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II. Abstract 

 

Using atomic force microscope (AFM) to characterize single protein 

mechanics has certain limitations in terms of obtaining and recognizing single 

protein unfolding signals. This led us to develop a new approach through using 

DNA molecules as markers to probe the unfolding of our proteins. One of 

the basic protein parameters that can be extracted is the unfolding structure (i.e. 

change in contour length after unfolding). Our experiments using both AFM and 

Magnetic Tweezers suggest that the protein of our study,  -Catenin constructs, 

has     unfolding units, with each increasing the contour length by       . 

However, AFM gives poorer results in terms of significantly larger histogram 

distribution. The main issue here is with single-molecule signal recognition. Here, 

we introduce a new approach using AFM which can potentially overcome this 

problem and improve upon existing methods for enhancing the quality of the 

AFM results, e.g. heteromeric polyprotein using    . We aim to couple DNA 

overstretching and streptavidin-biotin interaction specificity to more 

unambiguously identify protein signals. We provided a working protocol to 

immobilize DNA for AFM manipulation. Preliminary experiments were first done 

only with DNAs and without proteins, and the results showed encouraging 

features which were important for its efficient use in single molecule force 

spectroscopy: 1) short tip-surface pause time of          2) reusable 

streptavidin-biotin bond after breakage 3)        of all curves having DNA 

signals, verified by fitting the extensible Worm-Like Chain (WLC) model. Most 

importantly, there is a stable overstretching force range of           and a 

clear force plateau extension of       of the fabricated DNA contour length, 

which can provide the two important marker parameters for protein identification. 
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IV. List of Figures 

Figure 1: (drawing by scientist, David Goodsell) Mycoplasma mycoides bacteria. 

Extremely packed cellular condition with DNA shown in orange, cytoplasmic proteins in 

blue and pink [50].  

 

Figure 2: Side-view of two neighbouring cells sitting on substrate (extracellular matrix). 

At cell-cell interface, three types of junctions (Tight junction, Adherens junction and 

Desmosome) are formed to connect cells. Adherens junction (circled in red) is linked to 

cell backbone (F-actin) and is important for cell recognition, skin maintenance and 

morphogenesis [16]. [56] 

 

Figure 3: (A) Two cells adhered together. At junction,  -Catenin is folded and linked to 

F-Actin (“cell backbone”) for baseline stability. (B) Yonemura model [16]: Second cell 

pulling away, thus exerting force on the junction of first cell.  -Catenin is unfolded by 
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this additional force, exposing a binding site (purple arrow) for more F-Actin. This way, 

the junction recruits more forces to stabilize the adhesion (following [16]).  

 

Figure 4: The whole composite bridge (leading to cell nucleuses at two ends) for cell-cell 

adhesion. Basic Materials: (F-Actin,  -Catenin) for Cell 1 and Cell 2, and other 

molecular complexes (two blue rods) linking them. Weak points of bridge (usually non-

covalent bonding [18]) are pointed by dark arrows.  

 

Figure 5: Simplified picture of protein folding/unfolding. (A) Folded protein held by two 

bonds in a solution. Due to Brownian motion, the outer bond can break (with certain rate, 

  ) and reveals the inner part of protein. (B) When exerted by force at two ends, protein 

unfolds at different rate,   .   denotes the distance between protein ends. 

 

Figure 6: (A) Bond energy landscape/potential as a function of bond length,   (i.e. 

distance between protein ends (Figure 5)). Potential energy shows two local minimum. 

Minimums correspond to folded state (unfolded state), at         and is separated by 

barrier (height,   ), at   . The landscape at         is approximated by (inverted) 

harmonic potentials with stiffness,   √      √   . The protein is in the folded state 

(blue circle).  (B) (Black curve) Initial bond potential. (Red line) Constant external force 

potential. (Blue curve) Modified potential (i.e. sum of bond and external force potential). 

   

Figure 7: One recent molecular model of   -Catenin monomer. (A) Linear amino acid 

sequence for  -Catenin monomer, separated into four main domains,    ,      ,    

and   . Numbers        indicate amino acid number.    and    bind molecular 

partners to form complete molecular bridge.     contains Vinculin binding site (cyan). 

    and    form   domain, modulating    . Our experiments use a recombinant 

construct of bracketed region,     and   . (B)   -Catenin consists of a series of  -

helical bundles, color code follows (A).    position is rather flexible so is omitted to 

facilitate visualisation.  Adapted from [57]. 

 

Figure 8: Not drawn to scale. (A) Magnetic Tweezers with Total Internal Reflection 

fluorescence (TIRF) technique. The immobilized protein attached to paramagnetic bead 

is pulled by magnetic field which exerts force on the bead.  Vertical extension,  , of 

protein measured by evanescent wave from total internal reflected laser beam. (B) 

Atomic Force Microscopy (AFM). An immobilized protein is pulled by the flexible AFM 

cantilever controlled by a motorized piezo. AFM cantilever acts like a spring and exerts 

force on protein.  
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Figure 9: (Cantilever, bead and protein not drawn to scale) (A1) Typical force-extension 

curve for AFM constant-v mode which detected protein. (Light red curve) During 

cantilever approach to surface, cantilever has no deflection (i.e. F=0). When AFM 

cantilever touches surface, cantilever is deflected upward and force increases positively. 

(Dark red curve) When cantilever is retracted from surface, the first straight peak shows 

non-specific interaction with surface bending the cantilever backward (i.e. F negative). 

After leaving surface, there are saw-tooth patterned peaks corresponding to protein 

pulling and unfolding. Unfolding corresponds to the straight part between two saw-tooth 

patterns (blue arrows). (A2) Zoom into one saw-tooth pattern. {1} Protein (green chain) 

is pulled and accumulates tension. {2} Protein unfolds and releases tension (i.e. decrease 

in cantilever deflection). {3} Protein pulling cycle continues. (M1) Typical extension-

time curve for Magnetic Tweezers constant-F mode which detected protein. Curve shows 

increase of bead-protein extension with time. Protein unfolding corresponds to step 

increase of the extension (red arrows). (M2) Zoom into one plateau-step pattern. {1} 

Protein is taut, thus extension is constant (average over noise). {2} Protein unfolds, and 

there is sudden (step) increase in protein extension. {3} Protein pulling cycle continues.  

 

Figure 10: AFM data for unfolding length.  (A) Blue circle shows example of data points 

that we collect i.e. contour length change during unfolding      and corresponding 

unfolding force,    Other histogram parameters are clearly stated in the example. For 

each fixed velocity experiment, we analysed ~ 40 – 80 curves. (B) 2D colour graph 

shows three experiments at different velocity,                       , plotting     

against  . Colour signifies relative frequency of data, e.g. red means highest frequency.   

ranges from          for all  . For             there is one red frequency peak at 

~            For             there are two red frequency peaks at     

        , and one yellow peak at              For              there are two 

red frequency peaks at              , and two yellow peaks at        

           . Frequency peaks are shifted to higher    with increasing  .  (C) 

Histogram lumps all    data points of all constant velocity experiments of different   

(range              ). There are         curves and over      data points. 

Only one single peak at            Half width is        . (D) Histogram shows 

total unfolding contour length (i.e. sum of all    in one curve) per pulling curve for all 

experiments of different  . Single peak at       , but half width ranges from    

     .  (E) Histogram shows number of unfolding per pulling curve for all experiments 

of different   s. Most curves have two unfoldings while some have maximum of six 

unfoldings.  

 

Figure 11: Magnetic Tweezers data for change in contour length at unfolding,     
Histogram lumps all    for all experiments at different constant   (range from   
      . Single peak at        . By experience, average number of unfolding per 

pulling curve is    , e.g. in Figure 12. (work with Lu Chen, a research assistant in Prof. 

Liu’s lab.      of data from Lu Chen) 
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Figure 12: Three typical constant force pulling curves (different forces) for Magnetic 

Tweezers, plots   extension of bead against time. Red arrows show unfolding steps. On 

average, all unfolding events finish within duration           . By experience, most 

curves follow this trend.  

 

Figure 13: AFM constant velocity pulling data. Each point represents unfolding force 

average,   ̅, of all data for one single pulling velocity experiment. Graph plots mean 

unfolding force,  ̅ against log of the pulling velocity. Points can be roughly separated 

into two regimes, one where points hover around a plateau (         and another 

where points steadily increase (       ).  

 

Figure 14: (adapted from [48]) Upper row: sandwich heteromeric polyprotein, with 

analye (red) and marker (blue). Below: Example of unfolding signal in force-extension 

curve from the construct. Red line fitted curves are from marker. Black arrow is analyte 

signal.  

 

Figure 15: Envisioned configuration of experimental setup. DNA on AFM cantilever tip 

can search for protein on glass slide with correct chemistry.  

 

Figure 16: (A) dsDNA double helix and dimensions (adapted from [50]). (B) Typical 

force extension curve of dsDNA in a SMFS experiment. Regime 1 (<       ) can be 

fitted with WLC, with persistence length,          . Regime 2 and 4 (           ; > 

     ) can be fitted with extensible WLC, with different parameters i.e.   and stretching 

modulus,  . Regime 3 is overstretching plateau, extension       of contour length, 

          depending on experimental conditions: temperature, salt concentration, etc. 

 

Figure 17: Expected setup schematic for protocol in 3.3.3) Experiment Design. Length 

scales are not representative. Functional surfaces: BSA-biotin cantilever and 

Streptavidinated glass slide. Both DNA ends are biotinylated. Biotin and streptavidin 

have very specific binding affinity and can bind upon meeting. Some DNAs form loops. 

Some DNAs are capped with Streptavidin and have free end. The latter is available for 

pulling and stretching.  

 

Figure 18: Three typical force-extension curves from AFM pulling using setup in Figure 

17. Light red curves show extension of AFM cantilever towards surface, while dark red 

curves show retraction from surface. Vertical deflection (  ) is not always indicative of 

real force but has to be normalised by the horizontal dotted line, taken as     . Top panel 

(No DNA signal): represent       of total curves, associated to background force and 

no DNA being stretched. Bottom panel: Both signals represent       of total curves. 
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Among them,      is One-DNA signal,      is Two-DNA signal. Green line fits the 

short “tail part” of the stretching after the plateau using extensible WLC. Fitted 

parameters are very similar. Contour length (nm/bp) is calculated using contour length 

(nm) divided by 3 kbp for One-DNA and 6 kbp for Two-DNA.  

 

Figure 19: (A) Pipetting fluid induces shear flow on DNA but it is verified that DNA-

bead stays intact after normal pipetting. (B) Example of cantilever pulling DNA which 

eventually breaks at the SV-biotin bond at surface. DNA transferred to cantilever.  

 

Figure 20: (A) Bond energy landscape/potential as a function of bond length,    (i.e. 

distance between protein ends). Potential energy shows two local minimum. Minimums 

correspond to folded state (unfolded state), at         and is separated by barrier (height, 

  ), at   . The landscape at         is approximated by (inverted) harmonic potentials 

with stiffness,   √      √   . The protein is in the folded state (blue circle).  (B) 

(Black curve) Initial bond potential. (Red line) Constant external force potential. (Blue 

curve) Modified potential (i.e. sum of bond and external force potential).  (C1) (Black 

curve) Initial bond potential. (Red line) External spring force, harmonic potential, 

minimum near   . (Blue curve) Modified potential with only one minimum, close to 

initial folded state position (i.e.      (C2) (Black curve) Initial bond potential. (Red line) 

External spring force, harmonic potential, with minimum between    and   , close to   . 

(Blue curve) Modified potential with two minimums. The minimum on the right 

represents new unfolded state. (C3) (Black curve) Initial bond potential. (Red line) 

External spring force, harmonic potential, minimum near   . (Blue curve) Modified 

potential with one minimum, close to initial unfolded state position (i.e.   ).  
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1. Introduction 

 

It has recently become clear that mechanical forces and factors have a 

direct impact on many of the most important life processes, e.g. cell 

differentiation [2], cell migration [3] and cell-substrate adhesion [4-6]. This 

invites physicists to study relevant and important biological questions. At the 

molecular level, the key functional parts of a cell are proteins and DNAs. 

Therefore, studying the mechanics and the mechanotransduction mechanisms 

involving proteins and DNAs constitute an integral part of this emerging field, 

called Mechanobiology. Some important questions at the molecular level being 

answered are how DNA biomechanics regulates gene expression [5] and how 

protein mechanotransduction accounts for cell functions such as cell-substrate 

adhesion [7].    

The inside of a cell is an extremely complex environment (ref. Figure 1). 

One way to simplify the study of macromolecular mechanics is to isolate the 

relevant molecules from a cell and study them in vitro. Still, this is a mammoth 

task due to the sizes involved (DNA: coiled volume         , proteins:     

     ). Past work by molecular biologists has allowed specific bio-molecule 

isolation to be possible. However, another intrinsic difficulty lies in that these 

macromolecules are soft-matter objects and can have important structural and 

mechanical changes induced by small changes in forces, temperature, solution pH, 

etc [8]. This complicates experimental efforts to study them.   
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Figure 1 : (drawing by scientist, David Goodsell) Mycoplasma mycoides bacteria. Extremely packed cellular 

condition with DNA shown in orange, cytoplasmic proteins in blue and pink [50].  

 

Historically, in vitro molecular studies are done in bulk where only the 

average values of many molecules tested were obtained (e.g. electrophoresis to 

study molecule structural size, circular light dichroism to study protein 

denaturation, etc). Mechanical information of the molecules had to be inferred 

indirectly from these bulk measurements, e.g. single DNA elasticity and 

bendability [9]. However, the last two decades of intense instrumentation research 

in this field has seen the development and maturation of truly single-molecule 

experimental tools. They can probe bio-molecules one at a time, e.g. Atomic 

Force Microscopy (AFM), Optical Tweezers, Magnetic Tweezers (MT), 

Biomembrane-Force-Probes, etc [10, 11] .  Single-molecule tools are in most 

cases preferred over bulk assays because we do not miss any information from 

averaging [12]. Moreover, they allow for precise measurement and control (    ) 

and can directly apply physiologically relevant forces (       ) on the bio-

molecules. This gives a direct investigation of the role of forces on biological 

processes. Among the existing tools, AFM is the most developed and 

commercialised technique. However, after working with it for the bulk of the 

project, we find that the single-molecule signal recognition for AFM is still a 

problem i.e. noise from the environment masks the real protein unfolding signals 
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We thus suggest and work on a new AFM single-molecule signal 

recognition method that capitalizes on DNA biomechanics research of almost two 

decades. Hopefully, this can help to more unambiguously identify the protein 

unfolding signals.  

This Master’s Thesis has two parts. The first part intends to serve as a 

primer to single-molecule biomechanics research and its tools, allowing the reader 

to appreciate the use and subsequent need for AFM improvement. After an 

elaborate introduction (i.e. scientific background, protein unfolding theory, etc.) 

to the field with a specific case study on  -Catenin and cell-cell adhesion, AFM 

and Magnetic Tweezers results on the protein unfolding are shown. We found that 

the AFM high-throughput-data-collection does not translate to an overall 

advantage in data quality and efficiency over Magnetic Tweezers i.e. unfolding 

structure histogram for AFM is much more widely distributed than that of 

Magnetic Tweezers even though AFM has much more data.  

This naturally leads us to the second part of the report where we propose a 

new method that we hope can improve the quality of our AFM results
a
. We 

discuss existing methods for aiding the recognition problem and getting better 

AFM results, but we also observe that these methods have their own intrinsic 

problems. We hope that our new method, which consists of using DNAs for 

protein searching, can potentially overcome all the obstacles faced by the 

preferable current method i.e. use of      in heteromeric polyproteins. Finally, we 

present some encouraging results from tests on DNAs alone and discuss necessary 

follow-up work to consolidate the idea.  

 

 

 

                                                           
a
 The inability to use current methods for improving our AFM results played a big part for us to 

start working on the new method directly, relegating the protein characterization project for the 
time being. 
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2. Single-Molecule Biophysics and Tools 

 

Single-molecule biophysics/mechanics studies life processes at the 

molecular level. Some of these studies, regardless of the scientific questions, start 

with the mechanical characterization of the molecule involved. However, for the 

reader to appreciate this field, we will put the mechanical characterization 

problem in the context of a specific, open question that we are working on.   

The scientific question is to understand the stability of cell-cell adhesion (i.e. 

how cells stay connected under dynamic conditions), central to basic biological 

functions such as tissue wound healing, maintenance of skin integrity, cancer 

metastasis, etc. Cell-cell adhesion is a complex process that is  dependent on the 

ability of cells to sense and react to other cells surrounding it [5]. We would like 

to see whether minute physiological forces play a role in cell sensing-response 

and investigate this at the molecular level. The important molecule (i.e.  -Catenin 

protein) implicated in the process has recently been identified by biologists, so 

our job is to exert very small forces (           ) on this macromolecule 

(      ) and see how it reacts. This is to simulate typical forces experienced by 

molecules in our cells. To do this, we used two different single-molecule 

techniques i.e. Atomic Force Microscopy (AFM) and Magnetic Tweezers
b
, with 

an emphasis on AFM.  

The background on cell-cell adhesion and cell sensing-response will be 

given and defined. An interesting molecular model of cell sensing-response and 

the role of forces are shown. In short, minute physiological forces are 

hypothesized to be able to weaken the adhesion-protein’s bond sufficiently. This 

will lead to bond breaking and protein unfolding. The unfolding finally reveals a 

specific functional site to recruit other adhesion stabilizing molecules. 

Interestingly, this implies that initial bond breaking leads to the cells staying 

connected. We state clearly the goals of the project, aimed at proving this 

                                                           
b
 Magnetic Tweezers work is shared between group Research Assistant (80%) and me (20%).  
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mechanistic view of adhesion stability. In the theory section, we introduce the 

model of a chemical bond as a basis to understand protein unfolding. We also 

describe force loading of a chemical bond to show the importance of force in this 

process (i.e. increase protein unfolding rate). Finally, we discuss an overview of 

the single-molecule experimental techniques used.  

 

 

2.1) Scientific Background:  

 

2.1.1)  Cell adhesion – cell sensing response 

 

Biological cell-cell adhesion means the sticking of two cells which are close 

together and helps in tissue formation [17]. Interestingly, cell-cell adhesion has 

two contradicting features. Firstly, the adhesion has to be dynamic enough to 

allow continuous tissue growth and renewal (i.e. neighbouring cells need to part 

from each other momentarily to accommodate new cells). However, the “sticking” 

of cells has to be stable enough such that the tissue stays intact. The worst case 

scenario of an unstable tissue is when individual component cells become too 

mobile and invade into other parts of our body (i.e. metastatic cancer cells). Thus, 

cell-cell adhesion is in stark contrast with simple physics systems where 

“dynamic” and “stable” are usually mutually exclusive. It is this stability of cell-

cell adhesion under dynamic conditions that we are interested in investigating. 

The physical structures which form at the interface of two cells adhering to 

each other are called cell junction. They are complex protein assemblies found at 

the edges linking two neighbouring cells (Figure 2). In this project, we focus on 

one of the three junctions, called Adherens junction, which is directly responsible 

for adhesion stability and skin maintenance. Recently, people have re-discovered 

a key protein at the Adherens junction, called  -Catenin, which involves actively 



16 
 

in the stabilizing function. The key structural features of  -Catenin (as all proteins) 

are that it can be in two different functional states (i.e. folded or unfolded state). 

Unfolded state signifies opening of certain chemical binding site which is initially 

hidden in the folded state. 

 

 

Figure 2: Side-view of two neighbouring cells sitting on substrate (extracellular matrix). At cell-cell interface, 

three types of junctions (Tight junction, Adherens junction and Desmosome) are formed to connect cells. 

Adherens junction (circled in red) is linked to cell backbone (F-actin) and is important for cell recognition, 

skin maintenance and morphogenesis [16]. [56] 

 

In 2010, Yonemura et al. proposed a mechanistic model which describes 

how  -Catenin help stabilize cell-cell adhesion [16, 19]. Very recently in 2013, 

Thomas et al. independently did work that supported this model [20].  The model 

proposes that  -Catenin can sense minute mechanical force change when two 

adhering cells start to part (i.e. weakening of adhesion), and translates this into 

chemical signalling in the cell. The  -Catenin can then help the cell respond to 

enhance the adhesion. How does the protein do this? The model is explained 

below in some depth. Finally we give a more precise “definition” for cell sensing-

response. 

In Figure 3(A), two cells are initially in the adhered state. At their junction, 

 -Catenin is initially folded, and is directly linked to some F-Actins (i.e. “cell 
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backbone”), forming an initial composite bridge (Figure 4) that are then linked to 

both the cell nuclei (not shown). The integrity of this composite bridge ensures 

that the two neighbouring cells are always close together (i.e. cell-cell adhesion). 

Conversely, if the bridge breaks somewhere, cell-cell adhesion is broken. The 

most probable breaking points are the weak points where different individual 

components connect (dark arrows in Figure 4). Weak points are usually non-

covalently bonded [18], 10 – 100 times weaker than covalent bonds that make up 

the individual components forming the composite bridge. The Yonemura model 

neglects breaking of the adhesion molecular complexes (two blue rods) at the cell-

cell interface and only concentrates on the  -Catenin – F-Actin connection.  

 

Figure 3: (A) Two cells adhered together. At junction,  -Catenin is folded and linked to F-Actin (“cell 

backbone”) for baseline stability. (B) Yonemura model [16]: Second cell pulling away, thus exerting force on 

the junction of first cell.  -Catenin is unfolded by this additional force, exposing a binding site (purple arrow) 

for more F-Actin. This way, the junction recruits more forces to stabilize the adhesion (following [16]).  

 

Figure 4: The whole composite bridge (leading to cell nucleuses at two ends) for cell-cell adhesion. Basic 

Materials: (F-Actin,  -Catenin) for Cell 1 and Cell 2, and other molecular complexes (two blue rods) linking 

them. Weak points of bridge (usually non-covalent bonding [18]) are pointed by dark arrows.  
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The Yonemura model proposed the following, as in Figure 3(B). When cell 

2 moves too far away from cell 1, it induces additional tension/force in the cell-

cell bridge and could potentially cause breakage of the  -Catenin – F-Actin 

connection. However,   -Catenin can unfold under this additional force, opening 

up a binding site for more Vinculin - F-Actins to bind. The new F-Actins are 

transported by a protein called Vinculin and it is the Vinculins that bind to the 

opening of  -Catenin.  With more  -Catenin – F-Actin connections, the bridge is 

less likely to break totally and thus cell-cell adhesion is stabilized under these 

dynamic conditions. Actually, as shown in subsection 2.1.3) Theory: Protein 

Unfolding (Non-Covalent bond breaking), it is the increasing of  -Catenin 

unfolding rate with increasing force that is crucial for more efficient F-Actin 

recruitment. This is because all chemical bond breakage is probabilistic in nature. 

The important idea in this model is that the minute physiological forces (     

      ) is sufficient to unfold the proteins (i.e. weaken and break the protein 

bonds).  

Finally, “definition” for cell-cell adhesion, cell sensing and cell response in 

this thesis is given in Table 1. With this overview of the biological motivation, we 

can go on to state the aims of the project. 

 

Table 1 - Definitions for key events 

(D1) Cell-cell  

        adhesion 

Integrity of composite bridges (Figure 4) linking the two cell 

nuclei. 

(D2) Cell sensing  -Catenin increased unfolding rate with increasing force, 

before cell-cell adhesion breaks down. 

(D3) Cell response 

 

More Vinculin - F-Actin recruited to unfolded  -Catenin in 

shorter time. 
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2.1.2) Scientific Aims 

 

The Yonemura model [16, 19, 20] proposes that  -Catenin acts as a force 

transducer (i.e. sensing forces from the environment and translating it into 

chemical signalling in cells) by allowing Vinculin binding after it unfolds. The 

plan is to do a direct mechanical investigation of this model at the single 

molecular level, which involves: 

(I1) Showing that Vinculin only binds to  -Catenin when it is in the unfolded 

state i.e. to test (D3) Cell response.   

(I2) Showing that the relevant unfolding rate increases significantly with forces i.e 

to test (D2) Cell sensing. 

In this thesis, we report some work done on (I2) for our purpose. More 

specifically, the direction is 1) characterizing the “relevant” unfolding structures 

under force for single molecule  -Catenin and 2) determining unfolding rates as a 

function of force for single molecule  -Catenin. A description of a chemical bond 

is given in the next subsection to show protein unfolding features, including how 

the bond dissociates naturally or when a force is applied to the bond.  

 

2.1.3) Theory: Protein Unfolding (Non-Covalent bond breaking) 

 

To understand protein unfolding structure/rates, we need to know how 

proteins unfold. We also discuss how force can help increase protein unfolding 

rate, which is key to the D2) Cell Sensing feature of the Yonemura model.   
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Figure 5: Simplified picture of protein folding/unfolding. (A) Folded protein held by two bonds in a solution. 

Due to Brownian motion, the outer bond can break (with certain rate,   ) and reveals the inner part of protein. 

(B) When exerted by force at two ends, protein unfolds at different rate,   .   denotes the distance between 

protein ends. 

 

Proteins are linear macromolecules, made up of amino acid monomers. As 

all polymers, proteins are flexible and can be folded into three dimensional 

structures. The Left Panel in Figure 5 shows a simplified picture. The protein is in 

constant Brownian motion because it is in solution and is constantly bombarded 

by water molecules. Thus, the two ends of the folded protein try to move apart to 

increase entropy, and are only limited by non-covalent bonds and hydrophobic 

interactions holding them together. However, the bonds have a limited range 

(         ). If one end receives a big enough Brownian kick, the outer bond 

can break, revealing the inner functional structure. This bond breaking happens 

with a certain rate,   . The simplest characterization of protein unfolding structure 

(project aim 1) is the increase in contour length of the protein after bond breakage. 

The protein unfolding rate (project aim 2) is more subtle and deals with the 

kinetic problem of a state represented by the distance between folded protein ends. 

The state moves in an energy landscape which represents the non-covalent bond 

[21]. It is shown below. 
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Figure 6:  

(A) Bond energy landscape/potential as a function of bond length,   (i.e. distance between protein ends 

(Figure 5)). Potential energy shows two local minimum. Minimums correspond to folded state (unfolded 

state), at         and is separated by barrier (height,   ), at   . The landscape at         is approximated 

by (inverted) harmonic potentials with stiffness,   √      √   . The protein is in the folded state (blue 

circle).   

(B) (Black curve) Initial bond potential. (Red line) Constant external force potential. (Blue curve) Modified 

potential (i.e. sum of bond and external force potential)   

 

The energy landscape of a protein bond,   , is shown in Figure 6(A) 

(similar to [22, 23]). There are two local energy minimums corresponding to the 

folded (   and unfolded state      at    and   . The main feature of the bond is 

the energy barrier (height,   ) separating the minimums. Protein unfolding (i.e. 

bond breakage) corresponds to the          transition, which is probabilistic 

because proteins are in Brownian motion. Now, take an ensemble of protein with 

most of them starting in    , and assume that unfolded proteins cannot fold back. 

Then Kramer’s theory [24] shows that the main factor  that influence the rate of 

protein unfolding,    ,  for an average protein depends on the parameters of the 

bond energy landscape (Figure 6):     (folded state potential frequency),    

(barrier potential frequency),    (barrier height).     is driven by diffusion and 

convection of the two ends of the protein and is given by (details in Appendix A:  

Kramer’s Theory): 
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       (1) 

 

where √   is the stiffness parameter of the potential,        ,   is absolute 

temperature,    is Boltzman constant. The fact that     is exponentially decreasing 

with increasing    is loosely linked to the equilibrium Boltzman distribution 

probability, proportional to     .   

Eq. (1) describes the tendency for a protein to unfold when a large energy 

barrier is exceedingly low. However, the situation changes when we exert an 

external force on two ends of the protein (Figure 5(B)). Intuitively, the force 

weakens the bond and helps the protein to unfold. Quantitatively (Figure 6(B)), 

consider a constant force which introduces an additional potential (      : red 

line) so that it tilts the initial bond potential downwards (            : blue 

curve).  It is straightforward to show that the only change caused by this constant 

force is the lowering of the initial energy barrier by exactly              . 

Thus, the new average protein unfolding rate when a constant force is applied,   , 

(with           distance between energy minimum and barrier) is:  

       
    

  (2) 

 

Eq. (2)  provides a direct way to evaluate the importance of force in cell-cell 

adhesion (i.e. if we accept the definitions of cell adhesion (D1), (D2) and (D3)).  

We substitute in physiological values of (         ) to calculate      
.  

                 is the value at physiological temperature     ,            

is the typical force felt by protein complexes in the body before it breaks [25], 

           is typical of the range of hydrophobic interactions [26] governing 

protein folding and together give:      
     . This suggests that physiological 

forces can increase protein unfolding significantly (by ten-fold) and so play an 

equally important role as chemical factors in dictating cell-cell adhesion.   
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However, Eq. (1) and (2) just give the average unfolding rate. Since the 

protein unfolding is intrinsically probabilistic, we can assume that there is a 

survival probability,                related to the protein, which gives the 

probability that a protein is still in the folded state if we measure it at time,  .  

         is the probability that the exact unfolding time,   happens after the 

measurement time,  .      is further assumed to obey a first-order rate equation 

(taking rate constant,    as the average protein unfolding rate) : 

  ̇            (3) 

which gives: 

 
        [ ∫     

 

 

]  (4) 

 

Having seen the description of protein unfolding (with and without force), 

we can now introduce the two mechanical single-molecule experimental 

techniques that we use and discuss how they are used to characterize protein 

unfolding.   

 

2.1.4)  -Catenin molecular structures and properties 

 

We need to be more precise about the molecular details of  -Catenin to 

appreciate unfolding results. There are several molecular models for the  -

Catenin monomer structures and functions, but we choose to describe the most 

recent one to our knowledge [57] (Figure 7). The model is derived from 

crystallographic studies and comparisons with Vinculin, which is also its homolog 

in addition to being its important binding partner.   

  -Catenin has four main domains,          and   .    and    allow 

binding to different molecular partners to complete the molecular bridge that links 

two adjacent cells.    can be further subdivided into two domains     and    , 

where     is mapped to contain the Vinculin binding site by biochemical assays. 

Although     currently has no structural data [57], it is hypothesized to have two 
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parallel juxtaposed  -helices forming a bundle (Figure 7(B)). Unfolding of this 

bundle is thought to be crucial for Vinculin binding.     and    forms a 

modulation domain, signifying that its presence can block the availability of     

and need to be displaced, either by force or chemical means, for Vinculin to bind. 

In this project, we work on a recombinant protein construct consisting of only the 

Vinculing binding and M domain, which is the minimal structure to study forces 

involved for the mechano-activation of  -Catenin. Another notable fact is that    

and    can each homodimerize with the same domain on another  -Catenin 

molecule [57].    

 

 

Figure 7: One recent molecular model of   -Catenin monomer. (A) Linear amino acid sequence for  -

Catenin monomer, separated into four main domains,    ,      ,    and   . Numbers        indicate 

amino acid number.    and    bind molecular partners to form complete molecular bridge.     contains 

Vinculin binding site (cyan).     and    form   domain, modulating    . Our experiments use a 

recombinant construct of bracketed region,     and   . (B)   -Catenin consists of a series of  -helical 

bundles, color code follows (A).    position is rather flexible so is omitted to facilitate visualization.  

Adapted from [57]. 

 

2.2) Tool 

 

2.2.1) Atomic Force Microscopy (AFM) and Magnetic Tweezers  

 

Generally, we want to track 1) forces exerted on protein, 2) protein 

extension as a function of force (i.e. gives unfolding structures and 3) time traces 

of experiments (i.e. give unfolding rate). Only the basic principles and intrinsic 

advantages/limitations of both the techniques are described here. Refer to 

subsection 2.2.2) How to get Unfolding features, for details.  
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In Atomic Force Microscopy (AFM), proteins in a buffer solution can fix on 

an open silicon glass slide randomly by strong non-covalent bonds (e.g. biotin-

streptavidin) as shown in Figure 8(B). The AFM cantilever is moved by a 

motorized piezo and its tip approaches the slide to probe for proteins. The 

cantilever is then retracted from the surface by the piezo to exert force on a 

possibly attached protein. The approach-retraction cycle is repeated 

systematically on different points in a given surface where proteins randomly sit. 

On average, 1 – 10 % of all tip approaches will hit a protein (depending on 

protein concentration) and the retraction curve gives us information about the 

protein unfolding.  

 

Figure 8: Not drawn to scale. (A) Magnetic Tweezers with Total Internal Reflection fluorescence (TIRF) 

technique. The immobilized protein attached to paramagnetic bead is pulled by magnetic field which exerts 

force on the bead.  Vertical extension,  , of protein measured by evanescent wave from total internal reflected 

laser beam. (B) Atomic Force Microscopy (AFM). An immobilized protein is pulled by the flexible AFM 

cantilever controlled by a motorized piezo. AFM cantilever acts like a spring and exerts force on protein. 

Vertical extension,  , of cantilever is measured by laser deflected from cantilever to a detector. Both 

techniques have    resolution and are suited to study protein unfolding steps ~ 10 nm.   

The force exerted on the protein is measured by the deflection of the 

flexible AFM cantilever, which obeys Hooke’s Law,      , where the spring 

constant,   is calibrated before the experiment.   ranges from         

    The deflection of the cantilever can be monitored by a laser beam which is 

reflected from the back of the tip onto a photodiode. The noise of the force 
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detected is about 10 pN and sets the minimum reliable force detectable. This is 

consistent with random Brownian deflection of the cantilever given by the 

equipartition theorem (            and       . Most importantly, the 

           noise in extension measurements sets a resolution good enough for 

detecting protein unfolding structures. Finally, we want to plot a force versus 

extension (i.e.   in Figure 8(B)) curve to extract the unfolding structures 

(explained in 2.2.2) How to get Unfolding features). The extension of the protein 

is given by the position of the piezo (minus the deflection of the cantilever).   

In the Magnetic Tweezers and TIRF technique, the proteins are allowed to 

fix randomly on a silicon glass slide (ref. Figure 8(A)). Chemically treated 

paramagnetic beads (~   ) are introduced into a micro-channel by pipetting and 

can stick to the other ends of the proteins by specific binding. The beads allow us 

to locate the proteins using a wide-field microscope. Then, we exert a force on the 

bead (with protein) using an electromagnet. Here, the smallest accurate force that 

can be exerted is much smaller than that of AFM (     , since it is directly 

controlled by electric current. Force is measured by observing the variation of the 

position fluctuations (with a high speed camera, frequency         ) of the bead 

in the     plane (perpendicular to protein extension) and calculated using the 

equipartition theorem (           , where      ). However, for short 

molecules like protein, the limitation of the camera frequency coupled with high 

frequency vibration of the bead (tethered to the short molecule) sets an upper limit 

for which force on the magnetic bead can be measured with confidence [27]. A 

camera frame-rate smaller than the bead vibration frequency will underestimate 

      and thus overestimates  . For a typical bead size (        ), the maximum 

reliable force measured is                 

Also, to calculate force, we need the protein extension,  . This is readily 

obtained from the exponentially decaying evanescent wave intensity,         , of 

a total internal reflected (TIRF) laser beam which we illuminate the bead from 

beneath.    is the penetration depth and is typically          for a laser 

wavelength of         . The intrinsic   resolution is even better than that of 
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AFM (sub-nanometre) [28] but depends on the thermal fluctuations of the 

magnetic beads in practice.   

In both techniques, the protein has to be pulled upwards to exert a force on 

it. The pulling can be done in a few ways e.g. constant velocity pulling (i.e.  ̇   

constant), constant force pulling (i.e.    constant) and constant loading rate 

pulling (i.e.  ̇   constant). We use constant velocity mode for    AFM, and 

constant force mode for Magnetic Tweezers.  Below, we show how to get the 

unfolding features of the protein from these two pulling modes in practice.  

 

2.2.2) How to get Unfolding features 

 

To extract protein unfolding features from experiments, we show typical 

protein pulling curves for each technique from our experiments. (Figure 9(A1)) 

AFM usually operates in the constant velocity pulling mode, and the pulling is 

best represented by a force-extension curve. As the cantilever is moved up by the 

piezo (dark red curve), the protein is being stretched and accumulates tension in 

itself and the cantilever (i.e. increasing cantilever deflection). Each instant where 

tension is released between two saw-tooth patterns (blue arrows) corresponds to 

an unfolding event. The physical situation for a saw-tooth pattern is detailed in 

Figure 9(A2). For Magnetic Tweezers, the most natural way of pulling is the 

constant force mode, where data is presented in an extension-time curve. When 

the protein is taut, the   extension of the bead-protein extension stabilises 

(average over noise) onto a plateau. However, when the protein unfolds, there is 

first a step increase in extension (red arrows) before it quickly stabilises to 

another plateau.   

Having identified the protein unfolding events on our experimental curves, 

the next step is to relate them to the unfolding features of a protein. The change in 

contour length due to unfolding,    can be estimated using the Worm-Like-Chain 
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(WLC) formula under force [29, 30], widely used to determine force-extension 

curves of rigid biopolymers i.e. DNA and protein (derivation details in Appendix 

B:  Worm-Like-Chain (WLC) and Extensible WLC Theory ). 

 

 

 

Figure 9: (Cantilever, bead and protein not drawn to scale) 

(A1) Typical force-extension curve for AFM constant-v mode which detected protein. (Light red curve) 

During cantilever approach to surface, cantilever has no deflection (i.e. F=0). When AFM cantilever touches 

surface, cantilever is deflected upward and force increases positively. (Dark red curve) When cantilever is 

retracted from surface, the first straight peak shows non-specific interaction with surface bending the 

cantilever backward (i.e. F negative). After leaving surface, there are saw-tooth patterned peaks 

corresponding to protein pulling and unfolding. Unfolding corresponds to the straight part between two saw-

tooth patterns (blue arrows).  

(A2) Zoom into one saw-tooth pattern. {1} Protein (green chain) is pulled and accumulates tension. {2} 

Protein unfolds and releases tension (i.e. decrease in cantilever deflection). {3} Protein pulling cycle 

continues.  
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(M1) Typical extension-time curve for Magnetic Tweezers constant-F mode which detected protein. Curve 

shows increase of bead-protein extension with time. Protein unfolding corresponds to step increase of the 

extension (red arrows).  

(M2) Zoom into one plateau-step pattern. {1} Protein is taut, thus extension is constant (average over noise). 

{2} Protein unfolds, and there is sudden (step) increase in protein extension. {3} Protein pulling cycle 

continues.  

 

The WLC formula is given by: 

 
  

   

 
[
 

 
(  

 

 
)
  

 
 

 
 

 

 
]  (5) 

 

where   is the protein stretching force,    is the persistence length of a polymer,   

is protein extension and   is protein contour length.   characterizes the local 

bending stiffness of a flexible polymer and is typically            for proteins.  

For AFM, we fit eq. (5) to two successive saw-tooth patterns to get their 

respective contour lengths,    and   . Then we calculate the change in contour 

length with         . To note, WLC does not directly take into account 

hydrophobic interactions between unfolded sub-domains of a protein, but the 

effect should be minimal for large unfolding forces [58,59], as we have in AFM 

studies. Further, we can expect an indirect effect of the interactions to appear in 

an effective persistence length,     , which has also been fitted. The details will 

not be considered as it is not within the scope of this Masters thesis.      

For our Magnetic Tweezers, since   is constant, this gives (         

       . So we can replace (   ) by (     ) in eq. (5) and obtain    from: 
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]  (6) 

 

The unfolding rate determination is dependent on the pulling mode. In 

constant force mode (Magnetic Tweezers), we fix a force and take the ensemble 

average of numerous extension-time curves similar to that in Figure 9(M1) for all 

time points. The averaged curve will smooth out the steps in the individual curves 
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and can be fitted with eq. (4):                , since force is fixed.      is the 

inverse of the time constant in the  average curve. Repeat the above procedure for 

different forces and plot      , which we fit with eq. (2):        
    

 to get 

protein unfolding rate at zero force,    . Double check that    , distance between 

energy minimum and barrier is       . This procedure assumes that protein 

refolding rate is negligible to the unfolding rate at all times.  

In constant velocity mode (AFM), we can use the formula: 

 
  ̅     (

       

  
)   (7) 

 

to get    .  ̅ is the average of all the breaking forces (i.e. force at the tip of the 

saw-tooth patterns just before protein unfolding) for curves (similar to Figure 

9(A1)) pulled at the same piezo velocity,  .     is the distance between energy 

minimum and barrier,           is the Euler-Mascheroni constant [31], and 

      is the loading rate c, where   can be taken as AFM cantilever stiffness. 

This procedure assumes   to be large enough (details in Appendix C:  AFM 

Constant Velocity Experiment Design).  

 

2.3) Methods and materials   

 

 -Catenin construct 

The recombinant  -Catenin monomer construct is obtained from collaborators in 

France. The construct consists of     and   domains (ref. Figure 7) and is made 

by PCR and purification from cells. The specific chemistry at both ends are biotin 

(    end) and 6xHis-tag (   end).  

                                                           
c
 Strictly speaking, the loading rate of protein,    should be proportional to the velocity at the 

protein end and not the velocity of the piezo. But after checking our data, their difference is 
negligible (i.e. two orders smaller than the values) 
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AFM Protocol 

Prepare slides for AFM: 

1. Clean normal glass slides (sonicate slides with DI water, then 

Acetone/Ethanol, and 1      , each for 30    ). 

2. Incubate the slides in amino-silane (2  ) in Acetone (        ).  

3. Incubate slides in glutaraldehyde     in DI water (       .  

4. Incubate slides in NTA-amino (       ) in DI water (      ). 

5. Incubate slides in            (      ) in DI water (whole day). 

6. Wash slides with DI water before use.  

Prepare AFM setup: 

1. Incubate  -Catenin (         ) (buffer: HEPES      ,            ) 

on treated glass slides. Let it sit for         . 

2. Fix AFM cantilever (brand: Nanosensors) on cantilever holder (need 

careful handling!) 

3. Choose force spectroscopy mode on AFM (brand: JPK). 

4. Calibrate the sensitivity and spring constant. 

5. Start experiment.  

 

Magnetic Tweezers Protocol 

Prepare channels on slides for Magnetic Tweezers: 

1. Clean normal glass slides (sonicate slides with DI, Acetone, 1      , 

DI, each for       . Before each new step, use DI to rinse slide.) 

2. Heat slides in DI water at                 before quickly incubating it 

in (ethanol + silane (   ) +DI) for      . 

3. Rinse slides with ethanol and blow dry with Nitrogen gas. (Check for 

hydrophobicity of treated slides by seeing whether water forms round 
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droplets or stays flat, more pronounced hydrophobicity after treatment 

means more successful treatment) 

4. Make channels on slide using double sided tape. 

5. Do PEGylation (PEG in HEPES and     , 1 :        ) of surface.  

6. Do further surface blocking with BSA.  

7. Wash channel (with Hepes + NaCl) and inject Neutravidin with  -Catenin, 

wait for     . 

8. Wash channel (with Hepes + NaCl), and inject biotinylated magnetic 

beads . 

9. Wash channel thoroughly (with Hepes + NaCl). 

 

Prepare Magnetic Tweezers setup: 

1. Mount treated channels with proteins on the microscope and fix it with 

tape to reduce drift. Start experiment.  

 

2.4) Results  

 

The bulk of the experiments are done with AFM. However, some Magnetic 

Tweezers results are presented for comparison so that we can critically evaluate 

the performance of AFM.  The important thing to note is that control experiments 

are done systematically. For AFM, the negative control is done by performing 

tests on a bare slide before putting proteins on the same slide to pull again. 

Without proteins, saw-tooth pattern frequencies were   –    orders lower than that 

with proteins (    –       of all pulling curves). So we are confident that the data 

are signals from  -Catenin among others even though we use non-specific 

interaction between tip and protein to do the pulling.  

For Magnetic Tweezers, the idea is to associate the presence of magnetic 

beads to the presence of proteins. This is done by using specific binding to 
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selectively bind the beads only to the protein. The control then compares the 

presence of beads in two channels, one with protein, and the other none, after 

washing the channels sufficiently to get rid of the protein in the bulk solution. The 

results are divided into change in contour length during unfolding,     and 

unfolding rate. We will then discuss some implications of the results. 

 

 

 

2.4.1) Unfolding contour length,    

 

For AFM, constant velocity experiments with velocities ranging from 

              were performed and each experiment produced      

   curves for analysis. From the colour plots in Figure 10(B), we see that the 

average forces at the point of unfolding is typically around      . We also see 

that typical change in contour lengths during unfolding are               

     . With higher  , the weightage for bigger    increases. However, when 

           (tends to the smallest experimented velocity),    coverges to a 

single value at        . This suggests that there are multiple bonds binding  -

Catenin and that at higher  , multiple bonds tend to break simultaneously and thus 

   is bigger
d
. However, when   is small, bonds tend to break one by one and 

since    converges to a single value, this suggests all unfolding structures have 

the same length,        . All the arguments are consistent with the requirement 

that   should not change the intrinsic    of unfolding structures.  

 

                                                           
d
 This bigger    could also be explained by the possibility that some inner bonds break before 

the outer bonds but are not detectable because the protein ends are still held by the outer bonds.  
In this case, when outer bond is finally broken, this information will be added on the already 
broken inner bond and thus we see a bigger   .  



34 
 

 

Figure 10: AFM data for unfolding length.  (A) Blue circle shows example of data points that we collect i.e. contour length 

change during unfolding     and corresponding unfolding force,    Other histogram parameters are clearly stated in the example. 

For each fixed velocity experiment, we analysed ~ 40 – 80 curves. (B) 2D colour graph shows three experiments at different 

velocity,                       , plotting     against  . Colour signifies relative frequency of data, e.g. red means highest 

frequency.   ranges from          for all  . For             there is one red frequency peak at ~            For 

            there are two red frequency peaks at             , and one yellow peak at              For   
           there are two red frequency peaks at              , and two yellow peaks at                   . 

Frequency peaks are shifted to higher    with increasing  .  (C) Histogram lumps all    data points of all constant velocity 

experiments of different   (range              ). There are         curves and over      data points. Only one single 

peak at            Half width is        . (D) Histogram shows total unfolding contour length (i.e. sum of all    in one 

curve) per pulling curve for all experiments of different  . Single peak at       , but half width ranges from         .  (E) 

Histogram shows number of unfolding per pulling curve for all experiments of different   s. Most curves have two unfoldings 

while some have maximum of six unfoldings.  
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The argument that all unfolding structures have similar values         is 

further verified when we lump all    values for all experiments into one 

histogram (Figure 10(C)). The histogram shows one single peak at              

We also plot a histogram of total unfolding length for each experimental curve (i.e. 

each protein pulling) (Figure 10(D)). We find a single peak at         but the 

distribution is quite flat and the half width reaches           . The last 

histogram (Figure 10(E)) plotting the total number of unfolding per experimental 

curve just confirms with the colour plots that there are indeed many large    

unfolding. This is because we see the histogram peaks sharply at (number of 

unfolding   ) although the distribution of    and total unfolding length are 

relatively flat.  

Rough inference of the unfolding structures involved in the AFM pulling: 

Possible multiple unfolding (   ), each with similar length        . The latter 

conclusion comes from the fact that smaller   causes    to converge to a single 

value at        . The former conclusion is not absurd even though the histogram 

of total unfolding length peaks at        . This is because the distribution of this 

histogram is rather flat and its half width reaches            . Also, we 

suspect some initial unfolding are hidden in the relatively large non-specific 

interaction between the AFM cantilever tip and the slide surface, shown by a 

sharp V-shaped peak at the start of pulling (Figure 10(A)) which looks very 

different from the saw-tooth patterns.  

For Magnetic Tweezers, experiments are operated at forces,        

      . We do not have ample magnetic Tweezers results as compared to AFM 

so we just plot a histogram that lumps all    from all experiments at different   

(Figure 11). We find a single peak at           . The half width is only 

       , only half of that of the corresponding AFM histogram (Figure 10(C)). 

This better quality of results compensates for the lesser data collected. By 

experience (e.g. Figure 12), the number of unfolding for each pulling curve is  

   . These results are similar to the AFM conclusion.   
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Figure 11: Magnetic Tweezers data for change in contour length at unfolding,     Histogram lumps all    for 

all experiments at different constant   (range from         . Single peak at        . By experience, 

average number of unfolding per pulling curve is    , e.g. in Figure 12. (work with Lu Chen, a research 

assistant in Prof. Liu’s lab.      of data from Lu Chen) 

 

Figure 12: Three typical constant force pulling curves (different forces) for Magnetic Tweezers, plots   

extension of bead against time. Red arrows show unfolding steps. On average, all unfolding events finish 

within duration           . By experience, most curves follow this trend.  
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2.4.2) Unfolding rate 

 

For unfolding rate, the data collected for AFM and Magnetic Tweezers is 

not sufficient for any serious deduction, but we give some comments.  

Estimating unfolding rate from the Magnetic Tweezers results is 

straightforward. According to the typical pulling curves (Figure 12), most curves 

have all unfolding events finishing within         . This translates to an 

overall unfolding rate under force:                              for force 

range,               . 

For the AFM, eq. (7) gives a formula to estimate protein unfolding rate at 

zero force,    , from average unfolding forces,  ̅ , of a single velocity pulling 

experiment. However, we can only fit this equation to the part of the data 

characterized by large enough velocity [32]. Practically, a large enough velocity 

regime (different regime for different proteins) can be identified with the regime 

where the points in the  ̅          graph start to ascend after a plateau regime, 

indicated in Figure 13
e
.  However, only three data points in Figure 13 fit this 

criterion. We therefore do not try to fit this data to get an estimate of    .  

                                                           
e
 A detailed discussion in Appendix C:  AFM Constant Velocity Experiment Design can explain why 

it is eligible to draw the experimental points into these two regimes, and why the “plateau” 
regime has significant oscillations of points. 
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Figure 13: AFM constant velocity pulling data. Each point represents unfolding force average,   ̅, of all data 

for one single pulling velocity experiment. Graph plots mean unfolding force,  ̅ against log of the pulling 

velocity. Points can be roughly separated into two regimes, one where points hover around a plateau 

(         and another where points steadily increase (       ).  

 

   

2.5) Discussions  

 

2.5.1) Result Implications and Possible Errors 

 

In all experiments, we try to pull on single recombinant  -Catenin 

constructs, consisting of the     and   domain. Hence, the sudden length 

increase or force release during the pulling of the protein construct in experiments 

will theoretically be due to the sudden structural changes in the different domains 

in this construct monomer. For AFM, non-specific interaction between cantilever 

tip and protein is used to pick up the molecule. Hence, it is possible for some 

cases that the molecule is pulled from the middle and we may not get all the 

unfolding events. This problem is circumvented in the Magnetic Tweezers 

experiment, since the biotin end of the molecule is bound to the biotinylated 



39 
 

magnetic beads through a neutravidin molecule. The specific interaction between 

biotin-neutravidin increases the possibility that the molecule is pulled end-to-end, 

giving all the unfolding events. The structural changes for the molecule could be 

due to the unfolding of the helical bundle of     to reveal the Vinculin binding 

domain [57] and the displacements of the   domain to release    . However, to 

delve into these details requires at least working with several other mutant 

constructs (with deletion of different domains), which is not within the scope of 

this Masters thesis.  

Here we recapitulate and compare unfolding structure result inference for 

both techniques: 

 

Table 2 - Summary of  -Catenin unfolding structures 

 Number of Unfolding units (per 

curve) 

Unfolding length  

AFM     Similar for all unfolding:  

        

Magnetic 

Tweezers 

    Similar for all unfolding:  

        

 

The unfolding structure inferred from both AFM and Magnetic Tweezers are 

similar and consistent with each other. Both shows that the unfolding can go 

through multiple steps, where the basic unfolding units have similar unfolding 

length,          Furthermore, we find that the total unfolding length result is 

consistent with the  -Catenin construct length scale,          (           ,  

Figure 7).  

For the unfolding rate, only Magnetic Tweezers can give us a simple 

estimation from the limited data.                    is estimated from the 

Magnetic Tweezers (at physiological forces,            The time scale involved 
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in this forced unfolding rate is well within usual cell reaction time scales (~ 

minutes), suggesting that  -Catenin is a possible candidate for mechano-sensing 

at cell-cell adhesion junctions. However, more data and analysis should be made 

(from AFM and Magnetic Tweezers) to deduce    . Only by comparing    and    

we can better understand the role of physiological forces for increasing  -Catenin 

unfolding rate and enhancing cellular response.    

We address some possible experimental problems that may influence our 

results. For AFM, two pitfalls are identified. First, the usage of non-specific 

binding to pull the protein may lead to pulling of random objects in the solution. 

This is addressed by negative control experiments which assure us that our results 

are from  -Catenin and not other elements on the slide. Also, our  ̅ vs        data 

trend follows the theoretical predictions for a chemical bond being pulled by a 

spring at constant velocity [22, 31, 32, 35]. This suggests that we are indeed 

consistently pulling on the same chemical bond (i.e. that of  -Catenin). Moreover, 

the smallest unfolding length is         and is always present and independent 

of pulling speed,  , of the experiment. This is consistent with common sense that 

the length of a structure should not depend on pulling speed.  

 

Second, the question is whether our results come from dimer or monomer
f
 

 -Catenin since the protein concentration used in AFM is high (           .  In 

this respect, we check that  -Catenin dimer percentage is only       at our 

AFM working concentration if we use physiologically determined dimerization 

and off-rates of the  -Catenin monomers and dimers [36]. We are further 

convinced that our results come mainly from monomers when we consider results 

from Magnetic Tweezers. This is because Magnetic Tweezers gives similar 

unfolding structures as AFM even though its protein working concentration is a 

few orders lower than that in AFM.  

                                                           
f
  -Catenin, like many other molecules, is found to form dimers (i.e. two molecules sticking 
together and could lead to structural changes) at a certain rate in solution. The dimers can also 
dissociate to reform two monomers at some other rate. The percentage of dimers will be high if 
the initial concentration of proteins is high and vice-versa. Knowledge of dimer association and 
dissociation rate allows one to calculate the dimer concentration at equilibrium. 



41 
 

Finally, technical problems from the machine itself can affect our results. 

Possible errors for both techniques come from force measurement. For AFM, the 

measurement of force as a function of protein extension hinges on the pre-

calibration of the unknown cantilever stiffness. For the commercialised JPK AFM 

that we use in our experiments, the cantilever stiffness is calibrated by looking at 

the cantilever deflection (i.e. thermal oscillation method), assuming the deflection 

is only due to solution molecules. The equipartition theorem (         ) then 

links the cantilever stiffness to the deflection. In actual cases, the cantilever 

deflection can easily be influenced by other noise as well and causes one to 

underestimate the cantilever stiffness (typical error estimates are at        [37]). 

This possible loophole can cause a systematic error in force measurements. For 

Magnetic Tweezers, the force calibration is actually more subtle than discussed 

previously and could lead to more serious overestimation of the force for short 

molecules like proteins [27, 38]. However, this does not change the preliminary 

conclusion that  -Catenin can be a good force transducer because an 

overestimated   means that    can only be bigger, and will continue to be 

substantially bigger than   . 

 

2.5.2) AFM vs. Magnetic Tweezers  

 

The two different techniques used in the project allowed direct comparison 

of results (especially for unfolding structure). It also allowed us to better 

understand the strengths and weaknesses of both the techniques in the context of 

this project. Below is a summary of their complimentary features (from our own 

experiences) to help in future experimental designs that deal with single molecule 

unfolding.  
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Table 3 - Summary of complimentary aspects of AFM (constant velocity mode) 

and Magnetic Tweezers (constant force mode) from our working experience. 

Each row compares a complimentary aspect of the two techniques. Orange 

highlight means disadvantage while blue highlight means advantage. 

AFM (constant velocity mode) Magnetic Tweezers (constant force 

mode) 

- Large force - Small force (closer to physiology  

  conditions) 

- Direct unfolding of a whole structure  

  held by multiple bonds  

- Structure held by multiple bonds  

  unfold bond by bond 

- More dimers (high concentration) - More monomers (low concentration) 

- Theory to extract unfolding features  

  is more complicated 

- More straightforward to extract  

  unfolding features 

- High throughput - Low throughput 

 

As shown in Table 3, AFM usually operates under larger forces (at high 

speed) than Magnetic Tweezers and could be less relevant for single molecule 

studies. At high speed, AFM shows more simultaneous unfolding of multiple 

units and could interfere with result interpretation. In contrast, Magnetic Tweezers’ 

small force allows the multiple structures to unfold one by one. Moreover, the 

protein working concentration in AFM is much higher than in Magnetic Tweezers 

and leads to more dimer formation, which is undesirable for our study. Lastly, the 

theory to extract unfolding features from AFM constant velocity mode is more 

complicated than that of the constant force mode Magnetic Tweezers.  

In short, the AFM constant velocity mode has the advantage that it is a high 

throughput method. However, Magnetic Tweezers is more simple and 

straightforward in acquiring protein unfolding parameters at physiological forces. 

Finally, we note that AFM can also be operated in the constant force mode [39], 

but is more prone to drift and machine feedback problems [10] as compared to 

Magnetic Tweezers.  
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2.5.3) Quality of Results 

 

Comparing the AFM and Magnetic Tweezers results, we see that the 

unfolding structure histogram for AFM has a much larger distribution half width 

(     times that of Magnetic Tweezers), suggesting lower AFM result quality. 

This overall inefficiency of the AFM in obtaining reliable data is all the more 

glaring because AFM has     times more data than Magnetic Tweezers, and 

should in principle have better statistics. From experience, this large uncertainty 

comes from the difficulty to recognize protein unfolding signals from the force-

extension curves. Non-specific interactions between cantilever tip-surface at small 

distances where protein usually unfolds is the main culprit. We have discussed 

above that AFM is a high throughput method. However, this advantage can only 

be presided over other single molecule tools (e.g. Magnetic Tweezers) if the AFM 

signal recognition problem is reduced effectively.  

There are indeed existing methods devised to overcome this problem as 

discussed in the next chapter. However, they have their own problems and are far 

from perfect. Most importantly, they are not available for our experiments within 

this time-frame. In light of this, the development of a better and simple-to-use 

AFM method for signal recognition will be much appreciated.  
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3. New AFM-DNA method 

 

We describe the protein signal recognition problem and introduce the 

current experimental methods which are not perfect. After stating some of the 

problems with the current methods, we present the new idea which tries to make 

use of the DNA as a better marker. The idea is described with its proposed 

advantages over the currently preferred method, i.e. heteromeric polyprotein using 

I27, discussed in ref. 3.2) Current methods and problems. Some background 

knowledge is presented for the DNA mechanics before we explain how we will 

use this in the new method. Finally, we present some preliminary but encouraging 

results and end with discussions.   

 

3.1) Protein signal recognition problem  

 

The idea of AFM single-molecule force spectroscopy (SFMS) is very 

simple. A mechanical cantilever touch-and-pull systematically on a surface 

randomly scattered with the unknown bio-molecule (in our case, protein) that we 

want to study. The protein unfolding signal is embedded in the force-extension 

curves produced by the AFM. The intrinsic flaw is that the experimenter chooses 

the part of the curve which is the protein, before further analysis is done. This 

human bias can lead to two important consequences: 1) miss out important 

unfolding information and 2) associate unfolding to the irrelevant part of the 

curve. Curve fitting with the Worm-like-Chain (WLC) curve can in principle 

reduce the second bias. However, since only one of the two parameters (i.e. 

persistence length) in the WLC is subjected to a phenomenological constraint 

(         [29]) during fitting, this is not very reliable for recognising protein 

signals.  
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Situations that could lead to bad/partial signal recognition are: 1) AFM 

cantilever tip-surface interactions [42] superposing on the protein unfolding 

signals when the tip-surface distance is very small (         ), 2) cantilever 

pulling on multiple proteins, 3) proteins not picked up strictly at the end and only 

unfolds partially, etc. In practice, the experimenter needs to resort to heavy 

statistical analysis by collecting a lot of data. Hopefully, the real protein signal 

finally stands out among other noise signals in a histogram. In short, there is a lot 

of uncertainty in result interpretation and also inefficiency in data collection if no 

further improvements are done to the experimental setup.  

 

3.2) Current methods and problems 

 

The protein signal recognition problem will welcome more effective 

methods. This is evident from the many recent articles on complex statistical 

algorithms developed to recognize single-molecule unfolding [43-45] from noise 

data. In this section (and report), we will concentrate on the current experimental 

methods trying to solve the problem.  There are two typical experimental methods 

employed currently to reduce human bias from two different aspects: 1) reduce 

amplitude of unwanted signals (e.g. electrostatic, Van der Waals, etc.) from tip-

surface interactions and 2) enhance recognisability of the protein signal. 

Reducing unwanted signals is done by allowing molecular blocking agents 

to adsorb onto the probe and slide surfaces. Examples of effective and commonly 

used blocking agents are proteins: Bovine Serum Albumin (BSA), polysorbate 

surfactants
g
: TWEEN 20 and short single stranded DNA (ssDNA) oligomers

h
. 

These molecules have variable stability under mechanical pulling but are all 

considerably stable (i.e. will normally not incur more ambiguous signal to the 

force-extension curves). They introduce additional surface repulsive forces that 

                                                           
g
 Polysorbate surfactants – a class of emulsifiers to stabilize colloids which tends to stick to the 

surface of a solid.  
h
 Oligomers – short macromolecule with a few monomer units.  
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can cancel out the common initial non-specific attractions between cantilever tip 

and surface. The origins of the repulsive forces are not clear cut but could be due 

to entropic, electrostatic, steric and hydration forces [42, 46].  

The second method aims to enhance recognisability of protein signals by 

using protein engineering techniques. In these techniques [47-49], large molecules 

are constructed by linking several proteins one by one (e.g. using short peptide 

linkers). These constructs can be classified into two groups: 1) homomeric 

polyproteins– chain of same proteins and 2) heteromeric polyproteins – chain of 

different proteins. Homomeric polyproteins serves to multiply the signal from our 

protein of study, analyte, while HETE aims to attach a well characterized protein 

(marker) signal to that of the analyte.  

More specifically, a homomeric polyprotein is made of   analytes, 

       and works as a positive control, i.e. if there are   unfolding events for 

one analyte, there should ideally be       unfolding events for the homomeric 

polyprotein. For the heteromeric polyprotein (Figure 14), two different proteins 

are usually hooked in a sandwich pattern,                , where the 

marker proteins flank the two ends of the single analyte protein in the middle. 

Usually, we choose the marker to be a much more stable protein than the analyte, 

with well characterized mechanical properties (i.e. I27 module of the titin 

protein
i
).  Signals coming from the marker will serve as the fingerprint to identify 

our construct. Further, the sandwich configuration significantly enhances the 

probability that the analyte is unfolded if we see       unfolding events from 

the marker, because the analye will most probably be hanging in the solution, 

‘free’ for pulling.  

                                                           
i
 Titin – large proteins that gives elasticity to muscle cells. I27 module – one structural domain in 
titin.  
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Figure 14: (adapted from [48]) Upper row: sandwich heteromeric polyprotein, with analye (red) and marker 

(blue). Below: Example of unfolding signal in force-extension curve from the construct. Red line fitted 

curves are from marker. Black arrow is analyte signal.  

 

Although the use of heteromeric polyprotein is becoming a standard for 

today’s SMFS experiments, it is far from perfect. The possible problems are 

highlighted in Table 4. Firstly, the proteins in the polyprotein could interact with 

each other leading to altered protein properties compared to the single monomeric 

protein [48]. Some polyproteins can even aggregate and not be successfully 

expressed by the cell. Now, assuming the polyproteins have non-interacting 

monomers, there are still other outstanding issues. First of all, the marker being a 

protein itself, gives signals which are probabilistic in nature (e.g. breaking force at 

each unfolding event is not a fixed value even if we fix the pulling velocity). At 

the same time, the marker signals also come from unfolding events, so will 

resemble analyte signals to certain degrees (i.e. can be fitted with the WLC model 

with similar parameter values). Last but not least, the uncertainty remains about 

pulling a single or multiple polyproteins. Also the proteins could unfold partially 

because the proteins could have more than “one point” stuck to the cantilever tip 

due to small tip-surface separation.  
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Table 4 - Problems with using heteromeric polyproteins for protein signal 

recognition at the two different stages (A), (B) in the method. 

(A) Expressing   

      polyproteins 

1) Possible interactions between proteins in the  

    chain. 

(B) AFM Pulling  1) Marker also gives probabilistic, unfolding signals. 

 2) More than one protein being pulled or individual  

    proteins unfold only partially. 

 

 

3.3) New AFM-DNA method  

 

3.3.1) Methodology and Advantages 

 

We propose a novel and simple method for the protein SFMS signal 

recognition problem that can not only circumvent the obstacles in the use of 

heteromeric polyprotein, but also provide some other advantages. We propose 

using DNA with its very distinct overstretching transition (ref. next section) as the 

marker for our protein analyte. The idea is to stick DNAs on the cantilever tip and 

fish for proteins adsorbed on a glass surface. Both macromolecules are easily 

functionalized on both the cantilever and glass slide surfaces and can search for 

each other with the correct chemistry. Figure 15 shows the envisioned simplified 

scenario.  
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Figure 15: Envisioned configuration of experimental setup. DNA on AFM cantilever tip can search for 

protein on glass slide with correct chemistry.  

 

The table below shows the problems (mentioned in previous section) in 

using heteromeric polymers and how the new AFM-DNA method could possibly 

solve them. Another advantage of using this new method would be the ability to 

double check the calibration of the cantilever stiffness. The usual calibration is 

done by the thermal fluctuation method, and can have significant deviations (up to 

three times difference from personal experience) depending on the real time local 

fluctuations. Moreover, there will be no problem with the construction of DNAs 

as it is a very mature field [8].  

 

Problems with Heteromeric 

polyproteins 

Possible solution with AFM-DNA 

method  

1. Probabilistic signal and look-alike to  

    analyte 

1. overstretching signal is deterministic     

    and very different from analyte     

    i.e.happens as a constant force  

    plateau (       ).  

2. Protein stretching at small tip- 

    surface separation (    ): (a) Non-  

   specific interactions and (b) Possible    

   partial protein unfolding  

2. Protein unfolding likely at much  

    larger tip-surface separation, about  

    the length of DNA (    ), linked in    

    series with protein.  

 



50 
 

3. More than one protein pulled each     

   time 

3. Cantilever force for overstretching  

    will be roughly quantized                 

    (            ), proportional   to    

    number of proteins,  , pulled in   

   parallel. 

- 4. Bonus: Overstretching force can help   

   calibrate  cantilever stiffness. 

 

 

Although the new idea can be advantageous in several key aspects of single 

protein signal recognition, we acknowledge that there are other limitations to it. 

The most notable would be that it is highly unlikely to use this idea for proteins 

which can interact strongly with DNA. Below, we discuss the relevant DNA 

micromechanics and how we can use it to identify protein unfolding signals.  We 

also describe the strategy for immobilizing DNAs for experiments.    

 

3.3.2) DNA micromechanics and How to recognize protein 

unfolding 

 

DNA micromechanics: The DNA that we are using is the double stranded 

DNA (usually in B-DNA form). It is made up of two strands of nucleotide bases, 

denoted as (A, C, G, T).  Each strand is complimentary to one another, with the 

bases paired up i.e. AT and CG. The two strands stick together by hydrogen (H) 

bonds within the base pairs and inter base pair interactions called base-pair 

stacking. CG rich DNA sequences are mechanically more stable than AT rich 

sequences [14]. A picture of dsDNA is in Figure 16(A). 
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Figure 16: (A) dsDNA double helix and dimensions (adapted from [50]). (B) Typical force extension curve 

of dsDNA in a SMFS experiment. Regime 1 (<       ) can be fitted with WLC, with persistence length,   

       . Regime 2 and 4 (           ; >      ) can be fitted with extensible WLC, with different 

parameters i.e.   and stretching modulus,  . Regime 3 is overstretching plateau, extension       of contour 

length,           depending on experimental conditions: temperature, salt concentration, etc. 

 

Single dsDNA molecules studied in SMFS pulling conditions are quite rigid 

in terms of bendability and exhibits non-linear responses. More specifically, the 

extension of the DNA under force can be roughly divided into four regimes [51]: 

At low forces (        ), the DNA contour length is almost non-stretched and 

its elasticity is purely entropic. In this case, the DNA can be reasonably fitted with 

a WLC model, with parameters persistence length (usually        ) and contour 

length. At higher forces (           ), the inter-base-pair distances are 

stretched, leading to enthalpic elasticity. The DNA extends very close to its initial 

contour length and can be fitted with an extensible WLC model which has an 

additional parameter (ref. Appendix B:  Worm-Like-Chain (WLC) and Extensible 

WLC Theory): stretching modulus. Around           , the DNA extension 

increases sharply at almost constant force. This overstretching transition allows 

extension of DNA to       times its initial contour length. For even higher 

forces (        ), the DNA continues to extend and can be fitted with another 

extensible WLC with different parameters.  

The overstretching characteristics (e.g. overstretching force and length) 

depend sensitively on temperature, salt concentration, base-pair content of DNA 

[8]. All these factors affect the base-pair stability of the DNA, e.g. lower 
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temperature, higher salt concentration and higher CG content lead to more stable 

DNA and higher overstretching force. Another obvious effect is the appearance of 

hysteresis in the force-extension curve during the relaxation of a DNA for less 

stable DNA. However, most importantly, the variations in overstretching force 

and length is small and hopefully will not complicate its use as a marker.  

How to recognize protein unfolding: When we have a pulling 

configuration of a protein coupled to the end of a DNA, we have a system of two 

non-linear springs in series. When the cantilever is pulled, the tension will be 

shared equally between the protein and DNA, thus stretching both molecules 

together. When the protein suddenly unfolds at some point, the tension in the 

DNA will drop simultaneously, corresponding to the DNA’s length decrease 

during this process, (in Figure 16(B)). Protein unfolding is thus tagged with a 

DNA tension drop, which has to happen in a regime where DNA tension is 

dependent on length i.e. not in the overstretching regime of Figure 16(B). Despite 

this, the DNA overstretching plateau is absolutely crucial for easy identification 

of a DNA-protein pulling event. Only when we are certain that a protein is pulled 

by a DNA then can we try to search for where the unfolding has occurred in the 

force-extension curve. 

To ensure that protein unfolding happens at the correct regime, we can vary 

the AFM cantilever pulling speed as the average protein unfolding force is 

dependent on its loading rate (as Eq. (7)). The ideal regime for protein unfolding 

to be recognized will be in the stiffer Regime 2 and 4 in Figure 16(B), as a larger 

DNA tension change happens for the same decrease in length. Finally, the forces 

involved for unfolding the protein here is       , which is not far from the 

conventional AFM forces obtained from our study of  -Catenin shown in Figure 

10(B). We remind the reader that these large forces are obtained (compared to the 

physiological molecular forces of         in the cell) because pulling speed is 

high.   

Immobilization for pulling: To pull the DNA, we need to immobilize it on 

a surface. Strong, specific interactions are chosen for better control. We can 



53 
 

functionalize the DNA at its two ends with specific functional groups to match the 

surface functionalization e.g. thiol-SMCC (covalent, ～         ) and 

streptavidin-biotin (one of the strongest known non-covalent protein-protein 

specific interaction [52-54],           depending on loading rate). Also, to get 

better pulling curves, the use of stable DNAs is crucial. As mentioned above, we 

can use DNAs with high CG content and/or close the DNA ends by ligation
j
 [8].  

For stable DNAs going through a overstretching, the mechanism is usually a 

phase transition called B to S transition, where the B-DNA changes form into a S-

DNA.  

  Below we present the working materials and protocol for the first step to 

realizing the AFM-DNA method - immobilizing the DNA and pulling it in the 

AFM setup. Comments are made regarding rationale of choosing the materials 

and protocol.  

 

3.3.3) Experiment Design 

 

Materials Equipment 

1. 1X PBS (as buffer) (           ) 

2. dsDNA - high CG content (   ),  

    open ended,  3kbp length and both  

    ends functionalised with biotin 

3. Glutaraldehyde    in DI water 

4. Streptavidin (SV) in buffer              

   (         ) 

5. BSA-biotin in buffer (        ) 

6. BSA (         ) 

7. APTES (   in Acetone) 

1. Plasma cleaner (Harrick Plasma) 

2. AFM (JPK) 

3. tipless cantilever (Bruker, stiffness:   

            ) 

                                                           
j
DNA ligase: An enzyme which facilitates the joining of DNA strands.  
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Protocol 

1) Glass slide preparation: Cleaning of glass slide (DI water          

Acetone                    ). Incubation for covalent anchoring 

(APTES         Glutaraldehyde        blow dry using    gas  

 sonicate        in buffer   SV       , wash with buffer   BSA 

      , wash with buffer    DNA   –        , wash with buffer   SV 

      , wash with buffer   pull in BSA (         ) - buffer).   

Attention: A) SV to be washed away really clean from bulk solution 

before DNA addition to avoid DNA aggregation. B) DNA to be washed 

gently to avoid de-adsorption from surface. 

 

2) Cantilever preparation: Plasma         BSA-biotin overnight, wash 

with buffer   BSA 20 min, wash with buffer.  

 

The Biotin-SV bond was chosen as our DNA linkage to surface due to ease 

of use, high specificity and strength of bond [55]. We cannot have SV at one end 

and biotin at the other end else the DNA can instantaneously form closed-end 

loops or aggregate. Hence, double biotin ends are chosen. Glass slides uses 

glutaraldehyde to bind SV strongly (covalent) at the surface for DNA binding. 

Electrostatic interaction (by plasma treatment) for binding of BSA-biotin on 

cantilever is less well controlled but was chosen to facilitate cantilever 

manipulation. DNA with both ends biotinylated can easily form loops on the SV 

surface and not be available for pulling. Therefore, SV incubation was done 

shortly (        ) after DNA incubation to block the other biotin end from 

interacting with the SV surface, and reduce loop formation. BSA incubation is to 

block non-specific binding at surfaces.  

 

 



55 
 

3.4) Results 

 

As the first step to setting up the AFM-DNA method, DNAs were incubated 

on a chemically treated glass slide as described in the previous section. The 

incubated slide was stretched and their force-extension signals were analyzed. 

The expected setup schematic is shown in Figure 17. From the many force-

extension curves, three typical curves can be extracted and are shown in Figure 18. 

Supposedly DNA signals can be seen superposed on background signals (Figure 

18).  

Pulling statistics:       curves are pulled at different locations on the 

glass slides. Clearly, not all areas have DNA below. Of those which have signals 

superposed on the background signals,       curves were analyzed,         

have one of the clear plateau signals in the bottom panel in Figure 18, indicating 

the presence of DNAs. The signal with short plateau is labelled as One-DNA 

signal, while the other is called Two-DNA signal. The reason for these  

 

 

Figure 17: Expected setup schematic for protocol in 3.3.3) Experiment Design. Length scales are not 

representative. Functional surfaces: BSA-biotin cantilever and Streptavidinated glass slide. Both DNA ends 

are biotinylated. Biotin and streptavidin have very specific binding affinity and can bind upon meeting. Some 

DNAs form loops. Some DNAs are capped with Streptavidin and have free end. The latter is available for 

pulling and stretching.  
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names will be made clear later. Among the curves with DNA signals,       are 

One-DNA signals and       are Two-DNA signals.   

Analysis: We would like to associate the plateaus in Figure 18 bottom panel 

and their two stretching tails (before and after the plateau) with the well identified 

DNA stretching Regimes 2,3 and 4 in Figure 16. To do this, we fitted the second 

tail after the plateaus with the extensible WLC because forces are large ( 

     ). Although this model has three parameters, we fixed the contour length 

(taken as the length just after the plateau ends) and allow only the persistence 

length and stretching modulus to vary for fitting. This is because the sampling rate 

of the usually short tail part is not high enough and can give absurd results if we 

allow all three parameters to vary for fitting. To decrease bias of fixing contour 

length, several contour lengths were fitted and the averages were taken. Also, we 

do not try to fit the first tail and the plateau itself because as can be seen in Figure 

18 top panel, the background signal is an exponential decay signal for large 

distances (up to         ) and interferes with these two parts of the 

supposedly DNA signals. All fitting are done with JPK DataProcessing and 

results (averages   standard deviations) are shown in  

 

 

Table 5. 
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Figure 18: Three typical force-extension curves from AFM pulling using setup in Figure 17. Light red curves 

show extension of AFM cantilever towards surface, while dark red curves show retraction from surface. 

Vertical deflection (  ) is not always indicative of real force but has to be normalised by the horizontal 

dotted line, taken as     . Top panel (No DNA signal): represent       of total curves, associated to 

background force and no DNA being stretched. Bottom panel: Both signals represent       of total curves. 

Among them,      is One-DNA signal,      is Two-DNA signal. Green line fits the short “tail part” of 

the stretching after the plateau using extensible WLC. Fitted parameters are very similar. Contour length 

(nm/bp) is calculated using contour length (nm) divided by 3 kbp for One-DNA and 6 kbp for Two-DNA.  
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Table 5 - Result analysis of  tail-like signals after the force plateaus using 

extensible WLC model. 

 One-DNA Two-DNA 

Contour Length 

(  ) 

                    

Persistence Length 

(  ) 

                  

Stretch Modulus 

(  ) 

                    

Contour Length 

(     ) 

                    

 

Other important characterizations of our system are:   

- Overstretching forces:          

- Breaking force (force at the end of the second tail after the plateau): 

         

- Thermal noise:         

 

 

3.5) Discussion 

 

The success of the AFM-DNA idea will depend on several factors: 1) ease 

of setting up the tool i.e. immobilizing the DNA, 2) ease of use compared to 

previous methods once it is set up and 3) fulfilling the advantages that were 

claimed previously.  

Firstly, we need to be sure the DNAs are well immobilized on the surface 

with usual setup procedures (i.e. human pipetting, incubation, etc). The main 

issues here are whether the DNAs form loops and whether they are still sticking to 
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the surface after pipetting. Loops can be avoided if we use SV to block one of the 

ends as in Figure 17. However, the latter concern (i.e. pipetting) remains 

problematic because the DNAs are long molecules (    ). The necessary open 

slide configuration for AFM (unlike possible use of small channels in Magnetic 

Tweezers setups) leads to harder control of pipetting. This could then generate 

large shear forces on these long structures and reap them from the surface. To 

make sure the DNAs are still immobilized on the open surfaces after normal 

pipetting (rate             ), micron sized magnetic beads with the correct 

chemistry (streptavidin beads for DNA with biotin ends) was flown in to label the 

immobilized DNAs (not shown in results).  

Exerting forces on beads by Magnetic Tweezers showed that DNAs remain 

well attached to the surfaces after normal pipetting (depicted in Figure 19(A)). 

This is confirmed by smaller fluctuations of the beads at larger forces and a 

maximum ascend of the bead similar to the length of the DNA used.  

 

 

Figure 19: (A) Pipetting fluid induces shear flow on DNA but it is verified that DNA-bead stays intact after 

normal pipetting. (B) Example of cantilever pulling DNA which eventually breaks at the SV-biotin bond at 

surface. DNA transferred to cantilever.  
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A further confirmation of the working DNAs came from the result analysis 

of the tail-like signals after the force plateaus. There are two types of force 

plateaus with different lengths which we associate to the DNAs. We hypothesize 

that the shorter plateau is our single DNA while the longer plateau corresponds to 

a DNA left in the bulk that has attached in series with a surface immobilized 

DNA. This is possible for a SV-capped free DNA end. It is tempting to say this 

because the short plateau length is the one expected for pulling one single 

immobilized DNA while the longer one is almost twice its length. This is 

confirmed when we fit the extensible WLC model to the two signals, where they 

show very similar overlapping persistence length and stretch modulus values, two 

material parameters which should indeed be independent of the overall structure 

length. Moreover, if we divide the shorter contour length with 3kbp and the 

longer contour length with 6kbp, we get again similar contour lengths. More 

importantly, these fitted values are comparable to that obtained with Magnetic 

Tweezers at similar experimental materials and conditions in [8] i.e. at 

[   ]       : persistence length      , stretching modulus         and 

contour length            . Finally, the overstretching forces are around the 

expected value:         . 

The next step is to assess the usability of the newly set up AFM-DNA tool 

compared to the usual methods. A functional and efficient AFM setup depends on 

high speed pick up and high pick up rate. Both criteria are satisfied because we 

have       pick up rate and for each pick up, the cantilever just need to touch 

the surface for       at a small force of         . Any pick up rate smaller 

than     would be problematic because when we add the proteins that we want 

to study, the pick-up rate will further decrease because the density of these 

proteins need to be controlled. A       pause at the surface for pick up is also 

the usual norm for efficient data collecting, contributed by the fast recognition 

between SV and biotin. Further, we want the DNAs pulled to be immediately 

reusable after breaking off the surface. This is because we want to incubate the 

DNAs on a cantilever tip with limited usable surface rather than the glass slide 

surface in the final ideal product. This is verified when the used cantilever pulls 
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on a brand new glass slide with only SV (and BSA for blocking) adsorbed on the 

surface (depicted in Figure 19(B)). We consistently see force plateaus (not 

analysed in results) indicative of the presence of DNAs on the initially clean 

cantilever. This shows that these DNA-biotin ends are reusable after SV-biotin 

breakage.  

Finally, the advantages promised by the AFM-DNA method over the use of 

heteromeric polyprotein with     have survived the very first experiments. With 

an extremely well defined and large contour length (standard deviation is      

of average) feature, this is an excellent marker candidate that can potentially solve 

    problems such as probabilistic and look-alike signals with the analyte, and 

protein unfolding at small tip-surface separation. Further, with the rather well 

defined overstretching force range          (most probably limited by 

cantilever thermal noise of       ), this can be used to calibrate cantilever 

stiffness and also determine how many proteins are pulled at once. However, we 

acknowledge that we need to involve well-studied proteins with the DNAs in the 

next phase of experiments to further prove that this idea is workable.   

On a side note, there are several interesting observations which we cannot 

yet explain. Firstly, there is a very short-lived tail section after the force plateau, 

leading to large standard deviations for the persistence length and stretch modulus 

with the used data sampling rate i.e.            of the average values. This is 

surprising because studies show that SV-biotin bonds break at only          for 

our typical loading rate in this system i.e.          [52-54]. However, our DNA-

cantilever usually breaks off at        , giving the tail only an additional 

length of         after the plateau. We are quite sure that most of the break off is 

at the SV-biotin links and not the surface-DNA links because the used cantilever 

shows DNA signals when used to pull a new DNA-bare SV slide. Also, the 

background signal from the tipless cantilever pulling on the surface is very 

peculiar. Not only is the interaction extremely long range (       ), but there 

also is a total reversal of force direction i.e. interaction is repulsive during 

extension of the cantilever towards surface but attractive during retraction from 
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surface. However, since these interactions are slowly changing (exponential), it 

does not interfere with the identification of the DNA signals as we have done.   

4. Conclusions 

 

Molecular mechanics studies in vitro, although simplistic, have contributed 

much to our understanding of important life processes at the molecular level. 

Among the many single molecule force spectroscopy (SMFS) tools, AFM is the 

most mature and commercialised technique. Yet, from our own working 

experience (on  -Catenin) and literature review on single protein unfolding, we 

believe that the AFM SMFS community will gladly invite new, complimentary 

methods that can improve single molecule signal recognition efficiency. In light 

of this, we propose a new method, using DNA molecules with its unique 

overstretching transition to more unambiguously identify protein unfolding 

signals. Current results on the DNAs alone showed promising trends of using the 

idea in the usual AFM setting. Having said this, it is crucial for follow-up 

experiments to verify that DNAs can indeed be successfully coupled to well-

studied proteins to obtain expected single protein unfolding characteristics. 

Finally, apart from the proposed new idea, this thesis can also serve as a short 

introduction to single molecule biomechanics and two of its working tools (AFM 

and Magnetic Tweezers).   
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Appendices 

 

Appendix A:  Kramer’s Theory  

 

 

Energy landscape of each protein is a function of its bond length. The 

potential energy shows two local minimum. Minimums correspond to folded state 

(unfolded state), at         and is separated by barrier (height,   ), at   . The 

landscape at         is approximated by (inverted) harmonic potentials with 

stiffness,   √      √    ,   is some mass parameter. The protein moves on 

this landscape in random motion, so its position is probabilistic.  

It is easier to think of an ensemble of proteins where we have different 

number of proteins, with different bond lengths,       .  The average flux of the 

number of proteins going from one bond length to the other,    depends on 

diffusion (          and convection (     of the proteins’ two ends, where 
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  is diffusion constant,   is the convective velocity
k
. Since velocity is related to 

the drag force,        (where         is the Einstein relation), we have : 

 
      

  

  
 (

 

   
) 

  

  
  

(A1) 

 

where       represent the force driving the motion (    points in opposite 

direction).  

We can rewrite eq. (A1) as: 
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)  

(A2) 

 

This just says that the relative diffusion (i.e. relative to equilibrium Boltzman 

probability) drives the relative flux. Now assume there is a source of protein 

starting at    (i.e.                   is in equilibrium and obeys Boltzman 

Distribution), a sink at    annihilating the states (i.e.        ) and steady flux, 

  , we can integrate both sides of eq. (A2) by approximating the minimum at 

        as (inverted) harmonic potentials with stiffness,   √      √   . The 

right-hand-side gives just – √    
 

  
, if we normalize       with integration 

(from     ). Left-hand-side is mostly contributed by the peak around    and 

if we integrate an inverted harmonic potential, we get     √(
  

    
 )  . 

Rearranging, we finally get:  

 
         

       

  
       

(A3) 

 

                                                           
k
 Another name for the diffusion-convection equation is the Smoluchowski Equation. 
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   is larger when    is larger because this allows concentration of states in 

folded region, increasing probability gradient.    is larger when    is larger, 

because there is larger force at the unfolded region driving the states to the sink. 

Finally,    is smaller when    is bigger and is loosely linked to the fact that 

equilibrium Boltzman distribution probability is proportional to     .   

 

Appendix B:  Worm-Like-Chain (WLC) and Extensible WLC 

Theory  

 

Polymers are made up of monomer repeats. These monomers move in 

random fashion subjected to certain physical constraints. The Worm-Like-Chain 

(WLC) theory assumes the polymer to be an ideal chain (i.e. neglecting all 

interactions between non-neighboring monomers) with the only energy 

contribution coming from the bending of neighbouring monomers. If the polymer 

has a large enough number of monomers, it can be seen as a continuous curve. 

Thus the energy for a WLC under force, pulling it at its two ends can be written as: 
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(A4) 

 

where   is total contour length,   is persistence length (measures local bending 

stiffness),   is radius of curvature,   is force pulling the polymer and   is the 

extension of the polymer in the direction of the pulling force. Now, we want to 

find the average   extension of a randomly moving polymer under this given 

force,  . ([30]:Section A) Marko and Siggia derives an approximate formula 

correct at asymptotically large forces and small forces : 
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This formula is widely used to analyse DNA at low forces (       ) and 

protein force-extension curves.  

For other polymers which can have important stretching of their intrinsic 

inter-monomer distances, there is a stretching modulus,   involved. In this case, 

the WLC formula is modified to become: 
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(A6) 

 

Or at the high force regime (large extension of polymer), simplifies to become:  
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(A7) 

 

Eq. (A7) is used to fit DNA stretching with large forces (      ). 
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Appendix C:  AFM Constant Velocity Experiment Design  

 

 

Figure 20: 

(A) Bond energy landscape/potential as a function of bond length,    (i.e. distance between protein ends). 

Potential energy shows two local minimum. Minimums correspond to folded state (unfolded state), at 

        and is separated by barrier (height,   ), at   . The landscape at         is approximated by 

(inverted) harmonic potentials with stiffness,   √      √   . The protein is in the folded state (blue 

circle).   
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(B) (Black curve) Initial bond potential. (Red line) Constant external force potential. (Blue curve) Modified 

potential (i.e. sum of bond and external force potential)   

(C1) (Black curve) Initial bond potential. (Red line) External spring force, harmonic potential, minimum near 

  . (Blue curve) Modified potential with only one minimum, close to initial folded state position (i.e.       

(C2) (Black curve) Initial bond potential. (Red line) External spring force, harmonic potential, with minimum      

between    and   , close to   . (Blue curve) Modified potential with two minimums. The minimum on 

the right represents new unfolded state. 

(C3) (Black curve) Initial bond potential. (Red line) External spring force, harmonic potential, minimum near 

  . (Blue curve) Modified potential with one minimum, close to initial unfolded state position (i.e.   ).  

 

In these constant velocity experiments, we are interested in determining 

energy barrier height for unfolding,    (Figure 20A), and the natural protein 

unfolding rate,    (eq. (1)). We first present the theory before giving the 

experimental design guidelines.  

In an AFM constant velocity mode, a cantilever (equivalent to spring) is 

used to pull a chemical bond at constant velocity. This constant   process is 

always very long compared to the thermal impulses (        ) and hence will 

be very different from the constant force pulling (Figure 20B). In the framework 

of Kramer’s Theory, we can see the spring as a harmonic potential, modifying the 

initial bond energy as it is pulled away from the surface. Three snapshots of this 

pulling process are shown in Figure 20(C1), (C2) and (C3). C1 is when the spring 

is still very close to the folded position, and the modified potential extends 

infinitely, trapping the protein to be always in its folded state. After moving for 

some time, the spring reaches the C2 condition and is somewhere near the energy 

barrier position. The modified potential starts to have two minimum, 

corresponding to the new folded and unfolded state. In C3, the spring is being 

pulled further and reaches near   . In this situation, the modified potential follows 

closely the spring potential, and the protein is forced to be in the unfolded state. 

For practical purposes, most unfolding experimental cases will only be dealing 

with the C2 situation. This is because there can never be unfolding in C1 , while 

for most pulling velocities, the protein would have already unfolded before 

reaching C3.  
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Focusing on C2, we can separate the speed of a moving harmonic spring 

potential into two regimes (i.e.  slow and fast). In the slow velocity regime, the 

system is in equilibrium and the modified potential allows similar folding and 

unfolding rate. Both these rates can be approximated by Kramer’s equation (eq. 

(1)) , but with different corresponding barrier heights. A detailed illustration is 

given in [22]. By equating these rates, we can get the average protein unfolding 

force: 

 

 ̅  √  [        (
   
   

)]  

(A8) 

 

 

where   describes the stiffness of the spring harmonic potential, and     (  
 ) 

describes the stiffness of the modified potential near the minimum of the folded 

(unfolded) state. Note that the average force depends on the cantilever stiffness 

but not the velocity of pulling!  

In the high velocity regime, we assume unfolding rate much larger than 

refolding rate, because the barrier for unfolding is sufficiently small now. In a 

quasi-static framework, we can just take the survival probability defined in eq. (4), 

with a time dependent unfolding rate,     , due to the moving potential. Since we 

can approximate          , where   is again spring stiffness, this gives 

        
      

, according to eq. (2). We thus have the survival probability: 

 
        [   ∫                

 

 

]  
(A9) 

 

The mean force at unfolding (or breaking) in this high velocity regime is then: 

 
  ̅     ̅    ∫        

 

 

  
(A10) 
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After some manipulation, we retrieve eq. (7):    ̅     (
      

  
)   with     . 

Notice that the average breaking force is linear with       .  

Putting the equations of the two regimes together on a  ̅ vs        graph, we 

should have a regime where  ̅ is almost constant (corresponds to low velocity), 

and a regime where   ̅  grows linearly (corresponds to high velocity). This 

explains why we can group our AFM results into the two regimes (Figure 13). 

The oscillation of the points in the slow velocity regime can also be explained if 

we remember that  ̅ depends on cantilever stiffness,   at this regime, eq. (A8). 

Typical commercial cantilevers have a variation of   (          ) and this 

variation is enough to change the  ̅ by a factor of 2. [32] gives a good graphical 

presentation of these discussions.  

Based on this theoretical framework, we can state the general constant 

velocity experimental design to determine bond breakage for any chemical bond 

(including protein unfolding).  

1. Use appropriate chemical specific binding on the tip to search specifically for 

the protein. 

2. Do the pulling over a large speed range (    orders of magnitude) to locate 

the two regimes.  

3. Focus on the slow velocity regime for finding the energy barrier,   . 

4. Focus on the high velocity regime for the unfolding rate,    and distance 

between folded minimum and energy barrier,   .  

 

 

 

 

 

 

 


