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Summary

Event extraction is the extraction of event-related information of interest from text

documents. Most of the existing research work splits the event extraction task into

three subtasks: event identification, event classification and argument classification.

Markov logic networks (MLNs) have been used in bio-molecular event extraction

task to minimize the error propagation problem. This application shows limited

success. In this thesis, many more features are introduced to enhance the joint

inference capability. In addition, the previous study shows that event correlation

is useful for event extraction. Thus, we further investigate how to incorporate such

inter-sentential information into MLNs to make the information directly interfere

with sentence-level inference.

In this thesis, we will first explore extensively the state-of-the-art research of

event extraction. Then we will present our framework in MLNs to solve the event

extraction task as defined in the Automatic Content Extraction (ACE) Program.

Finally, we will demonstrate how to extend our framework from sentence level to

document level and how to incorporate document-level features, like event correlation

information, into our framework.

vi



We conducted extensive experiments on the ACE 2005 English corpus, to evaluate

the generic event extraction scenario. Experimental results show that our system

is both efficient and effective in extracting events from text documents. Our

framework could make use of the joint learning function provided by MLNs, thus

the error propagation problem which is severe and occurs frequently in pipeline

systems can be easily avoided. Finally, we have achieved statistically significant

improvement after incorporating event correlation information into our framework.
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Chapter 1

Introduction

Nowadays, a tremendous amount of text documents are generated on the Internet,

for instance those for news service, media, etc. Unfortunately, without the effort

of human beings, these text documents are quite difficult to interpret or analyse.

Although time-consuming, extracting critical information from large amount of

text sources is one of the key steps towards making better use of this information.

If we could automatically extract such information, we could dramatically reduce

the human labour and speed up the information extraction process.

In a nutshell, Information Extraction(IE) is a technique to extract structural

information from text documents. Generally speaking, IE can be divided into three

subtasks, namely entity recognition which identifies entities of interest such as

person, location and organization etc; relation extraction identifies the relationship

between entities; and event extraction which takes charge of retrieving elements

of certain events. In this thesis, we focus on the third task, event extraction, and
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particularly event extraction as defined in ACE for the experiment and level of

complexity, although the work applies to other event extraction tasks as well.

This chapter will be organized as follows: Section 1.1 will discuss the challenges

of this task and state the motivation of this thesis; Section 1.2 will concisely show

our contributions; and finally, Section 1.3 will present the outline of entire thesis.

1.1 Generic Event Extraction

Event extraction has been extensively researched for a long time. The early stage

of investigation into event extraction is a major task called Scenario Template (ST)

of the Message Understanding Conference (MUC). The MUC, which began in 1987

and ran until 1998, was sponsored by DARPA for the purpose of fostering research

on automatically analysing text information. Since then, many systems (Califf

(1998), Soderland (1999), Freitag and Kushmerick (2000), Ciravegna and others

(2001), Roth and Yih (2001), Chieu and Ng (2002) etc.) have been developed

to extract certain types of events from text documents. In 1999, the Automatic

Content Extraction (ACE) programme was developed as a replacement for the

MUC. The objective of ACE is to automatically process human language in text

from a variety of sources. Lots of research work (Grishman et al. (2005), Ji and

Grishman (2008), Liao and Grishman (2010a) etc.) have been dedicated to this

task.

In ST task, slots in a given template which is domain dependent will be filled by

extracting textual information from text documents. Research on event extraction
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has been more complicated than ST. Typically, event extraction is to detect events

with event type and corresponding arguments. An example would be as follows:

Ex 1-1 In 1927 Lisa married William Gresser, a New York lawyer and musicologist.

A successful event extraction attempt should recognize the event contained in

this sentence to be a Marry event with Lisa as the bride and William Gresser as

the bridegroom.

There are various applications in event extraction. Event extraction technique

can be a useful tool of Knowledge Base Population (KBP) (Ji et al. (2010)). Event

extraction technique can extract the relationship between entities and populate an

existing knowledge base, which is one of the goals of KBP. Event extraction can be

also applied in Question Answering(QA). Events of certain types, such as Marriage,

Be-Born, Attack, can be used to provide more accurate answers to 5W1H(Who,

What, Whom, When, Where and How) questions. Another application which

could benefit from event extraction is Text Summarization, which can make use

of concepts such as events to represent topics in text documents. Recently, event

extraction techniques have been provided in industry. Thomson Reuters, a company

providing financial news, launched a web service called Open Calais1 which can

recognize the entities, facts and events in the text.

Event extraction, though a useful task, is extremely challenging. The performances

of most of the existing approaches are often too low to be useful for some tasks.

Therefore, there are still a lot of issues to be investigated further.

One of the important factors of event extraction is the quality of event corpus.

1http://www.opencalais.com/
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Building a corpus with high quality is a time-consuming job. Moreover, the more

severe problem is that it is difficult for annotators to come to an agreement. Ji

and Grishman (2008) showed that the percentage of inter-annotator agreements on

event classification is only about 40% on the ACE 05 English corpus. Feng et al.

(2012) also showed similar statistical results on the ACE 05 Chinese corpus.

Most of the existing systems(Grishman et al. (2005), Ji and Grishman (2008),

Chieu and Ng (2002), Liao and Grishman (2010a)) divide event extraction task into

three or more subtasks: trigger identification, event type classification, argument

classification, etc. Each of these subtasks is so difficult that many approaches

(McClosky et al. (2011), Lu and Roth (2012) etc) which focus on only one subtask

have been proposed. Those systems which solve the whole task usually process

these subtasks in a pipeline way. However, the main issue of pipeline systems is

error propagation, which is more severe in event extraction. To be specific, errors

from previous stages could be propagated to the current stage, which is the key

factor in lowering the performance of a pipeline system.

Moreover, information within a sentence is sometimes not clear enough to detect

an event. For example, the sentence “He left the company” may contain a Transport

event or an End-Position event depending on the context. Liao and Grishman

(2010a) incorporates event correlation information to help extract events. However,

because these constraints involve events in the same document, it is often difficult

to incorporate such global constraints into a pipeline system. Therefore, we need

a framework that could be easily extended and enriched.

4



1.2 Our Contributions

In this thesis, we propose a unified framework on generic event extraction based on

MLNs. Our framework is capable of achieving much higher performance than

state-of-the-art sentence level systems. To summarize, we make the following

contributions:

• We propose a new unified MLN on generic event extraction. We did extensive

experiments to show the performance of our framework. Results show that

our framework outperforms the state-of-the-art sentence-level systems.

• Our framework can be easily extended and enriched. To show this, we encode

event correlation information into our system. Experimental result show that

this information improves the performance of generic event extraction.

1.3 Outline of This Thesis

The remainder of this thesis is organized as follows:

Chapter 2 reviews the existing related work. In this chapter, we provide a

comprehensive literature review about the different approaches to this task. Since

our work is based on MLNs and is inspired from biomedical event extraction, we also

give an introduction to MLNs and their application to biomedical event extraction.

Chapter 3 presents our framework on generic event extraction. We first implement

the initial framework which is inspired by Riedel (2008). Then we add some crucial

features to the initial framework to make our framework perform better.
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Chapter 4 describes our attempt to incorporate event correlation information

to our framework. This chapter gives a comprehensive trial to show that it is quite

easy to extend and enrich our framework.

Chapter 5 presents the experimental evaluation. We did extensive experiments

on the ACE 05 English corpus, which showed that our framework can improve the

performance of event extraction. In this chapter, we give a detailed discussion and

analysis of our experimental results.

Chapter 6 concludes our research presented in this thesis and provides several

possible future research directions.
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Chapter 2

Literature Review

Event extraction has been actively studied in recent years. Many approaches have

been developed to extract events from text documents.

This chapter will first review several existing approaches used in event extraction

systems. These approaches will be categorized into two categories, namely rule

induction approaches, and machine-learning-based approaches. We will then conduct

a detailed review of a novel branch of machine learning technique, i.e. Markov logic

networks (MLNs) used in bio-molecular event extraction.

2.1 Rule Induction approaches

Events can be captured by rules which can either be learnt from data or hand-

crafted by domain experts. To this end, many distinct rule learning algorithms

(Califf (1998), Soderland (1999), Freitag and Kushmerick (2000), Ciravegna and
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others (2001), Roth and Yih (2001)) have been proposed. Shallow features in

Natural Language Processing (NLP) and active learning methods are adopted by

some of these approaches and have been shown to be effective.

RAPIER(Califf (1998)) induced pattern-matched rules to extract fillers for the

slots when given a template. For this purpose, an inductive logic programming

technique was employed to learn rules for pre-fillers, fillers and post-fillers respectively.

Such technique is a compression-based search approach starting from specific to

general cases. First of all, the most specific rules for each slot in the template

are used for each training example. Then it iteratively compacts all the rules by

replacing these rules with more general ones and removing the old rules that are

subsumed by the new ones. As for features, RAPIER used tokens, part-of-speech

tags and semantic class information.

WHISK(Soderland (1999)) used an active learning method to learn template

rules which are in the form of regular expressions. This method repeatedly adds

new training instances which are almost missing during the training procedure.

Then it discards rules with errors on the new instance and generates new rules for

the slots which are not covered by the current rules. As for features, WHISK also

used tokens and semantic class information.

Boosted Wrapper Induction (BWI) (Freitag and Kushmerick (2000)) learned a

large number of simple rules and combined them using boosting. It learns rules

for start tags and end tags in separate models and then uses a histogram of field

lengths to estimate the probability of the length of a fragment. As for features,

BWI used the tokens, and lexical knowledge(obtained using gazetteers) such as

first names, last names etc.
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LP 2(Ciravegna and others (2001)), a rule based system, induced symbolic rules

for identifying start and end tags. Like BWI, it identifies start and end tags

separately. It also learns rules to correct tags labelled by certain rules. Like

RAPIER and BWI, LP 2 also used a bottom up search approach in its learning

algorithm. In addition to features like tokens and orthographic features such

as lowercase, captalizations etc, LP 2 used some shallow NLP features such as

morphology, part-of-speech tag and a gazetteer.

Systems based on rule induction approaches have a number of desirable properties.

Firstly, it is easy to read and understand the rules learnt by rule induction systems.

Thus the issues occurred in rule induction systems often can be solved by inspecting

the learnt rules. Moreover, a rule often has a natural first order version. Thus

techniques for learning first-order rules also can be readily used in rule induction.

The major problem with rule induction approaches is that the rule learning

algorithms often scale relatively poorly with the sample size, particularly on noisy

data. Another problem in rule induction learning systems is that it is difficult to

select a number of good seed instances to start the rule induction process. Much

research can be done towards this field.

2.2 Machine-Learning-Based Approaches

Machine learning techniques have been employed widely in many natural language

processing tasks. This section will review several approaches which are based on

supervised learning.
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Chieu and Ng (2002) used a maximum entropy model to do the template filling

task. Based on their model, they constructed a three-stage pipeline system. The

first stage is to identify whether a document contains events or not. If the document

contains at least one event, the entities in this document will be further classified

for each slot in the second stage. Note that in this stage, only relevant types of

entities are classified. For example, to fill in the corporate name slot, they would

only classify the organization entities. In the final stage, for each pair of entities, a

classifier will be used to identify whether these two entities are in the same event

or not. They used syntactic features provided by BADGER(Fisher et al. (1995))

and semantic class information as features of their model.

ELIE(Finn and Kushmerick (2004)) is a two tier template filling system. Like

Chieu and Ng (2002), ELIE treated the information extraction task as a kind of

classification problem whose goal is to classify each token into one of the classes

of start-slot, end-slot or none. ELIE used support vector machines to induce a set

of two-level classifiers. The purpose of the classifiers of the first level is to achieve

high precision, while that of the classifiers of the second level is to achieve high

recall.

Grishman(Grishman et al. (2005)) built a novel sentence-level baseline system

for the ACE 2005 event extraction task. Their approach combines the rule-based

approach and statistical learning approach. Rules are automatically learnt from the

training set and then applied to find the potential triggers and arguments, both

of which will be further classified by some statistical classifier. The features used

in this system were syntactic features such as part-of-speech tag, dependency and

semantic class information.
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Ahn (2006) developed a pipeline event extraction system on the ACE 2005

corpus, in which the event extraction task is divided into two stages: trigger

classification and argument classification. In the trigger classification stage, tokens

will be categorized into one of the 34 predefined classes(33 event types and one

none type). In the argument classification stage, entities will be characterized into

one of the 36 predefined classes(35 argument types and one none type) given the

classified triggers in the previous stage. The major difference between this and

Chieu and Ng (2002)’s work is that Ahn (2006) put additional efforts in identifying

triggers of certain events.

ACE event extraction confines the event mentions to within one sentence.

However utilizing only sentence-level information is not enough in some scenarios

because of the ambiguity of natural language. Consider, in an article, such a

sentence: Tom leaves the company. If what the article wants to express is that

Tom is no longer an employee of this company, then we can consider the event

contained in this sentence to be an End-Position event. However, if what the article

wants to express is that Tom departs from the company, then we can consider the

event contained in this sentence to be a Transport event. Researchers have tried

to utilize global features such as document level information, event correlation and

entity background information to obtain higher performance for event extraction.

Ji and Grishman (2008) proposed to incorporate global evidence from a cluster

of related documents to refine local decisions. They developed a system based

on the work of Grishman et al. (2005). In the testing procedure, in addition to

performing sentence level event extraction, they performed document-level event

extraction by using information retrieval technique to retrieve related documents

11



as a cluster given a potential trigger and arguments. To achieve consistency,

they adjusted the trigger and the arguments according to some predefined rules.

Basically, these rules remove the triggers and arguments with low confidence in

local sentence or cluster, and set the confidence of the trigger and arguments to

the higher one between local sentence and cluster. Compared with the work of

Grishman et al. (2005), the system performance is considerably increased by the

global information.

Liao and Grishman (2010a) presented an approach to add event correlation

information to boost the performance. The motivation of this idea is quite intuitive:

in articles, events are often correlated with each other. An Attack event for instance,

often leads to an Injure or Die event. Besides, the arguments are often correlated

as well, since they often have some relationship in their corresponding correlated

events. For example, the Target in an Attack event may be the Victim of an Injure

event. To incorporate event correlation information, the researchers developed a

two-phase system. The first phase is the same as what was done in Grishman et al.

(2005). Then two argument level classifiers are trained in the second phase: trigger

classifier and argument classifier. The former is to retag the low confidence triggers

filtered out from the first phase. And the latter classifier is to retag entities with

low confidence in the same sentence of the tagged triggers.

Hong et al. (2011) claimed that the background information of the entity could

provide useful information to help extract events. Statistical results show that

entities having the same background often participate in similar events as one

same role. To collect background information about the entities, a search engine

is used to query each entity and related documents are collected to determine the
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entity’s background. However, this approach is not good enough for practical use,

since the result sets of the search engine query may change and we do not know

whether the query result is semantically related to the entity or not.

McClosky et al. (2011) presented an interesting event extraction approach by

using dependency parsing. In the training process, they converted the triggers and

arguments of events into dependency trees and generated a reranking dependency

parser. In the testing process, they first recognized the triggers in the sentence,

and then used the trained dependency parser to parse the sentence into an event

structure with the argument type as the label of the edge from trigger to entity.

Instead of outputting the best dependency tree, they output top-n dependency

trees and used a reranker to rerank the trees to get the best event structures.

Liao and Grishman (2011a) acquired topic information to help event extraction.

They proposed that events are often related to specific topics. For example, a

document whose topic is war is more likely to contain Attack or Injure events.

They compared an unsupervised topic model with a multi-label supervised topic

model. Results show that the unsupervised approach performs better.

Other methods such as active learning(Liao and Grishman (2011b)) and boostrapping

(Liao and Grishman (2010b), Huang and Riloff (2012)) which are widely used in

other related tasks in the NLP domain, were also tested in event extraction task.

Supervised approaches for event extraction can take advantage of state-of-the-

art machine learning techniques, since adding features to a supervised model is

more straight-forward.

Event extraction is a challenging task and unsupervised methods are much

13



more challenging than supervised methods. Despite the challenges, the benefits

of unsupervised methods are more attractive. For instance, unsupervised methods

avoid the situation where substantial human efforts are needed to annotate the

training instances required in the supervised methods. As we know, human annotations

can be very expensive and sometimes impractical. Even if annotators are available,

getting annotators to agree with each other is often a difficult task. Worse still,

annotations often can not be reused: experimenting on a different domain or dataset

typically requires annotating new training instances for that particular domain or

dataset.

Lu and Roth (2012) performed event extraction by using semi-Markov conditional

random fields. Their work identifies event arguments, assuming that the correct

event type is given. Besides the supervised approach, they also investigated an

unsupervised approach by incorporating predefined patterns into their model to do

event extraction. Six patterns were predefined for matching arguments. The model

prefers an argument set that well matches to the patterns. The key step for this

approach is to define patterns as accurately as possible, and thus domain experts

are needed. The researchers show that the unsupervised approach almost catches

up with the supervised approach in some specific event types.

In summary, machine-learning-based approaches have been widely used in the

event extraction task. Most of these systems are sentence level systems which

take a sentence as input. A wider scope of features such as topics of documents,

event correlation, entity correlation etc., is used to enhance the performance. The

event extraction task is often split into subtasks like event identification, event

classification and argument classification and solves these subtasks in a pipeline
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way. Though unsupervised learning for the event extraction task is more attractive,

its performance is much lower than that of supervised learning. Furthermore, event

extraction only extracts specific types of events, and thus supervised learning is

more effective.

2.3 Bio-molecular Event Extraction via Markov

Logic Networks

This section conducts a detailed review of the Markov logic networks and its

application in bio-molecular event extraction.

2.3.1 Markov Logic Networks

Markov logic networks (MLNs) (Richardson and Domingos (2006)) combine markov

networks and first order logic. An MLN L consists of a set of weighted first-order

logic formulas {(φi, wi)}, where φi is a first order logic formula and wi is the weight

of the formula. When binding the free variables in the formulas by constants,

it defines a markov network with one node per ground atom and one feature per

ground formula. The weight of the feature is the weight of the corresponding ground

formula. Then we can define a distribution over sets of ground atoms or so-called

possible worlds. The probability of a possible world y is defined as follows:

p(y) =
1

Z
exp

 ∑
(φi,wi)∈L

wi
∑
c∈Cφi

fφic (y)

 (2.1)
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Here c is one possible binding of the free variables to constants in φi and Cφi is

the set of all possible bindings of the free variables in φi. f
φi
c is a ground formula

representing a binary feature function. It will return 1 if the ground formula we

get by replacing the free variables in φi with the constants in c is true, and 0

otherwise. Z is a normalization constant. The above distribution corresponds to a

markov network whose nodes represent ground atoms and factors represent ground

formulas.

As in first-order logic, each formula is constructed from predicates using logical

connectives and quantifiers. Take the following formula as an example:

(φi, wi) : word(a, b)⇒ event(a) (2.2)

The above formula indicates that if token a is word b, then token a is an event.

As stated before, formula 2.2 cannot be violated in first-order logic, while it can be

violated with some probability in MLNs. Here a and b are free variables which can

be replaced by constants, and word and event are evidence predicate and hidden

predicate respectively. Evidence predicates are those whose values can be known

from given observations, while hidden predicates are the target predicates whose

values need to be predicted. From this example, we can see that word is an evidence

predicate because we can check whether token a is word b or not. Event is hidden

predicate since this is something we would like to predict.

This thesis uses the inference and learning algorithms provided in the open

source thebeast1 package. In particular, we employed the maximum a posteriori

(MAP) inference and the 1-best Margin Infused Relaxed Algorithm (MIRA) (Crammer

1https://code.google.com/p/thebeast/
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and Singer (2003)) online learning method.

Given an MLN L and a set of observed grounding atoms x, a set of hidden

ground atoms ŷ with maximum a posteriori probability is to be inferred

ŷ = arg max
y

p(y|x) = arg max
y

s(y,x)

where

s(y,x) =
∑

(φi,wi)∈L

wi
∑
c∈Cφi

fφic (y,x)

can be considered as the score that evaluates the goodness of solution (y,x). The

MAP inference in thebeast package is implemented by Integer Linear Programming(ILP).

A detailed introduction to transforming the MAP inference to an ILP problem can

be found in Riedel (2008).

For weight learning, the online learning method 1-best MIRA learns the weights

which separate the gold solution from all the wrong solutions with a large margin.

This can be achieved by solving the quadratic program as follows:

min ||wt −wt−1||

s.t. s(yi,xi)− s(y′,xi) ≥ L(yi,y
′)

∀(xi,yi) ∈ D and y′ = arg max
y

s(y,xi|wt−1)

Here D is the training instances and t is the number of iterations, s(y,x|w) is the

score of solution (y,x) given a weight w. We try to find a new weight wt which

can guarantee that the difference between the gold solution (yi,xi) and the best

solution (y′,xi) is at least as big as the loss L(yi,y
′), while changing the old weight
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wt−1 as little as possible. The loss function L(yt,y
′) is the number of false positive

and false negative ground atoms for all hidden atoms.

2.3.2 Bio-molecular Event Extraction using MLNs

MLNs have been successfully applied to bio-molecular event extraction. Here we

will review an approach which uses MLNs to do bio-molecular event extraction.

Bio-molecular event extraction is the main concern of the BioNLP 09 Shared

Task. This task focuses on the extraction of bio-molecular events, particularly on

proteins. There are 9 types of bio-events to be extracted. The core task involves

event trigger and primary argument. One of the major differences between ACE

events and bio-molecular events is that the arguments of bio-molecular events could

be events, while arguments are only limited to entities, values and time expressions

in ACE events.

Riedel (2008) first used MLNs to extract bio-molecular events. Their system

achieved 4th place on the core task in the competition, but still lagged about 8%

behind the 1st place system. They designed a hidden predicate for each target, such

as trigger identification, trigger classification etc, and found some global constraints

to help joint inference. With the help of MLNs, they could bypass the need to

design and implement specific inference and training methods. As we will see later

in Chapter 3 and Chapter 5, a new MLN which is inspired by Riedel (2008) will

be proposed and proved to have a good performance on generic event extraction2

2Though Poon and Vanderwende (2010), which also is an MLN framework to extract bio-
molecular events, outperformed Riedel (2008) about 5% in F-Score, they defined some context
specific formulas. The framework presented in Riedel (2008) is more general so we believed that
it is a good point to start from.
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Chapter 3

Generic Event Extraction

Framework via MLNs

In this chapter, a unified event extraction framework is presented to resolve generic

event extraction. This framework is based on Markov logic networks (MLNs),

which have been introduced in Chapter 2.

This chapter is organized into three major sections. We start with the problem

description and the definitions of predicates in Sections 3.1 and 3.2. Then we

introduce a base MLN framework, which is inspired from bio-molecular event

extraction, in Section 3.3. Finally, we present a full MLN framework for generic

event extraction in Section 3.4.
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3.1 Problem Statement

Ideally, given a text document, an event extraction system should identify all the

event mentions in the document with their corresponding types and arguments,

if they have any. To be specific, we take a sentence and corresponding entity

information as inputs. Then the goals are:

• Event identification: identify triggers within the input sentence if it has any.

• Event classification: assign an event type with the trigger identified.

• Argument classification: for each event, assign an argument type for each

entity in the sentence if the entity is an argument for the event.

With results of the three goals, we can output events and their arguments from

the input sentence. Take the following sentence as an example:

Ex 3-1 In the West Bank, an eight-year-old Palestinian boy as well as his brother

and sister were wounded late Wednesday by Israeli gunfire in a village north of

the town of Ramallah.

In the above sentence, we can extract out an Attack event as shown in Table

3.1.

3.2 Predicates

Before discussing the framework, some predicates must first be defined, because

these predicates are the foundation of complex features which can be expressed in
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Trigger gunfire

Argument Type Value
Attacker Israeli
Target an eight-year-old Palestinian boy
Target his brother
Target sister
Place a village north of the town of Ramallah
Time late Wednesday

Table 3.1: An Event Example

the form of first order logic formulas.

3.2.1 Hidden Predicates

Hidden predicates are predicates whose truth values are to be predicted in our

framework. They are similar to the labels to be predicted in other discriminative

models like support vector machines.

We define three hidden predicates corresponding to the goals mentioned in

Section 3.1: event(tid) for event identification; eventtype(tid, e) for event classification;

argument(tid, eid, r) for argument classification. Table 3.2 shows descriptions of

the above hidden predicates.
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Predicate Description

event(tid) The token whose index is tid triggers an event.

eventtype(tid, e)
The token whose index is tid triggers an event

whose type is e.

argument(tid, eid, r)

The entity whose identifier is eid is an argument

of type r for the event triggered by the token

whose index is tid.

Table 3.2: Hidden Predicates

Recall that most of the event extraction systems are pipeline systems where

triggers will be identified first, then event types will be classified, and finally positive

events will be assigned with arguments. In MLNs, however, we can accomplish

these three goals simultaneously. As discussed before, in a pipeline system, the

major problem is error propagation. The errors that occur in the previous stages

cannot be corrected in the current stage. In event extraction systems, this problem

is much more critical, since the performance of each stage is not high. However,

in MLNs, the objectives can be solved simultaneously. In addition, with the global

constraints, the final results of these three objectives would be in a consistent state.

Thus, we could avoid error propagation in our framework.

3.2.2 Evidence Predicates

Evidence predicates, as fundamental features, provide information which can be

observed before inference. Therefore, evidence predicates are used in the condition
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part of formulas.

Predicate Description

word(tid, w) The token tid is word w.

lemma(tid, s) The lemma of token tid is s.

pos(tid, p) The part-of-speech tag of the token tid is p.

dep(i, j, d)
The token i is head of the token j with dependency d

according to Stanford Dependency Parser.

path(i, j, p) Labelled dependency path p between token i and token j.

pathnl(i, j, p) Unlabelled dependency path p between token i and token j.

entity(eid, hid, s, e, n)
Entity eid, which starts from token s and ends at token e,

has type n and its head word is token hid.

dict(tid, e, prec)
Token tid triggers an event whose type is e with prior

estimate prec in training data.

allowed(e, n, r) Entity n is allowed to play argument r in event e.

Table 3.3: Evidence Predicates

The evidence predicates used here are listed in Table 3.3. The word, lemma

and pos predicates deliver syntactic information of tokens. Since the argument

predicate is to predict the relationship between an entity and a token, we need dep,

path and pathnl predicates to relate tokens with relation information. Figure 3.1

shows an example explaining what the path and pathnl predicates mean. We use

the Stanford Parser (De Marneffe et al. (2006)) to generate dependencies for the

sentence shown in Figure 3.1. The dependency path between the token “Center”

and the token “deaths” is a path starting from token “Center”, going through
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token “recorded” and ending at token “deaths”. So the labelled dependency path is

path(4, 7, “nsubj←dobj→”), and the dependency path without labels is pathnl(4,

7, “←→”). Here the arrows represent the direction of the dependency edge.

Figure 3.1: An Example to Illustrate path and pathnl Predicates

Furthermore, information about entities within the input sentence is necessary,

since entities will play as arguments in events. Here the entity predicate represents

an entity. The head word of an entity is the token with maximum height within

the span of the entity. For example, “The Davao Medical Center” is an entity in

the sentence shown in Figure 3.1. The head word of this entity is token “Center”.

Moreover, since the head word cannot represent an entity, we use an identifier to

represent an entity.

We also define a predicate named dict to collect all the triggers with their

corresponding event types in the training data. The prec term provides the prior

estimate of how likely it is to trigger a corresponding event. We calculate the prec

term for predicate dict(i, e, prec) as follows:

prec = exp

(
Ne

Ni

× Ne

Nie

)
= exp

(
N2
e

Ni ·Nie

)
(3.1)

where Ne is the number of events of type e that are triggered by token i in the

training data; Ni is the number of occurrences of token i; and Nie is the number of

events of all types that are triggered by token i.
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Each argument type only allows a specific set of entities to fill in. For instance,

only an entity whose type is Person could be a Victim argument for an Injure

event. In order not to assign an entity with an impossible argument type for an

event, we define the allowed predicate.

3.3 A Base MLN

In this section, we will present a base MLN for generic event extraction, which

is inspired by Riedel (2008). To be specific, we will describe formulas for event,

eventtype and argument respectively.

3.3.1 Local Formulas for Event Predicate

A formula is local if it relates any number of evidence predicates to exactly one

hidden predicate.

First of all, we add formula 3.2. The weight of this formula indicates how likely

a token is to be an event trigger, which is called a bias feature.

event(i) (3.2)

Note that the term i in formula 3.2 is a free variable, it can be bound by the

constants of its domain. Given a sentence, all the indices of the tokens in the

sentence can be assigned to the term i.

25



Then a set of formulas which are so called “bag-of-words” features is added:

P (i,+t)⇒ event(i) (3.3)

where P ∈ {word, lemma, pos}. Note that the “+” notation means that for each

possible combination of constants whose corresponding variables are with prefix

“+” there is a separate weight for the corresponding formula. So a formula with

variables preceding “+” will generate many formulas by replacing those variables

preceding “+” with constants. For example, when P is the word predicate, and

there are two constants {“go”, “home”} of word, then the following formulas will

be generated:

word(i, “go”)⇒ event(i) (3.4)

word(i, “home”)⇒ event(i) (3.5)

A higher weight indicates that the word will trigger an event with the higher

probability. Thus, the weight associated with formula 3.4 will be higher than

that associated with formula 3.5. This is because the word “go” often indicates an

Transport event, while the word “home” does not trigger any event.

Next, we add the following formula

dep(h, i, d) ∧ word(h,+w)⇒ event(i) (3.6)

The operator ∧ in formula 3.6 is the logical AND operator. The term h is the index

of a token in the sentence and the term d is the dependency label between token
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i and token h. The above formula captures context information around a trigger.

For example, if the word “go” has a dependency with the word “home”, then it is

very likely that the word “go” is a trigger.

The above formulas were inspired by MLNs for bio-molecular event extraction

(BioMLN). As the experimental results will show, BioMLN is not capable of doing

well in generic event extraction. As a result, we have to add more formulas which

are more suitable for generic event extraction.

A dictionary is helpful in providing domain information, and therefore we collect

the triggers and their corresponding events in the training data as a dictionary. To

facilitate this information, we add the following formulas:

dict(i, e, prec) ∧ P (i,+t)⇒ event(i) (3.7)

where P ∈ {word, lemma, pos}. The dict predicate in these formulas can narrow

the scope of the formula, so the weight will be more accurate. These formulas will

capture information about how likely it is that the token will trigger an event in

the testing data if the token triggers an event in the training data. The term prec

in dict predicate here will multiply the weight of each constant corresponding to

term t in P predicate. With this form, we can incorporate probabilities and other

numeric quantities like prior estimate in a principled fashion.

In English, phrases are often used to express an action or describe an event.

For example, “go home” often indicates a Transport event. This feature is often

referred to as a n-gram feature in many NLP tasks. Here we add one formula to
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capture the bigram feature.

lemma(i,+t1) ∧ lemma(i+ 1,+t2)⇒ event(i) (3.8)

Trigram is not necessary since it is very sparse and does not make much sense. We

only use the lemma predicate here, since we want to ignore the tense of the phrase.

Finally, a formula which is similar to formula 3.2 is added:

dict(i,+e, prec)⇒ event(i) (3.9)

For each token in the dictionary, the probability of triggering an event is different.

The above formula estimates how likely a token which is in the dictionary is to be

a trigger given that it will trigger an event e with a prior estimation prec.

3.3.2 Local Formulas for Eventtype Predicate

First of all, we reuse all the aforementioned formulas that are applied to event by

only replacing the event predicate with eventtype, as shown in Table 3.4. Recall

that the first three formulas were all inspired by BioMLN. Besides, we also propose

three new formulas specially designed for event identification, as shown in the last

three rows of Table 3.4.
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eventtype(i,+e)

P (i,+t)⇒ eventtype(i,+e) where P ∈ {word, lemma, pos}

dep(h, i, d) ∧ word(h,+w)⇒ eventtype(i,+e)

dict(i,+e, prec) ∧ P (i,+t)⇒ eventtype(i, e) where P ∈ {word, lemma, pos}

lemma(i,+t1) ∧ lemma(i+ 1,+t2)⇒ eventtype(i,+e)

dict(i,+e, prec)⇒ eventtype(i, e)

Table 3.4: Part of Local Formulas for Eventtype Predicate

Event classification has to predict each token into one of the predefined types

(including a type corresponding to “not an event”), which is much more complicated

than event identification. Thus, we have to add more features for the eventtype

predicate.

Some types of events were found to be correlated with some kinds of entities. For

instance, a sentence containing an entity whose type is “Exploding” often contains

an “Attack” event. The following formula expresses this situation:

dict(i,+e, prec) ∧ entity(id, h, a, b,+n)⇒ eventtype(i, e) (3.10)

dict(i,+e, prec) ∧ entity(id, h, a, b,+n) ∧ lemma(i,+s)⇒ eventtype(i, e) (3.11)

Formula 3.11 captures the feature that each trigger may have a specific pattern in

combining different entity types for different events.

The dependency relation between the trigger and the entity will help a lot

in classifying event type. For instance, in the sentence “He was killed”, the
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dependency relation between the word “He” and the word “killed” is “nsubpass”,

which means that the word “He” is the passive subject of the word “killed”.

This information will increase the probability of correctly identifying “killed” as

an Attack event. Thus the following formula was added:

dep(h, i,+d) ∧ entity(id, h, a, b,+n)⇒ eventtype(i,+e) (3.12)

Finally we add a formula to generate bias for dependencies.

dep(i, h,+d)⇒ eventtype(i, e) (3.13)

3.3.3 Local Formulas for Argument Predicate

While the event predicate and the eventtype predicate are tagged for each token,

the argument predicate is link prediction, which is to predict the label for the

relationship between a token and an entity. We add four categories of local formulas

for the argument predicate.

The first category of formulas is about lexical and syntactic features. We relate

dependency features (dep, path, pathnl) with other features like word, lemma and

entity. Dependency features define the relationship between two tokens, which is

helpful for predicting the label of argument predicate. Note that only the first two

formulas come from BioMLN.
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P (i, j,+p) ∧ entity(k, j, a, b, e)⇒ argument(i, k,+r) where P ∈ {dep, path, pathnl}

P (i, j,+p) ∧ T (i,+t) ∧ entity(k, j, a, b, e)⇒ argument(i, k,+r)

where P ∈ {dep, path, pathnl} and T ∈ {word, lemma, pos}

dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧ dep(i, h,+d) ∧ P (i,+s)⇒ argument(i, id,+r)

where P ∈ {word, lemma, pos}

dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧ path(i, h,+p) ∧ P (i,+s)⇒ argument(i, id,+r)

where P ∈ {word, lemma, pos}

dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧ pathnl(i, h,+p) ∧ P (i,+s)⇒ argument(i, id,+r)

where P ∈ {word, lemma, pos}

dict(i, e, prec) ∧ entity(id, h, a, b,+n) ∧ P (i, h,+p)⇒ argument(i, id,+r)

where P ∈ {dep, path, pathnl}

entity(id, h, a, b, n) ∧ dep(i, h,+d)⇒ argument(i, id,+r)

entity(id, h, a, b,+n) ∧ P (i, h,+p)⇒ argument(i, id,+r)

where P ∈ {dep, path, pathnl}

dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧ dep(i, h,+d)⇒ argument(i, id,+r)

Table 3.5: Lexical and Syntactic Features

The next category of formulas to be added is distance and position features.

Note that distance(h-i) in the formulas is a function which will return the difference

between h and i as an integer. The first formula captures that the word before

an entity often leaks some information about what type of argument it will be.

For example, the phrase at home often indicates that the entity home will be an

argument whose type is Place. The remaining formulas of this category incorporate

the distance information of entities. Usually, there are some patterns for distance

between a trigger and an entity. For example, in “John married Lily”, the entity

following married is usually an argument of the Marry event.
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dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧ P (h− 1,+t)⇒ argument(i, id,+r)

where P ∈ {word, lemma, pos}

dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧+distance(a− i)⇒ argument(i, id, r)

dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧ word(i,+w) ∧+distance(a− i)

⇒ argument(i, id,+r) where P ∈ {word, lemma}

dict(i, e, prec) ∧ entity(id, h, a, b,+n) ∧+distance(a− i)⇒ argument(i, id,+r)

Table 3.6: Position and Distance Features

For the third category, we also add formulas to capture bias for each observed

predicate in Table 3.7. These formulas will serve as the prior estimation for the

various predicates. Note that only the first formula comes from BioMLN.

argument(i, k,+r)

dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧ P (i,+t)⇒ argument(i, id, r), where P ∈ {word, lemma, pos}

dict(i, e, prec) ∧ entity(id, h, a, b,+n)⇒ argument(i, id, r)

dict(i,+e, prec) ∧ entity(id, h, a, b, n)⇒ argument(i, id, r)

dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧ P (i, h,+t)⇒ argument(i, id, r), where P ∈ {dep, path, pathnl}

Table 3.7: Bias Features

The last category of formulas is to investigate the help of word correlation,

event and argument correlation etc features. The first formula in Table 3.8 tries to

capture the pattern between the potential trigger and the word preceding the head

word of the entity. Entity correlation information may be helpful in predicting

argument type. For example, in the ACE event extraction task, entities such as

Exploding and Shooting often correlate to Attack events. Thus, we add the second

and the third formulas. Finally, different events usually contain different kinds of

arguments, and the last formula will learn this pattern.
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dict(i, e, prec) ∧ entity(id, h, a, b, n) ∧ lemma(i,+w1) ∧ lemma(h− 1,+w2)⇒ argument(i, id,+r)

dict(i, e, prec) ∧ entity(id1, h1, a1, b1,+n1) ∧ entity(id2, h2, a2, b2,+n2) ∧ id1 6= id2⇒ argument(i, id,+r)

dict(i, e, prec) ∧ entity(id, h, a, b,+n)⇒ argument(i, id,+r)

dict(i,+e, prec) ∧ entity(id, h, a, b, n)⇒ argument(i, id,+r)

Table 3.8: Misc Features

3.4 A Full MLN

In this section, a full MLN is described. Our full MLN includes a set of global

formulas in additional to all the formulas described in the base MLN.

A formula is global if it involves more than two hidden predicates. There are

two kinds of global formulas. One is hard global formulas whose weight is infinite,

the other is soft global formulas whose weight can be learned. The hard global

formulas is a hard constraint that cannot be violated. In this full MLN, a set of

hard global formulas is added to increase the performance of all the three goals

described in Section 3.1.

Global formulas play a key role in implementing joint learning. In the base

MLN, because all the local formulas only involve one hidden predicate, the solutions

to the three goals are independent. Therefore, there may be inconsistent solutions.

For example, event(i) is true for a token whose index is i, but eventtype(i, e) is

false for every event types. Since global formulas relate to more than two hidden

predicates, when one hidden predicate is predicted confidently, it will propagate

the confidence to the other hidden predicate in the same global formula. So in this

full MLN, the solutions to the three goals are consistent.
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The global formulas are shown in Table 3.9. The first six formulas were inspired

by BioMLN.

Formula Description

event(i)⇒ ∃e s.t. eventtype(i, e) If token i is a trigger, then it must has an event type.

eventtype(i, e)⇒ event(i) If token i triggers an event, then it must be a trigger.

argument(i, id, r)⇒ event(i) If token i has a argument, then it must be a trigger.

eventtype(i, e1) ∧ e1 6= e2⇒ ¬eventtype(i, e2) Only one event type can a token trigger.

argument(i, id, r1) ∧ r1 6= r2⇒ ¬argument(i, id, r2) An entity can only play one argument for an event.

eventtype(i, e) ∧ entity(id, h, a, b, n) ∧ ¬allowed(e, n, r) The argument an entity plays should be allowed

⇒ ¬argument(i, id, r) according to guideline.

entity(id, h, a, b, n)⇒ ¬event(h) The head word of an entity should not be a trigger.

entity(id1, h1, a1, b1, n1) ∧ entity(id2, h2, a2, b2, n2) If the head words of two entities are connected with

∧dep(hid1, hid2, “conj”) ∧ argument(tid, hid1, r1) “conj” dependency, and one of them is an argument

⇒ argument(tid, hid2, r2) of an event, then the other one is also an argument

of the event.

Table 3.9: Global Formulas

All the global formulas are hard constraints, which means that they cannot be

violated. The first four formulas tell us that we can only assign one event type for

a potential trigger. Note that we don’t have the constraint that every event should

have at least an argument, since there are events without any argument. The next

two formulas restrict the number of roles each entity can play for an event to be one,

and the argument that the entity playing should be allowed, for example, Person

entity can not be argument Place for an Attack event. By inspecting the training

corpora, we find that if two entities are connected by “conj ” dependency, which

occurs when they are connected by conjunction such as “and” and “or”, then the

two entities often play the same argument for an event. Thus, we added the last

formula to capture this pattern.
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Chapter 4

Encoding Event Correlation for

Event Extraction

One of the advantages of Markov logic networks (MLNs) is its expressiveness.

Because of this, we can easily extend our sentence level framework to document

level. This chapter shows how to extend our framework to document level and

incorporate event correlation information into it.

4.1 Motivation

Liao and Grishman (2010a) proposed using cross event information to improve

the performance of event extraction. Roughly speaking, cross event information

consists of event correlation information and argument correlation information.

Here is an example for event correlation: events like Attack often lead to Injure or
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Die events. Figure 4.1 shows the co-occurrence frequency of Injure, Attack and Die

with the 33 event types(including itself) in the ACE 05 English corpus. We can see

that only a few events such as Injure, Attack, Meet, Die and Transport that have

frequently occurred together with the Attack event. For the argument correlation,

here is an example: the Target of an Attack event in the same document probably

be the Victim of the Injure event.

Figure 4.1: Co-occurrence of a certain event type with the 33 ACE event types
(Here only Injure, Attack, Die are involved as examples)

Here we show an example1 of how event correlation could help event classification.

Ex 4-1 British Chancellor of the Exchequer Gordon Brown on Tuesday named

the current head of the country’s energy regulator as the new chairman ...

Former senior banker Callum McCarthy begins what is one of the most important

jobs ... when incumbent Howard Davies steps down. Davies is leaving to

become chairman ... As well as previously holding senior positions at ...

McCarthy was formerly a top civil servant at the Department of Trade and

1in the ACE 05 English corpus whose file index is AFP ENG 20030401.0476
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Industry ...

In Ex 4-1, our sentence level system can find events like Nominate event (triggered

by “named”), End-Position events (triggered by “Former”, “steps”, “formerly”),

and Start-Position events (triggered by “begins”, “become”). The triggers of these

events are easier to detect because they have more specific meanings. Though

“steps” has multiple meanings, which is more difficult to identify, the phrase “steps

down” makes it easier to be identified. The trigger “leaving” also triggers an End-

Position event, but our system cannot correctly tag it. This is because “leaving”

does not always trigger End-Position event in training corpora. If we just look

at the sentence, we may tag it as a Transport event since local context does not

provide enough information. With event correlation information, we can tag it as

End-Position event since most of the events in this document are End-Position and

Start-Position events.

As mentioned in Chapter 2, Liao and Grishman (2010a) presented a system

with two stages to facilitate cross event information. They first used a baseline

system to extract events. Then the events with high confidence would be the input

of the second phase to infer correlated events.

Though Liao and Grishman (2010a) has proposed a system using cross event

information, their system has some drawbacks. Firstly, error propagation problem

is severe in their system. This is because that the F-score of event classification is

not high enough. Secondly, they donot evaluate events without arguments.

One of advantages of MLNs is joint learning. With joint learning, error propagation

can be avoided. Thus, it is natural to implement cross event in MLNs. As we will see
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later, the complexity of MLNs will increase exponentially when adding soft global

formulas. For simplicity, in this thesis, we encode part of cross event information

into our MLN. To be specific, event correlation information is encoded in our MLN,

while the argument correlation information is to be handled in the future work.

4.2 Event Correlation Information In MLN

Chapter 3 presented a sentence-level framework. In this framework, it is difficult

to incorporate document level information such as event correlation. Since this

information involves events in other sentences, when we are processing one sentence,

we can not facilitate information from other sentences. In order to use this kind of

information, we extend our framework to document level.

In the sentence-level framework, each sentence is treated as an instance, while

in the document-level framework in this chapter, each document is treated as an

instance. For each predicate except allowed predicate, we add a term sid. For

instance, we change word(i, w) into word(sid, i, w). In this way, we are able

to make use of the information of other sentences when we predict the current

sentence.

Basically, the cross event information is about the correlation between every

pair of events. MLNs are good at modelling relationship features which can easily

incorporate the cross-event idea. We can just add one simple formula to implement

this idea:
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eventtype(sid1, tid1,+e1) ∧ eventtype(sid2, tid2,+e2) (4.1)

This formula means that we would like to learn different weights for different pairs

of events.

Figure 4.2: Co-occurrence of a certain event type with the 33 ACE event types
within next sentence (Here only Injure, Attack, Die are involved as examples)

However, if we immediately use the above version of the formula, the problem

space is too large to solve. This is because that for each combination of a token pair

and a event type pair, there is one grounding formula corresponding to formula 4.1.

When this formula is applied to the whole document, there would be n2e2 grounding

formulas, where n is the number of tokens in the document and e is the number

of event types we would like to predict. Therefore, formula 4.1 will increase the

space complexity and time complexity. One way to reduce the problem space is

to narrow the context. Here we assume that two consecutive sentences are in the

same context. Thus, the number of grounding formulas would be l2e2, where l is
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the number of tokens in the two consecutive sentences. Since l is much smaller than

n, the grounding formulas will be reduced a lot. Therefore, the problem space will

be much smaller than before. Figure 4.2 shows that the correlations between events

still exist under this condition. When this figure is compared with Figure 4.1, we

can see that some weak correlations are filtered. After filtering weak correlations,

the weights of event pairs which are really correlated will be more accurate. Thus,

we refine the formula in the following way:

eventtype(sid, tid1,+e1) ∧ eventtype(sid, tid2,+e2) (4.2)

eventtype(sid, tid1,+e1) ∧ eventtype(sid+ 1, tid2,+e2) (4.3)

In the above formulas, we try to learn the relationship between every pair of

events in two consecutive sentences.
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Chapter 5

Experimental Evaluation

This chapter evaluates the performance of our framework and shows the experimental

results. An extensive experimental study is conducted to show the performance

of our framework. Our framework is evaluated on the ACE 05 English corpus,

a comprehensive description of which will be presented first. Following this, the

experimental setup is described. Finally the experimental results and discussion are

presented. The results show that our framework outperforms the state-of-the-art

sentence level system.

5.1 ACE Event Extraction Task Description

In this thesis, all of the experiments are reported on the ACE 05 English corpus.

Thus, we will describe the ACE event extraction task in this section.
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5.1.1 ACE Terminology

First of all, we will describe some basic terminologies related to the ACE Extraction

Task to facilitate our understanding of the ACE event extraction task.

Entity An ACE entity is an object or a set of objects in one of the semantic

categories of interest. An entity may have more than one entity mentions.

ACE 05 entities have three attributes: type, subtype, and class. For the event

extraction task, we only use the subtype attribute. The types and subtypes

are listed in Table 5.1.

Type Subtypes

FAC (Facility)
Airport, Building-Grounds, Path, Plant,

Subarea-Facility

GPE Continent, County-or-District, GPE-Cluster, Nation,

(Geo-Political Entity) Population-Center, Special, State-or-Province

LOC (Location)
Address, Boundary, Celestial, Land-Region-Natural,

Region-General, Region-International, Water-Body

ORG (Organization)

Commercial, Educational, Entertainment, Government,

Media, Medical-Science, Non-Governmental, Religious,

Sports

PER (Person) Group, Indeterminate, Individual

VEH (Vehicle) Air, Land, Subarea-Vehicle, Underspecified, Water

WEA (Weapon)
Biological, Blunt, Chemical, Exploding, Nuclear,

Projectile, Sharp, Shooting, Underspecified

Table 5.1: ACE 05 Entity Types and Subtypes
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Entity Mention An entity mention is the extent of text that refers to an entity. In

ACE annotation, a reference such as a pronoun to an entity is also annotated

as an entity mention.

Value An ACE value is a quantity which has semantic meaning of interest. There

are 5 types of values in ACE 05: Contact-Info, Numeric, Crime, Job-Title,

Sentence. The Contact-Info class can be further divided into E-Mail, Phone-

Number and URL subtypes. Also, the Numeric class has two subtypes:

Money and Percent. The other 3 types of values do not have subtypes. A

value could be an argument of an event.

Value Mention A value mention is the extent of text that refers to a value.

Timex2 An ACE Timex2 is a time expression. A Timex2 can also be an argument

of an event.

Timex2 Mention the extent of text that refers to a Timex2.

Event An event indicates that a state change incidence occurs. An ACE event is

a structural record which contains one trigger and zero or more arguments.

The arguments could be entities, values and time expressions. An ACE event

often contains one or more event mentions. Table 5.2 shows the ACE 05 event

types and subtypes. Besides event types and subtypes, the ACE 05 corpus

also annotates other attributes like modality, polarity, genericity and tense.

This thesis will only focus on subtype attribute tagging, by using which, type

attributes can be easily inferred. Thus, when we mention event types, we are

referring to the event subtypes here and after.
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Types Subtype

Life Be-Born, Marry, Divorce, Injure, Die

Movement Transport

Transaction Transfer-Ownership, Transfer-Money

Business Start-Org, Merge-Org, Declare-Bankruptcy, End-Org

Conflict Attack, Demonstrate

Contact Meet, Phone-Write

Personnel Start-Position, End-Position, Nominate, Elect

Justice

Arrest-Jail, Release-Parole, Trial-Hearing, Sue,

Charge-Indict, , Convict, Sentence, Fine, Execute,

Extradite, Acquit, Appeal, Pardon

Table 5.2: ACE 05 Event Types and Subtypes

Event Mention An ACE event mention is a sentence or phrase that mentions an

event, and the extent of the event mention is defined to be the whole sentence

within which the event is mentioned.

Event Mention Trigger A trigger of an event mention is the word that most

clearly expresses that event. Every event mention is indicated by a trigger.

Event Mention Argument An argument of an event is a mention with some

relationship with that event. The mention could be an entity mention, a

value mention or a timex2 mention. An argument can also be referred to as

a role. Table 5.3 shows all the argument types.
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Person Place Time-Within Time-Starting Time-Ending
Time-Before Time-After Time-Holds Time-At-Beginning Time-At-End
Agent Victim Instrument Artifact Vehicle
Price Origin Destination Buyer Seller
Beneficiary Giver Recipient Money Org
Attacker Target Entity Position Crime
Defendant Prosecutor Adjudicator Plaintiff Sentence

Table 5.3: Argument Types defined by ACE 05

5.1.2 ACE Event Mention Detection task

The ACE Event Mention Detection task(VMD) requires that certain specified

types of events that are mentioned in the document be detected and that triggers

and arguments of these events should be recognized and merged into a unified

representation for each detected event. Generally speaking, an event extraction

system should include two sub-tasks: VMD and event coreference. In this thesis,

we will only deal with the VMD task, whereas event coreference handling will be

left to be our future work.

Here is an example of event mention detection and recognition:

Ex 5-1 Kelly, the US assistant secretary for East Asia and Pacific Affairs,

arrived in Seoul from Beijing Friday.

In (Ex 5-1), entity mentions are listed in Table 5.4. This sentence contains a

Transport event which is triggered by the word ”arrived”. Table 5.5 shows the

arguments of this event. The possible entity types list the types of entities that

the corresponding arguments can take. And the entity mention ID is the entity

mention which is the value of the corresponding argument.
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Entity Mention ID Head Word Entity Type Entity Subtype

001 Kelly PER Individual

002 Seoul GPE Population-Center

003 Beijing GPE Population-Center

004 Friday Timex2

Table 5.4: Entity Mentions in Ex 5-1

Argument Possible Entity Types Entity Mention ID

Destination GPE, LOC, FAC 001

Origin GPE, LOC, FAC 003

Artifact PER, WEA, VEH 001

Time-Within Timex2 004

Table 5.5: Arguments in Ex 5-1

5.2 Experimental Setup

This section presents our experimental setup. introducing the experimental platform,

dataset, and evaluation metric. Finally, we will describe how to preprocess the

corpus.

5.2.1 Experimental Platform

The experiments were conducted using thebeast software, which is freely available

for research purpose. All the experiments were done on in Ubuntu 12.04 with JDK
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1.6. Our system was powered with a 4-core Intel Core i5 3.20GHZ CPU and 4GB

memory.

5.2.2 Dataset

We used the ACE 2005 English corpus as our dataset. There are 599 English

documents in this dataset. We followed Liao and Grishman (2010a)’s evaluation,

randomly selecting 40 documents as our testing set, and using the rest of the

documents (559 documents) as training data. We randomly generated 5 testing

sets in the experiment.

The ACE English documents are divided into 6 portions. Table 5.6 shows the

word count and file count for each portion. There are four versions of the data in

the ACE 05 English corpus. Each version corresponds to one annotating process.

In our experiments, we use the final version of the data which has the highest

quality and has the time expressions normalized.

Portion Words Files

Newswire 48399 106

Broadcast
55967 226

News

Broadcast
40415 60

Conversations

Weblog 37897 119

Usenet 37366 49

Conversational

34868 39Telephone

Speech

Total 259889 599

Table 5.6: ACE English Corpus Statistics
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Table 5.7 shows the number of samples of different event types. We can see

that the distribution of event types is not uniform. The Attack event occurs twice

as often as the Transport event, however, the Pardon event only occurs twice.

Therefore, events like Pardon do not have enough samples for training. This is one

of the reasons the performance of event extraction is low in the ACE 05 English

corpus. The distribution of argument mentions is shown in Table 5.8. Similar to the

distribution of events, the numbers of some arguments like Price and Time-At-End

are too low to be learnt.

Event Type Count Event Type Count

Attack 1542 Demonstrate 81

Transport 721 Sue 76

Die 598 Convict 76

Meet 280 Be-Born 50

End-Position 212 Start-Org 47

Transfer-Money 198 Release-Parole 47

Elect 183 Appeal 43

Injure 142 Declare-Bankruptcy 43

Transfer-Ownership 127 End-Org 37

Phone-Write 123 Divorce 29

Start-Position 118 Fine 28

Trial-Hearing 109 Execute 21

Charge-Indict 106 Merge-Org 14

Sentence 99 Nominate 12

Arrest-Jail 88 Extradite 7

Marry 83 Acquit 6

Pardon 2

Table 5.7: Event Mentions Statistics
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Argument Type Count Argument Type Count

Place 1124 Org 124

Entity 881 Buyer 104

Time-Within 849 Adjudicator 103

Artifact 738 Money 88

Attacker 707 Vehicle 86

Person 699 Plaintiff 84

Victim 673 Time-Holds 78

Destination 571 Sentence 78

Target 518 Time-Starting 61

Agent 430 Seller 45

Defendant 378 Beneficiary 32

Instrument 308 Time-Before 30

Crime 260 Time-After 27

Origin 191 Prosecutor 27

Recipient 151 Time-Ending 24

Position 140 Time-At-Beginning 20

Giver 136 Time-At-End 16

Price 12

Table 5.8: Argument Mentions Statistics

Unlike with Liao and Grishman (2010a)’s evaluation which only randomly

selected 40 documents in the Newswire portion for testing, we randomly selected

40 documents from all the six portions. We want to implement a framework that

could be able to extract events regardless of the source of the document. Besides,

our framework does not have to tune parameters, so there is no need to split a

development set.
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5.2.3 Evaluation Metric

In the ACE Evaluation Plan(eva (2005)), the scores of every slot of the event were

combined into a final score. This score was not intuitive since we do not know

how well the system extracts events and arguments. To look into the details of our

system and compare the results with other approaches, we followed Ji and Grishman

(2008)’s evaluation method. We wanted to evaluate the system performance at

three levels, i.e. event identification, event classification and argument classification.

The event identification tells us how well the system can detect events. The event

classification tells us how well the system can extract events and their types. The

argument classification tells us how well the system can find and fill roles for the

extracted events.

We use the precision, recall and F-Score to evaluate the system performance.

These metrics are widely used in pattern recognition tasks. They are defined as

follows:

Precision =
|System samples

⋂
Key samples|

|System samples|

Recall =
|System samples

⋂
Key samples|

|Key samples|

F − Score =
2 ∗ Precision ∗Recall
Precision+Recall

We also define how two samples are matched with respect to the following

metric:
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Evaluation Metric Matched Elements

Event identification
Trigger start offset

Trigger end offset

Event Classification

Event type and subtype

Trigger start offset

Trigger end offset

Argument Classification

Event type and subtype

Argument head start offset

Argument head end offset

Argument role

Table 5.9: The elements that need to be matched for each evaluation metric

5.2.4 Preprocessing Corpora

Before generating ground atoms for each predicate, we have to preprocess the

documents. First of all, we use the Stanford Parser1 to parse the documents. After

parsing, we can get sentences of the documents, the part-of-speech tags of tokens,

and the dependency relationships between tokens. Also, we use the lemmatizer

provided in the Stanford Parser to lemmatize the tokens. Then we collect the

triggers in the training set as a dictionary. Finally we generate the dependency

path between tokens.

1http://nlp.stanford.edu/software/corenlp.shtml
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5.3 Results and Analysis

5.3.1 NYU Baseline

We used a state-of-the-art English event extraction system from Grishman et al.

(2005) as our baseline. This system is built on top of the JET(Java Extraction

Toolkit)2, which is freely available for research purposes.

This system is a pipeline system which combines pattern matching with statistical

models. In the training process, a set of patterns is automatically constructed for

each event mention in the corpus. Then all the inaccurate patterns are filtered

out. Finally, a set of maximum entropy based classifiers are trained: an argument

classifier which is to detect the arguments, a role classifier which is to classify types

of arguments, and a trigger classifier which is to identify events.

In the testing process, they first apply patterns to match the potential events

and arguments. Then the argument classifier will try to detect more arguments

from the rest of the entity mentions in the same sentence. If some arguments can

be found in this step, a role classifier is used to assign roles for the arguments. And

finally, the trigger classifier will be applied to determine whether this potential

event is reportable or not.

We use this system to reproduce a baseline result for event extraction given gold

entity mentions. The baseline result is shown in Table 5.10. Note that the worst

and optimum are determined in terms of the F-Score of argument classification.

2http://cs.nyu.edu/grishman/jet/license.html
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event identification event classification argument classification

P R F P R F P R F

worst 0.628 0.549 0.586 0.610 0.534 0.570 0.331 0.337 0.334

optimum 0.656 0.473 0.550 0.632 0.456 0.530 0.416 0.332 0.369

average 0.637 0.529 0.578 0.615 0.511 0.558 0.365 0.336 0.349

Table 5.10: NYU Baseline

5.3.2 BioMLN Baseline

This section describes the construction of an MLN, which was directly borrowed

from Riedel (2008), to produce a baseline named BioMLN. The formulas of BioMLN

are shown in Chapter 3. Note that the formulas of BioMLN include local formulas

and global formulas.

The performance of the BioMLN is shown in Table 5.11. Compared with the

NYU baseline, the performance of event identification is almost the same as that of

the NYU baseline in terms of the F-score. The performance of event classification

is a little higher; however, the performance of argument classification is much lower

than the NYU baseline.

It may be observed that the recall of argument classification in BioMLN is fairly

low, which means that the system can not retrieve correct arguments effectively.

Since BioMLN is directly borrowed from Riedel (2008) which is designed for bio-

molecular event extraction, we can infer that generic events are much more complex

than bio-molecular events. For bio-molecular events, the number of argument types
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is much smaller than for ACE events. Besides, the bio-molecular event extraction

task is to extract events from bio-medical literature which is fairly well written

text. On the contrary, the ACE 05 English corpus consists of various types of text

such as broadcast, conversation, weblog etc. Basically, the bio-molecular event

extraction task and the generic event extraction task are in different domains, so

it is not surprising that the performance of argument classification is fairly low.

Furthermore, the argument predicate corresponds to the argument classification

part. To predict the argument predicate, we have to predict the trigger and

assign arguments. Though there are global formulas to constrain the relation

between event and arguments, without efficient features, we can not improve the

performance of argument classification. Thus, we have to define a new framework

for generic event extraction.

event identification event classification argument classification

P R F P R F P R F

worst 0.648 0.476 0.549 0.634 0.466 0.537 0.341 0.051 0.089

optimum 0.716 0.552 0.623 0.699 0.539 0.608 0.459 0.088 0.148

average 0.662 0.514 0.578 0.645 0.501 0.563 0.429 0.073 0.125

Table 5.11: Results of BioMLN

5.3.3 Results of Base MLN

Table 5.12 shows the results of our base MLN. First of all, compared with the NYU

baseline, our base MLN gains 1.2% improvement for event identification, and 4.6%

for event classification, which is a good improvement. However, for the argument
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classification, our base MLN lags by about 4% in terms of the F-score.

From the presented results, we can see that after adding more formulas which

are suitable for the ACE event extraction, we can improve the F-score of event

identification by 1.2%, event classification by 4.1%, and argument classification

by 18.2% compared with the BioMLN. The 18.2% improvement verifies that the

formulas defined for bio-molecular event extraction can not be directly applied to

generic event extraction.

event identification event classification argument classification

P R F P R F P R F

worst 0.542 0.717 0.617 0.529 0.655 0.586 0.338 0.220 0.266

optimum 0.576 0.704 0.634 0.584 0.667 0.623 0.456 0.273 0.341

average 0.521 0.680 0.590 0.563 0.652 0.604 0.395 0.251 0.307

Table 5.12: Results of Base MLN

5.3.4 Results of Full MLN

Table 5.13 shows the results of the full MLN. Compared with the results of the

base MLN, the full MLN increases about 7% in F-score for event identification,

3.5% for event classification, and about 9% for argument classification. One of

the advantages of MLNs is joint learning. Without joint learning, we can not

structurally predict the event structure.

Figure 5.1 shows the comparison of the various systems above in terms of average

F score. For the event identification, the average F-score of the base MLN is almost
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the same with that of the NYU baseline system. However, the NYU baseline system

lags by about 5% in terms of the F-score when compared with the base MLN. This

is because the error propagates from event identification to event classification in

the NYU baseline system. While in the base MLN, event identification and event

classification are independent, so the F-score of these two goals are almost the

same. The performance is further improved in our full MLN due to the benefit

of joint learning provided by the hard global formulas. Thus, Compared with the

NYU sentence level baseline system which is state-of-the-art on the ACE 05 English

corpus, our full MLN outperforms the NYU sentence-level baseline system.

event identification event classification argument classification

P R F P R F P R F

worst 0.661 0.700 0.680 0.619 0.655 0.637 0.463 0.317 0.376

optimum 0.694 0.670 0.682 0.671 0.648 0.659 0.548 0.346 0.424

average 0.672 0.654 0.663 0.649 0.631 0.639 0.537 0.315 0.396

Table 5.13: Results of Full MLN

5.3.5 Adding Event Correlation Information

Here we show the result of adding the event correlation information described in

Chapter 4. Compared with the result of the full MLN shown in Table 5.13, there

is about 1% improvement for event identification, a 1.1% improvement for event

classification, and about 1% improvement for argument classification (all based

on t-test with confidence > 95%). Though the event correlation information is

added to the eventtype predicate, event identification and argument classification
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Figure 5.1: Comparison of Results in F score

also gain improvement due to the global formulas. Though there is improvement

after adding event correlation information, much effort should be made to reduce

the solution space when adding soft global formulas.

event identification event classification argument classification

P R F P R F P R F

worst 0.620 0.600 0.610 0.608 0.588 0.598 0.551 0.291 0.381

optimum 0.724 0.697 0.710 0.697 0.670 0.683 0.591 0.371 0.456

average 0.682 0.664 0.672 0.659 0.641 0.650 0.547 0.323 0.405

Table 5.14: Cross event within two consecutive sentences

5.3.6 Results of Event Classification

Table 5.15 shows the result of event classification. This result is the one with

optimum performance in Table 5.14. There are 6 types of events not appearing in
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this table because they are not in the testing set and our system does not misclassify

them.

One of the possible reasons the performance of events like Sue, Demonstrate

and End-Org is so high is that these triggers have more specific meanings. Taking

the Sue event as an example, most of the Sue events in the ACE 05 English corpus

are the words “sue” and “lawsuit”. The performances of Die, Attack, Meet and

Transport events are much higher than the average performance which is about

65%. These 4 types of events have more samples in the corpus. This is because

they have more training samples so that the model we trained is more close to the

real world. However, the performance of the End-Position and Transfer-Money

events, which also have almost the same amount of samples as the Meet event,

is much lower than the average performance. This is because the expressions of

these events are very flexible. For example, we can say He got fired yesterday to

express an End-Position event. However, we can also say He got removed from

the company yesterday or He was forced to step down from the company . So the

training samples are not enough for the various expressions.
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Event F K S C Event F K S C

Sue 1.000 6 6 6 Phone-Write 0.545 12 10 6

Demonstrate 1.000 2 2 2 Appeal 0.500 2 2 1

End-Org 1.000 1 1 1 Transfer-Money 0.476 8 13 5

Die 0.862 31 27 25 Be-Born 0.400 3 2 1

Arrest-Jail 0.800 2 3 2 Transfer-Ownership 0.250 5 3 1

Attack 0.739 82 83 61 Start-Position 0.000 8 1 0

Meet 0.720 13 12 9 Release-Parole 0.000 1 1 0

Transport 0.699 66 57 43 Sentence 0.000 1 1 0

Declare-Bankruptcy 0.667 4 5 3 Divorce 0.000 0 1 0

Start-Org 0.667 2 1 1 Extradite 0.000 0 1 0

Injure 0.615 5 8 4 Execute 0.000 0 1 0

End-Position 0.600 7 3 3 Marry 0.000 0 1 0

Elect 0.600 3 7 3 Nominate 0.000 0 1 0

Charge-Indict 0.000 0 1 0

Table 5.15: F score of Event Classification
F=F score, K=#key samples,

S=#system samples,C=#correct samples

5.3.7 Results of Argument Classification

Table 5.16 shows the performance of argument classification corresponding to the

optimum dataset in Table 5.14.

The performance of argument classification is closely related with the performance

of its corresponding event classification. We can see from the above results that the

performance of the Victim argument in terms of F-score is high as the performance

of the Die event is high. Though the Injure event also contains the Victim

argument, the number of Injure events in this testing set is small. Therefore,

the influence of the Injure events on the performance of the Victim argument is

low. We can also see that although the Place argument occupies the largest portion
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of the whole argument, its performance is fairly low. One of the reasons for this

maybe that the entities that play as Place arguments are too far away from their

corresponding triggers, making it difficult for our system to recognize them.

Argument F K S C Argument F K S C

Defendant 0.800 5 5 4 Artifact 0.388 66 37 20

Position 0.750 5 3 3 Place 0.337 49 34 14

Victim 0.750 34 30 24 Agent 0.296 21 6 4

Destination 0.736 47 40 32 Target 0.286 30 12 6

Giver 0.667 8 7 5 Plaintiff 0.222 8 1 1

Recipient 0.667 7 5 4 Attacker 0.211 26 12 4

Org 0.615 7 6 4 Time-Holds 0.000 2 0 0

Origin 0.571 10 4 4 Seller 0.000 2 0 0

Instrument 0.522 13 10 6 Beneficiary 0.000 1 1 0

Crime 0.500 2 2 1 Vehicle 0.000 3 6 0

Money 0.500 1 3 1 Time-Starting 0.000 1 0 0

Adjudicator 0.500 3 1 1 Buyer 0.000 5 0 0

Person 0.429 18 10 6 Time-Before 0.000 1 0 0

Time-Within 0.417 43 29 15 Sentence 0.000 1 1 0

Entity 0.410 50 33 17 Time-Ending 0.000 3 0 0

Time-At-Beginning 0.000 2 0 0

Table 5.16: F score of Argument Classification
F=F score, K=#key samples,

S=#system samples,C=#correct samples
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Chapter 6

Conclusion

This chapter concludes the thesis and presents possible research directions that

future work may take.

6.1 Conclusion

This thesis aims at extracting a specific set of events from text documents. Normally,

there are three objectives in event extraction: event identification, event classification

and argument classification. This thesis has conducted a comprehensive literature

review to trace the development of research work on event extraction. Moreover,

we have proposed a new unified Markov logic network (MLN) inspired by the

MLN for the bio-molecular event extraction task. Extensive experiments have been

conducted to evaluate the performance of our framework on the ACE 05 English

corpus.
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The experimental results clearly show that the performance of our framework

has exceeded that of state-of-the-art sentence level system. Specifically, we obtained

the following conclusions:

• Our new unified MLN outperforms the BioMLN, which shows that MLNs

for bio-molecular event extraction could not be directly applied to generic

event extraction and the new proposed formulas can effectively improve the

performance of the generic event extraction. Compared with the state-of-

the-art system, the full MLN gained about 8% improvement in F-score for

event identification and classification, and about 5% improvement in F-score

for argument classification.

• We encode event correlation information which is helpful for generic event

extraction. Experimental result shows that this information can lead to

statistical significant improvement.

6.2 Future Work

Based on our experience with the framework mentioned in Section 5, we would like

to improve our framework in MLNs in the following areas.

Exploiting a wider scope of information to help predict events is a promising

direction. Yao et al. (2012) developed a topic model to disambiguate word sense

ambiguity. Following this approach, we can construct a topic model to partition the

potential trigger words into different sense-clusters given different contexts. Then

this kind of partition information can be used as features and be incorporated into
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our framework. Since the sense-clusters are generated by using document-level

information, this will help to disambiguate the sense ambiguity in trigger words.

In real applications, event coreference is performed after event extraction. Since

the purpose of event coreference is to predict the relationship between events, it is

highly related with the event extraction task. Therefore, we can integrate this task

into our framework to enhance the performance of our system. Specifically, if an

event e1 can be tagged with high accuracy, and another potential event e2 is also

presented in the document, and shares the same arguments with e1, then e2 can be

also tagged correctly with high probability.

In the generic event extraction task, we have found that almost all the events

share some common argument types, such as Place and Time (in fact, there are

several kinds of Time arguments, but for simplicity, we refer to all of them here as

Time arguments). Therefore, we can do some statistical analysis to find effective

patterns for predicting these two kinds of arguments. In MLN, we can write some

specific formulas by replacing some variables with constants. For example, we can

define dict(i,+e, prec)∧word(h, “in”)∧entity(id, h+1, “Place”)⇒ role(i, id, “Place”),

which indicates that if a word occurring before an entity whose type is Place, then

this word probably plays a Place role in a potential event.

By implementing the above approaches, the performance of our framework

would be further improved. These issues will be deferred to our future work.
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