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Abstract 

Silicon photonics is very important in future computer technology as it is able 

to integrate electronic and optical components on the same silicon chip, and to 

perform ultrafast data transfer within microchips. At present, most people are 

using SOI platforms to make 2D photonic structures. However, SOI is much 

more expensive compared to bulk silicon, and it is limited to 2D structures. In 

this thesis, a newly developed micro and nano silicon machining process via 

ion beam irradiation will be applied to fabrications of silicon photonics in 2D 

and 3D on bulk silicon and SOI platforms. 

The ion beam irradiation induced silicon machining process is further 

developed. Different fluences of high (MeV) and low (100 keV) energy ion 

beams were irradiated on p-type silicon wafers. After etching, it was found 

that while high energy ion beam irradiation would reduce the etching rate, low 

energy ion beam irradiation would give out an undercut limit during 

electrochemical etching. 

Fabrications of microdisk and microring resonators with or without 

waveguides integrated and Y-shape beam splitters, using a direct proton beam 

writing or a large area irradiation with a photoresist mask on top, followed by 

a single electrochemical etching step on bulk silicon wafers were 

demonstrated. Resonances were measured in microdisk resonators. Efficient 

integrated waveguide-and-resonators were not successful because of the gap 

limitation via this process. Y-shape splitters could give out tunable polarized 

outputs based on multimode-interference. These may provide an easier and 

cheaper way to obtain 2D silicon photonic devices on bulk silicon. 

Furthermore, with an additional irradiation step with a different energy to 2D 

Y-shape splitters, a 3D beam splitter was also achieved on bulk silicon. This 

extends the scope to 3D silicon photonic structures on bulk silicon.  
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Applying this process to SOI platforms, vertically coupled waveguides 

and waveguide-resonators were fabricated by a normally used RIE combined 

with an aligned ion beam irradiation followed by electrochemical etching on 

SOI wafers. Optical characterizations showed a typical coupling efficiency of 

26% in vertical coupled waveguides. This coupling efficiency is similar with a 

typically used grating coupler. Thus it could be an alternative of the grating 

couplers, which would allow side coupling light from the optical fiber to make 

the system more stable. Simulations show that the coupling efficiency depends 

on the gap between the two layer waveguides, the thicknesses, widths of the 

waveguides, and the wavelength and polarization of the incident light. 

Theoretically, the maximum coupling efficiency could be up to over 90% 

which is much higher than 26% achieved at present. The experimental 

coupling efficiency is now mainly limited by the accuracy of UV lithography. 

In conclusion, this study may have provided an easier and cheaper 

machining process to obtain 2D and 3D silicon photonic structures on bulk 

silicon. The process can also be applied to SOI platforms, and it is compatible 

with normally used 2D photonic fabrications and able to help achieving 

vertically coupled structures. 
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Chapter 1  

Introduction 

The word ‘photonics’ is derived from the Greek word ‘photos’ which means 

light. The science of photonics[1, 2] includes the generation, emission, 

transmission, modulation, signal processing, switching, amplification and 

detection/sensing of light. The term photonics emphasizes that photons are 

neither particles nor waves, but they have both particle and wave nature. Also, 

it more specially conveys the particle properties of light, the potential of 

creating signal processing device technologies using photons, the practical 

application of optics, and an analogy to electronics. Photonics covers all 

technical applications of light over the electromagnetic spectrum from 

ultraviolet over the visible to the infrared, with most applications in the range 

of the visible and near infrared light. 

Many materials can be used for photonic structures, from polymers to 

semiconductors. Silicon has many excellent properties, such as its natural 

abundance, well-developed Si processing technology over decades and a 

broadband transmission spectrum, especially near-perfect transmission at a 

wavelength of 1.55 μm which is used by most fiber optic telecommunication 

systems. Because of these advantages, many scientists and engineers are 

working on Si photonics[3-5] using silicon as the optical medium. Silicon is 

usually patterned with sub-micron precision, into microphotonics components, 

which operate in the infrared, most commonly at 1.55μm.  
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Silicon photonic devices are typically fabricated on a silicon on 

insulator (SOI) platform,[4, 6, 7] and usually achieved by a lithography step 

followed by removal process such as reactive ion etching. This process is now 

quite well developed, and the devices fabricated using it can achieve very high 

performance. However, this Si machining process and some other typical 

processes can only fabricate two dimensional (2D), planar structures. To make 

the devices more condensed integrated and more functional, three dimensional 

(3D) structures are necessary. To achieve 3D structures, other additional 

processes are needed, such as wafer bonding[8-11], chemical vapor deposition 

(CVD)[12] and epitaxial growth[13, 14]. Such processes can help to achieve 

three dimensional photonic structures, but the processes are very complicated, 

time- and material-consuming. Moreover, the latter two are not applicable for 

Si devices. So a new Si machining process for fabricating Si photonic 

structures is desirable. 

The following section gives a general introduction on the history of 

photonics and silicon photonics, followed by a brief review of some typical 

devices in Si photonics. A review of other studies on the fabrication of Si 

photonic devices is also presented. 

1.1 Photonics and Si photonics 

The word ‘photonics’ appeared in the late 1960s to describe a research field 

which uses light to perform various functions. Photonics as a field began with 

the invention of the laser in 1960, [15] which was then followed by other 

developments including the laser diode in the 1970s, [16, 17] optical fibers 

using for communication, and the erbium-doped fiber amplifier. These 

inventions form the basis of the telecommunications revolution of the late 20th 

century and provide the infrastructure for the internet. In the 1980s, fiber-optic 

data transmission was adopted by telecommunications network operators, and 

the term photonics came into common use. The establishment of a journal 

named Photonic Technology Letters by the IEEE Laser and Electro-Optics 

Society in the 1980s further indicated its importance.  



Chapter 1 Introduction 
 

3 
 

Many materials can be used for photonic structures: from polymers to 

semiconductors. Photonics using silicon as the optical medium is called Si 

photonics. Because of the many outstanding properties of silicon, scientists 

and engineers have invested much effort in the field of Si photonics, which is 

a new technology platform to enable low cost and high performance photonic 

devices and communications. There are many different components in Si 

photonic systems, such as waveguides, beam splitters, couplers, resonators, etc. 

1.2 Different devices in Si photonic structures 

1.2.1 Waveguides 

Waveguides are the fundamental component in photonics. There are several 

different types of waveguides: planar waveguides, rib and ridge waveguides, 

strip waveguides, etc. In planar waveguides [18], light is confined within two 

interfaces by total internal reflection, as shown in Fig 1.1(a). A rib waveguide 

[19, 20] can be defined with some normalizing parameters, Fig 1.1(b). Soref et 

al [20] firstly made this definition and limited the parameters as 0.5 ≤ r < 1.0, 

2
0.3

1
a r
b r
≤ +

− . 

 

Fig 1. 1 (a) Total internal reflection at two interfaces in a planar waveguide, (b) 
Definition of a rib waveguide in terms of some normalising parameters.  

 

A strip waveguide usually has a small dimension of ~500nm × 220 nm[21-25], 

so it allows a small bending radius of several micrometers[21, 24], which 

brings ultra-dense photonic circuits closer to reality. Strip waveguides provide 

an effective way to reduce the cost because of the simple fabrication process. 
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However, a major limitation is that the coupling is problematic since the 

dimension is so small. 

A waveguide is a passive device which does not require a source of 

energy for its operation. There are some other types of passive devices, such 

as directional couplers [26, 27], multimode interference couplers[28], and 

beam splitters etc.  

1.2.2 Couplers and splitters 

When two waveguides are close together, the evanescent field of one 

waveguide can “feel” the other one, resulting in a gradual coupling of light 

between the two waveguides. The two waveguides make a directional coupler 

in which the coupling strength can be controlled by tuning the gap between the 

two waveguides, or the coupling length, etc. Identical waveguides can achieve 

full coupling, since they can confine electromagnetic waves with the same 

modes otherwise, partial coupling occurs. A directional coupler has many 

important applications. For example, it can work as a variable splitter, a 

polarization convertor or a base component for ring resonators. Using 

microelectromechanical systems (MEMS) it is possible to tune the coupling by 

tuning the gap between the two waveguides.[29]. A multimode interference 

(MMI) coupler has a central section which is a broad waveguide. It is a 

multimodal device, and allows multiple access waveguides. 

A Y-junction is a typical beam splitter, featuring a straight waveguide 

and tapering portion followed by two branches. Here the aperture angle θ 

should be sufficiently small to make an adiabatic Y-junction with no splitting 

loss. A standard Y-junction usually has a large loss. Fukazawa et al. improved 

the design, and demonstrated an experiment result with a low excess loss of 

0.3 dB. [30] However, this design requires very high lithographic resolution, 

so it is not achievable with most fabrication processes and conditions. 

1.2.3 Resonators 

Optical resonators are another important component in photonic structures. A 

photonic resonant structure is a particular material configuration of space in 
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which specific photonic resonances can be formed. It provides accurate 

control over photons in the temporal/spectral and spatial domains, or in other 

words, it provides the ability to harness the light. High index contrast 

structures can help to achieve strong photon confinement. The material from 

which they are made can be a dielectric or metal (plasmonics).  

In dielectric materials, there are two strategies for photon confinement: 

refraction [31, 32] which makes use of total internal reflection; and diffraction 

[33, 34] where photonic crystals are used. Silicon is an ideal photonic material 

for confining resonant structures, since it is an excellent photonic conductor, 

and the silicon-on-insulator (SOI) high refractive index contrast provides an 

excellent combination of materials. Micro-disk and micro-ring resonators are 

two main typical resonators which use refraction effects, while photonic 

crystals use diffraction effects. Compared to micro-disks or micro-rings, 

photonic crystals usually have a lower Q factor, which means a worse spectral 

confinement of light, but they have a much smaller volume, which means that 

they allow denser integration. Hence photonic crystals are becoming more 

popular and have already entered the realm of practical devices. 

1.3 Fabrication of Si photonic devices 

Since the Si photonic devices are so important, many research scientists and 

engineers are working hard on processes to fabricate them in a variety of ways.   

Waveguides are the most fundamental and simple devices, which is 

why some of the early experimental fabrication processes and studies were 

based on fabricating waveguides. Silicon waveguides were first reported by 

Soref and Lorenzo in 1985 and 1986.[19, 20] They used plasma-etching of an 

intrinsic epitaxially grown Si layer on a heavily doped Si substrate. They 

fabricated rib and ridge waveguides with losses reported as 15 dB/cm. They 

further developed this kind of waveguide on different platforms: Si-on-Al2O3 

[35] and SOI [36] platforms. However, the loss still remained relatively high, 

which is a drawback in photonic devices. 

SOI technology uses a layered silicon-insulator-silicon substrate other 

than conventional silicon substrates in semiconductor manufacturing. The 
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insulator layer could be silicon dioxide or sapphire, depending largely on 

intended application. Sapphire used is mainly for high performance radio 

frequency and radiation-sensitive applications. In photonics, researchers 

mainly use SiO2-base SOI wafers. This kind of SOI wafer can be produced via 

Separation by Implantation of Oxygen (SIMOX),[37, 38] wafer bonding [39, 

40], or seed methods[41].  

 

Fig 1. 2 SIMOX process, (a) oxygen implantation, (b) a rich oxygen layer 
formed, (c) high temperature annealing, (d) SOI wafer formed.  

 

Two most popular ways are SIMOX and Smart Cut method (wafer 

bonding). SIMOX uses an oxygen ion beam implantation process followed by 

high temperature annealing to create the buried insulator layer. The process is 

shown in Fig 1.2, oxygen implantation is to form a rich oxygen layer at the 

end range of the ions. Then high temperature is applied to anneal the sample 

and to form a buried silicon dioxide layer in the wafer. This process is quite 

simple, but it is difficult to accurately control the buried oxide layer because of 

the uncertainty of the ion distributions in the wafer during oxygen 

implantation. The Smart Cut method is a prominent example of the wafer 

bonding process. It was developed by the French firm Soitec, using ion 

implantation followed by controlled exfoliation to determine the thickness of 
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the device layer. The schematic of the process is shown in Fig 1.3. It is a little 

more complicated than SIMOX, but it can achieve smooth surface and 

interfaces and accurate control over the thicknesses of device layer and oxide 

layer via polishing and thermal oxidation. 

 

Fig 1. 3 A simplified schematic of Smart Cut process, (a) surface thermal 
oxidation, (b) H implantation, (c) flip and bond to handle wafer, (d) bubble 
formation, (e) break, (f) polishing.  

 

SOI wafers were found to be an excellent platform for Si photonics, 

with work ongoing to the present day to fabricate low loss waveguides and 

other components on SOI platforms. Pafchek et al.[42] reported a propagation 

loss of 0.36 dB/cm for TE and 0.94 dB/cm for TM polarization in 2009. In 

their experiment, the waveguides were formed using thermal oxidation on a 

SOI platform.  In the same year, Cardenas et al.[43] demonstrated silicon 
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waveguides with an even lower loss of 0.3 dB/cm, which were defined by 

selective oxidation. An even lower loss of 0.1 dB/cm for TE polarization was 

reported by Gardes et al. in 2008.[44] All these studies demonstrated that low-

loss silicon waveguides could be achieved, however, the processes used are 

not widely applied in the fabrication of photonic devices since they are 

complicated. 

The use of SOI platform provides a major breakthrough in the 

development of silicon photonics. At present, the most commonly-used 

process is dry or wet etching following a lithography process on a SOI wafer. 

[22, 24, 31, 32] This process is quite simple and direct and many good results 

have been achieved. However, SOI wafers are very costly compared to bulk Si 

wafers and their use only provides a means to fabricate 2D structures. To 

fabricate 3D structures in SOI, additional processes such as wafer bonding, 

CVD or epitaxial growth, would be necessary which would make the 

fabrication complicated and expensive. Therefore a cheap, simple fabrication 

process which is capable of making both 2D and 3D photonic structures is 

highly desirable in the drive for densely integrated devices.  

1.4 Objectives 

As discussed above, there are excellent existing processes to fabricate 2D 

photonic structures. Although they can achieve very good results, they are 

mainly based on SOI wafers which are expensive. Furthermore, to fabricate 

3D photonic structures, some additional processes are necessary which make 

the fabrication process complicated, time-consuming and material-consuming. 

This thesis presents a possible solution to these limitations using a 

silicon micromachining process which uses ion beam irradiation followed by 

electrochemical anodization (refer to 2.2). As this silicon machining process is 

still being developed, several important aspects need to be further investigated, 

so the objectives of this thesis are to: 

• Further develop this Si machining process in two particular aspects, 

which are to investigate the etching rates after irradiation by different 
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ion energies with different fluences, and study the conditions under 

which high resolution structures can be fabricated.  

• Apply this machining process to fabricate some 2D photonic structures, 

especially for microdisk and microring resonators, isolated and 

coupled with waveguides, also Y-shape splitters, and optically 

characterize them.  

• Further apply this machining process to achieve 3D photonic structures 

such as 3D beam splitters on bulk silicon wafers, vertically-coupled 

waveguides and waveguide-resonators on a SOI platform. Suitable 

simulations and device characterization.  

 

The results of this study are aimed at improving our understanding of, and 

extending the capability of our silicon machining process via ion beam 

irradiation. It may also provide an alternative and cheaper way of fabricating 

2D Si photonic devices. Moreover, it may help to achieve an easier and 

cheaper way to fabricate 3D Si photonic structures.  

Si photonics is now well developed and many studies of different 

aspects are being carried out. However, this thesis does not cover the range all 

of the studies, instead it mainly focuses on demonstrating a way of fabricating 

2D and 3D photonic structures with some important components in Si 

photonics as examples. The main discussion is focused on the fabrication 

processes, along with some simulation and characterization studies to show 

how the fabricated devices work. 

In the next chapter, relevant background information on various topics 

will be presented for better understanding of the experimental work which will 

be discussed in later chapters. 
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Chapter 2 

Background 

This chapter provides relevant background information on various topics 

essential for better understanding of the experimental work which will be 

discussed in later chapters. Firstly, the formation mechanism of porous silicon 

will be discussed, followed by the effect of ion irradiation on this process. 

Previous work on silicon micro-machining via ion beam irradiation will also 

be discussed. A short introduction of the facilities we have used during the 

experiment, mainly in CIBA, also some in IMRE are then presented.  

2.1 Introducing porous silicon 

Porous silicon (PSi) was discovered by Uhlir [45] at the Bell Laboratories in 

1956 when he was doing electropolishing experiments on silicon with an 

electrolyte containing hydrofluoric acid (HF). When the applied bias is low, 

the etching of silicon would result in a system of disordered pores with 

nanocrystals remaining in the inter-pore regions. PSi studies were further 

developed for its use on developing silicon on insulator (SOI) technologies [46, 

47], and its photoluminescence at room temperature [48, 49]. Recently, it has 

found applications in many areas like photonics [50, 51], silicon 

micromachining via sacrificial PSi [52, 53], and biosensors in biotechnology 

[54-56]. The work in this thesis revolves around silicon machining mainly for 

photonic applications as well as using PSi as a sacrificial material for the 

machining of silicon structures. 

PSi is created by electrochemical anodization in a HF solution. 

Platinum is used as the cathode as it does not react with HF. The formation of 

PSi is an electrochemical process which proceeds only in the presence of 
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electrical holes. There are 3 categories of pores according to their geometries: 

micropores (<10nm), mesopores (10-50nm) and macropores (>50nm) [57]. 

The type of pores which are formed depends mainly on the resistivity and type 

of the silicon wafers. Low resistivity silicon wafers (<0.1Ω·cm) form 

mesopores; moderate resistivity wafers (0.1-50Ω·cm) form micropores; while 

high resistivity wafers (>50Ω·cm) for macropores. HF alone is unsuitable for 

the electrochemical etching process as the silicon surface is hydrophobic. An 

ethanoic solution is used as it increases the wettability of silicon and allows 

for better surface penetration by HF, so to make the porous layer more 

structurally uniform. An ethanoic solution also acts as a surfactant and reduces 

the hydrogen bubbles created during the anodization. 

PSi is formed on bringing electrical holes to the surface. This is 

achieved differently for different doping types of the wafers. For p-type silicon 

wafers, when an electrical bias is applied, with the back surface of the wafer 

connected to the anode by electrical Ohmic contact, and a platinum grid in 

front of the sample as the cathode, an electric field in the solution causes the 

electric holes to drift to the surface of the silicon sample, enabling pore 

formation to proceed. The holes are abundantly available within the sample. 

For the n-type samples, holes are created by illuminating the sample with a 

halogen light during the anodization. The light breaks electron-holes pairs, 

allowing liberated holes to reach the wafer surface [57]. In this thesis, the 

various work and experiments use only p-type silicon wafers, since n-type 

silicon is not applicable for the ion beam irradiation induced silicon machining 

process used in this thesis. 

There have been many proposed explanations for the formation of PSi, 

however, the most commonly accepted explanation is described in Ref [57-59]. 

When the electrical circuit is connected, hydrogen atoms bind to the silicon 

atoms at the surface, and the electron holes travel to the surface due to the 

applied bias. This facilitates a nucleophile attack on silicon atoms by fluoride 

ions and releases H+ during the process. Electronegative fluorine polarizes the 

bonds by attracting electrons from the silicon atoms, and weakens the other 

silicon bonds as well. The weakened bonds are subsequently attacked by other 
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fluoride ions, until a SiF4 molecule is released into the HF solution. The SiF4 

then reacts with 2 HF molecules to form H2SiF6 which will then ionize. This 

chain of reactions then occurs to other surrounding silicon atoms, breaking 

down the silicon structure on the surface of the wafer and pores start to form. 

The overall process for formation is as follows: 

 2 6 26 2 2Si HF H SiF H H e+ −+ → + + +  

A schematic of the chemical processes during PSi formation according to this 

model is shown in Fig 2.1. 

 

Fig 2. 1 Chemical processes of PSi formation. From [57]  

 

2.2 Ion irradiation induced Si machining 

Proton and helium ion beam irradiation of silicon result in damage to the 

crystal lattice, which can be used in many different ways. Protons lose energy 

as they penetrate the silicon wafer and stop at a well-defined end-of-range 

depth. The stopping process damages the silicon crystal by producing 

additional vacancies/defects in the silicon lattice [60]. Different ion beam 

fluences (number of ions/cm2) produce different defect concentrations. Hence, 
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a localized pattern of damage can be introduced to the wafer by irradiating the 

silicon wafer with different fluences at different locations. In p-type silicon 

wafers, higher localized damage effectively means higher localized 

resistivities experienced during the followed electrochemical anodization 

process to form PSi in HF. 

 

Fig 2. 2 SRIM plots showing the defect density distribution in silicon by 
10,000 (a) 2MeV helium ions and (b) 2 MeV protons.  

 

Proton and helium beams irradiating a silicon wafer have similar effect 

in terms of their damage to the crystal structure, producing defects in the 

silicon lattice. However, there are two main differences to using the same 

energy of proton and helium beams. As shown in Fig 2.2, using the SRIM 

software [61], the difference in the number of defects generated by 10,000 

2MeV protons and 10,000 2MeV helium ions per ion per Angstrom are plotted. 

From the two plots, it can be seen that the range of the helium beam is much 

less than the proton beam at the same energy of 2 MeV. In addition, after 

integrating the total number of defects for each plot respectively, it is found 

that each helium ion generates approximately 20 times more defects than each 

proton.  

From Fig 2.2, it can also be clearly observed that the defect density 

increases significantly at the end of range for both proton and helium beams. 
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SRIM is also able to generate tables of stopping ranges for different energies 

of ions in different materials.  

The localized increased resistivity of silicon from the ion irradiation 

has two main effects on the formation of PSi: 

1. The irradiated regions with higher fluences have higher defect 

concentrations hence higher resistivities. 

2. With this increased resistivity, the hole current is reduced at irradiated 

regions during anodization causing the PSi formation rate to slow 

down compared to the unirradiated regions, producing a thinner layer 

of  PSi. 

3. When the ion fluence is large enough, the hole current is deflected 

away from these irradiated regions entirely due to the high localized 

resistivity and there is no PSi formation at these regions.   

 

Fig 2. 3 (a) Plot showing the relationship of between resistivity and the 
amount of ion irradiation for highly doped (0.02 Ω.cm) and moderately doped 
(0.1-1 Ω.cm) silicon samples. (b) I-V plot for the anodization process. With 
increased irradiation fluence, the whole I-V curve will shift to the right, 
implying that with constant bias applied, the current flowing through the 
irradiated regions is lower than the current owing through unirradiated regions. 
From [60]  

 

The resistivity of p-type silicon as a function of 2MeV helium ion 

irradiation fluence is plotted in Fig 2.3(a). Fig 2.3(b) shows current density 

versus applied bias curves for p-type silicon being anodized in a HF 
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electrolyte. The curve representing a certain fluence of ion irradiated area 

shifts to the right with respect to unirradiated regions. This means that, with a 

fixed applied bias, the local current density through the irradiated region is 

smaller as compared to unirradiated areas. For example, with a bias of ~0.1V, 

the current density is ~80 mA/cm2 through a low resistivity wafer (0.02 Ω·cm), 

while it is ~8 mA/cm2 through the irradiated region. The reduction of current 

density flowing through the irradiated regions results from the fact that 

localized resistivity has changed. Meanwhile, the pore sizes and the type of 

PSi (mesoporous, microporous or macroporous) change as well since the type 

of PSi formed depends mainly on the resistivity of the silicon wafer [57]. This 

influence on the type of PSi formed was studied in Ref [60]. 

 

Fig 2. 4 MEDICI plots of current density J across a region containing a single 
irradiated line (gray area) for different fluences. The curves are normalized to 
the same J in the background for easier comparison. From [62]  

 

Fig 2.4 shows the current density J across a region of a 3 Ω·cm wafer 

containing a line irradiated with different proton fluences[62]. At low fluences, 

J through the irradiated line remains significant, which means that PSi will 

still form at the irradiated line but at a lower rate than the unirradiated 

background. In the low-fluence range, J, and hence the physical and electronic 
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properties of the PSi in the irradiated line vary rapidly with fluence. PSi and 

silicon with a variable height of the machined features can be produced with 

accurate control over the fluence. When the fluence is high enough (1016/cm2), 

J reduces to zero across the irradiated line, so little or no PSi is expected to be 

formed. 

The effects of ion irradiation on PSi formation was described above. 

This is the fundamental principle underlying all the fabrication work presented 

in this thesis. 

2.3 Centre for ion beam applications (CIBA) 

At CIBA, energetic ions are produced by a 3.5 MV high brightness High 

Voltage Engineering Europa SingletronTM ion accelerator [63, 64]. Ions are 

created by exciting a gas with a radio frequency source. Various types of ions 

can be created from gases using this process. In this thesis, those used are 

primarily protons (H+ and H2
+) and singly-charged helium ions (He+). After 

the ions are created, they are gradually accelerated along the electric field 

gradient of the accelerator tube (Fig 2.5) to the desired energy. The energies 

used for this thesis ranges from 100 keV to 2 MeV, and for Si photonic work, 

the energies mainly ranges from 100 keV to 500 keV. 

 

Fig 2. 5 (Left) Top down schematic diagram of the ion beam setup in CIBA; 
(Right) Actual image of the facilities. (1) the accelerator, (2) 90̊ magnet, (3) 
switching magnet, (4) end-station chambers.  

 

After acceleration, the ion beam passes round a 90˚ bending magnet 

(Fig 2.5 (2)), which precisely selects the desired ion type and energy. When 
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the beam passes through a magnetic field, it will be curved at an amount 

depending on the charge and mass of the ions as well as the energy they 

possess. Fig 2.6 shows a schematic of the 90̊  magnet. A strong magnetic field 

is pointing out of the page. As the positively charged ions pass through it, a 

Lorentz force is induced. According to the left hand rule, the induced Lorentz 

force is to the left, so to curve the trajectory of the beam towards the left. For 

ions with different charges, masses and energies, the curvatures of their 

trajectories are different as they pass through a fixed magnet field. (Fig 2.6) 

There is only a small opening for the beam to exit, which means that only the 

ions curved with a certain angle can pass through this aperture. Thus to adjust 

the strength of the magnetic field, we can select exactly the desired ions with a 

certain charge, mass and energy to exit, while others are trapped.  

 

Fig 2. 6 Top down schematic of 2 MeV proton beam selection by 90˚ magnet. 

 

An additional switching magnet (Fig 2.5 (3)) then guides the beam to a 

certain beam line and then to the desired chamber where the samples are 
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located. At present, there are beam lines located at 10̊, 20˚, 30˚, 45˚ and 90˚  

with respect to the switcher magnet. (Fig 2.5). The 10˚and 20˚ beam lines are 

both designed for proton beam writing (PBW), which use a focused ion beam 

of MeV protons or helium ions to pattern a photoresist at nano to micron 

dimensions [65-73]. It is a direct-writing lithographic process, very similar to 

electron beam lithography which is using electrons to write patterns. The 30˚ 

beam line is designed for biomedical applications, such as nuclear 

microscopy[74, 75] and whole cell nano-imaging.[76, 77] The 45˚ beam line is 

designed for large area irradiation.[78] This will be further discussed in the 

later chapter. The 90˚ beam line is a high-resolution RBS facility.[79] 

 

2.3.1 PBW 

Magnetic focusing 

Proton beam writing (PBW) is performed at the 10˚ and 20˚ beam lines. The 

20˚ beam line is the new generation machine designed to improve on the 

performance of the first generation 10˚ PBW beam line. Work in this thesis 

was carried out only at the first generation PBW at 10̊ beam line. It is called 

proton beam writing though, both protons and helium ions are used. 
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Fig 2. 7 Cross-sectional schematic of a quadrupole lens. The magnetic poles 
are created electromagnetically by coils. Red arrows indicates the direction of 
current flow in the coils to result in the desired magnetic polarity at the ends.  

 

After passing through the switching magnet (Fig 2.9 (3)) and into the 

10˚ chamber, MeV protons are focused by high demagnification OM52 

magnetic quadrupole lenses from Oxford Microbeams. There are three lenses 

being utilized in the Oxford Triplet configuration [80-82]. Each quadrupole 

consists of four magnetic poles arranged in N-S-N-S configuration 

perpendicular to the ion beam (Fig 2.7). 

Each lens focuses the beam into a line, thus two or more lenses are 

required to focus the beam into a spot. Three lenses are used on the 10˚ beam 

line. The lenses then form a demagnified image of an object aperture located 

just after the 90˚ magnet. The lens system presently on the 10˚ beam line has 

an object distance of 7 m and an image distance of 70 mm which enables a 

demagnification of 228 in the horizontal and 60 in the vertical directions. A 

resolution of 50 × 50 nm2 [65] was achieved on this 10˚ beam line. Recently, 

better resolutions were achieved at 20̊  (19.0 × 29.9 nm2)[73] and 30˚ (31 × 39 

nm2)[77]. Currently, this focusing system has the best proton beam focus in 

the world. 
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Beam scanning and blanking beam scanning 

PBW is carried out by scanning pre-defined patterns over the surface of a 

sample. This is achieved using a scan amplifier, which deflects the beam in a 

fashion similar to an electron beam being deflected in a TV cathode ray 

monitor. The scan size can be set at the scan amplifier, along with the X to Y 

axis ratio of the area to scan. This allows the irradiation of simple patterns 

such as squares and rectangles. For complex patterns, the scan amplifier is 

controlled by a computer running IONSCAN [83, 84], a software package 

developed at CIBA. This software allows any scanning modification within 

the area fixed by the scan amplifier. IONSCAN reads the designed scan 

pattern in a pixel format and each pixel is treated as a point of irradiation. The 

designed scan pattern is usually designated as a bmp file. IONSCAN is able to 

control the shape of the scanned pattern and as well as the dwell time the ion 

beam spends at each location. The dwell time is a parameter which can control 

the fluence of the irradiation. To achieve a required fluence, the dwell time 

can be calculated based on the measured ion beam current during irradiation.  

IONSCAN also controls a blanking system which can deflect the beam 

away from the original beam axis. The blanking system is installed before the 

switching magnet (Fig 2.9(3)). When blanking is on, an additional bias is 

applied, so the beam is deflected away from its original direction and out of 

the chamber. It is used to blank the beam when no irradiation is needed. With 

this, more complicated patterns can be irradiated within the same area fixed by 

the scan amplifier, the beam being blanked when moving from one figure to 

another. 

 

2.3.2 Large area irradiation 

The large area irradiation work is carried out using the 45˚ beam line. It was 

developed because there are several limitations of PBW especially for 

irradiating large area patterns on silicon wafers.  
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1. The maximum scan size which may be achieved using PBW is about 

500 × 500 µm2. So to achieve large area patterned irradiations, many 

smaller scanned areas would be necessary and stitched together. This 

needs very accurate alignment, thus has extreme requirement on the 

stage. 

2. The current within the focused ion beam spot is only of the order of 

picoamperes, which is inefficient for large area irradiations. 

3. Focused ion beam irradiation requires the beam to be extremely stable. 

Because any small fluctuation of the beam energy results in beam 

current variations, this results in a non-uniform fluence at the different 

irradiated positions. This would result in rougher machined silicon 

structures[85]. 

 

Fig 2. 8 Schematic of the ion beam defocusing for large area irradiation.  

 

To overcome these limitations, the idea of using a large area irradiation 

geometry was conceived. The structures are firstly patterned on a thick 

photoresist (PR) prepared on the silicon wafer. Then a projected large area ion 

beam irradiates the whole surface of the sample to transfer the pattern from the 

PR into the silicon. The pre-patterned PR thus works as a mask for the 

irradiation. 

The 45̊  beam line forms a demagnified  image of the object aperture 

using several quadrupole lenses in the same way as the beam is focused. Fig 

2.8 shows a schematic of the defocusing of the ion beam.  
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The large area irradiation facility uses the same focusing system but 

allows a beam current up to microamperes within the chamber as the 

collimator and object apertures are wide open. For a beam divergence angle 

into the quadrupole lenses of ± 0.4 mrad, the beam convergence at the focal 

plane is ± 32 mrad (about 2˚) for a microprobe demagnificati on of 80. The 

wafer is positioned at a distance of 50 cm after the focal plane with an 

extension pipe. At such a distance, the beam is able to be divergent to 

distribute uniformly over an area of more than 30 × 30 mm2, which is 

sufficient for most of the large area irradiation applications. If necessary, only 

a longer extension pipe is needed to obtain a even larger area. 

A fluorescent screen is placed at the end of the extension pipe, with 

which we can view the beam to check its uniformity and location and to 

measure its area. Samples are mounted on a movable ladder and irradiation is 

carried out by moving the sample into the path of the beam in the extension 

pipe. The shadows of the samples on the fluorescent screen is often used to 

check if the sample is aligned at the right position so that it is fully or partially 

irradiated. We can adjust the quadrupole lens strengths to change the area of 

the beam. 
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Chapter 3 

High and Low Energy Ion Irradiation Effects on 

Etching 

This chapter introduces the equipment and setups used for the electrochemical 

anodization process as well as some important parameters for characterizing 

the anodization. Different anodization behavior after irradiation by high and 

low energy ion beams are then presented and discussed. 

3.1 Anodization setups 

 

Fig 3. 1 Schematic of etching setup. 
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The electrochemical anodization setup includes a power supply, insulated 

electrical wires, a platinum grid, the prepared silicon sample, hydrofluoric acid 

(HF) solution and a Teflon beaker, as shown in Fig 3.1. The power supply is 

used to supply either a constant voltage or current. To keep a constant etch 

rate during anodization, we mainly used a constant current in this study. The 

silicon sample and platinum grid work as the two electrodes. Platinum is used 

because it does not react with HF during the anodization. As HF is highly 

aggressive to metals and glass, a Teflon beaker is used to carry out the 

anodization.  

A piece of copper wire is used to conduct the electrical current to the 

sample. The sample is first dipped into diluted HF acid (2%) for 5-10 minutes 

and then rinsed in ethanol to remove native oxide at the back surface to 

improve the Ohmic contact between the sample and the copper wire. Gallium-

Indium eutectic paint is applied uniformly at the back surface of the sample to 

create the Ohmic contact between the wire and the sample. This conductive 

paint enables the wire to stick to the sample as well as promote uniform 

current flow the between the wafer and the wire. Epoxy is then applied over 

the wire and the eutectic paint for protection against HF during anodization. 

When the epoxy dries, the sample is fixed and anodization may be carried out. 

Fig 3.2 shows a prepared sample. 

 

Fig 3. 2 Prepared silicon sample for anodization. 
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Typically, a 12.5 % or 24.5 % concentration HF electrolyte is used. 

Usually, 25 mL of HF (49%, Fisher Chemicals), 25 mL  of distilled water, and 

50 mL of ethanol are mixed to obtain 100 mL of HF electrolyte of a 12.5% 

concentration. 24.5% concentration can be obtained by mixing half HF (49%, 

Fisher Chemicals) and half ethanol. The two electrodes are connected to a 

power supply and immersed into the electrolyte, Fig 3.1. The power supply 

used here is a programmable power supply (Model: Keithley 224 

programmable current source) controlled by Labview software. This is 

particularly useful when it comes to the fabrication of multilayered structures 

in PSi as one need not manually tune the current density. 

The platinum electrode is connected to the negative bias, and the 

sample to the positive. The two electrodes are oriented so that they are parallel 

to, and facing each other at a separation distance of ~1 cm. When there is no 

bias applied, the etching of silicon is negligible. Only when a bias is applied, 

the sample is anodized. The current and time of anodization depend on the 

experimental requirements.  When the bias is applied, the anodization process 

begins and H2 bubbles may be observed at the surface of the sample. 

Immediately after anodization, the sample is taken out of the HF solution and 

rinsed thoroughly with ethanol.  

3.2 PSi formation rate 

To fabricate any structure using this process, it is very important to know the 

PSi formation rate, so to be able to control the specific thickness of the PSi 

layer which is formed. The PSi formation rate is mainly determined by the 

applied current density, the resistivity type of the silicon wafer and the 

concentration of the HF used during the anodization. 

For commonly-used p-type silicon wafers, there are three important 

different regimes of resistivity: 0.02Ω·cm, 0.1-1Ω·cm and 1-10Ω·cm. For 

convenience of distinguishing them in this work, we usually define them as 

low, medium and high resistivity respectively. Different resistivities of silicon 

wafers are used for different purposes. Low resistivity wafers are able to 
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provide fine structures.[86] However, the light transmission loss through it is 

high, arising from the heavy doping. High resistivity wafers are lightly doped, 

and too sensitive to ion irradiation, which results in a bad structure resolution 

during fabrication. For photonic structures, normally medium resistivity 

wafers are preferred [85, 87] since light transmission loss is not high and good 

resolution can be achieved during electrochemical etching after irradiation.  

Wafers were anodized at different current densities J  mA/cm2 for 

time t  and then cleaved for analysis. The cross sections of the samples were 

imaged and the cross sectional thickness d of the porous layer measured by 

SEM. The PSi formation rate is then obtained by dividing d  by t . For 

medium resistivity wafers in 12.5% HF with a current density of 60 mA/cm2, 

the PSi formation rate is ~2.6 µm/min. We also measured the PSi formation 

rate in 24% HF at current densities of 60 mA/cm2, and 40 mA/cm2. The result 

showed a ~2.4 µm/min rate at 60 mA/cm2, and a ~1.9 µm/min rate at 40 

mA/cm2.  

 

3.3 Effect of high energy ion beam irradiation 

 

As discussed in Chapter 2.2, ion beam irradiation creates defects in silicon, so 

changing the electronic properties of the irradiated regions. Thus it also 

changes the etching behavior during electrochemical anodization afterwards. 

Generally, high-fluence, high energy ion beam irradiation decreases the 

etching rate or fully stop the etching with a high enough fluence. 

Selected areas of medium and low resistivity wafers were irradiated 

with different fluences and anodized to a certain depth greater than the ion 

range. The PSi was then removed with KOH, revealing steps of various 

heights.  As shown in Fig 3.3, areas irradiated with different fluences are 

etched to different depths. The low fluence irradiated areas (1×1014/cm2) were 

also etched, but with a reduced etching rate, which makes the area partially 
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etched, while the high fluence (1×1016/cm2) irradiated area remains almost 

unetched. 

According to SRIM, the defects are not uniformly distributed along the 

trajectory, Fig 3.4. This makes the longitudinal resistivity of the defect region 

not uniform, and thus the etching rate not constant. So we did not define and 

measure etching rate for defect region. Instead, we etched the sample to a 

depth much more than that of the whole defect region, and see how much of 

the defect region is etched. For example, as shown in Fig 3.3, we etched the 

sample to a depth of ~4 times of the defect region depth. Then we can measure 

the etched depth at the defect regions, h as shown in Fig 3.3 (d), and calculate 

the etched percentage of the whole defect region as 100%h
H
× . 

 

 

Fig 3. 3 Cross-section images of irradiated areas (1 MeV protons on medium 
resistivity wafer) with 6 different fluences (1×1016/cm2 to 5×1013/cm2 as 
marked) in (a-f). (d) the white dotted line is the original surface of the wafer, h 
is the etched height of the irradiated areas, H is the height of the whole defect 
region. 

 



Chapter 3 High and Low Energy Ion Irradiation Effects on Etching 

30 
 

 

Fig 3. 4 Defect distribution created by 1MeV protons.  

 

 

Fig 3. 5 Etched percentage at the defect regions of low resistivity wafers 
irradiated by different energy protons (1, 1.5, 2 MeV) with different fluences.  

 

We tried three different energies of proton beams irradiating medium 

and low resistivity wafers. For low resistivity wafers, three different proton 

energies (1, 1.5, 2 MeV)  were used to irradiate each of them with 6 different 
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fluences at 6 discrete areas.  After etching and measuring the etching depth 

from the cross sections, we obtained a plot shown in Fig 3.5. According to the 

plot, lower energy ion beam reduces the etching more significantly. For 

example, in the plot, we see that for the same fluence of 5×1015/cm2, at 2MeV 

proton irradiated areas, 21% of the defect region was etched, and 14% for 

1.5MeV protons. For 1MeV protons, with the same fluence of 5×1015/cm2, 

only 2% was etched. To explain this, we  refer to Fig 3.4. We can see that 

along the longitudinal distribution of the defects along the ion trajectory, there 

is a high defect density peak at the end of range. Lower energy ion beam 

penetrated shallower in the material, thus the defect density peak at the end of 

range comes closer to the surface, and defects become more concentrated also 

owing to the lower depth straggling.   

 
Fig 3. 6 Etched percentage at the defect regions of low and medium resistivity 
wafers irradiated by 1.5 MeV protons with different fluences.  

 

Fig 3.6 shows the etched percentage of 1.5 MeV proton irradiation on 

low and medium resistivity silicon wafers. From the plot, we observe that the 

etched percentage is reduced rapidly with irradiation fluence from 0- to 

1×1015/cm2 on medium resistivity wafers, from 100% to 4%. At a fluence of 
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1×1015/cm2, only a very small amount 4% was etched, which means that 

anodization is almost stopped by irradiation with that fluence. While for low 

resistivity wafers, there is still significant etching, ~50%, at a fluence of 

1×1015/cm2, and the value reduces much slower than for medium resistivity 

wafers. Thus it is easier to control the etching behavior with different fluences 

of ion beams on low resistivity wafers, and so to fabricate structures with fine-

scale differences in feature height on it. 

 

3.4 Effect of low energy ion beam irradiation.  

 

Fig 3. 7 SRIM simulations of defect distributions created by (a) high energy 2 
MeV protons, with a long trajectory (>50 µm), low density from the surface, 
high defect at the end of range, and (b) low energy 50 keV protons, only 
distributed within a shallow depth close to the surface. 
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A high energy ion beam can penetrate deep into the material and form a deep 

defect region with a high defect density peak at the end of range, Fig 3.7 (a). 

When the energy of the ion beam reduces, the penetration depth decreases, till 

~100 keV or even less, the significant density peak at the end of range 

disappears, Fig 3.7 (b), though there is still a small Bragg peak. We call such 

ion beam without a significant defect density peak at the end of range as low 

energy ion beam. 

While a reduced etching rate occurs after irradiation by high energy 

ion beams, a totally different etching behavior is observed after irradiation by 

low energy ion beams. For example, as shown in Fig 3.8(a), when the 

irradiation fluence is not high enough, and the wafer is etched deeply, the 

irradiation volume is first undercut at its outer edges, as occurs for higher 

energies, but after a certain depth, it is more likely that etching will proceed 

through the central part of the irradiated disk. The disk area was irradiated by 

100keV protons with a fluence of 1×1016/cm2, and the wafer was etched in 24% 

HF with a current density of 60mA/cm2 for 11min to an etching depth of 

~26µm. We observe that it exhibits a normal undercut etching behavior from 

the edge towards the center of the disk till a distance of ~20µm. After that, the 

current passes through the central part of the irradiated disk area, leading to 

this region being very pitted and rough. 
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Fig 3. 8 Etching behavior after irradiation by 100 keV protons on a medium 
resistivity wafer: (a) showing a undercut lateral limit of ~20µm at fluence of 
1×1016/cm2, the central part of the disk is partially etched through; (b) normal 
undercutting at fluence of 2×1016/cm2, (c) the central part is totally etched 
through, and the disk is lift off, at fluence of 2×1015/cm2. 

 

When the wafer is irradiated by a low energy ion beam, the defect 

region is very thin as the penetration depth of the beam into the silicon is very 

shallow. During electrochemical etching, PSi formation soon reaches the end 

of range depth and starts undercutting the irradiation region. Undercutting 
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means that most of the current flow is deflected to the edge of the irradiated 

area. 

 

 

Fig 3. 9 Cross sectional SEM image showing the undercutting limit and 
etching through the irradiated region, a wide line irradiated with 1×1014/cm2 
100 keV H2

+, which has a undercutting limit of ~10 µm.  

 

 

This is because the defect region has a much higher resistivity than the 

surrounding unirradiated area, causing the hole current to preferentially be 

deflected around the bottom surface, rather than the direct short path to the 

surface through the defect region. However, there is still some current flowing 

through the defect region, as it accumulates to some point, macroporous 

silicon is formed at that region. Once macroporous silicon is formed, there are 

holes through the whole defect region since it is so thin that its thickness is the 

same dimension as the pore size, and the hole current can pass through them 

freely, rather than being deflected away. 

The SEM image in Fig 3.9 provides proof for this assumption. A 30 

µm wide line was irradiated with 100 keV H2
+ ions to a fluence of 1×1014 
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ions/cm2. It was then etched to a depth of ~13 µm. From the cross-section 

shown in the figure, we see that, while the two sides of the line are normally 

undercut, the central part is etched through because macroporous silicon is 

formed. Once macroporous silicon is formed, and there are free path ways for 

the hole current, the region beneath the irradiated layer also starts to form 

porous silicon, Fig 3.9.   

3.5 Difference between high and low energy ion beam 

irradiation 

According to the above description, the etching behavior is different between 

high and low energy ion beam irradiation. High energy ion beams induce a 

decreased etching rate at the irradiated regions. The decreased rate depends on 

the ion energy and irradiation fluence. Low energy ion beam irradiations do 

not have such a clear effect, rather they induce an undercutting effect rather 

than a decreased etching rate.  

 To explain this phenomenon, we can firstly refer to Fig 3.7. It shows 

the defect distributions in silicon created by 2 MeV and 50 keV protons. A 2 

MeV proton beam has a 50 µm penetration depth and creates defects along the 

trajectory, Fig 3.7(a). The depth distribution extends over a long distance from 

the silicon surface to the end of range. Most defects are created at the end of 

range, shown as the peak in Fig 3.7(a); above this end-of-range region the 

defect production rate is about one tenth of the peak value. Defects result in 

increased resistivity of the irradiated region. So long as the fluence is not high 

enough to fully stop the etching, it results in a decreased etching rate arising 

from an increased resistivity. Since the defect distribution created by a high 

energy ion beam extends over large depth and has gradual distribution, the 

decrease of the etching rate is a gradual effect. 
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The defects created by a low energy (50 keV) proton beam are 

confined to within only a ~500 nm region close to the surface. Any gradual 

change in etch rate is too difficult to observe within such a small depth, so the 

observed overall effect is that the irradiated region remains intact at a high 

fluence, leading to undercutting, or is etched through at a low fluence.  

 

Fig 3. 10 A schematic showing the etching behavior of (a) High energy ion 
irradiation, a gradual process with the irradiated layer partially etched from the 
top; and (b) Low energy ion irradiation, an abrupt process with some etching 
through points at the irradiated area. The red arrow shows the current flow.  

 

Fig 3.10 shows a schematic of the different etching behaviors of silicon 

after high and low energy ion irradiations. High energy ions penetrate deep 

into silicon, and form a thick defect layer with a high density peak at the end 

of range and much lower density distributed near the surface. During 

electrochemical etching, while most of the hole current goes through 

unirradiated areas, there is also some that goes through the irradiated, though 

much less than unirradiated areas, and porous silicon will also form from the 

surface of that region but with a much lower formation rate. It is a continuous 

and gradual process. Different from this, low energy ions form a very thin 

defect layer (~1 µm or less) without any significant longitudinal distribution. 

After irradiation, as the electrochemical etching goes, porous silicon formation 

will soon reach the end of defect region and start to undercut. Same as the high 

energy ion irradiation case, while most of the current goes through or being 
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deflected to the unirradiated areas, there is also some current which goes 

through the defect region. At the beginning, there may also be a very thin layer 

at that region which becomes normal porous silicon, which is so thin that it 

can hardly be observed. As the etching process continues, at some point, 

macroporous silicon is formed in that region with some big pores on the 

surface, Fig 3.8 (a), which are through the whole defect region from the 

unirradiated substrate under the defect region to the surface. Then there are 

many free path ways for the hole current through the defect region. So 

undercutting process stops, and porous silicon starts to form directly under the 

defect region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 4  

Optical Micro-resonators 

This chapter mainly describes the fabrication of optical microdisk resonators 

using our micromachining process, and their integration with waveguides.  

4.1 Introduction to optical microresonators 

Optical microresonators (or microcavities) can confine light at resonant 

frequencies by light circulation within micro-sized dielectric volumes to 

enable storage of optical power and are important in a wide range of fields [88, 

89]including photonics[90, 91], cavity quantum electrodynamics[92, 

93],nonlinear optics[94-96], and biosensing[97, 98]. For example, they control 

laser emission spectra to enable long-distance transmission, or ensure narrow 

spot-size laser read/write beams in CD and DVD players. 

 An ideal resonator would confine light without loss and resonate at 

precise frequencies. In practice, a quality factor Q  is used to describe the 

performance of a resonator.  

 Q λωτ
δλ

= =  

Q  expresses the life time τ  of the resonance normalized to the period of 

oscillation 2T π
ω

= . It also describes the spectral confinement δλ  of the 

resonance at an operating wavelength λ .  

The lifetime τ  is the time interval of a coherent resonance oscillation 

confined within the volume of the resonator. In experiments, this can be 

measured by repeatedly scanning a laser into resonance with a critically 
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coupled mode until the power transfer increases to maximal ‘charging’ of the 

resonator, then gating off the laser input and observing the resonance 

ringdown. [88] The spectral confinement δλ  is the bandwidth, and could be 

directly obtained from the transmission spectrum. 

Another property of the resonators is the merit factor F. 

 
3

F
TV
τλ

=  

F  quantifies the confinement strength of the photonic resonance in the 

spectral and spatial domains. V is the volume of the resonator, or real space 

extension of the resonance. Optical microresonators are meant to control 

photons within the most confined space V (/ 3λ ) for the longest duration τ (/

T ). 

 According to the type of confinement method and their geometries, 

microresonators can be divided into several types: Fabry-Perot (micropost 

resonators)[99], whispering gallery (spheres, microrings, microdisks)[88] and 

photonic crystals[100]. Among these, microdisks and microrings are usually 

easy to fabricate and have high Q  factors. So in this chapter, we mainly focus 

on the fabrication of microdisks, and also some of microrings. 

 Up to 2003, many researchers were working on the fabrication of high 

and ultrahigh Q  microdisk resonators.[88, 89] Microdisks were fabricated on 

the wafer, then optical fiber was used to couple with them and measure the 

resonances. Ultra high Q  values, as high as 108, were achieved by silica 

microdisks using dry etching followed by a selective reflow process. In 2006, 

Xu at al. [101]combined an unusual effect that occurs when two laser beams 

interact within an optical material, which is called electromagnetically induced 

transparency (EIT), and novel techniques of fabrication of microresonators, to 

demonstrate an on-chip, all-optical analogue of EIT based on the response of 

coupled optical microresonators. The result offered prospects of smaller, more 

efficient photonic devices for the manipulation and transmission of light. In 

2009-2010, studies of optomechanical device actuation through the optical 



Chapter 4 Optical Micro-resonators 

41 
 

gradient force were carried out using microdisk or microring resonators. [102-

105] Till now, there are still many studies and applications based on microdisk 

and microring resonators. [106-109] 

 In actual use of a microresonator, there should be a waveguide coupled 

with it. According to the time-domain coupling theory, the optical transfer 

function of the waveguide is formulated by  

 0
( )

0

2 ( ) ( )
2 ( ) ( )

R

R

j tF
j tω

ω ω γ κ
ω ω γ κ
− + −

=
− + +

 

Rt is the round-trip propagation time, 0ω is the resonant frequency, γ is the 

round-trip resonator propagation loss, κ is the power coupling ratio between 

the waveguide and the resonator. γ is approximately equal to 2 Rπ α , where 

R is the radius and α is the propagation loss, which primarily results from 

optical absorption and radiation in the material. κ is strongly dependent on the 

gap spacing. 

 At the resonant frequency, 0ω ω= , the optical transmission intensity is 

2
2

0 0( ) ( )T F γ κω ω
γ κ

 −
= =  + 

. When κ γ< , the system is under-coupled; when 

κ γ> , it is over-coupled. The critical coupling situation occurs where κ γ= . 

4.2 Fabrication of microdisk resonators 

The fabrication of microdisk resonators via ion beam irradiation and 

electrochemical etching on bulk silicon is simple and straight forward. We can 

directly use proton beam writing to write the disk pattern on the silicon wafer 

and then electrochemically etch it in HF solution to obtain the structure. For 

mass production, it is better to use UV lithography to make a photoresist 

pattern on the wafer, and then use large area ion irradiation to transfer the 

pattern from the photoresist into the silicon surface. The etching step is the 

same, directly using a current density of 60 mA/cm2 for a certain time to form 

a layer of PSi, then removing the PSi layer in a diluted KOH solution (<10%). 

The etching time depends on the diameter of the microdisk. A bigger diameter 
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means the disk could be undercut more, so a longer etching time should be 

applied.  

 

Fig 4. 1 SEM images of the microdisk fabricated via ion irradiation for the 
first time, (a) a tilted overview, (b) side view. 
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 Fig 4.1 shows a microdisk fabricated using ion beam irradiation on 

bulk silicon for the first time. The diameter was ~20 µm. It was irradiated by 

400 keV protons with a fluence of 1×1014 ions/cm2 on a medium resistivity 

wafer. After proton beam irradiation and removing the photoresist, the wafer 

was etched in 12% HF solution with a current density of 60 mA/cm2 for ~8 

minutes to form a layer of PSi with a thickness of ~10 µm. Finally the PSi 

layer was removed by putting the sample into a diluted KOH solution. 

According to SRIM, 400 keV protons have a projected range of ~4.5 µm. 

However, the disk only had a thickness of ~3 µm in this case. That is because 

the fluence of 1×1014 ions/cm2 was not high enough to fully stop the etching, 

the irradiated disk region was also partially anodized during the etching step. 

We can see from the figure that the surface and edge roughness was quite high, 

also arising from the low irradiation fluence. The 3 µm thickness of the 

microdisk is too large to obtain a single mode resonance within it. Thus a 

lower energy ion beam with a higher fluence was required to make a thinner 

and smoother microdisk. 

 

Fig 4. 2 SEM images of the microdisk fabricated by lower energy ion beam 
and higher irradiation fluence.  
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 According to the problems identified during the above fabrication, we 

then used a 50 keV proton beam for the irradiation, and the irradiation fluence 

was increased to 1-2×1016 ions/cm2. Fig 4.2 shows the result. The disk in the 

figure has a diameter of ~100 µm and a thickness of ~0.5 µm. 

 

Fig 4. 3 Microdisk smoothened after thermal oxidation and annealing.  

 

 Before characterization, the microdisk was annealed at high 

temperature to remove the defects created by the ion irradiation. The sample 

was annealed in a high temperature tube in air at 1000 ˚C for 5-10 hours. 

During thermal annealing, the structures were also oxidized because of the 

high temperature. The outside oxide layer could be removed by putting the 

sample into HF solution. The sample was also smoothened by the thermal 

oxidation, Fig 4.3.  
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Fig 4. 4 Schematic of the measurement setup, the tapered optical fiber is 
positioned on two stages S1 and S2, the sample is also on a stage S3. The 
stages can move freely with a 20-nm-resolution, so to tune the coupling 
between the fiber and the disks.  

 

To characterize such microdisk resonators, a tunable laser in the 

infrared range, with a wavelength around 1550 nm, was used as the incident 

light. Fig 4.4 shows a schematic of the optical setup. A tapered optical fiber 

was used to couple the light from the laser into the microdisk and then back to 

the detector. The fiber and sample were positioned on 20-nm-resolution stages 

and could be moved freely to couple the fiber to each of the microdisk 

resonators. We were able to find different coupling conditions by fine tuning 

the fiber position. An infrared camera on top of the sample was used to 

monitor the light coupling.  

 

Fig 4. 5 Top view image of the light coupling, (a) under coupling, (b) critical 
coupling.  
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Fig 4.5 shows top view images of the light coupling between the fiber 

and the microdisk. When the light was coupled into the microdisk, we can see 

the light transmission around the microdisk, Fig 4.5(a). In this coupling 

situation, most light still stays in the fiber. At critical coupling however, most 

light is coupled into the microdisk, and circulates within it at resonance, Fig 

4.5(b).  

At a critical coupling situation, we obtained the transmission spectrum 

of the silicon microdisk resonator through the free space output of the fiber, as 

shown in Fig 4.6. The measured free spectral range (FSR) was about 7 nm, the 

highest Q value was about 1,017 at the third resonance with resonant 

wavelength at 1545.65 nm, and the merit factor F was 4.7. This result is not 

good as a Q value of only 103 is quite low compared to the mentioned ultra 

high Q value 108.[88] However, it was the first time that a silicon microdisk 

resonator was fabricated on bulk silicon wafer with a single etching step. The 

low Q value was probably because of the roughness of the disk edges which 

could be reduced by further lithography optimization and higher ion 

irradiation fluence. 

 

Fig 4. 6 Transmission spectrum of the silicon microdisk.  
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4.3 Integrated waveguide-resonators 

To fabricate integrated waveguide-and-resonators, a critical aspect is the 

coupling between them. According to simulations, efficient coupling requires 

the gap between the waveguide and microdisk resonator to be ~100 nm for 

silicon devices. Achieving such small gap is a major difficulty in the 

fabrication process. 

4.3.1 Achieving small gap 

 

Fig 4. 7 Left: SEM images of proton irradiated lines in a 3 Ω·cm wafer, all 5 
µm wide, separated by gaps of (a) 10 µm, (b) 5 µm, (c) 2.5 µm, and (d) 1.5 
µm. Fluence of 1015/cm2, etched at J =100 mA/cm2 for 5 min, then PSi 
removed; and right: Schematic of the E-field lines around two irradiated lines 
with decreasing gap size. Note the behavior of the dotted E-field line, which 
moves from inside to outside the gap with decreasing gap size. From [110]  

 

In previous studies, it was found that when the gap between two lines was 

small, it was not possible to fully etch away the silicon.[110] In Fig. 4.7, the 

irradiated lines are 5 µm wide and the gaps range from 10 µm to 1.5 µm. The 

irradiation was done using 2 MeV protons. The large gaps, 10 µm and 5µm, 

are fully etched, Fig. 4.7(a,b), but the small gaps, 2.5 µm and 1.5 µm, could 

not be fully etched, Fig. 4.7(c,d). Hence it is difficult to achieve sub-micron 

gaps. A schematic explanation using the E-field lines is shown in Fig 4.7 



Chapter 4 Optical Micro-resonators 

48 
 

(e,f,g). When the gap is big, the E-field lines could easily go through it. As the 

gap decreases, some of the E-field lines are deflected, and go outside, rather 

than going though the gap. 

 To avoid the deflection of the E-field lines, we tried to use a large area 

irradiation to cover all the surrounding area to prevent the deflection of current, 

so to force the current to pass through the gaps. Fig 4.8 shows the schematic of 

this ‘forced current’ method.  

 

Fig 4. 8 Schematic of the forced current approach to achieving high resolution 
structures, the black areas are irradiated defect regions, the light blue lines are 
the E-field lines.  

 

As the surrounding area is overall irradiated, the E-field lines have no other 

ways to go, but only through the gaps of the irradiated lines.  

 The supposed fabrication process is schematically shown in Fig 4.9. 

First, a thick layer (80-160 µm thickness) of SU8 2025 was spin coated on the 

silicon sample. UV lithography was used to make a square pattern in the 

center, Fig 4.9(a). The square SU8 pattern stopped the ion beam passing into 

the silicon at the covered area during large area irradiation, Fig 4.9(b). After 

that, a thin layer of gold was sputtered on the sample, and then the SU8 was 

removed in Nano-Stripper. The gold layer was used as an alignment mark to 

find the square area during subsequent proton beam writing. Proton beam 

writing should write enough lines to cover the whole square area. After proton 

beam writing for the fine lines with small gaps, the sample was 
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electrochemically etched in HF. Finally, the porous silicon was removed in 

KOH, and the sample annealed in a high temperature tube. 

 

Fig 4. 9 Schematic of the forced current fabrication process, (a) UV 
lithography for a small area covered with photoresist (PR), (b) large area 
irradiation, (c) surrounding defect region formed, (d) proton beam writing to 
write the fine lines with small gaps, (e) final etching and annealing step.  

 

 The results, however, were not as predicted, Fig 4.10. The large area 

irradiation was carried out with 1 MeV protons, and the fluence was 1×1016 

protons/cm2. In the 300 µm × 300 µm square, the irradiated lines were with 

0.5 µm line width, and the gaps varied from 1 µm to 2 µm. The proton beam 

writing in the square was carried out with 500 keV protons, and the fluence 

was 1×1015 protons/cm2. However, after etching, the gaps were not fully 

etched.  This result suggests that, other than the deflection of the E-field lines, 

there may be some other effect which makes the small gaps unresolvable. 
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Fig 4. 10 SEMs of the forced current result, surrounding large area: 1×1016 
protons/cm2,1 MeV protons, square area: 1×1015 protons/cm2, 500 keV 
protons, proton beam writing with 0.5 µm line width and 1 µm and 2 µm gaps, 
(a) overview, (b,c,d) fine views. 

 

 We then tried to partially force the current to flow using a modification 

of this process. Following the same process, during the proton beam writing 

for the fine lines, we did not write over the whole square area, but only 

covered a smaller area in the square. In this case, the E-field lines were forced 

within the square area, Fig 4.11(a). However, the lines did not cover the 

overall square area, the current was not fully forced through the gaps between 

the lines, so we called it partially forced current.  

The result is shown in Fig 4.11. In Fig 4.11(b), we can see the square 

area and the fine lines in it. The line width and gaps were the same as 

described above. Fig 4.11(d) are the same lines with those in (b), but without 

any force current. Without force current, all the lines were joined together, 
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only some shallow trace of the 2 µm gaps could be seen from the sidewalls. 

With a forced current approach, 2 µm gaps were fully etched, but 1 µm ones 

were still not.  

 

 

Fig 4. 11 Schematic and SEM  results of (a,b) the partially force current, (c,d) 
lines without force current. 

 

 

 The forced current method should have prevented the deflection of E-

field lines, but sub-micron gaps were still not achieved. Therefore, apart from 

the E-field deflection, there are presumably some other aspects causing the 

observed behaviour.  Another aspect could be the lateral scattering of the ion 

beam in the material. Fig 4.12(a) shows the huge lateral scattering of 1 MeV 

protons in silicon. We can see that at the end of range, the lateral scattering 

has broadened from a point on the surface into ~6-7 µm. In this case, if two 

irradiated lines were separated by a 1 µm gap at the surface, then their defect 
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regions would be connected to each other underneath, so the gap could not be 

etched, which could explain the previous forced current results.  

 

Fig 4. 12 SRIM results showing the ion beam lateral scattering in silicon, (a) 
1MeV protons with huge lateral scattering, (b) 50 keV protons with small 
scattering. 

 

 

Fig 4. 13 Sub-micron gap achieved with low energy ion beam irradiation. 

To avoid the huge lateral scattering of the high energy ion beam, lower 

energy beam should be used. As shown in Fig 4.12(b), a 50 keV proton beam 
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has much less scattering, so it can be confined within a sub-micron region. We 

tried 50 keV protons and had obtained sub-micron gaps as shown in Fig 4.13. 

UV lithography was used to make photoresist patterns of lines with 2.5 µm 

width and 1 µm gaps. The large area ion irradiation was carried out with 50 

keV protons and a fluence of 1×1014 protons/cm2. After removing the 

photoresist, and etching, finally, the lines were broadened to ~3 µm wide, and 

the gaps came out as ~0.5 µm. 

In conclusion, to achieve small gaps or fine structures, low energy ion 

beam should be used for the ion irradiation, since low energy ions have small 

scattering. 

  

4.3.2 Lithography 

 

 

Fig 4. 14 Microscope image of the mask. 
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There are two ways to pattern silicon via ion beam irradiation, one is to use a 

focused ion beam to directly write on the sample, the other is to use a UV 

lithography first to make a photoresist pattern on top of the wafer as an ion 

irradiation mask, then use a large area ion beam to irradiate the whole surface 

to transfer the pattern from the photoresist into silicon. As discussed before, to 

make the waveguide and microdisk single mode, the devices should be thin, 

thus a low energy ion beam should be used. As a low energy ion beam could 

produce thin layer structures, it is also beneficial to achieve the small gap 

between coupled devices. While using low energy ion beam in our accelerator, 

firstly it is not easy to focus the beam, and then it may not be stable for the 

focused beam. So, our main aim was to develop the fabrication process using 

UV lithography combined with the large area irradiation. 

Our first attempt used a laser writer to make a chromium mask, then 

used UV lithography to transfer the pattern onto the photoresist on top of the 

wafer. Fig 4.14 shows the pattern on the mask. The golden area is the 

remaining chromium, the grey areas are blank areas. The photoresist used on 

top of the wafer to be the irradiation mask was AZ 1518. It was spin-coated 

with a spin rate of 7000 rpm to be ~1.3 µm thick. A thin photoresist was used 

because it could have a better resolution than thick photoresist in UV 

lithography, and it was already thick enough to stop a low energy ion beam. 

However, as the UV light (405 nm) penetrated through the chromium mask, a 

~100 nm gap was already beyond the diffraction limit, so not able to be 

achieved in this way. 

To avoid the diffraction limiting the patterned resolution, we then 

directly used a laser writer to write the pattern on the photoresist. This differs 

from UV lithography using the mask since direct laser writing writes the disks 

and waveguides one by one, not as they are exposed at the same time in UV 

lithography, so diffraction limit was not involved in this case. To optimize the 

exposure and developing conditions, lines with different widths and gaps were 

written by the laser writer on the photoresist. Fig 4.15 shows some different 

conditions of the developed photoresist structures. When the lines were 

designed very thin (<2 µm), they were difficult to fully develop. Usually, they 



Chapter 4 Optical Micro-resonators 

55 
 

could be only partially developed, Fig 4.15(a). As the line width was increased 

to 2.2 µm, the line was able to be fully developed, Fig 4.15(b,c). However, the 

lines were not smooth, and their side walls were not straight. The developed 

bottom width was only ~1.2 µm. The wide lines (>5 µm) could be easily fully 

developed, and they were smooth and had straight side walls, Fig 4.15(d). 

 

Fig 4. 15 SEM images of the lines on the photoresist, (a) partially developed 
thin lines, (b,c) fully developed lines, but not smooth, (d) fully developed and 
smooth wide line.  

 

Fig 4. 16 Optimized lithography process to improve the conditions of side 
walls.  
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 As the lithography conditions were not optimized, the side walls of the 

structures were very rough, as in Fig 4.16(a). There are three main conditions 

that  can be tuned: exposure conditions of the laser writer, developer 

proportion, and developing time. For AZ1518, with a spin rate of 7000 rpm for 

about 1.3 µm thick, an optimized exposure condition was 60 mW × 20%. The 

developing was carried out in mixture of AZ 400K and de-ionized water with 

a ratio of 1:2.5 for 20 seconds. With this condition, a much better result shown 

in Fig 4.16(b) was achieved.  

4.3.3 Results 

 

Fig 4. 17 SEMs of the coupled waveguides-and-microdisk resonators, top inset 
is the fine view of the coupling region, bottom inset is the cross section of the 
waveguide. 

After lithography to produce the photoresist pattern, large area ion irradiation 

was carried out with 100 keV H2
+ ions, which is equivalent to 50 keV protons, 

at the 45˚ beam line. The irradiation fluence varied from 5×1013 to 2×1014 

proton/cm2. After irradiation, the sample was electrochemically etched in 24% 

HF solution for 4 minutes. The porous silicon layer was left in place to 

provide support for the waveguides. Fig 4.17 shows SEM images of the 

structure. From the top inset of the figure, we observe a sub-micron gap 

between the waveguide and micro-disks. The bottom inset is a cross section of 

the waveguide. The waveguide was designed as 2 µm wide, but in practice its 
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width came out as about 2.8 µm, probably arising from the broadening during 

lithography and scattering of the ion beam. 

 

Fig 4. 18 SEMs of the coupled waveguides-and-microdisk resonators, insets 
show a  fine view of the coupling regions, (a) with one of the gaps not fully 
etched (the right gap in the inset), (b) both gaps fully etched. 
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 We then followed the same process, but during the electrochemical 

etching step, we carried out two etching steps. The first etching step was one 

minute to form a layer of ~2.5 µm thick PSi, the sample was then put into 

diluted KOH solution to remove the porous silicon layer. The second etching 

step took another 3 minutes for an additional depth of ~7.5 µm. This PSi layer 

was left in place to support the waveguides. In this case, the waveguides were 

designed to have a tapered shape with a thin part (2 µm) in the center and wide 

portions (10 µm) at the ends. Wide waveguide ends may help the waveguides 

to stand rigidly on the wafer and also make the light coupling from the optical 

fiber or lens easier. The results are shown in Fig 4.18. When the gap was 

designed to be small (<0.8 µm), it might not be fully etched, as in Fig 4.18(a). 

With an increased gap size in the design, the gaps were fully etched, Fig 

4.18(b). The actual size was decreased compared to the designed gap of 1 µm, 

with a measured gap of ~0.48 µm, arising from the scattering of the beam. A 

tilted view of the structure in Fig 4.19 shows the 3D effect that the waveguides 

and microdisks are floating over the 

 

Fig 4. 19 Tilted view of the structure and the waveguide cross section in the 
inset.  
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wafer surface.  

 Besides microdisk resonators, microring resonators were also 

fabricated. Fig 4.20 shows an integrated waveguide-and-microring. The outer 

ring was supported by six spokes from an inner circle. The radius of the inner 

circle support was 20 µm, the outer radius of the ring was 40 µm. The width of 

the spokes and ring was designed to be 2.5 µm, but in practice was ~4 µm. 

Irradiation was carried out with 1×1014 ions/cm2, 200 keV He+ ions. For He+, 

this high fluence resulted in the designed gaps of 1.8 µm not being fully 

etched, as shown in Fig 4.20(a). After ion irradiation, the sample was 

 

Fig 4. 20 (a) Integrated waveguides and micro-ring, the radius of the inner 
circle support r=20 µm, the outer radius of the ring R=40 µm, (b) support of 
the waveguide.  

 

 electrochemically etched with current density of 60 mA/cm2 for 4 minutes, 

then the PSi layer was removed in diluted KOH solution. As the rings were 

supported by the spokes from the inner circles, the waveguide were also 

supported by spokes from additional square supports, as shown in Fig 4.20(b). 

4.3.4 E-beam patterns 

Because of the limitation of normal UV lithography, it was difficult to obtain 

fine photoresist patterns using it, especially for achieving small gaps. So e-

beam lithography was used to achieve small gaps and thin waveguides. The 

smallest waveguide width that could be achieved by normal UV lithography 
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was ~3 µm, which is too thick for single mode light. E-beam lithography can 

easily achieve submicron line widths and gaps. 

 

 

Fig 4. 21 Integrated waveguides and microdisk patterned by e-beam 
lithography. 

  

 Fig 4.21 shows a result of integrated waveguides and a microdisk 

resonator, which was patterned by e-beam lithography instead of UV 

lithography, before ion irradiation. The waveguides were designed to have a 

tapered shape with a thin center part at the coupling region. The center part 

was designed to be 0.5-1 µm, while the ends were designed to be 10 µm. The 

gaps between the waveguides and microdisks were designed to be 0.4-0.7 µm. 

100 keV H2
+ ions were used for the ion irradiation to a fluence of 1×1014 

protons/cm2. The sample was etched with a current density of 60 mA/cm2 for 

1 minute.  

 E-beam lithography achieved fine structure patterns on the photoresist, 

especially for the small waveguide width and gap. However, when the pattern 
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was transferred from the photoresist into silicon by ion irradiation, the small 

gaps were not fully etched. As in Fig 4.22, the gap disappeared, Fig 4.22(a) 

when the designed gap was 0.4 µm. As the gap increased to 0.5 µm in the 

design, the gap appeared in the silicon structure, but not fully etched, Fig 

4.22(b). 

 

Fig 4. 22 Integrated waveguides and microdisk patterned by e-beam 
lithography, (a) waveguide and microdisk totally connected (in the red square), 
(b) the gap is not fully etched.  

 

 

Fig 4. 23 Gaps in high magnification, (a) gap fully etched, (b) not fully etched.  

 

 Fig 4.23 shows high magnification views of the coupling regions. 

When the designed gap was 0.6 µm, it could be fully etched in silicon devices, 

and came out as ~0.5 µm, Fig 4.23(a). As the gap was decreased to 0.5 µm in 

the design, it could not be fully etched, Fig 4.23(b). And according to the 

figure, a minimum gap that could be fully etched was ~0.45 µm, smaller gaps 
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disappeared. Use of even lower ion energies and fluences may achieve smaller 

gaps. However, 50 keV protons are the lowest energy we can produce in our 

accelerator at present, and a fluence of 1×1014 protons/cm2 is already quite low, 

fluences lower than that would make the structure fragile and rough.  

In conclusion, silicon microdisk resonators were fabricated on bulk 

silicon wafers with ion beam irradiation followed by electrochemical etching. 

Though the optical characterization result was not good, with a low Q value, it 

could be further optimized by lithography and ion irradiation with higher 

fluence.  

To achieve integrated waveguide-and-resonator, a forced current 

method was carried out to obtain the small gap for efficient coupling between 

waveguide and disk. The result showed that a forced current helped a little in 

achieving small gaps, but the gap limitation still stayed over 1 µm, which is 

probably because of the lateral scattering of the ion irradiation in silicon. 

Instead, the gap could be easily reduced to submicron by using a low energy 

ion beam, since lower ion beam irradiation has smaller lateral scattering.  

 E-beam lithography could make much better patterns than normal UV 

lithography with smaller gaps and smoother photoresist structures. However, 

the smallest gap which could be achieved using ion beam irradiation 

patterning on silicon was 400-500 nm, much more than the efficient coupling 

gap of ~100-200 nm for silicon devices. This is mainly limited by the lateral 

scattering of the beam. This limitation may be further reduced by using a 

lower ion beam energy than 50 keV and lower ion irradiation fluence. But they 

would also make the structures more fragile and rough. Thus this process may 

not be a good choice to achieve lateral integrated photonic structures. 

 

 

 

 



 

 

 

Chapter 5  

Flexible Polarization Y-shape Splitters  

  

5.1 Introduction 

A beam splitter is an optical device that splits a beam of light in two. In 

general optics, its common form could be a cube, a half-silvered mirror, a 

dichroic mirrored prism. It is the crucial part of most interferometers. 

Regarding on-chip photonics, a beam splitter is usually a component with one 

waveguide input and two waveguide outputs. According to their functions, 

there are mainly two types:  

1. Optical power splitters which simply split an incident light beam 

into two outputs equally; [111] [112] 

2. On-chip polarization splitters which can give polarization dependent 

outputs.[113-116]  

Optical power splitters are one of the fundamental components in integrated 

optical systems[117, 118]. They are critical in creating modulators[119], 

interferometers[120] and (de)multiplexers[121].  

On-chip polarization splitters are key components of integrated 

photonic circuits that consist of polarization dependent devices[122]. Photonic 

integrated circuits are usually polarization dependent, while a single-mode 

fiber does not preserve the polarization. To overcome this problem, one 

approach is to manipulate the polarization on the chip, in which, components 

optimized for one certain state of polarization can be used to optimize the 

performance. Polarization splitters are the key components in this approach. It 
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is based on modal birefringence: the propagation constants of the higher order 

modes differ significantly for TE and TM polarizations. 

Passive polarization splitting is preferred over active splitting to 

minimize power consumption and to avoid the need for tuning. There are two 

categories of passive polarization splitters: mode-evolution-based[123] and 

interference-based splitters[113, 124]. Interference-based passive polarization 

splitters provide low-loss operation and high polarization splitting ratio and 

can be designed for single etch step fabrication[124]. They have been 

demonstrated utilizing either directional couplers[114] or multimode-

interference couplers[113]. 

There are symmetric and non-symmetric directional couplers. 

Symmetric directional coupler-based polarization splitters are usually quite 

long. They can be shortened to ~100µm by reducing the gap between the 

coupler waveguides.[125] However, this will also degrade the tolerance of the 

device fabrication. A small variation of the structure size would affect the 

splitting ratio significantly. Non-symmetric directional couplers can be 

designed to allow only one of the modes to couple out of the input waveguide, 

and have an improved fabrication tolerance by tapering the waveguides. 

However, this also requires a long coupling length (~1500µm) to obtain 

efficient coupling as it needs a large gap.[124] 

Multimode-interference couplers can split TE and TM polarizations 

into different output waveguides using the difference in their self-imaging 

beat-lengths,  0 1/ ( )Lπ π β β= − , where  nβ  is the nth mode propagation 

constant supported by the multimode section[126]. In order to reduce the 

length of the coupler, four-mode, or even further more, two-mode interference 

couplers can be used.[127, 128] The length can be as short as several 

microns[128] or even sub-micron[113]. 

5.2 Y-shape splitter simulations 

In multimode-interference based polarization splitters introduced above, the 

input is usually a single mode waveguide, and multimode-interference only 
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appears at the connection part, or say, the coupling part. In this chapter, the Y-

shape splitters which are studied have similar polarization behavior and also 

use multimode-interference. However, differing from the multimode-

interference based polarization splitters introduced above, the Y-shape 

splitters have multi-modes through the whole pathway, from the input to 

outputs.  

The RSoft code[129] was used to perform the simulations. To start, we 

considered a 2D situation for easy simulations. With a multimode waveguide 

input, the light power stays constant along the straight input waveguide, but 

when it enters the angled arms, the launch power starts oscillating along the 

pathway, and then becomes constant when it comes back into a straight end.  

Fig 5.1 shows a typical simulation result of a Y-shape silicon splitter 

with a width of 5 µm along the whole pathway (input and output ports), and an 

arm angle of 5˚. The incident light is set at a wavelength of 1.55 µm and a TE 

mode. The left of the figure shows a schematic of the splitter and color map of 

the power. It is a Y-shape splitter, with one straight input and two outputs both 

at an angle of 5˚.  The splitting starts from a location of 300µm along the Z 

axis, and the right arm comes back to a straight waveguide at position of 

1230µm along the Z axis. So the right arm has a Z axis-length of 930µm. We 

can see the color variation along the two arms which means the power 

oscillates along them. We chose the right arm as the monitor pathway, and 

obtained the monitor value along it. The center of the figure shows the monitor 

value along the right arm pathway. The value uses the input power as the 

normalized value 1. So for example, when its value is 0.4, it means it is 40% 

of the input power. We can clearly see there is a significant periodic 

oscillation of the power along the pathway which is caused by the multimode 

interference. An ideal two-port-splitter would give a maximum monitor value 

of 0.5 along each arm. However, the maximum value in this case is only ~0.45. 

This is because the angle 5˚ in this case is too big to confine all the light into 

the two arms at the splitting point. We chose 5˚ since it was able to give us a 

significant power oscillation from 0 to 0.45 to fulfill a perfect polarization 

behavior. The monitor value reaches a constant level when the arm comes 
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back to a straight waveguide end. So we can vary the length of the arm to vary 

the output. 

 

Fig 5. 1 Simulation results of a Y-shape splitter with width 5µm, arm angle 5˚, 
the incident light is 1.55µm wavelength, TE mode: left shows a schematic of 
the splitter and color map of the power distribution; the center is the monitor 
value along the right arm; the right is a color scale bar of the power strength.  

  

5.2.1 TE and TM oscillations  

Both TE and TM modes behave similarly with periodic power oscillating 

along the arms. However, their associated periods are different, which makes 

the multimode Y-shape splitter to be able to perform polarization selections. 

Fig 5.2 shows the power oscillations of TE and TM modes along the angled 

arm. In the beginning, the two modes oscillations are almost synchronized. 

Then they become separate as they progress further along the arm since their 

oscillating periods are slightly different. From the figure, we can see that the 

TE mode has a slight bigger period than the TM mode. Hence we can choose a 

different arm length to give a TE or TM output through that arm. For example, 

we can choose Z1 and Z3 arm lengths to give out TM mode outputs, or Z2 and 



Chapter 5 Flexible Polarization Y-shape Splitters 

67 
 

Z4 to give out TE mode outputs. Actually, we can see that there are many arm 

lengths to choose to give TE or TM outputs with different polarization ratio. 

At Z5 and Z6, we can even obtain totally TE or TM polarized outputs. 

 

Fig 5. 2 Simulation results of a Y-shape splitter with width 5µm, arm angle 5̊ , 
the incident light is 1.55µm wavelength, red for TE mode, blue for TM mode.  

 

5.2.2 Different wavelengths  

Different polarizations have different oscillating periods. Similarly, different 

wavelengths also have different oscillating periods. For example, as shown in 

Fig 5.3, the arm length

 

Fig 5. 3 Simulation results of a Y-shape splitter with width 5µm, arm angle 5̊ , 
length 930µm, the incident light is TE mode, (a) 1.55µm wavelength gives a 
maximum output; (b) 1.65µm wavelength gives a minimum output.  
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 is 930 µm along the Z axis. With the same arm angle and length, while an 

incident light gives out a maximum output with 1.55 µm wavelength, it gives 

out a minimum with a 1.65 µm wavelength. 

We studied a series of incident light with different wavelengths into a 

5˚ Y-shape splitter with waveguide width of 5µm. The results are shown in 

Fig 5.4. The splitting starts from 

 

Fig 5. 4 Simulation results of a Y-shape splitter with width 5µm, arm angle 5̊ , 
within a length of 100-700 µm, the incident light is TE mode, with a series of 
wavelengths: 1.54, 1.542, 1.544, 1.55, 1.65 µm. The splitting starts at Z=100 
µm.  

 

Z=100 µm. We can see that, within the beginning 600 µm length, the 

oscillations of λ=1.54, 1.542, 1.544, 1.55 µm incident light are almost 

synchronized. From 1.54 µm to 1.55 µm, it is a 10 nm band width. If the 

wavelength changes a lot, from 1.55 µm to 1.65 µm, with a 100 nm variation, 

the oscillations along such a length would differ significantly as shown in the 

figure. Incident light with longer wavelengths have shorter power oscillating 

period along the Z axis. For example, the third peak of 1.65 µm wavelength is 

at Z=385 µm (L), and that of 1.55 µm wavelength is at Z=402 µm (S). They 

have a difference in distance of ~17 µm along Z axis. Higher order peaks 
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would differ even more. For example, if it goes further to a length of ~4 mm, 

the oscillation of 1.65 µm wavelength is totally out of the step of that of 1.55 

µm wavelength, as shown in Fig 5.5. 

 

Fig 5. 5 Simulation results of a Y-shape splitter with the same settings as in 
last figure, showing Z axis from 3300-4000 µm.  

 

Even with a small wavelength variation of 10 nm, from 1.54 to 1.55 µm, the 

oscillation shift becomes significant. The labeled peak of 1.55 µm wavelength 

(L) is at Z=3887 µm, while the same peak of 1.54 µm wavelength (S) is at 

Z=3910 µm, with a distance of ~13 µm. 

5.2.3 Different waveguide widths and arm angles 

Similarly, when the waveguide widths of the Y-shape splitters are different, 

the power oscillation period along the arm would be different. Fig 5.6 shows 

the simulation results of the Y-shape splitters with an arm angle 5˚, and width 

5 µm which is in blue, and 5.15 µm in red. The incident light has a wavelength 

of 1.55 µm, TE mode. We can see that a wider waveguide would give out 

longer period along the Z axis. Around Z=600 µm position, the red third 
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maximum peak shift ~28 µm to the right side of red peak, as marked in the 

figure. This may suggest a tolerance of the width during fabrications.  

 

Fig 5. 6 Simulation results of a Y-shape splitter with width 5 µm in blue, 5.15 
µm in red, arm angle 5˚, the incident light is 1.55µm wavelength, TE mode.  

 

According to the simulations above, to achieve totally polarized 

outputs at a wavelength of ~1.55 µm, the length of the arms should be at least 

about 250 µm, when the widths of the waveguides are ~5µm. This is quite 

long, because the oscillation period is long in this case.  

To further reduce this limit, we can use reduce the width of the 

waveguides to obtain a shorter power oscillation period. As shown in Fig 5.7, 

such a Y-shape splitter would give out a smoothly oscillating behavior with a 

much shorter period than that of a 5 µm width. However, it is not able to 

perform a fully polarized output with an arm angle of 5˚. With a waveguide 

width of 2 µm, the arm angle should be at least ~10˚ to achieve a fully 

polarized output. Furthermore, when the width of the waveguide is reduced 

down to 1 µm, the angle should be ~20˚ to achieve full polarization. The 

period is also reduced a lot. In this case, the arm length could be only ~10 µm 

to achieve full polarization, Fig 5.8. 



Chapter 5 Flexible Polarization Y-shape Splitters 

71 
 

 

Fig 5. 7 Simulation results of a Y-shape splitter with width 2µm, arm angle 5̊ , 
the incident light is 1.55µm wavelength, TE mode.  

 

  

Fig 5. 8 Simulation results of a Y-shape splitter with width 1 µm, arm angle 
20˚, the incident light is 1.55µm wavelength, TE mode in red, TM in blue.  
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5.2.4 Summary 

 To summarize, there is a power oscillation based on multimode-interference 

along the arms of multimode Y-shape splitters. The oscillation is periodic, and 

the period depends on the polarization mode and wavelength of the incident 

light, and the width of the waveguides: 

1. TE mode has longer period than TM; 

2. Shorter wavelength  gives a longer period; 

3. Smaller waveguide width gives a shorter period. 

According to these, Y-shape splitters could be either polarization or 

wavelength selective by making the arm with a certain width and length. TE 

and TM modes differ significantly at the beginning of the power oscillations. 

Thus we can choose a short arm length to achieve a polarization selective 

splitter. Small variations of incident light wavelength would not shift the 

power oscillations significantly. They stay almost synchronized at the 

beginning of the oscillations. So Y-shape splitter with short arms could be a 

relatively broad band polarization splitter. And to achieve a sensitive 

wavelength selective splitter, the splitter arms should be long enough to 

release a significant output power difference for wavelengths with small 

deviations. To reduce the length of the polarization splitters, smaller width of 

the waveguides could be applied. 

Furthermore, to achieve full polarization, the arm angle should be big 

enough. This angle limitation mainly depends on the width of the waveguides. 

For example, while a waveguide width of 5 µm would require a minimum arm 

angle to be ~5˚, a width of 1 µm would require ~20˚ to achieve fully polarized 

outputs. 

5.3 Fabrication of Y-shape splitters 

The fabrication of Y-shape splitters on bulk silicon wafer is very straight 

forward. A schematic of the fabrication process is shown in Fig 5.9. Firstly, 

the Y-shape splitter pattern was patterned using standard UV lithography on a 

~6 µm thick AZ 9260 photoresist spin coated on 0.3 Ω·cm p-type silicon wafer, 
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Fig 5.9 (a). The wafer surface was then irradiated with a large area beam of 

200 keV protons, which have a range of ~2.1 µm in silicon. And the 

photoresist is thick enough to stop the beam going through it 3

 

Fig 5. 9 Schematic of the fabrication process: (a) the first UV lithography step 
to make the splitter pattern on photoresist (PR); (b,c) the second ion beam 
irradiation step to transfer the pattern in PR into silicon wafer, (c) is the cross 
section view cut from the yellow dashed line in (b); (d,e) cross section view of 
the last etching step, (d) the first etching step with porous Si (PSi) removed, (e) 
the second etching step with PSi remaining as the support, and the defects 
annealed.  

 

into the silicon wafer at the regions covered by it. So defects were only created 

at the Y-shape region where it was exposed to the ion beam. The irradiation 

fluence was ~2×1016 ions/cm2, high enough to stop PSi formation. After 

removing the photoresist, the wafer was electrochemically etched in 24% HF 

with a current density of 60 mA/cm2 for ~1 minute to make a porous silicon 

layer of ~ 2.4 µm thickness. Then the porous silicon layer was removed in a 



Chapter 5 Flexible Polarization Y-shape Splitters 

74 
 

KOH solution, and the wafer was electrochemically etched for the second step 

with a current density of 40 mA/cm2 for 4-5 minutes to make a porous silicon 

layer of 6-8 µm thickness. A lower current density was used in the second 

etching step because it could produce smaller pores which make the porous 

silicon layer more stable. Finally, the wafer was annealed and thermal 

oxidized in air at 1000˚C for 10 hours. The width of the splitter waveguides 

was designed as 5 µm, and the arm angle was 5˚.  

 

Fig 5. 10 SEMs of the Y-shape splitters: (a) overview of two splitters; (b) the 
two arms, shorter for TM mode output, longer for TE mode; (c) the splitting 
point; (d) cross section of the input waveguide.  

 

Fig 5.10 shows SEM images of the fabricated Y-shape splitters on bulk 

silicon. A series of 9 splitters with a step arm length of 5 µm were fabricated 

on one wafer. The differences of the short and long arms were set as 50 µm. 

We numbered the 9 splitters from S1 to S9. Fig 5.10 (a) shows S1 (short arm: 

293 µm, long arm: 343 µm) and S2 (short arm: 298 µm, long arm: 348 µm). 

We set the two arms of each splitter with a difference of 50 µm, because with 
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such a waveguide width, the splitting of TE and TM maximums is with a 

length difference of ~50 µm and the first splitting starts at a length of ~300 µm 

according to simulations. Fig 5.10 (b) is a slightly magnified image of the two 

splitters of S4. We were supposed to obtain a TM mode output from the short 

arm and TE from the long. Fig 5.10 (c) shows a further magnified image at the 

splitting point. The splitting angle was 5˚ as shown in the figure. A cross 

section view of the input waveguide is also shown is Fig 5.10 (d). The width is 

~5 µm, and the thickness is ~2 µm. The sample was etched to a depth of ~2 

µm at the first etch step, and porous silicon was removed in KOH. Then the 

sample was etched again to a depth of ~5 µm, and porous silicon was left in 

place as a support of the waveguides. However, during drying after etching, 

the porous silicon cracked a little. And during thermal annealing afterwards, 

the porous silicon layer cracked even more. So the waveguide was tilted a 

little by the cracked porous silicon layer as shown in the figure. 

5.4 Characterization of Y-shape splitters 

Optical characterization was carried out with a tunable diode laser with the 

tunable range from 1530nm to 1570nm. The setup is shown in Fig 5.11. The 

light could be coupled from the laser into an optical fiber, then through the 

half waveplate to select either TE or TM mode. An optical focused lens was 

used to couple the light into the waveguide in 

 

Fig 5. 11 Characterization setup.  
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the sample. The sample was assembled on a tunable stage, which could move 

the sample in three directions. Another optical lens was used after the sample 

to collect the output. Both lenses were also assembled on tunable stages. A 

InGaAs camera was used on top of the sample to monitor the light coupling in 

it. A Vidicon camera at the side could monitor the outputs of the sample. The 

power meter could measure the outputs. 

5.4.1 Characterization of Y-shape splitters with short arms  

 

Fig 5. 12 IR images of the splitters from the top: (a) equally splitting with a 
normal light input without polarization; (b) TE mode input gives a stronger 
splitting into the lower arm; (c) TM mode gives a stronger splitting into the 
upper arm.  
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From the InGaAs IR camera on the top, we have top-view images of the 

splitters with light coupled in, as shown in Fig 5.12. In this splitter, when the 

input light was randomly polarized, as shown Fig 5.12 (a), the two arms give 

almost the same amount of output light. If the input light has a TE polarization, 

the splitting into the lower arm is stronger than the upper one, Fig 5.12 (b). 

When the polarization of input light was changed to TM mode, the stronger 

output port is now the upper one, Fig 5.12 (c). 

To better study the splitting ratio, we used another IR camera at the 

side to capture the output images. Fig 5.13 shows the IR images of the outputs 

and the scans of light density from the second splitter S2. As stated in last 

section, S2 had a short arm length of 298 µm and a long arm length of 348 µm. 

The waveguide widths were measured to be ~5.1 µm, and the arm angle was 

5˚. In this case, the incident light wavelength was 1.55 µm, we achieved 

significantly polarized outputs as shown in Fig 5.13. From the IR images of 

the outputs taken with TE (Fig 5.13 (a)) and TM mode (Fig 5.13 (b)) inputs, 

we can clearly see that while the left arm was TE polarized, the right was TM 

polarized. The left arm in the images was the long arm, and the right was the 

short. 

 

Fig 5. 13 IR images of the outputs from the side (top) and scans of light 
density: (a) with TE mode input; (b) with TM mode input.  
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To obtain the polarization ratio, we performed a square scan over the 

two outputs to measure the light densities, as shown in the bottom of Fig 5.13. 

According the measurements, in this case, the ratio of the two outputs was 

9.9:1 at TE mode, and 1:27.3 at TM mode. So the TE polarization ratio was 

10.0 dB, and the TM polarization ratio was 14.4 dB.  

 

Fig 5. 14 Incident angle variation changes the polarization ratio: four different 
incident angles (A1, A2, A3, A4) gives different outputs at TE and TM modes.  

 

When we slightly varied the incident angle, then the outputs were 

changed a lot. Fig 5.14 shows an example of this. These results were from the 

7th splitter S7, with arm lengths of 323 µm and 373 µm. With four different 

incident angles, the TE polarization ratio differed from 9.7:1 to 1:4.5, and the 

TM polarization ratio differed from 2.3:1 to 4.7:1. So in this case, by varying 

the incident angle, the TE polarization could be reversed. Similar 

measurements from the 8th splitter S8 showed a result that TE polarization 

differed from 10.7:1 to 1:5.7, and TM polarization ratio differed from 7.1:1 to 

1:4.2, in which case, both TE and TM polarizations could be reversed. This 



Chapter 5 Flexible Polarization Y-shape Splitters 

79 
 

effect was not studied in the simulations, since this mainly happened in 3D 

situations, while the simulations were limited in 2D cases. 

5.4.2 Characterization of Y-shape splitters with long arms 

As discussed in the last simulation section, if the arm length of the Y-shape 

splitter is long, the outputs would be sensitive to wavelength variations. In 

experiments, we made such splitters with long arm lengths of ~4mm. 

Using the same optical characterization setup, we varied the incident 

light wavelength from 1535 nm to 1570 nm, and obtained an output spectrum 

of one of the arms, as shown in Fig 5.15. According to the plot in the figure, 

the polarization could be reversed by varying the wavelength of the incident 

light. While the output was TM polarized at the beginning of the wavelength 

variation (~1535 nm), it was tuned to TE polarization as the incident light 

wavelength increased. In this case, the maximum polarization ratio was ~5:1.

 

Fig 5. 15 The output oscillation along the wavelength of the incident light.  

 

 

An interesting observation is that the output power oscillating behavior 

with incident wavelength was similar to the oscillation along the arm length 
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obtained in the simulation. Fig 5.16 shows a comparison of the two 

oscillations. Fig 5.16 (a) shows a period of the simulated output power 

oscillation along the arm length of a Y-shape splitter with an arm angle of 5˚ 

and waveguide width of 5 µm. We can see that within a big period, there are 

three main maxima and minima. In the experiment, from a long splitting arm, 

we achieved an oscillating output power with variation of incident light 

wavelength. And similarly, there were also a big period with three main 

maxima and minima, as shown in Fig 5.16 (b). 

 

Fig 5. 16 A comparison of (a) output power oscillation along the arm length in 
simulation with (b) that along the incident light wavelength in experiment.  
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We can refer to the previous Fig 5.15. The shapes of different 

oscillation trends of different wavelengths are almost the same. A small 

variation of incident light wavelength only slightly changes the period of the 

oscillation, and then shifts the output power up or down a little at a certain arm 

length. Thus when we gradually and continuously varied the incident light 

wavelength, we could obtain an oscillating output which was similar to the 

oscillation along the arm length. The oscillation could be so significant, 

because the arm length was long, thus sensitive to the variation of wavelength.

 

Fig 5. 17 The output oscillation along the wavelength of the incident light, 
with waveguide width of ~ 7.5 µm.  

 

The oscillation with wavelength is similar  to that along the arm length 

which is with the same conditions of arm angle and waveguide width. So if the 

waveguide width of the splitter changes, the oscillation along the arm length, 

and hence along the incident light wavelength, would change. Fig 5.17 shows 

a different oscillation along the wavelength from a splitter with a waveguide 

width of ~ 7.5 µm. 

5.5 3D beam splitters 
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Ion beams with different energies can penetrate different depth of silicon, and 

create high defect regions at different depth in the silicon wafer to pattern 3D 

structures in bulk silicon. Using this 3D silicon machining process, we 

extended the study to fabrications of 3D optical beam splitters. 

Fig 5.18 shows a SEM image of the splitter, and a schematic of the two 

irradiation steps to pattern two layers of splitting arms with two different ion 

energies. 

 

Fig 5. 18 SEM image of the splitter on top, and schematic of the ion beam 
irradiation patterning process: I1, the first irradiation to pattern the two upper 
arms; I2, the second irradiation to pattern the lower arm.  

 

The first irradiation step is similar to that for the 2D Y-shape splitters. The 

splitter pattern was patterned using standard UV lithography on a ~2 µm thick 

AZ 1518 photoresist spin coated on 0.3 Ω·cm p-type silicon wafer. The wafer 

surface was then irradiated with a large area beam of 50 keV protons, which 

have a range of ~0.5 µm in silicon. The photoresist is thick enough to stop the 

beam going through into the silicon wafer at the regions covered by it, so 

defects are only created at the splitter region where it is exposed to the ion 

beam. The irradiation fluence was ~2×1016 ions/cm2, high enough to stop PSi 

formation. After first irradiation, we used physical vapor deposition (PVD) to 
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deposit a layer of 30 nm thick gold on the surface, and then removed the 

photoresist. Gold deposition on the surface was used to make an alignment 

mark for the second irradiation step. When the first step photoresist was 

removed, a gold pattern of the splitter would remain on the silicon surface. 

Another layer of ~ 6 µm thick AZ 9260 was spin coated, and then an aligned 

UV lithography was carried out for the second layer pattern. A higher energy 

of 200 keV ion beam was large-area irradiated to the sample. The second high 

energy ion irradiation should be with lower fluence to only create high defect 

region at the end of range. The fluences were varied from 5×1013 to 5×1014 

ions/cm2. After removing the second step photoresist, the wafer was 

electrochemical etched in 24% HF with a current density of 60 mA/cm2 for ~1 

minute to make a porous silicon layer of ~ 2.4 µm thick. Then the porous 

silicon layer was removed in KOH solution, and the wafer was 

electrochemically etched for the second step with a current density of 40 

mA/cm2 for 5-6 minutes to make a porous silicon layer of ~10 µm thickness. 

Finally, the wafer was annealed and thermal oxidized in air at 1000˚C for 10 

hours. The width of the splitter waveguides was designed as 4 µm. 
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Fig 5. 19 SEM images of the splitter: (a) an over view, (b) magnified splitting 
region, (c) high magnification cross  section of the lower waveguide, (d) cross 
section of the upper waveguide.  

Fig 5.19 shows SEM images of the 3D splitter structures. We made 

two different shapes of the two upper splitting arms: straight angled arms and 

curved arms. The figure shows curved upper arms. The lower arm was 

designed to be straight forward from the main waveguide input. From the 

magnified image of the splitter region, Fig 5.19 (b), we can clearly see that the 

three arms are at different layers on the substrate. The cross sections show that 

the lower arms are much thicker (1.8 µm) than the upper one (0.5 µm). The 

width of them were designed the same. However, after etching they were 

slightly different. In this case, the lower arms were quite thick as the second 

irradiation fluence was high (5 ×1014 ions/cm2). 

 

Fig 5. 20 SEM images of the cross section of the lower waveguides with 
fluence : (a) 2×1014 ions/cm2, (b) 5×1013 ions/cm2.  

 

The reduced second irradiation fluence was aimed at giving thinner 

lower arms. When the fluence was 2×1014 ions/cm2, the lower arms were 

reduced to ~1.3 µm, as shown is Fig 5.20. They were further reduced to ~0.6 

µm with an irradiation fluence of 5×1013 ions/cm2. 

Characterization was carried out with similar setup as used for 2D 

splitters. IR images of the light coupling in the 3D splitter are shown in Fig 

5.21. We can see that the light is coupled into the main waveguide. When 

there is another light source shining on the sample from the side, we can see 
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the two curved upper arms, Fig 5.21(a). However, without the side light source, 

we can not see any light coupled from the main waveguide into the two upper 

arms, Fig 5.21(b), which means there is too little or no light coupled into them.  

 

Fig 5. 21 IR images of the light coupling into the 3D splitter from the top: (a) 
with , and (b) without a side light shining on the sample. The background is 
dark, because the light is confined in the waveguide. 

 

 While most light was coupled from the main waveguide into the lower 

straight arm along the main waveguide, little light was coupled into the two 

curved upper arms. This is caused by the geometry of the structure. The lower 

arm had a similar thickness and same direction with the main waveguide, thus 

light modes would be mainly confined within it. The two upper arms were too 

thin compared to the main waveguide and not in the same direction, so few 

light modes would be coupled into them.  
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 Acording to RSoft simulations, to make the light from the main 

waveguide split equivalently into different arms at different layers, the arms 

should have same thicknesses and same angles with the main waveguide. This 

could be carried out in the future works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 6  

Vertical Coupling Photonics 

  

6.1 Introduction  

At present, most photonic devices still are two dimensional, using lateral 

coupling. These devices are mainly fabricated within the device layer of SOI 

platforms. The typical thickness of the device layer is 200-300 nm. With such 

a small thickness, it is difficult to couple an incident light from optical fibers 

or lenses into the waveguide from its side. So, grating couplers are widely 

used to make the coupling of light easier.  

To achieve 3D integration, vertical coupling becomes necessary. 

Besides, vertical coupling makes the fabrication process more flexible. For 

example, the waveguide and the resonator layers can be designed and 

controlled independently, as they are separated in different layers. 

Furthermore, the control over critical dimensions, especially the gap between 

them, can be easier and more precise. 

Traditional semiconductor machining processes mainly use UV 

lithography to pattern a photoresist, followed by reactive ion etching (RIE) to 

transfer the pattern on to silicon surface. To achieve vertical coupling of 

structures, either wafer bonding[10, 11] or chemical vapor deposition 

(CVD)[12] or epitaxial growth[13] is needed. In wafer bonding, devices are 

fabricated on two separated chips, and then the two chips are aligned and 

attached. CVD is mainly for deposition of organics to fabricate polymer 

devices. While epitaxial growth can help to fabricate heterostructure devices 

using semiconductors like SiGe and GaAs. 
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As discussed before, high energy ion beams can penetrate many 

micrometers into semiconductor materials, such as Si and GaAs. In p-type 

silicon, we have developed a process to combine ion irradiation with 

subsequent electrochemical anodization to machine in 3D.[85, 130, 131] The 

flow of anodization current is deflected away from irradiated regions, leaving 

them unetched, and surrounded by porous silicon. Most of the ion induced 

defects are located close to the end-of-range of the ions, so for low fluences 

only the end-of-range region remains unetched while regions closer to the 

surface become anodized. Thus by varying the ion energy it is possible to 

directly fabricate 3D structures in Si and other semiconductors. In this chapter, 

we apply this process to fabricate vertical coupling structures on SOI 

platforms. 

6.2 Vertical coupling waveguide-resonators 

Our ion beam silicon machining process is unique that it can penetrate into the 

sub-surface layer of materials and change the material properties more than at 

the surface. Normally, after machining the device layer of SOI wafers, nothing 

can be done to the underlying substrate layer. However, if we apply ion beam 

irradiation, we can pattern the underlying substrate layer after patterning the 

device layer. Thus, we are able to use a single SOI wafer to obtain vertical 

coupling structures without any wafer bonding or CVD or epitaxial growth, 

and achieve an all-silicon device. 

Fig 6.1 shows a schematic of the main fabrication process. Firstly, we 

use UV lithography and RIE to define the microdisk on the device layer. We 

then use an aligned proton beam irradiation step, Fig. 6.1 (c), to make the 

waveguide pattern in the Si substrate layer, forming an ion induced defect 

region with a certain width and thickness. The width is determined by the 

design, while the thickness is determined by the proton beam energy. [85, 130, 

131] After removing the photoresist, the wafer was placed in a 24% HF 

solution for 1 minute to etch away the BOX layer to expose the substrate, 

followed by two electrochemical anodization steps, Fig. 6. 1 (d,e). Finally, the 

sample is annealed in low ambient pressure (~1 mbar) at 500̊C for 10 hours, 
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to anneal out the ion induced defects while providing a small amount of 

oxidation-induced surface smoothening[25, 132]. 

 

 

Fig 6. 1 Schematic of the fabrication process. (a) SOI wafer; (b) RIE to 
fabricate the microdisk, (c) aligned proton beam irradiation to make the defect 
region for the waveguide in the substrate layer, (d) oxide layer removing and 
Porous Si formation, (e) another etching step to undercut the bottom 
waveguide.  

 

 

Fig 6. 2 Optical micrographs of the disk pattern, (a) before and (b) after RIE.  
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Fig 6.2 shows the color difference of the SOI surface with and without 

the device layer on top, before and after the RIE. When there is a 55 nm thick 

silicon device layer on top, it looks yellow, Fig 6.2 (a). After RIE etching off 

the device layer, the 145 nm thick oxide layer on silicon substrate looks green, 

Fig 6.2 (b).  During the development of the whole process, this first step for 

the device layer patterning is fixed like this.   

6.2.1 Development of the fabrication process with a thin device 

layer 

In the schematic process figure, the SOI wafer has a device layer of 230 nm 

thickness. However, at the beginning, we only had access to SOI wafers with a 

55 nm thick device layer. To achieve aligned ion beam irradiation, there are 

two ways: one is to use direct proton beam writing to find the position and 

write the waveguide; the other is to use an aligned UV lithography to make the 

waveguide pattern on the photoresist and then use a large area ion irradiation 

to transfer the pattern into silicon substrate layer. 

At the beginning of this project, we used direct proton beam writing to 

do the alignment. Fig 6.3 shows the fabrication result of the first time try. 

After RIE to define the microdisk on the device layer, without removing the 

photoresist on top, we used a focused 200 keV protons to scan at the edge of 

the disk to find the position, and then used a line scan to make the waveguide 

patterned irradiation. In the figure, we can see that two layer structures were 

successfully fabricated on the SOI wafer, with the microdisk on top of the 

waveguide. However, there were some problems: the photoresist on top was 

not fully removed, which made the structure dirty; the scanning used for 

positioning affected the patterning of the waveguide. 

So we further optimized the process by improving the positioning step. 

We made two additional microdisks to either side of the central one with same 

dimensions. The two additional disks were used as alignment marks during 

positioning. As we found the position of P1 and P2, Fig 6.4, we could easily 

know the position of P0. This allowed us to find the position without scanning 

around the central disk, and to achieve an unaffected waveguide.  
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Fig 6. 3 SEM images of the first attempt, (a) overview of the vertically 
coupled waveguide and microdisk, (b) a magnified view at the coupling region.  
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Fig 6. 4 Schematic of the positioning process.  

 

Fig 6. 5 SEM images of the first time result, (a) before and (b) after annealing.  
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Fig 6. 6 SEM images of the result using UV alignment followed by a large 
area irradiation, (a) overview and (b) high magnification of the coupling 
region. 

Fig 6.5 shows the improved results with direct proton beam writing. 

We obtained a much better result in the figure, with a well-defined microdisk 

and waveguide sitting at different layers. The problem this time was the 

remaining porous silicon layer cracked and broke off some part of the disk 

during thermal annealing because of the deformation. 

Direct proton beam writing using a focused ion beam is able to carry 

out the aligned patterning of the waveguide in the substrate layer. However, 
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the efficiency of this process was very low; it took a lot of time to find the 

positions and a much longer time for writing the waveguides as the current of 

a focused beam could not be high. In view of these limitations, we attempted 

to first use UV alignment to make an aligned waveguide pattern on the 

photoresist, and then transfer it into substrate silicon layer. 

Fig 6.6 shows the result using UV alignment and large area irradiation. 

This method is able to achieve the same result, with the advantage that it 

makes mass production possible since many structures can be created at the 

same time. We could pattern any number of sets within an area of ~1.5 × 1.5 

cm2 by only one ion beam irradiation with a fluence of 1×1015 ions/cm2 within 

30 minutes. In comparison, using direct proton beam writing, it would take a 

whole day to only finish writing 5 sets of vertically coupled waveguide-

microdisks. The substrate layer of the SOI wafer was high resistivity, so a 

fluence of 1×1015 ions/cm2 was high enough to fully stop the etching. Now the 

only problem remaining was that the device layer was too thin for the light 

coupling into it, and makes the disk easily bent and distorted. 

 

Fig 6. 7 8 inch SOI wafer after epitaxial growth, device layer from 55 nm to 
230 nm.  
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Typical SOI wafers used for silicon photonics usually have a device 

layer thickness of 200-300 nm. [4, 6, 7] To make the SOI wafer suitable for 

light coupling and also compatible with typically used 2D photonic structures, 

the device layer was epitaxially grown to a thickness of 230 nm. Fig 6.7 shows 

the epitaxial grown SOI wafer, device layer from 55 nm to 230 nm. However, 

we can see that the growth was not uniform, since the color of the wafer 

surface was not uniform after growth, especially at the edges. A profilometer 

was used to measure the device layer thicknesses at different locations of the 

wafer. The result showed a thickness variation from 200 nm to 245 nm. The 

lack of uniformity can affect the optical properties of the device layer.  

 

6.2.2 Details of the fabrication process with an epitaxially  

grown device layer 

We used the re-grown SOI wafer and followed the same fabrication process as 

described above. The first UV lithography for the microdisks and microrings  

used AZ 1505, 1518 or 9260. Before spin coating, a HMDS treatment was 

necessary for better adhesion of the photoresist with the SOI substrate.  AZ 

1505 has a typical thickness from 0.4 to 0.8 µm, 1518 from 1.3 to 2.4 µm, 

while AZ 9260 has a typical thickness around 5 µm. In this case, AZ 1518 was 

a better choice, as it was thick enough to fully stop the RIE, and also had a 

better resolution than thick AZ 9260. We made series of microdisks and 

microrings with diameter varying from 20 µm to 100 µm. Microrings had 

inner circles and outer rings, with six supports connecting them, as shown in 

Fig 6.8. The supports and outer rings were designed with a width of 4 µm on 

the UV masks, but  usually they were reduced to ~ 2.5 µm after UV 

lithography and RIE on the silicon device layer. The UV conditions were set 

following the typical data sheets with slight variations according to the results 

in the experiment. For example, with AZ 1518, we used a spin coating speed 

of 6000 rpm and soft bake time of 1 minutes at 95 ˚C for a thickness ~ 1.4 µm, 

with an exposure fluence of ~ 90 mJ/cm2 (wavelength 405 nm), and a 

developing time of 1 minute. 
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Fig 6. 8 Microscope images of the UV alignment: (a) waveguides with a 
microdisk, (b) with a microring, (c,d) magnified images at the coupling region.  

 

After RIE, we removed the first layer AZ photoresist and spin coated a 

layer of SU8 on the wafer. We chose negative photoresist SU8, because it was 

easier to use it for the UV alignment, with a bigger transparent blank area on 

the mask. Two different series of SU8 were used in this process: SU8 2000.5 

with a typical thickness of ~0.7 µm, which is thin and could achieve smaller 

structures, but only applicable for low energy ion beams, and SU8 2005 ~5 

µm, thick for bigger structures and applicable for higher energy ion beams. At 

the beginning of this work, we mainly used SU8 2005, as it was thick enough 

to stop a higher energy ion beam. Fig 6.8 shows some images of the UV 

alignment after RIE for the structures on the device layer and before the large 

area ion beam irradiation. For SU8 2005, we typically used a spin coating 

speed of 4000 rpm for a thickness ~5 µm, a soft bake time of 2 minute at 95 

˚C, an exposure fluence of 80 – 120 mJ/cm2 (365 nm), a post exposure bake 

time of 2.5 minutes, and a developing time of 1-2 minutes. On the second 

layer pattern, there were three waveguides aligned to each microdisk or 

microring, with a straight one as the input and transmission out port, and two 
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curved ones for the reflections from either direction of the straight waveguide. 

The straight waveguides were designed to be a tapered shape with a central 

width 2.5 µm, and 4 µm at the ends. The curved ones were designed with a 

uniform width of 4 µm, and the curve diameter of 200 µm. As the photoresist 

was ~5 µm thick, the 4 µm wide lines were easy to be fully developed, but the 

2.5 µm ones were difficult. In the figure, we can see that some central part of 

the straight waveguides was not fully developed, since the photoresist was 

thick and the waveguides were thin at the central part. The central part was 

designed to be thin so as to achieve single mode. In our experiments, the 

exposure fluence should be 110 – 120 mJ/cm2 to make the central part of the 

straight waveguide fully developed. With such a high exposure fluence, the 

waveguide would be slightly wider (~1 µm wider) than designed. 

The ion beam irradiation was carried out after the aligned UV 

lithography with 400 keV H2
+, which was equivalent with 200 keV protons, to 

make waveguides with a thickness of ~2.5 µm in the substrate layer. The 

irradiation fluence was ~1×1015 protons/cm2 or more, which was high enough 

to fully stop the etching. If the photoresist 
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Fig 6. 9 SEM images of the structures: with (a-d) fully developed waveguides 
to undeveloped central part.  

 

waveguide pattern was fully developed, then ion irradiation would produce a 

fully patterned waveguide region which would result in a well-defined 

waveguide after etching, as shown in Fig 6.9 (a). If not, there would not be a 

full waveguide patterned defect region, and it would come out with a 

waveguide with some defects, as shown in Fig 6.9 (b, c). If the photoresist 

waveguide pattern was developed so little that no ion could penetrate through 

that part, the straight waveguide would break at the central part, as shown in 

Fig 6.9 (d). In the figure, (a) and (d) had disks with diameter of 20 µm, (c) 

with 40 µm, and (b) with 60 µm. We see that the disks were without any 

significant bending in this case, with a thicker device layer (~230 nm). 

 

Fig 6. 10 High magnification of SEM images of the structures: (a-c) at the 
coupling region; (d) out of the coupling region. 
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Some detailed views of the structures at the coupling regions are 

shown in Fig 6.10. The one in Fig 6.10 (b) had a rough and dirty disk surface, 

probably because of photoresist residuals during the process. Even if the 

surface was clean, without any photoresist residuals, the part over the lower 

waveguide could be rough, Fig 6.10 (c), possibly due to it being slightly 

electrochemical etched since the gap between the two layers was too small, 

leading to it not being fully insulated. If the two layers were well separated 

and insulated, the surface of the disk would be smooth, Fig 6.10 (a). Out of the 

coupling region, the disk surface was also smooth, Fig 6.10 (d). The edges of 

the disks on the device layer were not smooth, resulting from the UV 

lithography and RIE steps. 

 

Fig 6. 11 Reduced surface and edge roughness: (a,b) over view, (c,d) fine view 
at the coupling regions.  

 

Further optimization of UV lithography and RIE, an additional reflow 

process after lithography and shorter silicon etching time during RIE, could 

reduce the roughness of the edges of the disks. Another way to reduce the 
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surface roughness is to use thermal reflow for silicon, which could be carried 

out at ~1100 ˚C in hydrogen flow,[133] but this facility was not available for 

safety reasons. Instead we annealed the sample at 500 ˚C in low ambient 

pressure (~1 mbar) for 10 hours to anneal out the ion induced defects and also 

to provide a small amount of oxidation-induced surface smoothening. The 

results are shown in Fig 6.11. The disks had clean and smooth surface. The 

edge roughness was also reduced by lithography optimization and thermal 

annealing. However, thermal annealing created another problem, that the disks 

were bent. This was probably because of the deformation of the porous silicon 

layer during thermal annealing process. 

Optical characterization was carried out using a similar setup as that 

previous used for the splitters. A tunable laser with a wavelength from 1530 

nm to 1570 nm was used to test the resonance of the microdisks and 

microrings. However, to date we have not obtained any resonance in the 

measurements, probably because that the waveguides were too thick for single 

mode and efficient coupling. 

6.3 Vertical coupling waveguide-to-waveguide 

 

Fig 6. 12 (a) Optical micrograph showing an overview of the structure. (b-f) 
show a schematic of the fabrication process viewed along a cross section at the 
dashed white line in (a).  (b) SOI wafer dimensions, (c) RIE to fabricate the 
top Si waveguide (WG), (d) proton beam irradiation to create a high defect 
density (HDD) region for the lower waveguide in the substrate, (e) anodization 
resulting in oxide layer partial  removal and PSi formation, (f) final 
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anodization step to undercut the lower waveguide, followed by annealing to 
remove the lattice damage.  

 

A simpler but more fundamental vertical coupling case in photonics is vertical 

coupling waveguide-to-waveguide. Using a similar fabrication process as 

described in the last section, we easily fabricated vertically coupled 

waveguides. An optical micrograph of the structure and the fabrication process 

viewing from the cross section are shown in Fig 6.12. A similar process using 

UV lithography, RIE, ion beam irradiation and electrochemical etching is 

described in the figure and its caption. Since a similar process was already 

described in detail in last section, we do not go into the details here again.  

6.3.1 First attempt 

The straight upper waveguides on the device layer were designed with width 

of 2.5 µm and 4 µm at the central coupling portion, and 10 µm at the ends, 

away from the coupling region. The curved lower waveguides on the substrate 

layer had a designed width of 4 µm, and a curved diameter of 200 µm. 

However, the upper waveguides were usually thinned during the UV 

lithography and RIE, while the lower were usually broadened because of the 

scattering of the ion beam making a wider defect waveguide pattern. So the 

result was usually a smaller width than designed for the upper waveguides, 

and a larger for the lower waveguides. SEM images in Fig 6.13 show one of 

the results. In the over view of the structure in Fig 6.13 (a), there are some 

bright part around the waveguides. This is because of charging of the insulated 

oxide porous silicon during SEM image collection. In Fig 6.13 (b), we can 

clearly see that the lower waveguide (~4.3 µm) was wider than the upper one 

(~3.8 µm), although they were designed with the same width. A cross section 

image at the end of the waveguides, Fig 6.13 (c), shows that we had a thick 

lower waveguide port and a thin but wide upper waveguide port. A big width 

at the ends of the upper waveguides was to ensure that they were not fully 

undercut, so able to stand on the substrate. A thick lower waveguide port at the 

ends makes the coupling of incident light from an optical fiber or lens easier. 
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Fig 6. 13 SEM images of the first attempt of vertical coupling waveguides (a) 
over view of the structures, (b) high magnification view of the coupling region, 
(c) cross section view of the two waveguides. 

 

 

Fig 6. 14 Schematic of the light coupling between the two layer waveguides.  
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The coupling lengths were designed as 20 µm, 40 µm, 80 µm, 160 µm, 

320 µm, 400 µm 500 µm, and 600 µm.  Such a big range and maximum length 

were to make sure there is enough coupling to be obtained. Four energies (50 

keV, 55 keV, 100 keV and 200 keV) of protons were used for patterning the 

lower waveguides at the coupling region, to test the affect of the thickness of 

the lower waveguides on the coupling efficiency. We can vary the ion energies 

along the waveguides to make them with vertically tapered profiles, thin at the 

central coupling region and thick at the ends. The thickness of the upper 

waveguides was fixed by the device layer thickness, as 230 nm. 

The schematic of the light coupling between the two layer waveguides 

is shown in Fig 6.14. First, incident light was coupled from an optical fiber or 

lens into the lower waveguide. When the light through the waveguide arrived 

at the coupling region, some of it was coupled into the upper waveguide, and 

remained in the lower waveguide. So after the coupling region, we obtained 

two outputs, one from the lower waveguide from transmission, Output 1, one 

from the upper waveguide from coupling, Output 2. 

 

Fig 6. 15 IR images of the light coupling from the lower waveguide to the 
upper waveguide.  
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Optical characterization was carried out with a tunable laser with 

wavelength range from 1530 nm to 1570 nm. The laser was coupled into the 

waveguide using a 60× objective lens. A InGaAs IR camera was used to 

monitor the scattered light from the top of the sample. Fig. 6.15 shows light 

coupling between the two layers of waveguides, viewing the scattered light 

from the top of the structure. The incident light was with wavelength 1.55 µm 

and TE mode. And the coupling length in this case was set as 20 µm. Light 

was successfully coupled from the lower waveguide into the upper waveguide, 

and the efficiency seemed to be quite high, but the propagation loss of the 

upper waveguide was significant. 

 

Fig 6. 16 IR images of the light coupling for different coupling lengths and 
incident light polarizations.  

 

Different coupling lengths would result in different coupling 

efficiencies. According to Fig 6.16, a coupling length of 20 µm was long 
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enough to give us an efficient coupling between the two layer waveguides. 

When the coupling length increased beyond 20 µm, the coupling efficiency 

was not increased, it even decreased as the coupling length extended beyond 

80 µm. So an efficient coupling length should be within 20 µm. Different 

polarization of the incident light would result in slight different coupling 

efficiency, but not significant. 

6.3.2 Simulations 

To better understand the light coupling between the two layer waveguides, and 

to optimize the designs, simulations were carried out using the Rsoft, 

BeamPROP software. The structure was simplified in the simulation for easy 

run of the software. A schematic of the simulation structure is shown in Fig 

6.17. The wafer plane is in XZ plane, the waveguides go through Z direction. 

Between the silicon substrate and the waveguides, there is a layer of 5 µm 

thick oxidized porous silicon. The lower waveguide lies on the porous silicon 

layer, and the upper waveguide suspends over the lower waveguide.  

 

 

Fig 6. 17 Schematic of the simulation structures. The substrate width and 
thickness: 10um, porous Si thickness: 5um, waveguides width: 5um. The 
thicknesses of the two waveguides and the gap varied. 
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The width and thickness of the waveguides and the gap between them 

can be varied. Since the SOI wafer had fixed device and oxide layer 

thicknesses, we set the upper waveguide thickness as 230 nm, and the gap as 

145 nm. The width of the waveguides was also set as 5 µm. As we varied the 

thickness of the lower waveguide, the coupling efficiency varied, as shown in 

Fig 6.18. When the lower waveguide had an equivalent thickness with the 

upper, 230 nm, the light could be fully coupled from the lower into the upper. 

The light would be coupled back and forth between the two layer waveguides 

periodically. As the lower waveguide thickness increases, the maximum 

coupling efficiency would decrease significantly. For example, with a lower 

waveguide thickness 400 nm, the maximum coupling efficiency is reduced to 

only ~30%. 

 

Fig 6. 18 Different lower waveguide thicknesses result in different coupling 
efficiencies.  

 

In the experiments, the upper waveguides were usually bent down to 

attach on the lower waveguides. So we further simplify the structures like 

shown on the top of Fig. 6.19. The incoming light wavelength is set as 1550 

nm, on changing it between 1530 nm to 1570 nm the results are almost 

constant for a coupling length of 20 µm. As the device layer of the SOI wafer 

is fixed, the thickness of the upper waveguide is fixed at TU = 230 nm. As 

discussed above, the two waveguides are almost in contact, so the gap between 
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them is set as zero. Their width is designed as 4.5 µm. Experimentally the 

proton beam energy which is used to define the lower waveguide can be 

varied in order to change its thickness TL, in the simulations, we studied 

 

Fig 6. 19 Simulation results: upper shows a schematic of the simulated 
structure, the waveguides width W and the upper waveguide thickness TU are 
fixed. The two waveguides are attached, the lower waveguide thickness TL is 
varied; lower: plots the coupling efficiency for different TL along a coupling 
length of 11µm.  

 

thicknesses from 0.1 µm to 2 µm. Fig. 6.19 shows the coupling efficiency of 

four different thicknesses (TL = 0.23 µm, 0.5 µm, 1 µm, 2 µm) along a 

coupling length of 11 µm. With TL = 0.23 µm, the simulated maximum 

coupling efficiency is over 90% within a coupling length of 1.2 µm. However, 

very accurate control over the dimensions is required to utilize such high 

coupling efficiency. For TL = 0.5 µm, the maximum coupling efficiency 

decreases to ~35%, but the tolerance of the required dimensions increases. For 



Chapter 6 Vertical Coupling Photonics 

108 
 

TL = 1 µm and 2 µm, the coupling efficiency is below 10% and 2% 

respectively. To summarize, when two waveguides are of a similar thickness, 

the maximum coupling efficiency is very high, and the maximum coupling 

efficiency rapidly decreases with increasing TL. In simulations, a gap of 0.2 

µm between the two layers of waveguides was found to produce strongly 

polarization-dependent results, whereas when the gap is close to zero, the 

polarization dependence is very weak. 

6.3.3 Further optimization and simulations 

According to the simulations, thinner lower waveguides could give out 

higher coupling efficiency, and efficient coupling length could be only within 

several microns. So we made the new designs with coupling lengths as 2 µm, 

5 µm. However, because of the curved tails of the lower waveguides, the 

actual coupling length was much more than those. For example, the one in Fig 

6.20 was designed with a coupling length of 2 µm, but had a coupling length 

of ~21 µm in the final structure. This is because that the waveguides width 

was big, and so they should have a large curving radius to minimize 

 

Fig 6. 20 SEM images of the structure, showing low magnification views of (a) 
the full structure and  (b) the coupling region, (c) high magnification cross 
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section of the thick lower waveguide (~5.4 µm×2.5 µm), (d) plan view of the 
tapered portion of the lower waveguide.  

 

the propagation loss at the curved part which made the actual coupling length 

much bigger than designed. The big width of the waveguides was mainly 

limited by the UV lithography. If using thinner waveguides made by Ebeam or 

deep UV lithography, the radius of the curve could be reduced, and hence the 

coupling length could be really reduced to several microns.  

In Fig 6.20 (d), we can see there is a tapered portion along the lower 

waveguide. That is the conjunction of the thick and thin portions of the lower 

waveguide. On the one hand, we used a low energy (50 keV) proton beam to 

irradiate the coupling region of the lower waveguide to obtain a thin lower 

waveguide at that region, and finally to achieve a high coupling efficiency. On 

the other hand, for easily coupling light from an optical fiber of lens into the 

waveguide, a thick waveguide port is necessary. So we used a higher energy 

(200 keV) proton beam to irradiate other portion at the ends of the waveguide 

that was away from the coupling region, to obtain thick input and output ports 

of the waveguide for easy light coupling.  

 

Fig 6. 21 Thinner lower waveguide gives out higher coupling efficiency.  
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To study the dependence of the coupling efficiency on the lower 

waveguide thickness, we had both lower waveguides with and without 

tapering at the coupling region. Simple line scans of the two outputs scattered 

light could easy show the different coupling efficiencies of the two cases, 

lower waveguides with and without tapering, Fig 6.21. When the lower 

waveguide was without tapering at the coupling region, so was thick at that 

region, the coupling efficiency was quite low, Fig 6.21 (a). If there was a 

tapering portion, so the lower waveguide was thin at the coupling efficiency, it 

resulted in a much higher coupling efficiency, Fig 6.21 (b). This agreed well 

with the simulations. 

 

Fig 6. 22 IR image and scan of the scattering light intensity along the 
waveguides. 

 

When the lower waveguide has a sub-micron thickness at the coupling 

region, Fig. 6.22 shows light coupling between the two layers of waveguides, 

viewing the scattered light from the top of the device, and scattered light 

intensity measurements along the waveguides. Along the thin portion of the 
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lower waveguide (A to B, and C to D), there is more scattered light, in keeping 

with a thinner, curved geometry.  However, measurement of scattered light 

from this portion is also influenced by its proximity to the coupling region, 

where a high background intensity of scattered light surrounding this region is 

observed. Because of this, the closest data points on either side of the coupling 

region are deemed to be not valid for the purpose of measuring the coupling 

efficiency, so are not joined to the main curve.  The measured coupling 

efficiency of 26% ±10%, defined as the (Input-Output1)/Input, with the values 

of I (Input) and O1 (Output1) chosen as the average of the two valid data 

points in Fig. 6.22 which are close to the coupling region, within the zones A 

to B, and C to D. For other similarly-fabricated samples, we measured 

coupling efficiencies ranging from 16 to 35% with single wavelengths or 

broad band light, compared to only ~3% measured in a sample where the 

lower waveguide was much thicker (~2.5 µm) at the coupling region. We 

believe that the measured variations of the coupling efficiency largely arise 

from limitations of the normal UV lithography and UV alignment. The 

coupling efficiency is similar to that achieved using a typical grating 

coupler[134, 135]. The loss from the upper waveguide could be reduced with a 

shorter free-standing length and optimization of the UV lithography and RIE 

steps. 

From SRIM, a lower proton energy of 50 keV can produce a lower 

waveguide thickness of about 200 nm at the coupling region. However, 

usually there is a ‘tail’ remaining after electrochemical anodization, inset of 

Fig. 6.21(b) which results in an almost triangular profile of the lower 

waveguide. In the simulations in Fig. 6.23, we incorporated a more realistic 

triangular profile of the lower waveguide, having a width of 4.5µm and a 

maximum thickness of 1µm. With such a triangular profile, the coupling 

efficiency reaches around 27% at a coupling length of 22 µm, which is higher 

than what would typically be achieved for a uniform thickness of TL = 1 µm in 

Fig. 6.19. And this result also agreed well with the experiment. If necessary, 

this tail portion may be removed by reducing the width of the lower 

waveguide from its present value to ~1 µm, based on our previous experience 

[136]. 
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Fig 6. 23 Simulation results: upper shows the actual triangular profile of the 
lower waveguide and simplified triangular profile used in the simulation; 
lower: plots the coupling efficiency of this profile. 

 

The propagation loss is measured by measuring the scattered light 

along a 3 mm length for the lower waveguide and a 1 mm length for the upper 

waveguide. Light was injected into each one in turn, with the coupling region 

playing no part in the measurements. From the measurements, losses of 

~3dB/cm for the thick lower waveguide and ~60dB/cm for the upper 

waveguide were recorded. The loss of ~60dB/cm through the upper 

waveguide is significant, presumably arising from its high roughness. Along 

the lower waveguide, there are two different parts: the thin coupling region 
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and the thick portion away from the coupling region. The measured loss is that 

of the thick portion as the thin portion is short, curved and some portion of it 

interacts with the upper waveguide at the coupling region, making a 

meaningful loss measurement very difficult. However, from the straight end of 

Input to the straight beginning of Output1, a total loss of ~32% was measured, 

so apart from a 26% coupling, it suggests a total loss of 6%, including the 

tapering loss, bending loss and propagation loss through the whole thin part. 

 

 

Fig 6. 24 One lower waveguide coupling light into two upper waveguides. 
Arrow shows location of incident light in the lower waveguide. 

 

According to simulation results using Rsoft, the coupling efficiency 

mainly depends on the gap between the two layer waveguides, the coupling 

length and the waveguide thicknesses. When waveguide thicknesses are small, 

200 nm-300 nm, and identical, with a small gap of <300nm, the coupling 

efficiency can be over 90% within a very short coupling length (<3um). In our 

experiment, the gap depends on the thickness of the oxide layer of the SOI 

wafer and the bending of the top waveguide; the coupling length can be 
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defined by the design; the top waveguide thickness depends on the thickness 

of the device layer, while the bottom waveguide thickness depends on the 

energy of the proton beam. With a fixed kind of SOI wafer, we can tune the 

gap by the natural bending of the free standing part of the top waveguide, and 

tune the thickness of the bottom waveguide with different proton beam energy 

to get different coupling efficiency for different purposes. For example, while 

we can reduce the bottom waveguide thickness to improve the coupling 

efficiency, as shown in Fig. 6.21, we can also use a thick bottom waveguide 

which gives a lower coupling efficiency but to couple the light from one 

bottom waveguide to several different top waveguides as shown in Fig. 6.24. 

6.4 Summary 

To summarize, a vertical coupling structure fabrication process using a 

combination of RIE and proton beam irradiation followed by an 

electrochemical etching on an SOI wafer is demonstrated. In the vertically 

coupled waveguides, reasonably efficient light coupling of ~16 to 35% 

between the two layers of waveguides was obtained. Such vertically-coupled 

waveguides could work as vertical-coupling directional splitters or as simple, 

high-efficiency vertical-couplers and the same fabrication process can be 

further applied to fabricate other vertical coupling structures such as 

waveguide-to-microresonators. 

Further work is aimed at optimizing the fabrication process to improve 

the repeatability of the coupling efficiency using deep UV or Ebeam 

alignment. 

 

 

 

 

 



 

 

 

Chapter 7 

Conclusion and Discussions 

This study has further developed the silicon micro- and nano-machining 

process via ion beam irradiation in two aspects: studying different etching 

behaviors after irradiation with high and low energy ion beams; and studying 

the effect of a forced current to produce high resolution structures. While the 

results showed a reduction of etching rate after high energy ion beams 

irradiation, there was an undercutting limit during electrochemical etching 

after irradiation by low energy ion beams. High energy ion beams have a deep 

trajectory and form a thick defect layer with a distribution of lower density 

near the surface and a high density peak at the end of range. This results in a 

continuous and gradual progress with a reduced etching rate. The shallow 

defect layer induced by low energy ion beams is too thin to have any 

significant longitudinal distribution, and unable to give out any gradual 

process, but result in an abrupt effect with an undercutting limit. This result 

gives us a better understanding of the ion beam irradiation effect on the 

electrochemical etching of p-type silicon, and provides a general guide on all 

other related works. Force current study was carried out in the fabrication of 

integrated 2D microresonator-waveguides section to achieve the small gaps. 

The forced current approach improved the structure resolution very little. It 

seems that the resolution limit is more likely to be caused by the overlap of the 

two adjacent line irradiations, which is because of the scattering of the beam in 

the material. 
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Fabrication of 2D photonic structures such as waveguides, splitters, 

microdisk and microring resonators on bulk silicon were demonstrated in this 

thesis. All these photonic devices can be fabricated with a single etching step 

on bulk silicon wafers. This provides a novel solution to obtaining photonic 

structures on bulk silicon other than SOI platforms, and so reduces the cost. 

Fabrication of integrated 2D microresonator-waveguides were also carried out. 

However, we failed to obtain an effective integrated structure, as there was a 

limitation of the gap between the waveguide and resonator during the 

fabrication process. To achieve an efficient coupling between the waveguide 

and resonator, the gap should be down to ~100 nm, but the smallest gap 

obtained by this process was 400 - 500 nm. This is a limitation of the 

fabrication process as there is a significant ion beam scattering at the end of 

range, and a deflection of the electric field at two close defect regions. This 

limitation could be solved by either improving the fabrication process or using 

a MEMs approach to further reduce the gap after fabrication process. 

3D beam splitters were also fabricated on bulk silicon. This 

demonstrated the ability of achieving 3D photonic structures on bulk silicon 

using multiple energies of ion beam irradiation and then all produced by a 

single etching step. 

Optical characterization was performed for 2D and 3D beam splitters. 

The results of 2D Y-shape splitters showed a polarization difference between 

the two arms: with TE modes propagating through one arm, and with TM 

modes through the other. It was also simulated with Rsoft which showed the 

same result as the characterization. Moreover, the polarization of the two arms 

was tunable as we varied the lengths of the arms and wavelength of the input 

light. This could be used as a practical tunable polarization dependence splitter. 

3D splitters have shown weak light coupling to the two upper arms. This is 

probably because that they were too thin compared to the lower arm. This 

could be improved by making the arm with same dimensions in future work. 

This ion beam irradiation induced silicon machining process was also 

applied on SOI platforms. Vertically coupled waveguide-waveguides and 

waveguide-resonators were fabricated using a combination of RIE to fabricate 
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the upper layer structures on the device layer and ion beam irradiation 

followed by electrochemical etching to pattern the substrate on SOI wafers. 

Compared to CVD, epitaxial growth, and wafer bonding, this process is easier 

and more straightforward, and it has a specific advantage in achieving an all-

silicon 3D photonic structures. The process is also compatible with mainly 

used 2D photonics at present. It provides a novel way of achieving vertically 

coupled silicon photonic structures on a single SOI wafer. 

A typical coupling efficiency of ~26% has been achieved in vertically 

coupled waveguides. In simulations, the coupling efficiency depends on the 

widths, thicknesses of the two waveguides and especially the gap between 

them, and also the coupling length. A small change of these parameters could 

vary the coupling efficiency a lot. A main limitation at present is that it is 

difficult to obtain very small size and accurate coupling between the two 

layers using normal UV lithography. This makes the control over the structure 

dimensions weak, so the repeatability is also weak. A possible solution to this 

in the future is to utilize deep UV alignment or e-beam lithography, which 

could help to achieve smaller structures and more accurate alignment. 

In conclusion, ion beam irradiation induced silicon machining process 

may provide a new way of fabricating 2D and 3D photonic structures on bulk 

silicon. It is cheaper and easier compared to other techniques. And this process 

can also be applied to SOI platforms to achieve vertically coupled all-silicon 

photonic structures, which is also compatible with present 2D photonics on 

SOI. However, further work is still necessary to improve this process, 

especially on achieving small sizes and accurate alignment between different 

layers of structures. 
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