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SUMMARY 

Phospholipase Cγ1 (PLCγ1) plays an important role in T cell activation. Interaction of 

T cell with antigen results in activation of multiple protein kinases, which are in turn, 

linked to PLCγ1 activation and ultimately led to interleukin-2 (IL-2) production and T 

cell activation. Thus, PLCγ1 serves as an attractive target for molecular intervention. 

Therefore, in this present study, we identified and characterized an antisense 

oligonucleotide (ASO) to PLCγ1 as an attempt to interrupt T cell activation. 

 

ASOs complementary to mouse PLCγ1 mRNA were designed and screened in the 

mouse T cell line, EL4.IL-2. Western blot analysis of transfected cell lysates showed 

that ASO3 demonstrated the highest antisense activity among other ASOs whereas the 

scrambled control oligonucleotide was without effect. In addition, ASO3 significantly 

reduced PLCγ1 mRNA in a concentration-dependent manner without altering PLCγ2 

expression. Time course study on ASO3-mediated PLCγ1 gene inhibition profile 

revealed maximum mRNA downregulation at 6 h after electroporation and maximum 

protein reduction at 24 h posttransfection. Subsequent measurement of IP3, 

intracellular calcium, and IL-2 levels, in PLCγ1 ASO-treated murine EL4.IL-2 cells, 

showed significant reduction in all the three parameters. Further study showed that 

pretreatment of murine EL4.IL-2 cells with PLCγ1 ASO, before anti-CD3/CD28 

stimulation, significantly reduced EL4.IL-2 proliferation. However, unexpectedly, 

scrambled control oligonucleotide-treated cells also exhibited reduced proliferation. 

Therefore, further investigations involving the use of oligonucleotides associated with 

less nonspecific effects such as chimeric oligonucleotides, and additional controls 

such as sense and mismatch controls are needed to confirm the anti-proliferative 

effect of ASO3. 



 ix 

Our present work discovered and characterized an ASO capable of downregulating 

PLCγ1 expression, and subsequently inhibiting TCR/CD28 stimulation-induced IL-2 

production in the mouse T cell line, EL4.IL-2. More extensive gene-walking in future 

studies may identify an even more potent PLCγ1 ASO, capable of inhibiting mouse 

PLCγ1 expression and T cell activation to a greater extent. Future studies employing 

multiple ASOs or small interfering RNAs (siRNAs) targeting specifically at key 

molecules involved in T cell activation ─ PLCγ1 and perhaps PI3K, may discover 

promising therapeutics that could completely attenuate T cell activation. Taken 

together, our present findings implicate that antisense inhibition of PLCγ1 may have 

therapeutic potential for the treatment of T cell-dependent disorders. 
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1. INTRODUCTION
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1.1. T cell activation 

T cells respond to antigen stimulation by producing cytokines, including interleukin-2 

(IL-2) and undergoing clonal expansion (Kovalev et al., 2001). Efficient activation of 

T cells requires the engagement of both the T cell receptor (TCR) complex and the 

CD28 costimulatory receptor with their appropriate ligands (Lenschow et al., 1996; 

Chambers and Allison, 1999). Stimulation of the TCR complex alone is insufficient to 

activate T cells completely, rather causing a state of clonal anergy (Ullman et al., 

1990; Crabtree and Clipstone, 1994). Additional signals from CD28 costimulation, 

which enhance the TCR-mediated signals, are necessary for T cells to become 

optimally activated (Powell et al., 1998) (Figure 1). 

1.1.1. TCR-CD28 signaling in T lymphocytes 

1.1.1.1.TCR-mediated signal transduction 

The TCR complex of transmembrane proteins includes the TCR, a heterodimer of 

alpha/beta subunits, that recognizes antigen, and a set of proteins called CD3 involved 

in signal transduction (Figure 2). CD3 associated with the T cell receptor includes six 

polypeptides arranged in three dimers. The cytoplasmic domains of these 

polypeptides have in common a sequence motif known as ITAMs (immunoreceptor 

tyrosine-based activation motifs), that form the structural basis for interactions with 

downstream molecules, and play a critical role in transducing extracellular signals 

from TCR to downstream signaling molecules (Reth et al., 1989; Wagner et al., 

1992). The earliest events in TCR signaling are dependent on tyrosine kinases of the 

Src and Syk families and eventually leading to the activation of the phospholipase C 

gamma 1 (PLCγ1) pathway and Ras pathway, events crucial for activation of 

transcription factors regulating IL-2 gene expression (Baker et al., 2001) (Figure 3).
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Figure 1. TCR-CD28 costimulation during T cell activation (adapted from 

www.biocarta.com/) 
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Figure 2. The TCR complex (adapted from www.biocarta.com/) 
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Figure 3. T cell receptor signaling pathway (adapted from www.biocarta.com/) 
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Ligation of the TCR stimulates the activation of two Src-family of nonreceptor 

protein tyrosine kinases (PTKs): Lck and Fyn. Activated Lck and Fyn phosphorylate 

tyrosine residues contained within ITAMs of the CD3 chains. The phosphorylated 

residues serve as docking sites for the tandem Src homology domain 2 (SH2) domains 

of the Syk family PTK, ZAP-70 (Chan et al., 1992). ZAP-70 is subsequently 

phosphorylated and activated by Lck. These two kinases phosphorylate 2 major 

adaptor molecules, linker for activation of T cells (LAT) and SH2-containing 

leukocyte protein (SLP-76) (Baker et al., 2001). This event results in the assembly of 

LAT with downstream signaling molecules such as PLCγ1, growth factor receptor-

bound protein 2 (Grb2), and Gad-SLP-76 complex, and so forth (Gilliland et al., 

1992; Buday et al., 1994; Sieh et al., 1994; Dewulf et al., 1995). This is thought to be 

required for PLCγ1 tyrosine phosphorylation and activation, as well as the activation 

of Ras. It has been proposed that the LAT-associated complex colocalizes PLCγ1 with 

the inducible T cells kinase (Itk), which in turn phosphorylates and activates PLCγ1 

(Perez-Villar and Kanner, 1999; Bunnell et al., 2000; Myung et al., 2000; Wange et 

al., 2000; Zhang and Samelson, 2000). 

 

Activated PLCγ1 cleaves the membrane phospholipid phosphatidylinositol 4,5-

bisphosphate (PIP2) into two intracellular second messengers, inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol (DAG) (Weiss et al., 1991). The former product 

regulates the levels of intracellular Ca
2+

, whereas the latter activates protein kinase C 

(PKC), and Ras-guanyl nucleotide-releasing protein (GRP) that activates Ras 

(Kazanietz et al., 2000). IP3 binds to IP3 receptors on the endoplasmic reticulum, 

leading to the release of Ca
2+

 into the cytoplasm, this in turn triggers entry of 

extracellular Ca
2+

 through calcium release-activated Ca
2+

 (CRAC) channel (Sasaki



 7 

and Hasegawa-Sasaki, 1985; Abraham et al., 1988; June et al., 1990; Scharenberg and 

Kinet, 1998). The rise in cytoplasmic Ca
2+

 leads to the activation of calmodulin and 

calcineurin (serine/threonine phosphatase). Activated calcineurin then 

dephosphorylate cytoplasmic nuclear factor of activated T cells (NFAT), allowing it 

to translocate into the nucleus and act together with other nuclear transcription factors 

to activate IL-2 expression (Crabtree et al., 1989; Clipstone and Crabtree, 1992; Jain 

et al., 1993; Woodrow et al., 1993; Crabtree and Clipstone, 1994). 

 

DAG is an activator of Ras-GRP and several of the members of the serine/threonine 

PKC family. Ras activation by Ras-GRP results in the sequential activation of Raf-1, 

mitogen-activated protein kinase kinase (MEK) and mitogen-activated protein kinase 

(MAPK), which eventually leads to the activation of nuclear transcription factors, Fos 

and Jun (AP-1) (Pulverer et al., 1991; Marais et al., 1993). Activation of PKC leads to 

the activation of nuclear factor κB (NFκB) and Raf-1 that contributes to AP-1 

activation via activation of the MAPK pathway (Kolch et al., 1993; Carroll and May, 

1994; Ueda Y et al., 1996; Marais et al., 1998). In addition to activation of MAPK 

pathway via DAG, another mechanism involves Ras activation via the recruitment of 

Grb2-associated son of sevenless (SOS), a guanine nucleotide exchange factor for 

Ras, to the plasma membrane by virtue of the ability of the SH2 domains of Grb2 to 

bind to membrane-resident, tyrosine-phosphorylated proteins such as LAT (Clements 

et al., 1999; Myung et al., 2000; Wange et al., 2000; Zhang and Samelson, 2000). 

 

Hence, signaling through TCR leads to the eventual activation of transcription factors, 

NFκB, AP-1 and NFAT, which work together to regulate IL-2 gene expression.
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1.1.1.2.CD28 costimulation 

Additional signals delivered by the major costimulatory molecule, CD28 are 

necessary to enhance the TCR-mediated signals to completely activate T cells, 

resulting in IL-2 secretion, cellular proliferation and prevention of anergy (June et al., 

1994). The CD28-specific signaling pathway is not well defined. Several studies on 

CD28 costimulation suggest that CD28 probably activates the phosphatidylinositol 3 

kinase (PI3K) and Akt kinase pathway (Parry et al., 1997; Kane et al., 2001), Lck, 

growth factor receptor-bound protein 2 (Grb2)/inducible T cells kinase (Itk), the Rho 

family GTPase Rac, NFκB (Rudd et al., 1996), c-Jun N-terminal kinase (JNK) (Su et 

al., 1994), and PLCγ1 pathway (Wells et al., 2003), to provide its costimulatory signal 

for T cell activation. CD28 costimulation enhances TCR-mediated signals in IL-2 

expression by enhancing the stability of the IL-2 mRNA as well as IL-2 transcription. 

The signal provided via CD28 is also necessary for induction of clonal expansion and 

prevention of T cell anergy as CD28 blockade suppresses T cell proliferation, induces 

unresponsiveness and cell death (Powell et al., 1998). 

1.1.2. IL-2 gene regulation and signaling in T lymphocytes 

Initiation of IL-2 gene transcription is a hallmark of T-cell activation. Consequently, 

IL-2 functions to stimulate clonal expansion of T cells and to promote T-cell-

mediated immune responses (Jan and Kaminski 2001). 

1.1.2.1.Regulation of IL-2 gene expression 

Resting T cells exhibit almost no basal-level IL-2 expression. The IL-2 gene is tightly 

regulated at the transcriptional level by several cis-acting elements in the proximal 

promoter/enhancer region of the gene, which are recognized by AP-1, NFκB and 
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NFAT transcription factors, induced by TCR/CD28 costimulation. These transciption 

factor recognition sequences inside the IL-2 promoter are atypical sites that do not 

allow the stable binding of each transcription factor alone. The gene is fully expressed 

only if its promoter is fully occupied by all three inducible transcription factors, each 

of which stabilizes binding of the others (Rothenberg and Ward, 1996; Lindholm et 

al., 1999). The result is that TCR/CD28-mediated signaling cascades synergistically 

activate the proliferation of the cell (Hughes and Pober, 1996). 

1.1.2.2.IL-2 signaling via the IL-2 receptor 

Upon activation, T cells produce IL-2 and the secreted IL-2 binds to the IL-2 receptor 

(IL-2R) on the T cell surface, promoting proliferation in an autocrine manner (Rooney 

et al., 1995). The IL-2R is formed from three subunits: alpha (α), beta (β) and 

common gamma (γc) chain (Figure 4). The IL-2R lacks enzymatic activity, instead it 

coordinates with the Janus family of protein tyrosine kinases (JAKs). JAK3 

preferentially binds the γc subunit while the IL-2Rβ subunit binds JAK1 (Russell et al, 

1994). 

 

Binding of IL-2 to the IL-2R brings the receptor subunits into proximity; this in turn 

activates the JAKs. Upon activation, the JAKs phosphorylate the receptor subunits, 

providing docking sites for proteins with SH2 or phosphotyrosine-binding (PTB) 

domains. The signal transducer and activator of transcription (STAT) family of 

transcription factors is a class proteins that contain SH2 domains. STAT3 and STAT5 

bind to phosphorylated tyrosine residues on the receptor subunits and are in turn 

phosphorylated by JAKs. Next, they dimerize through phosphotyrosine-SH2 

interactions, and translocate to the nucleus where they regulate gene expression 

(Schindler and Darnell, 1995; Johnston et al., 1996; Benczik and Gaffen, 2004).
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Figure 4. IL-2 signaling pathway (adapted from O’Shea et al., 2000) 
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Another important substrate that is tyrosine phosphorylated in response to IL-2 is the 

adaptor molecule, SHC. SHC binds to the phosphorylated receptor via its PTB 

domain and then recruit Grb2 and SOS. This in turn activates the Ras/Raf/MAPK 

pathway, leading to the phosphorylation and activation of cytoplasmic and nuclear 

substrates. MAPK phosphorylate STAT proteins on serine residues, enabling them to 

regulate gene expression (Pelicci et al., 1992; Ihle et al., 1995, Benczik and Gaffen, 

2004). 

 

IL-2 also induces phosphorylation of the insulin receptor substrates (IRS) 1 and 2, 

which provide numerous docking sites for proteins that bind phosphorylated tyrosine 

residues. IRS molecules may also serve to couple to the Ras/Raf pathway (Skolnik et 

al., 1993; Johnston et al., 1995). Other tyrosine kinases, such as members of the Src 

family (including Lck and Lyn) and Syk, are also activated by IL-2. They appear to be 

important in the activation of transcription factors such as Myc, Fos and Jun 

(Taniguchi, 1995). 

1.1.3. Inhibitors of TCR-mediated signaling 

Inhibition of TCR-mediated signaling is one of the working mechanisms of many 

immunosuppressive drugs (Kang et al., 2003). Immunosuppressive drugs have wide 

applications in the prevention of allograft rejection in organ transplants, in the 

prevention of graft-versus-host disease (GVHD) in bone marrow and stem cell 

transplants, and in therapy for chronic autoimmune inflammatory conditions (Bierer 

et al., 1993; Xu et al., 1995; Goldman et al., 2000). Immunosuppressive agents such 

as hydroxychloroquine, cyclosporin A (CsA), tacrolimus (FK506), and 

glucocorticoids were found to inhibit TCR-induced signaling events. 

Hydroxychloroquine inhibits TCR-induced intracellular calcium mobilization by 
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reducing the endoplasmic reticulum calcium store size (Goldman et al., 2000). CsA 

and FK506 bind to intracellular immunophilin proteins and inhibit calcineurin 

phosphatase activity, which results in the inhibition of nuclear translocation of NFAT 

and IL-2 production (Bierer et al., 1993). Glucocorticoids suppressed TCR-induced 

proliferation of T cells, through downregulation of c-Fos expression and inhibition of 

AP-1, NFAT and NFκB transcriptional activity (Barnes and Adcock, 1993; 

Paliogianni et al., 1993). These drugs although have wide applications, are associated 

with potentially significant side effects owing to systemic toxicity, and the drawback 

of resistant activated T cells (Goldman et al., 2000; Cristillo et al., 2003; Tsitoura and 

Rothman, 2004). 

1.1.4. Role of PLCγγγγ1 in T cell activation 

PLCγ1 is the predominant isoform in T cells and is required for T cell function (Wang 

et al., 2000; Wilde and Watson, 2001). Cumulative evidence supports the fact that 

PLCγ1 plays a pivotal role in T cell activation (Figure 5) (Diaz-Flores et al., 2003). 

Studies using PLCγ1-deficient cell lines demonstrated failure to activate NFκB in 

response to T cell costimulation (Dienz et al., 2003), and impaired TCR activation 

(Irvin et al., 2000). In addition, Kang and colleagues (2003) reported that Rosmarinic 

acid, a hydroxylated compound found in herbal plants, which blocks Itk and PLCγ1 

activation, inhibits IL-2 expression and subsequent T cell proliferation. Similarly, 

mutations in the T cell adapter LAT, which prevents PLCγ1 recruitment and 

activation (Finco et al., 1998), abrogate expression of IL-2 (Crabtree et al., 1989). The 

relevance of PLCγ1 in CD28 costimulation was highlighted by Wells and colleagues 

(2003), who demonstrated that PLCγ1 activation was impaired in cells anergized by 

costimulatory blockade, and complete T cell activation could be restored using 
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Figure 5. Schematic diagram illustrating the pivotal role PLCγ1 plays in T cell 

activation.
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analogs that mimic actions of DAG and IP3, the immediate products of PLCγ1 

activity. 

 

The prominent role PLCγ1 plays in T cell activation is mediated through the 

immediate products of its activity, IP3 and DAG, and their respective downstream 

targets, Ca
2+

, PKC and Ras-GRP (Kazanietz et al., 2000). The importance of Ca
2+

 and 

DAG in T cell activation was demonstrated by Truneh and colleagues (1985), who 

showed that a combination of Ca
2+

 ionophore and phorbol esters, which function as 

DAG analogues, could mimic TCR signals, leading to full T cell activation. 

 

Hence, inhibition of PLCγ1 would be expected to attenuate T cell activation. It 

therefore represents an attractive target for antisense technology, with significant 

potential as an immunosuppressive agent, useful for the specific treatment of T cell-

mediated autoimmune diseases and for the prevention of allograft rejection and 

GVHD, and therapy of chronic autoimmune inflammatory conditions in individuals 

who are non-responsive to conventional immunosuppressive therapy. 

1.2. Antisense technology 

1.2.1. Antisense oligonucleotides (ASOs) – an alternative to small molecule 

inhibitors 

The use of ASOs as both experimental tools and therapeutic molecules has emerged 

as a powerful alternative to small molecule inhibitors employing traditional drug 

design strategies (Bennett and Cowsert, 1999; Cooper et al., 1999; Patil et al., 2005). 

To date, there is one Food and Drug Administration (FDA)-approved antisense drug, 

Vitravene™ (Isis Pharmaceuticals), already in the clinic for the treatment of 



 15 

cytomegalovirus retinitis, and numerous other antisense drug candidates are in 

advanced stages of human clinical trials (Table 1). Affinitak and Alicaforsen (Isis 

Pharmaceuticals) are now in phase 3 clinical trials for non-small cell lung cancer and 

Crohn’s disease respectively. Genasense, developed by Aventis and Genta is being 

investigated in advanced phase 3 trials, in combination with other chemotherapy 

regimens, for a range of cancers including malignant melanoma, chronic lymphocytic 

leukemia and multiple myeloma (Opalinska and Gewirtz, 2002; Patil et al., 2005; 

Vidal et al., 2005;). 

 

ASOs are short stretches of synthetic, chemically modified, DNA designed to 

hybridize to specific mRNA sequences present in the gene that one wishes to inhibit. 

Specific interaction of ASO with the targeted mRNA by Watson-Crick base pairing 

leads to inhibition of translation of the protein encoded by the targeted transcript 

(Crooke and Bennett, 1996; Gewirtz et al., 1997; Crooke et al., 1998; Galderisi et al., 

2001;) (Figure 6). This exploitation of nature’s use of hydrogen bonding to allow 

mRNA to recognize complementary DNA imparts tremendous specificity of action to 

ASOs, which is not readily attainable with small molecule inhibitors (Cooper et al., 

1999; Patil et al., 2005). In addition, unlike small molecule inhibitors, the antisense 

approach only requires knowledge of the nucleic acid sequence information of the 

target gene, and does not require knowledge of the function, structure, or localization 

of the protein of interest. Thus, ASOs can be developed and applied against any gene 

as long as the genetic information is available (Cooper et al., 1999; Roth and 

Yarmush, 1999). These characteristics make antisense oligonucleotides attractive as 

tools for target validation, and as therapeutics to selectively modulate the expression 

of genes involved in the pathogenesis of diseases (Aboul-Fadl et al., 2005).
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Table 1. ASO therapeutics currently in advanced stages of clinical development 

(phase 3 and beyond) (adapted from Patil et al., 2005) 
 

Drug Candidate - 

Company 

Development Status* Molecular Basis of 

Action 

Disease Indication 

Vitravene – Isis 

Pharmaceuticals 

FDA approved Inhibitor of immediate 

early region 2 (IE2) of 

human cytomegalovirus 

Cytomegalovirus 

retinitis in AIDS 

patients 

Affinitak - Isis 

Pharmaceuticals 

Phase 3 in combination 

with carboplatin and 

paclitaxel 

Inhibitor of PKC-alpha 

expression 

Stage IIIb or Stage 

IV non-small cell 

lung cancer 

Alicaforsen - Isis 

Pharmaceuticals 

Phase 3 Inhibitor of 

intercellular adhesion 

molecule-1 (ICAM-1) 

Crohn’s disease 

Genasense – 

Aventis and Genta 

Late stage phase 3 in 

combination with 

dexamethasone 

Inhibitor of B cell 

leukemia/lymphoma 2 

(Bcl-2) protein 

Malignant 

melanoma 

Genasense – 

Aventis and Genta 

Phase 3 in combination 

with fludarabine and 

cyclophosphamide 

Inhibitor of Bcl-2 

protein 

Chronic 

lymphocytic 

leukemia 

Genasense – 

Aventis and Genta 

Phase 3 in combination 

with dacarbazine 

Inhibitor of Bcl-2 

protein 

Multiple myeloma 

*All development statuses are filed with the United States Food and Drug 

Administration (USFDA). 
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Figure 6. Principle of antisense technology (adapted from http://cmbi.bjmu.edu.cn/) 
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1.2.2. Molecular mechanisms of ASOs 

ASO interacts and forms a duplex with target mRNA and inhibits its corresponding 

protein biosynthesis. There are several mechanisms that can result in inhibition of 

target protein expression. Mechanisms that are triggered as a result of duplex 

formation are dependent on the nature of the antisense molecules used for mRNA 

targeting (Gewirtz et al., 1998; Cooper et al., 1999). 

 

ASOs of many, but not all, types (see next section on chemical modifications of 

ASOs) support the binding of RNase H at sites of RNA-DNA duplex formation. Such 

binding is an important effector of antisense actions because once bound, RNase H, a 

ubiquitous enzyme functions as an endonuclease that recognizes and cleaves the RNA 

in the RNA-DNA duplex resulting in degradation of the cleaved mRNA by 

exonucleases. Following the destruction of target mRNA, translation of the 

corresponding protein cannot occur. Of significant interest is the fact that the ASO in 

the duplex is undamaged by the action of RNase H. Therefore, it is free to hybridize 

with multiple mRNA molecules, leading to their destruction in a catalytic manner 

(Gewirtz et al., 1998; Cooper et al., 1999; Vickers et al., 2003) (Figure 7). 

 

Although activation of RNase H is the principal mechanism of action of many ASOs, 

some types of ASOs (see next section) do not support the activity of this enzyme at 

all. These ASOs inhibit target protein expression by means of steric hindrance. For 

example, they bind to the translation initiation codon or 5’-untranslated region on the 

target mRNA and block ribsome assembly, resulting in translational arrest. 

Alternatively, they are designed to interact with splicing sequences on pre-mRNA and 

inhibit its processing and transport from the nucleus, consequently inhibiting target 
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Figure 7. Prinicpal mechanism of action of most ASOs, involving activation of 

RNase H, which cleaves the targeted RNA and releases the ASO (adapted from Patil 

et al., 2005) 
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protein synthesis (Tidd et al., 1998; Crooke et al., 1999; Crooke et al., 2001). It is 

generally accepted that ASOs that are unable to induce RNase H activity are less 

effective inhibitors of translation than RNase H-active ASOs that induce irreversible 

destruction of the message, unless they form highly stable DNA/RNA complex 

(Bonham et al., 1995; Faira et al., 2001). 

1.2.3. Chemical modifications of ASOs 

Oligonucleotides having the endogenous phosphodiester backbone are susceptible to 

degradation by nucleases and hence have limited use for antisense applications 

(Engels and Uhlmann, 2000). A wide range of oligonucleotide chemical modifications 

to the nucleoside, the sugar, and the phosphate backbone has been explored to 

improve oligonucleotide stability. This has led to the development of the first and 

subsequently, second generation ASOs that have successively improved on the 

properties of previous ASOs (Vidal et al., 2005). 

 

The most attention has been focused on two classes of analogues: phosphorothioate 

backbone-modified oligonucleotides and oligonucleotides modified at the 2´-O 

position of the sugar ring (Figure 8). Most prevalent among the oligonucleotide 

analogues are phosphorothioate (PS) oligonucleotides, in which a single oxygen atom 

in the phosphodiester bond is replaced by a sulfur atom (Roth and Yarmush, 1999; 

Vidal et al., 2005). These first generation ASOs are very widely used because of 

several desirable properties. First, PS ASOs exhibit ~100- to ~300-fold increase in 

nuclease resistance compared with phosphodiester oligonucleotides (Cooper et al., 

1999; Crooke et al., 1999; Roth and Yarmush, 1999). In addition, PS ASOs have 

significantly increased biological half-life compared to their corresponding 

unmodified phosphodiester oligonucleotides (Patil et al., 2005). It is also noteworthy 
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Figure 8. Types of chemical modifications for ASOs (adapted from Kurreck et al., 

2003) 
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that PS ASOs support RNase H activity in the duplex, which plays an important role 

in irreversible destruction of target mRNA (Gewirtz et al., 1998). Nevertheless, PS 

ASOs suffer the drawbacks of reduced affinity for their complementary mRNA target 

in comparison to phosphodiester oligonucleotides (Cooper et al., 1999; Roth and 

Yarmush, 1999) and greater binding to proteins, leading in many cases to nonspecific 

effects (Stein et al., 1996). 

 

Changes in the ASO sugar moiety can increase affinity for target mRNA and confer 

nuclease resistance. These modifications have been utilized in the generation of 

second generation ASOs. The most promising modifications are the insertion in 

position 2 of either 2´-O-methyl, 2´-O-methoxyethyl (2´-MOE), or 2´-O-alkyl group 

(Gewirtz et al., 1998; Vidal et al., 2005). Nevertheless, these 2´-O-modified ASOs do 

not support RNase H activity and, as a result, are less potent inhibitors of gene 

expression than the corresponding unmodified or PS-modified species (Gertwirtz et 

al., 1998; Roth and Yarmush, 1999). This has led to the use of chimeric 

oligonucleotides, in which a combination of 2´-O-modified and unmodified bases (or 

PS-modified bases) is used to impart affinity, resistance to nucleases, and activation 

of RNase H in one molecule. The minimum length required for RNase H activation 

has been found to be five bases. In this strategy, 2´-O-modified bases are used on the 

5´- and 3´-ends of the oligonucleotide, which are most critical to nuclease resistance 

and initiation of hybridization, and a stretch of five to seven unmodified or PS-

modified bases is used in the middle of the molecule to activate RNase H (Monia et 

al., 1993, 1996; Hill et al., 1999) (Figure 9). 
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Figure 9. RNase H cleavage of target mRNA induced by chimeric ASO (adapted 

from Kurreck et al., 2003) 
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Many other chemical modifications are currently being evaluated. Two of the more 

interesting modified ASOs in the third generation are the N3´-P5´ phosphoramidates 

(NPs) and the peptide nucleic acids (PNAs) (Figure 8). The phosphoramidate 

modification is another example of oligonucleotide phosphate backbone modification, 

in which the 3´-hydroxyl group of the deoxyribose ring is replaced by a 3´-amino 

group (Chen et al., 1995). This modification creates a highly nuclease-resistant ASO 

with a high affinity towards the target mRNA (Gryaznov and Chen, 1994). Although 

the ability of the NPs to activate RNase H is weak in comparison to unmodified 

oligonucleotides (DeDionisio and Gryaznov, 1995), they effectively inhibit translation 

by steric blocking due to the highly stable DNA/RNA hybrids formed (Faira et al., 

2001). 

 

In PNAs, the sugar-phosphate backbone is completely replaced with a peptide-based 

backbone (Nielsen et al., 1993). Such compounds are completely nuclease resistant as 

they have no phosphodiester linkages. However, PNAs do not activate RNase H, they 

exert their antisense effects by steric blocking which, as in the case of 2´-O-modified 

ASOs, may not be as efficient as destruction of the mRNA (Gewirtz et al., 1998). 

1.2.4. ASOs as research tools 

1.2.4.1.Design of ASOs 

The mechanism of action for ASOs requires that the oligonucleotide hybridize to its 

mRNA target. Therefore, in principle, design of ASO requires simply that the 

oligonucleotide be complementary to the mRNA. In practice, however, it has been 

found that not all oligonucleotide sequences are capable of reducing expression of 

their target mRNA, only a small percentage are effective inhibitors of gene expression 
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(Bennett et al., 1994; Dean et al., 1994; Duff et al., 1995; Alahari et al., 1996; Dean et 

al., 1996; Hill et al., 1999). Such observation may be explained by the highly complex 

folding that mRNA molecules undertake which render certain sequences inaccessible 

to oligonucleotides. In addition, RNA-binding proteins may also shield certain target 

mRNA sites (Cooper et al., 1999; Smith et al., 2000). Therefore, identifying effective 

antisense sequences is important for a successful antisense approach. It is possible to 

synthesize numerous complementary sequences and test for their antisense activity in 

a cell culture assay. However, this is not efficient because chance alone appears to 

dictate success, and is potentially expensive if many sequences have to be tested 

before a useful one is found (Bacon and Wickstrom, 1991; Bennett and Cowsert, 

1999; Roth et al., 1999;). 

 

A number of approaches have been developed to identify probable effective antisense 

sequences prior to cell-based screening to improve the “hit rates” and thus, reduce 

cost and time spent on antisense discovery (Cooper et al., 1999; Freier et al., 2001). 

Cell-free approaches have been used to identify optimal antisense sites in target 

mRNA. Typically, a library of randomized oligonucleotides complementary to the 

transcript is incubated with the target mRNA and RNase H. Mapping of the most 

favoured RNase H cleavage sites results in identification of the most favoured binding 

sites (Ho et al., 1996, 1998, 2000; Lima et al., 1997). DNA arrays have also been used 

to map target mRNA for hybridization-accessible sites (Southern et al., 1994; Milner 

et al., 1997). Although these methods can identify optimal binding sites in target 

mRNA and thus, probable effective antisense sequences, they are quite elaborate, and 

thorough screening of all possible oligonucleotides remain beyond current 

capabilities. These cell-free assays have been criticized on the grounds that the 
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structure of in vitro transcribed RNA molecules may be different from the actual 

mRNA structure inside a cell. Also, unlike in a cell-free assay, mRNA in the cell is 

bound to proteins, which render certain mRNA target sites unavailable to 

oligonucleotides (Cooper et al., 1999; Roth et al., 1999; Freier et al., 2001). 

 

Theoretical strategies have also been employed to aid in the selection of effective 

ASOs (Stull et al., 1992; Sczakiel et al., 1993; Smith et al., 2000). Software have been 

developed to calculate and predict mRNA secondary structure, single-stranded 

regions in target mRNA secondary structure and hybridization thermodynamics. 

These provide useful information on hybridization-accessible sites on target mRNA 

and affinity of oligonucleotide to target mRNA and thus have been used to identify 

probable effective antisense sequences prior to cell-based screening of 

oligonucleotides (Zuker et al., 1999; Ding and Lawrence, 2001, 2003; Matveeva et al., 

2003; Ding et al., 2004; Mathews et al., 2004). This approach, however, suffers 

drawback that the predictions may not truly reflect the actual scenario in the cell 

(Mathews et al., 1999; Kurreck et al., 2003). 

 

It has been reported that there are several motifs that are associated with nonantisense 

effects. ASOs that are G-rich are well known for their nonantisense effects, which 

have been attributed to the tendency of these oligonucleotides to form G-quartet 

structures that then interfere with biological processes (Ecker et al., 1993; Bennett et 

al., 1994; Wyatt and Stein, 1999). Homopolymers of other sequences also form 

unusual structures and draw concerns on association with nonantisense activity (Freier 

et al., 2001). In addition, Kreig et al. (1994) reported that oligonucleotides containing 

CG motifs induce immunostimulatory effects. Further, an oligonucleotide containing 
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GGC motif was reported to exhibit nonantisense activity by inhibiting enzymatic 

activity of tyrosine kinase p210
bcr-abl

 (Bergan et al., 1994, 1995). In contrast to these 

“bad motifs”, Tu et al. (1998) reported that the tetranucleotide motif, TCCC is 

associated with antisense activity. Therefore, when designing oligonucleotides for 

antisense experiment, it is important to exclude oligonucleotides containing those 

“bad” motifs and include oligonucleotides containing TCCC motif to improve the “hit 

rate” for antisense discovery and avoid screening oligonucleotides likely to have 

undesirable nonantisense effects (Freier et al., 2001; Stein et al., 2001). 

1.2.4.2.In vitro cellular uptake of ASOs 

In cultured cells, internalization of ASOs is generally extremely inefficient. The 

polyanionic nature of ASOs is the primary cause of their inadequate and inefficient 

cellular association, owing to electrostatic repulsion from the negatively charged cell 

surface. It is generally believed that ASOs that are associated with the cell membrane 

are taken up by cells by a combination of receptor-mediated (at low concentrations) 

and fluid-phase (at high concentrations) endocytic mechanisms (Loke et al., 1989; 

Beltinger et al., 1995; Nakai et al., 1996). This small fraction of ASOs that does 

obtain cellular access is susceptible to inactivation and degradation in the endosomes. 

Upon endocytic internalization, ASOs are compartmentalized into endosomal 

vesicles, where ASOs can be inactivated or degraded. The endosome undergoes 

acidification to a pH of 5 to 6, which in addition to promoting acidic hyrolysis, 

activates lysosomal enzymes that can rapidly degrade ASOs (Akhtar and Juliano, 

1992; Holmes et al., 1999; Wu-Pong et al., 2000). Only a small fraction of the ASOs 

escapes from the endosomes and enters the cytoplasm and nucleus to exert their 

actions on the target mRNA (Hughes et al., 2001; Liu and Huang, 2002). 
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A number of methods have therefore been developed to facilitate in vitro ASO 

cellular uptake (Hughes et al., 2001; Liang et al., 2002). By far the most commonly 

used delivery system is cationic lipids and many proprietary formulations such as 

Lipofectamine, Lipofectin (Invitrogen, Carlsbad, CA, USA), Effectene (Qiagen, 

Valencia, CA, USA) and Transfectam (Promega Corporation, Madison, WI, USA) are 

commercially available (Filion and Phillips, 1997; Kurreck J et al., 2003). Cationic 

lipids form complexes with ASOs as a result of opposing charges. This formation 

imparts an overall postive charge and facilitates attachment of the lipid-ASO complex 

to the anionic cell membrane. The complex is taken up by endocytosis but once inside 

an endosomal vesicle, the cationic lipid destablilizes the endosomal membrane and 

helps to set the ASO free into the cytoplasm to hybridize to its target mRNA (Gewirtz 

et al., 1998). Despite the appreciable success of cationic lipids in ASO transfer, 

studies showed that different cell types show variations in their sensitivity to cationic 

lipid-mediated ASO delivery and cells of lymphoid origin were found to be 

ineffectively transfected using this class of agents (Potter et al., 1984; Giles et al., 

1998; Kronenwett et al., 1998; Hill et al., 1999). As such, cationic lipids are not 

universally applicable for all in vitro applications and therefore other approaches 

should be used for these cell types. 

 

Electroporation is a delivery method that is applicable to all cell types, even those 

such as lymphocytes, which cannot be transfected with other methods such as cationic 

lipids or calcium phosphate (Potter et al., 1984). Electroporation makes use of the fact 

that the cell membrane acts as an electrical capacitor that is unable to pass current. 

Subjecting cells to a high-voltage electric field results in the temporary breakdown of 

their membranes and the formation of pores that allow ASOs to enter into the 
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cytoplasm and nucleus and exert their actions on target mRNA. Electroporation is 

widely used because of several desirable properties. First, it yields a high transfection 

efficiency. In addition, commercial apparatuses that are safe and easy to use are 

available. Further, it gives extremely reproducible results. However, this technique 

suffers drawbacks of high cell death and requires more cells and ASOs than other 

delivery systems (Potter et al., 1984; Bergan et al., 1996; Flanagan and Wagner, 

1997). 

1.2.4.3.Important controls for antisense experiments 

Controls are important in antisense experiments to prove that any observed effect is 

due to a specific antisense knockdown of the target mRNA. A number of suggestions 

have been proposed. Briefly, at the very least, one should (1) demonstrate a reduction 

in targeted mRNA and/or protein, (2) determine the effects of the “active” 

oligonucleotide on gene products of closely related isotypes, and (3) determine the 

effect of scrambled or mismatched oligonucleotide on the targeted gene product. 

These simple rules ensure that the chances of misinterpreting data are minimized 

(Stein and Kreig, 1994; Kurreck et al., 2003). 

1.3. Project objectives and approach 

PLCγ1 plays an important role in T cell activation and thus serves as a valuable target 

for molecular intervention. Therefore, in this present study, we identified and 

characterized an ASO to PLCγ1 as an alternative approach to interrupt T cell 

activation. 

In this study, software such as mfold, OLIGO 6, Sfold and Oligo Walk which 

calculate and predict mRNA secondary structure, single-stranded regions in target 

mRNA secondary structure and hybridization thermodynamics (Zuker et al., 1999; 
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Ding and Lawrence, 2001, 2003; Matveeva et al., 2003; Ding et al., 2004; Mathews et 

al., 2004) were used to identify probable effective PLCγ1 antisense sequences prior to 

screening in EL4.IL-2, a mouse T cell line. Special consideration was given to the 

design of the oligonucleotides to avoid nonantisense effects (Ecker et al., 1993; 

Bennett et al., 1994; Bergan et al., 1994; Kreig et al., 1994; Bergan et al., 1995; Wyatt 

and Stein, 1999; Freier et al., 2001). Selected oligonucleotides were full-backbone 

phosphorothioate-modified to increase their nuclease resistance and promote RNase H 

activity (Gewirtz et al., 1998; Cooper et al., 1999; Crooke et al., 1999; Roth and 

Yarmush, 1999). PS-modified oligonucleotides were then introduced into EL4.IL-2 

cells by electroporation and antisense efficacy was assessed by quantitating PLCγ1 

mRNA and protein levels. Effects of PLCγ1 protein downregulation on IP3 and 

intracellular calcium levels in anti-CD3/CD28-stimulated EL4.IL-2 cells were further 

investigated. Finally, the functional consequence of antisense downregulation of 

PLCγ1 on anti-CD3/CD28-mediated IL-2 production and T cell proliferation were 

assessed in vitro. 
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2. MATERIALS AND METHODS
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2.1. Materials 

The following materials were used in this study: ASOs, scrambled control 

oligonucleotide, PLCγ1 primers and PLCγ2 primers (Sigma-Proligo, Boulder, CO, 

USA); murine lymphoma cell line EL4.IL-2 (American Type Culture Collection, 

Manassas, VA, USA); RPMI 1640 medium, L-glutamine, penicillin, streptomycin, 

OptiMEM, TRIZOL reagent, Hanks’ balanced salt solution (HBSS), Fura-

2/acetoxymethylester (fura-2/AM) and pluronic F127 (Invitrogen, Carlsbad, CA, 

USA); fetal bovine serum (FBS; Hyclone, South Logan, UT, Africa); Na3VO4, NaF, 

phenylmethylsulfonyl fluoride (PMSF), aprotinin, leupeptin, bovine serum albumin 

(BSA), 2-mercaptoethanol, mouse anti-β-actin monoclonal antibody (mAb), 

diethylpyrocarbonate (DEPC), probenecid, ionomycin and perchloric acid (PCA) 

(Sigma-Aldrich, St. Louis, MO, USA); ammonium persulfate (APS), 30% 

acrylamide/Bis solution (37.5:1), tetramethylethylenediamine (TEMED), AP 

conjugate substrate kit, agarose and TMB peroxidase EIA substrate kit (Bio-Rad 

Laboratories, Hercules, CA, USA); bicinchoninic acid (BCA) protein assay and 

Restore western blot stripping buffer (Pierce Biotechnology, Inc., Rockford, IL); 

bromophenol blue (Merk & Co., Inc., Whitehouse Station, NJ, USA); Tween-20 

(Duchefa Biochemie B.V., Haarlem, The Netherlands); mouse anti-PLCγ1 mAb, 

hamster anti-CD3 mAb, hamster anti-CD28 mAb and mouse IL-2 BD OptiEIA 

enzyme-linked immunosorbent assay (ELISA) kit (BD Biosciences, San Jose, CA, 

USA); horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG antibody and 

alkaline phosphatase (AP)-conjugated rabbit anti-mouse IgG antibody 

(DakoCytomation Denmark A/S, Glostrup, Denmark); enhanced chemiluminescence 

(ECL) and western blotting detection reagents (Amersham Biosciences, 

Buckinghamshire, England); oligo(dT)15  primer, dNTPs, AMV reverse transcriptase, 
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Rnasin ribonuclease inhibitor, PCR master mix, β–actin primers and CellTiter 96 

AQueous One Solution assay (Promega Corporation, Madison, WI, USA); HitHunter 

IP3 fluorescence polarization assay (DiscoveRx, Fremont, California). 

2.2. Design and synthesis of ASOs 

In this study, ASOs targeting at mouse PLCγ1 mRNA were designed using 2 different 

approaches (design approach A and design approach B) and are shown in Table 2. In 

both approaches, mouse PLCγ1 mRNA sequence (accession number NM 021280) 

was obtained from Genbank. Designed ASO sequences and scrambled control 

oligonucleotide were synthesized as full-backbone PS-modified oligonucleotides to 

increase their resistance to nuclease degradation and promote RNase H-mediated 

mRNA breakdown (Gewirtz et al., 1998; Cooper et al., 1999; Crooke et al., 1999; 

Roth and Yarmush, 1999). 

2.2.1. Design approach A 

ASO1 and ASO2 were designed using design approach A. PLCγ1 mRNA secondary 

structure was predicted using the mfold software, version 3.1.2 

(http://bioweb.Pasteur.fr/seqanal/interfaces/mfold-simple.html; Zuker et al., 1999), 

which predicts optimal and suboptimal secondary structures for an RNA molecule. 

OLIGO 6.0 (http://www.oligo.net/oligo.htm; Molecular Biology Insights, Inc., CO, 

USA) was used to select oligonucleotides that do not form inter- and intra-molecular 

oligonucleotide self structures. NCBI BLAST (http://www.ncbi.nlm.nih.gov/blast/) 

was used to align ASO sequence to NCBI sequence databases to ensure ASO 

designed is homologous only with target mRNA and not with other mRNA. 
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Table 2. Oligonucleotides used in this study 
 

Oligonucleotide Target Position 

(ORF) 

Sequence Design 

Approach 

ASO1 511 - 530 5´-CATGTTCACTTCATCCTCAG-3´ A 

ASO2 1490 - 1509 5´-TCTTCCTCCTGAGCTGGTTG-3´ A 

ASO3 2632 -2651 5´-CAGCTGCTTCTTCCCACCAT-3´ B 

ASO4 4015 - 4034 5´-GCACTTCCACAGCTTGTCAT-3´ B 

Scrambled control - 5´-TACCACCCTTCTTCGTCGAC-3´ - 

Scrambled control share the same base composition with ASO3 but has a reversed order. 

ORF = open reading frame.
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ASOs were designed according to the following principles: (1) complementarity to 

single-stranded region in the predicted mRNA secondary structure, (2) avoidance of 

homopolyers and GGC motifs that support nonantisense effects, (3) minimal cytosine-

guanine motifs, (4) less than 50% guanine content, (5) no formation of inter- and 

intra-molecular oligonucleotide self structures, (6) no homology with other mRNA, 

and (7) preferable inclusion of good motif, TCCC which is associated with strong 

antisense activity (Neckers and Iyer, 1998; Freier et al., 2001). 

2.2.2. Design approach B 

ASO3 and ASO4 were designed using design approach B. Oligo Walk program from 

the package RNAstructure 4.2 (http://128.151.176.70/RNAstructure.html; Mathews et 

al., 2004) was used to predict the equilibrium affinity of complementary 

oligonucleotides to PLCγ1 mRNA by calculating free energies (∆G°37) for (1) 

oligonucleotide-mRNA duplex (∆G°37duplex), (2) inter-oligonucleotide pairing, and (3) 

intra-molecular oligonucleotide pairing. Sfold (http://sfold.wadsworth.org; Ding and 

Lawrence, 2001, 2003; Ding et al., 2004) was used to predict probable PLCγ1 mRNA 

secondary structures and PLCγ1 mRNA accessibility sites to ASO. NCBI BLAST 

(http://www.ncbi.nlm.nih.gov/blast/) was used to align ASO sequence to NCBI 

sequence databases to ensure ASO designed is homologous only with target mRNA 

and not with other mRNA. 

 

ASOs were designed according to the following principles: (1) formation of stable 

duplexes with PLCγ1 mRNA (∆G°37 duplex ≤ -30 kcal/mol), (2) formation of less stable 

self-structures (∆G°37 for inter-oligonucleotide pairing ≥ -8 kcal/mol and ∆G°37 for 

intra-molecular pairing ≥ 1.1) [Matveeva et al., 2003], (3) complementarity to sites on 
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PLCγ1 mRNA which are predicted by Sfold to have a probability of being single-

stranded of ≥ 0.6 (Ding and Lawrence, 2001), (4) avoidance of homopolyers and 

GGC motifs that support nonantisense effects, (5) minimal cytosine-guanine motifs, 

(6) less than 50% guanine content, (7) no homology with other mRNA, and (8) 

preferable inclusion of good motif, TCCC (Neckers and Iyer, 1998; Freier et al., 

2001). 

2.3. Cell culture 

EL4.IL-2, a lymphoma cell line derived from C57BL/6 mouse was grown in RPMI 

1640 medium supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin 

and 100 µg/ml streptomycin at 37°C in a humidified atmosphere of 5% CO2 and 95% 

air. Cells were maintained in logarithmic phase of growth by subculturing four times 

weekly. 

2.4. Transfection by electroporation 

ASOs were transfected into EL4.IL-2 cells and screened for their ability to inhibit 

PLCγ1 expression. An electroporation transfection protocol was employed because 

lymphocytes cannot be transfected with other procedures (e.g., calcium phosphate or 

cationic lipids) (Potter et al., 1984; Giles et al., 1998; Kronenwett et al., 1998; Hill et 

al., 1999). EL4.IL-2 cells were washed once in OptiMEM and resuspended at 1 × 10
7
 

cells/ml. The cell suspension was combined with the indicated concentrations of ASO 

and incubated for 5 min at room temperature. The mixture was transferred to a 4-mm 

gap electroporation cuvette and cells were permeabilized with a single pulse from 

BTX Electro Cell Manipulator 630 (Harvard Bioscience, Holliston, MA, USA) set at 

250 V, 25 ohms and 1000 µF. These conditions were defined as producing optimal 

permeabilization with minimal toxicity in preliminary experiments. The cells were 
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incubated for 10 min in the electroporation cuvette and then transferred to 10 ml of 

pre-warmed gassed culture medium in 100 mm cell culture dishes (BD Biosciences, 

San Jose, CA, USA) and maintained under their normal culture conditions. Cells were 

harvested for protein or mRNA analysis at the defined time intervals. 

2.5. Gel electrophoresis and Western blot analysis 

Cells were harvested in ice-cold lysis buffer [50 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 34 mM NaF, 5 mM PMSF, 10 

µg/ml aprotinin and 10 µg/ml leupeptin] and lysed on ice for 30 min before 

centrifugation at 4°C, 10000 g for 5 min. The supernatants were collected and assayed 

for protein concentrations using BCA protein assay reagents and BSA of known 

concentrations as the standard. The supernatants were then mixed with 5X sample 

buffer [312.5 mM Tris-HCl (pH 6.8), 50% glycerol, 25% 2-mercaptoethanol, 10% 

SDS and 0.0625% bromophenol blue] and boiled for 5 min. Proteins (10 µg per lane) 

were separated according to size by SDS-polyacrylamide gel electrophoresis (PAGE) 

on a 10% SDS-polyacrylamide gel and then transferred onto a polyvinylidene fluoride 

(PVDF; Bio-Rad Laboratories, Hercules, CA, USA) membrane using a semi-dry 

transblotter (ATTO Corp., Tokyo, Japan). The membrane was blocked in Tween 20-

Tris-buffered saline [TTBS; 0.05% Tween 20, 0.1 M Tris-HCl (pH 7.5) and 0.9% 

NaCl] containing 5% nonfat dried milk for 1 h at room temperature with agitation and 

then probed with mouse anti-PLCγ1 antibody diluted in TTBS (1:10000) containing 

1% nonfat dried milk overnight at 4°C. The membrane was washed extensively in 

TTBS and then incubated 1 h at room temperature with HRP-conjugated goat anti-

mouse IgG antibody diluted 1:8000 in TTBS containing 1% nonfat dried milk. After 

extensive washes, the membrane was incubated with ECL western blotting detection 
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reagents according to the manufacturer’s protocol. The ECL-treated membrane was 

further exposed to autoradiography film (Amersham Biosciences, Buckinghamshire, 

England) to allow visualization of the PLCγ1 protein band. To confirm equivalent 

loadings among samples, the membrane was stripped and reprobed with mouse anti-

β-actin antibody diluted 1:5000, followed by AP-conjugated rabbit anti-mouse IgG 

antibody (diluted 1:4000), and developed colorimetrically using AP conjugate 

substrate kit. PLCγ1 protein was quantitated relative to β-actin using Gel-Pro imaging 

software (Media Cybernetics, Silver Spring, MD). 

2.6. Total RNA isolation and reverse transcription-polymerase chain reaction 

(RT-PCR) 

Cells were harvested into TRIZOL reagent and total RNA was isolated from the cell 

lysate according to the manufacturer’s instructions. Briefly, cell lysate was mixed 

with chloroform and separated into an aqueous phase and an organic phase by 

centrifugation. The aqueous phase containing RNA was collected and RNA was 

precipitated with isopropyl alcohol. RNA pellet was then washed with 75% ethanol 

and resuspended in DEPC-treated Milli-Q water. Absorbance at 260 nm of the diluted 

RNA sample was determined spectrophotometrically and RNA concentration was 

calculated (one A260 unit equals 40 ng of single-stranded RNA/µl). 

 

First strand complementary DNA (cDNA) was synthesized using a two-step reverse 

transcription protocol. Firstly, total RNA (1 µg) was incubated with oligo(dT)15  

primer (0.5 µg) for 10 min at 70°C. The mixture was then chilled on ice for 5 min. 

Next, AMV reverse transcriptase 1X buffer, dNTPs (0.5 mM), AMV reverse 

transcriptase (15 U) and Rnasin ribonuclease inhibitor (20 U) were added to the 
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mixture and incubated for 60 min at 42°C. Finally, the mixture was incubated on ice 

for 5 min to terminate the reaction. 

 

PCR was carried out in a thermal cycler (PerkinElmer Life and Analytical Sciences, 

Inc., Boston, MA, USA). The reaction mixture contained 1X PCR master mix, 0.4 

µM of each specific primer and 1 µl of cDNA in a final volume of 25 µl. Primers 

specific for mouse PLCγ1, PLCγ2 and β–actin were used (see Table 3). PLCγ1 and 

PLCγ2 primers were designed using the programs Prime 

(http://bioportal.bic.nus.edu.sg/gcg/prime.html; Accelrys, Inc., San Diego, CA, USA) 

and OLIGO 6.0 (http://www.oligo.net/oligo.htm; Molecular Biology Insights, Inc., 

CO, USA). They were designed according to the following principles: (1) 20-26 

nucleotides, (2) 40-60% GC content, (3) avoidance of complementary sequences 

within primer, (4) avoidance of complementary sequences between primers, (5) 

avoidance runs of 3 or more G or C at the 3’-end, and (6) avoidance of a T or an A at 

the 3’ end. The resulting PCR products were separated and visualized on an ethidium 

bromide-stained agarose gel. PLCγ1 and PLCγ2 mRNA levels were quantitated by 

Gel-Pro imaging software and normalized by reference to actin. 

2.7. IP3 fluorescence polarization assay 

At 24 h posttransfection with PLCγ1 ASO, cells were harvested and IP3 levels 

following T cell receptor ligation were quantitated using the HitHunter IP3 

fluorescence polarization assay according to the manufacturer’s recommendations. 

This assay is based on competitive binding between an IP3 fluorescent tracer and 

unlabelled IP3 from cell lysates for IP3 binding protein (Figure 10). Bound IP3 tracer 

is restricted from rotating and will “tumble” more slowly in solution, creating a 
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Table 3. Primer sequences for RT-PCR analysis 
 

Gene 

name 

Sequences Product 

size (bp) 

PCR 

program 

Forward primer: 

5´-CGGAAACCAAGGCTGAGAAGTATG-3´ 
PLCγ1 

Reverse primer: 

5´-CAGCCACCTCAATCTCCACAAAAG-3´ 

402 

Forward primer: 

5´-CAATGAGAGAGACCGCAGAG-3´ 
PLCγ2 

Reverse primer: 

5´-TAGACAAGATGACGGGGAAG-3´ 

387 

Forward primer: 

5´-TCATGAAGTGTGACGTTGACATCCGT-3´ 
β-actin 

Reverse primer: 

5´-CCTAGAAGCATTTGCGGTGCACGATG-3´ 

285 

Denaturation 

94°C, 30 sec 

 

Annealing 

60°C, 30 sec 

 

Extension 

72°C, 30 sec 
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Figure 10. HitHunter IP3 fluorescence polarization assay principle (adapted from 

www.discoverx.com) 
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polarized signal (high mP). Free IP3 from cell lysates compete for binding to the IP3 

binding protein and allows the IP3 tracer to rotate freely upon excitation with plane 

polarized light. Thus, the polarized signal is inversely proportional to the amount of 

IP3 in the cell lysates. Briefly, cells were washed twice and suspended in phosphate-

buffered saline (PBS; pH 7.3, 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4.7H2O 

and 1.4 mM KH2PO4). Cells (8 × 10
4
) were transferred to a 96-well flat-bottom, black 

microtiter plate (Greiner Bio-One, Frickenhausen, Germany) and stimulated with 3 

µg/ml anti-CD3 and 10 µg/ml anti-CD28 for 10 min at 37°C. At the end of 

incubation, induced cells were quenched and lysed by the addition of PCA at a final 

concentration of 0.05 N. Fluorescent IP3 tracer and IP3 binding protein were 

subsequently added and mixed thoroughly on a plate shaker for 5 min. IP3 levels in 

the sample were determined by measuring the fluorescence polarization signal using a 

BMG FLUOstar OPTIMA microplate reader (BMG LABTECH GmbH, Offenburg, 

Germany) with excitation wavelength set at 485nm and emission wavelength set at 

530 nm. 

2.8. Intracellular Ca
2+
 measurement 

Cells were harvested 24 h after transfection with PLCγ1 ASO and changes in 

intracellular Ca
2+

 concentration following stimulation with hamster anti-CD3 and 

anti-CD28 mAbs were evaluated. Cells (2 × 10
6
) were washed twice and suspended in 

HBSS (without calcium and magnesium and phenol red) containing 5% FBS, 20 mM 

HEPES and 2.5 mM probenecid. Cells were then loaded with the intracellular calcium 

indicator dye, Fura-2/AM (3 µM), in the presence of 0.01% Pluronic F127 for 30 min 

at 37°C in the dark. At the end of incubation, extracellular dye was removed by 

washing and cells were resuspended in HBSS containing calcium, magnesium, 5% 
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FBS, 20 mM HEPES and 2.5 mM probenecid. Anti-CD3 mAb (3 µg/ml) was added to 

the cell suspension and incubated for 1 h on ice. Unbound antibody was removed by 

washing. Cells were resuspended at a final density of 1 × 10
6
 cells/ml and kept at 

37°C until analysis. Cells were transferred to a cuvette and stimulation started with 

the addition of soluble anti-CD28 mAb (10 µg/ml). Changes in intracellular Ca
2+

 

concentration were determined by monitoring fluorescence at 340 nm and 380 nm 

using an InCyt CV2 dual-wavelength fluorescence photometry system (Intracellular 

Imaging, Inc., Cincinnati, Ohio). Ionomycin (1 µM) stimulation was performed to 

evaluate cell loading with the Fura-2 indicator. 

2.9. IL-2 measurement by enzyme-linked immunosorbent assay (ELISA) 

Cells (2 × 10
4
) were stimulated with both anti-CD3 (0.125 µg/ml) and anti-CD28 

(0.25 µg/ml) mAbs in triplicate wells at 12 h posttransfection with PLCγ1 ASO. The 

culture supernatants were collected 24 h later and IL-2 concentration was quantitated 

using commercially available mouse IL-2 ELISA kit according to the manufacturer’s 

instructions. Firstly, purified anti-mouse IL-2 capture mAb was diluted 1:250 in the 

coating buffer (0.1 M carbonate, pH 9.5). Diluted capture antibody (50 µl per well) 

was used to coat a 96-well Nunc Maxisorp ELISA plate (eBioscience, San Diego, CA, 

USA), which was sealed and incubated overnight at 4°C. Prior to adding samples, the 

plate was washed and blocked with PBS containing 10% heat-inactivated FBS for 2 h 

at room temperature. The standard, recombinant mouse IL-2 was diluted to the 

concentrations of 800, 400, 200, 100, 50, 25, 12.5, 6.3 and 3.1 pg/ml. After washing, 

standards and cell culture supernatants (50 µl per well) were added to the coated plate 

and incubated for 2 h at room temperature. After extensive washes, working detector 

(containing biotinylated anti-mouse IL-2 detection antibody and avidin-HRP 
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conjugate diluted 1:250 in PBS/10% heat-inactivated FBS) was added to the plate (50 

µl per well) and incubated for 1 h in the dark. The plate was extensively washed and 

final detection was achieved through the addition of the substrate solution containing 

TMB and hydrogen peroxide. Color reaction was stopped after 30 min by the addition 

of 1 N H2SO4. PBS/0.05% Tween-20 was used as washing buffer between steps. 

Optical densities were read at 450 nm (with wavelength correction at 570 nm) on a 

Tecan Sunrise microplate reader (Tecan Trading AG, Zurich, Switzerland). A 

standard curve was generated and the concentration of IL-2 in each sample was 

determined from the curve. 

2.10. Proliferation assay 

Anti-CD3/CD28-induced proliferation was assayed using the CellTiter 96 AQueous 

One Solution assay according to the manufacturer’s protocol. This assay is a 

colorimetric method for determining the number of viable cells in proliferation assays. 

The assay reagent contains a tetrazolium compound, 3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and an electron 

coupling reagent, phenazine ethosulfate (PES) which combines with MTS to form a 

stable solution. The MTS tetrazolium compound is bioreduced by cells into a colored 

formazan product. This conversion is presumably accomplished by NADPH or 

NADH produced by dehydrogenase enzymes in metabolically active cells. Thus, the 

quantity of formazan product (measured at an absorbance of 490 nm) is directly 

proportional to the number of living cells in culture. Briefly, 2 × 10
4
 cells were 

stimulated with 0.125 µg/ml anti-CD3 and 0.25 µg/ml anti-CD28 in triplicate wells in 

a 96-well plate at 12 h posttransfection with PLCγ1 ASO. Cells were returned to 

culture and harvested 24 h later for proliferation assay. CellTiter 96 AQueous One 
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Solution reagent (20 µl per well) was added to the cells and the plate was returned for 

a further 4-h culture. At the end of incubation, proliferation was quantified by 

recording the absorbance at 490 nm. 

2.11. Statistical analysis 

Data are expressed as mean ± SEM.  One-way analysis of variance followed by a 

Tukey test was used to determine significant differences between treatment groups. 

SPSS software (SPSS Inc., Chicago, USA) was used for all statistical analysis. 
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3. RESULTS
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3.1. Effects of PLCγγγγ1 ASO on PLCγγγγ1 mRNA and protein in EL4.IL-2 cell line 

3.1.1. Screening of active PLCγγγγ1 ASO 

ASOs against murine PLCγ1 mRNA were designed following principles described in 

Materials and Methods. Figure 11 shows the predicted secondary structure of mouse 

PLCγ1 mRNA and the sites targeted by ASOs used in this study. The limited gene-

walk with ASOs complementary to mouse PLCγ1 mRNA identified an active ASO, 

ASO3 capable of downregulating PLCγ1 mRNA and protein (Figure 12). EL4.IL-2 

cells were electroporated at 250 V in the presence of 20 µM PLCγ1-selective ASOs 1-

4 or scrambled control oligonucleotide, and harvested 24 h later for protein analysis. 

ASO3 showed the highest antisense activity among the other 3 ASOs and was chosen 

for further studies (Figure 12A). ASO3 significantly decreased PLCγ1 protein 

expression by 40% whereas the scrambled control oligonucleotide, which has the 

same base composition as ASO3 but in a reversed order, was without effect (Figure 

12B). To investigate whether ASO3 downregulate PLCγ1 at the mRNA level, cells 

were treated with 20 µM ASO3 for 6 h and harvested for mRNA analysis by RT-

PCR. ASO3 was observed to markedly reduce PLCγ1 mRNA by 40% as well whereas 

the scrambled control had no significant effect (Figure 12C), suggesting that ASO3 

exerted its antisense effects through an RNase H-mediated mechanism. 

3.1.2. Concentration-response relationship of PLCγγγγ1-selective ASO 

Figure 13 depicts that ASO3 decreased PLCγ1 mRNA expression after 

electroporation into EL4.IL-2 cells in a concentration-dependent manner. In contrast, 

there was no significant target mRNA reduction in cells exposed to increasing 

concentrations of scrambled control oligonucleotide. ASO3 or scrambled control was 
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Figure 11. Predicted PLCγ1 mRNA secondary structure and sites targeted by ASOs used in this study. 



 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Initial screening of active PLCγ1 ASO. (A) Several ASOs targeting PLCγ1 

mRNA were designed and tested for their ability to inhibit PLCγ1 protein expression. 

EL4.IL-2 cells were transfected with ASOs 1-4 (20 µM) by electroporation and 

harvested for protein analysis at 24 h posttransfection. (B) ASO3-mediated inhibition 

of PLCγ1 protein expression. Top panel, Western blot showing PLCγ1 

downregulation in ASO3-treated cells. Bottom panel, quantitation of Western blot 

results (n=4). (C) Reduction of PLCγ1 mRNA by ASO3. Top panel, cells were treated 

with 20 µM PLCγ1 ASO or scrambled control oligonucleotide. Total RNA was 

harvested 6 h later and mRNA expression was measured by RT-PCR. Bottom panel, 

quantitation of RT-PCR results (n=4). Results were normalized to β-actin levels and 

expressed as a percentage of cell only control (mock electroporation without 

oligonucleotide). Scr = scrambled control oligonucleotide. * Significant difference 

from scrambled control oligonucleotide, p < 0.01. 
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Figure 13. Concentration-dependent inhibition of PLCγ1 mRNA by ASO3. PLCγ1 

mRNA levels in EL4.IL-2 cells 6 h after transfection with ASO3 or scrambled control 

at the indicated concentrations. PLCγ1 mRNA levels were normalized to β-actin 

mRNA levels and expressed as a percentage of cell only control. Values shown are 

the mean ± SEM of four separate experiments. * Significant difference from 

scrambled control oligonucleotide, p < 0.01. 
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used at concentrations ranging from 10 – 30 µM for RT-PCR analysis and ASO3-

mediated inhibition was observed to reach a plateau above 20 µM of electroporated 

ASO3. 

3.1.3. Time-course analysis of PLCγγγγ1-selective ASO 

EL4.IL-2 cells were treated with 20 µM ASO3 and harvested at the time points as 

indicated for PLCγ1 mRNA and protein analysis. Figure 14 shows the time-course 

profile of PLCγ1 mRNA and protein inhibition by ASO3 with the scrambled control 

having no effect on PLCγ1 expression. It was observed that ASO3-mediated PLCγ1 

mRNA depletion preceded PLCγ1 protein reduction. Maximum downregulation of 

PLCγ1 mRNA and protein by ASO3 was seen 6 h and 24 h after electroporation 

respectively. 

3.1.4. Specificity of PLCγγγγ1-selective ASO 

3.1.4.1.Cross-reactivity study 

The activity of ASO3 in EL4.IL-2 cells was highly specific to PLCγ1. RT-PCR 

analysis of cells treated with ASO3, using PLCγ2 primers failed to demonstrate any 

change in PLCγ2 expression, indicating specificity of ASO3 for the γ1 isoform 

(Figure 15). 

3.1.4.2.Scrambled control analysis 

Figures 12 to 14 depict that ASO3-treated cells exhibit reduced PLCγ1 expression 

while scrambled control oligonucleotide-treated cells exhibit no change in PLCγ1 

expression, suggesting ASO3 reduced PLCγ1 expression in a sequence-specific 

manner. 
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Figure 14. Time-course effect of ASO3 for the reduction of PLCγ1 mRNA (A) and 

protein (B) in EL4.IL-2 cells. ASO3 (20 µM) was introduced into EL4.IL-2 cells by 

electroporation at 250 V. Samples were harvested at the time points as indicated. 

PLCγ1 mRNA and protein expression were determined by RT-PCR and Western blot 

respectively. Results shown are representative of four independent experiments. Data 

were normalized to β-actin levels and expressed as a percentage of cell only control. * 

Significant difference from scrambled control oligonucleotide, p < 0.01. 
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Figure 15. PLCγ1-selective ASO has no effect on PLCγ2 mRNA expression. 

Specificity of ASO3 was investigated by RT-PCR analysis of cells treated with 20 

µM ASO3 using PLCγ2 primers. β-actin was used to normalize for sample loading. 

Results shown are representative of four independent experiments. 
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 54 

3.2. Effects of PLCγγγγ1 protein downregulation on IP3 and intracellular Ca
2+
 

levels 

With the identification of a highly active and specific PLCγ1 ASO, the effects of 

ASO3-mediated PLCγ1 protein downregulation on IP3 and intracellular Ca
2+

 levels 

were investigated. 

3.2.1. Effect of PLCγγγγ1-selective ASO on anti-CD3/CD28-induced IP3 generation 

Figure 16 illustrates that PLCγ1-selective ASO significantly reduced IP3 generation in 

EL4.IL-2 cells. Anti-CD3/CD28 stimulation of EL4.IL-2 results in activation of 

PLCγ1, which in turn, hydrolyzes PIP2 into second messengers, DAG and IP3. 

Pretreatment of cells with ASO3 before anti-CD3/CD28 stimulation significantly 

inhibited IP3 generation by 30%. In contrast, scrambled control was unable to inhibit 

IP3 generation. 

3.2.2. Effect of PLCγγγγ1-selective ASO on TCR-CD28 stimulation-induced 

intracellular Ca
2+
 increase 

To study the effect of ASO3 on intracellular Ca
2+

 levels, cells were pretreated with 

ASO3 or scrambled control oligonucleotide for 24 h prior to stimulation with anti-

CD3 and anti-CD28 antibodies. As shown in Figure 17, ASO3 significantly reduced 

the rise in intracellular Ca
2+

 triggered by TCR-CD28 costimulation whereas the 

scrambled control did not inhibit the Ca
2+

 increase. 
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Figure 16. PLCγ1-selective ASO significantly reduced anti-CD3/CD28-induced IP3 

generation. EL4.IL-2 cells were treated with or without ASO3 (20 µM) for 24 h, 

followed by a 10-min stimulation with anti-CD3 and anti-CD28 antibodies. IP3 

generated was quantitated using IP3 fluorescence polarization assay. Results shown 

are representative of four separate experiments. * Significant difference from 

scrambled control oligonucleotide, p < 0.01. 
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Figure 17. Significant reduction in anti-CD3/CD28-induced Ca

2+
 increase in ASO3-

treated cells. PLCγ1-selective ASO or scrambled control oligonucleotide (20 µM) was 

introduced into EL4.IL-2 cells and incubated for 24 h. Cells were then loaded with 

Fura-2/AM and incubated with anti-CD3 for 1 h on ice. The arrow indicates the point 

of addition of anti-CD28. Data points represent the mean ± SEM of four separate 

experiments. * Significant difference from scrambled control oligonucleotide, p < 

0.01. 
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3.3. Functional effects of PLCγγγγ1 protein downregulation 

To investigate the role played by PLCγ1 in T cells, the effects of ASO3-mediated 

PLCγ1 protein downregulation on IL-2 production and T cell proliferation were 

explored. 

3.3.1. Effect of PLCγγγγ1-selective ASO on IL-2 production 

Figure 18 shows that ASO3 significantly reduced IL-2 production in EL4.IL-2 cells. 

Anti-CD3/CD28 costimulation of EL4.IL-2 cells results in a dramatic increase in  IL-

2 production. Pretreatment of cells with increasing concentrations of ASO3 (10 to 30 

µM) before anti-CD3/CD28 stimulation significantly inhibited IL-2 production in a 

concentration-dependent manner. IL-2 inhibition was observed to reach a plateau 

above 20 µM of electroporated ASO3, similar to the trend observed in the 

concentration-dependent PLCγ1 mRNA downregulation study (Figure 13). To the 

contrary, cells exposed to scrambled control prior to costimulation did not exhibit any 

inhibitory effect on IL-2 production. 

3.3.2. Effect of PLCγγγγ1-selective ASO on T cell proliferation 

To study the effect of ASO3 on T cell proliferation, cells were treated with ASO3 or 

scrambled control oligonucleotide for 12 h and stimulated with anti-CD3 and anti-

CD28 antibodies for 24 h before they were harvested for proliferation assay. As 

shown in Figure 19, both ASO3 and, unexpectedly, scrambled control oligonucleotide 

significantly reduced proliferation of anti-CD3/CD28-simulated EL4.IL-2 cells. 
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Figure 18. Concentration-dependent inhibition of IL-2 protein levels in EL4.IL-2 cell 

culture supernatants by PLCγ1-selective ASO. EL4.IL-2 cells were transfected with 

the indicated concentrations of ASO3 or scrambled control oligonucleotide and 

stimulated with anti-CD3/CD28 as described in Materials and Methods, after which 

supernatants were collected and IL-2 protein levels were analyzed by ELISA. 

Analyses shown are representative of four separate experiments performed in 

triplicates per treatment group. * Significant difference from scrambled control 

oligonucleotide, p < 0.01. 
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Figure 19. Inhibition of T cell proliferation by PLCγ1-selective ASO and scrambled 

control oligonucleotide. ASO3 or scrambled control oligonucleotide (20 µM) was 

introduced into EL4.IL-2 cells and incubated for 12 h. Cells were then stimulated with 

anti-CD3/CD28 for 24 h and harvested for proliferation assay. Data shown are the 

mean ± SEM of four independent experiments. * Significant difference from cell only 

control (mock-transfected control stimulated with anti-CD3/CD28), p < 0.05. 
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4. DISCUSSION
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4.1. PLCγγγγ1 – an attractive target for antisense inhibition of T cell activation 

Upon antigen stimulation, T cells initiate a cascade of biochemical events that 

culminates in transcription of cytokine genes (including IL-2), cell proliferation, and 

acquisition of T-cell effector functions, in an effort to mount an immunological 

response against the antigen (Rao et al., 1997; Tomlinson et al., 2000). 

 

TCR-mediated signaling is targeted by many immunosuppressive drugs in the 

prevention of GVHD and allograft rejection, and in the therapy for T cell-mediated 

autoimmune inflammatory conditions (Bierer et al., 1993; Xu et al., 1995; Goldman et 

al., 2000; Kang et al., 2003). Immunosuppressive agents such as hydroxychloroquine, 

cyclosporin A (CsA), tacrolimus (FK506), and glucocorticoids exert their effects by 

inhibiting TCR-induced signaling events such as intracellular calcium mobilization, 

calcineurin phosphatase activity, and AP-1, NFAT and NFkB transcriptional activity 

respectively (Barnes and Adcock, 1993; Bierer et al., 1993; Paliogianni et al., 1993; 

Xu et al., 1995; Goldman et al., 2000). However, these small molecules inhibitors are 

associated with several undesirable side effects and the drawback of resistant 

activated T cells (Goldman et al., 2000; Cristillo et al., 2003; Tsitoura and Rothman, 

2004). 

 

PLCγ1 is the predominant isoform in T cells and plays a prominent role in T cell 

activation (Wang et al., 2000; Wilde and Watson, 2001; Diaz-Flores et al., 2003). 

Interaction of T cell receptor with antigen results in activation of multiple protein 

kinases, which are in turn, linked to PLCγ1 activation (Baker et al., 2001). Activated 

PLCγ1 hydrolyzes PIP2 to IP3 and DAG, which in turn stimulate Ca
2+

 increase, PKC 
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activation and Ras activation (Kazanietz et al., 2000), all of which leads to the 

eventual activation of transcription factors regulating IL-2 gene expression and 

ultimately leading to T cell proliferation (Marais et al., 1993; Crabtree and Clipstone, 

1994; Marais et al., 1998). Several studies supported that the downstream targets of 

PLCγ1 activation are important in T cell activation. Dornand and colleagues (1987) 

reported that lipoxygenase inhibitors suppressed IL-2 synthesis by inhibiting 

intracellular calcium increase and PKC activation by DAG. Further, Truneh and 

colleagues (1985) demonstrated the importance of Ca
2+

 and DAG in T cell activation 

by showing that a combination of Ca
2+

 ionophore and phorbol esters, which function 

as DAG analogues, could mimic TCR signals, leading to full T cell activation. On the 

basis of this knowledge, we adopted an antisense approach to selectively 

downregulate the synthesis of PLCγ1 as an alternative approach to interrupt T cell 

activation. 

4.2. Identification of an active ASO targeting PLCγγγγ1 

ASOs targeted to murine PLCγ1 mRNA were designed following principles described 

in Materials and Methods. Two approaches were used in the antisense design, 

differing in the software being employed to aid in the prediction of probable efficient 

antisense sequences. In design approach A, the software mfold 

(http://bioweb.Pasteur.fr/seqanal/interfaces/mfold-simple.html; Zuker et al., 1999) 

was used to predict optimal and suboptimal secondary structures of mouse PLCγ1 

mRNA. Single-stranded regions that were observed to appear in most of the predicted 

secondary structures were identified as probable hybridization-accessible sites on 

mouse PLCγ1 mRNA for ASO targeting. In addition, OLIGO 6.0 

(http://www.oligo.net/oligo.htm; Molecular Biology Insights, Inc., CO, USA) was 
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used to select oligonucleotides that do not form inter- and intra-molecular 

oligonucleotide self structures. Design approach B, on the other hand, uses Sfold 

(http://sfold.wadsworth.org; Ding and Lawrence, 2001, 2003; Ding et al., 2004) to 

predict probable PLCγ1 mRNA secondary structures and antisense accessible sites on 

PLCγ1 mRNA. Oligo Walk program (http://128.151.176.70/RNAstructure.html; 

Mathews et al., 2004) was also used in this approach to predict the affinity of 

complementary oligonucleotides to PLCγ1 mRNA. Both of this software has been 

described by Ding et al (2001) and Matveeva et al. (2003) to greatly improve the “hit 

rate” in antisense screens. Unmodified phosphodiester oligonucleotides are rapidly 

degraded by nucleases and are not generally practical to use as antisense (Engels and 

Uhlmann, 2000). Hence, in this present study, we modified the backbone of the 

designed antisense sequences and scrambled control oligonucleotide with the most 

commonly used PS linkages to increase their resistance to cellular nucleases and their 

biological half-life (Cooper et al., 1999; Roth and Yarmush, 1999; Patil et al., 2005). 

 

Screening for active PLCγ1 ASO was performed in the mouse T cell line, EL4-IL-2 

using 20 µM of each ASO (ASO 1-4) for electroporation. Antisense sequences tested 

in this study showed a differential ability to downregulate PLCγ1 protein. This 

observation is common in antisense screening studies, which report some antisense 

sequences showing different levels of antisense activity while other sequences were 

not capable of reducing expression of their target gene at all (Bennett et al., 1994; 

Dean et al., 1994; Duff et al., 1995; Alahari et al., 1996; Dean et al., 1996; Hill et al., 

1999). It has been suggested that proteins involved in RNA synthesis, processing, 

transport, translation, and degradation may shield certain target mRNA sites or affect 

the hybridization affinity of some oligonucleotides, thus affecting antisense efficacy 
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in an unpredictable fashion (Cooper et al., 1999; Freier et al., 2001). Our data showed 

that ASO3, designed using design approach B, demonstrated the highest level of 

antisense activity when compared with the other 3 antisense sequences. ASO3 

markedly reduced PLCγ1 protein level by 40% and was thus chosen for further in 

vitro profiling. 

 

In this present study, one out of the two antisense sequences designed by approach B 

was found to be effective in inhibiting PLCγ1 protein expression whereas none of the 

two sequences designed by approach A was found to be active. This observation 

seems to support earlier reports on the use of Sfold and Oligo Walk to improve the 

“hit rate” for active ASO discovery (Ding and Lawrence, 2001; Matveeva et al., 

2003). However, more antisense sequences ought to be designed and screened to 

confirm this. Further, active ASO3 contains a TCCC motif, which was shown by Tu 

et al. (1998) to be associated with antisense activity. Taken together, the present 

findings implicate that the use of Sfold and Oligo Walk to predict probable effective 

antisense sequences and the inclusion of TCCC motif in the antisense sequence 

greatly improve the chances of identifying effective ASOs. 

4.3. ASO3 reduces PLCγγγγ1 mRNA expression by an RNase H-mediated 

mechanism 

ASOs have been described as exogenous regulators of gene expression that exert their 

effects either by promoting RNase H-mediated mRNA degradation or by steric 

hindrance, blocking translation of target protein (Crooke et al., 1998). The antisense 

mechanism of ASO3 in this study was investigated by monitoring PLCγ1 mRNA 

level in PLCγ1 ASO-treated EL4.IL-2 cells. ASO3 was found to significantly reduce 



 65 

PLCγ1 mRNA level by 40%, demonstrating that it acts by an RNase H-dependent 

mechanism where it activates RNase H to cleave PLCγ1 mRNA in the mRNA/ASO 

duplex, resulting in destruction of PLCγ1 mRNA and therefore, inhibition of 

translation of PLCγ1 protein. 

4.4. ASO3 decreases PLCγγγγ1 mRNA in a concentration-dependent manner 

Our findings showed that cells treated with increasing concentrations of ASO3 (10 – 

30 µM) exhibited concentration-dependent inhibition of PLCγ1 mRNA. ASO3-

mediated reduction reached a plateau above 20 µM of electroporated ASO3, 

indicating that 20 µM is the minimum concentration of ASO3 required to achieve 

maximum inhibition of PLCγ1 mRNA. In contrast, scrambled control oligonucleotide 

(10 – 30 µM), that has the same base composition as ASO3 but in a reversed order, 

failed to alter PLCγ1 mRNA level in EL4.IL-2 cells, thus demonstrating the specific 

action of ASO3. 

4.5. ASO3 maximally reduces PLCγγγγ1 mRNA at 6 h and PLCγγγγ1 protein at 24 h 

posttransfection 

In this present study, we examined the profile of ASO3-mediated PLCγ1 mRNA 

downregulation in EL4-IL-2 cells at 6 h intervals for 24 h. Our findings showed that 

PLCγ1 mRNA was maximally downregulated at 6 h after electroporation and it 

returned to almost the same level as the controls at 24 h after ASO3 transfection. We 

also investigated the profile of PLCγ1 protein inhibition by ASO3 for two days at 12 h 

intervals. PLCγ1 protein was found to be maximally inhibited at 24 h posttransfection 

and it returned to almost the same level as the controls at 48 h after electroporation. 

Our data showed that maximal PLCγ1 mRNA depletion preceded several hours before 
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maximal reduction in PLCγ1 protein, suggesting that PLCγ1 protein may have a long 

half-life, thus requiring several hours to substantially lower its protein level. 

4.6. ASO3 selectively inhibits PLCγγγγ1, but not PLCγγγγ2 expression in a sequence-

specific manner 

Our present data showed that ASO3-treated cells exhibited significant reduction in 

PLCγ1 expression while scrambled control oligonucleotide, which has the same base 

composition as ASO3 but in a reversed order, failed to demonstrate any change in 

PLCγ1 expression in EL4.IL-2 cells. In addition, we found that ASO3 has no effect on 

PLCγ2 mRNA level, indicating that ASO3 does not cross-react with PLCγ2 mRNA. 

Taken together, these data positively demonstrate that ASO3 is highly selective for 

PLCγ1 mRNA, significantly decreasing its expression in a sequence-specific manner. 

 

The specificity of antisense action observed in our study reflects the attractive value 

of antisense technology being increasingly used as an alternative to small molecule 

inhibitors for research and therapeutic purposes as antisense inhibition of gene 

expression can be achieved more specifically and is thus less likely to be associated 

with undesirable non-target specific side effects. 

 

4.7. ASO3 reduces anti-CD3/CD28-induced IP3 generation and intracellular 

calcium increase 

It is known that upon TCR-CD28 costimulation, PLCγ1 becomes activated and 

hydrolyzes PIP2 into two intracellular second messengers, IP3 and DAG (Weiss et al., 

1991). The former product causes an increase in cytosolic Ca
2+

 by releasing Ca
2+

 

stored in the endoplasmic reticulum and by allowing the entry of extracellular Ca
2+
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through CRAC channel while the latter activates PKC and Ras-GRP (June et al., 

1990; Scharenberg and Kinet, 1998; Kazanietz et al., 2000). All these downstream 

targets of PLCγ1 activation play important roles in T cell activation (Marais et al., 

1993; Crabtree and Clipstone, 1994; Marais et al., 1998). Therefore, in our present 

study, we investigated the effects of ASO3 on two of the downstream targets of 

PLCγ1 activation, IP3 production and intracellular Ca
2+

 mobilization. Our data 

demonstrated that ASO3-mediated PLCγ1 protein downregulation resulted in 

significant reduction in IP3 levels and intracellular Ca
2+

 increase in EL4.IL-2 cells 

stimulated by anti-CD3/CD28. Consistent with our findings is a study by Kang and 

colleagues (2003) who reported that inhibition of Itk and PLCγ1 activation by 

Rosmarinic acid inhibited generation of IP3 and Ca
2+

 mobilization as well as IL-2 

expression and subsequent T cell proliferation. Hence, ASO3 characterized in our 

study was expected to affect IL-2 production and T cell proliferation. 

4.8. ASO3 decreases TCR-CD28 costimulation-induced IL-2 production 

IL-2 expression is a hallmark of T-cell activation (Jan and Kaminski 2001). The IL-2 

gene is under the regulation of three transcription factors namely, AP-1, NFκB and 

NFAT and full activation of IL-2 gene transcription requires that all the three 

transcription factors bind to the promoter region of the gene (Rothenberg and Ward, 

1996; Lindholm et al., 1999). These transcription factors are in turn, regulated by 

MAPK pathway, calcineurin and PKC which are under the control of targets 

downstream of PLCγ1 activation (Jain et al., 1993; Marais et al., 1993; Crabtree and 

Clipstone, 1994; Ueda Y et al., 1996; Marais et al., 1998). Therefore, in this study, we 

examined the effect of PLCγ1 ASO on anti-CD3/CD28 induced IL-2 production in 

EL4.IL-2 cells. Our present data showed that antisense inhibition of PLCγ1 protein 
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with increasing concentrations of ASO3 (10 to 30 µM) resulted in a concentration-

dependent reduction in IL-2 level in anti-CD3/CD28-stimulated EL4.IL-2 cells. This 

is consistent with the concentration-dependent downregulation of PLCγ1 mRNA 

demonstrated in our study, indicating that the observed IL-2 inhibition is a 

consequence of antisense inhibition of PLCγ1 gene expression by ASO3. On the other 

hand, scrambled control oligonucleotide did not exhibit any inhibitory effect on IL-2 

production. These findings are in line with earlier studies demonstrating impaired IL-

2 expression and TCR activation in PLCγ1-deficient cell lines (Irvin et al., 2000; 

Dienz et al., 2003). Hence, PLCγ1 indeed plays an important role in IL-2 production 

in T cells. 

 

Our data on PLCγ1 gene inhibition and subsequent inhibition of IL-2 production by 

PLCγ1 ASO demonstrated the advantages of using antisense technology for the study 

of gene function as inhibition of gene expression with antisense oligonucleotides can 

be achieved more rapidly and at a relatively lower cost compared with generating 

knockout mice for functional genomics. 

4.9. ASO3 and scrambled control oligonucleotide reduce anti-CD3/CD28 

stimulation-induced T cell proliferation 

Upon activation, T cells produce IL-2 and the secreted IL-2 binds to the IL-2R on T 

cell surface, promoting proliferation in an autocrine manner (Rooney et al., 1995). 

Hence, in this present study, we investigated the effect of ASO3 on T cell 

proliferation. Our data showed that ASO3 and unexpectedly, scrambled control 

oligonucleotide significantly reduced proliferation of anti-CD3/CD28-simulated 

EL4.IL-2 cells. This observation could be explained with several possible reasons. 
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Firstly, the incorporation of PS moieties into oligonucleotides have been shown in 

previous studies to have resulted in these oligonucleotides having greater affinity for 

proteins, leading in many cases to nonspecific effects (Stein et al., 1996). A study by 

Cazenave et al. (1989) showed that PS oligonucleotides in both frog oocyte and 

wheatgerm extract in vitro translation systems, bind to enzymes involved in protein 

synthesis and nonspecifically inhibited protein synthesis. In addition, Shaw and 

colleagues (1997) reported that PS oligonucleotides nonspecifically bind to clotting 

factors such as thrombin and impaired clotting. Further, other proteins such as serum 

albumin, human immunodeficiency virus type I (HIV-1) reverse transcriptase, HIV 

gp120 and DNA polymerase-α and -β have also been shown to interact 

nonspecifically with and be inhibited by PS oligonucleotides (Gao et al., 1992; Maury 

et al., 1992; Stein et al., 1993). In this present study, the observed reduction in 

proliferation in scrambled control oligonucleotide-treated cells could be a result of the 

PS oligonucleotides binding nonspecifically to molecules important for T cell 

proliferation. This nonantisense effect could have masked the antisense effect of 

ASO3 on EL4.IL-2 proliferation and could be overcome with the use of chimeric 

oligonucleotides consisting of a stretch of five to seven PS-modified bases in the 

middle of the molecule and 2´-O-modified bases at the 5´- and 3´-ends of the 

oligonucleotide. Chimeric oligonucleotides have reduced PS content and are thus 

likely to be associated with less nonspecific effects than full backbone PS-modified 

oligonucleotides. However, our observed data could also be due to PS 

oligonucleotides interfering nonspecifically with MTS assay components, thus 

resulting in low absorbance readings obtained with ASO3- and scrambled control 

oligonucleotide - treated cells. This problem could be overcome by using an 

alternative proliferation assay such as [
3
H]thymidine incorporation assay which uses 
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[
3
H]thymidine instead of MTS tetrazolium compound and PES used in MTS assay to 

monitor cell proliferation. 

 

It has also been previously reported that several motifs in oligonucleotides are 

associated with nonantisense effects. Oligonucleotides that are G-rich are well known 

for their nonantisense effects (Ecker et al., 1993; Bennett et al., 1994), which have 

been attributed to the tendency of these oligonucleotides to form G-quartet structures 

that then interfere with biological processes (Wyatt and Stein, 1999). In addition, an 

earlier study by Bergan et al. (1994) showed that an oligonucleotide containing GGC 

motif exhibited nonantisense activity by inhibiting tyrosine kinase p210
bcr-abl

 activity 

without affecting its protein level. Our present findings on reduced cell proliferation 

in ASO3-treated EL4.IL-2 cells could be a truly antisense effect mediated by PLCγ1 

ASO while the observed reduction in cell proliferation in scrambled control 

oligonucleotide-treated EL4.IL2 cells could be due to a nonantisense effect caused by 

a particular unidentified “bad” motif present only in the scrambled control 

oligonucleotide. Hence, further studies involving the inclusion of additional controls 

with different sequences such as sense and mismatch controls are needed to verify 

this. 

 

In this present study, our findings on selective inhibition of PLCγ1, but not PLCγ2 

expression by ASO3 and subsequent reduction of anti-CD3/CD28 induced IP3 

generation, intracellular calcium increase and IL-2 production by ASO3 but not by 

scrambled control implicate that the reduction in proliferation observed in ASO3-

treated cells is likely a consequence of PLCγ1 protein downregulation mediated by 

ASO3. However, further investigations involving the use of oligonucleotides 
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associated with less nonspecific effects such as chimeric oligonucleotides and 

additional controls such as sense and mismatch controls are needed to confirm the 

antisense effect of ASO3 on T cell proliferation. 
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5. CONCLUSION
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PLCγ1 plays a pivotal role in the activation of T cells. This is the first study to report 

inhibition of TCR-CD28 costimulation-induced IL-2 production in EL4.IL-2, a mouse 

T cell line by an ASO targeting mouse PLCγ1 mRNA. 

 

The limited gene-walk in this study identified an active PLCγ1 ASO, ASO3 that 

markedly inhibited PLCγ1 protein expression. ASO3-mediated PLCγ1 inhibition was 

further demonstrated at the mRNA level in a concentration-dependent manner while 

no effect was observed in scrambled control-treated cells or PLCγ2 expression. Time 

course study on ASO3-mediated PLCγ1 gene inhibition profile revealed maximum 

mRNA downregulation at 6 h after electroporation and maximum protein reduction at 

24 h after transfection. Subsequent measurement of IP3, intracellular calcium and IL-2 

levels in PLCγ1 ASO-treated murine EL4.IL-2 cells showed significant reduction in 

all the three parameters. Further, our study demonstrated that ASO3-treated cells and 

surprisingly, scrambled control-treated cells exhibited significant reduction in cell 

proliferation following TCR-CD28 costimulation. It is likely that the reduction in 

proliferation observed in ASO3-treated cells is a consequence of PLCγ1 protein 

downregulation mediated by ASO3, however, further investigations involving the use 

of oligonucleotides associated with less nonspecific effects such as chimeric 

oligonucleotides and additional controls such as sense and mismatch controls are 

needed to confirm the effect of ASO3 on T cell proliferation. Our present work 

discovered and characterized an ASO capable of specifically downregulating PLCγ1 

expression and subsequently inhibiting TCR/CD28 stimulation-induced IL-2 

production in the mouse T cell line, EL4.IL-2. If inhibitors of key molecules involved 

in T cell activation, such as PI3K inhibitors (wortmannin and LY-294002), and PLCγ 

inhibitor (U-73122), which inhibit all isoforms of PI3K and PLCγ respectively, were 
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used in this study, it is likely that IL-2 production would also be inhibited. However, 

these inhibitors are more likely to be associated with undesirable non-specific effects 

compared with PLCγ1 ASO which specifically inhibits the γ1, but not γ2 isoform. 

More extensive gene-walking in future study may identify an even more potent 

PLCγ1 ASO capable of inhibiting mouse PLCγ1 expression and T cell activation to a 

greater extent. Future studies employing multiple ASOs or small interfering RNAs 

(siRNAs) targeting specifically at key molecules involved in T cell activation ─ 

PLCγ1 and perhaps PI3K, may discover promising therapeutics that could completely 

attenuate T cell activation. 

 

Taken together, the present findings implicate that antisense inhibition of PLCγ1 may 

have therapeutic potential for the treatment of T cell-dependent disorders. Our data in 

this present study exemplify the attractive value of antisense technology as an 

alternative to small molecule inhibitors and knockout mice for research purposes as 

antisense inhibition of gene expression can be achieved more specifically than with 

small molecule inhibitors and more rapidly and at a relatively lower cost compared 

with generating knockout mice for gene function studies. 
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7. APPENDIX
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List of Reagents and Solutions 

Lysis buffer 

Prepare 500 µµµµl Components Stock 

concentration 

Final concentration 

Volume (µµµµl) 
Tris-HCl (pH 7.5) 1000 mM 50 mM 25 

NaCl 2000 mM 150 mM 37.5 

Triton X-100 100% 1% 5 

Na3VO4 200 mM 2 mM 5 

NaF 1000 mM 34 mM 17 

PMSF 200 mM 5 mM 12.5 

Aprotinin 5000 µg/ml 10 µg/ml 1 

Leupeptin 5000 µg/ml 10 µg/ml 1 

SDS 10% 0.1% 5 

Autoclaved Milli-Q 

water 

- - 391 

 

5X sample buffer (store at –20 °C) 

Prepare 50 ml Components Stock 

concentration 

Final concentration 

Amount 

Tris-HCl (pH 6.8) 3 M 0.313 M 5.2 ml 

Glycerol 100% 50% 25 ml 

2-mercaptoethanol 100% 25% 12.5 ml 

SDS - 10% 5 g 

Bromophenol blue 1% 0.0625% 3.1 ml 

Autoclaved Milli-Q 

water 

- - 4.2 ml 

 

10% separating gel 

Prepare 15 ml Components Stock 

concentration 

Final concentration 

Volume (µµµµl) 
Tris-HCl (pH 8.8) 1.5 M 0.373 M 3730 

Acrylamide/Bis 

solution (37.5:1) 

30% 10% 4930 

SDS 10% 0.1% 150 

Glycerol 10% 0.1% 150 

APS 10% 0.05% 77 

TEMED 100% 0.05% 7.3 

Autoclaved Milli-Q 

water 

- - 5956 
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Stacking gel 

Prepare 5 ml Components Stock 

concentration 

Final concentration 

Volume (µµµµl) 
Tris-HCl (pH 6.8) 0.5 M 0.125 M 1250 

Acrylamide/Bis 

solution (37.5:1) 

30% 3.75% 625 

SDS 10% 0.1% 50 

Glycerol 10% 0.1% 50 

APS 10% 0.03% 15 

TEMED 100% 0.1% 5 

Autoclaved Milli-Q 

water 

- - 3005 

 

10X electrophoresis buffer  

Prepare 2 L Components Final 

concentration Amount 

Tris 0.25 M 60.57 g 

Glycine 1.92 M 288.27 g 

SDS 1% 20 g 

Milli-Q water - q.s 

 

10X transfer buffer (store at 4°C) 

Prepare 1 L Components Final 

concentration Amount 

Tris 1 M 121.14 g 

Glycine 1.92 M 144.14 g 

Milli-Q water  q.s. 

 

10X Tris-buffered saline (TBS)  

Prepare 1 L Components Final 

concentration Amount 

Tris-HCl (pH 7.5) 1 M 121.14 g 

NaCl 9% 90 g 

Milli-Q water - q.s. 
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Tween 20-Tris- buffered saline (TTBS) 

Prepare 2 L Components Stock 

concentration 

Final concentration 

Volume (ml) 

TBS 10X 1X 200 

Tween 20 100% 0.05% 1 

Milli-Q water - - 1799 

 

DEPC-treated Milli-Q water 

Prepare 2 L Components Stock 

concentration 

Final concentration 

Volume (µµµµl) 
DEPC 100% 0.01% 200 

Milli-Q water - - 1800 

DEPC was added to Milli-Q water and stirred for 1 h.  The solution was allowed to 

stand overnight and then autoclaved. 

 

10X PBS pH 7.3 

Prepare 1 L Components Final 

concentration (M) Amount 

NaCl 1.37 80 g 

Na2HPO4 0.027 11.5 g 

KH2PO4.H2O 0.043 2 g 

KCl 0.014 2 g 

Milli-Q water - q.s. 

 

Coating buffer (0.1 M carbonate, pH 9.5) 

Prepare 1 L Components 

Amount 

NaHCO3 8.4 g 

Na2CO3 3.56 g 

Milli-Q water q.s. 

 


