

APPLICATION OF HEURISTIC METHODS IN FINDING PATTERNS

COMMON TO GROUPS OF BIOLOGICAL SEQUENCES

YANG LIANG

(B.Comp.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48678282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 I

Acknowledgements

I would like to express my deep gratitude to all those who gave me the possibility to

complete this thesis. I am deeply grateful to my supervisor, Professor Vladimir. Bajic,

Head of the Knowledge Extraction Lab, Institute for Infocomm Research. His wide

knowledge and creative way of thinking have been of great value for me. His simulating

suggestions and encouragement helped me in all the time of the research and the

writing of the thesis.

I am deeply indebted to my co-supervisor Prof. Ashraf Kassim, Vice-Dean of Electrical

and Computer Engineering department of National University of Singapore, who kept an

eye on the progress of my research. As a vice-dean of the department, he is very busy

with his work, but he is always available whenever I need his advises. He also helped

me a lot in editing the thesis. Without Prof. Kassim‘s supervision, it is definitely not

possible for me to complete the master project smoothly.

I would like to thank all the members in Knowledge Extraction Lab for their help, support

and interest in my research work. First, I would like to express my warm and sincere

thanks to Dr. Rajar, who spent a lot of his personal time in helping me modifying the

previous version of the thesis and gave me a lot of wonderful suggestions to make this

final version possible. Also, I am grateful for Sinlam and Suisheng, who taught me a lot

of bio-informatics knowledge. I also would like to thank Enli, Zhuo Zhang, Edward, Vidhu

and Manisha for all their valuable hints to my research. I thank you all.

 II

Table of Contents

Chapter 1 Introduction ..1
1.1 Gene Regulation ...2
1.2 Motif Discovery Problem and Its Motivation ..3
1.3 Our Problem..4

1.3.1 The Definition of Our Problem ..5
1.3.2 Criteria in Selecting Motif Group ...5
1.3.3 Methods of Eliminating Used Patterns..7
1.3.4 Some Restrictions for Motifs within a Group ...7
1.3.5 Notations...8
1.3.6 Objectives ...8

1.4 Two Types of Approaches for Motif Discovery Problems................................9
1.4.1 Approaches Based on Profile Motifs...9
1.4.2 Approaches Based on Consensus Motifs ...10

1.5 Organization of the Thesis ..11
Chapter 2 Literature Review ...12
2.1 Profile Model Algorithms ...12

2.1.1 MEME...12
2.1.2 GibbsDNA...13
2.1.3 CONSENSUS ...14
2.1.4 GLAM..15
2.1.5 Improbizer...15
2.1.6 QuickScore ...16
2.1.7 AlignACE ..16

2.2 Consensus Model Algorithms ...17
2.2.1 WINNOWER...17
2.2.2 SP-STAR ..17
2.2.3 COPIA...18
2.2.4 Random Projection Approach ...18
2.2.5 Tree-based Approaches ...19
2.2.6 Weeder ...19

2.3 Discussion ..20
Chapter 3 Simulated Annealing in Motif Discovery ...21
3.1 Overview of Simulated Annealing ...21
3.2 Neighborhood Generating Mechanisms..24

3.2.1 Basic Neighborhood Generating Mechanism......................................24
3.2.2 In-file Neighborhood Generating Mechanism......................................25
3.2.3 Nearest Neighborhood Generating Mechanism..................................27

3.3 Implementation of Simulated Annealing Algorithm..27
3.3.1 Outline of Simulated Annealing Implementation28
3.3.2 Detail Algorithm of SA Using Basic Neighbors....................................28
3.3.3 Detail Algorithm of SA Using In-file Neighbors....................................31

3.4 Time complexity of Simulated Annealing Algorithm31
3.4.1 Time Complexity of SA Using Basic Neighbors31
3.4.2 Time Complexity of SA Using In-file Neighbors32

 III

3.5 Conclusion ..33
Chapter 4 Tabu Search in Motif Discovery ...34
4.1 Overview of Tabu Search ...34

4.1.1 Two Types of Memory ..35
4.1.2 Use of Memories...36
4.1.3 Intensification and Diversification Strategies.......................................37
4.1.4 Flowchart and Pseudocode of the Standard Tabu Search..................38

4.2 Neighborhood Generating Mechanisms..39
4.3 Implementation of Tabu Search Algorithm..39

4.3.1 Outline of Tabu Search Implementation ...40
4.3.2 Detail Algorithm of Tabu Search Using Basic Neighbors....................41
4.3.3 Detail Algorithm of Tabu Search Using In-file Neighbors....................46

4.4 Time Complexity of Tabu Search Algorithm..46
4.4.1 Time Complexity of TS Using Basic Neighbors46
4.4.2 Time Complexity of TS Using In-file Neighbors47

4.5 Conclusion ..48
Chapter 5 Genetic Algorithm in Motif Discovery ...49
5.1 Overview of Genetic Algorithm..49
5.2 Implementation of Genetic Algorithm ..52
5.3 Time Complexity of Genetic Algorithm..55
5.4 Conclusion ..55
Chapter 6 Dragon Motif Builder ..57
6.1 Functions in DMB..58
6.2 Motif Report ..61
Chapter 7 Experiment Result ..63
7.1 Experiment Data Set...63
7.2 Parameters Setting in DMB ..63
7.3 Comparison Result ...65
7.4 Discussion ..69

7.4.1 Performance of Simulated Annealing, Tabu Search and Genetic
Algorithm...69

7.4.2 Comparison between Approaches for Consensus Motifs and
Approaches for Profile Motifs..71

Chapter 8 Conclusions and Future Work ..73
Appendix A: Test Result of Simulated Annealing..84
Appendix B: Test Result of Tabu Search ..86
Appendix C: Test Result of Genetic Algorithm..88

 IV

Summary

In this project, we studied a motif discovery problem, which relates to extracting the

conserved patterns from a set of unaligned DNA sequences to predict the Transcription

Factor Binding Sites (TFBSs). This problem is NP-hard (Non-polynomial time solvable),

and currently, there is no best solution algorithm for it. Although there are many surveys

and algorithms for motif discovery problem, the problem is still far from being solved and

most of the algorithms can only provide the local optimal solutions.

We provide three heuristic algorithms for this motif discovery problem (Huang et al. 2005,

Yang et al. 2005, Bajic et al. 2004). These algorithms have the ability to escape from the

local optimum and search for the global optimal solutions. They are based on three

existing heuristic algorithms, which are Simulated Annealing, Tabu Search and Genetic

Algorithm. The algorithms and the program structures are presented in detail in the

thesis. At the same time, a web-accessible motif search tool is also implemented based

on our three heuristic algorithms, and is free for academic users at http://sdmc.i2r.a-

star.edu.sg/DRAGON/Motif_Search/ (Yang et al. 2005).

From the comparison result with the other existing well-known motif discovery algorithms

using Tompa’s benchmark dataset, we conclude that Simulated Annealing, Tabu Search

and Genetic Algorithm are very useful to the motif discovery problem. They perform

much better than those existing algorithms in terms of sensitivity; they also perform

better than several existing algorithms based on some other measures of prediction

success. However we get low positive predictive values for our algorithms. That is

because some of the authors of Tompa’s study have done manual elimination of

predictions they considered not good. This process is not explained in any detail and

 V

thus makes not possible to compare our ‘raw’ results with theirs. We believe that if such

manual cleaning of predictions is made, our results could well be somewhere in the

upper group of better performing predictors. As it stands now, the results are definitely

better than at least one of the existing algorithms, which is QuickScore.

By analyzing the results, we also discovered that the consensus approaches perform

much better than profile model approaches at least in terms of sensitivity. The definition

of these two types of approaches is given in Section 1.4 of the main text. From the

different definitions of the similarity between the two motifs given by these two types of

approaches, we conclude that the motifs in one group found by consensus approaches

are much more compact than that found by profile model approaches.

To increase the accuracy of finding the TFBSs of our algorithms, some further work can

be done. We suggest introducing some biological features into the algorithms to filter out

the false predictions: a) DNA has a double-stranded structure, where one strand

complements the other; b) the specific binding sites could be located in the same region

in promoters; c) the binding sites in the sequences could be located in the same order;

d) compact motif group should have a high Information Content.

 VI

List of Publications

[i] Huang E, Yang L, Chowdhary R, Kassim A, Bajic V.B., An algorithm for ab initio DNA

motif detection, Chapter 4 in Information Processing and Living Systems, World

Scientific, 611-614, 2005

[ii] Yang L, Huang E, Bajic V.B., Some implementation issues of heuristic methods for

motif extraction from DNA sequences, Int.J.Comp.Syst.Signals, 5(2) (in print) (2005)

[iii] Bajic V.B., Huang E, Yang L, Modeling methodology for detection of regulatory motifs

in DNA/RNA and proteins, Int.J.Comp.Syst.Signals, (accepted) 2004

[iv] Krishnan SPT, E Huang, L Yang, V B Bajic, Statistical Properties of region around

PolyA sites in Human, 5th HUGO Pacific meeting and 6th Asia Pacific meeting on

Human genetics, 17-20 November 2004, Singapore.

 VII

List of Tables

Table A Test Result of Simulated Annealing...84-85
Table B Test Result of Tabu Search ...86-87
Table C Test Result of Genetic Algorithm...88-89

 VIII

List of Figures

Figure 1.1 Example of ‘One per Sequence’ ... 6
Figure 1.2 Example of ‘Zero or One per Sequence’ .. 6
Figure 1.3 Example of ‘Any Number of Repetitions’ .. 6
Figure 3.1 Pseudocode of Standard Simulated Annealing .. 23
Figure 3.2 Basic Neighbors .. 25
Figure 3.3 In-file Neighbors .. 26
Figure 3.4 Flowchart of SA Implementation ... 28
Figure 3.5 Flowchart of SA Using Basic Neighbors ... 30
Figure 3.6 Pseudocode of SA Using Basic Neighbors .. 31
Figure 4.1 An Iteration in Tabu Search .. 38
Figure 4.2 Pseudocode of Standard Tabu Search... 39
Figure 4.3 Flowchart of TS Implementation ... 41
Figure 4.4 Partial Solutions Generated by Intensification Strategy 42
Figure 4.5 Partial Solutions Generated by Diversification Strategy................................. 43
Figure 4.6 Choose a Neighbor for the Next Iteration in TS.. 44
Figure 4.7 Flowchart of TS ... 44
Figure 4.8 Pseudocode of Our Tabu Search Implementation ... 45
Figure 5.1 Crossover .. 50
Figure 5.2 Mutation ... 51
Figure 5.3 Genetic Algorithm Flowchart ... 51
Figure 5.4 Pseudocode of Genetic Algorithms... 52
Figure 5.5 Two Points Crossover ... 54
Figure 5.6 An Example of Mutation .. 54
Figure 6.1 Screen Print of Our Dragon Motif Builder ... 57
Figure 6.2 DMB Processing.. 58
Figure 6.3 An Example of Motif Report .. 61
Figure 7.1 Sensitivity of Different Algorithms ... 67
Figure 7.2 Positive Predictive Values of Different Algorithms ... 67
Figure 7.3 Performance/Correlation Coefficient of Different Algorithms 68
Figure 7.4 Average Site Performance of Different Algorithms... 68
Figure 7.5 Specificity of Different Algorithms ... 69

 IX

List of Abbreviations

DMB Dragon Motif Builder
EM Expectation Maximization
GA Genetic Algorithm
IC Information Content
llr log likelihood ratio
NP Non-Polynomial
PSPM Position-Specific letter-Probability Matrix
PWM Position Weight Matrix
SA Simulated Annealing
TF Transcription Factor
TFBS Transcription Factor Binding Site
TS Tabu Search

 1

Chapter 1 Introduction

Bioinformatics is the field of science that uses computers to store, retrieve and analyze

biological information for the purpose of predicting the function, structure or composition

of biomolecules (http://bioinformatics.org). Using bioinformatics, the biological research

can be accelerated and enhanced. "Biomolecules" include genetic material---nucleic

acids---and the products of genes: proteins. "Classical" bioinformatics deals primarily

with sequence analysis. There are three important sub-disciplines within bioinformatics

such as:

a) analysis and interpretation of various types of data including nucleotide and amino

acid sequences, protein domains, protein structures, etc.;

b) development and implementation of tools that enable efficient access and

management of different types of information;

c) development of new algorithms and statistics to access relationships between

members of large data sets.

This project falls under the first and second categories. It deals with identification of a set

of short sequence motifs that are mutually very similar and which may be common for

many members of specific sequence sets. Such motifs frequently have strong biological

relevance, for example they may represent binding sites of regulatory proteins. To

efficiently determine such motifs, some biological features and their representation are

introduced into specific existing meta-heuristic algorithms. Moreover, the project is

typically related to transcription regulation and identification of regulatory elements in

DNA. Thus, we focus our attention on this class of problems.

 2

1.1 Gene Regulation

Molecular processes within cell are controlled in many ways and gene regulation is one

of the principal mechanisms utilized in cells (Latchman 2002). Genes are selectively

expressed in time and in different cells. Only a subset of genes in the genome is

transcribed at a given time in specific cells under specific conditions. This is

accomplished through interaction of binding regulatory proteins (e.g. transcription

factors, TFs) to the DNA regulatory sites (e.g. TF binding sites, TFBSs). These sites

usually are located in the regions called promoters. When genes are controlled by a

similar set of TFs, we usually call them co-regulated. For this reason, the promoters of

co-regulated genes normally contain and share conserved DNA sequence patterns

called motifs. The sequence patterns corresponding to a motif are called instances of

that motif. To identify motifs and their corresponding instances is very important in

biology research. Many biological sequences belonging to a group of functionally related

genes or proteins usually contain a number of biologically active sequence patterns

shared among many and sometimes all members of the functional group.

DNA motifs that we consider are usually not very long and extend at most up to 30

nucleotides without gaps. However, promoters containing the motifs are long (usually

from several hundreds to 2000 nucleotides, and sometimes even more). Every instance

of a motif normally has the same length, but they could be different in composition.

Such motifs could be also determined by experimental approaches such as gel-shift

analysis, DNA footprinting or Chip-CHIP (Liu 2004). However, such biological

experiments are tedious and require a long time to get the result. For this reason the use

of computer programs to identify such TFBSs are a good alternative to experimental

methods.

 3

1.2 Motif Discovery Problem and Its Motivation

Common motifs shared by different DNA sequences frequently have relevant biological

interpretation. A typical example represents promoters of a group of co-expressed genes

that contain many common transcriptional regulatory elements, which also share similar

positional organization such as order and mutual distances of transcriptional elements

(Werner 1999).

There are several surveys (Brazma et al. 1998, Brejova et al. 2000, Rigoutsos et al.

2000, Sinha et al. 2000, Sinha et al. 2003, Tompa et al. 2005) related to motif

identification problems, that discuss several algorithms used for this purpose. These

algorithms usually produce mutually quite different results. This is not necessarily a bad

thing as this may be useful for the users to make selections to suite their need most

appropriately. However, most of the existing algorithms can only provide local optimum,

and there are still a lot of unsolved technical problems in this computation biology

problem.

As said, although, a lot of work has been done for such motif discovery problems, these

problems are still far from being solved. In the research area of computer algorithm,

these problems are defined as NP-hard (Non-polynomial time solvable). Brute force

algorithm can be developed to search for the optimal solution. The practical algorithms

are those that can give good enough solutions within acceptable time. These algorithms

are either greedy or heuristic. All of the existing approaches for the motif discovery

problems belong to these two categories.

 4

However, none of them is good for all types of dataset. Some algorithm may be the best

for some dataset, but it may not be suitable for the others. These problems are still

interesting many bioinformatics researchers. Developing new algorithms based on the

features of the problems is a good idea. On the other hand, introducing the biology

features to the existing algorithms is also a good try, especially for those NP-hard

problems. There are some heuristic algorithms such as Simulated Annealing (SA)

(Booker 1987, Dowsland 1993, Eglese 1990, Fleischer 1995, Ingber 1993, Ingber 1996,

Johnson et al. 1989, Kirkpatrick et al. 1983, Tovey 1988), Tabu Search (TS) (Glover

1989, Glover 1990, Glover et al. 1993, Glover et al. 1997, Randall 1999) and Genetic

Algorithms (GAs) (Barbulescu et al. 2000, Booker 1987, Davis 1991, Denning 1982,

Goldberg 1989, Koza 1992, Koza 1994, Mitchell 1996, Mühlenbein 1992, Reeves 1993,

Reeves 1997). All of these algorithms have the ability to escape from the local optimum

and search for the global optimal solutions. The drawback of these algorithms is lower

speed, but consistency of the extracted pattern groups is usually considerably higher

than what is obtained with some traditional algorithms such as EM (Bailey et al. 1994,

Bailey et al. 1995b, Lawrence et al. 1993) or Gibbs sampling (Casella et al. 1992,

Favorov et al. 2004, Thijs et al. 2001). These existing algorithms could be applied in

determination of functional patterns in DNA/RNA sequences. From the best of our

knowledge, Simulated Annealing, Tabu Search or Genetic Algorithm has not been used

in predicting the TFBSs.

1.3 Our Problem

In the project, a motif discovery problem is studied. It relates to extracting the conserved

patterns (motifs) from a set of unaligned DNA sequences to predict the TFBSs.

 5

1.3.1 The Definition of Our Problem

In the problem, Hamming distance is used to calculate the distance between two motifs:

The number of nucleotides which differ between two motifs. The smaller the distance,

the similar the two motifs are.

The data set represents a collection of DNA sequences. These are given as strings

of 5 characters, A, C, G, T, and N. These characters stand for the four bases

(adenosine, cytosine, guanine and thymine), and character N indicates that it is not

clear which base occupies the given position. Our intention is to extract significant

groups of motifs from such collections of sequences. There is a consensus motif for

each group. The distance between every motif and the consensus motif of the group

should be less than or equal to some user defined threshold.

That means motifs in the same group should share a great level of mutual similarity, but

could slightly differ from each other.

1.3.2 Criteria in Selecting Motif Group

Three types of occurrences of a single motif among sequences are considered in the

project. The criteria describe the distribution of the motifs among the sequences.

a) One per sequence: Each sequence must contain ONE motif. Only the best motif

(motif with the highest similarity score) is chosen. For this criterion, the intention is to find

the group of motifs whose total similarity score is the highest. An example is given in

Figure 1.1

 6

b) Zero or one per sequence: The motif may or may not appear in a sequence. Only

ONE best motif can be identified in each sequence. For this criterion, the intention is to

find a group of motifs that can cover as many sequences as possible. An example is

given in Figure 1.2

c) Any number of repetitions: The motifs may or may not appear in the sequences. A

sequence may contain one or more motifs. For this criterion, the intention is to find the

largest number of motifs that can be grouped together. An example is given in Figure 1.3

Figure 1.1: Example of ‘One per Sequence’

Figure 1.2: Example of ‘Zero or One per Sequence’

Figure 1.3: Example of ‘Any Number of Repetitions’

 7

1.3.3 Methods of Eliminating Used Patterns

Generally, the objective of the algorithms is to extract several groups of motifs from a

given sequence set. Since the process sequentially determines the set of motifs that

belong to one motif family, and then searches for the next collection of motifs to form

another family, we have to make sure not to mix the different motif families in the

process of motif identification. A condition has to be satisfied before assigning a motif to

any family, which is if the motif already belongs to one motif family no part of it can

belong to another motif family. This means that if several motif groups are required in the

final search report, those motifs already grouped have to be removed before searching

the next motif group. To implement it we provide two methods:

a) Eliminate Motifs Only: The motifs, which were chosen for constructing the previous

motif groups, will be excluded in searching for a new motif group.

b) Eliminate Sequence: Those sequences that contain motifs previously identified will be

excluded from the search for a new motif group.

1.3.4 Some Restrictions for Motifs within a Group

All the motifs must be selected from the user supplied input sequences. Among those

motifs grouped together, there must be a consensus motif, which usually has to be one

of the motifs within this group. We have such a condition, because all of our algorithms

search for the motif groups reversely. In the algorithms, we assume that a consensus

motif has already been found, and the other motifs are selected from the input

sequences according to the similarity level by comparing with the presumed consensus

motif to build the motif group model (Chapter 3, 4, 5). Sometimes, the motif chosen to be

the consensus motif does not appear in the input sequences.

 8

1.3.5 Notations

To present the pseudocode of the algorithms and discuss their time complexity, the

following notations are defined:

S0 = current solution;

S1 = a neighbor of the current solution;

C(S) = the cost of a solution S;

∆(C) = C(S1)–C(S0);

l = the number of nucleotides in the chosen pattern;

n = the number of sequences in the input file;

m = the number of nucleotides in each sequence in the input file;

(l, d) motif model = a motif group inside which all the motifs have the length l and the

maximum mutual distance is d.

1.3.6 Objectives

The objective of the study is to solve the described motif discovery problem by

introducing the biological features into there existing meta-heuristic algorithms, which

are Simulated Annealing, Tabu Search and Genetic Algorithm.

1. Increase the effect of the algorithms in finding the biological meaningful motifs is one

of the goals. By comparing with those well-known motif discovery algorithms, our

algorithms should perform better in some of the measurements, such as sensitivity,

positive prediction, etc.

2. Increase the efficiency is the other goal. The three algorithms proposed should be

able to find the good enough result within acceptable time.

 9

3. With the reasonable short calculation time of the algorithms, a web-based motif

search tool can be built, which can be directly applied in determination of functional

patterns in DNA and RNA.

1.4 Two Types of Approaches for Motif Discovery Problems

Depending on how the motifs are represented, motif discovery algorithms can be split

into two groups: a) those based on motif profiles and b) those based on consensus

motifs (Liu 2004, Stormo 2000).

1.4.1 Approaches Based on Profile Motifs

These algorithms use profiles of a set of similar motifs, which is presented as a position-

specific letter-probability matrix (PSPM). This matrix describes the probability of each

possible letter at each position in the pattern. In these algorithms we assume that the

motif alignments contained in the sequence set correspond to the letter distribution that

differs most from the background distribution. Therefore, these approaches try to

maximize the likelihood ratio of the motif model relative to the adopted background

model. Usually, in these algorithms the information content (IC) is used as a score

function. Here we define also the other auxiliary scores.

The log likelihood ratio (llr) of a motif is:

llr = log (Pr(sites | motif) / Pr(sites | background)) (1.1)

IIr is a measure of how different the sites are from the background model.

 10

Pr (sites | motif) is the probability of the occurrences given the model consisting of the

PSPM of the motif. Pr (sites | background) is the probability of the occurrences given the

background model.

The IC of the sequence alignment is just a normalized llr:

IC = llr/n (1.2)

Here, n is the length of the motif.

The algorithms used in these approaches are iteratively improved greedy and statistical

procedures. The drawback of these algorithms is that they can only provide the local

optimum. So, the solutions may be very different for the different selected starting points

– the initial guesses of the solution. CONSENSUS (Hertz et al. 1999), GibbsDNA

(Lawrence et al. 1993) and MEME (Bailey et al. 1995a) are the most popular programs

for profile based motif discovery.

1.4.2 Approaches Based on Consensus Motifs

These approaches attempt to search for a consensus motif first. Then this consensus

motif is used to scan the sequences in search for those motifs that are very similar to the

consensus motif (similarity can be defined by using some distance measure and

threshold). These motifs will be grouped together, and all the motifs within this group will

share a high level of mutual similarity. A motif model can be built from such a motif

group.

Compared with approaches based on profile motifs, the results obtained from consensus

motif approaches are usually much better in the sense that motif groups are more

 11

coherent, i.e. the motifs usually share a greater level similarity. However, these

approaches are frequently inefficient in practice as they require an extremely long

computation time, such as COPIA (Liang 2001) and GLAM (Frith 2004 et al.).

1.5 Organization of the Thesis

In Chapter 2, we discuss the existing algorithms for the motif discovery problem.

According to their different motif representation, the algorithms are grouped in two

categories. In Chapter 3, 4 and 5, we describe Simulated Annealing, Tabu Search and

Genetic Algorithm for the motif discovery problem respectively. For each algorithm, the

standard algorithm is first described; and this is followed by a discussion on how the

algorithm is applied to the motif discovery problem. In Chapter 6, a motif discovery

software with the name Dragon Motif Builder, which is implemented using the provided

algorithms, is described. In Chapter 7, we present the experiment results and compare

them with the results obtained from other motif discovery algorithms, such as MEME. In

the last Chapter, we provide a conclusion and also some suggestions for further work.

 12

Chapter 2 Literature Review

Many approaches have been developed for motif discovery problem. Several computer

programs also exist which can be used for this purpose. MEME, GibbsDNA,

CONSESUS, GLAM, Improbizer (Ao et al. 2004) and QuickScore (Régnier et al. 2004)

are some of the popular statistical approaches for the profile motif model. WINNOWER,

SP_STAR (Pevzner et al. 2000), COPIA, PROJECTION (Buhler et al. 2001) and

probabilistic suffix trees (Eskin et al. 2002, Sagot 1998) are approaches for the

consensus motif model. In the following sections, we give a brief review of these

approaches.

2.1 Profile Model Algorithms

2.1.1 MEME

The expectation-maximization (EM) algorithms have been used in artificial intelligence

as a statistical learning technique. EM concept in learning has been originally developed

by Lawrence et al. (1993). The EM algorithms have certain limitations and the MEME

algorithm (Bailey et al. 1994, Bailey et al. 1995b, Lawrence et al. 1990) represents one

of its possible extensions. MEME is an unsupervised learning algorithm, which is

guaranteed to converge to a local maximum. The MEME implementation relaxes the

assumption and allows zero or many occurrences of a motif to be searched for.

MEME is based on the maximum likelihood estimation for fitting the model to the training

data. It aims at optimizing the parameters of the model so that the likelihood of the data

is maximized through the EM algorithm. Using the initial motif model, EM iteratively

improves the model through the expectation step (E-step) and the maximization step (M-

 13

step). The expected value of the log likelihood of the current model parameters over the

training data set is determined in the E-step, while in the M-step the parameters of the

model are updated.

The implemented version of MEME allows for finding a motif of any length in the pre-

specified range. One of the drawbacks of all EM algorithms is that they find only local

maximum of the likelihood function. The theoretical time complexity is quadratic in the

size of the data set and linear in the length of the motif (O ((nm)2l)), with n, m and l

previously defined.

The website of the algorithm is:

http://meme.sdsc.edu/

2.1.2 GibbsDNA

GibbsDNA (Lawrence et al. 1993) uses a supervised learning algorithm that assumes

that each DNA sequence contains exactly one motif instance of fixed length. It attempts

to maximize the similarity among the motifs in a family. The best motif on each sequence

is the one that maximizes the ratio of the corresponding pattern probability relative to the

background probability, which is expressed as the log likelihood ratio. The algorithm

uses Gibbs sampling to random seeds and takes DNA structure and constraints into

account.

GibbsDNA first randomly selects an initial position on each sequence where the

assumed motif is; then it repeats the iterative improvement of the motif model family

through the “predictive update step” and the “sampling step”. In the predictive step, one

motif is deleted and the truncated motif model is determined. In the sampling step, the

 14

selected motif is deleted and the remaining sequence is examined so that the algorithm

determines the likelihood of every motif found in the remaining sequence to fit the motif

model. Then, it selects the one with the highest likelihood and adds to the truncated

model.

This algorithm suffers from the large space of starting positions that impacts on the time

required for the algorithm to end. Also, it may never reach the global optimum. The time

complexity is proportional to the number of iterations before converging.

The website of the algorithm is:

http://rulai.cshl.edu/people/ioschiks/gibbsDNA/

2.1.3 CONSENSUS

CONSENSUS (Hertz et al. 1999) algorithm is based on position weight matrices for

pattern discovery in DNA or protein sequences. It uses greedy multiple alignments

aiming at a motif alignment that maximizes the information content of the model.

CONSENSUS first randomly selects one sequence as start sequence, and extracts

subsequences with fixed length l as single pattern motifs; then it attempts to select the

best motif model through the top Q (where Q is a user-designated parameter, the default

Q in CONSENSUS is 1000) pair-wise pattern similarities between this start sequence

and one of the remaining sequences; then it iteratively assembles the top Q motifs into

multiple similarities by adding more and more pattern instances from different sequences

with a greedy selection algorithm. The problem with this algorithm is that it is dealing

with two sequences at a time, thus making locally optimal selection at each of the steps

without having insights how this reflects to the rest of sequences. The time complexity of

this algorithm is O (nm2 + Qn2ml), where m is the average length of sequences.

 15

The website of the algorithm is:

http://bifrost.wustl.edu/consensus/

2.1.4 GLAM

GLAM (Frith et al. 2004) is based on Gibbs sampling and also automatically optimizes

the alignment length and evaluates the statistical significance of its output. The algorithm

is searching for the motifs by obtaining the best possible alignments without gaps of

multiple sequence segments. The 'best' alignment is used to select the motifs. Maximally

one segment from each sequence is included in the alignment. If the alignment is better

without the sequence, such a sequence may be excluded. Because the algorithm cannot

find multiple motif instances in one sequence, long sequences can be fragmented into

shorter ones with the alignment transformed to a weight matrix and used to scan the

sequences to obtain the final motif predictions.

The website of the algorithm is (currently there is no web server):

http://zlab.bu.edu/glam/

2.1.5 Improbizer

Improbizer (Ao et al. 2004) utilizes a version of EM algorithm and determines for a

collection of DNA motifs the position weight matrices that characterize the collection.

The concept is based on using the enrichment of the motifs in the input data as opposed

to certain background. The background can be up to a second-order Markov model

randomly generated. As an option, it may construct a Gaussian model of motif

placement, so that motifs that occur in similar positions in the input sequences are more

likely to be found.

 16

The website of the algorithm is:

http://www.soe.ucsc.edu/~kent/improbizer

2.1.6 QuickScore

QuickScore (Régnier et al. 2004) uses an exhaustive search to estimate

probabilities of rare or frequent words in genomic sequences. It is based on an

extended consensus allowing well defined mismatches. It calculates z-scores and P

values, depending on the statistical models used, such as the Bernoulli model and the

Markov model.

The website of the algorithm is:

http://algo.inria.fr/dolley/QuickScore/

2.1.7 AlignACE

AlignACE (Aligns Nucleic Acid Conserved Elements) (Hughes et al. 2000) finds

sequence motifs given as position weight matrices. These motifs are presumed to be

conserved in a set of DNA sequences. Using iterative masking allows multiple distinct

motifs to be found within a single data set. AlignACE is based on a Gibbs sampling and

the quality of alignments is estimated using a maximum a prior log-likelihood score that

reflect the overrepresentation of the motifs.

The website of the algorithm is:

http://atlas.med.harvard.edu/

 17

2.2 Consensus Model Algorithms

2.2.1 WINNOWER

WINNOWER (Pevzner et al. 2000) converts a multiple local alignment problem into a

maximal clique search problem in a multipartite graph and attempts to solve the clique

problem by filtering. If the input sequences are provided it attempts to find the (l, d) motif

model (the motif length is l, and each motif can be constructed from the consensus motif

by changing at most d nucleotides). It constructs the graph G as follows: Every vertex in

G corresponds to a length-l motif; two motifs in different sequences are connected by an

edge if their distance is at most 2d. G is an m-partite graph, where m is the number of

sequences in the input dataset. The original problem reduces to finding the largest

clique. It should be mentioned; however, that search for cliques is an NP-hard problem.

WINNOWER removes edges that are definitely not contained in a large clique. Then it

attempts to filter out all spurious edges iteratively: a) filter weak vertices, which are

vertices not supported by a neighbor in every part of G; b) filter weak edges, which are

unsupported edges; c) filter such weak triangles. In the general case, the time

complexity of this approach is (O (nm)k+1), which is very consuming. Another

disadvantage of this approach is that it treats all edges of the graph G equally without

distinguishing between edges corresponding to high and low similarities.

2.2.2 SP-STAR

SP-STAR (Pevzner et al. 2000) treats every l-mer that appears in the input sequences

as a potential consensus motif. For each l-mer in the sample it finds its best instance in

each sequence and collects these instances to form an initial motif model. This model is

improved heuristically by a local improvement approach. The aim is to minimize the

sum-of-pairs score of the model: SPscore (m1, m2… mn) = Σi, j δ(mi, mj). For any length-l

 18

motif in the model: a) find the best match motif in each of the sequences; b) extract the

consensus motif by choosing the most frequently appearing nucleotide in each position

among these n length-l motifs. SP-STAR repeats this local improvement procedure until

SPscore cannot be further improved. The time complexity of finding the best potential

sample consensus, which has the minimal sum-of-pairs score, is O ((nm)2). The time of

local improvement is O (Mnml). M is the number of iteration needed to converge. This

number is unpredictable. Also, this algorithm may converge to a local optimum.

2.2.3 COPIA

COPIA (Consensus Pattern Identification and Analysis) (Liang 2001) is a software for

finding consensus pattern in the sequences. The algorithm assesses every r (r is a

constant less than or equal to n) subsequences of length l (each in a different sequence)

and extract the consensus motif choosing the most frequently appearing nucleotide in

each position among the r subsequences. The consensus motif is then used to find its

closest pattern in each of the n sequences and these form a motif model. The output is

the new consensus motif that produces the total minimal distance score to its instances.

The time complexity of this algorithm is O ((nm)r+1l) when r ≥ 3.

2.2.4 Random Projection Approach

Buhler and Tompa designed the PROJECTION algorithm (Buhler et al. 2001) that can

find good starting points for consensus motif models. It is designed for the (l, d)-motif

model, and it selects a projection by selecting k out l positions at random. Then each

length-l string can be hashed into buckets based on these k positions. Within the bucket

all the instances have the same nucleotides in these k positions. For k too large the

number of motif instances that form a family under the projection are small. The random

projection algorithm can be run multiple times and the best motif from these runs will be

 19

selected. The time complexity of this approach is hard to predict, but usually linear time

complexity in the size of data set can be achieved.

2.2.5 Tree-based Approaches

Tree-based approaches (Eskin et al. 2002, Sagot 1998) search for the (l, d) motif model.

They use a suffix tree data structure or some of its variations. The idea is that the

consensus motif will be one of the l-mers in the data set or their neighborhood. These

methods can find conserved patterns by traversing the suffix tree. They can find all valid

motif models through one search. However, due to very exhaustive searching of the e-

neighborhood, they are quite time consuming and grossly impractical.

2.2.6 Weeder

Weeder (Pavesi et al. 2004) is an algorithm that uses concept of consensus and

enumerates exhaustively all the k-mers up to a maximum pre-specified length. It collects

motif occurrences from the input sequences and evaluates each motif according to

number of sequences in which it appears and how well conserved it is in each

sequence. This conservation is estimated with respect to expected values derived from

the k-mer frequency analysis. Different combinations of ‘canonical’ motif parameters are

automatically tried by the algorithm in different runs. These parameters are derived from

the analysis of known instances of yeast TFBSs. Weeder analyzes and compares the

top-scoring motifs in each run using a simple clustering method. The aim here is to

detect which ones are likely to correspond to TFBSs. Best instances of each motif are

selected using a weight matrix built with sites found by consensus-based algorithm.

The website of the algorithm is:

http://159.149.109.16/Tool/ind.php

 20

2.3 Discussion

Several comparative studies (Brazma et al. 1998, Brejova et al. 2000, Rigoutsos et al.

2000, Sinha et al. 2000, Sinha et al. 2003, Tompa et al. 2005) about these approaches

have been reported. On simulated samples (e.g. on the samples containing simulated (l,

d) motifs), consensus approaches are shown to perform better than statistical profile

based approaches, because consensus approaches take more information about the d

mismatch than statistical approaches. However there are still no experiments to show

that the consensus approaches are significantly better on real biological data. One of the

observed common drawbacks of the statistical Profile Model approaches is their frequent

trapping at a local optimum. Moreover, in practice, enumerative consensus approaches

take much longer time. That is why statistical approaches are still the most popular

choice for biologists.

 21

Chapter 3 Simulated Annealing in Motif Discovery
3.1 Overview of Simulated Annealing

The idea for Simulated Annealing based optimization (Kirkpatrick et al 1983) relies on

the principles of thermodynamics and mimics the process in which a solid material is first

melted and then allowed to cool by slowly reducing temperature. This approach is very

suitable for discrete combinatorial optimization problems, such as our problem.

Simulated Annealing makes use of the definition of neighborhood. The algorithm

simulates a walk through the solution space that is obtained by iteratively moving from

the current solution to its neighbor, which is randomly selected from the current

solution’s neighborhood. The detail definition of a neighbor will be discussed in the next

section. Improved moves are always accepted, while deteriorating moves are only

accepted with a certain probability. This acceptance probability is controlled by a

parameter which is called temperature T and a function F(S0, S1, T) which calculates the

probability value. The algorithm stops when the solution converges or the temperature is

small enough.

In Simulated Annealing, for each solution S, there is a cost associated with the defined

quality based on the criterion. Usually, the smaller this cost, the better. The function

F(S0, S1, T) is constant, which is chosen such that solutions corresponding to a large

increase in cost will have a small probability of being accepted, and solutions

corresponding to small increases in cost will have a larger probability of being accepted.

There is no limitation on the size of the deterioration with respect to its acceptance. A

sample function given by standard Simulated Annealing is shown in equation (3.1).

 22

F(S0, S1, T): PT(accept S1 from S0) =

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
)

)()(
exp(

1

01

T
SCSC

 (3.1)

The temperature is the most important parameter in Simulated Annealing. It is a non-

increasing sequence of numbers which tend to zero during the search process. In the

beginning of the search, when temperature is large enough, large deteriorations are

accepted and the algorithm tends to accept any move; as temperature decreases, only

small deteriorations are accepted; finally, close to the end of computation, as

temperature approaches zero, the probability of accepting a worse solution is very small,

almost no deterioration is accepted, and the search simply attempts to find the local

minimum similar to greedy iterative algorithms. The speed of temperature reduction

plays an important role in the convergence of the algorithm and hence has a great

influence to the result quality. However, to determine a function for temperature

reduction is still a major unresolved problem in Simulated Annealing algorithm. Slowing

down the “cooling schedule” will increase the probability of finding global optimum

solution, so we have to make a trade off. A simple temperature reduction function is

given in the equivalent (3.2).

T ← kT (0< k < 1, k is always chosen to be greater than 0.95 in practice) (3.2)

From the above description, we can see that Simulated Annealing has the ability to

escape from local minima. This is achieved by jumping out of them before the solution is

too close to local minima. That means finding the global minimum is not related to the

initial condition which is the initial solution in our case. Another advantage is its very

simple implementation. However, the selection of Simulated Annealing parameters is a

bit subjective and this represents the main disadvantage. Simulated Annealing is

If C(S1) ≤ C(S0)

If C(S1) > C(S0)

 23

sometimes called a “biased random walk”. This due to the fact that iteration steps are

made randomly and they do not contain an intelligent move as most of the other

optimization techniques. One of the characteristics of Simulated Annealing algorithm is

that it does not require the knowledge of the search space. This can be an either

advantage or a disadvantage depending on conditions of application and problem in

question.

Let us define some annotations below, which are used in the pseudocode.

r = a random number between 0 and 1;

T0 = initial “temperature” in SA;

T = variable analog to “temperature” in SA;

Tstop = temperature threshold; the algorithm will stop when T is smaller than this

parameter.

The pseudocode of standard Simulated Annealing algorithm is given in Figure 3.1

 24

3.2 Neighborhood Generating Mechanisms

Standard heuristic Algorithms, such as Simulated Annealing, look for the global optimum

by iteratively moving from the current solution to the next. With this feature, they require

the concept of neighbors of the current solution in order to ensure an improvement of the

current solution. It is necessary to search neighboring solutions before the improved one

can be found. In our problem of motif discovery, three types of neighborhood generating

mechanisms are used, namely basic Neighborhood Generating Mechanism, In-file

Neighborhood Generating Mechanism and nearest Neighborhood Generating

Mechanism. They are used in this way: either basic Neighborhood Generating

Mechanism or In-file Neighborhood Generating Mechanism is first used in the algorithm

to look for a neighbor; if none of the neighbors is acceptable because of the algorithm

restrictions, nearest Neighborhood Generating Mechanism will be used to definitely

provide a valid neighbor for the algorithm to continue searching.

3.2.1 Basic Neighborhood Generating Mechanism

Let a motif S0 represent a current solution. A basic neighbor of S0 is defined as:

S1∊N(S0), where S1 can be obtained from S0 by changing a nucleotide in any

position to any other allowed nucleotide (A, C, G, T).

The operation is illustrated in Figure 3.2.

 25

Based on the algorithm, we have 3l neighbors for the current solution. The search space

of this neighborhood generating algorithm includes all the l4 possibilities. With this

neighborhood definition, the search space is continuous, which is very helpful for the

algorithm to search the whole solution space thoroughly. However some solutions

(motifs) found by using this neighborhood definition may not appear in the input

sequences, because the sequences most likely do not contain each of the l4 motifs. In

the case of l4 > n(m-l+1), there are at least l4-n(m-l+1) number of motifs found are not in

the input sequences.

3.2.2 In-file Neighborhood Generating Mechanism

The constraint that the consensus motif must appear in the input sequences suggests a

different strategy. As the name suggests, all the neighbors found by using this

mechanism must come from the input sequences.

Let a pattern S0 represent a current solution. An In-file neighbor of S0 is defined as:

S1∊N(S0), where S1 can be obtained from the input sequences such that the

similarity between S0 and S1 is greater than the threshold.

The operation to get an In-file neighbor is illustrated in Figure 3.3.

 26

Based on this algorithm, the search space contains only those motifs appearing in the

input sequences. The maximum number of different motifs is min ((m-l+1)n, 4l). In

practice, the number of different motifs is much smaller than this number. However, to

extract these in-file neighbors, we have to do the following: a) scan the whole input file,

which takes O (nm) time; b) do comparison between the current solution (motif) and the

substring pattern from the input sequences, which takes O (l) time.

The advantage of using this neighborhood definition is the ability to reduce the search

space, which is very important in solving those NP-hard problems (like our problem).

However, there is a serious draw back of this neighborhood definition, i.e. it results in a

non-continuous search space. There may be a huge gap between some sections of the

solution space (those solution motifs locating in different sections differ in too many

positions). If the starting solution (motif) is in one of such sections, the search will never

reach the other sections of the solution space. Without the ability of jumping among

these sections, the algorithm can only search for the local optimal. To overcome this

draw back, in-file neighborhood generating mechanism has to be used together with

nearest Neighborhood Generating Mechanism. This will be explained in the next section.

 27

3.2.3 Nearest Neighborhood Generating Mechanism

There might be some situations, in which either basic Neighborhood Generating

Mechanism or In-file Neighborhood generating mechanism cannot find acceptable

neighbors because of the following reasons: a) the consensus motif must appear in the

input sequences; b) the forbiddance of Tabu solutions, which is explained in detail in

Tabu Search chapter. However, we have to get a neighbor to continue searching. A

motif of the same length, which has the least mismatches compared with the current

solution will be chosen from the input sequences as the initial solution in the next search

iteration. This neighbor can be found at the same time of searching for in-file neighbors.

3.3 Implementation of Simulated Annealing Algorithm

The Simulated Annealing algorithm we use to solve our problem belongs to the

consensus motifs approaches. The idea of this approach is: it tries to look for a

consensus motif first; then the consensus motif is used to scan the sequences to look for

those similar motifs to build the motif model.

Starting from the initial motif, Simulated Annealing iteratively searches the neighborhood

of the current solution in order to get closer to the global optima. In our problem, to look

for the neighbor of the current solution, both basic neighborhood generating mechanism

and In-file neighborhood generating mechanism are implemented. If no valid basic

neighbor or In-file neighbor can be found, Nearest neighbor will be used. For each

solution, we have a cost associated with it based on which of the three criteria is

selected as described in the former content. The algorithm stops when the temperature

is smaller than some defined threshold.

 28

3.3.1 Outline of Simulated Annealing Implementation

In the implementation, there are three parts of the solution: CONTROLLER, RESTART

and SA. Every time, CONTROLLER calls RESTART to get an initial solution and passes

it to SA. SA runs the initial solution until the temperature becomes very low and the

solution reaches some local minimum. Then CONTROLLER calls RESTART again.

Figure 3.4 shows the flowchart of the implementation.

CONTROLLER

SARESTART

initial
result

local
optimum

Figure 3.4 Flowchart of SA Implementation

3.3.2 Detail Algorithm of SA Using Basic Neighbors

We can use the relation r < e-∆(C)/T to decide whether or not to accept the move from the

current solution to its neighbor. In the beginning, when T is large enough, these moves

are similar to randomly selecting a position and changing the nucleotide on this position

to another. When T becomes very small, only a downhill move (a move which will reduce

the value of the criterion function) can be accepted. We have to find such a downhill

move. So, here, we have two problems to solve:

(a) It is a necessity to have some move order, so that when T is very small we can scan

all the possibilities to find a downhill move. Finding a downhill move randomly is not

reasonable when T is very small.

 29

(b) As T is large in the beginning, it is likely to accept most moves no matter whether

they are downhill or uphill. Since we are using SA, we have to make the move random

enough. We cannot always change the nucleotide at some particular position.

To solve the above two problems, we follow the following 3 steps every time we are

looking for a neighbor solution (assume the motif we are looking for has 10 nucleotides):

Step1: Randomly reorder all the positions: R1 (4, 10, 9, 1, 5, 6, 3, 2, 7, 8).

Step2: Randomly reorder all the nucleotides: R2 (G, T, A, C)

Step3: For each position in R1, change the nucleotide on that position to another

nucleotide in the order R2.

These three steps allow us to have an order to scan all possible moves.

Every time, we update the current solution, we compare it with the best solution we

found so far. If the current solution is better, update will be done. To ensure that the final

solution motif we get appears in the input sequences, we have to check the existence

every time we update the best solution.

The flowchart of data processing within SA block is shown in Figure 3.5:

 30

The pseudocode of the algorithm is described in Figure 3.6:

Steps 1 to 4 are doing the initialization.

Step 5 reorders both position list and nucleotides list to ensure the research thorough

and random.

Step 6 is the stop condition of the algorithm.

Step 6.1 is the stop condition for each iteration. It checks whether the Basic

Neighborhood Generating mechanism can find an acceptable solution.

Steps 6.1.3 to 6.1.3.2 accept any downhill move.

Steps 6.1.4 to 6.1.4.2 accept the uphill move with certain probability.

Steps 6.2 to 6.2.2 find the nearest neighbor in the situation when no acceptable basic

neighbor can be found.

Step 6.3 updates the temperature every n iteration move from the current solution to its

neighbor.

 31

3.3.3 Detail Algorithm of SA Using In-file Neighbors

When Simulated Annealing uses in-file neighborhood generating mechanism, those in-

file neighbors have to be extracted from the input sequences in the beginning of each

iteration. To ensure that the selection of neighbor is random enough and thorough as

discussed in the previous section, we simply reorder the collection of those in-file

neighbors and select the neighbor according to this order.

Since the solution motifs we visited under this definition of neighbor are all from the input

sequences, no check is needed before updating the best solution.

3.4 Time complexity of Simulated Annealing Algorithm

3.4.1 Time Complexity of SA Using Basic Neighbors

1. For two random reorderings, the time complexity is O(l) and O(1).

 32

2. For neighbourhood move operation, each position has three possible changes,

so there are O(l) neighbors for every solution.

3. To evaluate each neighbor solution, we have to compare it with all the patterns in

the input file. For one sequence, there are m-l+1 number of patterns, so there is

in total (m-l+1)*n patterns in the input file. For each comparison, l nucleotides are

compared. So the time complexity is O ((m-l+1)*n*l) = O (m*n*l) (since in most of

the time l is much smaller than m).

4. For the worst case, all those standard neighbors cannot meet the requirement,

nearest neighbor have to be found. This takes O (m*n*l) time and only one

neighbor is returned.

5. From 2, 3 and 4, we can get the time complexity for each iteration is O(l) * O(mnl)

+ O(mnl) + O(mnl) = O (mnl2).

6. The algorithm takes i iterations to converge. Here, i depends on the “cooling

schedule”, which is the equation (4.2), and the stop threshold. It can be

calculated by using the in-equation T0ki < Tstop. Hence the total time complexity of

this algorithm is O (mnl2(log(Tstop/T0)/log(k))).

3.4.2 Time Complexity of SA Using In-file Neighbors

1. For the random reordering, the time complexity is O(l).

2. For nighborhood move operation, the number of neighbors U is an unpredictable

value.

3. The evaluation of the solution is the same as in SA using basic neighborhood

generation. The time complexity is O ((m-l+1)*n*l) = O (m*n*l).

4. To find the nearest neighbor, it takes O (m*n*l) time and only one neighbor is

returned.

 33

5. From 2, 3 and 4, we can get the time complexity for each iteration is O(U) *

O(mnl) + O(mnl) + O(mnl) = O (Umnl).

6. Hence the total time complexity of this algorithm is O (Umnl(log(Tstop/T)/log(k))).

3.5 Conclusion

Simulated Annealing algorithm using in-file neighbors converge much faster, because of

the smaller solution space. However, the quality of the solution is not that good as what

we get from the same algorithm but using basic neighborhood definition. It is because

the solution space under in-file neighborhood definition is non-continuous. In Simulated

Annealing, no memory is used for recording the visited solutions which will be forbidden

in the later iterations, and the only acceptance criterion is the function (3.1). Original idea

of Simulated Annealing tries to jump out of the local optimum at the time when the

temperature is high enough, but now the algorithm accepts almost every in-file neighbor

similar to each other when the temperature is high, which results in being trapped in the

same islanded section of the solution space. Although with the help of nearest

neighbors, which can only be happen in the situation that no in-file neighbor is

acceptable when the temperature is very small, the search can jump out of the section

and break away from the local optimum, it already loses the best feature of Simulated

Annealing algorithm.

 34

Chapter 4 Tabu Search in Motif Discovery
4.1 Overview of Tabu Search

Tabu Search, which is a meta-heuristic approach, is a neighborhood search method

introduced by Glover (1986). Many computational experiments have shown that Tabu

Search can be applied in many combinatorial problems. Because of its flexibility, Tabu

Search has already beat many classical procedures.

Tabu Search is also an iterative procedure just like Simulated Annealing. It explores the

solution space by moving from the current solution to the best solution in N*(S), which is

a subset of its neighborhood N(S) at each iteration. The initial solution is typically

created with some cheapest insertion heuristic or sometime even randomly. When the

initial solution is created the algorithm tries to improve it by using local search with one

or more neighborhood structures and a best-accept strategy. Unfortunately, unlike the

classical descent methods, the current solution may deteriorate from one iteration to the

next and the risk of visiting again a solution and more generally of cycling is present.

Thus, to avoid cycling, those tabu solutions are not allowed to be chosen. Here, tabu

solutions are those solutions containing tabu-active elements, which are the selected

attributes of recently explored solutions. The duration that an attribute remains tabu is

called tabu-tenure, and can vary over different intervals of time.

Without memories, Tabu Search just selects the best neighbor solution for the next

iteration. In order to avoid being trapped into local optimal and to improve the efficiency

of the exploration process, the algorithm proposes the technique of tabu, which keeps

track some information along the exploration process (like those solutions visited in the

previous iterations). With the help of this memory technique, certain solutions are

 35

prevented from N*(S) and hence from being revisited. This systematic use of memory is

an essential feature of Tabu Search. One role of the memory is to restrict the choice to

some subset of the neighbor solutions. It means even for the same solution, they may

have different neighbors if they are encountered in the different stage of the search

process. That is why Tabu Search is called a dynamic neighborhood search algorithms.

4.1.1 Two Types of Memory

There are two types of memory in Tabu Search. One is short-term memory, and the

other is long-term memory. The effect of both types of memory can be viewed from

modifying the neighborhood N(S) of the current solution.

The short-term memory component is the starting point for many Tabu Search

implementations. Under the control of short-term memory, N*(S) is a subset of N(S) by

using tabu condition to prevent a particular solution, or set of solutions, from being

chosen as the outcome of the next move. The most important short-term memory to

determine the solutions in N(S) is the use of tabu list. In the simplest form, a tabu list

contains the tabu solutions that have been visited in the recent past (less than tabu-

tenure number of iterations). N*(S) is got from N(S) by excluding those solutions in tabu

list. Other tabu list structures can contain those tabu-active attributes or prevent certain

moves. Those attributes whose tenure expires are removed from the tabu list at the time

some new attributes are added. Tabu lists containing attributes are much more effective,

although they raise a new problem. With forbidding an attribute as tabu-active element,

typically more than one solution is declared as tabu solutions. Some of these solutions

that must now be avoided might be of excellent quality and have not yet been visited. To

overcome this problem, the tabu status can be overridden if certain conditions are met;

 36

this is called the aspiration criterion and it happens, for example, when a tabu solution is

better than any previously found solution.

In the simplest case, long-term memory is used to restart the search. Once the search

by short term-memory gets stuck, long-term memory determines the new starting point.

One example of the use of long-term memory is the elite solutions list, which records

those elite solutions found so far. Members in the elite solutions list are determined by

setting a threshold that is connected to the objective function value of the best solution

found during the search. With the analysis on those elite solutions, we can tell the

common attributes or the difference among them. These common attributes and the

difference will be used in Intensification restart and Diversification restart, which is

discussed in Section 4.1.3.

4.1.2 Use of Memories

Generally, those memory structures in Tabu Search operate in four dimensions:

recency, frequency, quality, and influence.

Recency-based memory is the most commonly used short-term memory. It keeps track

of solution attributes that have changed during the recent past and assigns them as

tabu-active elements. This prevents certain solutions of recent past from belonging to

the admissible neighborhood of the current solution and hence from being revisited.

Generally, frequency-based memory is a type of long-term memory, which stores

frequency of searching in each area and it provides complements the information

provided by recency-based memory. It may store the number of times an attribute enters

or leaves the solutions or the number of iterations during which an attribute belongs the

 37

solutions generated. Like other type of long-term memories, frequency-based memory is

applied only to those elite solutions.

Quality-based memory is also called elitist memory, which is a long-term memory. It

records the n best candidates found so far. An example of quality-based memory is the

elite solutions list which has been described in the former context. The neighborhood of

those solutions in the elite memory can be used to extend the search neighborhood.

Influence-based memory considers the effects of the different choices on both quality

and structure during the search. It records the information about the influence of choices

on particular solution elements.

Using these four types of memories we can realize two key strategies which are highly

important components of Tabu Search: intensification and diversification.

4.1.3 Intensification and Diversification Strategies

Intensification strategy aims to identify solutions attributes that are common to good

solutions and to encourage the Tabu Search to seek solutions with these common

attributes. This strategy enables a more thorough search of the solution space.

Diversification strategy is a complement of this. It aims to encourage the search process

to search unexplored regions and to generate solutions that differ in various significant

manners from those already used. This can be done by forbidding those attributes that

are common to those good solutions. This strategy can radically shift searching area to

different section of the solution space.

 38

4.1.4 Flowchart and Pseudocode of the Standard Tabu Search

The prime Tabu Search flow is shown in Figure 4.1

From this figure, we see that there are two important elements in the iteration: one is

defining a neighborhood and the other is checking whether a move is a tabu move or

not. We use the basic Neighborhood Generating Mechanism and In-file Neighborhood

Generating Mechanism as what we did in SA. To check whether a move is a tabu move,

we have to have one or more tabu lists, which is a recency-base memory. With the help

of these tabu-active elements, we should be able to jump out the cycles.

In Tabu Search, the stop condition can be defined in any way that is suitable for the

problem. Here are some possible immediate stopping conditions:

a) N*(S) = Φ;

b) Maximum number of iterations are reached;

c) The number of iterations since the last improvement of the solution is larger than

some defined number (a threshold);

d) Some evidence can be given that an global optimum solution has been obtained.

The following are the pseudocode of standard Tabu Search:

 39

4.2 Neighborhood Generating Mechanisms

Tabu Search is also a standard heuristic algorithm. Like Simulated Annealing, it explores

the solution space by looking for the next solution from the current one. The same three

neighborhood definitions are used in Tabu Search as what we have described in the

chapter of Simulated Annealing.

4.3 Implementation of Tabu Search Algorithm

This Tabu Search algorithm we use to solve our problem also belongs to the approaches

for consensus motifs. Like other consensus motifs approach, Tabu Search tries to look

for a consensus motif first, and then uses this consensus motif to scan the sequences to

look for those similar motifs to build the motif model.

Tabu Search is also a neighborhood local search algorithm like Simulated Annealing.

The search steps are very similar with that of Simulated Annealing, but the algorithm of

 40

choosing the neighbor strictly follows the strategy of Tabu Search, which is totally

different from that of Simulated Annealing. Starting from the initial solution (motif), Tabu

Search iteratively searches the neighborhood of the current solution in order to get

closer to the global optimum. In the problem, to look for the neighbor of the current

solution, both basic neighborhood generating mechanism and In-file neighborhood

generating mechanism are tried. If by the use of these two neighborhood definitions no

acceptable neighbor is found, nearest Neighbor will be used. For each solution, we have

a cost associated with it based on which criterion is selected as described in the section

of problem definition. The algorithm stops if the number of iterations since the last

improvement of the solution is larger than some defined number.

4.3.1 Outline of Tabu Search Implementation

There are five parts in Tabu Search algorithm: CONTROLLER, INTENSIFICATION,

DIVERSIFICATION, RESTART and TS. Every time, CONTROLLER passes the elite

solutions list to INTENSIFICATION and DIVERSIFICATION, which then analyze those

elite solutions to get some constrains for restart. Restart receives and follows those

constrains to generate one intense solution and one diverse solution. These two

solutions are returned to CONTROLLER and will be used as initial solutions in TS, which

is the complete Tabu Search algorithm. TS searches the solution space starting from

these two initial solutions until some stop criterion is met, and generates a list of elite

solutions (the function value is within some tolerance comparing with the best solution

found so far). Lastly, TS returns this elite solutions list to Controller. Figure 4.3 shows the

flowchart of Tabu Search algorithm.

 41

CONTROLLER

RESTART

DIVERSIFICATION

TS

INTENSIFICATION

Constrains
Intense initial

solution

Elite
solutions list

Diverse initial
solution

Current
solution

A solution in the
neighborhhood and
the tabu list in
this iteration

Figure 4.3 Flowchart of TS Implementation

Refine the elite
solutions list and

Tabu list

4.3.2 Detail Algorithm of Tabu Search Using Basic Neighbors

As described in the previous section, there are several parts in the implementation of

this algorithm, and they are explained separately.

CONTROL

Controller guides TS to find a good solution more efficiently. It passes information

between the Intensification/Diversification part and the TS part.

INTENSIFICATION

This part finds the common elements of those elite solutions. Here, the common

elements are those which represent the same nucleotides at the same positions in

different elite solutions (motifs). To get an intensification result, we still make use of

these common elements.

 42

In the implementation, for each position, if one nucleotide is used more than 75%, the

intensification result will keep this nucleotide in this position. An example is shown in

Figure 4.4

This partial solution is sent to Restart, where those “X” nucleotides can be determined.

DIVERSIFICATION

This part finds the common elements of the elite solutions, which will not be allowed to

use in the diversification result.

In the implementation, for each position, if one nucleotide is used more than 75%, the

diversification result will forbid this nucleotide in this position. We randomly choose any

other nucleotide for this position. An example is shown in Figure 4.5

 43

RESTART

This component receives the partial solution from the Intensification and Diversification

components to complete it. Here we use random assignment for non-common positions.

TS

The most important part in Tabu Search is the definition of the neighborhood. Like in

Simulated Annealing, both basic neighborhood generating mechanism and In-file

neighborhood generating mechanism are implemented. In this section, the

implementation of Tabu Search using in-file neighbors is talked about.

 As the feature of Tabu Search, which is different from SA, we need to search all

possible neighbors of the current solution and to choose the best non-tabu solution. That

means we need a tabu list to record those tabu-active elements. Here, the idea of

looking for a non-tabu in-file neighbor and updating the tabu list is illustrated in Figure

4.6 (Tabu with format (3, G, 2) means that the nucleotide in the 3rd position cannot be

changed to G in the solution motif within the next 2 iterations).

 44

In TS, the improved-best aspiration criterion is also used. As described, Intensification

and Diversification restart strategies are very important components here, we need

memories to record all the elite solutions that are within some defined tolerance to the

best solution found so far.

The flowchart of TS using the in-file neighborhood generating mechanism is given in

Figure 4.7.

 45

The corresponding pseudocode is illustrated in Figure 4.8.

Step 1 does some initializations for global variables

Step 2.1 resets some local variables for each iteration

Steps 2.2 to 2.2.2.1 look for the best solution and the best non-tabu solution in the

current solution’s neighborhood.

Steps 2.3 to 2.4 do some update. If the best solution is better than any other solution

found so far, this solution is selected as the initial solution for the next iteration;

otherwise, the best non-tabu solution is selected.

 46

4.3.3 Detail Algorithm of Tabu Search Using In-file Neighbors

The algorithm is quite similar as that of using basic neighbors except the following two

differences:

a) As the difference of the neighborhood definition, neighbors are generated differently.

Current solution S0 is used to scan the input sequences. All those patterns from the input

sequences, which have the same length as the current solution and differ from the

current solution within some defined threshold, will be selected as the current solution’s

neighbors.

b) As the solution patterns visited are all from input sequences, there is no need to do

any check before updating the best solution and the elite solutions list.

4.4 Time Complexity of Tabu Search Algorithm

4.4.1 Time Complexity of TS Using Basic Neighbors

Let T = tabu-tenure (the number of iterations that an attribute remains tabu)

This T must be less than 4l, otherwise after 4l iterations all possible moves will be
tabu moves.

1. For neighbourhood move operation, each position has three possible changes,

so there are O(l) neighbors for every solution.

2. To evaluate each neighbor solution, we have to compare it with all the patterns in

the input file. For one sequence, there are m-l+1 number of patterns, so there is

in total (m-l+1)*n patterns in the input file. For each comparison, l nucleotides are

compared. So the time complexity is O ((m-l+1)*n*l) = O (m*n*l) (since in most of

the time l is much smaller than m).

 47

3. To check whether the neighbor is a tabu-solution, we have to check whether the

changed position is inside the tabu list or not. If the number of iterations that

every tabu remains inside tabu list is T, there will be T tabus inside the list. Here

we ignore the situation of using Neareast neighbor, otherwise the number of

tabus inside the list will be greater than T. Hence the time complexity is O (T);

4. For the worst case, all those standard neighbors cannot meet the requirement,

nearest neighbor have to be found. This takes O (m*n*l) time and only one

neighbor will be returned.

5. From 2, 3 and 4, we can get the time complexity for each iteration is O(l) *

(O(mnl) + O (T)) + O(mnl) + O(mnl) = O (mnl2).

6. The algorithm takes i iterations to converge. Here, i depends on the stop

criterion, and is unpredictable. Hence the total time complexity of this algorithm is

O (mnl2i).

4.4.2 Time Complexity of TS Using In-file Neighbors

The algorithm is quite similar as that of using basic neighbors, so the time complexity is

also similar except the number of neighbors and the number of tabus inside the tabu list.

1. For neighborhood move operation, we cannot know the number of neighbors

accurately, which is denoted as Q here.

2. Since each neighborhood move involves several positions in this algorithm,

mutiple tabus are added into the tabu list in each iteration. We cannot tell the

number of tabus inside the list. However, it is confirmly less than 4l.

Based on the discussion of the time complexity of TS using Standard Neighbors, we can

tell the time complexity for each iteration of TS using In-file neighbors as:

O(Q) * (O(mnl) + O (4l)) + O(mnl) + O(mnl) = O (mnlQ)

 48

The algorithm takes i’ iterations to converge. Here, i’ depends on the stop criterion, and

is unpredictable. But from the experiments and the discussion from the section 4.3.4, we

know that the i’ is much smaller than i. The total time complexity of this algorithm is O

(mnlQi’).

4.5 Conclusion

In Tabu Search, algorithm using In-file neighbors performs better. Similar to Simulated

Annealing, Tabu Search algorithm using in-file neighbors converges much faster

because of the smaller solution space. In contrast to Simulated Annealing, the quality of

the solution is as good as what we get from the same algorithm but using basic

neighborhood generating mechanism. It is because Tabu Search has the ability to forbid

re-visiting the same solutions with the help of the memories. Although the solution space

under in-file neighborhood definition is non-continuous, Tabu Search can jump out of the

current solution space section whenever it realizes that the most of the solutions in this

section have already been visited. So with the help of the nearest neighbor, non-

continuous solution space has no influence to the Tabu Search result.

 49

Chapter 5 Genetic Algorithm in Motif Discovery
5.1 Overview of Genetic Algorithm

Genetic Algorithm are based on population generation heuristics that borrows its ideas

from the natural genetic evolution and diversification. The algorithms are pioneered by

John Holland in the 1960s. The algorithm is inspired by the evolutionary ideas of natural

selection and evolvement. The essential concepts of Genetic Algorithm aim to simulate

processes of survival of fittest as they evolve in natural system. They provide a technical

solution suitable for hard optimization problems.

Generally, there are two main components in genetic algorithm: the problem encoding

and the evaluation function. Genetic Algorithm can be applied to almost all problems that

have large search space. However, these problems may be in quite different styles. To

apply Genetic Algorithm on these problems, we have to encode them to the style of

gene evolution. Also, to evaluate the goodness of a solution, we have to find a function.

That takes the solution as the input and returns a score value.

Genetic Algorithm makes use of a number of current solutions and combines them

together to generate new solutions by imitating the genetic process of reproduction.

Three fundamental principles are used in GA to create new population, and they are:

Selection, Crossover and Mutation. Only gene patterns which are most fit will reproduce

and create a new population. This is performed in the Crossover step. The idea behind

is that "good" sections of the parents are combined to produce even more fit children.

Although many of the children created in this way will not be sufficiently successful to

survive the next selection, some will.

 50

Given the input data, we first randomly generate a certain number of solutions, say, S1,

S2 ... Sn. In the GA terminology, each sample solution is called a chromosome. The set

of chromosomes is designated as a population.

Selection

To each chromosome, we have a fitness value from the evaluation function. Stronger

individuals, which are those chromosomes with higher fitness values, will have greater

chance to survive and to reproduce offspring than weaker individuals which will tend to

perish. In other words, the algorithm tends to keep good solutions in the population and

discard the bad ones.

Crossing over and Mutation

The most important step in Genetic Algorithm is reproduction, which includes “crossing

over” and “mutation”.

The content of the two chromosomes participating in reproduction are merged together

to form a new chromosome. This heuristic step provides a possible method to get a

better child solution from two good parent individuals, which is an evolution. Figure 5.1

gives the idea of “Cross over”.

If we repeat “Selection” and “Cross over”, no new solution space can be explored since

these two steps make use of the known domains. This may result in convergence to a

local minimum instead of the global minimum. To ensure deviation from the known

 51

domains, the Mutation step is necessary. After the child solution is generated, every

fraction of the chromosome is allowed to mutate with a very small possibility (typically

0.001), which is a kind of parthenogenesis in biology. This mutation strategy allows us to

explore the whole solution space. With Mutation, new features not known before to the

population are generated and they may or may not be beneficial to individuals in the

population. However, we hope that in a large population some of these mutations will be

beneficial. An example of mutation is shown in Figure 5.2.

Figure 5.3 shows the flowchart of standard Genetic Algorithm.

Pseudocode of Genetic Algorithm is given in Figure 5.4.

 52

The Genetic Algorithm uses several criteria to decide when to stop, which are listed

below:

a) The number of generations reaches a specified number;

b) The running time of the algorithm reaches some specified amount;

c) The number of generations with no improvement in the fitness function reaches some

specified number;

d) The running time of the algorithm with no improvement in the fitness function reaches

some specified amount.

e) The fitness of the best solution reaches some defined threshold.

f) The fitness of the population reaches some defined threshold.

5.2 Implementation of Genetic Algorithm

This Genetic Algorithm we are using to solve our problem also belongs to the

approaches for consensus motifs. Like other consensus motifs approach, Genetic

Algorithm tries to look for a consensus motif first, and then use this consensus motif to

scan the sequences to look for those similar motifs to build the motif model.

 53

In contrast to Tabu Search and Simulated Annealing, Genetic Algorithm is a population

heuristic algorithm. It needs a number of initial solutions to iteratively generate next

generations. The algorithm keeps on merging two parent solutions and mutating the

child individuals in order to get better offspring and to approach to the global optima. For

each solution, we have a cost associated with it based on which of the three criteria is

selected as described in the former content. The goal of the algorithm is to continually

improve the fitness of the best solution, as well as the average population fitness. The

algorithm stops if the number of generations with no improvement in the fitness function

reaches some specified number.

Initial Population: The initial population of gene patterns is created randomly from the

input sequences. First, we randomly select a sequence and a position in the sequence.

A solution pattern can be generated by extracting the substring of the sequence starting

from that position with the length equals to the length of the pattern searching for.

Selection: This block extracts a subset of patterns (solutions) from the existing

population of patterns, according to the defined fitness. Selection can be performed as

described below:

Consider the population where each pattern (solution) has associated fitness. The more

fit the pattern, the higher its fitness score. The fitness function is determined by different

motif selection criterion. We calculate the mean-fitness of the population. Every

individual pattern will be copied to the new population, at frequency proportional to its

fitness (relative to the average fitness). For example, when “Any repetition per

sequence” is used as the selection criteria, the number of appearance of a pattern will

be its fitness. For all the solutions in the population, if the average number of the

 54

appearance is 8.5 (average fitness), and the number of appearance of an individual

pattern is 20, we have 20/8.5 ≈ 2.35. This individual pattern will be copied 2 times and

also it will have probability of 0.35 to have one more copy in the new population. In our

implementation, the size of the population changes dynamically, but it should not differ

too much between iterations.

Crossover: The example described in the overview section uses one-point crossover. In

our implementation we use a two-point crossover, where we randomly select two

positions in parent patterns, cut the parent patterns into three segments and create two

children by swapping the segments between the two cutting points. Let S be the number

of solutions in the population, then S/4 solutions are selected out to do the crossover.

Figure 5.5 illustrates this strategy.

Mutation: The last step is the Mutation where we use probability P to change any

nucleotide in a pattern to another nucleotide. If the pattern has a length K, the probability

of changing to another pattern is 1-(1-P) K (in our implementation we let this value ≈

0.02).

 55

For this Genetic Algorithm, we did not implement too many extra functions. The

flowchart and the pseudocode are similar to the standard ones given in the previous

section.

5.3 Time Complexity of Genetic Algorithm

Let S = number of solutions in the initial population.

During the search, in each iteration, the numbers of solutions are not differ too much, so

we can assume the number are O (Sl).

a) To generate the initial population, O(S) time is needed;

b) In the step of Selection, the fitness of every solution needs to be calculated. The time

complexity of this step is O(S*m*n*l), because, as discussed in the previous chapter, to

evaluate the fitness of each solution, we have to compare it with all the patterns in the

input file, which take O (m*n*l) times.

c) In the step of Crossover, since O(S) solutions are taken out to do the crossover, O(Sl)

time is used.

d) Mutation will be applied to every solution, so this step takes O(Sl) time.

Hence the total time complexity of our Genetic Algorithm is O(RSmnl), where O(R) is

the time to converge and it is unpredictable.

5.4 Conclusion

Genetic algorithm operates on entire populations of candidate solutions in parallel, which

is one of the main strengths of the genetic approach. This parallel operation feature

implies that Genetic Algorithm is much more likely to locate the global optima than the

traditional techniques, which iteratively refine a single solution, because they are much

less likely to get stuck at local optima. Moreover, due to the parallel operation, the

performance of the algorithm is much less sensitive to the initial conditions. The

 56

performance of Genetic Algorithm is at least as good as a purely random search,

because it makes hundreds, or sometimes even thousands, of initial guesses. Hence,

when the search space is large, complex or poorly understood, Genetic Algorithm could

be very useful and frequently sufficiently efficient.

The convergence of a GA is usually slower than traditional techniques. In fact, with a

good initial guess close to the global optimum, traditional techniques are much faster

and more accurate than a genetic search. Another problem of Genetic Algorithm is that

although the solutions found more likely to estimate the global optimum, most of the time

they are only estimate. From the discussion above, we know that Genetic Algorithm

never searches the small neighborhood around the current solution like what Tabu

Search and Simulated Annealing do. Users must realize that Genetic Algorithm only

finds an exact optimum by chance, whereas traditional algorithms (such as Tabu Search

and Simulated Annealing) find it exactly.

Genetic algorithm can be used in a way that enhances and complements the traditional

methods. Genetic approaches, in particular, are now available to optimize difficult, NP-

hard objective functions. Furthermore, these genetic approaches are often simple to

design and easy to code, and can be used in concert with traditional methods to greatly

increase the probability of finding the true global optimum.

 57

Chapter 6 Dragon Motif Builder

Dragon Motif Builder (DMB) is a motif search tool. This application is for detecting short

DNA motifs from a set of unaligned DNA sequences. This tool is developed based on

four different heuristic algorithms in the format of web-based application. Simulated

Annealing, Tabu Search and Genetic Algorithm have already been discussed in the

previous chapters. The other algorithm is Expectation Maximization, which is based on

the idea of maximum likelihood estimation.

A public server is free for academic users, and can be found at

http://sdmc.i2r.a-star.edu.sg/DRAGON/Motif_Search/ (Yang et al. 2005).

Figure 6.1 Screen Print of Dragon Motif Builder

 58

DMB aims to provide a free-access tool for the biologists to analyze the biological

sequences. Figure 6.1 shows the main page of this web-based software tool. It allows

users to submit the sequences to the UNIX server for analysis by using web browser,

and to receive the result report through Email. Figure 6.2 explains the processing and

system platforms of DMB.

6.1 Functions in DMB

In the following content of this section, we will see how those functions in the software

can be used through different parameter setting.

Input File

In order to use the tool, users should provide a set of DNA sequences in the FASTA

format, either in ACGT or acgt alphabet. These sequences can be either pasted to the

main sub-window provided, or browsed from the disk.

 59

The maximum number of sequences DMB can support is 10,000 and the length of the

individual sequence must be less than 3,500 nucleotides. Currently, Dragon Motif

Builder only can detect input sequences in the FASTA format:

>sequence name
sequence as one / more lines

Motif Length

Motif length indicates the length of DNA subsequence you expect to represent the motif.

The default is 8 nucleotides, and the range is from 4 to 30 nucleotides.

Maximum allowed number of nucleotide mismatches in a group of motifs

This number indicates the maximum number of nucleotides different from the consensus

motif which the algorithm can tolerate while grouping motifs.

Number of motifs to generate and report

This is the number of motifs that users want to be discovered and extracted from the

input data. The default value is 1.

Email address

Users’ Email addresses are required in order to receive the analysis results, because

this kind of problem is quite time consuming and users may not be patient enough to

wait for the result. The submissions will be stored on the server and processed, and it

takes some time to search for the best groups of motifs with the heuristic algorithms. In

this case, E-mail address is required so that the result file could be sent back to the

users even the browser has been closed. Without this email information, the analysis will

not start.

Algorithms for motif search

 60

You can select any one of the heuristic algorithms you like: Tabu Search, Simulated

Annealing or Genetic Algorithm.

Occurrence of a single motif in the sequences

This is the criteria described in the problem definition section. When “One per sequence”

is chosen, it means that each sequence must contain ONE similar motif, and only the

best motif is chosen. When “Zero or one per sequence” is chosen, it means that the

motif may or may not appear in the sequences. Only ONE best motif can be picked out

from one sequence. “Any number of repetitions” means that the motifs may or may not

appear in the sequences. Any number of motifs can be picked out from one sequence.

Eliminating the selected motifs

When the user wants more than one motif in the search report, these are two methods of

eliminating the selected Motifs from the sequences. When “Eliminate Patterns Only” is

selected, it means that the patterns, which were chosen for the previous motifs, will be

excluded in the next search iteration. When the option of “Eliminate Sequences” is

selected, it means that those sequences with the previous selected motifs appeared will

be excluded.

Analysis specifies boundaries of DNA segments

If the sequences are aligned, it is possible to select the segment for submitted

sequences to be analyzed. To use this feature, users need to check the square box

before the “User specifies segment for analysis” and then specify the start and end

positions of sequences for the analysis. One checkbox to induce the double-stranded

search for all the algorithms

 61

The rest options and parameters not mentioned here are for Expectation Maximization

Algorithm, and not included in this thesis.

After pressing the ‘submit’ key the file or pasted sequences will be transmitted to the

server and further processed.

6.2 Motif Report

In the result page, the motifs are identified by groups. One group for each iteration.

Figure 6.2 shows the motif report for the 2nd iteration. The report has three parts, which

are a) a list of motifs in the group; b) analysis of the group; c) and a graph representation

of the position distribution.

Figure 6.3 An Example of Motif Report

a b c d

gf

h

e

 62

An example of one motif report is given in Figure 6.2. Inside the figure:

a: Similar specific motif patterns, which have been grouped together

b: The specific sequence, from which the motif selected

c: The start and end position of the motif in the sequence

d: The appearance of the motif in the sequence. +1 for forward pattern and -1 for

reverse compliment pattern.

e: Some description of the motif group, such as: iteration number, the number of motifs

in the group, the number of sequences those motifs selected from and the

consensus motif.

f: The summary of the motif group in term of position weight matrix

g: Consensus motif of the group.

h: The percentage of each position range

 63

Chapter 7 Experiment Result

To test how accurate our algorithms predict the Transcription Factor Binding Sites

(TFBS), we use the benchmark data set provided by Tompa (2005), which can be

downloaded from the website http://bio.cs.washington.edu/assessment/. We compare

the motifs found based on our motif search algorithms, which are Simulated Annealing,

Tabu Search, Genetic Algorithm and those existing algorithms, which are MEME,

QuickScore, Weeder, GLAM, Improbizer, Consensus and AlignACE. These algorithms

already have test results in Tompa’s paper. With the comparison, we will verify the

algorithm we proposed. We will assess how well our algorithms (SA, TS and GA)

recognize such known biological sequences as compared to those well-known motif

discovery algorithms.

7.1 Experiment Data Set

The benchmark data sets we are going to use to test the algorithms are from three

types: a) Real genomic promoter sequences that are used as the ‘real’ data set. These

sequences contain annotated real TFBSs. There is unfortunately a drawback of using

this data set since we do not know what other real TFBSs are located in the promoters.

Thus, if the algorithm correctly predicts those non-annotated binding sites, it will be

penalized. b) The ‘Markov’ data set contains the sequences that are randomly generated

using Markov chain and we assume that we already know the complete correct answer.

c) The randomly chosen sequences from the same genome represent the ‘generic’ data.

7.2 Parameters Setting in DMB

a) Motif Length: 12 (SA and TS) and 8 (GA)

 64

TFBSs are generally known to have a length within the range of 10-15 nucleotides.

Hence a motif length of 12 should be a good length to be chosen for searching motifs.

Another reason for us to choose this number instead of a smaller one is the definition of

“correct prediction of site” in our experiment (also defined in Tompa’s paper). A predicted

site is considered overlapping a known site only if they overlap by at least ¼ the length

of the known site. And from the benchmark data set given, some of the TFBSs are very

long up to 30, so to predict such long motifs, the minimum length of the motifs is 8 with

no mismatch allowed. That is why we choose a longer motif.

Unfortunately, our GA implementation has restriction to search for motifs of length of

maximally 8 nucleotides. It is because when the motif is long, the initial population will be

exponentially large. Although, we will definitely miss some of the correct predictions, the

result is still quite good, which is shown in the next section.

b) Maximum allowed number of nucleotide mismatches in a group of motifs: 2

Eliminating the selected Motifs: choose “Eliminate Patterns Only”.

In the data sets, most of the files contain only few sequences (less than 10).

c) Number of motifs to generate and report: 10

The number of motifs generated by most of the existing algorithms (used to compare

with our algorithms) is within the range from 5 to 10. We choose to extract 10 motifs from

our input sequences. This is because the length of our input sequences is within the

range of 1500 to 2000 nucleotides. We set the size length of motif search as 12 nts

(nucleotides/residues). Hence a coverage of 120+ nucleotides (12 * 10) including the

distance between the motifs was reasonable area to be covered for finding significant

motifs.

 65

d) Algorithms for motif search: We try SA, TS and GA

e) Occurrence of a single motif in the sequences: Any number of repetitions.

As described above, most of the date files contain few sequences (some of them only

have 1 or 2 sequences). It is not the case that each sequence comes from the different

species and contains the same TFBSs, so “Any number of repetitions” should be a

reasonable choice.

f) Choice of the result motifs:

We choose the whole group of motifs instead of choosing the consensus motif, and no

post-process will be done to filter out those false predicted solution motifs.

7.3 Comparison Result

Here, we use the same comparison rule as what described in Tompa’s paper (2005). For

each system that we denote as T (tool) and each data set that we denote as D, the

accuracy of T on D can be assessed at the nucleotide level and at the site level. For the

assessment at the nucleotide level we denote by:

nTP be the number of nucleotide positions in both known sites and predicted sites,

nFN be the number of nucleotide positions in known sites but not in predicted sites,

nFP be the number of nucleotide positions not in known sites but in predicted sites, and

nTN be the number of nucleotide positions in neither known sites nor predicted sites.

One can say that a predicted site overlaps a known site if they overlap by at least 1/4 the

length of the known site. At the site level we can thus define:

sTP be the number of known sites overlapped by predicted sites,

sFN be the number of known sites not overlapped by predicted sites, and

 66

sFP be the number of predicted sites not overlapped by known sites.

At either the nucleotide (x=n) or site (x=s) level one can then define

Sensitivity: xSn = xTP / (xTP + xFN), and

Positive Predictive Value: xPPV = xTP / (xTP + xFP).

The sensitivity gives the fraction (probability) of known sites (or site nucleotides) that are

predicted, and the positive predictive value gives the fraction of predicted sites (or site

nucleotides) that are known.

At the nucleotide level one can also define

Specificity: nSp = nTN / (nTN + nFP).

Finally, various single statistics can be considered that in a sense average (some of) the

score measures mentioned. We define (Tompa 2005) the (nucleotide level) performance

coefficient as

nPC = nTP / (nTP + nFN + nFP),

the (nucleotide level) correlation coefficient as

nCC = (nTP nTN - nFN nFP) / √((nTP+nFN)(nTN+nFP)(nTP+nFP)(nTN+nFN)) ,

and the (site level) average site performance as

sASP = (sSn + sPPV) / 2.

The test results can be found in Appendix A (Simulated Annealing) and Appendix B

(Tabu Search). Figure 7.1 to 7.5 show us the analysis result of Sensitivity, Positive

Predictive value, Performance/Correlation Coefficient value, Average performance value

 67

and Specificity of different algorithms, and all of these analysis values are already been

normalized.

Sensitivity

0

0.05

0.1

0.15

0.2

0.25

0.3

MEME

Quic
kS

co
re

Weed
er

GLA
M

Im
prob

ize
r

Cons
ens

us

Alig
nA

CE TS SA GA

Algorithms

Se
ns

iti
vi

ty

nSn
sSn

Positive Prediction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MEME

Quic
kS

co
re

Weed
er

GLA
M

Im
prob

ize
r

Cons
ens

us

Alig
nA

CE TS SA GA

Algorithms

P
os

iti
ve

 P
re

di
ct

iv
e

va
lu

e

nPPV
sPPV

Figure 7.1 Sensitivity of Different Algorithms

Figure 7.2 Positive Predictive Values of Different Algorithms

 68

Performance/Correlation Coefficient

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

MEME

Quic
kS

co
re

Weed
er

GLA
M

Im
prob

ize
r

Cons
ens

us

Alig
nA

CE TS SA GA

Algorithms

C
oe

ffi
ci

en
t V

al
ue

nPC
nCC

Average Site Performance

0

0.05

0.1

0.15

0.2

0.25

MEME

Quic
kS

co
re

Weed
er

GLA
M

Im
prob

ize
r

Cons
ens

us

Alig
nA

CE TS SA GA

Algorithms

P
er

fo
rm

an
ce

sASP

Figure 7.3 Performance/Correlation Coefficient of
Different Algorithms

Figure 7.4 Average Site Performance of Different
Algorithms

 69

Specificity

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

MEME

Quic
kS

co
re

Weed
er

GLA
M

Im
prob

ize
r

Cons
ens

us

Alig
nA

CE TS SA GA

Algorithms

S
pe

ci
fic

ity
 V

al
ue

nSp

7.4 Discussion

7.4.1 Performance of Simulated Annealing, Tabu Search and Genetic Algorithm

From the 5 analyzed figures in section 7.3, we can see that our algorithms (SA, TS and

GA) performance quite good on the benchmark data set. They have the highest

sensitivity. They can correctly predict more TFBSs compared with other well-known motif

search algorithms.

However, our algorithms all have very small Positive Predictive values, and they are only

larger than that of QuickScore. This means that our algorithms reports proportionally

more noisy results (false TFBSs). As described in the previous section (Parameters

setting in DMB), we choose the whole group of motifs instead of choosing the consensus

motif. Because it is very hard to know which motif from the group is the correctly

predicted TFBS and if we choose the wrong one, we will miss the correct ‘answer’ even

Figure 7.5 Specificity of Different Algorithms

 70

we really did find it. On the other hand, it is not possible that all the motifs in the group

represent correct ‘answer’ (in fact, only a very small portion of solution TFBSs in the

group are correct), and that is why our results have a high false prediction rate. While in

Tompa’s paper, all the experiment results were provided by the search algorithms’

authors themselves and many algorithms did some post-process to filter out those false

predicted solution motifs. In parameters setting of the experiments in their website, it is

said that the final results were selected from the result motif group by eyes based on

their biology knowledge, such as for MEME, QuickScore, GLAM etc. It is thus impossible

to compare the results of automated analysis as ours with theirs. To improve the Positive

Prediction, some work can be done, which is discussed in the “further work” section in

the next Chapter.

Our algorithms all have middle ranged Performance Coefficient. They are comparable

with that of others. TS has the second highest Correlation Coefficient, however SA has a

very low Correlation Coefficient, which is almost 0.

SA, GA and TS have the second, third and the fourth highest Average Site Performance

value respectively. This means that they have picked up the significant portion of the real

TFBSs.

Our algorithms all have slightly lower Specificity values than all other programs. The

Specificity of our algorithm is nTN/(nTN+nFP). However, some algorithms did the

manual elimination of predictions they considered not good. If y false predictions are

filtered, their Specificity becomes (nTN-y)/(nTN-y+nFP), which is greater than that of our

algorithms’.

 71

However, as explained before, some of the authors of Tompa’s study have done manual

elimination of predictions they considered not good. This process is not explained in any

detail and thus makes not possible to compare our ‘raw’ results with theirs. We believe

that if such manual cleaning of predictions is made, our results could well be somewhere

in the upper group of better performing predictors. As it stands now, the results are

definitely better than at least one of the existing algorithms, which is QuickScore.

7.4.2 Comparison between Approaches for Consensus Motifs and Approaches for

Profile Motifs

Generally, from the analyzed figures, approaches for consensus motifs (Weeder, SA, TS

and GA) perform much better than approaches for profile motifs (MEME, GLAM,

CONSENSUS etc.) in term of sensitivity.

After taking a close look at the difference between the two groups of algorithms, we

found that the accuracy difference due to the different form in which they express the

similarity between the two motifs. For example, MEME uses Expectation Maximization

algorithm. As discussed in Chapter 2, the basic idea is that MEME will return those

motifs that have high scores by comparing with the Position Weight Matrix (PWM), and

the consensus motif is the one with the highest score. The similarity requirement in this

case is very loose. They look at PWM as the background, and two motifs are similar and

can be grouped together if both of them have high score by comparing with the same

PWM. Since they only look at the information content, that is why motifs in the same

group found by approaches for Profile Motifs can have a large difference. However, it is

not possible that the binding site motifs mutate a lot.

 72

On the other hand, in our similarity definition, we compare two motifs directly. We say

that two motifs are similar and can be grouped together if the similarity score between

them, which comes from by calculating the number of matched nucleotides, is higher

than our defined threshold. That is why the motifs in one group found by approaches for

consensus motifs are much more compact than that found by approaches for profile

motifs.

 73

Chapter 8 Conclusions and Future Work

We provide three heuristic algorithms, which are based on Simulated Annealing, Tabu

Search and Genetic Algorithm, for this motif discovery problem. All of these algorithms

have the ability to escape from the local optimum and search for the global optimal

solutions. The algorithms and the program structures have been presented in detail in

the thesis. At the same time, a web-accessible Motif Search tool is also implemented

based on our three heuristic algorithms. It is free for academic users and can be found at

http://sdmc.i2r.a-star.edu.sg/DRAGON/Motif_Search/.

From the comparison result discussed in the previous chapter, we conclude that SA, TS

and GA are very useful algorithms to the motif discovery problem. They perform much

better than those existing algorithms in terms of sensitivity; they also perform better than

several other programs based on some other measures of prediction success. Our

algorithms can correctly predict more TFBSs compared with other motif search

algorithms. However we get low positive predictive values for our algorithms. As

explained in section 7.4.1, it is because we do not do any manual elimination of false

prediction to our algorithms as some of the authors of Tompa’s study do. As it stands

now, the results are definitely better than at least one of the existing algorithms, which is

QuickScore. However, we still have to do much more experiments before we can draw

any definite conclusion.

In practice, motif discovery algorithms have to take into account characteristics of the

input data. These include: the length of the unknown motifs; corrupted samples (some

sequence may not contain a motif); invaded sample (some sequence may contain more

 74

than one instance); multiple patterns (some sequence may contain more than a single

common pattern); what strand the given sequence lies on; etc.

To increase the accuracy of finding the TFBSs, we can introduce the biological features

into our algorithms. Here is an example. In fact, our software (DMB) has many other

functions. To increase the accuracy of finding the TFBSs, we provided Reverse

Complement Sequence Analysis. We know that DNA has a double-stranded structure,

where one strand is considered ‘direct’ and the other ‘complementary’ one. These two

strands are complementing each other. So, for example, when we use motif TATACCG

as a consensus motif to find the similar motifs in the input sequences, it is also

necessary to look for those motifs which are similar to ATATGGC, which is a

complementary motif for the first one. We look at these two groups of motifs as having

the same weight.

Here are some other ideas that can be introduced into our algorithms to improve the

performance:

a) The specific binding sites could be located in the same region in promoters. For

example, some binding sites may always appear in the position -500 to -200 realtive to

TSS.

b) The binding sites in the sequences could be located in the same order. We can try to

find the Maximum Weight Common Subsequence for filtering.

 75

c) If the motifs in one group share a great similarity with the consensus motif, this group

should have high Information Content (IC). Then we can choose in motif selection

between different iterations those that increase the information content.

 76

Bibliography

[1] Ao W., Gaudet J., Kent W.J., Muttumu S. and Mango S.E. Environmentally induced

foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science 305, 1743-1746, 2004

[2] Bailey T.L and Elkan C. Fitting a mixture model by expectation maximization to

discover motifs in biopolymers', Proceedings of the Second International Conference on

Intelligent Systems for Molecular Biology (ISMB'94), pp. 28-36, AAAI Press, Menlo Park,

California, August, 1994.

[3] Bailey T.L. and Elkan C. The value of prior knowledge in discovering motifs with

MEME. Proceedings of the Third International Conference on Intelligent Systems for

Molecular Biology. 21-29 (AAAI Press, Menlo Park, CA, 1995). 1995a

[4] Bailey T.L. and Elkan C. Unsupervised learning of multiple motifs in biopolymers

using expectation maximization, Machine Learning, 21:51-80, 1995b

[5] Bajic V.B., Huang E, Yang L, Modeling methodology for detection of regulatory motifs

in DNA/RNA and proteins, Int.J.Comp.Syst.Signals, (accepted) 2004

[6] Barbulescu L, Watson J.P. and Whitley L.D., Dynamic Representations and Escaping

Local Optima: Improving Genetic Algorithms and Local Search. Seventeenth National

Conference on Artificial Intelligence (AAAI-2000), pp: 879-884. 2000

[7] Booker L, Improving Search in Genetic Algorithms. Genetic Algorithms and

Simulating Annealing, Davis L, ed. Morgan Kaufman, pp. 61-73. 1987

 77

[8] Brazma A, Jonassen I, Eidhammer I, and Gilbert D. Approaches to the automatic

discovery of patterns in biosequences. Journal of Computational Biology, 5:279-305,

1998.

[9] Brejova B., Marco C.Di, Vinaf T. and Romero S. Finding patterns in biological

sequences. Research report, 2000

[10] Buhler J. and Tompa M. Finding motifs using random projections. In Proceedings of

the 5th Annual International Conference on Computational Molecular Biology

(RECOMB01), pages 69-76, 2001.

[11] Casella G and George E.I., "Explaining the Gibbs sampler", The American

Statistician, 46(2):167-174, 1992.

[12] Davis L.D., Handbook of Genetic Algorithms. Van Nostrand Reinhold. 1991

[13] Denning P.J. "Genetic Algorithm," American Scientist, Vol. 80, pp. 12-14. 1982

[14] Dowsland K. Simulated annealing, in Modem Heuristic Techniques for

Combinatorial Problems (C Reeves, editor), New York, John Wiley & Sons. 1993

[15] Eglese R.W. Simulated annealing: a tool for operational research, European Journal

of operational Research, Vol. 46, No. 3. June 15, pp. 271 – 281. 1990

 78

[16] Eskin E and Pevzner P, "Finding composite regulatory pattern in DNA sequence",

Bioinformatics, 18:354-363, 2002.

[17] Favorov A.V., Gelfand M.S., Gerasimova A.V., Mironov A.A. and Makeev V.J. Gibbs

sampler for identification of symmetrically structured, spaced DNA motifs with improved

estimation of the signal length and its validation on the ArcA binding sites. Proceedings

of BGRS 2004 (BGRS, Novosibirsk, 2004)

[18] Fleischer M, Simulated annealing: past, present, and future, pages: 155 – 161, ACM

Press, New York, NY, USA 1995

[19] Frith M.C., Hansen U., Spouge J.L. and Weng Z. Finding functional sequence

elements by multiple local alignment. Nucleic Acids Res. 32, 189-200, 2004

[20] Glover F, Tabu Search - Part I. ORSA Journal on Computing, 1: 190-206, 1989

[21] Glover F, Tabu Search - Part II. ORSA Journal on Computing, 2: 4-32, 1990

[22] Glover F and Laguna M. Modern Heuristic Techniques for Combinatorial Problems,

Colin R. Reeves (Ed.), 70-150, Blackwell Scientific Publications, Oxford, 1993.

[23] Glover F and Laguna M, Tabu Search, Kluwer Academic Publisher, 1997

[24] Goldberg D.E. Genetic Algorithms in Search, Optimization & Machine Learning,

Addison-Wesley. 1989

 79

[25] Hertz G.Z., Stormo G.D. Identifying DNA and protein patterns with statistically

significant alignments of multiple sequences. Bioinformatics. 1999 Jul-Aug; 15(7-8): 563-

77. 1999

[26] http://bioinformatics.org/faq/

[27] Huang E, Yang L, Chowdhary R, Kassim A, Bajic V.B., An algorithm for ab initio

DNA motif detection, Chapter 4 in Information Processing and Living Systems, World

Scientific, 611-614, 2005

[28] Hughes, J.D., et al. Computational identification of cis-regulatory elements

associated with functionally coherent groups of genes in Saccharomyces cerevisiae. J.

Mol. Biol. 296, 1205-1214, 2000

[29] Ingber L., “Simulated annealing: Practice versus theory,” Computer Modelling, vol.

18, pp. 29–57, 1993.

[30] Ingber L., “Adaptive simulated annealing (ASA): Lessons learned,” Control and
Cybernetics, vol. 25, pp. 33–54, 1996.

[31] Johnson D.S., Aragon C.R., McGeoch L.A., Schevon C. (1989) Optimization by

Simulated Annealing: An Experimental Evaluation. Operations Research, 37(6): 865-

892. 1989

[32] Kirkpatrick S, Gelatt C, Vecchi M. Optimization by Simulated Annealing. Science,

220(4598): 671-680. 1983

 80

[33] Koza, J.R. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press. 1992

[34] Koza, J.R. Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press. 1994

[35] Krishnan SPT, E Huang, L Yang, V B Bajic, Statistical Properties of region around

PolyA sites in Human, 5th HUGO Pacific meeting and 6th Asia Pacific meeting on

Human genetics, 17-20 November 2004, Singapore. 2004

[36] Latchman D, Gene Regulation: a eukaryotic perspective. Nelson Thornes Ltd,

Fourth edition, 2002.

[37] Lawrence C.E., Altshul S.F., Boguski M.S., Liu S.L., Neuwald A.F., Wootton J.C.

Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment.

Science, 262: 208-214, 1993

[38] Lawrence C.E. and Reilly A.A. An expectation maximization (EM) algorithm for the

identification and characterization of common sites in unaligned biopolymer sequences.

Proteins. 1990; 7(1):41-51.

[39] Liang C. COPIA: A new software for finding consensus patterns in unaligned protein

sequences. Master thesis, University of Waterloo, 2001.

 81

[40] Liu J, A Combinatorial Approach for Motif Discovery in Unaligned DNA Sequences.

PhD thesis University of Waterloo, 2004

[41] Mitchell M. An introduction to Genetic Algorithms. MIT Press. Cambridge,

Massachusetts. London, England. 1996

[42] Mühlenbein H, How genetic algorithms really work: I. Mutation and Hillclimbing,

Parallel Problem Solving from Nature -2-, R. Männer and B. Manderick, eds. North

Halland. 1992

[43] Pavesi, G. et al. Weeder Web: discovery of transcription factor binding sites in a set

of sequences from co-regulated genes. Nucleic Acids Res. 32, W199-W203, 2004

[44] Pevzner P.A. and Sze S. Combinatorial approaches to finding subtle signals in DNA

sequences. In Proceedings of the 8th International Conference on Intelligent Systems for

Molecular Biology, pages 269-278, 2000.

[45] Randall M. and Abramson D., “A general parallel Tabu Search algorithm for

combinatorial optimization problems,” Part ’99: Proceedings of the 6th Australasian

Conference on Parallel and Real Time Systems, Cheng W. and Sajeev A.(Eds.),

Springer-Verlag, Singapore, 1999, pp. 68–79.

[46] Reeves C.R. Genetic algorithms. In Modern Heuristic Techniques for Combinatorial

Problems, 151-196. Oxford: Blackwell Scientific Publications. 1993

 82

[47] Reeves C.R. Genetic algorithms for the Operations Researcher. INFORMS J. Comp.

9: 231-250, 1997

[48] Régnier M. and Denise A. Rare events and conditional events on random strings.

Discrete Math. Theor. Comput. Sci. 6, 191-214, 2004

[49] Rigoutsos et al, "The Emergence of Pattern Discovery Techniques in Computational

Biology." Metabolic Engineering. 2(3):159-177, July 2000

[50] Sagot M.F. Spelling approximate repeated or common motifs using a suffix tree.

LATIN'98: Theoretical Informatics, pages 111-127, 1998. Lecture Notes in Computer

Science.

[51] Sinha S and Tompa M, "A statistical method for finding transcription factor binding

sites". In Proceedings of the 8th International Conference on Intelligent Systems for

Molecular Biology, AAAI Press, pages 344-354, 2000.

[52] Sinha S and Tompa M, "Performance comparison of algorithms for finding

transcription factor binding sites". In 3rd IEEE Symposium on Bioinformatics and

Bioengineering, IEEE Press, pages 214-220, 2003.

[53] Stormo G.D. DNA binding sites: representation and discovery. Bioinformatics,

16:16-23, 2000.

[54] Thijs G. et al. A higher-order background model improves the detection of promoter

regulatory elements by Gibbs sampling. Bioinformatics 17, 1113-1122, 2001.

 83

[55] Tompa M, Li N, Bailey T.L., Church G.M, Moor B.D et al. Assessing Computational

Tools for the Discovery of Transcription Factor Binding Sites. Nature Biotechnology, Vol.

23, no. 1, 137-144.

[56] Tovey C. Simulated annealing. American Journal of Mathematical and Management

Sciences, 8(3&4): 389-407. 1988

[57] Werner T. Models for prediction and recognition of eukaryotic promoters. Mamm

Genome. Feb; 10(2):168-75. 1999

[58] Yang L, Huang E, Bajic V.B., Some implementation issues of heuristic methods for

motif extraction from DNA sequences, Int.J.Comp.Syst.Signals, 5(2) (in print) (2005)

 84

Appendix A: Test Result of Simulated Annealing
Data set nTP nFP nFN nTN sTP sFP sFN nSn nPPV nSp nPC nCC sSn sPPV sASP

dm01g 21 735 104 5140 2 61 5 0.168 0.0277778 0.8748936 0.0244186 0.0184612 0.2857143 0.031746 0.1587302

dm02r 0 360 49 1591 0 30 5 0 0 0.8154792 0 -0.0742504 0 0 0

dm03m 0 552 104 5344 0 46 9 0 0 0.9063772 0 -0.0422755 0 0 0

dm04g 7 833 128 7032 1 69 8 0.0518519 0.0083333 0.8940877 0.0072314 -0.0227143 0.1111111 0.0142857 0.0626984

dm05g 1 671 159 6669 0 56 14 0.00625 0.0014881 0.9085831 0.0012034 -0.0430871 0 0 0

dm06r 3 405 95 2497 0 34 7 0.0306122 0.0073529 0.8604411 0.0059642 -0.0564974 0 0 0

dm07m 0 480 0 4020 0 40 0 NaN 0 0.8933333 0 NaN NaN 0 NaN

dm08m 0 636 0 5364 0 53 0 NaN 0 0.894 0 NaN NaN 0 NaN

hm01g 0 3144 236 32620 0 262 16 0 0 0.9120904 0 -0.0251285 0 0 0

hm02r 40 812 217 7931 3 67 8 0.155642 0.0469484 0.9071257 0.0374181 0.0357098 0.2727273 0.0428571 0.1577922

hm03r 48 1116 360 13476 4 93 11 0.1176471 0.0412371 0.9235197 0.0314961 0.0250295 0.2666667 0.0412371 0.1539519

hm04m 2 1390 166 24442 1 115 10 0.0119048 0.0014368 0.9461908 0.0012837 -0.0149154 0.0909091 0.0086207 0.0497649

hm05r 32 496 161 2311 2 40 9 0.1658031 0.0606061 0.8232989 0.0464441 -0.0070211 0.1818182 0.047619 0.1147186

hm06g 24 540 51 3885 2 45 7 0.32 0.0425532 0.8779661 0.0390244 0.076544 0.2222222 0.0425532 0.1323877

hm07m 1 599 126 4274 0 50 6 0.007874 0.0016667 0.8770778 0.0013774 -0.0557029 0 0 0

hm08m 52 644 138 6666 6 53 7 0.2736842 0.0747126 0.9119015 0.0623501 0.1005063 0.4615385 0.1016949 0.2816167

hm09g 0 1200 160 13640 0 100 10 0 0 0.9191375 0 -0.0306192 0 0 0

hm10m 13 383 76 2528 2 31 9 0.1460674 0.0328283 0.8684301 0.0275424 0.0072668 0.1818182 0.0606061 0.1212121

hm11g 19 881 250 6850 1 74 18 0.070632 0.0211111 0.8860432 0.0165217 -0.0247161 0.0526316 0.0133333 0.0329825

hm12r 7 257 63 673 1 21 4 0.1 0.0265152 0.7236559 0.0214067 -0.1020729 0.2 0.0454545 0.1227273

hm13r 0 600 164 5236 0 50 9 0 0 0.8971899 0 -0.0558783 0 0 0

hm14r 12 336 70 1582 1 28 3 0.1463415 0.0344828 0.8248175 0.0287081 -0.0150851 0.25 0.0344828 0.1422414

hm15r 0 876 90 7034 0 73 4 0 0 0.8892541 0 -0.0374044 0 0 0

hm16g 0 2028 164 18808 0 169 7 0 0 0.9026685 0 -0.0290063 0 0 0

hm17g 79 533 66 4822 7 44 3 0.5448276 0.129085 0.9004669 0.1165192 0.2268662 0.7 0.1372549 0.4186275

hm18m 0 1068 88 13844 0 89 7 0 0 0.9283798 0 -0.0212693 0 0 0

hm19g 12 516 75 1897 1 43 3 0.137931 0.0227273 0.7861583 0.0199005 -0.0340856 0.25 0.0227273 0.1363636

hm20r 339 4989 967 63705 33 410 43 0.2595712 0.0636261 0.9273736 0.0538523 0.0953903 0.4342105 0.0744921 0.2543513

hm21g 2 634 91 4273 0 53 7 0.0215054 0.0031447 0.8707968 0.002751 -0.0436702 0 0 0

 85

hm22m 43 401 63 2493 3 32 2 0.4056604 0.0968468 0.8614375 0.0848126 0.1388675 0.6 0.0857143 0.3428571

hm23r 20 292 123 1565 2 24 3 0.1398601 0.0641026 0.8427571 0.045977 -0.0123432 0.4 0.0769231 0.2384615

hm24m 33 411 59 3497 4 32 4 0.3586957 0.0743243 0.8948311 0.0656064 0.1209825 0.5 0.1111111 0.3055556

hm25g 8 220 62 710 1 18 4 0.1142857 0.0350877 0.7634409 0.0275862 -0.0743612 0.2 0.0526316 0.1263158

hm26m 33 735 214 8018 4 60 6 0.1336032 0.0429688 0.9160288 0.0336049 0.0290239 0.4 0.0625 0.23125

mus01r 9 267 76 1148 1 22 5 0.1058824 0.0326087 0.8113074 0.0255682 -0.0494113 0.1666667 0.0434783 0.1050725

mus02r 24 876 208 7892 2 73 10 0.1034483 0.0266667 0.9000912 0.0216606 0.0018697 0.1666667 0.0266667 0.0966667

mus03g 21 363 121 1995 2 30 7 0.1478873 0.0546875 0.846056 0.0415842 -0.003888 0.2222222 0.0625 0.1423611

mus04m 24 480 240 6256 2 40 12 0.0909091 0.047619 0.9287411 0.0322581 0.0144821 0.1428571 0.047619 0.0952381

mus05r 18 306 70 1606 2 25 4 0.2045455 0.0555556 0.8399582 0.0456853 0.0247726 0.3333333 0.0740741 0.2037037

mus06g 23 277 44 1156 4 22 1 0.3432836 0.0766667 0.8066992 0.0668605 0.0774552 0.8 0.1538462 0.4769231

mus07g 8 928 92 4972 1 77 3 0.08 0.008547 0.8427119 0.0077821 -0.027268 0.25 0.0128205 0.1314103

mus08m 0 432 41 4027 0 36 3 0 0 0.9031173 0 -0.0312482 0 0 0

mus09r 24 240 17 719 1 20 1 0.5853659 0.0909091 0.7497393 0.0854093 0.1507445 0.5 0.047619 0.2738095

mus10g 84 912 139 11865 7 75 8 0.3766816 0.0843373 0.9286217 0.0740088 0.149041 0.4666667 0.0853659 0.2760163

mus11m 93 447 118 5342 10 36 5 0.4407583 0.1722222 0.9227846 0.1413374 0.2339944 0.6666667 0.2173913 0.442029

mus12m 38 250 107 1105 3 20 4 0.262069 0.1319444 0.8154982 0.0962025 0.0581947 0.4285714 0.1304348 0.2795031

yst01g 3 837 119 8041 0 70 7 0.0245902 0.0035714 0.905722 0.0031283 -0.0277019 0 0 0

yst02g 36 360 72 1532 3 29 2 0.3333333 0.0909091 0.8097252 0.0769231 0.0811402 0.6 0.09375 0.346875

yst03m 43 449 104 3404 5 36 13 0.292517 0.0873984 0.8834674 0.0721477 0.1008138 0.2777778 0.1219512 0.1998645

yst04r 20 640 87 5253 2 53 4 0.1869159 0.030303 0.8913966 0.0267738 0.0331244 0.3333333 0.0363636 0.1848485

yst05r 35 289 37 1139 3 23 1 0.4861111 0.1080247 0.797619 0.0969529 0.1473872 0.75 0.1153846 0.4326923

yst06g 62 526 98 2814 5 43 2 0.3875 0.1054422 0.842515 0.090379 0.1285005 0.7142857 0.1041667 0.4092262

yst07m 0 432 0 2568 0 36 0 NaN 0 0.856 0 NaN NaN 0 NaN

yst08r 75 1281 204 9440 5 108 9 0.2688172 0.0553097 0.8805149 0.0480769 0.0714191 0.3571429 0.0442478 0.2006953

yst09g 0 1224 215 14561 0 102 13 0 0 0.922458 0 -0.0335899 0 0 0

yst10m 0 588 0 4412 0 49 0 NaN 0 0.8824 0 NaN NaN 0 NaN

Fly 32 4672 639 37657 3 389 48 0.04769 0.0068027 0.8896265 0.0059891 -0.0248899 0.0588235 0.0076531 0.0332383

Human 819 25101 4300 256780 78 2076 220 0.1599922 0.0315972 0.9109518 0.0271013 NaN 0.261745 0.0362117 0.1489783

Mouse 366 5778 1273 48083 35 476 63 0.2233069 0.0595703 0.8927239 0.0493461 0.0626043 0.3571429 0.0684932 0.212818

Yeast 274 6626 936 53164 23 549 51 0.2264463 0.0397101 0.8891788 0.0349668 0.0509021 0.3108108 0.0402098 0.1755103

Total 1491 42177 7148 395684 139 3490 382 0.1725894 0.034144 0.9036749 0.0293412 NaN 0.2667946 0.0383026 0.1525486

 86

Appendix B: Test Result of Tabu Search

Data set nTP nFP nFN nTN sTP sFP sFN nSn nPPV nSp nPC nCC sSn sPPV sASP

dm01g 1 647 124 5228 0 54 7 0.008 0.0015432 0.8898723 0.0012953 -0.0469956 0 0 0

dm02r 0 288 49 1663 0 24 5 0 0 0.8523834 0 -0.0650001 0 0 0

dm03m 11 445 93 5451 1 37 8 0.1057692 0.0241228 0.9245251 0.0200364 0.0149198 0.1111111 0.0263158 0.0687135

dm04g 0 732 135 7133 0 61 9 0 0 0.9069294 0 -0.0415782 0 0 0

dm05g 11 577 149 6763 2 47 12 0.06875 0.0187075 0.9213896 0.0149254 -0.0053004 0.1428571 0.0408163 0.0918367

dm06r 3 381 95 2521 0 32 7 0.0306122 0.0078125 0.8687112 0.006263 -0.053568 0 0 0

dm07m 0 408 0 4092 0 34 0 NaN 0 0.9093333 0 NaN NaN 0 NaN

dm08m 0 516 0 5484 0 43 0 NaN 0 0.914 0 NaN NaN 0 NaN

hm01g 0 2904 236 32860 0 242 16 0 0 0.918801 0 -0.0240627 0 0 0

hm02r 5 667 252 8076 0 56 11 0.0194553 0.0074405 0.9237104 0.0054113 -0.0360125 0 0 0

hm03r 44 1000 364 13592 4 83 11 0.1078431 0.0421456 0.9314693 0.03125 0.0251297 0.2666667 0.045977 0.1563218

hm04m 0 1260 168 24572 0 105 11 0 0 0.9512233 0 -0.0181996 0 0 0

hm05r 30 450 163 2357 2 37 9 0.1554404 0.0625 0.8396865 0.0466563 -0.0032612 0.1818182 0.0512821 0.1165501

hm06g 34 470 41 3955 4 38 5 0.4533333 0.0674603 0.8937853 0.0623853 0.1409085 0.4444444 0.0952381 0.2698413

hm07m 10 482 117 4391 0 41 6 0.0787402 0.0203252 0.9010876 0.0164204 -0.0106556 0 0 0

hm08m 0 636 190 6674 0 53 13 0 0 0.9129959 0 -0.0490747 0 0 0

hm09g 0 1032 160 13808 0 86 10 0 0 0.9304582 0 -0.0282238 0 0 0

hm10m 14 310 75 2601 2 25 9 0.1573034 0.0432099 0.8935074 0.0350877 0.0277751 0.1818182 0.0740741 0.1279461

hm11g 16 800 253 6931 1 67 18 0.0594796 0.0196078 0.8965205 0.0149673 -0.026207 0.0526316 0.0147059 0.0336687

hm12r 4 224 66 706 1 18 4 0.0571429 0.0175439 0.7591398 0.0136054 -0.1117287 0.2 0.0526316 0.1263158

hm13r 18 510 146 5326 2 42 7 0.1097561 0.0340909 0.9126114 0.0267062 0.0128738 0.2222222 0.0454545 0.1338384

hm14r 0 300 82 1618 0 25 4 0 0 0.8435871 0 -0.0868598 0 0 0

hm15r 0 696 90 7214 0 58 4 0 0 0.9120101 0 -0.0329274 0 0 0

hm16g 0 1788 164 19048 0 149 7 0 0 0.914187 0 -0.0270653 0 0 0

hm17g 78 462 67 4893 7 38 3 0.537931 0.1444444 0.9137255 0.1285008 0.2431836 0.7 0.1555556 0.4277778

hm18m 0 888 88 14024 0 74 7 0 0 0.9404506 0 -0.0192702 0 0 0

hm19g 17 415 70 1998 1 35 3 0.1954023 0.0393519 0.8280149 0.0338645 0.0113516 0.25 0.0277778 0.1388889

hm20r 229 4463 1077 64231 24 368 52 0.1753446 0.0488065 0.9350307 0.0396949 0.0597229 0.3157895 0.0612245 0.188507

hm21g 2 562 91 4345 0 47 7 0.0215054 0.0035461 0.8854697 0.0030534 -0.0397295 0 0 0

 87

hm22m 13 371 93 2523 2 30 3 0.1226415 0.0338542 0.8718037 0.0272537 -0.0030696 0.4 0.0625 0.23125

hm23r 8 268 135 1589 1 22 4 0.0559441 0.0289855 0.8556812 0.0194647 -0.0660205 0.2 0.0434783 0.1217391

hm24m 31 365 61 3543 4 29 4 0.3369565 0.0782828 0.9066018 0.0678337 0.1222459 0.5 0.1212121 0.3106061

hm25g 0 168 70 762 0 14 5 0 0 0.8193548 0 -0.1232822 0 0 0

hm26m 25 659 222 8094 3 54 7 0.1012146 0.0365497 0.9247115 0.0275938 0.0159838 0.3 0.0526316 0.1763158

mus01r 13 227 72 1188 2 18 4 0.1529412 0.0541667 0.839576 0.0416667 -0.0047192 0.3333333 0.1 0.2166667

mus02r 52 728 180 8040 5 59 7 0.2241379 0.0666667 0.9169708 0.0541667 0.0794813 0.4166667 0.078125 0.2473958

mus03g 23 289 119 2069 3 23 6 0.1619718 0.0737179 0.8774385 0.0533643 0.027601 0.3333333 0.1153846 0.224359

mus04m 13 395 251 6341 1 33 13 0.0492424 0.0318627 0.9413599 0.0197269 -0.0076416 0.0714286 0.0294118 0.0504202

mus05r 21 195 67 1717 2 16 4 0.2386364 0.0972222 0.8980126 0.0742049 0.0902957 0.3333333 0.1111111 0.2222222

mus06g 7 257 60 1176 1 21 4 0.1044776 0.0265152 0.820656 0.0216049 -0.0406103 0.2 0.0454545 0.1227273

mus07g 2 646 98 5254 0 54 4 0.02 0.0030864 0.8905085 0.002681 -0.0369116 0 0 0

mus08m 2 346 39 4113 0 29 3 0.0487805 0.0057471 0.9224041 0.005168 -0.0102498 0 0 0

mus09r 24 204 17 755 1 17 1 0.5853659 0.1052632 0.7872784 0.0979592 0.1761244 0.5 0.0555556 0.2777778

mus10g 56 760 167 12017 5 63 10 0.2511211 0.0686275 0.9405181 0.0569685 0.1025915 0.3333333 0.0735294 0.2034314

mus11m 83 385 128 5404 9 31 6 0.3933649 0.1773504 0.9334946 0.1392617 0.2245123 0.6 0.225 0.4125

mus12m 38 226 107 1129 3 18 4 0.262069 0.1439394 0.8332103 0.1024259 0.0739335 0.4285714 0.1428571 0.2857143

yst01g 0 780 122 8098 0 65 7 0 0 0.9121424 0 -0.0361105 0 0 0

yst02g 21 327 87 1565 2 27 3 0.1944444 0.0603448 0.827167 0.0482759 0.0128843 0.4 0.0689655 0.2344828

yst03m 7 389 140 3464 1 32 17 0.047619 0.0176768 0.8990397 0.0130597 -0.0336033 0.0555556 0.030303 0.0429293

yst04r 40 536 67 5357 4 44 2 0.3738318 0.0694444 0.9090446 0.0622084 0.1270825 0.6666667 0.0833333 0.375

yst05r 22 254 50 1174 2 21 2 0.3055556 0.0797101 0.8221289 0.0674847 0.0704406 0.5 0.0869565 0.2934783

yst06g 60 504 100 2836 5 42 2 0.375 0.106383 0.8491018 0.0903614 0.1273096 0.7142857 0.106383 0.4103343

yst07m 0 336 0 2664 0 28 0 NaN 0 0.888 0 NaN NaN 0 NaN

yst08r 59 1129 220 9592 4 95 10 0.2114695 0.0496633 0.8946927 0.0419034 0.0537778 0.2857143 0.040404 0.1630592

yst09g 11 1069 204 14716 1 88 12 0.0511628 0.0101852 0.9322775 0.008567 -0.0075997 0.0769231 0.011236 0.0440795

yst10m 0 528 0 4472 0 44 0 NaN 0 0.8944 0 NaN NaN 0 NaN

Fly 26 3994 645 38335 3 332 48 0.0387481 0.0064677 0.9056439 0.0055734 -0.0236746 0.0588235 0.0089552 0.0338894

Human 578 22150 4541 259731 58 1836 240 0.1129127 0.0254312 0.9214207 0.0211962 0.0168281 0.1946309 0.030623 0.1126269

Mouse 334 4658 1305 49203 32 382 66 0.2037828 0.0669071 0.9135181 0.0530411 0.0694082 0.3265306 0.0772947 0.2019126

Yeast 220 5852 990 53938 19 486 55 0.1818182 0.0362319 0.9021241 0.0311526 0.0390953 0.2567568 0.0376238 0.1471903

Total 1158 36654 7481 401207 112 3036 409 0.1340433 0.0306252 0.9162885 0.0255669 0.107878 0.2149712 0.0355781 0.1252747

 88

Appendix C: Test Result of Genetic Algorithm
Data set nTP nFP nFN nTN sTP sFP sFN nSn nPPV nSp nPC nCC sSn sPPV sASP

dm01g 16 544 109 5331 2 68 5 0.128 0.0285714 0.9074043 0.0239163 0.0173828 0.2857143 0.0285714 0.1571429

dm03m 8 384 96 5512 1 48 8 0.0769231 0.0204082 0.9348711 0.0163934 0.006229 0.1111111 0.0204082 0.0657596

dm04g 0 680 135 7185 0 85 9 0 0 0.913541 0 -0.0399316 0 0 0

dm05g 27 349 133 6991 4 43 10 0.16875 0.0718085 0.9524523 0.0530452 0.0802533 0.2857143 0.0851064 0.1854103

dm07m 0 264 0 4236 0 33 0 NaN 0 0.9413333 0 NaN NaN 0 NaN

dm08m 0 400 0 5600 0 50 0 NaN 0 0.9333333 0 NaN NaN 0 NaN

hm01g 12 2996 224 32768 2 374 14 0.0508475 0.0039894 0.9162286 0.0037129 -0.0096017 0.125 0.0053191 0.0651596

hm02r 24 1008 233 7735 3 126 8 0.0933852 0.0232558 0.8847078 0.0189723 -0.0114516 0.2727273 0.0232558 0.1479915

hm03r 41 1159 367 13433 1 148 14 0.1004902 0.0341667 0.9205729 0.0261646 0.0126293 0.0666667 0.0067114 0.036689

hm04m 16 2248 152 23584 1 282 10 0.0952381 0.0070671 0.9129762 0.0066225 0.0023343 0.0909091 0.0035336 0.0472213

hm05r 20 292 173 2515 2 37 9 0.1036269 0.0641026 0.8959743 0.0412371 -0.0003205 0.1818182 0.0512821 0.1165501

hm06g 7 633 68 3792 1 79 8 0.0933333 0.0109375 0.8569492 0.009887 -0.0182227 0.1111111 0.0125 0.0618056

hm07m 12 516 115 4357 0 66 6 0.0944882 0.0227273 0.8941104 0.0186625 -0.005837 0 0 0

hm08m 2 1062 188 6248 0 133 13 0.0105263 0.0018797 0.8547196 0.0015974 -0.0606874 0 0 0

hm09g 3 1317 157 13523 0 165 10 0.01875 0.0022727 0.9112534 0.0020311 -0.0253819 0 0 0

hm10m 6 410 83 2501 1 51 10 0.0674157 0.0144231 0.8591549 0.012024 -0.036049 0.0909091 0.0192308 0.0550699

hm11g 26 926 243 6805 3 115 16 0.0966543 0.0273109 0.8802225 0.0217573 -0.0128733 0.1578947 0.0254237 0.0916592

hm12r 7 89 63 841 1 11 4 0.1 0.0729167 0.9043011 0.0440252 0.0037252 0.2 0.0833333 0.1416667

hm13r 25 551 139 5285 3 69 6 0.152439 0.0434028 0.905586 0.034965 0.0321162 0.3333333 0.0416667 0.1875

hm14r 17 143 65 1775 2 18 2 0.2073171 0.10625 0.9254432 0.0755556 0.0970354 0.5 0.1 0.3

hm15r 0 576 90 7334 0 72 4 0 0 0.9271808 0 -0.0297115 0 0 0

hm16g 16 1528 148 19308 1 192 6 0.097561 0.0103627 0.9266654 0.0094563 0.0081708 0.1428571 0.0051813 0.0740192

hm17g 73 679 72 4676 8 84 2 0.5034483 0.0970745 0.8732026 0.0885922 0.1756461 0.8 0.0869565 0.4434783

hm18m 1 735 87 14177 0 92 7 0.0113636 0.0013587 0.9507108 0.0012151 -0.0134085 0 0 0

hm19g 24 448 63 1965 3 56 1 0.2758621 0.0508475 0.814339 0.0448598 0.042242 0.75 0.0508475 0.4004237

hm20r 251 5741 1055 62953 27 715 49 0.1921899 0.0418892 0.9164265 0.035618 0.0525319 0.3552632 0.0363881 0.1958256

hm21g 2 622 91 4285 0 78 7 0.0215054 0.0032051 0.8732423 0.0027972 -0.0430279 0 0 0

hm22m 44 436 62 2458 4 53 1 0.4150943 0.0916667 0.8493435 0.0811808 0.1331695 0.8 0.0701754 0.4350877

hm23r 19 221 124 1636 1 29 4 0.1328671 0.0791667 0.8809908 0.0521978 0.0109878 0.2 0.0333333 0.1166667

hm24m 30 506 62 3402 4 62 4 0.326087 0.0559701 0.870522 0.0501672 0.0865173 0.5 0.0606061 0.280303

 89

hm25g 0 88 70 842 0 11 5 0 0 0.9053763 0 -0.0852219 0 0 0

hm26m 70 1010 177 7743 7 125 3 0.2834008 0.0648148 0.884611 0.0556881 0.084468 0.7 0.0530303 0.3765152

mus01r 18 190 67 1225 3 23 3 0.2117647 0.0865385 0.8657244 0.0654545 0.05184 0.5 0.1153846 0.3076923

mus02r 32 920 200 7848 4 115 8 0.137931 0.0336134 0.895073 0.0277778 0.0170059 0.3333333 0.0336134 0.1834734

mus03g 17 279 125 2079 2 34 7 0.1197183 0.0574324 0.8816794 0.04038 0.0010013 0.2222222 0.0555556 0.1388889

mus04m 31 433 233 6303 3 54 11 0.1174242 0.0668103 0.9357185 0.0444763 0.0406942 0.2142857 0.0526316 0.1334586

mus05r 28 244 60 1668 3 30 3 0.3181818 0.1029412 0.8723849 0.0843373 0.1140187 0.5 0.0909091 0.2954545

mus06g 11 189 56 1244 2 23 3 0.1641791 0.055 0.8681089 0.0429688 0.0196207 0.4 0.08 0.24

mus07g 5 579 95 5321 1 72 3 0.05 0.0085616 0.9018644 0.0073638 -0.0207896 0.25 0.0136986 0.1318493

mus08m 4 260 37 4199 1 32 2 0.097561 0.0151515 0.941691 0.013289 0.0158705 0.3333333 0.030303 0.1818182

mus09r 0 104 41 855 0 13 2 0 0 0.8915537 0 -0.0704442 0 0 0

mus10g 53 1283 170 11494 7 160 8 0.2376682 0.0396707 0.8995852 0.0351926 0.0586898 0.4666667 0.0419162 0.2542914

mus11m 52 676 159 5113 7 85 8 0.2464455 0.0714286 0.8832268 0.0586246 0.0731538 0.4666667 0.076087 0.2713768

mus12m 23 209 122 1146 2 27 5 0.1586207 0.0991379 0.8457565 0.0649718 0.0035772 0.2857143 0.0689655 0.1773399

yst01g 2 1110 120 7768 0 139 7 0.0163934 0.0017986 0.8749718 0.0016234 -0.0381742 0 0 0

yst02g 5 259 103 1633 0 33 5 0.0462963 0.0189394 0.8631078 0.013624 -0.0604929 0 0 0

yst03m 20 572 127 3281 4 70 14 0.1360544 0.0337838 0.8515443 0.0278164 -0.0065708 0.2222222 0.0540541 0.1381381

yst04r 11 781 96 5112 1 98 5 0.1028037 0.0138889 0.8674699 0.0123874 -0.0116226 0.1666667 0.010101 0.0883838

yst05r 17 239 55 1189 2 29 2 0.2361111 0.0664062 0.8326331 0.0546624 0.0390603 0.5 0.0645161 0.2822581

yst06g 55 601 105 2739 6 75 1 0.34375 0.0838415 0.8200599 0.0722733 0.0876711 0.8571429 0.0740741 0.4656085

yst07m 0 488 0 2512 0 61 0 NaN 0 0.8373333 0 NaN NaN 0 NaN

yst08r 11 1509 268 9212 0 190 14 0.0394265 0.0072368 0.8592482 0.0061521 -0.0461649 0 0 0

yst09g 2 798 213 14987 0 100 13 0.0093023 0.0025 0.9494457 0.0019743 -0.0217931 0 0 0

yst10m 0 608 0 4392 0 76 0 NaN 0 0.8784 0 NaN NaN 0 NaN

Fly 51 2621 473 34855 7 327 32 0.0973282 0.0190868 0.9300619 0.0162162 0.0124928 0.1794872 0.0209581 0.1002226

Human 748 25940 4371 255941 75 3243 223 0.1461223 0.0280276 0.9079754 0.0240832 NaN 0.2516779 0.022604 0.1371409

Mouse 274 5366 1365 48495 35 668 63 0.1671751 0.0485816 0.9003732 0.0391149 0.0378465 0.3571429 0.0497866 0.2034647

Yeast 123 6965 1087 52825 13 871 61 0.1016529 0.0173533 0.8835089 0.0150459 -0.0064563 0.1756757 0.0147059 0.0951908

Total 1196 40892 7296 392116 130 5109 379 0.1408384 0.0284167 0.9055629 0.0242184 0.0670603 0.2554028 0.0248139 0.1401083

 90

