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Abstract 

Implantable microsystems have attracted attention from researchers all 

around the world, due to the fact that the miniaturization of electronics 

systems and reduction of power consumption of chips make the actual 

implantation of extremely complex microsystems possible. 

For these microsystems, the wireless communication link is essential to 

ensure robust communications between an implanted device and an external 

monitoring apparatus. For most cases, the communication link is composed of 

power link and data link. The power link consists of two closely spaced coils 

intended for wireless power transfer based on inductive coupling. The data 

link is realized by either coupling coils for near-field communications or a pair 

of antennas for far-field purposes. This work presents the optimization method 

of rectangular coils for maximum power transfer efficiency; proposes the first 

differentially fed dual-band implantable antenna for data transfer in neural 

recording system and evaluates the performance of a novel differential antenna 

in MICS and ISM bands for dual-mode operation. Also, the interference issues 

between the power link and data link are examined as well. 
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Chapter 1  

Introduction 

1.1 Background for Biomedical Telemetry Systems 

Ever since the gradual implementation of cardiac pacemakers in the mid-

20th century, biomedical telemetry systems have drawn attention from 

researchers all over the world, because they play a vital role for the 

communications between implanted devices and external base stations. Recent 

research advancement of wireless telemetry systems in biomedical areas has 

been numerous [1], [2]. Typical applications include cochlea implants [3], [4], 

retinal prosthesis [5], [6], neural recording system [7], [8], glucose and other 

physiological parameters monitoring [9], [10] and peripheral nerve prostheses 

[11]. 

By way of various biotelemetry links, the electromagnetic energy for 

powering the implanted devices and the control signals can be transferred 

wirelessly from outside into the human body. Also, the physiological 

information regarding the human health status collected by small biosensors 

implanted inside the human tissue can be transmitted wirelessly to an external 

central unit for processing, then further to experienced doctors for analysis and 

diagnosis. In this way, a reliable communication link has been established 

between the patients and doctors. For patients in hospital or even at home, 

their health status can be monitored in real-time. Therefore in case of 

emergency breakout, a timely health care preventive maintenance or medical 

surgery can be ensured. 

For some healthcare applications, a wireless network should be developed. 

The Radio Frequency (RF)-based wireless networking technology that 

interconnects these separate body sensor units around the human body can be 
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referred as Wireless Body Area Network (WBAN) [12], [13]. WBAN can be 

further complemented by Wireless Personal Area Network (WPAN), which 

can enhance the communication coverage from 2 m to 10 m. These networks 

can finally be connected to Wireless Local Area Network (WLAN) and 

Wireless Metropolitan Area Network (WMAN) by way of various wired and 

wireless communication technologies. The schematic for the complete 

interconnection is shown in Figure 1-1 [12]. 

 

Figure 1-1 Interconnection of WBAN, WPAN, WLAN and WMAN [12]. 

 For implantable applications, usually energy is needed to power the 

implanted devices. Battery may be a reasonable option as long as it can last for 

a long time, avoiding the necessity of frequent medical surgery for battery 

replacement. For the case of an implanted device with relatively high power 

consumption where an internal battery cannot handle, a wireless 

transcutaneous link should be employed. In the 1990s, a single inductive 

wireless link composed of two coils is used for both power and data transfer 

[14], [15], as shown in Figure 1-2 (a) [14]. 

However, for applications such as retinal prosthesis and neural recording 

during recent years, the data rate increases dramatically from kbps range to 

mbps range. This presents a great challenge for utilizing just one inductive 

link for both power and data transfer. On one hand, large Quality factor (Q 

factor) coils are necessary for better power transfer efficiency, which will be 

explained in Chapter 2. On the other hand, larger bandwidth is necessary for 
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larger data handling capacity, which means smaller Q for the coils. Due to this 

reason, separate links with respective power and data transmission purpose are 

developed, as shown in Figure 1-2 (b) [16]. 

 

(a) 

 

(b) 

Figure 1-2 (a) Single inductive link used in the power and data transfer system [14] (b) 
The block diagram of a neuroprosthetic system with multiple links [16]. 

Normally, the power link is composed of two inductive coils, either in 

circular or rectangular forms [17]-[21], such as the pair of L1 and L2 shown in 

Figure 1-2 (b). The power carried by electromagnetic wave is transferred from 

outside the body into the implanted device in the human tissue. This type of 

power transfer is similar as that of the traditional transformers in electric 

power delivery systems, which is based on inductive coupling in the near field, 

and the magnetic flux leads to the mutual inductance between two inductors 

and therefore ensures the successful transfer of energy. For increasing the self 

and mutual inductance and therefore the Q factors, often multi-turn loop coils 

with small resistance values are adopted. 
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For most applications, there are two data links, the downlink and the 

uplink [22]. The downlink usually transmits control and command signals, and 

the data is transferred from outside to inside. Downlink can also be termed as 

the forward data telemetry, which is the coil pair of L3 and L4 shown in 

Figure 1-2 (b). The uplink transfers the physiological data collected by 

implanted bio-sensors and related Integrated Circuit (IC) chips to outside the 

human body for processing and analysis, which is the back telemetry A1 and 

A2 shown in Figure 1-2 (b). When the data rate requirement is not demanding, 

the data link can also be incorporated into the power link as shown in Figure 

1-3. 

 

Figure 1-3 The block diagram of an implantable prosthetic system [23]. 

For the realization of the data link, usually either near-field inductive coils 

[22], [23] or far-field antennas [24] are adopted depending on specific 

applications. Near-field coils are coupled to each other through inductive 

coupling, which is quite effective when operated in the near field, and the 

usual operating distance is around 10 mm. However, when the distance is 

increased, the efficiency drops significantly. Therefore for long distance 
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operation, coupling antenna pairs resonating at the same frequency are 

adopted [24]. 

1.2 Frequency Bands, Tissue Properties and Safety 

Issues 

1.2.1 Frequency	Bands	for	Biomedical	Telemetry	

For the operation of wireless links, normally High Frequency (HF) at 3 

MHz to 30 MHz is adopted for power transfer [17]-[21], while Very High 

Frequency (VHF) at 30 MHz to 300 MHz and Ultra High Frequency (UHF) at 

300 MHz to 3 GHz are adopted for data transfer [16], [24], [24]. However, 

most of the times, the selection of frequency bands are based on specific 

applications rather than being in the strictly predefined range. For instance, in 

the case of Figure 1-2 (b) [16], three different frequency bands are selected. A 

low-frequency (fP < 1 MHz) carrier is selected for power transfer from the 

external side to the inside. A medium-frequency (fFD = 1 ~ 100 MHz) carrier is 

selected for the forward data telemetry. And a high-frequency (fBT > 400 MHz) 

carrier is selected for the back telemetry. 

Table 1-1 Common frequency bands for data communication for biomedical 
application 

Frequency range Name of band 

402 ~ 405 MHz Medical Implant Communication Services (MICS) 

1395 ~ 1400 MHz Wireless Medical Telemetry Services (WMTS) 

2.4 ~ 2.5 GHz Industrial Scientific Medical (ISM) 

3.5 ~ 4.5 GHz Ultra-wideband (UWB) 
 

In general words, for wireless power transfer, the frequency is often 

located at around several megahertz or dozens of megahertz range. For data 

communication in the far-field, there are several frequently used bands, such 

as 402 MHz ~ 405 MHz Medical Implant Communication Services (MICS) 

band [26]-[35], 1395 ~ 1400 MHz Wireless Medical Telemetry Services 

(WMTS) band [36], 2.4 ~ 2.5 GHz Industrial Scientific Medical (ISM) band 

[37]-[39], and 3.5 ~ 4.5 GHz Ultra-wideband (UWB) [40]. We summarize the 
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frequency bands for data communication for biomedical applications in Table 

1-1. For ISM band, there are also other band ranges as listed in Table 1-2. 

However, 2.45 GHz is most commonly used for data communication for 

biomedical implants [9], [37]-[39]. 

MICS band is allocated to biotelemetry applications according to 

Recommendation ITU-R SA.1346, and later superseded by RS. 1346 [41]. 

However, the band 401-406 MHz is previously allocated to the Meteorological 

Aids Service, in order to reduce the harmful interference that might occur to 

the operation of Meteorological Aids, a maximum limit of -16 dBm on the 

Effective Isotropically Radiated Power (EIRP) of MICS is specified. 

Table 1-2 Frequency bands for ISM band 

Frequency 
range 
(MHz) 

Centre 
frequency 

(MHz) 

Frequency 
range 
(GHz) 

Centre 
frequency 

(GHz) 

6.765 ~ 6.795  6.78 2.4 ~ 2.5 2.45 
13.553 ~ 13.567  13.56 5.725 ~ 5.875 5.8 
26.957 ~ 27.283  27.12 24 ~ 24.25 24.125 

40.66 ~ 40.70  40.68 61 ~ 61.5 61.25 
433.05 ~ 434.79  433.92 122 ~ 123 122.5 

902 ~ 928  915 244 ~ 246 245 
 

For ISM band, there are a few frequency ranges, which are summarized in 

Table 1-2 [42]. For some of the lower bands in ISM, it is also used for wireless 

power transfer, such as 6.78 MHz [21] or 13.56 MHz [18]. 13.56 MHz is also 

a Radio-frequency Identification (RFID) band. The higher bands at 433.92 

MHz, 915 MHz, 2.45 GHz and 5.8 GHz for data communication are 

thoroughly compared in previous work [43]. For all ISM bands, 2.45GHz is 

most commonly adopted for data transmission for biomedical applications. 

1.2.2 Tissue	Properties	and	Human	Models	

The dielectric properties at different frequencies for different body tissues 

have been investigated [44]. Here in Figure 1-4 we show a graph of the 

relative permittivity and conductivity of the most commonly used human 

tissues: skin, fat and muscle. The figure is plotted with respect to a frequency 

span from 0.1 GHz to 10 GHz. 
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(c) 

Figure 1-4 Relative permittivity and conductivity of (a) skin-dry (b) fat (c) muscle 
[44]. 

From the figure, we can see that three tissue materials are all quite lossy, 

mainly contributed by conductive loss, especially at higher frequency range. 

Also, the permittivity is quite large compared to most substrate materials. It 

helps in reducing the size of an implantable antenna but also reducing its gain. 

Additionally, we can see that the dielectric properties of skin are closer to 

muscle, while fat has a much lower relative permittivity. 

Tissue model composed of these three layers is often used to evaluate the 

performance of an implantable antenna. Also one layer model of skin or 

muscle is also frequently adopted. From our experience, the size of tissue 

model does not have a big influence on the reflection coefficient of 

implantable antennas. However, it will influence their gain and radiation 

pattern. 

 Additionally, human models such as three-dimensional FDTD head model 

and shoulder model are used in previous work [26]. Because the actual human 

model is composed of many delicate tissue voxels, the simulation of which 
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would be quite time-consuming even for workstations. Therefore for the 

saving of simulation time, often part of the human body rather than the whole 

human model is imported in the simulation software. And we list various 

human models from Computer Simulation Technology (CST) Microwave 

Studio in Table 1-3 as an example. And the figures for these human models 

are shown in Figure 1-5 [45]. We can see that the human models are quite 

complete, including baby, child, male adult, female adult and pregnant woman. 

Table 1-3 CST human models 

Model  Age/Sex Size/cm Mass/kg Resolution / mm 

Baby  8-week female 57 4.2 0.85 × 0.85 × 4.0 
Child  7y female 115 21.7 1.54 × 1.54 × 8.0 
Donna  40y female 176 79 1.875 × 1.875 × 10 
Emma  26y female 170 81 0.98 × 0.98 × 10 
Gustav  38y male 176 69 2.08 × 2.08 × 8.0 
Laura  43y female 163 51 1.875 × 1.875 × 5.0 
Katja  43y pregnant, 24w 163 62 1.775 × 1.775 × 4.84 

 

Figure 1-5 Various human models which can be used in CST simulation. 

1.2.3 Safety	Issues	

For safety concerns, we should evaluate Specific Absorption Rate (SAR). 

The SAR is a measure of power absorbed by the human tissue exposed to 

electromagnetic radiation, which is also used to evaluate the heating issues 

brought by mobile phones previously. The definition of SAR can be given by 
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equation (1-1), the time derivative of the incremental energy (dW) absorbed by 

(dissipated in) an incremental mass (dm) contained in a volume element (dV) 

of given density (ρ). SAR is expressed in units of watts per kilogram (W/kg) 

[46]. 

 
d

SAR
dW d dW

dt dm dt dV
      

   
 (1-1) 

The standards for SAR are regulated by IEEE. IEEE C95.1-1999 standard 

stipulates that the maximum 1-g averaged SAR should not be larger than 1.6 

W/kg, as averaged over any 1 g of tissue (defined as a tissue volume in the 

shape of a cube) [46]. However, the new C95.1-2005 standard defines the 

SAR with respect to 10-g averaged tissue, which should be less than 2 W/kg 

over a 10-g volume of tissue [47]. The new standard is much less stringent 

than the previous one. 

1.3 Original Contributions and Thesis Outlook  

The thesis covers a complete wireless link used for both wireless power 

transfer and data transmission, the organization of which can be summarized 

as follows: 

Chapter 1: Introduction 

This chapter firstly introduces the background for wireless telemetry 

system. Then it gives a complete list of the frequencies commonly used for 

communications between external systems and implanted devices, including 

power and data transmission purpose. Also human tissue properties and 

human models are introduced. Finally, safety issues concerning SAR 

evaluation are explained. 

Chapter 2: Wireless Power Transfer for Rectangular Coils 

 Original contribution: this chapter not only provides a new and simple 

method for calculating the power efficiency for wireless power transfer, but 

also proposes a method of solving the practical problem for the optimization 
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of rectangular coils by using the filament method of calculating the self and 

mutual inductance. 

Description: The wirelessly coupled coils are crucial for efficient power 

transmission in various applications, and the rectangular coils’ advantage lies 

in two aspects. For one thing, compared with circular or elliptic coils, 

rectangular or square coils have larger coupling area with the same horizontal 

and vertical dimensions. For another, during some practical applications, the 

space left for power coils design presents a certain shape other than spiral and 

square. In this case, rectangular coils serves as a more general and favorable 

alternative. In this chapter, rectangular coils are characterized and optimized 

by lumped component model. The design procedure was executed in Matlab, 

and validated by simulation from HFSS and measurement from a network 

analyzer. 

Chapter 3: Differentially Fed Dual Band Implantable Antenna Operating 

near MICS Band for Wireless Neural Recording Applications 

Original Contribution: A novel implantable antenna is proposed to realize 

both differential feeding and dual-band operation for the first time. 

Description: This chapter proposes a differentially fed dual-band 

implantable antenna for neuro-recording application operating near MICS 

band for the first time. The antenna can be connected with a Burst-Mode 

Injection-Locked Complementary Metal–Oxide–Semiconductor (CMOS) 

transmitter based Frequency-shift keying (FSK), and it operates at two center 

frequencies of 433.92 MHz and 542.4 MHz, which are both close to the MICS 

band, to support sub-GHz wideband communication for high-data rate 

implantable neural recording application. The SAR distribution and the 

communication link budget are also examined. Finally, co-testing results with 

the transmitter connected before the differential antenna of the communication 

link are presented. 

Chapter 4: Differentially Fed Dual Band Implantable Antenna Operating 

at MICS Band and ISM Band  
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Original contribution: this chapter proposes a differentially fed dual-band 

implantable antenna with biocompatible insulation operating at both 403 MHz 

MICS and 2.45 GHz ISM bands for the first time. The antenna is firstly 

proposed in a planar form, and its possible use in flexible form for capsule 

application is also evaluated. The bandwidth of this antenna is much larger 

than the one proposed in previous chapter. 

Description: antennas with dual band capability can be used in a system 

with two modes: sleep mode and wake-up mode, reducing the energy 

consumption and extending the lifetime of the implant. Also, an antenna with 

differential configuration can be directly connected to a transmitter with 

differential outputs, eliminating the loss introduced by baluns and matching 

circuits. Finally, in vitro test in minced pork are performed to test the 

reliability of the antenna in real implantation cases. 

Chapter 5: Interference Evaluation for Power and Data Link 

Original contribution: Previous work only deals with interference with 

both power link and data link composed of coil pairs. This chapter presents the 

investigation of the mutual effect between coupling coils and coupling 

antennas for biomedical applications for the first time.  

Description: For neuro-recording systems, as the bandwidth requirement 

for data coils is larger, we use coupling antennas operating at MICS band 

rather than several megahertz for data transfer. Due to the possible close 

distance between the power link and the data link, the performance of each 

other may be affected. In this chapter, the interference between power link and 

data link immersed in human tissue model is evaluated. 

Chapter 6 Conclusion 

This chapter gives the conclusion remarks and the future work that can be 

performed. 
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Chapter 2  

Wireless Power Transfer for Rectangular 

Coils 

2.1 Introduction 

During recent years, wireless sensor networks [48] and near-field 

communication systems [49], [50] have been gradually drawing the attention 

of researchers. In all these systems, the communication link is realized by 

either far-field wideband antennas [51], [52] or near-field inductive coils and 

antennas. And wireless power transfer plays an important role. For instance, 

wireless power transfer can be applied in portable telephone battery chargers 

[53]. Also, they can be realized in a system for monitoring conduit obstruction 

[54], and sometimes they are in the shape of a wireless capsule for endoscopy 

[55]. Furthermore, wireless power transfer can be utilized in an online electric 

vehicle [56]. 

In this chapter, we focus on the link intended for power transmission. 

Wireless power transfer is achieved by two inductively coupled coils 

transferring energy from one coil to the other. Also, if a rechargeable battery is 

connected to the secondary coil, this power link acts as a vital part for wireless 

charging. It is obvious that how to enhance the power efficiency between these 

two coupled coils is the critical part during power transmission. Some early 

design works of inductive links were constructed by circular spiral coils made 

of filament wires in the form of single or multiple individually insulated 

strands [16], [21], [57], [58]. This type of filament wire is called Litz wire, 

which presents a smaller effective series resistance (ESR) and a larger quality 

factor, therefore enhancing the power transmission efficiency. However, this 

type of coil cannot be batch-fabricated without sophisticated fabrication 
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technology. Other wireless links were constructed by lithographically defined 

square spiral coils [17], [18], [59]. Some of the coils are based on rigid 

substrates such as printed circuit board (PCB), and others are based on flexible 

substrates such as polyimide [60] or parylene [61]. For the design procedure, 

some systematic design methods for optimizing the coils were proposed [17], 

[62]. However, none of them are suitable for improving the efficiency between 

rectangular coils. Because for one thing, rectangular or square coils has larger 

coupling area compared with circular or elliptic coils with the same horizontal 

and vertical dimensions. For another, during some practical applications, the 

space left for power coils design presents a certain shape other than spiral and 

square. In this case, rectangular coils serves as a more general and favorable 

alternative. Additionally, previous expression of mutual inductance for square 

coils is based on an experiment-based coefficient adapted from circular coils 

[17], which proves inefficient when applied in the case of rectangular coils. In 

this chapter, we propose a new method for calculating the mutual inductance 

and present a method of how to characterize and optimize rectangular coils 

used in inductive link, and a transferring frequency of 3 MHz is assumed. 

Because the simulation of multi-turn coil pairs in HFSS consumes a very 

large memory and a considerable amount of time even for work stations, 

therefore we can first build up some lumped component models for the coils. 

Subsequently, these models are programmed into Matlab and we utilize these 

Matlab codes to determine the initial values of the coils’ geometrical 

parameters, which is much faster than Finite element-Method (FEM) based 

HFSS simulation. Eventually, we can use HFSS to do the final adjustments to 

further improve the efficiency. Therefore the advantage of our design method 

is due to the fact that it can speed up the design process and help us determine 

the geometrical parameters of the coils intended for power transfer efficiently. 

With the coil being modeled as an inductor in series with a resistor, the 

usually adopted schematic for an inductive link is a serial-parallel type circuit, 

as shown in Figure 2-1. The primary circuit is in serial resonance to provide a 

low-impedance load to the source connected before the primary coil, and the 
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secondary circuit is in parallel resonance at the same frequency to better drive 

a nonlinear rectifier load [63]. 

In Section 2.2, we propose a simple equation for calculating the efficiency 

and evaluate the effect of various lumped component on the inductive link. 

Then in Section 2.3, we give the equations for the modeling of self inductance, 

mutual inductance, resistance due to skin effect and parasitic capacitance. 

Subsequently, in Section 2.4, a systematic design procedure executed in 

Matlab (MathWorks, Natik, MA) has been put forward for optimizing 

rectangular coils, with verification from simulation of HFSS (Ansoft, 

Pittsburgh, PA) and measurement results. The comparison of results from 

three approaches is presented in Section 2.5, followed by conclusion remarks 

in Section 2.6. The preliminary results have been presented [19]. 

2.2 Power Efficiency 

2.2.1 Power	Efficiency	

 

Figure 2-1 The equivalent circuit schematic of wirelessly coupled system with 
lumped elements. 

Different ways for calculating power efficiency have been proposed [21], 

[22], [62], [64], [65]. Here we present a simple and accurate way of 

calculating the efficiency. From Figure 2-1, if we omit the IC part, we can get 

a simplified schematic diagram, as shown in Figure 2-2 (a). 

For the secondary coil, we do a parallel-to-series conversion (from Figure 

2-2 (a) to Figure 2-2 (b)), which is called narrowband approximation, and it is 

shown that the error caused by this approximation is negligible [62]. From Lee 

[66], we can get 



 

16 
 

  2
2 2 2 21pL L Q L    (2-1) 

  2 2 2 2
2 2 2 2 2 2 21 /p S S sR R Q R Q L R     (2-2) 

where Q2 = ωL2/Rs2 is usually much larger than 1 (During our application, the 

typical value for Q is around 20 ~ 60). 

 

(a) 

 

(b) 

Figure 2-2 (a) The original schematic for inductive link without the IC part. (b) The 
schematic after we do a parallel-to-series conversion. 

The R1 and R2 in Figure 2-2 (b) are defined as 

 1 r 1s c sR R R   (2-3) 

 2 2L pR R R  (2-4) 

where Rsrc is the source resistance. 

From Figure 2-2 (b), we can get 
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where 

  1 1 1 11/Z R j L j C     (2-6) 

  2 2 2 21/ 1/pZ j L R j C     (2-7) 

M is the mutual inductance between two coupling coils. From equation (2-

5), after some mathematical manipulations, we can arrive at 
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 Therefore the reflected resistance from secondary side to primary side is 
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 The power efficiency is defined as the power received by the load divided 

by the power provided by the source, and because reactive component will not 

dissipate power, the efficiency can be expressed as 
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where k is the coils coupling coefficient defined as 
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When ω reaches 2 2 2 21 / 1 /pC L C L , η reaches maximum 
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where '
1 1 1/Q L R  and '

2 2 2 2 2/ R /pQ R L L   . Because maximum 

efficiency is desired for power transfer, the whole circuit operates at its 

resonance mode. 

2.2.2 Effect	of	C1	on	the	Inductive	Link	

It can be seen from equation (2-12) that the efficiency at resonance is 

independent of the primary capacitor C1. However, the voltage transfer ratio 

|VL/Vs| is a function of C1. The expression of | VL/Vs | with respect to C1 is too 

lengthy to be listed here, but the optimum C1 where maximum | VL/Vs | is 

achieved can be found mathematically by a simple expression. At resonance, 

C1 can be determined by the following equation. 
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 (2-13) 

And this equation tallies with the equation proposed in [62]. 

2.2.3 Effect	of	RL	on	the	Inductive	Link	

During the design process, a fixed RL is assumed. However, after the coils 

according to a particular RL are designed, we can further maximize the 

efficiency by an adequate changing of RL. 

From equation (2-12), the inverse of ηmax can be expressed as a function of 

RL 
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where f (RL)min occurs at 
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 (2-15) 

Therefore, if a matching circuit is designed to change the actual load to the 

value specified in equation (2-15), the efficiency will be enhanced. This 

method has been proved effective in [67]. 
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2.2.4 Effect	of	Rsrc	on	the	Inductive	Link	

As Rsrc increases, the efficiency will reduce. Therefore, this is no optimal 

value for Rsrc. However, Rsrc will have an influence on determining the 

geometrical parameters of the coils, for instance, the width of the coil trace. 

This would be explained in Step 3 of the design procedure elaborated in 

section 2.4. 

2.3 Modeling 

Previous papers dealing with inductive coils only covered circular coils 

made of Litz wires [16], [21], [57], [58] or square coils [17], [18], [59], [68]. 

Circular coils made of Litz wire present a smaller ESR and a larger quality 

factor, therefore boosting the final power transmission efficiency. However, 

due to the fact that this type of coils cannot be batch-fabricated without 

sophisticated fabrication technology, planar printed spiral coils are preferred. 

For this type of coils, considering the same horizontal and vertical dimensions, 

square coils have a larger coupling area than the circular ones and therefore 

found their application in many published papers. But still, square coils with 

same side lengths have their restrictions, limiting their use in the application 

when the space left for inductive coils design presents a different shape. In this 

circumstance, rectangular coils serve as a more general and favorable option. 

For instance, previous expression for the self inductance of square coils is 

expressed as [17], [68]. 
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where n is the number of turns, do and di are the outer and inner diameters of 

the coil, and davg = (do + di)/2. 

For this self inductance equation to be true, we should assume a uniform do 

for two side lengths, which is not the case for rectangular inductive power 

coils. Consequently, this equation is not applicable to rectangular cases. In 



 

20 
 

addition, previous equations for mutual inductance of square coils adopt an 

experiment-based coefficient from circular coils, which may cause error and 

become unusable for the case of rectangular coils. Therefore, for the 

calculation of self and mutual inductance of rectangular coils, we should use 

filament method based on the Greenhouse method [69]. 

2.3.1 Self	Inductance	

 

Figure 2-3 Geometrical parameters of a rectangular spiral coil. 

Based on the Greenhouse method, the inductance of a rectangular coil can 

be obtained by summing up the self inductance of each segment, the positive 

and the negative mutual inductance between all pairs of segments. Also, this 

method is further used to calculate the inductance taking into account of the 

substrate eddy currents [70]. In this chapter, we further extend this method to 

calculate the mutual inductance between the primary rectangular coil and the 

secondary one, which is a novel approach and can be programmed into Matlab 

to determine the power efficiency quickly instead of time-consuming HFSS 

simulation. 

For an n-turn rectangular coil shown in Figure 2-3, the length of one 

segment can be given by 
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where <> denotes the integer part of the expression in brackets and i denotes 

the segment number (from outmost to innermost). The total self inductance 

can be determined by [69] 
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where Li denotes one segment’s self inductance. From [71], we can get the 

mutual inductance between two parallel wire segments with lengths li and lj 

    ,i j iM M l M     (2-20) 
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Consequently, the positive mutual inductance between segments can be 

calculated by 
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    (2-24) 

where i, j indicate the turn number (from outermost to innermost), k is the 

segment number in that turn. The distance between them can be given by 

    d j i w s     (2-25) 

The negative mutual inductance between segments can be calculated by 
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   (2-26) 

The distance between them can be given by 
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Therefore, the total inductance of a rectangular coil can be obtained by 

 S T TL L M M     (2-28) 

2.3.2 Mutual	Inductance	

 

Figure 2-4 Mutual inductance between the primary coil and secondary coil, and the 
arrow in the traces indicates the direction of current. 

Subsequently, we can get the mutual inductance between primary and 

secondary coil by summing up all the mutual inductance between all pairs of 

segment. From Figure 2-4, we can see that those segments with current of 

same direction would have a positive mutual inductance, and segments with 

current of opposite direction would have a negative mutual inductance. For 

example, lp2, lp6, lp10 and ls2, ls6, ls10 would have positive mutual inductance, lp2, 

lp6, lp10 and ls4, ls8, ls12 would have negative mutual inductance. 

Now we can get the distance between one segment and center of the 

rectangular coil, for the primary coil 
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 For the secondary coil 
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where subscript 1 or p denotes the parameters of the primary coil, and 2 or s 

denotes those of the secondary coil. 

From Figure 2-4, we can see that positive mutual inductance (the mutual 

inductance between traces with current of same direction) can be calculated by 
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  (2-31) 

Assuming that the coils are perfectly aligned along the center, the distance 

between segments can be given by 

       2 2
1 24 1 4 1d d i k d j k D           (2-32) 

where D is the distance between primary coil and secondary coil along the 

center axis. 

Negative mutual inductance can be calculated by 
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The distance between them can be given by 
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During the calculation of mutual inductance between a pair of segments, 

the widths of these two segments have to be the same equation (2-28). 

However, in actual cases, the widths of segments for the secondary and 

primary coil are not always the same. Therefore, we made an approximation 

here by assuming 
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Eventually, the total mutual inductance of two rectangular coils would be 

obtained by 

 M M M    (2-36) 

2.3.3 Serial	Resistance	

For the resistance of coils, two factors need to be taken into consideration. 

One is the resistance caused by skin effect, and the other one is the proximity 

effect or current crowding effect. Resistance caused by skin effect has been 

included in our model. The proximity effect has been investigated [18], [72], 

which is more pronounced when the operating frequency approaches 10 MHz 

for the coil size of our case. Because our operating frequency is only 3 MHz, 

we neglect this in our model. The AC resistance caused by skin effect can be 

expressed as [18], [73]. 
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where t is the thickness and w is the width of the copper, and teff is the 

effective thickness due to skin effect. li is defined in equation (2-18), and δ is 

the skin depth of the conductor given by 
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  (2-38) 

2.3.4 Parasitic	Capacitance	

For the parasitic capacitance, we use the empirical equation proposed in 

[17]. 

   0P pc ps rc r g

t
C C C l

s
       (2-39) 

where Cpc is the capacitance through air and Cps is the capacitance through 

substrate. εrc and εr are the dielectric constant of the copper and substrate 
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respectively. α and β are empirically determined coefficient for the 

capacitance proportion. lg is the length of the gap, given by the following 

equation 
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2.3.5 Efficiency	Calculation	

 

Figure 2-5 Equivalent transformation. 

After the model for the coil has been set up, we can do an equivalent 

transformation as shown in Figure 2-5 and substitute Leff and Reff into (12) to 

calculate the final efficiency, where 
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2.4 Design Procedure 

Design procedures have been proposed in [17], [62]. In this chapter, we 

take a similar method. The complete flowchart for the design procedure is 

shown in Figure 2-6. 
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Figure 2-6 Flowchart for the design procedure. 

2.4.1 Step	1:	Applying	Design	Constraints	

Design constraints are generally imposed by fabrication technology 

(minimum width) and the space available for secondary coils. Here we list all 

the parameters in Table 2-1. 

From HFSS simulation, we found that the substrate has insignificant effect 

on the value of mutual inductance and other parameters that would cause a 

difference in the final efficiency. Therefore we used the substrate of 

commonly available FR4 to support the coils. This may be due to the fact that 

near-field induction is largely a magnetic coupling, considering most materials 

are non-magnetic, any supporting substrate will not cause any significant 

change on the simulation and measurement result. 
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Table 2-1 Design constraints 

Parameter Symbol Value 

Linking frequency f 3 MHz 

Maximum dimension for secondary coil a×b 25 mm×10 mm 

Minimum conductor width wmin 0.1 mm 

Minimum conductor spacing smin 0.1 mm 

Source resistance Rsrc 3 Ω 

Loading resistance RL 1000 Ω 

Distance between the coils D 10 mm 

Conductor thickness t 1 oz ≈ 35 μm 

Conductor conductivity (copper) σ 5.8×107 S·m-1 

Substrate thickness (FR4) ts 0.8 mm 

Substrate dielectric constant  εr 4.4 

2.4.2 Step	2:	Initial	Values	

We first assume that two coils are identical. And we initialize the 

parameters as lp1 = ls1 = 25 mm and lp2 = ls2 = 10 mm. For the spacing between 

turns, we just keep it at the minimum value for improvement of efficiency and 

coupling [17], [62]. Also, we introduce a ratio r to ensure the length of 

innermost segment is larger than 0, which is defined as 

 4

2

nl
r

l
  (2-43) 

By substituting equation (2-18) into equation (2-43), we can get 
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w s

 
   

 (2-44) 
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2.4.3 Step	3:	Optimizing	Secondary	Coil	

 

(a) 

 

(b) 

Figure 2-7 Optimize the r ratio and w of coil while assuming the dimensions for the 
secondary and primary coil are the same. (a) Efficiency versus r and w. (b) Efficiency 

versus r assuming w = 150 mm. 
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For a rectangular coil, there are five geometrical parameters: l1, l2, w, s and 

r. And the parameter n (number of turns) is interrelated with the defined ratio r, 

as shown in equation (2-44). Now we can plot the efficiency versus the left 

two variables w and r in Matlab to find out the optimum geometrical 

parameters. 

From the curve shown in Figure 2-7 (a) and the result of Matlab code, we 

can see that at w = 150 μm, r = 0.21, and a maximum efficiency of 24.2% is 

achieved. In order to validate the results, we assume a fixed value 150 μm for 

w, and vary r from 0.1 to 0.7. We get the comparison curves from three 

approaches shown in Figure 2-7 (b). The calculated, simulated and measured 

efficiency agree with each other reasonably. And from the results, we can see 

that as r is further reduced below a certain value (in our case, it is around 0.2 ~ 

0.3), which means more turns in the center of coils, the efficiency remains 

almost the same or reduces by a small amount. This agrees with the conclusion 

in [16], [17] that turn very close to the center of the coils does not help in 

increasing the coupling and the final efficiency. 

For the impact of Rsrc on the power efficiency, we changed Rsrc from 0 to 

10 Ω, and we found that the best w where maximum efficiency is achieved 

varies from 0.22 mm to 0.12 mm. This means that when the outer dimension is 

fixed, if there is a larger source resistance, we should decrease w to increase 

the overall quality factor. This is because that when a large source resistance is 

present, a smaller w means both a larger resistance and a larger inductance, 

but the inductance increasing is faster compared to the resistance increasing, 

therefore leading to a larger overall quality factor and a large efficiency 

accordingly. 

2.4.4 Step	4:	Optimizing	Primary	Coil	

As the size limitation for primary coil is less stringent, after the secondary 

coil is fixed, we can increase the dimension of primary coil to further increase 

the efficiency. In this step, we assume r1 = r2 = 0.21 and the ratio of l2/l1 for 

the primary coil remains at 0.4 as the secondary coil. 
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(a) 

 

(b) 

Figure 2-8 Optimize the outer dimensions lp1 and w1 of primary coil. (a) Efficiency 
versus lp1 and w. (b) Efficiency versus lp1 assuming w1 = 250 mm. 

From the curve shown in Figure 2-8 (a), we can see that as we increase the 

outer dimension lp1, the efficiency increases gradually. However, beyond a 

certain point, in our case lp1 = 60 mm, the efficiency remains almost the same, 

which is around 48%, as shown in Figure 2-8 (b). For w1 < 200 mm, the 
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efficiency reduces sharply when lp1 is larger than 50 mm. Because when w1 is 

extremely small, for the same size constraint of the external coil, the number 

of turns will increase. Therefore smaller cross-section of the metal trace will 

lead both to a larger resistance and a larger inductance, but the previous effect 

would be more significant, leading to the reduction of the Q factor and the 

power efficiency. 

2.4.5 Step	5:	Optimized	Design	

Table 2-2 Geometrical parameters of optimized coils 

 l1 (mm) l2 (mm) w (mm) s (mm) n 

primary coil 60 24 0.25 0.1 27 

secondary coil 25 10 0.15 0.1 16 

 

For our design iteration, the further increase in the size of external coil 

does not help a lot in increasing the efficiency, and the optimized parameters 

for coupling coils are summarized in Table 2-2. 

2.5 Measured Performance 

 

Figure 2-9 Fabricated coupling coils with supporting and connecting materials. 
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Figure 2-10 Measurement setup for the coupling coils. 

The fabricated coupling coils are shown in Figure 2-9. From the figure, we 

can see some holes at the corners of the substrate, through which we can use 

some plastic fixtures to support and separate the coupling coils. The 

measurement setup is shown in Figure 2-10. For the measurement process, 

first, network analyzer (HP 8753D) was used to measure the S-parameters of 

the coupling coils. Subsequently, the S-parameters were converted to Z-

parameters which contain the information of self-inductance, mutual 

inductance and serial resistance. Finally, an equivalent circuit of Figure 2-2 (a) 

was set up in ADS (Advanced Design System) to find the power efficiency. 

The comparison results from three approaches are shown in Table 2-3. 

From Table 2-3, we can see that except a slight overestimation of L1 and 

therefore an overestimated Q1, all the other parameters from three different 

approaches agree with each other excellently. The quality factor of the 

secondary coil is only around 25. Due to size limitation, and the quality factor 

of the primary coil is between 45 and 55. Both of them satisfy the condition 

for the simplification process in equations (2-1) and (2-2) of Section 2.2. 
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Table 2-3 Comparison results from three approaches of optimized coils 

 Calculated results Simulated results Measured results 

M 1.101 μH 1.142 μH 1.141 μH 

L1 38.88 μH 33.60 μH 34.34 μH 

L2 4.78 μH 4.74 μH 4.79 μH 

Rs1 13.43 Ω 13.63 Ω 14.10 Ω 

Rs2 3.62 Ω 3.66 Ω 3.60 Ω 

Q1 54.6 46.5 45.9 

Q2 24.9 24.4 25.1 

k 0.081 0.090 0.089 

η 47.8 % 48.3 % 46.4 % 

 

The final optimized efficiency given by measurement result is 46.4%, 

presenting a slight difference from Matlab calculation and HFSS simulation. 

The main reason is that for the self inductance and mutual inductance, the 

results from three methods agree well with each other, however, for the 

resistance, simulation and calculation method lead to underestimated result 

when compared to measurement most of the time, leading to a smaller 

measured efficiency. In all, the difference between different approaches may 

be caused by the following factors: 1) the inherent inaccuracy of the equation 

proposed to model the rectangular coil. Some secondary effect, for instance, 

the current crowding effect has not been included in our model 2) The 

SubMiniature version A (SMA) connector will introduce some resistance 

which was neglected both in simulation and calculation method 3) the 

inevitable misalignment between the coils will cause some reduction in 

efficiency. 

2.6 Conclusion 

Unlike previous methods which are only suitable for optimizing square or 

circular coil, we have proposed a method of how to model and optimize the 

geometrical parameters of rectangular coils for power transmission, which can 

be used in a wider scope of application. Our major contribution lies on two 

aspects: (a). we provide a new and simple method for calculating the power 
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efficiency; (b). we propose a method of solving the practical problem for the 

optimization of rectangular coils by using the filament method of calculating 

the self and mutual inductance. 

The design procedure was executed in Matlab, and validated by simulation 

from HFSS and measurement from network analyzer. The advantage of this 

design method lies on the fact that with the help of Matlab codes, we can first 

determine the initial values for geometrical parameters of coupled coils in a 

more rapid way, sparing the effort of the time-consuming HFSS simulation. 

After the initial parameters of the coils have been decided, then we can use 

HFSS to do some final adjustments to the coils’ geometrical parameters to 

further enhance the efficiency.  
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Chapter 3  

A Differentially Fed Dual Band Implantable 

Antenna Operating near MICS Band for 

Wireless Neural Recording Applications 

3.1 Introduction 

Implantable microsystems are gradually becoming the focus of research, in 

which the wireless link acts as a vital role in the communications between the 

implants and the external devices. In this chapter, we focus on the link 

intended for data transfer, i.e. the implanted antennas. 

 Early works of implantable antennas are in the form of a microstrip 

antenna or a planar inverted-F antenna (PIFA), operating at a single frequency 

band, which is 402-405 MHz MICS band [26], [27]. In recent years, dual-band 

implanted antennas emerged. C.-M. Lee etc. proposed a π-shape antenna with 

double L-strips operating at two closely spaced frequencies of 375 MHz and 

427 MHz to enhance the bandwidth [29]; T. Karacolak etc. proposed an 

antenna with serpentine configuration operating at 402-405 MHz MICS band 

and 2.4-2.48 GHz ISM band [9]; C. J. Sánchez Fernández etc. adopted a 

microstrip patch antenna based on short-circuited ring and spiral resonators, 

also operating at MICS and ISM bands [74]. The design and realization of a 

3D-spiral small antenna was also proposed at MICS band [33]. Most recently, 

a triple-band implantable antenna was proposed, operating at 402 MHz, 433 

MHz and 2.45 GHz [75]. Additionally, due to the size limitation of 

implantable antennas, stacked structures were also adopted [28], [74], [75][39]. 

 In this chapter, we propose for the first time a differentially-fed dual-band 

implantable antenna, which can be connected more easily with differential 
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circuitries, eliminating the loss introduced by baluns and matching circuits. 

The antenna operates at two center frequencies of 433.9 MHz and 542.4 MHz, 

which are both near MICS band, to work with a sub-GHz wideband 

transceiver designed for high-data rate implantable neural recording [76]. The 

simulated and measured bandwidths are 7.3 % and 7.9 % at the first resonant 

frequency, 5.4 % and 6.4 % at the second resonant frequency, respectively. 

 The organization of this chapter is summarized as follows. In Section 3.2, 

we get into design application, geometrical details of the proposed antenna and 

mixed mode theory for general applications. Subsequently, in Section 3.3, the 

operating principle of the proposed dual-band differentially-fed antenna, 

simulation results of differential return loss in different tissue models and SAR 

distribution from HFSS are presented. Measurement results inside a tissue-

mimicking solution and analysis are given in section 3.4, followed by the link 

budget characterization of a communication pair with two dual-band antennas 

in Section 3.5. Co-testing results with the circuits are given in Section 3.6. 

Finally, the conclusion remarks are summarized in Section 3.7. 

3.2 Antenna Design and Mixed-mode Theory 

 The proposed antenna is to be connected with a dual-band CMOS 

transmitter operating at 542.4 MHz and 433.92 MHz for neural signal 

recording [76].  

3.2.1 Antenna	Design	

 The proposed antenna is fabricated on the substrate of Rogers 6010 (εr = 

10.2, tanδ = 0.0023), covered by a superstrate with the same material, each 

with a thickness of 25 mil (0.635 mm). The superstrate layer is used to protect 

the antenna from direct contact with the semi-conducting tissue. Also, the 

superstrate acts as a buffer between the metal radiator and human tissues by 

reducing RF power at the locations of lossy human tissues [26]. The total size 

of the antenna is 27 mm × 14 mm × 1.27 mm (480.06 mm3). Because the 

antenna is a differentially-fed one, we proposed a structurally symmetrical 

antenna where a spiral shaped branch is connected to the main path to create 

the second resonance. The operating principle concerning the resonance path 
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would be explained further in Section 3.3.2. The feeding location is on the 

same side of the antenna for better connection with differential circuitry. The 

geometry of the proposed antenna is given in Figure 3-1, and we can see from 

the figure that the antenna is symmetrical with respect to the x axis. Therefore, 

in Figure 3-1, we only label the geometrical dimension for one side. The 

differential input impedance of the proposed antenna is 100 Ω, meaning an 

impedance of 50 Ω for each port. The detailed values of geometrical 

dimension are summarized in Table 3-1. 

 

Figure 3-1 Geometry of the proposed dual-band differentially-fed antenna. 
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Table 3-1 Geometrical dimension of proposed antenna 

Symbol Value (mm) 

l1 13.1 

l2 13.2 

s 0.5 

s1 0.3 

s2 0.9 

w 1.0 

w1 1.4 

h 1.27 

3.2.2 Differential	Reflection	Coefficient	Characterization		

For characterizing the reflection coefficient of a differential antenna, the 

theory of mix-mode S parameters is commonly employed [77]. Following this 

work, the input impedance, mixed-mode S-parameters and various 

measurement techniques of differential systems and antennas have been 

systematically investigated [78]-[86]. The derivation and some basic theory 

about mixed-mode S parameters for 1-port differential structure (meaning 2 

ports for the conventional structure) are shown below. 

 

Figure 3-2 Simple schematic for conventional single-ended port to differential port 
conversion. 

The simple schematic for conventional single-ended port to differential 

port conversion is shown in Figure 3-2. The conventional S-parameters can be 

expressed as 

  1 11 12 1 1

2 21 22 2 2
std

b S S a a
S

b S S a a

       
        

       
 (3-1) 
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where ai and bi represents the stimulus and response wave of port i, and Sstd is 

the standard S-parameters matrix.  

In contrast, when port 1 and port 2 are viewed as a single differential port 1, 

the mixed-mode S-parameters of Figure 3-2 can be expressed as 

  d1 11 11 1 1

1 11 11 1 1

dd dc d d
mm

c cd cc c c

b S S a a
S

b S S a a

       
        

       
 (3-2) 

where ad1 and ac1 are the differential mode and common mode stimulus wave, 

and bd1 and bc1 are the differential mode and common mode response wave. 

And Smm represents the mix-mode S-parameters matrix. Sdd11 is the 

differential-mode S-parameter, Scc11 is the common-mode S-parameter, Sdc11 

and Scd11 is the mode-conversion or cross-mode S-parameter. 

From [77], [78], we know that 
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Therefore from equation (3-1), (3-2), (3-3) and (3-4), we can get the 

following equation 

 1
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For a symmetric balanced antenna, as in the case of our proposed 

implantable antenna, S11=S22 and S12=S21, equation (3-6) can be further 

reduced to 
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 (3-7) 

This means for a symmetrically balanced antenna, there is no conversion 

between differential mode and common mode. 

 In our differential feeding case, where the excitations of two ports are 

equal in amplitude and 180° out of phase, the key parameter of the proposed 

implantable antenna is the differential reflection coefficient or odd mode 

reflection coefficient, which is 

 o 11 12dd S S    (3-8) 

The mixed-mode theory is applicable to general applications, not limited 

by coupled transmission lines and shielded balanced transmission lines. And 

the difference between balanced cases and unbalanced cases is that when the 

structure is not balanced, mode-conversion will exist. For the following 

section, we will use this parameter Гodd to evaluate the reflection coefficient of 

the antenna. 

3.3 Simulation Environment, Results and Operating 

Principle 

3.3.1 Simulation	Environment	

We know that one- and three-tissue-layer models will not cause any big 

difference for the simulated return loss [26]. As a result, firstly we only set up 

one layer of tissue for simulation, and then test the robustness of antenna in 

the three-layer tissue model. The simplified geometry of one-layer tissue is 

given in Figure 3-3. Due to the fact that the antenna is intended for neural 

recording applications, we assume that the size of the tissue is 180 mm × 180 

mm × 180 mm, the maximum dimension of which is the same as the human 

head model in [26]. For initial evaluation, a simple cubic tissue box is 

assumed, with 10 mm thickness of tissue above the antenna and 170 mm 

thickness of tissue below the antenna. For actual implantation where the 
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consideration of both the curvature of the human head and different 

implanting positions is needed, only some tuning of the geometrical 

parameters of this proposed antenna is necessary. 

 

Figure 3-3 Simplified geometries for the one-layer tissue model (not in scale). 

The permittivity and conductivity of the tissue for one-layer tissue model 

are from those of dry skin, and the dielectric properties of tissue vary with 

frequency. The numerical values of permittivity and conductivity for all 

tissues used in our models at our operating frequency are listed in Table 3-2 , 

which can be found in [44]. Because our antenna is operating at two closely 

spaced frequencies, we take the arithmetic average of two frequencies in 

which the dielectric properties of simulation model are chosen. For instance, 

for the dry skin used as the one layer model, a permittivity of 45.2 and a 

conductivity of 0.72 are assumed. 

Table 3-2 Dielectric properties of tissues 

biological 

tissues 

433.9 MHz 542.4 MHz arithmetic average 

εr σ (S/m) εr σ (S/m) εr σ (S/m) 

Fat 5.57 0.04 5.53 0.04 5.55 0.04 

Muscle 56.9 0.81 56.2 0.83 56.6 0.82 

Skin 46.1 0.70 44.3 0.74 45.2 0.72 
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3.3.2 Operating	Principle	

 

Figure 3-4 Electric current paths of the proposed dual-band differentially-fed antenna. 

In order to explain the operating principle of the proposed antenna, a 

simplified schematic of the antenna is given in Figure 3-4 and two electric 

current paths are indicated in the figure. Path 1 is with the same conductor 

track width (w1). For spiral-shaped Path 2, from the turning point between the 

third and fourth segments (counting from the outermost to the innermost), the 

conductor track width changes from w1 to w, and the spacing between each 

turn is fixed at s2. It is observed that the first resonance around 433.9 MHz is 

controlled by both Paths 1 and 2, while the second resonance around 542.4 

MHz is mainly controlled by Path 2. 

 

Figure 3-5 Antenna design variations to validate the operating principle. 
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To validate this point, we modified the antenna based on the original one 

and get three variations, as in Figure 3-5. At first, we gradually cut the inner 

segments of the spiral-shaped path and get two antenna designs designated as 

design 1 and design 2, and then we removed the part for connecting two 

spirals of the original antenna and designate it as design 3. 

 

Figure 3-6 Odd mode reflection coefficient comparison of the original design and 
three modified designs for validating the operating principle. 

Then we simulate these structures in FEM based HFSS. To ensure 

differential feeding, we should edit the source for two ports in HFSS to be 180° 

out of phase and keep the power magnitude of two ports to be equal. Then the 

odd mode reflection coefficients of these three modified designs are compared 

with the original antenna in Figure 3-6. 

From Figure 3-6, we can observe that as the spiral segments are removed 

gradually, the second resonant frequency shifts up and differential S11 

becomes worse, meanwhile the first frequency also shifts up a little. When the 

spiral part is completely removed as in the case of design 2, the second 

resonance disappears and the first resonance remains with certain frequency 

shift and reduction of the reflection coefficient. For further verification we 

removed the part for connecting two spirals of the original antenna and 
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designate it as design 3. From the comparison in Figure 3-6, we can see that 

the second resonance is almost unaltered while the first resonance disappears, 

which means that the second resonance is mainly controlled by the spiral part. 

Then in order to investigate the influence of tissue thickness on the antenna, 

we changed the thickness of tissue and compared the simulation results of the 

differential S11, and we found that neither the thickness of tissue above nor 

below the antenna has any effect on the odd mode reflection coefficient. Also, 

from our simulation, we found that the size of tissue does not affect the 

reflection coefficient as well.  

3.3.3 Three‐layer	Tissue	

The thickness of each layer for the three-layer tissue model is from [26]. 

For the three-layer tissue model, we also evaluate the effect of antenna 

position in different tissue layers on the simulation results of the differential 

S11. 

 

(a) 

 

 (b) 
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(c) 

 

(d) 

Figure 3-7 Simplified geometries for the three-layer tissue models, with antenna 
implanted (a) in the middle of skin layer (b) between skin and fat layer (c) in the 

middle of fat layer (d) in the middle of muscle layer. 

The simplified geometries for the three-layer model with different implant 

positions are as shown in Figure 3-7, the size of tissue in the x-y plane is the 

same as that for the one-layer tissue model. Then we do the simulation in 

HFSS and compare the odd mode reflection coefficient in Figure 3-8. 
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Figure 3-8 Comparison of odd mode reflection coefficient in different tissue models 
and in various positions. 

From this figure, we can see that the odd mode reflection coefficient of the 

antenna does not change much when the simulation environment varies. 

However, there is some frequency shift and certain off-resonance. For instance, 

when the simulation environment is changed from one-layer skin tissue model 

to the three-layer model of Figure 3-7 (a), the first resonant frequency shifts 34 

MHz higher and the second resonant frequency shifts 14 MHz higher. 

Additionally, when the antenna is implanted in the fat layer as shown in Figure 

3-7 (c), some off-resonance can be observed, and the minimum value of 

differential |S11| of two resonant frequencies changes to -11.3 dB and -8.7 dB, 

respectively. Also for the implantation as shown in Figure 3-7 (c), the first 

resonant frequency shifts 11 MHz higher and the second one shifts 49 MHz 

higher when compared with Figure 3-7 (a). For the implantation in muscle 

layer as shown in Figure 3-7 (d), the second resonance is relatively weak, and 

the differential |S11| becomes worse to -10.7 dB. These are caused by the fact 

that the permittivity and conductivity of fat are much lower than those of skin 

and muscle, while the dielectric properties of skin and muscle are relatively 

close to each other at our operating frequency. Therefore for implantation in 
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different tissue layers, the antenna’s geometrical parameters should be tuned 

accordingly to achieve a better reflection coefficient. 

3.3.4 SAR	Distribution	

For safety concerns caused by the implanted device on the human body, 

we should evaluate SAR, a measure of power absorbed by the tissue. The 

standards of SAR are regulated by IEEE. For C95.1-2005 standard, the 10-g 

averaged SAR should not exceed 2 W/kg [47]. From [76], we know that the 

maximum output power for the transmitter chip is -19 dBm, meaning 6.29 μW 

for each port. After editing the input power and offset phase of two ports and 

simulate the structure in HFSS, we find the SAR for two resonant frequencies 

to be 9.30×10-4 W/kg and 9.36×10-4 W/kg respectively at the y-z plane, which 

is well below the maximum limit. Also, assuming a SAR of 2 W/kg, we can 

get that the maximum input power for each port of this differential antenna is 

13.5 mW. The SAR value for the x-z plane is also evaluated, and the 

maximum SAR values in y-z plane and x-z plane at two resonant frequencies 

and the allowed maximum input power for this antenna in one-layer tissue are 

summarized in Table 3-3.  

Table 3-3 Maximum SAR values and maximum allowed input power 

Maximum SAR 

Values 

y-z plane x-z plane Maximum allowed 

input power (mW) 423 

MHz 

532 

MHz

423 

MHz 

532 

MHz 

C95.1-2005, 10-

g averaged SAR 

(mW/kg) 

 

0.930 

 

0.936

 

0.895 

 

0.933

 

13.5 

 

In addition, the 1-g averaged SAR distributions of two resonant 

frequencies at the y-z plane are given in Figure 3-9. For 1-g averaged SAR, the 

maximum is 2.44×10-3 W/kg and 2.66×10-3 W/kg for two resonant frequencies. 

From the SAR distribution shown in Figure 3-9 (a), we can see that maximum 

SAR is distributed around the central region, with some small influence from 

two spiral shapes, and from Figure 3-9 (b), we can clearly see that two 
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maximum SAR field areas which are situated above two spiral-shaped region 

at each side of the symmetrical structure. Therefore from this 1-g averaged 

SAR distribution, we can further validate the operating principle about the 

proposed dual-band antenna elaborated in Section 3.3. 

 

(a) 

 

(b) 

Figure 3-9 SAR distribution of proposed antenna at the operating frequency of (a) 
423 MHz, y-z plane (b) 532 MHz, y-z plane (input power for each port: 6.29 μW). 

3.4 Measurement Results 

The measurement environment surrounding the antenna is a tissue-

mimicking solution filled in a plastic box, and the solution we adopted is some 

skin-mimicking gel, the recipe of which was proposed by [9]. For MICS band, 
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the recipe is 56.18 % sugar, 2.33 % salt and 41.49 % deionised water. The 

fabricated antenna is shown in Figure 3-10. 

 

Figure 3-10 Top and bottom views of the fabricated implantable antenna. 

For the measurement of differential antennas, although traditional two-port 

VNA may suffice, a real-time display of the differential reflection coefficient 

in the network analyzer cannot be guaranteed. Consequently, a four-port 

network analyzer with direct mix-mode measurement capability would be 

preferable. As a result, Agilent N5222A four-port PNA Microwave Network 

Analyzer was used to do the measurement, the setup of which is shown in 

Figure 3-11. The comparison of simulation and measurement results in air and 

liquid tissue is given in Figure 3-12.  
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Figure 3-11 Measurement setup for the implanted antenna. 

 

Figure 3-12 Simulation and measurement results comparison of odd mode reflection 
coefficient for the proposed antenna in air and in liquid tissue. 

From Figure 3-12, it can be seen that we can view the tissue as a 

superstrate with a high dielectric constant and high loss tangent, having the 

effect of decreasing the resonant frequency, widening the bandwidth and 

reducing the gain. The simulated and measured results are quite close, with a 

frequency shift of around 14 MHz and 36 MHz for two resonant frequencies 

in the liquid tissue. The simulated and measured frequency bands (differential 
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|S11| < -10dB) in tissue for the first resonant frequency are 408 MHz ~ 439 

MHz (7.3 % bandwidth) and 435 MHz ~ 471 MHz (7.9 % bandwidth), 

respectively. For the second resonant frequency, they are 520 MHz ~ 549 

MHz (5.4 % bandwidth) and 563 MHz ~ 600 MHz (6.4 % bandwidth), 

respectively.  

3.5 Communication Link 

Because the implanted transmitting antenna is a dual-band one, we also 

adopted a dual-band configuration for the external antenna, the geometry of 

which is the same as proposed in [87]. The detailed geometrical parameters of 

the external antenna are given in Figure 3-13, and the antenna is symmetrical 

with respect to both the x axis and y axis. The antenna is a typical dipole with 

two U-shaped slots of the same width along the slot path in each arm to create 

another resonance. The antenna is supported by the commonly used FR4 

substrate, and the differential input impedance for this dipole is 100 Ω, the 

same as that for the implanted antenna. However, the difference is that for the 

implanted antenna, there are two separate feeding ports; for the external dipole 

antenna, there is only one feeding port which is located at the center. 

 

Figure 3-13 Geometry of the external antenna. 
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(a) 

 

(b) 

Figure 3-14 (a) Simulation setup for characterizing the communication link 
(length of antenna is not in scale). (b) S parameters of the antenna pair. 

For the characterization of the communication link, we assume a one-layer 

tissue model for the implanted antenna and space two antennas at 130 mm 

apart and evaluate the coupling between them. The simulation setup is given 

in Figure 3-14 (a), and the simulated S parameters of two antennas are given 

in Figure 3-14 (b). We assume the differential port of the external antenna as 

port 1 and two bottom-feeding ports of the internal implanted antenna as port 
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2 and port 3. Because port 2 and port 3 are symmetric, we can take either S21 

or S31 as the coupling strength between two antennas. Therefore, S11 is the 

reflection coefficient of the external antenna, and S22-S23 (Гodd) is the odd mode 

reflection coefficient of the implanted antenna. From Figure 3-14 (b) we can 

see that we achieved a maximum coupling strength of -42.4 dB and -44.6 dB 

at 433.92 MHz and 542.4 MHz. 

The near field boundary is λ/2π = 88~110 mm (λ = 553~691 mm, the 

operating frequency 433.92 MHz, 542.4 MHz). For our application, we 

assume the distance between transmitting and receiving antennas is 130 mm, 

the same distance as in [7]. Therefore, we would say the system is working in 

the intermediate region, and close to the near field condition. Additionally, we 

found that the size of tissue will affect the radiation direction and maximum 

gain significantly. Due to all these reasons, the far-field radiation pattern may 

not be able to provide some useful information. Therefore as long as we set up 

an external receiving antenna and get a satisfactory coupling and reasonable 

link margin between the implanted antenna and the external one, the proposed 

antenna would serve as a perfect candidate of data transmission for neural 

recording applications.  

When two antennas are perfected matched, the S-parameter |S21| quantifies 

the power transmission, and therefore it also gives the value of path loss. 

 
2

21S /R TP P  (3-9) 

where PR is the received power and PT is the transmitted power. When 

expressed in decibel, |S21| should be the same value of PR/PT and the negative 

value of path loss. Now we summarized the various parameters of the link 

budget in Table 3-4. 
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Table 3-4 Parameters of the link budget 

Operating frequency 433.9 MHz 542.4 MHz

Tx power -19 dBm 

Distance 130 mm 

Path loss 42.4 dB 44.6 dB 

Implementation loss 6 dB 

Receiver noise floor -101 dBm 

SNR (BER=1E-5) 14 dB 

 

The link margin (LM) can be expressed as 

 

LM

19 44.6 101 6 14

17.4

TP PL RNF IL SNR

dBm dB dBm dB dB

dB

    
          
 

 (3-10) 

 

where PL is path loss and RNF is receiver noise floor and IL is 

implementation loss and SNR is the signal to noise ratio of the receiver. For 

the value of PL in the calculation of link margin, we take the larger one for the 

path loss at two resonant frequencies. The distance between two antennas is 

the same as that in [7]. And the values of receiver noise floor and SNR are 

from [41]. If the receiver BER (Bit Error Rate) is not as stringent as 1×10-5, 

the link margin may be improved further. 

Additionally, we gradually increased the distance along the z axis between 

two antennas from 100 mm to 500 mm and evaluate the coupling strength with 

distance. The simulation results of |S21| and the resulting link margin at two 

resonant frequencies are given in Figure 3-15. After the distance along the z 

axis between two antennas is increased from 100 mm to 500 mm, a decrease 

of 14.2 dB for link margin can be seen, and even at a large distance of 500 mm 

between two antennas, a minimum link margin of 6.3 dB can be obtained. 
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Figure 3-15 Variation of |S21| and link margin with respect to the distance between 
two antennas. 

3.6 Co-testing with the Circuits in Minced Pork 

After evaluation of the communication link, we do the co-testing with the 

circuits of the communication link in minced pork. The system overview of 

the co-testing platform is shown in Figure 3-16, and Figure 3-17 shows the 

communication link overview. 

 

Figure 3-16 System overview of the co-testing platform. 



 

56 
 

 

Figure 3-17 Communication link overview. 

The signal generator generates the clock of the transmitter, which is 13.56 

MHz. The FPGA board generates the data for transmission. Two frequencies 

of transmitter output are 433.92 MHz and 542.4 MHz. To have a better 

understanding of the communication link, we give the block diagram of the 

proposed burst-mode injection-locked FSK transmitter in Figure 3-18 [32]. 

 

Figure 3-18 Block diagram of the proposed burst-mode injection-locked FSK 
transmitter [32]. 

The transmitter is directly connected with the differential dual-band 

implantable antenna embedded in minced pork, eliminating the usage of 

baluns and matching circuits. The external half-wavelength dual-band dipole, 
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which is spaced 20 mm apart from the implanted antenna, is connected with 

the signal analyzer. 

 

Figure 3-19 Screen snapshot of output power of the transmitter. 

 

Figure 3-20 Screen snapshot of received power by the external dipole. 
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Figure 3-19 shows screen snapshot of output power of the transmitter, which 

is around -22.6 dB. Figure 3-20 shows the screen snapshot of received power 

by the external dipole, which is around -56.0 dB. 

 

Figure 3-21 Data plot of the transmitted power and received power. 

Figure 3-21 shows data plot of the transmitted power and received power. 

The transmitter output power is around -23 dBm, the received power by the 

external dipole is around -56 dBm. Therefore the path loss is around 33 dB, 

and the theoretic result from HFSS simulation of the coupling strength is 

around -29 dB at a coupling distance of 20 mm, which is close to the 

measurement result. 

3.7 Conclusion 

We have proposed an implantable antenna which achieves both differential 

feeding and dual-band operation for biomedical applications for the first time. 

The operating theory of the proposed antenna is presented, and the robustness 

of the antenna in different tissue models and different simulation environment 

is evaluated. Additionally, SAR distribution is presented, and the simulation 

and measurement results of the odd mode reflection coefficient are compared. 
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Finally, a communication link with dual-band configuration for both the 

external and internal antennas is characterized, and experimental results with 

the transmitter circuits are presented 

The differential configuration of the antenna can facilitate its easy 

connection with differential circuits, eliminating the additional loss introduced 

by baluns and matching circuits. Also, two operating frequencies of the 

proposed antenna are quite close, therefore for single band application we can 

also tune the geometrical parameters of this antenna to achieve bandwidth 

enhancement. The proposed antenna is compact, easy to be fabricated and of 

low cost, which can be used in modern wireless data communication link for 

biomedical implantable systems. 
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Chapter 4   

A Differentially Fed Dual Band Implantable 

Antenna Operating at MICS Band and ISM 

Band 

4.1 Introduction 

 Implantable devices have been utilized to improve patient’s quality of life 

for a long time [88]. For the operating frequency of implanted antennas for 

data transfer, MICS band is most commonly used [26]-[35]. MICS band is 

allocated to biotelemetry applications according to Recommendation ITU-R 

SA.1346, and later superseded by RS. 1346 [41]. However, the frequency 

band 401-406 MHz is previously allocated to the Meteorological Aids Service, 

in order to reduce the harmful interference that might occur to the operation of 

Meteorological Aids, a maximum limit of -16 dBm on the EIRP of MICS is 

specified. Also, 2.4 GHz ISM band is adopted for some cavity slot antennas 

[37], [38] and a slot dipole antenna [39], and a 3.5-4.5 GHz wideband 

implanted antenna is proposed for UWB implanted device [40]. Most recently, 

dual-band and triple-band antennas operating at both MICS and ISM bands 

emerged [9], [75], [89]. In addition to the planar antennas, capsule antennas 

used in biotelemetry systems have also been proposed [36], [90]-[91]. 

We proposed a differentially fed dual-band implantable antenna operating 

near MICS band for neural signal recording applications in the last chapter. 

However, the resonant frequencies are both around MICS band, and its 

bandwidths are narrow. In addition, biocompatible material is not considered 

and its conformal application in capsule is not evaluated. 
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In this chapter, we propose a differentially fed dual-band implantable 

antenna operating at both MICS and ISM bands. An antenna with dual band 

capability at MICS and ISM bands can be used in a system with two modes, 

sleep mode and wake-up mode. When data transmission is needed in MICS 

band, a wake-up signal at ISM band can be sent to the implanted device to 

wake up the implanted system. When in normal condition, the implant will be 

in sleep mode. In this way, the total energy consumption is reduced and the 

lifetime for the implant is extended [92]. Additionally, an antenna with 

differential configuration can be directly connected to a transmitter with 

differential outputs, eliminating the loss introduced by baluns and matching 

circuits. 

In the design of implantable antennas, several issues have to be paid 

attention to: 

a) Size restriction. As the antenna is supposed to be implanted in a human 

body, the size has to be minimized. Depending on different applications, the 

size varies considerably. Stacked structures can be adopted to reduce the 

surface area. However, it will result in larger thickness and therefore the 

reduction of overall volume cannot be guaranteed. Therefore, for the antenna 

design in this chapter, only one layer of substrate is used. 

b) Bandwidth requirement. Implantable environment changes significantly 

from person to person, therefore the antenna should have a large bandwidth to 

withstand the frequency shift when implanted in tissues with different 

dielectric properties. The multi-resonance method has been explored to widen 

the bandwidth of the implanted antennas [29], [93]. 

c) SAR evaluation. Due to the fact that the propagation of electromagnetic 

field will cause the rise of temperature in the human tissue, SAR is commonly 

used to evaluate the heating issues. 

d) Biocompatibility. For real implantation cases, the whole implanted 

device should be covered by biocompatible material, which is a synthetic or 

natural material used to replace part of a living system or to function in 

intimate contact with living tissue. This encapsulation layer not only protects 
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the antenna from the conducting effect of human tissue, but also reduces the 

coupling of the antenna’s high near field terms of the electromagnetic 

radiation with the surrounding human tissue [94]. Also the effect of the 

biocompatible encapsulation layer on the impedance matching and gain of the 

antenna is significant. Therefore we should take it into consideration when 

designing implantable antennas. 

 e) Radiation and coupling. For the implanted antenna, usually the gain is 

quite low. For instance, the gain usually ranges from -46 dBi to -24 dBi for 

MICS band operation depending on the size of the antenna [95]. The low gain 

is mostly contributed by the high conductive loss of the human tissue. 

Therefore in order to ensure robust communication between the implanted 

antenna and external receiving unit, link performance should be evaluated. 

 This chapter is organized as follows: Section 4.2 describes the simulation 

environment and planar antenna design and its flexible application specifics. 

Also, the simulation results of differential reflection coefficient in different 

tissue models from both HFSS and CST human model are presented. In 

Section 4.3, SAR distribution and radiation properties are given, and the link 

performance evaluation is also presented.  Measurement results inside minced 

pork environment are given in section 4.4, followed by conclusion remarks in 

Section 4.5. 

4.2 Planar Antenna Design 

4.2.1 Simulation	Environment	

 Various simulation environments have been proposed in the past research 

papers, three-layer tissue including skin, fat and tissue [26], skin mimicking 

tissue [9], and muscle equivalent tissue [91]. The shape of the body phantom 

is either a cubic box or a cylinder. Also, from past experience, the shape and 

size of the body tissue only present a negligible influence on the impedance 

matching of the implanted antenna, as long as the dielectric properties of the 

tissue remains the same [25], [91]. We set up a frequency dependent skin 

tissue model with a size of 100 mm × 100 mm × 100 mm, and the antenna is 

located 3 mm below the surface of the skin. For comparison, we list the 
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permittivity and conductivity of the skin, fat and muscle at 403 MHz and 2.45 

GHz in Table 4-1, the data of which can be obtained from [44]. From Table 

4-1 we can see that although the antenna is designed in skin tissue, it can be 

implanted in the muscle layer due to its close dielectric properties to skin. 

However when the antenna is supposed to be implanted in the fat layer, we 

should re-optimize the geometrical parameters [25]. 

Table 4-1 Dielectric properties of tissues at MICS and ISM band 

Biological 

tissue 

403 MHz 2.45 GHz 

εr σ (S/m) εr σ (S/m) 

Skin 46.7 0.69 38.0 1.46 

Muscle 57.1 0.80 52.7 1.74 

Fat 5.58 0.04 5.28 0.10 
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4.2.2 Planar	Antenna	Design	and	Simulation	Results	

 

Figure 4-1 The geometry of the proposed planar antenna. 

 Figure 4-1 shows the geometry of the proposed antenna, which is 

symmetrical with respect to the x axis. And the geometrical parameters of the 

antenna are listed in Table 4-2. The substrate supporting the antenna is Rogers 

3010 (εr = 10.2, tanδ = 0.0035), the thickness of which is 25 mil (0.635 mm). 

The via holes with a diameter of 0.9 mm are located in the center of the copper 

trace. The whole antenna is wrapped by a biocompatible material named 

parylene-C with a thickness of 0.1 mm (εr = 2.95, tanδ = 0.013). The total size 

of the antenna including the biocompatible encapsulation is 13.4 mm × 16 mm 

× 0.835 mm (179.0 mm3). Larger thickness for encapsulation reduces the total 

power attenuation which is brought by both the encapsulation and the body 

tissue [94]. However, it increases the size of the whole antenna. Therefore a 
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compromise has to be made when the antenna is considered being integrated 

with the whole implanted device.  

Table 4-2 Geometrical dimension of proposed planar antenna 

Symbol Value (mm) Symbol Value (mm) 

w1 1.4 l5 2.6 

w 1 l6 9.6 

l 5 l7 15.4 

l1 13.2 g 2.0 

l2 15.8 s 0.6 

l3 3.6 d 5.4 

l4 7.6 h 0.635 

 

 For comparison, we used several different settings in simulation. For 

HFSS simulation, we firstly use two lumped ports, as shown in Figure 4-1. 

However, concerning that the size of SMA connectors would be comparable to 

the antenna and the ground size is very small, we also modeled some coaxial 

cable along the feeding line to investigate the effect of SMA connectors and 

cables on the performance of the antenna. In this case, two wave ports are 

applied to two coaxial feeds. Also, for further validation, we placed our 

antenna in the human model of CST Microwave Studio. In CST, we used two 

discrete ports to feed the antenna. The simplified simulation setup for HFSS 

and CST one layer model is shown in Figure 4-2 (a). 

 

(a) 
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(b) 

Figure 4-2 (a) Simulation setup in HFSS and CST for one skin layer model (not in 
scale). (b) Simulation setup in CST for chest and shoulder implantation. 

For the simulation setup in the human model of CST, a male model Gustav 

is used. Also for reducing the simulation time, we only import the upper part 

of the human torso including the head. The front and side view of the human 

model are shown in Figure 4-2 (b). For evaluation of the performance of the 

implantable antenna, we place it in two different locations: the shoulder and 

the chest as shown in Figure 4-2 (b). The total volume for the Gustav human 

body is (0, 0, 0) – (256, 127, 882), and the selected part is (0, 0, 0) – (256, 127, 

224). The resolution of the human voxel data is 2.08 × 2.08 × 2 mm3, which 

means a total human size of 532.48 × 264.16 × 1764 mm3. 

For the evaluation of differential antennas, mixed mode S-parameters 

should be employed [77]. A conventional two port system can be reduced to a 

single differential port as shown in Figure 3-2 in previous chapter. The odd 

mode reflection coefficient (or differential reflection coefficient) for 

symmetrical structures can be expressed by the following equation [77], [85]: 

 11 11 12ddS S S   (4-1) 
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For the case where the environment for port 1 and port 2 is not exactly 

symmetrical, for instance when the antenna is implanted in the actual human 

body of CST rather than a single tissue layer, the differential reflection 

coefficient should be expressed by the following equation: 

  11 11 21 12 22

1

2ddS S S S S     (4-2) 
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Figure 4-3 Comparison of differential reflection coefficient of planar antenna for 
different simulation setups. 

The simulation results of differential reflection coefficient from HFSS and 

CST for different implantation setups are compared in Figure 4-3. From the 

figure we can see that the curves for CST and HFSS simulation results in one 

layer skin model almost coincide with each other. The resonant frequencies for 

HFSS lumped model simulation are 413 MHz and 2.44 GHz. The bandwidth 

(|S11| < -10 dB) is 370 MHz ~ 466 MHz (23.0 %) for the lower band and 2.222 

GHz ~ 2.752 GHz (21.3 %) for the upper band. For the actual implantation in 

chest and shoulder in CST Gustav human model, certain off-resonance can be 

seen. However, two resonant frequencies around 403.5 MHz MICS band and 

2.45 GHz ISM can still be clearly noticed. 

 When the coaxial cables are applied to the feeding position as indicated by 

the curve HFSS_wave in Figure 4-3, the third resonance around 2.44 GHz 

shifts downwards to around 2.07 GHz, while the first resonance around 400 
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MHz remains more or less unaffected. This means that the antenna is more 

easily affected by the size of ground plane at higher frequency due to the fact 

that the SMA is electrically larger, the effect of which is neglected in lumped 

model simulation. We should take this in mind because for actual connection 

with IC chip, the effect of SMA should be absent while for antenna 

measurement alone, the effect will be quite evident, as can be seen from our 

measurement results presented in Section 4.4. The way to mitigate the effect is 

to increase the size of ground plane, which is obtained by increasing the value 

of g in Figure 4-1. This will not only change the resonance properties but will 

also increase the total size of the implantable antenna, which would be a 

disadvantage for actual implantation. However for system integration such as 

conformal capsule antenna case, the ground part can be intended for the 

position where battery is placed, as explained in the section 4.2.3 below.  

4.2.3 Conformal	Capsule	Design	and	Simulation	Results	

 When the antenna is designed on a flexible substrate, it can be wrapped 

around a cylinder-shaped device and be used in a biotelemetric capsule system 

for medical purposes. For actual implantation, physical size constraint has to 

be considered. From past researches, we can get that the approximate size of a 

capsule is 11 mm × 26 mm [36], 11 mm × 24 mm [90], and 10 mm × 32.1 mm 

[91]. The first number is the diameter and the second number is the length of 

the capsule. 

We modified our planar antenna and designed a conformal one on a 

flexible substrate named polyimide (εr = 3.5, tanδ = 0.008) with a thickness of 

0.15 mm. The outer and inner radius for the cylinder is 5 mm and 4.85 mm 

respectively. Also, the antenna is wrapped by parylene-C with a thickness of 

0.1 mm and the whole size of the antenna including the encapsulation is 186.3 

mm3 (π × (5.12 – 4.752) × 17.2). The diameters for via holes are also 0.9 mm. 

The whole antenna (10.2 mm × 17.2 mm) is just slightly larger than a 

capsule’s half size. Therefore for actual application we can extend the size of 

the ground plane and save this part of the capsule for implanting the battery 

and the necessary electronic circuits. The conceptual application in a capsule 

case is shown in Figure 4-4. 
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Figure 4-4 The conceptual application of the flexible antenna in a capsule. 

The geometry of the flexible antenna is shown in Figure 4-5. The 

simulation environment in HFSS one layer skin model for the flexible antenna 

is the same as the planar one except that the center of the capsule cylinder is 

now 8 mm from the surface of the skin tissue. For HFSS simulation, we also 

add some coaxial cables along the feeding line to represent the effect of cables 

when doing actual measurement. In this case, wave port excitations are 

applied to the coaxial feeds. For CST simulation, we put the antenna in the 

stomach contents in Gustav human model. The selected volume for stomach 

implantation is (54, 0, 224) – (198, 127, 365). The simulation environment for 

CST stomach case is shown in Figure 4-5.  

 

Figure 4-5 Geometry of the proposed flexible antenna and the simulation setup for 
CST stomach implantation. 
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Figure 4-6 Geometrical parameters of the proposed flexible antenna when the 
conformal design is spread out. 

For a clearer presentation of the conformal design, we make a cut at the 

bottom center of the antenna and spread the flexible substrate as shown in 

Figure 4-6, which is also the layout for fabrication. The geometrical 

dimensions of the design shown in Figure 4-6 are listed in Table 4-3. 

Table 4-3 Geometrical dimension of proposed flexible antenna 

Symbol Value (mm) Symbol Value (mm) 

la 17 d1 14 

lb 31.4 d2 4.45 

w2 1.8 d3 5.41 

w3 1.4 d4 2.01 

w4 0.87 d5 1.15 

w5 1.34 d6 5.28 

w6 1.59 d7 9.53 

g1 2.8 d8 5.24 

g2 2   
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The comparison of simulation results from HFSS and CST for different 

implantation scenarios are shown in Figure 4-7. The bandwidths for the HFSS 

lumped case are 321 MHz ~ 532 MHz (49.5 %) for MICS band and 2.15 GHz 

~ 2.74 GHz (24.1 %) for ISM band. From the figure we can see that for 

flexible case, 2.45 GHz ISM band is also more affected than 403 MHz MICS 

band. For the actual implant application in different scenarios, some further 

tuning of the geometrical parameters of the proposed antenna is necessary.  
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Figure 4-7 Comparison of differential reflection coefficient of flexible antenna for 
different simulation setups. 

In consideration of the fact that the battery and the electronics may have 

effect on the performance of the antenna, we place a Perfect Electrical 

Conductor (PEC) cylinder with a size of 9.5 mm × 10 mm at the side of the 

antenna to test the robustness of matching performance as shown in case 1 of 

Figure 4-8. The inner part of the PEC coincides with the ground for a length of 

2 mm. Therefore the total size of the antenna in case 1 is 10.2 mm × 25.2 mm, 

which is approximately the size of a capsule. For comparison, we also 

extended the size of ground plane (g2 = 10 mm) as shown in case 2 of Figure 

4-8. In all these cases, the feeding ports remain unchanged. Besides, for the 

ease of measurement, the inner part of the capsule is filled with tissue material 

for the original simulation model. In order to test the performance of the 

antenna in the real implantation application, we substitute the inner tissue 
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portion of the cylinder with a 9.5 mm × 10 mm vacuum layer, as in case 3 of 

Figure 4-8. Finally, we compare the HFSS simulation results of differential 

reflection coefficients from these three cases with the original one in Figure 

4-9. For the feeding of all these structures, lumped ports are used. 

 

Figure 4-8 Simplified schematic for different simulation cases as in the real 
implantation scenarios. 
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Figure 4-9 Comparison of differential reflection coefficients of flexible antenna for 
different simulation setups. 
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From Figure 4-9 we can see that compared with the original case, the first 

resonance remains unchanged with the PEC added (case 1), while the 

resonance around 2.45 GHz becomes weak, however the frequency shift is not 

significant. The curve of case 2 almost coincides with that of case 1, meaning 

extended ground plane will not affect the performance of the antenna as long 

as the positions of the feeding ports remain unchanged. With the inner portion 

of the capsule substituted by vacuum layer as in case 3, all resonance 

frequencies shift upwards. However, the matching is still decent for all 

resonance frequencies. 

4.3 SAR and Radiation  

For safety concerns, we should also evaluate the SAR, the standards of 

which are regulated by IEEE. IEEE Standard C95.1-2005 states that the 10-g 

averaged SAR should not exceed 2 W/kg [47]. The 10-g SAR values of the 

planar antenna and the flexible antenna at two resonant frequencies are listed 

in Table 4-4.  

Table 4-4 SAR values of proposed antenna (Input power: 1 W) 

Planar Value (W/kg) Flexible Value (W/kg) 

chest MICS  85.2 stomach MICS 72 

chest ISM 77.8 stomach ISM 48.8 

shoulder MICS  63.1   

shoulder ISM 76.0   

 

These values are obtained from a differential power input of 1 W, which 

means the maximum output power for the transmitter connected before the 

implantable antenna is 23.5 mW (13.7 dBm) for the planar antenna and 27.8 

mW (14.4 dBm) for the flexible antenna. These values are much larger than 

most output power of transmitters (-25 dBm) for implantable applications [76], 

[42]. Also, it is much larger than the EIRP maximum limit of -16 dBm (25 

μW). Or we can say that for a 25 μW input power, the maximum SAR value is 

2.5e-5 × 85.2 = 2.13e-3 W/kg, which is much smaller than the stipulated 2 

W/kg. As an example, SAR distributions of the planar antenna for chest and 
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shoulder implantation in MICS band for 1 W input power are shown in Figure 

4-10. 

 

Figure 4-10 The SAR distribution of planar antenna for chest and shoulder 
implantation in MICS band (Input power: 1 W). 

The radian distance λ/2π is equivalent to 118mm and 20 mm for 403 MHz 

and 2.45 GHz. Therefore depending on the application, the external receiving 

unit may be in near-field or far-field region of the implanted antenna. And we 

evaluate both the radiation pattern and coupling strength S21 between the 

external half-wavelength dipole and the implanted antenna below. As an 

example, the radiation pattern for shoulder implantation for the planar antenna 

at both frequency bands is shown in Figure 4-11. From the figure we can see 

that the gain is –30.6 dB for 403.5 MHz MICS band and -19.1 dB for 2.45 

GHz ISM band.  
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Figure 4-11 The radiation pattern of the planar antenna for shoulder implantation in 
MICS band and ISM band. 
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Figure 4-12 Coupling strength of external half-wavelength dipole with planar antenna 
in shoulder implantation for MICS band and ISM band. 
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The coupling strength between the external half-wavelength dipole and the 

implanted antenna is shown in Figure 4-12. The external dipole is constructed 

on board Roger 4003 (εr = 3.55, tanδ = 0.0027) with a thickness of 32 mil 

(0.813 mm). For each frequency band, a different dipole is adopted, and the 

total length of the dipole is 336.5 mm for MICS band and 51.5 mm for ISM 

band. From the figure we can see that for extreme close distance at 20 mm for 

instance, the coupling at ISM band is 6.7 dB higher than MICS band. Because 

for this distance, antennas are both within the near-field region and the gain 

for ISM band is larger. As the coupling distance increases, for ISM band it 

gradually enters the intermediate region, while for MICS band, it is still within 

near-field region. Therefore the coupling strength for MICS band takes over 

between a coupling distance of 40 mm and 100 mm. For coupling distance 

larger than 100 mm, the coupling at ISM band dominates again due to larger 

gain values. With this coupling strength, we can further do the link budget 

analysis as in section 3.5. 

For the flexible antenna, as the gain for stomach implantation varied 

significantly as the antenna is moved from one position to another, we only 

give the gain of HFSS one layer implantation, which is -30.5 dB for MICS 

band, and -22.2 dB for ISM band. The gain values are similar to that of the 

planar case, so the coupling strength evaluation is not given for the flexible 

case. 

4.4 Coating and In Vitro Measurement 

4.4.1 Coating	Process	

 After fabrication, both the planar antenna and the flexible antenna are 

coated by parylene-C with a thickness of 0.1 mm. The machine which is used 

to do the coating is shown in Figure 4-13.Some test samples are also used to 

confirm the final coating thickness. For the parylene to be coated on both sides 

of the antenna, we use some clips to hold the antennas and stick them up, and 

then pasted the clips to the coating platform. For every operating process of 8 

hours, 25 um of parylene coating can be deposited, and 25 g of parylene is 
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needed according to our test samples. Therefore 4 iterations are performed for 

a total thickness of 100 um. 

 

Figure 4-13 Machine used for coating the implantable antennas. 

 The general coating process is as follows: 

Step 1: Switch on the refrigerating machine, which is connected to the 

main machine by the black tube shown in Figure 4-13. It will cool down the 

temperature of the coating platform so that a vacuum environment can be 

easily formed under the hermetic dome. The hermetic dome is not shown in 

Fig. 14 for better representation of the coating platform. 

Step 2: 25 gram of parylene is weighed and put into the small furnace 

located in the bottom part of the machine. 

Step 3: After around 30 minutes of cooling, put the hermetic dome over the 

coating platform and turn on the air evacuation switch. 

Step 4: Turn on the furnace switch, and then parylene will be heated, 

vaporized and finally deposited on everything that has been placed within the 

hermetic dome. 
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4.4.2 In	Vitro	Measurement	

 The fabricated antennas after parylene coating are shown in Figure 4-14. 

The in-vitro measurement is performed in minced pork with a four-port 

network analyzer Rohde & Schwarz ZVA 50, which can perform differential 

return loss measurement directly, as shown in Figure 4-14. 

 

Figure 4-14 Fabricated implantable antenna and measurement setup for the 
implantable antenna. 

The differential reflection coefficient of the planar antenna is shown in 

Figure 4-15. From the figure we can see that the results are generally the same 

at MICS band. While at 2.45 GHz ISM band, the curve of HFSS_lumped 

differs with the measurement result to a greater extent. This is caused by the 

effect of SMA connectors and cable being connected to the ports, which is 

neglected in lumped model. In wave port model, we add some cables 

alongside the ports, therefore the curve of HFSS_wave is closer to 

measurement result. 
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Figure 4-15 Comparison of differential reflection coefficients of measurement and 
simulation results for the planar antenna. 

The comparison of differential reflection coefficients for flexible capsule 

antenna is shown in Figure 4-16. From the figure we can see that for the 

flexible antenna, 2.45 GHz ISM band is even more severely affected. Also, 

measurement result is closer to the curve of HFSS_wave due to the effect 

brought by the small ground and feeding cable. 
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Figure 4-16 Comparison of differential reflection coefficients of measurement and 
simulation results for the flexible antenna. 
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4.5 Conclusion 

A differentially-fed dual-band antenna operating at MICS and ISM bands 

has been proposed, and its possible application in flexible substrate can be 

intended for capsule antenna design. The radiation properties and SAR 

distribution are also evaluated. Measurement results in minced pork are 

compared with simulation in both HFSS one layer skin model and CST Gustav 

human model. 

This type of antenna can be connected with a transmitter with differential 

output, eliminating the loss produced by baluns and matching circuits. Dual-

band operation can be used in a circumstance with two modes: sleeping mode 

and work mode. During normal condition, the whole device would be in 

sleeping mode. When data transfer is required in 403.5 MHz MICS band, a 

wake up signal at 2.45 GHz ISM band is transmitted from external apparatus 

to start the internal device. In this way, power consumption can be reduced, 

extending the lifetime of the implanted device. 

From our measurement, we found that 2.45 GHz ISM band is more easily 

affected when the environment changes, the case of which is also evident in 

previous dual-band work [9]. Therefore we should be more careful about the 

upper band and do some necessary tuning of the geometrical parameters of the 

design. Also, we may use some lower frequency band such as 915 MHz ISM 

band or 1.4 GHz WMTS band for startup signal to mitigate the detuning effect. 
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Chapter 5  

Interference Evaluation for Power and Data 

Links 

5.1 Introduction 

 

Figure 5-1 Overall system block diagram and conceptual drawing of fully implantable 
wireless neural recording microsystem [96]. 

For biomedical implantable applications, the wireless power link often 

requires high Q coils for maximum power transfer efficiency, while the data 

link requires low Q antennas or coils for larger bandwidth and a resulting 

larger data rate capability. Therefore for communication purposes, the wireless 

links are often realized by separate links, intended for power and data transfer 

respectively [16], [22]-[23], [96]. However, this may cause problems because 

of the interference between the power link and data link. For instance, the 
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overall system block diagram and conceptual drawing of fully implantable 

wireless neural recording microsystem is shown in Figure 5-1 [96]. 

IC1 is a 100-channel neural interface IC, which is connected with the 

probe array to collect the neural signals. IC2 is connected with IC1 by a 

flexible cable. IC2 is the wireless power and data link IC, which is responsible 

for collecting and sending the neural signal. For neural recording applications, 

the bandwidth requirement for the data link is comparatively larger, entering 

several or dozens of megahertz range. Therefore the data link is implemented 

by coupling antennas operating at UHF rather than traditional inductive coils 

operating at HF. The whole system is powered by a wireless power link 

composed of two rectangular coils. IC3 is the receiver IC, which is used to 

receive the neural signal and further send it to decoder and computer for 

process. In this figure, the power link is placed side by side with data link, 

causing possible interference. Therefore, in this chapter, we investigate this 

issue and evaluate the effect of them on each other. 

5.2 Overview of the Communication Link 

For the communication link evaluation, we assume that the implanted device 

is immersed in a skin tissue, the permittivity and loss tangent of which at all 

frequencies can be found in [44]. The implanted device is supported by Rogers 

6010 with a permittivity εr of 10.2 and loss tangent tanδ of 0.0023. The 

thickness of the substrate is 25 mil (0.635 mm). Also, a superstrate with the 

same material and thickness as substrate is used for the protection of the 

implanted device from the conducting influence of human tissue. 

For the investigation of the interference between power link and data link in 

this chapter, we also make some other assumptions as follows: 

1) The distance between the power coils is 10 mm. The operating frequency 

is 13.56 MHz, which is both an RFID band and ISM band. The distance 

between data link, which operates at 403 MHz MICS band, is 100 mm. 

2) Due to the size restriction for internal devices, we fix the total internal 

implant size at 25 mm × 25 mm. We leave half space for the implanted 
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antenna and half space for the internal power coil, and the spacing between 

them is 1 mm. Also, the spacing between each turn of both power coils is 

fixed at 0.1 mm. 

3) There is a superstrate for both the internal power coil and the implanted 

antenna. 

4) The power coils and the antennas are perfectly aligned respectively. We 

do not investigate misalignment issues in this chapter. 

The simplified overview of the communication link implanted in a head 

model is shown in Figure 5-2, and we define the external power coil as Pex, the 

internal power coil as Pin, the external antenna for data transfer as Dex, and the 

internal antenna as Din. These symbols will be used through this chapter. 

 

Figure 5-2 Overview of the communication link. 
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5.3 Investigation of Power and Data links and the 

Interference 

5.3.1 Power	Link	

For simplification, we assume that the skin tissue size is a cubic box with a 

size of 100 mm × 100 mm × 50 mm, with 2 mm thickness of tissue above the 

implanted device. At first, we ignore the implanted antenna and optimize the 

power link alone. We leave a 0.5 mm margin between the edge of substrate 

and the internal coil. Because the spacing between implanted coil and antenna 

is 1 mm, the space for the secondary coil is 11.5 mm × 24 mm, and we assume 

the number of its turns is 10. For power coils optimization explained in 

Chapter 2, we found that the best ratio between the length of innermost turn 

and outermost turn is around 0.2 [20], meaning the trace width for the internal 

coil is 0.38 mm in this case. 

 

Figure 5-3 The optimization of external coil. 

At first we assume the external coil to be the same size as the internal one. 

Then we gradually increase the size of external coil from two times the size of 

internal coil to three and a half times and compare the efficiency versus 
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number of turns n1 for primary coil in Figure 5-3 according to the power 

efficiency equation proposed in [20]. 

From the figure we can see that when the size of external coil is 2 times 

and 2.5 times of internal coil, the maximum efficiency occurs when n1 = 25, 

more turns will cause a slight reduction for the efficiency. When the size of 

external coil is 3 times and 3.5 times of internal coil, the maximum efficiency 

occurs when n1 = 20, more turns for larger coil will cause the Self Resonant 

Frequency (SRF) to reduce and gradually approach 13.56MHz, leading to a 

serious reduction of efficiency. The size of final optimized external coil is 23 

mm × 48 mm, the trace width and number of turns is 0.28 mm and 25 

respectively. 

5.3.2 Data	Link	

 Data link are either realized by near-field data coil or far-field antennas. 

For implantable antennas, often 403 MHz MICS band [26] or 2.45 GHz ISM 

band [38] is selected as the operating frequency. A dual-band antenna 

operating at these two frequency bands was also proposed [9]. And the 

antenna structure is either in the form of a PIFA [9], [26] or a meandered 

dipole [24], [36]. A meandered dipole is used extensively for biomedical 

applications due to its small size, larger bandwidth and conformal capabilities. 

For the data link design, we also removed that power link and then designed 

an off-center fed meandered dipole operating at 403 MHz. The off-center 

feeding is to ensure better matching [36]. The size of the implanted antenna is 

also 11.5 mm × 24 mm. For the external antenna, we just designed a simple 

dipole antenna operating at 403 MHz. 

5.3.3 Interference	

The implanted coil together with the antenna is shown in Figure 5-4. The 

size of internal coil is 11.5 mm × 24 mm, the trace width and number of turns 

is 0.38 mm and 10 respectively. The size of the implanted antenna is also 11.5 

mm × 24 mm, spaced 1 mm from the internal coil. From our simulation in 

HFSS, we found that the presence of the antenna does not have any influence 

on the efficiency for the power link. 
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Figure 5-4 The implanted coil and off-center fed meandered dipole antenna. 

For the effect of power link on the data link, we evaluate it from several 

aspects. Firstly, we view two antennas as a two-port system, and define the 

port of Dex as port 1 and the port of Din as port 2. And we evaluate the 

coupling strength S21 between Dex and Din with and without the power link. 

When expressed in decibel, |S21| should be the same value of received power 

over transmitted power PR/PT and the negative value of path loss. It can be 

further used to calculate the link margin for the whole system. The value of 

|S21| expressed in dB of the data coupling link versus the distance with and 

without the power coils are shown in Figure 5-5. From the figure we can see 

that the difference between |S21| with and without the power link is quite small, 

only about 1 dB. 
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Figure 5-5 Coupling strength between external and internal antennas versus the 
distance between them. 

Furthermore, we view the whole implanted coil, implanted antenna, external 

coil and external antenna as a four-port system. Pex is the only source where 

power is generated from external apparatus. For the power link composed of 

Pex and Pin, serial-parallel structure is used, meaning the primary side is in 

serial resonance and the secondary side is in parallel resonance. The topology 

selection of power link has been investigated previously [97].  

S parameters of the whole structure is simulated in HFSS and then exported 

and used in the schematic of ADS as shown in Figure 5-6. Some power probes 

are added to simulate the power efficiency at 13.56 MHz. For the power link 

used in ADS schematic, the secondary power coil Pin is 1 kΩ loaded as in 

Chapter 2. And the data link composed of two antennas Dex and Din are both 

50 Ω loaded. 
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Figure 5-6 ADS schematic for calculating the coupling strength. 

As the distance between Dex and Din is decreased from 100 mm to 20 mm, 

the power ratio of PPin/PPex, PDin/PPex, PDex/PPex with respect to the distance 

between Dex and Din at 13.56 MHz is shown in Figure 5-7. The black curve 

indicates the power efficiency from Pex to Pin, which is relatively stable. Two 

blue curves indicate the coupled power from Pex side to the data link 

composed of Dex and Din. 
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Figure 5-7 Power ratio of PPin/PPex, PDin/PPex, PDex/PPex with respect to the distance 
between Dex and Din at 13.56 MHz. 
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From the figure, we can see that PPin/PPex and PDin/PPex almost remain the 

same, while PDex/PPex becomes larger when the external antenna gets closer to 

the implanted system. The coupling strength between Dex and Din with the 

power link at 403 MHz is shown in Table 5-1. 

Table 5-1 Coupling strength between Dex and Din with the power link at 403 MHz 

distance (mm) coupling (dB)

20 -20.4 
40 -23.5 
60 -25.8 
80 -27.7 

100 -29.3 
 

For a specific example in the neural recording system [96], the power level 

is 14.2 dBm for Pex, -25 dBm for Din [8]. Therefore now we can get the 

desired power amplitude at 403 MHz and unwanted power amplitude at 13.56 

MHz for both Dex and Din, as shown in Figure 5-8. 
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Figure 5-8 Desired power amplitude and unwanted power amplitude for Dex and Din 
versus the distance between Dex and Din. 
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From the figure we can see that when the distance between Dex and Din is 

reduced to 20 mm, the unwanted power amplitude at Dex is closest to the 

desired power amplitude, which is still 11.4 dB lower. Therefore, the 

interference at 13.56 MHz indicated by the empty symbol line is negligible for 

both Dex and Din.  

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 5-9 Different ports’ locations for Pex, Pin and Din (a) Both the ports of Pex and 
Pin are away from port of Din (b) The port of Pex is away from Din while Pin is near the 

port of Din (c) The port of Pex is further located away from Din while Pin is near the 
port of Din (d) Both the ports of Pex and Din are located near the port of Din. 

Finally, we evaluate the effect of the port’s location on the coupling 

strength. And we change the ports’ locations as shown in Figure 5-9. In 

previous simulation, the port is placed as in Figure 5-9 (a). If we change to the 

ports’ configuration to three other cases as in the Figure 5-9, the desired power 

amplitude and interference power amplitude are compared in Figure 5-10. 
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Figure 5-10 Desired power amplitude and unwanted power amplitude for Dex and Din 
versus different cases for ports’ locations. 
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From the figure we can see that the biggest interference comes from the 

ports’ configuration of case 4. The unwanted signal at Dex side at 13.56 MHz 

is increased to -69.5 dBm, which is still 15.3 dB lower than the received signal 

strength of -54.3 dBm. The unwanted signal at Din side at 13.56 MHz is 

increased to -34 dBm, which is still 9 dB lower than the output power of -25 

dBm. Therefore, the interference is negligible for all cases. However, if 

feeding location for the implanted coil is supposed to be extremely close to the 

feeding port of the implanted antenna, then possible interference from the 

power link to the data link may exist. 

Consequently, for minimum interference, three methods can be adopted. 

Firstly, for minimum interference to the receiver located outside the body, the 

external antenna should be placed at certain distance away from the implanted 

system. For the operating frequency used in this chapter, a minimum distance 

of 20 mm is recommended. Secondly, for IC2 shown in Figure 5-1, the port 

for the power input and data output should be located away from each other. 

Finally, we can further increase the frequency separation. For instance, we can 

further reduce the power transferring frequency to 6.78 MHz ISM band and 

increase the data transferring frequency to 915 MHz ISM band or 2.45 GHz 

ISM band. 
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Chapter 6  

Conclusion 

6.1 Thesis Assessment 

This thesis evaluates the whole telemetry link for the implanted device, 

including the link for wireless power transfer and the link for data 

transmission. The prominent aspects which differ from previous work can be 

summarized as follows: 

Chapter 2 proposes the systematic method for improving the power 

transferring efficiency for rectangular coils and presents a new and simple 

method for calculating the power efficiency. 

For practical applications, the space left for power coupling coils design 

may presents certain shape other than square or circular shape, therefore in 

this case rectangular shape serves as a more general and favorable solution. 

Also, for a given space, rectangular coils fully utilize the area for maximum 

mutual inductance and therefore the mutual coupling between them. 

Additionally, previous equation for mutual coupling calculation is only 

available for circular shape. For the square coils’ case [17], the equation is just 

the same as circular one with a coefficient added, which is not accurate and 

cannot be adapted to the rectangular case. Therefore, we propose a new 

method for calculating the mutual inductance between rectangular or square 

coils. 

 Due to the fact that the resistance of coil is very sensitive with respect to 

the thickness of copper, we should take into account of the skin effect. 

Therefore in HFSS simulation, we should tick the “solve inside” option for the 

copper. This will lead to a tediously long simulation time for the multi-turn 
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coupling coils, especially at low frequency range at several megahertz. 

Consequently, we should first model the coupling coils based on lumped 

component model and execute the optimization by Matlab codes, and then do 

the final tuning of the geometrical parameters of rectangular coils with HFSS. 

Finally, the lumped component modeling results and HFSS simulation results 

are compared with measurement for comparison. 

Chapter 3 proposes a differentially fed dual-band implantable antenna for 

the wireless neural recording application for the first time. The central 

frequencies are around 433.92 MHz and 542.4 MHz, which are both near the 

402 ~ 405 MHz MICS band. The transmitter connected before the antenna is a 

burst-mode injection-locked FSK transmitter. The capacitor bank in the LC 

oscillator of the transmitter sets the free-running frequency close to f0 of 542.4 

MHz or f1 of 433.92 MHz for data of ‘0’ or ‘1’. The benefit of the differential 

configuration for an implantable antenna is to facilitate its connection with 

transmitter with differential output, eliminating the loss introduced by baluns 

and matching circuits. 

In this chapter, the antenna is implanted into single skin tissue model and 

three-layer tissue model composed of skin, fat and muscle for comparison. 

The SAR distribution is evaluated, and the simulation result of differential 

reflection coefficient is compared with measurement result in skin-mimicking 

tissue with a composition of 56.18% sugar, 2.33% salt and 41.49% deionized 

water. Additionally, the link performance between the implanted antenna and 

external dual-band half-wavelength dipole is also presented, with the link 

budget analysis performed at last. Finally, in-vitro test of the communication 

link in minced pork with the circuits connected is presented. 

Chapter 4 proposes a differentially fed dual-band implantable antenna with 

biocompatible insulation operating at both 403 MHz MICS and 2.45GHz ISM 

band for the first time. Its planar form and flexible form are both explored. 

The bandwidths of both cases are much larger than the antenna presented in 

Chapter 3. 
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Dual-band capability can ensure the antenna’s application in system with 

two modes: sleep mode and wake-up mode. MICS band can be used for data 

communication and ISM band can be intended for wake-up signal, and the 

system will only consume power when being trigged by the wake-up signal. In 

this way, the lifetime of the implanted system can be extended. 

Both the planar and flexible antennas are covered with a biocompatible 

material parylene-C, which can protect the antenna from the conducting 

influence of the human tissue. Its flexible form can be intended for capsule 

antenna design in the future. 

The simulation is not only done in HFSS tissue models, but also performed 

in a CST male human model named Gustav with a size of 532.48 × 264.16 × 

1764 mm3. The planar form in Gustav shoulder and chest implantation and the 

flexible form in stomach implantation are evaluated. Additionally, the 

differential reflection coefficient of the flexible form is evaluated in capsule 

application with PEC cylinder representing the battery and circuits. Also the 

SAR distribution and radiation properties are given. Finally, the simulation 

results are compared with measurement results in minced pork. 

Chapter 5 evaluates the interference between coupling antennas and coils 

in one-layer skin tissue model for the first time. Previous studies only deal 

with power link and data link both composed of coupling coils operating at 

several or dozens of megahertz. 

For the protection from the conducting effect of human tissue, superstrate 

is added for both the implanted antenna and internal coil. From the presented 

simulation results, we found that the effect of antennas on the coupling coils is 

negligible. For the coils’ effect on coupling antennas, three methods can be 

adopted for minimization of the interference. Firstly, the external antenna 

should be placed far away from the implant. Secondly, the feeding ports of the 

implanted coil and of the implanted antenna should be located as far away 

from each other as possible. Finally, further frequency separation between 

power link and data link can be implemented. 
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6.2 Future Work 

We have addressed several issues in our work. However, there is still room 

for improvement or extension. And some future work can be performed in the 

following aspects. 

(1) For the wireless power transfer, the effect of lateral and angle 

misalignment on power transfer efficiency can be systematically investigated. 

Also, the optimization of power efficiency with multiple varying parameters 

would be extremely meaningful. 

(2) For wireless power transfer, higher operating frequency would ensure 

higher self inductance and mutual inductance. However, the resistance would 

also be increased, reducing the quality factor. Therefore, if a maximum size 

for the implanted coil has been given, the evaluation of optimum operating 

frequency for coupling coils would be extremely meaningful. 

(3) For data transfer realized by coupling antennas, high operating 

frequency makes the miniaturization of implanted antenna possible. However 

the tissue absorption of the electromagnetic propagation would be also larger. 

Considering the size constraint for the implantable antenna, the evaluation of 

optimum operating frequency for coupling antennas would also be of 

significant value.  

(4) For the reduction of interference of power link on the data link, we 

used separate frequencies for each of them. The effect of frequency separation 

on the mutual influence of power link and data link can be more thoroughly 

investigated. 

(5) Finally, for all experiments, both in-vitro and in-vivo tests should be 

performed to ensure the work’s reliability. 
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