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Summary

This thesis is concerned with the problem of minimizing the sum of a convex func-

tion f and a non-separable `
1

-regularization term. The motivation for this work

comes from recent interests in various high-dimensional sparse feature learning prob-

lems in statistics, as well as from problems in image processing. We present those

problems under the unified framework of convex minimization with nonseparable `
1

-

regularization, and propose an inexact semi-smooth Newton augmented Lagrangian

(SSNAL) algorithm to solve an equivalent reformulation of the problem. Compre-

hensive results on the global convergence and local rate of convergence of the SSNAL

algorithm are established, together with the characterization of the positive definite-

ness of the generalized Hessian of the objective function arising in each subproblem

of the algorithm.

For the purpose of exposition and comparison, we also summarize/design three

first-order methods to solve the problem under consideration, namely, the alternating

direction method of multipliers (ADMM), the inexact accelerated proximal gradient

(APG) method and the smoothing accelerated proximal gradient (SAPG) method.

Numerical experiments show that the SSNAL algorithm performs favourably in

comparison to several state-of-the-art first-order algorithms for solving fused lasso

problems, and outperforms the best available algorithms for clustered lasso prob-

lems.

With the available numerical methods, we propose a simple model to solve var-

ious image restoration problems in the presence of mixed or unknown noises. The

proposed model essentially takes the weighted sum of `
1

and `
2

-norm based distance

xi



xii Summary

functions as the data fitting term and utilizes the sparsity prior of images in wavelet

tight frame domain. Since a moderately accurate result is usually su�cient for im-

age restoration problems, an augmented Lagrangian method (ALM) with the inner

subproblem being solved by an accelerated proximal gradient (APG) algorithm is

used to solve the proposed model.

The numerical simulation results show that the performance of the proposed

model together with the numerical algorithm is surprisingly robust and e�cient

in solving several image restoration problems, including denoising, deblurring and

inpainting, in the presence of both additive and non-additive noises or their mixtures.

This single one-for-all fitting model does not depend on any prior knowledge of

the noise. Thus, it has the potential of performing e↵ectively in real color image

denoising problems, where the noise type is di�cult to model.



Chapter 1
Introduction

In this thesis, we focus on solving minimization problems of the following form:

min
x2Rn

f(x) + ⇢kBxk
1

, (1.1)

where f : Rn ! R is a convex and twice continuously di↵erentiable function, B 2
Rp⇥n is a given matrix, and ⇢ is a given positive parameter. For any x 2 Rn, we

denote its 2-norm by kxk, and let kxk
1

=
P

n

i=1

|x
i

|. We assume that objective

function in (1.1) is coercive and hence the optimal solution set of (1.1) is nonempty

and bounded.

1.1 Motivations and Related Methods

As the `
1

-norm regularization term encourages sparsity in the optimal solution, the

special case of the problem (1.1) when f(x) = 1

2

kAx� bk2 and B = I, i.e.

min
x2Rn

1

2
kAx� bk2 + ⇢kxk

1

(1.2)

has drawn particular attention in both signal processing (basis pursuit [24]) and

statistics (lasso [99]) communities since almost twenty years ago. Due to the sep-

arability of kxk
1

and the simple structure of squared loss term, a great variety of

algorithms have been designed to solve the problem (1.2). Ever since the compressed

sensing theory in the context of signal processing has established the theoretical

guarantee for stable recovery of the original sparse signal by solving (1.2) under

1



2 Chapter 1. Introduction

certain conditions [19, 35], the problem (1.2) has regained immense interest among

the signal processing, statistics and optimization communities during the recent ten

years.

Here we briefly describe some of the methods available for solving (1.2). These

methods mainly fall into three broad categories. (1) first-order methods [6, 45, 53,

103, 106, 108], which are specifically designed to exploit the separability of kxk
1

to

ensure that a certain subproblem at each iteration admits an analytical solution.

These methods have been very successful in solving large scale problems where A

satisfies certain restricted isometry property [20], which ensures that the Hessian

ATA is well conditioned on the subspace corresponding to the non-zero components

of the optimal x⇤; (2) homotopy-type methods [36,38], which attempt to solve (1.2)

by sequentially finding the break-points of the solution x(⇢) of (1.2) starting from

the initial parameter value kATbk1 and ending with the desired target value. These

methods rely on the property that each component of the solution x(⇢) of (1.2) is a

piece-wise linear function; (3) inexact interior-point methods [24,46,60], which solve

a convex quadratic programming reformulation of (1.1). The literature on algorithms

for solving (1.2) is vast and here we only mention those that are known to be the

most e�cient. We refer the reader to the recent paper [46] for more details on the

relative performance and merits of various algorithms. Numerical experiments have

shown that first-order methods are generally quite e�cient if one requires only a

moderately accurate approximate solution for large scale problems. More recently,

the authors in [9] have proposed an active-set method using the semismooth Newton

framework to solve (1.2) by reformulating it as a bound constrained convex quadratic

programming problem.

However, many applications require one to solve the general problem (1.1) where

f is non-quadratic and/or the regularization term is non-separable, such as various

extensions of the `
1

-norm lasso penalty and regression models with loss functions

other than the least-squared loss; total variation (TV) regularized image restoration

models, etc. Most of the algorithms mentioned in the last paragraph are specifically

designed to exploit the special structure of (1.2), and as a result, they are either not

applicable or become very ine�cient when applied to (1.1).
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1.1.1 Sparse Structured Regression

One of the main motivations for studying the problem (1.1) comes from high di-

mensional regression models with structured sparse regularizations, such as group

lasso [107, 109], fused lasso [100], clustered lasso [78, 90], OSCAR [7], etc. In these

statistical applications, f(x) is the data fitting term (known as the loss function),

and B is typically structured or sparse.

E�cient first-order algorithms that exploit the special structures of the corre-

sponding regularization terms have been developed for di↵erent structured lasso

problems. For example, proximal gradient methods have been designed in [5, 74]

for non-overlapping grouped lasso problems, and coordinate descent methods [47]

and accelerated proximal gradient based methods [65] have been proposed for fused

lasso problems with quadratic loss function. Unfortunately, there are many more

complex structured lasso problems such as overlapping grouped lasso, graph-guided

fused lasso, clustered lasso etc, for which the aforementioned first-order algorithms

are not applicable.

Although the problem (1.1) with a quadratic loss function can always be formu-

lated as a second-order cone programming (SOCP) problem or a convex quadratic

programming (QP) problem which are solvable by interior-point solvers such as [101]

or [98], the high computational cost and limitation in the scale of the problem solv-

able usually prohibit one from doing so, especially when the problem is large.

1.1.2 Image Restoration

Image restoration is another major area that give rises to problems of the form (1.1),

where f is typically the quadratic loss function.

In TV-regularized image restoration (original introduced by Rudin, Osher and

Fatemi [88]), the regularization term is essentially the `
1

-norm of the first-order for-

ward di↵erence of x in the one-dimensional case, which is a non-separable `
1

-term

similar to the fused lasso regularization term. With f being a quadratic loss func-

tion as in (1.2), the authors in [75] considered half-quadratic reformulations of (1.1)

and applied alternating minimization methods to solve the reformulated problems.

In [56,102], the authors independently developed some alternating minimization al-

gorithms for some types of TV image restoration problems. We should mention here

that those alternating minimization methods only solve an approximate version (by
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smoothing the TV-term) of the original problem (1.1), and hence the approximate

solution obtained is at best moderately accurate for (1.1). More recently, [104] pro-

posed to use the alternating direction method of multipliers (ADMM) to solve the

original TV-regularized problem (1.1) with quadratic loss, and demonstrated very

good numerical performance of the ADMM for such a problem.

In frame based image restoration, since the wavelet tight frame systems are re-

dundant, the mapping from the image to its coe�cients is not one-to-one, i.e., the

representation of the image in the frame domain is not unique. Therefore, based on

di↵erent assumptions, there are three formulations for the sparse approximation of

the underlying image, namely, the analysis based approach, the synthesis based ap-

proach and the balanced approach. The analysis based approach proposed in [39,96]

assumes that the coe�cient vector can be sparsely approximated; therefore, it is for-

mulated as the general problem (1.1) with a non-separable `
1

-regularization, where

B is the framelet decomposition operator. The synthesis based approach introduced

in [31, 41–44] and the balanced approach first used in [21, 22] assume that the un-

derlying image is synthesized from some sparse coe�cient vector via the framelet

reconstruction operator; therefore, the models directly penalize the `
1

-norm of the

coe�cient vector, which leads to the special separable case (1.2). The proximal

forward-backward splitting (PFBS) algorithm was first used to solve the synthesis

based model in [29, 31, 41–44] (also known as the iterative shrinkage/thresholding

(IST) algorithm), and the balanced model in [12–14, 18]. Later, a linearized Breg-

man algorithm was designed to solve the synthesis based model in [16], and an APG

algorithm was proposed to solve the balanced model in [92], both of which demon-

strated faster convergence than the PFBS (IST) algorithm. For the analysis based

approach, where a non-separable `
1

term is involved, the split Bregman iteration

was used to develop a fast algorithm in [17]. It was later observed that the resulted

split Bregman algorithm is equivalent to the ADMM mentioned previously.

1.1.3 Limitations of the Existing First-order Methods

To summarize, first-order methods have been very popular for structured convex

minimization problems (especially those with the simple regularization term kxk
1

)

arising from statistics, machine learning, and image processing. In those applica-

tions, the optimization models are used to serve as a guide to obtain a good feasible

solution to the underlying application problems and the goal is not necessarily to
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compute the optimal solutions of the optimization models. As a result, first-order

methods are mostly adequate for many such application problems since the required

accuracy (with respect to the optimization model) of the computed solution is rather

modest. Even then, the e�ciency of first-order methods are heavily dependent on

the structures of the particular problem they are designed to exploit. To avoid

having a multitude of first-order algorithms each catering to a particular problem

structure, it is therefore desirable to design an algorithm which can e�ciently be

applied to (1.1), and its e�ciency is not completely dictated by the particular prob-

lem structure on hand, while at the same time it is able to deliver a high accuracy

solution when required.

For the general problem (1.1), so far there is no single unifying algorithmic

framework that has been demonstrated to be e�cient and robust for solving the

problem. Although some general first-order methods (derived from the ADMM [37]

and accelerated proximal gradient methods [73], [5]) are available for solving (1.1),

their practical e�ciency are highly dependent on the problem structure of (1.1),

especially on the structure of the nonseparable `
1

-term kBxk
1

. One can also use

the commonly employed strategy of approximating the non-smooth term kBxk
1

by

some smooth surrogates to approximately solve (1.1). Indeed, this has been done

in [27], which proposed to use the accelerated proximal gradient method in [5] to

solve smoothed surrogates of some structured lasso problems. But the e�ciency of

such an approach has yet to be demonstrated convincingly. A detailed discussion

on those first-order methods will be given in Chapter 3.

Above all, the main purpose of this work is to design a unifying algorithmic

framework (semismooth Newton augmented Lagrangian (SSNAL)) for solving (1.1),

which does not depend heavily on the structure of kBxk
1

. Unlike first-order meth-

ods, our SSNAL based algorithm exploits second-order information of the problem

to achieve high e�ciency for computing accurate solutions of (1.1).

1.2 Contributions

The main contributions of this thesis are three-folds. First, we provide a unified

algorithmic framework for a wide variety of `
1

-regularized (not necessarily separa-

ble) convex minimization problems that have been studied in the literature. The

algorithm we developed is a semismooth Newton augmented Lagrangian (SSNAL)
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method applied to (1.1), where the inner subproblem is solved by a semismooth

Newton method for which the linear system in each iteration is solved by a precon-

ditioned conjugate gradient method. An important feature of our algorithm is that

its e�ciency does not depend critically on the separability of the `
1

-term in contrast

to many existing e�cient methods. Also, unlike many existing algorithms which are

designed only for quadratic loss functions, our algorithm can handle a wide variety

of convex loss functions. Moreover, based the general convergence theory of the

ALM [84, 85], we are able to provide comprehensive global and local convergence

results for our algorithm. Second, our algorithm can solve (1.1) and its dual simulta-

neously, and hence there is a natural stopping criterion based on duality theory (or

the KKT conditions). Third, our algorithm utilizes second-order information and

hence it can obtain accurate solutions much more e�ciently than first-order meth-

ods for (1.1) but at the same time it is competitive to state-of-the-art first-order

algorithms (for which a high accuracy solution may not be achievable) for solving

large scale problems. We evaluate our algorithm and compare its performance with

state-of-the-art algorithms for solving the fused lasso and clustered lasso problems.

In addition, we propose a simple model for image restoration with mixed or

unknown noises. While most of the existing methods for image restorations are de-

signed specifically for a given type of noise, our model appears to be the first versatile

model for handling image restoration with various mixed noises and unknown type

of noises. This feature is particularly important for solving real life image restoration

problems, since, under various constraints, images are always degraded with mixed

noise and it is impossible to determine what type of noise is involved. The proposed

model falls in the framework of the general non-separable `
1

-regularized problem

(1.1). Since a moderately accurate solution is usually su�cient for image process-

ing problems, we use an accelerated proximal gradient (APG) algorithm to solve

the inner subproblem. The simulations on synthetic data show that our method is

e↵ective and robust in restoring images contaminated by additive Gaussian noise,

Poisson noise, random-valued impulse noise, multiplicative Gamma noise and mix-

tures of these noises. Numerical results on real digital colour images are also given,

which confirms the e↵ectiveness and robustness of our method in removing unknown

noises.
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1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present some pre-

liminaries that relate to the subsequent discussions. We first introduce the idea of

monotone operators and the proximal point algorithm. The augmented Lagrangian

method is essentially the dual application of the proximal point algorithm. Secondly,

some basic concepts in nonsmooth analysis will be provided. The convergence of

the SSNAL algorithm proposed here relies on the semismoothness of the projection

operator (onto an `1-ball). Finally, a brief introduction on tight wavelet frames will

be given, which includes (1) the multiresolution analysis (MRA) based tight frames

derived from the unitary extension principle; (2) the fast algorithms for framelet

decomposition and reconstruction. All of the applications on image restoration

problems presented in this thesis are, but not limited to, under the assumption that

the images are sparse in the tight wavelet frame domain.

In Chapter 3, we first reformulate the original unconstrained problem (1.1) to an

equivalent constrained one, and build up the general augmented Lagrangian frame-

work. Then we propose an inexact semismooth Newton augmented Lagrangian

(SSNAL) algorithm to solve this reformulated constrained problem. We also charac-

terize the condition when the generalized Hessian of the objective function is positive

definite, and provide the convergence analysis of the proposed SSNAL algorithm.

Finally, the extensions of the SSNAL framework for solving some generalizations of

(1.1) are described.

We summarize/design some first-order algorithms which are promising for solving

the general problem (1.1) in Chapter 4. Although the computational e�ciency of

these first-order methods depends crucially on the problem structures of (1.1), our

SSNAL algorithm can always capitalize on the strength (of rapid initial progress) of

first-order methods for generating a good starting point to warm-start the algorithm.

Chapter 5 is devoted to the application of the SSNAL algorithm to solve the

structured lasso problems of major concern among the statistics community. We

first introduce the various sparse structured regression models and discuss how they

can be fitted into our unified framework. The numerical performance of our SSNAL

algorithm for fused lasso and clustered lasso problems on randomly generated data,

as well as the comparison with other state-of-the-art algorithms is presented.

In Chapter 6, we propose a simple model for image restoration with mixed or

unknown noises. The numerical results for various image restorations with mixed
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noise and examples on noise removal of real digital colour images are presented.

While there is no result for image restorations with such a wide range of mixed

noise available in the literature as far as we are aware of, comparisons with some

of the available models for removing noises such as single type of noise, mixed

Poisson-Gaussian noise, and impulse noise mixed with Gaussian noise are given.

Some additional remarks on our proposed model and numerical algorithm will be

addressed.



Chapter 2
Preliminaries

In this chapter, we present some preliminaries that relate to the subsequent discus-

sions. We first introduce the idea of monotone operators and the proximal point

algorithm. The augmented Lagrangian method (ALM) is essentially the dual appli-

cation of the proximal point algorithm. Secondly, some basic concepts in nonsmooth

analysis will be provided. The convergence of the SSNAL algorithm proposed here

relies on the semismoothness of the projection operator (onto an `1-ball). Finally,

a brief introduction on tight wavelet frames will be given, which includes (1) the

multiresolution analysis (MRA) based tight frames derived from the unitary exten-

sion principle; (2) the fast algorithms for framelet decomposition and reconstruction.

The proposed simple model for image restoration with mixed and unknown noises

is based on, but not limited to, the assumption that the images are sparse in the

tight wavelet frame domain.

2.1 Monotone Operators and The Proximal Point

Algorithm

LetH be a real Hilbert space with inner product h·, ·i. A multifunction T : H ! H

is said to be a monotone operator if

hz � z0, w � w0i � 0 whenever w 2 T (z), w0 2 T (z0).

9
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It is said to be maximal monotone if, in addition, the graph

G(T ) = {(z, w) 2 H ⇥H|w 2 T (z)}

is not properly contained in the graph of any other monotone operator T 0 : H ! H .

Such operators have been studied extensively for their important role in convex

analysis. A fundamental problem is that of determining an element z such that

0 2 T (z). For example, the subdi↵erential mapping @f of a proper closed convex

function f is maximal monotone, and the inclusion 0 2 @f(z) means that f(z) =

min f . The problem is then one of minimization subject to implicit constraints.

A fundament algorithm for solving 0 2 T (z) in the case of an arbitrary maximal

monotone operator T is based on the fact that for each z 2 H and c > 0 there

is a unique u 2 H such that z � u 2 cT (u), i.e. z 2 (I + cT )(u) [70]. The

operator P := (I + cT )�1 is therefore single-valued from all of H to H . It is also

nonexpansive:

kP(z)� P(z0)k  kz � z0k, (2.1)

and one has P(z) = z if and only if 0 2 T (z). P is called the proximal mapping

associated with cT , following the terminology of Moreau [71] for the case of T = @f .

The proximal point algorithm generates for any starting point z0 a sequence {zk}
in H by the approximate rule

zk+1 ⇡ P
k

(zk), where P
k

= (I + c
k

T )�1. (2.2)

Here {c
k

} is some sequence of positive real numbers. In the case of T = @f , this

procedure reduces to

zk+1 ⇡ argmin
z

⇢

f(z) +
1

2c
k

kz � zkk2
�

.
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In [85], Rockafellar introduced the following two general criteria for the approx-

imate calculation of P
k

(zk):

kzk+1 � P
k

(zk)k  "
k

,
1
X

k=0

"
k

< 1, (2.3)

kzk+1 � P
k

(zk)k  �
k

kzk+1 � zkk,
1
X

k=0

�
k

< 1. (2.4)

He proved that under very mild assumptions that for any starting point z0, the

criterion (2.3) guarantees weak convergence of {zk} to a particular solution z1 to

0 2 T (z). In general, the set of all such points z forms a closed convex set in H ,

denoted by T �1(0). If in addition, the criterion (2.4) is also satisfied and T �1 is

Lipschitz continuous at 0, then it can be shown that the convergence is at least at

a linear rate, where the modulus can be brought arbitrarily close to zero by taking

c
k

large enough. If c
k

! 1, one has superlinear convergence.

Note that T �1 is Lipschitz continuous at 0 with modulus a � 0 if there is a

unique solution z̄ to 0 2 T (z), i.e. T �1(0) = {z̄}, and for some ⌧ > 0, we have

kz � z̄k  akwk whenever z 2 T �1(w) and kwk  ⌧.

This assumption could be fulfilled very naturally in applications to convex program-

ming, for instance, under certain standard second-order conditions characterizing a

“nice” optimal solution (see [84] for detailed discussions).

There are three distinct types of applications of the proximal point algorithm in

convex programming: (1) to T = @f , where f is the objective function in the primal

problem; (2) to T = �@g, where g is the concave objective function in the dual

problem, and (3) to the monotone operator corresponding to the convex-concave

Lagrangian function. The augmented Lagrangian method that will be discussed

further in Chapter 3 actually corresponds to the second application.

2.2 Basics of Nonsmooth Analysis

Let X and Y be two finite-dimensional real Hilbert spaces. Let O be an open

set in X and f : O ✓ X ! Y be a locally Lipschitz continuous function on the

open set O. Then f is almost everywhere F(réchet)-di↵erentiable by Rademacher’s
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theorem. Let D
f

denote the set of F-di↵erentiable points of f in O. Then the

B(ouligand)-subdi↵erential of f at x 2 O, denoted by @
B

f(x), is

@
B

f(x) :=
n

lim
k!1

f 0(xk) | xk 2 D
f

, xk ! x
o

,

and the Clarke’s generalized Jacobian [28] at x is the convex hull of @
B

f(x), i.e.

@f(x) = conv {@
B

f(x)} .

In addition, f is said to be directionally di↵erentiable at x if for any �x 2 X, the

directional derivative of f at x along �x, denoted by f 0(x;�x) exists.

Definition 2.2.1. Let f : O ✓ X ! Y be a locally Lipschitz continuous function

on the open set O. We say that f is semismooth at a point x 2 O if

(i) f is directionally di↵erentiable at x; and

(ii) for any �x 2 X and V 2 @f(x+�x) with �x ! 0,

f(x+�x)� f(x)� V (�x) = o(k�xk). (2.5)

Furthermore if (2.5) is replaced by

f(x+�x)� f(x)� V (�x) = O(k�xk2), (2.6)

then f is said to be strongly semismooth at x.

Semismoothness was originally introduced by Mi✏in [69] for functionals. Qi and

Sun [81] extended the concept to vector valued functions.

2.3 Tight Wavelet Frames

We introduce the notion of tight wavelet frames in space L
2

(R), as well as some

other basic concepts and notation. The space L
2

(R) is the set of all functions f(x)

satisfying kfk
L2(R) := (

R

R |f(x)|2dx)1/2 < 1, and the space `
2

(Z) is the set of all

sequences h defined on Z satisfying khk
`2(Z) := (

P

k2Z |h[k]|2)1/2 < 1.

For any function f 2 L
2

(R), the dyadic dilation operator D is defined by

Df(x) :=
p
2f(2x) and the translation operator T is defined by T

a

f(x) := f(x� a)
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for a 2 R. Given j 2 Z, we have T
a

Dj = DjT
2

j
a

.

For given  := { 
1

, ..., 
r

} ⇢ L
2

(R), define the wavelet system by

X( ) := { 
`,j,k

: 1  `  r; j, k 2 Z},

where  
`,j,k

= DjT
k

 
`

= 2j/2 
`

(2j ·�k). The system X( ) is called a tight wavelet

frame of L
2

(R) if
kfk2

L2(R) =
X

g2X( )

|hf, gi|2

holds for all f 2 L
2

(R), where h·, ·i is the inner product in L
2

(R) and k · k
L2(R) =

ph·, ·i. This is equivalent to f =
P

g2X( )

hf, gig, for all f 2 L
2

(R).
Note that when X( ) forms an orthonormal basis of L

2

(R), it is called an or-

thonormal wavelet basis. It is clear that an orthonormal basis is a tight frame.

The Fourier transform of a function f 2 L
1

(R) is usually defined by

bf(!) :=

Z

R
f(x)e�i!xdx, ! 2 R,

and then, the corresponding inverse is

f(x) =
1

2⇡

Z

R
bf(!)ei!xd!, x 2 R.

They can be extended to more general functions, e.g. the functions in L
2

(R). Simi-

larly, we can define the Fourier series for a sequence h 2 `
2

(Z) by

bh(!) :=
X

k2Z

h[k]e�ik!, ! 2 R.

To characterise the wavelet system X( ) to be a tight frame or even an orthonor-

mal basis for L
2

(R) in terms of its generators  , the dual Gramian analysis [86] is

used in [87].

Theorem 2.3.1. The wavelet system X( ) is a tight frame of L
2

(R) if and only if

the identities

X

 2 

X

k2Z

| b (2k⇠)|2 = 1;
X

 2 

1
X

k=0

b (2k⇠) b (2k(⇠ + (2j + 1)2⇡)) = 0, j = Z (2.7)
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hold for a.e. ⇠ 2 R. Furthermore, X( ) is an orthonormal basis of L
2

(R) if and

only if (2.7) holds and k k = 1 for all  2  .

Although Theorem 2.3.1 gives a complete characterization of the wavelet system

X( ) being a tight frame of L
2

(R), it is only helpful for obtaining tight wavelet

frame systems from bandlimited generators. In order to construct wavelet systems

with compactly supported generators, here we adopt the multiresolution analysis

(MRA) structure proposed in [8], which is more general than the original version

proposed by Mallat and Meyer in [67, 68].

For a given function � 2 L
2

(R), define the shift-invariant subspace V ⇢ L
2

(R)
generated by � as

V := span{�(·� k), k 2 Z},

and denote V
n

as its 2n-dilation:

V
n

= span{�(2n ·�k), k 2 Z}, n 2 Z.

We have V = V
0

. A subspace S ⇢ L
2

(R) is called translation-invariant if for any

t 2 R and f 2 S, we have f(·� t) 2 S. The subspace S is called s-shift-invariant if

for any k 2 Z and f 2 S, we have f(·� sk) 2 S, and in particular if s = 1, we call

S a shift-invariant subspace.

Now for a given sequence of subspaces {V
n

}
n2Z, we say {V

n

} forms a multireso-

lution analysis (MRA) for L
2

(R), if the following conditions are satisfied:

V
n

⇢ V
n+1

, n 2 Z;

[
n

V
n

= L
2

(R);

\
n

V
n

= {0}.

Then � is called the generator of the MRA.

Finally, for any given � 2 L
2

(R) that generates an MRA {V
n

}
n

, the quasi-

interpolatory operator is defined as

P
n

: f 7!
X

k2Z

hf,�
n,k

i�
n,k

, (2.8)

for any arbitrary f 2 L
2

(R) with �
n,k

:= DnT
k

�.
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The MRA generated tight wavelet frame systems is particularly useful in practice

because it has fast decomposition and reconstruction algorithms. In the following,

we first describe how tight wavelet frames are explicitly constructed based on MRA

generated by a refinable function � via the unitary extension principle (UEP) [87];

then, we provide the details of the decomposition and reconstruction algorithms for

the MRA-based tight wavelet frames.

2.3.1 Tight Wavelet Frames Generated From MRA

We are interested in constructing compactly supported wavelet systems with finitely

supported masks. Therefore, assume further that � is a compactly supported refin-

able function. Note that a compactly supported function � 2 L
2

(R) is refinable if

it satisfies the refinement equation

�(x) = 2
X

k2Z

h
0

[k]�(2x� k), (2.9)

for some finitely supported sequence h
0

2 `
2

(Z). By taking the Fourier transform,

equation (2.9) becomes
[�(2·) = bh

0

b�, a.e. ! 2 R.

We call the sequence h
0

the refinement mask of � and bh
0

the refinement symbol of

�.

Let {V
n

}
n2Z be the MRA generated by the refinable function � and the refinement

mask h
0

. Let  := { 
1

, ..., 
r

} ⇢ V
1

be of the form

 
`

(x) = 2
X

k2Z

h
`

[k]�(2x� k). (2.10)

The finitely supported sequences h
1

, ..., h
r

are called wavelet masks, or the high pass

filters of the system, and the refinement mask h
0

is called the low pass filter. In the

Fourier domain, (2.10) can be written as

\ 
`

(2·) = bh
`

b�, ` = 1, ..., r,

where bh
1

, ..., bh
r

are 2⇡-periodic functions and are called wavelet symbols.

Theorem 2.3.2 (Unitary Extension Principle (UEP) [87]). Let � 2 L
2

(R) be the

compactly supported refinable function with its finitely supported refinement mask
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h
0

satisfying bh
0

(0) = 1. Let {h
1

, ..., h
r

} be a set of finitely supported sequences.

Then the system X( ) where  = { 
1

, ..., 
r

} as defined in (2.10) forms a tight

frame in L
2

(R) provided the equalities

r

X

`=0

| bh
`

(⇠)|2 = 1 and
r

X

`=0

bh
`

(⇠) bh
`

(⇠ + ⇡) = 0 (2.11)

hold for almost all ⇠ 2 [�⇡, ⇡]. Furthermore, assuming r = 1 and k�k
L2(R) = 1, then

X(�) is an orthonormal wavelet basis of L
2

(R).

Notice that the conditions in (2.11) can be written in terms of the sequences

{h
0

, ..., h
r

}. The two conditions thus become

r

X

`=0

X

k2Z

h
`

[k]h
`

[k � p] = �
p,0

, p 2 Z,

where �
p,0

= 1 when p = 0 and 0 otherwise, and

r

X

`=0

X

k2Z

(�1)k�ph
`

[k]h
`

[k � p] = 0, p 2 Z.

The generators  via the UEP is called framelet in [30]. The UEP provides

the freedom to choose the number of the generators r in constructing the tight

framelets, which allows one to construct tight framelets from, for examples, splines

easily. In fact, [86] gives a systematic construction of tight wavelet frame systems

from B-splines by using the UEP.

2.3.2 Decomposition and Reconstruction Algorithms

The decomposition and reconstruction algorithms for the MRA-based tight wavelet

frames derived from the UEP are essentially the same as those of MRA-based or-

thonormal wavelets. Here, we assume that all masks used are finitely supported.

Since P
L

f = DLP
0

D�Lf , one may use P
0

f 2 V
0

to approximate f without loss

of generality. When a tight wavelet frame is used, the given data is considered to

be sampled as local average v[k] = hf,�(·� k)i, which means

P
0

f =
X

k2Z

v[k]�(·� k)
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can be used to approximate the underlying function f .

Given the sequence h
`

= {h
`

[k]}
k2Z for any ` = 0, 1, ..., r, define an infinite

matrix H
`

corresponding to h
`

as

H
`

:= (H
`

[l, k]) := (
p
2 h

`

[k � 2l]),

where the (l, k)-th entry in H
`

is fully determined by the (k � 2l)-th entry in h
`

.

Then for any v 2 `
2

(Z), we have

(H
`

v)[l] =
p
2
X

k2Z

h
`

[k � 2l]v[k].

Similarly, the adjoint of H
`

, denote by H⇤
`

, can be defined as

(H⇤
`

v)[k] =
p
2
X

l2Z

h
`

[k � 2l]v[l].

Let us denote the downsampling operator as # (·), which is defined by

(# v)[k] = v[2k], k 2 Z;

and the upsampling operator as " (·), which is defined by

(" v)[k] =

8

<

:

v[k/2], k even;

0, k odd.

Then, we have

H
`

v =# (
p
2 h

`

[�·]⌦ v) and H⇤
`

v =
p
2h

`

⌦ (" v).

The above notation based on convolution and (up)downsampling are the traditional

notation used in the literature of wavelets.

It can be shown that
r

X

`=0

H⇤
`

H
`

= I,

which is the so-called perfect reconstruction property.

For multiple level decomposition, define W
L

, L < 0 as a (rectangular) block
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matrix:

W
L

:= [HL

0

;H
1

HL+1

0

; . . . ,H
r

HL+1

0

; . . . ;H
1

; . . . ;H
r

]T .

Then the reconstruction operator W ⇤
L

, the adjoint operator of W
L

, is given by

W ⇤
L

= [H⇤L
0

;H⇤L+1

0

H⇤
1

; . . . ,H⇤L+1

0

H⇤
r

; . . . ;H⇤
1

; . . . ;H⇤
r

]T .

Similarly, we also have a multi-level perfect reconstruction formula W ⇤
L

W
L

= I.

The fast framelet decomposition and reconstruction algorithms are summarized

as follows.

L-level Fast Framelet Decomposition and Reconstruction Algorithms

Given signal v 2 RN with N assumed to be an integer multiple of 2L, L 2 Z
+

.

Denote v
0,0

= v.

Decomposition: For each j = 1, 2, . . . , L

(a) Obtain low frequency approximation to v at level j:

v
0,j

=# (
p
2 h

0

[�·]⌦ v
0,j�1

);

(b) Obtain framelet coe�cients of v at level j:

v
`,j

=# (
p
2 h

`

[�·]⌦ v
0,j�1

), ` = 1, 2, . . . , r.

Reconstruction: For each j = L,L� 1, . . . , 1,

v
0,j�1

=
r

X

`=0

p
2h

`

⌦ (" v
`,j

).



Chapter 3
A Semismooth Newton-CG Augmented

Lagrangian Algorithm

This chapter is devoted to designing and analysing augmented Lagrangian based al-

gorithms to solve the general non-separable `
1

-regularized convex minimization prob-

lem (1.1). We first reformulate the original unconstrained problem to an equivalent

constrained one, so that it is conducive for us to apply the augmented Lagrangian

framework [84]. Then we propose an inexact semismooth Newton augmented La-

grangian (SSNAL) algorithm to solve this reformulated constrained problem. We

also characterize the condition when the generalized Hessian of the objective func-

tion is positive definite, and subsequently provide the convergence analysis of the

proposed SSNAL algorithm.

Notation

Throughout the discussions of the algorithms for solving (1.1) in this chapter

and Chapter 4, we often use the following soft-thresholding and projection (onto an

`1-ball) functions defined by

s
⌫

: Rn ! Rn, s
⌫

(x) = sign(x) �max {|x|� ⌫, 0} (3.1)

⇡
⌫

: Rn ! Rn, ⇡
⌫

(x) = sign(x) �min {|x|, ⌫} (3.2)

where ⌫ � 0 is a given parameter, and “�” denotes the componentwise product

between two vectors; sign(x) and |x| are the vectors obtained from x by taking sign

and absolute value of the components. Observe that x = s
⌫

(x) + ⇡
⌫

(x).

19
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Define also the Huber function �
⌫

: R ! R by

�
⌫

(t) =

8

<

:

1

2

t2 if |t|  ⌫

⌫|t|� 1

2

⌫2 if |t| > ⌫.
(3.3)

Note that �
⌫

(t) can be written compactly as

�
⌫

(t) =
1

2

�

t2 � s2
⌫

(t)
�

.

It is not di�cult to show that s
⌫

(x) is the unique minimizer of the following proximal

minimization problem:

min

⇢

kyk
1

+
1

2⌫
ky � xk2 | y 2 Rn

�

=
1

⌫

n

X

i=1

�
⌫

(x
i

) =: �
⌫

(x) (3.4)

where �
⌫

(x) and s
⌫

(x) are known as the Moreau-Yoshida regularization and prox-

imal map of the function k · k
1

with parameter ⌫, respectively.

3.1 Reformulation of (1.1)

It is clear that we can rewrite (1.1) as the following linearly constrained convex

minimization problem by introducing an auxiliary variable u:

min
x2Rn

,u2Rp f(x) + ⇢kuk
1

s.t. Bx� u = 0.
(P)

By direct calculation, we can show that the dual problem of (P) is given by:

max
v2Rp

⇢

g(v) := min
x2Rn

�

f(x) + hBTv, xi | kvk1  ⇢

�

=max
v2Rp

��f ⇤(�BTv) | kvk1  ⇢
 

(3.5)

= max
v2Rp

,x2Rn

�

f(x) + hBTv, xi | rf(x) + BTv = 0, kvk1  ⇢
 

, (D)
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where f ⇤ denotes the conjugate function of f defined by

f ⇤(y) := sup
x2Rn

{hy, xi � f(x)}.

Since the optimal value of (P) is finite and attained, and that the Slater condition

holds for the convex problem (P), strong duality holds for (P) and (D) [3, Theorem

6.2.4], i.e., there exists (x⇤,u⇤,v⇤) such that (x⇤,u⇤) is optimal for (P) and (x⇤,v⇤)

is optimal for (D), and ⇢ku⇤k
1

= hBTv⇤, x⇤i. Furthermore, (x⇤,u⇤,v⇤) must satisfy

the following optimality conditions for (P) and (D):

Bx� u = 0, rf(x) + BTv = 0, v 2 @⇢kuk
1

, (3.6)

where @⇢kuk
1

is the subdi↵erential of ⇢kuk
1

, and v 2 @⇢kuk
1

means

v
i

2

8

>

<

>

:

{⇢} if u
i

> 0

{�⇢} if u
i

< 0

[�⇢, ⇢] if u
i

= 0,

i = 1, ..., p.

Note that the condition (3.6) is also the necessary and su�cient condition for x to

be an optimal solution to (1.1). Based on (3.6), we can see that if B has full column

rank, then for a su�ciently large parameter ⇢, the problem (1.1) admits x = 0 as

the optimal solution. Specifically, let v̄ = B(BTB)�1rf(0). It is easy to observe

that if ⇢ � kv̄k1, then x = 0,u = 0,v = v̄ are the optimal solutions to (P) and

(D).

The augmented Lagrangian method which we will design shortly is based on the

following augmented Lagrangian function of (P) defined by: L
�

: Rn⇥Rp⇥Rp ! R

L
�

(x,u;v) = f(x) + ⇢kuk
1

+ hv, B(x)� ui+ �

2
kBx� uk2

= f(x) + ⇢kuk
1

+
�

2
kB(x)� u+ ��1vk2 � 1

2�
kvk2 (3.7)

where � > 0 is a given parameter. By virtue of [83, Theorem 3.2], we know that the

optimal value of (P) is the same as the optimal value of the following maximization

problem:

max
v2Rp

min
x2Rn

,u2Rp
L
�

(x,u;v).
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3.2 The General Augmented Lagrangian Frame-

work

One of the most popular methods to solve a convex problem like (P) is the Hestenes-

Powell method of multipliers [54, 80], which is a special case of the augmented La-

grangian method (ALM) [84] when there are only equality constraints. The general

framework of the ALM for solving (P) can be described as follows. Given v0, �
0

> 0

and tolerance " > 0, iterate the following steps:

(xk+1,uk+1) ⇡ arg min
x2Rn

,u2Rp
L
�k
(x,u;vk) (3.8)

vk+1 = vk + �
k

(Bxk+1 � uk+1)

If k(vk � vk+1)/�
k

k  ", stop; else update �
k

such that 0 < �
k

" �1  1. (3.9)

The convergence of the ALM for general convex optimization problems has been

established in [84,85], where the theory is derived by interpreting the ALM applied to

the primal problem (P) as a proximal point algorithm applied to the corresponding

extended dual problem (3.5).

We should emphasize that the main task in each ALM iteration is to solve the

minimization subproblem (3.8). And di↵erent strategies to solve the subproblem

will lead to di↵erent variants of the ALM. In the next subsection, we will focus on

designing an e�cient inexact semismooth Newton algorithm (which exploits second-

order information) to solve the inner subproblem (3.8). The convergence results,

suitably adapted for (P), will also be provided accordingly.

One can of course use a variety of first-order methods to solve the subproblem

(3.8), especially popular methods such as the gradient descent method, alternating

direction methods, and accelerated proximal gradient method of Beck and Teboulle

[5] (when rf is Lipschitz continuous). However, for the ALM to converge, the

subproblem (3.8) must be solved to relatively high accuracy and first-order methods

are typically not the most e�cient ones for solving a problem to high accuracy. This

weakness is especially disadvantageous because the problem in (3.8) must be solved

repeatedly. Thus, this motivates us to design a semismooth Newton method for (3.8)

which can achieve quadratic convergence under suitable constraint nondegeneracy

conditions.
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Note that based on the ALM framework, we can delineate the relation between

various existing models/algorithms that have been used to approximately solve (1.1)

for computational expediency, as we can see from the following remarks.

Remark 3.2.1. For the particular choice of setting the Lagrangian multiplier v = 0,

the value of the following minimization problem thus provides a lower bound for the

optimal value of (P):

min
x2Rn

,u2Rp
L
�

(x,u; 0) = min
x2Rn

,u2Rp

n

f(x) +
�

2
kBx� uk2 + ⇢kuk

1

o

(3.10)

= min
x2Rn

(

f(x) + �
p

X

i=1

�
⇢/�

((Bx)
i

)

)

. (3.11)

The problem (3.11) reduces to one that has been considered in [75] when f(x) =
1

2

kAx � bk2. The interpretation of (3.10) or (3.11) as a suboptimal approximation

of (P) gives us an interesting view-point that it is perhaps not necessary to use

exotic convex regularization terms such as the Huber functions considered in [75]

but su�ce to just use the term ⇢kBxk
1

in (1.1).

Remark 3.2.2. In the context of TV-norm image restoration, the problem (1.1) with

f(x) = 1

2

kAx � bk2 and kBxk
1

= kxk
TV

, is often approximated by the problem

(3.10) for some suitably large parameter � (see [102]), since it is well known that

the solution x(�) of (3.10) would converge to a solution of (1.1) when � " 1. But

the problem (3.10) is exactly the subproblem in the zero-th iteration (with v0 = 0)

of our ALM. Thus the approximation problem (3.10) solved in [102] is just one

iteration of our ALM. In [102], an alternating minimization method is used to solve

(3.10). We should also mention that while the parameter � must be chosen to be

relatively large in [102], it can be chosen to be a moderate constant for our ALM.

3.3 An Inexact Semismooth Newton Method for

Solving (3.8)

In this section, we design a semismooth Newton method to solve the subproblem in

(3.8). By minimizing L
�

(x,u;vk) with respect to u first and using (3.4), we get the
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equivalent problem below:

xk+1 ⇡ argmin
x2Rn

n

 (x) := f(x) + �
p

X

i=1

�
⇢/�

(⌘
i

)
o

(3.12)

where �
"

(t) is the Huber function as defined in (3.3), and

⌘ := Bx+ ��1vk. (3.13)

Note that in ⌘ we have suppressed the index to show the dependence on k since

it is fixed. Thus to solve (3.8), we can solve the problem (3.12) involving only the

variable x. Once we have computed the optimal solution xk+1 from (3.12), we can

compute the optimal u by setting

uk+1 = s
⇢/�

(Bxk+1 + ��1vk). (3.14)

From our assumption that the objective function in (1.1) is coercive, we can

show that the function  (x) is also coercive. Hence (3.12) has a minimizer, and a

necessary and su�cient condition for optimality is given by:

0 = r (x) = rf(x) + �BT [�0
⇢/�

(⌘
1

); . . . ;�0
⇢/�

(⌘
p

)] = rf(x) + �BT (⇡
⇢/�

(⌘)).

(3.15)

Note that the objective function  (x) in (3.12) is convex and smooth, but it is not

necessarily twice continuously di↵erentiable. Hence classical Newton method cannot

be applied to (3.12). Fortunately, the gradient r (x) is strongly semismooth for

all x 2 Rn (since rf(·) and ⇡
⇢/�

(·) are strongly semismooth), and we may apply

a semismooth Newton method [81] to solve the nonlinear equation (3.15). The

semismooth Newton method is a second-order method which can achieve quadratic

convergence under suitable nondegeneracy conditions (more details will be given

later).

In the following, we design an inexact semismooth Newton-CG (SSNCG) algo-

rithm to solve the subproblem (3.12) based on the equation (3.15). At a current

iterate xj, let ⌘j = Bxj +��1vk. We compute the Newton direction for (3.12) from

the following generalized Newton equation:

(r2f(xj) + �BTdiag(wj)B)�x ⇡ �r (xj), (3.16)
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where diag(wj) 2 @⇡
⇢/�

(⌘j), and

wj

i

=

(

1 if |⌘j

i

| < ⇢/�

0 otherwise.
(3.17)

Note that for large scale problems where n is large, it is generally not possible or

too expensive to solve (3.16) by a direct method, and iterative method such as the

preconditioned conjugate gradient (PCG) method has to be employed.

Before we describe the inexact SSNCG algorithm for solving (3.12), we briefly

discuss the generalized Hessian of  at a given x 2 Rn since it is required in the

algorithm. Since rf(·) and ⇡
⇢/�k

(·) are locally Lipschitz continuous, the function

r (·) is locally Lipschitz continuous on Rn. By Rademacher’s Theorem, r is

almost everywhere Fréchet-di↵erentiable in Rn, and the generalized Hessian of  at

x is defined as

@2 (x) := @(r )(x), (3.18)

where @(r )(x) is the Clarke generalized Jacobian of r at x [28]. However, it is

not easy to express @2 (x) exactly, and it is typically approximated by the following

set:

@̂2 (x) :=
�r2f(x) + �BTDB | D 2 @⇡

⇢/�

(⌘)
 

(3.19)

where ⌘ := Bx+ ��1vk, and

@⇡
⇢/�

(⌘) =

8

>

<

>

:

diag(w)

�

�

�

�

�

�

�

w
i

= 1 if |⌘
i

| < ⇢/�

w
i

= 0 if |⌘
i

| > ⇢/�

w
i

2 [0, 1] otherwise

9

>

=

>

;

(3.20)

From [28, Corollary in p.75], it holds that for any d 2 Rn, one has

@2 (x)d ✓ @̂2 (x)d,

which means that if every element in @̂2 (x) is positive definite, then so is every

element in @2 (x).

The inexact SSNCG algorithm [110] we use to solve (3.12) is described as follows.
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Semismooth Newton-CG (SSNCG) Algorithm

Step 0. Given x0 2 Rn and µ 2 (0, 1/2), �̄, �, ⌧
1

, ⌧
2

2 (0, 1), ⌧ 2 (0, 1]. Set j := 0.

Step 1. Select V
j

2 @̂2 (xj) and compute

✏
j

:= ⌧
1

min{⌧
2

, kr (xj)k}, �
j

:= min{�̄, kr (xj)k1+⌧}.

Apply the PCG method to find an approximate solution �xj to

(V
j

+ ✏
j

I)�x = �r (xj)

such that the residual satisfies the following condition:

k(V
j

+ ✏
j

I)�xj +r (xj)k  �
j

. (3.21)

Step 2. Let `
j

be the smallest nonnegative integer ` such that

 (xj + �`�xj)   (xj) + µ�`hr (xj), �xji.

Set xj+1 = xj + �`j�xj.

Step 3. Replace j by j + 1 and go to Step 1.

3.4 Convergence of the Inexact SSNCG Method

The e�ciency of the SSNCG algorithm for solving (3.12) depends on the positive

definiteness of the generalized Hessian matrices of  . Thus before giving the conver-

gence results for the SSNCG algorithm, we shall characterize the positive definiteness

of the elements in @̂2 (x).
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By a direct calculation, we get the dual problem of (3.8):

max
s2Rp

⇢

min
x2Rn

�

f(x) + hBTs, xi � 1

2�
ks� vk2 | ksk1  ⇢

�

=max
s2Rp

⇢

�f ⇤(�BTs)� 1

2�
ks� vk2 | ksk1  ⇢

�

= max
s2Rp

,x2Rn

⇢

f(x) + hBTs, xi � 1

2�
ks� vk2 | rf(x) + BTs = 0, ksk1  ⇢

�

.

(3.22)

We can show that the objective function of (3.8) is coercive, and hence its optimal

value is finite and attained. Furthermore, strong duality holds for (3.8) and (3.22),

i.e., there exists a triple (x̂, û, ŝ) such that (x̂, û) is optimal for (3.8) and (x̂, ŝ)

is optimal for (3.22). The triple (x̂, û, ŝ) must satisfy the following optimality

conditions:

⌘ := Bx+ ��1v, u = ⌘ � ��1s, s = �⇡
⇢/�

(⌘), rf(x) + BTs = 0. (3.23)

From (3.23) and the definition of ⇡
⇢/�

(⌘), it is obvious that ksk1  ⇢.

Let us denote the active set corresponding to the inequality constraints of (3.22)

by

Ĵ := {i | |ŝ
i

| = ⇢, i = 1, . . . , p}. (3.24)

Then, it is well known (cf. [76, Definition 12.1]) that the linear independence con-

straint qualification (LICQ) for (3.22) holds at (x̂, ŝ) if the following condition is

satisfied:
2

6

6

6

4

r2f(x̂) 0

B
ˆ

J

diag(sign(ŝ
ˆ

J

))

B
ˆ

J

0

3

7

7

7

5

has full column rank, (3.25)

where B
ˆ

J

is the submatrix formed by extracting rows of B with row-indices in Ĵ

and B
ˆ

J

is the remaining submatrix. It is interesting to note the following equivalent

condition for the LICQ.

Lemma 3.4.1. The LICQ condition (3.25) can equivalently be stated as follows:

range(r2f(x̂)) + range(B
T

ˆ

J

) = Rn.
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Proof. It is well known that the matrix in (3.25) has full column rank if and only if

its null space is trivial, which in turn is equivalent to

range

 "

r2f(x̂) BT

ˆ

J

B
T

ˆ

J

0 diag(sign(ŝ
ˆ

J

)) 0

#!

=

 

Rn

R| ˆJ |

!

.

From here, we can readily show the required result.

The following lemma will be needed in our subsequent analysis.

Lemma 3.4.2. For given v 2 Rp and ⇢ > 0. Let (x̂, û, ŝ) be a triple satisfying the

KKT condition (3.23) and ⌘̂ := Bx̂ + ��1v. Then, for i = 1, . . . , p, the following

results hold.

(i) If |⌘̂
i

| < ⇢/�, then û
i

= 0 and |ŝ
i

| < ⇢;

(ii) If |⌘̂
i

| > ⇢/�, then û
i

6= 0 and |ŝ
i

| = ⇢;

(iii) If |⌘̂
i

| = ⇢/�, then û
i

= 0 and |ŝ
i

| = ⇢.

Therefore, |ŝ
i

| = ⇢, ⌘̂
i

� ⇢/�, and for the set Ĵ defined in (3.24), we have

Ĵ = {i | |⌘̂
i

| � ⇢/�, i = 1, . . . , p}. (3.26)

Proof. Since the proof of the first part of this lemma can be directly verified by

(3.23), we omit it. The second part easily follows from the first part and (3.24).

Proposition 3.1. Suppose that (x̂, û, ŝ) is a triple satisfying the KKT condition

(3.23). Let ⌘̂ := Bx̂+ ��1v. Then the following statements are equivalent:

(a) LICQ for (3.22) holds at (x̂, ŝ).

(b) Every V 2 @̂2 (x̂) is symmetric positive definite.

(c) Let V 0 = r2f(x̂) + �BTdiag(w0)B, with w0

i

= 1 if |⌘̂
i

| < ⇢/� and w0

i

= 0

otherwise. It holds that V 0 2 @̂2 (x̂) is symmetric positive definite.

(d) r2f(x̂) is positive definite on the null space Ker(B
ˆ

J

).

Proof. “(a)) (b)”. Suppose for the purpose of contradiction that (b) does not hold.

Then there exists some V 2 @̂2 (x̂) such that V is not positive definite. By the
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definition of @̂2 (x̂) in (3.19), there exists a D 2 @⇡
⇢/�

(⌘̂) such that V = r2f(x̂)+

�BTDB. Since r2f(x̂) is symmetric positive semidefinite (because f is convex

and twice continuously di↵erentiable), we know that V is positive semidefinite, thus

there exists 0 6= d 2 Rn such that

0 = hd, V di = hd, r2f(x̂)di+ �hd, (BTDB)di. (3.27)

From (3.26) and (3.20), we obtain that hd, (BTDB)di � hB
ˆ

J

d, B
ˆ

J

di, which, to-
gether with (3.27), yields

hd, r2f(x̂)di = 0, hB
ˆ

J

d, B
ˆ

J

di = 0.

This implies that r2f(x̂)d = 0 and B
ˆ

J

d = 0. Therefore, the linear system

2

6

6

6

4

r2f(x̂) 0

B
ˆ

J

diag(sign(ŝ
ˆ

J

))

B
ˆ

J

0

3

7

7

7

5

2

4

d̂

↵

3

5 = 0 (3.28)

has nonzero solution (d̂,↵) = (d,�sign(ŝ
ˆ

J

) � (B
ˆ

J

d)), which contradicts that LICQ

for (3.22) holds at (x̂, ŝ). The contradiction implies that (b) holds.

“(b) ) (c)”. It is obvious since V 0 2 @̂2 (x̂).

“(c) ) (a)”. By Lemma 3.4.2 and the definition of V 0, we can easily deduce that

V 0 = r2f(x̂) + �B
T

ˆ

J

B
ˆ

J

. (3.29)

Now we show that (a) holds. Let (d̃, ↵̃) 2 Rn ⇥ R| ˆJ | be a solution of linear system

(3.28). Then, we have that

r2f(x̂)d̃ = 0, B
ˆ

J

d̃ = 0 and ↵̃ = �sign(ŝ
ˆ

J

) � (B
ˆ

J

d̃). (3.30)

This implies that hd̃, (r2f(x̂) + �B
ˆ

J

B
ˆ

J

)d̃i = hd̃, V 0d̃i = 0, and hence d̃ = 0 since

V 0 is positive definite. From (3.30), it holds that ↵̃ = 0. This shows that the

condition (3.25) is satisfied and hence (a) holds.

“(c) , (d)”. By using (3.29), one can easily show that (c) is equivalent to (d).

Now we are ready to state the results on the rate of convergence of the SSNCG
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algorithm.

Theorem 3.4.3. The SSNCG algorithm is well defined and any accumulation point

of {xj} generated by this algorithm is an optimal solution to the subproblem (3.12).

Moreover, since the optimal solution set of (3.12) is nonempty and bounded, the

sequence {xj} has an accumulation point x̂. Suppose that the LICQ for (3.22) holds

at (x̂, û, ŝ), where (x̂, û, ŝ) satisfies the KKT condition (3.23). Then the sequence

{xj} converges to x̂ at least superlinearly, i.e.,

kxj+1 � x̂k = O(kxj � x̂k1+⌧ )

where the parameter ⌧ 2 (0, 1] is given in the SSNCG algorithm.

Proof. Since V
j

2 @̂2 (xj) is always positive semidefinite, the matrix V
j

+ ✏
j

I is

positive definite as long as r (xj) 6= 0. Assuming r (xj) 6= 0 for any j � 0,

by [110, Lemma 3.1], we have

1

�
max

( eV
j

)
 h�r (xj),�xji

kr (xj)k2  1

�
min

( eV
j

)
(3.31)

where eV
j

:= V
j

+✏
j

I and �
max

( eV
j

) and �
min

( eV
j

) are the largest and smallest eigenval-

ues of eV
j

respectively. Therefore, the search direction �xj generated by the SSNCG

algorithm is always a descent direction, and hence, the algorithm is well defined.

Moreover, since the optimal solution set of (3.12) is nonempty and bounded, the

sequence {xj} is bounded. Let x̂ be any accumulation point of {xj}. By using

(3.31) and the fact that ⇡
⇢/�

(·) is Lipschitz continuous, it is easy to derive that

r (x̂) = 0. By the convexity of  (·), x̂ is an optimal solution of (3.12).

Furthermore, since the LICQ for (3.22) is assumed to hold at (x̂, û, ŝ), where

(x̂, û, ŝ) satisfies the KKT condition (3.23), x̂ is the unique optimal solution to

(3.12) and the sequence {xj} converges to x̂.

Finally, from Proposition 3.1, we know that for any bV 2 @̂2 (x̂) as defined in

(3.19), there exists a bD 2 @⇡
⇢/�

(⌘̂) such that

bV = r2f(x̂) + �BT

bDB � 0.

Similarly, for any V
j

, j � 0, there exists a D
j

2 @⇡
⇢/�

(⌘j), where ⌘j := Bxj+��1v,
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such that

V
j

= r2f(xj) + �BTD
j

B.

For all j su�ciently large, since bV is positive definite, {k(V
j

+ ✏
j

I)�1k} is uniformly

bounded, and since ⇡
⇢/�

(·) is strongly semismooth, we have

kxj +�xj � x̂k = kxj + (V
j

+ ✏
j

I)�1(((V
j

+ ✏
j

I)�xj +r (xj))�r (xj))� x̂k
 kxj � x̂� (V

j

+ ✏
j

I)�1r (xj)k+ k(V
j

+ ✏
j

I)�1kk(V
j

+ ✏
j

I)�xj +r (xj)k
 k(V

j

+ ✏
j

I)�1kk(V
j

+ ✏
j

I)(xj � x̂)�r (xj)k+ �
j

k(V
j

+ ✏
j

I)�1k
 k(V

j

+ ✏
j

I)�1k(kr (xj)�r (x̂)� V
j

(xj � x̂)k+ ✏
j

kxj � x̂k+ �
j

)

 O(kBTkk⇡
⇢/�

(⌘j)� ⇡
⇢/�

(⌘̂)�D
j

(B(xj � x̂))k+ ⌧
1

kr (xj)kkxj � x̂k+ kr (xj)k1+⌧ )
 O(kB(xj � x̂)k2 + ⌧

1

kr (xj)�r (x̂)kkxj � x̂k+ kr (xj)�r (x̂)k1+⌧ )
 O(kxj � x̂k2 + ⌧

1

�kBTkkBkkxj � x̂k2 + (�kBTkkBkkxj � x̂k)1+⌧ )
 O(kxj � x̂k1+⌧ ). (3.32)

This implies that for all j su�ciently large,

xj � x̂ = ��xj +O(k�xjk1+⌧ ) and k�xjk ! 0. (3.33)

For each j � 0, let Rj := (V
j

+ ✏
j

I)�xj +r (xj). Then, for all j su�ciently large,

hRj, �xji  �
j

k�xjk  kr (xj)k1+⌧k�xjk  kr (xj)�r (x̂)k1+⌧k�xjk
 (�kBTkkBkkxj � x̂k)1+⌧k�xjk  O(k�xjk2+⌧ ),

that is

�hr (xj), �xji � h�xj, (V
j

+ ✏
j

I)�xji+O(k�xjk2+⌧ ),

which, together with (3.33) and the fact that {k(V
j

+✏
j

I)�1k} is uniformly bounded,

implies that there exists a constant �̂ > 0 such that

�hr (xj), �xji � �̂k�xjk2 for all j su�ciently large.

Since r (·) is strongly semismooth at x̂, from [40, Theorem 3.2 & Remark 3.1]

or [77], we know that for µ 2 (0, 1/2), there exists an integer j
0

such that for any
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j � j
0

,

 (xj +�xj)   (xj) + µhr (xj), �xji,

which means that for all j � j
0

,

xj+1 = xj +�xj.

This, together with (3.32), completes the proof.

Under the favourable condition stated in Proposition 3.1, the CG method for

solving (3.16) can be expected to have reasonably fast convergence if the condition

number of the coe�cient matrix is not too large. Even then, it is still beneficial to

have a preconditioner to accelerate the convergence of the PCG method. A simple

and natural choice is the following diagonal preconditioner:

P
1

= diag
⇣

r2f(xj) + �BTdiag(wj)B
⌘

.

If ↵I + �BTB can be inverted at moderate cost, another practical preconditioner

would be

P
2

= ↵I + �BTB

where ↵ could be chosen as the mean of diag(r2f(xj)).

The above preconditioners are fairly general choices and may not be the most

e↵ective ones for a particular application problem. In practice, one may construct

more sophisticated preconditioners for (3.16) based on the available problem struc-

tures.

3.5 The SSNAL Algorithm and Its Convergence

By adopting the general framework of the ALM to solve (P) with the subproblem

(3.8) at each iteration solved by the SSNCG algorithm, we obtain our semismooth

Newton based augmented Lagrangian method (for brevity, we call it the SSNAL

algorithm), which is summarized in the following template.
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SSNAL algorithm: Input x0,v0 2 Rn, �
0

> 0, iterate:

Step 1. Solve the following subproblem by using the SSNCG algorithm with xk

as the starting point:

xk+1 ⇡ argmin{ 
k

(x) := L
�k
(x;vk) : x 2 Rn}.

Step 2. Compute ⌘k+1 = Bxk+1 + ��1

k

vk, uk+1 = s
⇢/�k

(⌘k+1).

Step 3. Update vk+1 = vk + �
k

(Bxk+1 � uk+1) = �
k

⇡
⇢/�k

(⌘k+1).

Step 4. If krk+1 := B(xk+1)� uk+1 = ��1

k

(vk+1 � vk)k  "; stop; else; update

�
k

; end.

Observe that the stopping condition for the outer iteration of the SSNAL algorithm

corresponds to the primal feasibility condition of (P). Moreover, it is clear that

kvk+1k1  ⇢.

For the rest of this section, we will establish the global and local convergence of

the SSNAL algorithm for solving the problem (P) and its dual (D), based on the

general convergence theory of the ALM established in [84,85].

We use the following stopping criteria suggested by Rockafellar [84,85] to termi-

nate the SSNCG algorithm for solving the subproblem (3.12):

 
k

(xk+1)� inf  
k

 #2

k

/(2�
k

), #
k

� 0,
1
X

k=0

#
k

< 1, (A)

 
k

(xk+1)� inf  
k

 �2
k

/(2�
k

)kvk+1 � vkk2, �
k

� 0,
1
X

k=0

�
k

< 1, (B)

kr 
k

(xk+1)k  (�0
k

/�
k

)kvk+1 � vkk, 0  �0
k

! 0. (B0)

First, we state the global convergence results of the SSNAL algorithm in the

following theorem, which is obtained by specializing the results of [84, Theorem 4]

to the problem (P).

Theorem 3.5.1 (Global convergence). Let the SSNAL algorithm be executed with

stopping criterion (A). Then the sequence {vk} generated by the SSNAL algorithm

is bounded and {vk} ! v⇤, where v⇤ is an optimal solution to (D), and {(xk,uk)}
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is asymptotically minimizing for the problem (P) with

kBxk+1 � uk+1k = ��1

k

kvk+1 � vkk ! 0 (3.34)

f(xk+1) + ⇢kBxk+1k
1

� inf(P)  1

2�
k

⇣

#2

k

+ kvkk2 � kvk+1k2
⌘

. (3.35)

Moreover, since the set {(x,u) | Bx� u = 0, f(x) + ⇢kuk
1

 ↵} is nonempty and

bounded for some scalar ↵, we have that the sequence {(xk,uk)} is also bounded and

any accumulation points (x⇤,u⇤) of the sequence {(xk,uk)} is an optimal solution

to (P).

Proof. The first part of this theorem follows from [85, Theorem 4], since the problem

(P) satisfies the Slater condition. The second part also follows from [85, Theorem

4].

Next we shall state the results on the local rate of convergence of the SSNAL

algorithm. To this end, we first introduce some relevant concepts from the paper [85].

Let l(x,u,v) : Rn⇥Rp⇥Rp ! R be the ordinary Lagrangian for (P) in extended

form:

l(x,u,v) :=

8

<

:

f(x) + ⇢kuk
1

+ hv, Bx� ui if kvk1  ⇢

�1 otherwise.

Then, for any (x,u,v) 2 Rn ⇥Rp ⇥Rp, we define the following maximal monotone

operator:

T
l

(x,u,v) := {(y
x

,y
u

, z) 2 Rn ⇥ Rp ⇥ Rp : (y
x

,y
u

,�z) 2 @l(x,u,v)}. (3.36)

It follows that for any (y
x

,y
u

, z) 2 Rn ⇥ Rp ⇥ Rp,

T �1

l

(y
x

,y
u

, z) = arg min
(x,u)2Rn⇥Rp

max
v2Rp

{L(x,u,v)� h(x,u), (y
x

,y
u

)i+ hv, zi}.
(3.37)

Then the essential objective function in (D) can be defined as

g(v) = inf
(x,u)2Rn⇥Rp

l(x,u,v),

which is a closed concave function on Rp. Let T
g

= �@g. T
g

is a maximal monotone
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operator with

T �1

g

(z) = argmax
v2Rp

{g(v) + hv, zi}.

From now onwards, we suppose that (x⇤,u⇤,v⇤) is a KKT point of (P) and

(D), i.e., a solution of (3.6). Since the objective function of (P) is not everywhere

di↵erentiable, we reformulate the problem (P) as the following problem:

min f(x) + ⇢(eTw)

s.t. Bx� u = 0

u�w  0

� u�w  0,

(3.38)

where e 2 Rp denotes the vector of all ones. The dual problem of (3.38) is the same

as (D). It is clear that (P) and (3.38) are equivalent. Indeed we can readily show

that if (x⇤,u⇤) is an optimal solution to (P), then (x⇤,u⇤,w⇤) with w⇤ = |u⇤| is an
optimal solution to (3.38). Conversely, if (x⇤,u⇤,w⇤) is an optimal solution to (3.38),

then (x⇤,u⇤) is an optimal solution to (P). In what follows, we say that the strong

second-order optimality condition (LICQ, respectively) holds for (P) at (x⇤,u⇤) to

mean that the strong second-order optimality condition (LICQ, respectively) holds

for (3.38) at (x⇤,u⇤,w⇤).

Define the following three index sets by

Jp

0

= {i | u⇤
i

= w⇤
i

= 0}, Jp

+

= {i | u⇤
i

= w⇤
i

> 0}, Jp

� = {i | u⇤
i

= �w⇤
i

< 0}.
(3.39)

Note that the second constraint in (3.38) is active for i 2 Jp

0

[ Jp

+

, and the third

constraint is active for i 2 Jp

0

[ Jp

�. We denote by J̄p the compliment of the index

set Jp

0

[ Jp

+

[ Jp

�. Then the LICQ holds for (P) at (x⇤,u⇤) if the following condition
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is satisfied:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

BT

J

p
0

BT

J

p
+

BT

J

p
�

BT

¯

J

p 0 0 0 0

�I
J

p
0

0 0 0 I
J

p
0

0 �I
J

p
0

0

0 �I
J

p
+

0 0 0 I
J

p
+

0 0

0 0 �I
J

p
�

0 0 0 0 �I
J

p
�

0 0 0 �I
¯

J

p 0 0 0 0

0 0 0 0 �I
J

p
0

0 �I
J

p
0

0

0 0 0 0 0 �I
J

p
+

0 0

0 0 0 0 0 0 0 �I
J

p
�

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

has full column rank,

(3.40)

which is equivalent to the condition that the rows of B with indices in Jp

0

are linearly

independent.

The LICQ condition for (D) is analogous to that for (3.22). Following the idea

in Lemma 3.4.2, define the following three index sets by

Jd

1

= {i | u⇤
i

= 0, |v⇤
i

| < ⇢}, Jd

2

= {i | u⇤
i

= 0, |v⇤
i

| = ⇢}, Jd

3

= {i | u⇤
i

6= 0, |v⇤
i

| = ⇢},
(3.41)

then by the same technique used for proving the equivalence of (a) and (d) in Propo-

sition 3.1, one can easily get that the LICQ holds for (D) at (x⇤,v⇤) is equivalent

to

r2f(x⇤) is positive definite on the null space Ker(B
J

d
1
).

This is the same as the strong second-order su�cient condition [82] for optimality

in (P).

In order to state our results on the rate of convergence of the SSNAL algorithm,

we recall that T �1 is said to be Lipschitz continuous around the origin with modulus

a � 0 if there exists a neighborhood N of the origin such that for any z 2 N , there

exists a unique solution ȳ to the inclusion problem: y 2 T �1(z), and ky
1

� y
2

k 
akz

1

� z
2

k whenever z
1

, z
2

2 N and y
1

2 T �1(z
1

), y
2

2 T �1(z
2

). It is easy to

see that the Lipschitz continuity of T �1 around the origin implies the Lipschitz

continuity of T �1 at the origin.

Theorem 3.5.2 (Local convergence). Let the SSNAL algorithm be executed with

stopping criterion (B). If the LICQ for (P) and (D) holds respectively at (x⇤,u⇤)
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and (x⇤,v⇤), then (xk,uk,vk) ! (x⇤,u⇤,v⇤), where (x⇤,u⇤,v⇤) is the unique point

satisfying the KKT condition (3.6), and one has

kvk+1 � v⇤k  ✓
k

kvk � v⇤k for all k su�ciently large,

where ✓
k

= [a
g

(a2
g

+�2

k

)�1/2+ �
k

](1� �
k

)�1 ! ✓1 = a
g

(a2
g

+�2

1)�1/2 < 1 with �1 :=

sup
k

{�
k

} and a
g

being the Lipschitz constant of T �1

g

around the origin. Moreover,

the conclusions of Theorem 3.5.1 about {(xk,uk)} are valid with #
k

= �
k

kvk+1�vkk
in (3.34).

If in addition, one also has the stopping criterion (B0), then

k(xk,uk)� (x⇤,u⇤)k  ✓0
k

kvk+1 � vkk for all k su�ciently large,

where ✓0
k

= a
l

(1 + �0
k

)/�
k

! ✓01 = a
l

/�1 with a
l

being the Lipschitz constant of

T �1

l

around the origin.

Proof. Since the LICQ for (D) holds at (x⇤,v⇤), we have that the strong second-

order su�cient condition for optimality in (P) holds. This together with the LICQ

for (P) at (x⇤,u⇤) implies the strong regularity of the solution to the KKT system

(3.6) [82, Theorem 4.1]. Thus, T �1

l

is Lipschitz continuous around the origin and

so is T �1

g

. The rest of the conclusions directly follows from [85, Theorem 5].

The following result establishes a finite convergence property for the variable

u
J

d
1
.

Theorem 3.5.3. Suppose the conditions of Theorem 3.5.2 are satisfied, and �1 <

1. Then the sequence {(xk,uk,vk)} generated by the SSNAL algorithm satisfies

uk

i

= u⇤
i

= 0 8i 2 Jd

1

, for all but a finite number of iterations.

Proof. First note that for i 2 Jd

1

, we have |v⇤
i

| < ⇢, and

0 = u⇤
i

= (Bx⇤)
i

.

Let ⌘⇤
i

= (Bx⇤)
i

+ ��1

1 v⇤
i

= ��1

1 v⇤
i

. Thus

" := min
i2J⇤

1

{⇢� �1|⌘⇤
i

|} > 0. (3.42)
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For all i 2 Jd

1

, we have that

|�
k

⌘k+1

i

� �1⌘⇤
i

| = |vk

i

+ �
k

(Bxk+1)
i

� v⇤
i

|
 |vk

i

� v⇤
i

|+ �
k

|(Bxk+1)
i

� (Bx⇤)
i

| (Note that (Bx⇤)
i

= 0)

 |vk

i

� v⇤
i

|+ �1|(Bxk+1)
i

� (Bx⇤)
i

| < " 8 k � k̄, (3.43)

where (3.43) holds for some fixed integer k̄ because vk ! v⇤ and Bxk ! Bx⇤ as

k ! 1.

Thus, for all k � k̄, we have that

|�
k

⌘k+1

i

|  |�
k

⌘k+1

i

� �1⌘⇤
i

|+ �1|⌘⇤
i

| < "+ �1|⌘⇤
i

|  ⇢. (3.44)

By the definition of uk+1

i

, we have

uk+1

i

= s
⇢/�k

(⌘k+1

i

) = 0 8 k > k̄. (3.45)

This completes the proof.

3.6 Extensions

Strictly speaking, when f is the Huber loss function in (1.1), it does not satisfy our

requirement that rf is continuously di↵erentiable. However, becauserf is strongly

semismooth, the SSNAL algorithm can be applied to solve such a problem without

any di�culty (where instead of r2f(x), we pick an element of @rf(x)), and most

of the convergence theory results can be extended to such a case with appropriate

modifications.

For the group lasso problem (possibly overlapping), it has the form

min
n

f(x) + ⇢
K

X

i=1

kB
i

(x)k
o

(3.46)

where B
i

denotes the matrix corresponding to extracting a subvector from x. Al-

though the SSNAL algorithm we developed here cannot be directly applied to solve

(3.46), nevertheless it is not di�cult to extend the ideas and algorithmic framework

to solve this problem (even with general matrices B
i

) by reformulation it to the
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following form:

min
n

f(x) + ⇢
K

X

i=1

ku
i

k | B
i

(x)� u
i

= 0, i = 1, . . . , K
o

. (3.47)

From the associated augmented Lagrangian function

L
�

(x,u;v) = f(x) +
K

X

i=1

⇣

⇢ku
i

k+ �

2
kB

i

(x)� u
i

+ ��1v
i

k2 � 1

2�
kv

i

k2
⌘

(3.48)

we see that the key step in designing the SSNAL algorithm for solving (3.46) is to

solve the following minimization problem analytically:

min
u

L
�

(xk+1,u;vk) ⌘
K

X

i=1

min
ui

⇣

⇢ku
i

k+ �

2
ku

i

� B
i

(xk+1)� ��1vk

i

k2
⌘

. (3.49)

Fortunately, analogous to the Moreau-Yoshida regularization and proximal map of

kxk
1

=
P

n

i=1

|x
i

|, we can compute the Moreau-Yoshida regularization of
P

n

i=1

kx
i

k
analytically as follows:

min
n

n

X

i=1

ky
i

k+ 1

2⌫
ky�xk2

o

=
n

X

i=1

min
n

ky
i

k+ 1

2⌫
ky

i

�x
i

k2
o

=
1

⌫

n

X

i=1

�
⌫

(kx
i

k)

and the correspondingly proximal map (unique minimizer) is given by

s⌫
i

(x
i

) = sign(x
i

)max{kx
i

k � ⌫, 0}, i = 1, . . . , n (3.50)

where sign(x
i

) = x
i

/kx
i

k if x
i

6= 0, and sign(x
i

) = 0 if x
i

= 0. By considering the

projection map onto the ball {x
i

| kxk
i

 ⌫}, which is given by

⇡⌫

i

(x
i

) = sign(x
i

)min{kx
i

k, ⌫}, i = 1, . . . , n, (3.51)

we have that x
i

= s⌫
i

(x
i

) + ⇡⌫

i

(x
i

).

To apply the SSNCG algorithm to solve a subproblem analogous to (3.8), we

need to consider the optimality condition analogous to (3.15):

rf(x) + �
K

X

i=1

BT

i

(⇡⇢/�

i

(⌘
i

)) = 0 (3.52)
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where ⌘
i

= B
i

x + ��1v
i

. Furthermore, the elements of the generalized Hessian of

the objective function of the subproblem have the form:

r2f(x) + �
K

X

i=1

BT

i

D
i

B
i

, with D
i

=

8

<

:

I if k⌘
i

k < ⇢/�

⇢/�

k⌘ik

⇣

I � ⌘i⌘
T
i

k⌘ik2

⌘

if k⌘
i

k � ⇢/�.
(3.53)

Note that the elements of @⇡⌫

i

(x) are given as follows:

@⇡⌫

i

(x
i

) =

8

>

>

>

<

>

>

>

:

I if kx
i

k < ⌫

⌫

kxik

⇣

I � xix
T
i

kxik2

⌘

if kx
i

k > ⌫
n

I � t xix
T
i

kxik2 | t 2 [0, 1]
o

if kx
i

k = ⌫.

(3.54)



Chapter 4
First-order Methods

In this chapter, we summarize/design three types of first-order methods which are

either known to be e�cient for solving some special cases of structured B, or are

expected to be e�cient based on established theoretical results. As we shall see

later, the computational e�ciency of these first-order methods depends crucially

(much more so than the SSNAL algorithm) on the problem structures of (1.1).

Thus their practical performance are very much problem dependent, where for some

classes of problems they may have good e�ciency, while for some others, they may

even stagnate without delivering an acceptable solution. Nevertheless, our SSNAL

algorithm can always capitalize on the strength (of rapid initial progress) of first-

order methods for generating a good starting point to warm-start the algorithm.

4.1 Alternating Direction Method of Multipliers

We start by adapting the widely-used alternating direction method of multipliers

(ADMM) [37, 48, 50] for solving (1.1). The ADMM can either be used as a stand

alone algorithm for solving (1.1), or it can be used to generate a good starting point

to warm-start a second-order algorithm so as to accelerate the onset of the quadratic

convergence phase.

It is generally di�cult to solve (3.8) simultaneously for the optimal solutions

xk+1 and uk+1 because its objective function is not separable in the variables x

and u due to the coupling term kB(x) � u + ��1vkk2 in (3.7). This has lead to a

rich literature on designing alternating algorithms to alleviate such a di�culty in the

ALM. The most common approach is the alternating direction method of multipliers

41
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(ADMM) [37, 48, 50], which can be described as follows. Given v0,u0 2 Rp, iterate

the following steps:

xk+1 ⇡ arg min
x2Rn

n

L
�

(x,uk;vk) ⌘ f(x) +
�

2
kBx� uk + ��1vkk2

o

(4.1)

uk+1 ⇡ arg min
u2Rp

n

L
�

(xk+1,u;vk) ⌘ ⇢kuk
1

+
�

2
ku� Bxk+1 � ��1vkk2

o

(4.2)

vk+1 = vk + �(Bxk+1 � uk+1) (4.3)

where  2 (0, (1 +
p
5)/2) is a fixed parameter. (Note that in practice,  should

be chosen to be at least 1 for faster convergence.) Observe that the subproblem

(4.1) is an unconstrained smooth convex minimization problem for which a variety

of algorithms can be used to solve it. We will discuss in detail later on how we solve

the subproblem (4.1).

The subproblem (4.2) is a nonsmooth problem because of the nonsmooth term

kuk
1

, but the simplicity of the objective function actually allows one to compute

the optimal solution analytically. From (3.4), we get

uk+1 = s
⇢/�

(⌘k), ⌘k = B(xk+1) + ��1vk. (4.4)

The ADMM described in (4.1)–(4.3) can be traced back to the pioneering work

of Glowinski and Marrocco [50] and Gabay and Mercier [48], who also established

the convergence of the exact variant of the ADMM. The convergence of the inexact

variant described in (4.1)–(4.3) can be found in [37], and we state the convergence

result below for the convenience of the reader.

Theorem 4.1.1. Consider the convex program (P) where B is assumed to have full

column rank. Suppose we are given v0,u0 2 Rp, � > 0, and summable sequences of

nonnegative numbers {µ
k

}1
k=0

, {⌫
k

}1
k=0

. Suppose {xk}1
k=1

and {uk}1
k=0

conform, for

all k, to

kxk+1 � argmin
x

n

f(x) +
�

2
kBx� uk + ��1vkk2

o

k  µ
k

(4.5)

kuk+1 � argmin
u

n

⇢kuk
1

+
�

2
ku� Bxk+1 � ��1vkk2

o

k  ⌫
k

(4.6)

Then the sequence {xk} would converge to a solution x⇤ of (P) and {vk} would

converge to a solution v⇤ of (D). Furthermore, {uk} converges to Bx⇤.
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Proof. By [37, Theorem 8] and noting that (P) has a KKT point.

Since the subproblem (4.2) can be solved exactly, the condition (4.6) is satisfied

with ⌫
k

= 0. For the subproblem (4.1), the optimality condition that xk+1 must

satisfy is given by

rf(x) + �BTBx = �BT (uk � ��1vk). (4.7)

There is a variety of methods which can be employed to solve (4.1), and the choice

would depend on the property of f(x) and also the dimension n of the problem.

When f(x) = 1

2

kAx � bk2, with rf(x) = AT (Ax � b), xk+1 can be computed by

just solving a linear system of equations with coe�cient matrix ATA+�BTB. When

f(x) is not a convex quadratic function but is twice continuously di↵erentiable and

n is moderate (say n < 1000), we propose to compute an xk+1 that satisfies the

condition (4.5) by Newton’s method with back-tracking linesearch while using xk as

the starting point. Since xk is close to xk+1 when k is su�ciently large, we would

expect that only a few Newton iterations are needed to solve (4.1). In the event when

n is large and rf is Lipschitz continuous, one may consider using a fast first-order

method, such as the FISTA method in [5], to solve (4.1). Generally speaking, when

f is such that the subproblem (4.1) cannot be solved analytically like in the case of

a quadratic loss function, ADMM would not be an e�cient method for solving (1.1)

since it generally requires a large number of iterations to converge.

Recall that when f(x) = 1

2

kAx� bk2, a linear system of normal equation of the

form (ATA + �BTB)x = h has to be solved repeatedly with a di↵erent right-hand

side vector h. If one were to solve the linear system by an iterative solver such as the

preconditioned conjugate gradient (PCG) method, then it is advisable to construct

a highly e↵ective preconditioner so as to cut down the number of PCG steps needed

to solve the linear system even if the initial construction overhead may be high.

A highly e↵ective preconditioner would potentially lead to a much cheaper total

cost when the linear system is solved repeatedly. Of course, the design of e�cient

preconditioners for the normal equation is problem dependent and it is beyond the

scope of the topic here.
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4.2 Inexact Accelerated Proximal Gradient Method

When the function f in (1.1) has Lipschitz continuous gradient (with Lipschitz

constant L
f

), one can attempt to use the accelerated proximal gradient (APG)

method in [5] to solve (1.1). This has been done in [65] for the fused lasso problem

[100], where the nonseparable `
1

-regularization term essentially consists of the simple

separable `
1

term and the fused lasso structure term (more details of which will be

given in Chapter 5). In the context of image restoration where the term kBxk
1

is

the TV regularization, [4] has also proposed to use the APG method to solve the

problem.

The APG method is appealing because of its powerful iteration complexity result

which guarantees the delivery of an "-optimal solution (in terms of the objective

value) in at most O(L
f

/
p
") iterations. The basic template of the inexact version

of the APG algorithm is given below.

Inexact APG algorithm.

Given a tolerance " > 0, choose w0 = x0 2 Rn and set t
0

= 1. Iterate the following

steps:

Step 1. Let g(x) := kBxk
1

for convenience. Compute

xk+1 ⇡ arg min
x2Rn

nL
f

2
kx� �wk � L�1

f

rf(wk)
�k2 + ⇢g(x)

o

. (4.8)

Step 2. Set t
k+1

= (1 +
p

1 + 4t2
k

)/2.

Step 3. Set wk+1 = xk+1 + tk�1

tk+1
(xk+1 � xk).

For the APG method to be practically competitive in solving (1.1), it is crucial

for the problem to have conducive structures so that the subproblem (4.8) at each

iteration of the APG method can be solved e�ciently. In other word, the practi-

cal e�ciency of the APG method hinges crucially on whether one can compute the

proximal map P g

⌫

(·) of g(·) e�ciently for a given parameter ⌫ > 0. We should men-

tion that unlike the original algorithm in [5], the solution xk+1 of (4.8) need not be

computed exactly, and this allows the problem to be solved by an iterative algorithm

when P g

⌫

(·) cannot be computed analytically. In [58], it has been shown that as long

as xk+1 is computed with su�cient accuracy progressively, the O(L
f

/
p
") iteration

complexity result remains valid, as stated in the following theorem.
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Theorem 4.2.1. Let {�
k

} be a given summable sequence of nonnegative numbers.

Suppose for each k, xk+1 is computed from (4.8) satisfying the condition that

kL
f

(xk+1 �wk + L�1

f

rf(wk)) + ⇢zk+1k 
r

L
f

2

�
k

t
k

for some zk+1 2 @g(xk+1). Then

f(xk+1) + ⇢g(xk+1)� (f(x⇤) + ⇢g(x⇤))  4

(k + 1)2

⇣

r

L
f

2
kx0 � x⇤k+

k

X

i=1

�
i

⌘

2

.

Hence xk is "-optimal (in terms of the function value) if k � O(
p

L
f

/
p
").

Proof. The result follows from [58, Theorem 2.1] with some adaptations to our

problem (1.1).

In both [65] and [4], for a given x, the proximal map is computed via solving

the dual of the proximal minimization problem: min
y

{ 1

2⌫

ky�xk2 + g(y)}, which is

given by
1

2⌫
kxk2 �min

v

n⌫

2
kBTv � ⌫�1xk | kvk1  1

o

, (4.9)

with P g

⌫

(x) = x� ⌫BT v̄, where v̄ is an optimal solution of the above dual problem.

For the special case of the fused lasso regularization function, [65] is able to design

an extremely e�cient algorithm to compute P g

⌫

(x) based on (4.9). However the

algorithm is also very specialized, and does not appear to be applicable beyond the

fused lasso function. For a general g, it appears that computing the proximal map

P g

⌫

(x) is expensive, either by solving (4.8) directly or via (4.9).

As we shall see in the next section, it is possible to overcome the bottleneck

caused by the computation of the proximal map, but at the expense of worsening

the iteration complexity guarantee from O(1/
p
") to O(

p
n/").

4.3 Smoothing Accelerated Proximal Gradient Method

Recently, [27] proposed a smoothing proximal gradient (SPG method) to solve the

problem stated in (5.1). This is a first-order method which essentially solves a

smooth approximation of the original non-smooth problem (5.1) by using the well

known accelerated proximal gradient (APG) method designed in [5]. The same idea
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can of course be applied to (1.1). The key step is to approximate the nonsmooth

function kxk
1

by the following smoothed one:

h
µ

(x) := max
kyk11

n

hy, xi � µ

2
kyk2

o

=
1

2µ

⇣

kxk2 � ks
µ

(x)k2
⌘

, x 2 Rn, (4.10)

where µ > 0 is the smoothing parameter, and h
µ

(x) " kxk
1

when µ # 0. Indeed

h
µ

(·) is a smooth approximation of kxk
1

such that

kxk
1

� nµ

2
 h

µ

(x)  kxk
1

, 8 x 2 Rn (4.11)

rh
µ

(x) =
1

µ
(x� s

µ

(x)) =
1

µ
⇡

µ

(x). (4.12)

Based on the smooth function h
µ

(·), the problem (1.1) is approximated by the

following smoothed problem:

min
x

f(x) + ⇢h
µ

(Bx). (4.13)

Note that in [27], which focuses on sparse structured lasso problems, whose regular-

ization term consists of the simple separable `
1

-norm term and a structured lasso

term, the authors only smoothed the structured lasso term, while keeping the simple

nonsmooth `
1

term intact. One can of course do the same for the problem (1.1) if

the term kBxk
1

has a similar structure. But for simplicity of exposition, here we

have opted to smooth the entire term kBxk
1

.

To apply the APGmethod to solve (4.13), we need to assume thatrf is Lipschitz

continuous on Rn with Lipschitz constant L
f

. Under this assumption, the objective

function in (4.13) has Lipschitz continuous gradient with Lipschitz constant L =

L
f

+�
max

(BTB)⇢/µ, where �
max

(BTB) is the largest eigenvalue of BTB. Note that

each iteration of the APG method (with current iterate xk and auxiliary iterate wk)

requires the solution of the following subproblem:

xk+1 = argmin
x

hrf(wk) + ⇢BTrh
µ

(Bwk), x�wki+ L

2
kx�wkk2

= wk � 1

L

⇣

rf(wk) +
⇢

µ
BT⇡

µ

(Bwk)
⌘

. (4.14)

The template for the smoothing APG algorithm which can be used to solve (1.1) is

given as follows.
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Smoothing accelerated proximal gradient (SAPG) algorithm.

Given a tolerance " > 0, set µ = min{"/(n⇢), ⇢�
max

(BTB)/L
f

}. Choose w0 =

x0 2 Rn and set t
0

= 1. Iterate the following steps:

Step 1. Compute xk+1 = wk � 1

L

⇣

rf(wk) + ⇢

µ

BT⇡
µ

(Bwk)
⌘

.

Step 2. Set t
k+1

= (1 +
p

1 + 4t2
k

)/2.

Step 3. Set wk+1 = xk+1 + tk�1

tk+1
(xk+1 � xk).

By using the iteration complexity result for APG in [5] and the approximation

result in (4.11), one can prove that the SAPG algorithm can compute an "-optimal

solution (in terms of the function value) for (1.1) in at most O(
p
n/") iterations.

The precise statement is given in the following theorem.

Theorem 4.3.1. Let " > 0 be given. The solution xk computed from the SAPG

algorithm satisfies the following accuracy condition:

0  f(xk) + ⇢kBxkk
1

� (f(x⇤) + ⇢kBx⇤k
1

)  "

when k � O(
p

n⇢2�
max

(BTB)/").

Proof. Let xµ be the optimal solution of (4.13). From (4.11), we have that

0  �k := f(xk) + ⇢kBxkk
1

� (f(x⇤) + ⇢kBx⇤k
1

)

 f(xk) + ⇢h
µ

(Bxk) +
µn⇢

2
� (f(xµ) + ⇢h

µ

(Bxµ))

where we have used the fact that

f(x⇤) + ⇢kBx⇤k
1

� f(x⇤) + ⇢h
µ

(Bx⇤) � f(xµ) + ⇢h
µ

(Bxµ).

By the iteration complexity result in [5], we have that

f(xk) + ⇢h
µ

(Bxk)� (f(xµ) + ⇢h
µ

(Bxµ))  2Lkx0 � xµk2/(k + 1)2

where L = L
f

+ �
max

(BTB)⇢/µ  2�
max

(BTB)⇢/µ. Thus

�k  µn⇢

2
+

4⇢�
max

(BTB)kx0 � xµk2
µ(k + 1)2

 "
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if

k + 1 �
p

8n⇢2�
max

(BTB)kx0 � xµk2
"

From here, the required result follows.



Chapter 5
Applications of (1.1) in Statistics

5.1 Sparse Structured Regression Models

In this section, we list some typical sparse structured regression models that have

drawn great interests from the statistics and machine learning communities.

Consider the linear regression of the data set {x
i

, y
i

}n
i=1

, where x
i

2 Rp are

predictors and y
i

are the responses. Let X 2 Rn⇥p denote the regression matrix of

the n samples, and y be the observed response vector. Suppose y = X�+✏, and the

noise is Gaussian, i.e., ✏ ⇠ N(0, �2I). The main task is to recover � under certain

sparsity assumption. It is well-known that the standard lasso regression [99] obtains

a sparse estimation of � by solving the following convex optimization problem

min
�2Rp

f(�) + �k�k
1

,

where f(�) = 1

2

ky �X�k2 is the quadratic loss function, and the `
1

-regularization

term promotes the zero-sparsity of the solution with the parameter � that controls

the sparsity level.

Although the standard lasso model has enjoyed great success in variable selec-

tion owing to the induced sparsity in �, one obvious limitation is that it does not

assume any structure among the input variables. Hence the selection may not be

appropriate when it is applied to complex high-dimensional data. Therefore, dif-

ferent structural assumptions on the input variables have been introduced in later

studies in order to capture the actual sparsity patterns, not necessary just on the

individual components of � but some linear combinations of the components. For

49
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this purpose, we introduce the following generic sparse regression framework with

customizable sparse structures:

min
�2Rp

f(�) + �
1

⌦(�) + �
2

k�k
1

, (5.1)

where ⌦(�) serves as the structured sparse constraints over the input variables.

The scalars �
1

and �
2

are positive tuning parameters that control the structure and

sparsity of the solution. Note that we can express (5.1) in the form (1.1) by setting

kB(�)k
1

= ⌦(�) + �
2

/�
1

k�k
1

.

Here, we mention several important choices of ⌦(�) already introduced in the

literature.

1. Elastic net [111]: ⌦(�) = 1

2

k�k2.

2. Fused lasso [100]: ⌦(�) =
P

p

j=2

|�
j

� �
j�1

|. A similar regularization term

involving the second order finite di↵erence of � also arises in the `
1

-version

(studied in [59]) of the Hodrick-Prescott filtering problem [55] in macroeco-

nomics to decompose a discrete time series into a cyclical component and a

trend component.

3. Group lasso [107, 109]: ⌦(�) =
P

J

j=1

k~�
j

k, where ~�
j

denotes a sub-vector of

�.

4. Graph-guided elastic net [95]. Such a regularization term is used in neuroimag-

ing applications [52] where the regression problem has predictors constrained

by an underlying graph structure. A brief description of the problem is given

next. Let the pairwise relationship between the input variables be described

by a graph G = (V, E), where V = {1, ..., p} denotes the variables of interests,

and E denotes the set of edges among V . Moreover, let w
ij

2 R denote the

weight of the edge (i, j) 2 E , which corresponds to certain similarity measure

between the variables i and j. Define the edge-vertex incidence matrix

⇤
(i,j),k

=

8

>

>

<

>

>

:

|w
ij

| if k = i;

�w
ij

if k = j;

0 otherwise,

(5.2)

Then ⌦(�) = 1

2

k⇤�k2 =P
(ij)2E w

2

ij

(�
i

� sign(w
ij

)�
j

)2.
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5. Graph-guided fused lasso [26]: ⌦(�) = k⇤�k
1

, where ⇤ is the edge-vertex

incidence matrix defined as in (5.2).

6. Clustered lasso [78, 90]: ⌦(�) =
P

p

j=1

P

j

k=1

|�
j

� �
k

|. Such a regularization

term is motivated by the desire to learn the group structure of the regression

parameters {�
i

}.

7. OSCAR [7]: ⌦(�) =
P

k<j

max{|�
j

|, |�
k

|} = 1

2

P

p

j=1

P

j

k=1

|�
j

+�
k

|+|�
j

��
k

|.
Just like clustered lasso, the purpose here is to learn the group structure of

the parameters {�
i

}.

In addition, the loss function f in (5.1) may not be limited to the quadratic loss

function 1

2

ky�X�k2. We also list some of the other commonly used loss functions.

1. Logistic loss function: f(�) =
P

n

i=1

log(1 + exp(�y
i

�Tx
i

)), where y
i

2 {±1}.
For the special case where kBxk

1

= kxk
1

in (1.1), various methods have been

proposed to solve the problem where f is the logistic loss function. The recent

paper [94] has given a nice summary of these methods. For example, [63]

proposed a method that requires the solution of a bound constrained convex

quadratic programming at each iteration; [49] proposed a method that is based

on a (cyclic) coordinate descent method; [108] proposed a coordinate gradient

descent method; [61] proposed an inexact interior-point method; [94] extended

the fixed-point continuation (FPC) method [53]. However, it was observed

in [94] that a pure FPC method is not e�cient enough and a hybrid algorithm

was proposed where it started with the FPC method and later switched to the

Newton-type inexact interior-point method of [61].

2. Huber loss function: f(�) =
P

n

i=1

�
"

(y
i

� �Tx
i

), where �
"

(t) is the Huber

function defined as in (3.3). Note that unlike the quadratic loss and logistic

loss functions, the Huber function is smooth but not twice continuously dif-

ferentiable. The Huber loss function is commonly used for robust regression

against sparse outliers. It is no coincidence that the Huber loss function is used

since one can consider it as a way to remove sparse outliers in the responses

{y
i

}. Here we show that it arises naturally from the following regression model

with sparse outliers detection:

min
�2Rp

,�2Rn

1

2
ky �X� � �k2 + "k�k

1

+ �
1

⌦(�) + �
2

k�k
1

(5.3)
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where � attempts to capture the sparse outliers in the response vector. By

minimizing with respect to � first and using (3.4), it is easy to see that the

resulting function is the Huber loss function.

3. Smoothed hinge loss function: f(�) =
P

n

i=1

 
"

(1 � y
i

�Tx
i

), where  
"

(t) =

(t+
p
t2 + "2)/2 is a smoothing function of max{t, 0}.

5.2 Results on Random Generated Data

In this section, we illustrate the e�ciency and e↵ectiveness of the proposed SSNAL

algorithm for solving fused lasso and clustered lasso problems (5.1). We tested

on random generated data, and compare the performance of the SSNAL method

against the first-order methods (when applicable) presented in Chapter 4. We should

mention that our focus here is to illustrate the e�ciency of the proposed SSNAL

algorithm for solving the large scale problems.

The loss function used is the quadratic loss, unless otherwise stated. The tuning

parameters �
1

and �
2

in (5.1) were chosen based on numerical experience.

For fused lasso problems, we also compare with the very e�cient APG based

algorithm (called EFLA) recently proposed in [65]. The algorithm hinges on a

novel subgradient finding algorithm for computing the proximal map associated

with the fused lasso term, by cleverly exploiting the special structure of the fused

lasso term. In our experiments, we use the software package SLEP (Sparse Learning

with E�cient Projection) [64] wherein EFLA is implemented.

Note that for the EFLA and the SAPG algorithm, we stop the iterations when-

ever the relative change in �k is less than 10�6. The maximum number of iterations

is capped at 20000 for the EFLA and SAPG algorithms.

For the ADMM and the SSNAL, the stopping condition is based on the KKT

conditions (3.6), i.e., we terminate the algorithms when the primal and dual infeasi-

bilities both fall below 10�6. The maximum number of iterations is capped at 2000

for the ADMM and 50 the SSNAL algorithm.

For the SSNAL algorithm, the stopping condition for solving the subproblem

(3.8) is also based on the KKT conditions (3.6). Although for ALM, the dual

variable v is only updated in the outer iterations, to calculate the primal and dual

infeasibilities within the inner iterations, we use the v computed from the latest
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available x and u. The iterations terminates when the primal and dual infeasibilities

both fall below 10�6, and the number of iterations is capped at 30.

All our algorithms are implemented in Matlab (Version 7.14), and compiled on

a MacBook Pro with Intel Core2 Duo 2.26GHz CPU and 4GB RAM.

The data used in this section are generated randomly from the following true

model

y = X� + �✏, ✏ ⇠ N(0, I).

In all examples, the data consist of a training set and an independent test set, and

we use the notation ·/· to describe the number of observations in the training and

test sets respectively. Models were fitted on training data only, and the test error

(the mean-squared error and the prediction error) were computed on the test data

set.

5.2.1 Fused Lasso

We use the same data setting as in [105]. The true parameter vector � is generated

according to

�
i

=

8

>

>

>

>

<

>

>

>

>

:

2 i = 1, 2, ..., 20, 121, 122, ..., 125

3 i = 41

1 i = 71, 72, ..., 85

0 else.

The noise level � is chosen proportional to the size of X� relative to the size of noise;

in this case, we use � = 0.1kX�k/k✏k. The observation numbers are 200/200.

In [105], the authors proposed a split Bregman method (which is equivalent

to the ADMM in Chapter 4 for step-length equals to 1) to solve the fused lasso

problems. It has been demonstrated to be more e�cient than the standard convex

optimization solvers, SQOPT and CVX (which is a Matlab based modeling lan-

guage relying on interior-point based solvers such as SDPT3 [101] and SeDuMi [98]

to solve the resulting second-order cone programming problems). Therefore, here

we only compare the performance of SSNAL against the ADMM, SAPG, and EFLA

(in SLEP). The comparison results in terms of the CPU time, the mean-squared

error and the prediction error are listed in Table 5.1.

The results show that EFLA is extremely e�cient in dealing with the relatively

easier problems, in the sense when there is no correlation between the predictors.
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When the correlation ⇢̂ is nonzero, the performance of the ADMM, EFLA and

SSNAL are comparable. The SSNAL shows its advantage when the problem size

grows and when ⇢̂ increases. Note that for the case with 0-correlation among the

predictors, the SAPG could not achieve a comparable accuracy as the other methods.

In Table 5.2, we list the relative residuals of the KKT conditions (3.6) for the

ADMM and SSNAL used to solve (P). The columns under “pinf”, “dinf” and

“comp” in the table refer to the relative residuals of the three conditions in (3.6),

respectively. Notice that the ADMM failed to achieve the required accuracy of 10�6

within 2000 iterations for only one case, where ⇢̂ = 0 and p = 40000.

5.2.2 Clustered Lasso

In order to apply the proposed SSNAL algorithm to solve the clustered lasso problem

(5.1), it is more convenient and e�cient for us to express the structured sparse

regularization term �
1

⌦(�)+�
2

k�k
1

using a linear map as follows. Given W 2 Rp⇥p

such that W
ij

= W
ji

> 0 for all i, j, we define the linear map B : Rp ! Rp⇥p by

(B(�))
ij

=

8

<

:

W
ij

(�
i

� �
j

) if i 6= j

W
ii

�
i

if i = j.
(5.4)

Observe that the linear map B is injective, and B(�) can be written more compactly

as B(�) = W � (�eT � e�T + diag(�)), where the operation � denotes elementwise

multiplication, and e is the vector of ones in Rp. Note that the adjoint B⇤ : Rp⇥p !
Rp of B is given by

B⇤(V ) = (W � V )e� (W � V T )e+ diag(V ) � diag(W ),

and

B⇤B(�) =
⇣

2(W �W )e+ diag(W �W )
⌘

� � � 2(W �W )�.

The examples presented in this subsection were mainly constructed based on

the classic simulation scenarios used in [78, 90, 111]. Instead of using a specified

noise level � for each case, we adopt the same strategy as in last subsection and set

� = 0.05kX�k/k✏k for all examples. Moreover, since we want to focus on large-

scale problems, we introduced a scaling variable k, i.e. with the specified parameter
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vector � 2 Rp in each case, the actual � is of size p⇥ k, and every component of �

is repeated for k times consecutively. The corresponding number of observations is

also scaled up to a factor of k.

1. The first setting is specified by the parameter vector

� = (3, 1.5, 0, 0, 0, 2, 0, 0)T .

The correlation between the i-th and the j-th predictor is

corr(i, j) = 0.9|i�j|, 8 i, j 2 {1, ..., 8}. (5.5)

The observation numbers are 20/20.

2. In this setting, we have p = 20 predictors. The parameter vector is structured

into blocks:

� = (0, ..., 0
| {z }

5

, 2, ..., 2
| {z }

5

, 0, ..., 0
| {z }

5

, 2, ..., 2
| {z }

5

)T .

The correlation between two predictors X
i

and X
j

is given by corr(i, j) = 0.3.

The observation numbers are 50/50.

3. This setting consists of p = 20 predictors. The parameter vector is given by

� = (5, 5, 5, 2, 2, 2, 10, 10, 10, 0, ..., 0
| {z }

11

)T .

Within each of the first three blocks of 3 variables, the correlation between the

two predictors is 0.9, but there is no correlation between these blocks. The

observation numbers are 50/50.

4. The fourth setting consists of p = 13 predictors. The parameter vector is

structured into many small clusters:

� = (0, 0,�1.5,�1.5,�2,�2, 0, 0, 1, 1, 4, 4, 4)T .

The correlation between the i-th and the j-th predictor is

corr(i, j) = 0.5|i�j|, 8 i, j 2 {1, ..., 13}. (5.6)
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The observation numbers are 20/20.

5. The fifth setting is the same as the fourth one, but with a higher correlation

between the predictors: corr(i, j) = 0.9|i�j|, 8 i, j 2 {1, ..., 13}.

6. In the last setting, we have p = 16 predictors. The parameter vectors is

structured such that big clusters coexist with small ones:

� = (0, ..., 0
| {z }

3

, 4, ..., 4
| {z }

5

,�4, ...,�4
| {z }

5

, 2, 2,�1)T .

The predictors are possibly negatively correlated: corr(i, j) = (�1)(i�j)0.8.

The observation numbers are 30/30.

For all six examples, we tested on three di↵erent problem sizes, namely k = 1,

which is the same size as they were designed in [78, 90, 111], and k = 10, 100 for

our purpose of testing on large-scale problems. The comparison results in terms of

the CPU time, the mean-squared error and the prediction error are listed in Table

5.3. The results again confirm the advantage of the SSNAL when the problem size

is large, especially when k = 100. For small size problems, all three algorithms are

comparable. Note that in Example 3, the ADMM did not achieve a similar accuracy

as the other two methods.

Moreover, a comparison of the ADMM and the SSNAL in achieving the KKT

conditions for solving (P), as presented in Table 5.4, shows that for clustered lasso

problems where the sparse structure of the predictors is more complicated than that

of the fused lasso, the ADMM generally could not achieve the required accuracy

within 2000 iterations, whereas the SSNAL is more robust in this sense.
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Chapter 6
Applications of (1.1) in Image Processing

In this chapter, we propose a simple model for image restoration with mixed or

unknown noises. The proposed model falls in the framework of the general non-

separable `
1

-regularized problem (1.1). Since a moderately accurate solution is usu-

ally su�cient for image processing problems, we use an accelerated proximal gradient

(APG) algorithm to solve the inner subproblem. The chapter is organized as follows.

First, we will give a brief introduction on image restorations models. Then we will

present the numerical results for various image restorations with mixed noise and

examples on noise removal of real digital colour images. Comparisons with some of

the available models for removing noises such as single type of noise, mixed Poisson-

Gaussian noise, and impulse noise mixed with Gaussian noise are also given. Finally,

some additional remarks on our proposed model and numerical algorithm will be

addressed.

6.1 Image Restorations

Image restoration is often formulated as an inverse problem, which amounts to

recovering an unknown true image u from a degraded image (or a measurement) b

given by

b ⇡ Hu, (6.1)

where H is a linear operator denoting the degradation operations and Hu is also

possibly contaminated by random noises. Such noises can be the additive noise (e.g.

Gaussian noise, impulse noise, in which case b = Hu + ✏), or Poisson noise and

61
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other multiplicative noise. A typical H can be the identity operator, a convolution

or a projection, and the corresponding inverse problems are known as denoising,

deblurring and inpainting.

To restore u, one of the most popular approach is to solve a minimization problem

of the following form

min
u

R
1

(u) +R
2

(u) (6.2)

where R
1

(u) denotes certain data fitting term derived according to the assumed

noise type and R
2

(u) is a regularization term that imposes the prior on u. The

latter is necessary due to the ill-posedness of the inverse problem.

Typically, the regularization term R
2

(u) is determined by the prior assumptions

imposed on the underlying solutions. One of the assumptions commonly used is the

sparsity of the underlying solutions in some transformed domain. Such transforms

can be gradient (e.g. the total variation (TV) model), wavelet tight frames, local

cosine transforms etc. Since the TV model is closely related to the wavelet tight

frame model (see [15]) and since wavelet tight frame model has proven to be e�cient

in image restorations (see e.g. [33,91]), we use the sparsity in the wavelet tight frame

transform domain as the prior assumption on the underlying solutions. For this, we

will take R
2

(u) = kWuk
1

, where W is the wavelet tight frame transform.

Generally, the choice of the data fitting term R
1

(u) depends on the specified

noise distribution. For example, the `
2

-norm based distance function

R
1

(u) = kHu� bk2
2

(6.3)

is used for additive Gaussian noise, which averages out the noise. When image is

corrupted by impulse noise, a typical choice of R
1

(u) is the `
1

-norm distance function

R
1

(u) = kHu� bk
1

, (6.4)

which leads to the median of the data. Note that the impulse noise can be con-

sidered as outliers, and a median approximation is a good choice since it is robust

to outliers. For Poisson noise and multiplicative Gamma noise, the Bayesian max-

imum a posterior (MAP) likelihood estimation approach gives rise to the Csiszár’s
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I-divergence of Hu from b [62, 89, 97] as the data fitting term, i.e.

R
1

(u) =
n

X

i=1

((Hu)
i

� b
i

log(Hu)
i

) . (6.5)

However, since the noise in an image seldom appears from a single distribution,

nor could one determine the noise type in reality, a specific data fitting term for a

given noise may not work for mixed or unknown noises. We aim to find a simple

model which can remove mixed type of noises as well as unknown type of noises,

while at the same time also works comparably well with the model whose data fitting

term is designed for a specific given noise type.

The data fitting term R
1

(u) suggested here is surprisingly simple. It is the

weighted sum of `
1

-norm and `
2

-norm based distances, which leads to the following

model:

min
u2Rn

�
1

kHu� bk
1

+
�
2

2
kHu� bk2

2

+ ⇢kWuk
1

, (6.6)

where �
1

, �
2

and ⇢ are nonnegative parameters. Note that the parameter �
1

in (6.6)

is always fixed as 1 in our numerical simulations, but we keep it in (6.6) for ease of

discussion. While the model (6.6) looks too simple, the numerical simulation results

show that this model together with the proposed numerical algorithm can e�ciently

remove various mixed noises and unknown noises. When it is applied to remove a

given type of noise, such as additive Gaussian noise, impulse noise, Poisson noise

and multiplicative Gamma noise, it performs as well as those models whose data

fitting terms are chosen according to the statistical distribution of the noise.

6.2 Results on Image Restorations with Mixed

Noises

This section is mainly devoted to numerical simulation of image restorations in the

presence of mixed noise. It is easy to see that the proposed model (6.6) falls in

the framework of the general non-separable `
1

-regularized problem (1.1) as shown

below. By letting z
1

= Hu� b and z
2

= Wu, (6.6) can be reformulated in the form
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(P) as follows:

min
�
2

2
kHu� bk2

2

+ �
1

kz
1

k
1

+ ⇢kz
2

k
1

s.t. Hu� z
1

= b

Wu� z
2

= 0.

Here we use an accelerated proximal gradient (APG) algorithm to solve the

inner subproblem because for image processing problems, the optimization model

usually serves as a guide that leads to a sparse approximate optimal solution and

it is not necessary to solve the model with high accuracy. We show the e�ciency,

e↵ectiveness and robustness of model (6.6) by applying the ALM-APG algorithm

to restore images with a wide range of mixed noise. Specifically, we consider image

restorations with the mixture of Gaussian, Poisson, and impulse noises. To the best

of our knowledge, there is no discussion of image restorations with such a wide range

of mixed noises in the current literature. It should be noted that video denoising for

the mixture of these three noises has been considered in [57]. However, the method

given there is not applicable for the image case, since it relies heavily on the temporal

direction information. In addition, some denoising examples of real life digital color

images are also presented to show that the proposed method is capable of removing

unknown noises.

The performance on restorations of synthetic data is measured by the PSNR

value defined as

PSNR = 10 log
10

✓

I2
max

MSE

◆

, (6.7)

where I
max

is the maximum intensity of the original image. In the presence of

Poisson noise, the maximum intensity of the original noise free image is varied in

order to create images with di↵erent levels of Poisson noise.

The tight wavelet frame transformW used here is generated from piecewise linear

B-spline constructed via the unitary extension principle [87]. The wavelet transform

W and its inverse related to the wavelet frame system via the tight wavelet frame

decomposition and reconstruction operators have been briefly introduced in Chapter

2. More details can be found in the survey paper [91] and the long note [33] and

the references therein.
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6.2.1 Synthetic Image Denoising

We start with the simpler case of the mixed noise removal. The key point for the

noise removal here is that we do not need to know a priori what kind of noises

contaminate the image. The aim is to remove noises in real images, and examples

will be given the next subsection.

The mixed noise considered in this section includes additive Gaussian noise,

Poisson noise and impulse noise. The Poisson noise in this experiment was gener-

ated using the “poissrnd” function in Matlab with the input image scaled to the

maximum intensity (I
max

) as specified in each experiment. For the impulse noise,

we only consider the random-valued impulse noise, because a pixel contaminated

by such an impulse noise is not as distinctively an outlier as that contaminated by

the salt-and-pepper noise, and consequently is more di�cult to be detected. The

random-valued impulse noise is defined as follows: with probability r, the pixel value

u
ij

is altered to be a uniform random number in the interval between the minimum

intensity and the maximum intensity of the image. For all cases, impulse noise was

the last to be added.

First, we consider the case when images’ maximum intensity is not rescaled. The

results in terms of PSNR using model (6.6) are summarized in Table 6.1 and Table

6.2, and some of the restored images are presented in Figure 6.1 and Figure 6.2.

The results show that the model together with the proposed ALM-APG algorithm

presented in this paper are e↵ective in removing random-valued impulse noise mixed

with Poisson noise and Gaussian noise. In the case when all three types of noises

are involved, we consider both cases of generating Poisson noise before and after

adding Gaussian noise. It turns out that the performance of our method is robust

regardless the intrinsic distribution of the image noise.

Second, we conduct a more extensive test of our method in removing mixed noise

of the three types as previously discussed, where the Poisson noise is generated from

noise-free images rescaled to the maximum intensity ranging from 120 to 1. In the

cases when both Gaussian noise and Poisson noise are involved, Gaussian noise is

added after Poisson noise with standard deviation � = I
max

/10. The results in terms

of PSNR are summarized in Table 6.3. The results show that the simple model (6.6)

together with the proposed ALM-APG algorithm is, in general, e↵ective in removing

mixed impulse noise, Poisson noise and Gaussian noise at di↵erent levels.

The choice of parameters were �
1

= 1, �
2

= 0.01 ⇠ 0.1 and ⇢ = 1 ⇠ 2. The
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(a) r = 10%, Poisson
PSNR=17.03

(b) r = 10%, � = 10
P +G, PSNR=16.33

(c) r = 10%, � = 10
G+ P , PSNR=16.67

(d) PSNR=29.07 (e) PSNR=28.31 (f) PSNR=28.38

(g) r = 20%, Poisson
PSNR=14.40

(h) r = 20%, � = 10
P +G, PSNR=13.86

(i) r = 20%, � = 10
G+ P , PSNR=14.14

(j) PSNR=27.10 (k) PSNR=26.60 (l) PSNR=26.57

Figure 6.1: Denoising results for the image “Cameraman”, in the presence of
random-valued impulse noise, Poisson noise and Gaussian noise. The first and third
rows are the noisy images, and the second and fourth rows are the corresponding
denoised images.
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value of ⇢ depends on the general noisiness of the image: the noisier the image is,

the larger ⇢ shall be chosen; however, the value of �
2

mainly depends on the impulse

noise level, where smaller value is preferred when the impulse noise level gets higher.

6.2.2 Real Image Denoising

In digital color photos, there are two most significant sources of noise: the photon

shot noise due to the random striking of the photons on the image sensor, and the

leakage current due to the additional electrical signal generated by the semiconductor

when converting energy from photons to electrical energy. Besides, interpolation of

the captured partial color data to complete the RGB channels, quantization and

artifacts caused by JPEG format and the build-in sharpening, denoising functions

in cameras etc, make it di�cult or rather impossible to model the noise. Therefore,

real image denoising problems are much more challenging than those of synthetic

data.

The main di�culty behind the noise removal for real images is that there is no

prior knowledge of the noise and its statistical distribution, which itself is the result

of a mixture of di↵erent noises. Hence, models based on a specific type of noise

distribution is hard to be e↵ective. Since our model does not assume any prior

statistical distribution of the noise, it has the potential to perform well in real image

denoising. Here, we show the promise of the method via a few examples.

Most digital color images are in the RGB color space. It is known that due

to the uneven distribution of the noise in each channel, by denoising each channel

separately, one tends to excessively denoise the blue channel, which can lead to

undesirable color artifacts. A standard practice is to transform the RGB color

space to YCrCb color space (linear transformation) or LAB color space (nonlinear

transformation), both of which separate the luminance and chrominance. However,

the luminance resulted from both transformations is still contaminated by the noise

from the blue channel, and if a substantial denoising process is performed on the

luminance channel, the quality of the denoised image can be adversely a↵ected.

Chan et al. proposed a modified YCrCb (m-YCrCb) color space [23], which is more

e↵ective since the luminance channel does not contain any information from the blue

channel. More precisely, the m-YCrCb color space is obtained from the RGB color
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space via following linear transformation:

Y
m

= 0.666G+ 0.334R;

Cr
m

= 0.666(R�G)/1.6; (6.8)

Cb
m

= (B � 0.666G� 0.334R)/2.

In [23], the authors use the multiscale total variational (MTV) method for denois-

ing. Here, we adopted their m-YCrCb transformation (6.8) and apply our model

(6.6) to each of the transformed channel, as numerical simulation showed that its

performance is superior to a direct application of our method to each of the RGB

channel. We present both of the denoised result in [23] and ours in Figure 6.3.

One can observe that while there is still visible noise remains in the denoised

image using MTV (6.3b), our model provides a clearer result (6.3c) with equally

sharpe edges and details. The improvement in blue channel is not that significant,

but one can still notice the di↵erence in the shadow part.

Besides the example used in [23], we also present some other examples in Figure

6.4 to 6.6. The image “M83” is a testing image for real image denoising in Matlab;

the image “books” was taken from a students’ o�ce under fluorescent lighting and

the image “toys” was taken from a room without artificial lighting. All results show

that our model is e↵ective in removing unknown type of noise in real color images.

The parameters used for all the examples given here were �
1

= 1, �
2

= 0.1 and

⇢ = 0.08, 0.1, 1 for the three channels respectively, except for the image “toys”,

where ⇢ = 3 for the luminance channel, since it is of full size and is much noisier

than the other examples.

6.2.3 Image Deblurring with Mixed Noises

This subsection is devoted to the harder problem of image deblurring in the presence

of mixed noise, where H in (6.1) is a convolution operator.

In this experiment, the image’s maximum intensity is not rescaled and the blur-

ring kernel is the “disk, 3” kernel generated by the Matlab command “fspecial”.

Table 6.4 summarizes the PSNR results of the deblurring problems in the pres-

ence of additive Gaussian noise, Poisson noise, and random-valued impulse noise.

Some of the restored images are presented in Figure 6.7. The results again confirm
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(a) Original noisy “M83” (b) Denoised “M83” using the proposed model

Figure 6.4: Real image denoising 2 (image size: 400⇥ 378)

(a) Original noisy “books” (b) Denoised “books” using the proposed model

Figure 6.5: Real image denoising 3 (image size: 624⇥ 624)
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Image Baboon Goldhill Cameraman
Random-valued impulse noise (r) 10% 20% 10% 20% 10% 20%

Poisson+Gaussian 22.34 22.22 25.30 25.00 24.10 23.82
Gaussian+Poisson 22.33 22.22 25.24 24.95 24.12 23.85

Table 6.4: Deblurring results (PSNR) for various testing images with blurring kernel
“disk, 3”, in the presence of random-valued impulse noise, Gaussian noise with
standard deviation � = 10 and Poisson noise at image peak intensity of 255.

the e↵ectiveness and robustness of our method in dealing with mixed noises.

For all cases, the parameters were set to �
1

= 1, �
2

= 0.1, ⇢ = 0.2.

6.2.4 Stopping Criteria

In our numerical experiments, the APG algorithm for the inner subproblem is

stopped when either the relative norm of the gradient or the relative di↵erence

of u is smaller than 10�5 and 10�6 respectively, and for e�ciency purpose, the num-

ber of iterations is capped at 50. For the outer ALM iterations, because of multiple

degradation factors, there is no generic stopping criterion based on image residue

(such as terminating the algorithm when the residue is about the noise level for the

pure Gaussian noise case) which can be adopted here. On the other hand, it is far

too expensive to terminate the ALM based on the convergence criterion of the dual

variable in Step 3 of the ALM, which is in fact not necessary either, since for image

restoration, one seeks a moderately accurate sparse solution to (6.6) rather than an

optimal solution. Therefore, we simply pre-set the number of outer ALM iterations

based on the degradation level of the observed image b. In the cases when the image

is very badly damaged by multiple factors, e.g. Poisson noise at low image peak in-

tensity plus blurry e↵ect etc., we terminate the algorithm in 2 to 3 outer iterations;

whereas in the cases when only a small percentage of the image pixels are damaged,

e.g. with only low level of random-valued impulse noise etc., more iterations help

to regain the missing information and we set it to 20 or more. Aside from the two

extremes, most of the examples given in the paper are the results obtained after 5

to 7 outer iterations. As suggested in [16], a post-processing procedure by passing

through a bilateral filter can remove artifacts e↵ectively. To further improve the

results produced by the algorithm, we build in this post-processing procedure to

reduce the possible artifacts.

While the non-smoothness of the model usually makes it di�cult to design an
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e�cient solver, we mention that on average, it takes about 200 inner iterations in

total for our proposed algorithm to converge to a fairly good restored image, which

is about 20 to 30 seconds (including the bilateral filtering) for an image of size

256⇥ 256 on a MacBook Pro with Intel Core2 Duo 2.26GHz CPU and 4GB RAM.

In our numerical simulations, all algorithms are implemented in Matlab (Version

7.14).

6.3 Comparison with Other Models on Specified

Noises

As it has been shown in last section, our proposed model is e↵ective and robust in

image restoration with a wide range of mixed noise and unknown noise. We may

not expect an image restoration model/algorithm to perform comparably well with

those models/algorithms that are designed for a particular noise type. However, as

we shall show in this section, for many specified noises, such as additive Gaussian

noise, Poisson noise, mixed Poisson-Gaussian noise, multiplicative Gamma noise etc,

the results produced by our method are comparable to, and sometimes, even better

than those specialized algorithms. Nevertheless, the purpose of this section is to

show that the model (6.6) together with the algorithm given here is versatile in its

ability to handle various types of single noise and mixed noise. This robustness is

particularly important because in the situations where the noise type is not known

a priori, our method has a good chance to produce a reasonable result, while those

methods tailored to a specific noise may no longer be reliable.

Note that we do not make comparisons with some of the well known noise removal

cases, e.g. Gaussian noise removal, because they are well studied cases and the

standard quality of the restored results in terms of PSNR is commonly known. In

the case when we compare with other methods, we state the simulation results from

the original papers, and the results from our algorithm are generated from images

with the same noise level.
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Gaussian noise (�) 10 20 30 40
Lena 33.70 30.01 27.85 26.76

Cameraman 33.72 29.91 27.64 26.29
Mixed Gaussian noise (�

m

) [2, 5, 10] [4, 10, 20] [6, 15, 30] [8, 20, 40]
Lena 32.91 29.23 27.37 26.20

Cameraman 32.76 29.29 27.21 25.91

Table 6.5: Denoising results (PSNR) for the images “Lena” and “Cameraman”, in
the presence of single Gaussian noise and a mixture of Gaussian noises with di↵erent
standard deviations.

6.3.1 Denoising

Gaussian noise and mixed Gaussian noises

First, we consider the additive mixed Gaussian noises with standard deviation

�
m

= [2, 5, 10], [4, 10, 20], [6, 15, 30] and [8, 20, 40]. For comparison purpose, we also

give denoising results for single Gaussian noise with standard deviations � = 10,

20, 30 and 40. The results in terms of PSNR values for the images “Lena” and

“Cameraman” are listed in Table 6.5. For mixed Gaussian noises, although there

are no available results for comparison, one can observe that the PSNR values are

only slightly lower than that of the single Gaussian noise cases with � = max{�
m

}.
Note that the denoising results for single Gaussian noise cases are obtained by using

the same set of parameters for the mixed cases, and are comparable to the results

obtained from existing regularization models.

The parameters used in this experiment were �
1

= 1, �
2

= 0.1 ⇠ 0.5 and

⇢ = 0.4 ⇠ 0.7. Based on the experience, a smaller �
2

and a larger ⇢ should be

chosen as the noise level increases.

Poisson noise and mixed Poisson-Gaussian noise

In the second experiment, we consider Poisson noise at the image peak intensity

(I
max

) ranging from 120 to 1, as well as their mixture with a Gaussian noise with

standard deviation � = I
max

/10. The results are presented in Figure 6.8 and 6.9, and

a comparison of PSNR values with other methods is summarized in Table 6.6, where

we compared our results with two di↵erent approaches: the first is the Anscombe

variance-stabilizing transform (VST) [1] followed by a white Gaussian noise denoiser

[79] and the second is the PURE-LET model proposed in [66], whose fidelity term
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and minimization algorithm were specially designed for denoising mixed Poisson-

Gaussian noise based on the statistical analysis of the Poisson and Gaussian random

variables. All PSNR results are directly extracted from [66]. The VST used in our

experiment is the generalized Anscombe transform [72] defined as follows

u
V ST

= 2
p

u+ 3/8 + �2. (6.9)

Note that we provide both results for our model with and without the preprocessing

step using VST only for comparison purpose.

The results listed in Table 6.6 show that when Poisson noise is at moderate levels,

i.e. I
max

= 120, 60, 30, even without a VST preprocessing step, our method outper-

forms the VST plus a state-of-the-art multiresolusion-based Gaussian noise reduc-

tion algorithm, which consists of a multivariate estimator resulting from a Bayesian

least-squares (BLS) optimization, assuming Gaussian scale mixtures (GSM) as a

prior for neighborhoods of coe�cients at adjacent positions and scales. For the

PURE-LET approach, it optimizes a linear expansion of threshold (LET) by rely-

ing on a purely data-adaptive unbiased estimate of the mean-squared error, derived

from a Poisson-Gaussian unbiased risk estimate (PURE) [66]. We listed two cases

here. For the first case, the LET spans on the transformed domain with Haar un-

decimated wavelet transform (UWT) only, and for the second case, it spans on both

UWT and block discrete cosine transform (BDCT). In the case where the image is

corrupted by Poisson noise only, UWT PURE-LET produced slightly better results

than our method without VST, while with the VST, our results are even compa-

rable to those of UWT/BDCT PURE-LET. We note that our method is based on

piecewise linear B-spline wavelet tight frame and it can easily be extended to a

model with two systems including a local DCT, which generally can produce better

results, especially for images with rich textures, as demonstrated in [32, 92]. In the

case where both Poisson and Gaussian noises are present, the VST preprocessing

step becomes redundant for our method, and our results are slightly better than

those of UWT/BDCT PURE-LET. This shows that our model is especially e↵ective

in removing mixed noises.

In the cases when Poisson noise is at extremely high levels, the variance reduc-

tion procedure (6.9) becomes ine↵ective, and in fact, could be inappropriate. This

is because, as studied in [72], the variance of the stabilized Poisson data is approxi-

mately equal to 1 irrespective of the mean value of the original data, and for Poisson
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Peak intensity (I
max

) 120 60 30
Gaussian noise (�) 0 12 0 6 0 3

VST+BLS-GSM 30.85 27.56 29.13 27.02 27.54 26.19
UWT PURE-LET 31.03 27.68 29.29 27.14 27.67 26.32
UWT/BDCT PURE-LET 31.35 27.92 29.58 27.37 27.93 26.53
Model without VST 31.01 28.06 29.23 27.61 27.44 26.58
(6.6) with VST 31.42 27.99 29.72 27.54 27.56 26.58

Peak intensity (I
max

) 10 5 1
Gaussian noise (�) 0 1 0 0.5 0 0.1

VST+BLS-GSM 24.63 24.43 22.50 22.58 14.44 14.63
UWT PURE-LET 25.10 24.56 23.50 23.22 20.44 20.42
UWT/BDCT PURE-LET 25.29 24.74 23.65 23.36 20.48 20.44
Model without VST 25.02 24.60 23.44 23.11 20.09 19.98
(6.6) with VST 23.53 24.01 21.64 21.30 8.71 12.07

Table 6.6: Denoising results (PSNR) for the image “Cameraman”, in the presence
of single Poisson noise and mixed Poisson-Gaussian noise.

parameter values under 10, the VST looses control over the bias; therefore, it tends

to underestimate the pixel values when I
max

is less than 10. However, as listed in

Table 6.6, the results of our method without using VST are still comparable to those

of UWT PURE-LET.

The parameters used in the experiments were �
1

= 1, �
2

= 0.1 and ⇢ = 0.2 ⇠ 1.2.

The parameter ⇢ increases as I
max

decreases.

Random-valued impulse noise and Gaussian noise

The third example we show is to remove outliers mixed with Gaussian noise. This

problem has been considered in [32], where the authors proposed a model that

separates the outliers while estimating u

min
u,v

1

2
kHu+ v � bk2

2

+ �
1

kWuk
1

+ �
2

kvk
1

, (6.10)

where H is the identity operator for the denoising case here. In this model, a

new variable v is introduced to explicitly represent the outliers in b and the `
1

-

regularization on v is based on the assumption that the outliers are sparse. The

experiments in [32] show that the model (6.10) outperforms the available two-phase

approaches (including two-phase methods with pre-detection using the adaptive

center-weighted median filter (ACWMF) [25] or ROLD detection [34]), as well as the
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(a) I
max

= 120, � = 0
PSNR=24.11

(b) Denoised with VST
PSNR=31.42

(c) Denoised without VST
PSNR=31.01

(d) I
max

= 60, � = 0
PSNR=21.10

(e) Denoised with VST
PSNR=29.72

(f) Denoised without VST
PSNR=29.23

(g) I
max

= 30, � = 0
PSNR=18.05

(h) Denoised with VST
PSNR=27.56

(i) Denoised without VST
PSNR=27.44

Figure 6.8: Denoising results for the image “Cameraman”, in the presence of Poisson
only.
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(a) I
max

= 120, � = 12
PSNR=18.56

(b) Denoised with VST
PSNR=27.99

(c) Denoised without VST
PSNR=28.06

(d) I
max

= 60, � = 6
PSNR=17.53

(e) Denoised with VST
PSNR=27.54

(f) Denoised without VST
PSNR=27.61

(g) I
max

= 30, � = 3
PSNR=15.92

(h) Denoised with VST
PSNR=26.58

(i) Denoised without VST
PSNR=26.58

Figure 6.9: Denoising results for the image “Cameraman”, in the presence of both
Poisson and Gaussian noises.
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model with only the `
1

-norm based distance (6.4) as the data fitting term solved us-

ing a split Bregman method. Since it is shown in [32] that (6.10) compares favorably

against all the above mentioned models, here we only take the results from (6.10)

for comparison, and all comparing PSNR values are directly extracted from [32].

Table 6.7 and Table 6.8 summarize the results in terms of PSNR values, from

which we can see that our method significantly outperforms the outliers model (6.10),

e.g. a gain of 1 to 2dB in the PSNR values for the images “Baboon” and “Bridge”.

Some of the restored images are presented in Figure 6.10. All parameters used in this

experiment were the same as in Section 6.2.1, based on the level of random-valued

impulse noise r.

Multiplicative Gamma noise and mixed Gamma-Gaussian noise

Finally, we test our model on the image “House” with multiplicative Gamma noise

and its mixture with a Gaussian noise. For the multiplicative Gamma noise, Aubert

and Aujol [2] introduced a non-convex data fitting term based on the MAP likelihood

estimation approach, i.e.

R
1

(u) =
n

X

i=1

✓

log u
i

+
b
i

u
i

◆

. (6.11)

Subsequently, several models with an equivalent data fitting term are proposed in

order to overcome the numerical di�culties arisen from the non-convexity of (6.11),

such as the exponential model [93], the I-divegence model [97] and the m-V model

[108].

We listed the results in Table 6.9, where the comparing models are essentially all

based on the MAPmodel (6.11) with a TV regularization: the exponential model [93]

uses a logarithm transformation to overcome the non-convexity of (6.11); the m-V

model [108] uses an m-th root transformation to achieve the same purpose; and the

I-divergence model [97], whose solution is shown to be theoretically equivalent to

that of the exponential model. All PSNR values are extracted from [108].

In this experiment, the noisy images were generated by multiplying a Gamma

random variable with shape parameter L and scale parameter 1/L to the original

noise free image and then, adding a Gaussian noise with standard deviation �.

Table 6.9 shows that the results from our model are noticeably better than the

others in terms of PSNR and the performance of our model is stable even with an
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Speckle L = 1 L = 3
Gaussian noise (�) 0 10 20 0 10 20

I-div model 22.5 24.7
exp model 22.4 24.6
m-V model 22.6 25.1
Model (6.6) 22.99 22.88 22.95 25.77 25.69 25.55

Table 6.9: Denoising results (PSNR) for the image “House”, in the presence of
speckle and a mixture of speckle and Gaussian noise.

additive Gaussian noise.

The parameters used were �
1

= 1, �
2

= 0.01, and ⇢ = 0.7, 0.5 for L = 1, 3

respectively.

6.3.2 Deblurring

Poisson noise and mixed Poisson-Gaussian noise

First, we consider the deblurring problems in the presence of Poisson noise and its

mixture with Gaussian noise. We use the following 4 blurring kernels generated

by the Matlab command “fspecial”: “disk, 3” kernel; “15 ⇥ 30 motion” kernel;

“15 ⇥ 15 Gaussian” kernel with standard deviation 2; and “9 ⇥ 9 average” kernel.

We vary the image’s maximum intensity from 120 to 30 and the Gaussian noise level

correspondingly as in Section 6.3.1. Note that we did not consider the cases for I
max

below 30 because blurred images are less likely to be extremely noisy.

Table 6.10 summarizes the PSNR values we obtained for the deblurring problems

with Poisson and Gaussian noises. As far as we are aware of, no such thorough

testing have been done in the literature. Note that deblurring in the presence of

Poisson noise has been considered in [89]; however, the maximum intensity are scaled

up to thousands, thus, the noisiness is much weaker than the cases given here.

The parameters used in this experiment were �
1

= 1, �
2

= 0.01, ⇢ = 0.1 for

I
max

= 120, � = 0, and ⇢ = 0.15 for all the other cases.

Random-valued impulse noise and Gaussian noise

In the second experiment, we consider the problem of deblurring the images con-

taminated by both impulse noise and Gaussian noise. Note that two-phase methods
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Peak intensity (I
max

) 120 60 30
Gaussian noise (�) 0 12 0 6 0 3

Cameraman disk, 3 24.29 23.36 23.91 23.24 23.43 22.84
Cameraman motion, 15, 30 22.89 21.74 22.28 21.56 21.69 21.27
Cameraman Gaussian, 15, 2 23.77 22.87 23.30 22.79 22.86 22.51
Cameraman average, 9 22.76 21.89 22.30 21.95 21.89 21.62

Lena disk, 3 26.31 24.89 25.66 24.81 24.93 24.31
Lena motion, 15, 30 24.24 22.99 23.57 22.72 22.85 22.39
Lena Gaussian, 15, 2 25.74 24.51 25.24 24.24 24.47 23.94
Lena average, 9 24.65 23.44 23.97 23.27 23.55 23.10

Table 6.10: Deblurring results (PSNR) for the images “Cameraman” and “Lena”,
in the presence of Poisson noise and mixed Poisson-Gaussian noise.

Image Baboon Goldhill Cameraman
Random-valued impulse noise (r) 10% 20% 10% 20% 10% 20%

Model outlier [32] 21.2 21.1 25.7 21.4 24.2 24.0
Model (6.6) 22.62 22.49 25.65 25.48 24.48 24.24

Table 6.11: Deblurring results (PSNR) for various testing images with blurring
kernel “disk, 3”, in the presence of random-valued impulse noise, Gaussian noise
with standard deviation � = 10.

with pre-detection of the impulse noise using median filters have also been used to

solve this problem [10,11]. However, since it is shown in [32] that the outlier model

(6.10) outperforms the two-phase methods, we again compare our results with that

of the model (6.10) only.

The blurring kernel used in this experiment is the “disk, 3” kernel, and the

image’s maximum intensity is not rescaled.

The results in terms of PSNR are summarized in Table 6.11, and some of the

restored images are presented in Figure 6.11. We can see that our method generally

produces better results, especially for the image “Baboon”, there is a gain of more

than 1dB in terms of PSNR.

The setting of parameters was the same as in Section 6.2.3.



88 Chapter 6. Applications of (1.1) in Image Processing

(a) r = 10%, � = 10
PSNR=18.28

(b) r = 10%, � = 10
PSNR=16.66

(c) r = 10%, � = 10
PSNR=17.67

(d) PSNR=22.62 (e) PSNR=24.58 (f) PSNR=25.65

Figure 6.11: Deblurring results for various testing images with blurring kernel “disk,
3”, in the presence of random-valued impulse noise and Gaussian noise. The first
row are blurred noisy images and the second row are the corresponding restored
ones.
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Without mask With mask
Percentage of pixels missing 10% 20% 30% 50% 70% 90%

Lena 31.81 27.87 24.59 31.33 28.04 23.46
Peppers 33.77 30.04 25.85 30.80 26.20 22.43

Cameraman 29.34 25.56 22.11 28.60 25.34 21.55

Table 6.12: Recovery results (PSNR) for several testing images with di↵erent per-
centage of missing pixels.

6.3.3 Recovery from Images with Randomly Missing Pixels

From the results presented in previous sections, we have already seen that our

method is robust to outliers. To further demonstrate this, we present in this sec-

tion the recovery results from images with randomly missing pixels. We consider

both cases when the positions of the missing pixels are known and unknown; in

other words, one can refer them as the inpainting and the blind inpainting problems

respectively.

Table 6.12 shows that without knowing which pixels are missing, our method is

able to recover the original image to a moderate extent with at most 30% missing

pixels; however, knowing their exact positions allows us to increase this number to

90%. The visual results for the image “Peppers” are presented in Figure 6.12.

The parameters used in this experiment were �
1

= 1, �
2

= 0.01, ⇢ = 1.2, 1.5, 1.8

for the recovery of missing 10%, 20%, 30% pixels without mask, and �
1

= 1, �
2

=

0.1, ⇢ = 0.05, 0.1, 0.15 for the recovery of missing 50%, 70%, 90% pixels with mask.

6.4 Further Remarks

In this section, we propose an even simpler model with only the `
1

-norm based

distance function as the data fitting term. The reduced model works perfectly well

as (6.6) mainly due to the ALM and the special feature of image restoration problems

that one only seeks a good sparse approximated solution to the original model. In

addition, we present comparisons of our proposed ALM-APG algorithm with the

widely used alternating direction method of multipliers (ADMM) algorithm.
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Gaussian noise (�) 10 20 30 40

Lena 33.67 29.96 27.81 26.75
Cameraman 33.62 29.84 27.61 26.24

Mixed Gaussian noise (�
m

) [2, 5, 10] [4, 10, 20] [6, 15, 30] [8, 20, 40]
Lena 32.88 29.24 27.35 26.21

Cameraman 32.67 29.28 27.20 25.91

Table 6.13: Denoising results (PSNR) for the images “Lena” and “Cameraman”, in
the presence of single Gaussian noise and a mixture of Gaussian noises with di↵erent
standard deviations using model (6.12).

Peak intensity (I
max

) 120 60 30

Gaussian noise (�) 0 12 0 6 0 3

Model without VST 30.99 28.10 29.19 27.60 27.44 26.53
(6.12) with VST 31.40 27.97 29.69 27.52 27.77 26.49

Peak intensity (I
max

) 10 5 1

Gaussian noise (�) 0 1 0 0.5 0 0.1
Model without VST 25.02 24.56 23.35 22.99 19.95 19.94
(6.12) with VST 23.58 24.12 22.13 21.57 9.34 13.79

Table 6.14: Denoising results (PSNR) for the image “Cameraman”, in the presence
of single Poisson noise and mixed Poisson-Gaussian noise using model (6.12).

6.4.1 Reduced Model

From the numerical experiments presented the previous two sections, the parameter

�
2

is much smaller than �
1

= 1 in most of the cases, especially when impulse noise is

involved. In fact, for the cases with only Gaussian noise, where the `
2

-norm distance

function (6.3) is the best choice based on statistical analysis among all the possible

data fitting terms, reducing �
2

to 0 in the experiments in subsection 6.3.1 does not

vary the results too much. Table 6.13 summarizes the PSNR results for the same

denoising problems as presented in Table 6.5. Note that except �
2

, all the other

parameters used were the same for the two experiments.

Moreover, for denoising of mixed Poisson-Gaussian noise in subsection 6.3.1,

where �
2

is also chosen to be relatively larger than the cases with impulse noise, the

results with �
2

= 0, as listed in Table 6.14, are still very close to those presented in

Table 6.6.



92 Chapter 6. Applications of (1.1) in Image Processing

The above observations suggest that we can reduce the model (6.6) to the fol-

lowing even simpler version:

min
u2Rn

�
1

kHu� bk
1

+ ⇢kWuk
1

. (6.12)

This reduction will not reduce the e↵ectiveness of the model (6.6) because the `
2

-

norm distance term is implicitly built in by the proposed ALM. This is readily shown

via the augmented Lagrangian functions of the corresponding two models.

If we write y =

✓

y
1

y
2

◆

and z =

✓

z
1

z
2

◆

, then the augmented Lagrangian function

of (6.6) associated with � > 0 can be written as

L
2,�

(u, z
1

, z
2

; y
1

, y
2

) =
�
2

2
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1
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2

k2.

The augmented Lagrangian function of (6.12) can be obtained simply by setting

�
2

= 0 in the above expression:

L
1,�

(u, z
1

, z
2

; y
1

, y
2

) =
�

2
kHu� bk2 + �

1

kz
1

k
1

+ ⇢kz
2

k
1
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1

, b�Hu� z
1

i

+
�

2
kz

1

k2 + �hHu� b, z
1

i+ hy
2

,�Wu� z
2

i+ �

2
kWu+ z

2

k2.

Obviously, L
1,�

also contains the `
2

-norm distance term kHu�bk2. Although there is

a di↵erence of �
2

/2 in the weight, we note that the relative di↵erence is insignificant

in our numerical experiments as � is usually 10 ⇠ 50 times larger than �
2

. As

a result, the necessity of having the `
2

fitting term in the model (6.6) is often

obscured by the augmented Lagrangian based method we use to solve the reduced

model (6.12). (We give a more detailed explanation in the next remark.)

If instead of using an ALM, one uses a subgradient method to solve (6.12), then

the importance of the `
2

fitting term would become clearer since the subgradient

method does not involve an implicit `
2

fitting term. To verify this claim, we used a

subgradient method to denoised the 256⇥256 “Cameraman” image contaminated by
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a mixed Poisson noise (with I
max

= 255) and Gaussian noise (with � = 10) based on

the reduced model (6.12) with �
1

= 1, ⇢ = 1. The best PSNR value obtained by the

subgradient method (running for 200 iterations) is 28.80, whereas the corresponding

PSNR value obtained by ALM-APG when solving (6.12) is 30.46.

We should mention that by running more subgradient (or ALM-APG) itera-

tions can be counter-productive in terms of reducing the PSNR value. Though by

performing more iterations, we get a better approximate minimizer (for having a

lower objective value) for the model (6.12), but it does not necessarily give a better

recovered solution for the original ill-posed image restoration problem. One needs

to remember that the model (6.12) is only a regularization model for an ill-posed

problem, which is only meant to be used as a guide to find a good recovered so-

lution for the ill-posed problem, and there is no guarantee that a minimizer of the

model would provide a superior recovered solution. Similar remarks also apply to

the model (6.6).

Remark 6.1. Observe that the ALM automatically builds in an `
2

data fitting

term in each iteration, thus the solution path generated by the proposed ALM when

solving the reduced model (6.12) is, therefore, similar to that generated by the

ALM for solving the original model (6.6) when the parameter �
2

is much smaller

than �. More specifically, because the approximate solutions (uk+1, zk+1

1

, zk+1

2

) and

(ūk+1, z̄k+1

1

, z̄k+1

2

) for the models (6.6) and (6.12) are generated from minimizing

L
2,�

(u, z
1

, z
2

; yk
1

, yk
2

) and L
1,�

(u, z
1

, z
2

; ȳk
1

, ȳk
2

) respectively, the small relative di↵er-

ence between L
2,�

and L
1,�

would imply that both models tend to produce similar re-

sults when (yk
1

, yk
2

) ⇡ (ȳk
1

, ȳk
2

). Thus when the ALMs applied to (6.6) and (6.12) both

use the same starting iterate (y0
1

, y0
2

) = (ȳ0
1

, ȳ0
2

) and the same sequence of parameters

{�
k

� �
2

}, the iterates for the first few outer iterations of the ALMs would have the

property that (uk+1, zk+1

1

, zk+1

2

) ⇡ (ūk+1, z̄k+1

1

, z̄k+1

2

), and (yk+1

1

, yk+1

2

) ⇡ (ȳk+1

1

, ȳk+1

2

).

This does not contradict the fact that di↵erent optimal solutions for the two mod-

els are expected at convergence since eventually (yk
1

, yk
2

) and (ȳk
1

, ȳk
2

) would become

di↵erent enough for the ALMs to converge to di↵erent optimal solutions. Nor does

it contradict the less prominent results of (6.12) presented in [33], because di↵er-

ent numerical algorithms generate di↵erent solution paths and subsequently, lead to

di↵erent approximate solutions.

Recall that all minimization problems with `
1

-regularization terms in image

restorations are regularization models for ill-posed problems. The optimization

models are used to serve as a guide to obtain a good sparse solution in a certain
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transformed domain, and the solver is usually terminated when a good sparse ap-

proximate solution is obtained instead of running to full convergence to an optimal

solution. For our ALMs applied to (6.6) and (6.12), because we only need less than

two dozens outer iterations to get good feasible solutions, the solutions obtained for

both models would be quite similar based on the explanation given in the previous

paragraph. Thus it is not surprising that the results obtained in Tables 6.13 and

6.14 are quite close to those in Tables 6.5 and 6.6, respectively.

6.4.2 ALM-APG versus ADMM

As it has been discussed in Chapter 4, to tackle the non-separable `
1

-term in (P),

most of the existing fast algorithms for image restoration problems are variants of the

augmented Lagrangian method (ALM) with the inner subproblem being solved by

an alternating direction method of multipliers (ADMM), such as the split Bregman

algorithm [17, 51]. The di↵erence between the ALM-APG algorithm used here and

the split Bregman algorithm is that by expressing u in terms of x as in (3.14) and

substituting it to the objective function, we essentially solve an inner subproblem

with only one variable x, which therefore, can be solved to a moderate accuracy

before updating the Lagrangian dual variable v.

Here we also provide some numerical results from the model solved by the ADMM

for comparison. The parameters used in the ADMM have been tuned and the total

number of the ADMM iterations is capped at 200, because additional iterations do

not make significant progress. The denoising results in terms of PSNR are summa-

rized in Table 6.15 and Table 6.16, and in Table 6.15, we also listed the CPU time

cost. The time recorded is in seconds and includes the bilateral filtering, which takes

around 5s. In the cases with Poisson noise, images’ maximum intensity were not

rescaled and Gaussian noise was added after Poisson noise. The results show that

the ALM-APG algorithm generally performs better than the ADMM. Since in [32],

the authors also have considered the reduced model (6.12) solving by a split Breg-

man algorithm for denoising of mixed Gaussian noise and random-valued impulse

noise, we include their results in the table for reference purpose.

Both the ADMM and the ALM-APG algorithm used in this chapter are first-

order methods. However, it is well-known that for many problems, the ADMM

algorithm may converge to a low accurate solution very fast but slows down drasti-

cally in subsequent iterations; whereas, the proposed ALM-APG algorithm does not
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su↵er from stagnation in all the numerical experiments conducted in this chapter.
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