction of a ris-deleted mutant in BPSM background strain 

!

Loss of a functional RisA in B. pertussis would be expected to enhance 

the expression of vrgs, in particular the capsule locus expression as previously 

observed for B. pertussis BP563 strain (Croinin et al., 2005; Stenson et al., 

2005). To investigate the modulation of capsule locus expression by the risA 

locus in the laboratory adapted BPSM strain, we proposed to construct a risA-

deleted BPSM mutant strain. However, despite several attempts, deletion of 

risA by double homologous recombination was unsuccessful; whereby all the 

colonies screened reverted to parental genotype suggesting that risA may be an 

essential gene for BPSM strain. Polar effects are unlikely as construction of 

risA deletion was in-frame and the downstream gene BP3555 is transcribed in 

the opposite direction (Figure 4.3 A). 

 

In contrast, previous studies reported the construction of a risA-deleted 

mutant in the B. pertussis BP536 strain (Croinin et al., 2005; Stenson et al., 

2005). The expression of vrg6, vrg18, vrg24 and vrg73 was reduced to basal 

level in Bvg- phase ΔrisA-BP536 mutant, but no complementation study was 

performed to confirm the phenotype described in the ΔrisA-BP536 mutant 

(Croinin et al., 2005). In a separate study, Stenson et al. found that expression 

of Vra surface proteins and transcription of vrgs in ΔrisA-BP536 mutant was 

reduced to basal level and that expression of these vrgs was restored by risA 
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complementation on a low-copy-number plasmid, thus supporting the 

phenotype observed (Stenson et al., 2005). However, the authors offered no 

explanation on the impairment of in vitro growth profiles and fitness of the 

ΔrisA-BP536 mutant. It is possible that the laboratory adapted BPSM strain 

may have undergone a different selective pressure in terms of genetic 

regulation and fitness compared to BP536 strain (Gaillard et al., 2011; Hot et 

al., 2003; Park et al., 2012), which may result in different physiology and 

fitness status when risA is deleted. As a transcriptional factor, RisA may 

regulate a variety of essential factors in BPSM, thus the absence of RisA 

and/or the Ris-regulated factors may contribute to an overall pleiotropic effect, 

as previously described for B. bronchiseptica (Jungnitz et al., 1998). 

 

Essentiality of a bacterial gene can be demonstrated by successful 

deletion of the target gene only in the presence of an extra copy of that gene 

(Parish and Stoker, 2000; Reyrat et al., 1998). Therefore, to confirm the 

essentiality of risA, we attempted to delete the chromosomal risAS locus in 

BPSM in the presence of a wild-type copy of risA, which was expressed under 

the control of fha promoter in the pBBR1MCS replicative plasmid. Because 

RisS is truncated in B. pertussis and has been shown to be dispensable for the 

expression of vrgs (Stenson et al., 2005), the entire risAS chromosomal locus 

was deleted in this study. We attempted to construct risAS-deletion in BPSM-

Pfha-risA strain via double homologous recombination. Positive ΔrisAS clones 

were obtained in the presence of a wild-type copy of risA expressed on a 

plasmid (Figure 4.3 B), thus demonstrating the essentiality of this gene in 

BPSM strain.  
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Figure 4.3: Construction of ris-deleted mutants in BPSM background 
strain. 
 
(A) Genomic organization of the risA and risS locus in B. pertussis BPSM-
Pfha-risA and ΔrisAS strain, pBBR::Pfha-risA vector over-expressing risA is 
shown on the right. Red arrows below each locus/gene indicates the primer 
used to screen for PCR screening.  
(B) PCR screening of Sm resistant ΔrisAS chromosomal DNA with primer 
pairs and expected size as indicated on the bottom of each gel picture. The 
ΔrisAS has been propagated in the absence of Cm antibiotics, thus allowing 
the mutant to loose the pbbR::Pfha-risA plasmid and retain the mutant 
genotype. Lanes; M, DNA ladder (5 µl); 19.2 and 19.3, ΔrisAS clones; pb, 
pBBR::Pfha-risA vactor (10 µl); BPSM chromosomal DNA (10 µl).  

 

 

!
!
!
!
!
!
!
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!
4.1.3.2 Transcriptional analysis of the capsule locus in BPSM and 

ΔbvgAS strains over-expressing risA  

!

Since RisA appears to be essential for BPSM survival, an alternative 

approach to study the role of RisA in capsule regulation is to over-express 

RisA in wild-type BPSM strain. We thus constructed a BPSM strain over-

expressing risA under the control of the strong fhaB promoter, giving rise to 

BPSM-Pfha-risA strain. The capsule locus expression as well as expression of 

other genes (risA, vrg6, kpsT and bvgR) in both parental BPSM and BPSM-

Pfha-risA were monitored in Bvg+ phase by Real-time PCR. As shown in 

Figure 4.4, over-expression of risA in Bvg+ phase BPSM-Pfha-risA led to a 5-

fold increase in risA transcripts compared to BPSM. However, the increased 

risA expression did not significantly enhance expression of neither the vrg6 

locus nor the capsule locus (Figure 4.4). Expression of all the genes analyzed 

were not affected in BPSM carrying empty vector control; BPSM-pbbr1mcs 

(Figure 4.4). From this data, we reasoned that BvgR repressor, which is 

expressed in BPSM-Pfha-risA strain, acts as a strong negative regulator and 

competes with RisA in modulating vrg6 and capsule locus expression in Bvg+ 

phase.   

 

Given the low expression level of bvgR in ΔbvgAS mutant (Figure 4.2 

B), we thus decided to over-express risA in ΔbvgAS using the constitutive 

recA promoter, which is independent of the BvgA/S regulatory system, unlike 

fhaB promoter used in the previous construct (Hot et al., 2003). The resulting 
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strain, known as ΔbvgAS-PrecA-risA was analyzed for its gene expression 

profile in Bvg+ phase. Over-expression of risA under recA promoter in 

ΔbvgAS mutant led to a modest 2-fold increase in risA transcripts compared to 

Bvg+ phase BPSM (Figure 4.5), reflecting that recA promoter appears weaker 

than fhaB promoter. Therefore, expectedly, neither the expression of vrg6 nor 

the capsule locus was found up-regulated in ΔbvgAS-PrecA-risA strain (Figure 

4.5). The modest over-expression of risA also did not result in modulation of 

the expression of bvgR, which remained basal in the ΔbvgAS-PrecA-risA strain 

in both Bvg+ and Bvg- phase (Figure 4.5). Despite the low levels of bvgR 

expression in ΔbvgAS-PrecA-risA strain, we postulate that it is sufficient to 

negatively repress the capsule locus and vrg6, thus overcoming the over-

expression of RisA in the overall modulation. 

 

In conclusion, our risA over-expression approaches failed to provide 

any further information on the possible modulation of the expression of the 

capsule locus by RisA.  
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Figure 4.4: Relative transcriptional activity of risA, vrg6, bvgR and the 
capsule locus in BPSM and BPSM-Pfha-risA strain in virulent phase.  
 
Total RNA was extracted from BPSM (black bars), BPSM-Pfha-risA (dotted 
bars) and BPSM-pbbr1mcs (grey bars) grown in virulent Bvg+ phase. Real-
time PCR analysis was performed using primers mapping in the risA, vrg6, 
kpsT and bvgR genes. recA gene was used as the endogenous control. Results 
are expressed as the average relative quantification RQ± SD of triplicate 
versus Bvg+ phase BPSM. Results are representative of 2 independent 
experiments. Dotted line represents RQ equal to 1 in relative to Bvg+ phase 
BPSM. 
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!
!
!
!
!
!

!
Figure 4.5: Relative transcriptional activity of risA, vrg6, bvgR and the 
capsule locus in BPSM, ΔbvgAS, ΔbvgAS-PrecA-risA and ΔbvgAS-
pbbr1mcs empty vector control strain in virulent and avirulent phase.  
 
Total RNA was extracted from BPSM Bvg+ phase (black bars), BPSM Bvg- 

phase (green barr), ΔbvgAS Bvg+ phase (grey bars), ΔbvgAS-PrecA-risA Bvg+ 
phase (red stripped bar) and ΔbvgAS-pbbr1mcs Bvg+ phase (stripped bars). 
Real-time PCR analysis was performed using primers mapping in the risA, 
vrg6, kpsT and bvgR genes. recA gene was used as the endogenous control. 
Results are expressed as the average relative quantification RQ ± SD of 
triplicate versus Bvg+ phase BPSM. Results are representative of 2 
independent experiments. Dotted line represents RQ equal to 1 in relative to 
Bvg+ phase BPSM. 
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(B) ANALYSIS OF THE TRANSCRIPTIONAL REGULATION OF 

THE CAPSULE LOCUS IN B. PERTUSSIS DURING EX VIVO 

AND IN VIVO INFECTION 

 

In this section, we sought to further investigate whether the capsule 

locus is being expressed and modulated during the course of infection in 

human pulmonary epithelial A549 cells and in mouse macrophages J774.A1 

as well as in the mouse respiratory tract.  

 

4.2 RESULTS 

!
4.2.1 Transcriptional Analysis of The Capsule Locus in B. pertussis 

During Infection of Lung Epithelial Cells 

 

The human lung epithelial cells represent the major cell type B. 

pertussis interacts with upon infection (Ishibashi et al., 1994; Wilson et al., 

1991). Although B. pertussis has been recognized as extracellular pathogen 

that adheres to pulmonary and tracheal epithelial cells in vitro (Alonso et al., 

2001; Coutte et al., 2003; van den Berg et al., 1999), studies have shown that 

it can also invade the A549 pulmonary epithelial cell line and survive 

intracellularly up to 4 h p.i. (Ishibashi et al., 2001). In this study, expression of 

the capsule locus in BPSM was quantified by real time PCR using primers 

mapping in the kpsT ORF upon invasion in A549 cells. For invasion assay, the 

co-incubation was performed for 1.5 h at 37°C. In vitro BPSM culture applied 
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for the cellular infection was used as comparison for the expression of the 

capsule locus. 

 

As shown in Figure 4.6, expression of the capsule locus in BPSM was 

significantly up-regulated upon during invasion in A549 cells compared to the 

level of expression measured during in vitro Bvg+ culture condition. 

Interestingly, expression of bvgA, an indicator for bvg-regulated response, 

showed a 3-fold increase upon uptake within A549 cells (Figure 4.6), 

suggesting that uptake of B. pertussis into mammalian epithelial cells induce a 

rapid and transient change in the bacteria gene expression.  

 

 

!
!
!
!
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!

!!!! !
!!!!!!!!!!!!!!!!!
Figure 4.6: Relative transcriptional activity of kpsT and bvgA in BPSM 
recovered from A549 versus in vitro BPSM grown in virulent phase.  

Invasion of A549 cells were done by incubating the cells and BPSM at MOI 
of 100 at 37ºC for 1.5 h. Unbound bacteria were washed away prior to total 
RNA extraction from BPSM recovered from infected A549 cells. Real-time 
PCR analysis was performed using primers mapping in the kpsT and bvgA. 
recA gene was used as the endogenous control. Results are expressed as the 
average RQ ± SD of triplicate versus BPSM innoculum. Results are 
representative of 2 independent experiments. Dotted line represents RQ equal 
to 1 in relative to BPSM innoculum. The bottom table shows average Ct 
values for each gene obtained from the mock-infected A549 (as negative 
control) and the no template control.  
!
!
!
!
!
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!
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4.2.2 Transcriptional Analysis of the Capsule Locus in B. pertussis 

During Infection of Macrophages 

!

As B. pertussis can invade and persist in human macrophages at MOI 

of 100 up to 48 h p.i. without affecting the viability of the macrophages 

(Friedman et al., 1992b), we further evaluated the response of the capsule 

locus expression during murine macrophages J774.A1 invasion, from which 

BPSM RNA was extracted at different time intervals p.i.  

 

Similar to A549 cell infection assay, expression of the capsule locus 

was significantly up-regulated upon during invasion in J774.A1 when 

compared to in vitro BPSM culture (Figure 4.7). Transcriptional activity of the 

capsule locus was significantly increased within 1.5 h p.i. upon uptake into the 

macrophages compared to inoculum (Figure 4.7). At 3.5 h and 4 h p.i, 

expression of the capsule locus remained elevated when compared to in vitro 

culture, but appeared to be down-regulated with reference to the 1.5 h time 

point after uptake (Figure 4.7). Unlike the capsule locus, levels of bvgA 

expression in BPSM were moderately regulated during the course of infection 

in J774.A macrophages (Figure 4.7).  

 

Taken together, the observations here suggest that uptake of B. 

pertussis into mammalian cells induced a rapid, transient and strong increase 

in the capsule locus expression, supporting that the capsule locus may play an 

important role in the early stages of mammalian cell invasion.!

!
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!

!
!!!!!!!!
!
!
Figure 4.7: Relative transcriptional activity of kpsT and bvgA in BPSM 
recovered from J774.A1 macrophages versus in vitro BPSM grown in 
virulent phase. 

Invasion of J774.A1 cells were done by incubating the cells and BPSM at 
MOI of 100 at 37ºC for 1.5 h, 3.5 h and 4 h. Unbound bacteria were washed 
away prior to total RNA extraction from BPSM recovered from infected 
J774.A1 cells. Real-time PCR analysis was performed using primers mapping 
in the kpsT and bvgA. recA gene was used as the endogenous control. Results 
are expressed as the average RQ ± SD of triplicate versus BPSM innoculum. 
Dotted line represents RQ equal to 1 in relative to BPSM innoculum. The 
bottom table shows average Ct values for each gene obtained from the mock-
infected J774.A1 (as negative control) and the no template control.  
!
!
!
!
!
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4.2.3 Transcriptional Analysis of the Capsule Locus in B. pertussis 

During Infection of The Mouse Respiratory Tract 

!
!

We have shown that deletion of the membrane-associated capsule 

locus-encoded products impaired mice colonization efficiency as early as 3-

days p.i., suggesting that the capsule locus plays an important role in the 

establishment of pertussis infection (Chapter 3). Our ex vivo data also suggest 

that the capsule locus is transcriptionally active at early stage of cellular 

infection (Section 4.2.1 and 4.2.2). Based on these findings, we moved on to 

monitor the capsule expression profile of B. pertussis during the course of 

infection in vivo.  

 

Mice were nasally infected with BPSM bacteria and at different time 

points p.i., the animals were sacrificed and their lungs harvested for bacterial 

RNA extraction and purification. To minimize the changes in bacterial 

transcription during the processing of the infected lungs, infected mice lungs 

were soaked in RNAprotect Bacteria Reagent (Qiagen) for 1 h to immediately 

stabilize B. pertussis RNA prior to RNA isolation procedures. We observed 

that expression of the capsule locus was significantly up-regulated throughout 

the course of infection, with a peak of expression at day 3 p.i. compared to 

BPSM inoculum grown on BG agar plate (Figure 4.8), implying that the 

capsule locus is actively transcribed at early phase of pertussis infection. 

Interestingly, a similar expression profile was observed for another bvg-

repressed factor, vrg6 (Figure 4.8), indicating that BPSM harvested from the 

lungs environment induces the expression of vrgs, including the capsule locus, 
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as compared to BPSM harvested from BG agar plates in the absence of 

modulators.  

 

In contrast to the vrgs, expression of vags including bvgA, bvgR, fhaB 

and ptx was elevated in a step-wise manner from day 0 (3 h post-nasal 

administration) to day 3 and day 7 p.i., likely explaining the peak of bacterial 

multiplication in the lungs at day 7 (Figure 4.8). Expression of the fhaB 

transcript was more greatly induced than the ptx transcript at 3 h p.i.; 

consistent with the fact that fhaB is an “early” bvg-activated gene necessary 

for the initial colonization of B. pertussis (Veal-Carr and Stibitz, 2005). At day 

3 and 7 p.i. when B. pertusiss begins to multiply in the lungs, ptx was greatly 

up-regulated compared to fhaB; a stage where pertussis toxin may be highly 

produced by the bacteria. Surprisingly, elevated expression of bvgR 

contradicts the capsule locus and vrg6 expression during the course of 

infection, indicating an altered vrgs modulation in in vivo versus in vitro 

bacteria. Our findings also support a previous study reporting on the 

differential regulation of vags assessed in a small time frame (between 5 h to 

36 h post-inoculation) by the RIVET system during in vivo infection (Veal-

Carr and Stibitz, 2005).  

 

Despite the fact that the capsule locus has been classified as a bvg-

repressed locus based on in vitro modulating and non-modulating conditions, 

the results here revealed for the first time that laboratory adapted BPSM strain 

activates the capsule locus expression, together with other vrgs during in vivo 

infection. Whether the in vivo lung microenvironment mimics the Bvg+ phase 
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in vitro culture conditions remain to be determined. Moreover, the observation 

here indicates that host-mediated transcriptional changes on the capsule locus 

expression likely reflect a response of the bacteria towards the presence of 

unknown in vivo signals throughout the course of pertussis infection. 

!
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!
!
Figure 4.8: Relative transcriptional activity of vrgs and vags in BPSM 
recovered from mice lungs versus in vitro BPSM grown in virulent phase.  
!
Mice were infected intranasally with approx. 5x107 CFU of BPSM and the 
bacteria were recovered from the mice lungs at different time points (day 0/3 
hours, day 3 and day 7 p.i.) through differential centrifugation. Bacterial RNA 
extracted and purified from group of 4 mice were pooled and subjected to 
Real-time PCR analysis using primers mapping in the kpsT, vrg6, bvgR, bvgA, 
fhaB and ptx genes. recA gene was used as the endogenous control. Results are 
expressed as the average RQ ± SD of triplicate versus BPSM innoculum. 
Dotted line represents RQ equal to 1 in relative to BPSM innoculum. Mock-
infected mice were used as negative control.  
!
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4.3 DISCUSSION 

!
4.3.1 Genetic Regulation of The Capsule Locus by The Ris System 

!

Expression of the capsule locus in B. pertussis is highly elevated under 

in vitro modulating conditions that inactivates BvgA/S system or in a ΔbvgAS 

mutant. This supports that BvgA/S signaling system is involved in the 

regulation of the capsule locus in B. pertussis, presumably through the activity 

of the known vrg repressor, BvgR (Merkel et al., 1998; Merkel et al., 2003). 

Interestingly, the clinical isolate B. pertussis strain 18323 expresses low levels 

of the capsule transcripts even under modulating Bvg- phase conditions when 

compared with the clinical isolate Tohama I strain and its laboratory adapted 

derivative strain BPSM. Concurrently, expression of risA, a proposed 

transcriptional regulator of vrgs, was greatly reduced in strain 18323. Whether 

the repression of the capsule locus under modulating Bvg- phase in strain 

18323 is a result of reduced risA expression and/or reduced binding affinity of 

RisA to the promoter of the capsule locus remains to be investigated.  

 

However, attempts in determining the regulatory role of RisA on the 

capsule locus have not been successful due to the failure of obtaining a risA-

deleted mutant in BPSM background strain. We demonstrated the essentiality 

of the risA gene in BPSM, thus somehow likely contributing to the overall 

bacteria in vitro growth and survival. Consistently, in B. bronchiseptica, 

deletion of the ris locus resulted in a general pleiotropic effect on the 

expression of a large numbers of unknown proteins (Jungnitz et al., 1998). 
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Deletion of risA in a Bvg+ phase-locked BP536 strain was also reported 

previously and was found to reduce bacteria invasion when compared to a 

Bvg+ phase-locked mutant in an ex vivo model of infection (Stenson et al., 

2005). These observations land further support that Ris proteins are involved 

in some important biosynthesis or metabolic molecular pathways in Bordetella 

sp. 

 

Over-expression of risA transcripts (upon expression under the strong 

fhaB promoter) did not significantly alter the expression of the capsule locus 

as well as vrg6 in the Bvg+ phase. It is likely that over-expression of RisA (5 

fold) may not be sufficient to overcome the repressive effect of BvgR on the 

expression of these vrgs. Alternatively, RisA may not be involved or may not 

be the main activator for the capsule locus expression in BPSM strain. As 

exemplified by the Rcs signaling system in section 1.1.5.1, the transcriptional 

control of E. coli group 2 gene cluster is regulated by more than one regulator 

involving several overlapping regulatory circuits (Majdalani and Gottesman, 

2005). As RisS is a pseudogene in B. pertussis, it is speculated that phospho-

activation of RisA may be driven by another kinase (Stenson et al., 2005), 

drawing the possibility of molecular cross-talk between two regulatory 

systems in B. pertussis. Since risA expression is BvgAS-independent, it is 

unlikely that a cross-talk exists between RisA and the BvgA/S system.  
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4.3.2 Genetic Regulation of The Capsule Locus During Mammalian 

Cells Invasion 

!

Analysis on the B. pertussis capsule locus expression pattern during ex 

vivo infection supports that the capsule locus is expressed during invasion into 

mammalian cells. We have previously shown that capsule-deleted mutant and 

wild-type B. pertussis equally adheres and invades the human pulmonary 

epithelial cells and murine macrophages (Neo et al., 2010). B. pertussis Bvg+ 

phase-locked mutant with constitutive activation of vags and repression of 

vrgs (including the capsule locus) are able to adhere and survive in 

mammalian cells as well as the wild-type bacteria (Stenson et al., 2005). 

Therefore, the increased capsule locus expression during A549 and J774 

macrophages infection is not associated with B. pertussis adherence and 

invasion properties into mammalian cell. The ability for B. pertussis to 

mediate the capsule locus expression in a temporal manner following invasion 

suggests that cellular “signals” may initiate a response governing the 

modulation of capsule locus and other genes expression in B. pertussis. 

Instead of being repressed under a presumably Bvg+ virulent phase (as 

evidenced by the sustained high levels of bvgA transcripts) during mammalian 

cells infection, expression of the capsule locus as a vrg is dynamically 

modulated over the course invasion into epithelial cells and macrophages. The 

findings here argue against the fact that bvg-repressed factors are not 

expressed during infection.  
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Moreover, exposure of B. pertussis to different host cell 

microenvironments, such as extracellular and intracellular compartments may 

also influence signals perceived by the bacteria, and hence the overall 

expression of the capsule locus, vrg6 and other vags. For instance within the 

cellular context of macrophages, B. pertussis was shown to confine into early 

phagosomal compartment and subsequently progress into late phagolysosome 

(Schneider et al., 2000). During the transition from phagosome to 

phagolysosome, the bacteria are exposed to an increasingly hostile 

environment including the presence of bactericidal cationic peptides, 

hydrolytic enzymes and acidic pH (Schneider et al., 2000). It is likely that the 

different environmental stress signals from these compartments play a role in 

activating the regulatory mechanism involved in the modulation of the capsule 

locus expression in B. pertussis during macrophage infection.  

 

Consistently, the modulation of vags was observed for AC toxin during 

entry and invasion into human macrophages; a significant increase in AC 

activity was observed 30 min p.i. followed by a progressive down-modulation 

at 2 h and 4 h p.i. (Masure, 1992). This supports the transition-modulation of 

B. pertussis from in vitro to a host microenvironment, presumably as a 

adaptation strategy for the bacteria to express the appropriate levels of vags 

such as adhesin and toxin necessary for bacterial adherence and invasion in 

mammalian cells (Alonso et al., 2001; Friedman et al., 1992a; Ishibashi and 

Nishikawa, 2002; van den Berg et al., 1999; Vojtova et al., 2006).  
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4.3.3 Genetic Regulation of The Capsule Locus During in vivo Infection 

!

The striking modulation of the capsule locus during mammalian cell 

infection prompted us to further investigate the expression pattern of the 

capsule locus in B.pertussis during colonization in the mouse respiratory tract. 

Immediately after infection, similar to the ex vivo epithelial and macrophage 

infection model, expression of the capsule locus was up-regulated, reflecting 

the response of B. pertussis towards the host environment changes upon 

infection. Expression of the capsule locus peaked at day 3 p.i. and lowered by 

day 7 p.i. A similar pattern of expression was observed for vrg6 as well. These 

observations demonstrate for the first time that vrgs are expressed during 

infection. However, a previous study indicated that only the Bvg+ phase is 

necessary and sufficient for a successful pertussis infection in mice (Martinez 

de Tejada et al., 1998), implying that the products of vrgs may not play a 

critical role during infection as they are expected to be down-modulated 

during in vivo infection. Here, we show that unlike the common belief, vrgs 

are readily expressed and modulated during infection which supports the idea 

that the in vivo microenvironment(s) encountered by the bacteria during 

infection are likely to be different from the artificial in vitro Bvg+ growth 

condition, implying that the global transcriptional patterns in both in vivo and 

in vitro Bvg+ conditions are likely to be very different.  

 

Expression pattern of several vags was also monitored; in contrast to 

the vrgs, expression of vags (bvgR, bvgA, ptx and fhaB) was increased over the 

course of infection, with highest expression levels observed at day 7 p.i. 
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Consistently, a previous study has shown that in contrast to in vitro B. 

pertussis culture grown on BG agar, the environment in a mammalian 

respiratory tract is more highly inducing towards vags (prn, fhaB, cyaA) 

expression (Veal-Carr and Stibitz, 2005). The authors concluded that the 

environment in the mouse lungs is a Bvg+ phase environment; however, they 

did not investigate the expression of vrgs following intranasal infection in 

mice (Veal-Carr and Stibitz, 2005).  

 

It is interesting to note that whilst the vags are dynamically modulated 

during the course of early respiratory infection, the vrgs including the capsule 

locus are differentially modulated as well. Dynamic modulation of vags and 

vrgs at different days p.i is an important strategy for B. pertussis to 

disseminate from the site of infection to the upper and lower respiratory tract. 

Whereas constitutive expression of vags does not affect bacteria virulence, it 

was reported that ectopic expression of vags (ptx and fhaB) is detrimental to B. 

pertussis in vivo virulence (Kinnear et al., 2001). Furthermore, constitutive 

expression of vrgs in a bvgR-deleted B. pertussis mutant interferes with the 

ability of the bacteria to cause disease (Merkel et al., 1998). Therefore, the 

flexibility of B. pertussis regulon to appropriately express the right amount of 

vags and vrgs at distinct sites and times of infection plays an important part 

for the establishment of pertussis infection.  

 

Modulation of bacterial gene expression in response to host 

microenvironment and host immune responses during infection has been well 

documented in other pathogen, implying the ability of a pathogen to sense and 
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respond to its host microenvironment (Heithoff et al., 1997; Howden et al., 

2008; Talaat et al., 2004). Migration of B. pertussis from the mice nasal cavity 

to the lungs likely results in exposure of the bacteria to different mucosal 

surfaces (nasal, trachea and lungs) and immune cells at different time-points 

p.i (3 h, day 3 and day 7). Infiltrated immune cells such as neutrophils and 

macrophages into the lungs encountered by the bacteria at day 3 and 7 p.i. 

may also contribute to the differential modulation of vags and the capsule 

locus expression in B. pertussis. Besides the major Bvg+ phase virulence 

factors, convalescence immune sera from B. pertussis infected individuals 

were able to recognize several B. pertussis bvg-intermediate phase factors, 

suggesting that during natural infection the bacteria are able to concurrently 

express different surface factors that were categorized as Bvg+ vs Bvgi factors 

under in vitro phase culture (Martinez de Tejada et al., 1998). Therefore, 

despite evidence that Bvg+ phase is sufficient for respiratory infection in 

animal models (Cotter and Miller, 1994; Martinez de Tejada et al., 1998), our 

observations here further support the possibility that B. pertussis is able to 

modulate both the vags and vrgs (the capsule locus) during natural infection.  

 

With multiple putative transcription factors deduced from the full B. 

pertussis genome sequence analysis (Parkhill et al., 2003), regulation of the 

capsule locus in Bordetella sp is likely to be more complex than expected. The 

ability of B. pertussis to sense its environment and dynamically modulate its 

genes expression may confer a selective advantage to the bacteria in 

promoting optimal survival within its host.  

 



Chapter 4: Genetic Regulation of The Capsule Locus 
 

! 209!

4.4 CONCLUSIONS AND FUTURE WORK 

!
4.4.1 Transcriptional Regulation of The Capsule Locus in B. pertussis 

 

Genetic regulation of the polysaccharide capsule locus in B. pertussis 

remains unclear, although the Ris system has been described to positively 

regulate other bvg-repressed factors including vrg6 and surface Vra antigen 

expression in B. bronchiseptica and BP536 strain. Our results show that RisA 

is essential for BSPM, therefore we were not able to isolate a risA-deficient 

mutant strain. Hence, several aspects regarding the function of Ris system 

towards the capsule regulation remain to be determined. Perhaps the most 

pertinent is to delete risA in a B. pertussis strain where RisA is non-essential. 

In addition, further study on the role of BvgR repressor by mutational analysis 

will aid in a better understanding on the capsule locus regulation in B. 

pertussis.  

 

Further work should also be directed at elucidating the binding 

capability of RisA onto the capsule locus promoter, as previously described 

for the vrg6 promoter (Croinin et al., 2005). In vitro DNaseI footprinting 

and/or electro-mobility gel shift assay (EMSA) using purified RisA protein 

(over-expressed in E. coli) and the putative capsule promoter sequence could 

be performed to confirm direct binding of RisA to the capsule promoter and to 

delineate the promoter region to which RisA binds. RisA is speculated to be 

phosphorylated prior to its binding to vrg6 promoter (Croinin et. al., 2005), 

therefore it is likely that binding of RisA to its target DNA motifs may require 



Chapter 4: Genetic Regulation of The Capsule Locus 
 

! 210!

it to be phosphorylated. Hence, in vitro phosphorylation of RisA should be 

performed prior to EMSA analysis. In addition to RisA, other proteins may 

interact with the capsule promoter. To test this hypothesis, an in vitro DNA-

protein pull-down assay can be performed. The putative capsule promoter can 

first be synthesized and labeled with a high affinity tag (i.e biotin) and 

incubated with enriched cytoplasmic extract of wild-type B. pertussis prior to 

purification using streptavidin agarose or magnetic beads. Such in vitro DNA 

pull-down assay would allow the identification of possible regulatory 

protein(s) (hypothetically RisA, BvgR and perhaps other proteins) that bind(s) 

onto the capsule locus promoter. This approach would eventually help 

characterize the molecular mechanisms involved in the genetic regulation of 

the capsule locus in B. pertussis 

 

4.4.2 Genetic Modulation of The Capsule Locus of B. pertussis During in 

vivo Infection 

!

The results show that the capsule locus of B. pertussis is highly 

expressed and dynamically modulated during cellular invasion, as well as 

during the course of in vivo infection, reflecting the response of the bacteria to 

the host microenvironments during infection. The fact that the capsule locus, 

classified as a vrg is actually readily expressed and differentially modulated 

during in vivo infection, forces to re-evaluate the role of vrgs during in vivo 

infection. Furthermore, our observations suggest that in vitro culture 

conditions with or without modulators which so far have helped define the 

Bvg– and Bvg+ phases in B. pertussis may be far from the environmental 
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conditions actually encountered by the bacteria in vivo and may not be 

predictive of the potential role and importance of genes during pertussis 

pathogenesis. The current findings add to the growing body of literature on the 

modulation of Bordetella genes during infection. Thus far, there is limited 

knowledge on the genetic regulation of vrgs during infection; this is the first 

report that vrgs including the capsule locus is expressed and modulated during 

infection. A microarray/deep sequencing approach to map the expression of 

vrgs during infection is awaited and would greatly enhance our knowledge 

regarding the role of vrgs during infection. 

 

Similar to the temporal modulation of vags expression during 

infection, the modulation of the expression of the capsule locus during 

infection may imply that the temporal expression of this locus is important for 

optimal virulence of B. pertussis. These findings provide the following 

insights for future work; a further study on the capsule locus and other vrgs 

expression in different laboratory-adapted and clinically isolated B. pertussis 

strains during in vivo infection would provide supporting evidence on the 

genetic regulation of the capsule locus during pertussis pathogenesis. In 

addition, it would be very informative to study the virulence phenotype of B. 

pertussis bacteria in which the chromosomal capsule locus is ectopically 

expressed under the control of a strong vag promoter such as the fhaB 

promoter. Such approach would certainly help apprehend the role and 

importance of the capsule locus during infection. 
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APPENDIX 1: Obtaining the ΔkpsT-Complemented Strain 
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Figure 3.7: Colony PCR screening for B. pertussis ΔkpsTcom strains. 
(A) PCR screening strategy for ΔkpsT complemented strain using the primer 
pairs as indicated. pBBR1MCS represents the complement replicative plasmid 
in a ΔkpsT mutant. 
(B) B. pertussis ΔkpsTcom clones screened with kpsTKO2F and kpsEKO1R 
primers. Lanes; M, 100 bp ladder (5 µl); 1 to 17, B. pertussis ΔkpsTcom clone 
1 to 17 (10 µl); 18, ΔkpsT chromosomal DNA; 19, BPSM chromosomal DNA 
(10 µl). Colony PCR screening of ΔkpsTcom strains are expected to show both 
220 bp and 688 bp fragment, while ΔkpsT should have only a 220 bp 
fragment. BPSM should have longer fragment of 688 bp. 
(C) B. pertussis ΔkpsTcom clones screened with kpsTF and kpsTR primers. 
Lanes; M, 100 bp ladder (5 µl); 1 to 4, B. pertussis ΔkpsTcom clone 1 to 4 (10 

A 
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µl); 5, ΔkpsT chromosomal DNA; 6, BPSM chromosomal DNA (10 µl). 
Colony PCR screening of ΔkpsTcom strains are expected to show 446 bp 
fragment, while ΔkpsT should not have any band. BPSM should have a 446 bp 
fragment. 
Positive clones are indicated in red. 
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APPENDIX 2: Estimated percentage of ΔkpsTcom Cm-resistant colonies 

recovered from the lungs of infected mice at the indicated time-points. 

Twenty random CFUs obtained from plated lung homogenate on BG agar at 

indicated time-points were subjected PCR using primers mapping in kpsT-

deleted region and primers flanking kpsT-deleted region as described in 

appendix 1. 

 

 
Day p.i 0 3 7 10 17 

Estimate percentage 
of Cm-resistant 
colonies recovered 

90% 70% 45% 20% 10% 
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APPENDIX 3: DNA microarray analysis of statistically significant differentially modulated transcripts in ΔkpsT mutant compared to 
BPSM. 
DNA microarray analysis was performed to measure relative transcript levels in ΔkpsT compared to the transcript levels present in wild-type 
BPSM. Differences in transcript levels are listed as mean log2 fold change (FC) from two biological replicates filtered with adjusted p value < 
0.01 and log2 FC  > 0.8 or < -0.8. . Down-regulated transcripts are represented by negative values of log2 FC and up-regulated transcripts are 
represented by positive values of log2 FC.  
 
 
BP 
ORF 

Gene 
Symbol 

Product NCBI_GeneID log2FC p value Adjusted 
p value 

Average log2 
FC 

BP0454 _ putative exported protein ncbi-geneid:2664448 -4.80 1.05E-14 4.40E-11 
BP0454 _ putative exported protein ncbi-geneid:2664448 -4.75 5.57E-15 4.40E-11 

-4.77 

BP0455 _ putative membrane protein ncbi-geneid:2664449 -4.17 1.67E-13 4.66E-10 
BP0455 _ putative membrane protein ncbi-geneid:2664449 -4.12 1.56E-12 3.27E-09 

-4.15 

BP1201 tcfA 
tracheal colonization factor 
precursor ncbi-geneid:2666888 -1.97 7.05E-10 7.56E-08 

BP1201 tcfA 
tracheal colonization factor 
precursor ncbi-geneid:2666888 -1.95 4.39E-10 5.59E-08 

-1.96 

BP2315 vag8 autotransporter ncbi-geneid:2666501 -1.97 1.31E-10 3.53E-08 
BP2315 vag8 autotransporter ncbi-geneid:2666501 -1.91 6.23E-10 6.94E-08 

-1.94 

BP2925 _ conserved hypothetical protein ncbi-geneid:2667044 -1.70 3.19E-10 5.38E-08 
BP2925 _ conserved hypothetical protein ncbi-geneid:2667044 -1.68 9.06E-12 1.05E-08 

-1.69 

BP2926 _ conserved hypothetical protein ncbi-geneid:2667045 -1.61 2.21E-10 5.38E-08 
BP2926 _ conserved hypothetical protein ncbi-geneid:2667045 -1.60 5.48E-11 2.12E-08 

-1.61 
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BP2234 brpL 
putative R_ polymerase sigma 
factor ncbi-geneid:2667457 -1.55 4.09E-10 5.43E-08 

BP2234 brpL 
putative R_ polymerase sigma 
factor ncbi-geneid:2667457 -1.49 1.11E-09 1.01E-07 

-1.52 

BP3694 _ 
conserved hypothetical protein 
(pseudogene) ncbi-geneid:2664938 -1.47 1.81E-11 1.05E-08 

BP3694 _ 
conserved hypothetical protein 
(pseudogene) ncbi-geneid:2664938 -1.46 4.26E-11 1.86E-08 

-1.46 

BP2924 _ putative exported protein ncbi-geneid:2667043 -1.44 1.87E-11 1.05E-08 
BP2924 _ putative exported protein ncbi-geneid:2667043 -1.44 1.76E-11 1.05E-08 

-1.44 
 

BP0499 _ hypothetical protein ncbi-geneid:2664691 -1.40 2.20E-07 4.63E-06 
BP0499 _ hypothetical protein ncbi-geneid:2664691 -1.32 2.93E-10 5.38E-08 

-1.36 

BP0456 hemC putative heme receptor ncbi-geneid:2664098 -1.39 3.41E-09 2.30E-07 
BP0456 hemC putative heme receptor ncbi-geneid:2664098 -1.26 3.27E-10 5.38E-08 

-1.32 

BP3696 _ putative exported protein ncbi-geneid:2664940 -1.35 3.77E-10 5.38E-08 
BP3696 _ putative exported protein ncbi-geneid:2664940 -1.33 3.20E-10 5.38E-08 

-1.34 

BP2261 bcrD 
putative type III secretion pore 
protein ncbi-geneid:2665956 -1.34 8.79E-08 2.44E-06 

BP2261 bcrD 
putative type III secretion pore 
protein ncbi-geneid:2665956 -1.30 2.48E-09 1.90E-07 

-1.32 

BP3011 _ hypothetical protein ncbi-geneid:2665904 -1.25 3.43E-09 2.30E-07 
BP3011 _ hypothetical protein ncbi-geneid:2665904 -1.24 9.49E-10 9.13E-08 

-1.24 

BP1363 _ 
putative amino-acid ABC 
transporter, permeaseprotein ncbi-geneid:2665277 -1.23 2.13E-10 5.38E-08 

BP1363 _ putative amino-acid ABC ncbi-geneid:2665277 -1.16 1.70E-09 1.43E-07 
-1.19 
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transporter, permeaseprotein  

BP1364 _ 

putative amino-acid ABC 
transporter, periplasmicamino 
acid-binding protein ncbi-geneid:2665278 -1.23 5.36E-09 3.21E-07 

BP1364 _ 

putative amino-acid ABC 
transporter, periplasmicamino 
acid-binding protein ncbi-geneid:2665278 -1.19 1.43E-08 6.40E-07 

-1.21 

BP3695 _ 
putative hydroxymethylglutaryl-
CoA lyase ncbi-geneid:2664939 -1.16 4.97E-10 6.03E-08 

BP3695 _ 
putative hydroxymethylglutaryl-
CoA lyase ncbi-geneid:2664939 -1.22 1.07E-10 3.21E-08 

-1.19 

BP0856 bfrD 
probable TonB-dependent receptor 
for iron transport ncbi-geneid:2664308 -1.19 2.27E-10 5.38E-08 

BP0856 bfrD 
probable TonB-dependent receptor 
for iron transport ncbi-geneid:2664308 -1.15 2.80E-10 5.38E-08 

-1.17 

BP3784 ptxB pertussis toxin subunit 2 precursor ncbi-geneid:2665069 -1.18 1.24E-08 5.84E-07 
BP3784 ptxB pertussis toxin subunit 2 precursor ncbi-geneid:2665069 -1.16 1.81E-10 4.73E-08 

-1.17 

BP0500 _ hypothetical protein ncbi-geneid:2664714 -1.18 7.97E-10 7.94E-08 
BP0500 _ hypothetical protein ncbi-geneid:2664714 -1.10 1.18E-09 1.06E-07 

-1.14 

BP1198 
clpB, 
htpM 

ATP-dependent protease, ATPase 
subunit ncbi-geneid:2666478 -1.14 9.00E-07 1.23E-05 

BP1198 
clpB, 
htpM 

ATP-dependent protease, ATPase 
subunit ncbi-geneid:2666478 -1.08 1.62E-06 1.85E-05 

-1.11 

BP2499 d_K molecular chaperone ncbi-geneid:2666522 -1.13 4.17E-08 1.40E-06 
BP2499 d_K molecular chaperone ncbi-geneid:2666522 -1.10 4.08E-10 5.43E-08 

-1.12 
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BP1203 _ conserved hypothetical protein ncbi-geneid:2666845 -1.11 1.77E-09 1.45E-07 
BP1203 _ conserved hypothetical protein ncbi-geneid:2666845 -1.09 2.93E-10 5.38E-08 

-1.10 

BP2262 bscD putative type III secretion protein ncbi-geneid:2665957 -1.11 8.93E-10 8.79E-08 
BP2262 bscD putative type III secretion protein ncbi-geneid:2665957 -1.08 2.33E-09 1.82E-07 

-1.09 

BP0074 htpG heat shock protein ncbi-geneid:2666131 -1.09 3.26E-09 2.23E-07 
BP0074 htpG heat shock protein ncbi-geneid:2666131 -1.03 1.04E-09 9.71E-08 

-1.06 

BP1204 _ conserved hypothetical protein ncbi-geneid:2666846 -1.09 3.69E-10 5.38E-08 
BP1204 _ conserved hypothetical protein ncbi-geneid:2666846 -1.06 1.18E-10 3.39E-08 

-1.07 

BP3575 _ putative exported protein ncbi-geneid:2665198 -1.08 3.08E-09 2.17E-07 
BP3575 _ putative exported protein ncbi-geneid:2665198 -1.06 3.86E-10 5.38E-08 

-1.07 

BP0216 sphB1 
autotransporter subtilisin-like 
protease ncbi-geneid:2664729 -1.06 5.35E-10 6.13E-08 

BP0216 sphB1 
autotransporter subtilisin-like 
protease ncbi-geneid:2664729 -1.03 2.85E-10 5.38E-08 

-1.04 

BP0822 hyuA hydantoin utilization protein A ncbi-geneid:2664341 -1.05 5.09E-10 6.08E-08 
BP0822 hyuA hydantoin utilization protein A ncbi-geneid:2664341 -1.05 2.33E-09 1.82E-07 

-1.05 

BP3785 ptxD pertussis toxin subunit 4 precursor ncbi-geneid:2665406 -1.04 2.42E-10 5.38E-08 
BP3785 ptxD pertussis toxin subunit 4 precursor ncbi-geneid:2665406 -1.02 3.77E-10 5.38E-08 

-1.03 

BP2263 bscE hypothetical protein ncbi-geneid:2665958 -1.03 2.97E-07 5.73E-06 
BP2263 bscE hypothetical protein ncbi-geneid:2665958 -0.96 1.25E-09 1.10E-07 

-1.00 

BP3432 cysI putative sulfite reductase ncbi-geneid:2666024 -1.02 1.27E-09 1.11E-07 
BP3432 cysI putative sulfite reductase ncbi-geneid:2666024 -0.98 2.19E-08 8.76E-07 

-1.00 

BP3455 _ putative taurine dioxyge_se ncbi-geneid:2666952 -1.00 8.45E-09 4.47E-07 
BP3455 _ putative taurine dioxyge_se ncbi-geneid:2666952 -0.95 5.77E-09 3.35E-07 

-0.98 
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BP2183 _ conserved hypothetical protein ncbi-geneid:2666908 -0.99 2.08E-07 4.48E-06 
BP2183 _ conserved hypothetical protein ncbi-geneid:2666908 -0.93 1.04E-07 2.73E-06 

-0.96 

BP3405 ompQ 
outer membrane porin protein 
OmpQ ncbi-geneid:2667075 -0.99 9.25E-10 8.99E-08 

BP3405 ompQ 
outer membrane porin protein 
OmpQ ncbi-geneid:2667075 -0.96 7.51E-10 7.75E-08 

-0.97 

BP2141 _ putative exported protein ncbi-geneid:2666978 -0.99 1.36E-08 6.21E-07 
BP2141 _ putative exported protein ncbi-geneid:2666978 -0.97 8.51E-09 4.48E-07 

-0.98 

BP3871 _ putative cold shock-like protein ncbi-geneid:2665120 -0.99 1.09E-08 5.33E-07 
BP3871 _ putative cold shock-like protein ncbi-geneid:2665120 -0.98 2.08E-07 4.48E-06 

-0.99 

BP2662 _ putative aldolase ncbi-geneid:2665526 -0.98 3.46E-10 5.38E-08 
BP2662 _ putative aldolase ncbi-geneid:2665526 -0.95 2.06E-09 1.66E-07 

-0.96 

BP3783 ptxA pertussis toxin subunit 1 precursor ncbi-geneid:2665068 -0.97 1.01E-08 5.12E-07 
BP3783 ptxA pertussis toxin subunit 1 precursor ncbi-geneid:2665068 -0.95 5.02E-09 3.07E-07 

-0.96 

BP1200 bapB autotransporter (pseudogene) ncbi-geneid:2666887 -0.96 3.25E-08 1.17E-06 
BP1200 bapB autotransporter (pseudogene) ncbi-geneid:2666887 -0.88 4.27E-08 1.42E-06 

-0.92 

BP2233 _ hypothetical protein ncbi-geneid:2667456 -0.96 8.19E-09 4.37E-07 
BP2233 _ hypothetical protein ncbi-geneid:2667456 -0.94 1.38E-08 6.29E-07 

-0.95 

BP2253 bopD putative outer protein D ncbi-geneid:2667094 -0.94 5.91E-09 3.41E-07 
BP2253 bopD putative outer protein D ncbi-geneid:2667094 -0.88 6.09E-09 3.49E-07 

-0.91 

BP0162 _ putative membrane protein ncbi-geneid:2664287 -0.91 4.73E-09 2.93E-07 
BP0162 _ putative membrane protein ncbi-geneid:2664287 -0.90 1.11E-09 1.01E-07 

-0.91 

BP2256 bsp22 putative secreted protein ncbi-geneid:2665951 -0.90 2.07E-08 8.49E-07 
BP2256 bsp22 putative secreted protein ncbi-geneid:2665951 -0.82 6.26E-08 1.89E-06 

-0.86 
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BP3574 _ 
putative branched-chain amino 
acid transportpermease ncbi-geneid:2665197 -0.90 9.40E-09 4.89E-07 

BP3574 _ 
putative branched-chain amino 
acid transportpermease ncbi-geneid:2665197 -0.90 5.72E-09 3.34E-07 

-0.90 

BP1362 _ 
putative amino-acid ABC 
transporter, ATP-bindingprotein ncbi-geneid:2665276 -0.89 6.18E-09 3.51E-07 

BP1362 _ 
putative amino-acid ABC 
transporter, ATP-bindingprotein ncbi-geneid:2665276 -0.81 2.30E-08 9.02E-07 

-0.85 

BP2683 paaB 
phenylacetic acid degradation 
protein ncbi-geneid:2665547 -0.88 7.04E-10 7.56E-08 

BP2683 paaB 
phenylacetic acid degradation 
protein ncbi-geneid:2665547 -0.85 3.22E-08 1.17E-06 

-0.86 

BP0723 _ 
probable ABC transporter, ATP-
binding protein ncbi-geneid:2666778 -0.86 2.77E-09 2.02E-07 

BP0723 _ 
probable ABC transporter, ATP-
binding protein ncbi-geneid:2666778 -0.82 9.89E-09 5.06E-07 

-0.84 

BP3786 ptxE pertussis toxin subunit 5 precursor ncbi-geneid:2665407 -0.86 5.90E-10 6.66E-08 
BP3786 ptxE pertussis toxin subunit 5 precursor ncbi-geneid:2665407 -0.86 3.70E-07 6.77E-06 

-0.86 

BP2255 _ hypothetical protein ncbi-geneid:2665950 -0.86 6.18E-08 1.88E-06 
BP2255 _ hypothetical protein ncbi-geneid:2665950 -0.80 1.10E-08 5.33E-07 

-0.83 

BP0120 _ 

inner membrane component of 
binding-protein-dependent 
transport system ncbi-geneid:2664359 -0.84 1.60E-07 3.74E-06 

BP0120 _ 

inner membrane component of 
binding-protein-dependent 
transport system ncbi-geneid:2664359 -0.82 7.68E-08 2.17E-06 

-0.83 
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BP3086 
hslV, 
htpO 

ATP-dependent protease heat 
shock protein ncbi-geneid:2667055 -0.83 4.20E-08 1.40E-06 

BP3086 
hslV, 
htpO 

ATP-dependent protease heat 
shock protein ncbi-geneid:2667055 -0.83 5.24E-08 1.65E-06 

-0.83 

BP3494 brkA serum resistance protein ncbi-geneid:2664892 -0.83 1.01E-06 1.33E-05 
BP3494 brkA serum resistance protein ncbi-geneid:2664892 -0.81 4.78E-08 1.54E-06 

-0.82 

BP3812 _ 
putative outer membrane efflux 
proteinbpe ncbi-geneid:2665087 0.804 5.09E-09 3.08E-07 

BP3812 _ 
putative outer membrane efflux 
proteinbpe ncbi-geneid:2665087 0.805 2.05E-08 8.45E-07 

0.80 

BP3838 ubiE bpe:BP3838 ncbi-geneid:2664850 1.99 1.79E-11 1.05E-08 
BP3838 ubiE bpe:BP3838 ncbi-geneid:2664850 2.02 7.15E-12 1.05E-08 

2.00 
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APPENDIX 4: Reagents for gel electrophoresis  

 

4.1 DNA Electrophoresis 

 

4.1.1 50x Tris-Acetate-EDTA (TAE) Buffer  

 Per 1000 ml  

Tris base  242 g 

Glacial acetic acid  57.1 ml 

0.5 M EDTA (pH 8)  100 ml 

Final pH adjusted to 7.8 

 

4.1.2 Agarose Gel 
1%  1.5% 

Agarose   0.5 g   0.75g 

1x TAE  50 ml  50 ml 

1x TAE was prepared by diluting 20 ml of 50x TAE with 980 ml of ddH2O 

 

4.1.3 6x DNA Loading Dye 

Bromophenol blue    0.25% 

Xyelene cyanol    0.24% 

Ficoll (type 400) in ddH2O  25% 

 

4.2 Protein Electrophoresis 

 

4.2.1 SDS-PAGE 

 

4.2.1.1 5x SDS/Glycine Electrophoresis Buffer 

 Per 1000 ml  

Tris base  15.1 g 

Glycine 72 g 

SDS  5 g 
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4.2.1.2 SDS-PAGE Seperating/Resolving Gel  

         Per 10 ml 

  8%        10%         12% 

30% Acrylamide-bisacrylamide (29:1)    2.65ml      3.33ml    4ml 

1.5 Tris-HCl (pH 8.8)     2.5ml        2.5ml 2.5ml 

10% SDS       0.1ml        0.1ml 0.1ml 

10% Ammonium persulfate    0.1ml        0.1ml 0.1ml 

TEMED       0.004ml    0.004ml 0.004ml 

ddH2O                                                         4.65ml      3.97ml      3.30ml 

 

4.2.1.2 SDS-PAGE Stacking Gel      

 Per 10 ml 

     5% 

30% Acrylamide-bisacrylamide (29:1)  1.65ml 

1 M Tris-HCl (pH 6.8)    2.5ml 

10% SDS      0.1ml  

10% Ammonium persulfate   0.1ml 

TEMED       0.004ml     

ddH2O       5.65ml 
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APPENDIX 5: Reagents for growth media 

 

5.1 E. coli Culture Media  

 

5.1.1 Luria-Bertani (LB) Agar 

 Per 1000 ml  

Tryptone  10 g 

Yeast extract  5 g 

NaCl 10 g 

Agar 15 g 

To ensure sterility, medium was autoclaved at 121°C for 15 min. 

 

5.1.2 Luria-Bertani (LB) Broth 

 Per 1000 ml  

Tryptone  10 g 

Yeast extract  5 g 

NaCl 10 g 

Final pH adjusted to 7.0 

To ensure sterility, medium was autoclaved at 121°C for 15min. 

 

5.2 B. pertusssis culture media  

 

5.2.1 Stainer-Scholte (SS) Medium 

 

Fraction A:    Per 950ml  

Na-L-Glutamate     11.84 g 

L-Proline      0.24 g 

NaCl       2.5 g 

KH2PO4       0.5 g 

KCl       0.2 g 

MgCl2.6H2O      0.1 g 

CaCl2.2H2O      0.02 g 

Tris       1.5 g 

Casamino acids     10 g 
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Dimethyl-β-Cyclodextrine    1 g 

 

Fraction B:    Per 50 ml 

L-Cysteine      0.04 g 

FeSO4.7H2O     0.01 g 

Nicotinic acid      0.04 g 

Ascorbic acid      0.4 g 

Glutathione      0.15 g 

 

Dissolve Fraction A and B completely prior to mixing Fraction A and B to a 

final volume of 1000 ml. 

Medium was filter sterilized using 0.2 µm filter unit. 

 
5.2.2 Bordet-Gengou (BG) Agar 

   Per 1000 ml  

Potato infusion from 125 g    4.5g 

NaCL       5.5g 

Agar       20 g 

Glycerol      10 g 

To ensure sterility, medium was autoclaved at 121°C for 15 min. 

10% sterile, defibrinated sheep blood was added at 45°C-50°C. 
 
 

5.3 Tissue culture media  

 

5.3.1 Dulbecco’s modified essential medium (DMEM)  

   Per 1000 ml  

DMEM       900ml 

FCS       100ml 

200mM Glutamax-I     0.02ml 

100mM Sodium pyruvate   0.01ml 

Medium was filter sterilized using 0.2 µm filter unit. 
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5.3.2 RPM1-1640 medium modified 

 

   Per 1000 ml  

RPMI-1640      900ml 

FCS       100ml 

200mM Glutamax-I     0.02ml 

Penicillin-streptomycin    10ml 

Medium was filter sterilized using 0.2 µm filter unit. 
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APPENDIX 6: Reagents for animal work 

 

6.1 Anaesthetic cocktail for nasal administration 

 

Valium       6% 

Atropine      10% 

Ketamine      20% 

1x PBS      64% 

Cocktail must be prepared under sterile conditions. 120 µl cocktail is injected 
intraperitoneally for a mouse of approximately 17 g of body weight. 


