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Summary

Data analytics in databases has received a lot of attention in the database commu-

nity as it is an effective process of inspecting, cleaning, transforming, andmodeling

data with the goal of highlighting useful information, suggesting conclusions, and

supporting decision making. However, as dataset cardinality increases dramatically

nowadays, it remains a challenge to make the analytical process scalable as well as

keep the process interactive, visual intuitive and user controllable. As such, it is

important to provide a framework to support data interactive analytics in a scalable

manner.

This thesis first addresses a user preference query on top of multi-dimensional datasets.

We propose to elicit the preferred ordering of a user by utilizing skyline objects as

the representatives of possible orderings. With the notionof order-based representa-

tive skylines, representatives are selected based on the orderings that they represent.

To further facilitate preference exploration, a hierarchical clustering algorithm is ap-

plied to compute a denogram on the skyline objects. By coupling the hierarchical

clustering with visualization techniques, this frameworkallows users to refine their

preference weight settings by browsing the hierarchy.

To further extend the interactive data analytics, we propose to apply the hierarchical

browsing approach in the application of keyword search in databases. To this end,

we implement a novel system allowing users to perform diverse, hierarchical brows-

ing on keyword search results. It partitions the answer trees in the keyword search

results by selectingk diverse representatives from the answer trees, separatingthe

answer trees intok groups based on their similarity to the representatives andthen

recursively applying the partitioning for each group. By constructing summarized

result for the answer trees in each of thek groups, we provide a visual interface for

users to quickly locate the results that they desire.
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CONTENTS

Finally, we introduce a novel subgraph concept to capture the cohesion in social

interactions, and propose an I/O efficient approach to discover cohesive subgraphs.

In addition, we develop an analytical system which allows users to perform intuitive,

visual browsing on a large scale social networks. We hierarchically visualizes the

subgraph out on orbital layout, in which more important social actors are located

in the center. By summarizing textual interactions betweensocial actors as the tag

cloud, users can quickly locate active social communities and their interactions in a

unified view.
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Chapter 1

Introduction

With the rapid development of database system research, modern database systems

can process terabytes to petabytes of data, or incorporate non-structural data and

multi-structured data sources and types. However, despitethe considerable advance-

ments in high performance, large storage, and high computation power, there is

a lack of attention in identifying, clustering, classifying, and interpreting a large

spectrum of the underlying information, knowledge and intelligence. Database re-

searchers recently realized that making database usable deserves more attention [67].

It is very important to design better approaches to retrievewhat users need effectively

and intuitively, due to the large scale of datasets and complex data types in existing

database applications. In view of this, we introduced the interactive data analysis

into database research.

Data analysis is an effective process of inspecting, cleaning, transforming, andmod-

eling data with the goal of highlighting useful information, suggesting conclusions,

and supporting decision making [76], which is widely used in different domains,

such as business, science, and policy. In general, it can be divided into three major

phases: data cleaning, initial data analysis and main data analysis [2]. Data cleaning

is a procedure during which the data are inspected and erroneous data are corrected

without information loss. The initial data analysis is the next phase which does not

directly aim at answering the original research question, but takes quality of data and

measurements as its main concern and performs initial transformations of data. In

the main analysis phase, analysis aims at answering the research question as well as

1



CHAPTER 1. INTRODUCTION

any other relevant analysis. In this thesis, we focus on the main data analysis phase,

with the assumption that the data we need to analyze is already cleaned and stored

in database systems with the format we need. As such, based ondifferent database

applications on various multi-structured datasets, we propose different analyzing so-

lutions to extract information out of data and to show results to users in an interactive

manner.

There are various of data analysis methods, some of which include data mining, text

analytics, business intelligence, and data visualizations. One important branch is

data mining, which is the computational process of discovering patterns in large data

sets. Related to data mining, text mining, roughly equivalent to text analytics, ex-

tracts and classifies information from textual sources, a species of unstructured data.

Business intelligence is commonly applied in the business area that relies heavily

on aggregation, focusing on business information. In statistical applications, data

analysis is divided into descriptive statistics, exploratory data analysis (EDA), and

confirmatory data analysis (CDA). EDA focuses on discovering new features in the

data while CDA on confirming or falsifying existing hypotheses. My research topic

specializes in interactive data analysis in databases, close to the data mining and data

visualization. Differently, we are more interested in querying and searching prob-

lems on the large scale indexed datasets and try to implementvisualized systems to

capture the most important information with respect to users’ interests.

To better explain the blueprint of the thesis, we depict the overall framework as in

Figure1.1. In general, it can be divided into three layers, including data storage

layer, data analysis engine and data visualization interface. In this thesis, we make

use of the data storage layout to organize the data with respect to different data types

and my study focuses on the above two layers. We propose different data analyzing

techniques for different problems and visualize them in visualization interface, so

that users can interact with the system and quickly understand the meaning of the

analyzing results.

In the subsequent sections, an overview of the scope of studyfor this thesis is pre-

sented first. Then, we describe the research aims, the general methodology, the

contributions and the outline of the thesis.

2
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Preference Mining

Result Diversification
Cohesive Subgraph 

Finder

Data Storage

Data Analysis Engine

U
s
e
r Q

u
e
ry

Data Visualization Interface

Figure 1.1: The Overview Framework.

1.1 Scope of Study

Since interactive data analysis in databases is a very broadarea, my study will fo-

cus on the following key topics. A brief introduction is given below and in-depth

discussion will be found in subsequent chapters.

1.1.1 Preference Mining

The notion of preference occurs naturally in every context where one talks about hu-

man decision or choice. In the context of database queries, faced with information

overload, database users seek ways to obtain not necessarily all answers to queries

but rather the best, most preferred answers [70]. Personalization of e-services poses

new challenges to database technology, demanding a powerful and flexible modeling

technique for complex preferences. Preferences, treated as soft constraints, are uti-

lized in multi-criteria decision situations to identify the preferred results. A common

3
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approach assumes that a monotonic ranking (or preference) functionP(·) is provided

and the user will specify his/her preference by setting a set of weights to rank the

importance of data objects. In this thesis, we aim at eliciting a users preference by

adopting this preference mining setting.

Computing preference queries have been a well studied problem in the database

community [70, 28, 68, 89]. Among various possible problem settings, a com-

mon one [68, 89] assumes that a monotonic ranking (or preference) functionP(·)
is provided and the user will specify his/her preference by setting a set of weights

w = {w1,w2, . . . ,wd} which are used within the preference function to rank the im-

portance of data objects. Each of the weightwi represents the importance of an

attributeAi describing the objects and thusw1, ..., wd describe the importance ofd

attributesA1,..., Ad. In such a problem setting, it is also assumed that the order of

preference for the domain values of each attribute are known. As such, if the user is

able to specify the settings of the weights correctly, then the objects will be ranked

in the correct order of his/her preference and then the problem becomes one of re-

trieving the objects efficiently based on the order. However, if the user is unsure of

his/her preference (which is typically the case), it is crucial to interact with the user

to obtain a correct set of weights that represent his/her preference. Designing an

effective mechanism to elicit the preference of the user is exactly what we set to do

in this work.

To elicit an user’s preference, a common approach is to present the user with a set

of objects, and based on his/her choice of the objects, we can potentially infer the

correct weights. To ensure that all possible choices are well covered, the set of ob-

jects being presented must be carefully selected. More often than not, this involves

clustering the objects into different groups and a representative from each group

will be presented to the user. By stating the preference for aparticular represen-

tative, he/she implicitly provides an approximate setting for the set of weights and

also indicates that he/she prefers the group associated with the representative. Fur-

ther refinement can then be made by repeating the procedure onthe selected group

and selecting more representatives from the group. However, such an approach will

bring about a catch-22 situation. In a typical clustering operation, an appropriate

similarity function will be required to determine the similarity between the objects.

Such a similarity function will usually be determined by weighting the importance

of the attributes based on the user’s input. The user, unfortunately, is relying on the

4
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clustering results to help him/her determine the importance of these attributes in the

preference function!

In view of this, much research has been done on the problem of skyline computation

[17, 29, 98, 72, 94, 74]. An objectp dominates another objectq if p is better or equal

to q in all attributes and at least better thanq in one. The skylines objects are objects

that are not dominated by any other objects in the set. Based on this definition, it can

be shown that the set of skyline objects for a dataset is insensitive to (1) the weight

assigned to each attribute and (2) the preference function being adopted. More im-

portantly, given any monotonic preference function, it is guaranteed that the top one

will always be a skyline object. More formally, letπw(D) denote the preferred or-

dering of a set of objects given weight settingw andπw(D)[i] denote thei th object

in this ordering, thenπw(D)[1] must be a skyline object. In this sense, we will refer

to πw(D)[1] as arepresentativeof πw(D) and thus every possible ordering based on

different weight settings will be represented by one of the skyline objects.

Since the set of skyline objects is insensitive to the setting of weights and gives full

coverage as representatives ofπw(D), it thus makes sense to present the skylines to

the user for selection and infer the weight setting that represents the user’s preference

based on his/her selection1. However, it has been shown in [98] that the expected

number of skyline objects isΘ(lnd−1 n/(d − 1)!) for a random dataset whered is the

dimensionality of the data. The large number of skyline objects for high dimensional

dataset is ironical since this is the situation in which users have the most difficulty

determining their preferences and comparing products. Various efforts have been

made [80, 112] to overcome this problem by selectingk representatives from a large

set of skylines. While we will discuss these later, it suffices to point out here that

none of these works tries to bring the preference function and its ordering of the

objects back into the picture.

1.1.2 Keyword Search in Databases

It has become highly desirable to provide users with flexibleways to query/search

information over databases as simple as keyword search likeGoogle search [126].

1Note that since multiple settings ofwcan be represented by the same skyline object, this inference
is only approximate.
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Keyword search over databases focuses on finding structuralinformation among ob-

jects in a database using a set of keywords. Such structural information to be re-

turned can be either trees or subgraphs representing how theobjects, that contain the

required keywords, are interconnected in a relational database or an XML database.

The structural keyword search is completely different from finding documents that

contain all the user-given keywords. The former focuses on the interconnected ob-

ject structures, whereas the latter focuses on the object content. However, keyword

search queries can often return too many complex answers. Asa result, exploring and

understanding keyword search results can be time consumingand not user-friendly.

In this thesis, we expect to make the keyword search in databases more intuitive to

use to finding desired answers.

With an increasing amount of textual data being stored in relational databases, key-

word search is well recognized as a convenient and effective approach to retrieve

results without knowing the underlying schema or learning aquery language [3, 64,

69, 61]. The result of a keyword query is often modeled as a compact substructure,

such as a tree or a graph, which connects keyword tuples to include all the keywords.

Potentially, a user could discover underlying relationships and the semantics based

on structural answers.

However, keyword search queries can often return too many answers. This is because

the semantics captured in a keyword query is limited, and thetuples that keywords

are located in might come from different tables and connect with each other in many

ways. As a result, exploring and understanding keyword search results can be time

consuming and not user-friendly. To illustrate this, we describe a simple example

on CiteSeerX2 dataset. Figure1.2 shows the schema graphGS, in which nodes are

associated with tables and edges indicate foreign key references.

Author

TID

Name

Write

TID

AID

PID

Paper

TID

Title

Abstract

Cite

TID

PID1

PID2

Figure 1.2: CiteSeerX Schema Graph

2http://citeseerx.ist.psu.edu/
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Example 1 Consider a keyword query on “skyline” and “rank” over the CiteSeerX

dataset. There are78 tuples containing the keyword “skyline”, and729 tuples con-

taining the keyword “rank”. A snapshot of keyword tuples arepresented in Table1.1,

and part of the answers related to these tuples are shown in Figure1.3. For clear

illustration, we use “a” to denote an author and “p” to denotea paper. It can be

seen that the relationship between them varies a lot even forfixed keyword tuples.

Presenting and exploring the results of this keyword query will be difficult.

T1 T2 T4

T6 T7 T8T5

T3

p

p

p

p

p kn1

p

p

p kn1p

p

p

p

p

kn1

a

p

p

kn3

p

p

kn4

kn3

a

p

p kn3

kn2

p

p

p

p

kn1

kn5kn4kn4

kn4 kn4 kn6
kn4

Figure 1.3: Search Result Examples

Table 1.1: The Snapshot of Keyword Tuples
ID Content Excerpt
kn1 The [Skyline] Operator
kn2 [Skyline] with Presorting
kn3 An Optimal and Progressive Algorithm for [Skyline] Queries
kn4 Merging [Ranks] from Heterogeneous Internet Sources
kn5 Why [Rank]-Based Allocation of Reproductive Trials is Best
kn6 The PageRank Citation [Rank]ing

A typical solution for massive keyword search results is to return top-k answers ac-

cording to relevant scores [61]. Sophisticated ranking strategies have been developed

to attempt to capture the search intention of a user. Withoutknowing the schema,

however, it is hard for a user to explicitly express the preference. For instance, the
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query{skyline, rank} aims to discover the relationship between them, but it is diffi-

cult to indicate which keyword is more important or what types of path connections

are meaningful before a user realizes what can be found in thedataset. Even if it is

possible to estimate users’ preference, the top-k results usually include many over-

lapped answers that are redundant to present. As an extreme case in Example1, T2

andT4 share two keyword nodes and even an identical answer structure.

Ideally, the results for keyword query would properly account for the interests of

the overall user population [31]. In view of this, result diversification has been well

studied in information retrieval community [31, 52, 5]. More explicitly, they try to

put documents with broad information and different semantics in the first page of

search interface. Consequently, the search engine improves users’ satisfaction since

each user has a high possibility of efficiently finding interesting documents. The aim

here is to adapt this idea to select diversified answer trees for keyword search over

databases. For instance, we may chooseT1 andT7 in Figure1.3since they represent

different keyword tuples, and the connection structures are distinct as well.

1.1.3 Social Network Analysis

Social network analysis [71] has emerged as a key technique in modern sociology

due to a large and rapidly growing social network companies nowadays, such as

Facebook and Twitter. Social network analysis views socialrelationships in terms

of network theory, consisting of nodes (representing individual actors within the

network) and ties (which represent relationships between the individuals, such as

friendship, kinship, organizational position, sexual relationships, etc.) [95]. One

fundamental problem is how to efficiently to identify groups of social actors that are

highly connected with each other, represented by a cohesivesubgraph, in which an-

alysts may discover interesting structural patterns amongsocial actors, and normal

users can know what happening in their neighborhood. Moreover, visual representa-

tion of social networks is important to understand the network data and convey the

result of the analysis. Many of the analytic software have modules for network visu-

alization. Exploration of the data is done through displaying nodes and ties in various

layouts, and attributing colors, size and other advanced properties to nodes. Visual

representations of networks may be a powerful method for conveying complex in-
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formation. In this thesis, we combine the cohesive subgraphdiscovery and social

network visualization to build a novel system for social network visual analysis.

Graphs play a seminal role in social network analysis nowadays. A large and rapidly

growing social network companies store social data as graphstructures, such as

Facebook3 and Twitter4. In a social graph, vertices represent social actors, while

edges represent relationships or interactions between actors. One fundamental op-

eration on the social graph is to identify groups of social actors that are highly con-

nected with each other, represented by a cohesive subgraph,in which analysts may

discover interesting structural patterns among social actors, and normal users can

know what happening in their neighborhood.

Cohesive subgraph discovery is an intriguing problem and has been widely studied

for decades. One fundamental structure is the clique in which every pair of vertices is

connected. Finding cliques is NP-Hard [45] and many work tries to relax the clique

problem to improve efficiency [83, 8, 103, 102, 117, 115]. However, these meth-

ods do not directly take the characteristics of social network into consideration. For

example, in Figure1.4a, we emphasize the 3-core in solid edges and connected ver-

tices, in which every vertexv inside it satisfiesd(v) ≥ 3. However,g is not cohesive

enough as a whole. Considering cliques insideg, we can find a 5-clique (a, b, c, d, f )

and a 4-clique (c, d, e, f ) on the left, as well as two 4-cliques{(m, n, p, q), (p, q, t, u)}
on the right. But vertexa and p are not tightly coupled since they only share one

common neighborj, so the subgraphg is better viewed as two separate cohesive

groups.

This phenomenon, denoted as the tie strength concept, is well studied in the socio-

logical area. Note that tie is same as edge in a social graph. Mark Granovetter in his

landmark paper [55] indicates that two actorsA andB are likely to have many friends

in common if they have a strong tie. In another state-of-the-art sociological paper,

White et al. [121] observe that a group is cohesive to the extent that pairs of its mem-

bers have multiple social connections, direct or indirect,but within the group, that

pull it together. One intuitive real life example is that youand your intimate friends

in Facebook may have a high possibility to share lots of mutual friends. However,

this observation has been missing from many of the cohesive subgraph definitions,

3https://www.facebook.com
4https://www.twitter.com
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which drives us to define a “mutual-friend ” structure to capture the tie strength in

a quantitative manner for social network analysis. Assume we consider a tie in Fig-

ure1.4valid if and only if it is supported by at least two mutual friends. With only

supported by one mutual friendj, the tie (a, p) should be disconnected according to

the mutual-friend concept, and we successfully separate subgraphg to two groups.

We will formally define the problem and compare it to other definitions in details in

Chapter5.

(a) Before Layout (b) After Layout

Figure 1.4: Cohesive Graph Example

1.2 Research Aims

It has recently been asserted that the usability of a database is as important as its

capability [67]. The authors study why database systems today are so difficult to

use, and identify a set of five pain points in the current database systems. Inspired

by this work, the most important objective of this thesis is to improve the usability

of the modern database management system.

However, the focus of the database usability paper is on issues in the data model

and database design, while the focus of this thesis is the data analysis and data vi-

sualization in databases. In general, my research interests span across the whole

process of converting data into intelligence, such as the multi-dimensional data in

preference mining, structural data in keyword search over databases and graph data

in social network analysis. We view data as sources of intelligence and aim to extract

knowledge from data and information in an efficient and effective manner so that the
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knowledge can be utilized to create intelligent systems with applications in real life

problems. To this end, we not only propose new data analyzingproblems and design

algorithm to efficiently solve them, but also build real systems to support users to

browse the analysis results in visualized and interactive manner. The results of my

interactive data analytical study should shed light on the database usability that are

not available so for.

1.3 Methodology

In contrast to the common sense that we tackle a difficult problem with a “high

powered” techniques, in data analysis the real “trick” is tosimplify the problem

and the best data analyst is the one who gets the job done, and done well, with

the most simple methods. The major difficulties for the large scale data analysis in

databases are twofold. On one hand, handling the datasets with large cardinality and

high dimension is problematic. On the other hand, the resultrepresentations are too

complex to understand. In this section, we briefly present various key techniques

to perform interactive data analysis in databases, and the detailed solutions will be

presented in Chapter3 to Chapter5 respectively.

To begin with, since we need to deal with large scale databaseapplications, one fun-

damental strategy is to provide summary view for the complexdata analysis results,

so that users can understand the result in the broad way. The summarization in this

thesis is the approach to extract the most important characteristics of the analyzed

data but not the details. It is a simple yet effective approach to many large scale data

analyzing problems. There are various approaches to achieve the summarization.

Sampling is widely used in statistical analysis because analyzing a well selected

subset of data gives similar results to analyzing all of the data. It caters for large

scale applications since sampling is a lightweight approach with high efficiency. In

data mining, clustering is one common used approach to discover representatives for

multi-dimensional datasets. In information retrieval, search results diversification

[88] emerges in order to discover relevant but distinguished results to cover more

information. Based on the social network data, researchersproposed various metrics

to highlight and summarize different aspects for social network analysis.
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But data analysis is not about data — it uses them. Even if we could present data

in a summary view, we still need to propose an effective approach to help users find

what exactly they need in the complex results. Especially when deal with large scale

dataset, it is a big challenge to keep the analysis visual intuitive and user control-

lable, which is very important for users to understand the result and find out what is

interesting to investigate. Ranking is one common used strategy to list the results.

However, different users have different preferences. Without knowing the data well,

it is hard for a user to explicitly express the preference foreffective ranking. To solve

it, we propose a hierarchical browsing approach to couple with the summarization

techniques we discussed above. Hierarchical browsing is aneffective approach to

interact with users and can be elegantly supported by summarization techniques. By

grouping the large result set with respect to the representatives, we enable users to

efficiently locate desired results by drilling down to relevantanswers incrementally

on top of the visual interface instead of a global ranking.

1.4 Contributions

Next, we summarize various topics this thesis contributes towards the interactive

data analysis in database area.

Elicit Users’ Preference In this work, we address a user preference query on top

of multi-dimensional dataset. We propose to elicit the preferred ordering of a

user by utilizing skyline objects as the representatives ofthe possible ordering.

With the notion oforder-based representative skylines, representatives are se-

lected by means of sampling based on the orderings that they represent. To

further facilitate preference exploration, a hierarchical clustering algorithm is

applied to compute a denogram on the skyline objects. By coupling the hier-

archical clustering with visualization techniques, this framework allows users

to refine their preference weight settings by browsing the hierarchy.

Diversified Keyword Search in DatabasesWe next apply the hierarchical brows-

ing approach in the application of keyword search in databases. To this end,

we implement a novel system allowing users to perform diverse, hierarchi-

cal browsing on keyword search results. It partitions the answer trees in the
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keyword search results by selectingk diverse representatives from the answer

trees, separating the answer trees intok groups based on their similarity to the

representatives and then recursively applying the partitioning for each group.

By constructing summarized result for the answer trees in each of thek groups,

we provide a visual interface for users to quickly locate theresults that they

desire.

Social Network Visual Analysis We finally introduce a novel subgraph concept to

capture the cohesion in social interactions, and propose anI/O efficient ap-

proach to discover cohesive subgraphs. Besides, we proposean analytic sys-

tem which allows users to perform intuitive, visual browsing on a large scale

social networks. We hierarchically visualizes the subgraph out on orbital lay-

out, in which more important social actors are located in thecenter. By sum-

marizing textual interactions between social actors as thetag cloud, we provide

a way to quickly locate active social communities and their interactions in a

unified view.

Parts of the materials of this thesis on interactive data analysis in preference mining,

keyword search in databases and social network analysis were previously published

in [132, 134, 133] respectively.

1.5 Outline of the Thesis

The rest of the thesis is organized according to the three topics that we have intro-

duced and the approaches we developed to perform interactive data analysis on these

topics. To begin with, we review the literatures in chapter2 about the data analysis

and data visualization techniques, which are the context and the background knowl-

edge for the study in this thesis.

Chapter3 presents the interactive data analysis in preference mining in database. In

chapter4, we propose the interactive data analysis for keyword search in databases.

Next, we tackle the problem of interactive data analysis in social network in chapter

5. For each of the above topics, we first show the motivation andthe importance of

data analysis in this topic. Then, based on the limitations of interactive data analysis
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in each topic, we propose a new problem and describe the methodology we proposed

to solve it efficiently. Furthermore, we implement interactive visualization systems

to make it user friendly. Last but not the least, we describe the experiments to show

the effectiveness and the efficiency of our methods and summarize each work.

Finally, we conclude the whole thesis and indicating the future research directions

in chapter6.
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Chapter 2

Literature Review

In recent years, interactive data analytics in databases has been a hot topic in database

community. In the following discussions, we first review thegeneral data analysis

and data visualization techniques in Section2.1, which form the foundation of our

solutions to interactive data analysis in databases. Then,we classify the related work

of interactive data analytics in databases in terms of theirsimilarities/differences

with three key topics respectively. In particular, we first review the related work

of eliciting users’ preference in Section2.2. Second, we examine how to perform

keyword search in databases efficiently in Section2.3. Third, we investigate the

study in social network analysis and social network visualization in Section2.4.

2.1 Interactive Data Analysis Techniques

We first review the state-of-the-art interactive data analysis techniques that are adopted

in or highly related to the solutions in the three key topics in this thesis, according

to the introduction in Section1.3. The first part is about summarization techniques,

while the second part is about visualization techniques.
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2.1.1 Summarization Techniques

Summarization is the approach to extract the most importantcharacteristics of the

analyzed data but not the details, which is a simple yet effective approach to many

large scale data analyzing problems. There are various approaches to achieve the

summarization. In statistical analysis, sampling is concerned with the selection of

a subset of individuals within a statistical population to estimate characteristics of

the whole population. It is widely used because its low cost and fast data collec-

tion. Sampling methods can be classified as probability methods or nonprobability

methods. A probability sampling is one in which every unit inthe population has a

chance of being selected in the sample, including random sampling [124], system-

atic sampling [15] and so on. A non-probability sampling is one in which members

are selected from the population in some nonrandom manner. These include snow-

ball sampling [53], judgment sampling [36] and so on. The advantage of probability

sampling is that sampling error can be calculated, while thedegree to which the

sample differs from the population remains unknown in nonprobability sampling.

In data mining, clustering is one common used approach to discover representatives

for multi-dimensional datasets. It has plenty of variations and can be categorized

based on their cluster model, such as connectivity models, connectivity model, den-

sity models, subspace models and graph-based models. For example, the k-means

algorithm [85] belongs to the connectivity models, which represents eachcluster by

a single mean vector. DBSCAN [39] and OPTICS [10] defines clusters as connected

dense regions in the data space, which belongs to the densitymodels. Since there

are so many different models suitable for different applications, many toolkits were

developed to help users find the best clustering method for a specific problem. The

most widely used one is WEKA [58], which is an open source platform providing a

collection of machine learning algorithms for data mining tasks.

Result diversification is emerging data summarization technique where the result

consists of a set of objects representing the whole result set or distinguished from

each other. In contrast to the ranking query, this query typeis useful for users to fast

discovering results they are interested in from a large result set, so that it plays an

important role in many different contexts nowadays, such as representative skyline

finding, search result diversification and so forth. Representative skyline finding is
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proposed to solve the too many skyline results in high dimensional space, which we

will introduce in the subsequence sections. Search result diversification is a power-

ful approach to enhance user satisfaction in the IR community [88, 31, 5, 52, 37].

They developed various diversity measures for documents, and effectively solved the

diversity problem based on different diversification objectives. However, their diver-

sity measures are designed for documents, so the approachesare not applicable to

keyword search in databases with structural answer set.

Based on the social network data, researchers proposed various metrics to highlight

and summarize different aspects for social network analysis. In general, these met-

rics can be divided into three categories. The first categoryis based on the connec-

tions.One example metric belong to this category is homophily [86], which is the

tendency of individuals to associate and bond with similar others. The second cate-

gory is based on the distributions. The most common used one is centrality, which

refers to a group of metrics that aim to quantify the “importance” or “influence” of

one node within a network [120]. Examples of centrality measures include between-

ness centrality [120], degree centrality [93] and so on. The last category is based

on the segmentations. For example, the clustering coefficient [59], a measure of the

degree to which nodes in a graph tend to cluster together, is one metric belong to this

category.

In this thesis, we take advantage of the above summarizationtechniques and adopt

them according to different data analytic problem settings. The detailed explanations

will be presented later in independent chapters.

2.1.2 Visualization Techniques

A common approach for making large datasets tractable for interactive exploration is

through a browseable hierarchy. Smith et al. [106] grouped and visualized the search

results based on the rich categories. Abello et al. [1] described a node-link-based

graph visualization that allows clustering and navigationof large graphs. Balzer et

al. [13] developed the Voronoi treemaps for the visualization of software metrics.

In this thesis, we couple this technique with the summarization techniques to bet-

ter capture the complex results in an interactive manner. Assuch, users can better

perceive results in an intuitive way and find out the results they desired efficiently.
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Recently, researchers have developed a variety of toolkitsfor facilitating visualiza-

tion design. Stanford Vis Group devises an outstanding framework named Proto-

vis [18, 63], advocating for declarative, domain specific languages (DSLs) for vi-

sualization design. By decoupling specification from execution details, declarative

systems allow language users to focus on the specifics of their application domain,

while freeing language developers to optimize processing.Similar to Protovis, they

further proposed D3 [19] with a declarative framework for mapping data to visual

elements. However, unlike Protovis, D3 does not strictly impose a toolkit-specific

lexicon of graphical marks. Instead, D3 directly maps data attributes to elements

in the document object model (DOM). Inspired by their framework, I will integrate

the proposed hierarchical browsing visual analytical system as a toolkit, in order to

support flexible customizing the visualization and browsing the result as they need.

2.2 Elicit Users’ Preference

2.2.1 Skyline Query

The skyline query was introduced into the database community by Borzsonyi et

al. [17]. Given a set of points in a multidimensional space such as a set of digi-

tal cameras in the space of price, resolution, and the average user review score, the

skyline operator [17] returns the points that are not dominated by any other points

in the set. The skyline operator and its efficient computation have received a lot of

attention in the database community [17, 74, 29, 98, 72, 94] mainly due to the im-

portance of skyline computation in multi-criteria decision making applications and

preference-based query answering. Firstly, we define the skyline query formally.

Given a spaceS defined by a set ofd dimensions{D1, . . . ,Dd} and a datasetD onS,

a pointp ∈ D can be represented asp = (p1, p2, . . . , pd) where everypi is a value on

dimensionDi.

Definition 2.2.1 Domination

A point p∈ D is said todominateanother point q∈ D on S , denoted by p≺ q, if

(1) on every dimension Di ∈ S , pi ≤ qi; and (2) on at least one dimension Dj ∈ S ,

p j < q j. For r, s∈ D, they are said to benot comparableif r ⊀ s and s⊀ r.
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Definition 2.2.2 Skyline Query

A point p∈ D is a skylinepoint in S if p is not dominated by any other point q∈ S .

We denote S L(S) as all data points that are not dominated by any other points in S ,

i.e., S L(S) = {p ∈ S|∄q ∈ S , q≺ p}. Skyline query is the process to find S L(S).

There is extensive research works focus on improving the efficiency of the skyline

computation. The efficiency was first improved by Chomickiet al.[29] and Godfrey

et al.[98] significantly by means of sorting. By exploiting index structures, the ef-

ficiency of skyline query processing can be further improved. Kossmannet al.[72]

presented a nearest neighbor search algorithm and Papadiaset al.[94] proposed a

branch-and-bound algorithm (BBS). Both methods are based on R-tree structure

[56]. This operator has been studied in the context of distributed systems [12], P2P

networks [119, 118], parallel environment [122], data streams [101], microeconomic

data analysis [77, 78, 131] and processing queries with minimum communication

[129].

The skyline query in different environments is also a hot topic recent years. The

operator has been studied in distributed systems[12], P2P networks[119], parallel

environment[122] and data streams[101]. Parallel and distributed computational en-

vironments post both opportunities and challenges for skyline computation. To ad-

dress the challenges in skyline computation on distributeddata sources, Balke et

al. [12] proposed an algorithm for vertically distributed data, i.e., the attribute values

of a data point are distributively stored in different data sources. Suppose the values

of all data points on an attribute are stored in a data source.Independently a sorted

list of each attribute is built. Then, the algorithm continuously probes all dimensions

in the preference descending order until it retrieves all dimensions of a data point

which is identified as a skyline point immediately. Then, allother data points which

have not been accessed in any dimension are filtered out. Sucha process continues

until all skyline points are retrieved. The method can reduce the number of pairwise

comparisons between data points.

Several interesting variations were derived from the concept of skyline query. Spatial

Skyline Queries (SSQ) [104] returns the set of data objects that can be the nearest

neighbors of any object in a given query set. Formally, givena set of data pointsP

and a set of query pointsQ, each data point has a number of derived spatial attributes
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each of which is the distance from the data point to a query point. An SSQ retrieves

those points ofP which are not dominated by any other point inP considering their

derived spatial attributes. The main difference with the regular skyline query is that

this spatial domination depends on the location of the querypoints Q. SSQ has

application in several domains such as emergency response and online maps. In this

paper, the authors proposed two algorithmsB2S2 andVS2 for static query points

and one algorithm, TheB2S2 can be defined as a special case of BBS algorithm

presented in [94]. While BBS is a nice general algorithm, since it has no knowledge

of the geometry of the problem space, it is not as efficient asB2S2 algorithms for the

spatial case. On the other hand,VS2 algorithm makes use of the Voronoi diagram.

The Voronoi diagram can fast retrieval the nearest neighborin a spatial environment,

so theVS2 algorithm utilizes it to find the candidate objects and discovers all the

spatial skyline objects efficiently. Moreover, they presentedVCS2 algorithm for

streaming Q whose points change location over time.VCS2 exploits the pattern of

change in Q to avoid unnecessary re-computation of the skyline and hence efficiently

perform updates.

The most related variation of skyline query is targeting on the problem of having

too many skylines in high dimensional space, which were firsthighlighted by us

in [130, 24, 25] and solutions were proposed in the form ofstrong, frequentand

k-dominantskyline respectively. Subsequently, [80] proposedrepresentative sky-

lines wherek representative skyline objects must be found such that theytogether

dominate the most objects. From a ranking point of view, thisensures that the rep-

resentatives will somehow not rank too low since the dominated objects will never

rank higher than them with any weight settings. Next,distance-based representative

skylines[112] grouped the skyline objects intok clusters based on Euclidean dis-

tance and the medoid of each cluster is selected as a representative skyline. Spatial

proximity, however, does not necessary means similarity inordering. Two points

spatially closer to each other may not rank close since it is sensitive to the ranking

function. Besides, it is well known that the distance-basedmethod can never avoid

the curse of dimensionality, in the sense that the Euclideandistance of a given sky-

line object from its nearest and farthest neighbor tends to converge [4]. In contrast,

we consider using an order-based approach to solve the too many skylines in high

dimensional space in this thesis, in order to apply it to the preference elicitation prob-

lem. The order-based approach is robust to the increase in dimensionality, which is
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more suitable for high dimensional context.

2.2.2 Preference Elicitation

Preference query is one effective query type in many applications, such as recom-

mendation system, information retrieval and so forth. We will introduce preference

elicitation in database area and quantitative preference elicitation area respectively,

and indicate a different angle of this work.

Preference discovery and mining have been investigated in the database commu-

nity recently. Kießling [70] modeled various preference constructors and integrates

them into database systems. The framework considers preferences in a multidimen-

sional space. They presented a strict partial orders preference model tailored for

database systems. The extensible preference model both unifies and extends exist-

ing approaches for non-numerical and numerical ranking andopens the door for a

new discipline called preference engineering. Also, theirmodel can easily extend

to complex preferences by means of various preference constructors. To better inte-

grate the preference query into database systems, they proposed the Preference SQL

and Preference XPATH. Here are some typical examples:

Sample Preference SQL query:

SELECT * FROM usedcars WHERE make= ’Opel’

PREFERRING (category=’cabriolet’ ELSE category, ’roadster’)

AND price AROUND 40000 AND HIGHEST(power)

s AND mileage BETWEEN 20000,30000;

Sample Preference XPATH query:

/CARS/CAR #[ (@fuel economy) HIGHEST AND (@mileage) LOWEST

PRIOR TO (@color) IN (”black”, ”white”) AND (@price) AROUND 10000 ]#

Based on the preference construction approach aforementioned, Jiang et al. [68]

introduced the scenario of mining preferences using superior and inferior examples.

That is, in a multidimensional space where the user preferences on some categorical

attributes are unknown, from some superior and inferior examples provided by a

user, can we learn about the user’s preferences on those categorical attributes? To

solve this problem, preferences are modeled as skyline relations. The authors focus
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on mining minimal (in terms of relation size) finite atomic preference relations. They

show that the problem of existence of such relations is NP-complete, and the problem

of computing them is NP-hard. They also provide two heuristics for computing such

preferences.

Recently, Denis et al. [89] proposed a framework calledp-skylineswhich is short

for prioritized skylines. They presented two drawbacks of skyline query. One im-

portant deficiency of the skyline framework is its inabilityto represent differences in

the relative importance of attributes. Another drawback ofthe skyline framework is

that the size of a skyline may be exponential in the number of attribute preferences

involved. Therefore, they proposed the framework called p-skylines which enriches

skylines with the notion of attribute importance. It turns out that incorporating rela-

tive attribute importance in skylines allows for reductionin the corresponding query

result sizes. They proposed an approach to discovering importance relationships

of attributes, based on user-selected sets of superior and inferior examples. It is

shown that the problem of checking the existence of and the problem of computing

an optimal p-skyline preference relation covering a given set of examples are NP-

complete and FNP-complete, respectively. However, they restricted the discovery

problem (using only superior examples to discover attribute importance), which can

be solved efficiently in polynomial time.

These works differ from ours in two ways. First, their main aim is to elicit the

preference of categorical values within some categorical attribute domains. Second,

they focus on finding unknownatomic preferences, i.e. an attribute is either more

important, less important or incomparable to other attributes. Our work involves the

concept of weighted attributes which can model tradeoffs between the attributes. For

example, we can model the fact that a user is willing to take a notebook with a CPU

that is 20% slower if 50% more memory is given.

In quantitative preference elicitation [26], the attribute priorities are similarly repre-

sented as weight coefficients in numeric utility functions. Given the fact that utility

function elicitation over a large amount of outcomes is typically time-consuming

and tedious, many preference elicitation systems have madevarious assumptions

concerning preferences structures. The normally applied assumption is additive in-

dependence, where the utility of any given outcome can be broken down to the sum

of individual attributes. The assumption of independence allows a high-dimensional
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utility function to be decomposed into a simple combinationof lower dimensional

sub-utility functions. Then, it is based on the Analytic Hierarchy Process (AHP) [99]

to elicit the weight coefficients. The AHP has been accepted as a robust and flexible

decision support tool to solve multi-criteria decision problems. It uses a multi-level

hierarchical structure of objectives, criteria, subcriteria, and alternatives. However,

this AI methodology adopts the query-answer model based on the attributes of out-

comes, and learns the utility function and saves as much of anuser’s effort as pos-

sible. Instead of learning the explicit weight coefficients, our work directly elicits

preferred objects by presenting thek representatives to the user, who can quickly

browse through these objects and discover the preferred ones through a hierarchical

process.

2.2.3 Ranking Related Query

Order information is well studied by the database and data mining communities.

There are several kinds of ranking queries highly related topreference mining. We

will introduce the ranking aggregation and the order learning respectively.

Rank aggregation addresses the problem of computing a ”consensus” ranking of the

alternatives, given the individual ranking preferences ofseveral judges. While the

philosophical aspects of rank aggregation have been debated extensively during this

period, the mathematics of rank aggregation has gained moreattention in the last

eighty years, and the computational aspects are still within the purview of active re-

search. In computer science, rank aggregation has proved tobe a useful and powerful

paradigm in several applications including meta-search, combining experts, synthe-

sizing rank functions from multiple indices, biological databases, similarity search,

and classification.

In [38], they mainly focused on one important practice of rank aggregation in the

web applications. They formulated precisely what it means to compute a good con-

sensus ordering of the alternatives, given several (partial) rankings of the alternatives.

Specifically, they identified the method of Kemeny, originally proposed in the con-

text of social choice theory, as an especially desirable approach, since it minimizes

the total disagreement between the several input rankings and their aggregation. The

definition of Kemeny criterion is as follows:
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Definition 2.2.3 Kemeny Optimal Ranking

Given n candidates and k permutations of the candidates,{π1, π1, . . . , πk}, a Kemeny

optimal ranking of the candidates is the rankingπ that minimizes a ”sum of dis-

tances”,
∑k

i d(π, πi), where d(π j, πk) denotes the number of pairs of candidates that

are ranked in different orders byπ j andπk.

However, the optimal solutions based on Kemeny’s approach is NP-hard, even when

the number of rankings to be aggregated is only 4. Therefore,they provided several

heuristic algorithms for rank aggregation and evaluated them in the context of Web

applications.

Fagin et al. [42, 43, 40, 41] and Ailon et al. [6, 7] solved many challenges for rank

aggregation in databases. On one hand, in database-centricapplications, we are often

interested in only the top few answers of the aggregation. This feature leads to the

quest for algorithms that quickly obtain the top result(s) of aggregation, perhaps in

sub-linear time, without even having to read each ranking inits entirety. The author

in [42] mainly solved the problem how to define reasonable and meaningful distance

measures between top k lists. Specifically, they introducedvarious distance measures

between ”top k lists”, which are ”almost” a metric satisfying the a relaxed version

of the triangle inequality. On the other hand, while many database attributes are

usually numeric, there are attributes that are inherently non-numeric. The number of

distinct values in such non-numeric attributes is often very small. Therefore, when

one sorts according to values this attribute can take, the resulting rank ordering of

the objects is not a permutation any more; it is an ordering with ties, also known

as a partial ranking. Thus, one important feature of rank aggregation in database

applications is that, due to preference criteria on few-valued attributes, we need to

deal with partial rankings rather than full rankings. Motivated by this scenario, Fagin

et al. [40, 41] proposed several metrics to compare partial rankings and handle ties,

presented algorithms that efficiently compute them, and proved that they are within

constant multiples of each other. In [6], they improved constant factor approximation

algorithms for aggregation of full rankings and generalized them to partial rankings

for all the metric introduced by Fagin. Furthermore, they paid remarkable attention

to the more general p-ratings problem, i.e., a mapping from the ground setV to a

rank universeU of fixed sizep.

Moreover, there are several other important applications of rank aggregation. In
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[43], the authors proposed a novel rank aggregation based approach to performing

efficient similarity search and classification in high dimensional data. In their ap-

proach, a small number of independent ”voters” rank the database elements based

on similarity to the query. These rankings are then combinedby a highly efficient

aggregation algorithm. On the theoretical side, this method has a high probability to

produce a result that is a (1+ǫ)-factor approximation to the Euclidean nearest neigh-

bor. On the practical side, it turns out to be extremely efficient with sorted access to

a small portion of data. In [7], the authors extended the idea of rank aggregation to

clustering. Consensus clustering or ensemble clustering is the problem of integrating

possibly contradictory clusterings from existing data sets into a single representative

clustering. This problem can be applied to remove noise and incongruities from

data sets or combine information from multiple classifiers.In this paper, the authors

provided an unified method to approximately solve the ranking aggregation and con-

sensus clustering efficiently.

Learning to rank is a new and popular topic in machine learning. In [32], an algo-

rithm was developed to learn a linear preference function. In this algorithm, feed-

backs are iteratively given by users in the form of “p is preferred toq” and the

weights are iteratively adjusted based on the feedbacks. Inspecific, they developed

the following two-stage approach to learning how to order. In stage one, they learn a

preference function, a two-argument function PREF(u, v) which returns a numerical

measure of how certain it is thatu should be ranked beforev. In stage two, they

use the learned preference function to order a set of new instancesU; to accomplish

this, they evaluate the learned function PREF(u, v) on all pairs of instancesu, v ∈ U,

and choose an ordering ofU that agrees, as much as possible, with these pairwise

preference judgments. However, finding a total order that agrees best with a prefer-

ence function is NP-complete, so they described a simple greedy algorithm that is

guaranteed to find a 2-approximation result. In another paper [47], they introduced

and studied an efficient learning algorithm called RankBoost for combining multi-

ple rankings or preferences. This algorithm is based on AdaBoost algorithm and

its recent successor developed by Cohen et al. [32]. The algorithm they presented

uses a similar framework, but avoids the intractability problems. Furthermore, as

opposed to the on-line algorithm, RankBoost is more appropriate for batch settings

where there is enough time to find a good combination. Thus, the two approaches

complement each other.
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There is another way to learning the rank based on probability models. In [22],

Burges et al. investigated gradient descent methods for learning ranking functions;

They proposed a simple probabilistic cost function, and introduced RankNet, an im-

plementation of these ideas using a neural network to model the underlying ranking

function. They employed gradient descent as an algorithm totrain the neural net-

work model. Zhe et al. [23] proposed the listwise approach, in which document lists

instead of document pairs are used as instances in learning.Likewise, they utilized

a probabilistic method to calculate the listwise loss function. Specifically they trans-

formed both the scores of the documents assigned by a rankingfunction and the

explicit or implicit judgments of the documents given by humans into probability

distributions. Then, the ListNet was proposed using the listwise loss function, with

neural network as a model and gradient descent as an algorithm. This method further

improved the quality of the ranking function. This approachis different with ours

in that we focus on skylines as a representative of orders andprovide a hierarchical

visualization framework to elicit the preference of users systematically1.

2.3 Diversified Keyword Search in Databases

2.3.1 Keyword Search in Databases

Keyword search in databases is a convenient and effective approach in information

retrieval, without the need for users to know the underlyingdata schema and query

language. This technique has been widely applied in variousdomains, including

web documents, relational database, XML documents, and graph databases. Current

approaches can be classified into two categories: schema-based ones and graph-

based ones. The schema-based methods [64] generated join expressions based on

database schema and produced the resulting tuple trees through SQL queries. The

graph-based approaches [3, 69] materialized the database as a graph in which each

node corresponds to a tuple. They discovered compacted substructures based on

heuristic graph search. Many of recent works [65, 81] developed different ranking

strategies in order to improve the search effectiveness. Hristidis et al. [65] adapted

1In many ways, our approach is similar to how we judge the results of a search engine; We
conclude that the search ranking is useful if the first few results are good.
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IR-style document-relevance ranking strategies to the problem of processing free-

form keyword queries over RDBMSs. Liu et al. [81] further propose a sophisticated

IR style ranking strategies with four new factors that are critical to the problem of

search effectiveness in relational databases.

Among all these data models, the graph-structured model is among the most well

accepted as it is rather general and can even model unstructured, semi-structured

and structured data together in one graph [79]. Given a set of query keywords, most

of the existing keyword search systems [69] aim to find minimal connected trees that

contain all the keywords, which is in essentially the Steiner tree problem. It has the

advantage of ensuring the tightness of the result so that thekeywords are closely

related. Such an approach however can have two drawbacks. First, some interesting

information may be missed due to theminimalproperty. Missing nodes and edges

that are not included in the result could contain interesting information although

they do not contain any keywords. Second, when querying frequent keywords, large

number of result trees could be return with a large amount of overlaps in nodes

and edges between these trees. To tackle the two problems, [96] proposed to find

communities with a center node, where the distance from all the keyword nodes to

the center is within a threshold radius. This however have its own drawback. First,

a suitable radius is difficult to tune. Second, it is not reasonable to treat all keyword

nodes equally important within the same radius; Moreover, the community structure

may be hardly interpretable for some complex graph structure.

2.3.2 Result Diversification in Databases

Database researchers studied the result diversification recently. Yu et al. [125] intro-

duced the notion of explanation-based diversity in recommendation systems. Vee et

al. [113] diversified the query results by applying an inverted-listalgorithm. Liu et

al. [82] developed a feature selection algorithm in order to highlight the differences

among structural XML data.

There are three recent works considering keyword search diversity in relational databases.

Golenberg et al. [51] and Stefanidis et al. [109] studied the answer tree diversifica-

tion, while DivQ [35] solved another problem to discover diversified schemas. How-

ever, their diversity measures are all derived from the Jaccard distance, which fails
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to capture both textual information and structural information as shown in the exper-

iments. Instead, we proposed a novel kernel distance suitable for structural answers.

Furthermore, we developed an interactive system which allows users to diversely,

hierarchically browse the whole answer set instead of top-k of them.

2.4 Social Network Visual Analysis

2.4.1 Social Network Analysis

Modeling a cohesive subgraph mathematically has been extensively studied for decades.

One of the earliest graph models was the clique model [84], in which there exists an

edge between any two vertices. However, the clique model idealizes cohesive prop-

erties so that it seldom exists and is hard to compute. Alternative approaches are

suggested that essentially relaxes the clique definition indifferent aspects. Luce [83]

introduces a distance based model calledk-clique and Alba [8] introduces a diameter

based model calledk-club. Although these models relax the reachability among ver-

tices from 1 tok, one limitation of these works is they are still NP-completewhich

cannot be applied to large social graphs. Another line of work focuses on a degree

based model, likek-plex [103] and k-core [102]. The k-plex is still NP-Complete

since it restricts the subgraph size, whilek-core further relaxes it to achieve the

linear time complexity with respect to the number of edges. However, thek-core

definition is too loose to capture the cohesive structure of the social graphs. A new

direction based on the edge triangle model, like DN-Graph [117] and truss decom-

position [115], is more suitable for social network analysis since it captures the tie

strength between actors inside the subgroup. Our proposed mutual friend concept

belongs to this model and we will compare it with the above twoconcepts in Chap-

ter 5 in details. Recently, database researchers have tried to scale up the disk based

cohesive subgraph discovery. Cheng et al. [27] propose a partition based solution for

massivek-core mining. They also develop a disk based triangulation method [30] as

a fundamental operation for cohesive subgraph discovery. In this research, we store

the social graph in graph database that is more scalable for graph traversal-based

algorithms.
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Community detection is another approach to discover a groupof people in addition

to the dense subgraph discovery. Leskovec et al. [75] summarize the state-of-the art

community detection methods and compare them empirically.Typical approach of

community detection is to choose an objective function thatcaptures a set of vertices

with better internal connectivity than external connectivity, such as betweenness cen-

trality [50] and modularity [91]. The goal of community detection approach is close

to cohesive subgraph discovery: discover the nodes of the network that can be easily

grouped into sets of nodes such that each set of nodes is densely connected inter-

nally. However, they deal with the problem from different angles. The community

detection is like the clustering approach on the nodes of thenetwork. As such, they

are concerned with how to define a better objective function to determine whether

nodes belonging to one community or not. On the other hand, the cohesive subgraph

discovery views the subgraph as a whole, i.e. try to find the subgraphs that sat-

isfy certain properties. Our social network analysis belongs to the latter category, in

which we find all the subgraphs in the social graph with thek-mutual-friend property.

In addition, social network characteristics has been well investigated in sociology

communities. The most related one is the tie strength theory, which is introduced

by Mark Granovetter in his landmark paper [55]. Recently, many social network

researchers investigate this important theory in online social network, such as the

user behaviors in Facebook [49, 11] and Twitter [54]. Their conclusions show that

the strength of tie, which is the basis of the mutual-friend subgraph definition in

this thesis, is still a tenable theory in social media. However, to the best of our

knowledge, there is no previous work makes use of this theoryto discovery cohesive

subgraphs in social network analysis.

2.4.2 Social Network Visualization

After discovering cohesive subgraphs, how to visually represent these subgraphs is

another important component of this research. Graph structure visualization and

analysis has received a great deal of attention from both sociology and computer

science communities. Freeman [46] summarizes the use of graphic imaging in so-

cial network analysis from the sociology perspective. Researches from the computer

science perspective put more efforts into the graph representation and exploration of
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social networks. Wang et al. [116] proposes a linear plot based on graph traversal

to capture the dense subgraph distribution in the whole graph. Zhang et al. [128]

extends it to compare the pattern changing between two graphsnapshots. Another

approach of placing vertices in concentric circles with different levels is a popular

way to visualize graph structures, such ask shell decomposition [9], centralities vi-

sualization [33] and so on. We leverage the circular idea and devise the orbital layout

to visualizek-mutual-friend subgraphs in an interactive manner. In our method, the

orbital layout is perpendicular to linear plot. Using the approach proposed by Wang

et al., linear plot for global subgraph distribution and theorbital layout for local sub-

graph representation could be seamlessly integrated. Moreover, Arnetminer [111]

provides comprehensive search and mining services for academic social networks.

It is a full fledged framework with nice visual exploring the function like the relation-

ship graph between two researchers. However, the focus in Arnetminer is to show

the connections between two researchers. More informationalong the importance of

individuals in the cohesive subgraphs needs to be uncovered.
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Chapter 3

Hierarchically Elicit Users’

Preference

3.1 Overview

In this chapter, we propose to elicit the preferred orderingof a user by utilizing

skyline objects as representatives of the possible ordering. Our approach tries to find

k representative skylines that best capture the orderings that are associated with other

skyline objects. This brings about two challenges:

1. Given a datasetD, let Wp(D) denote the set of weight settings such that for

everyw ∈ Wp, πw(D)[1] = p, p ∈ D. In this case,Wp(D) is a set of weight set-

tings in which the objectp will be ranked first and such a set could potentially

have infinite memberships. As such, comparing the ordering represented by

two skyline objects becomes difficult.

2. Given thatπw(D) represents a ranking with a large number of objects, com-

paring any instance of the rankings represented by two skyline objects will

require computationally efficient solutions to be developed.

In order to overcome these problems, we propose an indirect notion of similarity

between the orderings that are represented by two skyline objectsp andq. We claim
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that the ordering ofq is close top if qhas a high probability of ranking high whenever

p is ranked first in the ordering. Based on this notion which we will formally define

later, we make various contributions towards eliciting users’ preference based on

hierarchical browsing of skylines:

• We introduce the notion oforder-based representative skylineswhich se-

lects representative skylines based on the ordering that they represent. Unlike

previous work, we bring the preference function back into the picture when

determining representative skylines since our aim is to elicit the preference of

the user based on these representatives.

• To handle the two problems that we presented earlier, we define a notion of

similarity that avoids explicit comparison of the orderings that are represented

by two skyline objects. Based on this similarity measure, wedevelop sampling

techniques that allow us to efficiently and accurately estimate the similarity be-

tween any two skyline objects. The similarity measure also allows us to define

a goodness measure for clustering skyline objects, and ak-partitioning clus-

tering algorithm is developed to cluster skyline objects based on this goodness

measure.

• By applying thek-partitioning algorithm recursively, we create a hierarchical

clustering of the skyline objects. By coupling hierarchical clustering with visu-

alization techniques, we enable users to refine their preference weight settings

by browsing the hierarchy.

• We conducted extensive experiments, and the results show that our approach

is both effective and efficient.

The remainder of this chapter is organized as follows. Section 3.2 gives our new

definition of representative skylines and shows the defectsof existing methods. Sec-

tion 3.3presents the efficient sampling algorithm, and hierarchical browsing to elicit

users’ preference is described in Section3.4. Results of our extensive experimental

study are reported in Section3.5. Finally, we summarize this chapter in Section3.6.
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3.2 Preliminary

3.2.1 Problem Definition

We have a databaseD of n objects. Each object is described byd attributesA1, ...,

Ad. We will usep.Ai to refer to the value of an attributeAi for an objectp. For ease

of discussion, we assume that all of these attributes are numerical attributes ranging

from 0 to 1 1 and that a smaller value indicates better score. As such, we say p

dominatesq if p.Ai < q.Ai for at least one value ofi andp.Ai ≤ q.Ai for 1 ≤ i ≤ d.

The skyline setS ⊆ D consists of all objects inD which are not dominated by any

other objects inD. We also have a monotonic ranking (or preference) functionP(·)
which is provided by the application domain and users will specify their preference

by providing a set of weightsw = {w1,w2, . . . ,wd}, 0 ≤ wi ≤ 1. Given set of

weights, the user can easily define any monotonic ranking function asP(−→w,−−→f (·)) =<
−→w,−−→f (·) >, i.e. the dot product of weight vector−→w(w1,w2, . . . ,wd) and monotonic

function vector
−−→
f (·)( f1(·), f2(·), . . . , fd(·)). fi(·) can be any monotonic function on

objects, such as linear function, product function or exponential function.
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Figure 3.1: Example of Data Space and Weight Space

Given the above setting, we deals with two multi-dimensional spaces. First, we have

the data space, which is thed-dimensional space that is formed fromA1, ..., Ad.

Second, we have theweight space, which is anotherd-dimensional space formed

from w1,...,wd, i.e. thei th dimension of this space represents the weightwi. Any

1This can be obtained by mapping the attribute values of some application domain to a score from
0 to 1
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point in the weight space thus corresponds to a particular setting of the weights. For

any skyline objectp ∈ S, we will useR(p) to refer to the region in the weight space

such thatπw(D)[1] = p as long asw is within the regionR(p). Since the weight space

is normalized to the unit range, we can treat the volume ofR(p) as a probability that

p is the top object in any possible ordering. Figure3.1 illustrates the data space and

weight space for a set of skyline objects when the preferencefunction is a simple

dot linear product between the weights and the attribute values. As can be seen in

Figure 3.1(a), p1, . . ., p5 are all skyline objects since they do not dominate each

other. However, if we look at the weight space in Figure3.1(b), we can see only

R(p1), R(p3) andR(p5) since based on the dot linear product preference function,p2

andp4 can never be ranked first regardless of the weight setting.

If we useV(·) as a function that calculates the volume of any given region, then the

probability of p being a top object will be denoted asV(R(p)). To generalize this

further, we will useRm(p) to denote the region in the weight space such thatp is

among the top-mobjects when compared to other skyline objects. We are now ready

to define a similarity measurement between two skyline objects p andq.

Definition 3.2.1 SIMm(p, q)

Given p, q ∈ S and m, we measure how well p can represent q by

SIMm(p, q) = V(R(p) ∩ Rm(q))/V(R(p))

It is easy to see thatSIMm(p, q) is in fact the probability thatq is within the top-

m skyline objects wheneverp is ranked first. Intuitively, we are saying that ifp

has orderings that are very similar toq, thenSIMm(p, q) will be high and thusp

can representq well. Note thatSIMm(p, q) is in fact not a metric since it is not

symmetric and also does not follow triangular inequality. This however does not

affect ourk-partitioning clustering algorithm. Unlike most clustering applications

in which members in the same cluster must be similar, our soleaim here is that

the representatives of each cluster can represent its members accurately while other

members in the cluster need not be similar to each other.

Given S, our aim is to select ak representative setK, such thatK ⊆ S, |K| = k

and other non-representative skylines are somehow represented byK in terms of
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the ordering that they represent. Intuitively,K should satisfy two criteria. First, its
⋃

p∈K V(R(p)) should cover a sufficiently large region of the weight space so that

all possible rankings are covered as much as possible. Second, K should somehow

represent other skylines that are not withinK.

The first criteria is relatively easier to satisfy with the observation that{R(p)∩R(q) =

∅, p, q ∈ S ∧ p , q}. Since there are no overlap between the regions, it is enoughto

ensure thatV(R(p)) is sufficiently large for eachp ∈ K so that
⋃

p∈K V(R(p)) is large.

For the second criteria, we will propose a measure of goodness.

Definition 3.2.2 Quality(K,S)

Quality(K,S) =

∑

q∈S maxp∈K SIMm(p, q)

|S|

As can be seen,Quality(K,S) is a goodness measure that is similar to those used in a

k-partitioning algorithm, i.e. the average similarity between each skyline object and

its best representative. Correspondingly, we define our order-based representative

skyline problem as follow:

Definition 3.2.3 Order-based Representative Skylines

Given S , p , m and thresholdα, find a set of representative K⊆ S such that:

1. For each p∈ K, V(R(p)) ≥ α.

2. Quality(K,S) is maximized.

3.2.2 Problem Analysis

Note that like all clustering problem, finding the optimal order-based representative

skylines is a NP-hard problem.

Lemma 3.2.1 Finding K with k skyline objects maximizing Quality(K,S) is NP-

hard.
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Proof 3.2.1 (sketch)We construct a polynomial reduction from one NP-hard prob-

lem: the decision version of vertex cover problem. Given theundirected graph

G(V,E), if there exists one edge e between node p and node q,SIMm(p, q) and

SIMm(q, p) are set to 1. Moreover,SIMm(p, p), p ∈ V are all set to 1 since the

node p covers itself. OtherSIMm(p, q) are all set to 0. If we find an optimal set

of order-based representative skylines K making Quality(K,S) = 1, K is the set of k

nodes covering the graph G. This completes the polynomial reduction.

While the proof for Lemma3.2.1assumes that theR(p) andRm(p) with their corre-

sponding volumes can be easily computed, we will show here that this is not the case.

First, one important property about theR(p) is presented in the following lemma.

Lemma 3.2.2 For any skyline object p, R(p) is either empty or a convex polytope.

Proof 3.2.2 Based on linear programming theory, if p is the ith object pi in the sky-

line, the computation of R(pi) can be directly transformed to the satisfaction of the

following inequations:















































































P(−→w,−−−→f (pi)) ≤ P(−→w,−−−−→f (p1))

...

P(−→w,−−−→f (pi)) ≤ P(−→w,−−−−−→f (pi−1))

P(−→w,−−−→f (pi)) ≤ P(−→w,−−−−−→f (pi+1))

...

P(−→w,−−−→f (pi)) ≤ P(−→w,−−−−→f (pn))

wi ∈ [0, 1]

The above inequations are a set of linear constraints on the weight space, because

each P(·) is the linear function with respect to weight vector−→w given the
−−→
f (·) and

the attributes for each p∈ S . Therefore, computing the R((p)) is equivalent to

solving the feasible range of linear constraints. The boundary theory of linear

programming[100] proves that each inequality specifies a half space in an n-dimensional

Euclidean space, and their intersection is the set of all feasible values the variables

can take. The region is either empty, unbounded, or a convex polytope. In our case,
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the region is either empty, or a convex polytope, because it is bounded by weight

space with wi ∈ [0, 1].

According to Lemma3.2.2, these regions can be determined by computing their

boundaries. Ideally, we first discover vertices ofR(p) or Rm(p) for each skyline

objectp, and then deriveSIMm(p, q). However, the cost of this method is too ex-

pensive. For a convex polytope, there are at most (u!)/(v!(u − v)!) vertices, where

u is the number of inequations andv is number of variables[100]. Accordingly, the

Rm(p) can also be viewed as a union of all possible combinations oflinear constraints

that p is smaller than at least|S| −m skyline objects. As illustrated in Figure3.1(c),

the shaded region, which isR4(p2), is the union of two separate parts. This sim-

ple example shows that the computation ofRm(p) is much more complicated than

the computation ofR(p) in general. Therefore, we conclude that finding the exact

boundary of top region and top-m region is unrealistic.

3.3 Methodology

According to earlier analysis, finding the exact regions forR(p) andRm(p) for all

p ∈ S can be very computationally intensive. Since we are only interested inV(R(p))

andV(Rm(q) ∩ R(p)), we can adopt a sampling approach to estimate these values.

This is done by performing a uniform sampling in the weight space and generating

a set of weight settingsW. For eachw ∈ W, we findπw[i] for 1 ≤ i ≤ m and keep a

count on the occurrences of the skyline objects. Once the sampling is complete, we

can simply estimateV(R(p)) by count({w|w ∈W, πw[1] = p]}/|W|, i.e. the number of

instancesw in which p is ranked top and divide it by|W|. Likewise,V(Rm(q)∩R(p))

is count({w|w ∈ W, πw[1] = p, πw[i] = q, i ≤ m})/|W|, the number of instances in

whichq is ranked among top-mwheneverp is the top object and normalize it by|W|.
Finally, we obtain the following formula according to the definition 3.2.1:

SIMm(p, q) =
count({w|w ∈W, πw[1] = p, πw[i] = q, i ≤ m})

count({w|w ∈ W, πw[1] = p]}
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There are two remaining issues. First, we need to ensure thatgenerating these sam-

ples is efficient. Second, we need to ensure that our estimation based onthese sam-

plings have certain accuracy. We will address these two issues in the next two subsec-

tions. Once these issues are resolved, we will then move on topresent our clustering

algorithm based on our measure of similarity.

3.3.1 Generating Samples

Instead of computing the ordering for individual samples, we conduct the sampling

in batches and apply the TA algorithm[44] concurrently for all samples within the

same batch. Assuming that the main memory can handleb samples and we want to

have a total ofssamples, then the TA algorithm will be applied⌈s/b⌉ times.

The sampling method is shown in Algorithm1. For all the sample weight settings,

it only needs to discover top-m skyline objects from the disk once using the TA

algorithm. Here,m is set to be (number of skyline objects)/k based on the assumption

that the skyline objects have uniform probability of appearing in the top-m list of any

of the (eventual)k representative objects and thus settingm to this value ensures that

each of the objects has a non-zero probability of appearing in the top-m list of one

of the k representatives. Thism can then be fixed for processing future batches of

samples.

In order to perform TA algorithm, we further need to stored sorted lists in the disk. In

τi, the skyline objects are sorted from the smallest to the largest based on the values

on dimensioni. Because the score function is monotonic, we perform sortedaccess

and random access ond ranking lists to find the top-m skyline objects efficiently.

According to these top-m lists, we can calculate theV(R(p)) andV(R(p) ∩ Rm(q))

and deriveSIMm(p, q) for everyp, q ∈ S.

Intuitively, the approximation of region computation has high precision based on

random uniform sampling if the sampling size is sufficiently large. Thus, we ap-

proximately achieve region computation as well as deriveSIMm(p, q) according

to definition3.2.1. As in Line 12-15 in Algorithm1, we only keep in memory the
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counting information of skyline objects which can be the topobject. Since the sky-

line set could be too large to fit in the memory, this strategy greatly reduce the mem-

ory consumption. In addition, after performing the TA basedalgorithm, the batch

of samples can be safely discarded to free up the memory for the next batch. Let

the top object setT0 satisfy {T0|p, if p ∈ S andV(R(p)) > 0}. Accordingly, Tα
is defined as{Tα|p, if p ∈ S andV(R(p)) > α}. Assume the skyline set size isn,

Algorithm 1 utilizesO(|T0|n) instead ofO(n2). |T0| is determined by the monotonic

function, which is much smaller thann. Therefore, this improves the scalability of

our algorithm. Besides the probability information, the regions of p ∈ T0 defined

below are incrementally updated based on samples. These information is critical for

hierarchical processing in Section3.4.

Definition 3.3.1 Object Coverage

Given {W|weight setting w∈ W if πw[1] = p}, the coverage of p is the minimal

bounding rectangle(MBR) of W on weight space.

The MBR for the objectp is the minimal bounding rectangle that encloses all the

w ∈W wheneverπw[1] = p. However, to determine a sufficient number of samples is

challenging. The sample space is infinite and the definition of sufficiency is unclear.

Before finding thek representative skylines, we first show what is the quantitative

relationship between sampling size and sampling accuracy and how to calculate the

sampling sizes in Line 2 of Algorithm1.

3.3.2 The Analysis of Sampling Accuracy

The sampling size determines the tradeoff between accuracy and efficiency. Intu-

itively, we expect the approximations ofV(R(p)) andSIMm(p, q) to be close to the

accurate values if the values are larger than certain thresholds. The constraint of

V(R(p)) refers to definition3.2.1. Furthermore,SIMm(p, q) should be accurate if

it is no smaller than the user-defined thresholdβ. Taking these two thresholds into

consideration, we can derive the following bound forV(R(p) ∩ Rm(p)):

V(R(p) ∩ Rm(p)) = V(R(p)) · SIMm(p, q) > αβ
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Algorithm 1 : SamplingTopM
Input : # representativesk and # samplesb
Output : 2d arraySIMm to storeSIMm(p, q)
m←− # skyline objects/k1

Calculate the required sampling sizes2

while s> 0 do3

Generate nextb random uniform samplesW4

s←− s− b5

// TA based method for b samples
while scorei(mth item on heapi) > δi,i ∈ [1,w] do6

Round-robin sorted access onτ1, . . . , τd7

Update thresholdsθ1, . . . , θb for each sample8

Random access to get next skyline objectp9

if scorei(p) < scorei(mth item on heapi) then10

Swapp with mth item on heapi11

foreachskyline object q in top-m list when p is the top objectdo12

if p < SIMm then new arraySIMm[p]13

Update the region forR(p)14

SIMm[p][q]++15

foreachskyline object p∈ SIMm do16

Count[p] ←− count({w|w ∈W, πw[1] = p])17

foreachskyline object qdo18

// calculate the probablity

SIMm[p][q] ←− SIMm[p][q]
Count[p]19

return SIMm;20

Therefore, we will focus on the accuracy ofV(R(p) ∩ Rm(p)) to satisfy the required

sampling quality. Next, we provide guidelines for the choice of sampling size using

statistical analysis.

LetV(R(p)∩Rm(p)) be the unknown value that we are trying to estimate. For simplic-

ity, we utilize probabilityP representingV(R(p) ∩ Rm(p)) to do the analysis. Then,

theP stands for the complementary set ofV(R(p) ∩Rm(p)). Assume that we haveN

samples and find thatX = P̃N of these samples satisfyq does not appear in the top-m

lists whenp is the top object. Given a sufficiently large number of samples, we ex-

pectP to be close tõP as much as possible. Furthermore, to ensure sufficiently large

coverage,P should be larger than or equal toαβ, which is equivalent toP ≤ 1− αβ.
We formally express the problem as follows.
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Problem 1 Given thresholdsα, β, confidence interval1 − γ and margin of errorδ,

how to determine the sampling size N to ensure

Pr(P ∈ [P̃− δ, P̃+ δ]) > 1− γ

whenP ≤ 1− αβ.

Obviously, we want both the interval size 2δ and the error probabilityγ to be as

small as possible. Since the sampling process can be viewed as the Bernoulli Trials

on the weight space,X = P̃N satisfies a binomial distribution with parametersN and

P. Therefore, we can apply Chernoff bounds[57] to compute

Pr(P < [P̃− δ, P̃+ δ])
= Pr(X < NP(1− δ/P)) + Pr(X > NP(1+ δ/P))

< e−NP(δ/P)2/2 + e−NP(δ/P)2/3

The bound in above equation is meaningless if the value ofP is unknown. A simple

relaxation is based on the fact thatP ≤ 1− αβ, yielding

Pr(P < [P̃− δ, P̃+ δ]) < e−Nδ2/2(1−αβ) + e−Nδ2/3(1−αβ)

Settingγ = e−Nδ2/2(1−αβ) + e−Nδ2/3(1−αβ), we obtain the tradeoff between these param-

eters. Given the requirements onα, β, γ andδ, the above equation calculates the

minimum number of sampling sizeN to guarantee the sampling accuracy.

3.3.3 Finding Order-based Representative Skylines

Since theSIMm(p, q) has already been calculated approximately, the next step is to

discover the order-based representative skylines. Our goal is to maximize the quality

of the representative setK as well as cover a sufficiently large size of the weight

space. As the proof in Section3.2, this problem is NP-hard, thus we adopt thek-

medoids clustering algorithm, as presented in Algorithm2, to efficiently solve the
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problem. By partitioning the skyline objects into groups, we choose the medoid as

representative for each group and other skyline objects areassigned to the closest

representative.

The k-medoids clustering is derived from CLARANS [92], which is the state-of-

art k-medoids clustering inspired by local search idea. One noticeable difference

of Algorithm 2 is the filtering method. As in line 4, it sifts out candidate set C

as Tα. The default setting ofα is 1/|S|, the average volume ofR(p) for p ∈ S

on weight space. This is reasonable since the volume of representative skylines

should be at least no worse than the average situation, otherwise the objects can be

safely pruned. User also has the flexibility to adjust the threshold in order to achieve

the tradeoff between the importance ofK and the quality to represent other skyline

objects. This is not only beneficial to finding betterk representative skylines, but

also further reducing the candidate size, especially for skyline objects with skew

top region sizes. Moreover, theswapcostis the difference betweenQuality(K,S)

and Quality(K′,S). Line 13 guarantees that the clusterK is updated only if the

new clusterK′ has better quality. Finally, the clustering algorithm findsnumlocal

k-medoids sets with local best quality, and chooses the best of them as the final

order-basedk representative skylines.

3.4 Eliciting Users’ Preference

In this section, we further extend our work to support skyline browsing and visual-

ization in order to elicit users’ preference effectively and efficiently. In general, it

is a hierarchical navigation approach to locate user’s preferred region on the weight

space. A visual interface is developed to support this exploration.

3.4.1 Hierarchical Browsing

Hierarchical browsing is an effective way to interact with the user. As shown in

Algorithm 3, this process can be viewed as iterative refinements based ona combi-

nation of sampling and clustering. First, shown with the initial k representatives, the
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Algorithm 2 : FilterClustering
Input : # representativesk,thresholdα andSIMm

Output : k order-based representative skylines
Candidate setC←− ∅1

k-medoids setK ←− ∅2

foreachskyline objects p∈ T0 do3

if V(p) > α then C←− C ∪ p4

// setting according to paper [92]

maxneighbor←−max(250,k× (|C| − k) × 1.25%)5

numlocal←− 26

bestquality←− 0, bestcluster←− ∅7

for i = 1 to numlocaldo8

K ←− randomly choosek objects from|C|9

for j = 1 to maxneighbordo10

Randomly selectp from K andq from C − K to swap11

Calculateswapcostusingp12

if swapcost< 0 then13

j ←− 1, updateK14

if Quality(K,S) > bestqualitythen15

bestrepresentative←− K16

bestquality←− Quality(K,S)17

return bestrepresentative18

users will then select a subset of them as object/s of interested. Second, re-sampling

is performed on the region covered by the subset and related clusters. This focused

sampling will allow us to have more accurate sampling resulton the area of interest.

We first define thecluster coverageas follows.

Definition 3.4.1 Cluster Coverage

Given a cluster c, the cluster coverage rc of c on the weight space is the minimal

bounding rectangle(MBR) that bounds the object coverage ofall skyline objects in

c.

Therefore, the area of interest is theMBRcovering all the clusters generated by the

selected skyline subset. The clustering algorithm will then be applied on the new

samples so that the next level ofk representatives can be found. This procedure will

iterate until the user reaches the skyline object that is of interest to him/her or when
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|T0| is smaller thank. As shown in Line 5 of the algorithm, the hierarchical process

terminates and displays the final results to the user if one ofthe above two conditions

is satisfied.

Algorithm 3 : HierarchicalBrowsing
Input : w, k, α,SIMm

p←− S amplingTopM(w)1

K ←− FilterClustering(k, α,SIMm)2

OutputK to user3

User chooses interesting subsetH and setsk4

while H , ∅ and |T0| ≥ k do5

sampleregion←− ∅6

Candidate setC←− ∅7

foreachobject p∈ H do8

Calculate cluster regionrc from the clusterc with medoidp9

Updatesampleregioncovering therc10

UpdateC as all the objects in the clusterc with medoidp ∈ H11

// sampling on sampleregion
p←− S amplingTopM(m,w)12

K ←− FilterClustering(k, α, p)13

OutputK to user14

User chooses interesting subsetH and setsk15

Output final set of skyline objects user preferred16

3.4.2 Visualization

To support our hierarchical browsing process, we provide a visualization tool to

ensure that users can easily see the difference between the representatives and select

the representatives that are of interest to them.

Parallel coordinates[66] is a common way of visualizing high-dimensional geometry

and analyzing multivariate data. To show a set of objects in ad-dimensional space,

this technique represents data dimensions asd parallel lines spaced equally. Data

object ind-dimensional space is represented as a polyline linking n vertices on each

axes. Thei th vertex is mapped to position oni th axis proportional to its value for

that dimension. For our purpose, each of these axis represents a dimension in the

weight space and users can thus indirectly indicate their preferred weight setting by
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selecting the clusters based on the visualization. For eachcluster, we take theMBR

that represent its coverage and plot the bounding values along each dimension on the

corresponding axes. To enhance the visualization further,we take the average values

of the samples along each dimension and plot a line that goes through these averages

for each dimension. Users can estimate the average weight setting for each dimen-

sion by looking at this line. Generally, the range of different clusters overlapping and

crossing each other, which renders the graphic representation unclear. Instead, we

approximate display the cluster coverage. For the clusterc, the weight settingw be-

longs to it ifπw[1] = p∧ p ∈ c. Let the mean value of all the weight settings belongs

to clusterc on thei th dimension beµi(c), and the standard deviation of them beσi(c).

To ameliorate the visualization, we restrict the range as [µi(c) − σi(c), µi(c) + σi(c)]

on thei th dimension to control the size of the clusterc.

Figure 3.2: Visualization Example

Figure3.2 gives an example of our visualization technique. Accordingto the def-

inition of weight space, all dimensions are within the rangeof 0.0 to 1.0. In the

diagram, three clusters are represented with three representatives: rep-1, rep-2 and

rep-3. Each cluster is visualized as a polygon. In each dimension, the cluster re-

gion is restricted by the upper bound and the lower bound respectively. Furthermore,

the polyline in the middle of each region is shown for users toestimate the average

weight settings of the cluster in each dimension. In addition, the values of each of

the representative skyline in the data space are also presented for users to link their

preferences back to the actual domain that is familiar to them. To distinguish differ-
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ent clusters, the polyline and representative label belonging to the same cluster are

colored similarly, while the colors are different between clusters. This framework

supports highlighting cluster as well. For instance, the cluster with representative

rep-1 is highlighted with red color in Figure3.2.

Ordering of Axes: Another simple but powerful feature of our visualization tool

is that it supports dynamic ordering of the axes based on the selected clusterc.

The dimensions are arranged from left to right following theorderw1,w2, . . . ,wd

if u1(c) ≥ u2(c) ≥ . . . ≥ ud(c). By looking at the order of these dimensions, users

can quickly assess the strength of the cluster by looking at the relative ranking of the

dimensions and compare these ranking against what they preferred.

Furthermore, the gradient of the polyline after the ordering give a good indication of

the tradeoff between clusters’ attributes. A steep gradient indicates that the tradeoff

between the attributes is high while a gentle gradient indicates that the importance

of attributes are almost the same. For example, the dimensions of Figure3.2 are

reordered to be{w2,w3,w4,w1,w5}. The underlying meaning is that this cluster of

skyline objects ranks high mainly because of the dominance on attributesw2. Fur-

thermore, the steep gradient of this cluster demonstrates that the quality on attribute

A1 andA5 must drop substantially in the cluster to sustain the strength onA2.

Alternatively, users will also be allowed to rank the dimensions themselves. Once

they ordered the dimensions, they can identify clusters of interest to them by looking

for polylines that are approximately decreasing from left to right. Among all those

that are decreasing, they can also assess the tradeoff by looking at the gradients.

3.5 Experiments

We now present the experimental study to evaluate order-based representative sky-

lines. For simplicity, we refer to our algorithm asSampleClus. In Section3.5.1, the

proposed algorithm is measured with respect to the efficiency as well as effective-

ness on synthetic datasets. Section3.5.2further illustrates its performance on the

real NBA dataset[90]. At last, the effect of different monotonic functions and the

process of hierarchical elicitation are evaluated in Section3.5.3. All experiments are
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executed on the Windows operating system with Intel Core-2 Duo processor and 4

GB RAM.

3.5.1 Synthetic Data

The synthetic datasets are created using the anti-correlated distribution according

to the classical method[17]. Every attribute on each dimension is normalized to

[0,1]. Table3.1 shows the range and default values (in bold) of the parameters.

In each experiment, we adjust a single parameter while keeping the rest at their

default values. Note that the confidence interval 1− γ and margin of errorδ are two

variables for controlling suitable sampling size. Due to the space constraint, other

two parametersα andβ are fixed in our experimental settings. The default value for

α is 0.01 as we expect the representative skyline object covers at least one percent of

the weight space. The default value ofβ is set to be 1/k, i.e.SIMm(p, q) ≥ β = 0.1,

since the closest representative should be better than the average case to represent

the non-representative objects. The experimental study onα andβ are reported and

can be found in the full technical report2. The evaluation is based on the dot linear

product preference function.

Table 3.1: Parameter Settings
Parameter Range

γ 0.1,0.2,0.3,0.4
δ 0.01,0.02,0.03,0.04

Dimensionality 2,3,4,5
k 4,6,8,10,12

Data Size(100K) 2,4,6,8,10

Table 3.2: Varyingγ
γ 0.1 0.2 0.3 0.4

Sampling Size 4,774 3,618 2,956 2,492
Sampling time(ms) 1,676 1,254 1,025 865

We measure the performance of the algorithm in seven aspects. The first five refer to

# top objects, # replacements,Quality(K,S), V(R(K)), andEr(K,S), which evaluate

2This file cannot be cited though because of anonymous requirement.
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Table 3.3: Varyingδ
δ 0.01 0.02 0.03 0.04

Sampling Size 14,474 3, 618 1,607 904
Sampling time(ms) 5,056 1,254 559 330

the effectiveness of the algorithm. The first one reflects how many distinct skyline

objects appear as top objects in the samples. The # replacements is utilized to eval-

uate the robustness of the clustering algorithm, which records the number of objects

varying from one cluster to another due to the alteration of sampling size. Recall that

theQuality(K,S) is described in definition3.2.1. TheV(R(K)) is the summation of

all V(R(p)) as long asp ∈ K since they are mutually exclusive. ForEr(K,S), it

indicates the representative error to measure the distancebetween the representative

skylines and the other skyline objects[112]. The remaining two aspects, # IO and

CPU time, assess the efficiency of the algorithm. # IO consists of two parts, the

random access times (RA) and the sorted access times (SA). Moreover, CPU time is

also divided into sampling time and clustering time for better understanding the per-

formance of ourSampleClusalgorithm. The breakdown of execution time provides

a deeper and clearer view of the experimental result. Furthermore, due to the random

nature of the sampling output, we repeat each experiment tentimes and report the

average measurements.

We first investigate how the confidence interval 1−γ and margin of errorδ affect the

performance ofSampleClus. Since theα and theβ are fixed, the sampling sizeN is

determined by these two parameters. Table3.2shows how sampling size varies asγ

changes from 0.1 to 0.4 while fixingδ = 0.02. On the other hand, by increasingδ

from 0.01 to 0.04 withγ = 0.2, we derive the sampling size in Table3.3. Because

the sampling quality is directly related to the sampling size, we continue the analy-

sis based on the sampling size. To begin with, we generate theinitial k-partitioning

clusters using 4326 samples, which is the mean of all the sampling sizes in Table

3.2 and3.3. Additionally, by varying the sampling size, we record # topobjects,

# replacements,Quality(K,S) andV(R(K)), and display them in Figure3.3. Gen-

erally, the trend of # top objects suggests that it increaseswith growing sampling

size. However, the increase ratio tends to converge to the real # top objects, which is

larger at the beginning while smaller at the end. Concerningthe # replacements, the

large amount of replacements for sampling size 904 is because of its low accuracy.
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Other than this, the tiny difference is mainly due to the randomness of the sampling

process. Most importantly, theQuality(K,S) andV(R(K)) of the clustering results

demonstrateSampleClus’s robustness although the change in sampling size is no-

ticeable. Thestdevof Quality(K,S) is 0.007 and that ofV(R(K)) is 0.006. This is

primarily determined by the small number of replacements and the stability of thek

representatives to incorrect approximation ofSIM(p, q) when it happens with low

probability.
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Figure 3.3: Robustness vs. Sampling Size

Furthermore, the sampling time is linear related to the sampling size as shown in

Tables3.2 and3.3, since finding the top-m skyline objects for each sample almost

costs the same amount of time. Taking both the clustering robustness and sampling

time into consideration, we conclude that moderate size of samples is enough for

good clustering outputs. Based on this observation, we chooseγ = 0.2 andδ = 0.02,

which determine the sampling size to be 3618.
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Figure3.4shows the comparison betweenSampleClusandI-greedywith respect to

dimensionality. Note that we generate ten sample sets otherthan the one used in

SampleClusto test the representative skylines of two algorithms. The figure sug-

gests thatSampleClusis superior toI-greedyboth forQuality(K,S) andV(R(K)) in

any dimensionality. TheV(R(K)) is multiplied by the sampling size for clearer dis-

play. The closeness of the two algorithms in two dimensionalcases is because the

number of skyline objects is 57, which is in the same order of magnitude as the num-

ber of representatives. Other than this, the distance-based representative skylines can

hardly represent the order information as analyzed in the Section2. Furthermore, the

distance based metric is sensitive to the dimensionality. The goal ofI-greedyalgo-

rithm is to minimize theEr(K,S). Accordingly, we define a relative representative

error NormEr(K,S) as Er(K,S)/
√

d, where
√

d is the maximal possible distance

between two objects ind dimensional normalized space. By varying dimensionality

from 2 to 5, as shown in Table3.4, Er(K,S) as well asNormEr(K,S) increases along

with the rise in dimensionality. It suggests that this goodness function deteriorates

in high dimensional cases.
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Figure 3.4: Effectiveness vs. Dimensionality

Figure3.5shows the efficiency measures as a function of dimensionality. As dimen-

sionality varies from 2 to 5, the|S| increases dramatically because of the property of

anti-correlated distribution. The corresponding skylinesizes equal to 57, 990, 7745,

36290 for dimensionalities 2 to 5 respectively. Therefore,both # IO and CPU time

rise linearly with respect to dimensionality.

Next, we vary the number of representativesk to explain how this parameter affects
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Figure 3.5: Efficiency vs. Dimensionality

Table 3.4: The Relative Representative Error
Dimensionality 2 3 4 5

Er(K,S) 0.09 0.39 0.64 0.86
NormEr(K,S) 0.06 0.23 0.32 0.38

the effectiveness of our algorithm. TheV(R(K)) is multiplied by the sampling size

for clearer display. As shown in Figure3.6, the Quality(K,S) andV(R(K)) of I-

greedyalmost remain constant as the number of representatives increases. ForSam-

pleClus, the Quality(K,S) andV(R(K)) are always greater than those ofI-greedy,

and increase as more representatives are returned.

In Figure 3.7, we present the effect of k on the efficiency measurements. Asm

equals to|S|/k, when the skyline set is fixed,m decreases along with the increase

of k. Therefore, both of the random access times and sorted access times decrease

accordingly. Similarly, we need to discover smaller top-m skyline list for each sam-

ple, so the sampling time reduces since the sampling size keeps invariable. On the

other hand, the search space enlarges with respect tok, leading to the growing of the

clustering time.

The last set of experiments focuses on the scalability of ouralgorithm as the function

of cardinality. Although the cardinality of the dataset increases, the related skyline

sizes are 773, 808, 936, 1101, 990 for cardinality 200K to 1M.Figure3.8 presents

the result. The performance does not show any significant changes since the major
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Figure 3.7: Efficiency vs.k

factor is the skyline size, but not the dataset cardinality.The trend of the curve is

proportional to the number of skyline objects.

3.5.2 Real Data

In this section, we report results of experiments performedon theNBAdataset.NBA

includes 16399 nine-dimensional objects. We denote each object asp(A1,A2, . . . ,A9),

representing the regular season performance of a player from 1973-2008 on nine at-

tributes: points per game (pts), rebounds per game (reb), assists per game (ast), steals
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Figure 3.8: Efficiency vs. Cardinality

per game (stl), blocks per game (blk), assists to turnovers (a/t), field goal percentage

(fgp), free throw percentage (ftp) and three points percentage (tpp). The skyline set

of NBAconsists of 1024 players. Since the dataset’s properties are fixed, we adjust

γ, δ andk to measure the performance.

First, we show the quality of the results as a function ofγ andδ in Figure3.9. Fol-

lowing the same setting ofγ andδ, the derived sampling size is the same as that of

the synthetic data. The values of # top objects, # replacements, Quality(K,S) and

V(R(K)) with respect to sampling size are shown in Figure3.9. Although the ro-

bustness properties are similar, there exist several distinctions due to the correlations

betweenNBAattributes. As such, the # top points is fewer and the # replacements

becomes larger. Furthermore, the region sizes between different skyline objects are

skew, resulting in betterQuality(K,S) and largerV(R(K)) when compared to these

measurements for the synthetic data.

Table 3.5: Sampling Time vs.γ andδ
γ 0.1 0.2 0.3 0.4

Sampling time(ms) 2,731 2,025 1,653 1,409
δ 0.01 0.02 0.03 0.04

Sampling time(ms) 8,363 2,025 898 515

Figure3.10displays the relationship betweenk and the effectiveness of the repre-

sentatives. TheV(R(K)) is multiplied by the sampling size for clearer display. The

I-greedyalgorithm exerts no explicit relationship with the change of k. On the other
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Figure 3.9: Robustness vs. Sampling Size

hand, the order-based representative skylines present better Quality(K,S) as well as

V(R(K)) in comparison to distance-based representative skylines. Since theNBA

dataset has correlated character, the gain of the two measures inSampleClusare not

so significant by adding more representatives.

Figure 3.11 shows the relationship betweenk and the efficiency of the represen-

tatives. Whenk varies from 4 to 12, the values ofm are 256, 171, 128, 102, 85

respectively. Consequently, except for clustering time inproportion tok, the random

access times, sorted access times and sampling time decrease ask increases.

3.5.3 Case Study of Preference Elicitation

In this section, we further investigate the effect of preference function and the process

of hierarchical browsing. Both these two factors exert an important influence on
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Figure 3.11: Efficiency vs.k

the outcome of preference elicitation. The experiments areconducted on theNBA

dataset.

To begin with, we test the algorithm on different monotonic functions. Unlike

distance-based representative skylines, the order-basedrepresentative skylines could

vary on the same skyline set to reflect the underlying interest of different users.

We illustrate three different monotonic functions in Table3.6 to show the distinct

perspectives on theNBAdataset. For the function
−−−→
f1(·), the user favors players who

are comparable in attributes ast, stl and a/t, while
−−−→
f2(·) could be a good choice if the

user prefers players with better reb and blk. Comparing between Table3.7and3.8,
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Table 3.6: The Preference Functions
Attributes

−−−→
f1(·) (pts,

√
reb, ast2, stl2,

√
blk, a/t2, f gp, f tp, tpp)

−−−→
f2(·) (pts, reb2, ast, stl, blk2, a/t, f gp,

√

f tp,
√

tpp)
−−−→
f3(·) (pts, reb, ast, stl, blk, a/t, f gp, f tp, tpp)

Table 3.7: The
−−−→
f1(·) Representatives

Player ID pts reb ast stl blk a/t fgp ftp tpp
2006 Nash 18 4 12 0.8 0.1 3 .53 .90 .45
1975 Jabbar 28 17 5 1.5 4.1 0.0 .53 .70 .00
1987 Bird 30 9 6 1.6 0.8 2.2 .53 .92 .41

1987 Jordan 35 5 6 3.2 1.6 1.9 .54 .84 .13
1991 Stockton 16 3 14 3.0 0.3 3.9 .48 .84 .41

the five order-based representative skylines of
−−−→
f1(·) and

−−−→
f2(·) are of noticeable dis-

tinction. The former contains good assisters such as Nash and Stockton, while the

latter includes outstanding defenders: Gilmore, Ewing andMacdoo. Moreover, tak-

ing ast for instance, the average ast of representatives in Table3.7 are much higher

than that in Table3.8. Note that the output changes according to monotonic function

is totally different from ranking based on specific function. The order-based rep-

resentative skylines achieve a tradeoff between accuracy and heterogeneity, so the

all-round players have the high probability to be selected as the representatives, such

as Jordan and Jabbar. Besides comprehending the overall situation of the skyline set,

users are likely to find desired objects as well. However, theresults of distance-based

representative skylines, as shown in Table3.9, are less satisfactory. Although close

to other skyline objects in Euclidean distance, most of the representatives themselves

are not quite important. Furthermore, the result is fixed andunable to express the

difference between the preference functions.

Table 3.8: The
−−−→
f2(·) Representatives

Player ID pts reb ast stl blk a/t fgp ftp tpp
1980 Gilmore 18 10 2 0.6 2.4 0.7 .67 .70 .00
1975 Jabbar 28 17 5 1.5 4.1 0.0 .53 .70 .00
1989 Ewing 29 11 2 1.0 4.0 0.7 .55 .77 .00
1986 Jordan 37 5 5 2.9 1.5 1.4 .48 .86 .18

1974 Mcadoo 35 14 2 1.1 2.1 0.0 .51 .81 .00
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Table 3.9: The Distance-based Representatives
Player ID pts reb ast stl blk a/t fgp ftp tpp

1989 Bogues 11 3 9 1.3 0.0 5.1 .48 .89 .19
1997 Rodman 5 15 3 0.6 0.2 1.6 .43 .55 .17
2003 Wallace 17 7 3 0.8 1.6 1.3 .44 .74 .34
2008 Diener 4 2 2 0.5 0.1 5.8 .41 .80 .39
1986 Jordan 37 5 5 2.9 1.5 1.4 .48 .86 .18

(a) First Level Visualization

(b) Second Level Visualization

Figure 3.12: Example of Hierarchical Browsing

As displayed above, the tabular view of result is not intuitive especially for high

dimensional case. We thus visualize the process of hierarchical browsing of
−−−→
f3(·)

using the approach presented in Section3.4. Since we adopt the linear function, the

five representative players are averagely excellent. In Figure 3.12(a), the axes are

ordered according to highlighted representative Jabbar, whose strengths are blk and
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reb. Also, the set of representatives are well separated andcovering large area on the

weight space. For example, the representative Stockton dominates distinct region

comparing with Jabbar, which is reasonable because they aretotally different kinds

of players. Following the highlight representative, the re-sampling is performed and

five new representatives are shown in Figure3.12(b). These representatives are all

excellent defenders as the Jabbar in higher level, nicely following the interest of the

user. Note that one object represents one regular season record of certain player,

so Jabbar appears twice in the new representative skylines with the records in 1973

and 1977 respectively. Furthermore, the ordering of attributes in the second figure is

very close to that in the first one, suggesting that Olajuwon has the similar strength as

Jabbar. In summary, the hierarchical browsing approach enables users to drill down

to the preferred region effectively, especially with the help of our visualization tool.

3.6 Summary

In this chapter, we have introduced the order-based representative skylines, a novel

concept that integrates the discovery of representatives with order preference. Un-

like previous work, we brought the preference function backinto the picture when

determining representative skylines in order to elicit thepreference. Moreover, a hi-

erarchical sampling-clustering framework was developed based on the new notion.

To further consolidate this interesting framework, we provided visualized view to

guide the user’s refinement of the result. The outcomes from an experimental study

demonstrated that our order-based representative skylines can provide more infor-

mative views of data.
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Chapter 4

Diversified Keyword Search in

Databases

4.1 Overview

In this chapter, we propose to develop a novel keyword searchsystem to support di-

versified keyword search and browsing over databases. To make this possible, three

new challenges must be overcome:

(1) Diversity Measurement: Intuitively, result diversification is a trade-off between

having more relevant results of the “correct” intent and having diverse results in the

top positions for a given query [52]. As such, aside from considering the relevance

of answers, we also need to take into account the pairwise difference between them.

Therefore, our first and the most important challenge is to define a meaningful mea-

sure between substructures tailored for keyword search in databases. Various efforts

have been made to measure the dissimilarity of keyword search results [109, 35, 51].

While we will discuss these papers in detail subsequently, it suffices to point out

here that none of them capture both textual and structural information when trying

to diversify keyword search answers.
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(2) Query Answering: Due to the NP hardness of result diversification [52], it is

thus necessary to develop an efficient scheme to produce diversified results. Al-

though finding representatives in clustering problem is a candidate solution, it is

imperative to notice that clustering method also has high computational cost. More

importantly, the diversity quality of the clustering method is shown low compared

with heuristic approaches [37]. Although we try to divide results intok groups, our

objective is to make the distinction betweenk answers as large as possible.

(3) Result Representation:Our ultimate goal is to facilitate search experience and

database usability. Since the original structural answersare complex and not easy

to understand, we need to simplify them in order to let users quickly perceive the

underlying difference between answers. To achieve this goal, the challengeis to ef-

fectively summarize distinct features from rich structures and contents in diversified

results.

To overcome these challenges, we develop a novel system for browsing and diver-

sified keyword searching in databases, i.e. BROAD (BROAD is an acronym for

BROwsing And Diversified keyword searching). Our contributions towards diversi-

fied keyword search in databases are as follows:

• We have devised an effective kernel distance to measure the diversity of key-

word search results. This metric integrates both the textual difference and the

structural distinction in the answer trees.

• We have developed an efficient algorithm to findk diverse keyword query

answers based on cover tree index structure. Unlike the post-processing ap-

proach, our solution seamlessly combines both relevant result discovery and

diverse result set selection, allowing us to dynamically update the search re-

sults.

• We have provided a hierarchical browsing interface to further enhance our

system. By coupling our solution with summarization techniques, we enable

users to efficiently locate desired results by drilling down to relevantanswers

incrementally.
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• We have conducted extensive experiments on two real datasets to show that

our framework is both effective and efficient.

The rest of the chapter is organized as follows. Section4.2 defines the problem

handled throughout this work and proposes our new diversitymeasure. Section4.3

introduces the BROAD system architecture. Section4.4presents the efficient index

based solution. The browsing interface of diversified result is described in Sec-

tion 4.5and followed by a demonstration in Section4.6. Our extensive experimental

study is reported in Section4.7. Section4.8concludes the chapter.

4.2 Problem Definition

In this section, we introduce the keyword search modeling and describe the diversity

problem studied in this work. Furthermore, we propose a novel diversity measure to

capture both content and structure information.

4.2.1 Keyword Search Modeling

We model a database as a graph since it is the widely used modeling suitable for

unstructured, semi-structured and structured data [79]. Database schema is a directed

graphGS calledschema graph, in which nodes represent tables and edges represent

foreign key references. EdgeR → S between tablesR and S indicates that the

foreign key onS refers to the primary key onR. Note that there may exist multiple

edges between tables to represent multiple foreign key references. Given the schema

graphGS, the data graph GD consists of nodes representing tuples and directed

edges representing the foreign key references between tuples. Consider anl-keyword

queryq {c1, c2, . . . , cl}. Typically, the result ofq onGD is represented as follows.

Definition 4.2.1 (Answer tree)

An answer tree T to the keyword query q is a rooted subtree of the data graph,

satisfying: T contains all the keywords, and any subtree of Tis not a valid answer

tree. Denote the root of T as nr(T) and the node set of T as N(T).
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Note that we assume the result has a single root in this work. Generally, without

restriction on the size of an answer tree, w e will find a large number of meaningless

trees due to long paths between nodes. Instead, we restrict the results to those trees

that have a radius less than or equal tor. Note that the radius indicates the largest

path length between the root node and leaf nodes, which varies with respect to the

dataset. This is a common approach for keyword search in databases [69, 61].

Definition 4.2.2 (Res(q, r))

Given keyword query q and radius r, an answer tree T is in the result set Res(q, r) iff

the path lengths between nr(T) and all the keyword nodes are less than or equal to r.

4.2.2 Diversity Problem Definition

We first assume that the dissimilarity between two answer trees can be measured by

a distance functiondist(Ta,Tb) (with larger distance being more dissimilar), which

will be discussed later in this section. There are typicallytwo ways to define diver-

sity. One is the rank aware diversity; another is based on an objective function. The

former defines diversity by re-ranking the result taking diversity into consideration.

However, since different users have different criteria, it does not always make sense

to present a universal ranking. Instead, we discover a set ofanswers based on an

objective function as follows and let users discover which one is his/her intention.

Problem 2 (Keyword Search Diversification)

Given keyword query q and radius r, find a set of k answer treesS ∈ Res(q, r) which

maximize
∑{dist(Ta,Tb)} where Ta,Tb ∈ S.

Max-sum objective is a widely used diverse definition [52, 109, 37]. Nevertheless,

our solution can be easily adopted to other popular definitions, such as the threshold

based measure [125] and the max-min measure [52]. Without loss of generality, we

use Problem2 to illustrate our idea throughout this work.
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4.2.3 Kernel Based Diversity Measure

The core of diversity problem is the need to measure the pairwise dissimilarity be-

tween answer trees, i.e.dist(Ta,Tb). Here, we choose a kernel based method for this

purpose and will explain our choice subsequently.

Answer Tree Kernel

Formally, a kernel function [105] is a function measuring the similarity of any pair of

objects{x, x′} in the input domainX. It is written asκ(x, x′) = 〈φ(x), φ(x′)〉, in which

φ is a mapping fromX to a feature spaceF . Given a set of examples{x1, x2, . . . , xm},
the Gram matrix is defined as them×mmatrixGκ whose entries areGκi, j = κ(xi , xj).

A kernel function is valid if and only if it is symmetric positive semidefinite, i.e. if

any of its Gram matrices is symmetric positive semidefinite.Readers are referred to

the book [105] for a comprehensive introduction on kernel methods.

To ensure efficient computation of the kernel, we utilize the subtree kernel [114] as

the starting point since it is a linear complexity kernel fortree structural data. This

kernel is extended from the state-of-the-art convolution kernel [60]. The basic idea

is to express a kernel on a discrete object by a sum of kernels of its constituent parts.

The features of the subtree kernel are proper subtrees of theinput treeT. A proper

subtreefi comprises nodeni along with all of its descendants. Two proper subtrees

are isomorphic if and only if they have the same tree structure. ConsideringT1 and

T7 in Example1, all of their proper subtrees are shown in Figure4.1. Both answer

trees contain four different proper subtrees, and they share three of them, namely,

f1, f2, f3. The definition of subtree kernel is as follows.

Definition 4.2.3 (Subtree Kernel)

Given two trees Ta and Tb, the Subtree Kernel is:

κS(Ta,Tb) =
∑

na∈N(Ta)

∑

nb∈N(Tb)

∆(na, nb)

where∆(na, nb) =
∑|F |

i=1 I i(na)I i(nb), and where Ii(n) is an indicator function which

determines whether the proper subtree fi is rooted at node n.
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Figure 4.1: Kernel Example

Originally, the subtree kernel is designed to compare only tree structures without

taking node contents into consideration. For example, the kernel scoreκS(T1,T7) =

1×2+1×1+1×1 = 4 only because they share the substructuresf1, f2, f3. In our case,

the comparison between answer trees needs to consider node contents as well. Al-

though Bloehdorn et al. [16] has integrated textual information into the convolution

kernel, their approach is designed for parsing tree in grammar analysis. Our paper is

the first attempt to design a kernel for structural keyword search answers. We devise

a new tree kernel which takes the keyword semantic differences as well as answer

tree structural differences into consideration, and can be computed in linear time.

The differences between the kernel in [16] and our kernel are two-folds. First, the

text kernel in [16] is based on subset structures, which include internal fragments,

while our kernel is based on subtree structures, since we focus on the connections

between keyword nodes. Second, the partial match in [16] only considers the termi-

nal term differences according to the parsing tree structures, while we also need to

take the internal textual difference into consideration.

The idea of answer tree kernel is to take∆(n1, n2) as a fuzzy match between proper

subtrees. Since answer trees contain textual information,we could compare the

content similarity of two proper subtrees from two answer trees that have the same

structure. Letf a
i be a proper subtree inTa and f b

i be a proper subtree inTb that

share the proper subtreefi. We merge the textual content in the nodes off a
i and f b

i

into da
i anddb

i and refer to them as documents. Next, we represent each document
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asv = (w1,w2, . . . ,wt) with each dimension corresponding to a separate term. If a

term occurs in the document, its value in the vector is non-zero. Applying one of the

best known schemes, i.e. TF-IDF weighting, we obtainκD(da
i , d

b
i ) = 〈va

i , v
b
i 〉 where

va
i andvb

i are the weighted term vectors ofda
i anddb

i respectively. Furthermore, the

keyword queryq provides another source of semantic information. Intuitively, f a
i

and f b
i contribute more to the overall kernel if they share more keywords. Thus,

we introduce a weight settingwab =
√

s/l wheres indicates the number of shared

keywords andl represents the total number of input keywords, yielding:

Definition 4.2.4 (Answer Tree Kernel)

Given two trees Ta and Tb, the Answer Tree Kernel is:

κA(Ta,Tb) =
∑

na∈N(Ta)

∑

nb∈N(Tb)

wab∆
′(na, nb)

where∆′(na, nb) =
∑|F |

i=1 I i(na)I i(nb)κD(da
i , d

b
i ), and where Ii(n) is an indicator function

which determines whether the proper subtree fi is rooted at node n.

In order to define a metric distance, we proof that the answer tree kernel is valid in

Lemma4.2.1.

Lemma 4.2.1 Answer tree kernel is a valid kernel.

Proof 4.2.1 For a convolution kernel, if the kernels on the subparts are positive

semidefinite, the overall kernel is also positive semidefinite [60]. As the answer tree

kernel accords with the convolution kernel format, we need to prove thatκD(da
i , d

b
i )

is valid. This can be shown by the kernel definition becauseκD(da
i , d

b
i ) is computed

explicitly in terms of a dot product. Therefore, the answer tree kernelκA(Ta,Tb) is a

valid kernel and we map the answer tree to a doc product space.

Answer tree kernel serves as an effective method to map original answer trees to a

kernel space. However, in the original answer tree kernel, larger trees have higher
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chances to share many common features with any small tree. Toovercome this

drawback, we compute a normalized kernel, i.e.

κ(Ta,Tb) = κA(Ta,Tb)/
√

κA(Ta,Ta) · κA(Tb,Tb) (4.1)

Finally, we define a norm||T || = 〈T,T〉 = κ(T,T), and then obtain the metric distance

via [105]:

dist(Ta,Tb) = ||Ta − Tb||
=
√

〈Ta,Ta〉 + 〈Tb,Tb〉 − 2〈Ta,Tb〉
=
√

κ(Ta,Ta) + κ(Tb,Tb) − 2κ(Ta,Tb)

=
√

2(1− κ(Ta,Tb))

The above deduction relies onκ(Ta,Ta) = κ(Tb,Tb) = 1 by substituting Equation4.1.

Alternative Methods

There exist several different ways to define the similarity between answer trees. We

could extract a finite-length feature vector for each answertree, and then map it

to a feature space to calculate the similarity via dot product. However, explicitly

defining an effective feature space needs domain expert knowledge. Another way

is to adopt tree edit distance [34]. This metric is defined as the minimal number

of edit operations to transform one tree to another. However, computing tree edit

distance for treesTa andTb suffers an expensive computational complexityO((|Ta|+
|Tb|)3) [34]. Compared to these methods, the kernel based approach can be computed

in linear time and capture both structural and textual similarity without the need for

domain knowledge.

Besides, we can decompose answer trees into a set of nodes andutilize Jaccard’s

distance to measure the difference. This method is efficient but sacrifices the result

quality. First, it only considers the exact match of nodes, but ignores the textual

similarity between them. Second, it fails to measure the structural connections due

to a decomposition. Two recent work [35, 109] apply the Jaccard’s distance by

separating answer trees into a set of nodes. We compare them with our method in
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the experimental section to show the kernel distance can achieve better precision and

recall.

4.3 System Architecture

We next present the BROAD system architecture as in Figure4.2. We try to use

a pipelined framework to overcome the challenges we discussed earlier. When a

user inputs onel-keyword query in the browsing interface, it will be sent to keyword

search engine generating candidate answer tree setT . Here we rely on the standard

keyword search engine in graph databases, which discovers answer trees from the

data graph building on top of relational databases [3, 69]. Note that this component

can be easily replaced with the relational keyword search engine [64]. Our BROAD

system builds the connection between user interface and keyword search engine. It

mainly consists of three components: Cover Tree Indexer, Diverse Result Generator

and Hierarchical Browsing Operator. The results from the search engine can be

progressively inserted into cover tree index in an online fashion. Based on this index

structure, we will discover diverse result set and interactwith users in a hierarchical

browsing manner. For better illustration, we briefly explain the functionality of these

components in BROAD system as follows.

• Cover Tree Indexer: This module is the core of our system and will be dis-

cussed in details in Section4.4. It dynamically manages the answer trees that

are returned by search engine. The kernel calculator servesas a subcomponent

that computes the distance between answer trees based on theschema graph,

so that the cover tree can index results effectively.

• Diverse Result Generator: The generator relies on the CoverTree Indexer to

discoverk diverse results. This can not only directly show results to users,

but also provides them with the Hierarchical Browsing Operator for further

improvement.

• Hierarchical Browsing Operator: This component allows users to browse an-

swer trees in a hierarchical fashion and will be discussed inSection4.5. The

hierarchy is constructed by partitioning answer trees intok groups based on
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their similarity to thek diverse results, and then recursively applying partition-

ing to each group. By summarizing the answer trees in each of thek groups,

we provide a way for users to quickly locate the desired results.

Hierarchical 

Browsing Operator

Relational Database

Result Browsing Interface

Diverse Result 

Generator

Keyword Search Engine

Keyword 

query

Result trees

Data graph

Schema graph

Cover Tree Indexer
Kernel 

Calculator

B

R

O

A

D

Figure 4.2: BROAD System Architecture

4.4 Methodology

In this section, we propose an efficient algorithm computing the tree kernel distance.

Based on this, we develop a cover tree based algorithm to solve Problem2. Alterna-

tive approaches are listed in Section4.4.3.

4.4.1 Kernel Distance Computation

To compute the tree kernel distance, a naı̈ve calculation follows naturally from the

idea in Definition4.2.4. Intuitively, this method checks all the possible combinations
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between nodes of two answer trees and sums up the shared partsto obtain the final

score. It is straightforward but suffers fromO(|Ta||Tb|) computational complexity.

Here we consider this problem from another aspect. The number of proper subtrees

in a tree equals to the size of the tree. Let us consider Figure4.1 again. T1 has

four proper subtrees{ f1, f2, f3, f4}, andT7 has five{ f1, f1, f2, f3, f5}. Therefore, we

could directly enumerate all proper subtrees instead of checking every possible node

combination.

Based on this intuition, we design a novel bottom-up algorithm to merge answer trees

into a directed acyclic graph. The graph at the bottom of Figure4.1is generated from

answer treesT1 andT7. The number inside each node represents the correspondence

between a tree node and a graph node. For instance, the nodes with label 3 in two

answer trees can be merged into the graph node with label 3. Itis because they have

the same structuref3, in which all the nodes come from the “paper” table. Due to the

bottom-up traversal, the children of newly accessed node must be mapped to certain

graph node before it. Thus, by checking the child correspondences, we could easily

determine whether this node should be mapped to an existing node or we need to

create a new graph node. At last, each graph node represents one kind of proper

subtree, because we create a new graph node if and only if we discover a new proper

subtree. In this example, the two answer trees are merged into the graph with five

nodes, indicating that they contain five different substructures in total. Following

Definition 4.2.4, we calculate and sum up kernel scores of all the substructures to

derive the final kernel score.

The improved algorithm contains two major subcomponents asin Algorithm 4.

FunctionbuildDAG merges two answer trees into one directed acyclic graphG.

Following the bottom-up order, we add nodes inTa into theleftsetof nodes inG and

nodes inTb into therightsetof nodes inG. We then utilizeG in thekernel function.

This component computes semantic scores based on therightsetand theleftsetof

each graph node, and adds them up to obtain kernel score. In the main algorithm, we

need to derive the self kernels forTa andTb and the cross kernel betweenTa andTb.

Finally, we can calculate the kernel distancedist(Ta,Tb) in line 4. Concerning the

computational cost, the merging part needs single bottom-up traverse of two answer

trees, and the computing part hasO(|G|) complexity with|G| ≤ |Ta|+ |Tb|. Obviously,

the total complexity of Algorithm4 is linear to the answer tree size.
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Algorithm 4 : KernelDistance
Input : Answer treesTa andTb

Output : The kernel distancedist(Ta,Tb)
1 DAG Gab←− buildDAG(Ta,Tb)
2 DAG Gaa←− buildDAG(Ta,Ta)
3 DAG Gbb←− buildDAG(Tb,Tb)
4 dist(Ta,Tb)=
√

2(1− kernel(Gab)/
√

kernel(Gaa)kernel(Gbb))
buildDAG (Answer treeTa, Answer treeTb)

1 enqueueTa’s andTb’s leaf nodes into queueQ
2 create empty DAGG
3 while Q is not emptydo
4 dequeue nodew from Q ; f ound←− f alse
5 foreachnode v∈ G in bottom up orderdo
6 break ifv andw have different heights, outdegrees, or provenances
7 if v and w have the same childrenthen
8 if w ∈ Ta then addw to v.le f tset
9 else ifw ∈ Tb then addw to v.rightset

10 f ound←− true ; break

11 if found= falsethen
12 add a new nodev to G
13 if w ∈ Ta then addw to v.le f tset
14 else ifw ∈ Tb then addw to v.rightset
15 add arcs inG from v to all children ofw
16 if w , Rootand parent(w)’ children are processedthen enqueue node

parent(w) into Q
kernel(DAG G)

1 κA←− 0
2 foreachnode v∈ G in bottom up orderdo
3 da←−

⋃

text content of v.leftset
4 db←−

⋃

text content of v.rightset
5 wab←−

√
s/l ; ∆′(v) = κD(da, db)

6 κA+ = wab∆
′(v)

70



CHAPTER 4. DIVERSIFIED KEYWORD SEARCH IN DATABASES

4.4.2 Cover Tree Based Diversification

Cover Tree Overview

The cover tree [14] is a metric tree to index data and perform nearest neighbor search

in metric spaces. It is a leveled tree where each level is a “cover” for the level beneath

it. Each level is indexed by an integer scalei which starts from zero (root node) and

increases as we descend the tree. For instance, a cover tree in Figure4.3 indexes

fifteen results of Example1. Every answer tree repeats in the lower level after it first

appears, so the lowest level contains all the answer trees.

Assume that we use the cover treeCT to index our answer setT based on answer

tree distances, andCi to indicate answer trees inT associated with the nodes at level

i. Cover tree obeys three important properties for all levelsi ≥ 0:

• Nesting: Ci ⊆ Ci+1

• Covering: For every treeTa ∈ Ci+1, there is a treeTb such thatdist(Ta,Tb) ≤
1/2i and exactly one suchTb is a parent ofTa.

• Separation: For all treesTa,Tb ∈ Ci, the distance fromTa to Tb is greater than

1/2i.

Note that the cover tree definition in our case is different from the original definition

in [14]. In contrast to the Euclidean distance without upper bound, the kernel dis-

tance between answer trees ranges from 0 to 1, so we assign theroot of the cover tree

as level 0 with the maximal distance coverage 1, and descend the coverage through

the tree level by level.

In order to better illustrate the diversification on top of cover tree structure, next

we summarize the procedure of the cover tree construction. The intuitive idea is to

iteratively insert answer trees into the cover tree and alsokeep the three properties

stated above. Each answer treeT is recursively inserted starting from level 0 until

the highest possible leveli such thatT has the distance greater than 1/2i to all the

answer trees in leveli, and is covered by the answer tree in leveli−1 within distance

71



CHAPTER 4. DIVERSIFIED KEYWORD SEARCH IN DATABASES

1/2(i−1). TakeT10 in Figure4.3as an example. In level 0, it is covered byT8 within

distance 1, so that it drops to level 1. Similarly, it is further covered byT4 andT7 until

it is inserted into level 3. The authors in [14] proved the correctness of this insertion.

Besides, they also provide a batch construction which is empirically superior to a

sequence of single point insertions. Readers are referred to the cover tree paper [14]

for a comprehensive explanation.

T8

T3T8

T9 T8 T7

T4

T3T4

T9 T5 T8T6 T10T7 T1 T4T2 T3 T12T11

T13

T15

T15

T13 T14 T15

C0

C1

C2

C3

Figure 4.3: Cover Tree Example

Diversification on Cover Tree

We next describe a cover tree solution to findk diversity answers out ofN answer

trees. We assumeN > k throughout the paper, since it is trivial to return all the

candidates as diverse results whenN ≤ k. The separation property of cover tree

suggests that nodes at higher level are more diverse. Therefore, instead of discov-

eringk diverse results from the whole answer set, we could make use of the cover

tree to efficiently find good candidates for the result diversification problem. Unlike

the nearest neighbor search on cover tree, we propose a greedy algorithm to meet

our need. Intuitively, the idea is to discover diverse results in the highest possible

level on the cover tree. As illustrated in Algorithm5, we access cover tree one level

at a time, and stop at the first level including at leastk nodes, which is denoted as

the working levelCi. If the size ofCi equalsk, all the answer trees in this level are

returned as diverse results. Otherwise,Ci−1 is selected as the partial results, for that

they are more separate in general according to the separation property. Next, we

heuristically expand the farthest node in the working leveluntil |S| = k. Whenk is

set to 3 for the cover tree in Figure4.3, the algorithm proceeds as follows. At level

0, it only contains the root node. Then the algorithm continues to the next level with
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four nodes. The number of nodes is larger thank, so this level becomes the working

level andT8 from the above level is selected as the partial result. Next,T3 andT15 are

further included by means of farthest expanding. Finally, we discover{T8,T3,T15}
as diverse results for this running example.

In this algorithm, we first construct the cover tree index inO(c6N ln N) time for the

expansion constantc [14]. The basic operation later in this algorithm issetdist(T,S),

i.e.
∑

Ta∈Ci
dist(T,Ta), which requires|S| distance computations. Since|S| ≤ k, we

obtains its complexity asO(k). This operation is performedO(k|Ci |) times in the

while loop. In the worst case,|Ci | equals toO(N). Combining the above two parts,

the final complexity of this algorithm isO(c6N ln N + k2N) in terms of distance

computations.

Furthermore, we propose an update method to support updating thek diverse results

when the candidate set is progressively generated. The underlying idea is to check

whether this newly added answer treeTnew affects the working level, and then adjust

thek diverse results by means of swapping betweenTnew andTold in original results.

The swapcost(Tnew,Told) indicates the sum distance change when we replaceTold

with Tnew inS, i.e. setdist(Tnew,S)−setdist(Told,S). The complexity of Algorithm6

consists of two components. The first is the beginning insertion with a complexity

of O(ln N) [14]. The following part hasO(k2) complexity since theswapcostopera-

tion is performedO(k) times. Thus, the total complexity of the update algorithm is

O(ln N + k2) in terms of distance computations.

The complexity of Algorithm6 consists of two components. The first is the inser-

tion at the beginning, which has a complexity ofO(ln N) according to [14]. The

basic operation of the following part isswapcost(Tnew,Told), which has the same

complexityO(k) as thesetdistoperation. Thus, this part has complexityO(k2) since

the swapcostoperation is performedO(k) times. In summary, the total complexity

of the second algorithm isO(ln N + k2) in terms of distance computations.

To sum up, the cover tree based approach has several advantages. First, instead

of diversifying results in the whole answer set, we utilizesthe separation property

to reduce the number of distance computations. Furthermore, cover tree supports

progressive insertions with minor efforts. Finally, the tree-like structure makes it a

great tool for hierarchical browsing, which will be furtherexplained in Section4.5.
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Algorithm 5 : CoverTreeDiversification
Input : Answer tree setT , k
Output : Thek diverse result setS
build cover treeCT from answer tree setT1

// find the working level

Ci−1 ←− NULL2

Ci ←− C03

while |Ci | < k do4

Ci−1 = Ci5

Ci = Ci+16

// discover k diverse results
if |Ci | = k then7

S ←− ⋃ all the answer trees inCi8

else9

S ←− ⋃ all the answer trees inCi−110

while |S| < k do11

find answer treeT ∈ Ci \ S, s.t.12

setdist(T,S) = max{setdist(T,S) : T ∈ Ci \ S}
S ←− S ∪ {T}13

Algorithm 6 : Update
Input : Cover treeCT, Answer treeTnew, Result setS
Output : The refinedk diverse result setS′
insertTnew into CT1

if working level Ci ∈ CT is not changedthen2

if |Ci−1| = k then3

S′ ←− ⋃ all the answer trees inCi−14

set the working level to beCi−15

else S′ ←− S6

else7

maxcost←− 0; swaptree←− NULL8

foreachanswer tree Told ∈ S do9

if swapcost(Tnew,Told) > maxcostthen10

maxcost←− swapcost(Tnew,Told)11

swaptree←− Told12

if maxcost> 0 then13

replaceswaptreein S with Tnew14

S′ ←− S15
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4.4.3 Alternative Solutions

We propose two state-of-the-art alternative approaches tosolve the diversification

problem. One solution is adapted from the farthest expansion algorithm [37, 52]. It

maintains two sets of trees: the answer tree setT and diverse result setS. Initially,

the size ofT is N and the size ofS is zero. The farthest answer trees are itera-

tively moved fromT to S until |T | = N − k and|S| = k, as shown in Algorithm7.

setdist(T,S) in line 4 is the sum distance between answer treeT and all answer trees

in S, i.e.
∑

Ta∈S dist(T,Ta). Although guarantees a 2-approximation to Problem2’s

optimal solution [52], this algorithm has complexityO(N2) in terms of distance com-

putations, which is relatively high when the number of answer trees is large. One

possible relaxation of the quadratic complexity is to randomly select the first result

and expand to restk− 1 results. However, this method needs to select diverse results

from the whole answer set and is sensitive to the first result,which needs multiple

restarts to obtain a stable performance.

Another approach, thek-medoids clustering, is derived from CLARANS [92]. The

idea is to cluster candidates intok groups and select medoids ask diverse results.

The number of distance computations isO(Ik(N − k)2), whereI is the number of

iterations. This method suffers high computational cost. Furthermore, it also re-

quires starting from multiple initial medoids to approach global optimal results. The

detailed comparison among these algorithms will be shown inthe experimental sec-

tion.

Algorithm 7 : FarthestExpanding
Input : Answer tree setT , k
Output : Thek diverse result setS
find Ta,Tb, s.t.dist(Ta,Tb) = max{dist(Ta,Tb) : Ta,Tb ∈ T ,Ta , Tb}1

S ←− {Ta,Tb}2

while |S| < k do3

find answer treeT ∈ T \ S, s.t.4

setdist(T,S) = max{setdist(T,S) : T ∈ T \ S}
S ←− S ∪ {T}5
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4.5 Result Representation

To improve the usability of the BROAD framework, we implemented a demo sys-

tem [134] with an interactive visual interface, so that the user can explore the query

results by means of hierarchical browsing.

4.5.1 Hierarchical Browsing

Hierarchical browsing is an effective approach to interact with users and can be el-

egantly supported by the cover tree structure. We proceed asfollows. First, we

separate answer trees in the working level intok answer tree groupsG based on their

kernel similarities to thek diverse results. A user then selects a subsetH of interest.

Second, we fetch all nodes in the next level covered byH , and treat them as nodes

in a new working level. Thus, we can perform Algorithm5 again to obtain a new set

of diverse results. This procedure iteratively proceeds until we obtain the intended

answer tree/s. For instance,T8,T3 andT15 in Figure4.3 are diverse results found

previously. We first assignT4 to T3 due to the kernel similarity and these four an-

swer trees form three groups. Assume that users are interested in the group{T3,T4},
so we drill down to the next level with answer tree set{T3,T4,T7}. They are directly

selected as new diverse answers because the size of this level equals to three.

4.5.2 Visual Interface

To support hierarchical browsing, we develop a circular view to summarize both

structures and contents of a group of answer trees. As such, users can quickly browse

and select preferred answer trees from the whole answer set.The basic idea is de-

rived from the Circos project [73] and we adapt it for the answer trees’ summariza-

tion. In the following, we take answer treeT7 to show the process of mapping one

answer tree into a circle. Figure4.4a depictsT7 and it is transformed to the red part in

Figure4.4b and4.4c. The root node and keyword nodes are mapped to segments, and

pathes between nodes are mapped to ribbons. Answer tree contents, which will be

discussed later, are selected as representative words around the circle. We also sup-

port the focused view when a user chooses certain answer tree. It is displayed with
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color and path structures, while other answer trees become transparent. To illustrate,

T7 in Figure4.4c is shown in red and highlighted with the structure “author→paper”

between the root node and the “skyline” keyword node. For a group of answer trees,

the shared nodes among answer trees are presented just once to save space. For in-

stance, Figure4.4b only contains two “skyline” nodes and three “rank” nodes for

eight answer trees. As a result, the circular view for a groupof answer trees salvages

large spaces compared to the original layout. Furthermore,we utilize different colors

to distinguish answer trees so that users can quickly capture how many of them are

covered in a group. In general, this view is suitable for keyword search, becausek is

usually much less than one hundred in real keyword search usecases.

Figure 4.4: Result Representation

Aside from structural summarization, representative wordsWr are attached to the

related segments in order to distinguish the circles that are on the same level of the

hierarchy. Given any segments, let the node it represents ben. The ribbons that

connects to other segments in the circle represent paths in the answertrees that

connectn to other nodes in the answer trees. For each segment, candidate words
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Algorithm 8 : Word Selection
Input : Segments, Answer tree groupsG
Output : Representative wordsWr

obtain candidate wordsWc of segments1

obtain groupg that segmentsbelongs to2

foreachcandidate word w∈ Wc do3

T ′ ←− all the answer trees ing containingw4

T ←− all the answer trees ing5

w.CoverRatio←− |T ′|/|T |6

G′ ←− all the groups inG containingw7

w.Frequency←− |G′|/|G|8

w.S core←− w.CoverRatio× log(1/w.Frequency)9

sortWc with decreasing scores10

selectWr proportional to the width of segments11

Wc are selected from these pathes. Candidates for the highlighted root segment in

Figure4.4c are all the words from nodes inT7. We then obtainWr from these can-

didates as in Algorithm8. In short, we compute a TF-IDF like score for candidate

words, and select top candidates as representative words. As such, we sketch out

the distinct contents of answer trees. The number of representative words selected

depends on the width of the segment. For the green root segment in Figure4.4f, the

words “network”, “distributed”, “peer” and “neighbor” areselected as representative

words, since they have highest scores. To further emphasizethe word distinctions

within a segment, we present the selected words in different font sizes, according to

their term frequencies in one segment. The words “network” and “peer” are high-

lighted with the biggest font size since their term frequencies are the largest in the

segment.

The circular representation provides a summarized view both for structural and tex-

tual information about an answer tree group, which enhancesthe process of hierar-

chical browsing. In Figures4.4d, 4.4e and4.4f, we show three circles representing

three groups of answer trees on the lower level of the browsing hierarchy. The left

circle consists of two answer trees with one “rank” node and two “skyline” nodes.

The content is mainly about the web services. The middle circle contains three an-

swer trees. The major topic is the relationship between top-k query, skyline query

and preference discovery. The right circle with three answer trees emphasizes the

connection between skyline algorithm and distributed environment. In summary, cir-
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cles can show distinct and summarized information about groups, which help users

to browse and select desired answer trees. Note that circle view is a complement but

not a substitution of presenting trees. Thus, we show both the circle view and the

tree view in the demo. Users may quickly obtain the summary for a group of answer

trees in the circle view. They can further know the detailed information in the answer

tree view.

4.6 Demonstration

In demonstration, we develop a web based browsing interface1 to support interactive

diversified keyword search. As shown in Figure4.5, the interface consists of a search

input area and a result display area. Search input area on thetop of the interface

contains keyword input field, zoom in/out buttons and setting fields for user-specified

parameters (k andn). Therefore, we enable user to search by keyword query as well

as perform hierarchical browsing using zoom in/out buttons.

Figure 4.5: BROAD Interface

Result display area on the bottom is composed of three views from left to right:

thumbnail view, focused view and answer tree view. The thumbnail view displays

k circles to summarizek answer tree groups as a list of thumbnail images. Conse-

quently, users can click the desired circle and enlarge it inthe focused view, which

1http://db128gb-b.ddns.comp.nus.edu.sg:8080/broad/
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allows users to focus on certain segments or ribbons. The chosen element is high-

lighted with color, while other elements become transparent. We also make use of

a tooltip to describe the structure of selected path. Furthermore, the corresponding

answer tree will be represented in the answer tree view. Thisview utilizes a tree

layout to depict the answer tree structure in node labels, and depict the answer tree

content in tooltips.

Take the keyword query{skyline,rank} as an example in Figure4.5. A user setsk = 3

andn = 15 to discover three diverse answers from fifteen candidates. The thumbnail

view shows a preview of three circles, so the user can browse the overview through

a scroll bar and select the desired one to display in the focused view. For example,

the top circle in the thumbnail view is selected with the detailed information in the

center. Besides,T5 is highlighted with red color because the user clicks on the root

segment ofT5. Moreover, when mouse hovers over on the ribbon between the root

node and the “skyline” keyword node, a tooltip “author→paper” shows the structure

information. Correspondingly, the tree layout in the answer tree view visualizes the

structure and the content ofT5. If the user ticks the top checkbox in the thumbnail

view and then presses the zoom in button, the system can drilldown to next level

and present a set of new circles.

In summary, our BROAD system provides a user friendly interface that helps users

search and explore diversified keyword search results. To the best of our knowledge,

our work is the first attempt to support interactive hierarchical browsing on keyword

search in databases.

4.7 Experiments

We present experimental studies to evaluate the BROAD system in this section.

Without loss of generality, we implemented the state-of-the-art graph based keyword

search algorithm [69] to discover candidate answer trees. It returnsN candidates and

we then discoverk diverse answers out of it. Table4.1explains the parameters used

throughout this section. It also shows the range and the default values (in bold) of

the parameters. In each experiment, we adjust one parameterwhile keeping the other

one at its default value.
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4.7.1 Datasets and Queries

We use two real datasets to assess our system. One is CiteSeerX, a collection of

scientific and academic papers focusing on computer and information science. We

choose this dataset for two reasons: i) It maintains a large amount of paper abstracts

as well as citations between papers; ii) It is a dataset for anonline search engine as-

sociated with a query log. Another is Yago [110], a huge semantic knowledge base

derived from Wikipedia and WordNet. Originally, Yago dataset is stored as a set of

triples(subject,property,object). It contains several millon of entities and 88 property

types between them. According to the entities’ type attributes, we transform Yago to

a traditional database storage by separating entities to different tables and connecting

them by foreign key references. For instance, people entities become tuples in peo-

ple table and may connect to tuples in location table by bornIn references. Statistics

about the graphs generated from the datasets is shown in Table 4.2. As in Defini-

tion 4.2.2, we tune radiusr with respect to different datasets to generate meaningful

candidate set respectively.

Table 4.1: Parameter Settings
Parameter Description Range

N answer tree set size|T | 25, 50, 75, 100
k diverse result size|S| 2, 4, 6, 8, 10

Table 4.2: Dataset Statistics
Property CiteSeerX Yago

Node count 1, 127, 838 9, 960, 479
Edge count 3, 414, 540 16, 666, 533
Radiusr 6 3

To obtain a reasonable query set, we adopt a two-stage procedure. In the first stage,

we extract meaningful query terms for each dataset. For CiteSeerX, there is a query

log which is dominated by short queries with no more than 2 keywords (> 94%).

As such, we derive query terms from the log instead of directly using it. This is

done by extracting terms with term frequencies larger than 10. For Yago, we extract

ambiguous terms from wikipedia disambiguation pages2. Ambiguous terms refer to

more than one topic. For example, “Healer” may refer to a film or a music album. We

2http://en.wikipedia.org/wiki /Wikipedia:Disambiguation
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collect and use them as query terms. The second step is to generate keyword queries

by randomly combining query terms. For query sizel from 2 to 5, we produce

1000 initial queries for each value ofl. In order to guarantee correctness, we test

the queries using the keyword search engine, and filter queries that cannot produce

enough answer trees. Then we rank the remaining queries according to the number of

different keyword nodes in a descending order. Finally, we select the top-10 queries

for eachl, i.e. 40 queries per dataset.

4.7.2 Evaluation Metrics

In IR community, evaluating the accuracy of diverse query results is well studied and

several evaluation metrics are established, such as S-recall and S-precision [127], α-

NDCG [31], NDCG-IA [5] and so forth. The metrics extended from NDCG are

not suitable for our problem, for these metrics rely on the result ranking. There-

fore, we will evaluate our system based on S-Recall and S-Precision. However, we

need to carefully adapt them for keyword search in databases. In general, most of

these evaluation metrics are based on subtopics or nuggets,which indicate semantics

covered by answers. Differently, in the context of database keyword search, we are

required to capture both semantic information and structural information. Therefore,

we consider substructures as a complement to subtopics.

We first generate subtopics for two datasets respectively. For CiteSeerX dataset, each

paper is associated with a conference or a journal. We thus derived the topic infor-

mation based on the research area of the conference or the journal. Note that author

nodes may be related to multiple topics because they published papers to different

research areas. Since entities in Yago dataset have type attributes derived from the

wikipedia categories, we then utilized them to assign nodeswith different subtopics.

As for substructures, if the result set contains more different pathes from the root

node to keyword nodes, it intuitively covers more diverse structural information.

So we decompose each answer tree tol pathes from the root node to all the key-

word nodes to evaluate the structural diversity. As a result, answer trees are reliably

mapped to subtopics and substructures. Let subtopicsq and substructsq for queryq be

the subtopics and substructures inN candidates, and subtopics(T) and substructs(T)

be the relevant subtopics and substructures in answer treeT. We formally define

S-recall in database keyword search as follows:
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Definition 4.7.1 (S-recall)

Given k results for keyword query q,

S-recall = α · |
⋃k

a=1 subtopics(Ta)|
|subtopicsq|

+

(1− α) · |
⋃k

a=1 substructs(Ta)|
|substructsq|

whereα ∈ (0, 1) is a parameter to balance semantic information and structure in-

formation. The above metric refers to the percentage of subtopics and substructures

covered by one of thek results. However, it is trivial to achieve recall of 100% by

returning all candidates in response to any query. Therefore we define S-precision

as a complement to S-recall. The subtopicsk and substructsk refer to the ideal size of

subtopics and substructures ink results, assuming that all the keyword nodes contain

distinct topics andl different pathes.

Definition 4.7.2 (S-precision)

Given k results for keyword query q,

S-precision = α · |
⋃k

a=1 subtopics(Ta)|
|subtopicsk|

+

(1− α) · |
⋃k

a=1 substructs(Ta)|
|substructsk|

whereα ∈ (0, 1) is a balance parameter same as that in the definition of S-recall. In

the following experiments, we setα = 0.5 to treat semantic difference and structural

difference equally. Besides taking substructures into consideration, our S-precision

still differs from the S-precision in paper [127]. They defined S-precision based

on S-recall. Given S-recallsr , S-precision equals tominRes(Sopt, sr)/minRes(S, sr).

minRes(S, sr) indicates the minimal size of results having S-recallsr . This definition

is not straightforward in the first place, since it is derivedfrom S-recallsr instead

of result sizek. Moreover, the computation is impractical due to the hardness of

generating the optimal solution. These two reasons drive usto alter the definition

of S-precision. Nevertheless, our definitions of S-recall and S-precision are natural

analogy of the standard recall and precision measures.
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4.7.3 Kernel Distance v.s. Other Distance Functions

In order to verify the effectiveness of the kernel distance, we compare it with two

state-of-the-art distance functions: tree edit distance and Jaccard distance. The fol-

lowing figure shows the diverse result for three distances with the default parameter

setting(N = 50 andk = 6).
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Figure 4.6: Comparison of Distance Functions

This figure compares three distance functions on S-recall and S-precision for two

datasets. We present the detailed components of S-recall and S-precision, i.e. the

semantic part and structural part. As can be seen, Jaccard distance has better score

on the semantic part while tree edit distance has better score on the structural part.

Since kernel distance captures both semantic difference and structural difference, it

shows much higher overall score than other two distance functions. Therefore, we

utilized kernel distance to compare algorithms in the following.

4.7.4 Cover Tree Algorithm v.s. Other Algorithms

To assess cover tree diversification (DiverseK), we compare it with top-k candidate

answers (TopK), Farthest Expanding algorithm (FarthestK) and Clustering algorithm

(ClusterK).
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Effectiveness Evaluation

We first varyk to study how it affects the effectiveness of four approaches. To be-

gin with, we present the average S-recall in Figure4.7. It is clear that this metric

has an ascending trend with the increase ofk for all schemes. Sincesubtopicsq and

substructsq remain the same for all schemes, S-recall is only dependant on the nu-

merator parts of its definition. Their values increase ask increases, bringing about

the ascent of S-recall. Nevertheless, we can easily notice their distinction in perfor-

mance from the bar graph.TopK performs worst because its ranking only relies on

the relevance of the keyword query. AlthoughClusterKgroups answer trees accord-

ing to the similarity, it is not optimized to select pairwisedifferent medoids, so it also

produces low quality results. ForFarthestKandDiverseK, it can be seen that they

acquire the best results since they both apply the greedy strategy to discover results

with respect to Problem2’s objective. Comparing the two datasets, the S-recall for

Yago in Figure4.7bis lower than that of CiteSeerX in Figure4.7a, since the number

of T ’s subtopics and substructures in Yago is larger than that inCiteSeerX.

Figure4.8depicts the effect ofk on the average S-precision for both datasets. The rel-

ative performances among all approaches are similar to the analysis for S-recall but

the trend is negatively proportional tok. Our solution together withFarthestKdis-

covers the most diverse results among these four algorithms, since higher S-precision

indicates smaller subtopic and substructure overlap between answer trees. Compar-

ing Figure4.8aand Figure4.8b, we observe that the S-precision for Yago is higher

than that of CiteSeerX. This again is due to the rich number ofsubtopics and sub-

structures inT , which results in Yago having a lower chance of obtaining overlapped

result trees.

Next, we show the effectiveness measures by varyingN. The comparisons with re-

spect to average S-recall and average S-precision are illustrated in Figure4.9,4.10

respectively. Like the case of varyingk, our solution as well asFarthestKgives the

best quality answers and outperformsClusterKandTopK by 20% to 40%. This re-

sult shows the effectiveness of our solution. In Figure4.9, S-recall decreases asN

increases. This is because|subtopicsq| and |substructsq| increase withN. In Fig-

ure 4.10, when subtopicsk and substructsk remain the same with invariantk, S-

precision is proportional to the numerator parts of the S-precision definition, i.e. the
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Figure 4.7: avg S-recall w.r.t. k
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Figure 4.8: avg S-precision w.r.t. k

coverage of thek results. The results ofTopKhave the same coverage. The coverage

of clusterKhas a small fluctuation, because thek medoids of clustering method are

affected by the randomly selected initial medoids. For the other two algorithms, the

quality increases withN. This observation is accordant with the intuition that we

have more chances to discover better results asN increases.

Efficiency Evaluation

We then report the efficiency results considering the response time for result diversi-

fication excluding the time to discover candidate set. This is because we used identi-

cal keyword search engine without affecting the comparison among algorithms. We
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Figure 4.9: avg S-recall w.r.t. N
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Figure 4.10: avg S-precision w.r.t. N

also show the update cost for cover tree based solution to test its flexibility. In sum-

mary, by evaluating above metrics, we expect to investigatethe overheads and gains

of our framework. One important observation is the repeateddistance computations

waste a lot of time for all three algorithms. In our implementation, we cached the

computed kernel distances in the main memory and reused themin case they needed

again. Because each distinct distance is calculated only once, the running time can

be improved. Note that this trade-off between time and space is meaningful because

the answer tree set sizeN is remarkably small compared to the cardinality of the

dataset.

Figure4.11 displays the relationship between the running time andN. Although

the response time for three algorithms increase at a super-linear trend, the cover
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CHAPTER 4. DIVERSIFIED KEYWORD SEARCH IN DATABASES

tree based algorithm is still at least twice faster than theFarthestK. ClusterK is the

slowest one since it needs multiple iterations and each iteration takes quadratic time.

Respecting to the running time for two datasets, we perceivethat Yago queries are

faster than CiteSeerX queries on average. The underlying reason is the average an-

swer trees size of Yago is smaller than that of CiteSeerX. As aresult, the individual

distance computation takes less time for Yago dataset. Besides, the cover tree based

solution supports dynamical updates as shown in Algorithm6. This operation aver-

agely takes 27ms for CiteSeerX and 15ms for Yago on the default parameter settings,

which just incurs a small overhead compared to discovering from scratch. Readers

are referred to our technical report [135] for a comprehensive efficiency comparison.
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Figure 4.11: avg Runtime w.r.t. N

In summary, we show that the BROAD system is both effective and efficient from

the above experiments. The proposed kernel distance nicelycaptures the diversity of

answers. Aiming at the same objective, the cover tree based solution is comparable

to theFurthestKalgorithm, which is much better than the clustering method and

the original top-k answers. Also, it has the best response time and can dynamically

updatek diverse results instantly.

4.8 Summary

In this chapter, we have introduced BROAD, a novel system that integrates the dis-

covery of diverse results with the current keyword search engine in databases. Un-

like previous works, we proposed a new kernel distance metric between answer trees
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which captures both structural and semantic information. Moreover, a cover tree

based approach was developed in order to quickly and progressively return diverse

results. To further consolidate this interesting framework, we provided a hierarchical

browsing interface that helps navigate users in refining andbrowsing keyword search

results. The outcomes from an experimental study demonstrated that the BROAD

system can provide broad views of the answers that are returned by keyword search

engine.
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Chapter 5

Social Network Visual Analytics

5.1 Overview

In this chapter, we propose an analytic system which allows users to perform intu-

itive, visual browsing on a large scale social networks. There are two major chal-

lenges must be overcome:

First of all, how to improve the scalability is one potentialchallenge of cohesive sub-

graph discovery for social network analysis. Most of the existing approaches [116,

117, 128] mainly focus on the dense region recognition for moderate size graphs.

However, many practical social network applications need to store the large scale

graph in disks or databases. Like Facebook, over 800 millionactive actors use its

service per month all over the world [11], which is impossible to fit in memory.

Therefore, besides providing memory based solutions, we focus on developing a

solution to handling a large scale social graphs stored in a graph database, which

is more scalable for graph operations than a relational database. Like Twitter, re-

cently it migrated its social graph to FlockDB [62], a distributed, fault-tolerant graph

database for managing data at webscale. By leveraging graphdatabases, we extend

memory based algorithms to I/O efficient solutions for large scale social networks.

Additionally, exploring and analyzing social network can be time consuming and

not user-friendly. Visual representation of social networks is important for under-

standing the network data and conveying the result of the analysis. However, it is a
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challenge to summarize the structural patterns as well as the content information to

help users analyze the social network. One previous work [116] proposes a novel lin-

ear plot for graph structure, which sketches out the distribution of dense regions and

is suitable for static dense pattern discovery. Unlike thiswork, our system insulates

users from the complexities of social analysis by visualizing cohesive subgraphs and

the contents in an interactive fashion. For graph structure, we propose an orbital

layout to decompose the graph into a hierarchy with respect to the cohesive value,

in which more important social actors are located in the center. Figure1.4bshows

an orbital layout for the graph in Figure1.4a. Briefly speaking, this layout consists

of four orbits with four different colors, in which the more cohesive vertices are lo-

cated closer to the center. Like the 5-clique (a, b, c, d, f ), all five vertices are in the

innermost orbit. As for vertices size setting, ordering andedge filtering, we will ex-

plain them in details later. For the contents, we make use of tag cloud technique to

summarize the major semantics for a group of social actors. Generally speaking, our

visualization is flexible and can be easily applied to other cohesive graph concepts.

In this work, we develop a novel social network visual analytic framework for large

scale cohesive subgraphs discovery. Our contributions aresummarized as follows:

• We have introduced a novel cohesive subgraph concept to capture the intrinsic

feature of social network analysis nicely.

• By leveraging graph databases, we have devised an offline algorithm to com-

pute global cohesive subgraphs efficiently. Moreover, we have developed an

online algorithm to further refine local cohesive subgraphsbased on the results

of offline computations.

• We have developed an orbital layout to decompose the cohesive subgraph into

a set of orbits, and coupled with tag cloud summarization, which allows users

to locate important actors and their interactions inside subgraphs clearly.

• We have conducted extensive experiments, and the results show that our ap-

proach is both effective and efficient.

The rest of the paper is organized as follows. Section5.2 defines the cohesive sub-

graph discovery problem handled throughout this work. Section 5.3 presents the
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offline computations in the graph database. The online visual analytic system is de-

scribed in Section5.4and followed by a demonstration in Section5.5. Our extensive

experimental study is reported in Section5.6. Section5.7concludes the paper.

5.2 Problem Definition

In this section, we first introduce the preliminary knowledge, then define the max-

imal k-mutual-friend finding problem, and show several importantproperties about

this concept. Furthermore, we compare it with clique,k-core,DN-Graph as well as

truss decomposition in depth.

5.2.1 Preliminaries

As stated in Section5.1, we model a social network as an undirected, simplesocial

graph G(V,E) in which vertices represent social actors and edges represent interac-

tions between actors. Thek-mutual-friend subgraph proposed in this work is derived

from a clique andk-core [102]. Clique is a fully connected subgraph, in which every

pair of vertices is connected by an edge. If the size of a clique isc, we call the clique

a c-clique. k-core is one successful degree relaxation of clique conceptdefined as

follows.

Definition 5.2.1 (k-core Subgraph)

A k-core is a connected subgraph g such that each vertex v has degree d(v) ≥ k

within the subgraph g.

Thek-core is motivated by the property that every vertex has degreed(v) = c− 1 in

a c-clique. k-core also needs to satisfy the degree condition, but the restriction on

subgraph size is not required. As such,k-core can be efficiently computed inO(|E|)
time complexity [102]. Differently, based on the observation in Section5.1, we

propose thek-mutual-friend subgraph to emphasize on tie strength. One important

property about edges in a clique is that every edge is supported byTr(e) = k − 2
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triangles in ak-clique. Analogous to thek-core definition, thek-mutual-friend sets

a lower bound for every edge’s triangle count. Next we will formally define the

k-mutual-friend and show its relationships to other cohesive structures.

5.2.2 Thek-mutual-friend Subgraph

Definition 5.2.2 (k-mutual-friend Subgraph)

A k-mutual-friend is a connected subgraph g∈ G such that each edge e(u, v) is

supported by at least k other vertices which connect to both vertex u and vertex v

within g. The k-mutual-friend number of this subgraph, denoted asM(g), equals k.

Note that we need to exclude the trivial situation to consider a single vertex as a

mutual-friend. Given the parameterk, we may discover manyk-mutual-friend sub-

graphs that overlap with each other. In the worst case, the number ofk-mutual-friend

subgraphs can be exponential to the graph size. Therefore, we further define the

maximalk-mutual-friend subgraph to avoid redundancy.

Definition 5.2.3 (Maximal k-mutual-friend Subgraph)

A maximal k-mutual-friend subgraph is a k-mutual-friend subgraph that is not a

proper subgraph of any other k-mutual-friend subgraph.

To compare with clique and core, we present two interesting properties about the

k-mutual-friend subgraph.

Property 5.2.1 Every(k+ 2)-clique of G is contained in a k-mutual-friend of G.

Proof 5.2.1 Since a(k + 2)-clique is a fully connected subgraph with order k+ 2,

each edge is supported by k triangles. Therefore, it is contained in a k-mutual-friend

subgraph by Definition5.2.2.

Property 5.2.2 Every k-mutual-friend of G is a subgraph of a(k + 1)-core of G.
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Proof 5.2.2 For each vertex v in gk, it connects to at least k triangles. Every triangle

adds one neighbor vertex to v except the first adding two neighbors, so that v has

(k+ 1) neighbors, i.e. d(v) ≥ (k+ 1). Therefore, gk qualifies as a(k+ 1)-core of G.

The above two properties suggest one important observation: (k + 2)-clique⊆ k-

mutual-friend⊆ (k + 1)-core, showing that the mutual-friend is a kind of cohe-

sive subgraph between the clique and the core. Note that the reverse of the above

two properties are not true. Again in Figure1.4, the 4-clique (m, n, p, q) is a sub-

graph of the 2-mutual-friend (m, n, p, q, t, u), while 2-mutual-friend (a, b, c, d, e, f )

and (m, n, p, q, t, u), both of them are contained in the 3-core (a, b, c, d, e, f ,m, n, p, q, t, u).

Finally, we define the main problem we investigate in this work as follows.

Problem 3 (Maximal k-mutual-friend Subgraph Finding)

Given a social graph G(V,E) and the parameter k, find all the maximal k-mutual-

friend subgraphs.

Comparison to DN-Graph

Before we illustrate the solution to Problem3, we further state an interesting con-

nection between the mutual-friend concept and theDN-Graph concept proposed by

Wang et al. [117] recently. A DN-Graph, denoted byG′(V′,E′, λ), is a connected

subgraphG′(V′,E′) of graphG(V,E) that satisfies the following two conditions: (1)

Every connected pair of vertices inG′ shares at leastλ common neighbors. (2) For

anyv ∈ V\V′, λ(V′⋃{v}) < λ; and for anyv ∈ V′, λ(V′ − {v}) ≤ λ.

At the first glance,DN-graph is similar to the maximalk-mutual-friend subgraph.

However, these two concepts are distinct due to the second condition in DN-Graph

definition. Intuitively, theDN-graph defines a strict condition that the maximal sub-

graphs need to reach the local maximum even for adding or deleting only one vertex.

On the other hand, the maximalk-mutual-friend defines the local maximal subgraph

that is not a proper subgraph of any otherk-mutual-friend subgraph. As demon-

strated in Figure1.4a, (m, n, p, q), (p, q, t, u) and (m, n, p, q, t, u) are allDN-Graphs

with λ = 2, since theλ value can only decrease if adding or removing any vertices.

However, only (m, n, p, q, t, u) is the maximal 2-mutual-friend since other two are
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its subgraphs. This example shows that theDN-Graph finding may generate many

redundant subgraphs. Furthermore, due to the hardness of satisfying the second con-

dition, solving theDN-Graph problem is NP-Complete as proven by the authors. To

solve it they iteratively refine the upper bound for each edgeto approach the real

value, but it still has high complexity and is not suitable for large scale graph. Actu-

ally, the mutual friend finding is inspired by theDN-Graph concept and we improve

it by providing efficient solution in polynomial time subsequently.

Comparison to Truss Decomposition

Truss decomposition is a process to compute thek-truss of a graphG for all 2 ≤
k ≤ kmax, in which k-truss is a cohesive subgraph ensures that all the edges in it

are supported by at least (k − 2) triangles [115]. The truss definition is similar to

but proposed independently with the mutual friend defined inthis work except the

meaning fork. Besides, the authors for truss decomposition realize thatmemory

solution can not handle large scale social networks. They develop two I/O efficient

algorithms. One is a bottom-up approach that employs an effective pruning strategy

by removing a large portion of edges before the computation of eachk-truss. The

second one takes a top down approach, which is tailor for applications that prefer

the k-trusses of larger values ofk. Differently, we store the social graph in graph

database that is scalable for graph traversal based algorithms.

5.3 Offline Computations

In this section, we first propose memory based solutions to solve Problem3 in poly-

nomial time, and then leverage the graph database to extend the solution for large

scale social network analysis.

5.3.1 Memory Based Solution

Given a social graphG and the parameterk, the intuitive idea of discovering the

maximalk-mutual-friend is to remove all the unsatisfied vertices andedges fromG.
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Based on the Definition5.2.2, we iteratively remove edges that are not contained

in k triangles until all of them satisfy the conditionTr(e) ≥ k. The procedure is

illustrated in Example2.

Example 2 Considering a maximal k-mutual-friend finding with k= 2 over the

graph in Figure5.1a, the left part of Figure1.4a. First, edges{(e, i), (e, h), (e, g), ( f , h)}
are removed since their triangle counts are less than2. Next,{(d, g), ( f , g), (g, h)} are

further removed since their triangle counts become less than 2, while e(d, e) is still

part of the2-mutual-friend due to Tr(e(d, e)) = 2. In the third loop, Tr(e(d, f ))

reduces to3 but still satisfies the condition. Because all the remainingedges with

triangle counts larger than or equal to2, the graph remains unchanged and the loop

terminates. Lastly, we delete all the isolated vertices andobtain 2-mutual-friend

(a, b, c, d, e, f ) as in Figure5.1b.

(a) Step one (b) Step two

Figure 5.1: Example of in Memory Algorithm

Although this is a straight forward solution, the computational complexity is rela-

tively high because it has lots of unnecessary triangle computations. In the worst

case it removes one edge at a time and needs|E| times loops to remove all the edges

fromG. As such, the total complexity is|E|×∑e(u,v)∈G(d(u)+d(v)), in whichd(u)+d(v)

is the complexity to compute the triangle count for one edge.This expression can

be further simplified to the order of|E| × ∑v∈G d(v)2, because we need to get the

v’s neighborsd(v) times in one loop. For practical case, we seldom encounter this

extreme situation, but a large number of iterations is stilla bottleneck of this solution.
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As such, we propose an improved algorithm based on the following observation.

When an edge is deleted, it only decreases the triangle counts of the edges which are

forming triangles with that edge. Thus we can obtain edges affected by the deleted

edge and only decrease triangle counts for them. This intuition is reflected in Al-

gorithm9, which can be divided into three steps. First, one necessarycondition for

Tr(e(u, v)) ≥ k is d(u) ≥ k+1 andd(v) ≥ k+1 as in the proof of Property5.2.2. This

is a lightweight method of deleting many vertices and their adjacent edges before

removing unsatisfied edges with insufficient triangles. The remaining graph is then

processed by the second step, which costs most of the workload to remove edges not

supported by at leastk triangles. From line 6 to 9, we first check all the edges’ tri-

angle counts. TheQ is implemented as a hash set to record non-redundant removed

edge elements. Next, instead of computing the triangle on all the edges to check

the stability of the graph, we iteratively retrieve the affected edges fromQ until Q is

empty. This is the indicator that the graph becomes unchanged. Finally, the removal

of inadequate edges likely results in isolated vertices, which are removed in the end.

We show the procedure in the running example as follows.

Example 3 We consider a maximal2-mutual-friend finding in Figure5.1a again

based on Algorithm9. According to the degree condition, we first remove vertex

i and the edge(e, i) since the degree of i is less than3. We then check the edge’s tri-

angle counts and delete{(e, g), (e, h), ( f , h)}. Moreover, we record these edges in Q

for affected edges. Edges{(d, g), ( f , g), (g, h)} are further removed until Q is empty.

Finally, we delete all the isolated vertices and generate the same result as in Exam-

ple2.

We next prove the correctness of Algorithm9 in two aspects. On one hand, the re-

maining vertices and edges are part of the maximal-k-mutual-friend subgraphs. This

aspect is true according to the definition ofk-mutual-friend subgraph. On the other

hand, the removed vertices and edges are not part of the maximal-k-mutual-friend

subgraphs. Because the only modification onG is the removal of edges, bringing

about the decrease of triangle counts, the edges supported by less thank triangles

can be safely deleted since they cannot be part of ak-mutual-friend subgraph any

more.

As for complexity analysis, the improved algorithm outperforms the naive one re-

markably because it avoids a great deal of unnecessary triangle computations. The
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Algorithm 9 : Improved k-mutual-friend
Input : Social graphG(V,E) and parameterk
Output : k-mutual-friend subgraphs
// filter by degree of vertices

foreachv ∈ V do1

if d(v) < k+ 1 then2

removev and relatede from G3

// delete edges with insufficient triangles

initialize a queueQ to record removed edges4

initialize a hash tableTr to record triangle counts5

foreache= (u, v) ∈ E do6

computeTr(e) based onN(u), N(v)7

if Tr(e) < k then8

enqueuee to Q9

while H , ∅ do10

dequeuee from Q11

find out edgesE′ forming triangles withe12

removee from G13

foreach e′ ∈ E′ do14

Tr(e′) − −15

if Tr(e′) < k then16

enqueuee′ to Q17

// delete isolated vertices

foreachv ∈ G do18

if d(v) == 0 then removev from G19

return G20

first step takesO(|V|) complexity to check vertices’ degree. The second step domi-

nates the whole procedure. The initial triangle counting has time complexity
∑

v∈G d(v)2.

From line 10 to 17, finding all the edges forming triangles with the current edge

e(u, v) takesd(u) + d(v) work. In the worst case, all the edges are removed from

Q. SinceQ only stores each edge one time, the total cost is
∑

e(u,v)∈G(d(u) + d(v)),

equal to
∑

v∈G d(v)2. The last step also takesO(|V|) complexity to delete isolated ver-

tices. As a whole, the total time complexity isO(
∑

v∈G d(v)2). It not only avoids the

unnecessary iterations, but also reduces the graph size with relative small effort in

the first step. Although the above algorithm is efficient, but is not suitable for large

scale graph processing stored in disk. Retrospect the algorithm, it needsO(|E|) space
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1stEdge

1stNode 2ndNode 1stPrevEdge 1stNextEdge 2ndPrevEdge 2ndNextEdge

Vertex store Edge store

Figure 5.2: Graph Database Storage Layout

complexity, which is too large to store in memory. So we extend it to the disk based

solution in the following section.

5.3.2 Solution in Graph Database

In this section, we first introduce the concept of graph database, and then present a

streaming solution in graph database and improve it by meansof partitioning.

The graph database

A graph database [97] represents vertices and edges as a graph structure insteadof

storing data in separated tables. It is designed specifically for graph operations. To

this end, a graph database provides index-free adjacency that every vertex and edge

has a direct reference to its adjacent vertices or edges. More explicitly, there are

two fundamental storage primitives: vertex store and edge store, which layouts are

shown in Figure5.2. Both of them are fixed size records so that we could use offset

as a “mini” index to locate the adjacency in the file. Vertex store represents each

vertex with one integer that is the offset of the first relationship this node participates

in. Edge store represents each edge with six integers. The first two integers are the

offset of the first vertex and the offset of the second vertex. The next four integers are

in order: The offset of the previous edge of the first vertex, the offset of the next edge

of the first vertex, the offset of the previous edge of the second vertex and finally the

offset of the next edge of the second vertex. As such, edges form adoubly linked

list on disk, so that this model possesses a significant advantage: there is a near con-

stant time cost for visiting adjacent elements in a graph in some algorithmic fashion.

This is actually a primitive operation in graph-like queries or algorithms, naturally
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suitable for shortest path finding, maximal connected subgraph problem and graph’s

diameter computations and so on. Furthermore, it can scale more naturally to large

data sets as they do not typically require expensive join operations.

Instead, the typical way to store graph data in relational database is to create edge

table with index on vertices:

CREATE TABLE Edge (

1stNode int NOT NULL,

2ndNode int NOT NULL

)

CREATE INDEX IndexOne ON Edge (1stNode)

CREATE INDEX IndexTwo ON Edge (2ndNode)

Based on the above schema, we need to use index to support graph traversal since

we cannot directly obtain the adjacent elements from the table. Example4 shows a

comparison between graph database and relational database.

Example 4 Consider the process of the triangle counting. Given e(u, v), we need

to fetch N(u) and N(v). In relational database, we can utilize vertices to query the

edge table index with O(log |V|) I/O cost, and then compute the shared neighbors

as the triangle count. This procedure can be largely improved in graph database.

According to the edge store, we can retrieve N(u) and N(v) as the traversal in the

double linked list.prevEdgeandnextEdgein Figure5.2provide reference to all the

neighbors of vertices u and v, so that we can finish this step with O(d(v)) I/O cost,

which is invariant to the graph size.

Later in this section, we make use of the traversal operator extending the in memory

algorithm to I/O-efficient algorithms in a graph database. We define the traversalop-

erator astraverse(elem, step) for better demonstration, which means that the length

of shortest paths from graph elementelemto the satisfied results cannot be larger

thanstep. For example,traverse(u, 1) retrieves all the vertices that are directly con-

nected tou and the edges among them. For implementation, we utilize theNeo4j1

1http://neo4j.org
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graph database, which is build on the graph storage layout inFigure5.2. Note that

we could easily migrate our algorithms to other popular graph databases as long as

they are optimized for graph traversal, such as DEX2, OrientDB3 and so forth.

Streaming based solution

The streaming based solution is modified from Algorithm9 and implemented in

the graph database. The major changes are two-fold. On one hand, we use graph

traversal to access vertices and edges (line 1 and 3), as wellas compute triangle

counts (line 5 and 6). On the other hand, we build index on edgeattributes to mark

edges as deleted (line 7, 9 and 15) and record edges’ trianglecounts (line 8, 13 and

14). Note that the edge attributes are in the order ofO(|E|), so they still need to be

maintained out of core for large graph datasets. In this way,we make full use of the

graph database, and keep all the advantages in the improved memory algorithm.

We next analyze the I/O cost in this algorithm. Filtering by degree and deleting

isolated vertices needO(|E|) I/O. The most costly part is removing edges with insuf-

ficient triangles. For edge (u, v), finding triangle count takesO(d(u)+d(v)) I/O work.

Similar to the analysis for memory based algorithm, each edge can only be marked

as deleted once. We conclude that this step needsO(
∑

v∈G d(v)2) I/O cost, which is

also the total order of I/O consumptions. Besides, the traversal on vertices and edges

is dominated by sequential I/O, which further reduces the I/O cost.

Partition based solution

Since all the triangle computations are directly operated in graph database, the stream-

ing algorithm fails to make full use of the memory. Therefore, we proposed an im-

proved approach based on the graph partitioning, and load partitions into memory to

perform in memory triangle computations to save I/O cost and improve efficiency.

To begin with, we derive a greedy based partitioning method in Algorithm 11 from

the heuristics in paper [108]. The basic idea is to streamingly process the graph and

2http://www.sparsity-technologies.com/dex
3http://www.orientechnologies.com
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Algorithm 10 : Streaming based Algorithm
Input : Social graphG(V,E) and parameterk
Output : k-mutual-friend subgraphs
// filter by degree of vertices

traverse the vertices ofG1

removev and related edges ifd(v) < k+ 12

// delete edges with insufficient triangles

traverse the edgesE of G3

foreache= (u, v) ∈ E do4

N(u) ←− traverse(u, 1);N(v) ←− traverse(v, 1)5

computetr(e) according toN(u),N(v)6

if Tr(e) < k then markeasdeleted7

elsesete’s mutual number attribute asTr(e)8

while exist edges e(u, v) marked as deleteddo9

E′ ←− edges form triangles withe in traverse(e,1)10

removee from G11

foreach e′ ∈ E′ do12

Tr(e′) − −13

if Tr(e′) < k then14

marke′ asdeleted15

delete isolated vertices fromG16

return G17

then assign every vertex to the partition where it has the largest number of edges con-

necting to. As in line 11 in Algorithm11, localPartitionNumrecords the number

of edges in each partition, (1− |gi | × p/|G|) suggests that partitions with larger size

have smaller weight, and the product of the above two factorsdecides which parti-

tion the current vertex belongs to. This algorithm, requiring one breadth first graph

traversal, is efficient with linear I/O complexity. However, the resulting partitions

cannot be directly used because this algorithm is a vertex partitioning. Typically, it

only extends partitions by including all the vertices connecting to the vertices inside

the partition, which may result in the loss of triangles. As in Figure5.3a, the running

example is partitioned into three parts{g1, g2, g3}. In this case, the triangle (a, j, p) is

missing since its vertices are separated into three partitions. In order to keep all the

triangles, we define an induced subgraph as in Definition5.3.1.

Definition 5.3.1 (Induced Subgraph)

Denote gi+ = (Vi+,Ei+) as an induced subgraph of a partition gi(Vi ,Ei) of G. The
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extended vertex set is defined as Vi+ = Vi
⋃{v : u ∈ Vi , v ∈ V\Vi, (u, v) ∈ E}. The

extended edge set is defined as Ei+ = {(u, v) : (u, v) ∈ E, u ∈ Vi}
⋃

∆Ei. where∆Ei

are edges satisfying{(v,w) : u ∈ Vi ,

(u, v), (u,w) ∈ E, v.partition , w.partition, u.id < v.id,

u.id < w.id}.

(a) Partition into{g1, g2, g3} (b) Computation ong1

Figure 5.3: Example of Partition based Algorithm

Based on the induced subgraph, the triangle (a, j, p) in Figure5.3ais allocated ing1

as shown in Figure5.3b, because ida is smaller thanj, p in this triangle. Next we

formally prove the correctness of the partitioning method in Lemma5.3.1.

Lemma 5.3.1 Induced subgraphs{g1, . . . , gp} derived from p partitions of G have

the same set of triangles as G.

Proof 5.3.1 The lemma is equivalent to the statement that every triangle(u, v,w) in

G appears once and only once in all partitions. The proof can be divided into three

cases. If three vertices belong to Vi of partition i, the triangle can only be inside the

same partition. If any two of three vertices belong to Vi of partition i, without loss

of generality, we assume that u, v ∈ Vi and w∈ V j. The triangle is in partition i but

not in partition j, since(u, v) can only be assigned to partition i. If three vertices are

located in different partitions, we assign the triangle to the vertex with smallest id as

defined in∆Ei, so this triangle only appears once in induced subgraphs.

Finally, we provide a partition based solution in Algorithm12. First we partition

the graph intop partitions, and for each partition, we do the in memory edge re-

moval. Note that we only consider inside edges, which only affect triangles satis-

fying {(u, v,w), u, v,w ∈ Vi}. As such, we make use of the memory to reduce the
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Algorithm 11 : Graph Partitioning
Input : Social graphG(V,E), partition numberp
Output : {g1, . . . , gp} partitions
foreachv ∈ G in BFS orderdo1

if d(v) < k+ 1 then2

removev and related edges; continue3

initialize the arraylocalPartitionNumwith sizep4

N(v) ←− traverse(u, 1); foreach u ∈ N(v) do5

ind←− u’s partition index6

if ind > 0 then localPartitionNum[ind]++7

maxWeight←− 0;curWeight←− 08

pIndex←− −19

for i from 1 to p do10

curWeight←− localPartitionNum[i] × (1− |gi | × p/|G|)11

if curWeight> maxWeightthen12

maxWeight←− curWeight13

pIndex←− i14

setv’s partition index aspIndex15

return G16

graph size as well as keeping the correctness of the solution. After this, we write

the induced subgraphs back to graph database and use Algorithm10 to do post pro-

cessing. We take the induced subgraphg1 in Figure5.3b to find 2-mutual-friend

subgraph. Note that edges{(a, j), (a, p), ( j, p)} are outside edges, while others are

inside edges. For inside edges, we directly apply in memory algorithm and remove

edges in dotted lines with triangle counts less than 2. But for outside edges, we can-

not delete them since they may affect triangle counts in other partitions. After we

deal with all the partitions, we post process the refined graph using Algorithm10 to

obtain the final result. In the worst case, this algorithm hasthe same I/O complex-

ity as Algorithm10. But in practice, it loads and processes the induced subgraphs

to memory and avoids many disk triangle computations. The detailed comparison

between this two disk-based solutions will be presented in the experimental section.
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Algorithm 12 : Partition based Algorithm
Input : Social graphG(V,E), parameterk, and partition numberp
Output : k-mutual-friend subgraphs
partition the graph based on Algorithm111

for i from 1 to p do2

load induced subgraphgi+ into memory from the partitioni3

// Do in memory edge removal

queueQ←− ∅4

hash tableTr ←− ∅5

foreach e= (u, v) ∈ Ei+
∧

e is insidedo6

computeTr(e) based onN(u), N(v)7

if Tr(e) < k then8

enqueuee to Q9

repeatly remove inside edges untilQ is empty10

write gi+ back to the graph database11

use Algorithm10 to do post processing12

return G13

5.4 Online Visual Analysis

Based on the algorithms proposed in the previous section, wedevelop a client-server

architecture to support online interactive social visual analysis. As in Figure5.4, the

offline computations are the base for the online visual analysis. For online analysis,

we retrieve a local subgraphg close to the user selected vertex on top of offline

computing result, online compute the exactM values for graph elements insideg,

and generate the orbital layout for visualization. Moreover, we select representative

tags to summarize the textual information in the local graph. In the client side, users

can search and browse the visualized subgraph.

5.4.1 Online Algorithm

Based on the offline computations, we retrieve a local subgraph associated with the

input keywords from graph database and compute exactM values for every edge and

vertex inside the subgraph. This is a fundamental step to support graph layout later

in this section. User can select a focused vertexv from a list of vertices containing
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Tag Cloud Selector

Online Algorithm
Orbital Layout 
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Figure 5.4: Social Network Visual Analytic System

the keywords, and our system will return a local subgraph including all the vertices

within the distanceτ from v and the edges among these vertices, i.e.traverse(v, τ).

For efficient online computation, we show one important stability property of the

k-mutual-friend subgraph as follows.

Property 5.4.1 The k-mutual-friend is stable with respect to the parameterk, i.e.

gk+1 ⊆ gk.

For every edgee in subgraphgk+1, Tr(e) ≥ k + 1 > k suggests that this subgraph

is also agk. Therefore, based on the stability property, if one wants tocompute

the exactM values for graph elements, we can make use of the offline result as

input, with much less work than computing from scratch. Furthermore, the offline

computations provide a useful upper bound for online computations.

Lemma 5.4.1 Given G(V,E) after offline computation, the edges from the online lo-

cal subgraph gj G satisfy{Mg(e) ≤ Trg(e) ≤ TrG(e), e ∈ g}.
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Proof 5.4.1 Since g is a subset of G, for every edge e∈ g, its local triangle count

should be smaller or equal to the global triangle count, i.e.Trg(e) ≤ TrG(e). Based

on the definition of k-mutual-friend subgraph, the local triangle count bounds the

Mg value. All in all, we obtain the relationshipMg(e) ≤ Trg(e) ≤ TrG(e).

We implement Algorithm13 based on the above observations. The first step is to

retrieve the local subgraph within the distanceτ to v. Then, we iteratively compute

the exactgm from m = Mmin to m = Mmax. Finally, we merge all thegm to obtain

the local subgraphs with exactM values. To illustrate, we retrieve a local subgraph

by traverse(a, 2) from the graph in Figure1.1, and the result local graph is shown

in Figure5.5a. The number shows the triangle counts computed by the offline algo-

rithm, which are the upper bound for the exactM values. Vertices{k, l, j} and edges

in dotted lines are immediately removed since their triangle counts are smaller than

2. In the first loop, we remove vertexg and edgese(d, g), e( f , g) because theirM
values become one in the local graph. The rest of the graph is the 2-mutual-friend.

In Figure 5.5b, we use the similar procedure to find 3-mutual-friend from the 2-

mutual-friend, which includes vertices{a, b, c, d, f } and edges connecting them. The

algorithm terminates since theMmax is updated to the current largest triangle count

equal to three.

Algorithm 13 : Online Algorithm
Input : G(V,E), k, vertexv, and distance thresholdτ
Output : Local subgraphs with exactM values
g←− traverse(v, τ)1

Mmax←− max{TrG(e) : e ∈ g}2

Mmin←− k3

for m fromMmin toMmax do4

computem-mutual-friend and updateg by Algorithm 95

gm←− {e : e ∈ g,Tr(e) = m}6

Mmax←− max{Trg(e) : e ∈ g}7

return gMmin

⋃

. . .
⋃

gMmax8

5.4.2 Visualizingk-mutual-friend Subgraph

Based on the online algorithm results, we next visualize thelocal subgraph reflect-

ing the characteristics of thek-mutual-friend in social network. To begin with, we
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(a) traverse(a, 2) to 2-mutual-friend (b) 2-mutual-friend to 3-mutual-friend

Figure 5.5: Example of Online Computation

propose an orbital layout to decompose the network into hierarchy. Subsequently,

we describe the implementation details of this layout in ourvisual system.

Orbital layout

As claimed in the introduction, thek-mutual-friend definition is proposed to capture

the tie strength property in social network. Intuitively, vertices with largerM values

are more important since they are closely connected with each other in the social

network with many mutual friends. Therefore, a good layout for k-mutual-friend

needs to emphasize elements with largerM values since they compose more cohe-

sive subgraphs. With this observation we propose a layout with a set of concentric

orbits. Vertices with largerM values are located close to the center, while vertices

with smallerM values are placed on orbits further away from the center. Since the

layout is analogous to the planetary orbits, it is called orbital layout as depicted in

Figure1.4b. The most connected part of the network is also the most central, such

as the 5-clique (a, b, c, d, f ) in the innermost orbit.

Furthermore, since we organize vertices with differentM values into separated cir-

cles, the orbital layout forms a hierarchical structure. Assuch, users can filter out

outer orbits and focus on the most central vertices, especially useful when the graph

size is too large to clearly view. More importantly, the orbital layout is stable in the

sense that the central part has the similar topological properties as the original graph.

Figure5.6shows the cumulative degree distribution for the Epinions social network

introduced in Table5.2. Yet interestingly, the shape of the distributions is not af-

fected by the parameterk. Note that the degree is normalized by the corresponding
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average degree in each k-mutual-friend, since it tends to have higher average degree

for largerk. They-axis showsP>(d), i.e. the probability that the vertex degree in this

k-mutual-friend subgraph is larger thand. Based on this nice property, the filtering

operation on the hierarchy is reasonable without losing much structural information.
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Figure 5.6: Stability Test on Epinions Social Network

Note that users can perceive more insights using orbital layout comparing with other

popular layout algorithms, such as the radial layout [20] and the force directed lay-

out [48]. Although radial layout is a hierarchical structure, it issensitive to the fo-

cused vertex in the center and the layout may totally change with a different center.

Force directed layout represents the topology well but is not a hierarchical structure

to highlight social actors with many mutual friends. Also, it is not scalable due to

O(|V|3) complexity. The qualitative comparison among these layouts is summarized

in Table5.1.

Table 5.1: Layout Comparison
Hierarchy Stability Cost

Orbital layout Yes Yes Median
Radial layout Yes No Low

Force directed layout No Yes High
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Implementations

To improve the visual effect, we need to overcome the visual complexity of orbital

layout, because it is a challenge to clearly present the cohesive subgraph with a large

number of vertices. First, we set different colors to distinguish vertices in different

orbits. Retrospect the motivating example in Figure1.4b, it consists of four orbits in

different colors representing vertices with fourM values from 3 inside to 0 outside.

In order to distinguish vertices within one orbit, the size of vertices is proportional to

vertex degree to reflect the importance. For instance, vertex p has the largest degree

so that it has the biggest size.

Next, we consider how to visualize edges to further reduce the visual complexity.

Since vertices within one orbit may form several connected k-mutual-friend sub-

graphs, so we carefully order vertices such that vertices belongs to one subgraph

are located successively on the orbit. As such, we can hide edges within one orbit

without losing much connection information. As the Figure1.4bshows, verticesg

andh are near in the orbit and verticesj, k andl are near in the orbit. Furthermore,

inspired by the radial layout, we put a vertex close to connected vertices in the inner

orbit to minimize crossing edges. For example, verticesg andh are located in the

top left since they are close to the inner neighbor vertexe.

5.4.3 Representative Tag Cloud Selection

Besides structure visualization, another dimension of social network analysis is to

understand the interactions among social actors, which come from, for instance, the

newfeeds from Facebook or tweets from Twitter. Since users may select a group of

social actors with a great number of textual contents, we incorporate the tag cloud

approach to summarizing various topics inside it. A potential challenge is how to se-

lect the most important tags to capture the major interests of these actors. Moreover,

for distinct topics, the challenge might be how to discover aset of tags so that they

could be comprehensive enough to cover different interests inside the same group.

To tackle these challenges, we compute a score for each tag bymultiplying two fac-

tors, the significance and diversity. On the one hand the significance measure guar-

antees the truly popular tags can be selected, and on other hand the diversity measure
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captures various rather than only similar topics. In our implementation, we adopt the

TF-IDF approach for significance and the semantic distance in WordNet [21] for

diversity. In representative tag selection, we first generate topN frequent words to

form a candidate set, and filter out infrequent words to improve the efficiency. Then,

we utilize a greedy strategy that iteratively moves tags with the largest score from

the candidate set to the representative set until the numberof selected tags reaches

n, n < N, a user adjustable parameter. As such, we discover representative tags sum-

marizing the interactions inside the local subgraph. Userscan quickly select and

browse preferred subgroup of actors to explore what activities they are involved in,

or what topics they are taking about, etc.

5.5 Demonstration

To support online visual analysis, we implement a visual interactive system accessi-

ble on the Web4, and provide a use case on Twitter dataset in Figure5.7to illustrate

our idea.

Figure 5.7: Visual Analysis Interface

Based on the real use case on Twitter social graph, we illustrate the functionalities

and the advantages of our visual analytic browsing interface in Figure5.7, which

4http://db128gb-b.ddns.comp.nus.edu.sg:8080/vis/demo
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consists of three parts, i.e. search input area on the top, information summarization

in the left column, and subgraph visualization in the main frame. After users in-

put keywords in search box and select a focused vertex matching the keywords, our

system visualizes the local subgraph in the main frame, so that users can select ver-

tices they are interested in with the summarization in the left column. Without loss

of generality, this example shows the 3-mutual-friend graph for the keyword “white

house”, in which vertices represent twitter actors and edges represent the “following”

relationships. The depth, equivalent to the distance threshold, is set to 2.

With the help of online algorithm and layout generation, we dramatically reduce

the visual complexity in the main frame. The visible subgraph only contains 89

vertices and 527 edges, which is much smaller the initial local subgraph with 2006

vertices and 2838 edges. As a result, we could quickly perceive that the network-

ing of “The White House” is dominated by various US departments and government

officials, which is unlikely to obtain from thousands of vertices with messy infor-

mation. Furthermore, users can highlight several verticesand their neighbors while

other vertices and edges become transparent. Considering in some cases subgraphs

are quite large, users can use frontend search to locate preferred vertices within the

current subgraph, or adjust theM value lower bound to filter out unsatisfied graph

elements using the slide bar at the top left corner. Moreover, we support zoom in/out

function to focus on part of the graph and users can view the sketch of the whole

subgraph with a thumbnail at the bottom right corner.

The left column displays theM values of the highlighted vertices, the corresponding

tag cloud as well as the link information for the vertex representing officials of “Vet-

erans Affairs”. The tag cloud is a helpful tool that summarizes the most significant

and diverse topics in their tweets. In this example, we select 30 representative tags

out of 100 candidates, where “Veterans Affairs” may show great concern about the

PTSD (Post Traumatic Stress Disorder) and discrimination problems while “women-

shealthgov” mainly focuses on topics like health, breast cancer and baby. In order to

know the source of these tags, hovering over specific tag in the tag cloud will trigger

the source vertices being highlighted. If we point to the “insurance” tag, the Twitter

actor “Barack Obama” will be highlighted indicating that hepays close attention to

the insurance issue.
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5.6 Experiments

We present experimental studies to evaluate our social network visual analysis sys-

tem in this section. For simplification, we refer to the intuitive algorithm in Section

5.3.1asmNaive, Algorithm9 asmImproved, while refer to Algorithm10asdStream,

Algorithm 12 asdPartition. ThemOnlineis short for the online algorithm. We im-

plement these algorithm in Java language and evaluate on theWindows operating

system with Quad-Core AMD Opteron(tm) processor 8356 and 128GB RAM.

We compare our solutions on a great deal of real social network datasets described in

Table5.2, most of which are collected from the Stanford Network Analysis Project’s

website5. The datasets are sorted in increasing order of edge number.We utilize

moderate size datasets (the first three) to compare in memoryalgorithms, while use

large size datasets (the last three) to compare algorithms in graph database. More-

over, Twitter and DBLP datasets are selected for online visual analysis since they

contain rich textual information.

Table 5.2: Dataset Statistics
Dataset Vertex Edges Description
Epinions 75k 405k Who-trusts-whom graph
Twitter 452k 813k Who-follows-whom graph
DBLP 916k 3, 063k Who-cites-whom graph
Flickr 1, 715k 22, 613k Flickr contact graph
FriendFeed 653k 27, 811k Friendship graph
Facebook 72, 661k 160, 975k Friendship graph

5.6.1 Offline Computations Evaluation

Memory based Algorithms

We comparemNaiveand mImprovedalgorithms on three datasets and results are

summarized in Figure5.8. This figure depicts the effect of k on the response time

of three datasets. For Epinions and DBLP datasets,mImprovedoutperformsmNaive

evidently, while their performances on Twitter dataset arein the same level. This is

5http://snap.stanford.edu/
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because Twitter dataset having average degree less than 2 ismuch more sparse than

the other two datasets. Therefore, even the naive algorithmcan reach the stable state

very fast without incurring a great deal of unnecessary triangle computations. For

other two datasets,mImprovedis about one order faster thanmNaiveaveragely.
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Figure 5.8: Comparison of Memory Algorithms

One interesting observation is that the response time is notquite related tok, but

mainly determined by the triangle computing times in each algorithm, i.e. how many

times the algorithm calls the triangle counting operator. As in the first two rows in

Table5.3, the triangle computing times for Epinions dataset inmNaiveis about ten

times of that inmImproved, which is close to the ratio of response time. Thus,

the result again justifies our conclusion in Section5.3.1thatmImprovedoutperforms

mNaivemainly because it largely reduces the amount of triangle computations. More

specifically, whenk = 1, because we only remove edges not in any triangles without

affecting other edges,mNaivecan finish in two iterations (make sure that the graph

is unchanged in the second iteration), andmImprovedonly needs one iteration. The

response time formNaivedecreases whenk equals to 5 since the number of triangle

computations drops to 2, 439k, smaller than the number whenk equals to 3 and 4.

The triangle computing times for DBLP dataset in the last tworows in Table5.3have
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the similar pattern. For Twitter dataset, both algorithms need the number of triangle

computations in the same level, which determines that theirresponse time also close

to each other. To sum up,mImprovedis much faster thanmNaivemainly because it

reduces the number of triangle computations, especially when the graph is dense.

Table 5.3: Triangle Computing Times
1 2 3 4 5

mNaive 717k 2,219k 2,840k 3,088k 2,439k
mImproved 130k 202k 249k 284k 311k

mNaive 1,097k 1,261k 1,324k 1,364k 1,391k
mImproved 873k 867k 836k 819k 817k

mNaive 5,950k 24,767k 22,950k 25,166k 21,085k
mImproved 288k 1,028k 1,921k 2,671k 3,240k

Disk based Algorithms

Next we evaluate the disk based algorithms with three large scale datasets. For

partition based algorithm, we control the usage of memory byonly allowing to store

a subgraph with at most 1GBsize. As such, we can estimate the number of partitions

p for each dataset according to the graph size in graph database as in Table5.4. Since

the response time is not determined byk, we setk as 3 to compare the performance

of two disk based algorithms. The results in Figure5.9depicts the response time for

the three datasets with two parts: I/O time and CPU time. All in all, the partition

based algorithm is about five times faster than the streamingbased algorithm, and the

response times for both of them are increasing with respect to the increase of graph

size. In particular,dStreamalgorithm is dominated by the I/O time, whiledPartition

is dominated by the CPU time, in accord with our analysis in Section5.3.

In essence, the major difference betweendStreamanddPartition is the cost for trian-

gle computations. As shown in Table5.5, the average cost for triangle computations

in dPartition is only one tenth of that indStream, because most of the triangle com-

putations in the former approach are in memory while all the triangle computations

in the later one are in graph database. Comparing three datasets, the average triangle

computing time for Facebook is the fastest for both algorithms due to the smallest

average degree of Facebook. As a result, although the numberof edges in Facebook

is much larger than that in FriendFeed, the response time of Facebook is slightly
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Figure 5.9: Comparison of Disk Algorithms

larger than that of FriendFeed. Moreover, Table5.6summarizes the percentages of

the partitioning part and the computing part fordPartition algorithm. Because the

partitioning algorithm reads the input graph only once and writes the partitions back

to graph database, the partitioning part costs small amountof time comparing to the

computing part.

Table 5.4: Number of Partitions in Algorithm12
Flickr FriendFeed Facebook

Size(GB) 1.57 1.92 11.6
p 2 2 12

In conclusion,dPartition trades off a lightweight graph partitioning for fast triangle

computing in memory. The result verifies our claim in Section5.3 that the partition

based algorithm is I/O-efficient in practice.

Table 5.5: 10k Times Triangle Computing Cost
Dataset dStream dPartition
Flickr 122.1s 11.3s

FriendFeed 349.6s 33.5s
Facebook 12.9s 1.3s
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Table 5.6: Percentages of Response Time
Flickr FriendFeed Facebook

Partitioning part 9.1% 10.5% 13.2%
Computing part 90.9% 89.5% 86.8%

5.6.2 Online Analysis Evaluation

By randomly selecting 10 focused vertices on Twitter and DBLP datasets respec-

tively, we obtain the average performance of online analysis with three components:

mOnlinealgorithm, orbital layout generation and tag cloud selection. All the exper-

iments are based on the 3-mutual-friend graph calculated bythe offline solution. For

tag cloud selection, we obtain 20 representative tags out of100 candidates from the

text in focused vertices. The major objective is to test whether our system can well

support online analysis.

Table5.7 shows the efficiency measures by varying the distance thresholdτ from

1 to 3. It is clear that the total response time has an ascending trend with the in-

crease ofτ for both datasets. Taken separately, the costs of online algorithm and

the layout generation are largely increasing with respect to τ. The major reason is

that the response time for the first two components is proportional to the number of

edges, which increases obviously with respect toτ, as in the bottom row of Table5.7.

However, the speed of tag cloud selection remains stable since it is only affected by

the textual content in the focused vertex. Comparing the difference between two

datasets, the tag cloud selection for Twitter is much slowerbecause the number of

words in tweets is large than that in paper title.

Table 5.7: Average Response Time(in ms)
distance thresholdτ

Twitter DBLP

Component 1 2 3 1 2 3
OnlineAlgo 1 32 563 2 16 498

Layout 2 6 138 2 5 108
TagCloud 1986 1726 1829 164 176 189

Avg edge num 2 368 9856 22 348 7727

Moreover, the average edge number suggests that distance thresholdτ = 2 is a practi-

cal setting for online analysis, generating local subgraphwith reasonable size. Note
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that we don’t consider network transmission time since it isunstable and highly

affected by the network condition, which is not the focus of thisevaluation. In sum-

mary, the whole analytical procedure can be finished less than three second so that it

is acceptable for online interactive applications.

5.6.3 Evaluation based on the ground-truth communities

According to the methodology proposed by Jaewon et al. [123], we further evalu-

ate the effectiveness of thek-mutual-friend definition in identifying the ground-truth

communities. In [123], the authors compared the performance of six representative

community scoring functions with respect to a set of goodness metrics. In order

to do experiments comparing with these scoring functions, first we need to define a

scoring function based on thek-mutual-friend subgraph. Inspired by the triangle par-

ticipation ratio, which is the fraction of nodes in community S that belong to a triad,

we propose the mutual-friend participation ratio, since triangle is the special case of

k-mutual-friend subgraph withk equals to one. Specifically, given the parameterk,

the mutual-friend participation ratio is defined as|{v:v∈S∧v∈gk∧gkjS}|
nS

, in whichnS is the

number of nodes inS. In particular, it is a generalized triangle participationratio,

which is exactly the same as triangle participation ratio whenk = 1.

Next, we briefly review three goodness metrics defined in [123], i.e. separability,

density and clustering coefficient. The goodness metricsg(S) are defined for one

communityS. Separability measures the ratio between the internal and the external

number of edges ofS: g(S) = mS

cS
, in which mS is the number of edges inS and

cS is the number of edges on the boundary ofS. Density builds on intuition that

good communities are well connected. One way to capture thisis to characterize

the fraction of the edges (out of all possible edges) that appear between the nodes

in S, g(S) = mS

nS(nS−1)/2. Clustering coefficient is based on the premise that network

communities are manifestations of locally inhomogeneous distributions of edges. It

is the number of closed triplets (or 3 times number of triangles) over the total number

of triplets (both open and closed). To sum up, the above goodness metrics quantifies

different desirable properties of a community.

We test on the real-world networks with ground-truth communities downloaded from

the SNAP website [107], including DBLP dataset, Amazon dataset and LiveJournal
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Figure 5.10: Cumulative Average of Goodness Metrics

dataset. The experiments are formulated as follows. For each social network dataset,

we have a set of ground-truth communitiesS. For each community scoring function

f (S), we rank the ground-truth communities by the decreasing score f (S). We mea-

sure the cumulative running average value of the goodness metric g(S) of the top-k

ground-truth communities. If the scoring function ranks the communities in the de-

creasing order of the goodness metric, the cumulative running average value would

decrease monotonically withk. In this way, we could know whether the scoring

function can capture the characteristic of the goodness metric.

We found qualitatively similar results on all our datasets.Here we only present re-

sults for the DBLP dataset in Figure5.10to show our findings. We vary the setting

of parameterk from 1 to 4 to compare the performance difference with respect to

k. First of all, Figure5.10ashows the results of separability for DBLP ground-

truth communities ranked by four mutual-friend participation ratio with differentk.

Moreover, we use a curve “U” to present upper bound, i.e., thecumulative running
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average of separability when ground-truth communities areordered by decreasing

separability. It can be easily observed that all of them can not well represent the sep-

arability. This is because the mutual-friend participation ratio prefer densely linked

ground-truth communities, which tend to connect to many other vertices outside the

ground-truth communities.

Similarly, Figures5.10b,5.10cshow the cumulative running average of density met-

rics and clustering coefficient respectively. We observe that all the mutual-friend

participation ratios have the similar trend with respect tothe upper bound curve, be-

cause all of them tend to rank denser and more clustered ground-truth communities

higher. More specifically, with largerk value, the curve is more closer to the upper

bound curve in general, since we tend to discover denser communities with largerk

value. Based on the above analysis, we conclude that thek-mutual-friend subgraph

definition is meaningful for identifying cohesive communities in real life networks.

5.7 Summary

In this chapter, we have introduced a novel framework that integrates the cohesive

subgraphs discovery with the visual social network analysis. Unlike previous works,

we proposed a new cohesive subgraph definition calledk-mutual-friend to take the

tie strength into consideration. Moreover, a memory based solution is proposed and

extended to the scalable solution in the graph database. To further consolidate this

interesting framework, we provided a visual analytic browsing interface that helps

navigate users in searching and browsing the graph structure as well as semantics.

The outcomes from an experimental study demonstrated that our solution is both

efficient and effective. As for future research, we expect to extend our framework for

other graph based analytic applications, such as protein-protein interaction analysis,

RDF graph analysis etc. Another challenging direction is tomaintain the cohesive

subgraphs with frequently updates. As such, we shall provide a real time analytic

toolkit to monitor everyone’s evolving social network.
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Conclusions

In this thesis, we claim that making database applications accessible to ordinary

users is as important as improving database capability. As such, we have conducted

an intensive study to convert data into intelligence by means of data analytics and

data visualization, in order to make database usable. Particularly, we identified new

data analyzing problems and efficiently solved them in three key aspects, i.e. prefer-

ence mining, keyword search in databases as well as social network analysis. Exten-

sive experiments were conducted and the results validated the feasibility and the ef-

ficiency of these approaches. Furthermore, we provided prototype systems for users

to test, and found that they were indeed helpful because users were able to interact

with the visualized interfaces and drilled down to desired results by understanding

the key information from the summarized result view intuitively.

Subsequently, the following states the major contributions of this thesis in interactive

data analysis in three key aspects and then present the future directions for this thesis.

6.1 Results and Contributions

For eliciting users’ preference, we addressed a user preference query on top of multi-

dimensional datasets. We proposed to elicit the preferred ordering of a user by uti-

lizing skyline objects as representatives of possible ordering. With the notion of
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order-based representative skylines, representatives were selected by means of sam-

pling based on the orderings that they represented. To further facilitate preference

exploration, a hierarchical clustering algorithm was applied to compute a denogram

on the skyline objects. By coupling the hierarchical clustering with visualization

techniques, this framework allowed users to refine their preference weight settings

by browsing the hierarchy. We conducted extensive experiments, and the results

showed that our approach was both effective and efficient.

We next applied the hierarchical browsing approach in the application of keyword

search in databases. To this end, we implemented a novel system allowing users to

perform diverse, hierarchical browsing on keyword search results. It partitioned the

answer trees in the keyword search results by selectingk diverse representatives from

the answer trees, separating the answer trees intok groups based on their similarity

to the representatives and then recursively applying the partitioning for each group.

By constructing summarized results for the answer trees in each of thek groups, we

provided a visual interface for users to quickly locate the results that they desired.

Extensive experiments were conducted, and the results validated the feasibility and

the efficiency of our system.

We finally introduced a novel subgraph concept to capture thecohesion in social

interactions, and proposed an I/O efficient approach to discover cohesive subgraphs.

In addition, we proposed an analytic system which allowed users to perform intu-

itive, visual browsing on a large scale social network. We hierarchically visualized

the subgraph out on orbital layout, in which more important social actors are located

in the center. By summarizing textual interactions betweensocial actors as the tag

cloud, we provided a way to quickly locate active social communities and their in-

teractions in a unified view. The experiments conducted on various social network

datasets validated the effectiveness and the efficiency of our system.

6.2 Future Directions

This thesis only covers three important aspects in the area of interactive data analysis

in databases. As for future research, there are many research directions relating to

the interactive data analysis in databases. We will discusssome of these directions

as described below.
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6.2.1 Unified Interactive Data Analytical Platform

Although we presented visualized systems implemented for every key topic we stud-

ied in, there is still room for improvement by developing a unified interactive data

analytical platform, in order to support solutions for various interactive data analyti-

cal problems in database applications. The advantages of this platform are two fold.

To begin with, it is more flexible for users since they can handle different types of

data analysis transparent to the complex underlying storage. Furthermore, data anal-

ysis can be more productive by means of cross analyzing on topof multi-structured

data, which means a variety of data formats and types. In thisway, users probably

obtain more insights about the data than single data analyses.

This unified platform will bring about many challenging research directions. First of

all, we need a powerful database system or storage platform to treat both structured

and unstructured data as first class citizens natively without the loss of efficiency. As

for the visualized interface, the challenge is to support more complex analyses while

keeping the intuitiveness and effectiveness. Both of the above directions are promis-

ing research topics and are the most important foundations for a unified interactive

data analytical platform.

6.2.2 Big Data Analysis

According to research by MGI and McKinsey’s Business Technology Office [87],

the amount of data in real world applications has been exploding, and analyzing

large data sets, so-called big data, will become a key basis of competition, underpin-

ning new waves of productivity growth, innovation, and consumer surplus. There-

fore, there exist big opportunities for database researchers to move towards big data

analysis. To this end, we need to take advantage of parallel/distributed processing

using modern hardware, such as cloud computing, GPU generalpurpose computing

(GPGPU) as well as multi-core processing. There may exist two kinds of chal-

lenges. On one hand, data analytical problems usually need sophisticated algorithms

to solve, so how to devise efficient parallel algorithm for these problems is challeng-

ing. On the other hand, even if some algorithms already have parallel/distributed

solutions, it is still a challenge to apply these algorithmsto making full use of these
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modern hardwares. Future work must be done on these two directions in order to

make big data analysis feasible for real life applications.
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