### USING SIGNAL PROCESSING TECHNIQUES IN PROMOTER PREDICTION

ZHANG, XUEJUAN (B.Eng (Hons),BTU)

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL&COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE

### Acknowledgements

I would first like to thank my supervisor, Professor Vladimir B. Bajic, for accepting me as his project student even though my prior research was not in the field of Bioinformatics. Prof Bajic's persistent encouragement, enthusiasm, and enlightenment make the course of work a rewarding and pleasant one.

I would also like to extend my thanks to many of my good friends and colleagues in i2r, for their help and encouragement in the course of my work.

### **Table of Contents**

| Acknowledgement       | i   |
|-----------------------|-----|
| Table of Contents     | ï   |
| Summary               | v   |
| List of Tables        | vii |
| List of Figures       | ix  |
| List of Symbols       | xi  |
| List of Abbreviations | xii |

| 1. | Introd | uction                                    | 1  |
|----|--------|-------------------------------------------|----|
|    | 1.1    | Biological Background                     | 2  |
|    |        | 1.1.1 Gene Transcription                  | 3  |
|    |        | 1.1.2 Promoter Basics                     | 7  |
|    | 1.2    | Existing promoter prediction solutions    | 10 |
|    | 1.3    | Contribution of Thesis                    | 18 |
|    | 1.4    | Thesis Organisation                       | 20 |
| 2. | Signal | Model and the Effectiveness of Transforms | 21 |
|    | 2.1    | Signal Model                              | 21 |
|    | 2.2    | Transformation applied to the signal      | 26 |
|    |        | 2.2.1 Discrete Fourier Transform          | 27 |
|    |        | 2.2.2 Discrete Cosine Transform           | 30 |

|    |      | 2.2.3 Discrete Wavelet Transform                               | 30 |
|----|------|----------------------------------------------------------------|----|
|    | 2.3  | Stimulation studies on the feature of Correlation Coefficients | 33 |
|    | 2.4  | Performance of CC                                              | 34 |
| 3. | Feat | ure Combination and Model Selection                            | 38 |
|    | 3.1  | Raw Data                                                       | 38 |
|    | 3.2  | Training and testing set                                       | 38 |
|    | 3.3  | Features and Classification                                    | 39 |
|    |      | 3.3.1 Algorithm                                                | 39 |
|    |      | 3.3.2 Feature description                                      | 41 |
|    |      | 3.3.3 Experiments                                              | 43 |
|    |      | 3.3.4 Discussion on the design of a classifier                 | 46 |
|    | 3.4  | Results                                                        | 48 |
|    | 3.5  | Discussion and conclusion                                      | 49 |
| 4. | Find | ing Starting Position of A Gene by Promoter Prediction System  | 51 |
|    | 4.1  | System description                                             | 51 |
|    |      | 4.1.1 Training the system                                      | 51 |
|    |      | 4.1.2 Predict the TSS position along gene                      | 53 |
|    | 4.2  | SVM used in classification                                     | 54 |
|    | 4.3  | Tuning the model                                               | 56 |
|    |      | 4.3.1 The feature applied                                      | 56 |
|    |      | 4.3.2 Find the appropriate kernel                              | 62 |
|    |      | 4.3.3 Tuning the models                                        | 62 |
|    |      | 4.3.4 Transductive versus Inductive SVM                        | 73 |

|                                      | 4.4                                 | Results                  | 78 |
|--------------------------------------|-------------------------------------|--------------------------|----|
| 5.                                   | Concl                               | usions and future topics | 84 |
|                                      | 5.1                                 | Conclusions              | 84 |
| Biblio                               | graphy                              |                          | 86 |
| Appen                                | ndix A-L                            | ist of Publications      | 95 |
| Appendix B - Supplementary Figures 9 |                                     |                          |    |
| Appen                                | Appendix C- Supplementary Tables 11 |                          |    |

#### Summary

Promoter prediction is currently an important problem in the field of bioinformatics, since the problem of gene discovery, gene annotation, regulatory elements identification and transcriptional control is related to promoters. Digital Signal Processing (DSP) techniques have not been largely used for promoter prediction. Our project is to develop a new promoter prediction system based on DSP techniques. Systematic simulation studies are done regarding the suitability of possible DSP techniques such as Correlation Coefficient (CC) and the domain transforms of Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT). From these experiments, it is concluded that CC is not a feature that is generalized well for accurate classification. More suitable features, which include the coefficients of DFT, DCT, and DWT transforms of the original signal, were adopted and experiments were performed to select the optimal combination of features and classifier model for different promoter groups split by the GC-content. The performance of different combinations was systematically evaluated. Several general conclusions are made: the capability to recognize promoters reduces with the reduction of GC-content of the data; there are no significant differences in the prediction performance when any of the three transform is applied; and the best performance is achieved by combining all the three transforms. We finally draw the conclusion that the application of domain transforms is promising in predicting promoters. A system is developed, which incorporates signal pre-processing, feature extraction, system optimization, and promoter

recognition with performance assessment. The prediction system was applied to the plus strand of human chromosome 22 (NCBI Built 35). Performance evaluation was done for several gene categories that are taken from gene annotation. Comparison was made with the results for the six different categories of genes. We have examined how to combine possible features extracted under domain transforms in DSP field with biological features of promoters and non-promoters such as the number of CpG dinucleotides, GC-content and the number of different combinations of mono-.di-, tri- nucleotides. This slightly shows that **h**e use of the three domain transforms for predicting human promoters should be combined with more of other appropriate biological features to achieve better prediction results. In the process of development of prediction system it is useful to reduce the number of features. The reduction of features has to be done on a case-to-case basis. Moreover, with the suitability of the DSP techniques such as the three domain transforms of DFT, DCT, and DWT to provide good features that work efficiently with biological features to enhance promoter prediction, future studies that involve applying other DSP techniques might also be done to further contribute to promoter prediction.

## List of Tables

| 2.1   | Three sets of negative and positive data used in experiments | 24 |
|-------|--------------------------------------------------------------|----|
| 2.2   | Group the 'reviewed" data set into 22 parts by GC content    | 33 |
| 2.3   | Performance of the feature of CC                             | 35 |
| 3.1   | Data in 22 groups split by GC-content                        | 38 |
| 3.2   | Prediction result on training/test dataset                   | 45 |
| 3.3   | Training and test data set                                   | 47 |
| 3.4   | Performance under different transform                        | 48 |
| 4.1   | The parameters with the 1st set of features                  | 57 |
| 4.2   | The parameters with the 2nd set of features                  | 58 |
| 4.3   | The parameters with the 3rd set of features                  | 59 |
| 4.4   | The parameters with the 4th set of features                  | 59 |
| 4.5   | The parameters with the 5th set of features                  | 60 |
| 4.6   | The parameters with the 6th set of features                  | 61 |
| 4.7   | The parameters with the 7th set of features                  | 61 |
| 4.8a  | Experiment result when an RBF kernel is applied              | 65 |
| 4.8b  | Optimal parameters for each group of data                    | 65 |
| 4.9a  | Experiment result when a polynomial kernel is applied        | 67 |
| 4.9b  | Optimal parameters for each group of data                    | 69 |
| 4.10  | Performance result                                           | 71 |
| 4.11  | Performance when using different part of the dataset         | 72 |
| 4.12a | Experiment results with inductive SVM                        | 74 |

| 4.12b | Optimal parameters for each group of data                        | 75  |
|-------|------------------------------------------------------------------|-----|
| 4.13a | Experiment results with transductive SVM                         | 76  |
| 4.13b | Optimal parameters for each group of data                        | 77  |
| 4.14  | Optimal points on the curves in the six categories of Group 1-22 | 81  |
| 4.15  | Optimal points on the curves in the six categories in Group 1-16 | 83  |
| B.1   | Experiment result with FP/TP=2%                                  | 104 |
| B.2   | Experiment result with FP/TP=4%                                  | 104 |
| B.3   | Experiment result with FP/TP=7%                                  | 105 |
| B.4   | Experiment result with FP/TP=10%                                 | 106 |
| B.5   | Experiment result with FP/TP=14%                                 | 106 |

# List of Figures

| 1.1       | Promoter Structure: the schematic of a pol II promoter                         | 4      |
|-----------|--------------------------------------------------------------------------------|--------|
| 1.2       | Schematic of gene transcription initiation process                             | 5      |
| 1.3       | Modular organization: modular functional organisation of binding sites in pro- | omoter |
| hierarchy |                                                                                | 8      |
| 1.4       | Modular organization of promoter elements                                      | 9      |
| 2.1       | The mean signal of the original positive and negative data                     | 23     |
| 2.2       | The wavelet decomposition is implemented at different levels                   | 32     |
| 4.1       | The depiction of the system structure relevant for 'training' and 'optimizat   | ion'   |
| 52        |                                                                                |        |
| 4.2       | The depiction of the final prediction system                                   | 53     |
| 4.3       | SE and ppv obtained with data from Group 4 to Group (i)                        | 73     |
| 4.4       | Results on the data of Group1-22                                               | 81     |
| 4.5       | Results on the data of Group1-16                                               | 82     |
| B.1       | The CC distribution plot and reconstructed mean signal at level 1              | 96     |
| B.2       | The CC distribution plot and reconstructed mean signal at level 2              | 97     |
| B.3       | The CC distribution plot and reconstructed mean signal at level 7              | 98     |
| B.4       | The CC distribution plot in group 1-8                                          | 100    |
| B.5       | The CC distribution plot in group 9-16                                         | 101    |
| B.6       | The CC distribution plot in group 17-22                                        | 102    |
| B.7       | The threshold versus GC content                                                | 103    |
| B.8       | The data under feature of #CpG and GC content                                  | 108    |

| B.9          | Data represented by features of CC and #CpG (at level 2)    | 109 |
|--------------|-------------------------------------------------------------|-----|
| B.10         | Data represented by features of CC and #CpG (at leve17)     | 110 |
| <b>B</b> .11 | Data represented by features of CC and GC content           | 111 |
| B.12         | Data represented by features of GC content and #CpG         | 112 |
| B.13         | The curves of TP, FP, TN, and FN under different thresholds | 113 |

# List of Symbols

| f(t)      | A signal in time domain                                          |
|-----------|------------------------------------------------------------------|
| F(s)      | The Continuous Fourier Transform of the signal $f(t)$            |
| $F^{-1}$  | The Inverse Continuous Fourier Transform                         |
| $f_i$     | The $i$ -th point of discrete form of signal $f(t)$              |
| $F_n$     | The n-point Discrete Fourier Transform                           |
| $W_{n,i}$ | The exponential function item in the matrix W of n*i             |
| A(i)      | A signal in the spatial domain                                   |
| $B(k_1)$  | A signal in the frequency domain after Discrete Cosine Transform |

### List of Abbreviations

- CC Correlation Coefficient
- DCT Discrete Cosine Transform
- DFT Discrete Fourier Transform
- DSP Digital SignalProcessing
- DWT Discrete Wavelet Transform
- EIIP Electron-ion Interaction Potential
- FN False Negative
- FP False Positive
- PPV Positive Predictive Value
- SE Sensitivity
- SVM Support Vector Machine
- TN True Negative
- TP True Positive
- TSS Transcription Start Site

### Chapter 1

### Introduction

Bioinformatics is a new field which combines information technology and biological science. Bioinformatics uses various disciplines such as statistics, pattern recognition, data mining, machine learning, artificial intelligence, biology, medicine and chemistry. The aim of bioinformatics is to try to use computational techniques to narrow down the candidate tests that need to be done by wet lab experiment that is time consuming and expensive. Bioinformaticians intend to use data processing techniques to extract useful and valuable knowledge from biological data and aid wet lab experiment more effectively.

Earlier, only small amounts of biological experimental data were available for studies. However, with the advent of genomics and proteomics, greater amounts of experimental data have become available. This makes the use of bioinformatics necessary. Proper application of bioinformatics techniques may lead to extraction of useful information effectively from gene and protein data. Promoter prediction is one of the important problems in the field of bioinformatics. Promoters could be related to the problems of gene discovery, gene annotation, regulatory element identification and transcriptional control. Promoter is defined as the region that contains necessary DNA elements to initiate transcription of a gene. In general, promoters are located in the immediate upstream region of the gene, containing TSS (Transcription Start Site). Thus, accurately locating TSS becomes the critical step in promoter prediction. Currently, mapping EST (expressed sequence tags) fragments or most 5'-part of cDNA to genomic DNA is an effective method to identify TSS along genomic DNA. However, due to lack of complete sets of 5' end cDNA sequences, it becomes difficult to identify accurate promoter regions. Many different promoter prediction systems have been developed in the past but none of them have given a satisfactory solution.

Signal processing techniques have not been largely used in bioinformatics. For promoter prediction, digital signal processing is not broadly used as a core methodology. The goal of this project is to develop a new promoter prediction system based on digital signal processing techniques. For this purpose, we will use Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT).

#### 1.1 Biological Background

Prediction of eukaryotic promoters by computational means is one of the most challenging problems in biological sequence analysis today. In the section that follows, I will present biological background necessary to understand the problem that will be studied.

Chapter 1- Introduction

A genome is the set of complete genetic information inherited from the parents. A genome comprises all the genes and is contained in nuclei of cells of a eukaryotic organism. The genome is physically present in the form of DNA (Deoxyribose Nucleic Acid), which is a polymer. The basic unit of the DNA is a nucleotide comprising sugar-phosphate backbone and one of the four bases: A (adenine), C (cytosine), G (guanine) and T (thymine). Only 2-5% of the human DNA sequences are coding sequences, which contain information used for synthesis of proteins, while the other parts represent non-coding sequences. Promoter belongs to non-coding sequences [Levitsky *et al.*, 2001].

The production of proteins involves two stages, namely transcription and translation. In transcription, a gene is copied base by base into RNA, specifically A to U, C to G, T to A and G to C. mRNA refers to "messager RNA". DNA is transcribed into RNA which is later converted into messager RNA during the RNA processing. In translation, a polypeptide (protein) is synthesized under the direction of mRNA.

Gene expression is the process when the information contained in a gene is converted into a cellular product. Gene expression process can be controlled at many levels, most significant level being the gene transcription level. The transcription is achieved through enzymes called RNA polymerases, which bind to the promoter region of the DNA.

#### 1.1.1 Gene Transcription

Gene transcription is regulated. Transcription regulation may involve the DNA regions of promoters, enhancers, locus control regions (LCRs), and scaffold/matrix attachment regions (S/Mars). In eukaryotes, gene transcription process, or formation of primary

transcript from the DNA is done by recruiting RNA polymerase. RNA polymerase II is recruited for genes that encode for mRNA (messager RNA) [Latchman, 1998].

The transcription activity involves many proteins such as TFs (transcription factors), TAFs (transcription accessory factors), GTFs (general transcription factors) and the complexes of these proteins, as well as the RNA polymerase. GTFs include proteins that may already be multiprotein complexes themselves. Such GTFs may include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and among these TFIID includes TBP (TATA box binding protein). All of these form TIC (transcription initiation complex). TIC is a necessary substance in transcription initiation [Fickett and Hatzigeorgiou, 1997].



Figure 1.1 Promoter Structure: the schematic of a pol II promoter. [Werner, 2003]

A promoter could be structurally divided into three parts on the DNA: core promoter, proximal promoter and distal promoter.



#### Figure 1.2 Schematic of gene transcription initiation process [Werner, 1999]: a) Proximal and core promoter

b) TFs and TFIID complex get bound to the promoter

# c) Formation of transcription initiation complex (TIC) following recruitment of RNA Polymerase II

In Figure 1.2a, proximal promoter is 200-300 base pairs long, locating immediately upstream of the core promoter. CCAAT box is mostly located in proximal promoter. Core promoter is the region of the promoter that is sufficient to determine the precise TSS. Core promoter always contains the TSS. Core promoter usually contains some of the three promoter boxes: TATA box, Inr (initiator), and DPE (downstream promoter element). TATA box is usually located 30 base pairs upstream of TSS and determines the upper bound of core promoter. Initiator overlaps with the TSS. These two elements may not be present concurrently in Core promoter. DPE has similar function as the TATA box and is located downstream of Initiator [Werner, 1999, Pedersen *et al.*, 1999]. When TATA box is missing in core promoter, DPE takes the role of TATA box. TATA box, Inr and DPE may combine differently to render different functions.

In Figure 1.2b, GTFs and other TFs around core promoter recruit RNA polymerase II to form TIC in the next step.

In Figure 1.2c, TFs get attached to their binding sites in the proximal promoter, distal promoter, enhancer, and silencer regions. (Enhancer and silencer are the regions that are both far away from the TSS. Enhancer increases transcription, while silencer decreases transcription.) In this step, polymerase II requires TFIID to look for TSS along the DNA for transcription initiation. TAFs are associated with TFIID. TBP of the TFIID complex has affinity for TATA box and must bind to it. This way TFIID identifies the exact

location of the TSS in the core promoter. Polymerase II gets complexed with other GTFs and then was recruited to form TIC assembly in the core promoter region. TIC then initiates the transcription.

Transcription can be broadly classified as basal and activated transcription. Basal transcription involves the minimal promoter. The minimal promoter binds a bare minimum number of proteins required to initiate a transcription. Minimal promoter includes core promoter and a few more upstream and downstream regions located close to the TATA box or the TSS [Werner, 1999]. Core promoter and a few other sites upstream and downstream of core promoter are necessary for basal transcription and their combination represents the minimal promoter. Activated transcription may involve certain additional TFs for regulation.

#### **1.1.2 Promoter Basics**

Promoter contains the starting point of transcription, the TSS. During initiation of transcription, the TFs bind to specific binding sites of promoters first, and then RNA polymerases are able to recognize the complex between TFs and DNA and bind to the promoter [Scherf *et al.*, 2000].

Currently, there is no computer tool to accurately predict different types of promoters in the genome. The false reporting rate is usually high. The reason lies in the variability of different promoters. Due to high complexity of different organisms, promoters in different cells or tissue are different in structure and characteristics. Eukaryotic promoters may contain regions of TATA-box, CAAT-box, initiator, GC-Box and other transcription binding sites. Not all of these need to be present in a promoter at the same time, and they may be present in different combinations and their location relative to TSS may also be different in different promoters.

Figure 1.3 is given below to show the modular functional organization of binding sites in promoter hierarchy.



Figure 1.3 Modular organization: modular functional organisation of binding sitesinpromoterhierarchy.[http://www.genomatix.de/genomics\_tutorials/promoter\_hierarchy/promoter\_hierarchy.rchy.html].

Figure 1.4 is shown below to describe the modular organization of promoter elements.



Figure 1.4 Modular organization of promoter elements [Werner *et al.*, 2003] A) Promoters in higher eukaryotes are organized hierarchically and elements that control a specific pattern of expression may also be found in other promoters expressed under similar circumstances.

B) Active promoters have a unique 3-dimensional structure. Changing the order or spacing of important transcription factor binding sites can change the overall structure of the promoter and thus effect transcription.

#### **1.2 Existing promoter prediction solutions**

The programs mentioned here include those that attempt promoter prediction or localization in anonymous genomic sequences without need of any gene annotation information or other means to limit the actual search space for promoter finding [Werner, 2003].

PromoterInspector [Scherf et al., 2000] is indicated in [Bajic et al., 2004] as the first program to discover eukaryotic polymerase II promoter regions in mammalian genomic sequences with efficiency. It is reported with experiments in [Scherf et al., 2000] to have 43% of predictions as true positives, and the program can predict correctly 43% of the annotated TSS. This program focuses on the genomic context of promoters, not their exact location on the sequences. PromoterInspector is not heuristics based, but relies on content analysis of promoter features represented by IUPAC (International Union of Pure and Applied Chemistry) words, the libraries of which are extracted from training sequences by an unsupervised learning approach. The program compares word frequencies between four functional regions of genes: promoters, exons, introns and 3'UTR [Scherf *et al.*, 2000], which form the four models used. Promoter models are derived with those segments from the EPD data, using regions of [-500, +500] relative to the reference location of TSS (+1). (Under the location of TSS, which is pre-defined as

Chapter 1- Introduction

+1, the range of [#start, #end] is described by the two numbers #start and #end, which are the relative locations of the start and end position of the sequence relative to the location of TSS.) Non-promoter models are derived 100-bp segments from sequences collected randomly from the GenBank database (totalling 1Mbp for each non-promoter group). The system uses a searching window of 100bp that slides along the DNA strand, shifting 4bp ahead each time as a step. The four sensors compete, and the promoter sensor signal must be stronger than signals from the other three sensors. The system predicts a promoter on the occurrence of a minimum of 24 successive positive predictions [Scherf *et al.*, 2000].

Dragon Promoter Finder (DPF) [Bajic *et al.*, 2003] is a program that predicts strandspecific TSS and is a general TSS-finding program, not specialized to any particular vertebrate promoter groups. It can successfully recognize both CpG island-related and non related promoters. The system groups the input sequences according to their CpG content first. Then sensors of promoter, exon, intronic sequence are applied to the data. Finally, an ANN is applied to predict the TSS [Bajic *et al.*, 2002]. The system uses five different promoter models to enhance its predictive capabilities, and allows several levels of sensitivity, which is chosen by the user. The system was tested on whole human chromosome 22 and it showed a consistent satisfactory performance.

The consistency of Dragon Promoter Finder (DPF) predictions shows that it provides reliable identification of a wider promoter group and does not favour a specific promoter type (such as CpG island- related promoters). Owing to strand-specific predictions,

PromoterInspector cannot achieve a PPV (Positive Predictive Value) greater than 0.5, because it produces one FP prediction for each TP prediction. Furthermore, PromoterInspector can not pinpoint the TSS but only indicates a region that might overlap or be in proximity with the promoter region.

Eponine [Down, and Hubbard, 2002] uses Relevance Vector Machine based on TATAbox motif as its recognition tool, and has better performance when giving predictions for a particular category of genomic sequences of high GC-content. As indicated in [Bajic *et al.*, 2004], this program performs with a sensitivity=40.07% and PPV=66.97% using the whole human genome. This is different from the report in [Down, and Hubbard, 2002] that sensitivity=53.5% and PPV=72.73%.

FirstExonFinder [Davuluri *et al.*, 2001] is a program to predict TSS, by calculating the value of discriminatory functions. It can also predict the first splice site (intron1). This program has been applied to the 15kb upstream sequences of known genes on chromosomes 21 and 22. The search is restricted with the prior knowledge of the approximate position of the gene start and the strand orientation. As indicated in [Bajic *et al.*, 2004], the concepts of CpG island and GC-content are incorporated into the algorithm. It is a program with general purpose and can predict diverse sets of promoters. This program has accurate predictions for CpG-island-related promoters but does not perform well in non-CpG-island-related promoter prediction.

ConPro [Liu and States, 2002] is a system that includes five promoter prediction programs: TSSG, TSSW, Proscan, PromFD, NNPP. Each of these program has high FP prediction rate individually. With these five programs working together, this system is

reported to give 14000 promoters predicted in the genome, and among these 6400 predictions are well-characterized genes. Only a maximum of 1.5 kb upstream sequence of TSS are searched for promoter recognition with this system to reduce false predictions. Because the first introns generally are several kilobytes long, the TP predictions are relatively low in number.

NNPP2.2 [Reese, 2001, 2000] is a program in which promoter prediction is based on artificial neural networks. The system is trained on the TATA-box, the Initiator and allows variable lengths between them, giving the predicted TSS as output [Reese and Eeckman, 1995]. NNPP2.2 makes recognition of TATA box, the initiator and the part in between these two elements in the promoter region. The system uses three time-delay ANNs, with one to predict the TATA box, one to predict the Initiator and one to combine these two outputs and give prediction regarding the spatial distance between the TATA-box and the Initiator. However, according to [Bajic et al., 2004], this program does not give satisfactory performance on the whole human genome, producing predictions close to or worse than random guessing, For application in large-scale analyses or even in short DNA segments analyses, NNPP2.2 does not show good performance when considering the cost of obtaining one TP prediction. In the system presented in [Reese and Eeckman, 1995], a neural network is trained to recognize promoter elements. After the neural network is trained, the weights that add the lowest predictive value to the overall prediction in the ANN are pruned. Then the ANN is retrained until the predefined minimum of error level is reached. Finally, by studying the remaining weights of the pruned ANN, the importance of specific positions in the promoter element and the importance of the various promoter elements can be found out.

Promoter2.0 [Knudsen, 1999] also uses ANNs to do promoter prediction, based on conserved sequences and conserved distances between them, giving the predicted TSS as output. The first ANN uses a small window of DNA sequence as input. The system is based on ANNs and was trained to recognize four specific signals most commonly present in eukaryotic promoters-TATA box, Initiator (Inr), GC-box, and CCAAT-box, and their mutual distances. The weights of the neural networks are optimized to give the best separation of promoter and non promoters, by using genetic algorithm [Knudsen, 1999]. For a test set of vertebrate promoter and non promoter sequences, the algorithm was able to give a prediction with correlation coefficient of 0.63. All the five known TSS on the plus strand of the complete adenovirus genome were within 161 bp of 35 predicted TSS. On standardized test set consisting of human genomic DNA, the system gives better performance than other software. But DPF makes 21 times fewer FP predictions than this system with the same level of TP prediction [Bajic *et al.*, 2002].

CpGpromoter [Ioshikhes & Zhang, 2000] is a program to do a large-scale human promoter prediction based on results of discriminant analysis between the promoterrelated CpG islands and non-related ones. CpG islands are an important signature of 5' region of many mammalian genes. In the DNA range of [-500, +1500] around a TSS (+1) that containing a CpG island inside, the mapping of human promoters can be implemented efficiently with a resolution of 2kb. As indicated in [Gardiner-Garden and Frommer, 1987], CpG islands have a length of more than 200 bps, a high GC-content (more than 50%), and a high frequency of CpG dinucleotides (at least 0.6 of their expected frequency). CpGProD [Ponger and Mouchiroud, 2002] is a system to predict mammalian promoter regions that are CpG islands related in large genomic sequences. CpG-islands-related promoters count for approximately half of all the genes, and CpGProD is exclusively restricted for identification of this class of promoters. However, as indicated in [Bajic *et al.*, 2004], CpGProD finds TSS with greatest accuracy, with low sensitivity (37%) and CpGProD requires the use of RepeatMasker. This program uses different parameters to do promoter prediction for the two different spices of human and mouse accordingly.

Dragon Gene Start Finder [Bajic and Seah, 2003a; Bajic and Seah, 2003b] is an advanced system for recognition of gene starts in mammalian genomes. The system makes predictions of gene start location by combining information about CpG islands, TSSs, and signals downstream of the predicted TSSs. The system aims at predicting a region that contains the gene start or is in its proximity. Evaluation on human chromosomes 4, 21, and 22 resulted in SE (Sensitivity) of over 65% and in a PPV of 78%. The system makes on average one prediction per 177,000 nucleotides on the human genome, as judged by the results on chromosome 21. Comparison of abilities to predict TSS with the two other systems on human chromosomes 4, 21, and 22 reveals that our system has superior accuracy and overall provides the most confident predictions. This system studies the statistical properties of promoter regions, with Artificial Neural Network applied as part of its design, GC-content used in its algorithm, and concept of CpG island combined with predictions of DragonPF [Bajic et al., 2003]. As indicated in [Bajic et al., 2004], the sensitivity and PPV are approximately equal in the design of DragonGSF. On three whole chromosomes of human chromosomes of 4, 22, 21, this system achieves a PPV=78%, but on the human genome, it only achieves a PPV=62.98%. RepeatMasker has no benefits when applied to DragonGSF. The system makes approximately 0.6 FP predictions for every TP prediction. It will cover about 65% of all promoters, with the preference to the CpG-island-related ones.

McPromoter [Ohler et al., 2000; Ohler et al., 2002] is a program that locates eukaryotic polymerase II TSSs in genomic DNA based on statistics study of promoters versus nonpromoters and the different physical properties of promoter regions, with Artificial Neural Network and interpolated Markov model as its recognition technology basis. It consists of a model for promoter sequences and a mixture model for non-promoter sequences, containing submodels for coding and non-coding sequences. A sliding window of 300 bps long is searching over the sequence, with the step of 10 bp. At every position, the difference between the log likelihood of the promoter and the non-promoter model is computed. The resulting plot describes the regulatory potential over the sequence and is smoothed by a median and hysteresis filter to eliminate single false predictions and reduce the high number of neighbouring minima that are due to noise. The program then makes a prediction for each local minimum below a pre-specified threshold. As indicated in [Bajic et al., 2004], its performance on the human genome has improved compared with its reported one in [Ohler et al., 2002] on chromosome 22, from sensitiviy=52.8% and PPV=62.6% to sensitivity=57.92% and PPV=74.13%, though the two criteria are different. The use of RepeatMasker results in evident improvement of McPromoter accuracy. Its performance is good but its unsatisfactory speed prevents it from applying to large-scale promoter prediction.

Here I also give a summary for those programs that are less famous but worth mentioning. rVISTA [Loots and Ovcharenko, 2004] is a program that combines TFBS database search with a comparative sequence analysis. The human and mouse gene sequences are aligned and potential TFBS were predicted, and the human -mouse sequence conservation of a DNA region spanning a TFBS was assessed. TraFaC (Transcription Factor Binding Site Comparison) [Jegga et al., 2002] is a program that has been built to find out regulatory regions by implementing sequences comparison. Levitsky and his colleagues built a system [Levitsky and Katokhin, 2003] to calculate different characteristics of genomic DNA, among which they found out the potential to form nucleosomal complexes, which may be an important feature in tissue-specific expressed promoters. This system however is only good to assess properties of such promoters after location of promoters have been made. Signal Scan [Prestridge, 1991] is a program that finds promoter elements in the input sequence, by doing a specific, consensus and matrix searches in the SIGNAL SCAN database. The database is composed of specific sequence elements derived from biochemical characterization and elements from derived consensus sequences. In another program developed by Audic and Claverie [Audic and Claverie, 1998], Markov Models are developed to do a sequence comparison and Bayesian method is applied to separate promoters from non promoters. PromFind [Hutchinson, 1996] is a system using the idea to give score to the input sequences according to their differential hexamer measure. This system works with two other programs named SorFind and RepFind to generate a feature table to assess the predicted promoter regions. PromoterScan [Prestridge, 1995] is a program that evaluates based on combined scores from the features of the TATA box weight matrix and the density of TFBSs, giving the output of a TSS or the core promoter shown by a window of 250bp long, in which case TSS can be decided with the end position of the window. Also, this system can be used to give a further analysis, e.g. aligning the predicted promoter to EPD to search similar promoter and a number of TFBSs that are common to both the predicted promoters and their corresponding promoters in EPD. TSSW/TSSG/TSSP (W-TFD, G-TransFac, P-

17

Plant) [Wingender, 1994, Prestridge, 1995, Ghosh, 1993] is a program that uses the idea of Linear Discriminant function based on the combinational sores with TATA box, Triplet preferences around TSS, Hexamer frequencies in consecutive upstream 100-bp regions, and TFBSs, giving the output of predicted promoters and their transcriptional elements. TSSG and TSSW were accessed at the site http://dot.imgen.bcm.tmc.edu:9331/genefinder/gf.html. TSSG correctly predicted 7 (29%) of the true promoters and predicted 25 false positives (1/1325 bp). TSSW correctly predicted 10 (42%) of the true promoters and gave 42 false positives (1/789 bp)" [Fickett and Hatzigeorgiou, 1997]. CorePromoter [Zhang, 1998] is a program that gives predictions of TSS by a quadratic discriminate analysis based on Pentamers within a window of 30bp and 45bp sliding in a region with the length of 240 bps. GSF suite is composed of three programs called PatSearch [Pesole et al., 2000], MatInspector [Quandt et al., 1995, Cartharius, 2005.], and ConsInspector [Frech et al., 1993, Frech et al., 1997, Quandt et al., 1995b, Wingender et al., 1995]. PatSearch separates core and whole site, allocating weights for important bases, and allows mismatches. MatInspector applied core and matrix cut offs by organism classes. ConsInspector can create new matrices. FastM [Klingenhoff, 1999, Lavorgna et al., 1998.] is a program that gives sequences as input. It searches for TFBSs which are clustered in groups. This method is creative in the sense that it builds DNA unit models. These models are built using various individual elements, such as TFBSs, and promoters.

#### **1.3 Contribution of Thesis**

Promoter prediction is currently a hot problem in the field of Bioinformatics. DSP techniques have not been largely applied in studying this topic. The project is to explain the suitability of DSP techniques to enhance promoter prediction.

Several valuable findings have been made based on systematic simulation studies and experiments. Instead of using the feature of CC (Correlation Coefficient), the more appropriate features of the coefficients of DFT, DCT, DWT transform of the original signal, are adopted. The process of how to select the optimal combination of features and classifier model for each of the 22 groups split by GC-content is presented in this thesis. The performances of different combinations of features are evaluated. Findings are also made, that the capability to recognize promoters degrades with the reduction of GC-content of the data; there are no significant differences in the prediction performance when any of the three transform is applied; and the best performance is achieved by combining all the three transforms.

A promoter prediction system based on Support Vector Machine (SVM) is developed. Results of the application of the system to the human chromosome 22 (NCBI built 35) are given in the thesis, as well as performance analysis of the six annotated categories of genes.

Future work can be extended based on the achievements here. I have examined how to combine possible features extracted under domain transforms in DSP field with biological features of promoters and non-promoters. The biological features adopted here include the number of CpG dinucleotides, GC-content and the number of different combinations of mono-.di-, tri- nucleotides. Other probable DSP techniques should be explored to combine with more of other appropriate biological features and physical properties of promoter regions to achieve even better prediction performance.

#### **1.4 Thesis Organisation**

This thesis is organised as follows:

**Chapter 1**: The concept of promoter and necessary biological background is introduced together with the promoter prediction problem. A review of the available techniques follows and an account of the thesis outline and contribution is given.

**Chapter 2**: The signal model for the promoter sequence and non-promoter sequence in this thesis is formulated and the comparison of their respective statistical characteristics is made by the means of signal mean, correlation coefficient of specific sequence with the mean signal, and the distribution of this correlation coefficient. The finding of the experiments is discussed.

**Chapter 3**: The more general features, which are coefficients of DFT, DCT, DWT transform of the original signal, are adopted and simulation studies are presented on selecting the best combination of features and the optimal classifier model. Comparison is made systematically and the performance is analysed.

**Chapter 4:** The optimal model for each GC group is explored and a comparison of their performances is made. The final prediction system is applied to human chromosome 22 (NCBI built 35). The score indicating probability of possible promoter position on the chromosome sequence is reported.

Chapter 5: The conclusion and findings of this thesis are given.

### Chapter 2

#### Signal Model and the Effectiveness of Transforms

In this chapter, we develop the signal model and show how the biological prediction problem can be considered as a signal processing problem. However, we find the features obtained from the CC with reference to the mean signal to be not effective. In Chapter 3, we study the effectiveness of the features obtained from the transform domain coefficients of signals.

#### 2.1 Signal Model

The promoter sequence is assumed to be the sequence, which contains a TSS. Its counterpart, the non-promoter sequence is assumed not to contain a TSS. We define the promoter sequence as positive data, and the non-promoter sequence as negative data which facilitates classification between the promoter and non-promoter sequence.

#### Dataset:

The sequence of 2500bp nucleotide, with the positive data from the [-2000, +500] relative to the TSS (+1) is used. The range of [#start, #end] is defined by the two numbers #start and #end, which are the locations of the start and end position of the sequence relative to the reference location of TSS (+1). The negative data is from the DNA range of [5001, 7500] relative to the TSS (+1). We choose the range of [5001, 7500] since the sequence in this range is regarded to be distant enough relative to TSS (+1), hence can be used as "negative" data; whereas the sequence with range of [-2000, +500] relative to the TSS (+1) is used as the "positive" data.

In another experiment, truncated data, which is from the [-500, +500] relative to the TSS (+1) is also generated and applied. Each base pair (a, c, g, t) is represented by the respective value of the EIIP (Electron-ion Interaction Potential) [Veljkovic and Slavic, 1972], with a=0.1260, c=0.1340, g=0.0806, t=0.1335. By assigning these numbers to the base pairs, the nucleotide sequence is converted to a sequence of numbers. Thus, the problem can be solved in digital signal processing domain. The sequence which contains 'N' will not be processed here. (e.g. "aacggt" is converted to "0.1260, 0.1260, 0.1340, 0.0806, 0.0806, 0.1335".)

Figure 2.1 below depicts the mean sequences of promoter (positive) and non-promoter (negative) sequences in the "reviewed" data set.



Figure 2.1 The mean signal of the original positive and negative data

Figure 2.1 shows the mean signal of the negative and positive sequences that are converted from the original nucleotide sequences using the value of EIIP. The x axis is the length of the sequence, from 0 to 2500. The y axis is the value of the mean signal's amplitude at each position of the sequence. Clearly, the two curves are quite different from each other. The negative sequence (blue curve) resembles a random while the positive sequence shows the lowest at approximately 2000 as shown in Figure 2.1, which is most likely to be the location of TSS. This is consistent with the fact that we use the positive sequence of 2500bp nucleotide, with the range in [-2000, +500] relative to the TSS (+1).
The data used in the experiments contains three data sets: the "predicted", the "provisional" data, and the "reviewed" data. The number of negative and positive sequences in each data is given in Table 2.1. In our experiment, only the "reviewed" data is used.

|          | Predicted | provisional | reviewed |
|----------|-----------|-------------|----------|
|          |           |             |          |
| Negative | 2440      | 4696        | 3243     |
| Positive | 2428      | 4655        | 3219     |

Table 2.1 Three sets of negative and positive data used in experiments

The "predicted" data in the first column represents TSS data that is obtained by FIE2 from LocusLink's Evidence Viewer (EV) page where one of the sequences that was aligned against the human genomic sequence to determine the TSS was a predicted RefSeq. A predicted RefSeq record has not been subjected to individual review. The transcript may represent an ab initio prediction or may be partially supported by other transcript data; in both cases, the protein is predicted. Support for the transcript may include the existence of cDNA clones, ESTs, or homology [Maglott *et al.*, 2000; Pruitt and Maglott, 2000].

The "provisional" data in the second column represents TSS data that is obtained where one of the sequences that were aligned against the human genomic sequence to determine the TSS was a provisional RefSeq. A provisional RefSeq record has not yet been subject to individual review and is thought to be well supported and to represent a valid transcript and protein. The initial sequence-to-gene name associations are established by outside collaborators or NCBI staff. This is the default status code applied to some genomes for which there is no clear information about the method used to define the sequence [Maglott *et al.*, 2000; Pruitt *et al.*, 2000; Pruitt and Maglott, 2000].

The "reviewed" data in the third column represents TSS data that is obtained where one of the sequences that were aligned against the human genomic sequence to determine the TSS was a reviewed RefSeq. A reviewed RefSeq record has been the reviewed by NCBI staff or by a collaborator. The NCBI review process includes reviewing available sequence data and frequently also includes a review of the literature and other sources of information. Some RefSeq records may incorporate expanded sequence and annotation information including additional publications and features, as deemed relevant. More detailed descriptions of the review process are provided for the separate NCBI projects which supply these records [Maglott *et al.*, 2000; Pruitt *et al.*, 2000; Pruitt and Maglott, 2000].

The correlation coefficient (a number between 0 and 1) is a good indicator in statistics which shows the correlation between two variables. The CC between the two variables increases as the strength of the relationship increases.

We calculate the CC between individual sequence and the mean sequence of the reconstructed positive data as follows. The individual sequence x is composed of n points  $x_1, x_2, \ldots, x_n$  and the mean sequence y of the reconstructed positive data is composed of n points  $y_1, y_2, \ldots, y_n$ .

The mean of x and y are: 
$$\overline{x} = \frac{1}{n} \sum_{i=1...n} x_i$$
,  $\overline{y} = \frac{1}{n} \sum_{i=1...n} y_i$  respectively.

The standard deviations 
$$x$$
 and  $y$  are:  
 $\delta_x = \frac{1}{n} \sqrt{\sum_{i=1...n} (x_i - \overline{x})^2}, \quad \delta_y = \frac{1}{n} \sqrt{\sum_{i=1...n} (y_i - \overline{y})^2}$  respectively.

The covariance between x and y is:  $\delta_{xy} = \frac{1}{n} \sum_{i=1...n} (x_i - \overline{x})(y_i - \overline{y})$ .

The correlation coefficient between x and y is:  $CC = \frac{\delta_{xy}}{\delta_x \delta_y}$ .

The distribution of correlation coefficients between the individual sequence and the mean sequence of the reconstructed positive data is presented in Appendix B.

#### **2.2 Transformation applied to the signal**

The digital signal obtained after conversion from nucleotide sequence with EIIP is decomposed by DFT, DCT, and DWT transformations.

We compare the performance of these different transformations in pre-processing the signals before they are classified as promoters and non promoters. Each specific transform is applied to a pre-selected data segment from database.

#### 2.2.1 Discrete Fourier Transform

The Fourier Transform (FT) is a powerful tool for signal analysis. In Digital Signal Processing (DSP), we may work between the spatial domain and the frequency domain while proceeding through a problem. This ability is quite useful, since one can work in either the spatial or frequency domain with the FT, and different information is provided from different angle.

Continuous Fourier Transform:

$$F\{f(t)\} = F(s) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi st}dt$$

f(t) is the signal in time domain, and F(s) is the Continuous Fourier Transform of the signal f(t).

Inverse Continuous Fourier Transform:

$$F^{-1}\{F(s)\} = \int_{-\infty}^{\infty} F(s)e^{j2\pi st} ds$$

 $F^{-1}$  is the Inverse Continuous Fourier Transform of the signal F(s). For any function, its Fourier Transform function is unique, and vice versa.

Discrete Fourier Transform (DFT):

$$F_{n} = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} f_{i} e^{-j2\pi \frac{n}{N}i}$$

Invert DFT:

$$f_{i} = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} F_{n} e^{j2\pi \frac{i}{N}n}$$

 $f_i$  is the *i*-th point of discrete form of signal f(t).  $F_n$  is the n-point Discrete Fourier Transform of signal  $f_i$ .

The practical implementation of the FT to a signal is often realized by the means of FFT, which is developed based on the DFT. With the sampling rule, the DFT can be viewed as essentially equivalent to CFT (Continuous Fourier Transform). The continuous transform can be firstly employed when formulating a solution to a signal processing problem, and then the discrete transform can be implemented with that solution.

Fast Fourier Transform (FFT):

The number of multiplication and addition operations require to implement DFT or IDFT is on the order of  $N^2$ . FFT reduces the required number of operations to the order of  $N \log_2(N)$ . In FFT, N is usually a power of 2, hence producing the highest efficiency and the simplest implementation result.

So later in Chapter 3, we apply another dataset in which the length of the sequence is 1024 bp, that is N=1024, the 10th power of 2.

$$\begin{bmatrix} F_{0} \\ \cdot \\ \cdot \\ \cdot \\ F_{N-1} \end{bmatrix} = \begin{bmatrix} W_{0,0} & \cdots & W_{0,N-1} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ W_{N-1,0} & \cdots & W_{N-1,N-1} \end{bmatrix} \begin{bmatrix} f_{0} \\ \cdot \\ \cdot \\ f_{0} \\ \cdot \\ \cdot \\ \cdot \\ f_{N-1} \end{bmatrix}$$

F=W\*f

$$w_{n,i} = \frac{1}{\sqrt{N}} e^{-j2\pi \frac{ni}{N}}$$

 $w_{n,i}$  is the exponential function item in the matrix W of n\*i. Since the exponential function is periodic in the product of n and i, there is considerable symmetry in the matrix W. The matrix can be factorized into a product of N-by-N matrices that contain repeated values, including many zeros and ones. If  $N = 2^{p}$ , matrix W can be factorized into p number of such matrices. The total number of operations required to implement p of those factorized matrix products is substantially less than that required for the original matrix equation. Thus, the speed of calculation is greatly improved.

The factor by which the FFT reduces the computational workload compared to the original workload is:

$$\frac{N^2}{N\log_2(N)} = \frac{N}{\log_2(N)}$$

This value increases with N. For N=1024, the FFT is approximately 100 times as efficient as the direct implementation, so that the speed of computation is greatly enhanced. This is good when we later process nucleotide sequences with the length of 1024bp in Chapter 3.

#### 2.2.2 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) separates the signal into parts (or spectral subbands) of different importance, which is reflected by the signal's amplitude value. The DCT is similar to the discrete Fourier transform in the functionality that it transforms a signal from the time domain to the frequency domain. With an input signal A(i) in the spatial domain, the signal in the frequency domain after Discrete Cosine Transform is:

$$B(k_1) = \sum_{i=0}^{N_1 - 1} 2 \cdot A(i) \cdot \cos\left[\frac{\pi \cdot k_1}{2 \cdot N_1} \cdot (2 \cdot i + 1)\right]$$

To retain only the low frequency component of the original signal, a low-pass filter can be applied. Similarly, a high-pass filter can be applied if high frequency component is needed.

#### 2.2.3 Discrete Wavelet Transform

Conventional Fourier transforms provide only the frequency information, since temporal information is lost in the transformation process. WT is different from conventional Fourier analysis in the sense that it can also discover the signal's "local" periodicities. Unlike the Fourier transform, whose basis functions are sinusoids, wavelet transforms are based on small waves, called wavelets, of varying frequency and limited duration.

Multi resolution theory was born in the mid 1980's, and the scaling function of wavelets was first used and the own family of wavelets can be constructed. Multi-resolution theory is concerned with the representation and analysis of signals at more than one resolution. The appeal of such an approach is that obvious features that might go undetected at one resolution may be easy to be clear at another. Multi resolution theory incorporates and unifies techniques from a variety of disciplines, including sub-band coding from signal processing, quadrature mirror filtering from digital speech recognition, and pyramidal image/signal processing. Although the imaging/signal community's interest in multi resolution analysis was limited until the late 1980s, there has been enormous new findings with this subject today [Gonzalez and Woods, 2004].

Similarly, the generalized wavelet series expansion in wavelet domain is the counterpart of Fourier series expansion in Fourier domain. The discrete wavelet transform is the counterpart of discrete Fourier transform, and the continuous wavelet transform is the counterpart of integral Fourier transform, respectively. Usually the discrete wavelet transform is implemented as fast wavelet transform with computational efficiency.



Figure 2.2 The wavelet decomposition is implemented at different levels

As shown in Figure 2.2, the original signal is decomposed from level 1 to level 5 with DWT. Respectively, the 1A, 2A, 3A, 4A, 5A...is the approximate part of the original signal while the 1D, 2D, 3D, 4D, 5D...is the detailed part in each level. The signal can be reconstructed by these different parts of the original signal specifically to observe the signal with different resolutions. This process is similar to applying a low-pass filter or a high-pass filter to the original signal accordingly to observe the low or high frequency part of it. In level one, the original signal is decomposed into the 1A (approximate) and 1D (detailed) part, with 1A being the low frequency content and 1D being the high frequency content of the signal. Then in level 2, the 1A part is decomposed into 2A and 2D part, with 2A being the low frequency content and 2D being the high frequency content of 1A. The 1D part is no longer included in the decomposition in level 2, 3, 4 and 5. Similarly,

the wavelet transforms implemented in deeper levels decomposes only the approximated part of the signal in the previous level.

In Appendix B, Figure B.1, B.2 and B.3 are the plots obtained when the original signal is decomposed respectively at level 1, 2, and 7.

#### **2.3 Simulation studies on the feature of CC.**

Table 2.2 gives details of the "reviewed" data that is first split into 22 groups by their GCcontent (Grouping of 22 groups by GC-content is made from Group1-- "GC rich", with G+C>80%, and Group22-- "GC poor", with G+C<40%, holding a step of 2% decrease of GC content of groups in between) through preprocessing in the experiment. The so-called GC-content is an important sequence feature and is tightly correlated with different aspects of sequence biological activities. GC-content can be defined as (#G + #C)/Sequence Length, where #G and #C are the total number of G and C nucleotides in the original nucleotide sequence, respectively. In the context of transcription activation, human promoters are known to be characterized by a higher GC-content than the bulk genomic sequences, although there are a smaller proportion of promoters that are GCpoor [Zhang *et al.*, 2004].

|        | G+C content                                              | # of      | # of      |
|--------|----------------------------------------------------------|-----------|-----------|
|        |                                                          | Negatives | Positives |
| Group1 | G+C>80%                                                  | 0         | 15        |
| Group2 | 78% <g+c<=80%< td=""><td>0</td><td>24</td></g+c<=80%<>   | 0         | 24        |
| Group3 | 76% <g+c<=78%< td=""><td>1</td><td>49</td></g+c<=78%<>   | 1         | 49        |
| Group4 | 74% <g+c<=76%< td=""><td>2</td><td>105</td></g+c<=76%<>  | 2         | 105       |
| Group5 | 72% <g+c<=74%< td=""><td>3</td><td>144</td></g+c<=74%<>  | 3         | 144       |
| Group6 | 70% <g+c<=72%< td=""><td>6</td><td>162</td></g+c<=72%<>  | 6         | 162       |
| Group7 | 68% <g+c<=70%< td=""><td>6</td><td>193</td></g+c<=70%<>  | 6         | 193       |
| Group8 | 66% <g+c<=68%< td=""><td>26</td><td>228</td></g+c<=68%<> | 26        | 228       |

| r       |                                                           |      | 1    |
|---------|-----------------------------------------------------------|------|------|
| Group9  | 64% <g+c<=66%< td=""><td>33</td><td>261</td></g+c<=66%<>  | 33   | 261  |
| Group10 | 62% <g+c<=64%< td=""><td>45</td><td>231</td></g+c<=64%<>  | 45   | 231  |
| Group11 | 60% <g+c<=62%< td=""><td>71</td><td>259</td></g+c<=62%<>  | 71   | 259  |
| Group12 | 58% <g+c<=60%< td=""><td>92</td><td>235</td></g+c<=60%<>  | 92   | 235  |
| Group13 | 56% <g+c<=58%< td=""><td>113</td><td>216</td></g+c<=58%<> | 113  | 216  |
| Group14 | 54% <g+c<=56%< td=""><td>158</td><td>191</td></g+c<=56%<> | 158  | 191  |
| Group15 | 52% <g+c<=54%< td=""><td>132</td><td>173</td></g+c<=54%<> | 132  | 173  |
| Group16 | 50% <g+c<=52%< td=""><td>211</td><td>137</td></g+c<=52%<> | 211  | 137  |
| Group17 | 48% <g+c<=50%< td=""><td>232</td><td>97</td></g+c<=50%<>  | 232  | 97   |
| Group18 | 46% <g+c<=48%< td=""><td>236</td><td>95</td></g+c<=48%<>  | 236  | 95   |
| Group19 | 44% <g+c<=46%< td=""><td>261</td><td>72</td></g+c<=46%<>  | 261  | 72   |
| Group20 | 42% <g+c<=44%< td=""><td>335</td><td>58</td></g+c<=44%<>  | 335  | 58   |
| Group21 | 40% <g+c<=42%< td=""><td>320</td><td>63</td></g+c<=42%<>  | 320  | 63   |
| Group22 | G+C<40%                                                   | 960  | 211  |
| sum     |                                                           | 3243 | 3219 |

Table 2.2 Grouping of the "reviewed" data set into 22 parts by GC content

More figures and tables obtained from the experiments are attached in Appendix B for reference.

# **2.4 Performance of the feature of CC**

|         | G+Ccontent<br>(1024componet)                                                                                                                                                     | #of<br>Neg | #of<br>Posi | #of(N≓P)<br>Train | #of<br>Test | Confusion.<br>matrix   | TP<br>rate | FP<br>rate | PPV    | F-measure |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------------|-------------|------------------------|------------|------------|--------|-----------|
| Group1  | G+C>80%                                                                                                                                                                          | 0          | 17          |                   |             |                        |            |            |        |           |
| Group2  | 78% <g+c<=80%< th=""><th>1</th><th>28</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></g+c<=80%<>                                                            | 1          | 28          |                   |             |                        |            |            |        |           |
| Group3  | 76%G+C<=78%                                                                                                                                                                      | 1          | 96          |                   |             |                        |            |            |        |           |
| Group4  | 74% <g+c<=76%< td=""><td>6</td><td>198</td><td>3/3</td><td>3/195</td><td>44 151<br/>0 3</td><td>0.2256</td><td>0</td><td>1</td><td>0.3682</td></g+c<=76%<>                       | 6          | 198         | 3/3               | 3/195       | 44 151<br>0 3          | 0.2256     | 0          | 1      | 0.3682    |
| Group5  | 72% <g+c<=74%< td=""><td>8</td><td>312</td><td>4/4</td><td>4/308</td><td>19 289<br/>0 4</td><td>0.0617</td><td>0</td><td>1</td><td>0.1162</td></g+c<=74%<>                       | 8          | 312         | 4/4               | 4/308       | 19 289<br>0 4          | 0.0617     | 0          | 1      | 0.1162    |
| Group6  | 70% <g+c<=72%< td=""><td>31</td><td>484</td><td>15/15</td><td>16/469</td><td>7 462<br/>0 16</td><td>0.0149</td><td>0</td><td>1</td><td>0.0294</td></g+c<=72%<>                   | 31         | 484         | 15/15             | 16/469      | 7 462<br>0 16          | 0.0149     | 0          | 1      | 0.0294    |
| Group7  | 68% <g+c<=70%< td=""><td>42</td><td>587</td><td>21/21</td><td>21/566</td><td>162 404<br/>7 14</td><td>0.2862</td><td>0.3333</td><td>0.9586</td><td>0.4408</td></g+c<=70%<>       | 42         | 587         | 21/21             | 21/566      | 162 404<br>7 14        | 0.2862     | 0.3333     | 0.9586 | 0.4408    |
| Group8  | 66% <g+c<=68%< td=""><td>78</td><td>798</td><td>39/39</td><td>39/759</td><td>116 643<br/>3 36</td><td>0.1528</td><td>0.0769</td><td>0.9748</td><td>0.2642</td></g+c<=68%<>       | 78         | 798         | 39/39             | 39/759      | 116 643<br>3 36        | 0.1528     | 0.0769     | 0.9748 | 0.2642    |
| Group9  | 64% <g+c<=66%< td=""><td>135</td><td>841</td><td>67/67</td><td>68/774</td><td>8 766<br/>1 67</td><td>0.0103</td><td>0.0147</td><td>0.8889</td><td>0.0204</td></g+c<=66%<>        | 135        | 841         | 67/67             | 68/774      | 8 766<br>1 67          | 0.0103     | 0.0147     | 0.8889 | 0.0204    |
| Group10 | 62% <g+c<=64%< td=""><td>211</td><td>1032</td><td>105/105</td><td>106/927</td><td>48 879<br/>2 104</td><td>0.0518</td><td>0.0189</td><td>0.96</td><td>0.0983</td></g+c<=64%<>    | 211        | 1032        | 105/105           | 106/927     | 48 879<br>2 104        | 0.0518     | 0.0189     | 0.96   | 0.0983    |
| Group11 | 60% <g+c<=62%< td=""><td>305</td><td>989</td><td>152/152</td><td>153/837</td><td>79 758<br/>4 149</td><td>0.0944</td><td>0.0261</td><td>0.9518</td><td>0.1717</td></g+c<=62%<>   | 305        | 989         | 152/152           | 153/837     | 79 758<br>4 149        | 0.0944     | 0.0261     | 0.9518 | 0.1717    |
| Group12 | 58% <g+c<=60%< td=""><td>368</td><td>1091</td><td>184/184</td><td>184/907</td><td>25 882<br/>1 183</td><td>0.0276</td><td>0.0054</td><td>0.9615</td><td>0.0536</td></g+c<=60%<>  | 368        | 1091        | 184/184           | 184/907     | 25 882<br>1 183        | 0.0276     | 0.0054     | 0.9615 | 0.0536    |
| Group13 | 56% <g+c<=58%< td=""><td>441</td><td>1019</td><td>220/220</td><td>221/779</td><td>13 786<br/>1 220</td><td>0.0163</td><td>0.0045</td><td>0.9286</td><td>0.032</td></g+c<=58%<>   | 441        | 1019        | 220/220           | 221/779     | 13 786<br>1 220        | 0.0163     | 0.0045     | 0.9286 | 0.032     |
| Group14 | 54% <g+c<=56%< td=""><td>541</td><td>1092</td><td>270/270</td><td>271/822</td><td>8 814<br/>1 270</td><td>0.0097</td><td>0.0037</td><td>0.8889</td><td>0.0193</td></g+c<=56%<>   | 541        | 1092        | 270/270           | 271/822     | 8 814<br>1 270         | 0.0097     | 0.0037     | 0.8889 | 0.0193    |
| Group15 | 52% <g+c<=54%< td=""><td>701</td><td>952</td><td>350/350</td><td>351/602</td><td>53 549<br/>10 341</td><td>0.088</td><td>0.0285</td><td>0.8413</td><td>0.1594</td></g+c<=54%<>   | 701        | 952         | 350/350           | 351/602     | 53 549<br>10 341       | 0.088      | 0.0285     | 0.8413 | 0.1594    |
| Group16 | 50%r <g+c<=52%< td=""><td>869</td><td>855</td><td>427/427</td><td>442/428</td><td>12 416<br/>2 440</td><td>0.028</td><td>0.0045</td><td>0.8571</td><td>0.0543</td></g+c<=52%<>   | 869        | 855         | 427/427           | 442/428     | 12 416<br>2 440        | 0.028      | 0.0045     | 0.8571 | 0.0543    |
| Group17 | 48% <g+c<=50%< td=""><td>1055</td><td>772</td><td>386/386</td><td>669/386</td><td>2 384<br/>0 669</td><td>0.0052</td><td>0</td><td>1</td><td>0.0103</td></g+c<=50%<>             | 1055       | 772         | 386/386           | 669/386     | 2 384<br>0 669         | 0.0052     | 0          | 1      | 0.0103    |
| Group18 | 46%r <g+c<=48%< td=""><td>1073</td><td>556</td><td>278/278</td><td>795/278</td><td>256 22<br/>698 97</td><td>0.9209</td><td>0.878</td><td>0.2683</td><td>0.4156</td></g+c<=48%<> | 1073       | 556         | 278/278           | 795/278     | 256 22<br>698 97       | 0.9209     | 0.878      | 0.2683 | 0.4156    |
| Group19 | 44%s <g+c<=46%< td=""><td>1239</td><td>485</td><td>242/242</td><td>997/243</td><td>2 241<br/>0 997</td><td>0.0082</td><td>0</td><td>1</td><td>0.0163</td></g+c<=46%<>            | 1239       | 485         | 242/242           | 997/243     | 2 241<br>0 997         | 0.0082     | 0          | 1      | 0.0163    |
| Group20 | 42% <g+c<=44%< td=""><td>1285</td><td>420</td><td>210/210</td><td>1075/210</td><td>0 210<br/>0 1075</td><td>0</td><td>0</td><td>NaN</td><td>0</td></g+c<=44%<>                   | 1285       | 420         | 210/210           | 1075/210    | 0 210<br>0 1075        | 0          | 0          | NaN    | 0         |
| Group21 | 40% <g+c<=42%< td=""><td>1338</td><td>339</td><td>169/169</td><td>1169/170</td><td>141 29<br/>982 187</td><td>0.8294</td><td>0.84</td><td>0.1256</td><td>0.2181</td></g+c<=42%<> | 1338       | 339         | 169/169           | 1169/170    | 141 29<br>982 187      | 0.8294     | 0.84       | 0.1256 | 0.2181    |
| Group22 | G+C<40%                                                                                                                                                                          | 4273       | 1038        | 519/519           | 3754/519    | 17 502<br>74 3680      | 0.0328     | 0.0197     | 0.1868 | 0.0557    |
| Overall |                                                                                                                                                                                  | 14001      | 14001       | 3661/3661         | 10338/10199 | 1012 9187<br>1786 8552 | 0.0992     | 0.1728     | 0.3617 | 0.1557    |

 Table 2.3 Performance of the feature of CC

Table 2.3 presents the experiment result obtained with classifier NaïveBayes. The NaïveBayes classifier makes predictions using Bayes' Theorem and derives the probability from the underlying evidence. As for the dataset used here, the length of the sequence is 1024bp. The sequence is with the range of [-512, +512] relative to TSS.

14001 positive sequences and 14001 negative sequences are used. 50% of the minimum of the positive data and the negative data in each group is used for training, and the rest are used as test data. Since the number of negative sequence contained in Group 1, 2, and 3 is only 0,1,and 1 respectively, these 3 groups are not included in the experiment.

The terms we used here in data analysis:

The rates of True and False Positives have to be taken into consideration. A confusion matrix is used for checking the accuracy of a classification.

One way is the representation in a confusion matrix.

 predictions

 P
 N

 TP
 FN

 FP
 TN

 N
 *P* ---postives (promoters) *N* ---negatives (non-promoters)

| TPTrue Positive  | FPFalse Positives |
|------------------|-------------------|
| TNTrue Negatives | FNFalse Negatives |

| TP (True Positive)correct classifications. $TP$ $rate = \frac{TT}{TP + FN} \times 100\%$ , |
|--------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------|

defined as TP over whole positives. TP rate is also called "Se" or "Recall".

FP (False Positive) ---if the sample is incorrectly predicted as positive, while actually should be negative. FP  $rate = \frac{FP}{FP + TN} \times 100\%$ , it is defined as FP over whole negatives.

PPV - Precision = 
$$\frac{TP}{TP + FP} \times 100\%$$
, it is defined as TP over whole predictions.

We will also use the *F-measure* [Van Rijsbergen, 1979] which combines recall and precision in a single efficiency measure (it is the *harmonic mean* of precision and recall).

$$\text{F-measure} = \frac{2 \times recall \times precision}{recall + precision} = \frac{2TP}{2TP + FP + FN}$$

As shown in Table 2.3, the Se and PPV obtained with the feature of CC is only 9.92% and 36.17%, which shows that it is not a proper feature to separate the positive and negative data compared to findings of later chapters. (At the end of the next chapter, the best combined result produces Se = 71.31% and PPV = 71.22% will be shown.) So we move forward to select the features of the coefficients of the signals after domain transforms. Their performance in promoter and non-promoter classification will be described in the next Chapter.

# **Chapter 3**

## **Feature Combination and Model Selection**

In this Chapter, we evaluate the suitability of three domain transforms, DFT, DCT and DWT for recognition of human promoter sequences.

## 3.1 Raw Data

Here the human promoter sequences are collected using human genome built 35 from the NCBI site and two tools, PromoSer [Halees and Weng, 2004] and FIE2.1 [Chong *et al.*, 2003]. In total, 14,001 promoter sequences with the length of 1024bp are used. They are the gene segments covering the range [-512, +512] relative to TSS (+1). The same number of 'non-promoter' sequences is selected by extracting segments of length 1024bp from randomly chosen chromosomal positions. The number of sequences extracted from one chromosome is proportional to the chromosome length. Thus, we obtain a set of sequences that have very low probability of containing any significant proportion of transcriptional regulatory segments [Zhang *et al.*, 2004].

#### 3.2 Training and testing set

|        | GC-content                                           | # of non-<br>promoters | # of<br>promoters |
|--------|------------------------------------------------------|------------------------|-------------------|
| Group1 | G+C>80%                                              | 0                      | 17                |
| Group2 | 78% <gc<=80%< td=""><td>1</td><td>28</td></gc<=80%<> | 1                      | 28                |
| Group3 | 76% <gc<=78%< td=""><td>1</td><td>96</td></gc<=78%<> | 1                      | 96                |

| Group4  | 74% <gc<=76%< th=""><th>6</th><th>198</th></gc<=76%<>    | 6     | 198   |
|---------|----------------------------------------------------------|-------|-------|
| Group5  | 72% <gc<=74%< td=""><td>8</td><td>312</td></gc<=74%<>    | 8     | 312   |
| Group6  | 70% <gc<=72%< td=""><td>31</td><td>484</td></gc<=72%<>   | 31    | 484   |
| Group7  | 68% <gc<=70%< td=""><td>42</td><td>587</td></gc<=70%<>   | 42    | 587   |
| Group8  | 66% <gc<=68%< td=""><td>78</td><td>798</td></gc<=68%<>   | 78    | 798   |
| Group9  | 64% <gc<=66%< td=""><td>135</td><td>841</td></gc<=66%<>  | 135   | 841   |
| Group10 | 62% <gc<=64%< td=""><td>211</td><td>1032</td></gc<=64%<> | 211   | 1032  |
| Group11 | 60% <gc<=62%< td=""><td>305</td><td>989</td></gc<=62%<>  | 305   | 989   |
| Group12 | 58% <gc<=60%< td=""><td>368</td><td>1091</td></gc<=60%<> | 368   | 1091  |
| Group13 | 56% <gc<=58%< td=""><td>441</td><td>1019</td></gc<=58%<> | 441   | 1019  |
| Group14 | 54% <gc<=56%< td=""><td>541</td><td>1092</td></gc<=56%<> | 541   | 1092  |
| Group15 | 52% <gc<=54%< td=""><td>701</td><td>952</td></gc<=54%<>  | 701   | 952   |
| Group16 | 50% <gc<=52%< td=""><td>869</td><td>855</td></gc<=52%<>  | 869   | 855   |
| Group17 | 48% <gc<=50%< td=""><td>1055</td><td>772</td></gc<=50%<> | 1055  | 772   |
| Group18 | 46% <gc<=48%< td=""><td>1073</td><td>556</td></gc<=48%<> | 1073  | 556   |
| Group19 | 44% <gc<=46%< td=""><td>1239</td><td>485</td></gc<=46%<> | 1239  | 485   |
| Group20 | 42% <gc<=44%< td=""><td>1285</td><td>420</td></gc<=44%<> | 1285  | 420   |
| Group21 | 40% <gc<=42%< td=""><td>1338</td><td>339</td></gc<=42%<> | 1338  | 339   |
| Group22 | GC<40%                                                   | 4273  | 1038  |
| Sum     |                                                          | 14001 | 14001 |
|         |                                                          |       |       |

Table 3.1 Data in 22 groups split by GC-content [Zhang et al., 2004].

Details of the data are given in Table 3.1. To eliminate the influence of the GC-content in my analysis, we divided all sequences into 22 groups by their GC-content first. Next, sequences in each group are randomly ordered and further divided into training and testing data. For the training data, we use the same number of promoter and nonpromoter sequences but the number is different for different groups. For the four groups with the highest GC-content, it is not practical to make such a split since only small proportion of non-promoters is available. The information is summarized in Table 3.1. After that, for each of the data groups the same protocol of feature generation has been applied.

## 3.3 Features and Classification

#### 3.3.1 Algorithm

The promoters and non-promoters are divided into 22 disjoint groups based on their GC-content. We examine three well-known domain transforms, DFT, DCT, DWT, for generating features to be used in the classification algorithm. The number of single nucleotides, di-nucleotides and tri-nucleotides in the sequences is initially determined and these account for first 84 features (4 for single nucleotides; 16 for di-nucleotides; 64 for tri-nucleotides). In addition to these, we add features of signals' coefficients under individual transforms (1024 from DFT, 512 from DCT, and 256 from DWT). Different transform methods such as DFT, DCT, and DWT, and their combinations are tried. DWT is based on two levels of decomposition and only the low resolution.

Once the feature vectors have been generated for the sequences in the group, the feature selection process is applied to select the most prominent features for classification. The top 30 features determined based on the Mahalanobis distance between the promoter and non-promoter data is used.

In statistics, Mahalanobis distance is a distance measure invented by P. C. Mahalanobis in 1936. Mahalanobis distance is the distance between two points scaled by the statistical variation in each component of the point.

The statistical distance or Mahalanobis distance between two points  $x = (x_1, ..., x_p)$  and  $y = (y_1, ..., y_p)_t$  is defined as:  $d_s(x, y) = \sqrt{(x - y)^t S^{-1}(x - y)}$ , p is the number of dimension of the space, and S is the covariance matrix. And the norm of x is defined as:  $d_s(x, 0) = \sqrt{x^t S^{-1} x}$ . Mahalanobis distance takes into account correlations, which means that there are associations between the variables. Feature vectors whose elements are quantities having different ranges and amounts of variation can be compared using Mahalanobis distance.

In each group, the data is first divided into training and test sets after random ordering of positive and negative data before it is further divided into two sets. Standard linear discriminant analysis (LDA) is then applied to separate promoter (positive) and non-promoter (negative) sequences. The models for each group are trained on the training dataset and applied to the test dataset.

#### **3.3.2 Feature description**

Previous (described in Chapter 2) results showed that the CC of each sequence with the mean of the reconstructed positive signal from the transformation domain, which is obtained respectively by DFT, DCT, and DWT, is not a proper feature to discriminate promoters and non-promoters.

Here we systematically examine the effects of using the coefficients of the signal under the three domain transforms: DFT, DCT, and DWT. There will be 7 kinds of combinations of features. The first 84 features are the number of different combinations of mono-, di-, tri- nucleotides. These 84 features' detail is described below and they will be accompanied with the combination of the 3 kind of transforms.

| 2          |             |
|------------|-------------|
| 2.0        | ;           |
| 3. 6       | ŗ           |
| 1 +        | >           |
| 4. l       |             |
| 5. a       | a           |
| 6 9        |             |
| 0. a       | ic          |
| 7. a       | ıg          |
| 8 2        | t           |
| 0.0        |             |
| 9.0        | ea          |
| 10.        | cc          |
| 11         |             |
| 11.        | cg          |
| 12.        | ct          |
| 12         | ~~          |
| 13.        | ga          |
| 14.        | gc          |
| 15         | 00          |
| 15.        | gg          |
| 16.        | gt          |
| 17         | ta          |
| 10         | iu<br>,     |
| 18.        | tc          |
| 19.        | tg          |
| 20         | -0          |
| 20.        | u           |
| 21.        | aaa         |
| 22         | 000         |
| 22.        | aac         |
| 23.        | aag         |
| 24         | aat         |
| 24.        | uut         |
| 25.        | aca         |
| 26         | acc         |
| 27         |             |
| 27.        | acg         |
| 28.        | act         |
| 20         | 0.00        |
| 29.        | aga         |
| 30.        | agc         |
| 31         | 200         |
| 51.        | agg         |
| 32.        | agt         |
| 33         | ata         |
| 35.        | uu          |
| 34.        | atc         |
| 35         | atg         |
| 20         |             |
| 30.        | att         |
| 37.        | aa          |
| 20         |             |
| 50.        | ac          |
| 39.        | ag          |
| 40         | cat         |
| 41         | cut         |
| 41.        | cca         |
| 42         | ccc         |
| 12         |             |
| 43.        | ccg         |
| 44.        | cct         |
| 45         | caa         |
| τ.         | uga         |
| 46.        | cgc         |
| 47         | coo         |
| 40         | <b>6</b> 55 |
| 48.        | cgt         |
| 49.        | cta         |
| 50         | - t -       |
| 50.        | cic         |
| 51.        | ctg         |
| 52         | ott         |
| 52.        | u           |
| 53.        | gaa         |
| 54         | gan         |
| <u>л</u> . | Suc         |
| 55.        | gag         |
| 56         | gat         |
| 57         | 0           |
| 57.        | gca         |
| 58.        | gcc         |
| 50         | -<br>       |
| 59.        | 5.5         |

60. gct

61. gga 62. ggc 63. ggg 64. ggt 65. gta 66. gtc 67. gtg 68. gtt 69. taa 70. tac 71. tag 72. tat 73. tca 74. tcc 75. tcg 76. tct 77. tga 78. tgc 79. tgg 80. tgt 81. tta 82. ttc 83. ttg 84. ttt 85-596: DCT coefficients: 512 597-1620: DFT coefficients: 1024 1621-1876:DWT coefficients: 256

For the 7 combinations of features, their number of features is as follows:

1.84+256(DWT)=340

- 2.84+512(DCT)=596
- 3.84+1024(DFT)=1108
- 4. 84+256(DWT)+512(DCT)=852
- 5.84+256(DWT)+1024(DFT)=1364
- 6.84+512(DCT)+1024(DFT)=1620
- 7.84+256(DWT)+512(DCT)+1024(DFT)=1876

#### 3.3.3 Experiments

As for the dataset used here, the length of individual sequences is 1024bp. The sequence is with the range of [-512, +512] relative to TSS. The data is firstly divided into 22 groups according to their GC-content. Feature selection is the most important issue later. To find two or a few features that can best separate the promoter and nonpromoter data is preferred.

The experiment is carried out in Matlab, C, WEKA environments with different focus. Matlab is used to quickly test the performance of different ideas. Based on the performance, we can find out what features or what combination of features does work and what does not. The feature extraction algorithm is developed in C language, by which the speed is comparatively satisfactory; speed of the data processing is measured and improved. The tool named WEKA [Ian and Eibe, 2005] is a kind of commonly used software to do classification. Based on the results, what features are effective to give the best separation result can be quickly found out.

The terms we used here in data analysis includes those used in Chapter 2: Confusion matrix, TP rate, FP rate, PPV and F-measure. Their detailed definitions are given in Chapter 2.

|         | G+C content<br>(1024componet)                                                                                                                                                   | # of<br>Neg | # of<br>Posi | #of(N=P)<br>Train | #of<br>Test | Confusion.<br>matrix   | TP<br>rate | FP<br>rate | PPV   | F-<br>measur<br>e |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------------|-------------|------------------------|------------|------------|-------|-------------------|
| Grapl   | G+C>80%                                                                                                                                                                         | 0           | 17           | 0/0               | 0/17        |                        |            |            |       |                   |
| Group2  | 78% <g+c<=80%< td=""><td>1</td><td>28</td><td>0/0</td><td>1/28</td><td></td><td></td><td></td><td></td><td></td></g+c<=80%<>                                                    | 1           | 28           | 0/0               | 1/28        |                        |            |            |       |                   |
| Graup3  | 76%≤G+C<=78%                                                                                                                                                                    | 1           | 96           | 0/0               | 1/96        |                        |            |            |       |                   |
| Graup4  | 74‰G+C≪=76%                                                                                                                                                                     | 6           | 198          | 3/3               | 3/195       | 2 1<br>119 76          | 0.390      | 0.333      | 0.987 | 0.559             |
| Group5  | 72% <g+c<=74%< td=""><td>8</td><td>312</td><td>4⁄4</td><td>4/308</td><td>0 4<br/>54 254</td><td>0.825</td><td>1</td><td>0.984</td><td>0.898</td></g+c<=74%<>                    | 8           | 312          | 4⁄4               | 4/308       | 0 4<br>54 254          | 0.825      | 1          | 0.984 | 0.898             |
| Group6  | 70%≪G+C≪=72%                                                                                                                                                                    | 31          | 484          | 15/15             | 16/469      | 5 11<br>166 303        | 0.646      | 0.688      | 0.965 | 0.774             |
| Group7  | 68%≪G+C≪=70%                                                                                                                                                                    | 42          | 587          | 21/21             | 21/566      | 11 10<br>214352        | 0.622      | 0.476      | 0.972 | 0.759             |
| Group8  | 66%≪G+C≪=68%                                                                                                                                                                    | 78          | 798          | 39/39             | 39/759      | 16 23<br>134625        | 0.823      | 0.59       | 0.965 | 0.888             |
| Group9  | 64%≪G+C≪=66%                                                                                                                                                                    | 135         | 841          | 67/67             | 68/774      | 48 20<br>197 577       | 0.745      | 0.294      | 0.966 | 0.842             |
| Group10 | 62%≤G+C<=64%                                                                                                                                                                    | 211         | 1032         | 100/100           | 111/932     | 84 27<br>218714        | 0.766      | 0.243      | 0.964 | 0.854             |
| Group11 | 60%≪G+C<=62%                                                                                                                                                                    | 305         | 989          | 100/100           | 205/889     | 157 48<br>210679       | 0.764      | 0.234      | 0.934 | 0.84              |
| Group12 | 58% <g+c<=60%< td=""><td>368</td><td>1091</td><td>100/100</td><td>268991</td><td>177 91<br/>250741</td><td>0.748</td><td>0.34</td><td>0.891</td><td>0.813</td></g+c<=60%<>      | 368         | 1091         | 100/100           | 268991      | 177 91<br>250741       | 0.748      | 0.34       | 0.891 | 0.813             |
| Group13 | 56% <g+c<=58%< td=""><td>441</td><td>1019</td><td>100/100</td><td>341/919</td><td>247 94<br/>224695</td><td>0.756</td><td>0.276</td><td>0.881</td><td>0.814</td></g+c<=58%<>    | 441         | 1019         | 100/100           | 341/919     | 247 94<br>224695       | 0.756      | 0.276      | 0.881 | 0.814             |
| Group14 | 54%≪G+C≪=56%                                                                                                                                                                    | 541         | 1092         | 100/100           | 441/992     | 324117<br>270722       | 0.728      | 0.265      | 0.861 | 0.789             |
| Group15 | 52%≪G+C≪=54%                                                                                                                                                                    | 701         | 952          | 100/100           | 601/852     | 456 145<br>221 631     | 0.741      | 0.241      | 0.813 | 0.775             |
| Group16 | 50% <g+c<=52%< td=""><td>869</td><td>855</td><td>100/100</td><td>769/755</td><td>553 216<br/>186 569</td><td>0.754</td><td>0.281</td><td>0.725</td><td>0.739</td></g+c<=52%<>   | 869         | 855          | 100/100           | 769/755     | 553 216<br>186 569     | 0.754      | 0.281      | 0.725 | 0.739             |
| Group17 | 48‰ <g+c<=50%< td=""><td>1055</td><td>772</td><td>100/100</td><td>955/672</td><td>657 298<br/>153 519</td><td>0.772</td><td>0.312</td><td>0.635</td><td>0.697</td></g+c<=50%<>  | 1055        | 772          | 100/100           | 955/672     | 657 298<br>153 519     | 0.772      | 0.312      | 0.635 | 0.697             |
| Group18 | 46%≪G+C≪=48%                                                                                                                                                                    | 1073        | 556          | 100/100           | 973/456     | 747 226<br>130 326     | 0.715      | 0.232      | 0.591 | 0.647             |
| Group19 | 44‰ <g+c<=46%< td=""><td>1239</td><td>485</td><td>100/100</td><td>1139/385</td><td>869 270<br/>128 257</td><td>0.668</td><td>0.237</td><td>0.488</td><td>0.564</td></g+c<=46%<> | 1239        | 485          | 100/100           | 1139/385    | 869 270<br>128 257     | 0.668      | 0.237      | 0.488 | 0.564             |
| Group20 | 42%≪G+C≪=44%                                                                                                                                                                    | 1285        | 420          | 100/100           | 1185/320    | 822 363<br>146 174     | 0.544      | 0.306      | 0.324 | 0.406             |
| Group21 | 40%≪G+C≪=42%                                                                                                                                                                    | 1338        | 339          | 100/100           | 1238/239    | 742 496<br>81 158      | 0.661      | 0.401      | 0.242 | 0354              |
| Group22 | G+C<40%                                                                                                                                                                         | 4273        | 1038         | 100/100           | 4173/938    | 2059 2114<br>344 594   | 0.633      | 0.507      | 0219  | 0.326             |
| Overall |                                                                                                                                                                                 | 14001       | 14001        | 1449/1449         | 12552/12552 | 7976 4574<br>3445 8966 | 0.722      | 0.364      | 0.622 | 0.668             |

Table 3.2 Prediction result on training/test dataset

Table 3.2 is the details of data in this experiment. The number of the training samples is the number of half of the minimum of the negative and positive samples in Group 1 to 9, and is 100 in Group 10 to 22, respectively. Table 3.2 also gives the experiment record with classifier NaïveBayes.

#### 3.3.4 Discussion on the design of a classifier

In a classification problem, the error rate measures the overall performance of the classifier. The error rate is the proportion of errors made over a whole set of samples. The error is defined as such a sample when it is incorrectly labelled by prediction. Similarly, when a sample is predicted as actually it should be, it is defined as a success.

The error rate on the training data is not a reliable predictor of the true error rate on new data, whose label is unknown and is defined as "test set". To predict the performance of a classifier, it is necessary to assess the error rate of a classifier on the test set, which does not play a part in the formation of the classifier.

The "training" data is used by one or more learning schemes to come up with the classifiers. The "validation" data is used to optimize parameters of those classifiers, or to select a particular one to make the relatively best performance for the system. The "test" data is used to calculate the error rate of the final, optimized scheme. Each of the three sets of "training data", "validation data" and "test data" must be chosen independently. In Chapter 4, we will specify what data we use respectively for these three data sets. For the experiment in this chapter, we use only the "training data" and the "validation data" and show the optimized system generated by them.

For simulated studies of experiments here, if the training sample set is large enough, a classifier will be well schemed; if the test sample set is large enough, the error estimate

will be done accurately. So when the data is sufficient enough, a large sample set can be used for training, and another independent large sample set for testing.

There is a dilemma for the circumstance when the data is not sufficient enough: to get a good classifier, we want to use as much of the data as possible for training; to get a good error estimate we want to use as much of it as possible for testing.

As shown in Table 3.3 below, practically in our experiment, 14001 positive sequences and 14001 negative sequences are used. 50% of the minimum of the positive data and the negative data in each group is used for training. The data is presented as: "number of non-promoter sequences" / "number of promoter sequences" in each group, e.g. "3/195 in the Test set of Group 4". It Is shown in Table 3.3 that the number of promoters (P) and non-promoters (N) is taken to be the same in the training set of individual groups.

|         | Training set    | Test set |  |
|---------|-----------------|----------|--|
|         | (N = P)         | (N/P)    |  |
| Group1  | 0/0             | 0/17     |  |
| Group2  | 0/0             | 1/28     |  |
| Group3  | 0/0             | 1/96     |  |
| Group4  | 3/3             | 3/195    |  |
| Group5  | 4/4             | 4/308    |  |
| Group6  | 15/15           | 16/469   |  |
| Group7  | 21/21           | 21/566   |  |
| Group8  | 39/39           | 39/759   |  |
| Group9  | 67/67           | 68/774   |  |
| Group10 | 105/105         | 106/927  |  |
| Group11 | 152/152         | 153/837  |  |
| Group12 | 184/184 184/907 |          |  |
| Group13 | 220/220         | 221/799  |  |
| Group14 | 270/270         | 271/822  |  |
| Group15 | 350/350         | 351/602  |  |
| Group16 | 427/427         | 442/428  |  |
| Group17 | 386/386         | 669/386  |  |
| Group18 | 278/278         | 795/278  |  |
| Group19 | 242/242         | 997/243  |  |

| Group20  | 210/210   | 1075/210    |
|----------|-----------|-------------|
| Group21  | 169/169   | 1169/170    |
| Group22  | 519/519   | 3754/519    |
| Over all | 3661/3661 | 10340/10340 |

| Table 3.3 | Training | and test | data set |
|-----------|----------|----------|----------|
|-----------|----------|----------|----------|

#### **3.4 Results**

We performed seven experiments with features obtained using DFT, DCT, DWT and their possible combinations, based on the same setup.

|       | DWT   |       | DCT   |       | DFT   |
|-------|-------|-------|-------|-------|-------|
| Se    | PPV   | Se    | PPV   | Se    | PPV   |
| 1     | 1     | 1     | 1     | 1     | 1     |
| 1     | 0.966 | 1     | 0.966 | 1     | 0.966 |
| 1     | 0.989 | 1     | 0.989 | 1     | 0.989 |
| 0.559 | 0.973 | 0.554 | 0.982 | 0.631 | 0.984 |
| 0.461 | 0.993 | 0.458 | 0.979 | 0.471 | 0.98  |
| 0.55  | 0.996 | 0.507 | 0.979 | 0.397 | 0.989 |
| 0.701 | 0.988 | 0.597 | 0.991 | 0.454 | 0.977 |
| 0.777 | 0.982 | 0.76  | 0.981 | 0.747 | 0.978 |
| 0.788 | 0.985 | 0.767 | 0.98  | 0.753 | 0.981 |
| 0.765 | 0.977 | 0.761 | 0.978 | 0.736 | 0.977 |
| 0.753 | 0.957 | 0.749 | 0.951 | 0.759 | 0.955 |
| 0.713 | 0.96  | 0.711 | 0.954 | 0.713 | 0.957 |
| 0.73  | 0.959 | 0.72  | 0.955 | 0.726 | 0.951 |
| 0.72  | 0.949 | 0.707 | 0.945 | 0.708 | 0.951 |
| 0.716 | 0.929 | 0.709 | 0.928 | 0.714 | 0.921 |
| 0.72  | 0.873 | 0.738 | 0.849 | 0.755 | 0.812 |
| 0.635 | 0.814 | 0.65  | 0.78  | 0.655 | 0.76  |
| 0.662 | 0.584 | 0.683 | 0.585 | 0.698 | 0.586 |
| 0.613 | 0.458 | 0.646 | 0.452 | 0.712 | 0.425 |
| 0.586 | 0.28  | 0.643 | 0.292 | 0.69  | 0.28  |
| 0.541 | 0.197 | 0.6   | 0.213 | 0.606 | 0.202 |
| 0.651 | 0.189 | 0.68  | 0.184 | 0.64  | 0.185 |

Table 3.4 Performance under different transform [Zhang et al., 2004].

The results obtained for each of the 22 groups are summarized in Table 3.4 for each of the basic domain transforms. DWT, DCT and DFT result in Se of 0.7, 0.692, 0.68, and

PPV of 0.722, 0.706 and 0.7, respectively. For each group, we attempt to select the best performing transform. The selected cases are highlighted in Table 3.4 (shaded and in bold numbers). The best combined result produces Se = 0.7131 and PPV = 0.7122. Other combinations produce similar, but inferior results [Zhang *et al.*, 2004].

#### **3.5 Discussion and conclusion**

The experiments show certain consistent patterns. For example, the ability to separate promoters from non-promoters reduces significantly with the reduction of GC-content. In the three top ranked GC-groups, we observe sensitivity of 1 and PPV of over 0.96, while in the lowest GC-content groups these degrade to 0.6 and 0.19, respectively. This can be explained by the specific properties of regulatory regions in promoters with higher GC-content. These regions include most of the house-keeping genes. While those with the lower GC-content may predominantly be tissue-specific and could account for greater variability in their promoter content.

Another important observation is that the use of three different domain transforms does not result in dramatically different performance in classification of promoters and nonpromoters. This suggests that all three domain transforms could provide useful information that could be integrated with information from biological features to predict promoters. Since information from biological features is not 'correlated' with that obtained via domain transforms, the classification performance should be significantly improved. Thirdly, we observe that combining results from the three domain transforms does improve the classification performance to some extent. The best performance with Se = 71.31% and PPV = 71.22% was achieved by combining all three transforms. This greatly increased efficiency in prediction, compared to results of Se=9.92% and PPV=36.17% by use of feature of CC in Chapter 2. When no feature selection is done and the whole set of features are used, no significant change has been observed. This suggests that there is significant correlation between the information obtained from the three domain transforms.

In conclusion, the use of domain transforms for predicting human promoters is promising and should be combined with more of other physical, statistical or biological features of promoter regions to achieve better performance results. Also, the reduction of features has to be done on a case to case basis.

## **Chapter 4**

## Finding Starting Position of a Gene by Promoter Prediction System

In this Chapter, we first describe the details of the prediction system developed in C language module by module. We use Visual C++6.0 compiler. We aim to find the most probable position at which the TSS is located along DNA. The concept used is introduced and the efficiency of my scheme is discussed. Finally the prediction results are given when the system is applied to human chromosome 22 (NCBI, built 35). Based on the results obtained, the conclusion about the effectiveness of the features extracted is drawn and the SVM classifier models are finalized.

## 4. 1 System description

## 4.1.1 Training the system



Figure 4.1 The depiction of the system structure relevant for 'training' and 'optimization'

Figure 4.1 is the simplified structure of the system during training and optimization before it is applied to do promoter prediction on human chromosomes. Models are trained with the training data and optimized with the validation data. The performance evaluation is made with different combination of features, different parameters and different kernel functions tried in the classifier. The data set comprises of 14001 positive sequences and 14001 negative sequences. 1449 positive and 1449 negative sequences are used as training data and 12552 positive and 12552 negative sequences are used as validation data, respectively. The test data is not included in this stage, and is applied in the stage of prediction shown in Figure 4.2 below. The models for each of the 22 groups of data are optimized one by one. The optimization is done with the most proper combination of features, parameters and kernel functions when the system gives the best overall performance on the validation data. Details will be presented in later

part of this chapter.



chromosome



Figure 4.2 Depiction of the final prediction system

Figure 4.2 is depiction of the final prediction system which has already been trained based on the training data and optimized based on the validation data in the previous stage. The steps of how the system does promoter predictions on one half of human chromosome 22 are given below.

1. Open the file named "Homo\_sapiens.NCBI35.dec.dna.chromosome.22.fa", which contains the chromosome 22 sequence data;

2. Extract a sequence of length 1024bp from the chromosome sequence by using a sliding window and by neglecting any sequence containing "N";

3. Calculate the first 84 features of the combination of number of single nucleotide, dinucleotides, and tri-nucleotides. Based on the sequence's GC content (GC content= (#G + #C)/Sequence Length, where #G and #C are the total number of G and C nucleotide), divide the sequence into 22 groups.

4. Based on the sequence's group number, decide the 'combination' of DCT/FT/DWT features to calculate all the features needed and select the model needed in promoter prediction(the model is trained and optimized in previous experiment group by group);

5. Write all the calculated features into input files to be classified later by the trained system;

6. Classify this sequence with the model which is already saved for each Group;

7. Read the "value of decision function" from the file named "prediction.txt". If it is above or equal to zero, print this value and the order of this sequence into the file named "final report.txt". If it is negative, print the value to the file named "nega.txt".

8. Move the sliding window by a defined step along the chromosome to extract the next sequence until the window reaches the last 1024bps to the end of the chromosome;9. Draw the distribution plot of the scores with their corresponding positions along the human chromosome.

#### 4.2 SVM used in classification

The idea of Support Vector Machine (SVM) is to separate data from different categories by a hyperplane, after mapping the data into a sufficiently high dimension with an appropriate non-linear mapping function [Duda *et al.*, 2001]. SVM is trained to obtain the largest margin to separate the different classes of data. The larger the margin that can be found, the better generalization ability of the classifier can be obtained in the future.

The support vectors are the training samples that are the most difficult to classify, and they decide the optimal separating hyperplane. Training an SVM involves finding the optimal hyperplane, which is the one with the maximum genomic margin over it. So support vectors are the training samples that are most informative for the classification task. When SVM is applied in classification problems, generalization control is obtained by maximizing the margin, or to minimize the weight vector correspondingly. The support vectors obtained as the solution can be sparse. These support vectors lie on the boundary and in this way summarize the information required to separate the data [Gunn, 1998].

To train an SVM, the commonly used method is the perceptron learning rule. The perceptron learning rule is to update the weight vector by an amount proportional to any misclassified patterns that are randomly selected. There is a simple method of training SVM, conceptually based on a small modification to this perceptron training rule. An SVM can be trained by choosing the current worst pattern in classification. During the training period, in most cases, such a pattern is one on the wrong side of the current decision boundary----the farthest side from that boundary. At the end of the training period, such a pattern will be one of the support vectors.

But this method is still only suitable for small number of data, since for each update, a search through the entire training set needs to be done to find the worst-classified pattern. For instance, if there are 'n' points in the training set, an SVM can be trained on the 'n-1' points of them, and the single remaining point can be test on. There will be an

error corresponding to each support vector. Thus, the optimal hyperplane that will separate the data is needed, so that the expected number of support vectors is small, and then the expected error rate will be lower.

Support vector machine tends to be less likely to suffer the problem of over fitting than some other methods. The complexity of the trained classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space [Duda *et al.*, 2001]. Due to this advantage I finally choose SVM classifier for our promoter prediction system.

#### 4.3 Tuning the model

#### 4.3.1 The features applied

Kernel functions are used in SVM to construct a mapping from the input feature space into a high dimensional feature space. The idea of the kernel function used to transform input data is to enable operations performed in the input space to be performed in a mapped new space. That is to say operation is not necessarily to be done in the input space, which is the potentially high dimensional feature space.

This provides a promising solution to problems in which potentially high dimensionality is involved. However, the computation is still critically dependent upon the number of training samples. Also, for the purpose of providing a good data distribution for a high dimensional problem, a large training set will generally be required [Gunn, 1998]. Here in my experiment, the 7 combinational features of the data are systematically applied (defined in Chapter 3). The features are numbered as described below.

Features No.1-84: the nucleotides combination features.

These first 84 features are the number of single nucleotide, di-nucleotides and trinucleotides in the original nucleotide sequence. Features from No.1-4 are the number of single nucleotides of 'a', 'c', 'g', and 't'; features from No.5-20 are the number of dinucleotides of 16 kinds of combination with two nucleotides of 'a', 'c', 'g', and 't'; and features from No.21-84 are the number of tri-nucleotides of 64 kinds of combination of with three nucleotides of 'a', 'c', 'g', and 't'.

Features No.85-596: DCT coefficients

Features from No. 85-596 are the 512 coefficients of the signal after DCT transform.

Features No.597-1620: DFT coefficients

Features from No. 597-1620 are the 1024 coefficients of the signal after DFT transform.

Features No.1621-1876: DWT coefficients

Features from No. 1621-1876 are the 256 coefficients of the signal after DWT transform.

The 84 Nucleotides combination features will be accompanied with the combination of the 3 kinds of transformations (DFT, DCT, and DWT) to be 7 combinational different sets of features. The seven tables are given below to show the parameters and the performances:

1. Features: 84+256(DWT)=340

|         | measure) |           |           |
|---------|----------|-----------|-----------|
| Group4  | 0.000001 | 91.17     | 98.87     |
| Group5  | 0        | 68.27     | 99.09     |
| Group6  | 0.01     | 45.66     | 99.04     |
| Group7  | 0        | 83.81     | 99.29     |
| Group8  | 0.000001 | 98.28     | 96.41     |
| Group9  | 0.000001 | 98.11     | 94.25     |
| Group10 | 0.0001   | 85.85     | 97.13     |
| Group11 | 0.000001 | 90.72     | 91.67     |
| Group12 | 0.0001   | 77.71     | 97.14     |
| Group13 | 0.01     | 72.98     | 96.71     |
| Group14 | 1        | 73.96     | 93.11     |
| Group15 | 1        | 72.48     | 76.95     |
| Group16 | 0.0001   | 61.54     | 69.14     |
| Group17 | 1        | 71.95     | 50.43     |
| Group18 | 0.0001   | 73.08     | 34.91     |
| Group19 | 0.0001   | 72.89     | 27.94     |
| Group20 | 0.01     | 73.01     | 23.71     |
| Group21 | 0.0001   | 71.9      | 22.36     |
| Group22 | 0.0001   | 64.81     | 16.88     |
| overall |          | 79.700249 | 71.409142 |

Table 4.1 The parameters with the 1st set of features

**2.** Features: 84+512(DCT) =596

|         | Op_c (F- |       |       |
|---------|----------|-------|-------|
|         | measure) | Se    | PPV   |
| Group4  | 0.000001 | 91.17 | 98.87 |
| Group5  | 0        | 68.27 | 99.09 |
| Group6  | 1000     | 45.66 | 99.36 |
| Group7  | 0.000001 | 83.93 | 99.29 |
| Group8  | 0.000001 | 98.28 | 96.41 |
| Group9  | 0.000001 | 98.11 | 94.25 |
| Group10 | 0.0001   | 85.85 | 97.13 |
| Group11 | 0.000001 | 90.62 | 91.66 |
| Group12 | 0.0001   | 77.71 | 97.14 |
| Group13 | 0.0001   | 72.72 | 96.87 |
| Group14 | 0.01     | 74.3  | 90.69 |
| Group15 | 0.0001   | 64.53 | 88.28 |
| Group16 | 0.0001   | 61.54 | 69.71 |
| Group17 | 0.0001   | 61.38 | 53.93 |
| Group18 | 0.0001   | 73.08 | 35.19 |
| Group19 | 0.0001   | 72.89 | 28.07 |

| Group20 | 0.0001 | 77.3      | 23.08     |
|---------|--------|-----------|-----------|
| Group21 | 0.0001 | 71.24     | 22.34     |
| Group22 | 0.0001 | 65.48     | 17.1      |
| overall |        | 79.292351 | 71.658806 |

Table 4.2 The parameters with the 2nd set of features

## **3.** Features: 84+1024(DFT)=1108

|         | Op_c (F- |           |           |
|---------|----------|-----------|-----------|
|         | measure) | Se        | PPV       |
| Group4  | 0        | 91.43     | 98.88     |
| Group5  | 0        | 68.27     | 99.09     |
| Group6  | 1000     | 46.39     | 99.37     |
| Group7  | 0.000001 | 84.17     | 99.29     |
| Group8  | 0.000001 | 98.28     | 96.41     |
| Group9  | 0.000001 | 98.11     | 94.25     |
| Group10 | 0.0001   | 85.95     | 97.13     |
| Group11 | 0.000001 | 90.62     | 91.66     |
| Group12 | 0.0001   | 77.71     | 97.26     |
| Group13 | 0.0001   | 72.72     | 96.87     |
| Group14 | 0.0001   | 68.33     | 97.4      |
| Group15 | 0.0001   | 64.53     | 88.28     |
| Group16 | 0.0001   | 61.9      | 70.12     |
| Group17 | 0.0001   | 62.2      | 54.06     |
| Group18 | 0.0001   | 73.08     | 35.28     |
| Group19 | 0.0001   | 72.29     | 27.97     |
| Group20 | 0.0001   | 77.3      | 23.08     |
| Group21 | 0.0001   | 71.24     | 22.15     |
| Group22 | 0.0001   | 65.26     | 17.01     |
| overall |          | 79.169037 | 71.716431 |

Table 4.3 The parameters with the 3rd set of features

## **4.** Features: 84+256(DWT)+512(DCT)=852

|         | Op_c (F- |       |       |
|---------|----------|-------|-------|
|         | measure) | Se    | PPV   |
| Group4  | 0.000001 | 91.17 | 98.87 |
| Group5  | 0        | 68.27 | 99.09 |
| Group6  | 1000     | 45.66 | 99.36 |
| Group7  | 0.000001 | 83.93 | 99.29 |
| Group8  | 0.000001 | 98.28 | 96.41 |
| Group9  | 0.000001 | 98.11 | 94.25 |
| Group10 | 0.0001   | 85.85 | 97.13 |
| Group11 | 0.000001 | 90.62 | 91.66 |
| Group12 | 0.0001 | 77.71     | 97.14     |
|---------|--------|-----------|-----------|
| Group13 | 0.0001 | 72.72     | 96.87     |
| Group14 | 0.01   | 74.3      | 90.69     |
| Group15 | 0.0001 | 64.53     | 88.28     |
| Group16 | 0.0001 | 61.54     | 69.71     |
| Group17 | 0.0001 | 61.38     | 53.93     |
| Group18 | 0.0001 | 73.08     | 35.09     |
| Group19 | 0.0001 | 72.89     | 28.07     |
| Group20 | 0.0001 | 77.3      | 23.08     |
| Group21 | 0.0001 | 71.24     | 22.34     |
| Group22 | 0.0001 | 65.48     | 17.1      |
| overall |        | 79.210144 | 71.695145 |

Table 4.4 The parameters with the 4th set of features

5. Features: 84+256(DWT)+1024(DFT)=1364

|         | Op_c (F- |          |           |
|---------|----------|----------|-----------|
|         | measure) | Se       | PPV       |
| Group4  | 0        | 91.43    | 98.88     |
| Group5  | 0.000001 | 68.27    | 99.09     |
| Group6  | 1000     | 46.39    | 99.37     |
| Group7  | 0.000001 | 84.17    | 99.29     |
| Group8  | 0.000001 | 98.28    | 96.41     |
| Group9  | 0.000001 | 98.11    | 94.25     |
| Group10 | 0.0001   | 85.95    | 97.13     |
| Group11 | 0.000001 | 90.62    | 91.66     |
| Group12 | 0.0001   | 77.71    | 97.26     |
| Group13 | 0.0001   | 72.72    | 96.87     |
| Group14 | 0.0001   | 68.33    | 97.4      |
| Group15 | 0.0001   | 64.53    | 88.28     |
| Group16 | 0.0001   | 61.54    | 70        |
| Group17 | 0.0001   | 62.2     | 54.06     |
| Group18 | 0.0001   | 73.08    | 35.28     |
| Group19 | 0.0001   | 72.29    | 27.97     |
| Group20 | 0.0001   | 77.3     | 23.08     |
| Group21 | 0.0001   | 71.24    | 22.15     |
| Group22 | 0.0001   | 65.26    | 17.01     |
| overall |          | 79.03624 | 71.771904 |

| <b>Table 4.5 The parameters</b> | with the 5th set of features |
|---------------------------------|------------------------------|
|---------------------------------|------------------------------|

**6.** Features: 84+512(DCT)+1024(DFT)=1620

|        | Op_c (F-<br>measure) | Se    | PPV   |
|--------|----------------------|-------|-------|
| Group4 | 0                    | 91.43 | 98.88 |

| Group5  | 0.000001 | 68.27     | 99.09     |
|---------|----------|-----------|-----------|
| Group6  | 0.01     | 46.69     | 99.37     |
| Group7  | 0.000001 | 84.17     | 99.29     |
| Group8  | 0.000001 | 98.28     | 96.41     |
| Group9  | 0.000001 | 98.22     | 94.26     |
| Group10 | 0.0001   | 85.95     | 97.03     |
| Group11 | 0.000001 | 90.52     | 91.65     |
| Group12 | 0.0001   | 77.71     | 97.26     |
| Group13 | 0.0001   | 72.85     | 96.88     |
| Group14 | 0.0001   | 68.49     | 97.41     |
| Group15 | 0.0001   | 64.53     | 88.28     |
| Group16 | 0.0001   | 61.17     | 69.01     |
| Group17 | 0.0001   | 62.6      | 54.42     |
| Group18 | 0.0001   | 73.08     | 35.37     |
| Group19 | 0.0001   | 72.29     | 27.97     |
| Group20 | 0.0001   | 77.3      | 23.08     |
| Group21 | 0.0001   | 71.24     | 22.15     |
| Group22 | 0.0001   | 65.48     | 17.13     |
| overall |          | 79.083664 | 71.821159 |

## 7. Features: 84+256(DWT)+512(DCT)+1024(DFT)=1876

|         | Op_c (F- |       |       |
|---------|----------|-------|-------|
|         | measure) | Se    | PPV   |
| Group4  | 0        | 91.43 | 98.88 |
| Group5  | 0.000001 | 68.27 | 99.09 |
| Group6  | 0.01     | 46.69 | 99.37 |
| Group7  | 0.000001 | 84.17 | 99.29 |
| Group8  | 0.000001 | 98.28 | 96.41 |
| Group9  | 0.000001 | 98.22 | 94.26 |
| Group10 | 0.0001   | 85.95 | 97.03 |
| Group11 | 0.000001 | 90.52 | 91.65 |
| Group12 | 0.0001   | 77.71 | 97.26 |
| Group13 | 0.0001   | 72.85 | 96.88 |
| Group14 | 0.0001   | 68.49 | 97.41 |
| Group15 | 0.0001   | 64.53 | 88.28 |
| Group16 | 0.0001   | 61.17 | 69.29 |
| Group17 | 0.0001   | 62.6  | 54.42 |
| Group18 | 0.0001   | 73.08 | 35.37 |
| Group19 | 0.0001   | 72.29 | 27.97 |
| Group20 | 0.0001   | 77.3  | 23.08 |
| Group21 | 0.0001   | 71.24 | 22.15 |
| Group22 | 0.0001   | 65.48 | 17.12 |

| Ta | ble 4.7 The | e paramete | rs with the 7th | set of featu | res |
|----|-------------|------------|-----------------|--------------|-----|
|    | overall     |            | 79.083664       | 71.821159    |     |

Table 4.1-7 summarizes the results of the experiments using the 7 sets of features, which are automatically generated by the system. The first column is the optimization of parameter C to produce the best F-measure, and the second and third column is the SE and PPV value under this optimal setting. The parameter C is the trade-off between training error and margin (defaulted as being defined as [arg.x\*x]^-1). Here I adopt one of the most popular measures called the F-measure:  $F_{\beta} = \frac{PR}{(1-\beta)P+\beta R}$ . The trade-offs between competing objectives is controlled by the variable  $\beta$ . When  $\beta = 0.5$ , the F-measure is the harmonic mean of precision and recall [Fisher *et al.*, 2004]. During the experiment, I set  $\beta = 0.5$ , to stress the equal importance of precision and recall. It can be observed from the tables, that for different group, the optimal choice of combination of features may be different to obtain the best performance. For the final settings of the system, the optimal model should be selected group by group respectively to obtain the optimal overall recall and precision level for the whole data set.

### **4.3.2** Find the appropriate kernel

An SVM is largely characterized by the choice of its kernel function. Thus SVM connect the problem they are designed for to a large body of existing research on kernel-based methods [Wong, 2004]. I focus to tune the models by finding the optimal kernel function as well as the optimal important parameters to optimize the models' performance in classifying each group of data, respectively.

## 4.3.3 Tuning the models

Careful tuning is required to achieve the best performance of the system in recognition of TSS in a large-scale promoter search. The general goal of tuning is to maximize the level of true positives versus false positives over whole data set and at the same time maintaining a satisfying sensitivity level. Different models are trained and each is tuned for the best performance in each group respectively. That is to say, I aim at producing the highest PPV.

The tuning process can thus be considered as an optimization process with two goals-to maximize sensitivity and maximize the positive predictive value.

To develop a set of optimal models of the system, I need to tune a large number of parameters. However, to optimize the parameters usually involves going towards multiple competing objectives. And what balances to be set between precision and specificity (recall) in the system also should be considered. Since this two values will not be high or low simultaneously. That is to say that it is difficult to obtain good values for both precision and recall concurrently. Here I adapt one of the most popular measures called the F-measure:  $F_{\beta} = \frac{PR}{(1-\beta)P + \beta R}$ . The trade-offs between competing objectives is controlled by the variable  $\beta$ . When  $\beta = 0.5$ , the F-measure is the harmonic mean of precision and recall. By setting the value of  $\beta$ , the relative importance of precision and recall to the system can be given in advance [Fisher *et al.*, 2004]. In my project, I set  $\beta = 0.5$ , to stress the equal importance of precision and recall.

#### Select the proper kernel:

The kernels applied in the experiments include: linear kernel, polynomial kernel----(s a\*b+c)^d, radial basis function kernel----exp(-gamma  $||a-b||^2$ ), sigmoid kernel----tanh(s a\*b+c).

During the experiment, I set  $\beta = 0.5$ , to stress the equal importance of precision and recall. The parameter C is the trade-off between training error and margin (defaulted as being defined as [arg.x\*x]^-1), and this parameter C has the same effect as it is defined in all kinds of kernel functions.

Only the tables obtained by radial basis function kernel and polynomial kernel are given below as two examples of our experiment results. Other tables with other kernel functions are attached in Appendix B.

|         | c=1.000 | 000   | c=1.0000 | 000   | c=1.00 | 00000 | c=1.00 | 00000  | c=1.00 | 00000   |
|---------|---------|-------|----------|-------|--------|-------|--------|--------|--------|---------|
|         | g=0.000 | 010   | g=0.000  | 100   | g=1.00 | 00000 | g=10.0 | 000000 | g=100  | .000000 |
| Group # | Se      | PPV   | Se       | PPV   | Se     | PPV   | Se     | PPV    | Se     | PPV     |
|         | TP      | FN    | ТР       | FN    | TP     | FN    | ТР     | FN     | TP     | FN      |
|         | FP      | TN    | FP       | TN    | FP     | TN    | FP     | TN     | FP     | TN      |
| Group4  | 87.01   | 98.82 | 78.96    | 98.7  | 0      | 0     | 0      | 0      | 0      | 0       |
|         | 0       | 4     | 0        | 4     | 0      | 4     | 0      | 4      | 0      | 4       |
|         | 50      | 335   | 81       | 304   | 385    | 0     | 385    | 0      | 385    | 0       |
| Group5  | 66.39   | 99.07 | 57.83    | 100   | 0      | 0     | 0      | 0      | 0      | 0       |
|         | 2       | 3     | 5        | 0     | 0      | 5     | 0      | 5      | 0      | 5       |
|         | 161     | 318   | 202      | 277   | 479    | 0     | 479    | 0      | 479    | 0       |
| Group6  | 42.71   | 99.66 | 60.68    | 99.76 | 0      | 0     | 0      | 0      | 0      | 0       |
|         | 12      | 1     | 12       | 1     | 0      | 13    | 0      | 13     | 0      | 13      |
|         | 389     | 290   | 267      | 412   | 679    | 0     | 679    | 0      | 679    | 0       |
| Group7  | 85.97   | 99.31 | 88.13    | 99.46 | 0      | 0     | 0      | 0      | 0      | 0       |
|         | 13      | 5     | 14       | 4     | 0      | 18    | 0      | 18     | 0      | 18      |
|         | 117     | 717   | 99       | 735   | 834    | 0     | 834    | 0      | 834    | 0       |
| Group8  | 88.37   | 99.03 | 86.01    | 99.01 | 0      | 0     | 0      | 0      | 0      | 0       |
|         | 37      | 8     | 37       | 8     | 1      | 44    | 1      | 44     | 1      | 44      |
|         | 108     | 821   | 130      | 799   | 929    | 0     | 929    | 0      | 929    | 0       |
| Group9  | 87.2    | 98.46 | 86.57    | 98.33 | 0      | 0     | 0      | 0      | 0      | 0       |
|         | 64      | 13    | 63       | 14    | 0      | 77    | 0      | 77     | 0      | 77      |
|         | 122     | 831   | 128      | 825   | 953    | 0     | 953    | 0      | 953    | 0       |
| Group10 | 84.88   | 96.99 | 84.39    | 97.08 | 0      | 0     | 0      | 0      | 0      | 0       |
|         | 100     | 27    | 101      | 26    | 0      | 127   | 0      | 127    | 0      | 127     |
|         | 155     | 870   | 160      | 865   | 1025   | 0     | 1025   | 0      | 1025   | 0       |

| Group11    | 77.84 | 98.18 | 74.64 | 98.37 | 0    | 0    | 0    | 0    | 0    | 0    |
|------------|-------|-------|-------|-------|------|------|------|------|------|------|
|            | 127   | 14    | 129   | 12    | 0    | 141  | 0    | 141  | 0    | 141  |
|            | 215   | 755   | 246   | 724   | 970  | 0    | 970  | 0    | 970  | 0    |
| Group12    | 76.56 | 97.22 | 74.79 | 97.42 | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 153   | 21    | 155   | 19    | 1    | 173  | 1    | 173  | 1    | 173  |
|            | 225   | 735   | 242   | 718   | 960  | 0    | 960  | 0    | 960  | 0    |
| Group13    | 72.06 | 97.35 | 69.06 | 97.42 | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 199   | 15    | 200   | 14    | 0    | 214  | 0    | 214  | 0    | 214  |
|            | 214   | 552   | 237   | 529   | 766  | 0    | 766  | 0    | 766  | 0    |
| Group14    | 67    | 96.88 | 65.84 | 98.02 | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 259   | 13    | 264   | 8     | 0    | 272  | 0    | 272  | 0    | 272  |
|            | 199   | 404   | 206   | 397   | 603  | 0    | 603  | 0    | 603  | 0    |
| Group15    | 60.86 | 91.71 | 62.39 | 89.47 | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 351   | 18    | 345   | 24    | 0    | 369  | 0    | 369  | 0    | 369  |
|            | 128   | 199   | 123   | 204   | 327  | 0    | 327  | 0    | 327  | 0    |
| Group16    | 47.62 | 80.25 | 53.11 | 71.43 | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 552   | 32    | 526   | 58    | 0    | 584  | 0    | 584  | 0    | 584  |
|            | 143   | 130   | 128   | 145   | 273  | 0    | 273  | 0    | 273  | 0    |
| Group17    | 48.37 | 66.11 | 58.94 | 52.35 | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 756   | 61    | 685   | 132   | 0    | 817  | 0    | 817  | 0    | 817  |
|            | 127   | 119   | 101   | 145   | 246  | 0    | 246  | 0    | 246  | 0    |
| Group18    | 60.44 | 28.5  | 72.53 | 34.29 | 0.55 | 0.11 | 0.55 | 0.11 | 0.55 | 0.11 |
|            | 631   | 276   | 654   | 253   | 0    | 907  | 0    | 907  | 0    | 907  |
|            | 72    | 110   | 50    | 132   | 181  | 1    | 181  | 1    | 181  | 1    |
| Group19    | 80.72 | 18.38 | 66.27 | 23.35 | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 428   | 595   | 662   | 361   | 0    | 1023 | 0    | 1023 | 0    | 1023 |
|            | 32    | 134   | 56    | 110   | 166  | 0    | 166  | 0    | 166  | 0    |
| Group20    | 84.05 | 17.28 | 74.23 | 20.27 | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 435   | 656   | 615   | 476   | 0    | 1091 | 0    | 1091 | 0    | 1091 |
|            | 26    | 137   | 42    | 121   | 163  | 0    | 163  | 0    | 163  | 0    |
| Group21    | 72.55 | 17.1  | 72.55 | 18.85 | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 603   | 538   | 663   | 478   | 0    | 1141 | 0    | 1141 | 0    | 1141 |
|            | 42    | 111   | 42    | 111   | 153  | 0    | 153  | 0    | 153  | 0    |
| Group22    | 85.3  | 13.53 | 71.71 | 17.6  | 0    | 0    | 0    | 0    | 0    | 0    |
|            | 1487  | 2448  | 2427  | 1508  | 2    | 3933 | 2    | 3933 | 2    | 3933 |
|            | 66    | 383   | 127   | 322   | 449  | 0    | 449  | 0    | 449  | 0    |
| <b>T</b> 1 | 1 4 0 |       | • ,   | 14    |      | DI   |      | 1.   | 1    | • 1  |

 Table 4.8a Experiment result when an RBF kernel is applied

|         | Op_c(F-<br>measure) | Op_g(F-<br>measure) | Se    | PPV   |
|---------|---------------------|---------------------|-------|-------|
| Group4  | 1                   | 0.00001             | 87.01 | 98.82 |
| Group5  | 1                   | 0.00001             | 66.39 | 99.07 |
| Group6  | 1                   | 0.0001              | 60.68 | 99.76 |
| Group7  | 1                   | 0.0001              | 88.13 | 99.46 |
| Group8  | 1                   | 0.00001             | 88.37 | 99.03 |
| Group9  | 1                   | 0.00001             | 87.2  | 98.46 |
| Group10 | 1                   | 0.00001             | 84.88 | 96.99 |
| Group11 | 1                   | 0.00001             | 77.84 | 98.18 |
| Group12 | 1                   | 0.00001             | 76.56 | 97.22 |
| Group13 | 1                   | 0.00001             | 72.06 | 97.35 |

| Group14 | 1 | 0.00001 | 67        | 96.88     |
|---------|---|---------|-----------|-----------|
| Group15 | 1 | 0.0001  | 62.39     | 89.47     |
| Group16 | 1 | 0.0001  | 53.11     | 71.43     |
| Group17 | 1 | 0.00001 | 48.37     | 66.11     |
| Group18 | 1 | 0.0001  | 72.53     | 34.29     |
| Group19 | 1 | 0.0001  | 66.27     | 23.35     |
| Group20 | 1 | 0.0001  | 74.23     | 20.27     |
| Group21 | 1 | 0.0001  | 72.55     | 18.85     |
| Group22 | 1 | 0.0001  | 71.71     | 17.6      |
| overall |   |         | 76.190475 | 70.617195 |
|         |   |         |           |           |

Table 4.8b Optimal parameters for each group of data

Table 4.8 is the result obtained with the radial basis function kernel. The parameter g is the parameter gamma in radial basis function kernel -----exp (-gamma  $||a-b||^2$ ). Table 4.8a records SE, PPV and confusion matrix (TP, FN; FP, TN) for the data of each group, under the parameter combinations of C and g. The optimal parameter combinations of C and g for each group of data are indicted in Table 4.8b. The overall SE and PPV is 76.19% and 70.62%, respectively.

Chapter 4 Finding Starting Position of A Gene by Promoter Prediction System

|         | c=0   |       | c=0  |     | C=0.00 | 1000  | c=0.00( | 1000  | c=0.000 | 1     | c=0.000 | 1,    | c=0.01 |       | c=0.01 |       | c=1   |       | c=1   |       |
|---------|-------|-------|------|-----|--------|-------|---------|-------|---------|-------|---------|-------|--------|-------|--------|-------|-------|-------|-------|-------|
|         | d=2   |       | d=3  |     | d=2    |       | d=3     |       | d=2     |       | d=3     |       | d=2    |       | d=3    |       | d=2   |       | d=3   |       |
| Group # | Se    | ΡΡV   | Se   | ΡΡV | Se     | ΡΡV   | Se      | ΡΡV   | Se      | PPV   | Se      | PPV   | Se     | PPV   | Se     | PPV   | Se    | PPV   | Se    | PPV   |
|         | TP    | FN    | ΤP   | FN  | ТР     | FN    | TP      | FN    | TP      | FN    | TP      | FN    | TP     | FN    | ТР     | FN    | TP    | FN    | ТР    | FN    |
|         | FP    | NT    | FP   | TN  | FP     | TN    | FP      | TN    | FP      | TN    | FP      | TN    | FP     | TN    | FP     | NT    | FP    | TN    | FP    | TN    |
| Group4  | 92.21 | 98.89 | 0    | 0   | 69.35  | 98.52 | 69.35   | 98.52 | 69.35   | 98.52 | 69.35   | 98.52 | 69.35  | 98.52 | 69.35  | 98.52 | 69.35 | 98.52 | 69.35 | 98.52 |
|         | 0     | 4     | 0    | 4   | 0      | 4     | 0       | 4     | 0       | 4     | 0       | 4     | 0      | 4     | 0      | 4     | 0     | 4     | 0     | 4     |
|         | 30    | 355   | 385  | 0   | 118    | 267   | 118     | 267   | 118     | 267   | 118     | 267   | 118    | 267   | 118    | 267   | 118   | 267   | 118   | 267   |
| Group5  | 69.1  | 99.1  | 0    | 0   | 56.78  | 99.27 | 56.78   | 99.27 | 56.78   | 99.27 | 56.78   | 99.27 | 56.78  | 99.27 | 56.78  | 99.27 | 56.78 | 99.27 | 56.78 | 99.27 |
|         | 2     | 3     | 0    | 5   | 3      | 2     | 3       | 2     | 3       | 2     | 3       | 2     | 3      | 2     | 3      | 2     | 3     | 2     | 3     | 2     |
|         | 148   | 331   | 479  | 0   | 207    | 272   | 207     | 272   | 207     | 272   | 207     | 272   | 207    | 272   | 207    | 272   | 207   | 272   | 207   | 272   |
| Group6  | 32.84 | 99.55 | 0    | 0   | 46.98  | 99.38 | 46.98   | 99.69 | 46.98   | 99.38 | 46.98   | 99.69 | 46.98  | 99.38 | 46.98  | 99.69 | 46.98 | 99.38 | 46.98 | 99.69 |
|         | 12    | 1     | 0    | 13  | 11     | 2     | 12      | 1     | 11      | 2     | 12      | 1     | 11     | 2     | 12     | 1     | 11    | 2     | 12    | 1     |
|         | 456   | 223   | 679  | 0   | 360    | 319   | 360     | 319   | 360     | 319   | 360     | 319   | 360    | 319   | 360    | 319   | 360   | 319   | 360   | 319   |
| Group7  | 84.89 | 99.3  | 0    | 0   | 52.88  | 98.22 | 55.52   | 98.51 | 52.88   | 98.22 | 55.52   | 98.51 | 52.88  | 98.22 | 55.52  | 98.51 | 52.88 | 98.22 | 55.52 | 98.51 |
|         | 13    | ß     | 0    | 18  | 10     | 8     | 11      | 7     | 10      | 8     | 11      | 7     | 10     | 8     | 11     | 7     | 10    | 8     | 11    | 7     |
|         | 126   | 708   | 834  | 0   | 393    | 441   | 371     | 463   | 393     | 441   | 371     | 463   | 393    | 441   | 371    | 463   | 393   | 441   | 371   | 463   |
| Group8  | 80.3  | 99.07 | 0    | 0   | 81.92  | 98.58 | 82.13   | 98.71 | 81.92   | 98.58 | 82.13   | 98.71 | 81.92  | 98.58 | 82.13  | 98.71 | 81.92 | 98.58 | 82.13 | 98.71 |
|         | 38    | 7     | 0    | 45  | 34     | 11    | 35      | 10    | 34      | 11    | 35      | 10    | 34     | 11    | 35     | 10    | 34    | 11    | 35    | 10    |
|         | 183   | 746   | 929  | 0   | 168    | 761   | 166     | 763   | 168     | 761   | 166     | 763   | 168    | 761   | 166    | 763   | 168   | 761   | 166   | 763   |
| Group9  | 87.62 | 98.35 | 0    | 0   | 77.02  | 97.87 | 77.12   | 97.74 | 77.02   | 97.87 | 77.12   | 97.74 | 77.02  | 97.87 | 77.12  | 97.74 | 77.02 | 97.87 | 77.12 | 97.74 |
|         | 63    | 14    | 0    | 77  | 61     | 16    | 60      | 17    | 61      | 16    | 60      | 17    | 61     | 16    | 60     | 17    | 61    | 16    | 60    | 17    |
|         | 118   | 835   | 953  | 0   | 219    | 734   | 218     | 735   | 219     | 734   | 218     | 735   | 219    | 734   | 218    | 735   | 219   | 734   | 218   | 735   |
| Group10 | 84.49 | 97.19 | 0    | 0   | 77.27  | 95.88 | 77.76   | 95.79 | 77.27   | 95.88 | 77.76   | 95.79 | 77.27  | 95.88 | 77.76  | 95.79 | 77.27 | 95.88 | 77.76 | 95.79 |
|         | 102   | 25    | 0    | 127 | 93     | 34    | 92      | 35    | 93      | 34    | 92      | 35    | 93     | 34    | 92     | 35    | 93    | 34    | 92    | 35    |
|         | 159   | 866   | 1025 | 0   | 233    | 792   | 228     | 797   | 233     | 792   | 228     | 797   | 233    | 792   | 228    | 797   | 233   | 792   | 228   | 797   |
| Group11 | 78.56 | 98.07 | 0    | 0   | 74.33  | 95.75 | 74.85   | 95.78 | 74.33   | 95.75 | 74.85   | 95.78 | 74.33  | 95.75 | 74.85  | 95.78 | 74.33 | 95.75 | 74.85 | 95.78 |
|         | 126   | 15    | 0    | 141 | 109    | 32    | 109     | 32    | 109     | 32    | 109     | 32    | 109    | 32    | 109    | 32    | 109   | 32    | 109   | 32    |
|         | 208   | 762   | 970  | 0   | 249    | 721   | 244     | 726   | 249     | 721   | 244     | 726   | 249    | 721   | 244    | 726   | 249   | 721   | 244   | 726   |
| Group12 | 76.88 | 97.23 | 0    | 0   | 74.06  | 95.31 | 74.17   | 95.57 | 74.06   | 95.31 | 74.17   | 95.57 | 74.06  | 95.31 | 74.17  | 95.57 | 74.06 | 95.31 | 74.17 | 95.57 |
|         | 153   | 21    | 0    | 174 | 139    | 35    | 141     | 33    | 139     | 35    | 141     | 33    | 139    | 35    | 141    | 33    | 139   | 35    | 141   | 33    |
|         | 222   | 738   | 960  | 0   | 249    | 711   | 248     | 712   | 249     | 711   | 248     | 712   | 249    | 711   | 248    | 712   | 249   | 711   | 248   | 712   |
| Group13 | 72.06 | 97.18 | 0    | 0   | 73.24  | 91.97 | 74.02   | 92.05 | 73.24   | 91.97 | 74.02   | 92.05 | 73.24  | 91.97 | 74.02  | 92.05 | 73.24 | 91.97 | 74.02 | 92.05 |
|         | 198   | 16    | 0    | 214 | 165    | 49    | 165     | 49    | 165     | 49    | 165     | 49    | 165    | 49    | 165    | 49    | 165   | 49    | 165   | 49    |
|         | 214   | 552   | 766  | 0   | 205    | 561   | 199     | 567   | 205     | 561   | 199     | 567   | 205    | 561   | 199    | 567   | 205   | 561   | 199   | 567   |
| Group14 | 66.83 | 96.88 | 0    | 0   | 73.96  | 86.94 | 74.46   | 87.35 | 73.96   | 86.94 | 74.46   | 87.35 | 73.96  | 86.94 | 74.46  | 87.35 | 73.96 | 86.94 | 74.46 | 87.35 |
|         | 259   | 13    | 0    | 272 | 205    | 67    | 207     | 65    | 205     | 67    | 207     | 65    | 205    | 67    | 207    | 65    | 205   | 67    | 207   | 65    |
|         | 200   | 403   | 603  | 0   | 157    | 446   | 154     | 449   | 157     | 446   | 154     | 449   | 157    | 446   | 154    | 449   | 157   | 446   | 154   | 449   |
| Group15 | 60.55 | 90.41 | 0    | 0   | 76.15  | 66.76 | 75.23   | 67.21 | 76.15   | 66.76 | 75.23   | 67.21 | 76.15  | 66.76 | 75.23  | 67.21 | 76.15 | 66.76 | 75.23 | 67.21 |
|         | 348   | 21    | 0    | 369 | 245    | 124   | 249     | 120   | 245     | 124   | 249     | 120   | 245    | 124   | 249    | 120   | 245   | 124   | 249   | 120   |

67

| vstem        |  |
|--------------|--|
| S            |  |
| Prediction 3 |  |
|              |  |
| Promoter     |  |
| $\geq$       |  |
| þ,           |  |
| Gene         |  |
| -            |  |
| ~            |  |
| 5            |  |
| Position (   |  |
| ъſ           |  |
| Startin      |  |
| bß           |  |
| ndin         |  |
| ίΞ           |  |
| _            |  |
| 4            |  |
| Chapter      |  |

| _   |         |     |     |         |     |     |         |     |     |         |      |     |         |      |     |         |      |     |         |      | _   |
|-----|---------|-----|-----|---------|-----|-----|---------|-----|-----|---------|------|-----|---------|------|-----|---------|------|-----|---------|------|-----|
| 246 | 52.35   | 162 | 178 | 42.51   | 238 | 176 | 33.33   | 242 | 121 | 24.88   | 305  | 101 | 21.61   | 410  | 113 | 18.62   | 437  | 100 | 15.27   | 1609 | 290 |
| 81  | 65.2    | 422 | 95  | 71.54   | 579 | 70  | 66.48   | 665 | 61  | 60.84   | 718  | 65  | 69.33   | 681  | 50  | 65.36   | 704  | 53  | 64.59   | 2326 | 159 |
| 249 | 54.65   | 151 | 182 | 41.73   | 243 | 174 | 33.7    | 244 | 124 | 24.13   | 305  | 97  | 21.92   | 399  | 112 | 18.4    | 448  | 101 | 14.72   | 1622 | 280 |
| 78  | 66.67   | 433 | 91  | 70.73   | 574 | 72  | 68.13   | 663 | 58  | 58.43   | 718  | 69  | 68.71   | 692  | 51  | 66.01   | 693  | 52  | 62.36   | 2313 | 169 |
| 246 | 52.35   | 162 | 178 | 42.51   | 238 | 176 | 33.33   | 242 | 121 | 24.88   | 305  | 101 | 21.61   | 410  | 113 | 18.62   | 437  | 100 | 15.27   | 1609 | 290 |
| 81  | 65.2    | 422 | 95  | 71.54   | 579 | 70  | 66.48   | 665 | 61  | 60.84   | 718  | 65  | 69.33   | 681  | 50  | 65.36   | 704  | 53  | 64.59   | 2326 | 159 |
| 249 | 54.65   | 151 | 182 | 41.73   | 243 | 174 | 33.7    | 244 | 124 | 24.13   | 305  | 97  | 21.92   | 399  | 112 | 18.4    | 448  | 101 | 14.72   | 1622 | 280 |
| 78  | 66.67   | 433 | 91  | 70.73   | 574 | 72  | 68.13   | 663 | 58  | 58.43   | 718  | 69  | 68.71   | 692  | 51  | 66.01   | 693  | 52  | 62.36   | 2313 | 169 |
| 246 | 52.35   | 162 | 178 | 42.51   | 238 | 176 | 33.33   | 242 | 121 | 24.88   | 305  | 101 | 21.61   | 410  | 113 | 18.62   | 437  | 100 | 15.27   | 1609 | 290 |
| 81  | 65.2    | 422 | 95  | 71.54   | 579 | 70  | 66.48   | 665 | 61  | 60.84   | 718  | 65  | 69.33   | 681  | 50  | 65.36   | 704  | 53  | 64.59   | 2326 | 159 |
| 249 | 54.65   | 151 | 182 | 41.73   | 243 | 174 | 33.7    | 244 | 124 | 24.13   | 305  | 97  | 21.92   | 399  | 112 | 18.4    | 448  | 101 | 14.72   | 1622 | 280 |
| 78  | 66.67   | 433 | 91  | 70.73   | 574 | 72  | 68.13   | 663 | 58  | 58.43   | 718  | 69  | 68.71   | 692  | 51  | 66.01   | 693  | 52  | 62.36   | 2313 | 169 |
| 246 | 52.35   | 162 | 178 | 42.51   | 238 | 176 | 33.33   | 242 | 121 | 24.88   | 305  | 101 | 21.61   | 410  | 113 | 18.62   | 437  | 100 | 15.27   | 1609 | 290 |
| 81  | 65.2    | 422 | 95  | 71.54   | 579 | 70  | 66.48   | 665 | 61  | 60.84   | 718  | 65  | 69.33   | 681  | 50  | 65.36   | 704  | 53  | 64.59   | 2326 | 159 |
| 249 | 54.65   | 151 | 182 | 41.73   | 243 | 174 | 33.7    | 244 | 124 | 24.13   | 305  | 97  | 21.92   | 399  | 112 | 18.4    | 448  | 101 | 14.72   | 1622 | 280 |
| 78  | 66.67   | 433 | 91  | 70.73   | 574 | 72  | 68.13   | 663 | 58  | 58.43   | 718  | 69  | 68.71   | 692  | 51  | 66.01   | 693  | 52  | 62.36   | 2313 | 169 |
| 0   | 0       | 584 | 0   | 0       | 817 | 0   | 0       | 907 | 0   | 0       | 1023 | 0   | 0       | 1091 | 0   | 0       | 1141 | 0   | 0       | 3935 | 0   |
| 327 | 0       | 0   | 273 | 0       | 0   | 246 | 0       | 0   | 182 | 0       | 0    | 166 | 0       | 0    | 163 | 0       | 0    | 153 | 0       | 0    | 449 |
| 198 | 72.19   | 52  | 135 | 45.76   | 160 | 135 | 24.54   | 286 | 93  | 17.75   | 644  | 139 | 17.08   | 534  | 110 | 16.78   | 501  | 101 | 13.48   | 2265 | 353 |
| 129 | 49.45   | 532 | 138 | 54.88   | 657 | 111 | 51.1    | 621 | 89  | 83.73   | 379  | 27  | 67.48   | 557  | 53  | 66.01   | 640  | 52  | 78.62   | 1670 | 96  |
|     | Group16 |     |     | Group17 |     |     | Group18 |     |     | Group19 |      |     | Group20 |      |     | Group21 |      |     | Group22 |      |     |

Table 4.9a Experiment result when a polynomial kernel is applied

|         | Op_c(F-  | Op_g(F-  |           |           |
|---------|----------|----------|-----------|-----------|
|         | measure) | measure) | Se        | PPV       |
| Group4  | 0        | 2        | 92.21     | 98.89     |
| Group5  | 0        | 2        | 69.1      | 99.1      |
| Group6  | 0.000001 | 3        | 46.98     | 99.69     |
| Group7  | 0        | 2        | 84.89     | 99.3      |
| Group8  | 0.000001 | 3        | 82.13     | 98.71     |
| Group9  | 0        | 2        | 87.62     | 98.35     |
| Group10 | 0        | 2        | 84.49     | 97.19     |
| Group11 | 0        | 2        | 78.56     | 98.07     |
| Group12 | 0        | 2        | 76.88     | 97.23     |
| Group13 | 0        | 2        | 72.06     | 97.18     |
| Group14 | 0.01     | 3        | 74.46     | 87.35     |
| Group15 | 0        | 2        | 60.55     | 90.41     |
| Group16 | 1        | 2        | 66.67     | 54.65     |
| Group17 | 0.01     | 3        | 71.54     | 42.51     |
| Group18 | 1        | 2        | 68.13     | 33.7      |
| Group19 | 0.01     | 3        | 60.84     | 24.88     |
| Group20 | 1        | 2        | 68.71     | 21.92     |
| Group21 | 0.000001 | 3        | 65.36     | 18.62     |
| Group22 | 0.01     | 3        | 64.59     | 15.27     |
| overall |          |          | 75.516983 | 68.962234 |

 Table 4.9b Optimal parameters for each group of data

Table 4.9 is the result obtained with the polynomial kernel. The parameter d is the parameter in polynomial kernel ----- (s a\*b+c)^d. The parameter d and s in polynomial kernel is not a very effective one to decide the performance of the model, since the change of these two parameters does not make evident changes in the performance of prediction using the model. Table 4.9a records SE, PPV and confusion matrix (TP, FN; FP, TN) for the data of each group, under the parameter combinations of C and d. The optimal parameter combinations of C and d for each group of data are indicted in the Table 4.9b. The overall SE and PPV is 75.52% and 68.96%, respectively.

#### Summary:

Most of the 22 groups of our data can use linear kernel as the optimal model, with a few using polynomial kernel of power 2 or 3. The parameter C, which is the trade-off between

training error and margin, is a very important parameter. The change of C has a big influence on the performance of prediction.

Future directions include: A technique for choosing the kernel function by computational means and how to design a kernel function to get a good generalization performance of SVM [Gunn, 1998].

As shown in Table 4.10, the data used in the experiment comprises of 14001 positive sequences and 14001 negative sequences. 3040 positive and 3040 negative sequences are used as training data and 10961 positive and 10961 negative sequences are used as test data, respectively. For each of the 22 groups, 50% of the minimum of the number of the positive and negative data is extracted as the training set. The performance in the measurements of TP, FP, SE and PPV from each group of Group1 to Group22 are shown in Table 4.10. The Overall Se and PPV are calculated with the two formulas as shown below.

|         | Training set | Testset     | TP   | FP   | Se    | PPV   |
|---------|--------------|-------------|------|------|-------|-------|
| Group1  | 0/0          | 0/57        | 57   | 0    | 1     | 1     |
| Group2  | 0/0          | 1/120       | 120  | 1    | 1     | 0.992 |
| Group3  | 0/0          | 3/242       | 242  | 3    | 1     | 0.988 |
| Group4  | 4/4          | 4/385       | 355  | 4    | 0.922 | 0.989 |
| Group5  | 4/4          | 5/479       | 331  | 3    | 0.691 | 0.991 |
| Group6  | 13/13        | 13/679      | 412  | 1    | 0.607 | 0.998 |
| Group7  | 17/17        | 18/834      | 735  | 4    | 0.881 | 0.995 |
| Group8  | 45/45        | 45/929      | 913  | 34   | 0.983 | 0.964 |
| Group9  | 76/76        | 77/953      | 936  | 57   | 0.982 | 0.943 |
| Group10 | 127/127      | 127/1025    | 881  | 26   | 0.860 | 0.971 |
| Group11 | 140/140      | 141/970     | 880  | 80   | 0.907 | 0.917 |
| Group12 | 173/173      | 174/960     | 746  | 21   | 0.777 | 0.973 |
| Group13 | 214/214      | 214/766     | 559  | 19   | 0.730 | 0.967 |
| Group14 | 271/271      | 272/603     | 446  | 33   | 0.740 | 0.931 |
| Group15 | 327/327      | 369/327     | 211  | 28   | 0.645 | 0.883 |
| Group16 | 272/272      | 584/273     | 169  | 72   | 0.619 | 0.701 |
| Group17 | 246/246      | 817/246     | 154  | 129  | 0.626 | 0.544 |
| Group18 | 181/181      | 907/182     | 133  | 243  | 0.731 | 0.354 |
| Group19 | 166/166      | 1023/166    | 121  | 310  | 0.729 | 0.281 |
| Group20 | 163/163      | 1091/163    | 119  | 383  | 0.730 | 0.237 |
| Group21 | 152/152      | 1141/153    | 110  | 382  | 0.719 | 0.224 |
| Group22 | 449/449      | 3935/449    | 294  | 1422 | 0.655 | 0.171 |
| Overall | 3040/3040    | 10961/10961 | 8924 | 3255 | 0.814 | 0.733 |

 Table 4.10 Performance result

Overall Se=TP/ALL POSITIVE=8924/10961=81.42%

Overall PPV=TP/(TP+FP)=8924/(8924+3255)=73.27%

Based on the results in Table 4.10, the SE and PPV of selected groups are summarized in Table 4.11. The 3<sup>rd</sup> column of "Se Total" is calculated with the TP number of selected groups divided by the total number of positives of all the 22 groups.

|                | Se     | PPV    | Se Total |
|----------------|--------|--------|----------|
|                |        |        |          |
| Group1         | 1.0000 | 1.0000 | 0.0052   |
| Group1→Group2  | 1.0000 | 0.9944 | 0.0161   |
| Group1→Group3  | 1.0000 | 0.9905 | 0.0382   |
| Group1→Group4  | 0.9627 | 0.9898 | 0.0706   |
| Group1→Group5  | 0.8613 | 0.9901 | 0.1008   |
| Group1→Group6  | 0.7732 | 0.9922 | 0.1384   |
| Group1→Group7  | 0.8054 | 0.9929 | 0.2055   |
| Group1→Group8  | 0.8497 | 0.9844 | 0.2888   |
| Group1→Group9  | 0.8767 | 0.9746 | 0.3741   |
| Group1→Group10 | 0.8736 | 0.9740 | 0.4545   |
| Group1→Group11 | 0.8785 | 0.9649 | 0.5348   |
| Group1→Group12 | 0.8657 | 0.9658 | 0.6029   |
| Group1→Group13 | 0.8533 | 0.9659 | 0.6539   |
| Group1→Group14 | 0.8457 | 0.9638 | 0.6946   |
| Group1→Group15 | 0.8387 | 0.9614 | 0.7138   |
| Group1→Group16 | 0.8324 | 0.9539 | 0.7292   |
| Group1→Group17 | 0.8273 | 0.9405 | 0.7433   |
| Group1→Group18 | 0.8255 | 0.9161 | 0.7554   |
| Group1→Group19 | 0.8240 | 0.8872 | 0.7664   |
| Group1→Group20 | 0.8225 | 0.8545 | 0.7773   |
| Group1→Group21 | 0.8210 | 0.8248 | 0.7873   |
| Group1→Group22 | 0.8142 | 0.7327 | 0.8142   |

Table 4.11 Performance when using different part of the dataset

The performance in the measurements of SE and PPV can be observed from Figure 4.3. The SE and PPV curves are drawn with the two columns of SE and PPV results from the 4th row to the 22nd row shown in Table 4.11. The y coordinates on the points with x coordinate of 4 are the SE and PPV value of the corresponding the experiment using the data from group 1 to group 4. The y coordinates on the points with x coordinate of 15 are the SE and PPV value of the corresponding experiment using the data from group 1 to group 4. The y coordinates on the points with x coordinate of 15 are the SE and PPV value of the corresponding experiment using the data from group 1 to group 5. The curve of SE does not change consistently: it drops sharply when the data of Group 5 and 6 are added; it rises when the data of Group 7, 8, 9, and 10 are added; and it gradually drops when the data from Group 11 to 22 are added. While the PPV value drops consistently when more data from those groups that are GC poor are included. So a finding can be made that promoters with higher GC-content can be predicted more accurately.



Figure 4.3 SE and PPV obtained with data from Group 4 to Group (i) (i=4 to 22)

## 4.3.4 Transductive versus Inductive SVM:

Traditional inductive SVM is popular in data mining, while transductive SVM is developed and expected to be more advanced to inductive SVM. The transductive training is different from inductive training in that the testing set can be used as an additional source of information for deciding margins besides the training set. That is to say, transductive SVMs take into account a particular test set and try to minimize misclassifications of just those particular examples in training procedure. In transduction, one estimates the classification function at points within the data set using information from both of the training and the test set data. This is contrast to the training procedure of Inductive SVMs. Thus, it is often expected that transductive SVM can be more powerful due to its ability to improve the SVM's generalization performance, especially in cases such as when the training data are inadequate and when the training and test set sub samples are quite deviated from each other [Chen *et al.*, 2003b].

However, for our data, the performance of prediction is not dramatically enhanced when replacing the inductive SVM with the transductive SVM. The tables given below are obtained from the experiment results using inductive and transductive SVM, respectively.

### **Inductive SVM:**

|         | g=0.0000 | 110   |          |       |        |       |        |       |       |         |
|---------|----------|-------|----------|-------|--------|-------|--------|-------|-------|---------|
|         | 0        | 010   | g=0.0001 | 100   | g=1.00 | 00000 | g=10.0 | 00000 | g=100 | .000000 |
| Group # | Se       | PPV   | Se       | PPV   | Se     | PPV   | Se     | PPV   | Se    | PPV     |
|         | TP       | FN    | ТР       | FN    | ТР     | FN    | ТР     | FN    | ТР    | FN      |
|         | FP       | TN    | FP       | TN    | FP     | TN    | FP     | TN    | FP    | TN      |
| Group4  | 87.01    | 98.82 | 78.96    | 98.7  | 0      | 0     | 0      | 0     | 0     | 0       |
|         | 0        | 4     | 0        | 4     | 0      | 4     | 0      | 4     | 0     | 4       |
|         | 50       | 335   | 81       | 304   | 385    | 0     | 385    | 0     | 385   | 0       |
| Group5  | 66.39    | 99.07 | 57.83    | 100   | 0      | 0     | 0      | 0     | 0     | 0       |
|         | 2        | 3     | 5        | 0     | 0      | 5     | 0      | 5     | 0     | 5       |
|         | 161      | 318   | 202      | 277   | 479    | 0     | 479    | 0     | 479   | 0       |
| Group6  | 42.71    | 99.66 | 60.68    | 99.76 | 0      | 0     | 0      | 0     | 0     | 0       |
|         | 12       | 1     | 12       | 1     | 0      | 13    | 0      | 13    | 0     | 13      |
|         | 389      | 290   | 267      | 412   | 679    | 0     | 679    | 0     | 679   | 0       |
| Group7  | 85.97    | 99.31 | 88.13    | 99.46 | 0      | 0     | 0      | 0     | 0     | 0       |
|         | 13       | 5     | 14       | 4     | 0      | 18    | 0      | 18    | 0     | 18      |
|         | 117      | 717   | 99       | 735   | 834    | 0     | 834    | 0     | 834   | 0       |
| Group8  | 88.37    | 99.03 | 86.01    | 99.01 | 0      | 0     | 0      | 0     | 0     | 0       |
|         | 37       | 8     | 37       | 8     | 1      | 44    | 1      | 44    | 1     | 44      |
|         | 108      | 821   | 130      | 799   | 929    | 0     | 929    | 0     | 929   | 0       |
| Group9  | 87.2     | 98.46 | 86.57    | 98.33 | 0      | 0     | 0      | 0     | 0     | 0       |
|         | 64       | 13    | 63       | 14    | 0      | 77    | 0      | 77    | 0     | 77      |
|         | 122      | 831   | 128      | 825   | 953    | 0     | 953    | 0     | 953   | 0       |
| Group10 | 84.88    | 96.99 | 84.39    | 97.08 | 0      | 0     | 0      | 0     | 0     | 0       |
|         | 100      | 27    | 101      | 26    | 0      | 127   | 0      | 127   | 0     | 127     |
|         | 155      | 870   | 160      | 865   | 1025   | 0     | 1025   | 0     | 1025  | 0       |
| Group11 | 77.84    | 98.18 | 74.64    | 98.37 | 0      | 0     | 0      | 0     | 0     | 0       |
|         | 127      | 14    | 129      | 12    | 0      | 141   | 0      | 141   | 0     | 141     |
|         | 215      | 755   | 246      | 724   | 970    | 0     | 970    | 0     | 970   | 0       |
| Group12 | 76.56    | 97.22 | 74.79    | 97.42 | 0      | 0     | 0      | 0     | 0     | 0       |
|         | 153      | 21    | 155      | 19    | 1      | 173   | 1      | 173   | 1     | 173     |

Here the traditional inductive SVM with rbf kernel is applied.

|         | 225   | 735   | 242   | 718   | 960  | 0    | 960  | 0    | 960  | 0    |
|---------|-------|-------|-------|-------|------|------|------|------|------|------|
| Group13 | 72.06 | 97.35 | 69.06 | 97.42 | 0    | 0    | 0    | 0    | 0    | 0    |
|         | 199   | 15    | 200   | 14    | 0    | 214  | 0    | 214  | 0    | 214  |
|         | 214   | 552   | 237   | 529   | 766  | 0    | 766  | 0    | 766  | 0    |
| Group14 | 67    | 96.88 | 65.84 | 98.02 | 0    | 0    | 0    | 0    | 0    | 0    |
|         | 259   | 13    | 264   | 8     | 0    | 272  | 0    | 272  | 0    | 272  |
|         | 199   | 404   | 206   | 397   | 603  | 0    | 603  | 0    | 603  | 0    |
| Group15 | 60.86 | 91.71 | 62.39 | 89.47 | 0    | 0    | 0    | 0    | 0    | 0    |
|         | 351   | 18    | 345   | 24    | 0    | 369  | 0    | 369  | 0    | 369  |
|         | 128   | 199   | 123   | 204   | 327  | 0    | 327  | 0    | 327  | 0    |
| Group16 | 47.62 | 80.25 | 53.11 | 71.43 | 0    | 0    | 0    | 0    | 0    | 0    |
|         | 552   | 32    | 526   | 58    | 0    | 584  | 0    | 584  | 0    | 584  |
|         | 143   | 130   | 128   | 145   | 273  | 0    | 273  | 0    | 273  | 0    |
| Group17 | 48.37 | 66.11 | 58.94 | 52.35 | 0    | 0    | 0    | 0    | 0    | 0    |
|         | 756   | 61    | 685   | 132   | 0    | 817  | 0    | 817  | 0    | 817  |
|         | 127   | 119   | 101   | 145   | 246  | 0    | 246  | 0    | 246  | 0    |
| Group18 | 60.44 | 28.5  | 72.53 | 34.29 | 0.55 | 0.11 | 0.55 | 0.11 | 0.55 | 0.11 |
|         | 631   | 276   | 654   | 253   | 0    | 907  | 0    | 907  | 0    | 907  |
|         | 72    | 110   | 50    | 132   | 181  | 1    | 181  | 1    | 181  | 1    |
| Group19 | 80.72 | 18.38 | 66.27 | 23.35 | 0    | 0    | 0    | 0    | 0    | 0    |
|         | 428   | 595   | 662   | 361   | 0    | 1023 | 0    | 1023 | 0    | 1023 |
|         | 32    | 134   | 56    | 110   | 166  | 0    | 166  | 0    | 166  | 0    |
| Group20 | 84.05 | 17.28 | 74.23 | 20.27 | 0    | 0    | 0    | 0    | 0    | 0    |
|         | 435   | 656   | 615   | 476   | 0    | 1091 | 0    | 1091 | 0    | 1091 |
|         | 26    | 137   | 42    | 121   | 163  | 0    | 163  | 0    | 163  | 0    |
| Group21 | 72.55 | 17.1  | 72.55 | 18.85 | 0    | 0    | 0    | 0    | 0    | 0    |
|         | 603   | 538   | 663   | 478   | 0    | 1141 | 0    | 1141 | 0    | 1141 |
|         | 42    | 111   | 42    | 111   | 153  | 0    | 153  | 0    | 153  | 0    |
| Group22 | 85.3  | 13.53 | 71.71 | 17.6  | 0    | 0    | 0    | 0    | 0    | 0    |
|         | 1487  | 2448  | 2427  | 1508  | 2    | 3933 | 2    | 3933 | 2    | 3933 |
|         | 66    | 383   | 127   | 322   | 449  | 0    | 449  | 0    | 449  | 0    |
|         |       |       | -     | -     |      | -    | -    |      |      | -    |

## Table 4.12a Experiment results with inductive SVM

|         | Op_c (F- |       |       |
|---------|----------|-------|-------|
|         | measure) | Se    | PPV   |
| Group4  | 0.00001  | 87.01 | 98.82 |
| Group5  | 0.00001  | 66.39 | 99.07 |
| Group6  | 0.0001   | 60.68 | 99.76 |
| Group7  | 0.0001   | 88.13 | 99.46 |
| Group8  | 0.00001  | 88.37 | 99.03 |
| Group9  | 0.00001  | 87.2  | 98.46 |
| Group10 | 0.00001  | 84.88 | 96.99 |
| Group11 | 0.00001  | 77.84 | 98.18 |
| Group12 | 0.00001  | 76.56 | 97.22 |
| Group13 | 0.00001  | 72.06 | 97.35 |
| Group14 | 0.00001  | 67    | 96.88 |
| Group15 | 0.0001   | 62.39 | 89.47 |
| Group16 | 0.0001   | 53.11 | 71.43 |
| Group17 | 0.00001  | 48.37 | 66.11 |

| Group18 | 0.0001 | 72.53     | 34.29     |
|---------|--------|-----------|-----------|
| Group19 | 0.0001 | 66.27     | 23.35     |
| Group20 | 0.0001 | 74.23     | 20.27     |
| Group21 | 0.0001 | 72.55     | 18.85     |
| Group22 | 0.0001 | 71.71     | 17.6      |
| overall |        | 76.190475 | 70.617195 |

II76.19047570.617195Table 4.12b Optimal parameters for each group of data

## **Transductive SVM:**

Here the transductive SVM with rbf kernel is applied.

|         | g=0.00 | 0010  | g=0.00 | 0100  | g=1.00 | 00000 | g=10.0 | 00000 |
|---------|--------|-------|--------|-------|--------|-------|--------|-------|
| Group # | Se     | PPV   | Se     | PPV   | Se     | PPV   | Se     | PPV   |
|         | ТР     | FN    | ТР     | FN    | ТР     | FN    | ТР     | FN    |
|         | FP     | TN    | FP     | TN    | FP     | TN    | FP     | TN    |
| Group4  | 52.21  | 99.01 | 50.39  | 99.49 | 100    | 99    | 100    | 98.97 |
|         | 2      | 2     | 3      | 1     | 0      | 4     | 0      | 4     |
|         | 184    | 201   | 191    | 194   | 0      | 385   | 0      | 385   |
| Group5  | 50.31  | 99.18 | 50.31  | 99.59 | 49.5   | 97.9  | 49.48  | 97.93 |
|         | 3      | 2     | 4      | 1     | 0      | 5     | 0      | 5     |
|         | 238    | 241   | 238    | 241   | 242    | 237   | 242    | 237   |
| Group6  | 51.4   | 98.87 | 50.66  | 99.42 | 49     | 96.2  | 49.04  | 96.24 |
|         | 9      | 4     | 11     | 2     | 0      | 13    | 0      | 13    |
|         | 330    | 349   | 335    | 344   | 346    | 333   | 346    | 333   |
| Group7  | 50     | 98.58 | 50.6   | 99.06 | 48.9   | 95.8  | 48.92  | 95.77 |
|         | 12     | 6     | 14     | 4     | 0      | 18    | 0      | 18    |
|         | 417    | 417   | 412    | 422   | 426    | 408   | 426    | 408   |
| Group8  | 52.1   | 98.57 | 51.88  | 98.97 | 47.7   | 91    | 47.69  | 90.97 |
|         | 38     | 7     | 40     | 5     | 1      | 44    | 1      | 44    |
|         | 445    | 484   | 447    | 482   | 486    | 443   | 486    | 443   |
| Group9  | 55.19  | 98.5  | 55.3   | 98.69 | 46     | 85.1  | 45.96  | 85.05 |
|         | 69     | 8     | 70     | 7     | 0      | 77    | 0      | 77    |
|         | 427    | 526   | 426    | 527   | 515    | 438   | 515    | 438   |
| Group10 | 58.83  | 97.57 | 57.17  | 98.16 | 43.8   | 78    | 43.8   | 77.95 |
|         | 112    | 15    | 116    | 11    | 0      | 127   | 0      | 127   |
|         | 422    | 603   | 439    | 586   | 576    | 449   | 576    | 449   |
| Group11 | 63.51  | 98.09 | 58.25  | 99.12 | 99.8   | 87.3  | 99.79  | 87.29 |
|         | 129    | 12    | 136    | 5     | 0      | 141   | 0      | 141   |
|         | 354    | 616   | 405    | 565   | 2      | 968   | 2      | 968   |
| Group12 | 70.42  | 98.54 | 59.9   | 98.12 | 41     | 69.5  | 41.04  | 69.49 |
|         | 164    | 10    | 163    | 11    | 1      | 173   | 1      | 173   |
|         | 284    | 676   | 385    | 575   | 566    | 394   | 566    | 394   |
| Group13 | 71.15  | 97.67 | 65.27  | 98.43 | 36     | 56.3  | 36.03  | 56.33 |
|         | 201    | 13    | 206    | 8     | 0      | 214   | 0      | 214   |
|         | 221    | 545   | 266    | 500   | 490    | 276   | 490    | 276   |
| Group14 | 66.83  | 97.11 | 68.66  | 96.96 | 100    | 68.9  | 100    | 68.91 |

|                    | 260                                              | 12                                                                              | 259                                              | 13                                                 | 0                                          | 272                                    | 0                                          | 272                                    |
|--------------------|--------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------|
|                    | 200                                              | 403                                                                             | 189                                              | 414                                                | 0                                          | 603                                    | 0                                          | 603                                    |
| Group15            | 66.06                                            | 77.42                                                                           | 73.09                                            | 77.35                                              | 0                                          | 0                                      | 0                                          | 0                                      |
|                    | 306                                              | 63                                                                              | 299                                              | 70                                                 | 21                                         | 348                                    | 21                                         | 348                                    |
|                    | 111                                              | 216                                                                             | 88                                               | 239                                                | 327                                        | 0                                      | 327                                        | 0                                      |
| Group16            | 69.23                                            | 45.22                                                                           | 76.19                                            | 52.26                                              | 100                                        | 31.9                                   | 100                                        | 31.86                                  |
|                    | 355                                              | 229                                                                             | 394                                              | 190                                                | 0                                          | 584                                    | 0                                          | 584                                    |
|                    | 84                                               | 189                                                                             | 65                                               | 208                                                | 0                                          | 273                                    | 0                                          | 273                                    |
| Group17            | 69.51                                            | 32.76                                                                           | 77.64                                            | 36.24                                              | 0                                          | 0                                      | 0                                          | 0                                      |
|                    | 466                                              | 351                                                                             | 481                                              | 336                                                | 285                                        | 532                                    | 285                                        | 532                                    |
|                    | 75                                               | 171                                                                             | 55                                               | 191                                                | 246                                        | 0                                      | 246                                        | 0                                      |
| Group18            | 60.44                                            | 19.96                                                                           | 84.07                                            | 28.02                                              | 0.55                                       | 0.18                                   | 0.55                                       | 0.18                                   |
|                    | 466                                              | 441                                                                             | 514                                              | 393                                                | 363                                        | 544                                    | 363                                        | 544                                    |
|                    | 72                                               | 110                                                                             | 29                                               | 153                                                | 181                                        | 1                                      | 181                                        | 1                                      |
| Group19            | 63.86                                            | 17.55                                                                           | 70.48                                            | 19.6                                               | 100                                        | 14                                     | 100                                        | 13.96                                  |
|                    | 525                                              | 498                                                                             | 543                                              | 480                                                | 0                                          | 1023                                   | 0                                          | 1023                                   |
|                    | 60                                               | 106                                                                             | 49                                               | 117                                                | 0                                          | 166                                    | 0                                          | 166                                    |
| Group20            | 58.28                                            | 15.15                                                                           | 63.19                                            | 16.43                                              | 0                                          | 0                                      | 0                                          | 0                                      |
|                    |                                                  |                                                                                 |                                                  |                                                    |                                            |                                        |                                            |                                        |
|                    | 559                                              | 532                                                                             | 567                                              | 524                                                | 464                                        | 627                                    | 464                                        | 627                                    |
|                    | 559<br>68                                        | 532<br>95                                                                       | 567<br>60                                        | 524<br>103                                         | 464<br>163                                 | 627<br>0                               | 464<br>163                                 | 627<br>0                               |
| Group21            | 559<br>68<br>67.97                               | 532<br>95<br>16.12                                                              | 567<br>60<br>69.28                               | 524<br>103<br>16.33                                | 464<br>163<br>0                            | 627<br>0<br>0                          | 464<br>163<br>0                            | 627<br>0<br>0                          |
| Group21            | 559<br>68<br>67.97<br>600                        | 532<br>95<br>16.12<br>541                                                       | 567<br>60<br>69.28<br>598                        | 524<br>103<br>16.33<br>543                         | 464<br>163<br>0<br>494                     | 627<br>0<br>0<br>647                   | 464<br>163<br>0<br>494                     | 627<br>0<br>0<br>647                   |
| Group21            | 559<br>68<br>67.97<br>600<br>49                  | 532<br>95<br>16.12<br>541<br>104                                                | 567<br>60<br>69.28<br>598<br>47                  | 524<br>103<br>16.33<br>543<br>106                  | 464<br>163<br>0<br>494<br>153              | 627<br>0<br>0<br>647<br>0              | 464<br>163<br>0<br>494<br>153              | 627<br>0<br>0<br>647<br>0              |
| Group21<br>Group22 | 559<br>68<br>67.97<br>600<br>49<br>64.37         | 532           95           16.12           541           104           13.08    | 567<br>60<br>69.28<br>598<br>47<br>73.27         | 524<br>103<br>16.33<br>543<br>106<br>15.02         | 464<br>163<br>0<br>494<br>153<br>0         | 627<br>0<br>0<br>647<br>0<br>0         | 464<br>163<br>0<br>494<br>153<br>0         | 627<br>0<br>0<br>647<br>0<br>0         |
| Group21<br>Group22 | 559<br>68<br>67.97<br>600<br>49<br>64.37<br>2014 | 532         95         16.12         541         104         13.08         1921 | 567<br>60<br>69.28<br>598<br>47<br>73.27<br>2073 | 524<br>103<br>16.33<br>543<br>106<br>15.02<br>1862 | 464<br>163<br>0<br>494<br>153<br>0<br>1743 | 627<br>0<br>0<br>647<br>0<br>0<br>2192 | 464<br>163<br>0<br>494<br>153<br>0<br>1743 | 627<br>0<br>0<br>647<br>0<br>0<br>2192 |

Table 4.13a Experiment results with transductive SVM

|         | Op_c (F- |       |       |
|---------|----------|-------|-------|
|         | measure) | Se    | PPV   |
| Group4  | 1        | 100   | 98.97 |
| Group5  | 0.0001   | 50.31 | 99.59 |
| Group6  | 0.00001  | 51.4  | 98.87 |
| Group7  | 0.0001   | 50.6  | 99.06 |
| Group8  | 0.00001  | 52.1  | 98.57 |
| Group9  | 0.0001   | 55.3  | 98.69 |
| Group10 | 0.00001  | 58.83 | 97.57 |
| Group11 | 1        | 99.79 | 87.29 |
| Group12 | 0.00001  | 70.42 | 98.54 |
| Group13 | 0.00001  | 71.15 | 97.67 |
| Group14 | 10       | 100   | 68.91 |
| Group15 | 0.0001   | 73.09 | 77.35 |
| Group16 | 0.0001   | 76.19 | 52.26 |
| Group17 | 0.0001   | 77.64 | 36.24 |
| Group18 | 0.0001   | 84.07 | 28.02 |
| Group19 | 0.0001   | 70.48 | 19.6  |
| Group20 | 0.0001   | 63.19 | 16.43 |
| Group21 | 0.0001   | 69.28 | 16.33 |

| Group22 | 0.0001 | 73.27     | 15.02     |
|---------|--------|-----------|-----------|
| overall |        | 68.763046 | 59.785568 |

#### Table 4.13b Optimal parameters for each group of data

As shown in Table 4.12 and Table 4.13, the overall SE and PPV is 76.19% and 70.62 with inductive SVM, and the overall SE and PPV is 68.76% and 59.79% with transductive SVM. So a conclusion can be drawn that the transductive SVM is not superior to traditional inductive SVM in our experiments. So the selection of SVM should be a case by case issue.

#### 4.4 Results

As a classifier, SVM first embeds its data into a suitable space and then learns a decision function to separate the data with a hyperplane that has the maximum margin from a small number of critical boundary samples from each class. A support vector machine's decision function for a test sample is a linear combination of kernels computed at the training data points [Wong, 2004].

I applied the prediction system to the human chromosome 22 (Built 35), and gave the final report for each position on the long sequence. The final report contains the scores of the decision function at each position extracted by the sliding window along the chromosome.

The speed of the system is such that I can process 240000 sequences per hour, with each sequence having the length of 1024 nucleotide. These sequences do not include those that contain 'N' or 'n'. Unlike sequences containing only 'a', 'c', 't', 'g', sequences containing 'N' and 'n' can not be transformed into digital signals by EIIP means. So when I slid the window, I only grasped the sequences which contain only 'a', 'c', 't', 'g'. I moved the

window by step of 10bp, in order to maintain a properly high resolution in recording the possibility score of the positions on the chromosome sequence.

The scores of the positions were recorded into two files, one of which is for promoters and another for non-promoters. The final statistical analysis such as distribution plot of these scores was also generated. Based on this, the range of the scores of the positive candidates along the chromosome could be observed. The threshold to classify the positive and negative data is zero, since the all of the positive data have a score above zero, while the entire negative have a score below zero.

I also analysed the prediction results under different thresholds, which filter the predictions. Only predictions with scores that are above the threshold were retained. Another process was to group the predictions into different clusters according to different cluster distances and replaced the each cluster of data with their means in each cluster. Thus, the predictions could become more compact.

Then I fixed the threshold, and tuned the distance of the predicted positions obtained under this threshold. Later, I fixed the distance and tune the threshold under the distance. Then I compared the newly obtained predictions with the reference, and calculated TP, FP, and plot PPV and SE. Based on the plot of PPV and SE, I could select the optimal thresholds and distances. There were 28 different clustering distances, which were 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, and there were 93 different thresholds, which were from 0,0.5 to 46, evenly distributed with 0.5 as interval.

Since the reference file of the chromosome 22 contains five categories of genes: coding genes, non-coding genes, pseudo genes, partial genes, IGLV/J, I designed the assessment

under six categories (the above five categories of different genes plus one category of all these genes). I drew the plot at different thresholds of scores and different cluster distances; each point had two values of PPV and SE respectively. I obtained different predictions under different thresholds of the predicted scores. The shapes of the curves in different categories were different.

As described in [Collins et al., 2003], the gene categories are defined as:

A complete protein Coding gene had exact sequence identity to human cDNAs or ESTs across its entire length, and a predicted ORF of at least 300 bases.

A Partial gene had sequence similarity to cDNA, EST or peptide sequence but did not comply with the complete gene criteria.

Non-coding RNA genes included small RNAs, and published( or complete) genes which did not contain an ORF of at least 300 bases.

A pseudogene had similarity to a known gene or protein but had evidence of disrupted function.

IGL V/J indicated IGLV and J gene segments, which is the immunoglobulin joining and variable regions, including pseudogenes.



Figure 4.4 Results on the data of Group1-22

Figure 4.4 is drawn with the 6 sets of thresholds and distances of each category on the data of all the 22 Groups. The optimal points are those with the most appropriate "distance" and "threshold" to generate the best performance in SE and PPV. For each of the six categories of genes, there is one optimal point corresponding in each plot.

|                             | Optimal   | Optimal  |       |       |
|-----------------------------|-----------|----------|-------|-------|
|                             | threshold | distance | SE    | PPV   |
| Coding Genes                | 0.5       | 100      | 89.55 | 2.97  |
| Non-Coding Genes            | 0.5       | 600      | 71.43 | 66.67 |
| Pseudo Genes                | 0.5       | 1000     | 57.38 | 75.27 |
| Partial Genes               | 1         | 1500     | 65.38 | 34.23 |
| IGL V/J                     | 0         | 100      | 96.72 | 100   |
| All of the 5 kinds of Genes | 0.5       | 600      | 77.28 | 14.76 |

#### Table 4.14 Optimal points on the curves in the six categories of Group 1-22

They are the point with SE=89.55% and PPV=2.97% in category of coding genes with cluster distance 100; SE=71.43% and PPV=66.67% in category of Non-coding genes under cluster distance of 600; SE =57.38% and PPV=75.27% in the category of pseudo genes with cluster distance of 1000; SE=65.38% and PPV=34.23% in the category of partial genes under cluster distance of 1500; SE=96.72% and PPV=100% in the category of IGLV/J genes under cluster distance of 100; SE=77.28% and PPV=14.76% in the category of all the five kinds of genes under cluster distance of 600. The performance obtained for the category of coding-gene is least satisfactory. This means that the coding-gene is the most difficult category of data to predict by our system.



Figure 4.5 Results on the data of Group1-16

The curves obtained with the predictions of Group 1 to 16 are displayed in Figure 4.5. Compared with the curves of Group 1 to 22, the shapes of the curves of Group 1 to 16 are similar, but the value of SE is bigger for each category of genes. This may due to the fact that data that have higher GC-content are easier to be predicted.

|                             | Optimal threshold | Optimal distance | SE    | PPV   |
|-----------------------------|-------------------|------------------|-------|-------|
| Coding Genes                | 1                 | 500              | 49.25 | 6.83  |
| Non-Coding Genes            | 0                 | 400              | 28.57 | 80    |
| Pseudo Genes                | 0.5               | 500              | 36.89 | 58.44 |
| Partial Genes               | 38                | 1500             | 34.62 | 35.06 |
| IGL V/J                     | 0.5               | 100              | 63.11 | 100   |
| All of the 5 kinds of Genes | 0.5               | 300              | 47.49 | 12.78 |

Table 4.15 Optimal points on the curves in the six categories in Group 1-16

In this figure, the optimal points are the one with SE=49.25% and PPV=6.83% in category of coding genes with cluster distance 500; SE=28.57% and PPV=80% in category of Noncoding genes under cluster distance of 400; SE =36.89% and PPV=58.44% in the category of pseudo genes with cluster distance of 500; SE=34.62% and PPV=35.06% in the category of partial genes under cluster distance of 1500; SE=63.11% and PPV=100% in the category of IGLV/J genes under cluster distance of 100; SE=47.49% and PPV=12.78% in the category of all the five kinds of genes under cluster distance of 300.

### Chapter 5

### Conclusions

This thesis examines the capability of using some possible Digital Signal Processing (DSP) techniques for promoter prediction. Systematic simulation studies for features extracted under different domain transforms were carried out. Based on the experiments, we observed that DSP techniques can provide complementary information that can be combined with biological features of promoters and non-promoters to enhance promoter prediction.

In Chapter 2, we define the signal model for the promoter prediction problem. Specific techniques based on the three domain transforms: DFT, DCT and DWT are studied for possible applications in prediction systems. Using simulations, we compared the promoters and non-promoters based on statistical characteristics including the signal mean, correlation coefficient of specific sequence with the mean signal, and the distribution of the correlation coefficient. From the experiments, it can be concluded that CC is not a good feature to effectively distinguish between promoters and non-promoters.

In Chapter 3, we study the use of the DFT, DCT, DWT transform coefficients of the original signal as features. Based on experiments, we are able to select an optimal combination of features and define a classifier model. The performance of different

combinations is systematically evaluated with commonly used measures such as SE and PPV value. Based on the results, we observed that the ability to recognize promoters degrades with the reduction of GC-content. It is also found out that there is no significant difference in the prediction performance when any transform is used. Also, the best performance is achieved by combining all the three transforms. In all, the application of domain transforms in predicting promoters is promising and thus should be combined with other features obtained from the physical or statistical properties of promoter regions for better prediction.

In Chapter 4, we present the implementation of the promoter prediction system. The system includes signal pre-processing, feature extraction, system optimization, and promoter recognition with performance analysis. By system optimization, the model with optimal parameters is determined for different groups of sequence with different GC-content. The final prediction system is applied to human chromosome 22 (NCBI built 35). Performance evaluation is done with the prediction results under different thresholds which filter the predicted position and with different distances which cluster the results. Comparison is made with the results for the respective six different categories of genes.

## **Bibliography**

Audic, S., and Claverie, J. M., 1998. Proc. Nat. Acad. Sci. USA, 95 (17), 10026-10031.

Bajic, V.B., Seah, S.H., Chong, A., Zhang, G., Koh, J.L.Y., Brusic, V., 2002. 'Dragon Promoter Finder: Recognition of vertebrate RNA polymerase II promoters', Bioinformatics, Vol.18(1), pp. 198-199.

Bajic, V. B., Seah, S. H., Chong, A., Krishnan, S. P. T., Koh, J. L. Y., and Brusic, V.,
2003. Computer model for recognition of functional transcription start sites in polymerase II promoters of vertebrates, Journal of Molecular Graphics & Modeling, 21 (5): 323-332.

Bajic. V. B., and Seah, S. H., 2003a. Dragon Gene Start Finder identifies approximate locations of the 5' ends of genes, Nucleic Acids Research, 31(13):3560-3563, 2003.

Bajic, V. B., and Seah, S. H., 2003b. Dragon Gene Start Finder: An Advanced System for Finding Approximate Locations of the Start of Gene Transcriptional Units, Genome Research, 13:1923-1929, 2003.

Bajic, V. B., Tan, S. L., Suzuki, Y., and Sugano, S., 2004. Promoter prediction analysis on the whole human genome, Nature Biotechnology, 22(11):1467-73.

Cartharius, K., 2005. MatInspector: Analysing Promoters for Transcription Factor Binding Sites in Bioinformatics - The DNA Tools, in press, DNA Press. Chen, Y., Wang, G., and Dong, S., 2003. Learning with progressive transductive support vector machine, Source Pattern Recognition Letters archive Pages: 1845 - 1855, Volume 24, Issue 12, (August 2003), Elsevier Science Inc. New York, NY, USA.

Chong, A., Zhang, G., and Bajic, V. B., "FIE2: A program for the extraction of genomic DNA sequences around the start and translation initiation site of human genes," Nucleic Acids Res., vol. 31, no. 13, pp. 3546-53, 1 Jul 2003.

Collins, J. E., Goward, M. E., Cole, C. G., Smink, L. J., Huckle, E. J., Knowles, S., Bye, J. M., Beare, D. M., Dunham, I., 2003. Reevaluating human gene annotation: a second-generation analysis of chromosome 22. Genome Res. 2003 Jan;13(1):27-36.

Veljković V, Slavić I. Simple general-model pseudopotential. Phys. Rev. Let., 29, 105 (1972).

Davuluri, R.V., Grosse, I., and Zhang, M. Q., 2001. Computational identification of promoters and first exons in the human genome. Nature Genetics (2001) 29, 412--417.

Down, T. A., and Hubbard, T. J. P., 2002. Computational Detection and Location of Transcription Start Sites in Mammalian Genomic DNA Genome Res. 12:458-461.

Duda, R. O., Hart, P. E., and Stork, D. G., 2001. Pattern Classification (2nd ed.), Wiley Interscience.

Fickett, J.W., and Hatzigeorgiou, A.G., 1997. Eukaryotic promoter recognition. Genome Research. Sep;7(9):861-78, Review.

Fisher, M. J., Fieldsend, J. E., and Everson, R. M., 2004.Multi-Objective Optimisation for Information Access Tasks, ACM Transactions on Information Systems.

Frech, K., Herrmann, G., and Werner, T., 1993. Computer-assisted prediction, classification, and delimitation of protein binding sites in nucleic acids.Nucleic Acids Res. 21, 1655-1664..

Frech, K., Dietze, P., and Werner, T., 1997. ConsInspector 3.0: new library and enhanced functionality.Comp. Appl. Biosci. 13, 109-110.

Gardiner-Garden, M., and Frommer, M., 1987. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261-282.

Ghosh, 1993. Status of the transcription factors database (TFD). Nucleic Acids Res 21, 3117-8 (1993)

Gonzalez, R. C., and Woods, R. E., 2004. Digital Image Processing, 2nd Edition, Prentice Hall.

Gunn, S. R., 1998. Technical Report "Support Vector Machines for Classification and Regression".

Halees, A. S., and Weng, Z., "PromoSer: improvements to the algorithm, visualization and accessibility," Nucleic Acids Res., vol. 32, Web Server issue, pp. 191-4, 1 Jul 2004.

Hutchinson, G. B., 1996. The Prediction of Vertebrate Promoter Regions Using Differential Hexamer Frequency Analysis. Comp. Appl. Biosci. (1996) In Press.

Ian, H. W. and Eibe, F., 2005. Data Mining: Practical machine learning tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco.

Ioshikhes, I., and Zhang, M. Q., 2000. Large-scale human promoter mapping using CpG islands. Nature Genetics 26, 61-63 (2000).

Jegga, A. G., Sherwood, S. P.,1 Carman, J. W., Pinski, A. T., Phillips, J. L., Pestian, J. P., and Aronow, B. J. ,2002. Detection and Visualization of Compositionally Similar cis-Regulatory Element Clusters in Orthologous and Coordinately Controlled Genes.Genome Research 12: 1408-1417, September 2002.

Klingenhoff, A., Frech, K., Quandt, K., and Werner, T., 1999. Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity.Bioinformatics 15, 180-186.

Knudsen, S., 1999. 'Promoter2.0: for the recognition of PolII promoter sequences', Bioinfomatics, Vol 15 no.5 1999 p.356-361.

Lavorgna, G., Boncinelli, E., Wagner, A., and Werner, T., 1998. Detection of potential target genes in silico?Trends Genet. 14, 375-376.

Latchman, D. S.,1998. Gene Regulation — A Eukaryotic Perspective. Stanley Thornes Ltd, 3rd edition.

Levitsky, V. G., Podkolodnaya, O. A., Kolchanov, N. A., and Podkolodny, N. L., 2001. 'Nucleosome formation potential of eukaryotic DNA: calculation and promoters analysis'. Bioinformatics, Vol.17(11), pp. 998-1010.

Levitsky, V. G., and Katokhin, A. V., 2003. "Recognition of eukaryotic promoters using a genetic algorithm based on iterative discriminant analysis", In Silico Biology, 3:0008.

Liu, R., and States, D. J., 2002. Consensus promoter identification in the human genome utilizing expressed gene markers and gene modeling, Genome Res. 12 (2002) 462–469.

Loots, G., and Ovcharenko, I., 2004. rVista 2.0: Evolutionary analysis of transcription factor binding sites. Nucleic Acids Research, 32(Web Server Issue), W217-W221.

Mache, N., Reczko, M., and Hartzigeorgiou, A., 1996. Multistate Time-Delay Neural Networks for POL-II Promoter Sequences, Proc. 10th Conf. Intelligent Systems for Molecular Biology, (ISMB 96), St. Louis.

Maglott, D. R., Katz, K. S., Sicotte, H., and Pruitt, K. D., 2000. NCBI's LocusLink and RefSeq. Nucleic Acids Res., 28, 126–128.

Ohler, U., Stemmer, G., Harbeck, S., and Niemann, H., 2000. Stochastic segment models of eukaryotic promoter regions. Proc. Pac. Symp. Biocomput. 5, 380–391 (2000).

Ohler, U., Liao, G. C., Niemann, H., and Rubin, G. M., 2002. Computational analysis of core promoters in the Drosophila genome. Genome Biol. 3(12), RESEARCH0087. Epub 2002 Dec 20 (2002).

Pedersen, A. G., Baldi, P., Chauvin, Y., and Brunak, S., 1999. The biology of eukaryotic promoter prediction--a review. Comput. Chem. 23(3-4):191-207.

Pesole, G., Liuni, S., and D'Souza, M., 2000. PatSearch: a pattern matcher software that finds functional elements in nucleotide and protein sequences and assesses their statistical significance.Bioinformatics. 2000 May;16(5):439-50.

Ponger, L., and Mouchiroud, D., 2002. CpGProD: Identifying CpG islands associated with transcription start sites in large genomic mammalian sequences. Bioinformatics 18, 631–633 (2002).

Prestridge, D.S., 1991. SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7, 203-206.

Prestridge, D. S., 1995. Predicting Pol II promoter sequences using transcription factor binding sites. J. Mol. Biol. 249:923-932.

Pruitt, K. D., Katz, K. S., Sicotte, H., and Maglott, D. R., 2000. Introducing RefSeq and LocusLink: curated human genome resources at the NCBI. Trends Genet., 16, 44–47.

Pruitt, K. D., and Maglott, D. R., 2000. RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res., 29, 137–140.

Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T., 1995. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data.Nucleic Acids Res. 23, 4878-4884.

Quandt, K., Frech, K., Herrmann, G., and Werner, T., 1995. A consensus match scoring system that is correlated with biological functionality.in Bioinformatics: From Nucleic Acids and Proteins to Cell Metabolism (Eds. D. Schomburg, U. Lessel), 47-57, GBF Monographs Volume 18, VCH Publishers, Inc., NewYork, NY.

Reese, M.G., and Eeckman, F.H., 1995. "Novel Neural Network Algorithms for Improved Eukaryotic Promoter Site Recognition", Accepted talk for The seventh international Genome sequencing and analysis conference, Hyatt Regency, Hilton Head Island, South Carolina September 16-20.

Reese, M. G., 2000. "Computational prediction of gene structure and regulation in the genome of Drosophila melanogaster", PhD Thesis (PDF), UC Berkeley/University of Hohenheim.

Reese, M. G., 2001. ``Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome", Comput Chem 26(1),51-6.

92

Scherf, M., Klingenhoff, A., and Werner, T., 2000. 'Highly specific localization of promoter regions in large genomic sequences by PromoterInspector: a novel context analysis approach.' J Mol Biol., 297(3):599-606.

Scherf, M., Klingenhoff, A., Frech, K., Quandt, K., Schneider, R., Grote, K., Frisch, M., Gailus-Durner, V., Seidel, A., Brack-Werner, R., and Werner, T., 2001. First pass annotation of promoters on human chromosome 22, Genome Research, Vol.11(3), pp.333-340.

Van Rijsbergen, C. J., 1979. Information Retrieval, London: Butterworth.

Werner, T., 1999. Models for prediction and recognition of eukaryotic promoters. Mammalian Genome 10:168-175.

Werner T., 2003. The state of the art of mammalian promoter recognition Briefings in Bioinformatics, 2003 Mar;4(1):22-30.

Werner, T., Fessele, S., Maier, H., and Nelson, P. J., 2003. Computer modeling of promoter organization as a tool to study transcriptional coregulation. FASEB Journal 17, 1228-1237.

Wingender, E., 1994. Recognition of regulatory regions in genomic sequences. J Biotechnol. 1994 Jun. 30;35(2-3):273-80.

Wingender, E., Knüppel, R., Dietze, P., Karas, H., Frech, K., Quandt, K., and Werner,

T., 1995. The TRANSFAC database and ConsInd program as tools for describing and understanding regulatory functions of the genome. SAMS, 18-19, 823-826.

Wong, L.(editor), 2004. The Practical Bioinformatician, World Scientific, New Jersey.

Zhang, M. Q., 1998. Identification of Human Gene Core Promoters in Silico. Genome Res 8(1):319-326.

Zhang, X., Bajic, V. B., and Kassim, A., 2004. Digital signal processing for potential promoter prediction, IEEE Biocas.

## Appendix A

# **List of Publications**

Zhang, X., Bajic, V. B., and Kassim, A., 2004. Digital signal processing for potential promoter prediction, IEEE Biocas.


Level --1:



Figure B.1 The CC distribution plot and reconstructed mean signal at level 1

Level-2



Figure B.2 The CC distribution plot and reconstructed mean signal at level 2

Level-7



Figure B.3 The CC distribution plot and reconstructed mean signal at level 7

Figure B.1, B.2 and B.3 are respectively the plots obtained when the original signal is decomposed respectively at level 1, 2, and 7. After we decompose the signal in different levels by DWT, signal reconstruction can be made with the specific 'approximate' or 'detailed' part at any level. By filtering away the 'detailed' part, the signal can be de-noised effectively. The mean sequence of the reconstructed positive signal is regarded as a reference sequence, and the CC value of the individual reconstructed signal with this reference sequence can be found. By this CC value, the relativity of an individual (positive or negative) signal with the reference sequence can be found out, thus the difference of positive and negative signal indicated by CC is expected.

In Figure B.1, B.2 and B.3, the upper plot is the CC distribution plot, the value of x varies from 0 to1, the y axis is the number of sequences with the same specific CC value shown on the x axis. To find out the most appropriate level at which the biggest difference occurs to separate the positive and negative sequence effectively, we scheme to have the least overlap of the positive and negative data when we use a threshold to make classification.

The lower plot in Figure B.1, B.2 and B.3 is the reconstructed mean signal of the positive and negative data, using only the approximate part of the original signal in level 1, 2, and 7 at which the signal is decomposed respectively. The x axis is the length of the sequence, from 0 to 2500. The y axis is the value of the mean signal's amplitude at each position of the sequence. Based on the figure, we can observe that when the reconstruction is done with the approximate part of the signal, the shape of the signal's curves will be smooth and the curves reconstructed in level 7 will be smoother than those reconstructed in level 1 and 2.

#### 2. The CC distribution



The value of CC under amplified scale of 0 to 100

Figure B.4 The CC distribution plot in group 1-8



The value of CC under amplified scale of 0 to 100

Figure B.5 The CC distribution plot in group 9-16



Figure B.6 The CC distribution plot in group 17-22

Figure B.4, B.5, and B.6 is the distribution plot of CC in group 1-7, 8-16, 17-22 respectively. The CC is calculated with the input signal and the mean of all positive data in each of the 22 groups; the y axis is the number of sequences under the same CC value shown along x axis. The curves in red are the result obtained with all the negative sequences, while those in blue are with all the positive sequences. The x axis is previously from 0-1 (CC's range) and is scaled to 0-100 for the purpose of observation more clearly.

From Figure B.4, B.5, and B.6, we can find out that the difference of positive and negative data by plotting the distribution of the feature CC. The difficulty to separate the positive and negative data differs from group to group. In short, the groups that are GC rich are easier to separate than groups that are GC poor.

#### 3. Classification with the feature of CC under different thresholds



Figure B.7 The threshold versus GC content

In Figure B.7 the 5 curves are plotted under 5 different TP/FP ratios, which are 14%, 10%, 7%, 4%, and 2% from left to right. TP means true positive prediction, which is the prediction that is correctly made. FP means false positive prediction. Each of the 19 points on the curve is drawn with one group of data from group 4 to 22, into which the input data was firstly divided using the criterion of GC content. Every point is plotted with two coordinates, one being the threshold of its group to give best separation of positive and negative data, the other being the GC content of its group. "THR" means "threshold", which is the label of x axis.

From Figure B.7, it is clear that the FP rate decreases while as the threshold is increased. The experimental results of TP, FP, FN, TN, Se, Sp, and PPV are recorded in Table B.1 to B.5 shown below. Each table is under different condition of FP/TP ratio, which is 2%, 4%, 7%, 10%, and 14%, respectively. The "reviewed" data are used in the experiment and since there are no negative data in Group 1 and 2, only results from group 3 to 22 are summarized.

Table B.1 to B.5 is given below to record the result of the experiment group by group under the above five different FP/TP ratios.

|         | ТР  | FP | FN   | TN           | Se(%)    | Sp(%)   | PPV(%)  |
|---------|-----|----|------|--------------|----------|---------|---------|
| Group1  |     |    |      |              |          |         |         |
| Group2  |     |    |      |              |          |         |         |
| Group3  | 49  | 1  | 0    | 0 100.0000 0 |          | 0       | 98      |
| Group4  | 105 | 2  | 0    | 0            | 100.0000 | 0       | 98.1308 |
| Group5  | 144 | 3  | 0    | 0            | 100.0000 | 0       | 97.9592 |
| Group6  | 162 | 6  | 0    | 0            | 100.0000 | 0       | 96.4286 |
| Group7  | 7   | 0  | 186  | 6            | 3.6269   | 100     | 100     |
| Group8  | 11  | 0  | 217  | 26           | 4.8246   | 100     | 100     |
| Group9  | 56  | 1  | 205  | 32           | 21.4559  | 96.9697 | 98.2456 |
| Group10 | 50  | 1  | 181  | 44           | 21.6450  | 97.7778 | 98.0392 |
| Group11 | 35  | 0  | 224  | 71           | 13.5135  | 100     | 100     |
| Group12 | 22  | 0  | 213  | 92           | 9.3617   | 100     | 100     |
| Group13 | 31  | 0  | 185  | 113          | 14.3519  | 100     | 100     |
| Group14 | 31  | 0  | 160  | 158          | 16.2304  | 100     | 100     |
| Group15 | 25  | 0  | 148  | 132          | 14.4509  | 100     | 100     |
| Group16 | 13  | 0  | 124  | 211          | 9.4891   | 100     | 100     |
| Group17 | 26  | 0  | 71   | 232          | 26.8041  | 100     | 100     |
| Group18 | 12  | 0  | 83   | 236          | 12.6316  | 100     | 100     |
| Group19 | 5   | 0  | 67   | 261          | 6.9444   | 100     | 100     |
| Group20 | 1   | 0  | 57   | 335          | 1.7241   | 100     | 100     |
| Group21 | 1   | 0  | 62   | 320          | 1.5873   | 100     | 100     |
| Group22 | 1   | 0  | 210  | 960          | 0.4739   | 100     | 100     |
| Overall | 787 | 14 | 2393 | 3229         | 24.7484  | 99.5683 | 98.2522 |

Table B.1 Experiment result with FP/TP=2%

|         | TP   | FP | FN   | TN   | Se(%)   | Sp(%)   | PPV(%)  |
|---------|------|----|------|------|---------|---------|---------|
| Group1  |      |    |      |      |         |         |         |
| Group2  |      |    |      |      |         |         |         |
| Group3  | 49   | 1  | 0    | 0    | 100     | 0       | 98      |
| Group4  | 105  | 2  | 0    | 0    | 100     | 0       | 98.1308 |
| Group5  | 144  | 3  | 0    | 0    | 100     | 0       | 97.9592 |
| Group6  | 162  | 6  | 0    | 0    | 100     | 0       | 96.4286 |
| Group7  | 193  | 6  | 0    | 0    | 100     | 0       | 96.9849 |
| Group8  | 76   | 4  | 152  | 22   | 33.3333 | 84.6154 | 95      |
| Group9  | 76   | 4  | 185  | 29   | 29.1188 | 87.8788 | 95      |
| Group10 | 58   | 2  | 173  | 43   | 25.1082 | 95.5556 | 96.6667 |
| Group11 | 57   | 3  | 202  | 68   | 22.0077 | 95.7746 | 95      |
| Group12 | 54   | 2  | 181  | 90   | 22.9787 | 97.8261 | 96.4286 |
| Group13 | 78   | 4  | 138  | 109  | 36.1111 | 96.4602 | 95.122  |
| Group14 | 41   | 2  | 150  | 156  | 21.466  | 98.7342 | 95.3488 |
| Group15 | 48   | 2  | 125  | 130  | 27.7457 | 98.4848 | 96      |
| Group16 | 21   | 1  | 116  | 210  | 15.3285 | 99.5261 | 95.4545 |
| Group17 | 26   | 0  | 71   | 232  | 26.8041 | 100     | 100     |
| Group18 | 12   | 0  | 83   | 236  | 12.6316 | 100     | 100     |
| Group19 | 5    | 0  | 67   | 261  | 6.9444  | 100     | 100     |
| Group20 | 1    | 0  | 57   | 335  | 1.7241  | 100     | 100     |
| Group21 | 1    | 0  | 62   | 320  | 1.5873  | 100     | 100     |
| Group22 | 1    | 0  | 210  | 960  | 0.4739  | 100     | 100     |
| Overall | 1208 | 42 | 1972 | 3201 | 37.9874 | 98.7049 | 96.6400 |

 Table B.2 Experiment result with FP/TP=4%

|         | ТР  | FP | FN  | TN  | Se(%)   | Sp(%)   | PPV(%)  |
|---------|-----|----|-----|-----|---------|---------|---------|
| Group1  |     |    |     |     |         |         |         |
| Group2  |     |    |     |     |         |         |         |
| Group3  | 49  | 1  | 0   | 0   | 100     | 0       | 98      |
| Group4  | 105 | 2  | 0   | 0   | 100     | 0       | 98.1308 |
| Group5  | 144 | 3  | 0   | 0   | 100     | 0       | 97.9592 |
| Group6  | 162 | 6  | 0   | 0   | 100     | 0       | 96.4286 |
| Group7  | 193 | 6  | 0   | 0   | 100     | 0       | 96.9849 |
| Group8  | 201 | 22 | 27  | 4   | 88.1579 | 15.3846 | 90.1345 |
| Group9  | 217 | 24 | 44  | 9   | 83.1418 | 27.2727 | 90.0415 |
| Group10 | 68  | 7  | 163 | 38  | 29.4372 | 84.4444 | 90.6667 |
| Group11 | 102 | 11 | 157 | 60  | 39.3822 | 84.507  | 90.2655 |
| Group12 | 99  | 10 | 136 | 82  | 42.1277 | 89.1304 | 90.8257 |
| Group13 | 85  | 9  | 131 | 104 | 39.3519 | 92.0354 | 90.4255 |
| Group14 | 69  | 7  | 122 | 151 | 36.1257 | 95.5696 | 90.7895 |
| Group15 | 54  | 6  | 119 | 126 | 31.2139 | 95.4545 | 90      |
| Group16 | 38  | 4  | 99  | 207 | 27.7372 | 98.1043 | 90.4762 |

| Group17 | 32   | 3   | 65   | 229  | 32.9897 | 98.7069 | 91.4286 |
|---------|------|-----|------|------|---------|---------|---------|
| Group18 | 12   | 0   | 83   | 236  | 12.6316 | 100     | 100     |
| Group19 | 10   | 1   | 62   | 260  | 13.8889 | 99.6169 | 90.9091 |
| Group20 | 1    | 0   | 57   | 335  | 1.7241  | 100     | 100     |
| Group21 | 1    | 0   | 62   | 320  | 1.5873  | 100     | 100     |
| Group22 | 1    | 0   | 210  | 960  | 0.4739  | 100     | 100     |
| Overall | 1643 | 122 | 1537 | 3121 | 51.6667 | 96.2381 | 93.0878 |

Table B.3 Experiment result with FP/TP=7%

|         | ТР   | FP  | FN   | TN   | Se(%)   | Sp(%)   | PPV(%)  |
|---------|------|-----|------|------|---------|---------|---------|
| Group1  |      |     |      |      |         |         |         |
| Group2  |      |     |      |      |         |         |         |
| Group3  | 49   | 1   | 0    | 0    | 100     | 0       | 98      |
| Group4  | 105  | 2   | 0    | 0    | 100     | 0       | 98.1308 |
| Group5  | 144  | 3   | 0    | 0    | 100     | 0       | 97.9592 |
| Group6  | 162  | 6   | 0    | 0    | 100     | 0       | 96.4286 |
| Group7  | 193  | 6   | 0    | 0    | 100     | 0       | 96.9849 |
| Group8  | 228  | 26  | 0    | 0    | 100     | 0       | 89.7638 |
| Group9  | 261  | 33  | 0    | 0    | 100     | 0       | 88.7755 |
| Group10 | 205  | 36  | 26   | 9    | 88.7446 | 20      | 85.0622 |
| Group11 | 151  | 24  | 108  | 47   | 58.3012 | 66.1972 | 86.2857 |
| Group12 | 113  | 18  | 122  | 74   | 48.0851 | 80.4348 | 86.2595 |
| Group13 | 98   | 15  | 118  | 98   | 45.3704 | 86.7257 | 86.7257 |
| Group14 | 82   | 11  | 109  | 147  | 42.9319 | 93.038  | 88.172  |
| Group15 | 59   | 8   | 114  | 124  | 34.104  | 93.9394 | 88.0597 |
| Group16 | 39   | 6   | 98   | 205  | 28.4672 | 97.1564 | 86.6667 |
| Group17 | 34   | 6   | 63   | 226  | 35.0515 | 97.4138 | 85      |
| Group18 | 12   | 2   | 83   | 234  | 12.6316 | 99.1525 | 85.7143 |
| Group19 | 10   | 1   | 62   | 260  | 13.8889 | 99.6169 | 90.9091 |
| Group20 | 1    | 0   | 57   | 335  | 1.7241  | 100     | 100     |
| Group21 | 1    | 0   | 62   | 320  | 1.5873  | 100     | 100     |
| Group22 | 1    | 0   | 210  | 960  | 0.4739  | 100     | 100     |
| Overall | 1948 | 204 | 1232 | 3039 | 61.2579 | 93.7095 | 90.5204 |

 Table B.4 Experiment result with FP/TP=10%

|        | TP  | FP | FN | TN | Se(%) | Sp(%) | PPV(%)  |
|--------|-----|----|----|----|-------|-------|---------|
| Group1 |     |    |    |    |       |       |         |
| Group2 |     |    |    |    |       |       |         |
| Group3 | 49  | 1  | 0  | 0  | 100   | 0     | 98      |
| Group4 | 105 | 2  | 0  | 0  | 100   | 0     | 98.1308 |
| Group5 | 144 | 3  | 0  | 0  | 100   | 0     | 97.9592 |
| Group6 | 162 | 6  | 0  | 0  | 100   | 0     | 96.4286 |
| Group7 | 193 | 6  | 0  | 0  | 100   | 0     | 96.9849 |

| Group8  | 228  | 26  | 0    | 0    | 100     | 0       | 89.7638 |
|---------|------|-----|------|------|---------|---------|---------|
| Group9  | 261  | 33  | 0    | 0    | 100     | 0       | 88.7755 |
| Group10 | 231  | 45  | 0    | 0    | 100     | 0       | 83.6957 |
| Group11 | 190  | 47  | 69   | 24   | 73.3591 | 33.8028 | 80.1688 |
| Group12 | 156  | 38  | 79   | 54   | 66.383  | 58.6957 | 80.4124 |
| Group13 | 122  | 29  | 94   | 84   | 56.4815 | 74.3363 | 80.7947 |
| Group14 | 108  | 27  | 83   | 131  | 56.5445 | 82.9114 | 80      |
| Group15 | 77   | 16  | 96   | 116  | 44.5087 | 87.8788 | 82.7957 |
| Group16 | 44   | 11  | 93   | 200  | 32.1168 | 94.7867 | 80      |
| Group17 | 36   | 8   | 61   | 224  | 37.1134 | 96.5517 | 81.8182 |
| Group18 | 13   | 3   | 82   | 233  | 13.6842 | 98.7288 | 81.25   |
| Group19 | 10   | 2   | 62   | 259  | 13.8889 | 99.2337 | 83.3333 |
| Group20 | 1    | 0   | 57   | 335  | 1.7241  | 100     | 100     |
| Group21 | 1    | 0   | 62   | 320  | 1.5873  | 100     | 100     |
| Group22 | 1    | 0   | 210  | 960  | 0.4739  | 100     | 100     |
| Overall | 2132 | 303 | 1048 | 2940 | 67.0440 | 90.6568 | 87.5565 |

 Table B.5 Experiment result with FP/TP=14%

Table B.1 to B.5 is the summary of result of the experiment group by group under different FP and TP rate. We can find out that the value of Se drops when GC content decreases. PPV remains satisfyingly high under different GC content. The overall Se is 24.7484% in Table B.1, and 37.9874% in Table B.2, 51.6667% in Table B.3, 61.2579% in Table B.4, and 67.0440% in Table B.5, respectively. The overall PPV is 98.2522% in Table B.1, and 96.6400% in Table B.2, 93.0878% in Table B.3, 90.5204% in Table B.4, and 87.5565% in Table B.5, respectively. Se is calculated with TP over all positive, which is the sum of TP and FN. Se is also called "recall" rate. Sp is calculated with TN over all negative, which is the sum of TP and FP. PPV is calculated with TP over all prediction, which is the sum of TP and FP. PPV is also called "precision" rate. Se and PPV are two of the most commonly used performance criterions in promoter prediction.

Figure B.8 shown below is drawn with the all the positive and negative data using the two features of #CpG and GC content.



Figure B.8 The data under feature of #CpG and GC content

Each point in Figure B.8 is represented with two the coordinates of #CpG and GC content. #CpG is the number of CG di- nucleotides in the sequence. GC content is the sum of the number of G and C single nucleotides in the sequence over the sequence length. It can be found out that using the two features of #CpG and GC content, the positive data is separable from the negative data, which is a good indication that the adoption these two features is very promising in promoter prediction.

#### 4. Combinational features with CC and #CpG



Figure B.9 Data represented by features of CC and #CpG (at level 2)

Figure B.9 is the positive and negative data in Group 11 under the features of CC and #CpG. The signal is decomposed in different levels, from level 1 to level 7; the CC is calculated using individual signal and the mean sequence of the reconstructed positive signal in respective level. Figure B.9 is obtained with signals decomposed and reconstructed at level 2 with DWT. Here the detailed (high frequency) part of the original signal is filtered. We can observe how the positive and negative samples are to be separable, using the two features of CC and #CpG.



Figure B.10 Data represented by features of CC and #CpG (at level 7)

Figure B.10 shown below is different from Figure B.9 in that the signal is decomposed in level 7 rather in level 2 with DWT. The most proper level to decompose the signal is expected to be found out by comparison of the experimental results shown in these two figures. Here the detailed (high frequency) part of the original signal is filtered before reconstruction. From this figure, we can see that it is not as good as the figure obtained at level 2. So this means that the 'high frequency' part of the original signal that is filtered should not be too much. Comparatively, the resolution at level 2 is more appropriate for this task of separation.

#### 5. Combinational features with CC and GC content



Figure B.11 Data represented by features of CC and GC content

Figure B.11 is the positive and negative data in Group 10 under the features of CC and GC content. The signal is decomposed in different levels, from level 1 to level 7, respectively. The CC is calculated using the individual signal and the mean sequence of the reconstructed positive signal at a level where the DWT is implemented. This plot is from the signal decomposed and reconstructed (after low pass filter) at level 2. Here we can observe whether the positive and negative samples are separable, using the two features of CC and GC content. We can observe that these two features are not as good as the previous two features of CC and #CpG for classification.

#### 6. Combinational features with #CpG and GC content



Figure B.12 Data represented by features of GC content and #CpG

Figure B.12 is the positive and negative data in Group 11 under the two features of GC content and #CpG. We can find out the ability of the two features in separating the data from Figure B.12. So Figure B.12 is given to facilitate the comparison of the three kinds of combinations shown in Figure B.10, Figure B.11, and Figure B.12.

#### 7. Set threshold



Figure B.13 The curves of TP, FP, TN, and FN under different thresholds

Figure B.13 give us the description of the process of how to decide the threshold based on the criterion, which is to maximize the correct predictions and minimize the incorrect predictions. The y axis is the number of sequences under the corresponding thresholds indicated by x axis. In the upper plot in Figure B.13, the curves of TP, FP, TN and FN are plotted under different thresholds from 0 to 1. In the lower plot in Figure B.13, the curves of correct predictions (TP+TN) and incorrect predictions (FP+FN) are plotted. Based on the lower plot, we can select the optimal threshold to make (TP+TN) maximum and (FP+FN) minimum concurrently. In Figure B.13, this optimal threshold should be at the CC value of 0.12.

# Appendix C

### 1.Linear kernel

|         |       | c=0   | c=0.  | 000001 | c=    | 0.0001 |       | c=0.01 |       | c=1   |       | c=1000 |
|---------|-------|-------|-------|--------|-------|--------|-------|--------|-------|-------|-------|--------|
| Group # | Se    | PPV   | Se    | PPV    | Se    | PPV    | Se    | PPV    | Se    | PPV   | Se    | PPV    |
|         | TP    | FN    | TP    | FN     | TP    | FN     | ТР    | FN     | ТР    | FN    | TP    | FN     |
|         | FP    | TN    | FP    | TN     | FP    | TN     | FP    | TN     | FP    | TN    | FP    | TN     |
| Group4  | 91.17 | 98.87 | 91.17 | 98.87  | 88.05 | 98.83  | 69.09 | 98.52  | 69.09 | 98.52 | 69.09 | 98.52  |
|         | 0     | 4     | 0     | 4      | 0     | 4      | 0     | 4      | 0     | 4     | 0     | 4      |
|         | 34    | 351   | 34    | 351    | 46    | 339    | 119   | 266    | 119   | 266   | 119   | 266    |
| Group5  | 68.27 | 99.09 | 68.27 | 99.09  | 59.71 | 99.31  | 55.74 | 99.26  | 55.74 | 99.26 | 55.74 | 99.26  |
|         | 2     | 3     | 2     | 3      | 3     | 2      | 3     | 2      | 3     | 2     | 3     | 2      |
|         | 152   | 327   | 152   | 327    | 193   | 286    | 212   | 267    | 212   | 267   | 212   | 267    |
| Group6  | 34.9  | 99.58 | 34.9  | 99.58  | 45.07 | 99.67  | 45.66 | 99.04  | 45.66 | 99.04 | 45.66 | 99.04  |
|         | 12    | 1     | 12    | 1      | 12    | 1      | 10    | 3      | 10    | 3     | 10    | 3      |
|         | 442   | 237   | 442   | 237    | 373   | 306    | 369   | 310    | 369   | 310   | 369   | 310    |
| Group7  | 83.81 | 99.29 | 83.81 | 99.29  | 82.97 | 99.14  | 49.76 | 98.34  | 49.76 | 98.34 | 49.76 | 98.34  |
|         | 13    | 5     | 13    | 5      | 12    | 6      | 11    | 7      | 11    | 7     | 11    | 7      |
|         | 135   | 699   | 135   | 699    | 142   | 692    | 419   | 415    | 419   | 415   | 419   | 415    |
| Group8  | 93.97 | 98.31 | 98.28 | 96.41  | 88.91 | 99.16  | 81.16 | 98.56  | 81.49 | 98.57 | 81.49 | 98.57  |
|         | 30    | 15    | 11    | 34     | 38    | 7      | 34    | 11     | 34    | 11    | 34    | 11     |
|         | 56    | 873   | 16    | 913    | 103   | 826    | 175   | 754    | 172   | 757   | 172   | 757    |
| Group9  | 87.2  | 98.23 | 98.11 | 94.25  | 88.46 | 98.48  | 79.64 | 97.81  | 65.16 | 95.83 | 65.58 | 96.15  |
|         | 62    | 15    | 20    | 57     | 64    | 13     | 60    | 17     | 50    | 27    | 52    | 25     |
|         | 122   | 831   | 18    | 935    | 110   | 843    | 194   | 759    | 332   | 621   | 328   | 625    |
| Group10 | 84.1  | 97.51 | 83.02 | 97.59  | 85.85 | 97.13  | 78.34 | 96.05  | 71.51 | 95.19 | 47.9  | 93.52  |
|         | 105   | 22    | 106   | 21     | 101   | 26     | 94    | 33     | 90    | 37    | 93    | 34     |
|         | 163   | 862   | 174   | 851    | 145   | 880    | 222   | 803    | 292   | 733   | 534   | 491    |
| Group11 | 76.91 | 98.16 | 90.72 | 91.67  | 78.97 | 98.21  | 74.33 | 96.91  | 75.36 | 95.31 | 63.51 | 96.4   |
|         | 127   | 14    | 61    | 80     | 127   | 14     | 118   | 23     | 105   | 36    | 118   | 23     |
|         | 224   | 746   | 90    | 880    | 204   | 766    | 249   | 721    | 239   | 731   | 354   | 616    |
| Group12 | 75.63 | 97.58 | 71.25 | 98.42  | 77.71 | 97.14  | 76.46 | 95.95  | 76.25 | 94.45 | 70.31 | 90.6   |
|         | 156   | 18    | 163   | 11     | 152   | 22     | 143   | 31     | 131   | 43    | 104   | 70     |
|         | 234   | 726   | 276   | 684    | 214   | 746    | 226   | 734    | 228   | 732   | 285   | 675    |
| Group13 | 70.76 | 97.31 | 65.4  | 98.04  | 72.85 | 96.88  | 72.98 | 96.71  | 72.72 | 95.38 | 59.4  | 79.68  |
|         | 199   | 15    | 204   | 10     | 196   | 18     | 195   | 19     | 187   | 27    | 98    | 116    |
|         | 224   | 542   | 265   | 501    | 208   | 558    | 207   | 559    | 209   | 557   | 311   | 455    |
| Group14 | 66.33 | 97.56 | 62.35 | 98.17  | 68.16 | 97.39  | 73.47 | 93.86  | 73.96 | 93.11 | 33.5  | 76.52  |
|         | 262   | 10    | 265   | 7      | 261   | 11     | 243   | 29     | 239   | 33    | 210   | 62     |
|         | 203   | 400   | 227   | 376    | 192   | 411    | 160   | 443    | 157   | 446   | 401   | 202    |
| Group15 | 60.86 | 90.05 | 73.09 | 68.68  | 64.53 | 88.28  | 68.81 | 78.4   | 72.48 | 76.95 | 71.25 | 60.36  |
|         | 347   | 22    | 260   | 109    | 341   | 28     | 307   | 62     | 298   | 71    | 216   | 153    |
|         | 128   | 199   | 88    | 239    | 116   | 211    | 102   | 225    | 90    | 237   | 94    | 233    |
| Group16 | 54.95 | 55.35 | 53.48 | 53.09  | 61.54 | 69.14  | 69.96 | 54.42  | 70.7  | 54.99 | 78.39 | 35.37  |
|         | 463   | 121   | 455   | 129    | 509   | 75     | 424   | 160    | 426   | 158   | 193   | 391    |

|         | 123   | 150   | 127   | 146   | 105   | 168   | 82    | 191   | 80    | 193   | 59    | 214   |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Group17 | 58.13 | 36.02 | 86.18 | 29.08 | 61.38 | 53.17 | 64.23 | 48.92 | 71.95 | 50.43 | 70.33 | 33.14 |
|         | 563   | 254   | 300   | 517   | 684   | 133   | 652   | 165   | 643   | 174   | 468   | 349   |
|         | 103   | 143   | 34    | 212   | 95    | 151   | 88    | 158   | 69    | 177   | 73    | 173   |
| Group18 | 35.71 | 24.25 | 58.24 | 21.37 | 73.08 | 34.91 | 71.43 | 32.91 | 71.43 | 32.26 | 58.79 | 27.86 |
|         | 704   | 203   | 517   | 390   | 659   | 248   | 642   | 265   | 634   | 273   | 630   | 277   |
|         | 117   | 65    | 76    | 106   | 49    | 133   | 52    | 130   | 52    | 130   | 75    | 107   |
| Group19 | 68.67 | 18.97 | 68.67 | 18.97 | 72.89 | 27.94 | 63.86 | 27.89 | 62.65 | 26    | 80.12 | 17.14 |
|         | 536   | 487   | 536   | 487   | 711   | 312   | 749   | 274   | 727   | 296   | 380   | 643   |
|         | 52    | 114   | 52    | 114   | 45    | 121   | 60    | 106   | 62    | 104   | 33    | 133   |
| Group20 | 66.87 | 16.2  | 53.37 | 16.48 | 76.69 | 22.94 | 73.01 | 23.71 | 71.17 | 22.75 | 49.69 | 17.46 |
|         | 527   | 564   | 650   | 441   | 671   | 420   | 708   | 383   | 697   | 394   | 708   | 383   |
|         | 54    | 109   | 76    | 87    | 38    | 125   | 44    | 119   | 47    | 116   | 82    | 81    |
| Group21 | 57.52 | 15.91 | 64.05 | 16.17 | 71.9  | 22.36 | 62.75 | 21.82 | 64.71 | 22.86 | 47.06 | 14.04 |
|         | 676   | 465   | 633   | 508   | 759   | 382   | 797   | 344   | 807   | 334   | 700   | 441   |
|         | 65    | 88    | 55    | 98    | 43    | 110   | 57    | 96    | 54    | 99    | 81    | 72    |
| Group22 | 77.95 | 12.81 | 75.06 | 12.82 | 64.81 | 16.88 | 65.92 | 16.4  | 76.39 | 10.13 | 22.94 | 8.65  |
|         | 1553  | 2382  | 1644  | 2291  | 2502  | 1433  | 2426  | 1509  | 892   | 3043  | 2847  | 1088  |
|         | 99    | 350   | 112   | 337   | 158   | 291   | 153   | 296   | 106   | 343   | 346   | 103   |

|          | Op_c (F- |           |           |
|----------|----------|-----------|-----------|
|          | measure) | Se        | PPV       |
| Group4   | 0.000001 | 91.17     | 98.87     |
| Group5   | 0        | 68.27     | 99.09     |
| Group6   | 0.01     | 45.66     | 99.04     |
| Group7   | 0        | 83.81     | 99.29     |
| Group8   | 0.000001 | 98.28     | 96.41     |
| Group9   | 0.000001 | 98.11     | 94.25     |
| Group10  | 0.0001   | 85.85     | 97.13     |
| Group11  | 0.000001 | 90.72     | 91.67     |
| Group12  | 0.0001   | 77.71     | 97.14     |
| Group13  | 0.01     | 72.98     | 96.71     |
| Group14  | 1        | 73.96     | 93.11     |
| Group15  | 1        | 72.48     | 76.95     |
| Group16  | 0.0001   | 61.54     | 69.14     |
| Group17  | 1        | 71.95     | 50.43     |
| Group18  | 0.0001   | 73.08     | 34.91     |
| Group19  | 0.0001   | 72.89     | 27.94     |
| Group20  | 0.01     | 73.01     | 23.71     |
| Group21  | 0.0001   | 71.9      | 22.36     |
| Group22  | 0.0001   | 64.81     | 16.88     |
| over all |          | 79.700249 | 71.409142 |

Table A.1b Use linear kernel

# 2. Sigmoid kernel

|         | r=-2 r=-1 r=0 r=1 r=2 |       |       |       |       |       | r=2   |       |       |       |
|---------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|         |                       |       |       |       | s=0.0 | 00010 |       |       |       |       |
| Group # | Se                    | PPV   | Se    | PPV   | Se    | PPV   | Se    | PPV   | Se    | PPV   |
|         | ТР                    | FN    | TP    | FN    | TP    | FN    | ТР    | FN    | ТР    | FN    |
|         | FP                    | TN    | FP    | TN    | FP    | TN    | FP    | TN    | FP    | TN    |
| Group4  | 84.94                 | 98.79 | 84.94 | 98.79 | 84.94 | 98.79 | 84.94 | 98.79 | 84.94 | 98.79 |
|         | 0                     | 4     | 0     | 4     | 0     | 4     | 0     | 4     | 0     | 4     |
|         | 58                    | 327   | 58    | 327   | 58    | 327   | 58    | 327   | 58    | 327   |
| Group5  | 65.34                 | 99.05 | 65.34 | 99.05 | 65.34 | 99.05 | 65.14 | 99.05 | 64.93 | 99.04 |
|         | 2                     | 3     | 2     | 3     | 2     | 3     | 2     | 3     | 2     | 3     |
|         | 166                   | 313   | 166   | 313   | 166   | 313   | 167   | 312   | 168   | 311   |
| Group6  | 52.28                 | 99.44 | 52.43 | 99.44 | 52.43 | 99.44 | 52.28 | 99.44 | 51.4  | 99.43 |
|         | 11                    | 2     | 11    | 2     | 11    | 2     | 11    | 2     | 11    | 2     |
|         | 324                   | 355   | 323   | 356   | 323   | 356   | 324   | 355   | 330   | 349   |
| Group7  | 77.34                 | 99.38 | 77.34 | 99.38 | 77.34 | 99.38 | 77.34 | 99.38 | 76.02 | 99.37 |
|         | 14                    | 4     | 14    | 4     | 14    | 4     | 14    | 4     | 14    | 4     |
|         | 189                   | 645   | 189   | 645   | 189   | 645   | 189   | 645   | 200   | 634   |
| Group8  | 51.35                 | 98.96 | 40.9  | 99.22 | 39.07 | 99.18 | 38.75 | 99.17 | 38.97 | 99.18 |
|         | 40                    | 5     | 42    | 3     | 42    | 3     | 42    | 3     | 42    | 3     |
|         | 452                   | 477   | 549   | 380   | 566   | 363   | 569   | 360   | 567   | 362   |
| Group9  | 94.86                 | 95.86 | 94.86 | 95.86 | 94.86 | 95.86 | 94.86 | 95.86 | 94.86 | 95.86 |
|         | 38                    | 39    | 38    | 39    | 38    | 39    | 38    | 39    | 38    | 39    |
|         | 49                    | 904   | 49    | 904   | 49    | 904   | 49    | 904   | 49    | 904   |
| Group10 | 81.07                 | 97.76 | 80.98 | 97.76 | 80.98 | 97.76 | 80.98 | 97.76 | 80.88 | 97.87 |
|         | 108                   | 19    | 108   | 19    | 108   | 19    | 108   | 19    | 109   | 18    |
|         | 194                   | 831   | 195   | 830   | 195   | 830   | 195   | 830   | 196   | 829   |
| Group11 | 68.14                 | 97.93 | 66.49 | 97.88 | 66.29 | 97.87 | 66.29 | 97.87 | 66.29 | 97.87 |
|         | 127                   | 14    | 127   | 14    | 127   | 14    | 127   | 14    | 127   | 14    |
|         | 309                   | 661   | 325   | 645   | 327   | 643   | 327   | 643   | 327   | 643   |
| Group12 | 72.6                  | 98.45 | 72.6  | 98.45 | 72.5  | 98.44 | 72.5  | 98.44 | 72.6  | 98.45 |
|         | 163                   | 11    | 163   | 11    | 163   | 11    | 163   | 11    | 163   | 11    |
|         | 263                   | 697   | 263   | 697   | 264   | 696   | 264   | 696   | 263   | 697   |
| Group13 | 65.8                  | 97.86 | 64.88 | 97.83 | 64.75 | 97.83 | 64.75 | 97.83 | 64.75 | 97.83 |
|         | 203                   | 11    | 203   | 11    | 203   | 11    | 203   | 11    | 203   | 11    |
|         | 262                   | 504   | 269   | 497   | 270   | 496   | 270   | 496   | 270   | 496   |
| Group14 | 64.84                 | 98.24 | 64.84 | 97.99 | 64.84 | 97.99 | 64.84 | 97.99 | 65.01 | 98    |
|         | 265                   | 7     | 264   | 8     | 264   | 8     | 264   | 8     | 264   | 8     |
|         | 212                   | 391   | 212   | 391   | 212   | 391   | 212   | 391   | 211   | 392   |
| Group15 | 74.01                 | 67.22 | 65.44 | 79.26 | 74.31 | 66.39 | 74.31 | 66.39 | 74.31 | 65.85 |
|         | 251                   | 118   | 313   | 56    | 246   | 123   | 246   | 123   | 243   | 126   |
|         | 85                    | 242   | 113   | 214   | 84    | 243   | 84    | 243   | 84    | 243   |
| Group16 | 67.03                 | 48.8  | 65.57 | 48.51 | 65.57 | 48.64 | 65.57 | 48.64 | 65.57 | 48.51 |
|         | 392                   | 192   | 394   | 190   | 395   | 189   | 395   | 189   | 394   | 190   |

|         | 90    | 183   | 94    | 179   | 94    | 179   | 94    | 179   | 94    | 179   |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Group17 | 45.53 | 39.44 | 41.87 | 38.72 | 41.46 | 38.64 | 41.46 | 38.64 | 41.06 | 38.4  |
|         | 645   | 172   | 654   | 163   | 655   | 162   | 655   | 162   | 655   | 162   |
|         | 134   | 112   | 143   | 103   | 144   | 102   | 144   | 102   | 145   | 101   |
| Group18 | 12.64 | 24.21 | 12.64 | 25.56 | 12.64 | 26.14 | 12.64 | 26.14 | 12.64 | 27.06 |
|         | 835   | 72    | 840   | 67    | 842   | 65    | 842   | 65    | 845   | 62    |
|         | 159   | 23    | 159   | 23    | 159   | 23    | 159   | 23    | 159   | 23    |
| Group19 | 53.61 | 20.55 | 53.61 | 20.84 | 53.61 | 20.89 | 53.61 | 20.89 | 53.61 | 20.89 |
|         | 679   | 344   | 685   | 338   | 686   | 337   | 686   | 337   | 686   | 337   |
|         | 77    | 89    | 77    | 89    | 77    | 89    | 77    | 89    | 77    | 89    |
| Group20 | 31.9  | 14.9  | 30.67 | 14.62 | 30.67 | 14.66 | 30.67 | 14.66 | 30.67 | 14.79 |
|         | 794   | 297   | 799   | 292   | 800   | 291   | 800   | 291   | 803   | 288   |
|         | 111   | 52    | 113   | 50    | 113   | 50    | 113   | 50    | 113   | 50    |
| Group21 | 50.33 | 15.16 | 50.33 | 15.37 | 50.33 | 15.37 | 50.33 | 15.37 | 50.33 | 15.37 |
|         | 710   | 431   | 717   | 424   | 717   | 424   | 717   | 424   | 717   | 424   |
|         | 76    | 77    | 76    | 77    | 76    | 77    | 76    | 77    | 76    | 77    |
| Group22 | 8.02  | 8.91  | 7.35  | 8.44  | 7.35  | 8.59  | 7.35  | 8.59  | 7.35  | 8.59  |
|         | 3567  | 368   | 3577  | 358   | 3584  | 351   | 3584  | 351   | 3584  | 351   |
|         | 413   | 36    | 416   | 33    | 416   | 33    | 416   | 33    | 416   | 33    |

#### Table A.2a Use sigmoid kernel

|          | Op_r(F- Op_s(F- |          |           |           |
|----------|-----------------|----------|-----------|-----------|
|          | measure)        | measure) | Se        | PPV       |
| Group4   | 2               | 0.00001  | 84.94     | 98.79     |
| Group5   | -2              | 0.00001  | 65.34     | 99.05     |
| Group6   | -1              | 0.00001  | 52.43     | 99.44     |
| Group7   | -2              | 0.00001  | 77.34     | 99.38     |
| Group8   | -2              | 0.00001  | 51.35     | 98.96     |
| Group9   | 2               | 0.00001  | 94.86     | 95.86     |
| Group10  | -2              | 0.00001  | 81.07     | 97.76     |
| Group11  | -2              | 0.00001  | 68.14     | 97.93     |
| Group12  | -2              | 0.00001  | 72.6      | 98.45     |
| Group13  | -2              | 0.00001  | 65.8      | 97.86     |
| Group14  | 2               | 0.00001  | 65.01     | 98        |
| Group15  | -1              | 0.00001  | 65.44     | 79.26     |
| Group16  | -2              | 0.00001  | 67.03     | 48.8      |
| Group17  | -2              | 0.00001  | 45.53     | 39.44     |
| Group18  | 2               | 0.00001  | 12.64     | 27.06     |
| Group19  | 0               | 0.00001  | 53.61     | 20.89     |
| Group20  | -2              | 0.00001  | 31.9      | 14.9      |
| over all |                 |          | 68.209259 | 84.580841 |

### Table A.2b Use sigmoid kernel

# Group 1-22

# 1. Coding-gene, at the distance of 100bp

| Threshold | reference | j     | TP  | HitTP | FP   | Se      | PPV     |
|-----------|-----------|-------|-----|-------|------|---------|---------|
| 0         | 201       | 27702 | 186 | 664   | 6062 | 92.5373 | 2.97695 |
| 0.5       | 201       | 26151 | 180 | 609   | 5864 | 89.5522 | 2.97816 |
| 1         | 201       | 21691 | 171 | 509   | 4874 | 85.0746 | 3.3895  |
| 1.5       | 201       | 15876 | 140 | 373   | 3582 | 69.6517 | 3.76142 |
| 2         | 201       | 12244 | 118 | 302   | 2830 | 58.7065 | 4.00271 |
| 2.5       | 201       | 10657 | 104 | 263   | 2541 | 51.7413 | 3.93195 |
| 3         | 201       | 10071 | 99  | 251   | 2433 | 49.2537 | 3.90995 |
| 3.5       | 201       | 9816  | 97  | 243   | 2383 | 48.2587 | 3.91129 |
| 4         | 201       | 9720  | 97  | 242   | 2367 | 48.2587 | 3.93669 |
| 4.5       | 201       | 9702  | 97  | 242   | 2366 | 48.2587 | 3.93829 |
| 5         | 201       | 9685  | 97  | 242   | 2366 | 48.2587 | 3.93829 |
| 5.5       | 201       | 9671  | 97  | 242   | 2364 | 48.2587 | 3.94149 |
| 6         | 201       | 9669  | 97  | 242   | 2364 | 48.2587 | 3.94149 |
| 6.5       | 201       | 9670  | 97  | 242   | 2362 | 48.2587 | 3.94469 |
| 7         | 201       | 9667  | 97  | 242   | 2359 | 48.2587 | 3.94951 |
| 7.5       | 201       | 9657  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 8         | 201       | 9655  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 8.5       | 201       | 9655  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 9         | 201       | 9654  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 9.5       | 201       | 9654  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 10        | 201       | 9654  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 10.5      | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 11        | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 11.5      | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 12        | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 12.5      | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 13        | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 13.5      | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 14        | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 14.5      | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 15        | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 15.5      | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 16        | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 16.5      | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 17        | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 17.5      | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 18        | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 18.5      | 201       | 9653  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 19        | 201       | 9652  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 19.5      | 201       | 9652  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 20        | 201       | 9652  | 97  | 242   | 2358 | 48.2587 | 3.95112 |
| 20.5      | 201       | 9651  | 97  | 242   | 2357 | 48.2587 | 3.95273 |
| 21        | 201       | 9651  | 97  | 242   | 2357 | 48.2587 | 3.95273 |
| 21.5      | 201       | 9651  | 97  | 242   | 2357 | 48.2587 | 3.95273 |
| 22        | 201       | 9651  | 97  | 242   | 2357 | 48.2587 | 3.95273 |
| 22.5      | 201       | 9651  | 97  | 242   | 2357 | 48.2587 | 3.95273 |
| 23        | 201       | 9651  | 97  | 242   | 2357 | 48.2587 | 3.95273 |
| 23.5      | 201       | 9650  | 97  | 242   | 2356 | 48.2587 | 3.95434 |

| 24   | 201 | 9650 | 07 | 242 | 2356 | 18 2587 | 3 05/3/ |
|------|-----|------|----|-----|------|---------|---------|
| 24 5 | 201 | 9649 | 97 | 242 | 2350 | 48 2587 | 3 95273 |
| 24.5 | 201 | 9648 | 97 | 242 | 2357 | 48.2587 | 3 95273 |
| 25 5 | 201 | 9647 | 97 | 242 | 2357 | 48.2587 | 3 95273 |
| 23.5 | 201 | 9646 | 97 | 242 | 2357 | 48 2587 | 3 95273 |
| 26.5 | 201 | 9648 | 97 | 242 | 2358 | 48 2587 | 3 95112 |
| 20.3 | 201 | 9644 | 97 | 242 | 2356 | 48 2587 | 3 95434 |
| 27.5 | 201 | 9637 | 97 | 242 | 2354 | 48 2587 | 3 95757 |
| 27.5 | 201 | 9633 | 97 | 242 | 2353 | 48 2587 | 3 95918 |
| 28.5 | 201 | 9628 | 97 | 241 | 2352 | 48 2587 | 3 9608  |
| 29   | 201 | 9625 | 97 | 241 | 2353 | 48 2587 | 3 95918 |
| 29.5 | 201 | 9620 | 97 | 241 | 2352 | 48 2587 | 3 9608  |
| 30   | 201 | 9605 | 97 | 243 | 2348 | 48.2587 | 3.96728 |
| 30.5 | 201 | 9591 | 97 | 242 | 2351 | 48.2587 | 3.96242 |
| 31   | 201 | 9571 | 97 | 241 | 2351 | 48.2587 | 3.96242 |
| 31.5 | 201 | 9557 | 97 | 239 | 2339 | 48.2587 | 3.98194 |
| 32   | 201 | 9523 | 96 | 237 | 2332 | 47.7612 | 3.95387 |
| 32.5 | 201 | 9494 | 96 | 235 | 2333 | 47.7612 | 3.95224 |
| 33   | 201 | 9460 | 96 | 232 | 2332 | 47.7612 | 3.95387 |
| 33.5 | 201 | 9376 | 96 | 230 | 2307 | 47.7612 | 3.99501 |
| 34   | 201 | 9263 | 96 | 232 | 2289 | 47.7612 | 4.02516 |
| 34.5 | 201 | 9110 | 96 | 228 | 2246 | 47.7612 | 4.09906 |
| 35   | 201 | 8889 | 95 | 225 | 2197 | 47.2637 | 4.14485 |
| 35.5 | 201 | 8642 | 94 | 220 | 2145 | 46.7662 | 4.1983  |
| 36   | 201 | 8337 | 89 | 205 | 2043 | 44.2786 | 4.17448 |
| 36.5 | 201 | 7917 | 86 | 188 | 1930 | 42.7861 | 4.26587 |
| 37   | 201 | 7399 | 84 | 181 | 1788 | 41.791  | 4.48718 |
| 37.5 | 201 | 6810 | 78 | 168 | 1631 | 38.806  | 4.56407 |
| 38   | 201 | 6097 | 73 | 154 | 1459 | 36.3184 | 4.76501 |
| 38.5 | 201 | 5368 | 66 | 130 | 1286 | 32.8358 | 4.88166 |
| 39   | 201 | 4602 | 56 | 104 | 1096 | 27.8607 | 4.86111 |
| 39.5 | 201 | 3868 | 50 | 87  | 912  | 24.8756 | 5.19751 |
| 40   | 201 | 3204 | 41 | 73  | 739  | 20.398  | 5.25641 |
| 40.5 | 201 | 2608 | 37 | 64  | 597  | 18.408  | 5.83596 |
| 41   | 201 | 2106 | 29 | 51  | 468  | 14.4279 | 5.83501 |
| 41.5 | 201 | 1641 | 24 | 40  | 361  | 11.9403 | 6.23377 |
| 42   | 201 | 1285 | 20 | 33  | 280  | 9.95025 | 6.66667 |
| 42.5 | 201 | 994  | 16 | 28  | 220  | 7.9602  | 6.77966 |
| 43   | 201 | 727  | 13 | 23  | 162  | 6.46766 | 7.42857 |
| 43.5 | 201 | 551  | 11 | 19  | 128  | 5.47264 | 7.91367 |
| 44   | 201 | 429  | 11 | 18  | 101  | 5.47264 | 9.82143 |
| 44.5 | 201 | 327  | 10 | 17  | 67   | 4.97512 | 12.987  |
| 45   | 201 | 256  | 8  | 15  | 48   | 3.9801  | 14.2857 |
| 45.5 | 201 | 187  | 5  | 11  | 32   | 2.48756 | 13.5135 |
| 46   | 201 | 144  | 5  | 9   | 27   | 2.48756 | 15.625  |

Table A.3 prediction result of "Coding-gene" for Group 1-22

# 2. Non-coding gene, at the distance of 600bp

| Threshold | reference | i     | TP | HitTP | FP | Se      | PPV     |
|-----------|-----------|-------|----|-------|----|---------|---------|
| 0         | 14        | 8175  | 8  | 11    | 10 | 57.1429 | 44.4444 |
| 0.5       | 14        | 10075 | 10 | 17    | 5  | 71.4286 | 66.6667 |
| 1         | 14        | 9939  | 8  | 12    | 5  | 57.1429 | 61.5385 |
| 1.5       | 14        | 8464  | 7  | 9     | 3  | 50      | 70      |
| 2         | 14        | 7106  | 6  | 7     | 3  | 42.8571 | 66.6667 |
| 2.5       | 14        | 6443  | 3  | 4     | 3  | 21.4286 | 50      |
| 3         | 14        | 6200  | 3  | 4     | 3  | 21.4286 | 50      |

| 2.5  | 14 | 6116 | 2 | 1 | 2 | 21 4286 | 50 |
|------|----|------|---|---|---|---------|----|
| 3.3  | 14 | (050 | 3 | 4 | 3 | 21.4200 | 50 |
| 4    | 14 | 6058 | 3 | 4 | 3 | 21.4280 | 50 |
| 4.5  | 14 | 6052 | 3 | 4 | 3 | 21.4286 | 50 |
| 5    | 14 | 6039 | 3 | 4 | 3 | 21.4286 | 50 |
| 5.5  | 14 | 6031 | 3 | 4 | 3 | 21.4286 | 50 |
| 6    | 14 | 6030 | 3 | 4 | 3 | 21.4286 | 50 |
| 6.5  | 14 | 6027 | 3 | 4 | 3 | 21 4286 | 50 |
| 7    | 14 | 6026 | 3 | 4 | 3 | 21.4286 | 50 |
| 7.5  | 14 | 6020 | 2 | 1 | 2 | 21.1200 | 50 |
| 1.3  | 14 | 6010 | 3 | 4 | 3 | 21.4200 | 50 |
| 8    | 14 | 6019 | 3 | 4 | 3 | 21.4280 | 50 |
| 8.5  | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 9    | 14 | 6018 | 3 | 4 | 3 | 21.4286 | 50 |
| 9.5  | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 10   | 14 | 6020 | 3 | 4 | 3 | 21.4286 | 50 |
| 10.5 | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 11   | 14 | 6019 | 3 | 4 | 3 | 21 4286 | 50 |
| 11.5 | 14 | 6019 | 3 | 1 | 3 | 21.4286 | 50 |
| 11.5 | 14 | 6010 | 2 | 4 | 2 | 21.4200 | 50 |
| 12   | 14 | 6019 | 3 | 4 | 3 | 21.4280 | 50 |
| 12.5 | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 13   | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 13.5 | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 14   | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 14.5 | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 15   | 14 | 6019 | 3 | 4 | 3 | 21 4286 | 50 |
| 15.5 | 14 | 6019 | 3 | 1 | 3 | 21.1286 | 50 |
| 15.5 | 14 | 6010 | 2 | 4 | 2 | 21.4200 | 50 |
| 10   | 14 | 6019 | 3 | 4 | 3 | 21.4280 | 50 |
| 16.5 | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 17   | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 17.5 | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 18   | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 18.5 | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 19   | 14 | 6018 | 3 | 4 | 3 | 21.4286 | 50 |
| 19.5 | 14 | 6018 | 3 | 4 | 3 | 21.4286 | 50 |
| 20   | 14 | 6010 | 3 | 1 | 3 | 21.1200 | 50 |
| 20   | 14 | 6019 | 3 | 4 | 2 | 21.4280 | 50 |
| 20.5 | 14 | 6019 | 3 | 4 | 3 | 21.4280 | 50 |
| 21   | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 21.5 | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 22   | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 22.5 | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 23   | 14 | 6019 | 3 | 4 | 3 | 21.4286 | 50 |
| 23.5 | 14 | 6020 | 3 | 4 | 3 | 21 4286 | 50 |
| 24   | 14 | 6020 | 3 | 4 | 3 | 21.4286 | 50 |
| 24 5 | 14 | 6010 | 2 |   | 2 | 21.4200 | 50 |
| 24.3 | 14 | (019 | 3 | 4 | 3 | 21.4200 | 50 |
| 25   | 14 | 6018 | 3 | 4 | 3 | 21.4280 | 50 |
| 25.5 | 14 | 6017 | 3 | 4 | 3 | 21.4286 | 50 |
| 26   | 14 | 6017 | 3 | 4 | 3 | 21.4286 | 50 |
| 26.5 | 14 | 6017 | 3 | 4 | 3 | 21.4286 | 50 |
| 27   | 14 | 6017 | 3 | 4 | 3 | 21.4286 | 50 |
| 27.5 | 14 | 6015 | 3 | 4 | 3 | 21.4286 | 50 |
| 28   | 14 | 6011 | 3 | 4 | 3 | 21 4286 | 50 |
| 28.5 | 14 | 6009 | 3 | 4 | 3 | 21.4286 | 50 |
| 20.5 | 14 | 6006 | 3 | 1 | 3 | 21.1200 | 50 |
| 20.5 | 14 | 6005 | 2 | 4 | 2 | 21.4200 | 50 |
| 29.3 | 14 | 5000 | 3 | 4 | 3 | 21.4200 | 50 |
| 30   | 14 | 5996 | 3 | 4 | 3 | 21.4280 | 50 |
| 30.5 | 14 | 5988 | 3 | 4 | 3 | 21.4286 | 50 |
| 31   | 14 | 5979 | 3 | 4 | 3 | 21.4286 | 50 |
| 31.5 | 14 | 5967 | 3 | 4 | 3 | 21.4286 | 50 |
| 32   | 14 | 5946 | 3 | 4 | 3 | 21.4286 | 50 |
| 32.5 | 14 | 5932 | 3 | 4 | 3 | 21.4286 | 50 |
| 33   | 14 | 5911 | 2 | 3 | 3 | 14 2857 | 40 |
| 22.5 | 1/ | 5886 | 2 | 2 | 3 | 14 2857 | 40 |
| 33.3 | 14 | 5050 | 2 | 2 | 2 | 14 2057 | 40 |
| 54   | 14 | 3833 | 2 | 3 | 5 | 14.203/ | 40 |

| 34.5 | 14 | 5800 | 2 | 3 | 3 | 14.2857 | 40        |
|------|----|------|---|---|---|---------|-----------|
| 35   | 14 | 5682 | 2 | 3 | 3 | 14.2857 | 40        |
| 35.5 | 14 | 5557 | 2 | 3 | 3 | 14.2857 | 40        |
| 36   | 14 | 5391 | 2 | 3 | 3 | 14.2857 | 40        |
| 36.5 | 14 | 5198 | 2 | 4 | 3 | 14.2857 | 40        |
| 37   | 14 | 4910 | 2 | 4 | 2 | 14.2857 | 50        |
| 37.5 | 14 | 4580 | 2 | 4 | 2 | 14.2857 | 50        |
| 38   | 14 | 4204 | 2 | 4 | 2 | 14.2857 | 50        |
| 38.5 | 14 | 3789 | 2 | 4 | 1 | 14.2857 | 66.6667   |
| 39   | 14 | 3324 | 2 | 4 | 1 | 14.2857 | 66.6667   |
| 39.5 | 14 | 2836 | 2 | 4 | 0 | 14.2857 | 100       |
| 40   | 14 | 2368 | 2 | 2 | 0 | 14.2857 | 100       |
| 40.5 | 14 | 1999 | 2 | 2 | 0 | 14.2857 | 100       |
| 41   | 14 | 1636 | 2 | 2 | 0 | 14.2857 | 100       |
| 41.5 | 14 | 1294 | 2 | 2 | 0 | 14.2857 | 100       |
| 42   | 14 | 1033 | 0 | 0 | 0 | 0       | -1.#IND00 |
| 42.5 | 14 | 809  | 0 | 0 | 0 | 0       | -1.#IND00 |
| 43   | 14 | 609  | 0 | 0 | 0 | 0       | -1.#IND00 |
| 43.5 | 14 | 457  | 0 | 0 | 0 | 0       | -1.#IND00 |
| 44   | 14 | 364  | 0 | 0 | 0 | 0       | -1.#IND00 |
| 44.5 | 14 | 276  | 0 | 0 | 0 | 0       | -1.#IND00 |
| 45   | 14 | 210  | 0 | 0 | 0 | 0       | -1.#IND00 |
| 45.5 | 14 | 154  | 0 | 0 | 0 | 0       | -1.#IND00 |
| 46   | 14 | 120  | 0 | 0 | 0 | 0       | -1.#IND00 |

### Table A.4 prediction result of "Non-coding-gene" for Group 1-22

# 3. Pseudo gene , at the distance of 1000bp

| Threshold | reference | i    | TP | HitTP | FP | Se      | PPV     |
|-----------|-----------|------|----|-------|----|---------|---------|
| 0         | 122       | 4850 | 52 | 81    | 29 | 42.623  | 64.1975 |
| 0.5       | 122       | 6982 | 70 | 99    | 23 | 57.377  | 75.2688 |
| 1         | 122       | 7451 | 63 | 82    | 32 | 51.6393 | 66.3158 |
| 1.5       | 122       | 6679 | 55 | 65    | 39 | 45.082  | 58.5106 |
| 2         | 122       | 5720 | 42 | 54    | 33 | 34.4262 | 56      |
| 2.5       | 122       | 5230 | 41 | 53    | 33 | 33.6066 | 55.4054 |
| 3         | 122       | 5047 | 35 | 48    | 30 | 28.6885 | 53.8462 |
| 3.5       | 122       | 4982 | 35 | 47    | 30 | 28.6885 | 53.8462 |
| 4         | 122       | 4947 | 35 | 47    | 29 | 28.6885 | 54.6875 |
| 4.5       | 122       | 4941 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 5         | 122       | 4933 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 5.5       | 122       | 4929 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 6         | 122       | 4926 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 6.5       | 122       | 4924 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 7         | 122       | 4926 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 7.5       | 122       | 4922 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 8         | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 8.5       | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 9         | 122       | 4919 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 9.5       | 122       | 4919 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 10        | 122       | 4919 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 10.5      | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 11        | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 11.5      | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 12        | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 12.5      | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 13        | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 13.5      | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 14        | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 14.5      | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 15        | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |
| 15.5      | 122       | 4920 | 34 | 46    | 29 | 27.8689 | 53.9683 |

| 1.(         | 100 | 4020  | 24             | 16      | 20  | 27.0(00         | 52.0(02         |
|-------------|-----|-------|----------------|---------|-----|-----------------|-----------------|
| 16          | 122 | 4920  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 16.5        | 122 | 4920  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 17          | 122 | 4020  | 24             | 16      | 20  | 27.8680         | 52 0682         |
| 1/          | 122 | 4920  | 54             | 40      | 29  | 27.0009         | 33.9083         |
| 17.5        | 122 | 4920  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 18          | 122 | 4920  | 34             | 46      | 29  | 27 8689         | 53 9683         |
| 10.5        | 122 | 4020  | 24             | 16      | 20  | 27.0000         | 52 0692         |
| 16.5        | 122 | 4920  | 54             | 40      | 29  | 27.0009         | 33.9083         |
| 19          | 122 | 4919  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 19.5        | 122 | 4920  | 34             | 46      | 29  | 27 8689         | 53 9683         |
| 20          | 122 | 4021  | 24             | 10      | 20  | 27.0000         | 52.0(02         |
| 20          | 122 | 4921  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 20.5        | 122 | 4921  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 21          | 122 | /1021 | 3/             | 46      | 20  | 27 8680         | 53 9683         |
| 21          | 122 | 4721  | J <del>4</del> | +0      | 2)  | 27.000)         | 53.7005         |
| 21.5        | 122 | 4921  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 22          | 122 | 4921  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 22.5        | 122 | 4021  | 24             | 16      | 20  | 27.8680         | 52 0682         |
| 22.3        | 122 | 4921  | 34             | 40      | 29  | 27.0009         | 33.9083         |
| 23          | 122 | 4921  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 23.5        | 122 | 4921  | 34             | 46      | 29  | 27 8689         | 53 9683         |
| 23.3        | 122 | 4021  | 24             | 16      | 20  | 27.0009         | 52.0692         |
| 24          | 122 | 4921  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 24.5        | 122 | 4922  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 25          | 122 | /021  | 2/             | 16      | 20  | 27 8680         | 53 0682         |
| 23          | 122 | 4721  | 34             | 40      | 29  | 27.0009         | 53.9003         |
| 25.5        | 122 | 4920  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 26          | 122 | 4920  | 34             | 46      | 29  | 27.8689         | 53.9683         |
| 26.5        | 122 | 4020  | 21             | 16      | 20  | 27 9690         | 53 0602         |
| 20.3        | 122 | 4920  | 54             | 40      | 29  | 27.8089         | 33.9083         |
| 27          | 122 | 4919  | 34             | 46      | 29  | 27.8689         | <u>53</u> .9683 |
| 27.5        | 122 | 4918  | 34             | 46      | 29  | 27 8689         | 53 9683         |
| 27.5        | 122 | 4017  | 24             | 47      | 2)  | 27.0007         | 54.0007         |
| 28          | 122 | 4916  | 34             | 46      | 28  | 27.8689         | 54.838/         |
| 28.5        | 122 | 4914  | 34             | 46      | 28  | 27.8689         | 54.8387         |
| 29          | 122 | 4914  | 34             | 46      | 28  | 27 8689         | 54 8387         |
| 2)          | 122 | 4015  | 25             | 40      | 20  | 27.0007         | 54.0507         |
| 29.5        | 122 | 4915  |                | 47      | 28  | 28.6885         | 55.5556         |
| 30          | 122 | 4909  | 36             | 48      | 28  | 29.5082         | 56.25           |
| 20.5        | 122 | 4000  | 25             | 17      | 20  | 20 6005         | 55 5556         |
| 30.3        | 122 | 4900  | 33             | 4/      | 20  | 20.0003         | 55.5550         |
| 31          | 122 | 4897  | 37             | 49      | 28  | 30.3279         | 56.9231         |
| 31.5        | 122 | 4886  | 35             | 47      | 29  | 28 6885         | 54 6875         |
| 22          | 122 | 1972  | 25             | 19      | 20  | 20 6005         | 54 6975         |
| 32          | 122 | 46/5  | 33             | 40      | 29  | 20.0003         | 34.0075         |
| 32.5        | 122 | 4865  | 35             | 47      | 29  | 28.6885         | 54.6875         |
| 33          | 122 | 4846  | 35             | 47      | 2.7 | 28 6885         | 56 4516         |
| 22.5        | 122 | 4924  | 25             | 10      | 29  | 20.0000         | 55 5556         |
| 33.3        | 122 | 4824  | 30             | 48      | 28  | 28.6885         | 33.3336         |
| 34          | 122 | 4819  | 35             | 47      | 26  | 28.6885         | 57.377          |
| 34.5        | 122 | /781  | 3/1            | 46      | 27  | 27 8680         | 55 7377         |
| 34.3        | 122 | 4701  | J <del>4</del> | 40      | 27  | 27.000)         | 55.7577         |
|             | 122 | 4733  | 34             | 47      | 27  | 27.8689         | 55.7377         |
| 35.5        | 122 | 4658  | 35             | 46      | 26  | 28.6885         | 57.377          |
| 36          | 122 | 15/1  | 2/             | 15      | 27  | 27 8680         | 55 7377         |
| 30          | 122 | 4341  | 34             | 43      | 21  | 21.0009         | 55.1511         |
| 36.5        | 122 | 4408  | 35             | 46      | 26  | 28.6885         | 57.377          |
| 37          | 122 | 4213  | 34             | 44      | 24  | 27,8689         | 58.6207         |
| 27 5        | 122 | 4006  | 20             | 40      | 22  | 26 2205         | 50 2502         |
| 37.3        | 122 | 4006  | 32             | 40      | 22  | 20.2293         | 39.2393         |
| 38          | 122 | 3708  | 31             | 38      | 22  | 25.4098         | <u>58.4906</u>  |
| 38 5        | 122 | 3382  | 30             | 36      | 16  | 24 5902         | 65 2174         |
| 20          | 100 | 2076  | 27             | 20      | 15  | 21.3702         | 64 2057         |
|             | 122 | 2976  | 27             | 32      | 15  | 22.1311         | 04.285/         |
| 39.5        | 122 | 2572  | 23             | 28      | 14  | 18.8525         | 62.1622         |
| 40          | 122 | 2160  | 17             | 22      | 11  | 13 9344         | 60 7143         |
| 40.5        | 122 | 10.47 | 1 /            | 17      | 11  | 11 4774         | 50.7175         |
| 40.5        | 122 | 1847  | 14             | 17      | 11  | 11.4754         | 56              |
| 41          | 122 | 1520  | 13             | 15      | 9   | 10.6557         | 59.0909         |
| /11.5       | 122 | 1222  | 10             | 12      | Q   | 8 10672         | 55 5556         |
| 41.3        | 122 | 1222  | 10             | 12      | 0   | 4.01002         | 55.5550         |
| 42          | 122 | 983   | 6              | 7       | 5   | 4.91803         | 54.5455         |
| 42.5        | 122 | 777   | 5              | 6       | 4   | 4.09836         | 55.5556         |
| 12          | 122 | 502   | 5              | 6       | 2   | 1 00026         | 67 5            |
| 43          | 122 | 393   | 3              | 0       | 3   | 4.09030         | 02.3            |
| 43.5        | 122 | 444   | 3              | 3       | 3   | <u>2.45</u> 902 | 50              |
| 44          | 122 | 353   | 3              | 3       | 3   | 2,45902         | 50              |
| 44.5        | 100 | 269   | 2              | 2       | 2   | 2.15702         | 50              |
| 44.5        | 122 | 208   | 3              | 3       | 3   | 2.43902         | 50              |
| 45          | 122 | 204   | 3              | 3       | 3   | 2.45902         | 50              |
| 45.5        | 122 | 140   | 2              | 2       | 3   | 1 63934         | 40              |
| <b>TJ.J</b> | 122 | 177   | 1              | <u></u> |     | 0.010/5         |                 |
| 46          | 122 | 116   |                | 1       | 3   | 0.81967         | 25              |

### Table A.5 Prediction result of "Pseudo gene" for Group 1-22

# 4. Partial gene, at the distance of 1500bp

| Threshold | reference | i    | TP | HitTP | FP  | Se      | PPV     |
|-----------|-----------|------|----|-------|-----|---------|---------|
| 0         | 78        | 2538 | 17 | 24    | 85  | 21.7949 | 16.6667 |
| 0.5       | 78        | 4440 | 39 | 48    | 102 | 50      | 27.6596 |
| 1         | 78        | 5211 | 51 | 58    | 98  | 65.3846 | 34.2282 |
| 15        | 78        | 4956 | 42 | 48    | 98  | 53 8462 | 30      |
| 2         | 78        | 4293 | 38 | 41    | 86  | 48 7179 | 30 6452 |
| 2.5       | 78        | 3882 | 29 | 31    | 77  | 37 1795 | 27 3585 |
| 3         | 78        | 3731 | 28 | 30    | 79  | 35 8974 | 26 1682 |
| 3 5       | 78        | 3673 | 27 | 29    | 71  | 34 6154 | 27 551  |
| 4         | 78        | 3638 | 26 | 28    | 73  | 33 3333 | 26 2626 |
| 4 5       | 78        | 3633 | 26 | 28    | 72  | 33 3333 | 26.5306 |
| 5         | 78        | 3627 | 26 | 28    | 72  | 33 3333 | 26.5306 |
| 55        | 78        | 3627 | 26 | 28    | 72  | 33 3333 | 26.5306 |
| 5.5       | 78        | 3624 | 26 | 28    | 72  | 33 3333 | 26.5306 |
| 65        | 78        | 3624 | 26 | 28    | 72  | 33 3333 | 26.2526 |
| 7         | 78        | 3624 | 26 | 28    | 73  | 33 3333 | 26.2626 |
| 75        | 78        | 3623 | 20 | 20    | 73  | 33 3333 | 26.2626 |
| 7.5       | 78        | 3621 | 20 | 28    | 73  | 22 2222 | 26.2020 |
| 85        | 78        | 3621 | 20 | 28    | 73  | 22 2222 | 26.2020 |
| 0.3       | 70        | 3620 | 20 | 28    | 73  | 22 2222 | 26.2020 |
| 9         | 78        | 3620 | 20 | 28    | 73  | 33.3333 | 26.2020 |
| 9.3       | 78        | 3620 | 20 | 28    | 73  | 22 2222 | 26.2626 |
| 10 5      | 70        | 3620 | 20 | 28    | 73  | 22 2222 | 26.2020 |
| 10.3      | 70        | 3620 | 20 | 28    | 73  | 22 2222 | 26.2020 |
| 11 5      | 70        | 3620 | 20 | 20    | 73  | 22,2222 | 26.2020 |
| 11.3      | 70        | 3620 | 20 | 28    | 73  | 22,2222 | 26.2020 |
| 12        | 70        | 3620 | 20 | 28    | 73  | 22,2222 | 26.2020 |
| 12.5      | /8        | 3620 | 20 | 28    | /3  | 22.2222 | 20.2020 |
| 13        | /8        | 3620 | 20 | 28    | /3  | 33.3333 | 20.2020 |
| 13.5      | /8        | 3620 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 14        | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 14.5      | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 15        | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 15.5      | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 16        | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 16.5      | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 17.5      | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 1/.5      | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 18        | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 18.5      | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 19        | 78        | 3620 | 26 | 28    | 73  | 55.5555 | 26.2626 |
| 19.5      | /8        | 3620 | 26 | 28    | /3  | 33.3333 | 20.2626 |
| 20        | /8        | 3620 | 26 | 28    | /3  | 33.3333 | 20.2626 |
| 20.5      | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 20.2626 |
| 21        | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 20.2626 |
| 21.5      | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 22        | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 26.2626 |
| 22.5      | 78        | 3621 | 26 | 28    | 73  | 33.3333 | 26.2626 |
| 23        | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 20.2626 |
| 23.5      | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 20.2626 |
| 24        | /8        | 3621 | 26 | 28    | /3  | 33.3333 | 20.2626 |
| 24.5      | 78        | 3622 | 26 | 28    | 74  | 55.5555 | 26      |
| 25        | 78        | 3623 | 26 | 28    | 74  | 33.3333 | 26      |
| 25.5      | 78        | 3623 | 26 | 28    | 73  | 33.3333 | 26.2626 |
| 26        | 78        | 3623 | 26 | 28    | 73  | 55.5555 | 26.2626 |
| 26.5      | 78        | 3622 | 26 | 28    | 73  | 55.5555 | 26.2626 |
| 27        | 78        | 3621 | 26 | 28    | 73  | 33.3333 | 26.2626 |
| 27.5      | 78        | 3619 | 26 | 28    | 73  | 33.3333 | 26.2626 |

| 20   | 70 | 2(10 | 24 | 20 | 70 | 22,2222 | 262626  |
|------|----|------|----|----|----|---------|---------|
| 28   | /8 | 3619 | 26 | 28 | 73 | 33.3333 | 26.2626 |
| 28.5 | 78 | 3620 | 27 | 29 | 73 | 34.6154 | 27      |
| 29   | 78 | 3620 | 27 | 29 | 75 | 34.6154 | 26.4706 |
| 29.5 | 78 | 3618 | 26 | 28 | 73 | 33.3333 | 26.2626 |
| 30   | 78 | 3620 | 26 | 28 | 74 | 33.3333 | 26      |
| 30.5 | 78 | 3616 | 26 | 28 | 72 | 33.3333 | 26.5306 |
| 31   | 78 | 3616 | 26 | 28 | 73 | 33.3333 | 26.2626 |
| 31.5 | 78 | 3613 | 26 | 28 | 76 | 33.3333 | 25.4902 |
| 32   | 78 | 3610 | 26 | 28 | 72 | 33.3333 | 26.5306 |
| 32.5 | 78 | 3610 | 26 | 29 | 72 | 33.3333 | 26.5306 |
| 33   | 78 | 3602 | 27 | 31 | 72 | 34.6154 | 27.2727 |
| 33.5 | 78 | 3607 | 28 | 32 | 72 | 35.8974 | 28      |
| 34   | 78 | 3612 | 26 | 29 | 71 | 33.3333 | 26.8041 |
| 34.5 | 78 | 3603 | 28 | 32 | 68 | 35.8974 | 29.1667 |
| 35   | 78 | 3589 | 27 | 32 | 69 | 34.6154 | 28.125  |
| 35.5 | 78 | 3569 | 26 | 29 | 68 | 33.3333 | 27.6596 |
| 36   | 78 | 3539 | 25 | 27 | 71 | 32.0513 | 26.0417 |
| 36.5 | 78 | 3474 | 24 | 25 | 64 | 30.7692 | 27.2727 |
| 37   | 78 | 3385 | 25 | 27 | 60 | 32.0513 | 29.4118 |
| 37.5 | 78 | 3278 | 26 | 27 | 56 | 33.3333 | 31.7073 |
| 38   | 78 | 3099 | 27 | 30 | 50 | 34.6154 | 35.0649 |
| 38.5 | 78 | 2891 | 26 | 27 | 45 | 33.3333 | 36.6197 |
| 39   | 78 | 2607 | 24 | 24 | 40 | 30.7692 | 37.5    |
| 39.5 | 78 | 2296 | 22 | 23 | 35 | 28.2051 | 38.5965 |
| 40   | 78 | 1970 | 16 | 16 | 32 | 20.5128 | 33.3333 |
| 40.5 | 78 | 1709 | 14 | 14 | 30 | 17.9487 | 31.8182 |
| 41   | 78 | 1418 | 13 | 13 | 25 | 16.6667 | 34.2105 |
| 41.5 | 78 | 1157 | 10 | 11 | 20 | 12.8205 | 33.3333 |
| 42   | 78 | 941  | 9  | 9  | 16 | 11.5385 | 36      |
| 42.5 | 78 | 752  | 7  | 7  | 13 | 8.97436 | 35      |
| 43   | 78 | 578  | 7  | 7  | 10 | 8.97436 | 41.1765 |
| 43.5 | 78 | 436  | 6  | 6  | 5  | 7.69231 | 54.5455 |
| 44   | 78 | 347  | 6  | 6  | 5  | 7.69231 | 54.5455 |
| 44.5 | 78 | 265  | 3  | 3  | 4  | 3.84615 | 42.8571 |
| 45   | 78 | 203  | 1  | 1  | 3  | 1.28205 | 25      |
| 45.5 | 78 | 148  | 1  | 1  | 2  | 1.28205 | 33.3333 |
| 46   | 78 | 115  | 0  | 0  | 1  | 0       | 0       |

# 5. IGLV/J, at the distance of 100bp

| Threshold | reference | j     | TP  | HitTP | FP | Se      | PPV |
|-----------|-----------|-------|-----|-------|----|---------|-----|
| 0         | 122       | 27702 | 118 | 469   | 0  | 96.7213 | 100 |
| 0.5       | 122       | 26151 | 116 | 427   | 0  | 95.082  | 100 |
| 1         | 122       | 21691 | 103 | 275   | 0  | 84.4262 | 100 |
| 1.5       | 122       | 15876 | 85  | 206   | 0  | 69.6721 | 100 |
| 2         | 122       | 12244 | 76  | 165   | 0  | 62.2951 | 100 |
| 2.5       | 122       | 10657 | 73  | 151   | 0  | 59.8361 | 100 |
| 3         | 122       | 10071 | 73  | 148   | 0  | 59.8361 | 100 |
| 3.5       | 122       | 9816  | 71  | 144   | 0  | 58.1967 | 100 |
| 4         | 122       | 9720  | 70  | 142   | 0  | 57.377  | 100 |
| 4.5       | 122       | 9702  | 70  | 142   | 0  | 57.377  | 100 |
| 5         | 122       | 9685  | 70  | 142   | 0  | 57.377  | 100 |
| 5.5       | 122       | 9671  | 70  | 142   | 0  | 57.377  | 100 |
| 6         | 122       | 9669  | 70  | 142   | 0  | 57.377  | 100 |
| 6.5       | 122       | 9670  | 70  | 142   | 0  | 57.377  | 100 |
| 7         | 122       | 9667  | 70  | 142   | 0  | 57.377  | 100 |
| 7.5       | 122       | 9657  | 70  | 142   | 0  | 57.377  | 100 |
|           |           |       |     |       |    |         |     |

| 8.5  | 122 | 9655 | 70 | 142 | 0 | 57.377  | 100 |
|------|-----|------|----|-----|---|---------|-----|
| 9    | 122 | 9654 | 70 | 142 | 0 | 57 377  | 100 |
| 95   | 122 | 9654 | 70 | 142 | 0 | 57 377  | 100 |
| 10   | 122 | 9654 | 70 | 142 | 0 | 57 377  | 100 |
| 10 5 | 122 | 0652 | 70 | 142 | 0 | 57.377  | 100 |
| 10.3 | 122 | 9033 | 70 | 142 | 0 | 57.377  | 100 |
| 11.5 | 122 | 9055 | 70 | 142 | 0 | 57.377  | 100 |
| 11.5 | 122 | 9653 | 70 | 142 | 0 | 57.377  | 100 |
| 12   | 122 | 9653 | /0 | 142 | 0 | 57.377  | 100 |
| 12.5 | 122 | 9653 | /0 | 142 | 0 | 57.377  | 100 |
| 13   | 122 | 9653 | 70 | 142 | 0 | 57.377  | 100 |
| 13.5 | 122 | 9653 | 70 | 142 | 0 | 57.377  | 100 |
| 14   | 122 | 9653 | 70 | 142 | 0 | 57.377  | 100 |
| 14.5 | 122 | 9653 | 70 | 142 | 0 | 57.377  | 100 |
| 15   | 122 | 9653 | 70 | 142 | 0 | 57.377  | 100 |
| 15.5 | 122 | 9653 | 70 | 142 | 0 | 57.377  | 100 |
| 16   | 122 | 9653 | 70 | 142 | 0 | 57.377  | 100 |
| 16.5 | 122 | 9653 | 70 | 142 | 0 | 57.377  | 100 |
| 17   | 122 | 9653 | 70 | 142 | 0 | 57 377  | 100 |
| 17.5 | 122 | 9653 | 70 | 142 | 0 | 57 377  | 100 |
| 18   | 122 | 9653 | 70 | 1/2 | 0 | 57 377  | 100 |
| 18.5 | 122 | 9653 | 70 | 142 | 0 | 57 377  | 100 |
| 10.3 | 122 | 0650 | 70 | 142 | 0 | 57.577  | 100 |
| 19   | 122 | 9032 | 70 | 142 | 0 | 51.511  | 100 |
| 19.5 | 122 | 9032 | 70 | 142 | 0 | 57.577  | 100 |
| 20   | 122 | 9652 | 70 | 142 | 0 | 57.377  | 100 |
| 20.5 | 122 | 9651 | 70 | 142 | 0 | 57.377  | 100 |
| 21   | 122 | 9651 | 70 | 142 | 0 | 57.377  | 100 |
| 21.5 | 122 | 9651 | 70 | 142 | 0 | 57.377  | 100 |
| 22   | 122 | 9651 | 70 | 142 | 0 | 57.377  | 100 |
| 22.5 | 122 | 9651 | 70 | 142 | 0 | 57.377  | 100 |
| 23   | 122 | 9651 | 70 | 142 | 0 | 57.377  | 100 |
| 23.5 | 122 | 9650 | 70 | 142 | 0 | 57.377  | 100 |
| 24   | 122 | 9650 | 70 | 142 | 0 | 57.377  | 100 |
| 24.5 | 122 | 9649 | 70 | 142 | 0 | 57.377  | 100 |
| 25   | 122 | 9648 | 70 | 142 | 0 | 57.377  | 100 |
| 25.5 | 122 | 9647 | 70 | 142 | 0 | 57.377  | 100 |
| 26   | 122 | 9646 | 70 | 142 | 0 | 57 377  | 100 |
| 26.5 | 122 | 9648 | 70 | 142 | 0 | 57 377  | 100 |
| 20.3 | 122 | 9644 | 70 | 142 | 0 | 57 377  | 100 |
| 27 5 | 122 | 0627 | 70 | 142 | 0 | 57.377  | 100 |
| 27.3 | 122 | 9037 | 70 | 142 | 0 | 57.377  | 100 |
| 20   | 122 | 9033 | 70 | 142 | 0 | 57.377  | 100 |
| 28.5 | 122 | 9628 | 70 | 142 | 0 | 57.377  | 100 |
| 29   | 122 | 9625 | 70 | 142 | 0 | 57.377  | 100 |
| 29.5 | 122 | 9620 | 70 | 142 | 0 | 57.377  | 100 |
| 30   | 122 | 9605 | /0 | 142 | 0 | 57.377  | 100 |
| 30.5 | 122 | 9591 | 70 | 142 | 0 | 57.377  | 100 |
| 31   | 122 | 9571 | 70 | 142 | 0 | 57.377  | 100 |
| 31.5 | 122 | 9557 | 70 | 142 | 0 | 57.377  | 100 |
| 32   | 122 | 9523 | 70 | 143 | 0 | 57.377  | 100 |
| 32.5 | 122 | 9494 | 70 | 143 | 0 | 57.377  | 100 |
| 33   | 122 | 9460 | 70 | 142 | 0 | 57.377  | 100 |
| 33.5 | 122 | 9376 | 70 | 137 | 0 | 57.377  | 100 |
| 34   | 122 | 9263 | 67 | 131 | 0 | 54.918  | 100 |
| 34.5 | 122 | 9110 | 64 | 124 | 0 | 52.459  | 100 |
| 35   | 122 | 8889 | 64 | 124 | 0 | 52.459  | 100 |
| 35.5 | 122 | 8642 | 64 | 122 | 0 | 52.459  | 100 |
| 36   | 122 | 8337 | 63 | 117 | 0 | 51 6393 | 100 |
| 36.5 | 122 | 7917 | 59 | 111 | 0 | 48 3607 | 100 |
| 30.5 | 122 | 7300 | 56 | 100 | 0 | 45 9016 | 100 |
| 27 5 | 122 | 6810 | 50 | 05  | 0 | 12 622  | 100 |
| 20   | 122 | 6007 | 52 | 93  | 0 | 42.023  | 100 |
| 20 5 | 122 | 5269 | 32 | 03  | 0 | 42.023  | 100 |
| 38.3 | 122 | 3308 | 48 | /4  | 0 | 39.3443 | 100 |
| - 39 | 122 | 4602 | 42 | 6/  | 0 | 54.4262 | 100 |

| 39.5 | 122 | 3868 | 40 | 63 | 0 | 32.7869 | 100 |
|------|-----|------|----|----|---|---------|-----|
| 40   | 122 | 3204 | 36 | 51 | 0 | 29.5082 | 100 |
| 40.5 | 122 | 2608 | 29 | 39 | 0 | 23.7705 | 100 |
| 41   | 122 | 2106 | 25 | 34 | 0 | 20.4918 | 100 |
| 41.5 | 122 | 1641 | 21 | 30 | 0 | 17.2131 | 100 |
| 42   | 122 | 1285 | 17 | 24 | 0 | 13.9344 | 100 |
| 42.5 | 122 | 994  | 13 | 19 | 0 | 10.6557 | 100 |
| 43   | 122 | 727  | 12 | 17 | 0 | 9.83607 | 100 |
| 43.5 | 122 | 551  | 8  | 12 | 0 | 6.55738 | 100 |
| 44   | 122 | 429  | 6  | 10 | 0 | 4.91803 | 100 |
| 44.5 | 122 | 327  | 2  | 4  | 0 | 1.63934 | 100 |
| 45   | 122 | 256  | 2  | 4  | 0 | 1.63934 | 100 |
| 45.5 | 122 | 187  | 2  | 4  | 0 | 1.63934 | 100 |
| 46   | 122 | 144  | 2  | 4  | 0 | 1.63934 | 100 |

#### Table A.7 Prediction result of "IGLV/J" for Group 1-22

6. All the 5 kind of genes, at the distance of 600bp

| Threshold | reference | į     | TP  | HitTP | FP   | Se      | PPV     |
|-----------|-----------|-------|-----|-------|------|---------|---------|
| 0         | 537       | 8175  | 346 | 614   | 2034 | 64.432  | 14.5378 |
| 0.5       | 537       | 10075 | 415 | 676   | 2397 | 77.2812 | 14.7582 |
| 1         | 537       | 9939  | 398 | 593   | 2398 | 74.1155 | 14.2346 |
| 1.5       | 537       | 8464  | 334 | 493   | 2088 | 62.1974 | 13.7903 |
| 2         | 537       | 7106  | 281 | 408   | 1773 | 52.3277 | 13.6806 |
| 2.5       | 537       | 6443  | 252 | 378   | 1629 | 46.9274 | 13.3971 |
| 3         | 537       | 6200  | 242 | 365   | 1583 | 45.0652 | 13.2603 |
| 3.5       | 537       | 6116  | 237 | 360   | 1558 | 44.1341 | 13.2033 |
| 4         | 537       | 6058  | 235 | 358   | 1552 | 43.7616 | 13.1505 |
| 4.5       | 537       | 6052  | 234 | 357   | 1553 | 43.5754 | 13.0946 |
| 5         | 537       | 6039  | 234 | 357   | 1552 | 43.5754 | 13.1019 |
| 5.5       | 537       | 6031  | 234 | 357   | 1551 | 43.5754 | 13.1092 |
| 6         | 537       | 6030  | 234 | 357   | 1552 | 43.5754 | 13.1019 |
| 6.5       | 537       | 6027  | 234 | 357   | 1550 | 43.5754 | 13.1166 |
| 7         | 537       | 6026  | 234 | 357   | 1549 | 43.5754 | 13.1239 |
| 7.5       | 537       | 6021  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 8         | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 8.5       | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 9         | 537       | 6018  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 9.5       | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 10        | 537       | 6020  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 10.5      | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 11        | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 11.5      | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 12        | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 12.5      | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 13        | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 13.5      | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 14        | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 14.5      | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 15        | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 15.5      | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 16        | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 16.5      | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 17        | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 17.5      | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 18        | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 18.5      | 537       | 6019  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 19        | 537       | 6018  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 19.5      | 537       | 6018  | 234 | 357   | 1548 | 43.5754 | 13.1313 |
| 20        | 537       | 6019  | 234 | 358   | 1549 | 43.5754 | 13.1239 |

|      |     |      |     |     |      | 1       |         |
|------|-----|------|-----|-----|------|---------|---------|
| 20.5 | 537 | 6019 | 234 | 357 | 1549 | 43.5754 | 13.1239 |
| 21   | 537 | 6019 | 234 | 357 | 1549 | 43.5754 | 13.1239 |
| 21.5 | 537 | 6019 | 234 | 357 | 1549 | 43.5754 | 13.1239 |
| 22   | 537 | 6019 | 234 | 357 | 1549 | 43.5754 | 13.1239 |
| 22.5 | 537 | 6019 | 234 | 357 | 1549 | 43.5754 | 13.1239 |
| 23   | 537 | 6019 | 234 | 357 | 1549 | 43.5754 | 13.1239 |
| 23.5 | 537 | 6020 | 234 | 357 | 1550 | 43.5754 | 13.1166 |
| 24   | 537 | 6020 | 234 | 357 | 1551 | 43.5754 | 13.1092 |
| 24.5 | 537 | 6019 | 234 | 357 | 1550 | 43.5754 | 13.1166 |
| 25   | 537 | 6018 | 235 | 358 | 1550 | 43.7616 | 13.1653 |
| 25.5 | 537 | 6017 | 234 | 357 | 1552 | 43.5754 | 13.1019 |
| 26   | 537 | 6017 | 234 | 358 | 1552 | 43.5754 | 13,1019 |
| 26.5 | 537 | 6017 | 234 | 357 | 1551 | 43.5754 | 13.1092 |
| 27   | 537 | 6017 | 234 | 357 | 1550 | 43.5754 | 13.1166 |
| 27.5 | 537 | 6015 | 234 | 356 | 1548 | 43.5754 | 13.1313 |
| 28   | 537 | 6011 | 234 | 356 | 1548 | 43.5754 | 13.1313 |
| 28.5 | 537 | 6009 | 234 | 356 | 1547 | 43.5754 | 13.1387 |
| 29   | 537 | 6006 | 234 | 356 | 1545 | 43.5754 | 13.1535 |
| 29.5 | 537 | 6005 | 235 | 358 | 1544 | 43.7616 | 13.2097 |
| 30   | 537 | 5996 | 238 | 361 | 1543 | 44.3203 | 13.3633 |
| 30.5 | 537 | 5988 | 236 | 360 | 1544 | 43.9479 | 13.2584 |
| 31   | 537 | 5979 | 237 | 361 | 1543 | 44.1341 | 13.3146 |
| 31.5 | 537 | 5967 | 236 | 358 | 1546 | 43.9479 | 13.2435 |
| 32   | 537 | 5946 | 237 | 360 | 1533 | 44.1341 | 13.3898 |
| 32.5 | 537 | 5932 | 235 | 358 | 1532 | 43.7616 | 13.2994 |
| 33   | 537 | 5911 | 235 | 358 | 1524 | 43.7616 | 13.3599 |
| 33.5 | 537 | 5886 | 236 | 361 | 1522 | 43.9479 | 13.4243 |
| 34   | 537 | 5853 | 234 | 354 | 1511 | 43.5754 | 13.4097 |
| 34.5 | 537 | 5800 | 230 | 346 | 1497 | 42.8305 | 13.3179 |
| 35   | 537 | 5682 | 224 | 341 | 1471 | 41.7132 | 13.2153 |
| 35.5 | 537 | 5557 | 223 | 335 | 1441 | 41.527  | 13.4014 |
| 36   | 537 | 5391 | 217 | 325 | 1397 | 40.4097 | 13.4449 |
| 36.5 | 537 | 5198 | 207 | 307 | 1354 | 38.5475 | 13.2607 |
| 37   | 537 | 4910 | 203 | 295 | 1267 | 37.8026 | 13.8095 |
| 37.5 | 537 | 4580 | 193 | 274 | 1183 | 35.9404 | 14.0262 |
| 38   | 537 | 4204 | 186 | 257 | 1078 | 34.6369 | 14.7152 |
| 38.5 | 537 | 3789 | 172 | 227 | 978  | 32.0298 | 14.9565 |
| 39   | 537 | 3324 | 152 | 196 | 858  | 28.3054 | 15.0495 |
| 39.5 | 537 | 2836 | 137 | 174 | 728  | 25.5121 | 15.8382 |
| 40   | 537 | 2368 | 112 | 135 | 594  | 20.8566 | 15.864  |
| 40.5 | 537 | 1999 | 95  | 110 | 505  | 17.6909 | 15.8333 |
| 41   | 537 | 1636 | 81  | 93  | 399  | 15.0838 | 16.875  |
| 41.5 | 537 | 1294 | 67  | 76  | 313  | 12.4767 | 17.6316 |
| 42   | 537 | 1033 | 51  | 58  | 248  | 9.49721 | 17.0569 |
| 42.5 | 537 | 809  | 41  | 47  | 198  | 7.63501 | 17.1548 |
| 43   | 537 | 609  | 37  | 41  | 153  | 6.89013 | 19.4737 |
| 43.5 | 537 | 457  | 28  | 32  | 118  | 5.21415 | 19.1781 |
| 44   | 537 | 364  | 26  | 30  | 95   | 4.84171 | 21.4876 |
| 44.5 | 537 | 276  | 18  | 22  | 69   | 3.35196 | 20.6897 |
| 45   | 537 | 210  | 14  | 17  | 49   | 2.60708 | 22.2222 |
| 45.5 | 537 | 154  | 10  | 13  | 35   | 1.8622  | 22.2222 |
| 46   | 537 | 120  | 8   | 10  | 27   | 1.48976 | 22.8571 |

Table A.8 Prediction result of "the 5 kind of genes" for Group 1-22

# Group 1-16

1. Coding Gene, at the distance of 500bp

| Threshold | reference | i    | TP | HitTP | FP   | Se        | PPV      |
|-----------|-----------|------|----|-------|------|-----------|----------|
| 0         | 201       | 3428 | 61 | 91    | 808  | 30.348259 | 7.019563 |
| 0.5       | 201       | 4853 | 81 | 110   | 1117 | 40.298508 | 6.761269 |
| 1         | 201       | 5778 | 99 | 143   | 1351 | 49.253731 | 6.827586 |
| 1.5       | 201       | 6148 | 92 | 144   | 1436 | 45.771145 | 6.020942 |
| 2         | 201       | 6287 | 92 | 146   | 1466 | 45.771145 | 5.905006 |
| 2.5       | 201       | 6323 | 91 | 150   | 1462 | 45.273632 | 5.859626 |
| 3         | 201       | 6360 | 93 | 151   | 1470 | 46.268658 | 5.950096 |
| 3.5       | 201       | 6377 | 93 | 152   | 1474 | 46.268658 | 5.934907 |
| 4         | 201       | 6377 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 4.5       | 201       | 6378 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 5         | 201       | 6380 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 5.5       | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 6         | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 6.5       | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 7         | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 7.5       | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 8         | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 8.5       | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 9         | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 9.5       | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 10        | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 10.5      | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 11        | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 11.5      | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 12        | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 12.5      | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 13        | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 13.5      | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 14        | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 14.5      | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 15        | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 15.5      | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 16        | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 16.5      | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 17        | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 17.5      | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 18        | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 18.5      | 201       | 6381 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 19        | 201       | 6380 | 93 | 152   | 14/5 | 46.268658 | 5.931122 |
| 19.5      | 201       | 6380 | 93 | 152   | 14/5 | 40.208038 | 5.931122 |
| 20 5      | 201       | 6380 | 93 | 152   | 14/3 | 40.208038 | 5.021122 |
| 20.5      | 201       | 6290 | 93 | 152   | 14/3 | 40.200038 | 5.931122 |
| 21 5      | 201       | 6380 | 93 | 152   | 14/5 | 46 268658 | 5 031122 |
| 21.3      | 201       | 6381 | 03 | 152   | 1475 | 46 268658 | 5 931122 |
| 22        | 201       | 6381 | 03 | 152   | 1475 | 46 268658 | 5 931122 |
| 22.3      | 201       | 6381 | 93 | 152   | 1475 | 46 268658 | 5 931122 |
| 23 5      | 201       | 6382 | 93 | 152   | 1476 | 46 268658 | 5 927342 |
| 23.5      | 201       | 6383 | 93 | 152   | 1476 | 46 268658 | 5 927342 |
| 24.5      | 201       | 6382 | 93 | 152   | 1476 | 46 268658 | 5 927342 |
| 21.5      | 201       | 6379 | 93 | 152   | 1476 | 46.268658 | 5.927342 |
| 25.5      | 201       | 6378 | 93 | 152   | 1476 | 46 268658 | 5 927342 |
| 26        | 201       | 6378 | 93 | 152   | 1476 | 46.268658 | 5.927342 |
| 26.5      | 201       | 6378 | 93 | 152   | 1477 | 46.268658 | 5.923567 |
| 27        | 201       | 6377 | 93 | 152   | 1475 | 46.268658 | 5.931122 |
| 27.5      | 201       | 6374 | 93 | 151   | 1474 | 46.268658 | 5.934907 |
| 28        | 201       | 6368 | 93 | 151   | 1473 | 46.268658 | 5.938697 |
| 28.5      | 201       | 6367 | 93 | 151   | 1473 | 46.268658 | 5.938697 |
| 29        | 201       | 6363 | 93 | 151   | 1472 | 46.268658 | 5.942492 |
| 29.5      | 201       | 6361 | 93 | 151   | 1471 | 46.268658 | 5.946291 |
| 30        | 201       | 6351 | 93 | 151   | 1471 | 46.268658 | 5.946291 |

| 30.5 | 201 | 6344 | 93 | 152 | 1471 | 46.268658 | 5.946291  |
|------|-----|------|----|-----|------|-----------|-----------|
| 31   | 201 | 6336 | 93 | 152 | 1473 | 46.268658 | 5.938697  |
| 31.5 | 201 | 6322 | 93 | 150 | 1472 | 46.268658 | 5.942492  |
| 32   | 201 | 6303 | 92 | 148 | 1467 | 45.771145 | 5.901219  |
| 32.5 | 201 | 6287 | 92 | 148 | 1463 | 45.771145 | 5.916399  |
| 33   | 201 | 6267 | 92 | 149 | 1458 | 45.771145 | 5.935484  |
| 33.5 | 201 | 6228 | 92 | 148 | 1451 | 45.771145 | 5.962411  |
| 34   | 201 | 6190 | 92 | 148 | 1442 | 45.771145 | 5.997393  |
| 34.5 | 201 | 6125 | 92 | 145 | 1428 | 45.771145 | 6.052631  |
| 35   | 201 | 6001 | 91 | 142 | 1409 | 45.273632 | 6.066667  |
| 35.5 | 201 | 5878 | 91 | 143 | 1381 | 45.273632 | 6.182065  |
| 36   | 201 | 5683 | 86 | 138 | 1338 | 42.786068 | 6.039326  |
| 36.5 | 201 | 5454 | 83 | 130 | 1291 | 41.293533 | 6.040757  |
| 37   | 201 | 5124 | 83 | 125 | 1210 | 41.293533 | 6.41918   |
| 37.5 | 201 | 4774 | 78 | 114 | 1131 | 38.805969 | 6.451613  |
| 38   | 201 | 4366 | 73 | 106 | 1025 | 36.318409 | 6.648452  |
| 38.5 | 201 | 3916 | 66 | 93  | 939  | 32.835819 | 6.567164  |
| 39   | 201 | 3424 | 56 | 74  | 820  | 27.860697 | 6.392694  |
| 39.5 | 201 | 2913 | 50 | 63  | 695  | 24.875622 | 6.71141   |
| 40   | 201 | 2426 | 41 | 51  | 565  | 20.39801  | 6.765676  |
| 40.5 | 201 | 2043 | 36 | 43  | 471  | 17.910448 | 7.100592  |
| 41   | 201 | 1662 | 29 | 35  | 370  | 14.42786  | 7.26817   |
| 41.5 | 201 | 1317 | 24 | 29  | 291  | 11.940298 | 7.619048  |
| 42   | 201 | 1051 | 20 | 25  | 233  | 9.950249  | 7.905138  |
| 42.5 | 201 | 823  | 16 | 21  | 186  | 7.960199  | 7.920792  |
| 43   | 201 | 619  | 13 | 17  | 141  | 6.467662  | 8.441559  |
| 43.5 | 201 | 466  | 11 | 15  | 110  | 5.472637  | 9.090909  |
| 44   | 201 | 371  | 11 | 15  | 88   | 5.472637  | 11.111111 |
| 44.5 | 201 | 281  | 10 | 14  | 63   | 4.975124  | 13.69863  |
| 45   | 201 | 215  | 8  | 11  | 44   | 3.980099  | 15.384615 |
| 45.5 | 201 | 156  | 5  | 8   | 30   | 2.487562  | 14.285714 |
| 46   | 201 | 122  | 5  | 7   | 23   | 2.487562  | 17.857143 |

| Table A. | 9 Prediction | result of "Coding | genes" for | Group 1-16 | Ś  |
|----------|--------------|-------------------|------------|------------|----|
|          | ,            | restart of cours  | 50.000 101 | 0.000 - 10 | ۰. |

### 2. Non-coding Genes, at the distance of 400bp

| Threshold | reference | i    | TP | HitTP | FP | Se        | PPV |
|-----------|-----------|------|----|-------|----|-----------|-----|
| 0         | 14        | 4254 | 4  | 5     | 1  | 28.571428 | 80  |
| 0.5       | 14        | 5627 | 3  | 9     | 3  | 21.428572 | 50  |
| 1         | 14        | 6503 | 3  | 7     | 3  | 21.428572 | 50  |
| 1.5       | 14        | 6707 | 3  | 7     | 3  | 21.428572 | 50  |
| 2         | 14        | 6776 | 3  | 6     | 3  | 21.428572 | 50  |
| 2.5       | 14        | 6766 | 3  | 7     | 3  | 21.428572 | 50  |
| 3         | 14        | 6786 | 3  | 6     | 3  | 21.428572 | 50  |
| 3.5       | 14        | 6791 | 3  | 6     | 3  | 21.428572 | 50  |
| 4         | 14        | 6786 | 3  | 6     | 3  | 21.428572 | 50  |
| 4.5       | 14        | 6786 | 3  | 6     | 3  | 21.428572 | 50  |
| 5         | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 5.5       | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 6         | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 6.5       | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 7         | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 7.5       | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 8         | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 8.5       | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 9         | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 9.5       | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 10        | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |
| 10.5      | 14        | 6789 | 3  | 6     | 3  | 21.428572 | 50  |

| 11             | 14 | 6780   | 2 | 6 | 2        | 21 428572  | 50        |
|----------------|----|--------|---|---|----------|------------|-----------|
| 11             | 14 | 0/89   | 3 | 0 | 3        | 21.426372  | 30        |
| 11.5           | 14 | 6789   | 3 | 6 | 3        | 21.428572  | 50        |
| 12             | 14 | 6789   | 3 | 6 | 3        | 21.428572  | 50        |
| 12.5           | 14 | 6789   | 3 | 6 | 3        | 21 428572  | 50        |
| 12.3           | 14 | 6780   | 3 | 6 | 3        | 21.120572  | 50        |
| 12.5           | 14 | (700   | 3 | 0 | 3        | 21.420572  | 50        |
| 13.5           | 14 | 6789   | 3 | 6 | 3        | 21.428572  | 50        |
| 14             | 14 | 6789   | 3 | 6 | 3        | 21.428572  | 50        |
| 14.5           | 14 | 6789   | 3 | 6 | 3        | 21.428572  | 50        |
| 15             | 14 | 6789   | 3 | 6 | 3        | 21 / 28572 | 50        |
| 15             | 14 | (70)   | 2 | 0 | 2        | 21.420572  | 50        |
| 15.5           | 14 | 6/89   | 3 | 6 | 3        | 21.428572  | 50        |
| 16             | 14 | 6789   | 3 | 6 | 3        | 21.428572  | 50        |
| 16.5           | 14 | 6789   | 3 | 6 | 3        | 21.428572  | 50        |
| 17             | 14 | 6789   | 3 | 6 | 3        | 21 428572  | 50        |
| 17.5           | 14 | 6780   | 2 | 6 | 2        | 21.120572  | 50        |
| 17.3           | 14 | 0/89   | 3 | 0 | 3        | 21.426372  | 50        |
| 18             | 14 | 6789   | 3 | 6 | 3        | 21.428572  | 50        |
| 18.5           | 14 | 6789   | 3 | 6 | 3        | 21.428572  | 50        |
| 19             | 14 | 6788   | 3 | 6 | 3        | 21.428572  | 50        |
| 10.5           | 14 | 6788   | 3 | 6 | 3        | 21.428572  | 50        |
| 19.5           | 14 | 0788   | 3 | 0 | 3        | 21.420572  | 50        |
| 20             | 14 | 6/88   | 3 | 6 | 3        | 21.428572  | 50        |
| 20.5           | 14 | 6787   | 3 | 6 | 3        | 21.428572  | 50        |
| 21             | 14 | 6787   | 3 | 6 | 3        | 21.428572  | 50        |
| 21.5           | 1/ | 6787   | 3 | 6 | 3        | 21 428572  | 50        |
| 21.3           | 14 | 6700   | 2 | 0 | 2        | 21.720372  | 50        |
|                | 14 | 0/88   | 3 | 0 |          | 21.428572  | 50        |
| 22.5           | 14 | 6788   | 3 | 6 | 3        | 21.428572  | 50        |
| 23             | 14 | 6787   | 3 | 6 | 3        | 21.428572  | 50        |
| 23.5           | 14 | 6787   | 3 | 6 | 3        | 21 428572  | 50        |
| 23.3           | 14 | 6799   | 2 | 6 | 2        | 21.120572  | 50        |
| 24             | 14 | 0700   | 3 | 0 | 3        | 21.420372  | 50        |
| 24.5           | 14 | 6/8/   | 3 | 6 | 3        | 21.428572  | 50        |
| 25             | 14 | 6784   | 3 | 6 | 3        | 21.428572  | 50        |
| 25.5           | 14 | 6783   | 3 | 6 | 3        | 21 428572  | 50        |
| 26             | 14 | 6784   | 3 | 6 | 3        | 21.428572  | 50        |
| 20             | 14 | (704   | 3 | 0 | 3        | 21.420572  | 50        |
| 26.5           | 14 | 6/84   | 3 | 6 | 3        | 21.428572  | 50        |
| 27             | 14 | 6784   | 3 | 6 | 3        | 21.428572  | 50        |
| 27.5           | 14 | 6781   | 3 | 6 | 3        | 21.428572  | 50        |
| 28             | 14 | 6775   | 3 | 6 | 3        | 21 428572  | 50        |
| 20             | 14 | (772   | 2 | 6 | 2        | 21.120572  | 50        |
| 28.5           | 14 | 6//3   | 3 | 0 | 3        | 21.428572  | 50        |
| 29             | 14 | 6769   | 3 | 6 | 3        | 21.428572  | 50        |
| 29.5           | 14 | 6769   | 3 | 6 | 3        | 21.428572  | 50        |
| 30             | 14 | 6762   | 3 | 6 | 3        | 21 428572  | 50        |
| 20.5           | 14 | 6752   | 2 | 6 | 2        | 21.120572  | 50        |
| 30.3           | 14 | 0732   | 3 | 0 | 3        | 21.426372  | 50        |
| 31             | 14 | 6/45   | 3 | 6 | 3        | 21.428572  | 50        |
| 31.5           | 14 | 6726   | 3 | 6 | 3        | 21.428572  | 50        |
| 32             | 14 | 6703   | 3 | 6 | 3        | 21.428572  | 50        |
| 22 5           | 11 | 6693   | 2 | 6 | 2        | 21 / 28572 | 50        |
| 32.3           | 14 | 0005   | 3 | 5 | 2        | 14 205714  | 30        |
| 33             | 14 | 0000   | 2 | 5 | 5        | 14.285/14  | 40        |
| 33.5           | 14 | 6615   | 2 | 5 | 3        | 14.285714  | 40        |
| 34             | 14 | 6570   | 2 | 5 | 3        | 14.285714  | 40        |
| 34 5           | 14 | 6504   | 2 | 5 | 3        | 14 285714  | 40        |
| 25             | 14 | 6267   | 2 | 5 | 2        | 14 285714  | 40        |
| 25.5           | 14 | 0307   | 2 | 5 | 3        | 14.205714  | 40        |
| 35.5           | 14 | 6216   | 2 | 5 | 3        | 14.285/14  | 40        |
| 36             | 14 | 6002   | 2 | 5 | 3        | 14.285714  | 40        |
| 36.5           | 14 | 5751   | 2 | 6 | 3        | 14.285714  | 40        |
| 37             | 1/ | 5392   | 2 | 5 | 2        | 14 285714  | 40        |
| 275            | 14 | 5022   | 2 | 5 | <u> </u> | 14 205714  | 50        |
| 37.3           | 14 | 3022   | 2 | 3 | 2        | 14.203/14  | 50        |
| 38             | 14 | 4553   | 2 | 5 | 2        | 14.285714  | 50        |
| 38.5           | 14 | 4077   | 2 | 5 | 1        | 14.285714  | 66.666664 |
| 39             | 14 | 3569   | 2 | 5 | 1        | 14.285714  | 66.666664 |
| 20.5           | 1/ | 2010   | 2 | 5 | 0        | 1/ 28571/  | 100       |
| 39.3           | 14 | 3019   | 2 | 3 | 0        | 14.205714  | 100       |
| 40             | 14 | 2510   | 2 | 3 | 0        | 14.285714  | 100       |
| 40.5           | 14 | 2107   | 2 | 2 | 0        | 14.285714  | 100       |
| 41             | 14 | 1715   | 2 | 2 | 0        | 14.285714  | 100       |
| 41.5           | 14 | 1347   | 2 | 2 | n n      | 14 285714  | 100       |
| - <b>T</b> 1.J | 14 | 1.577/ | 4 | 4 | 0        | 11.202/14  | 100       |

| 42   | 14 | 1083 | 0 | 0 | 0 | 0 | - |
|------|----|------|---|---|---|---|---|
| 42.5 | 14 | 841  | 0 | 0 | 0 | 0 | - |
| 43   | 14 | 633  | 0 | 0 | 0 | 0 | - |
| 43.5 | 14 | 479  | 0 | 0 | 0 | 0 | - |
| 44   | 14 | 382  | 0 | 0 | 0 | 0 | - |
| 44.5 | 14 | 289  | 0 | 0 | 0 | 0 | - |
| 45   | 14 | 222  | 0 | 0 | 0 | 0 | - |
| 45.5 | 14 | 162  | 0 | 0 | 0 | 0 | - |
| 46   | 14 | 128  | 0 | 0 | 0 | 0 | - |

Table A. 10 Prediction result of "Non- coding genes" for Group 1-16

# 3. Pseudo genes, at the distance of 1000bp

| Threshold | reference | j    | TP | HitTP | FP | Se        | PPV       |
|-----------|-----------|------|----|-------|----|-----------|-----------|
| 0         | 122       | 3428 | 31 | 54    | 31 | 25.409836 | 50        |
| 0.5       | 122       | 4853 | 45 | 68    | 32 | 36.885246 | 58.441559 |
| 1         | 122       | 5778 | 40 | 62    | 34 | 32.786884 | 54.054054 |
| 1.5       | 122       | 6148 | 38 | 59    | 43 | 31.147541 | 46.913582 |
| 2         | 122       | 6287 | 36 | 63    | 45 | 29.508196 | 44.44443  |
| 2.5       | 122       | 6323 | 38 | 63    | 47 | 31.147541 | 44.705883 |
| 3         | 122       | 6360 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 3.5       | 122       | 6377 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 4         | 122       | 6377 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 4.5       | 122       | 6378 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 5         | 122       | 6380 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 5.5       | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 6         | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 6.5       | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 7         | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 7.5       | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 8         | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 8.5       | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 9         | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 9.5       | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 10        | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 10.5      | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 11        | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 11.5      | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 12        | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 12.5      | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 13        | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 13.5      | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 14        | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 14.5      | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 15        | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 15.5      | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 16        | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| 16.5      | 122       | 6381 | 38 | 63    | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |      |    |    |    |           |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|----|----|----|-----------|-----------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17   | 122 | 6381 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.5 | 122 | 6381 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| 18.5 $122$ $6381$ $38$ $63$ $46$ $31.147541$ $45.238094$ $19.5$ $122$ $6380$ $38$ $63$ $46$ $31.147541$ $45.238094$ $20$ $122$ $6380$ $38$ $63$ $46$ $31.147541$ $45.238094$ $20.5$ $122$ $6380$ $38$ $63$ $46$ $31.147541$ $45.238094$ $21.5$ $122$ $6380$ $38$ $63$ $46$ $31.147541$ $45.238094$ $22.5$ $122$ $6381$ $38$ $63$ $46$ $31.147541$ $45.238094$ $22.5$ $122$ $6381$ $38$ $63$ $46$ $31.147541$ $45.238094$ $23.5$ $122$ $6381$ $38$ $63$ $46$ $31.147541$ $45.238094$ $24$ $122$ $6381$ $38$ $63$ $46$ $31.147541$ $45.238094$ $24.5$ $122$ $6382$ $38$ $63$ $46$ $31.147541$ $45.238094$ $24.5$ $122$ $6378$ $38$ $63$ $46$ $31.147541$ $45.238094$ $25.5$ $122$ $6378$ $38$ $63$ $46$ $31.147541$ $45.238094$ $26.5$ $122$ $6378$ $38$ $63$ $46$ $31.147541$ $45.238094$ $27.5$ $122$ $6378$ $38$ $63$ $46$ $31.147541$ $45.238094$ $27.5$ $122$ $6377$ $38$ $63$ $46$ $31.147541$ $45.238094$ $27.5$ $122$ $6367$ $38$ | 18   | 122 | 6381 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| 19 122 6380 38 63 46 31.147541 45.238094   20 122 6380 38 63 46 31.147541 45.238094   20.5 122 6380 38 63 46 31.147541 45.238094   21 122 6380 38 63 46 31.147541 45.238094   22.5 122 6381 38 63 46 31.147541 45.238094   23.5 122 6381 38 63 46 31.147541 45.238094   24.5 122 6382 38 63 46 31.147541 45.238094   25.5 122 6382 38 63 46 31.147541 45.238094   25.5 122 6382 38 63 46 31.147541 45.238094   26.5 122 6378 38 63 46 31.147541 45.238094   27.5 122 6374 </td <td>18.5</td> <td>122</td> <td>6381</td> <td>38</td> <td>63</td> <td>46</td> <td>31.147541</td> <td>45.238094</td>                                                                                                                                                                                                                                                                                                                                       | 18.5 | 122 | 6381 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19   | 122 | 6380 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.5 | 122 | 6380 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20   | 122 | 6380 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.5 | 122 | 6380 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21   | 122 | 6380 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.5 | 122 | 6380 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22   | 122 | 6381 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.5 | 122 | 6381 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23   | 122 | 6381 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.5 | 122 | 6382 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24   | 122 | 6383 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.5 | 122 | 6382 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25   | 122 | 6379 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.5 | 122 | 6378 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26   | 122 | 6378 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.5 | 122 | 6378 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27   | 122 | 6377 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.5 | 122 | 6374 | 38 | 63 | 46 | 31.147541 | 45.238094 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28   | 122 | 6368 | 38 | 63 | 45 | 31.147541 | 45.783131 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.5 | 122 | 6367 | 38 | 63 | 45 | 31.147541 | 45.783131 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29   | 122 | 6363 | 38 | 63 | 45 | 31.147541 | 45.783131 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.5 | 122 | 6361 | 39 | 64 | 45 | 31.967213 | 46.42857  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30   | 122 | 6351 | 39 | 64 | 45 | 31.967213 | 46.42857  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.5 | 122 | 6344 | 39 | 64 | 45 | 31.967213 | 46.42857  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31   | 122 | 6336 | 39 | 64 | 45 | 31.967213 | 46.42857  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31.5 | 122 | 6322 | 39 | 64 | 45 | 31.967213 | 46.42857  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32   | 122 | 6303 | 39 | 64 | 44 | 31.967213 | 46.987953 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.5 | 122 | 6287 | 39 | 64 | 44 | 31.967213 | 46.987953 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33   | 122 | 6267 | 39 | 64 | 42 | 31.967213 | 48.148148 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33.5 | 122 | 6228 | 39 | 65 | 42 | 31.967213 | 48.148148 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34   | 122 | 6190 | 39 | 65 | 41 | 31.967213 | 48.75     |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.5 | 122 | 6125 | 37 | 62 | 41 | 30.327869 | 47.435898 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35   | 122 | 6001 | 37 | 62 | 41 | 30.327869 | 47.435898 |
| 36122568338594131.14754148.10126536.5122545438603531.14754152.05479437122512437593130.32786954.41176637.5122477436553029.50819654.54545638122436632472926.22950752.45901538.5122391631422225.40983658.49056639122342428392122.95081957.14285739.5122291324321919.67213155.81395340122242617231613.93442651.515152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.5 | 122 | 5878 | 38 | 60 | 39 | 31.147541 | 49.350651 |
| 36.5122545438603531.14754152.05479437122512437593130.32786954.41176637.5122477436553029.50819654.54545638122436632472926.22950752.45901538.5122391631422225.40983658.49056639122342428392122.95081957.14285739.5122291324321919.67213155.81395340122242617231613.93442651.515152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36   | 122 | 5683 | 38 | 59 | 41 | 31.147541 | 48.101265 |
| 37122512437593130.32786954.41176637.5122477436553029.50819654.54545638122436632472926.22950752.45901538.5122391631422225.40983658.49056639122342428392122.95081957.14285739.5122291324321919.67213155.81395340122242617231613.93442651.515152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.5 | 122 | 5454 | 38 | 60 | 35 | 31.147541 | 52.054794 |
| 37.5122477436553029.50819654.54545638122436632472926.22950752.45901538.5122391631422225.40983658.49056639122342428392122.95081957.14285739.5122291324321919.67213155.81395340122242617231613.93442651.515152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37   | 122 | 5124 | 37 | 59 | 31 | 30.327869 | 54.411766 |
| 38122436632472926.22950752.45901538.5122391631422225.40983658.49056639122342428392122.95081957.14285739.5122291324321919.67213155.81395340122242617231613.93442651.515152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.5 | 122 | 4774 | 36 | 55 | 30 | 29.508196 | 54.545456 |
| 38.5122391631422225.40983658.49056639122342428392122.95081957.14285739.5122291324321919.67213155.81395340122242617231613.93442651.515152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38   | 122 | 4366 | 32 | 47 | 29 | 26.229507 | 52.459015 |
| 39 122 3424 28 39 21 22.950819 57.142857   39.5 122 2913 24 32 19 19.672131 55.813953   40 122 2426 17 23 16 13.934426 51.515152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.5 | 122 | 3916 | 31 | 42 | 22 | 25.409836 | 58.490566 |
| 39.5 122 2913 24 32 19 19.672131 55.813953   40 122 2426 17 23 16 13.934426 51.515152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39   | 122 | 3424 | 28 | 39 | 21 | 22.950819 | 57.142857 |
| 40 122 2426 17 23 16 13.934426 51.515152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.5 | 122 | 2913 | 24 | 32 | 19 | 19.672131 | 55.813953 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40   | 122 | 2426 | 17 | 23 | 16 | 13.934426 | 51.515152 |

| 40.5 | 122 | 2043 | 14 | 18 | 16 | 11.47541  | 46.666668 |
|------|-----|------|----|----|----|-----------|-----------|
| 41   | 122 | 1662 | 13 | 16 | 13 | 10.655738 | 50        |
| 41.5 | 122 | 1317 | 10 | 12 | 10 | 8.196721  | 50        |
| 42   | 122 | 1051 | 6  | 7  | 6  | 4.918033  | 50        |
| 42.5 | 122 | 823  | 5  | 6  | 5  | 4.098361  | 50        |
| 43   | 122 | 619  | 5  | 6  | 4  | 4.098361  | 55.555557 |
| 43.5 | 122 | 466  | 3  | 3  | 4  | 2.459016  | 42.857143 |
| 44   | 122 | 371  | 3  | 3  | 4  | 2.459016  | 42.857143 |
| 44.5 | 122 | 281  | 3  | 3  | 4  | 2.459016  | 42.857143 |
| 45   | 122 | 215  | 3  | 3  | 4  | 2.459016  | 42.857143 |
| 45.5 | 122 | 156  | 2  | 2  | 4  | 1.639344  | 33.333332 |
| 46   | 122 | 122  | 1  | 1  | 4  | 0.819672  | 20        |

Table A. 11 Prediction result of "Pseudo genes" for Group 1-16

4. partial genes, at the distance of 1500bp

| Threshold | reference | i    | TP | HitTP | FP | Se        | PPV       |
|-----------|-----------|------|----|-------|----|-----------|-----------|
| 0         | 78        | 656  | 2  | 2     | 24 | 2.564103  | 7.692307  |
| 0.5       | 78        | 1519 | 10 | 10    | 37 | 12.820513 | 21.276596 |
| 1         | 78        | 2247 | 16 | 17    | 50 | 20.512821 | 24,242424 |
| 1.5       | 78        | 2840 | 23 | 26    | 63 | 29.487179 | 26.744186 |
| 2         | 78        | 3159 | 24 | 26    | 68 | 30.76923  | 26.086956 |
| 2.5       | 78        | 3293 | 24 | 26    | 66 | 30.76923  | 26.666666 |
| 3         | 78        | 3362 | 24 | 26    | 67 | 30.76923  | 26.373627 |
| 3.5       | 78        | 3387 | 26 | 28    | 67 | 33.333332 | 27.956989 |
| 4         | 78        | 3404 | 25 | 27    | 69 | 32.051281 | 26.595745 |
| 4.5       | 78        | 3411 | 25 | 27    | 69 | 32.051281 | 26.595745 |
| 5         | 78        | 3415 | 25 | 27    | 69 | 32.051281 | 26.595745 |
| 5.5       | 78        | 3417 | 25 | 27    | 69 | 32.051281 | 26.595745 |
| 6         | 78        | 3417 | 25 | 27    | 69 | 32.051281 | 26.595745 |
| 6.5       | 78        | 3421 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 7         | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 7.5       | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 8         | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 8.5       | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 9         | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 9.5       | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 10        | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 10.5      | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 11        | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 11.5      | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 12        | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 12.5      | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 13        | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 13.5      | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 14        | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 14.5      | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 15        | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 15.5      | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 16        | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 16.5      | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 17        | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 17.5      | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 18        | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 18.5      | 78        | 3423 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 19        | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |
| 19.5      | 78        | 3422 | 25 | 27    | 70 | 32.051281 | 26.31579  |

| 20   | 78 | 3422 | 25 | 27  | 70 | 32.051281 | 26.31579  |
|------|----|------|----|-----|----|-----------|-----------|
| 20.5 | 78 | 3423 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 21   | 78 | 3423 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 21.5 | 78 | 3422 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 22   | 78 | 3423 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 22.5 | 78 | 3422 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 23   | 78 | 3424 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 23.5 | 78 | 3423 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 24   | 78 | 3423 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 24.5 | 78 | 3424 | 25 | 27  | 71 | 32.051281 | 26.041666 |
| 25   | 78 | 3427 | 25 | 27  | 71 | 32.051281 | 26.041666 |
| 25.5 | 78 | 3427 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 26   | 78 | 3430 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 26.5 | 78 | 3428 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 27   | 78 | 3426 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 27.5 | 78 | 3426 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 28   | 78 | 3425 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 28.5 | 78 | 3427 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 29   | 78 | 3423 | 25 | 27  | 71 | 32.051281 | 26.041666 |
| 29.5 | 78 | 3427 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 30   | 78 | 3424 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 30.5 | 78 | 3421 | 25 | 27  | 69 | 32.051281 | 26.595745 |
| 31   | 78 | 3425 | 25 | 27  | 69 | 32.051281 | 26.595745 |
| 31.5 | 78 | 3421 | 25 | 27  | 70 | 32.051281 | 26.31579  |
| 32   | 78 | 3425 | 25 | 27  | 69 | 32.051281 | 26.595745 |
| 32.5 | 78 | 3431 | 25 | 28  | 67 | 32.051281 | 27 173914 |
| 33   | 78 | 3420 | 25 | 28  | 69 | 32.051281 | 26.595745 |
| 33.5 | 78 | 3431 | 27 | 31  | 68 | 34.615383 | 28.421053 |
| 34   | 78 | 3450 | 25 | 28  | 68 | 32.051281 | 26 88172  |
| 34.5 | 78 | 3449 | 25 | 29  | 64 | 32.051281 | 28.089888 |
| 35   | 78 | 3453 | 25 | 30  | 66 | 32.051281 | 27.472527 |
| 35.5 | 78 | 3440 | 23 | 26  | 63 | 29.487179 | 26,744186 |
| 36   | 78 | 3424 | 22 | 24  | 66 | 28.205128 | 25        |
| 36.5 | 78 | 3381 | 22 | 23  | 62 | 28 205128 | 26 190475 |
| 37   | 78 | 3299 | 25 | 27  | 58 | 32.051281 | 30.120481 |
| 37.5 | 78 | 3215 | 26 | 2.7 | 56 | 33 333332 | 31 707317 |
| 38   | 78 | 3045 | 27 | 30  | 50 | 34 615383 | 35 064934 |
| 38.5 | 78 | 2852 | 26 | 2.7 | 45 | 33 333332 | 36 619717 |
| 39   | 78 | 2580 | 20 | 24  | 39 | 30 76923  | 38 095238 |
| 39.5 | 78 | 2274 | 22 | 22  | 35 | 28.205128 | 38,596493 |
| 40   | 78 | 1954 | 16 | 16  | 31 | 20.512821 | 34.042553 |
| 40.5 | 78 | 1698 | 14 | 14  | 30 | 17.948717 | 31.818182 |
| 41   | 78 | 1414 | 13 | 13  | 25 | 16.666666 | 34.210526 |
| 41.5 | 78 | 1155 | 10 | 11  | 20 | 12.820513 | 33.333332 |
| 42   | 78 | 939  | 9  | 9   | 16 | 11.538462 | 36        |
| 42.5 | 78 | 750  | 7  | 7   | 13 | 8.974359  | 35        |
| 43   | 78 | 577  | 7  | 7   | 10 | 8.974359  | 41.176472 |
| 43.5 | 78 | 435  | 6  | 6   | 5  | 7.692307  | 54.545456 |
| 44   | 78 | 347  | 6  | 6   | 5  | 7.692307  | 54.545456 |
| 44.5 | 78 | 265  | 3  | 3   | 4  | 3.846154  | 42.857143 |
| 45   | 78 | 203  | 1  | 1   | 3  | 1.282051  | 25        |
| 45.5 | 78 | 148  | 1  | 1   | 2  | 1.282051  | 33.333332 |
| 46   | 78 | 115  | 0  | 0   | 1  | 0         | 0         |

## Table A. 12 Prediction result of "Partial genes" for Group 1-16

## 5. IGLV/J, at the distance of 100bp $\,$

| Threshold | reference | i     | TP | HitTP | FP | Se        | PPV |
|-----------|-----------|-------|----|-------|----|-----------|-----|
| 0         | 122       | 10267 | 71 | 197   | 0  | 58.19672  | 100 |
| 0.5       | 122       | 10916 | 77 | 199   | 0  | 63.114754 | 100 |

| 1       | 122 | 11367 | 72 | 160 | 0 | 59.016392  | 100 |
|---------|-----|-------|----|-----|---|------------|-----|
| 1.5     | 122 | 10631 | 71 | 160 | 0 | 58 19672   | 100 |
| 2       | 122 | 10165 | 71 | 149 | 0 | 58 19672   | 100 |
| 2 5     | 122 | 0878  | 70 | 144 | 0 | 57 377048  | 100 |
| 2.3     | 122 | 9752  | 69 | 147 | 0 | 56 557377  | 100 |
| 35      | 122 | 0673  | 71 | 142 | 0 | 58 10672   | 100 |
| 3.5     | 122 | 9675  | 70 | 144 | 0 | 57 277048  | 100 |
| 4       | 122 | 9030  | 70 | 142 | 0 | 57 277048  | 100 |
| 4.5     | 122 | 9030  | 70 | 142 | 0 | 57.2770.48 | 100 |
| 5       | 122 | 9650  | 70 | 142 | 0 | 57.377048  | 100 |
| 5.5     | 122 | 9649  | /0 | 142 | 0 | 57.377048  | 100 |
| 6       | 122 | 9649  | /0 | 142 | 0 | 57.377048  | 100 |
| 6.5     | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
|         | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 7.5     | 122 | 9649  | /0 | 142 | 0 | 57.377048  | 100 |
| 8       | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 8.5     | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 9       | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 9.5     | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 10      | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 10.5    | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 11      | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 11.5    | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 12      | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 12.5    | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 13      | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 13.5    | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 14      | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 14.5    | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 15      | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 15.5    | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 16      | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 16.5    | 122 | 9649  | 70 | 142 | 0 | 57.377048  | 100 |
| 17      | 122 | 9649  | 70 | 142 | 0 | 57 377048  | 100 |
| 17.5    | 122 | 9649  | 70 | 142 | 0 | 57 377048  | 100 |
| 18      | 122 | 9649  | 70 | 142 | 0 | 57 377048  | 100 |
| 18.5    | 122 | 9649  | 70 | 142 | 0 | 57 377048  | 100 |
| 10.9    | 122 | 9648  | 70 | 142 | 0 | 57 377048  | 100 |
| 19.5    | 122 | 9648  | 70 | 142 | 0 | 57 377048  | 100 |
| 20      | 122 | 0648  | 70 | 142 | 0 | 57 377048  | 100 |
| 20 5    | 122 | 9647  | 70 | 142 | 0 | 57 377048  | 100 |
| 20.3    | 122 | 0647  | 70 | 142 | 0 | 57 377048  | 100 |
| 21 21 5 | 122 | 9047  | 70 | 142 | 0 | 57 277048  | 100 |
| 21.3    | 122 | 9047  | 70 | 142 | 0 | 57 277048  | 100 |
| 22      | 122 | 904/  | 70 | 142 | 0 | 57 277040  | 100 |
| 22.3    | 122 | 904/  | 70 | 142 | 0 | 57 277040  | 100 |
| 23      | 122 | 904/  | 70 | 142 | 0 | 57 277048  | 100 |
| 23.5    | 122 | 9046  | /0 | 142 | 0 | 57.277048  | 100 |
| 24      | 122 | 9646  | /0 | 142 | 0 | 57.377048  | 100 |
| 24.5    | 122 | 9646  | /0 | 142 | 0 | 57.377048  | 100 |
| 25      | 122 | 9645  | 70 | 142 | 0 | 57.377048  | 100 |
| 25.5    | 122 | 9644  | 70 | 142 | 0 | 57.377048  | 100 |
| 26      | 122 | 9643  | 70 | 142 | 0 | 57.377048  | 100 |
| 26.5    | 122 | 9645  | 70 | 142 | 0 | 57.377048  | 100 |
| 27      | 122 | 9641  | 70 | 142 | 0 | 57.377048  | 100 |
| 27.5    | 122 | 9634  | 70 | 142 | 0 | 57.377048  | 100 |
| 28      | 122 | 9630  | 70 | 142 | 0 | 57.377048  | 100 |
| 28.5    | 122 | 9625  | 70 | 142 | 0 | 57.377048  | 100 |
| 29      | 122 | 9622  | 70 | 142 | 0 | 57.377048  | 100 |
| 29.5    | 122 | 9617  | 70 | 142 | 0 | 57.377048  | 100 |
| 30      | 122 | 9602  | 70 | 142 | 0 | 57.377048  | 100 |
| 30.5    | 122 | 9588  | 70 | 142 | 0 | 57.377048  | 100 |
| 31      | 122 | 9568  | 70 | 142 | 0 | 57.377048  | 100 |
| 31.5    | 122 | 9554  | 70 | 142 | 0 | 57.377048  | 100 |

| 32   | 122 | 9520 | 70 | 143 | 0 | 57.377048 | 100 |
|------|-----|------|----|-----|---|-----------|-----|
| 32.5 | 122 | 9491 | 70 | 143 | 0 | 57.377048 | 100 |
| 33   | 122 | 9457 | 70 | 142 | 0 | 57.377048 | 100 |
| 33.5 | 122 | 9373 | 70 | 137 | 0 | 57.377048 | 100 |
| 34   | 122 | 9261 | 67 | 131 | 0 | 54.918034 | 100 |
| 34.5 | 122 | 9108 | 64 | 124 | 0 | 52.459015 | 100 |
| 35   | 122 | 8888 | 64 | 124 | 0 | 52.459015 | 100 |
| 35.5 | 122 | 8640 | 64 | 122 | 0 | 52.459015 | 100 |
| 36   | 122 | 8336 | 63 | 117 | 0 | 51.639343 | 100 |
| 36.5 | 122 | 7916 | 59 | 111 | 0 | 48.360657 | 100 |
| 37   | 122 | 7398 | 56 | 109 | 0 | 45.901638 | 100 |
| 37.5 | 122 | 6809 | 52 | 95  | 0 | 42.622952 | 100 |
| 38   | 122 | 6097 | 52 | 85  | 0 | 42.622952 | 100 |
| 38.5 | 122 | 5367 | 48 | 74  | 0 | 39.344261 | 100 |
| 39   | 122 | 4602 | 42 | 67  | 0 | 34.426231 | 100 |
| 39.5 | 122 | 3868 | 40 | 63  | 0 | 32.786884 | 100 |
| 40   | 122 | 3204 | 36 | 51  | 0 | 29.508196 | 100 |
| 40.5 | 122 | 2608 | 29 | 39  | 0 | 23.770493 | 100 |
| 41   | 122 | 2106 | 25 | 34  | 0 | 20.491804 | 100 |
| 41.5 | 122 | 1641 | 21 | 30  | 0 | 17.213116 | 100 |
| 42   | 122 | 1285 | 17 | 24  | 0 | 13.934426 | 100 |
| 42.5 | 122 | 994  | 13 | 19  | 0 | 10.655738 | 100 |
| 43   | 122 | 727  | 12 | 17  | 0 | 9.836065  | 100 |
| 43.5 | 122 | 551  | 8  | 12  | 0 | 6.557377  | 100 |
| 44   | 122 | 429  | 6  | 10  | 0 | 4.918033  | 100 |
| 44.5 | 122 | 327  | 2  | 4   | 0 | 1.639344  | 100 |
| 45   | 122 | 256  | 2  | 4   | 0 | 1.639344  | 100 |
| 45.5 | 122 | 187  | 2  | 4   | 0 | 1.639344  | 100 |
| 46   | 122 | 144  | 2  | 4   | 0 | 1.639344  | 100 |

## Table A. 13 Prediction result of "IGLV/J" for Group 1-16

## 6. All the 5 kind of genes, at the distance of 300bp

| Threshold | reference | i    | TP  | HitTP | FP   | Se        | PPV       |
|-----------|-----------|------|-----|-------|------|-----------|-----------|
| 0         | 537       | 5440 | 203 | 398   | 1414 | 37.802608 | 12.554112 |
| 0.5       | 537       | 6660 | 255 | 433   | 1740 | 47.486034 | 12.781955 |
| 1         | 537       | 7459 | 250 | 448   | 1974 | 46.554935 | 11.241007 |
| 1.5       | 537       | 7464 | 248 | 459   | 1967 | 46.182495 | 11.196388 |
| 2         | 537       | 7421 | 241 | 448   | 1960 | 44.878956 | 10.949569 |
| 2.5       | 537       | 7368 | 240 | 446   | 1939 | 44.692738 | 11.014227 |
| 3         | 537       | 7349 | 241 | 446   | 1928 | 44.878956 | 11.111111 |
| 3.5       | 537       | 7338 | 244 | 449   | 1924 | 45.437618 | 11.254613 |
| 4         | 537       | 7328 | 242 | 447   | 1921 | 45.065178 | 11.188165 |
| 4.5       | 537       | 7330 | 242 | 447   | 1921 | 45.065178 | 11.188165 |
| 5         | 537       | 7331 | 242 | 447   | 1921 | 45.065178 | 11.188165 |
| 5.5       | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 6         | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 6.5       | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 7         | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 7.5       | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 8         | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 8.5       | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 9         | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 9.5       | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 10        | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 10.5      | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 11        | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 11.5      | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 12        | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 12.5      | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |
| 13        | 537       | 7330 | 242 | 447   | 1920 | 45.065178 | 11.193339 |

|      |     |      |     | 1    |      | 1         |                  |
|------|-----|------|-----|------|------|-----------|------------------|
| 13.5 | 537 | 7330 | 242 | 447  | 1920 | 45.065178 | 11.193339        |
| 14   | 537 | 7330 | 242 | 447  | 1920 | 45 065178 | 11 193339        |
| 14.5 | 527 | 7330 | 242 | 447  | 1020 | 15.005170 | 11.100000        |
| 14.5 | 557 | /330 | 242 | 447  | 1920 | 45.005178 | 11.193339        |
| 15   | 537 | 7330 | 242 | 447  | 1920 | 45.065178 | 11.193339        |
| 15.5 | 537 | 7330 | 242 | 447  | 1920 | 45.065178 | 11.193339        |
| 16   | 537 | 7330 | 242 | 447  | 1920 | 45 065178 | 11 103330        |
| 10   | 537 | 7330 | 242 | 447  | 1020 | 45.005170 | 11.1/3337        |
| 16.5 | 537 | /330 | 242 | 44 / | 1920 | 45.065178 | 11.193339        |
| 17   | 537 | 7330 | 242 | 447  | 1920 | 45.065178 | 11.193339        |
| 17.5 | 537 | 7330 | 242 | 447  | 1920 | 45 065178 | 11 193339        |
| 19   | 527 | 7220 | 242 | 447  | 1020 | 45.065178 | 11 102220        |
| 10   | 337 | /330 | 242 | 447  | 1920 | 45.005178 | 11.195559        |
| 18.5 | 537 | /330 | 242 | 447  | 1920 | 45.065178 | 11.193339        |
| 19   | 537 | 7329 | 242 | 447  | 1920 | 45.065178 | 11.193339        |
| 19.5 | 537 | 7329 | 242 | 447  | 1920 | 45 065178 | 11 193339        |
| 20   | 527 | 732) | 212 | 447  | 1020 | 45.065170 | 11.102220        |
| 20   | 557 | /329 | 242 | 447  | 1920 | 45.005178 | 11.193339        |
| 20.5 | 537 | 7328 | 242 | 447  | 1919 | 45.065178 | 11.198519        |
| 21   | 537 | 7328 | 242 | 447  | 1919 | 45.065178 | 11.198519        |
| 21.5 | 537 | 7328 | 242 | 447  | 1010 | 45.065178 | 11 108510        |
| 21.5 | 527 | 7320 | 242 | 447  | 1010 | 45.005170 | 11.100510        |
| 22   | 537 | /328 | 242 | 44 / | 1919 | 45.065178 | 11.198519        |
| 22.5 | 537 | 7328 | 242 | 447  | 1919 | 45.065178 | 11.198519        |
| 23   | 537 | 7328 | 242 | 447  | 1919 | 45.065178 | 11.198519        |
| 22.5 | 537 | 7378 | 242 | 117  | 1010 | 45 065178 | 11 198510        |
| 25.5 | 557 | 7320 | 242 | 447  | 1717 | 45.005170 | 11.170519        |
| 24   | 537 | 7328 | 242 | 441/ | 1919 | 45.065178 | 11.198519        |
| 24.5 | 537 | 7327 | 242 | 447  | 1919 | 45.065178 | <u>11.198519</u> |
| 25   | 537 | 7325 | 242 | 447  | 1919 | 45 065178 | 11 198519        |
| 25.5 | 537 | 7323 | 242 | 447  | 1010 | 45.065178 | 11 108510        |
| 25.5 | 527 | 7323 | 242 | 440  | 1010 | 45.005170 | 11.170517        |
| 26   | 537 | /325 | 242 | 448  | 1919 | 45.065178 | 11.198519        |
| 26.5 | 537 | 7326 | 242 | 447  | 1921 | 45.065178 | 11.188165        |
| 27   | 537 | 7323 | 242 | 447  | 1918 | 45.065178 | 11.203704        |
| 27.5 | 537 | 7322 | 242 | 447  | 1918 | 45 065178 | 11 203704        |
| 28   | 537 | 7316 | 242 | 447  | 1015 | 45.065178 | 11 210286        |
| 20   | 537 | 7310 | 242 | 447  | 1915 | 45.005178 | 11.219200        |
| 28.5 | 537 | /312 | 242 | 447  | 1915 | 45.065178 | 11.219286        |
| 29   | 537 | 7310 | 242 | 447  | 1914 | 45.065178 | 11.22449         |
| 29.5 | 537 | 7308 | 242 | 447  | 1914 | 45.065178 | 11.22449         |
| 30   | 537 | 7297 | 242 | 447  | 1911 | 45 065178 | 11 24013         |
| 30.5 | 537 | 7285 | 242 | 448  | 1000 | 45.065178 | 11 250581        |
| 30.3 | 537 | 7205 | 242 | 440  | 1000 | 45.005170 | 11.250501        |
| 31   | 537 | /2/6 | 242 | 448  | 1909 | 45.065178 | 11.250581        |
| 31.5 | 537 | 7257 | 242 | 446  | 1910 | 45.065178 | 11.245353        |
| 32   | 537 | 7230 | 241 | 445  | 1897 | 44.878956 | 11.272217        |
| 32.5 | 537 | 7209 | 241 | 445  | 1893 | 44 878956 | 11 293345        |
| 32.3 | 537 | 7180 | 241 | 445  | 1893 | 11.070956 | 11 325188        |
| 22.5 | 537 | 7100 | 241 | 420  | 1007 | 44.002720 | 11.323100        |
| 33.5 | 537 | /116 | 240 | 439  | 1869 | 44.692/38 | 11.3/9801        |
| 34   | 537 | 7069 | 236 | 432  | 1869 | 43.947857 | 11.211401        |
| 34.5 | 537 | 6980 | 233 | 424  | 1846 | 43.389198 | 11.207312        |
| 35   | 537 | 6806 | 229 | 416  | 1804 | 42.644321 | 11.264142        |
| 25 5 | 527 | 6650 | 229 | 400  | 1769 | 12 158000 | 11 120112        |
| 35.5 | 537 | 6410 | 220 | 409  | 1704 | 41 527    | 11.422040        |
|      | 537 | 6419 | 223 | 396  | 1/04 | 41.527    | 11.5/2392        |
| 36.5 | 537 | 6152 | 215 | 380  | 1632 | 40.037243 | 11.640498        |
| 37   | 537 | 5746 | 209 | 352  | 1516 | 38.919926 | 12.115942        |
| 37 5 | 537 | 5322 | 197 | 331  | 1395 | 36 685287 | 12 374372        |
| 20   | 527 | 1016 | 197 | 200  | 10/0 | 35 10552  | 13 152401        |
| 38   | 537 | 4010 | 109 | 299  | 1248 | 33.19333  | 13.132401        |
| 38.5 | 537 | 4300 | 174 | 258  | 1121 | 32.402233 | 13.436294        |
| 39   | 537 | 3752 | 154 | 227  | 983  | 28.677839 | 13.544415        |
| 39.5 | 537 | 3173 | 137 | 197  | 830  | 25.512104 | 14.167528        |
| 40   | 537 | 2636 | 112 | 155  | 679  | 20 856611 | 14 159292        |
| 40.5 | 527 | 2000 | 06  | 122  | 566  | 17 877004 | 14 501511        |
| 40.3 | 537 | 17(0 | 90  | 122  | 300  | 17.077094 | 15 (07/75        |
| 41   | 557 | 1/68 | 81  | 103  | 435  | 15.083/98 | 15.69/6/5        |
| 41.5 | 537 | 1387 | 67  | 83   | 342  | 12.476723 | 16.381418        |
| 42   | 537 | 1107 | 51  | 64   | 269  | 9.497207  | 15.9375          |
| 42.5 | 537 | 863  | 41  | 51   | 214  | 7 635009  | 16 078432        |
| 42.5 | 527 | 240  | 27  | 15   | 144  | 6 200121  | 18 226401        |
| 43   | 557 | 048  | 3/  | 43   | 100  | 5.014152  | 17.02.420.4      |
| 43.5 | 537 | 491  | 28  | 35   | 129  | 5.214153  | 17.834394        |
| 44   | 537 | 388  | 26  | 33   | 104  | 4.841713  | 20               |

| 44.5 | 537 | 295 | 18 | 23 | 74 | 3.351955 | 19.565218 |
|------|-----|-----|----|----|----|----------|-----------|
| 45   | 537 | 227 | 14 | 18 | 54 | 2.607076 | 20.588236 |
| 45.5 | 537 | 165 | 10 | 14 | 39 | 1.862197 | 20.408163 |
| 46   | 537 | 130 | 8  | 11 | 31 | 1.489758 | 20.512821 |

Table A. 14 Prediction result of "IGLV/J" for Group 1-16