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Summary

The objectives of the present work are twofold: to develop advanced models for the accu-

rate prediction of performance of piezoelectric traveling-wave ultrasonic motor (USM, a

type of actuator that uses mechanical vibrations in the ultrasonic range), and to improve

upon the typical piezoelectric traveling-wave motor configuration by investigating novel

designs of the stator. The modeling objective addresses the need for an efficient design

tool to complement or even overcome the costly process of prototype iteration. Similarly,

to expand the viable commercial application of the traveling-wave motor as a direct-drive

actuator, novel configurations of USM are suggested. The main scope of this study is: (a)

modeling of piezoelectric coupled stator; (b) modeling of USM by finite element analysis;

(c) design of annular stator with varying thickness; and (d) design of novel configuration

of USM with multiple wave numbers.

Free vibration characteristics are a prelude to the dynamic analysis of piezoelectric

coupled stator. As a basis for modeling of the piezoelectric coupled stator, analytical

solutions of the free vibration of a three-layer piezoelectric laminated annular plate based

on Kirchhoff and Mindlin plate theories are presented for the case where the electrodes

on the piezoelectric layers are shortly connected. The electric potential distribution

across the thickness of piezoelectric layer is modeled by a sinusoidal function and the

Maxwell equation is enforced. The governing equations are solved using transformation

of variables, by which, a sixth order PDE can be decoupled into three second order

PDEs. To validate the proposed solutions, resonant frequencies and mode shapes of the

piezoelectric coupled annular plates from the proposed solutions are compared with those

obtained by FE analysis.
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In addition to the development of an analytical model, methodologies for analyzing

the overall behavior of USM are proposed and demonstrated by FE analysis due to its

advantage of modeling complicated geometries and boundary conditions. The proposed

model yields one of the more complete data sets on simulation of piezoelectric ultrasonic

motors in the open literature. Numerical results, such as resonant frequencies and elliptic

motion on the surface of stator, steady and transient relationship between axial force,

rotor speed and torque, agree with published numerical and experimental results. The

good correlation between FEM model and experiment verifies the proposed procedures

for analyzing overall behavior of USM and also provided great potential for an accurate

design tool.

Preliminary investigation of the concept of USM with varying thickness stator is per-

formed. As a basis for the design of stator with varying thickness, free vibration analysis

of thin annular plate with thickness varying monotonically in arbitrary power form are

performed. Transformation of variable is introduced to translate the governing equation

for the free vibration of thin annular plate into a fourth-order generalized hypergeometric

equation. The closed form solutions are presented and verified by comparing with those

from Kirchoff-based and 3D FEM for plates with linear increasing, non-linear increasing

and non-linear decreasing thicknesses in the radial direction.

Another effort is the design and fabrication of the piezoelectric traveling-wave motor

with multiple wave numbers. This multiple wave numbers operation is realized by a new

electrode configuration of the piezoelectric element. Besides designing the configuration

of the electrodes, drive electronics with four channels compatible with multiple wave

numbers operation are also designed, tested and fabricated. The experimental results of

the multiple wave numbers motor show that the multiple wave numbers motor signifi-

cantly outperformed the single wave number motor with regard to the range of speed

and torque output. This novel implementation of the traveling-wave motor also offers

the extra control for stable operation of USM.
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CHAPTER 1

Introduction

Electromagnetic motors were invented more than a hundred years ago and still dominated

the industry. Industrial requirements have in the past focused mainly on improving

the quality and quantity of electromagnetic motors. However, electromagnetic motors

have several drawbacks. The foremost concern is the permanent magnet associated with

most electromagnetic motors is heavy and takes up valuable space. Gear reduction

is always required as well and this leads to a series of other problems like backlash,

cogging, and added mass and volume of the actuator. Drastic improvement cannot

be expected except through new discoveries in magnetic or superconducting materials.

Recent advances in the field of smart materials and structures have led to the evolution

of a new kind of motor, namely the piezoelectric ultrasonic motor (USM). Compared

to conventional electromagnetic motors, USM has the advantages of high torque at low

speed, quick response, quiet operation and simpler structure. The study of USM has

received wide attention. Many different types of USM have been developed and gained

numerous applications, such as in aerospace, vehicles, ships, cars and cameras. This

research concerns the development of more accurate model and novel design of USMs.
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1.1 Historical background

A piezoelectric USM is a type of actuator that uses mechanical vibrations in the ultrasonic

range (i.e. inaudible to human) (Sashida and Kenjo, 1993). In general, a piezoelectric

USM contains two basic components: the stator which generates vibratory motion and

the rotor which transmits the motion onto a shaft. The stator comprises piezoelectric

elements. Mechanical oscillations of high frequency and small amplitude are excited by

piezoelectric elements in such a way that material points on the surface of the stator per-

form an elliptic motion. Usually the elliptic motion of the stator’s surface is obtained by

superposition of two orthogonal vibration modes of the stator having the same resonance

frequency. The rotor is pressed against the stator and is driven by frictional forces.

Although the driving principle described above has been well known for at least

50 years (Williams and Brown, 1948), only few types of piezoelectric USMs have been

developed prior to 1980. This is mainly due to the fact that piezoelectric materials with

high conversion efficiency and fast electronic power control of mechanical oscillations were

not available. The publication on the first USM (Barth, 1973), although a milestones in

the history of piezoelectric USM, unfortunately did not have an immediate impact on

the technology.

With increasing chip pattern density in the 1980s, the semiconductor industry began

to request for more precise and sophisticated positioning systems which do not generate

magnetic field noise. This accelerated the developments in ultrasonic motors (Sashida

and Kenjo, 1993; Ueha and Tomikawa, 1993). Research interest in piezoelectric motors

has been triggered by Sashida (1983) and many types of USM with size smaller than 100

mm have been machined during this decade. The designs of USM with different types

of stator, such as rods, disk, cylinder, membranes and plates and their performance

predicted using equivalent electric circuit models are the main research focus in this

decade.
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Market research conducted in the mid-1990s for 80 international electronic compo-

nent companies indicated an intriguing demand for compact motors (that is, motors of

size under 10 mm) over a 10-year period (Uchino, 1998; Wallaschek, 1995). Electromag-

netic motors smaller than 10 mm and having sufficient energy efficiency and torque are

difficult to produce. For example, a wrist watch motor with a rotor diameter less than 1

mm still requires a relatively large (10 mm) coil for its activation but with a low efficiency

less than 1%. USMs whose efficiency is insensitive to size are considered superior in the

field of compact motor. This led to a change in research focus in the development of com-

pact USMs and Uchino et al. (2004) presented three key design concepts: (a) simplify

the structure and reduce the number of component; (b) use simple (i.e. uniform) poling

configuration; and (c) use standing-wave type to reduce the drive circuit components.

For numerical simulations, Kirchhoff or Mindlin plate based models have been widely

adopted.

Parallel to the development of compact USM, minimization of USM using silicon

micro-processing technique have led to the fabrication of millimeter or sub-millimeter

sized motors (Morita, 2003; Uchino et al., 2004). Practical demands for miniature USM

include those in microsurgery where insect scaled robots or micro positioning stages are

employed, requiring actuators less than 1 mm3. For such size, using piezoelectric USM

also poses problems. The challenge lies, for example, in the fragility of piezoelectric

ceramics, the constraint of small amplitude of stator vibration and the bulkiness of the

driving circuits. Special fabrication processes of piezoelectric materials, including a thin

and thick film deposition process, various interesting stator structures and integrated

driving circuits have been developed to overcome the above challenges. A useful tool

to facilitate the design, development and performance evaluation of potential USMs is

the finite element (FE) method where numerical simulation can be performed prior to

prototype fabrication and testing.
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1.2 Review on design effort of USM

There are two energy transfers in piezoelectric USM. First is the transfer from electric

power to mechanical vibration power through piezoelectric materials as part of the stator

(acting as a vibrator). Second is the transfer of the mechanical wave energy in the stator

to the rotor (driven body) by means of frictional force at their point of contact. The

efficient transfer of energy constitutes a main design effort.

To date, more than several hundred papers on the design of USM have been pub-

lished. Excellent reviews can be found in various references (Morita, 2003; Sashida,

1983; Uchino, 1998; Uchino et al., 2004; Ueha and Tomikawa, 1993; Wallaschek, 1995).

It would be quite an endeavor to summarize them all; however, it may be meaningful to

concisely present the major design efforts through a few characteristic examples, while

detailed descriptions of these USM can be found in Appendix A. For the convenience of

discussion, two widely adopted categories will be investigated for USMs from a vibration

characteristic viewpoint of the stator: a standing wave type and a traveling wave type.

Their working principles are presented. The other categories based on the generation of

elliptical motion, stator geometry shape, piezoelectric materials, and driving electronics

are also introduced.

1.2.1 Standing and traveling wave USM

For stator vibration, two types of waves can be generated to cause mechanical motion,

namely, standing wave and traveling wave (Aoyagi et al., 2004, 1996, 1997; Carotenuto et

al., 1998; Dong et al., 2002, 2000, 2004; Dubois and Muralt, 1998; Fleischer et al., 1989,

1990; Friend et al., 2004; Iijima et al., 1993; Juang and Hardtke, 2001; Kawai et al., 1995;

Koc et al., 2002; Kumada, 1985; Lebrun et al., 1996; Leinvuo et al., 2004; Manceau et

al., 1998; Petit et al., 1998; Rayner and Whatmore, 2001; Sato et al., 1995; Satonobu et

al., 2003; Suetomo and Tomikawa, 2004; Suzuki et al., 2004; Takano et al., 1992, 1990;
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Figure 1.1: The Kumada motor (Kumada, 1985)

Tsujino, 1998; Uchiki et al., 1991; Yao et al., 2001; Yen et al., 2003). To operate an

(a)

(b)

Figure 1.2: The Suzuki motor (Suzuki et al., 2000)

ultrasonic motor, whether standing or traveling wave type, an elliptical motion at each

contact point on the stator is required. Two orthogonal components of the elliptical

motion will work in unison: the normal component controls the contact force between

the stator and the rotor and the horizontal component drives the rotor. Thus, a large pre-

load is required for the normal component to cause a large frictional force, and the driving

component requires large vibration amplitude to achieve high speed in the rotor. In the

standing-wave type USM, the elliptical motion is usually formed by mode conversion or

superposition of multiple modes, for example, Kumada motor shown in Fig. 1.1. The
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torsion coupler converts the longitudinal standing wave motion into an elliptical motion.

This method of generating elliptical motion by mode conversion, where the torsion mode

is converted from the bending mode. A similar mechanism is used in the composite stator

of the Suzuki motor shown in Fig. 1.2.

(a)           (b) 

Figure 1.3: The Ohnishi motor (Ohnishi et al., 1993)

Another example is the Ohnishi motor shown in Fig. 1.3. The longitudinal mode

vibrator and shear mode vibrator generate longitudinal and torsional standing waves, and

these two components are superposed to form an elliptical motion at the end of the rod

type stator. The important thing to note is that the whole surface at the end of stator has

the same normal vibration direction and amplitude. This method of generating elliptical

motion is known as multiple modes superposition.

The Dong motor (Fig. 1.4) relies on the traveling wave, and its working principle is

addressed as follows. The construction of Dong’s motor can be simplified and plotted in

Fig. 1.5. A piezoceramic ring is bonded to the bottom of an elastic ring (or plate) in the

stator. On top of the ring near its circumference is a set of teeth separated radially. A

layer of contact material is bonded to the bottom surface of rotor. In such traveling-wave

type USM, the elliptical motion is also generated by the superposition of two standing

wave components, but its mechanism is more complicated. Mathematically, a standing

wave can be expressed by

uS(x, t) = A cos kx cos ωt (1.1)
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(a)

(b) (c)

Figure 1.4: The Dong motor (Dong et al., 2004)

where uS(x, t) is displacement of material point on the middle surface of the ring, A is

amplitude of vibration, k is the wave number, and ω is circular frequency of vibration.

While a traveling wave can be represented by

Orbital motion of contact surface 

(not to scale) 

     Fapplied
applied

Frictional interface Rotor rotor

Stator Traveling wave 
Elastic ring 

Piezoelectric layer 

Teeth Contact layer 

Figure 1.5: Generic stator structure of traveling wave USM

uT (x, t) = A cos(kx− ωt) (1.2)

where uT (x, t) is displacement of material point on the middle surface of the ring. Using
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a trigonometric relation, Eq. (1.2) can be transformed as

uT (x, t) = A cos kx cos ωt + A cos(kx− π/2) cos(ωt− π/2) (1.3)

This leads to an important result; that is, a traveling wave can be generated by super-

imposing two standing waves whose phases differ by 90◦ from each other both in the

spatial and temporal domain. Based on this concept, the piezoceramics are arranged

into two groups such that they differ by 90◦ spatially from each other. These two groups

are excited by two driving channels with varying voltages following a sine and a cosine

wave. A traveling flexural wave will be generated within the stator. The traveling wave,

not the stator, moves from left to right at a rotational speed denoted by Ω.

Next, it is shown that such a traveling wave cause an elliptical motion at the material

points on the surface of the stator. If Kirchhoff’s plate theory is adopted, a cylindrical

traveling wave on the stator can be expressed in polar coordinates as

w(r, θ, t) = AR(r) cos(pθ + ωt) (1.4)

with w the transverse displacement of the plate, p being the number of nodal diameters,

R(r) is a dimensionless function of the stator’s deflection in the r-direction, which is

usually normalized so that A can be interpreted as the modal amplitude for a particular

radius of interest. The displacement of a material point on the stator is given by

u(r, θ, z, t) = −z
∂w(r, θ, t)

∂r
er − z

∂w(r, θ, t)
r∂θ

eθ + w(r, θ, t)ez (1.5)

and its velocity is written as

v(r, θ, z, t) =
d

dt
u(r, θ, z, t) (1.6)

It is well-known that for a traveling wave, all material points perform an elliptical motion

whose projection on the er, eθ plane is given by

uθ(r, θ, z, t) =
z

r
pAR(r) sin(pθ + ωt) (1.7)

uz(r, θ, z, t) = AR(r) cos(pθ + ωt) (1.8)



1.2: Review on design effort of USM 9

Thus

vθ(r, θ, z, t) =
z

r
ωpAR(r) cos(pθ + ωt) (1.9)

[uz(r, θ, z, t)]2 + [
r

zn
uθ(r, θ, z, t)]2 = A2R2(r) (1.10)

where uθ(r, θ, z, t) and uz(r, θ, z, t) are the displacement of a material point on the stator

in θ and z direction, vθ(r, θ, z, t) is the velocity of a material point on the stator in θ direc-

tion. At a given time the material points lying on the wave crest have a circumferential

velocity of

v∗θ =
z∗

r∗
ωnAR(r) (1.11)

where z∗ and r∗ are the polar coordinates of the material point under consideration.

In generating the elliptic motion, the elastic wave is traveling in an annular plate,

so it is also called a mode rotation method. Once the elliptical motion is realized, the

rotor and the stator will be in contact at various points resulting in having the effect

of an external compressive force and torque applied on the rotor as shown in Fig. 1.5.

Specifically, the normal component uz of the elliptical motion provided the normal force

by contacting with rotor; and the horizontal component uθ causes the rotor to spin by

frictional force. At this point, it is important to realize that the rotational speed of the

rotor is not equal to the frequency of the traveling wave. There is a virtual gear reduction

inherent in these motors; Ω is usually of the order of tens of kilohertz whereas ωrotor can

be as low as or even lower than one hertz.

Figure 1.6: The Flynn motor (Flynn et al., 1992)
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The traveling wave type motor makes use of the elliptic motion of the vibrator surface

caused by wave propagation. The rotor has only mechanical contact with the stator at

specific surface points (wave crest). Compared with standing wave type USM shown in

Fig. 1.3, the areas of these contact points are small relative to the total surface area of the

stator. Hence, for small diameter stator, the standing wave type motor produces larger

torque than that of the traveling wave type. Two other similar traveling wave USMs are

given in Fig. 1.6(Flynn motor) and Fig. 1.7(Cagatay motor).

(a) (b)

Plate X

Plate Y 

Brass tube

x
/

 y
/

 y 

 x 

Plate X

Plate Y

Spring
(rotor)

Ferrule

Figure 1.7: The Cagatay motor (Cagatay et al., 2004)

1.2.2 Geometry of stator

Many different shapes for stator, including rods, rings, disks, and cylinders were adopted

in the design of stator (Aoyagi and Tomikawa, 1993; Aoyagi et al., 1992; Bexell and

Johansson, 1999; Carotenuto et al., 2004; Dong et al., 2003; Koc et al., 2000, 1998;

Kurosawa et al., 1996, 1989; Lamberti et al., 1998; Ohnishi et al., 1993; Suzuki et al.,

2000; Tomikawa et al., 1992; Tong et al., 2003; Vyshnevskyy et al., 2005). The geometry of

stator (vibrator) can be broadly grouped under three categories: bars, plates and complex

structures types. For example, the stators of Dong (Fig. 1.4) and Flynn (Fig. 1.6) are

plate type while Kumada (Fig. 1.1), Ohnishi (Fig. 1.3) and Cagaty (Fig. 1.7) stators are

of the bar type.

For plates, its size in one dimension, say z direction, is much smaller than the other
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two dimensions, say x and y directions. Hence, in-plane extensional, shear or out-of-plane

bending are the predominant mode of actuation. The in-plane shape can be rectangular,

square, circular or annular. For bars, its size in one dimension, say z direction, is much

larger than the other two dimensions, say x and y directions. Therefore, the vibration of

a bar can be decomposed into three simple modes - longitudinal, torsional, and transverse

(Rayleigh and Lindsay, 1945; Timoshenko et al., 1974). The shape of the cross section

can be rectangular, square, circular or annular. Besides these two fundamental types of

plates and bars, some complex stator structures which are the combination of plates and

bars have also been used, such as Suzuki motor shown in Fig. 1.2.

The variable geometric structure of the stator in USM has an advantage over an

electric magnetic motor. An example is the Canon USM (Hosoe, 1989) designed exclu-

sively for the EOS 35 mm camera auto-focus lens, where the large hole in the middle of

the ring is for light to pass through.

1.2.3 Piezoelectric materials

It is known that a multi-layer layout is effective in reducing the driving voltage for

piezoelectric devices. However, the size of multi-layer structure is only suitable to be

used in bar-type stator of USM, such as the stator of Kumada (Fig. 1.1) and Ohnishi

(Fig. 1.3).

Two main forms of piezoelectric materials have been used in USM, namely piezoelec-

tric film and bulk PZT (Biwersi et al., 1998; Cagatay et al., 2004, 2003; Koc et al., 2000,

1998; Kurosawa and Ueha, 1991; Morita et al., 1995, 1996, 1998, 1999, 2000b; Muralt,

1999; Muralt et al., 1995; Racine et al., 1998; Saigoh et al., 1995). USMs typically use

bulk PZT ceramic plates or bars which exhibit a high level of piezoelectric activity and

can generate large forces from moderate applied electric fields, such as the stator of Dong

(Fig. 1.4) which is a plate. However, bulk ceramic PZT is relatively fragile and has higher

manufacturing cost as it must be individually glued in place.
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Researchers shifted the stator design to a composite structure of piezoelectric ce-

ramics on a metal tube, such as the stator of Suzuki (Fig. 1.2) and Cagatay (Fig. 1.7).

A PZT ceramic/metal composite tube was used as the stator instead of a simple PZT

tube, as a PZT/metal composite stator can produce higher power output, and better

reliability.

For miniaturization, some special fabrication techniques for piezoelectric materials

have been considered, such as the thin or the thick-film technology. Materials deposited

using thin-film techniques, such as, the Flynn motor (Fig. 1.6), exhibit high level of

piezoelectric activities. However the thickness is limited to a few microns and this implies

that the torque and power generated will be very small. In addition, their deposition

processes, being typically sputtering, sol-gel, or hydrothermal techniques, were rather

expensive.

Thick films are based on standard screen printing technology, which has been widely

used within the microelectronics industry for many years. It can produce thicker layers

than thin-film deposition methods. Therefore thick-film printed PZT layers are capable

of generating larger actuating forces than thin film layers.

1.2.4 Driving electronics

The driving circuit in USMs can be single, double or even four channels types (Aoyagi et

al., 1995; Bai et al., 2004; Iijima et al., 1992; Lebrun et al., 1999; Manceau and Bastien,

1995; Satonobu et al., 2000, 1996; Shimanuki et al., 1994; Takano et al., 1999; Wen et al.,

2004, 2003). In principle, USM requires multiple phase electrical actuations to realize

the elliptic motion, such as the Dong motor (Fig. 1.4) and the Flynn motor (Fig. 1.6).

However, for a miniature USM, single phase actuation has been actively investigated such

as Kumada motor (Fig. 1.1) and Cagaty motor (Fig. 1.7). However, the controllability

that multiple channels provided makes the USM more stable.
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1.2.5 Summary of design considerations

As electromagnetic motors produce relatively low torque at high speed, most applications

require that the output first be geared down so as to produce higher torque output at

more manageable speeds. Unfortunately, gears not only contribute additional mass, but

they also introduce considerable loss and sometimes undesirable backlash. Consequently,

the efficiency of a geared motor is notably less than that of the motor alone. Thus,

the industry is interested to achieve a simple, low cost and high reliability motor with

the advantages such as high torque at low speed, flexible configurable shape and quick

response time. This has resulted in the emergence of USM with different designs and

characteristics as described above. Most design efforts are confined to the vibration

characteristic of stator, form of piezoelectric material, geometry of stator, and driving

electric circuit.

For the stator, a circular plate or an annular ring with uniform thickness is widely

adopted. However, the application of plates with varying thickness in USM is lacking

or not well publicized in the open literature. In addition, in a traveling wave USM such

as one with a ring stator, its wave number is fixed at one single value, say 9, after the

motor has been assembled. The working resonant frequency corresponding to this wave

number is a single value although it may be adjusted within a narrow range in practice.

Multi-driving wave-number within one USM may potentially perform better.

1.3 Review on modeling effort of USM

Parallel to the design effort, the numerical modeling of this device has attracted strong

interest as it facilitates in-depth understanding and further innovation. Many different

numerical models, such as those derived from equivalent electric circuit model, Kirchhoff

or Mindlin plate model combined with elastic foundation or half-space contact model,

and three-dimensional (3-D) finite element (FE) model, have been developed depending
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on the purpose, such as for simulating the overall behavior and for optimizing the design

parameters and operational characteristics of USM.

1.3.1 Equivalent electric circuit method

The equivalent electric circuit concept based on electrical and mechanical analogies is

briefly introduced as details can be found in the literature (Ikeda, 1990; Mason, 1942,

1958). An inductance, capacitance, and resistance in series satisfy the differential equa-

tion

L
d2q

dt2
+ R

dq

dt
+

q

C
= E (1.12)

where E is the applied electrical potential; L, R and C are the inductance, resistance

and capacitance of the circuit, respectively; and q is the charge. It has the same form as

that of the governing equation for an inertial-spring-damping mechanical system given

by

M
d2u

dt2
+ Cd

du

dt
+ Ku = F (1.13)

where F is the applied force; M , Cd, and K respectively, are the mass, damping and

stiffness of the mechanical system; and u the displacement of M from its equilibrium

position. Using such an analogy allows Eq. (1.13) to be solved using well-developed

electrical network theory and is especially useful in cases involving electromechanical

coupling inherent in USM system. In USM, the stator generally operates at some resonant

frequency at which a particular mode shape of vibration can be associated with. By

assuming a displacement field based on this mode shape, the stator can be simplified as

an inertial-spring-damping system, which in turn can be represented by an equivalent

electrical circuit system. The effect of contact interface can be accounted for mainly as

frictional losses, which can be analogously represented by a diode and a resistor in series,

where the breakdown voltage of the diode is equivalent to the change in state from stick

to slip between the stator and the rotor, and the resistance is analogous to the frictional

losses. The rotor is simplified as a rotary system with rotary inertia and stiffness, and
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similarly represented by an equivalent electrical circuit. The USM is thus simplified as an

equivalent electrical circuit with computationally efficient solution (Lerch, 1990; Sherrit

et al., 1999), at the expense of simplification in the geometry and contact interface details.

However, to accurately compute the model parameters, such as mass, damping, stiffness

and force, is still a topic of research (Aoyagi et al., 1996; Chu et al., 2002; Hirata and

Ueha, 1993, 1995).

1.3.2 Modeling based on Kirchhoff or Mindlin plate theory

Hagood and McFarland (1995) first presented a complete framework for modeling USM

as well as a design tool for optimizing prototypes using plate-based analytical model. The

traveling wave dynamics of the stator is simulated using the Kirchhoff thin plate model

in conjunction with the Rayleigh-Ritz method and assumed modes, including the modes

related to voltage to account for the piezoceramics. Nonlinear normal and tangential

contact interface forces between the rotor and stator are obtained by approximating the

effect of the rotor as a linear spring (Winkler elastic foundation model). A Runge-Kutta

second and third-order routine is utilized to perform time integration with Rayleigh

damping. Many published methods can be considered as extension of the framework for

stator dynamics and contact interface or both, propounded by Hagood and McFarland

(1995). For optimization of frequencies and mode shapes of various stator cross-sectional

geometries, Hagedorn and Wallaschek (1992); Hagedorn et al. (1993) analysed the free

vibration of stator ignoring piezoelectric effect using annular plates with radially varying

thickness under Mindlin and Reissner assumption and using the finite difference method.

Friend and Stutts (1997), and Ming and Que (2001) using the classical thin plate model,

and Sun et al. (2002) using the Euler beam model, solved the dynamics of stator by mode

superposition in which the piezoelectric effect is considered as externally applied moment

to avoid solving the original coupled electric and mechanical field equations. Pons et al.

(2003, 2004a,b) analysed the stator dynamics based on the Mindlin plate model. For
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contact interface, detailed review on contact model including visco-elastic foundation

model with/without tangential compliance, elastic half-space and layered elastic half-

space in the normal direction and generalized Coulomb friction model in the tangential

direction can be found in Wallaschek (1998). Other papers involving contact mechanics

in USM include Lu et al. (2001a,b) and Storck and Wallaschek (2003) adopting a visco-

elastic foundation model, Le Moal and Cusin (1999) adopting an elastic half-space model,

and Zhu (2004) adopting a layered elastic half-space model.

The models derived from equivalent electric circuit (1-D), Kirchhoff or Mindlin plate

model (2-D) combined with elastic foundation or half-space based contact model are sim-

ple and computationally efficient; however, there are shortcomings. Firstly, the piezo-

electric coupling effect between the piezoelectric layer and the host structure has been

ignored. The improvement to existing models accounting for this coupling effect (Liu et

al., 2002; Wang et al., 2001) needs to be investigated. Secondly, the stator dynamics in-

cluding its resonant frequency, corresponding model shape and vibration amplitude due

to piezoelectric actuation cannot be estimated accurately because the presence of piezo-

electric ceramics layers and teeth structures necessitate a 3-D model of the geometry of

the stator. Thirdly, in 1-D or 2-D based models, the stator bending profile is always as-

sumed to be unaffected by the interface forces, which causes the results of contact stress

at the interface between the stator and rotor to be inaccurate.

1.3.3 Finite element analysis

The finite element (FE) method can be used to overcome the shortcomings discussed

above. Kagawa et al. (1996) used the FE method to simulate the transient dynamic

response of piezoelectric coupled stator based on the approach by Allik and Hughes

(1970) where the displacements and electrical potential were used as nodal unknowns.

The 3-D FE formulations including variables related to the piezoelectric structures were

given and the discretized equations of motion solved by Newmark integration routine,
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from which the amplitude of stator vibration due to piezoelectric actuation was ob-

tained. Maeno et al. (1992) presented a FE analysis of the rotor/stator contact interface

in USM. First, the free vibration analysis of stator was performed using the commer-

cial software MSC/NASTRANr, in which solid elements were adopted to simulate the

complex geometry of the teeth. Using the computed vibration frequency, the amplitude

of force vibration of stator was estimated experimentally. The steady-state contact re-

sponse was then computed assuming the stator performs a prescribed motion. Although

the FE analysis of piezoelectric coupled stator dynamics (Kagawa et al., 1996) and steady

contact mechanics (Maeno et al., 1992) have been published separately, a complete FE

model of an USM for steady and transient overall behavior analysis is still unavailable in

the open literature.

1.4 Objective and scope of study

Based on the above review, it can be noted that (a) none of the existing USM analytical

models account for the coupling effect between the piezoelectric layer and the host struc-

ture; and (b) improvements can be made to accurately model the interaction between

piezoelectric coupled dynamics and the non-linear contact (i.e. the whole system includ-

ing the rotor, stator and piezoelectric layer, should be considered as a coupled dynamic

structure). With regards to the design of USM, none of the existing USM (a) caters for

the possibility of multi-driving wave-number operation on one motor; and (b) takes into

account varying thickness in the actual stator when determining the point of application

of the frictional force to effect the rotation of the disk. Therefore, the work accomplished

in this thesis is guided by the following two main objectives:

(a). To develop a model for the accurate prediction of piezoelectric traveling wave

USM performance. The scope specific to this is a piezoelectric coupled plate model for

the dynamics of stator and a FEM model for the overall behavior analysis of USM.
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(b). To improve the design of the piezoelectric traveling wave USM by investigating

novel multiple driving wave number operation and analyzing of free vibration character-

istics of non-uniform thickness stator.

This thesis reports on the attempt to solve the highly nonlinear problem in perfor-

mance prediction and design of USM. The emphasis is on the FEM analysis of an USM

overall behavior, free vibration of the piezoelectric coupled stator, free vibration of the

annular plates with varying thickness, and the realization of an USM with multiple wave

numbers.

1.5 Outline

Chapter One introduces the background and concept of operation of USMs. A summary

of the state-of-the-art and accomplishments to date is given, including the limitations of

current design and modeling efforts. Based on the review, the objective of this research

is formulated.

Chapter Two presents the solution for the free vibration of non-uniform thickness

annular plate. To illustrate the use of the closed form solutions presented, free vibra-

tion analyses of a thin annular plate with linear and nonlinear thickness variation are

performed and the results compared with published exact solutions and those from 3D

FEM.

Chapter Three discusses a model for the stator taking into account piezoelectric

coupling effect. An analytical model for the free vibration analysis of piezoelectric coupled

thin and thick circular plate is presented. Numerical investigations are performed and

the results are verified by the results of three-dimensional finite element analyses using

ABAQUSr. The formulation and solution presented is simpler and more compact than

that previously published.



1.5: Outline 19

Chapter Four proposes a complete three-dimensional finite element (FE) framework

combining the piezoelectric coupled stator dynamics and intermittent-contact mechanics

to simulate the steady state and transient behavior of ultrasonic motor (USM), which

produces fairly accurate results at moderate computational cost. The approaches pre-

sented here provide an accurate framework at moderate computation cost for modeling

and analysis of USM performance and serve as a design tool for optimizing prototypes.

Chapter Five realizes experimentally an USM with multiple wave numbers. Design,

fabrication and characterization of such motor are performed. The experimental per-

formances of the multiple wave numbers USM are presented, and the control variables,

wave number and amplitude, compared. As expected, the multiple wave numbers motor

significantly outperforms the single wave number motor with regard to the range of speed

and torque output, and provides extra control flexibility.

Finally, the conclusions are presented in Chapter Six along with recommendations

for further work.



CHAPTER 2

Exact Closed Form Solutions for
Transverse Vibration of a Class of
Non-Uniform Annular Plates

In an USM, the piezoceramics excite a traveling flexural wave within the stator. This

will cause the rotor to be in contact with the stator placed beneath it. The horizontal

frictional force between the moving stator surface and the rotor causes the rotor to spin.

The contact point to effect rotation of the disk is critical in the construction of an USM.

The location of this point is affected by the vibration mode and the variation of the

thickness of the stator. In this respect, it would be relevant to study as a preliminary

step, the transverse vibration of a non-uniform thickness annular plate, prior to study-

ing that of a piezoelectric coupled annular structure of non-uniform thickness. After a

brief background of the vibration of circular plate with varying thickness is addressed

in Section 2.1, a variable transform is defined in Section 2.2, which re-casts the govern-

ing equation for the vibration of circular plate with varying thickness to a generalized

hypergeometric equation. This leads to closed form solutions which are presented in

Section 2.3. Their application and comparison of solutions with those from FE analysis

are addressed in Sections 2.4 and 2.5.
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2.1 Vibration of circular plate with varying thickness

The transverse vibration of plates of various shapes has been studied by many researchers

over a long period of time owing to its wide applications in engineering design. The

simplicity and widespread use of circular plates are borne by the many publications

on their behavior under different boundary conditions. For circular plate with uniform

thickness, Airey (1911) and Carrington (1925) gave exact solutions in terms of Bessel

functions. Other related references may be found in the well-known work of Leissa (1969)

and his subsequent articles (Leissa, 1977, 1978, 1981a,b, 1987a,b).

While considerable work has been done on the vibration of circular plates with uni-

form thickness, there is no lack of publications on the vibration of thin circular and annu-

lar plates with variable thickness either. Since the response of a plate with non-uniform

thickness can be formulated as a set of differential equations with variable coefficients,

many approximate solutions have been proposed. Raleigh-Ritz method has been ap-

plied to obtain approximate frequencies and mode shapes of annular plates with various

forms of thickness variations (Bambill et al., 1996; Romanelli and Laura, 1997; Singh

and Chakraverty, 1992; Singh and Hassan, 1998; Singh and Saxena, 1995; Thurston and

Tsui, 1955). Perturbation method (Yang, 1993) has been employed in analyzing the

axi-symmetric free vibration of a circular plate with arbitrary but gradual variation in

thickness. The generalized differential quadrature rule (GDQR) was utilized by Wu and

Liu (2001) for the free vibration of solid circular plates with variable thickness and elastic

constants. In their work, the thickness of the circular plates can vary radially in specific

continuous form such as exponential and linear variation. However, these methods are

mostly numerical and there are relatively few analytical solutions available for plates with

variable thickness. Analytical solutions in terms of Bessel functions for axi-symmetric

vibrations of circular plate with linear varying thickness and Poisson ratio µ = 1/ 3 were

given by Conway et al. (1964). Exact closed form solutions, as a function of the power of
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the radius, were obtained by Lenox and Conway (1980) for the transverse vibrations of

a thin annular plate having a parabolic thickness variation. Wang (1997) gave a power

series solution method for the axi-symmetric vibration of a thin annular plate whose

thickness is constant in the circumferential direction but varies arbitrary in the radial

direction.

In this chapter, the free vibration analysis of thin annular plate with thickness vary-

ing monotonically in the radial direction in arbitrary power form is presented. Transfor-

mation of variable is introduced such that the governing equation for the free vibration

of varying thickness in power form can be transformed into a fourth-order generalized

hypergeometric equation. The corresponding analytical solution in terms of generalized

hypergeometric function is presented, which encompasses existing published solutions as

special cases. As an illustration, the free vibration solutions of thin annular plate with

three types of thickness variations based on the presented solutions are discussed, namely,

variation with power of (a) 1 (i.e. linearly increasing thickness), (b) 1
2 (non-linear increas-

ing thickness), and (c) −1
2 (non-linear decreasing thickness). The results are compared

with those from three-dimensional (3D) finite element method (FEM). In particular, the

change in natural frequency is examined as this has relevance to the operational frequency

and characteristics of USM.

2.2 Transformation of governing equation

Consider an annular plate shown in Fig. 2.1, which is generated by rotating the line

z = ±1
2h0( r

a)m about the z-axis, 0 < b ≤ r ≤ a, where b and a are the inner and outer

radius of the plate respectively, m is a positive real number and h0 is the maximum

thickness which occurs at the outer radius of the annular plate. When m < 0, the

rotating line is modified as z = ±1
2h0( r

b )
m where the method of analysis is the same as

that when m > 0 by replacing ′a′ with ′b′; hence, only the case m > 0 is presented herein.

The governing equation using the cylindrical coordinate system for the free vibration of
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m<0

m>0h0

h0

b

a

z=±h0(r/a)
m
/2

z=±h0(r/b)
m
/2

Figure 2.1: Geometry of annular plate with varying thickness

such thin annular plate can be expressed as (Lenox and Conway, 1980)

r4 ∂4w

∂r4
+ (6m + 2)r3 ∂3w

∂r3
+ r2[(9m2 + 3mµ + 3m− 1)

∂2w

∂r2
+ 2

∂4w

∂θ2∂r2
]

+r[(9m2 − 3mµ− 3m + 1)
∂w

∂r
+ (6m− 2)

∂3w

∂θ2∂r
]

+(9m2µ− 9m− 3mµ + 4)
∂2w

∂θ2
+

∂4w

∂θ4
+

12ρ(1− µ2)a4

Y h2
0

(
r

a
)4−2m ∂2w

∂t2
= 0

(2.1)

where Y is the Young’s modulus, µ the Poisson ratio . Assume the displacement takes

on the separable form:

w(r, θ, t) = z(r)eipθeiωt (2.2)

Substituting Eq. (2.2) into Eq. (2.1) leads to a homogeneous linear ordinary differential

equation with variable coefficients.

r4 d4z

dr4
+ (6m + 2)r3 d3z

dr3
+ r2(9m2 + 3mµ + 3m− 1− 2p2)

d2z

dr2

+r[(9m2 − 3mµ− 3m + 1)− (6m− 2)p2]
dz

dr

+[p4 − (9m2µ− 9m− 3mµ + 4)p2 − 12ρ(1− µ2)a4ω2

Y h2
0

(
r

a
)4−2m]z(r) = 0

(2.3)

Solutions for specific simplified forms of Eq. (2.3) have been presented in published liter-

ature. When m = 0 (i.e. uniform thickness), Eq. (2.3) takes on the usual Bessel function

solutions. When m = 1 (i.e. linearly varying thickness), p = 0 (axi-symmetric vibration),

and µ = 1/3, Eq. (2.3) can be simplified to a fourth-order Bessel equation (Conway et

al., 1964). When m = 2 (i.e. parabolic thickness variation), Eq. (2.3) can be simplified

to a fourth-order Euler equation (Lenox and Conway, 1980). There appears to be no

other published closed form solutions for annular plate with thickness varying in power

form with arbitrary constants.
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In this chapter, a variable transformation is defined such that Eq. (2.3) can be

transformed into a fourth-order generalized hypergeometric equation, which covers all

cases, except for m = 2, given by

x =
1

(4− 2m)4
(

ω

ω0
)2(

r

a
)4−2m (2.4)

where

ω0 =
h0

a2

√
Y

12ρ(1− µ2)

Through this transformation, Eq. (2.3) can be written as
{

1− 1
x

4∏

i=1

(ϑ + γi − 1)

}
z(x) = 0 (2.5)

where

ϑ = x
∂

∂x

and

γi = 1− ai

2m− 4
, i = 1..4

a1, a2 = −1 +
3
2
m∓ 1

2

√
∆1 + 2

√
∆2

a3, a4 = −1 +
3
2
m∓ 1

2

√
∆1 − 2

√
∆2

∆1 = 9m2 − 6(1 + µ)m + 4(1 + p2)

∆2 = (9(1− µ)2 + 36µp2)m2 − 24(1 + µ)p2m + 16p2

(2.6)

2.3 Closed form solutions

Eq. (2.5) is a generalized hypergeometric equation. According to the Frobenius theory,

if no two values of γi are equal or differ by an integer value, the solutions of Eq. (2.5) are

non-logarithmic and may be written in the form (Pochhammer, 1888; Smith, 1939)

z1(x) = x1−γ1
0F3([ ], [1 + γ2 − γ1, 1 + γ3 − γ1, 1 + γ4 − γ1], x)

z2(x) = x1−γ2
0F3([ ], [1 + γ1 − γ2, 1 + γ3 − γ2, 1 + γ4 − γ2], x)

z3(x) = x1−γ3
0F3([ ], [1 + γ1 − γ3, 1 + γ2 − γ3, 1 + γ4 − γ3], x)

z4(x) = x1−γ4
0F3([ ], [1 + γ1 − γ4, 1 + γ2 − γ4, 1 + γ3 − γ4], x)

(2.7)
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where 0F3([], [1 + γ2 − γ1, 1 + γ3 − γ1, 1 + γ4 − γ1], x) is the generalized hypergeometric

function. The series form of the function pFq is given by

pFq([a1, a2, · · · , ap], [b1, b2, · · · , bq], x) = 1 +
∞∑

k=1

p∏
i=1

(ai)kx
k

q∏
j=1

(bj)kk!
(2.8)

where

(ai)k =
Γ(ai + k)

Γ(ai)
= ai(ai + 1) · · · (ai + k − 1)

Since the infinite series of Eq. (2.8) converges for all finite x if p ≤ q (Rainville, 1960),

the solutions given by Eq. (2.7) are convergent. The complete solution of Eq. (2.5) can

be expressed as

z(x) =
4∑

i=1

cizi(x) (2.9)

where ci are non-zero constants.

If only λ numbers (λ = 2, 3 or 4 in the case plate vibration) of γi are equal or differ by

an integer value, there is no loss of generality in taking λ numbers of γi’s as γ1, γ2, · · · , γλ,

arranged with their real parts in an ascending order. Under these conditions, according to

the theory of Frobenius (Smith, 1939), the solutions zj(x)(j = 1, λ+1, · · · , 4) of Eq. (2.5)

are given by Eq. (2.7) with the remaining zj(x)(j = 2, · · · , λ) in logarithmic form. The

detailed derivations of the logarithmic solutions are presented in Appendix B. The results

for three cases, which span all possible combinations of γi, are given as follows:

(I) When two γi’s are equal or differ by an integer value.

Under this case, λ = 2. z1(x), z3(x) and z4(x) are non-logarithmic solution expressed

by Eq. (2.7). The logarithmic solution, z2(x), is given by

z2(x) = z1(x) ln x + x1−γ1

∞∑

s=0

Ψ10
0sx

s
4∏

i=1

Γ(1− γ1 + γi)
Γ(1− γ1 + γi + s)

+
4∏

i=2

(γi − γ1)
1

xγ1
5F0([1, 1, 1 + γ1 − γ2, 1 + γ1 − γ3, 1 + γ1 − γ4], [ ],

1
x

)

(2.10)

where Ψij
nk is listed in Appendix B.
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(II) When three γ’s are equal or differ by an integer value.

Under this case, λ = 3. Then z1(x) and z4(x) are non-logarithmic solutions given

by Eq. (2.7). There are two logarithmic solutions, namely z2(x) given by Eq. (2.10), and

z3(x) which is given by

z3(x) = 2z̄2(x) ln x− z1(x) ln2 x

+x1−γ1

∞∑

s=0

[(Ψ20
0s)

2 + Ψ20
1s + 2π2]xs

4∏
i=1

Γ(1− γ1 + γi)

4∏
i=1

Γ(1− γ1 + γi + s)

+2x1−γ2

γ2−γ1∑

s=1

(−1)1−sΓ(s)Ψ21
0sx

−s
4∏

i=2

Γ(1− γ1 + γi)
Γ(1− γ1 + γi − s)

+2(−1)γ1+γ2Γ(1− γ1 + γ2)

4∏
i=2

Γ(1− γ1 + γi)

4∏
i=3

Γ(γi − γ2)

×x−γ2
5F0([1, 1, 1 + γ2 − γ1, 1 + γ2 − γ3, 1 + γ2 − γ4], [ ],

1
x

)

(2.11)

where z̄2(x) is listed in Appendix B.

(III) When four γi’s are equal or differ by an integer value.

Under this case, λ = 4. Then z1(x) is the only non-logarithmic solution given by

Eq. (2.7). There are three logarithmic solutions, namely z2(x) given by Eq. (2.10), z3(x)

by Eq. (2.11) and z4(x) which is given by

z4(x) = z1(x) ln3 x− 3¯̄z2(x) ln2 x + 3z̄3(x) ln x

+
6(−1)γ1+γ2

Γ(γ4 − γ3)

4∏

i=2

Γ(1− γ1 + γi)
2∏

i=1

Γ(1− γi + γ3)

×x−γ3
5F0([1, 1, 1 + γ3 − γ1, 1 + γ3 − γ2, 1 + γ3 − γ4], [ ],

1
x

)

+6(−1)γ1+γ2x1−γ2

4∏

i=2

Γ(1− γ1 + γi)
γ3−γ2∑

s=1

Γ(γ2 − γ1 + s)Γ(s)Ψ32
0sx

−s

4∏
i=3

Γ(1 + γi − γ2 − s)

+3x1−γ1

γ2−γ1∑

s=1

Γ(s)(−1)1−sx−s[(Ψ31
0s)

2 + Ψ31
1s + 2π2]

4∏

i=2

Γ(1− γ1 + γi)
Γ(1− γ1 + γi − s)

+x1−γ1

∞∑

s=0

xs[(Ψ30
0s)

3 + Ψ30
2s + 3Ψ30

0s(Ψ
30
1s + 3π2)]

4∏

i=1

Γ(1− γ1 + γi)
Γ(1− γ1 + γi + s)

(2.12)

where ¯̄z2(x) and z̄3(x) are listed in Appendix B.
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2.4 Some special cases

The generalized hypergeometric function encompasses many other special functions.

Thus the proposed solutions can be reduced to other types of special functions for cer-

tain combinations of the parameters m, p, and µ. To compare the present solutions with

existing published results, some special cases are considered.

2.4.1 Solution for plates with uniform thickness

First consider a uniform plate, that is m = 0, for which

γ1 =
1
2
− p

4
, γ2 =

1
2

+
p

4
, γ3 = 1− p

4
, γ4 = 1 +

p

4
(2.13)

It can be shown that
γ1 = γ2 − n
γ3 = γ4 − n

}
if p is even

γ1 = γ4 − n
γ3 = γ2 − n

}
if p is odd

(2.14)

where n is a non-negative integer. Thus whenever p is odd or even, z1(x)and z3(x) are

always of non-logarithmic form given by Eq. (2.7) while z2(x) and z4(x) are always of

logarithmic form given by Eq. (2.10). To simplify the solution and reduce to published

closed form solution, the relationship between hypergeometric functions z1(x), z3(x) and

Bessel functions are shown in the following.

The substitution of Eq. (2.13) into Eq. (2.7) gives

z1(x) = x
( 1

2+
p
4 )

0F3([ ], [1 +
p

4
,
3
2
,
3
2

+
p

4
], x)

=
(p + 1)!
2(p+2)

∞∑

k=0

(2x
1
4 )[2(2k+1)+p]

(2k + 1 + p)!(2k + 1)!

(2.15)

z3(x) = x
p
4 0F3([ ], [

1
2

+
p

2
,
1
2
, 1 +

p

2
], x)

=
p!
2p

∞∑

k=0

(2x
1
4 )[2(2k)+p]

(2k + p)!(2k)!

(2.16)
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The combination of Eqs. (2.15) and (2.16) may be re-written as a combination of the

series
∞∑

k=0

(2x
1
4 )(2k+p)

(k + p)!(k)!
and

∞∑

k=0

(−1)k(2x
1
4 )(2k+p)

(k + p)!(k)!

or in Bessel function form as

Ip(4x
1
4 ) and Jp(4x

1
4 )

where J is the Bessel function and I is the modified Bessel function of the first kind.

These Bessel function solutions of Eq. (2.5) considering the variable transform of

(2.4) are the conventional solutions for plate of uniform thickness (Rayleigh and Lindsay,

1945). The relationship between the hypergeometric functions z2(x), z4(x) and Bessel

functions can be similarly shown.

2.4.2 Solution for plates with linearly varying thickness

Another special case is for plates with linearly varying thickness. When µ = 1/3, m

= 1 (linearly varying thickness) and p = 0 (axi-symmetric vibration), the solution may

be written in terms of Bessel functions (Conway et al., 1964). For this case, γi can be

obtained according to Eq. (2.4) as

γ1 =
1
2
, γ2 =

3
2
, γ3 = 1, γ4 = 2 (2.17)

Since

γ2 − γ1 = 1, γ4 − γ3 = 1

z1(x) and z3(x) are of non-logarithmic form given by Eq. (2.7). Substituting Eq. (2.17)

into Eq. (2.7) gives

z1(x) = x
1
2 0F3([ ], [

3
2
, 2,

5
2
], x) =

3
2

∞∑

k=0

(4x
1
2 )(2k+1)

(2k + 1)!(2k + 3)!
(2.18)

z3(x) = 0F3([ ], [
1
2
,
3
2
, 2], x) =

1
2

∞∑

k=0

(4x
1
2 )(2k)

(2k)!(2k + 2)!
(2.19)
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z2(x) and z4(x) are of logarithmic form given by Eq. (2.10). Substituting Eq. (2.17) into

Eq. (2.10) gives

z2(x) = z1(x) ln x +
√

x
∞∑

s=0

4∏

i=1

Γ(1
2 + γi)Ψ10

0sx
s

Γ(1
2 + γi + s)

+
4∏

i=2

(γi − 1
2
)

1√
x

5F0([1, 1, 0,
1
2
,−1

2
], [ ],

1
x

)

(2.20)

To obtain z4(x), re-arrange γi shown in Eq. (2.17) as the order γ1 = 1, γ2 = 2, γ3 =

1
2 , γ4 = 3

2 and then substituting into Eq. (2.10), one obtains

z4(x) = z3(x) ln x +
∞∑

s=0

4∏

i=1

Γ(γi)Ψ10
0sx

s

Γ(γi + s)
+

4∏

i=2

(γi − 1)
1
x

5F0([1, 1, 0,
3
2
,
1
2
], [ ],

1
x

) (2.21)

The combination of Eq. (2.18) and Eq. (2.19) may be re-written as a combination of the

series
∞∑

k=0

(4x
1
2 )k

k!(k + 2)!
and

∞∑

k=0

(−1)k(4x
1
2 )k

k!(k + 2)!

or in Bessel function form as

J2(4x
1
4 )√

x
and

I2(4x
1
4 )√

x

In the same manner, the combination of the other two series in Eq. (2.20) and Eq. (2.21)

is a linear combination of the solution

K2(4x
1
4 )√

x
and

Y2(4x
1
4 )√

x

where Y is the Bessel function and K is the modified Bessel function, both of the second

kind.

These Bessel function solutions of Eq. (2.5) considering variable transformation (2.4)

are the forms presented by Conway et al. (1964)

2.5 Numerical examples

2.5.1 Application of logarithmic solution

To check the correctness of the proposed solutions presented in the chapter, the axi-

symmetric free vibration of an ultra-high molecular weight polyethylene (UHMWPE)
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(Evans and Alderson, 1992; Scarpa and Tomlinson, 2000) plate is studied under two

types of boundary conditions: C-C, F-C, where the first and second letter denotes the

edge condition at the inner and outer edge, respectively, and C denotes clamped and F

denotes free. The material properties and geometry of the UHMWPE plate are shown

Table 2.1: Material and geometrical properties of annular plate

Property Steel UHMWPE

Young’s module Y (GPa) 210 3

Mass density ρ (kg/m3) 7800 800

Outer radius a (m) 1.0 1.0

Inner radius b (m) 0.1 0.5

Poisson ratio µ 0.3 -19/45
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Figure 2.2: Geometry of annular plate with m = 1, 1/2, -1/2, 6/5

in Table 2.1 and Fig. 2.2. The reason to choose such material and geometry is that for

m = 6/5, µ = -19/45 (negative Poisson ratio) and p = 0 (axi-symmetric vibration), γi

according to Eq. (2.4) are γ1 = 0, γ2 = 1, γ3 = 2, γ4 = 3, which is the most complex

case in the proposed solutions; that is, the free vibration solutions can be written in

terms of one non-logarithmic form z1(x) given by Eq. (2.7) and three logarithmic forms

z2(x), z3(x) and z4(x) given by Eqs. (2.10)-(2.12) respectively. A finite element model is

also prepared using 13,659 triangular shell elements, STRI3, which is based on Kirchhoff
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Table 2.2: Comparison of frequencies (Hz) of annular plate under C-C, F-C boundary
conditions between CPT FEM and proposed results for UHMWPE plate

n p C-C† F-C

FEM Proposed Error (%) FEM Proposed Error (%)

0

0 61.991 62.037 0.07% 20.102 20.123 0.10%

1 166.42 168.04 0.96% 76.381 76.609 0.30%

2 324.10 326.97 0.88% 182.70 183.74 0.57%

p = number of nodal diameters.

n = number of nodal circles.

C = clamped, F = free.

†The first letter denotes the condition at the inner edge.

thin plate theory (CPT), to assess the validity of the results provided by the analytical

approach. Lancozs iterative technique was adopted to compute the fundamental natural

frequency of the plate. The analytical and numerical results are compared in Table 2.2.

The good agreement of less than 1% maximum difference indicates that the correctness of

the proposed solutions in this chapter, especially for the case of materials with negative

Possion’s ratio.

2.5.2 Effect of plate with varying thickness

To investigate the application of the proposed solutions in conventional materials, con-

sider an annular steel plate where the Young’s modulus, mass density and geometric

parameters are listed in Table 2.1. Fig. 2.2 plots the geometry of each annular plate.

Their FEM mesh are prepared using 3D solid element with 20 nodes, C3D20R, and Lan-

cozs iterative technique with m = 1 (linear increasing thickness, 1,242 elements), m =

1/2 (non-linear increasing thickness, positive power, 3,195 elements), and m = -1/2 (non-

linear decreasing thickness, negative power, 2,880 elements). The frequencies for the free

vibration of the above plate with 0 to 2 diametrical nodes and 0 to 2 nodal circles are

investigated using the solution of Eq. (2.7) and compare well with those from 3D FEM

obtained using ABAQUSr 6.3, as summarized in Table 2.3. For example, when m = 1,

1/2 and -1/2, the respective maximum errors of 2.4%, 6.8% and 3.4% occur at p = 2 and

n = 2 under clamped-clamped boundary condition respectively. Such agreement shows
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Table 2.3: Comparison of frequencies (Hz) of annular plate under C-C, F-C boundary
conditions between 3D FEM and proposed results for m = 1, 1/2, -1/2

m=1

n p
C-C† F-C

FEM Proposed Error (%) FEM Proposed Error (%)

0

0 223.460 223.772 0.14% 149.250 149.603 0.24%

1 258.170 258.972 0.31% 218.330 219.379 0.48%

2 363.450 366.295 0.78% 352.450 355.647 0.91%

1

0 580.010 582.352 0.40% 382.440 385.354 0.76%

1 618.090 622.285 0.68% 468.700 473.471 1.02%

2 737.360 747.363 1.36% 665.410 675.195 1.47%

2

0 1097.600 1114.610 1.55% 750.720 762.903 1.62%

1 1136.600 1156.676 1.77% 833.160 848.420 1.83%

2 1257.900 1287.404 2.35% 1055.900 1079.504 2.24%

m=1/2

n p
C-C† F-C

FEM Proposed Error (%) FEM Proposed Error (%)

0

0 302.120 306.027 1.29% 153.210 153.859 0.42%

1 336.990 342.054 1.50% 273.710 276.750 1.11%

2 459.550 468.545 1.96% 444.780 452.562 1.75%

1

0 821.290 849.045 3.38% 491.620 499.910 1.69%

1 869.350 900.462 3.58% 670.370 688.640 2.73%

2 1027.200 1069.060 4.08% 956.330 989.164 3.43%

2

0 1573.400 1669.238 6.09% 1044.400 1081.779 3.58%

1 1626.600 1728.966 6.29% 1229.000 1286.276 4.66%

2 1797.400 1919.878 6.81% 1610.100 1699.110 5.53%

m=-1/2

n p
C-C† C-F

FEM Proposed Error (%) FEM Proposed Error (%)

0

0 223.240 224.421 0.53% 47.783 47.813 0.06%

1 227.610 229.730 0.93% 235.320 237.822 1.06%

2 261.450 264.359 1.11% 277.680 281.165 1.26%

1

0 584.750 594.186 1.61% 227.030 228.568 0.68%

1 597.870 609.392 1.93% 605.200 617.117 1.97%

2 658.090 671.925 2.10% 669.630 684.120 2.16%

2

0 1112.500 1145.732 2.99% 590.600 600.318 1.65%

1 1132.200 1168.831 3.24% 1139.100 1175.481 3.19%

2 1212.400 1253.376 3.38% 1222.500 1263.459 3.35%

p = number of nodal diameters.

n = number of nodal circles.

C = clamped, F = free.

†The first letter denotes the condition at the inner edge.
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that the proposed solutions based on CPT are closed to those from FE analysis based on

3D elasticity theory.

The variation of the ratio of frequencies for plates with varying thickness having

maximum thickness h0 = 1/15 to those for a plate with uniform thickness of h0 = 1/15

under clamped-clamped boundary conditions is plotted in Fig. 2.3. The variation of the
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Figure 2.3: Frequency ratio (varying thickness to uniform plate) for different m

first two frequencies with the taper (represented by the power of thickness function) of

the plate is illustrated. When the power m is in the range of -1 to 0, the thickness tapers

from a value of h at the centre to a smaller value at the circumference. The natural

frequency, say ωN , will be lower than that of a uniform plate of thickness h, say ωU . As

m increases from -1 to 0, the taper reduces until the plate thickness reaches h when m

= 0, implying that the natural frequency increases from ωN to ωU . This is reflected in

Fig. 2.3. Similarly, when the power m is in the range from 0 to 1, the thickness tapers

from h at the outer edge to a smaller value at the centre. The natural frequency, say

ωP , will be lower than ωU . As m decreases from 1 to 0, the taper reduces until the plate

thickness reaches h when m = 0, implying that the natural frequency increases from ωP

to ωU . This is again consistent with the results of Fig. 2.3. Since ωP > ωN as the plate is
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stiffer where more materials are concentrated towards the circumference, it is consistent

that the negative power of thickness function have much effect on the frequencies of the

plate than positive power. In addition, when the inner radius b increases, the variation

of the frequencies of the plate with negative power varying thickness became larger while

that of the plate with positive power varying thickness decreases. This is because the

mass of the plate with negative power varying thickness decreases much more than that

of the plate with positive power varying thickness with the increased inner radius b.
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Figure 2.4: Convergence conditions for different m and p (where g1 = γ2 − γ1, g2 =
γ3 − γ1, g3 = γ4 − γ1)

Another issue to note is the different convergence conditions of hypergeometric func-

tions under negative and positive powers. From Eq. (2.7), one can see the rate of conver-

gence of hypergeometric function is dependent on these difference g1 = γ2−γ1, g2 = γ3−γ1

and g3 = γ4 − γ1. Fig. 2.4 plots the summation of gi(i = 1 · · · 3) and their bi- and tri-

product. For p = 0, it is easy to see the slowest convergence rate occurs at m near zero

and such conclusion may not hold for p = 1; in general, trial and error may be necessary

to ensure convergence. In this chapter, all hypergeometric functions are calculated using

20 terms because the 21st term is less than 10−30 even for the slowest convergence case.
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2.6 Conclusions

The general analytical solutions in terms of generalized hypergeometric function for the

free vibration of thin annular plate with thickness varying monotonically in arbitrary

power form are presented, which agree with published solutions as special cases. The

solutions are verified by comparing with those from Kirchhoff-based and 3D FEM for

plates with linear increasing, non-linear increasing and non-linear decreasing thicknesses

in the radial direction. The results are consistent, indicating that the negative power

of thickness function have a greater effect on the frequencies of the plate than positive

power. In addition, when the inner radius b increases, the variation of the frequencies of

the plate with negative power varying thickness became larger while that of the plate with

positive power varying thickness decreases. Although the solution technique presented in

this chapter is based on Kirchhoff plate model, the same approach can be used to solve

the free vibration problem of thick plate with varying thickness based on the Mindlin

plate model.



CHAPTER 3

Free Vibration Analysis of
Piezoelectric Coupled Thin and
Thick Annular Plate

In an USM, the stator is usually modeled as an annular plate with surface-mounted piezo-

ceramics patches. As discussed in Chapter 1, the analysis of stator with full piezoelectric

coupling effect is important for the design of USMs. However, piezoelectric coupled effect

and the laminated nature of the stator have not been modeled and published completely

in the open literature. Hence, there may be a need to provide a more accurate model

to fully study the coupled piezoelectric effect. In Chapter 2, the free vibration analysis

of annular plate with non-uniform thickness has been performed to find the effect of

varying thickness on the resonant frequencies of the plate. In this chapter, the coupling

effect between the piezoelectric layer and the host structure is investigated to show its

relationship with the resonant frequencies of the plate. After a brief background on the

vibration of piezoelectric coupled structures in Section 3.1, the strain and stress compo-

nents in piezoelectric sandwich plate are introduced in Section 3.2. Kirchhoff and Mindlin

plate theories are addressed in Sections 3.3 and 3.4. The results are compared with those

from FE analysis in Section 3.5.
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3.1 Vibration of piezoelectric coupled plates

The study of embedded or surface-mounted piezoelectric materials in structures has re-

ceived considerable attention in recent years because piezoelectric materials are more

extensively used either as actuators or sensors. In order to effectively utilize the piezo-

electric effect and actuating properties of piezoelectric materials, the interaction between

the host structure and piezoelectric patch must be well understood. Ding et al. (1996)

obtained the general solution for the dynamic response of a transversely isotropic piezo-

electric medium. Chen (1996) simplified the equations of motion of a spherically isotropic

elastic medium with radial non-homogeneity by adopting three displacement functions

and considered some vibration problems of spherical shells. Sun and Zhang (1995) and

Zhang and Sun (1999) presented their research on the analysis of a sandwich beam and

plate structure containing a piezoelectric core, where an electric field in the thickness

direction may generate shear deformation within the core. Models for composite struc-

tures with piezoelectric materials as sensors and actuators have also been published (Han

and Lee, 1998; Na and Librescu, 1998). In the latter addressing the mechanics model for

the analysis of the coupled structure, the distribution of the electric potential is assumed

to be uniform in the longitudinal direction of the piezoelectric actuator and linear in

its thickness direction, which may violate Maxwell static electricity equation. Wang et

al. (2001) and Liu et al. (2002) presented their research on the free vibration of piezo-

electric sandwich thin and thick circular plates, respectively. Their hypothesis that the

distribution of electric potential along the thickness direction in piezoelectric layer can

be represented by a sinusoidal function was validated by FE and analytical solutions

satisfying Maxwell static electricity equation were presented.

In the present work, through the transformation of variable suggested by Mindlin

(1951), analytical solutions for the free vibration of piezoelectric coupled annular plate

based on Kirchhoff plate model (otherwise known as classical plate theory, or in short,
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CPT) and the Mindlin plate model (also known as improved plate theory or FSDT) are

presented. A sinusoidal function (Wang et al., 2001) is used to describe the distribution

of electric potential along the thickness direction of both thin and thick plates. Maxwell

static electricity equation is included as one of the governing equations. Numerical in-

vestigations are performed for annular plates bonded by two piezoelectric layers and the

results are verified against three-dimensional (3D) FE analysis using ABAQUSr Version

6.3. The applicability of the proposed models is examined by studying the effect of differ-

ent thickness ratios of piezoelectric layer to host plate on the vibration of annular plate.

Comparing with the published solutions of piezoelectric coupled plate (Wang et al., 2001;

Liu et al., 2002), the proposed solutions are more compact and simpler because by using

variables transformation, the governing equation - one 6th order differential equation can

be decoupled to three 2nd order differential equations.

3.2 Strain and stress components in piezoelectric sandwich
plate

(a)

Elevation
(b) Plan

z

r

r0

r1

r1 r0

2h

h1 Part1: host 
structures

Part2:
piezoelectric
layers

Figure 3.1: Annular plate surface-mounted with two piezoelectric layers

Fig. 3.1 shows the cross section of a laminated annular plate consisting of one host

layer and two piezoelectric layers. Both top and bottom surfaces of each piezoelectric layer

are fully covered by electrodes that are shortly connected. The cylindrical coordinate

system is adopted where the r−θ plane is coincident with the mid-plane of the undeformed

plate. For such plate structures, the bending and twisting moments , and the transverse
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shearing forces (all in per unit of length) are defined in the customary manner

(Mrr,Mθθ,Mrθ) =
∫

(σrr, σθθ, τrθ)zdz (3.1a)

(Qr, Qθ) =
∫

(τrz, τθz)zdz (3.1b)

where σrr, σθθ are normal stress components , and τrθ, τrz, τθz are shear stress components

in the plate.

The kinematic fields in the host plate and piezoelectric layer are given by

εrr =
∂ur

∂r
(3.2a)

εθθ =
ur

r
+

∂uθ

r∂θ
(3.2b)

γrθ =
∂ur

r∂θ
+

∂uθ

∂r
− uθ

r
(3.2c)

γrz =
∂ur

∂z
+

∂uz

∂r
(3.2d)

γθz =
∂uθ

∂z
+

∂uz

r∂θ
(3.2e)

where εrr, εθθ , γrθ, γrz, and γθz are the normal and shear strain components, respectively;

and uz, ur , and uθ are the displacements in the transverse, radial and tangential direction

of the plate, respectively.

The constitutive relations in the host plate are expressed as

σh
rr =

Y

1− µ2
(εrr + µεθθ) (3.3a)

σh
θθ =

Y

1− µ2
(εθθ + µεrr) (3.3b)

τh
rθ =

Y

2(1 + µ)
γrθ (3.3c)

τh
rz =

Y κ2

2(1 + µ)
γrz (3.3d)

τh
θz =

Y κ2

2(1 + µ)
γθz (3.3e)

where the superscript h represents the variables in the host structure; Y and µ are the

Young’s modulus and Poisson ratio of the host material; and κ2 is the shear factor in

Mindlin plate model (Mindlin, 1951) to correct for the shear modulus, chosen as π2/12

here.
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The constitutive relations in the piezoelectric layer are written as (Wang et al., 2001;

Liu et al., 2002)

σE
rr = C̄E

11εrr + C̄E
12εθθ − ē31Ez (3.4a)

σE
θθ = C̄E

12εrr + C̄E
11εθθ − ē31Ez (3.4b)

τE
rθ =

1
2
(C̄E

11 − C̄E
12)γrθ (3.4c)

τE
rz = κ2CE

55γrz + e15Er (3.4d)

τE
θz = κ2CE

55γθz + e15Eθ (3.4e)

where the superscript E represents the variables in the piezoelectric material; C̄E
11, C̄

E
12

and ē31 are the reduced material constants of the piezoelectric medium for plane stress

problems given by C̄E
11 = CE

11 − (CE
13)

2/CE
33, C̄E

12 = CE
12 − (CE

13)
2/CE

33 and ēE
31 = e31 −

CE
11e33/CE

33; CE
11, CE

12, CE
13, CE

33 and CE
55 are the moduli of elasticity under constant

electric field; e31, e33 and e15 are the piezoelectric constants; and Ez, Er and Eθ are the

electric field intensities in the radial, tangential and transverse direction, respectively.

The latter are given by

Er = −∂φ

∂r
(3.5a)

Eθ = − ∂φ

r∂θ
(3.5b)

Ez = −∂φ

∂z
(3.5c)

where φ is the electric potential at any point of the piezoelectric layers. The corresponding

electric displacements Dr, Dθ and Dz are given by

Dr = e15γrz + ε11Er (3.6a)

Dθ = e15γθz + ε11Eθ (3.6b)

Dz = ē31(εrr + εθθ) + ε̄33Ez (3.6c)

where ε̄33 is the reduced dielectric constant , ε11 and ε33 are the dielectric constants, all

of the piezoelectric layer, and ε̄33 = ε33 + e2
33/CE

33.
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3.3 Piezoelectric sandwich Kirchhoff plate

In most practical applications of piezoelectric coupled annular plate shown in Fig. 3.1,

the ratio of its radius to the thickness of host plate is more than ten. As such, Kirchhoff

assumption for thin plates is applicable, where shear deformation and rotary inertia can

be omitted.

3.3.1 Basic equations

The displacement field in Kirchhoff plate is assumed as follows

ur = −z
∂uz

∂r
(3.7a)

uθ = −z
∂uz

r∂θ
(3.7b)

uz = w(r, θ, t) (3.7c)

where w(r, θ, t) is the transverse displacement of the mid-plane. The distribution of the

electric potential in the thickness direction is assumed to be sinusoidal (Wang et al.,

2001), that is

φ = ϕ(r, θ, t) sin(
π(z − h)

h1
) (3.8)

where ϕ is the electric potential on the mid-surface of the piezoelectric layer; h and h1

are the thickness of the host plate and the piezoelectric layer, respectively.

The resultant moments and shear forces can be expressed as follows by substituting

Eqs. (3.2)-(3.8) into Eq. (3.1)

Mrr = −[(d1 + d2)
∂2w

∂r2
+ (d1 + d2 − 2A1)(

∂w

r∂r
+

∂2w

r2∂θ2
) +

4
π

h1ē31ϕ] (3.9a)

Mθθ = −[(d1 + d2 − 2A1)
∂2w

∂r2
+ (d1 + d2)(

∂w

r∂r
+

∂2w

r2∂θ2
) +

4
π

h1ē31ϕ] (3.9b)

Mrθ = −2A1(
∂2w

r∂r∂θ
− ∂2w

r2∂θ2
) (3.9c)
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Qr = −[(d1 + d2)
∂

∂r
∆w +

4
π

h1ē31
∂ϕ

∂r
] (3.10a)

Qθ = −1
r
[(d1 + d2)

∂

∂θ
∆w +

4
π

h1ē31
∂ϕ

∂θ
] (3.10b)

where

d1 =
2
3

Y h3

1− µ2
, d2 =

2
3
CE

11[(h + h1)3 − h3]

and

A1 =
1
2
[(1− µ)d1 + (1− CE

12

CE
11

)d2]

The governing equation for the Kirchhoff plate is given by

∂Qr

∂r
+

∂Qθ

r∂θ
+

Qr

r
=

∫ h

−h
ρ1

∂2uz

∂t2
dz + 2

∫ h+h1

h
ρ2

∂2uz

∂t2
dz (3.11)

where ρ1 and ρ2 are the material densities of the host material and piezoelectric layer,

respectively.

The electric variables must also satisfy the Maxwell equations which require that the

divergence of the electric flux vanishes at any point within the piezoelectric layers. This

condition can be satisfied approximately by enforcing the integration of the divergence

of the electric flux across the thickness of the piezoelectric layers to vanish for any r and

θ
∫ h+h1

h
(
∂(rDr)

r∂r
+

∂Dθ

r∂θ
+

∂Dz

∂z
)dz = 0 (3.12)

The solutions of w and φ for wave propagation in θ direction can be written as

w(r, θ, t) = w̄(r)ei(pθ−ωt) (3.13a)

ϕ(r, θ, t) = ϕ̄(r)ei(pθ−ωt) (3.13b)

Substituting Eq. (3.13) into Eqs. (3.11) and (3.12) gives

(d1 + d2)∆∆w̄ +
4
π

h1ē31∆ϕ̄−A2ω
2w̄ = 0 (3.14a)

h2
1ε11

π2ε̄33
∆ϕ̄− ϕ̄ +

h2
1ē31

2π2ε̄33
= 0 (3.14b)
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where

∆ =
∂2

∂r2
+

∂

r∂r
− p2

r2
, A2 = 2(ρ1h + ρ2h1)

3.3.2 Solutions for w and φ

To solve for w and φ, transformation of variable, similar to that in existing reference

(Ding et al., 1996), is adopted. That is,

ϕ̄ = xw̄ (3.15)

where x is a constant. Substituting Eq. (3.15) into Eq. (3.14), gives

∆[∆w̄ − A2ω
2h2

1(2ε11x + ē31π)− 8πε̄33ē31h1x
2

2π2ε̄33(d1 + d2)
w̄] = 0 (3.16a)

∆w̄ − 2π2ε̄33x

h2
1(2ε11x + ē31π)

w̄ = 0 (3.16b)

The solution for w̄ is unique under the following conditions

A2ω
2h2

1(2ε11x + ē31π)− 8πε̄33ē31h1x
2

2π2ε̄33(d1 + d2)x
=

2π2ε̄33x

h2
1(2ε11x + ē31π)

(3.17a)

2π2ε̄33x

h2
1(2ε11x + ē31π)

= λ (3.17b)

where λ is a constant. Under the above condition, Eq. (3.16) can be reduced to

∆w̄ − λw̄ = 0 (3.18)

Eq. (3.17a) is cubic in x, which given three roots, xi(i = 1, 2, 3) and λi(i = 1, 2, 3) can be

calculated correspondingly from Eq. (3.17b). Three sets of Bessel functions ciwi1(p, δir)+

ci+3wi2(p, δir), i = 1, 2, 3 where δi =
√
|λi| can be obtained by substituting λi(i = 1, 2, 3)

into Eq. (3.18). The final solutions are given as

w =
3∑

i=1

[ciwi1(p, δir) + ci+3wi2(p, δir)]ei(pθ−ωt) (3.19a)

ϕ =
3∑

i=1

xi[ciwi1(p, δir) + ci+3wi2(p, δir)]ei(pθ−ωt) (3.19b)
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where

wi1(p, δir) =

{
Jp(δir) λi < 0
Ip(δir) λi > 0

wi2(p, δir) =

{
Yp(δir) λi < 0
Kp(δir) λi > 0

i = 1, 2, 3

(3.20)

in which J and Y are Bessel functions of the first and second kind, respectively; I

and K are modified Bessel functions of the first and second kind, respectively; and

ci(i = 1, · · · , 6) are six constants of integration.

As usual, the determinant of the matrix containing the system frequencies is con-

sidered after imposing the electric and displacement boundary conditions. If the plate is

insulated at the edge, the electrical flux conservation equation is given by
∫ h+h1

h
Dr(r, θ, t)dz = 0 (3.21)

Substituting Eq. (3.6a) into Eq. (3.21) in view of γrz = 0, yields the electric boundary

condition

∂ϕ

∂r
= 0 (3.22)

The standard boundary conditions for the clamped, simply supported and free ends are

given respectively as follows(Wang et al., 2001; Liu et al., 2002):

(a) clamped:

w(r1, θ, t) =
∂w

∂r r=r1

=
∂ϕ

∂r r=r1

= 0

w(r0, θ, t) =
∂w

∂r r=r0

=
∂ϕ

∂r r=r0

= 0
(3.23)

(b) simply supported:

w(r1, θ, t) = Mrr(r1, θ, t) =
∂ϕ

∂r r=r1

= 0

w(r0, θ, t) = Mrr(r0, θ, t) =
∂ϕ

∂r r=r0

= 0
(3.24)

(c) free:

Mrr(r1, θ, t) = Q(r1, θ, t) =
∂ϕ

∂r r=r1

= 0

Mrr(r0, θ, t) = Q(r0, θ, t) =
∂ϕ

∂r r=r0

= 0
(3.25)
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For all possible combinations of clamped, simply-supported and free edge conditions

at the inner (r = r1) and outer (r = r0) circular boundaries of the annular plate in

Fig. 3.1, a matrix involving the system frequencies can always be formulated. For exam-

ple, the determinant of frequencies under clamped-clamped (C-C) boundary condition is

given by substituting Eq. (3.19) into Eq. (3.23), resulting in
∣∣∣∣∣∣∣∣∣

w11(p, δ1r1) w12(p, δ1r1) w21(p, δ2r1) w22(p, δ2r1) w31(p, δ3r1) w32(p, δ3r1)

w
′
11(p, δ1r1) w

′
12(p, δ1r1) w

′
21(p, δ2r1) w

′
22(p, δ2r1) w

′
31(p, δ3r1) w

′
32(p, δ3r1)

x1w
′
11(p, δ1r1) x1w

′
12(p, δ1r1) x2w

′
21(p, δ2r1) x2w

′
22(p, δ2r1) x3w

′
31(p, δ3r1) x3w

′
32(p, δ3r1)

w11(p, δ1r0) w12(p, δ1r0) w21(p, δ2r0) w22(p, δ2r0) w31(p, δ3r0) w32(p, δ3r0)

w
′
11(p, δ1r0) w

′
12(p, δ1r0) w

′
21(p, δ2r0) w

′
22(p, δ2r0) w

′
31(p, δ3r0) w

′
32(p, δ3r0)

x1w
′
11(p, δ1r0) x1w

′
12(p, δ1r0) x2w

′
21(p, δ2r0) x2w

′
22(p, δ2r0) x3w

′
31(p, δ3r0) x3w

′
32(p, δ3r0)

∣∣∣∣∣∣∣∣∣
(3.26)

where the prime ′ denotes ∂/∂r; and wij is given in Eq. (3.20). Setting Eq. (3.26) to zero

yields the resonant frequencies and their corresponding mode shapes.

3.4 Piezoelectric sandwich Mindlin plate

In some applications of piezoelectric sandwich plate, the number of nodal diameters (i.e.

number of zeros in the θ-direction) is relatively large and the wavelength is not necessarily

small compared to the plate thickness. This suggests that shear deformations and/or the

rotary inertia have to be taken into account.

3.4.1 Basic equations

Mindlin (1951) and Mindlin and Medick (1959) corrected for the effect of shear and rotary

inertia in the plate model and obtained results of wave propagation agreeing better with

those using the exact theory. The modified expression for displacement field is written

as

ur = zψr(r, θ, t)

uθ = zψθ(r, θ, t)

uz = w(r, θ, t)

(3.27)

where ψr and ψθ are the rotations of the normal to the mid-plane, measured on the z− r

and z − θ planes, respectively.
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The substitution of Eqs. (3.2)-(3.6), (3.8) and (3.27) into Eq. (3.1) yields the following

resultant moments and shear forces

Mrr = (d1 + d2)
∂ψr

∂r
+ (d1 + d2 − 2A1)(

ψr

r
+

∂ψθ

r∂θ
)− 4

π
h1ē31ϕ

Mθθ = (d1 + d2 − 2A1)
∂ψr

∂r
+ (d1 + d2)(

ψr

r
+

∂ψθ

r∂θ
)− 4

π
h1ē31ϕ

Mrθ = A1(
∂ψr

r∂θ
− ψθ

r
+

∂ψθ

∂r
)

(3.28)

Qr = A3(
∂w

∂r
+ ψr)− 4

π
h1e15

∂ϕ

∂r

Qθ = A3(
∂w

r∂θ
+ ψθ)− 4

π
h1e15

∂ϕ

r∂θ

(3.29)

where A3 = κ2(Y h/(1 + µ) + 2h1C
E
55).

It is to be noted that Mrr, Mrθ, Mθθ, Qr, and Qθ must satisfy Maxwell equation

(3.12) and the following dynamic equilibrium equations

∂Qr

∂r
+

∂Qθ

r∂θ
+

Qr

r
=

∫ h

−h
ρ1

∂2uz

∂t2
dz + 2

∫ h+h1

h
ρ2

∂2uz

∂t2
dz

∂Mrr

∂r
+

∂Mrθ

r∂θ
+

Mrr −Mrθ

r
−Qr =

∫ h

−h
ρ1z

∂2ur

∂t2
dz + 2

∫ h+h1

h
ρ2z

∂2ur

∂t2
dz

∂Mrθ

∂r
+

∂Mrr

r∂θ
+

2Mrθ

r
−Qθ =

∫ h

−h
ρ1z

∂2uθ

∂t2
dz + 2

∫ h+h1

h
ρ2z

∂2uθ

∂t2
dz

(3.30)

The rotations ψr, and ψθ are expressed through the transformation (Mindlin, 1951)

ψr =
∂R

∂r
+

∂H

r∂θ

ψθ =
∂R

r∂θ
− ∂H

∂r

(3.31)

It is assumed that the solution of w, R, H and φ for wave propagation in the θ direction

take the form

w(r, θ, t) = w̄(r) cos(pθ)eiωt

R(r, θ, t) = R̄(r) cos(pθ)eiωt

H(r, θ, t) = H̄(r) sin(pθ)eiωt

ϕ(r, θ, t) = ϕ̄(r) cos(pθ)eiωt

(3.32)

Eq. (3.32) is adopted as it represents harmonic oscillation and is consistent with the

assumption that the plate undergoes small synchronous free vibratory motions. To satisfy

Eq. (3.30), the sine instead of cosine function is employed for H(r, θ, t).
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Substituting Eq. (3.31) and (3.32) into Eq. (3.12) and (3.30) gives

A3∆R̄ + A3∆w̄ + A2ω
2w̄ −A6∆ϕ̄ = 0 (3.33a)

∂

∂r
[(d1 + d2)∆R̄− (A3 −A4ω

2)R̄−A3w̄ + A5ϕ̄] +
p

r
[A1∆H̄ − (A3 −A4ω

2)H̄] = 0

(3.33b)
p

r
[(d1 + d2)∆R̄− (A3 −A4ω

2)R̄−A3w̄ + A5ϕ̄] +
∂

∂r
[A1∆H̄ − (A3 −A4ω

2)H̄] = 0

(3.33c)

∆R̄ + A7∆w̄ −A8∆ϕ̄−A9ϕ̄ = 0 (3.33d)

where

∆ =
∂2

∂r2
+

∂

r∂r
− p2

r2
, A4 =

2
3
[(ρ1 − ρ2)h3 + ρ2(h + h1)3], A5 =

4h1

π
(e15 − ē31)

A6 =
4h1e15

π
,A7 =

e15

e15 + ē31
, A8 =

2ε11

(e15 + ē31)π
,A9 =

2ε11π

(e15 + ē31)h2
1

3.4.2 Solutions for w, ψr, ψθ and φ

H̄ may be separated from R̄ and w̄ by differentiation, addition, and subtraction of

Eqs. (3.33b) and (3.33c). These two equations become

∆[A1∆H̄ − (A3 −A4ω
2)H̄] = 0 (3.34a)

∆[(d1 + d2)∆R̄− (A3 −A4ω
2)R̄−A3w̄ + A5ϕ̄] = 0 (3.34b)

To uncouple R̄, and ϕ̄ and w̄ in Eqs. (3.33a) and (3.33d), and (3.34b), transformation of

variables is applied, similar to that in (Ding et al., 1996; Mindlin, 1951)

R̄ = xw̄

ϕ̄ = yw̄

(3.35)

where x, y are constants, Eqs. (3.33a), (3.33d), and (3.34b) can then be simplified to

∆[∆w̄ − A3 −A5y + (A3 −A4ω
2)x

(d1 + d2)x
w̄] = 0 (3.36a)

∆w̄ − A2ω
2

A6y −A3(x + 1)
w̄ = 0 (3.36b)

∆w̄ − A9y

A8y − x−A7
w̄ = 0 (3.36c)
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respectively. Observe that the terms within the brackets in Eqs. (3.36a), (3.36b) and

(3.36c) are of identical form. Hence, for the solution of w̄ to be unique,

(A3 −A4ω
2)x + A3 −A5y

(d1 + d2)x
=

A2ω
2

A6y −A3(x + 1)
=

A9y

A8y − x−A7
(3.37a)

A9y

A8y − x−A7
= λ (3.37b)

Eq. (3.36) can be thus reduced to

∆w̄ − λw̄ = 0 (3.38)

where λ is a constant. Eq. (3.37a) is cubic in x, y, giving rise to three roots, xi, yi(i =

1, 2, 3), from which λi(i = 1, 2, 3) can be computed using Eq. (3.37b). Three sets of

Bessel functions ciwi1(p, δir) + ci+3wi2(p, δir), i = 1, 2, 3 where δi =
√
|λi| are obtained

by substituting λi(i = 1, 2, 3) into Eq. (3.38). The final solutions are given as

w =
3∑

i=1

[ciwi1(p, δir) + ci+3wi2(p, δir)] cos(pθ)eiωt (3.39a)

R =
3∑

i=1

xi[ciwi1(p, δir) + ci+3wi2(p, δir)] cos(pθ)eiωt (3.39b)

ϕ =
3∑

i=1

yi[ciwi1(p, δir) + ci+3wi2(p, δir)] cos(pθ)eiωt (3.39c)

where the definition of wi1(p, δir) and wi2(p, δir) is the same as Eq. (3.20); and ci(i =

1, · · · , 6) are integration constants.

Substituting Eq. (3.36a) into Eqs. (3.33b) and (3.33c), gives the following Bessel

equation

∆H̄ − λ4H̄ = 0 (3.40)

where

λ4 =
A3 −A4ω

2

A1

Finally, H can be expressed as

H = [c7w41(p, δ4r) + c8w42(p, δ4r)] sin(pθ)eiωt (3.41)
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where δ4 =
√
|λ4| and the definition of w41(p, δ4r) and w42(p, δ4r) are the same as

Eq. (3.20); and ci(i = 7, 8) are integration constants.

Substituting Eqs. (3.39b) and (3.41) into Eq. (3.31) gives

ψr = [
3∑

i=1

xi(ci
∂wi1

∂r
+ ci+3

∂wi2

∂r
) +

p

r
(c7w41 + c8w42)] cos(pθ)eiωt

ψθ = −[
p

r

3∑

i=1

xi(ciwi1 + ci+3wi2) + (c7
∂w41

∂r
+ c8

∂w42

∂r
)] sin(pθ)eiωt

(3.42)

The determinant of the matrix of system frequencies is generated after imposing the

electric and displacement boundary conditions. The electric boundary condition can be

obtained by substituting Eq. (3.6a) into Eq. (3.21) giving

e15π(ψr +
∂w

∂r
)− 2ε11

∂ϕ

∂r
= 0 (3.43)

The standard boundary conditions for the clamped, simply supported (soft type) and

free ends are given respectively as follow:

(a) clamped:

w(r1, θ, t) = ψr(r1, θ, t) = ψθ(r1, θ, t) = [e15π(ψr +
∂w

∂r
)− 2ε11

∂ϕ

∂r
]r=r1 = 0

w(r0, θ, t) = ψr(r0, θ, t) = ψθ(r0, θ, t) = [e15π(ψr +
∂w

∂r
)− 2ε11

∂ϕ

∂r
]r=r0 = 0

(3.44)

(b) simply supported:

w(r1, θ, t) = Mrr(r1, θ, t) = Mrθ(r1, θ, t) = [e15π(ψr +
∂w

∂r
)− 2ε11

∂ϕ

∂r
]r=r1 = 0

w(r0, θ, t) = Mrr(r0, θ, t) = Mrθ(r0, θ, t) = [e15π(ψr +
∂w

∂r
)− 2ε11

∂ϕ

∂r
]r=r0 = 0

(3.45)

(c) free:

Mrr(r1, θ, t) = Mrθ(r1, θ, t) = Qr(r1, θ, t) = [e15π(ψr +
∂w

∂r
)− 2ε11

∂ϕ

∂r
]r=r1 = 0

Mrr(r0, θ, t) = Mrθ(r0, θ, t) = Qr(r0, θ, t) = [e15π(ψr +
∂w

∂r
)− 2ε11

∂ϕ

∂r
]r=r0 = 0

(3.46)

For all possible combinations of clamped, simply supported and free edge conditions at

the inner (r = r1) and outer (r = r0) circular boundaries of the annular plate (Fig. 3.1), a
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matrix of system frequencies can be formulated. For example, the determinant of system

frequencies under clamped-clamped (C-C) boundary condition is given by substituting

Eqs. (3.39a), (3.39c), and (3.42) into Eq. (3.44)
∣∣∣∣∣∣∣∣∣∣∣∣∣

w11(δ1r1) w12(δ1r1) w21(δ2r1) w22(δ2r1) w31(δ3r1) w32(δ3r1) 0 0

x1w
′
11(δ1r1) x1w

′
12(δ1r1) x2w

′
21(δ2r1) x2w

′
22(δ2r1) x3w

′
31(δ3r1) x3w

′
32(δ3r1) p

r1
w41(δ4r1) p

r1
w42(δ4r1)

px1
r1

w11(δ1r1) px1
r1

w12(δ1r1) px2
r1

w21(δ2r1) px2
r1

w22(δ2r1) px3
r1

w31(δ3r1) px3
r1

w32(δ3r1) w
′
41(δ4r1) w

′
42(δ4r1)

ϕ11(r1) ϕ12(r1) ϕ21(r1) ϕ22(r1) ϕ31(r1) ϕ32(r1) 0 0
w11(δ1r0) w12(δ1r0) w21(δ2r0) w22(δ2r0) w31(δ3r0) w32(δ3r0) 0 0

x1w
′
11(δ1r0) x1w

′
12(δ1r0) x2w

′
21(δ2r0) x2w

′
22(δ2r0) x3w

′
31(δ3r0) x3w

′
32(δ3r0) p

r0
w41(δ4r0) p

r0
w42(δ4r0)

px1
r0

w11(δ1r0) px1
r0

w12(δ1r0) px2
r0

w21(δ2r0) px2
r0

w22(δ2r0) px3
r0

w31(δ3r0) px3
r0

w32(δ3r0) w
′
41(δ4r0) w

′
42(δ4r0)

ϕ11(r0) ϕ12(r0) ϕ21(r0) ϕ22(r0) ϕ31(r0) ϕ32(r0) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.47)

where wij(p, δir) is expressed as wij(δr) for concise notation, the factors cos(pθ)eiωt and

sin(pθ)eiωt have been omitted; ()
′
= ∂/∂r, and

ϕij(r0) = e15πxiwij(p, δir0) + (e15π − 2ε11yi)w
′
ij(p, δir0)

ϕij(r1) = e15πxiwij(p, δir1) + (e15π − 2ε11yi)w
′
ij(p, δir1)

i = 1, 2, 3, j = 1, 2

Setting Eq. (3.47) to zero yields the resonant frequencies and their corresponding mode

shapes.

3.5 Numerical examples and discussion

The numerical solution for a three-layer laminated annular plate shown in Fig. 3.1 is

investigated. The material for the host is steel and that of the piezoelectric layer is

PZT4. The material properties are listed in Table 3.1. The inner radius (r1) and outer

radius (r0) of the annular plate are 0.1 m and 0.6 m respectively.

Table 3.1: Material properties

Property Steel PZT4

Young’s module (GPa) 200
CE

11= 132 CE
12= 71 CE

13= 73

CE
33=115 CE

55=73 -

Poisson ratio 0.3 -

Mass density (kg/m3) 7800 7500

Piezoelectric constant (C/m2) - e31= -4.1 e33= 14.1 e15= 10.5

Permittivity(nF/m) - ε11= 7.124 ε33= 5.841 -
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3.5.1 Comparisons between proposed models and FEM

To investigate the difference between CPT-based model and FSDT-based model, two

steel plates with thickness, h = 0.01 m and 0.03 m, are studied under four kinds of

boundary conditions: C-C, S-C, C-S and S-S, where the first and second letter denotes

the edge condition at the inner and outer edge, respectively, C denotes clamped and S

denotes simply supported. The thickness ratio of the piezoelectric layer to the host plate

is 1/10. The results are compared with those of 3D FE analyses using ABAQUSr 6.3.

Table 3.2 lists the frequencies for the free vibration of the annular plate with h = 0.01

m corresponding to thin plate, for mode shapes with 0 to 2 diametrical nodes (denoted

by p) and 0 to 2 nodal circles (denoted by n). For a thin plate with large radius-thickness

ratio (r0/h=60), the frequencies from both CPT-based model and FSDT-based model are

in close agreement with the FE results. The FSDT-based model produces (slightly lower)

results almost coincident with those from FE analysis while the results from CPT-based

model differ by less than 5% for all modes listed in Table 3.2.

Table 3.3 lists the frequencies for the free vibration of the annular plate with h =

0.03 m corresponding to moderately thick plate, for mode shapes with 0 to 2 diametrical

nodes and 0 to 2 nodal circles. As the radius-to-thickness ratio is small (r0/h = 20), the

FSDT-based model provides results lower than those from FE analysis, with a maximum

difference of only 3.4% for the case where p = 2, n = 2 under C-C boundary condition

while the frequencies computed by CPT-based model can be 39.7% greater than those

from FE analysis.

Both the CPT-based model and FSDT-based model give results closer to the FE

analysis results at lower frequencies than they do at higher frequencies as shown in

Table 3.2 and Table 3.3. For example, in Table 3.3, the CPT-based model gives a

frequency 39.7% greater than that of the FE analysis for p = 2 and n = 2 while it gives a

value of only 11.0% greater than that of the FE analysis for p = 0 and n = 0 under C-C
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Table 3.2: Comparison of frequencies (rad/s) of thin annular plate under C-C, C-S, S-C,
S-S boundary conditions for r0/h = 60

BC p n FEM CPT-based model Error (%) FSDT-based model Error (%)

C†-C

0

0 2812 2815 0.09% 2769 -1.53%

1 7659 7786 1.66% 7517 -1.85%

2 14753 15306 3.75% 14428 -2.20%

1

0 2942 2952 0.36% 2899 -1.43%

1 7882 8030 1.87% 7743 -1.76%

2 15020 15608 3.91% 14698 -2.14%

2

0 3471 3506 0.99% 3438 -0.97%

1 8635 8840 2.38% 8507 -1.48%

2 15877 16569 4.36% 15566 -1.96%

C-S

0

0 1848 1843 -0.31% 1823 -1.36%

1 6164 6220 0.92% 6066 -1.59%

2 12770 13111 2.67% 12523 -1.94%

1

0 1981 1983 0.10% 1957 -1.21%

1 6384 6459 1.16% 6289 -1.50%

2 13038 13411 2.86% 12794 -1.87%

2

0 2511 2535 0.95% 2495 -0.62%

1 7134 7259 1.75% 7050 -1.17%

2 13903 14367 3.34% 13672 -1.66%

S-C

0

0 2213 2216 0.12% 2194 -0.86%

1 6544 6615 1.08% 6455 -1.37%

2 13169 13531 2.75% 12934 -1.78%

1

0 2418 2446 1.13% 2397 -0.89%

1 6865 6983 1.72% 6774 -1.32%

2 13528 13961 3.20% 13293 -1.74%

2

0 3178 3236 1.81% 3159 -0.61%

1 7902 8119 2.74% 7815 -1.11%

2 14663 15274 4.16% 14428 -1.61%

S-S

0

0 1395 1396 0.04% 1388 -0.51%

1 5173 5198 0.49% 5115 -1.11%

2 11283 11489 1.82% 11114 -1.50%

1

0 1593 1613 1.30% 1583 -0.58%

1 5490 5558 1.23% 5433 -1.05%

2 11647 11918 2.32% 11478 -1.45%

2

0 2312 2355 1.84% 2306 -0.25%

1 6521 6669 2.27% 6468 -0.82%

2 12798 13225 3.34% 12632 -1.30%

p = number of nodal diameters.

n = number of nodal circles.

C = clamped, S = simply supported.

†The first letter denotes the condition at the inner edge.
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Table 3.3: Comparison of frequencies (rad/s) of moderately thick annular plate under
C-C, C-S, S-C, S-S boundary conditions for r0/h = 20

BC p n FEM CPT-based model Error (%) FSDT-based model Error (%)

C†-C

0

0 7608 8444 10.98% 7416 -2.52%

1 18828 23358 24.06% 18235 -3.15%

2 33096 45917 38.74% 31869 -3.71%

1

0 7918 8857 11.86% 7728 -2.40%

1 19358 24089 24.44% 18774 -3.02%

2 33685 46824 39.00% 32468 -3.61%

2

0 9336 10517 12.65% 9169 -1.79%

1 21199 26520 25.10% 20639 -2.64%

2 35591 49706 39.66% 34397 -3.35%

C-S

0

0 5171 5528 6.90% 5064 -2.07%

1 15924 18661 17.19% 15500 -2.66%

2 30188 39332 30.29% 29201 -3.27%

1

0 5512 5950 7.95% 5406 -1.91%

1 16464 19376 17.69% 16048 -2.52%

2 30803 40232 30.61% 29827 -3.17%

2

0 6990 7604 8.79% 6907 -1.17%

1 18376 21776 18.50% 17986 -2.12%

2 32806 43101 31.38% 31854 -2.90%

S-C

0

0 6218 6647 6.91% 6125 -1.49%

1 16939 19845 17.16% 16536 -2.38%

2 31161 40594 30.27% 30197 -3.09%

1

0 6664 7337 10.10% 6555 -1.64%

1 17593 20949 19.07% 17172 -2.39%

2 31809 41883 31.67% 30826 -3.09%

2

0 8650 9707 12.22% 8528 -1.41%

1 19909 24357 22.34% 19453 -2.29%

2 33990 45821 34.81% 32959 -3.03%

S-S

0

0 4032 4187 3.86% 3997 -0.85%

1 14030 15593 11.14% 13775 -1.82%

2 28159 34466 22.40% 27430 -2.59%

1

0 4498 4840 7.60% 4450 -1.06%

1 14716 16674 13.30% 14443 -1.86%

2 28852 35753 23.92% 28102 -2.60%

2

0 6484 7064 8.94% 6433 -0.79%

1 17162 20008 16.58% 16859 -1.77%

2 31183 39676 27.23% 30385 -2.56%

p = number of nodal diameters.

n = number of nodal circles.

C = clamped, S = simply supported.

†The first letter denotes the condition at the inner edge.
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Table 3.4: Comparison of first three displacement mode shapes for annular plate (h =
0.01 for thin plate condition and 0.03 for moderately thick plate condition) under C-C
and S-S conditions from FE and proposed solutions

h(m) BC Cases p=0, n=0 p=1, n=0 p=2, n=0

0.01

C-C†

FE results

CPT

S-S

FE results

CPT

0.03

C-C†

FE results

FSDT

S-S

FE results

FSDT

p = number of nodal diameters. n = number of nodal circles.

C = clamped, S = simply supported.

† first letter denotes edge condition at inner edge.
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boundary condition. Moreover S-S boundary conditions yield smaller frequencies than

those under C-C, C-S and S-C boundary conditions and hence their results are closer

to the FE results. The CPT-based model gives higher frequencies than FSDT-based

model because the CPT-based model neglects the effect of transverse shear deformation

and rotary inertia which implies a stiffer model. Table 3.4 shows the first three mode

shapes of the annular plate of thickness h = 0.01 m (simulating a thin plate) and 0.03

m (simulating a moderately thick plate) obtained by the proposed models and 3D FE

results. The mode shape for the number of nodal diameters p = 0, 1, 2 and number of

nodal circles n = 0 from the proposed modals and 3D FE are almost identical.

3.5.2 Effect of piezoelectric layer

To investigate the effect of piezoelectric layer on the vibration of piezoelectric coupled

plate, the two plates in Section 5.1 are studied based on the proposed models and FE

analysis under C-C boundary condition. Three different thickness ratios of piezoelectric

layer to host plate, h1/2h = 1/12, 1/8, and 1/5, are adopted.

Table 3.5 lists the frequencies for free vibration modes with p = 0 to 2 diametrical

nodes and n = 0 to 2 nodal circles, where the case of h1 = 0 provides the base for compar-

ing the effect of the piezoelectric layer on the frequencies (and stiffness) of the system.

For CPT-based model with r0/h = 60 (thin plate), the percentage increase is around

2.7% for all modes with h1/2h = 1/12. The effect is higher for thicker piezoelectric layer

where with h1/2h = 1/8, and 1/5, the increase is about 4.9% and 10.0%, respectively,

for all modes. This is mainly due to the increase in bending stiffness rather than the

piezoelectric effect, as confirmed by results shown in Fig. 3.2, where the frequency ratio

based on FEM simulation under C-C conditions is plotted (full line shows the effect of

stiffness due to increase in thickness from piezoelectric layer whereas dotted line shows

the effect of piezoelectricity only for this particular PZT4). Similar findings are obtained

for r0/h = 20. For FSDT-based model when r0/h = 60, first, the frequencies are lower
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Table 3.5: Frequencies (rad/s) of annular plate under C-C boundary condition with
piezoelectric layers of different thickness

p n
CPT-based model (r0/h = 60)

h1=0 h1/2h=1/12 Increments h1/2h=1/8 Increments h1/2h=1/5 Increments

0

0 2718 2792 2.70% 2853 4.93% 2989 9.95%

1 7520 7723 2.70% 7891 4.93% 8268 9.95%

2 14783 15182 2.70% 15512 4.93% 16253 9.95%

1

0 2851 2928 2.70% 2992 4.93% 3135 9.95%

1 7755 7965 2.70% 8138 4.93% 8527 9.95%

2 15075 15482 2.70% 15818 4.93% 16574 9.95%

2

0 3385 3477 2.70% 3553 4.93% 3723 9.95%

1 8538 8768 2.70% 8959 4.93% 9387 9.95%

2 16002 16434 2.70% 16791 4.93% 17594 9.95%

p n CPT-based model (r0/h = 20)

0

0 8155 8376 2.71% 8558 4.93% 8967 9.95%

1 22560 23169 2.70% 23672 4.93% 24804 9.95%

2 44348 45545 2.70% 46534 4.93% 48760 9.95%

1

0 8554 8785 2.70% 8976 4.93% 9405 9.95%

1 23266 23894 2.70% 24413 4.93% 25580 9.95%

2 45224 46445 2.70% 47453 4.93% 49722 9.95%

2

0 10157 10432 2.71% 10659 4.93% 11168 9.95%

1 25613 26305 2.70% 26877 4.93% 28162 9.95%

2 48007 49303 2.70% 50374 4.93% 52783 9.95%

p n FSDT-based model (r0/h = 60)

0

0 2681 2748 2.49% 2804 4.57% 2930 9.25%

1 7302 7465 2.24% 7604 4.14% 7918 8.44%

2 14069 14339 1.92% 14577 3.61% 15116 7.45%

1

0 2808 2878 2.47% 2936 4.53% 3066 9.19%

1 7523 7690 2.22% 7833 4.12% 8154 8.39%

2 14334 14608 1.91% 14849 3.60% 15396 7.41%

2

0 3331 3412 2.45% 3481 4.50% 3635 9.13%

1 8267 8449 2.20% 8604 4.07% 8955 8.32%

2 15186 15472 1.88% 15725 3.55% 16299 7.34%

p n FSDT-based model (r0/h = 20)

0

0 7297 7384 1.19% 7471 2.37% 7670 5.10%

1 18204 18209 0.03% 18287 0.46% 18512 1.69%

2 32172 31892 -0.87% 31855 -0.99% 31924 -0.77%

1

0 7607 7695 1.15% 7783 2.31% 7989 5.02%

1 18738 18746 0.04% 18829 0.48% 19069 1.76%

2 32771 32490 -0.86% 32457 -0.96% 32537 -0.72%

2

0 9025 9130 1.16% 9237 2.34% 9486 5.11%

1 20594 20607 0.06% 20703 0.53% 20982 1.88%

2 34711 34418 -0.84% 34389 -0.93% 34492 -0.63%

p = number of nodal diameters.

n = number of nodal circles.
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Figure 3.2: Frequency ratio based on FEM simulation under C-C conditions (Full line
[left axis] - piezoelectric coupled plate with r0/h = 60 and h1/2h = 1/10 not accounting
for piezoelectric effect over plate with piezoelectric layer removed (h1 =0); dotted line
[right axis] - piezoelectric coupled plate accounting for piezoelectric effect over same plate
without piezoelectric effect)

than the corresponding CPT-based values even with the presence of piezoelectric layers.

Second, the increase in frequency for the FSDT-based for h1/2h = 1/12, 1/8, and 1/5

are 2.5%, 4.6% and 9.3% respectively when p = 0 and n = 0. Both can be attributed by

the FSDT-model being less stiff. The increase in resonant frequency is smaller for higher

modes indicating reduced bending stiffness effect as confirmed by Fig. 3.2. For example,

when r0/h = 60 and h1/2h = 1/12, the increase is 2.5% for p = 0 and n = 0, and 1.9%

for p = 2 and n = 2. The increase in resonant frequency is also smaller for lower r0/h

values, for example when r0/h = 20 and h1/2h = 1/12, the increase is 1.2% (compared

to 2.5% for r0/h =60 and h1/2h =1/12) for p = 0 and n = 0. This effect is not obvious

for the CPT-based results as it does not account for the shear effect.
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3.6 Conclusions

The free vibration of a three-layer piezoelectric laminated annular plate based on the

Kirchhoff and Mindlin plate theories are investigated for the case where the electrodes

on the piezoelectric layers are shortly connected. The electric potential distribution

across the thickness of the piezoelectric layer is modeled by a sinusoidal function and

Maxwell equation is enforced. Analytical solutions based on transformation of variables

are presented. Numerical validation of the solutions against 3D FE results was performed

for annular plates with different radius-to-thickness ratio under different boundary con-

ditions. The FSDT-based model provides results similar to those from FE analysis for

both thin and thick plates. The solutions based on CPT-based model are shown to be

valid only for thin plates and diverge from the FE results for thick plates, particularly for

high frequencies. Results indicate that thicker piezoelectric layer increases the resonant

frequencies of the system but the effect is less significant for higher modes and also plates

with lower radius to thickness ratio. The analytical solutions and the findings provided

will be used in the design of piezoelectric materials in mechanical systems for practical

applications, such as the ultrasonic motor.



CHAPTER 4

Finite Element Solution for
Intermittent-Contact Problem in
Ring Type USM

The objective of the proposed research is to initiate the framework for a model and the

realization of USMs with multiple wave numbers. For efficient conceptual and prelimi-

nary design purpose, analytical models of USMs are necessary as they have the advantage

of simplicity, allows understanding of the mechanics and performing extensive paramet-

ric study. In Chapter 2 closed form solutions for the free vibration problem of annular

plates with thickness varying in a power form of arbitrary constants were derived. Such

closed form solutions are useful for engineers working on USMs and plated structures.

Chapter 3 treats the free vibration problem of a three-layer piezoelectric laminated an-

nular plate. The effects of transverse shear deformation and rotary inertia are taken

into consideration by adopting the Mindlin plate theory. Again analytical solutions are

obtained which should be useful for the design of USM. However, for a detailed analysis

taking into account the complex geometry and piezoelectric-structure interaction of an

actual USM, analytical solution becomes cumbersome, if not impossible. As presented in

Chapter 1, FE analysis can account for potential complex geometry in the stator and the

full piezoelectric coupling effect to facilitate better understanding of the characteristics

of an USM.
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In this chapter, a complete 3-D FE framework is established, which combines the

piezoelectric coupled stator dynamics and intermittent-contact mechanics to simulate the

steady state and transient behavior of USM, capable of producing fairly accurate results

at moderate computational cost. After a brief description of the USM addressed in Sec-

tion 4.1, the differential governing equations for the intermittent-contact problem with

piezoelectric actuation and their spatial and temporal discretization are introduced in

Section 4.2. Difficulties in terms of the incompatibility arising from the mass-less charac-

teristics of electric variables with explicit time integration routine and the incompatibility

of intermittent-contact behaviour with implicit time integration routine are addressed.

The first difficulty is overcome by the proposed equivalent piezoelectric force (EPF) pro-

cedure using explicit time integration in Section 4.3. The second difficulty leads to the

proposed steady contact (SC) procedure using implicit time integration. To test the

performance of the proposed procedures, numerical simulation of the overall behavior

of Kagawa et al. (1996) and Glenn (2002) USMs are carried out in Section 4.4. The

results are compared with theoretical, numerical and experimental data from published

literature.

4.1 Description of USM

Only a brief description of the USM is given here as a detailed description on the config-

urations and working principle can be found in the literature (Sashida and Kenjo, 1993;

Uchino, 1997; Ueha and Tomikawa, 1993; Wallaschek, 1995). One USM configuration

based on a contact system comprising a rotor and a stator is shown in Fig. 4.1. A piezo-

ceramic ring (or a number of piezoceramic patches arranged in a ring shape) is bonded

to the underside of an elastic ring in the stator to induce a traveling wave. A set of teeth

separated in segments is bonded on top of the elastic ring. The geometry, material and

position of the teeth in the stator are determined based on the trade-off amongst torque,

speed and efficiency. The rotor is aligned on top of the stator with a small gap between
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contact layer

piezoelectric ceramics

rotor

stator

Figure 4.1: Geometry of generic USM

them. A layer of contact material is bonded to bottom of the rotor as shown in Fig. 4.1.

The rotor contacts with the stator top surface at areas corresponding to the crests of the

traveling wave resulting in a vertical compressive force and a horizontal frictional force at

their interface. This generates a steady state rotary action on the rotor. The operation

of USM can be simulated as an intermittent-contact problem with piezoelectric actua-

tion. Solution via FE analysis will involve special difficulties in view of the mass-less

electrical variables and the contact being a highly discontinuous, nonlinear problem. Be-

fore presenting the solution technique, the governing equations and prescribed boundary

conditions are first presented.

4.2 Overall behavior analysis of USM by finite element
method

The basic equations governing the overall behavior of USM in obtaining the FE solution

are first presented. An essential step in FE analysis is the spatial and temporal discretiza-

tion, which is formulated herein using the principle of virtual work. The advantages and

disadvantages of conventional explicit and implicit routine are discussed.

4.2.1 Governing equations

The overall behavior of USM system from time t = [0, T ] will be studied assuming that

the stator and rotor undergo small displacement and small strain. Assuming that they

occupy the domain Ω̄ in a fixed global Cartesian coordinate system (x1, x2, x3), then
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Ω̄ = Ω̄I ∪ Ω̄J , where Ω̄I denotes the stator domain and Ω̄J that of the rotor. Denoting

the boundaries and interior volumes of Ω̄ as S and Ω respectively, then Ω̄ = Ω ∪ S.

The entire intermittent-contact system are governed by five main groups of equations,

namely, those of equilibrium, constitutive, compatibility, boundary and initial conditions

(ABAQUS, 2003; Kim et al., 1997; Landis, 2002; Zhong, 1993). In the following equations,

all the indices range over 1, 2, and 3 to represent the three orthogonal directions.

The mechanical dynamic and electrostatic equilibrium equations (Trindade et al.,

2001a,b; Vasques and Rodrigues, 2005; Yi et al., 1999) are as follows:

σij,j + fB
i = ρüi (4.1)

Di,i − q = 0 (4.2)

where, fB
i , q, ρ and ui are the mechanical body force components, electric body charge,

mass density and mechanical displacements, respectively; and σij and Di are the stress

tensor and electric displacement vector components. They are related to strain ten-

sor εij and electric field vector Ei through the converse and direct linear piezoelectric

constitutive equations,

σij = Cijklεkl − emijEm (4.3)

Di = eiklεkl + εimEm (4.4)

Cijkl, emij and εim denote elastic, piezoelectric and dielectric material constants. The

strain tensor and electric field vector components are linked to mechanical displacement

components ui and electric field potential φ by the following relations,

εij =
1
2
(ui,j + uj,i) (4.5)

Ei = −φ,i (4.6)

The boundary conditions are given by:
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(a) natural mechanical boundary condition on Sf :

σijnj = fS
i (4.7)

(b) natural electrical boundary condition on Sq:

niDi = qS (4.8)

(c) essential mechanical boundary condition on Su:

ui = Ui (4.9)

(d) essential electrical boundary condition on S:

φ = Φ (4.10)

where fS
i is the surface force, qS is the surface charge, and Φ is the electrical potential.

The remaining contact boundary conditions (Bathe, 1996; Eterovic and Bathe, 1991;

Hughes et al., 1976; Wriggers, 2002) on Sc are non-trivial. Assume that the body I

(stator) and the body J (rotor) are supported such that without contact between them,

no rigid body motion is possible. Let surfaces SIJ and SJI be a ”contact surface pair”,

and Sc = SIJ ∪ SJI . It is convenient to call SIJ the ”contactor surface” and SJI the

”target surface”. Let fIJ be the vector of contact surface tractions on body I due to

contact with body J , then fIJ = −fJI . Let n be the unit outward normal to SJI and let

s1 and s2 be vectors such that n, s1 and s2 form a set of right-hand bases. The contact

tractions fIJ acting on SIJ can be decomposed into normal (denoted as λ) and tangential

(denoted as t1 and t2) components relative to SJI as

f IJ = λn + t (4.11)

t = t1s1 + t2s2 (4.12)
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where

λ = f IJ · n

t1 = f IJ · s1

t2 = f IJ · s2

(4.13)

Consider a generic point x on SIJ and let y∗(x, t) be the point on SJI satisfying

‖x− y∗‖2 = min
y∈SJI

{‖x− y‖2} (4.14)

The gap function for the contact surface pair (distance from x to SJI) is then given by

g(x, t) = (x− y∗) · n(y∗) (4.15)

Using such definition, the conditions for normal contact can be stated as

g ≥ 0;λ ≥ 0; gλ = 0 (4.16)

where the last equation expresses the fact that if g > 0, then λ =0, and vice versa.

To include friction conditions, Coulomb’s law of friction is assumed to hold point-

wise on the contact surface. If µ is the coefficient of friction, the non-dimensional variable

τ is defined by

τ =
‖t‖
µλ

(4.17)

The magnitude of the relative tangential velocity is

u̇(x, t) = (u̇J(y∗, t)− u̇I(x, t)) · t(y
∗, t)
‖t‖ (4.18)

Hence, u̇(x, t) is the tangential velocity at time t of the material point at y∗(x, t) relative

to the material point at x. With these definitions Coulomb’s law of friction states

|τ | ≤ 1 (4.19)

and |τ | < 1 (stick state) implies u̇ = 0 (λ, t1 and t2 are independent variables), while

|τ | = 1 (slip state) implies sign(u̇) = sign(τ)(λ are related to t1 and t2 by the friction

coefficient µ).
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For the boundary surface S, one can write [Su ∪ Sf = S and Su ∩ Sf = 0] and

[Sq ∪ Sφ = S and Sq ∩ Sφ = 0].

The initial conditions here are set to be

ui(x, 0) = 0
u̇i(x, 0) = 0

}
on Ω (4.20)

4.2.2 Variational formulation

To formulate the intermittent-contact problem with piezoelectric patch actuation, the

principle of virtual work is adopted. The virtual work done by a stress field σij on a

virtual strain field δεij is

δWS =
∫

Ω
σij,jδεijdΩ (4.21)

The virtual work done by the mechanical loads, the contact loads, the inertial forces

through the virtual displacement field δu are denoted by δWR, δWC and δWI respectively

and are calculated as

δWR =
∫

Ω
fB

i δuidΩ +
∫

Sf

fS
i δuidS (4.22)

δWC =
∫

SIJ

f IJ
i δuI

cidS +
∫

SJI

fJI
i δuJ

cidS (4.23)

δWI = −
∫

Ω
ρüiδuidΩ (4.24)

where δuI
ci and δuJ

ci are the components of the virtual displacements on the contact

surfaces of bodies I and J respectively.

According the principle of virtual work and letting δuIJ
ci = δuI

ci − δuJ
ci,

∫

Ω
σij,jδεijdΩ =

∫

Ω
fB

i dΩ +
∫

Sf

fS
i dS −

∫

Ω
ρüiδuidΩ +

∫

SIJ

f IJ
i δuIJ

ci dS (4.25)

Analogous to the principle of virtual work, the principle of virtual electric potentials can

be stated as follows
∫

Ω
DiδEidΩ = −

∫

Sq

qiδφdS (4.26)
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In variational principles, no restrictions on constitutive relations are imposed up to this

stage. Substituting the linear constitutive relationships of Eqs. (4.3) and (4.4) into

Eqs. (4.25) and (4.26), the following set of equations are obtained
∫

Ω
cijklεklδεijdΩ−

∫

Ω
emijEmδεijdΩ =

∫

Ω
fB

i dΩ +
∫

Sf

fS
i dS

−
∫

Ω
ρüiδuidΩ +

∫

SIJ

f IJ
i δuIJ

ci dS

(4.27)

∫

Ω
eiklεklδEidΩ +

∫

Ω
dijEjδEidΩ = −

∫

Sq

qiδφ
SdS (4.28)

From Eq. (4.27), one can see that the contact force effect is included as a contribution

in the externally unknown applied tractions. To solve for this force, contact boundary

conditions will be imposed.

Let w be a function of g and λ such that the solutions of w(g, λ) = 0 satisfy the

conditions of (4.16). Similarly, let v be a function of τ and u̇ such that the solutions of

v(τ, u̇) = 0 satisfy the conditions of (4.19). Then the contact conditions are given by

w(g, λ) = 0 (4.29)

and

v(τ, u̇) = 0 (4.30)

Two widely used procedures are available, namely, Lagrange multiplier method and

penalty function method, to impose the contact constraints. Here, Lagrange multiplier

method is adopted as it is exact. The variables λ, t1, t2 can be considered as Lagrange

multipliers and so the constraint equation can be written as

∫

SIJ

[δλw(g, λ) + δt1v(τ, u̇) + δt2v(τ, u̇)] dSIJ = 0 (4.31)

In summary, the governing equations to be solved for intermittent-contact problem with

piezoelectric patch actuation are the usual principle of virtual work equations of (4.27)

and (4.28), with the effect of the contact tractions included through externally applied

(but unknown) forces, and the constraint equation given in Eq. (4.31).
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4.2.3 Spatial and temporal discretization for nonlinear dynamics

In FE analysis, the displacements and electrical potentials are approximated within the

element and expressed in terms of their nodal values as (ABAQUS, 2003; Zienkiewicz

and Taylor, 2000)

u = NNuN (4.32)

and

φ = NNφN (4.33)

where NN is the array of interpolating functions, uN and φN are nodal quantities, and

N is the number of nodes in each element. The body forces and charges as well as the

surface normal force, contact traction and charges are interpolated in a similar manner.

The strains and electrical potential gradients are given as

ε = BN
u uN (4.34)

E = −BN
φ φN (4.35)

where BN
u and BN

φ are the spatial derivatives of NN .

With these approximate fields and the constitutive properties given in Eqs. (4.3) and

(4.4), in conjunction with the equilibrium, conservation and contact constraint equations,

the following system of equations is derived in terms of nodal quantities:



M 0 0
0 0 0
0 0 0







Ü

φ̈

F̈c


 +




C 0 0
0 0 0
0 0 0







U̇

φ̇

Ḟc


 +




Kuu Kφu R2

Kφu Kφφ 0
R1 0 0







U
φ
Fc


 =




F
Q
P




(4.36)

where

M = ρ

∫

Ω

(
NN

)T ·NNdΩ (4.37)

is the mass matrix (note that no inertia terms exist for the electrical flux conservation

equation), ρ is the mass density and Kuu is the displacement stiffness matrix given by

Kuu =
∫

Ω

(
BN

u

)T · [C] ·BN
u dΩ (4.38)
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The dielectric ”stiffness” matrix is given by

Kφφ =
∫

Ω

(
BN

φ

)T · [ε] ·BN
φ dΩ (4.39)

and the piezoelectric coupling matrix is

Kuφ = (Kφu)T =
∫

Ω

(
BN

u

)T · [e] ·BN
φ dΩ (4.40)

For simplicity, the Rayleigh damping matrix is often expressed as

C = αM + βKuu (4.41)

where α and β are constants to be determined from two target damping ratios correspond-

ing to two selected modes of vibration. The mechanical force vector and the electrical

charge vector are given respectively by

F =
∫

Ω
NN · fBdΩ +

∫

S
NN · fSdS (4.42)

Q =
∫

S
NN · qSdS (4.43)

Fc is the Lagrange multiplier vector, which in this application is the unknown normal

contact and tangential frictional forces, R1 and R2 are contributions due to normal

contacts and tangential frictional effects which vary with different contact cases and

their details can be found in references (Ayari and Saouma, 1991; Bathe and Chaudhary,

1985; Matthies and Strang, 1979). If contact occurs without friction, then R1 = R2, and

thus the stiffness matrix in Eq. (4.36) is symmetric. Otherwise, R1 6= R2, and the matrix

is non-symmetric, which is a well-known feature of contact friction problems. P is the

initial penetration force between stator and rotor. It should be noted that in the penalty

function method, Fc is set to be the multiplication of an artificially assumed stiffness and

contact displacement, and the third row in Eq. (4.36) can be removed.

Eq. (4.36) can be solved using numerical time integration method, which can be

either implicit or explicit. Explicit routines, such as the conditionally stable central

difference method, obtain values for dynamic quantities at t + 4t based entirely on
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available values at time t. The stability limit is approximately proportional to the smallest

period, say Tc, of the discretized system. The mass-less property of φ implies that the

fundamental period is zero leading to instability of the method.

Implicit routines, such as Newmark’s method, relax this upper bound on time step

size by solving iteratively for dynamic quantities at time t +4t based on values of the

previous iteration a t and t +4t. However, for problems with highly discontinuous non-

linearities, convergence may not be reached or can only be reached under an impractically

small time step, say 10−12Tc. For the case of USM, intermittent contact and stick/slip

frictional sliding will result in the tangent coefficient matrix being not sufficiently smooth

or the predicted intermediate state being too far from the actual solution, giving rising

to convergence problem.

It therefore appears that solution to Eq. (4.36) may be achieved by the two differ-

ent time integration routines for different segments of the USM. Specifically, the explicit

time integration using the conditionally stable central difference method is employed

to obtain the contact response and the implicit unconditionally stable time integration

method (such as Newmark’s method) is used to solve for the piezoelectric patch dynam-

ics. However, such hybrid method raised other problems, such as the choice of finite

difference methods and the coupling of the methods (Bathe, 1996; Bathe and Sonnad,

1980; Belytschko et al., 1979).

4.3 Proposed procedures for overall behavior analysis of
USM

It is proposed to use an equivalent piezoelectric force (EPF) procedure to avoid the

incompatibility between mass-less characteristic of electric potential and explicit solution

techniques to solve for the transient response of the USM. In the case of steady-state

response of the USM, a more efficient steady-state contact (SC) procedure to overcome
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the incompatibility in the implicit time integration routine resulting from intermittent

contact is proposed.

4.3.1 Equivalent piezoelectric force (EPF) routine

In the EPF routine, thermal analogy (Cote et al., 2004; Gaudenzi and Bathe, 1995) is

employed to simulate the converse piezoelectric effects and the direct piezoelectric effect

is ignored for piezo-actuation. Subsituting Eq. (4.6) into the constitutive relation in

Eq. (4.3) and considering emij = Cijkldmkl gives (Wang, 2004)

σij = Cijkl(εkl + dmijφ,m) (4.44)

where dmkl is piezoelectric constant. The generalized Hooke’s law taking into account

the thermal effect can be written as (Hanagud et al., 1992)

σij = Cijkl(εkl − αθ0) (4.45)

where α is thermal expansion coefficient matrix, and θ0 is temperature difference, relative

to a reference temperature, say 0◦C.

Comparing Eqs. (4.44) and (4.45), the piezoelectric strain enters into the elasticity

equations in the same manner as thermal strain. Making them analogous lead to

α = dmij (4.46)

θ0 = −φ,m (4.47)

Utilizing thermal analogy and penalty function, Eq. (4.36) can be simplified as

MÜ + CU̇ + (Kuu + Kα)U = F (4.48)

where vector F contains the equivalent piezoelectric force from thermal analogy, and Kα

is the assumed penalty stiffness. An explicit routine, such as the central difference, can

be adopted to solve Eq. (4.48). This proposed procedure allows the transient responses of

overall behavior of USM with piezoelectric actuation to be solved as a coupled dynamic

stator-rotor-contact system.
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4.3.2 Steady-state contact (SC) procedure

If the transient response of intermittent-contact is ignored, the overall analysis of USM

can be performed by a steady-state contact procedure using the following proposed iter-

ative routine:

(a) Eigenvalues of piezoelectric coupled stator is first extracted;

(b) For USM, the operating frequency is known. The piezoelectric coupled dynamics

analysis of the stator is then performed using an implicit routine from which the

steady- state displacement and velocity field of the stator are obtained;

(c) From the stator response in step (b) and a prescribed velocity of the rotor, the

steady- state contact force and deformation between the deformed stator and rotor

is computed. From this, the torque can be estimated;

(d) If the stator contact displacement is larger than the criterion set based on accuracy

requirement, step (b) will be iterated by imposing the contact force obtained from

step (c) until the contact displacement of stator becomes acceptable.

In this iterative procedure, the implicit dynamic time integration and steady-state contact

are combined to perform the analysis of steady state operation of USM. No assumption

of the stator bending profile is needed. The converse and direct piezoelectric effect can

be accurately simulated using 3D piezoelectric element in the implicit routine. Steady-

state contact allows the use of Lagrange multipliers for imposing the contact constraints

in the normal and tangential directions exactly. Interaction between stator and contact

interface is achieved through the iterative procedure between the dynamics and steady-

state contact solution, minimizing computational cost. This procedure however does not

give the transient response of USM due to startup or load variation.
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4.4 Numerical demonstration and discussion

To demonstrate the capability of the proposed procedures in performing an overall analy-

sis, the numerical results obtained are compared with published numerical and experi-

mental results. The simulation will be performed on two motors, namely that of Kagawa

et al. (1996) and Glenn (2002). The FEM models adopted for both motors are first

detailed in Section 4.4.1. Section 4.4.2 provides a discussion on the results of Kagawa

motor and comparison with theoretical results based on a simplified model. Free vibra-

tion, stator dynamics and the overall behavior of the motor are addressed. Section 4.4.3

describes the results of Glenn motor and evaluates the accuracy of the proposed routines

against experimental results. All computations are performed using ABAQUSr version

6.4.

4.4.1 FEM models of Kagawa and Glenn USMs

The finite element discretization and electrode configuration of Kagawa motor and Glenn

motor considered are shown in Fig. 4.2.

The Kagawa stator is made of an annular plate of brass with thickness of 2.5 mm,

and a piezoelectric ceramic plate with thickness of 0.5 mm is bonded on the lower surface

of the brass ring. They have the same inner diameter of 40 mm and outer diameter of

60 mm. For computation purpose, the brass plate is sub-divided into 2 layers, one with

thickness of 0.5 mm (contact layer) and the other with thickness of 2.0 mm (structural

layer). The rotor is an annular steel plate, assumed to be rigid.

The Glenn stator comprises an annular plate of 544 phosphor bronze with thickness

of 1.5 mm, on top of which is bonded 72 teeth made of the same material with height

1.0 mm. A piezoelectric ceramic plate with thickness of 0.5 mm is bonded on the lower

surface of the annular plate. They have the same inner diameter of 47 mm and outer

diameter of 60 mm. The Glenn rotor comprises an annular aluminum plate with a 0.2 mm
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Figure 4.2: FE discretization in SC and EPF routines and electrode arrangement of
Kagawa (a, b and c) and Glenn motors (d, e and f)
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thick contact layer of Ekonol/PTFE bonded on its lower surface. Their inner diameter

is 53 mm and outer diameter is 61 mm.

The finite element discretizations are different for the two procedures. In the SC

procedure, the number of finite elements in (r, θ, z) directions for the Kagawa stator with

respect to the piezoelectric patch, annular plate and contact layer are 4×72×1, 4×60×1

and 3 × 144 × 1 respectively as shown in Fig. 4.2 (a). The number of elements for the

Glenn motor with respect to the piezoelectric patch, annular plate, teeth and rotor are

4 × 108 × 1, 4 × 108 × 1, 3 × 2 × 1, and 4 × 178 × 1 respectively as shown in Fig. 4.2

(d). To simulate the bending behavior, solid elements with 20 nodes (C3D20RE and

C3D20R) are adopted for the piezoelectric patch and structural ring in both stators. For

the contact layer in the Kagawa stator and the teeth and rotor in the Glenn motor, solid

elements with 8 nodes (C3D8) are adopted.

In the EPF procedure, the finite elements used for the Kagawa stator and Glenn

motor comprise 1 mm cuboids as shown in Fig. 4.2 (b) and Fig. 4.2 (e). Solid elements

with 8 nodes and reduced integration (C3D8R) are adopted.

Electric potential φ exists explicitly only in the SC procedure and are assumed to be

zero on the top surfaces of the piezoelectric patches for both motors. Specific distribution

of electric potential φ is prescribed on the bottom surface to generate traveling waves.

The piezoelectric patch is assumed to be uniformly polarized along the z-direction. Its

bottom electrode is divided into 18 segments (or groups of elements) as shown in Fig. 4.2

(c) and Fig. 4.2 (f). Of these, two groups of 8 segments are separated by 2 white segments.

The electrical potential on the left group of 8 segments follows a cosine time function

and that on the right follows a sine time function. In each group, the electrical potential

on the darker shaded part are always out-of-phase with that on the lighter part. The
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prescribed potential φ on the bottom surface can be written as follows:

φ =





−V0 sin(ωt) θ ∈ [
0, 1

9π
] ∪ [

2
9π, 1

3π
] ∪ [

4
9π, 5

9π
] ∪ [

2
3π, 7

9π
]

V0 sin(ωt) θ ∈ [
1
9π, 2

9π
] ∪ [

1
3π, 4

9π
] ∪ [

5
9π, 2

3π
] ∪ [

7
9π, 8

9π
]

−V0 cos(ωt) θ ∈ [
19
18π, 21

18π
] ∪ [

23
18π, 25

18π
] ∪ [

3
2π, 29

18π
] ∪ [

31
18π, 33

18π
]

V0 cos(ωt) θ ∈ [
21
18π, 23

18π
] ∪ [

25
18π, 3

2π
] ∪ [

29
18π, 31

18π
] ∪ [

33
18π, 35

18π
]

(4.49)

where ω is the frequency of the electrical potential.

Using a thermal analogy, the corresponding temperature distribution to simulate the

converse piezoelectric effect in the EPF routine is obtained via Eqs. (4.47) and (4.49).

The material constants used in the calculation are tabulated in Table 4.1. The thermal

expansion coefficient should be set according to Eq. (4.46).

Table 4.1: Material properties

Property Brass Bronze Ekonol/PTFE PZT4

Young’s module (GPa) 100.6 103.5 0.7
CE

11= 139 CE
12 = 77.8 CE

13 = 74.3

CE
33 = 115 CE

44 = 25.6 CE
66 = 30.6

Poisson ratio 0.35 0.33 0.33 -

Mass density (kg/m3) 8560 8893 1950 7600

Piezoelectric constant (C/m2) - - - e31 = -5.2 e15 = 12.7 e33 = 15.1

Permittivity(nF/m) - - - εS
11 =13.06 εS

33=11.51 -

4.4.2 Analysis of Kagawa motor

4.4.2.1 Free vibration of stator

The eigenvalues for the Kagawa stator with free boundary condition used in both SC and

EPF procedures are extracted and listed in Table 4.2. They agree with those obtained

by Kagawa et al. (1996), especially the frequency corresponding to the ninth mode.

4.4.2.2 Input parameters for SC and EPF procedures

In the SC procedure, the frequency of the ninth flexural mode is 45.39 kHz, and its period

T9 is 22.03 µs. Setting the electrical voltage at this frequency with amplitude of 50V,

the dynamic responses of the stator are computed using Newmark time integration with
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Table 4.2: Comparison of frequencies (kHz) of Kagawa stator

n p SC routinea EPF routine Kagawab Difference between a and b(%)

0

2 1.934 1.921 - -

3 5.328 5.268 - -

4 9.928 9.840 - -

5 15.568 15.486 14.760 5.47%

6 22.080 22.055 21.228 4.01%

7 29.307 29.396 28.601 2.47%

8 37.115 37.402 36.785 0.90%

9 45.393 45.912 45.685 -0.64%

10 54.057 54.879 55.210 -2.09%

p = number of nodal diameters.

n = number of nodal circles.

a time step of 0.5 µs (or about T9/44). The stator is assumed to have free boundary

conditions. Rayleigh damping coefficients are set to be α = 116.491, β = 3.364 × 10−8,

which correspond to the first and ninth flexural mode each with damping ratio of 0.5%.

In the EPF procedure, the frequency of the ninth flexural mode is 45.91 kHz. Setting

the temperature at this frequency with amplitude of 100000◦, the dynamic responses of

the stator are computed using explicit central difference integration. The stator is as-

sumed to have free boundary conditions (kinematics coupling constraints). The damping

ratios are set to be the same as those in the SC procedure.

4.4.2.3 Dynamic analysis of stator

The time history of uθ, uz and vθ of the upper surface of the stator computed by the

SC and EPF procedures from 3.8 - 4.0 ms are in a good agreement as can be seen by

comparing Fig. 4.3 (a) and (b); for example, the amplitudes of uθ , uz and vθ are 0.7128

µm, 2.347µm and 0.202 m/s by SC and 6.621µm, 2.167µm and 0.207 m/s by EPF. The

phase relationships between uθ, uz and vθ are also the same in both Fig. 4.3 (a) and (b).

The phase difference between uz and vθ is zero, and between uθ and uz is π/2.

From the amplitude and phase difference between uθ, and uz in Fig. 4.3, it can be

concluded that a traveling wave is generated on the stator. This is reasonable theoretically
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Figure 4.3: Displacements and velocity at upper surface of Kagawa stator by (a) SC and
(b) EPF routines

(Wallaschek, 1998) as shown in Eqs. (1.7)-(1.10). The conclusions from Fig. 4.3 can be

obtained that (1) the circumferential velocity vθ of the material points becomes maximum

when the transverse displacement uz reaches its maximum; and (2) the displacement

trajectory becomes elliptic.

4.4.2.4 Steady-state analysis by SC procedure
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Figure 4.4: (a) Axial force applied on rotor and (b) corresponding contact area in Kagawa
motor by SC routine

Based on the displacement and velocity fields of the stator from dynamic analysis

using the SC procedure presented above, the steady-state contact between the deformed

stator and rotor can be quantified. The stator is assumed to be fixed on the inner edge
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at the deformed configuration in order to compute the contact force and the coefficient

of friction µ is assumed to be isotropic with a value of 0.3. The rotational speed and

axial displacement uz of the rotor are prescribed. For a range of speed from 0 to 60 rpm

and uz from 0 to 1.5 µm, the axial force computed varies from 0 to 26 N.

The axial force applied on the rotor and the corresponding contact area between the

rotor and stator is plotted in Fig. 4.4 (a), from which one can see the contact area is

virtually constant (about 38 mm2 or 2.3% of the top surface area of the stator) during

contact beyond a small force level. The nine contact areas located at the outer edge on

the top surface of the stator are plotted in Fig. 4.4 (b). In view of the small areas and

contact pressure, it may be assumed that the vibration of the stator is not affected by

the contact force significantly.
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Figure 4.5: Overall behavior of Kagawa motor by SC routine

The overall behavior of USM are computed and shown in Fig. 4.5. They are the

relationship between (a) axial force and torque with varying rotor speed; (b) torque and

rotor speed with varying axial force; (c) axial force and rotor speed with varying torque

and (d) torque and power with varying axial force. From Fig. 4.5 (b), (c) the stick
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and slip contact status is obvious although the transition between them is not so sharp

because the stator is not an ideally rigid in the FEM model. The stick speed ranges from

0 to 40 rpm where the rotor speed is almost independent of the axial force and torque.

In addition, the power increases with torque as shown in Fig. 4.5 (d) and the torque is

proportional to the normal force as shown in Fig. 4.5 (a). Beyond 40 rpm where slipping

occurs, the torque and axial force are independent of the rotor speed shown in Fig. 4.5

(b) and (c) and the power is independent of torque as shown in Fig. 4.5 (d).

These results are reasonable theoretically. From Fig. 4.4, point contacts may be

assumed (Flynn, 1995; Wallaschek, 1998) and the interaction between stator and rotor

can be described by the normal and tangential forces FN and FT , respectively. For the

case of stick (no slipping), the contact points of stator and rotor have the same velocity.

For a traveling wave, the circumferential velocity of the stator’s contact point v∗θ is given

by Eq. (1.11) and the resulting rotational speed of the rotor is

ωrotor =
hc

rc

AR(r)
rc

ωn (4.50)

In this equation, rc is the radius of contact and hc the distance between contact interface

and middle surface of the stator; R(r) is a dimensionless function of the stator’s deflection

in the r-direction, which is usually normalized so that A can be interpreted as the modal

amplitude for a particular radius of interest. For the case of slipping, the motor torque

is constant

MT = µFNsign(ωrotor)rc (4.51)

for all rotary speeds. Eqs. (4.50) and (4.51) verified the results of Fig. 4.5, that is, the

rotary speed in the stick regime is independent of the normal (axial) force, while the

motor torque in the slip regime is proportional to the axial force and independent of the

rotor speed.

The no-load speed and stall torque are two characteristic parameters for performance

of USMs. The torque produced by an ultrasonic motor is determined by the friction force
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Table 4.3: Comparison of operational parameters of Kagawa motor

Parameters SC routine
Kagawa et al. (1996)

Numerical results Experimental results

v∗θ (m/s) 0.2 0.138 -

ωrotor (rpm) 60.6 50.2 56

Stall torque (Nm) 0.138 0.123 -

at the rotor-stator interface. For a given excitation voltage and applied normal force,

there will be a set of speed-torque operating points at which the motor will run, depending

on the load it must drive. With no load, the motor will spin at its no-load speed and

when the load is increased to the point that the rotor no longer moves, the motor is

delivering its stall torque. The no-load speed and stall torque provide two operating

points on the speed-torque curve. ωrotor without load, stall torque (axial force 15.6N)

and v∗θ , are computed and compared with experimental and numerical results (Kagawa

et al., 1996) shown in Table 4.3. The results from proposed routine are reasonable, for

example, v∗θ and stall torque are 0.2 and 0.138 by the proposed routine and 0.138 and

0.123 provided by Kagawa et al. (1996) respectively. In addition, for ωrotor without load,

a more accurate value of 60.6 is given by the proposed routine compared to 50.2 provided

by Kagawa using the equivalent electric circuit method.

4.4.2.5 Transient analysis by EPF procedure

The importance of a contact layer in practical USM is demonstrated by the results from

the EPF model. The results of transient overall behavior analysis by EPF exhibit some

problems as shown in Fig. 4.6. Under some small axial displacement of stator, uz, say

0.5 × 10−5m, which results in small contact force, Kagawa motor can work properly.

However, when the displacement of the stator gets larger, the contact between the stator

and rotor becomes stronger and the stator resonates at a lower frequency causing the

EPF procedure to fail, which replicates the actual case in practice. Hence, the contact

layer is necessary for the steady operation of USM.



4.4: Numerical demonstration and discussion 81

0 0.005 0.01 0.015 0.02
0

50

100

co
nt

ac
t a

re
a 

(m
m

2 )

0 0.005 0.01 0.015 0.02
0

100

200

300

ax
ia

l f
or

ce
 (

N
)

0 0.005 0.01 0.015 0.02

−2

−1

0
x 10

−5

u z (
m

)

time(s)

Figure 4.6: Transient response of intermittent-contact in Kagawa motor by EPF routine

4.4.3 Analysis of Glenn motor

4.4.3.1 Free vibration of stator

Table 4.4: Comparison of frequencies (kHz) of Glenn stator

n p SC routinea EPF routine Glennb Difference between a and b(%)

0

0 18.691 18.352 - -

1 18.873 18.545 - -

2 19.446 19.148 - -

3 20.479 20.223 - -

4 22.060 21.851 - -

5 24.270 24.105 - -

6 27.158 27.032 - -

7 30.734 30.647 - -

8 34.974 34.932 - -

9 39.832 39.851 39.957 -0.3%

10 45.250 45.353 - -

p = number of nodal diameters.

n = number of nodal circles.

The eigenvalues of Glenn stator used in both SC and EPF procedures are extracted

and listed in Table 4.4. The kinematics coupling constraints based boundary conditions

are set such that the value for the ninth mode agrees with that given by Glenn (2002).
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4.4.3.2 Input parameters for SC and EPF procedures

The input values for the load, boundary conditions and damping ratio are the same as

those for the Kagawa motor.

4.4.3.3 Steady-state analysis by SC procedure
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Figure 4.7: Glenn motor overall behavior vs. frequency at 150 Vp by SC routine

The overall behavior of Glenn stator (Glenn, 2002) is first solved at a fix drive

voltage of 150 Vp for two different drive frequencies: 41.57 kHz and 41.98 kHz, same as

those adopted in reference (Glenn, 2002). The computed performance curves at these

frequencies are plotted in Fig. 4.7, comprising the relationship between (a) torque and

rotor speed; (b) torque and power; (c) axial force and rotor speed with two cases of torque,

0.1 and 0.5 Nm. The experimental results of reference (Glenn, 2002) are compared in

Fig. 4.7(a) and (b).

The results compare well. For example, with frequency of 41.57 kHz and torque of

0.40 Nm, the rotor speeds predicted by the FE model and experiment are 92 rpm and 96

rpm respectively, and the output powers are 3.9 W and 4.0 W, respectively.
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Another observation is that the effect of driving frequency on the overall behavior of

USM, namely, motor speed, torque and power increases as the drive frequency approaches

that of resonance. For example, in Fig. 4.7(a) with a torque of 0.40 Nm, the rotor speeds

predicted by FE model are 96 rpm and 58 rpm at frequencies of 41.57 and 41.98 kHz

respectively, and with rotor speed of 100 rpm, the corresponding torques predicted by FE

model are 0.37 and 0.15 Nm. In Fig. 4.7(b) with a torque of 0.40 Nm, the power predicted

by FE model are 3.8 and 2.3 W at frequencies of 41.57 and 41.98 kHz respectively.

This effect may be due to the electrical-mechanical energy transition in the piezoelectric

ceramics attaining its highest efficiency when the ceramics is in its resonant state.

A third observation can be made by comparing the speed-axial force and torque-axial

force curves in Fig. 4.7 with those of Fig. 4.3. In Fig. 4.3, the transition between stick

and slipping is more distinct because the contact area is small. However in Fig. 4.7, the

boundary between stick and slip is less distinct because of the larger contact area due

to the presence of the softer contact layer. The effect of the soft layer is also illustrated

by the fact that the rotor speed and torque are highly dependent on axial force when

the latter is large, in contrast with those for the case of point contact shown in Fig. 4.3

(Flynn, 1995; Wallaschek, 1998).

To investigate the overall behavior of USM for different drive voltages, Glenn motor

is solved at a fix drive frequency of 41.57 kHz for drive voltages of 50 Vp, 100 Vp, 150

Vp and the results are shown in Fig. 4.8, namely, the relationship between voltage and

(a) amplitude of uz; (b) speed at a torque of 0.2 Nm; (c) torque at a rotor speed of 70

rpm; (d) power at a torque of 0.2 Nm. Although steady state displacement amplitude

on the surface of the stator is linear with voltage amplitude as shown in Fig. 4.8(a),

the speed, torque and power vary non-linearly with the voltage amplitude as shown in

Fig. 4.8(b)-(d). In fact, the speed, torque and power are about 5, 1 and 4 times higher

at 150 Vp than those at 50 Vp respectively, demonstrating the non-linear characteristic

of intermittent contact.
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Figure 4.8: Glenn motor overall behavior vs. voltage at 41.57 kKz by SC routine

4.4.3.4 Dynamic analysis by EPF procedure

The overall behavior of Glenn stator (Glenn, 2002) is solved using the EPF routine at

a drive voltage of 150 Vp and drive frequency of 41.57 kHz. The transient responses of

Glenn motor with zero rotor speed are plotted in Fig. 4.9. The speed and torque curve

plotted in Fig. 4.10 compares well with that from the SC procedure.

The ability to simulate transient response is shown in Fig. 4.9. The dynamics result-

ing from the intermittent-contact are reflected in the high frequency but small amplitude

fluctuations exhibited by the start-up curves shown in Fig. 4.9(a)-(c). The importance

of a softer contact in damping out the transient vibration to achieve steady-state opera-

tion is obvious by comparing Fig. 4.9 with Fig. 4.6. Hence, the contact layer, structural

details and control system must be properly designed for operational efficiency.
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Figure 4.9: Transient responses of Glenn motor at 41.57 kKz and 150 Vp by EPF routine
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4.5 Conclusion

Procedures for analyzing the overall behavior of USM have been proposed and demon-

strated by FE analysis using commercial software ABAQUSr version 6.4. The difficulties

of FE analysis for the intermittent-contact problem with piezoelectric actuation are high-

lighted and the SC and EPF procedures are proposed. Numerical examples are used to

obtain the stator dynamics, steady-state and transient behavior of USM to illustrate the

feasibility of the two procedures. The results are consistent with published numerical

and experimental results. Transient intermittent-contact responses which are not avail-

able in published literature are presented and show the advantage of EPF over the SC

procedure. In addition, the contact layer, structural details and control system must be

properly designed for operational efficiency. Although the solution techniques presented

in this chapter are based on piezoelectric traveling wave USM, the same approach can

be used to solve other intermittent-contact problems with piezoelectric actuation, such

as linear USM.



CHAPTER 5

Design, Fabrication and
Characterization of a Ring Type
USM with Multiple Wave
Numbers

Analytical model and numerical procedures have been developed in Chapters 2, 3 and

4 for efficient conceptual and preliminary design purpose of piezoelectric coupled struc-

tures. Another objective of the proposed research, the realization of USM with multiple

wave numbers, is experimentally studied in this chapter. In Section 5.1, the basic concept

for the novel implementation of USM with multiple wave numbers is introduced. The

fabrication of USM prototype is detailed in Section 5.2. This is followed by the char-

acterization of USM prototype including that of its experimental and simulated overall

performance.

5.1 Design of USM with multiple wave numbers

In recent years, tremendous attention has been drawn to a new type of motor, namely

the traveling-wave USM. It offers many advantageous features over the traditional elec-

tromagnetic motor, namely high torque at low speed, light weight, compact size, fast

response, no electromagnetic interference, and quiet operation as described in Chapter 1.
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However, the USM suffers from some shortcomings, such as exhibiting unsteady

performance characteristics. The reason is mainly because of the fluctuation in the system

parameters with time caused by wear, temperature built-up and load variation. In order

to overcome these problems, many control algorithms, such as proportional integral and

derivative (PID) control (Izuno et al., 1998; Senjyu et al., 2001, 1996), fuzzy logic control

(Bai et al., 2004; Izuno et al., 1992), adaptive control (Senjyu et al., 2002, 1998), neural

network control (Bekiroglu and Daldal, 2005; Lin et al., 2001; Shi et al., 2004), and

combined control algorithms (Chau et al., 2003; Lin et al., 1999a; Senjyu et al., 2000),

have been proposed to improve the performance of USM with respect to speed (Bal and

Bekiroglu, 2005; Chen and Lin, 2002; Xu et al., 2003), position (Chau and Chung, 2001;

Lin et al., 2000) and torque (Giraud et al., 2004). In these control algorithms, frequency,

phase shift and amplitude of electrical voltage sources are adopted as control variables.

However, each of these control variables has its own disadvantages, such as very narrow

controllable frequency range, dead-zone intervals in phase control, and voltage amplitude

threshold. Therefore, it is of significance in theory and applications to introduce a new

control variable, namely the wave number, as the fourth variable in a traveling wave

USM besides amplitude, frequency, and phase angle. In conventional USM, such as

the Sashida motor (Ueha and Tomikawa, 1993), the wave number is fixed due to the

alternating piezoelectric polarization directions.

The purpose of this chapter is to design, fabricate and characterize a novel USM

with multiple wave numbers, which is realized by a new design of piezoelectric electrode

configuration and corresponding driving electronics. It is hoped that this novel design of

USM can give wider controllability to improve the performance of USM.



5.1: Design of USM with multiple wave numbers 89
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Figure 5.1: Excitation of a traveling wave by bonded piezoelectric ceramics

5.1.1 Piezoelectric configuration

5.1.1.1 Conditions for excitation of traveling waves in a ring

To understand the multiple wave numbers operation in an USM, the generation of travel-

ing waves in USM using piezoelectric ceramics is first investigated first. Two piezoelectric

ceramic elements I and II are bonded on an infinite bar as shown in Fig. 5.1. It is as-

sumed that these two piezoelectric ceramic elements have the same material properties

and geometry. From elastic mechanics theory, standing waves will propagate along two

directions of the bar when one of two piezoelectric ceramic elements is excited. When

equal electrical voltages are applied on two elements, four standing waves are generated

and the transverse displacement of the stator’s middle surface can be expressed respec-

tively as

w1 = A sin(ωt− kx) + A sin(ωt + kx) (5.1)

w2 = A sin(ωt− k(x + Lsp) + ϕ) + A sin(ωt + k(x + Lsp) + ϕ) (5.2)

where kLsp is the spatial phase shift between piezoelectric elements and ϕ the phase shift

in time.

By defining the following variable transformations:

−kLsp + ϕ = ϕ1, kLsp + ϕ = ϕ2 (5.3)

Eq. (5.2) can be rewritten as

w2 = A sin(ωt− kx + ϕ1) + A sin(ωt + kx + ϕ2) (5.4)
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In Chapter 1 it is mentioned that a traveling wave can be generated by combination

of two standing waves with π/2 phase shift in both time and spatial domains. If the

following conditions are satisfied:

ϕ1 = mπ, m = 0, ± 2, ± 4, ...
ϕ2 = nπ, n = ±1, ± 3, ± 5, ...

(5.5)

then the combined wave of Eqs. (5.1) and (5.4) is expressed by

w = w1 + w2 = A sin(ωt− kx) + A sin(ωt + kx)
+A sin(ωt− kx + mπ) + A sin(ωt + kx + nπ)

= 2A sin(ωt− kx)
(5.6)

resulting in a traveling wave.

From these results, the conditions for excitation of a traveling wave using the set-up

in Fig. 5.1 can be found from Eqs. (5.3) and (5.5):

Lsp = λ(n−m)/4, ϕ = (n + m)π/2 (m 6= n) (5.7)

That is, the following four cases can exist:

Lsp = λ/4, ϕ = π/2, (n = 1,m = 0) (5.8a)

Lsp = 3λ/4, ϕ = 3π/2, (n = 3,m = 0) (5.8b)

Lsp = 5λ/4, ϕ = 5π/2, (n = 5,m = 0) (5.8c)

Lsp = 7λ/4, ϕ = 7π/2, (n = 7,m = 0) (5.8d)

5.1.1.2 Comparison of excitation conditions

Some limitations of the application of conditions in Eq. (5.8) need to be noted. For high

power actuation, the length of piezoelectric patches, Lp, should be as large as possible,

however, its maximum length is λ/2 for the actuation of elastic wave with wavelength λ;

while the spacing between two piezoelectric elements, Lb, should be as short as possible.

However, it is confined by Lsp = Lb+Lp. Considering these limitations, the configurations

5.8a and 5.8b are better than other two cases 5.8c and 5.8d, and their application in a
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Figure 5.2: Comparison of piezoelectric ceramic electrode configurations with wave num-
ber 9

ring type USM with wave number 9 is shown in Fig. 5.2. Case 5.8a is plotted in Fig. 5.2

(a) while case 5.8b in Fig. 5.2 (b).

In Fig. 5.2 (a), the electrode of piezoelectric ring is divided into 18 segments with

three sizes of λ/4 (10◦), λ/2 (20◦) and 3λ/4 (30◦), where the segments with size λ/2

are for actuation, and the segments with sizes λ/4 and 3λ/4 are blank segments (b1 and

b2). The two blank segments separate the actuation segments into two groups ci and si

(i = 0 · · · 8). The electrical potential on ci (i = 0 · · · 8) follows a cosine time function

and that on si (i = 0 · · · 8) follows a sine time function. In each group, the input power

for each segment, for example +c and -c (similarly, +s and -s) are 180◦ out of phase.

Electrical voltages are not normally applied on b1 and b2 and are used as sensors. Thus,

each set, [ci, b1, and si] (i = 0 · · · 8), forms one configuration corresponding to Case 5.8a.

In Fig. 5.2 (b), the electrode of piezoelectric ring is divided into 36 segments with

equal length of λ/4 (10◦). These form nine groups of +c, −c, +s and −s covering the

whole surface of the ring, each group realizing the configuration corresponding to Case

5.8b.

By comparing Figs. 5.2 (a) and (b), one can see more piezoelectric elements is in-

volved in the actuation in Case 5.8b. If the polarization of piezoelectric elements is

reversed every half wavelength (indicated by + and -), only two channels of driving
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electronics are necessary to actuate the motor in Case 5.8a while Case 5.8b needs four

channels which is harder to realize in practice. So Case 5.8a is widely adopted in commer-

cial USM, such as the Sashida motor (Ueha and Tomikawa, 1993). However if reversed

polarization at every half wavelength is difficult, for example when piezoelectric film is

used, Case 5.8b is more suitable. An example of which is the Flynn motor (Flynn, 1995).

5.1.1.3 Realization of multiple wave numbers operation

With the above background on the generation of traveling waves in USM using piezo-

electric ceramics, piezoelectric electrode configurations of USM with 8 different wave

numbers, 3, 4, 5, 6, 9, 10, 18 and 20 are proposed and shown in Figs. 5.3 and 5.4 respec-

tively. Similar to the segmentation of distributed piezoelectric sensors and actuators in

vibration control (Bailey and Hubbard, 1985; Lee and Moon, 1990; Sun et al., 1999; Tzou

and Fu, 1994b,a), all piezoelectric patches have the same polarization direction, which is

normal to the plate. Its electrodes on top in the piezoelectric patch are divided into 80

equal segments shown in Fig. 5.3 (a), which can realize wave number 20 corresponding

to Case 5.8b. The multiple wave numbers, 4, 5 and 10, are realized by controlling the
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4.5° +c

+s

-c
-s

(b)
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Figure 5.3: Piezoelectric ceramic electrode configurations of USM with wave number (a)
20, (b) 4, (c) 5 and (d) 10

connection between the segmented electrodes shown in Fig. 5.3 (b-d). Specifically, the
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combination of blocks of 5, 4 and 2 segments of the electrode from the 80 segments give

rise to the configurations with wave numbers 4, 5 and 10. Similarly, if the electrodes

on bottom of the piezoelectric ring patch are divided into 72 equal segments shown in

Fig. 5.4 (a), wave number 18 corresponding to Case 5.8b can be realized. The multi-

ple wave numbers, 3, 6 and 9, are realized by controlling the connection between the

segmented electrodes shown in Fig. 5.4 (b-d).

For clarity in each of Figs. 5.3 (b-d) and 5.4 (b-d), the applied voltage on the elec-

trodes are only shown over one wavelength as +s, +c, −s and −c, with phase shifts of

90◦. The electrodes on the other eight groups have the same set of voltage arrangement.

It is noted that the resonant frequencies corresponding to the wave numbers may not

be as high as that in the range of ultrasonic wave. Hence, the term ”ultrasonic motor”

may not be truly appropriate while the phrase ”piezoelectric driving motor” would be a

better description for such motor with multiple wave numbers. However, following the

current accepted terminology, the term ”ultrasonic motor” is still used in this thesis.
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Figure 5.4: Piezoelectric ceramic electrode configurations of USM with wave number (a)
18, (b) 3, (c) 6, and (d) 9

In order to generate a traveling wave along the ring, it is necessary for the driving

electronics to have four channels, each separated by a phase shift of 90◦ as shown in
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Figure 5.5: Integrated electronics used in the actuation and sensing of the stator’s piezoe-
ceramic elements

following section.

5.1.2 Driving electrical circuit

Several circuits are required to properly drive and amplify the signals sent to the elec-

trodes of the piezoceramics and to monitor the current flow through the piezoceramics.

Section 5.1.2.1 describes the circuit used to generate the four channels waveforms (±sine,

±cosine) needed to create a traveling wave within the stator. The waveforms alone are

not enough, however, to create motion in the stator. Section 5.1.2.2 illustrates the details

of the high power amplifiers used to increase the voltage and current to produce sufficient

deflection (at resonance) in the stator to accomplish rotor motion. Lastly, as input power

to the stator is a parameter of interest, it becomes necessary to monitor not only the

input voltage but the input current as well. This requires a differential amplifier circuit,

as will be explained in Section 5.1.2.3. Fig. 5.5 shows how all these electronics interact

with one another and Appendix C shows the detailed drawing of the driving electrical

circuit. All designs have been accomplished using Orcadr.

5.1.2.1 Waveform generator

To generate the four channels waveforms +s, +c, −s and −c that are mentioned earlier,

three ICs, namely MAX038, TCL555 and SN74SN74A, are used as shown in Figs. 5.6

and 5.7, where MAX038 adjusts the four channels waveforms frequency and TCL555 and

SN74SN74A ensure their phase shift.
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Figure 5.6: Waveform generator MAX038

Four MAX038 High Frequency Waveform Generators (Maxim, 2005) as shown in

Fig. 5.6 are used to produce low-distortion sine, triangle, saw-tooth, or square (pulse)

waveforms at frequencies from below 1Hz to more than 20MHz. The TTL/CMOS-logic

address pins (A0 and A1) are used to set the waveform. For example, the sine waveform

can be set by connecting A1 with V+. The output frequency is determined by the current

(IIN) injected into the IIN pin, the COSC capacitance (C2), and the voltage on the FADJ

pin. When VFADJ = 0V, the fundamental output frequency (Fo) is given by the formula

Fo(MHz) = IIN(µA)÷ C2 (pF) (5.9)

IIN can be driven with a voltage (REF) in series with a resistor (R3), where REF is a

stable 2.50V internal reference. Hence the formula for the oscillator frequency is

Fo(MHz) = VREF ÷ [R3× C2 (pF)] (5.10)

The voltage on DADJ controls the waveform duty cycle (defined as the percentage of

time that the output waveform is positive). Normally, VDADJ = 0V, and the duty cycle

is 50%.

After setting the 4 channels waveforms frequency, the next problem is to set their

phase shift. The MAX038 contains a TTL/CMOS phase detector that can be used in a
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Figure 5.7: TLC555 timer and SN74LS74A flip-flop

phase-locked loop (PLL) to synchronize its output to an external signal. For example,

suppose MAX038 has a wave output with frequency ω +4ω, where 4ω is the frequency

fluctuation. The external wave with frequency ω is connected to the phase-detector input

(PDI). MAX038 will conduct phase detection and the phase-detector output (PDO) is

a set of rectangular current waveforms at frequencies equal to the sum (2ω +4ω) and

difference (4ω) of the external wave frequency and the MAX038 output frequency. The

high-frequency component 2ω+4ω will be attenuated by a low-pass filter formed by R5,

C7, and R6, and the 4ω component is connected to FADJ (FADJ is mainly intended for

fine frequency control) to remove the MAX038 output frequency fluctuation so that the

MAX038 output and external waves have same frequency.

To generate an external source which synchronize the MAX038 output, TLC555

timer (TI, 2005a) and SN74LS74A dual-D positive edge-triggered flip-flop (TI, 2005b)

(U1 and U2 shown in Fig. 5.7) are used. The output frequency of TCL555 (Fo) is given

by the formula

Fo = 1/[C4(R1 + 2R2)× ln 2] (5.11)

Its output will connect to the flip-flop SN74SN74A, and then the flip-flop’s outputs
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provide the square-wave signals with 0, 90, 180 and 270 degrees phase shift.

Both ceramic and electrolytic bypass capacitors between the power pins and ground

shown in Figs. 5.6 and 5.7 ensure that only DC voltages are supplied to the ICs. This is

a precaution taken to prevent any oscillation that may have fed through to the output

signal.

5.1.2.2 Power amplifiers

The drive electronics explained in the previous section provide the four channels of voltage

signals necessary to generate the traveling wave. The purpose of the power amplifiers is

to increase the voltage and provide the necessary current. The electrical voltage of power

amplifiers is set to have a variable range from 10Vp to 100Vp based on the rated voltage

of commercial Sashida USM (Ueha and Tomikawa, 1993). The current requirement of

USM can be found from capacitor characteristics of piezoelectric ceramics. The current

flow through a capacitor is given by

I = ωCVp (5.12)

where ω and Vp are the frequency and voltage respectively. Using Eq. (5.12) with a 18 nF

piezoelectric load (measured value) and a 100 Vp drive signal oscillating at the resonant
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Figure 5.9: Composite amplifier by LF353 and PB58

frequency of roughly 40 kHz, an estimated current of 450 mA is required.

From the datasheet of MAX038 (Maxim, 2005), the amplitude of its voltage output

is 1.0 Vp, so the power amplifier needs a gain of 100 to increase the voltage to 100 Vp.

The power amplifier circuit consists of two stages. The first is an attenuator, LF353

op-amp (TI, 2005c) (U4 shown in Fig. 5.8), which is set to have a gain 1-10 with the

values of R9 = 10 k, R10 =10 k and trimmer R8 with a maximum value of 100 k. The

attenuator allows the voltage output at Pin 6 to range between 1 and 10 Vp. The second

stage is a composite amplifier comprising a LF353 op-amp and a PB58 op-amp (Apex ,

2005c) (U5 and U6 shown in Fig. 5.9) with a fixed gain of 10 accomplished by setting

the ratio of the feedback to input impedance at 10 with the values of R12 = 10 k and R7

=100 k. So the voltage applied on the piezoelectric ceramics can be varied from 10 to 100

Vp. The current output requirement of 450 mA can be satisfied based on the datasheet

of PB58 where a maximum current output of 1.5A can be achieved.

There are several components that need to be carefully set to ensure performance

of the composite amplifier. First is the setting of gain resistor R13. Although the total
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gain of the composite amplifier is targeted as 10, there is still a need to determine how

much amplification the driver LF353 and the booster PB58 perform individually. It is

desirable that the booster has as small a voltage gain as possible because it is responsible

for all of the current supplied and thus heat dissipation becomes an issue. However,

the driver with a maximum input voltage of 10 Vp from the attenuator is operating

near its saturation limit. Therefore, the booster performs all the voltage and current

amplification. Based on the data sheet of PB58 (Apex , 2005c), it is estimated that the

gain resistor, R13, should have a value of 21.7 k for the booster to have a gain of 10. For

ease of construction, a 22 k resistor is used.

Second is the current limiting resistor R11. From the datasheet of PB58 (Apex ,

2005c), the following formula is given by

I ≈ 0.65÷ R3 (5.13)

Considering the current requirement of piezoelectric load is 450 mA, according Eq. (5.13),

the resistor is then set at 1 Ω.

Third is the compensation of the composite amplifier for stability. All the compen-

sation are designed by an Apex Application Engineer (Apex , 2005b) and is summarized

concisely here. The compensation capacitor is attached directly to the PB58, C17 with a

value of 10 pF, to tailor between the slew rate and loop stability of PB58. The effects of

capacitive load induced by the piezoceramics on the amplifier is countered by feedback

compensation, accomplished by the use of C9 with a value of 4.7 pF, and noise gain

compensation network, realized through the use of R14 with a value of 1 k and C16 with

a value of 470 pF.

Fourth is the protection of the composite amplifier. The diode network D1 and

D2 at the input terminal protects the LF353 and PB58 from large transients caused by

feedback of C9 from the output to the input. The diodes attached to the output, D4 and

D5, ensure that the output voltage does not overwhelm the rail voltages, which may occur
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Figure 5.10: Current monitor differential amplifier OPA27

in a piezoelectric drive situation where the piezoelectric ceramics is stressed mechanically,

thereby creating an electrical voltage. Lastly, the diodes D3 and D6 associated with the

rail voltages are used to provide protection from undesired transients on the power supply.

5.1.2.3 Differential amplifiers

In order to monitor the current flow through the piezoelectric ceramics, four identical

ultra-low noise precision op-amp OPA27 (TI, 2005d) (U7 shown in Fig. 5.10) are used,

one for each channel. The working principle of OPA27 can be shown in Eq. (5.14). In

general, if R16/R18=R17/R19, the current flow through the piezoelectric ceramics is

directly a function of the differential amplifier’s output voltage:

Ipiezo =
R16×V6
R18× R15

(5.14)

where Ipiezo is the current flowing through the piezoelectric ceramics and V6 is the voltage

of pin 6 in U7.

To have a good performance of OPA27, the voltage divider, R16 and R18 need to be

set carefully. The rail voltage of OPA27 is +15 Vp, and the piezoelectric drive voltage

is nominally 100 Vp. Op-amp saturation can easily occur. Resistors 16 and 18 is set

up with values chosen to drop the voltage at the positive input terminal to a reasonable

level, in this case to 10 Vp.
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Figure 5.11: Explode view of USM prototype

5.1.3 Mechanical parts

Having discussed the piezoelectric configurations, and electronic components and circuit

for the power supply to the USM with multiple wave numbers, the next problem is the

design of mechanical parts. Sashida motor (Ueha and Tomikawa, 1993) is a well doc-

umented example of a piezoelectric traveling wave motor and is therefore adopted as a

reference for designing the rotor and the stator. An exploded view of the mechanical

assembly of the USM prototype developed is shown in Fig. 5.11. The stator is made of

an annular plate of aluminum with thickness of 2.0 mm, on top of which is 72 teeth made

of the same material with height of 1.0 mm. A piezoelectric ceramic plate (C91H) with

thickness of 0.5 mm is bonded on the lower surface of the annular plate. They have the

same inner diameter of 47 mm and outer diameter of 60 mm. The rotor comprises an

annular aluminum plate with a 1.0 mm thick contact layer of PolyTetraFluoroEthylene

(PTFE) bonded on its lower surface. Their inner diameter is 54 mm and outer diam-

eter is 58 mm. The detailed mechanical drawings are presented in Appendix D using
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Figure 5.12: Power supply of USM

SolidWorksr.

5.2 Fabrication of USM prototype

To validate the concept of USM with multiple wave numbers, the electrical and mechani-

cal designs discussed above are used to fabricate a prototype motor. The assembly of the

driving electronics is done in-house using breadboard as shown in Fig. 5.12. However,

the machining of the mechanical components are outsource to a professional workshop

in view of the tight tolerances needed to build a functioning ultrasonic motor. Outlined

here are the steps and practices followed during the preparation and assembly of the

various components of the USM. These include etching, bonding, lapping and wiring.

5.2.1 Piezoelectric ceramics preparation

In Section 5.1.1, a piezoelectric electrode configuration with 8 different wave numbers

are presented as shown in Figs. 5.3 and 5.4. However considering the machinability, the

configurations of wave number 5 and 10 are experimentally realized in this dissertation.

The piezoceramic rings are supplied by FUJIr with a uniformly poled state in the z
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Figure 5.13: Fabricated piezoelectric ring in USM prototype

direction and silver powder electrodes plated on either side. In-house preparation includes

dividing the bottom electrode of the ring into 40 equal segments as shown in Fig. 5.13,

to correspond to Fig. 5.3 (d). This configuration can realize the operation corresponding

to wave number 10. For wave number 5, it can be realized by connecting two adjacent

segments into one segment.

To minimize stress fracture of the fragile wafers, chemical etching is adopted instead

of using electric-arc or more abrasive techniques. Nitric acid (37% wt) is used to etch the

silver powder electrodes, while paraffin wax is used to mask off the desirable electrode

surfaces and steel needle with 0.05 mm diameter needlepoint is adopted to remove paraffin

wax on the etch line. As seen in Fig. 5.13, the etched lines between electrode sectors are

approximately 0.1 mm wide.

5.2.2 Stator preparation

Stator preparation includes teeth polishing on the top surface of stator and piezoelectric

ceramics ring bonding on the bottom surface as shown in Fig. 5.11. Before bonding the

piezoceramic rings, the stator teeth are polished on a flat Perspex surface using silicon

carbide papers as shown in Fig. 5.14 (a). Starting with a 400-grit paper for coarse

material removal, the process is repeated with increasingly finer papers down to 1200-

grit to produce the very flat, smooth finish required for efficient operation. A final polish

with 2000-grit silicon carbide paper provides a mirror-like finish. To ensure the removal
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(a) top surface (b) bottom surface

Figure 5.14: Fabricated stator in USM prototype

of all silicon carbide particles, de-greasing of the stator in an acetone bath is needed in

the final step.

While taking care not to scratch the finely polished teeth, the bonding surfaces

of the stator substrate and piezoelectric wafer are then wet grind with 400-grit sand

paper and again de-greased with acetone to remove any fingerprints. Circuitworks Model

CW2400 conductive epoxy is chosen for bond application because of its excellent electrical

conductivity and high strength conductive bonding. The bonding is secured under a

normal pressure of 100 kPa maintained at a curing temperature of 80C using model VT

5042EK vacuum drying oven (Heraeusr) for two hours.

Piezoceramic ring is bonded with its segmented electrodes facing outward in order

to provide full access to the individual sectors for multiple wave numbers drive operation

as shown in Fig. 5.14 (b). Consequently, an additional step is necessary to wire the

segmented electrode arrays. Connection between wires and piezoelectric electrodes arrays

is realized by CW2400 conductive epoxy to complete the assembly.

5.2.3 Rotor preparation

As seen in Fig. 5.15, preparing the rotors involved two steps. One step is the bonding of

rotor and polymer layer and other is lapping the polymer contact surface.

The polymer material of PolyTetraFluoroEthylene (PTFE) is highly resistant to
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(a) Bonding of rotor and polymer (b) Contact surface on polymer

Figure 5.15: Fabricated rotor in USM prototype

bonding in its natural state. Polymer preparation is limited to cutting the ring and scrub-

bing the treated bonding surfaces with acetone. The bonding surfaces of the aluminum

rotor are roughened and cleaned following the procedures specified for the preparation

of the stator described in the previous sub-section. Devcon 2-Ton white epoxy is chosen

for fixing the polymer ring to the aluminum rotor after preliminary tests demonstrated

that the bond is stronger than the polymer and hence will not peel under load. Following

the procedures developed for the stator, the sandwiched rotors are cured at 80◦C for two

hours under a normal pressure of 100 kPa using weights as shown in Fig. 5.15 (a).

The contact surface of polymer layer on the rotor are polished on silicon carbide

paper starting with 400-grit for bulk removal and working down to 1000-grit as shown in

Fig. 5.15 (b). Flatness is maintained by firmly securing the paper to a Perspex slab, and

the paper is kept wet to ensure constant removal of material. Finer grits are unnecessary

as the soft polymer would naturally achieve its final finish during the initial wear period

of motor operation.

5.3 Preparation for characterization

To this end, an USM prototype with multiple wave numbers has been constructed. This

section is dedicated to describing the preparation for the characterization of USM proto-

type and verification of a numerical simulation model presented in Section 5.4.
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(a)Light source and receiver and wheel (b) Assemble of encoder

Figure 5.16: Experimental setup for speed measurement

In this context, characterization refers to measurements and calculations of the mo-

tor performance including rotational speed, torque, power and efficiency. Mechanical

output power can be computed once the speed and torque are determined. Efficiency is

determined once the electrical input power and mechanical output power are known. As

shown in Chapter 4, the control of preload (axial force) for the good contact between

stator and rotor is needed for the operation of USM. For the numerical simulation model,

modal parameters such as resonant frequencies and their corresponding damping of the

stator must be determined to actuate the piezoelectric ceramics to achieve resonance. In

addition, frictional coefficient between PTFE and aluminum is needed as input in the

simulation of contact.

There are eight variables that need to be measured, namely, rotational speed, torque,

preload, input electrical voltage and current, resonant frequencies and damping of stator,

and coefficient of friction. The experimental instruments for measurements are presented

in Section 5.3.1 and the controlling experimental conditions are presented in Section 5.3.2.

5.3.1 Experimental instruments

5.3.1.1 Speed measurement

Speed is monitored by an optical encoder, where the encoder wheel has 60 slots and a

light source and a receiver are shown in Fig. 5.16 (a). They are mounted on a virtually
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Figure 5.17: Experimental setup for torque measurement

frictionless shaft for accurate speed measurement and a resolution of 6◦ can be achieved

as shown in Fig. 5.16 (b). A pulse counter (Microcontroller AT89S51) is employed to

interpret the digital signal coming from the light receiver and is programmed to display

the measurement directly in revolutions per minute (rpm).

5.3.1.2 Torque and coefficient of friction measurement

A pulley with a radius of 23.5 mm and weights are used to load the motor as shown in

Fig. 5.17. Once the weight used is known, the torque can be easily calculated. Nylon

thread, chosen for its lightness, is used to support the weight. The weights used ranges

from 5.0g - 50.0g N. To generate the empirical performance curves, several input torques

are used.

An experiment is performed to estimate the coefficient of friction between PTFE and

aluminum to be used in the simulation. When the stator is turned on, the rotor spins

due to the effect of friction. If an opposite torque is applied through added weights on

the pulley system, a stage can be reached where the pulley begins to stall. An additional

small amount of weight will cause the rotor to slip in a direction opposite the stator’s

surface motion. The dynamic coefficient of friction can be derived from this torque. If

the stator is not switched on, the static coefficient of friction can be obtained using the

same concept.
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Figure 5.18: Strain gage for axial force measurement

5.3.1.3 Axial force measurement

The preload is set by varying the thickness of the appropriate washer. In order to know

the force applied at the rotor/stator interface, several steps are taken. A strain gage is

attached on the stator as shown in Fig. 5.18. A calibration curve for the stator spring

is determined by applying known forces and measuring the resulting strains and the

correlation between them is obtained. In this case, a linear curve fit is found to be

suitable and used to determine the preload. A digital strain meter TC-31K (Tokyo Sokki

Kenkyujo Co., Ltd.) is used to measure the strain in a half-bridge Wheatstone set-up.

5.3.1.4 Electrical variables measurement

The detailed electronics are described in Section 5.1.2. To measure the input power to the

motor, input voltage and current to the piezoelectric ceramics, an oscilloscope (Yokogawa

Model DL708E) with a maximum acquisition rate of 10 million samples per second is

used.

5.3.1.5 Resonant frequencies and damping coefficients measurement

Resonant frequencies and damping can be measured using the single degree of freedom

curve fit (often called the SDOF method) approach (Ewins, 2000; He and Fu, 2001;

Inman, 1994; Maia et al., 1997). In this method of resonance testing, the stator is excited
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harmonically by four adjacent segments of piezoelectric ceramics (one wavelength), and

the re-activated voltage amplitudes on other piezoelectric electrodes are measured. The

piezoelectric ceramics are taken here as actuators and sensors simultaneously based on

piezoelectric coupling effects. The amplitude is then plotted against driving frequency,

which is named as amplitude-frequency curve of stator. From this curve, the modal

damping ratio is calculated by using the half-power method.

5.3.2 Controlling experimental conditions

The prototype is tested under controlled conditions. Some factors need to be set carefully.

A major concern is initial wear. When a motor is first assembled, performance can change

dramatically over time as the newly-mat polymer surface temporarily undergoes some

wear. With use, the mating improves and wear then slows to a negligible rate resulting

in a more stable motor performance. Consequently, before any valid measurements are

documented, the newly assembled motor is driven continuously for an appropriate period

of time until its speed and input power are observed to be steady. The burnt-in procedure

typically lasts several hours.

Another important concern while testing the motors is the internal heating caused

by the contact interface. Essentially, performance is a strongly influenced by temperature

and must be recognized. Therefore, to provide validity and consistency of the experi-

mental performance measurements, it is deemed necessary to stabilize the temperature.

The experiments are performed in an air conditioned room with a stable environmen-

tal air temperature of 20◦C. In addition, a fan is used to extract the local heat in the

USM. Finally throughout all experimental testing, each measurement is finished within

one minute and the USM is cooled down for 10 minutes before operating for the next

measurement.
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5.4 Characterization of USM with multiple wave numbers

To demonstrate the extent to which the preceding design concept of multiple driving

wave numbers operation of USM can be realized, the operation of the prototype motor is

characterized. The results are also used to validate a numerical simulation model so that

the latter can be used to further characterize the motor to minimize the need to resort

to additional physical experimental test.

Using the set-up described in Section 5.3, steady-state motor performance is mea-

sured under carefully controlled conditions. Parametric studies on varying drive fre-

quency and voltage, and the effect of contact layer have been studied in Chapter 4. This

chapter focused mainly on the performance of USM with different wave numbers. Three

cases are studied, namely, wave number 10 with voltage 60 Vp (denoted by w10v60),

wave number 10 with voltage of 20 Vp (w10v20) and wave number 5 with voltage of

60 Vp (w5v60). Preload for all cases are set at 4.1 N. To verify the FEM simulation

model presented in Chapter 4, using the procedure demonstrated in Chapter 4 the nu-

merical results are obtained for all cases performed experimentally. All computations are

performed using ABAQUSr version 6.4.

Table 5.1: Material properties

Property Al PTFE C91H

Young’s modulus (GPa) 70 0.56
CE

11= 138.1 CE
12 =89.3 CE

13 = 93.1

CE
33 = 131.3 CE

44 = 24.0 CE
66 = 24.4

Poisson ratio 0.33 0.46 -

Mass density (kg/m3) 2700 2170 8110

Piezoelectric constant (C/m2) - - e31 = -18.81 e15 = 22.16 e33 = 24.34

Relative dielectric constants - - εS
11/ε0 =2699 εS

33/ε0=2383 -

Coefficient of friction 0.07 (Counterparts: Al and PTFE)

5.4.1 Modal parameters of stator

The resonant frequencies are first extracted from FEM model of the stator, which is the

same as those shown in Chapter 4. The material constants used in the calculation are
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tabulated in Table 5.1, in which, the dynamic coefficient of friction is measured using the

method described in Section 5.3.1.2. The frequency results are shown in Table 5.2. Next,

Table 5.2: Comparison of resonant frequencies (kHz) of stator

n p FEM Measured p FEM Measured

0

1 - - 6 21.77 -

2 5.17 - 7 28.10 -

3 8.07 - 8 35.20 -

4 11.72 - 9 42.97 -

5 16.29 16.1 10 51.34 48.8

p = number of nodal diameters.

n = number of nodal circles.

the resonant frequencies and damping ratios are measured using the methods described

in Section 5.3.1.5. At the motor start-up, the frequency of the drive signal is varied

in the vicinity of the predicted resonant frequency until maximum re-activated voltage

occurred. The amplitude is plotted against driving frequency shown in Fig. 5.19. The

dominant peak value is taken as the experimental value of resonant frequencies, which

are not far from the predicted ones.

In the third step, the Rayleigh damping coefficients (α and β) are determined from

the resonance curve shown in Fig. 5.19. The resulting damping coefficients and damping

ratios are summarized in Table 5.3.

Table 5.3: Experimental results of damping

Paramters Value

Damping ratio ξ for the fifth mode (%) 1.0

Damping ratio ξ for the tenth mode (%) 1.6

α 1.120 ×103

β 8.843 ×10−8

5.4.2 Overall behavior of USM with multiple wave numbers

Steady-state motor performance of the cases w10v60, w10v20 and w5v60 are measured.

In Section 5.4.2.1, the experimental data are compared with those from FEM model to

verify the numerical method. In Section 5.4.2.2, four control variables, namely amplitude,
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Figure 5.19: Resonant frequency behavior of stator for (a) fifth and (b) tenth modes

frequency, phase and wave number are compared based on stator dynamics, meaning that

the effect of these control variables on the traveling wave on the stator are investigated

instead of contact. Further comparison between amplitude and wave number is then

performed in terms of contact and power performance.

5.4.2.1 Experimental results and numerical verification

To investigate the operational characterics of USM with multiple wave numbers, the

overall behaviors of the USM prototype are measured and shown in Figs. 5.20 and 5.21.

Simulation is also performed and presented for all cases for comparison purpose. The SC

procedure developed and demonstrated in Chapter 4 is adopted in this chapter.

As expected, the shapes of the predicted curves are in agreement with the actual

measurements. For example, the variation of the speed-torque curve, that is high speed

with low torque while low speed with high torque are exhibited experimentally for all

cases shown in Figs. 5.20 and 5.21. However, both speed and output power are slightly

over-predicted. For example, the predicted no-load speed of 106 rpm, 38 rpm and 34
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Figure 5.20: Simulated vs. measured speed and torque

rpm are all sightly higher than the measured values of 96 rpm, 35 rpm and 25 rpm,

while the predicted maximum output powers are 0.65 W, 0.33 W and 0.18 W, slightly

higher than the measured values of 0.59 W, 0.30 W and 0.15 W respectively. A possible

explanation for this could be the slight difference in the resonant condition between

the actual and the modeled USM. Experimentally, although the driving frequencies are

controlled carefully, fully resonant status is harder to achieve, while this is not a problem

in simulation. In addition, other environmental variations such as temperature of the

mechanical components are not modeled numerically.

5.4.2.2 Comparison of speed control variables

From Eqs. (5.1), (5.4) and (5.6), it can be seen there are three variables - frequency,

phase and amplitude of driving signal to be adopted as control variables. Ferreira and

Minotti (1998) provided a comparison and comment of these in terms of stator dynamics:

Firstly, because the stator structure is being exploited near mechanical resonance, the

vibration amplitude of stator is highly sensitive to the difference between the excitation
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Figure 5.21: Simulated vs. measured output power

frequency and the resonance frequency of the stator. Hence, the variation of the driving

signal frequency near the resonance frequency of the stator can be adopted to adjust the

speed. However, non-resonant vibration lowers the performance of the USM.

Secondly, the contact points on the surface of stator will move from perfect elliptical

motion (phase shift π/2) to rectilinear reciprocating motion (phase shift 0). Therefore

the variation of the driving signals phase shift can also be adopted to adjust the speed.

However, phase shifts differing from π/2 cause the horizontal component of motion to

decrease, thereby lowering the performance of the USM.

Thirdly, vibration amplitudes on the contact points of the surface of the stator can be

assumed to be linearly dependent on the applied voltages; hence theoretically, rotational

speed can be controlled in a linear manner. Amplitude control is better than frequency

and phase control due to the perfect elliptical motion and resonant status.

In this chapter, the fourth control variable, wave number is introduced. For example,

considering the speed variation of USM for wave number 10 with voltage of 20, and 5

with voltage of 60 shown in Fig. 5.20, the speed differs only slightly for these two cases
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Figure 5.22: Measured input power

in the small torque range. This means that the speed control can be achieved by varying

either the voltage or wave number. For example, if the initial operational state is at wave

number 10 with voltage of 60 inducing a speed of 106 rpm, by varying either the wave

number from 10 to 5, or by varying voltage from 60 to 20, the final speed of approximately

35 rpm can be achieved.

From the above comparison, due to the perfect elliptical motion and resonant sta-

tus, amplitude and wave number seem to be a better method to achieve speed control.

However, their physical backgrounds are different. For amplitude control, variation of

the amplitude of external voltage controls the speed of the contact points on the surface

of the stator. For wave number control, the resonant frequency is varied to change the

speed. Considering the piezoelectric ceramics as the capacitor, its impedance is varied

with the frequency of input signal from Eq. (5.12). So mechanically, amplitude control

will change the external force, which is similar to active control and susceptible to insta-

bility, while wave number control will change the stiffness of the system, which belongs

to either passive or semi-active control and has no stability problems. However, con-

trol variables voltage and wave number have different mathematical property. The wave
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number is non-continuous with large steps while amplitude can be changed continuously.

For example, from Table 5.2, if the initial operational state is at wave number 3 with

voltage 100, by varying the wave number from 3 to 10, theoretically, the speed of the

contact points on the surface of stator can increase to 6 times; while by varying voltage, it

is not easy to do because high voltage will cause electrical problems, such as component

broken-down. So they may work together in different ranges. For example, the wave

number control can vary the speed with large steps while the voltage can do fine control.

Table 5.4: Contact parameters of different cases

Cases Amplitude (µm) Axial force (N) Contact area (mm2)

Initial status 0 4.1 429/100%

w10v60 2.36 5.5 53/12%

w10v20 0.89 4.6 95/22%

w5v60 5.88 7.6 57/13%

Following the review of the advantages and disadvantages of voltage and wave num-

ber control on stator dynamics, their contact performances are compared. From the

simulated results listed in Table 5.4, their torque outputs are different. Larger vibration

amplitude of stator surface in the case of w5v60 resulted in larger axial force than that of

case w10v20. Therefore the case of w5v60 has more torque output despite having smaller

contact area. The contact stress in the case of w5v60 should be larger (due to the smaller

contact area) than that of case w10v20, the wear will more serious. However, because

the peak value of wave crest in the case w5v60 is larger than that of case w10v20, it is

more reliable.

Next, the power and efficiency of amplitude and wave number control is examined.

Based on measured values as shown in Figs. 5.22, and 5.23, for the case of wave number

10 with voltage of 60, the input power ranged from 7-9 W thus yielding a maximum

efficiency of 6.5%. For wave number 10 with voltage of 20, the input power ranged from

3-6 W thus yielding a maximum efficiency of 5.5%. For wave number 5, input power
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Figure 5.23: Measured efficiency

ranged form 2-3 W thus yielding a maximum efficiency of 5.0%. Comparing the input

power and efficiency for different voltages, 60 and 20, as one can see, power consumed

by driving electronics increases quickly. However, case w5v60 gives more output power

as shown in Fig. 5.21 due to larger torque output over case w10v20. Their efficiencies

are similar probably because they all worked at resonant condition as shown in Fig. 5.23.

One thing should be noted that the efficiency of the designed USM is unexpectedly low,

being < 7% while most reported works give an efficiency of > 15% (Cagatay et al., 2003).

One of possible reasons is that the drawback of power supply design makes it consume

much power because the booster performs all the voltage and current amplification as

mentioned in Section 5.1.2.2.

5.5 Conclusions

The design, fabrication and characterization of an USM prototype with multiple wave

numbers are performed, in which the wave number has the potential to be the fourth

control variable. A number of noteworthy observations are made during the performance
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studies. First, the experimental results and predicted values agree well, meaning that the

design and fabrication effort including the piezoelectric ring, driving circuit and mechani-

cal parts is successful. Second, the advantages and disadvantages of wave number control

and amplitude control are discussed. The speed control range of wave number is larger

than that of amplitude control; it is more stable in low speed while amplitude control can

work continuously with less wear. Their incorporation may result in better performance

of USM. Although the varying wave number concept presented in this chapter is realized

in piezoelectric traveling wave USM, the same idea can be used in other piezoelectric

device, such as linear USM.



CHAPTER 6

Conclusions and
Recommendations

The objective of this research is to study the modeling, design and development of USM.

This work is carried out in two parts. The first part (Chapters 3 and 4) is to develop ad-

vanced models for the accurate prediction of performance of piezoelectric traveling-wave

USM. In the second part (Chapters 2 and 5) improvement upon the typical piezoelectric

traveling-wave motor configuration is performed by investigating novel designs of the

stator.

6.1 Conclusions

Broadly, the proposed models will be beneficial during the preliminary design stage of

USM. Novel USM designs will further expand the application of this kind of piezoelectric

actuator. The significant points and findings of this research can be summarized as

follows:

• Free vibration characteristics are a prelude to the dynamic analysis of piezoelec-

tric coupled stator, the coupling effect between the piezoelectric layer and the host

structure is investigated to show its relationship with the resonant frequencies of
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the plate. An analytical model for the free vibration analysis of piezoelectric cou-

pled thin and thick circular plate is presented. The equations are solved using

transformation of variables into a second order PDE instead of a sixth order PDE

as presented by Liu et al. (2002). The displacement assumption follows Kirchhoff

plate theory and the improved plate theory (IPT) respectively. A sinusoidal func-

tion is adopted to describe the distribution of electric potential along the thickness

direction. The Maxwell static electricity equation is included as one of the govern-

ing equations. The differential equations of motion are solved for two boundary

conditions: clamped edge and simply supported edge and detailed mathemati-

cal derivations are presented. Numerical investigations are performed for plates

bonded by two piezoelectric layers of various diameter-thickness ratios and the re-

sults are verified by the results of three-dimensional finite element analyses using

ABAQUSr. Results indicate that thicker piezoelectric layer increases the resonant

frequencies of the system but the effect is less significant for higher modes and also

plates with lower radius to thickness ratio. The analytical solutions and findings

provided will be used in the design of USM for practical applications.

• On the potential of designing stator with varying thickness, free vibration analysis

of thin annular plate with thickness varying monotonically in arbitrary power form

are performed to find the effect of varying thickness on the resonant frequencies

of the stator. Transformation of variable is introduced to translate the governing

equation for the free vibration of thin annular plate into a fourth-order generalized

hypergeometric equation. The analytical solutions in terms of generalized hyperge-

ometric function taking either logarithmic or non-logarithmic forms are proposed.

To illustrate the use of the closed form solutions presented, free vibration analyses

of a thin annular plate with uniform, linear and nonlinear thickness variation are

performed and the results compared with published exact solutions and those from

3D FEM. The results are consistent, indicating that the negative power of thickness
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function have greater effect on the frequencies of the plate than positive power. In

addition, when the inner radius b increases, the variation of the frequencies of the

plate with negative power varying thickness became larger while that of the plate

with positive power varying thickness decreases.

• Besides analytical model development, methodologies for analyzing overall behav-

ior of USM are proposed and demonstrated by FE analysis because FE analysis

has the advantage of modeling the complicated geometry and boundary conditions.

The proposed model yields one of the more complete data sets on simulation of

piezoelectric ultrasonic motors in the open literature. Numerical results, such as

resonant frequencies and elliptic motion at the surface of stator, steady and tran-

sient relationship between axial force, rotor speed and torque, agree with published

theoretical, numerical and experimental results. The good correlation between

FEM model and experimental results validate to a fairly good extent the proposed

procedures for analyzing the overall behavior of USM and also provide good po-

tential as a fairly accurate design tool to minimize the need to resort to extensive

physical experimental test of USM.

• The design and fabrication of the piezoelectric traveling-wave USM prototype with

multiple wave numbers have been performed. This multiple wave numbers opera-

tion is realized by a new electrode configuration of the piezoelectric element. Be-

sides the design of electrodes, drive electronics with four channels compatible with

multiple wave numbers operation are also designed, tested and fabricated. The ex-

perimental performance results of the multiple wave numbers show that USM with

multiple wave numbers significantly outperform the single wave number motor with

regard to the range of speed and torque output. This novel implementation of the

traveling-wave motor also offers extra control for stable operation of USM. The

performance of control variables, wave number and amplitude is compared to show

their advantages and disadvantages. The speed control range of wave number is
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larger than that of amplitude control; wave number control has better stability

at low speed while the amplitude control can work continuously with less wear.

Hybrid control using both methods may result in better performance of USM.

6.2 Recommendations for future work

Despite the findings of this dissertation, the study on USM is far from complete. Rather

the experience reinforce that innovations on USM is still an emerging area to explore

with promising future once other practical issues are addressed. Some recommendations

for future work are listed as below:

• Analytical

(a) Model of USM with non-uniform stator: in the design of an USM, one

essential factor is to determine the point of application of the frictional force to

effect rotation of the rotor. The best point is considered as that of maximum

displacement under bending vibration, because high rotational speed of rotor

is obtained. This location is affected by the geometrical shape of the stator.

If the stator is of non-uniform thickness, then the distribution of the thickness

can affect the location of maximum displacement. In this dissertation, the

analytical model to study free vibration of annular thin plate with varying

thickness has been proposed. As the next logical step, the forced vibration,

i.e. the dynamics of stator with varying thickness can be investigated. The

technical challenge will be to design and build the contact model between rotor

and stator with varying thickness and adequate stiffness to achieve an optimal

bending profile of the stator.

(b) Model of USM accounting for full piezoelectric coupled interaction:

in modeling USM, the coupling effect between the piezoelectric layer and the

host structure is important to obtain accurate prediction. In this dissertation,
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the analytical model to study free vibration of laminated annular thin and

thick plate taking into account piezoelectric coupling effect has been proposed.

In the second step, the forced vibration i.e. the dynamics of stator with

laminated layer considering piezoelectric effect can be studied. The analytical

model of free vibration presented in this dissertation is based on 2-dimensional

theory and the extension to the hand the geometry of the stator teeth and

boundary support pose a challenge.

• FE analysis

Develop of time integration scheme: as mentioned in Chapter 4, Eq. (4.36)

can be solved using numerical time integration method, which can be either im-

plicit or explicit. The mass-less property of electrical potential φ implies that

the fundamental period is zero leading to instability of the explicit method.

In applying the implicit scheme in the case of USM, intermittent contact and

stick/slip frictional sliding will result in the tangent coefficient matrix being

not sufficiently smooth or the predicted intermediate state being too far from

the actual solution, giving rise to convergence problem. It therefore appears

that new solution procedure can be developed for the two different time in-

tegration routines for different segments of the USM. Specifically, the explicit

time integration using the conditionally stable central difference method is

employed to obtain the contact response and the implicit unconditionally sta-

ble time integration method (such as Newmark’s method) is used to solve for

the piezoelectric patch dynamics. However, such hybrid method raised other

problems, such as the choice of finite difference methods and the coupling of

the methods.

• Experimental
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(a) Design of USM with more wave numbers: in the Section 5.1.1, a piezo-

electric electrode configuration with 8 different wave numbers are presented.

However, given the available machinability and limitation of time, the USM

prototype with only two wave numbers, wave number 5 and 10 are experi-

mentally realized in this dissertation. Further design and fabrication of USM

prototype with more wave numbers are expected to provide more insight on

the practical performance of USM with multiple wave numbers. The main

obstacle is probably the choice of the geometry and size of stator and the

segmentation of the piezoelectric electrode.

(b) Design of control algorithm: in this dissertation, an USM prototype with

multiple wave numbers are fabricated, the advantages and disadvantages of

control variables, wave number and amplitude are discussed. The research

finds that hybrid control employing both variables may result in better per-

formance of USM. Although in concept this may be simple, practical real-

ization of hybrid control algorithm combining wave number and amplitude is

an experimental challenge. It is envisaged that the results of such research

may open new concepts, designs and applications bringing to birth yet further

interesting challenges.
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Appendix A

Description of USM

A.1 Kumada motor

Fig. 1.1 (a) illustrates how the vibrations produce rotor motion. The piezoelectric stack

induces a longitudinal mode in the stator which in turn produces a bending mode in the

extension/torsion coupler. The torsional coupler looks like an old fashioned TV channel

knob, consisting of two legs which transform longitudinal vibration generated by the

Langevin vibrator to a bending mode of the knob disk, and a vibratory extruder. Notice

that this extruder is aligned with a certain cant angle to the legs, which transforms the

bending to a torsion vibration. This transverse moment coupled with the bending up-

down motion leads to an elliptical rotation on the tip portion, as illustrated in Fig. 1.1

(b). It is this motion, through contact interaction, that caused the rotor to spin. A

motor 30 mm × 60 mm in size and 20 - 30◦ cant angle between a leg and a vibratory

piece provided torque as high as 1.3 Nm and an efficiency of 80%. However, this type

provides only unidirectional rotation.

A.2 Suzuki motor

In 2000 Suzuki et al. devised a piezoelectric micromotor that was simply structured and

suited for miniaturization. Fig. 1.2 (a) shows the piezoelectric micromotor structure.

The stator is made from stainless steel and glued to piezoelectric ceramics. The rotor
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is made from nickel by electroforming and gilding. The shaft is made from stainless

steel. The flat spring has three beam-shaped suspension parts between the center part

and the outer part. The flat spring is made from stainless steel by etching process, and

three suspensions and the central part are etched once more, so that the outer part is

thicker than the suspensions and the central part. The micromotor is constructed by

piling up the shaft, stator, rotor and flat spring in this order. The central part of the flat

spring and the top of the shaft are welded with laser when the micromotor is assembled.

The function of the flat spring structure is to generate the contact pressure between the

stator and the rotor via the suspended bending parts. It is also possible to control contact

conditions between the stator and rotor by choice of the shape and material of the flat

spring structure. Therefore, the size of the new micromotor is 2 mm in diameter and 0.3

mm in height. The volume is 0.49 mm3. Fig. 1.2 (b) shows the operating principle of

micromotor. The piezoelectric ceramics are shaped rectangular parallelepipeds, which are

polarized in the direction of their thickness. They expand and contract when alternating

voltage is applied to them. Since the cantilever oscillators have flexural vibration, the

elliptic movements are excited at the free end of the cantilever oscillators. After the

rotor and the stator with cantilever oscillators are assembled, the elliptic movements

are transmitted to the rotor, and only the horizontal vibration of elliptic movements

generates the rotor rotation. The most efficient rotation is achieved when the frequency

of the applied voltage equals the resonance frequency of the cantilever oscillator. The

piezoelectric micromotor can rotate stably, and the starting torque is measured to be 3.2

µNm.

A.3 Ohnishi motor

In 1993, Onishi et al. investigated a piezoelectric USM, which used longitudinal and

torsional composite vibration in order to obtain high torque characteristics with small

diameter. The stator consists of two piezoelectric ceramic blocks, two metal cylinders,
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which are head mass and rear mass, two insulating plates and supporting plate as shown

in Fig. 1.3 (a). All these are bolted together in to form a Langevin resonator. The lower

piezoelectric ceramic block operates the longitudinal vibration mode. It consists of 12

stack piezoelectric ceramic circular plates. Each plate is polarized in the thickness direc-

tion. These ceramic plates have outer diameter of 20 mm, inner diameter of 8 mm and

thickness of 0.5 mm. The upper piezoelectric ceramic block operates the torsional vibra-

tion mode and consists of 8 stack piezoelectric ceramic circular plates, which are made of

the same ceramic material as the lower ceramic block and polarized in the circumferential

direction. The ceramic plates have outer diameter of 20 mm, inner diameter of 8 mm and

thickness of 1 mm. Phosphor bronze electrode plates 0.05 mm are arranged between all

the piezoelectric ceramic plates. The piezoelectric ceramic blocks, two insulating plates

made of alumina and the supporting plate made of stainless steel, are put between the

head mass made of aluminum and the rear mass made of stainless steel, which are bolted

together to form a stator. The two insulating plates, 1 mm thick, respectively, were used

to enable the driving of the upper ceramic block, operating in the longitudinal mode, and

the lower ceramic block, operating in the torsional mode, independently. The stainless

steel bolt is 5 mm in diameter. A rotor, guided by the shaft and a bearing, is pressed

against the stator surface by Belleville springs, which can change the rotor pressing force

by adjusting a nut. A wear-proof sheet (polyester resin) with thickness of 0.2 mm is

adhered to the stator surface, in order to convert the ultrasonic elliptical vibration of

the stator to rotational motion of the rotor efficiently by frictional force as well as to

protect the rotor and the stator surfaces from wear. Overall motor dimensions are 20

mm diameter and 77 mm length.

The operation principle for the USM is shown in Fig. 1.3 (b). Longitudinal vibration

displacement is in a direction parallel to the axis of the stator, while torsional vibration

displacement is in the circumferential direction. Hence, an elliptical motion can be ob-

tained at the stator surface by simultaneous oscillation for these two vibration modes
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by applying AC electric fields to both piezoelectric ceramic blocks. For a half period

(1-2-3 in Fig. 1.3 (b)), since the rotor is in contact with the stator, the rotational force

is transmitted from the stator to the rotor. For the other part of a period (3-4-1 Fig. 1.3

(b)), the rotor is released from the stator, so that the rotational force is not transmitted.

The rotor can thus be rotated in a designated direction by the stator motion. Moreover,

it is obvious that the rotor can be rotated reversibly by changing the phase difference by

between the longitudinal and torsional vibration modes. Dynamic characteristics for the

motor were examined. The motor exhibited 0.4 Nm maximum torque, 450 rpm maximum

rotational speed, 40% maximum efficiency, quick responsiveness and reversibility.

A.4 Dong motor

The objective of Dong et al.’s research was to develop an improved method to excite

a traveling wave in a single piezoelectric ceramic plate (stator) via the shear modes.

Specifically, the d15 piezoelectric effect, which is much higher than the d31 used in common

plate types USM, has been used to excite a flexural traveling wave. Fig. 1.4 (a) shows

the stator structure which had an outer diameter of 10.5 mm, an inner diameter of 1.8

mm, and a thickness of 0.56 mm. The 18-teeth ring has the same outer diameter as

that of piezoelectric ceramic plate with 0.5 mm in width and 1.5 mm in height. Fig. 1.4

(b) shows a piezoelectric ceramic plate with a small center hole polarized in its radial

direction. The bottom electrode of the plate is divided into four parts (a, b, c, and d),

and the top electrode is grounded and covers the entire plate. To excite higher-order

modes, the electrode can be divided into eight or more parts. Two pairs of alternative

voltages, phase shifted by 90◦ (sin and cos) were applied to electrodes a and c and b and

d, respectively. Because the voltages were applied out of phase, the two shear modes will

produce a rotation shown in Fig. 1.4 (c); consequently, a shear-shear flexural traveling

wave is excited.

At a resonance frequency 38.83 kHz, the motor had a maximum rotational speed of
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160 rpm. Under optimum conditions, the maximum speed was slightly increased to 200

rpm. With a suitable polymer/ceramic powder mixture frictional material, the motor’s

maximum torque was around 1.8 mNm.

A.5 Flynn motor

In 1992, Flynn et al. fabricated the world’s first ferroelectric thin film motor. The

significance of their contribution is that if PZT can be deposited in a thin film form

compatible with silicon processing, motors can be manufactured in a batch printing

process instead of being individually machined. Additionally, these motors should show

significant improvements in performance over bulk PZT motors. This is because the films

are very thin that it is possible to apply much higher electric fields than in thicker bulk

devices, hence leading to higher energy densities.

Eight electrodes are patterned radially around a center point and driven four-phase

over two wavelengths as shown in Fig. 1.6. Eight probes would be needed to drive the

motor in this particular example. This stator has an inner-diameter of 1.2mm and an

outer diameter of 2 mm placed over a 2.2 mm× 2.2 mm square membrane. The eight pads

are driven in a four phase sequence (sin, cos, -sin and -cos), repeated twice. Note that

there are four extra pads to be used as sensors, since the piezoelectric film is reciprocal,

where a bending moment can induce a voltage.

A 4V peak to peak drive signal at 90 kHz competently spins a fairly large rotor, a

glass lens 1.5 mm in diameter, at 100-300 rpm.

A.6 Cagatay motor

In 2004 Cagatay et al. developed a micro USM with low manufacturing cost, simpler

driving circuit, and scalability. The stator of the prototype motor consists of a hollow

metal tube (brass) with an outer diameter of 1.6 mm, an inner diameter of 0.8 mm,



Appendix A Description of USM 144

a length of 4 mm, and two rectangular piezoelectric plates with dimensions, 4 mm in

length, 1 mm in width, and 0.3 mm in thickness shown in Fig. 1.7 (a). A rod connects a

pair of ferrules which are the rotors, one at each end of the cylinder as shown in Fig. 1.7

(b).

The principle is briefly introduced. In general, a square beam has two orthogonal

bending modes whose resonance frequencies are equal to each other. The first bending

mode frequencies in any direction for circular cylinders are also equal to each other. The

stator of the motor presented in the study combines the circular and square cross sections.

Two surfaces of the hollow metal cylinder were polished at an angle of 90◦ with respect

to each other and two uniformly rectangular piezoelectric plates were bonded onto the

flat orthogonal surfaces of the cylinder. This causes the stator to have two degenerated

orthogonal bending modes, whose resonance frequencies are close to each other. The

split of the bending mode frequencies is due to the partially square/partially circular

external surface of the hollow cylinder. Because the piezoelectric plates are oriented by

45◦ to the direction of minimum and maximum bending moment of inertia (x’ and y’

axis), driving one piezoelectric plate (while short circuiting the other to ground) at a

frequency between the two orthogonal bending mode frequencies excites both modes,

thus, causing the cylinder to wobble. When the other piezoelectric plate is driven at the

same frequency, the direction of wobble motion is reversed.

The working frequency under zero load was approximately 227-233 kHz. Although

the size is small, relatively high power was obtained under an optimized load condition:

torque of 0.06 mNm, maximum power of 3.2 mW with a speed of 1127 rpm, and maximum

efficiency of 11% under 48 Vrms at 221 kHz.
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Logarithmic Solutions of
Generalized Hypergeometric
Equation

In Eq. (2.5), the generalized hypergeometric equation with p = 0 and q = 3, is an ordinary

differential equation with a regular singular point at the origin, and assume to have a

solution of the form

z(x) =
∞∑

k=0

ckx
ρ+k c0 6= 0 (B.1)

Substituting Eq. (B.1) into Eq. (2.5) yields

∞∑

k=0

ck[xρ+k −
4∏

i=1

(ρ + k + γi − 1)xρ+k−1]

=
∞∑

k=1

[ck−1 − ck

4∏

i=1

(ρ + k + γi − 1)]xρ+k−1 − c0

4∏

i=1

(ρ + γi − 1)xρ−1

(B.2)

Then, the indicial equation (or characteristic equation) is

c0

4∏

i=1

(ρ− 1 + γi) = 0 (B.3)

c0 6= 0, Eq. (B.3) yields four values of ρ, namely,

ρi = 1− γi, i = 1 . . . 4 (B.4)

The coefficients ck satisfy the recurrence formula

ck =
ck−1

4∏
i=1

(ρ + k − 1 + γi)
(B.5)
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which leads to

ck = c0

4∏

i=1

Γ(ρ− 1 + γi)
Γ(ρ− 1 + γi + k)

(B.6)

Let c0 = 1 and substitute Eq. (B.6) into Eq. (B.1) gives

z(x) =
∞∑

k=0

xρ+k
4∏

i=1

Γ(ρ + γi)
Γ(ρ + γi + k)

(B.7)

If no two values of γi are equal or differ by an integer, from Eq. (B.7), the various solutions

may be obtained by setting ρ equal to the roots of Eq. (B.4). This leads to Eq. (2.7).

If only λ numbers (λ = 2, 3 or 4 in the case plate vibration) of γi are equal or differ

by an integer (as discussed in section 3), Eq. (2.5) has λ - 1 logarithmic solutions. For

the vibration of plates, the largest value of λ is 4. When λ is 2, the logarithmic solutions

have been given by Smith (1939), Macrobert (1962) and Wang (1967). The logarithmic

solutions are derived here for λ equal to 3 or 4. For completeness, the solutions for λ = 2

are also presented. Thus, z2(x), z3(x), and z4(x) can be written according to the theory

of Frobenius (Smith, 1939) as

z2(x) = v
′
(ρ)ρ=1−γ2 =

∞∑

k=0

fk(Γ)xρ+k(c0 lnx + g1
k) (B.8)

z3(x) = v
′′
(ρ)ρ=1−γ3 =

∞∑

k=0

fk(Γ)xρ+k(c0 ln2 x + 2g1
k lnx + g2

k) (B.9)

z4(x) = v
′′′

(ρ)ρ=1−γ4 =
∞∑

k=0

fk(Γ)xρ+k(c0 ln3 x + 3g1
k ln2 x + 3g2

k lnx + g3
k) (B.10)

Where

v(ρ) = c0(ρ)
∞∑

k=0

fk(Γ)xρ+k

c0(ρ) = c
′
0(ρ + γr − 1)λ−1

fk(Γ) =
4∏

i=1

Γ(ρ + γi)
Γ(ρ + γi + k)

g1
k =

∂c0

∂ρ
+ Φij

0kc0

g2
k =

∂2c0

∂2ρ
+ 2Φij

0k

∂c0

∂ρ
+ [(Φij

0k)
2 + Φij

0k]c0

g3
k =

∂3c0

∂3ρ
+ 3Φij

0k

∂2c0

∂2ρ
+ 3[(Φij

0k)
2 + Φij

1k]
∂c0

∂ρ
+ [(Φij

0k)
3 + 3Φij

0kΦ
ij
1k + Φij

2k]c0
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and

Φij
nk = Ψij

nk +
j∑

t=1

π
∂n

∂nρ
cot π(ρ + γt + k)−

i∑

t=1

π
∂n

∂nρ
cot π(ρ + γt)

Ψij
nk =

4∑

t=1+i

ϕn(ρ + γt) +
i∑

t=1

(−1)nϕn(1− ρ− γt)

−
4∑

t=1+j

ϕn(ρ + γt + k)−
j∑

t=1

(−1)nϕn(1− ρ− γt − k)

n = 0, 1, 2; i, j = 0, 1, 2, 3

(B.11)

ϕn(z) is a polygamma function. In the above development, the following formula has

been used:

ϕn(1− z) + (−1)n+1ϕn(z) = (−1)nπ
dn

dzn
cot πz, n = 0, 1, 2 · · · (B.12)

The logarithmic solutions of Eqs. (B.8)-(B.10) are in a general form which cannot be

used directly. The specific forms are be derived in the following.

B.1 z2(x)

Under this case, c0 = c
′
0(ρ + γ2 − 1), where c

′
0 is an arbitrary constant independent of ρ,

and z2(x) consists of two parts depending on the range of k. When k ≥ γ2 − γ1, using

the relation

Γ(z)Γ(1− z) =
π

sinπz
(B.13)

where z is an arbitrary complex number, gives

fk(Γ)ρ=1−γ2 =

4∏
i=2

Γ(ρ + γi)

4∏
i=1

Γ(ρ + γi + k)

1
ρ + γ2 − 1

lim
ρ→1−γ2

Γ(ρ + γ1)(ρ + γ2 − 1)

=

4∏
i=2

Γ(1− γ2 + γi)

4∏
i=1

Γ(1− γ2 + γi + k)

(−1)1−γ2+γ1

Γ(γ2 − γ1)
1

ρ + γ2 − 1

(B.14)

(
1

ρ + γ2 − 1
c0)ρ=1−γ2 = c

′
0 (B.15)



Appendix B Logarithmic Solutions 148

The coefficient of ln x in Eq. (B.8) can be calculated as follows:

(
∞∑

k=γ2−γ1

fk(Γ)xρ+kc0)ρ=1−γ2 = c
′
0

(−1)1−γ2+γ1

4∏
i=2

Γ(1− γ2 + γi)

Γ(γ2 − γ1)
4∏

i=1
Γ(1− γ1 + γi)

z1(x) (B.16)

c
′
0 is chosen to make the coefficient of z1(x) equal to 1. That is,

c
′
0 =

Γ(γ2 − γ1)
4∏

i=1
Γ(1− γ1 + γi)

(−1)1−γ2+γ1

4∏
i=2

Γ(1− γ2 + γi)
(B.17)

Since

(
1

ρ + γ2 − 1
g1
k)ρ=1−γ2 =

c
′
0

ρ + γ2 − 1
+ c

′
0Φ

10
0k

=
c
′
0

ρ + γ2 − 1
+ c

′
0(Ψ

10
0k − π cot π(ρ + 1))

= c
′
0Ψ

10
0k

(B.18)

the non-logarithmic terms in Eq. (B.8) can be obtained:

(
∞∑

k=γ2−γ1

fk(Γ)xρ+kg1
k)ρ=1−γ2 =

∞∑

s=0

fs(Γ)xρ+γ2−γ1+sc
′
0Ψ

10
0s

= x1−γ1

∞∑

s=0

Ψ10
0sx

s
4∏

i=1

Γ(1− γ1 + γi)
Γ(1− γ1 + γi + s)

(B.19)

When 0 ≤ k ≤ γ2 − γ1 − 1,

fk(Γ)ρ=1−γ2 =
4∏

i=2

Γ(ρ + γi)
Γ(ρ + γi + k)

lim
ρ→1−γ2

Γ(ρ + γ1)
Γ(ρ + γ1 + k)

= (−1)k
4∏

i=2

Γ(1− γ2 + γi)
Γ(1− γ2 + γi + k)

Γ(γ2 − γ1 − k)
Γ(γ2 − γ1)

(B.20)

(g1
k)ρ=1−γ2 = c

′
0 + c

′
0(ρ + γ2 − 1)Φ11

0k

= c
′
0 + c

′
0(ρ + γ2 − 1)(Ψ11

0k + lim
ρ→1−γ2

(π cot π(ρ + 1 + k)− π cot π(ρ + 1)))

= c
′
0 + c

′
0(ρ + γ2 − 1)Ψ11

0k

= c
′
0

(B.21)

then
γ2−γ1−1∑

k=0

fk(Γ)xρ+kg1
k =

γ2−γ1∑

s=1

fs(Γ)xρ+γ2−γ1−sg1
s

=
4∏

i=2

(γi − γ1)
1

xγ1
5F0([1, 1, 1 + γ1 − γ2, 1 + γ1 − γ3, 1 + γ1 − γ4], [ ],

1
x

)

(B.22)
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(c0)ρ=1−γ2 = c
′
0(ρ + γ2 − 1) = 0 (B.23)

Hence

z2(x) = z1(x) ln x + x1−γ1

∞∑

s=0

Ψ10
0sx

s
4∏

i=1

Γ(1− γ1 + γi)
Γ(1− γ1 + γi + s)

+
4∏

i=2

(γi − γ1)
1

xγ1
5F0([1, 1, 1 + γ1 − γ2, 1 + γ1 − γ3, 1 + γ1 − γ4], [ ],

1
x

)

(B.24)

B.2 z3(x)

Under this case c0 = c
′
0(ρ + γ3− 1)2. For k ≥ γ3− γ1, the coefficient of ln2 x in Eq. (B.9)

can be calculated using

(
∞∑

k=γ3−γ1

fk(Γ)xρ+kc0)ρ=1−γ3 = (
∞∑

s=0

fs(Γ)xρ+γ3−γ1+sc0)ρ=1−γ3

=
c
′
0(−1)γ2+γ1Γ(1− γ3 + γ4)

4∏
i=1

Γ(1− γ1 + γi)
2∏

i=1
Γ(γ3 − γi)

z1(x)
(B.25)

c
′
0 is chosen by making the coefficient of z1(x) equal to 1:

c
′
0 =

4∏
i=1

Γ(1− γ1 + γi)
2∏

i=1
Γ(γ3 − γi)

(−1)γ2+γ1Γ(1− γ3 + γ4)
(B.26)

then

(
∞∑

k=γ3−γ1

fk(Γ)xρ+kg1
k)ρ=1−γ3 = (

∞∑

s=0

fs(Γ)xρ+γ3−γ1+sg1
s)ρ=1−γ3

= x1−γ1

∞∑

s=0

Ψ20
0sx

s

4∏
i=1

Γ(1− γ1 + γi)

4∏
i=1

Γ(1− γ1 + γi + s)

(B.27)

(
∞∑

k=γ3−γ1

fk(Γ)xρ+kg2
k)ρ=1−γ3 = (

∞∑

s=0

fs(Γ)xρ+γ3−γ1+sg2
s)ρ=1−γ3

= x1−γ1

∞∑

s=0

[(Ψ20
0s)

2 + Ψ20
1s + 2π2]xs

4∏
i=1

Γ(1− γ1 + γi)

4∏
i=1

Γ(1− γ1 + γi + s)

(B.28)
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When γ3 − γ2 ≤ k ≤ γ3 − γ1 − 1,

(
γ3−γ1−1∑

k=γ3−γ2

fk(Γ)xρ+kg1
k)ρ=1−γ3 = (

γ2−γ1∑

s=1

fs(Γ)xρ+γ3−γ1−sg1
s)ρ=1−γ3

=
4∏

i=2

(γi − γ1)
1

xγ1
5F0([1, 1, 1 + γ1 − γ2, 1 + γ1 − γ3, 1 + γ1 − γ4], [ ],

1
x

)

(B.29)

(
γ3−γ1−1∑

k=γ3−γ2

fk(Γ)xρ+kg2
k)ρ=1−γ3 = (

γ2−γ1∑

s=1

fs(Γ)xρ+γ3−γ1−sg2
s)ρ=1−γ3

= 2x1−γ2

γ2−γ1∑

s=1

Ψ21
0sx

−s

(−1)1−sΓ(s)
4∏

i=2
Γ(1− γ1 + γi)

4∏
i=2

Γ(1− γ1 + γi − s)

(B.30)

When 0 ≤ k ≤ γ3 − γ2 − 1

(
γ3−γ2−1∑

k=0

fk(Γ)xρ+kg2
k)ρ=1−γ3 = (

γ3−γ2∑

s=1

fs(Γ)xρ+γ3−γ2−sg2
k)ρ=1−γ3

= 2(−1)γ1+γ2Γ(1− γ1 + γ2)

4∏
i=2

Γ(1− γ1 + γi)

4∏
i=3

Γ(γi − γ2)

· 1
xγ2

5F0([1, 1, 1 + γ2 − γ1, 1 + γ2 − γ3, 1 + γ2 − γ4], [ ],
1
x

)

(B.31)

Then z3(x) can be expressed as

z3(x) =
∞∑

k=0

fk(Γ)xρ3+k(c0 ln2 x + 2g1
k lnx + g2

k)

= 2z2(x)Ψ1∗∗∗→Ψ2∗∗∗ lnx− z1(x) ln2 x

+x1−γ1

∞∑

s=0

[(Ψ20
0s)

2 + Ψ20
1s + 2π2]xs

4∏
i=1

Γ(1− γ1 + γi)

4∏
i=1

Γ(1− γ1 + γi + s)

+2x1−γ2

γ2−γ1∑

s=1

(−1)1−sΓ(s)x−sΨ21
0s

4∏

i=2

Γ(1− γ1 + γi)
Γ(1− γ1 + γi − s)

+2(−1)γ1+γ2Γ(1− γ1 + γ2)

4∏
i=2

Γ(1− γ1 + γi)

4∏
i=3

Γ(γi − γ2)

· 1
xγ2

5F0([1, 1, 1 + γ2 − γ1, 1 + γ2 − γ3, 1 + γ2 − γ4], [ ],
1
x

)

(B.32)

where ¯̄z2(x) can be obtained by substituting Ψ2∗∗∗ for Ψ1∗∗∗ in z2(x) given by Eq. (B.24).



Appendix B Logarithmic Solutions 151

B.3 z4(x)

Under this case c0 = c
′
0(ρ+γ3−1)3. For k ≥ γ4−γ1, the coefficient of ln3 x of Eq. (B.10)

are calculated as

(
∞∑

k=γ4−1

fk(Γ)xρ+kc0)ρ=1−γ4 =
c
′
0(−1)1+γ1+γ2+γ3−γ4

3∏
i=1

Γ(γ4 − γi)
4∏

i=2
Γ(1− γ1 + γi)

z1(x) (B.33)

c
′
0 is chosen to make the coefficient of z1(x) equal to 1:

c
′
0 = (−1)1+γ1+γ2+γ3−γ4

3∏

i=1

Γ(γ4 − γi)
4∏

i=2

Γ(1− γ1 + γi) (B.34)

then

(
∞∑

k=γ4−γ1

fk(Γ)xρ+kg3
k)ρ=1−γ4 = (

∞∑

s=0

fs(Γ)xρ+γ4−γ1+sg3
s)ρ=1−γ4

= x1−γ1

∞∑

s=0

[(Ψ30
0s)

3 + Ψ30
2s + 3Ψ30

0s(Ψ
30
1s + 3π2)]xs

4∏

i=1

Γ(1− γ1 + γi)
Γ(1− γ1 + γi + s)

(B.35)

(
∞∑

k=γ4−γ1

fk(Γ)xρ+kg2
k)ρ=1−γ4 = (

∞∑

s=0

fs(Γ)xρ+γ4−γ1+sg2
s)ρ=1−γ4

= x1−γ1

∞∑

s=0

[(Ψ30
0s)

2 + Ψ30
1s + 3π2]xs

4∏

i=1

Γ(1− γ1 + γi)
Γ(1− γ1 + γi + s)

(B.36)

(
∞∑

k=γ4−γ1

fk(Γ)xρ+kg1
k)ρ=1−γ4 = (

∞∑

s=0

fs(Γ)xρ+γ4−γ1+sg1
s)ρ=1−γ4

= x1−γ1

∞∑

s=0

Ψ30
0sx

s
4∏

i=1

Γ(1− γ1 + γi)
Γ(1− γ1 + γi + s)

(B.37)

When γ4 − γ2 ≤ k ≤ γ4 − γ1 − 1

(
γ4−γ1−1∑

k=γ4−γ2

fk(Γ)xρ+kg1
k)ρ=1−γ4 = (

γ2−γ1∑

s=1

fs(Γ)xρ+γ4−γ1−sg1
s)ρ=1−γ4

=
4∏

i=2

(γi − γ1)
1

xγ1
5F0([1, 1, 1 + γ1 − γ2, 1 + γ1 − γ3, 1 + γ1 − γ4], [ ],

1
x

)

(B.38)

(
γ4−γ1−1∑

k=γ4−γ2

fk(Γ)xρ+kg2
k)ρ=1−γ4 = (

γ2−γ1∑

s=1

fs(Γ)xρ+γ4−γ1−sg2
s)ρ=1−γ4

= 2x1−γ1

γ2−γ1∑

s=1

Γ(s)(−1)1−sx−sΨ31
0s

4∏

i=2

Γ(1− γ1 + γi)
Γ(1− γ1 + γi − s)

(B.39)
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(
γ4−γ1−1∑

k=γ4−γ2

fk(Γ)xρ+kg3
k)ρ=1−γ4 = (

γ2−γ1∑

s=1

fs(Γ)xρ+γ4−γ1−sg3
s)ρ=1−γ4

= 3x1−γ1

γ2−γ1∑

s=1

Γ(s)(−1)1−sx−s[(Ψ31
0s)

2 + Ψ31
1s + 2π2]

4∏

i=2

Γ(1− γ1 + γi)
Γ(1− γ1 + γi − s)

(B.40)

When γ4 − γ3 ≤ k ≤ γ4 − γ2 − 1

(
γ4−γ2−1∑

k=γ4−γ3

fk(Γ)xρ+kg2
k)ρ=1−γ4 = (

γ3−γ2∑

s=1

fs(Γ)xρ+γ4−γ2−sg2
s)ρ=1−γ4

= 2(−1)γ1+γ2Γ(1− γ1 + γ2)

4∏
i=2

Γ(1− γ1 + γi)

4∏
i=3

Γ(γi − γ2)

· 1
xγ2

5F0([1, 1, 1 + γ2 − γ1, 1 + γ2 − γ3, 1 + γ2 − γ4], [ ],
1
x

)

(B.41)

(
γ4−γ2−1∑

k=γ4−γ3

fk(Γ)xρ+kg3
k)ρ=1−γ4 = (

γ3−γ2∑

s=1

fs(Γ)xρ+γ4−γ2−sg3
s)ρ=1−γ4

= 6(−1)γ1+γ2x1−γ2

4∏

i=2

Γ(1− γ1 + γi)
γ3−γ2∑

s=1

Γ(γ2 − γ1 + s)Γ(s)x−sΨ32
0s

4∏
i=3

Γ(1 + γi − γ2 − s)

(B.42)

When 0 ≤ k ≤ γ4 − γ3 − 1

(
γ4−γ3−1∑

k=0

fk(Γ)xρ+kg3
k)ρ=1−γ4 = (

γ4−γ3∑

s=1

fk(Γ)xρ+γ4−γ3−sg3
s)ρ=1−γ4

= 6(−1)γ1+γ2

4∏
i=2

Γ(1− γ1 + γi)
2∏

i=1
Γ(1− γi + γ3)

Γ(γ4 − γ3)

· 1
xγ3

5F0([1, 1, 1 + γ3 − γ1, 1 + γ3 − γ2, 1 + γ3 − γ4], [ ],
1
x

)

(B.43)
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then

z4(x) =
∞∑

k=0

fk(Γ)xρ4+k(c0 ln3 x + 3g1
k ln2 x + 3g2

k lnx + g3
k)

= z1(x) ln3 x− 3z2(x)Ψ1∗∗∗→Ψ3∗∗∗ ln2 x + 3z3(x)Ψ2∗∗∗→Ψ3∗∗∗,2π2→3π2 lnx

+6(−1)γ1+γ2

4∏
i=2

Γ(1− γ1 + γi)
2∏

i=1
Γ(1− γi + γ3)

Γ(γ4 − γ3)

· 1
xγ3

5F0([1, 1, 1 + γ3 − γ1, 1 + γ3 − γ2, 1 + γ3 − γ4], [ ],
1
x

)

+6(−1)γ1+γ2x1−γ2

4∏

i=2

Γ(1− γ1 + γi)
γ3−γ2∑

s=1

Γ(γ2 − γ1 + s)Γ(s)x−sΨ32
0s

4∏
i=3

Γ(1 + γi − γ2 − s)

+3x1−γ1

γ2−γ1∑

s=1

Γ(s)(−1)1−sx−s[(Ψ31
0s)

2 + Ψ31
1s + 2π2]

4∏

i=2

Γ(1− γ1 + γi)
Γ(1− γ1 + γi − s)

+x1−γ1

∞∑

s=0

xs[(Ψ30
0s)

3 + Ψ30
2s + 3Ψ30

0s(Ψ
30
1s + 3π2)]

4∏

i=1

Γ(1− γ1 + γi)
Γ(1− γ1 + γi + s)

(B.44)

where ¯̄z2(x) can be obtained by substituting Ψ3∗∗∗ for Ψ1∗∗∗ in z2(x) given by Eq. (B.24)

and z̄3(x) can be obtained by substituting Ψ3∗∗∗ and 3π2 for Ψ2∗∗∗ and 2π2 respectively in

z3(x) given by Eq. (B.32)..

B.4 Convergence conditions

For checking the convergence condition of logarithmic solutions z2(x), z3(x) and z4(x)

given by Eqs. (B.24), (B.32) and (B.44) respectively, the infinite series included in z2(x),

z3(x) and z4(x) expressed by Eqs. (B.18), (B.27), (B.28), (B.35), (B.36) and (B.37) will

be checked. These infinite series can be expressed in the general form:

x1−γ1

∞∑

s=0

xs[
∑

Ψ∗∗
∗s]

4∏

i=1

Γ(1− γ1 + γi)
Γ(1− γ1 + γi + s)

(B.45)

where
∑

Ψ∗∗∗s is the summation of polygamma functions. Let us denotes the s term in

Eq. (B.45) and define

d = lim
s→∞

us+1

us
= lim

s→∞

∑
Ψ∗∗
∗s+1∑
Ψ∗∗∗s

x
4∏

i=1
(1− γ1 + γi + s)

(B.46)
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Since lim
s→∞

P
Ψ∗∗∗s+1P
Ψ∗∗∗s

= 1, hence if x is finite, d < 1 . Then the infinite series in Eq. (B.45)

converge for all finite x (i.e. all cases except for m 6= 2 ).

To illustrate, Ψ10
0s in relation to

∑
Ψ∗∗∗s in Eq. (B.27) will be used as an example to

prove that lim
s→∞

∑
Ψ∗∗
∗s+1/

∑
Ψ∗∗∗s = 1. The proofs for other

∑
Ψ∗∗∗s terms appearing in

Eqs. (B.27), (B.28), (B.35), (B.36) and (B.37) follow the same procedure. Ψ10
0s can be

expressed according to Eq. (B.11) as

Ψ10
0s =

4∑

t=2

ϕ0(1− γ2 + γt) + ϕ0(γ2 − γ1)−
4∑

t=1

ϕ0(1− γ1 + γt + s) (B.47)

Since

ϕn(z) = (−1)n+1n!
∞∑

k=0

1
(z + k)n+1

(B.48)

Ψ10
0s =

∞∑

k=0

[
4∑

t=1

1
1− γ1 + γt + s + k

−
4∑

t=2

1
1− γ2 + γt + k

− 1
γ2 − γ1 + k

] (B.49)

then

lim
s→∞

Ψ10
0s+1

Ψ10
0s

= 1 (B.50)
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