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Summary

Data analytics in databases has received a lot of attemitimei database commu-
nity as it is an €ective process of inspecting, cleaning, transforming,randeling
data with the goal of highlighting useful information, segtjing conclusions, and
supporting decision making. However, as dataset cartirakreases dramatically
nowadays, it remains a challenge to make the analyticalegsoscalable as well as
keep the process interactive, visual intuitive and usetrobiable. As such, it is
important to provide a framework to support data interactinalytics in a scalable
manner.

This thesis first addresses a user preference query on toglipfdimensional datasets.
We propose to elicit the preferred ordering of a user byaitij skyline objects as
the representatives of possible orderings. With the natfarder-based representa-
tive skylinesrepresentatives are selected based on the orderingfdyaiepresent.
To further facilitate preference exploration, a hieracahtclustering algorithm is ap-
plied to compute a denogram on the skyline objects. By cagghe hierarchical
clustering with visualization techniques, this framewatows users to refine their
preference weight settings by browsing the hierarchy.

To further extend the interactive data analytics, we prefgospply the hierarchical
browsing approach in the application of keyword search talaases. To this end,
we implement a novel system allowing users to perform de/drgerarchical brows-
ing on keyword search results. It partitions the answeistreehe keyword search
results by selectingg diverse representatives from the answer trees, sepatagng
answer trees int& groups based on their similarity to the representativestiaedl
recursively applying the partitioning for each group. Bynstructing summarized
result for the answer trees in each of thgroups, we provide a visual interface for
users to quickly locate the results that they desire.

iX
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Finally, we introduce a novel subgraph concept to captueecthhesion in social
interactions, and propose gi®l efficient approach to discover cohesive subgraphs.
In addition, we develop an analytical system which allowersi$o perform intuitive,
visual browsing on a large scale social networks. We hiéreadly visualizes the
subgraph out on orbital layout, in which more important abeictors are located

in the center. By summarizing textual interactions betwsarial actors as the tag
cloud, users can quickly locate active social communitrestlaeir interactions in a
unified view.
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Chapter 1

Introduction

With the rapid development of database system researchemmaldtabase systems
can process terabytes to petabytes of data, or incorpooaatestnuctural data and
multi-structured data sources and types. However, desi@teonsiderable advance-
ments in high performance, large storage, and high compuatgbwer, there is
a lack of attention in identifying, clustering, classifginand interpreting a large
spectrum of the underlying information, knowledge andlilggence. Database re-
searchers recently realized that making database usa@e/ds more attentiob {].
Itis very important to design better approaches to retnevat users needtectively
and intuitively, due to the large scale of datasets and cexnghta types in existing
database applications. In view of this, we introduced therattive data analysis
into database research.

Data analysis is anfkective process of inspecting, cleaning, transforming,rand-
eling data with the goal of highlighting useful informati®uggesting conclusions,
and supporting decision making€], which is widely used in dferent domains,
such as business, science, and policy. In general, it caiviged into three major
phases: data cleaning, initial data analysis and main dalgsis P]. Data cleaning
is a procedure during which the data are inspected and engrgata are corrected
without information loss. The initial data analysis is trexhphase which does not
directly aim at answering the original research questiahtdkes quality of data and
measurements as its main concern and performs initialftranations of data. In
the main analysis phase, analysis aims at answering tharcbsguestion as well as

1



CHAPTER 1. INTRODUCTION

any other relevant analysis. In this thesis, we focus on thia hata analysis phase,
with the assumption that the data we need to analyze is glrdadned and stored
in database systems with the format we need. As such, baseiferent database
applications on various multi-structured datasets, wep@se diferent analyzing so-

lutions to extract information out of data and to show restdtusers in an interactive
manner.

There are various of data analysis methods, some of whitlhdadata mining, text
analytics, business intelligence, and data visualizatio@ne important branch is
data mining, which is the computational process of disdoggratterns in large data
sets. Related to data mining, text mining, roughly equiviate text analytics, ex-
tracts and classifies information from textual sourcesegigg of unstructured data.
Business intelligence is commonly applied in the businesa ¢hat relies heavily
on aggregation, focusing on business information. Indtaél applications, data
analysis is divided into descriptive statistics, explorgtdata analysis (EDA), and
confirmatory data analysis (CDA). EDA focuses on discowgenaw features in the
data while CDA on confirming or falsifying existing hypotless My research topic
specializes in interactive data analysis in databaseseg ¢tothe data mining and data
visualization. Diferently, we are more interested in querying and searchiag-pr
lems on the large scale indexed datasets and try to implevwisralized systems to
capture the most important information with respect to sigaterests.

To better explain the blueprint of the thesis, we depict therall framework as in
Figure1l.1 In general, it can be divided into three layers, includirajadstorage
layer, data analysis engine and data visualization irterf#n this thesis, we make
use of the data storage layout to organize the data with cespdifferent data types
and my study focuses on the above two layers. We propd et data analyzing
techniques for dierent problems and visualize them in visualization intefaeso
that users can interact with the system and quickly undwistiae meaning of the
analyzing results.

In the subsequent sections, an overview of the scope of studkis thesis is pre-
sented first. Then, we describe the research aims, the ¢enetodology, the
contributions and the outline of the thesis.
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Figure 1.1: The Overview Framework.

1.1 Scope of Study

Since interactive data analysis in databases is a very laaa] my study will fo-
cus on the following key topics. A brief introduction is givéelow and in-depth
discussion will be found in subsequent chapters.

1.1.1 Preference Mining

The notion of preference occurs naturally in every contéxtng one talks about hu-
man decision or choice. In the context of database queresdfwith information
overload, database users seek ways to obtain not necesdhahswers to queries
but rather the best, most preferred answeét$. [Personalization of e-services poses
new challenges to database technology, demanding a pdaedtiexible modeling
technique for complex preferences. Preferences, treatedfaiconstraints, are uti-
lized in multi-criteria decision situations to identifyeipreferred results. A common

3
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approach assumes that a monotonic ranking (or preferemeefidnP(-) is provided
and the user will specify hiser preference by setting a set of weights to rank the
importance of data objects. In this thesis, we aim at etigith users preference by
adopting this preference mining setting.

Computing preference queries have been a well studied gmolh the database
community [70, 28, 68, 89]. Among various possible problem settings, a com-
mon one $8, 89 assumes that a monotonic ranking (or preference) fund®en

is provided and the user will specify [tier preference by setting a set of weights
w = {Wg, Wy, ..., Wy} Which are used within the preference function to rank the im-
portance of data objects. Each of the weightrepresents the importance of an
attribute A; describing the objects and thus, ..., wy describe the importance df
attributesAy,..., Aq. In such a problem setting, it is also assumed that the order o
preference for the domain values of each attribute are knéwsrsuch, if the user is
able to specify the settings of the weights correctly, thendbjects will be ranked

in the correct order of hjiker preference and then the problem becomes one of re-
trieving the objectsfiiciently based on the order. However, if the user is unsure of
his’her preference (which is typically the case), it is cruagainteract with the user

to obtain a correct set of weights that representhieispreference. Designing an
effective mechanism to elicit the preference of the user istBxatat we set to do

in this work.

To elicit an user’s preference, a common approach is to ptéke user with a set
of objects, and based on fher choice of the objects, we can potentially infer the
correct weights. To ensure that all possible choices arkomeéred, the set of ob-
jects being presented must be carefully selected. Mora difi@n not, this involves
clustering the objects into filerent groups and a representative from each group
will be presented to the user. By stating the preference fparéicular represen-
tative, hgshe implicitly provides an approximate setting for the dewveights and
also indicates that lighe prefers the group associated with the representative. F
ther refinement can then be made by repeating the proceduhe @elected group
and selecting more representatives from the group. Howsueh an approach will
bring about a catch-22 situation. In a typical clustering@ration, an appropriate
similarity function will be required to determine the siarity between the objects.
Such a similarity function will usually be determined by gjeiing the importance
of the attributes based on the user’s input. The user, unfately, is relying on the

4
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clustering results to help hitmer determine the importance of these attributes in the
preference function!

In view of this, much research has been done on the problekybihe computation
[17,29,98, 72,94, 74]. An objectp dominates another objegif pis better or equal
to g in all attributes and at least better tham one. The skylines objects are objects
that are not dominated by any other objects in the set. Bas#uodefinition, it can
be shown that the set of skyline objects for a dataset is gisemto (1) the weight
assigned to each attribute and (2) the preference funceowladopted. More im-
portantly, given any monotonic preference function, itusgnteed that the top one
will always be a skyline object. More formally, let,(D) denote the preferred or-
dering of a set of objects given weight settiwgand,(D)[i] denote tha™ object

in this ordering, them,,(D)[1] must be a skyline object. In this sense, we will refer
to m,(D)[1] as arepresentativeof (D) and thus every possible ordering based on
different weight settings will be represented by one of the skydbjects.

Since the set of skyline objects is insensitive to the sgtiinweights and gives full
coverage as representativest{D), it thus makes sense to present the skylines to
the user for selection and infer the weight setting thatesgnts the user’s preference
based on hjker selectioh However, it has been shown i8q] that the expected
number of skyline objects ®(In%* n/(d — 1)!) for a random dataset whedeis the
dimensionality of the data. The large number of skyline otgjéor high dimensional
dataset is ironical since this is the situation in which sdave the most ficulty
determining their preferences and comparing productsioWardtorts have been
made B0, 117 to overcome this problem by selectikgepresentatives from a large
set of skylines. While we will discuss these later, iff@es to point out here that
none of these works tries to bring the preference functiahitsordering of the
objects back into the picture.

1.1.2 Keyword Search in Databases

It has become highly desirable to provide users with flexitdg's to querysearch
information over databases as simple as keyword searclGlikgle searchl2q.

Note that since multiple settingswfcan be represented by the same skyline object, this inferenc
is only approximate.
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Keyword search over databases focuses on finding struatfmamation among ob-
jects in a database using a set of keywords. Such struchftahation to be re-
turned can be either trees or subgraphs representing havbjbets, that contain the
required keywords, are interconnected in a relationaldest@ or an XML database.
The structural keyword search is completelffelient from finding documents that
contain all the user-given keywords. The former focuseshenrnterconnected ob-
ject structures, whereas the latter focuses on the objet¢co However, keyword
search queries can often return too many complex answesressllt, exploring and
understanding keyword search results can be time consuanith@ot user-friendly.
In this thesis, we expect to make the keyword search in ds¢gsb@ore intuitive to
use to finding desired answers.

With an increasing amount of textual data being stored @ati@tal databases, key-
word search is well recognized as a convenient dfectve approach to retrieve
results without knowing the underlying schema or learningiery languaged, 64,

69, 61]. The result of a keyword query is often modeled as a compdugtsucture,
such as a tree or a graph, which connects keyword tuplesitaimall the keywords.
Potentially, a user could discover underlying relatiopstand the semantics based
on structural answers.

However, keyword search queries can often return too maswens. This is because
the semantics captured in a keyword query is limited, andupkes that keywords
are located in might come fromftierent tables and connect with each other in many
ways. As a result, exploring and understanding keywordcbeaasults can be time
consuming and not user-friendly. To illustrate this, weadlié® a simple example
on CiteSeerX dataset. Figuré.2 shows the schema gra@y, in which nodes are
associated with tables and edges indicate foreign keyemedes.

Author Write Paper Cite

TID | TID TID TID

Name 1 AID Title 1 PID1
PID Abstract PID2

Figure 1.2: CiteSeerX Schema Graph

2httpy/citeseerx.ist.psu.edu
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Example 1 Consider a keyword query on “skyline” and “rank” over the €beerX
dataset. There ar@8tuples containing the keyword “skyline”, ar&29tuples con-
taining the keyword “rank”. A snapshot of keyword tuples presented in Tablg.1,
and part of the answers related to these tuples are shownguar€il.3. For clear
illustration, we use “a” to denote an author and “p” to denotepaper. It can be
seen that the relationship between them varies a lot evefixied keyword tuples.
Presenting and exploring the results of this keyword queliybe difficult.

SN
PR

Te T7 Te

Figure 1.3: Search Result Examples

Table 1.1: The Snapshot of Keyword Tuples

ID

Content Excerpt

kmy

The [Skyline] Operator

knp

[Skyline] with Presorting

kng

An Optimal and Progressive Algorithm for [Skyline] Queries

kry

Merging [Ranks] from Heterogeneous Internet Sources

kng

Why [Rank]-Based Allocation of Reproductive Trials is Best

kne

The PageRank Citation [Rank]ing

A typical solution for massive keyword search results isetimim topk answers ac-
cording to relevant score§]]. Sophisticated ranking strategies have been developed
to attempt to capture the search intention of a user. Witkonawing the schema,
however, it is hard for a user to explicitly express the pegiee. For instance, the
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qguery{skyline, rank aims to discover the relationship between them, but itfi$-di
cult to indicate which keyword is more important or what tyé path connections
are meaningful before a user realizes what can be found idataset. Even if it is
possible to estimate users’ preference, thekoesults usually include many over-
lapped answers that are redundant to present. As an extasearcExampld, T,
andT,4 share two keyword nodes and even an identical answer steuctu

Ideally, the results for keyword query would properly aaabfor the interests of
the overall user populatior3]]. In view of this, result diversification has been well
studied in information retrieval communit$], 52, 5]. More explicitly, they try to
put documents with broad information andfdrent semantics in the first page of
search interface. Consequently, the search engine imprmars’ satisfaction since
each user has a high possibility dfieiently finding interesting documents. The aim
here is to adapt this idea to select diversified answer ti@esefyword search over
databases. For instance, we may cholsandT- in Figurel.3since they represent
different keyword tuples, and the connection structures atiactias well.

1.1.3 Social Network Analysis

Social network analysis/[l] has emerged as a key technique in modern sociology
due to a large and rapidly growing social network companmsadays, such as
Facebook and Twitter. Social network analysis views sa@ktionships in terms
of network theory, consisting of nodes (representing iildigl actors within the
network) and ties (which represent relationships betweenirtidividuals, such as
friendship, kinship, organizational position, sexuabktelnships, etc.)95]. One
fundamental problem is how tafciently to identify groups of social actors that are
highly connected with each other, represented by a cohssbgraph, in which an-
alysts may discover interesting structural patterns ansmagal actors, and normal
users can know what happening in their neighborhood. M@eeisual representa-
tion of social networks is important to understand the netveata and convey the
result of the analysis. Many of the analytic software haveluhes for network visu-
alization. Exploration of the data is done through dispigynodes and ties in various
layouts, and attributing colors, size and other advancegepties to nodes. Visual
representations of networks may be a powerful method foveyging complex in-
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formation. In this thesis, we combine the cohesive subgdaptovery and social
network visualization to build a novel system for sociaMnatk visual analysis.

Graphs play a seminal role in social network analysis noysda large and rapidly
growing social network companies store social data as gsaéipictures, such as
Facebook and Twittef. In a social graph, vertices represent social actors, while
edges represent relationships or interactions betweensadDne fundamental op-
eration on the social graph is to identify groups of sociabescthat are highly con-
nected with each other, represented by a cohesive subgnapwhjch analysts may
discover interesting structural patterns among sociaracand normal users can
know what happening in their neighborhood.

Cohesive subgraph discovery is an intriguing problem arsddegn widely studied
for decades. One fundamental structure is the clique inlndvery pair of vertices is
connected. Finding cliques is NP-Harb[ and many work tries to relax the clique
problem to improve ficiency B3, 8, 103 102 117, 115. However, these meth-
ods do not directly take the characteristics of social ndétwato consideration. For
example, in Figurd..4g we emphasize the 3-core in solid edges and connected ver-
tices, in which every vertexinside it satisfiesl(v) > 3. Howeverg is not cohesive
enough as a whole. Considering cliques ingijdee can find a 5-cliquea( b, c, d, f)

and a 4-cliquedq, d, e, f) on the left, as well as two 4-cliqug¢én, n, p, q), (p, g, t, u)}

on the right. But vertexa and p are not tightly coupled since they only share one
common neighbojj, so the subgrapl is better viewed as two separate cohesive
groups.

This phenomenon, denoted as the tie strength concept, istudled in the socio-
logical area. Note that tie is same as edge in a social graphk Mranovetter in his
landmark paperd5] indicates that two actors andB are likely to have many friends
in common if they have a strong tie. In another state-ofattesociological paper,
White et al. [L21] observe that a group is cohesive to the extent that paits afem-

bers have multiple social connections, direct or indirbat, within the group, that
pull it together. One intuitive real life example is that yand your intimate friends
in Facebook may have a high possibility to share lots of mdtiends. However,

this observation has been missing from many of the cohesivgraph definitions,

Shttpsy/www.facebook.com
4httpsy/www.twitter.com
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which drives us to define arfutual-friend” structure to capture the tie strength in
a quantitative manner for social network analysis. Assurae@nsider a tie in Fig-
urel.4valid if and only if it is supported by at least two mutual figks. With only
supported by one mutual friendthe tie @, p) should be disconnected according to
the mutual-friend concept, and we successfully separdigraphg to two groups.
We will formally define the problem and compare it to other wigitins in details in
Chapterb.

(a) Before Layout (b) After Layout

Figure 1.4: Cohesive Graph Example

1.2 Research Aims

It has recently been asserted that the usability of a dataisass important as its
capability 67]. The authors study why database systems today arefioutti to
use, and identify a set of five pain points in the current dadalsystems. Inspired
by this work, the most important objective of this thesisasmprove the usability
of the modern database management system.

However, the focus of the database usability paper is oresssuthe data model
and database design, while the focus of this thesis is tleeatatlysis and data vi-
sualization in databases. In general, my research intespstn across the whole
process of converting data into intelligence, such as thii4imensional data in
preference mining, structural data in keyword search oatatthses and graph data
in social network analysis. We view data as sources of igace and aim to extract
knowledge from data and information in aflieient and &ective manner so that the
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knowledge can be utilized to create intelligent systemk afiplications in real life
problems. To this end, we not only propose new data analymiolglems and design
algorithm to dficiently solve them, but also build real systems to suppatsu
browse the analysis results in visualized and interactisamer. The results of my
interactive data analytical study should shed light on thi@llase usability that are
not available so for.

1.3 Methodology

In contrast to the common sense that we tacklefcdit problem with a “high
powered” techniques, in data analysis the real “trick” issbmplify the problem
and the best data analyst is the one who gets the job done, arevekll, with
the most simple methods. The majoffdiulties for the large scale data analysis in
databases are twofold. On one hand, handling the datagétkvge cardinality and
high dimension is problematic. On the other hand, the resplesentations are too
complex to understand. In this section, we briefly presenbua key techniques
to perform interactive data analysis in databases, anddtaled solutions will be
presented in Chapt&to Chaptels respectively.

To begin with, since we need to deal with large scale datadyagkcations, one fun-
damental strategy is to provide summary view for the comgbeta analysis results,
so that users can understand the result in the broad way. urharization in this
thesis is the approach to extract the most important crexatits of the analyzed
data but not the details. It is a simple ydieetive approach to many large scale data
analyzing problems. There are various approaches to aclievsummarization.
Sampling is widely used in statistical analysis becausdyaimg a well selected
subset of data gives similar results to analyzing all of taead It caters for large
scale applications since sampling is a lightweight apgragith high dficiency. In
data mining, clustering is one common used approach tokscepresentatives for
multi-dimensional datasets. In information retrievalarsh results diversification
[88] emerges in order to discover relevant but distinguishedlte to cover more
information. Based on the social network data, researgrepsed various metrics
to highlight and summarize fierent aspects for social network analysis.

11
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But data analysis is not about data — it uses them. Even if wédgaresent data
in a summary view, we still need to propose dieetive approach to help users find
what exactly they need in the complex results. Especiallgwdteal with large scale
dataset, it is a big challenge to keep the analysis visuaitivé and user control-
lable, which is very important for users to understand tiselteand find out what is
interesting to investigate. Ranking is one common usedesjyao list the results.
However, diterent users have fiierent preferences. Without knowing the data well,
itis hard for a user to explicitly express the preferencesfigctive ranking. To solve
it, we propose a hierarchical browsing approach to coupth thie summarization
techniques we discussed above. Hierarchical browsing efantive approach to
interact with users and can be elegantly supported by surpatian techniques. By
grouping the large result set with respect to the repreteesa we enable users to
efficiently locate desired results by drilling down to relevanswers incrementally
on top of the visual interface instead of a global ranking.

1.4 Contributions

Next, we summarize various topics this thesis contribub@satds the interactive
data analysis in database area.

Elicit Users’ Preference In this work, we address a user preference query on top
of multi-dimensional dataset. We propose to elicit the @mefd ordering of a
user by utilizing skyline objects as the representativée®possible ordering.
With the notion oforder-based representative skylinespresentatives are se-
lected by means of sampling based on the orderings that gprgsent. To
further facilitate preference exploration, a hierarchatastering algorithm is
applied to compute a denogram on the skyline objects. Byloauthe hier-
archical clustering with visualization techniques, thienfiework allows users
to refine their preference weight settings by browsing tleednchy.

Diversified Keyword Search in DatabasesWe next apply the hierarchical brows-
ing approach in the application of keyword search in date®a3o this end,
we implement a novel system allowing users to perform desehgerarchi-
cal browsing on keyword search results. It partitions thenaer trees in the

12
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keyword search results by selectikgiverse representatives from the answer
trees, separating the answer trees ktwoups based on their similarity to the
representatives and then recursively applying the pamiitg for each group.
By constructing summarized result for the answer treesach eathek groups,
we provide a visual interface for users to quickly locate rbgults that they
desire.

Social Network Visual Analysis We finally introduce a novel subgraph concept to
capture the cohesion in social interactions, and propos¢Caefticient ap-
proach to discover cohesive subgraphs. Besides, we prepoaealytic sys-
tem which allows users to perform intuitive, visual brovwgsion a large scale
social networks. We hierarchically visualizes the subgrapt on orbital lay-
out, in which more important social actors are located inciégter. By sum-
marizing textual interactions between social actors atapeloud, we provide
a way to quickly locate active social communities and thederiactions in a
unified view.

Parts of the materials of this thesis on interactive datéyarsan preference mining,
keyword search in databases and social network analysespveviously published
in [132, 134, 133 respectively.

1.5 Outline of the Thesis

The rest of the thesis is organized according to the threegdpat we have intro-
duced and the approaches we developed to perform integalzta analysis on these
topics. To begin with, we review the literatures in chaf@about the data analysis
and data visualization techniques, which are the contekttabackground knowl-
edge for the study in this thesis.

Chapter3 presents the interactive data analysis in preference minidatabase. In
chapter4, we propose the interactive data analysis for keyword seardatabases.
Next, we tackle the problem of interactive data analysi®uia network in chapter
5. For each of the above topics, we first show the motivationtaadmportance of
data analysis in this topic. Then, based on the limitatidristeractive data analysis

13
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in each topic, we propose a new problem and describe the nhathgy we proposed
to solve it dficiently. Furthermore, we implement interactive visudi@a systems

to make it user friendly. Last but not the least, we desciigestxperiments to show
the dfectiveness and theficiency of our methods and summarize each work.

Finally, we conclude the whole thesis and indicating thereitresearch directions
in chapter6.

14



Chapter 2

Literature Review

In recent years, interactive data analytics in databaselsden a hot topic in database
community. In the following discussions, we first review teneral data analysis
and data visualization techniques in Sectibfy which form the foundation of our
solutions to interactive data analysis in databases. Wel|assify the related work
of interactive data analytics in databases in terms of thianilaritiegdifferences
with three key topics respectively. In particular, we firsview the related work
of eliciting users’ preference in Secti@h2 Second, we examine how to perform
keyword search in databasei@ently in Section2.3. Third, we investigate the
study in social network analysis and social network visazion in Sectior2.4.

2.1 Interactive Data Analysis Techniques

We first review the state-of-the-art interactive data asialiechniques that are adopted
in or highly related to the solutions in the three key topitshis thesis, according
to the introduction in Sectiofh.3. The first part is about summarization techniques,
while the second part is about visualization techniques.
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2.1.1 Summarization Techniques

Summarization is the approach to extract the most impodiaatacteristics of the
analyzed data but not the details, which is a simple ftetcave approach to many
large scale data analyzing problems. There are variouapipes to achieve the
summarization. In statistical analysis, sampling is coneé with the selection of
a subset of individuals within a statistical population stimate characteristics of
the whole population. It is widely used because its low cost fast data collec-
tion. Sampling methods can be classified as probability otstlor nonprobability
methods. A probability sampling is one in which every unithie population has a
chance of being selected in the sample, including randonpkagn124], system-
atic sampling 5] and so on. A non-probability sampling is one in which mensber
are selected from the population in some nonrandom manteselinclude snow-
ball sampling 3], judgment sampling36] and so on. The advantage of probability
sampling is that sampling error can be calculated, whiledbgree to which the
sample difers from the population remains unknown in nonprobabibitypling.

In data mining, clustering is one common used approach tmdés representatives
for multi-dimensional datasets. It has plenty of variai@nd can be categorized
based on their cluster model, such as connectivity modefs)ectivity model, den-
sity models, subspace models and graph-based models. &wipkx the k-means
algorithm B5] belongs to the connectivity models, which represents ehdter by

a single mean vector. DBSCARY| and OPTICS 10| defines clusters as connected
dense regions in the data space, which belongs to the deneigls. Since there
are so many dierent models suitable for fierent applications, many toolkits were
developed to help users find the best clustering method fpeeifec problem. The
most widely used one is WEK/ASB], which is an open source platform providing a
collection of machine learning algorithms for data miniaghks.

Result diversification is emerging data summarization nege where the result
consists of a set of objects representing the whole resutirsgistinguished from
each other. In contrast to the ranking query, this query iypeseful for users to fast
discovering results they are interested in from a largelrasgt, so that it plays an
important role in many dierent contexts nowadays, such as representative skyline
finding, search result diversification and so forth. Reprgere skyline finding is
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proposed to solve the too many skyline results in high dinog@s space, which we
will introduce in the subsequence sections. Search res@tsification is a power-
ful approach to enhance user satisfaction in the IR commyiag, 31, 5, 52, 37].
They developed various diversity measures for documemndssfBectively solved the
diversity problem based onftierent diversification objectives. However, their diver-
sity measures are designed for documents, so the approachast applicable to
keyword search in databases with structural answer set.

Based on the social network data, researchers proposeuisamnetrics to highlight
and summarize tlierent aspects for social network analysis. In general gthest-
rics can be divided into three categories. The first categobased on the connec-
tions.One example metric belong to this category is homppBio], which is the
tendency of individuals to associate and bond with simitaecs. The second cate-
gory is based on the distributions. The most common usedsocenirality, which
refers to a group of metrics that aim to quantify the “impoda’ or “influence” of
one node within a networkip(. Examples of centrality measures include between-
ness centrality 20, degree centralityd3] and so on. The last category is based
on the segmentations. For example, the clusterinffictent [59], a measure of the
degree to which nodes in a graph tend to cluster togethemgisretric belong to this
category.

In this thesis, we take advantage of the above summarizeemiques and adopt
them according to dierent data analytic problem settings. The detailed exfplama
will be presented later in independent chapters.

2.1.2 Visualization Techniques

A common approach for making large datasets tractable ferantive exploration is
through a browseable hierarchy. Smith et 40¢] grouped and visualized the search
results based on the rich categories. Abello et ldescribed a node-link-based
graph visualization that allows clustering and navigatbiarge graphs. Balzer et
al. [13] developed the Voronoi treemaps for the visualization dfveare metrics.
In this thesis, we couple this technique with the summadmratechniques to bet-
ter capture the complex results in an interactive mannersuks, users can better
perceive results in an intuitive way and find out the reshiéy tdesired giciently.
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Recently, researchers have developed a variety of todtkiticilitating visualiza-
tion design. Stanford Vis Group devises an outstanding dvaonk named Proto-
vis [18, 63], advocating for declarative, domain specific languageSLE) for vi-
sualization design. By decoupling specification from execudetails, declarative
systems allow language users to focus on the specifics afdapplication domain,
while freeing language developers to optimize processsigpilar to Protovis, they
further proposed D319 with a declarative framework for mapping data to visual
elements. However, unlike Protovis, D3 does not strictlpase a toolkit-specific
lexicon of graphical marks. Instead, D3 directly maps détiabates to elements
in the document object model (DOM). Inspired by their fraroeky | will integrate
the proposed hierarchical browsing visual analyticaleysas a toolkit, in order to
support flexible customizing the visualization and browgdime result as they need.

2.2 Elicit Users’ Preference

2.2.1 Skyline Query

The skyline query was introduced into the database comminyitBorzsonyi et
al. [17]. Given a set of points in a multidimensional space such ast afsdigi-

tal cameras in the space of price, resolution, and the agarsgr review score, the
skyline operator17] returns the points that are not dominated by any other point
in the set. The skyline operator and itfi@ent computation have received a lot of
attention in the database communify’] 74, 29, 98, 72, 94] mainly due to the im-
portance of skyline computation in multi-criteria decisimaking applications and
preference-based query answering. Firstly, we define tylenslkquery formally.

Given a spac& defined by a set af dimensiongDs, ..., Dy} and a datasdd on S,
a pointp € D can be represented ps= (ps, P2, . - ., Pg) Where everyp; is a value on
dimensionD;.

Definition 2.2.1 Domination

A point pe D is said todominateanother point ge D on S, denoted by g q, if
(1) on every dimension;lx S, p < g;; and (2) on at least one dimension B S,
pj < q;. Forr,se D, they are said to baot comparablér « s and s«r.
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Definition 2.2.2 Skyline Query

A point pe D is askylinepointin S if p is not dominated by any other poin¢ & .
We denote S(S) as all data points that are not dominated by any other pointS j
i.e., SIS) ={pe SIAge S, g< p}. Skyline query is the process to find(S)

There is extensive research works focus on improving fhiei@ncy of the skyline
computation. Thef&@iciency was first improved by Chomickt al[29] and Godfrey

et al]98] significantly by means of sorting. By exploiting index sttures, the ef-
ficiency of skyline query processing can be further improvédssmanret al[72]
presented a nearest neighbor search algorithm and Pamddhbj®9©4] proposed a
branch-and-bound algorithm (BBS). Both methods are baseR-tree structure
[56]. This operator has been studied in the context of distebslystems12], P2P
networks [L19, 118, parallel environment]27], data streamslf01], microeconomic
data analysis77, 78, 131] and processing queries with minimum communication

[129.

The skyline query in dierent environments is also a hot topic recent years. The
operator has been studied in distributed systé@sP2P networks[19, parallel
environment] 27 and data stream$(1]. Parallel and distributed computational en-
vironments post both opportunities and challenges foris&ydomputation. To ad-
dress the challenges in skyline computation on distribdliat@ sources, Balke et
al. [12] proposed an algorithm for vertically distributed date, ithe attribute values

of a data point are distributively stored infidirent data sources. Suppose the values
of all data points on an attribute are stored in a data souncipendently a sorted
list of each attribute is built. Then, the algorithm contgly probes all dimensions

in the preference descending order until it retrieves aliatisions of a data point
which is identified as a skyline point immediately. Then,calier data points which
have not been accessed in any dimension are filtered out. &Spidtess continues
until all skyline points are retrieved. The method can redine number of pairwise
comparisons between data points.

Several interesting variations were derived from the cphogskyline query. Spatial
Skyline Queries (SSQ)LP4 returns the set of data objects that can be the nearest
neighbors of any object in a given query set. Formally, giaeset of data point®

and a set of query poinf3, each data point has a number of derived spatial attributes
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each of which is the distance from the data point to a quengtpdin SSQ retrieves
those points oP which are not dominated by any other pointRrconsidering their
derived spatial attributes. The mairftérence with the regular skyline query is that
this spatial domination depends on the location of the queints Q. SSQ has
application in several domains such as emergency respadsanéine maps. In this
paper, the authors proposed two algorithBi§? and V S? for static query points
and one algorithm, Th@&2S? can be defined as a special case of BBS algorithm
presented in94]. While BBS is a nice general algorithm, since it has no krexlgle

of the geometry of the problem space, it is not i€ient asB?S? algorithms for the
spatial case. On the other hantS? algorithm makes use of the Voronoi diagram.
The Voronoi diagram can fast retrieval the nearest neigimb@spatial environment,
so theV S? algorithm utilizes it to find the candidate objects and disee all the
spatial skyline objectsficiently. Moreover, they presentédCS? algorithm for
streaming Q whose points change location over tii€S? exploits the pattern of
change in Q to avoid unnecessary re-computation of therskgind henceficiently
perform updates.

The most related variation of skyline query is targeting lo@ problem of having
too many skylines in high dimensional space, which were Fighlighted by us
in [130, 24, 25 and solutions were proposed in the formsifong frequentand
k-dominantskyline respectively. Subsequenthg0] proposedrepresentative sky-
lines wherek representative skyline objects must be found such that tihggsther
dominate the most objects. From a ranking point of view, ¢éimsures that the rep-
resentatives will somehow not rank too low since the doneidatbjects will never
rank higher than them with any weight settings. Neélistance-based representative
skylines[112 grouped the skyline objects intoclusters based on Euclidean dis-
tance and the medoid of each cluster is selected as a refatageskyline. Spatial
proximity, however, does not necessary means similaritgrdering. Two points
spatially closer to each other may not rank close since gnsisive to the ranking
function. Besides, it is well known that the distance-basethod can never avoid
the curse of dimensionality, in the sense that the Euclidigstance of a given sky-
line object from its nearest and farthest neighbor tend®twerge {]. In contrast,
we consider using an order-based approach to solve the tog skalines in high
dimensional space in this thesis, in order to apply it to ttedéguence elicitation prob-
lem. The order-based approach is robust to the increasen@ngionality, which is

20



CHAPTER 2. LITERATURE REVIEW

more suitable for high dimensional context.

2.2.2 Preference Elicitation

Preference query is ondfective query type in many applications, such as recom-
mendation system, information retrieval and so forth. W imiroduce preference
elicitation in database area and quantitative preferehckation area respectively,
and indicate a dierent angle of this work.

Preference discovery and mining have been investigatederdatabase commu-
nity recently. Kiel3ling 0] modeled various preference constructors and integrates
them into database systems. The framework considers pnefes in a multidimen-
sional space. They presented a strict partial orders @meéer model tailored for
database systems. The extensible preference model bdibswamd extends exist-
ing approaches for non-numerical and numerical rankingap®hs the door for a
new discipline called preference engineering. Also, theadel can easily extend

to complex preferences by means of various preferencercotsts. To better inte-
grate the preference query into database systems, thegggophe Preference SQL
and Preference XPATH. Here are some typical examples:

Sample Preference SQL query:

SELECT * FROM useccars WHERE make: 'Opel’

PREFERRING (category'cabriolet’ ELSE category roadster’)

AND price AROUND 40000 AND HIGHEST (power)

s AND mileage BETWEEN 20000,30000;

Sample Preference XPATH query:

/CARSCAR #[ (@fueleconomy) HIGHEST AND (@mileage) LOWEST
PRIOR TO (@color) IN ("black”, "white”) AND (@price) AROUND 10000 #

Based on the preference construction approach aforemextialiang et al.qg]
introduced the scenario of mining preferences using sapand inferior examples.
That is, in a multidimensional space where the user prefeseon some categorical
attributes are unknown, from some superior and inferiomgxas provided by a
user, can we learn about the user’s preferences on thoggodatd attributes? To
solve this problem, preferences are modeled as skylineaeta The authors focus
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on mining minimal (in terms of relation size) finite atomieperence relations. They
show that the problem of existence of such relations is NiRptete, and the problem
of computing them is NP-hard. They also provide two hewssiior computing such
preferences.

Recently, Denis et al.8F] proposed a framework callgalskylineswhich is short
for prioritized skylines. They presented two drawbackskyfise query. One im-
portant deficiency of the skyline framework is its inabilityrepresent dierences in
the relative importance of attributes. Another drawbacthefskyline framework is
that the size of a skyline may be exponential in the numbettobate preferences
involved. Therefore, they proposed the framework callesdkylines which enriches
skylines with the notion of attribute importance. It turng that incorporating rela-
tive attribute importance in skylines allows for reductiorthe corresponding query
result sizes. They proposed an approach to discoveringrianpze relationships
of attributes, based on user-selected sets of superiorrdador examples. It is
shown that the problem of checking the existence of and tbkl@m of computing
an optimal p-skyline preference relation covering a givehas examples are NP-
complete and FNP-complete, respectively. However, thsiricted the discovery
problem (using only superior examples to discover attalwnportance), which can
be solved #iciently in polynomial time.

These works dier from ours in two ways. First, their main aim is to elicit the
preference of categorical values within some categoritabate domains. Second,
they focus on finding unknowatomic preferences, i.e. an attribute is either more
important, less important or incomparable to other attebuOur work involves the
concept of weighted attributes which can model traf¥doetween the attributes. For
example, we can model the fact that a user is willing to taketabook with a CPU
that is 20% slower if 50% more memory is given.

In quantitative preference elicitatio&€, the attribute priorities are similarly repre-
sented as weight céiecients in numeric utility functions. Given the fact thatligi
function elicitation over a large amount of outcomes is ¢gfly time-consuming
and tedious, many preference elicitation systems have madeus assumptions
concerning preferences structures. The normally appksdraption is additive in-
dependence, where the utility of any given outcome can bleelordown to the sum
of individual attributes. The assumption of independeniosva a high-dimensional
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utility function to be decomposed into a simple combinatdrhower dimensional
sub-utility functions. Then, itis based on the Analytic Hiehy Process (AHPDP)

to elicit the weight cofficients. The AHP has been accepted as a robust and flexible
decision support tool to solve multi-criteria decision lgems. It uses a multi-level
hierarchical structure of objectives, criteria, subcr@eand alternatives. However,
this Al methodology adopts the query-answer model baseti®@attributes of out-
comes, and learns the utility function and saves as much ofaris éfort as pos-
sible. Instead of learning the explicit weight ¢heents, our work directly elicits
preferred objects by presenting tkeepresentatives to the user, who can quickly
browse through these objects and discover the preferresitbreugh a hierarchical
process.

2.2.3 Ranking Related Query

Order information is well studied by the database and datangmicommunities.
There are several kinds of ranking queries highly relategréderence mining. We
will introduce the ranking aggregation and the order leagnespectively.

Rank aggregation addresses the problem of computing aéosas” ranking of the

alternatives, given the individual ranking preferenceseferal judges. While the
philosophical aspects of rank aggregation have been dibatensively during this

period, the mathematics of rank aggregation has gained attegtion in the last

eighty years, and the computational aspects are still withe purview of active re-

search. In computer science, rank aggregation has proveaaseful and powerful
paradigm in several applications including meta-searcmkgning experts, synthe-
sizing rank functions from multiple indices, biologicaltdbases, similarity search,
and classification.

In [38], they mainly focused on one important practice of rank aggtion in the
web applications. They formulated precisely what it meansoimpute a good con-
sensus ordering of the alternatives, given several (fherdiakings of the alternatives.
Specifically, they identified the method of Kemeny, origingiroposed in the con-
text of social choice theory, as an especially desirableagu, since it minimizes
the total disagreement between the several input rankimjgheir aggregation. The
definition of Kemeny criterion is as follows:
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Definition 2.2.3 Kemeny Optimal Ranking

Given n candidates and k permutations of the candiddtesr., . . ., m¢}, a Kemeny
optimal ranking of the candidates is the rankinghat minimizes a "sum of dis-
tances”,z!(d(zr, mi), where dr;, m¢) denotes the number of pairs of candidates that
are ranked in dfferent orders byr; andy.

However, the optimal solutions based on Kemeny'’s appraabliPkhard, even when
the number of rankings to be aggregated is only 4. Therefoey, provided several
heuristic algorithms for rank aggregation and evaluateditim the context of Web
applications.

Fagin et al. §2, 43, 40, 41] and Ailon et al. b, 7] solved many challenges for rank
aggregation in databases. On one hand, in database-@glications, we are often
interested in only the top few answers of the aggregations fEature leads to the
quest for algorithms that quickly obtain the top result(Saggregation, perhaps in
sub-linear time, without even having to read each rankiritsientirety. The author
in [42] mainly solved the problem how to define reasonable and mgéuiidistance
measures between top k lists. Specifically, they introdweeidus distance measures
between "top k lists”, which are "almost” a metric satisfyithe a relaxed version
of the triangle inequality. On the other hand, while manyablase attributes are
usually numeric, there are attributes that are inherermthsmumeric. The number of
distinct values in such non-numeric attributes is ofterywaemall. Therefore, when
one sorts according to values this attribute can take, thatneg rank ordering of
the objects is not a permutation any more; it is an orderiritp Wes, also known
as a partial ranking. Thus, one important feature of rankegaion in database
applications is that, due to preference criteria on fewusdlattributes, we need to
deal with partial rankings rather than full rankings. Matied by this scenario, Fagin
et al. 40, 41] proposed several metrics to compare partial rankings andle ties,
presented algorithms thaffieiently compute them, and proved that they are within
constant multiples of each other. B][they improved constant factor approximation
algorithms for aggregation of full rankings and generaliggem to partial rankings
for all the metric introduced by Fagin. Furthermore, theidpamarkable attention
to the more general p-ratings problem, i.e., a mapping frieenground seV to a
rank universeJ of fixed sizep.

Moreover, there are several other important applicatidnsuok aggregation. In
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[43], the authors proposed a novel rank aggregation based agpto performing
efficient similarity search and classification in high dimensiodata. In their ap-
proach, a small number of independent "voters” rank thelxteta elements based
on similarity to the query. These rankings are then comblmed highly dficient
aggregation algorithm. On the theoretical side, this mebtiess a high probability to
produce a result that is a {le)-factor approximation to the Euclidean nearest neigh-
bor. On the practical side, it turns out to be extremeliceent with sorted access to
a small portion of data. In7], the authors extended the idea of rank aggregation to
clustering. Consensus clustering or ensemble clustesitiggiproblem of integrating
possibly contradictory clusterings from existing data $eto a single representative
clustering. This problem can be applied to remove noise andnigruities from
data sets or combine information from multiple classifiémghis paper, the authors
provided an unified method to approximately solve the ragkiggregation and con-
sensus clusteringigciently.

Learning to rank is a new and popular topic in machine legrnin [32], an algo-
rithm was developed to learn a linear preference functionthis algorithm, feed-
backs are iteratively given by users in the form @f i5 preferred togq” and the
weights are iteratively adjusted based on the feedbackspédhnific, they developed
the following two-stage approach to learning how to ordeisthge one, they learn a
preference function, a two-argument function PREK(which returns a numerical
measure of how certain it is thatshould be ranked before In stage two, they
use the learned preference function to order a set of neariosflJ; to accomplish
this, they evaluate the learned function PREW] on all pairs of instances v e U,
and choose an ordering tf that agrees, as much as possible, with these pairwise
preference judgments. However, finding a total order thegegbest with a prefer-
ence function is NP-complete, so they described a simpledgralgorithm that is
guaranteed to find a 2-approximation result. In another ipgp®, they introduced
and studied anficient learning algorithm called RankBoost for combiningltiru
ple rankings or preferences. This algorithm is based on AdaBalgorithm and
its recent successor developed by Cohen et3al. [The algorithm they presented
uses a similar framework, but avoids the intractabilityljpemns. Furthermore, as
opposed to the on-line algorithm, RankBoost is more apjaitgfor batch settings
where there is enough time to find a good combination. Thesivile approaches
complement each other.
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There is another way to learning the rank based on probalilddels. In P2,
Burges et al. investigated gradient descent methods fanitearanking functions;
They proposed a simple probabilistic cost function, antbohticed RankNet, an im-
plementation of these ideas using a neural network to mbdalnderlying ranking
function. They employed gradient descent as an algorithtrain the neural net-
work model. Zhe et al.Z3] proposed the listwise approach, in which document lists
instead of document pairs are used as instances in learnikgwvise, they utilized
a probabilistic method to calculate the listwise loss fiorctSpecifically they trans-
formed both the scores of the documents assigned by a rafikigion and the
explicit or implicit judgments of the documents given by rams into probability
distributions. Then, the ListNet was proposed using thevige loss function, with
neural network as a model and gradient descent as an algorithis method further
improved the quality of the ranking function. This approagldifferent with ours
in that we focus on skylines as a representative of ordergpemndde a hierarchical
visualization framework to elicit the preference of usegrstematically*.

2.3 Diversified Keyword Search in Databases

2.3.1 Keyword Search in Databases

Keyword search in databases is a convenient dfett/e approach in information
retrieval, without the need for users to know the underlydata schema and query
language. This technique has been widely applied in vartmmsains, including
web documents, relational database, XML documents, amphgfatabases. Current
approaches can be classified into two categories: schesmatlmmes and graph-
based ones. The schema-based methédlsgenerated join expressions based on
database schema and produced the resulting tuple treegth8QL queries. The
graph-based approaches 9] materialized the database as a graph in which each
node corresponds to a tuple. They discovered compactedrsctoses based on
heuristic graph search. Many of recent work$,[81] developed dierent ranking
strategies in order to improve the searcfeetiveness. Hristidis et al6§] adapted

In many ways, our approach is similar to how we judge the tesofl a search engine; We
conclude that the search ranking is useful if the first fewltesre good.
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IR-style document-relevance ranking strategies to thélpro of processing free-
form keyword queries over RDBMSs. Liu et aB]] further propose a sophisticated
IR style ranking strategies with four new factors that aigaal to the problem of
search #ectiveness in relational databases.

Among all these data models, the graph-structured modeh@ng the most well
accepted as it is rather general and can even model unsedctsemi-structured
and structured data together in one grap#].[ Given a set of query keywords, most
of the existing keyword search systeri§][aim to find minimal connected trees that
contain all the keywords, which is in essentially the Stetnee problem. It has the
advantage of ensuring the tightness of the result so thakteipeords are closely
related. Such an approach however can have two drawbacks. d6ime interesting
information may be missed due to thenimal property. Missing nodes and edges
that are not included in the result could contain intergstinformation although
they do not contain any keywords. Second, when queryingimetkeywords, large
number of result trees could be return with a large amountveflaps in nodes
and edges between these trees. To tackle the two problégjgrpposed to find
communities with a center node, where the distance fronhalkeyword nodes to
the center is within a threshold radius. This however havewtn drawback. First,
a suitable radius is flicult to tune. Second, it is not reasonable to treat all kegwor
nodes equally important within the same radius; Moreowercommunity structure
may be hardly interpretable for some complex graph stractur

2.3.2 Result Diversification in Databases

Database researchers studied the result diversificattemtly. Yu et al. L25 intro-
duced the notion of explanation-based diversity in recomagon systems. Vee et
al. [113 diversified the query results by applying an inverted-difgforithm. Liu et
al. [82] developed a feature selection algorithm in order to hggttlthe diterences
among structural XML data.

There are three recent works considering keyword searehdgiiy in relational databases.
Golenberg et al.41] and Stefanidis et al.109 studied the answer tree diversifica-
tion, while DivQ [35] solved another problem to discover diversified schemasv-Ho
ever, their diversity measures are all derived from the aakcdistance, which fails
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to capture both textual information and structural infotim@as shown in the exper-
iments. Instead, we proposed a novel kernel distance seifiabstructural answers.
Furthermore, we developed an interactive system whichwallasers to diversely,
hierarchically browse the whole answer set instead oktopthem.

2.4 Social Network Visual Analysis

2.4.1 Social Network Analysis

Modeling a cohesive subgraph mathematically has beensx&ystudied for decades.
One of the earliest graph models was the clique mda@#@) [n which there exists an
edge between any two vertices. However, the clique modeliibs cohesive prop-
erties so that it seldom exists and is hard to compute. Adtare approaches are
suggested that essentially relaxes the clique definitiaifiarent aspects. Luc8J]
introduces a distance based model calatique and Alba$] introduces a diameter
based model callekiclub. Although these models relax the reachability amaarg v
tices from 1 tok, one limitation of these works is they are still NP-completach
cannot be applied to large social graphs. Another line okwocuses on a degree
based model, liké-plex [103 and k-core [L0Z. The k-plex is still NP-Complete
since it restricts the subgraph size, whikeore further relaxes it to achieve the
linear time complexity with respect to the number of edgesweler, thek-core
definition is too loose to capture the cohesive structuréefsocial graphs. A new
direction based on the edge triangle model, like DN-Grdgdty][and truss decom-
position [L15, is more suitable for social network analysis since it cags the tie
strength between actors inside the subgroup. Our proposédairfriend concept
belongs to this model and we will compare it with the above ¢wocepts in Chap-
ter5in details. Recently, database researchers have tried® sp the disk based
cohesive subgraph discovery. Cheng etal] propose a partition based solution for
massivek-core mining. They also develop a disk based triangulatiethod B0] as

a fundamental operation for cohesive subgraph discoverthis research, we store
the social graph in graph database that is more scalablerdphgraversal-based
algorithms.
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Community detection is another approach to discover a gobyeople in addition
to the dense subgraph discovery. Leskovec e7&].qummarize the state-of-the art
community detection methods and compare them empiric@jigical approach of
community detection is to choose an objective function thagtures a set of vertices
with better internal connectivity than external connetfij\ssuch as betweenness cen-
trality [50] and modularity 1]. The goal of community detection approach is close
to cohesive subgraph discovery: discover the nodes of ttnniethat can be easily
grouped into sets of nodes such that each set of nodes islyleosmected inter-
nally. However, they deal with the problem fromfiérent angles. The community
detection is like the clustering approach on the nodes oh#teork. As such, they
are concerned with how to define a better objective funcioddtermine whether
nodes belonging to one community or not. On the other hared;dhesive subgraph
discovery views the subgraph as a whole, i.e. try to find th®ysaphs that sat-
isfy certain properties. Our social network analysis bgkto the latter category, in
which we find all the subgraphs in the social graph withikimeutual-friend property.

In addition, social network characteristics has been wekstigated in sociology
communities. The most related one is the tie strength thedmch is introduced

by Mark Granovetter in his landmark papé&®]. Recently, many social network
researchers investigate this important theory in onlir@asmetwork, such as the
user behaviors in Facebookq, 11] and Twitter [54]. Their conclusions show that
the strength of tie, which is the basis of the mutual-friendgraph definition in

this thesis, is still a tenable theory in social media. Haosvevo the best of our
knowledge, there is no previous work makes use of this thieodyscovery cohesive
subgraphs in social network analysis.

2.4.2 Social Network Visualization

After discovering cohesive subgraphs, how to visually espnt these subgraphs is
another important component of this research. Graph streictisualization and
analysis has received a great deal of attention from botlolegy and computer
science communities. Freematt] summarizes the use of graphic imaging in so-
cial network analysis from the sociology perspective. Redees from the computer
science perspective put morgats into the graph representation and exploration of
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social networks. Wang et all1q proposes a linear plot based on graph traversal
to capture the dense subgraph distribution in the wholehgrajihang et al. 12§
extends it to compare the pattern changing between two gnagpshots. Another
approach of placing vertices in concentric circles witfietent levels is a popular
way to visualize graph structures, suchkashell decompositiond], centralities vi-
sualization B3] and so on. We leverage the circular idea and devise theablaytout
to visualizek-mutual-friend subgraphs in an interactive manner. In oathod, the
orbital layout is perpendicular to linear plot. Using the@egach proposed by Wang
et al., linear plot for global subgraph distribution and ¢hkital layout for local sub-
graph representation could be seamlessly integrated. ddereArnetminer 111]
provides comprehensive search and mining services foreatadsocial networks.
Itis a full fledged framework with nice visual exploring thenction like the relation-
ship graph between two researchers. However, the focusriatéiner is to show
the connections between two researchers. More informatany the importance of
individuals in the cohesive subgraphs needs to be uncovered
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Chapter 3

Hierarchically Elicit Users’
Preference

3.1 Overview

In this chapter, we propose to elicit the preferred ordeph@ user by utilizing
skyline objects as representatives of the possible orgle®uir approach tries to find
k representative skylines that best capture the orderirgsite associated with other
skyline objects. This brings about two challenges:

1. Given a datasdD, let W,(D) denote the set of weight settings such that for
everyw € W, m,(D)[1] = p, p € D. In this caseW,(D) is a set of weight set-
tings in which the objecp will be ranked first and such a set could potentially
have infinite memberships. As such, comparing the ordeepgesented by
two skyline objects becomesfiicult.

2. Given thatr, (D) represents a ranking with a large number of objects, com-
paring any instance of the rankings represented by two rskydbjects will
require computationallyfgcient solutions to be developed.

In order to overcome these problems, we propose an indiamof similarity
between the orderings that are represented by two skylijeetsip andg. We claim
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that the ordering odjis close top if g has a high probability of ranking high whenever
p is ranked first in the ordering. Based on this notion which vilefarmally define
later, we make various contributions towards elicitingraspreference based on
hierarchical browsing of skylines:

e We introduce the notion obrder-based representative skylinesvhich se-
lects representative skylines based on the ordering tbgtrépresent. Unlike
previous work, we bring the preference function back inte picture when
determining representative skylines since our aim is ttehe preference of
the user based on these representatives.

e To handle the two problems that we presented earlier, wealafinotion of
similarity that avoids explicit comparison of the ordemsrtyat are represented
by two skyline objects. Based on this similarity measuregdexelop sampling
techniques that allow us tdfeiently and accurately estimate the similarity be-
tween any two skyline objects. The similarity measure alkova us to define
a goodness measure for clustering skyline objects, argatitioning clus-
tering algorithm is developed to cluster skyline objectsdabon this goodness
measure.

e By applying thek-partitioning algorithm recursively, we create a hieraceh
clustering of the skyline objects. By coupling hierarchatastering with visu-
alization techniques, we enable users to refine their peéerweight settings
by browsing the hierarchy.

e We conducted extensive experiments, and the results shtaivotin approach
is both dfective and #icient.

The remainder of this chapter is organized as follows. 8e@&i2 gives our new
definition of representative skylines and shows the defd#fagisting methods. Sec-
tion 3.3 presents thef@cient sampling algorithm, and hierarchical browsing taieli
users’ preference is described in SectB# Results of our extensive experimental
study are reported in Secti@Wb. Finally, we summarize this chapter in Sectia.
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3.2 Preliminary

3.2.1 Problem Definition

We have a databade of n objects. Each object is described thwattributesA,, ...,
Aq. We will usep.A to refer to the value of an attributg for an objectp. For ease
of discussion, we assume that all of these attributes areenoah attributes ranging
from 0 to 11 and that a smaller value indicates better score. As such,awe s
dominateq) if p.Ai < g.A for at least one value afandp. A < g.A forl <i <d.
The skyline se6 C D consists of all objects i which are not dominated by any
other objects irD. We also have a monotonic ranking (or preference) fundéghn
which is provided by the application domain and users widlafy their preference
by providing a set of weights = {wy,W,,...,Wg}, 0 < w; < 1. Given set of
weights, the user can easily define any monotonic rankingtiom asP(W, f_(-S) =<

Wm >, i.e. the dot product of weight vect@¥(w;, Wy, ..., Wy) and monotonic
function vectorm(fl(-), f2(-),..., fa()). fi() can be any monotonic function on

objects, such as linear function, product function or exgial function.

1
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Figure 3.1: Example of Data Space and Weight Space

Given the above setting, we deals with two multi-dimensigpaces. First, we have
the data space which is thed-dimensional space that is formed frof, ..., Aq.
Second, we have theeight space which is anothed-dimensional space formed
from wy,...\wg, i.e. thei™ dimension of this space represents the weight Any

1This can be obtained by mapping the attribute values of sqplication domain to a score from
Otol
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point in the weight space thus corresponds to a particutiangef the weights. For
any skyline objecp € S, we will useR(p) to refer to the region in the weight space
such thair,(D)[1] = p as long asv is within the regiorR(p). Since the weight space
is normalized to the unit range, we can treat the volumig(pj as a probability that
p is the top object in any possible ordering. Fig@r&illustrates the data space and
weight space for a set of skyline objects when the preferéumuetion is a simple
dot linear product between the weights and the attributeesal As can be seen in
Figure3.1(a), ps1, ..., ps are all skyline objects since they do not dominate each
other. However, if we look at the weight space in FigGBr&b), we can see only
R(p1), R(ps) andR(ps) since based on the dot linear product preference fungbion,
and p, can never be ranked first regardless of the weight setting.

If we useV(-) as a function that calculates the volume of any given regioen the
probability of p being a top object will be denoted &¢R(p)). To generalize this
further, we will useR,(p) to denote the region in the weight space such that
among the topm objects when compared to other skyline objects. We are nadyre
to define a similarity measurement between two skyline abjeandg.

Definition 3.2.1 S7 Mq(p, Q)
Given pq e S and m, we measure how well p can represent g by

ST Mn(p.a) = V(R(p) N Ru(9))/V(R(p))

It is easy to see tha®Z M (p, g) is in fact the probability that| is within the top-
m skyline objects whenevep is ranked first. Intuitively, we are saying that pf
has orderings that are very similar gpthenSZ Mn(p, ) will be high and thusgp
can represeng well. Note thatS7 Mn(p, Q) is in fact not a metric since it is not
symmetric and also does not follow triangular inequalityhisThowever does not
affect ourk-partitioning clustering algorithm. Unlike most clustegiapplications
in which members in the same cluster must be similar, our amiehere is that
the representatives of each cluster can represent its merabeurately while other
members in the cluster need not be similar to each other.

Given S, our aim is to select & representative sé€, such thatk C S, |[K| = k
and other non-representative skylines are somehow repeeséyK in terms of
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the ordering that they represent. Intuitivel§,should satisfy two criteria. First, its
Upex V(R(p)) should cover a dficiently large region of the weight space so that
all possible rankings are covered as much as possible. 8g€oshould somehow
represent other skylines that are not witKin

The first criteria is relatively easier to satisfy with thesebvation thatR(p) "R(q) =
0,p,ge S A p # q}. Since there are no overlap between the regions, it is entmugh
ensure tha¥/(R(p)) is suficiently large for eaclp € K so that .k V(R(p)) is large.
For the second criteria, we will propose a measure of go@lnes

Definition 3.2.2 Quality(K, S)

2 qes Mok ST Mm(Pp, Q)

Quality(K, S) = S

As can be seeruality(K, S) is a goodness measure that is similar to those used in a
k-partitioning algorithm, i.e. the average similarity besm each skyline object and

its best representative. Correspondingly, we define ougrdsdsed representative
skyline problem as follow:

Definition 3.2.3 Order-based Representative Skylines
Given S, p, m and threshodd find a set of representative € S such that:

1. For each pe K, V(R(p)) = «.

2. QualityK, S) is maximized.

3.2.2 Problem Analysis

Note that like all clustering problem, finding the optimadler-based representative
skylines is a NP-hard problem.

Lemma 3.2.1 Finding K with k skyline objects maximizing Qua{ityS) is NP-
hard.
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Proof 3.2.1 (sketch) We construct a polynomial reduction from one NP-hard prob-
lem: the decision version of vertex cover problem. Givenuheirected graph
G(V, E), if there exists one edge e between node p and nod® &.,(p,q) and
ST Mq(q, p) are set to 1. MoreoverSI Mn(p, p), p € V are all set to 1 since the
node p covers itself. Othe$Z M(p, q) are all set to 0. If we find an optimal set
of order-based representative skylines K making Qu@it$) = 1, K is the set of k
nodes covering the graph G. This completes the polynondailatgon.

While the proof for Lemma.2.1assumes that tH&(p) andR,(p) with their corre-
sponding volumes can be easily computed, we will show hextahis is not the case.
First, one important property about tRé€p) is presented in the following lemma.

Lemma 3.2.2 For any skyline object p, @) is either empty or a convex polytope.

Proof 3.2.2 Based on linear programming theory, if p is thedbject p in the sky-
line, the computation of ®;) can be directly transformed to the satisfaction of the
following inequations:

P(W. T(p)) < P(®, (po)

P(W. T(p)) < P(®, T(pi_1))
P, T(p)) < P(W, T(p1))

P, T(p)) < P(W, T(pn))
W € [0, 1]

The above inequations are a set of linear constraints on thight space, because
each R:) is the linear function with respect to weight vec@rgiven them and

the attributes for each pe S. Therefore, computing the((R)) is equivalent to
solving the feasible range of linear constraints. The bamidheory of linear
programming[LO{ proves that each inequality specifies a half space in anmedtisional
Euclidean space, and their intersection is the set of akiigle values the variables
can take. The region is either empty, unbounded, or a convigkgpe. In our case,
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the region is either empty, or a convex polytope, because bbunded by weight
space with we [0, 1].

According to LemmaB.2.2 these regions can be determined by computing their
boundaries. ldeally, we first discover verticesR{p) or Ry(p) for each skyline
objectp, and then derives7 M, (p, q). However, the cost of this method is too ex-
pensive. For a convex polytope, there are at maigy (v!(u — v)!) vertices, where

u is the number of inequations ands number of variable§0(. Accordingly, the
Rn(p) can also be viewed as a union of all possible combinatiohsedr constraints
that p is smaller than at leag$| — m skyline objects. As illustrated in Figu@1(c),

the shaded region, which Ry(p,), is the union of two separate parts. This sim-
ple example shows that the computationRaf(p) is much more complicated than
the computation oR(p) in general. Therefore, we conclude that finding the exact
boundary of top region and tapregion is unrealistic.

3.3 Methodology

According to earlier analysis, finding the exact regionsRp) and R,(p) for all

p € S can be very computationally intensive. Since we are onbregted in/(R(p))
andV(Rn(q) N R(p)), we can adopt a sampling approach to estimate these values
This is done by performing a uniform sampling in the weighd@and generating
a set of weight settingd/. For eachw € W, we findr,[i] for 1 <i < mand keep a
count on the occurrences of the skyline objects. Once thelgagris complete, we
can simply estimat¥ (R(p)) by coun{{wjw € W, =,[1] = p]}/|W|, i.e. the number of
instancesv in which p is ranked top and divide it biyV|. Likewise,V(Rn(q) N R(p))

is coun(iwiw € W.n,[1] = p,mu[i] = g,i < m})/|W|, the number of instances in
whichqis ranked among toprwheneverp is the top object and normalize it |
Finally, we obtain the following formula according to thefidéion 3.2.1

coun{fww € W my[1] = p, m[i] = g.i < m})
coun(fww € W, m,[1] = p]}

SIMm( p’ q) =
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There are two remaining issues. First, we need to ensurgénarating these sam-
ples is dficient. Second, we need to ensure that our estimation baseesa sam-

plings have certain accuracy. We will address these twesssLthe next two subsec-
tions. Once these issues are resolved, we will then move piresent our clustering
algorithm based on our measure of similarity.

3.3.1 Generating Samples

Instead of computing the ordering for individual samples,a@nduct the sampling
in batches and apply the TA algorith##] concurrently for all samples within the
same batch. Assuming that the main memory can hamdémples and we want to
have a total ok samples, then the TA algorithm will be appligsfb] times.

The sampling method is shown in Algorithin For all the sample weight settings,
it only needs to discover tom skyline objects from the disk once using the TA
algorithm. Heremis set to be (number of skyline objegtshased on the assumption
that the skyline objects have uniform probability of apjr@gim the topm list of any

of the (eventualk representative objects and thus settimtp this value ensures that
each of the objects has a non-zero probability of appeanrbea topm list of one

of the k representatives. This can then be fixed for processing future batches of
samples.

In order to perform TA algorithm, we further need to stdisorted lists in the disk. In
7i, the skyline objects are sorted from the smallest to theelrigased on the values
on dimension. Because the score function is monotonic, we perform satedss
and random access ahranking lists to find the topa skyline objects ficiently.
According to these tom lists, we can calculate thé(R(p)) andV(R(p) N Rn(Q))
and deriveS7 Mu(p, q) for everyp,q € S.

Intuitively, the approximation of region computation haghprecision based on
random uniform sampling if the sampling size idistently large. Thus, we ap-
proximately achieve region computation as well as deveM,(p, q) according

to definition3.2.1 As in Line 12-15 in Algorithml, we only keep in memory the
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counting information of skyline objects which can be the edect. Since the sky-
line set could be too large to fit in the memory, this strategaty reduce the mem-
ory consumption. In addition, after performing the TA baségbrithm, the batch
of samples can be safely discarded to free up the memory éonéxt batch. Let
the top object sel satisfy {To|p, if p € S andV(R(p)) > 0}. Accordingly, T,
is defined agT,|p, if p € S andV(R(p)) > a}. Assume the skyline set sizems
Algorithm 1 utilizes O(|To|n) instead ofO(n?). |Ty| is determined by the monotonic
function, which is much smaller than Therefore, this improves the scalability of
our algorithm. Besides the probability information, thgioms ofp € Ty defined
below are incrementally updated based on samples. Thewenation is critical for
hierarchical processing in SectiGm.

Definition 3.3.1 Object Coverage
Given {W|weight setting we W if m,[1] = p}, the coverage of p is the minimal
bounding rectangle(MBR) of W on weight space.

The MBR for the objectp is the minimal bounding rectangle that encloses all the
w € W wheneverr,[1] = p. However, to determine a ficient number of samples is
challenging. The sample space is infinite and the definitfauidiciency is unclear.
Before finding thek representative skylines, we first show what is the quantgat
relationship between sampling size and sampling accunagyhaw to calculate the
sampling sizesin Line 2 of Algorithm1.

3.3.2 The Analysis of Sampling Accuracy

The sampling size determines the trafidzetween accuracy andhieiency. Intu-
itively, we expect the approximations ¥{R(p)) andS7 M., (p, g) to be close to the
accurate values if the values are larger than certain tbldgsh The constraint of
V(R(p)) refers to definitior8.2.1 FurthermoreS7 M (p, q) should be accurate if
it is no smaller than the user-defined threshgldraking these two thresholds into
consideration, we can derive the following bound¥W{R(p) N Rn(p)):

V(R(p) N Rn(p)) = V(R(P)) - ST Mn(p.q) > o
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Algorithm 1: SamplingTopM
Input: # representativelsand # sampleb
Output: 2d arrayS7 My, to storeS7 Mq(p, )

1 m«— # skyline object&
2 Calculate the required sampling size
3 while s> 0do
4 Generate next random uniform sampled/
5 s«—s-b

// TA based method for b samples
6 | while scorg(m" item on heayp) > 6;,i € [1,w] do
7 Round-robin sorted access o). .., 74
8 Update thresholdg, . . ., 6, for each sample
9 Random access to get next skyline objpct
10 if scorg(p) < scorg(m™ item on heag) then
1 | Swapp with m™" item on heap
12 foreach skyline object g in top-m list when p is the top objdot
13 if p¢ SIMpthennew arraySZ Mq[p]
14 Update the region foR(p)
15 | SIMu[pl[g]++
16 foreach skyline object g S7 M., do
17 Counfp] «— coun{{wjw € W, n,,[1] = p])
18 foreach skyline object alo

// calculate the probablity

" L SIMulpllq] — Fmeld

20 return S7 M,

Therefore, we will focus on the accuracy6fR(p) N Ry(p)) to satisfy the required
sampling quality. Next, we provide guidelines for the cleoad sampling size using
statistical analysis.

LetV(R(p)NRn(p)) be the unknown value that we are trying to estimate. Fopkam
ity, we utilize probabilityP representing/(R(p) N Rn(p)) to do the analysis. Then,
the P stands for the complementary set(R(p) N Rn(p)). Assume that we havd
samples and find that = PN of these samples satisfydoes not appear in the top-
lists whenp is the top object. Given a fiiciently large number of samples, we ex-
pectP to be close td® as much as possible. Furthermore, to ensufiecgently large
coverageP should be larger than or equaldg, which is equivalent t® < 1 — a.
We formally express the problem as follows.
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Problem 1 Given thresholds, 3, confidence interval — y and margin of errors,
how to determine the sampling size N to ensure

PrPe[P-6,P+6l)>1-y

whenP < 1 - ap.

Obviously, we want both the interval sizé and the error probability to be as
small as possible. Since the sampling process can be viesvg 8ernoulli Trials
on the weight spac& = PN satisfies a binomial distribution with parametdrsnd
P. Therefore, we can apply Chetfiboundsh7] to compute

Pr(P ¢ [P -6,P +¢])
= Pr(X < NP(1-6/P)) + Pr(X > NP(1 + §/P))
< e—Nﬁ((s/ﬁ)Z/z + e—Nﬁ(5/5)2/3

The bound in above equation is meaningless if the valtRisfunknown. A simple
relaxation is based on the fact tHak 1 — o8, yielding

Pr(P ¢ [P—6,P+6]) < eNo*/2-ah) | gNo*/3(1-ap)

Settingy = e No’/2(-ep) 4 g-No*/3(1-af) \ye obtain the tradégbbetween these param-
eters. Given the requirements ang, y andéd, the above equation calculates the
minimum number of sampling sid¢ to guarantee the sampling accuracy.

3.3.3 Finding Order-based Representative Skylines

Since theSZ M(p, g) has already been calculated approximately, the nextstep i
discover the order-based representative skylines. Ouigtmamaximize the quality
of the representative s&t as well as cover a shiciently large size of the weight
space. As the proof in Sectidh?2, this problem is NP-hard, thus we adopt the
medoids clustering algorithm, as presented in Algorityno eficiently solve the
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problem. By partitioning the skyline objects into groupg @hoose the medoid as
representative for each group and other skyline objectassgned to the closest
representative.

The k-medoids clustering is derived from CLARANSY], which is the state-of-
art k-medoids clustering inspired by local search idea. Onecealile diference
of Algorithm 2 is the filtering method. As in line 4, it sifts out candidatd €e
asT,. The default setting of is 1/|S|, the average volume dk(p) for p € S
on weight space. This is reasonable since the volume of septative skylines
should be at least no worse than the average situation vateethe objects can be
safely pruned. User also has the flexibility to adjust theghold in order to achieve
the tradeff between the importance &f and the quality to represent other skyline
objects. This is not only beneficial to finding betterepresentative skylines, but
also further reducing the candidate size, especially fgtirs objects with skew
top region sizes. Moreover, thevapcosts the diterence betwee@uality(K, S)
and Quality(K’, S). Line 13 guarantees that the clusteris updated only if the
new clusterK’ has better quality. Finally, the clustering algorithm findsnlocal
k-medoids sets with local best quality, and chooses the We$tem as the final
order-based representative skylines.

3.4 Eliciting Users’ Preference

In this section, we further extend our work to support skylomowsing and visual-
ization in order to elicit users’ preferencéextively and éiciently. In general, it

is a hierarchical navigation approach to locate user'sspredl region on the weight
space. A visual interface is developed to support this ezglmn.

3.4.1 Hierarchical Browsing

Hierarchical browsing is anfiective way to interact with the user. As shown in
Algorithm 3, this process can be viewed as iterative refinements basadombi-
nation of sampling and clustering. First, shown with théi@hk representatives, the
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Algorithm 2 : FilterClustering
Input: # representativesthresholdr andS7 M,
Output: k order-based representative skylines
1 Candidate se€ «— 0
2 k-medoids seK «— 0
3 foreach skyline objects g T, do
4 | ifV(p)>athenC«—Cup

// setting according to paper [92]
5 maxneighbor— max(250k x (|C| — k) x 1.25%)
6 numlocal«— 2
7 bestquality«— 0, bestcluster— 0
g for i = 1to numlocaldo
9 K «— randomly choos& objects fromC]
10 for j = 1to maxneighbodo

11 Randomly selecp from K andqg from C — K to swap
12 Calculateswapcosusingp

13 if swapcosk 0then

14 | j <1, updateK

15 if Quality(K, S) > bestqualitythen

16 bestrepresentative— K

17 bestquality—— Quality(K, S)

18 return bestrepresentative

users will then select a subset of them as olgesttinterested. Second, re-sampling
is performed on the region covered by the subset and relaistecs. This focused
sampling will allow us to have more accurate sampling resulhe area of interest.
We first define theluster coverageas follows.

Definition 3.4.1 Cluster Coverage

Given a cluster c, the cluster coverageaf ¢ on the weight space is the minimal
bounding rectangle(MBR) that bounds the object coverag®l gkyline objects in
C.

Therefore, the area of interest is tREBR covering all the clusters generated by the
selected skyline subset. The clustering algorithm wilhtlhe applied on the new
samples so that the next levellofepresentatives can be found. This procedure will
iterate until the user reaches the skyline object that istefrest to hinher or when
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|Tol is smaller thark. As shown in Line 5 of the algorithm, the hierarchical praces
terminates and displays the final results to the user if otieecdibove two conditions
is satisfied.

Algorithm 3: HierarchicalBrowsing
Input: w, Kk, a, ST My,
1 p «— SamplingT opNw)
2 K «— FilterClusteringk, a, ST M)
OutputK to user
User chooses interesting subbkeand setk
while H # 0 and |Ty| > kdo
sampleregion— 0
Candidate se€ «— 0
foreachobject pe H do
Calculate cluster region from the clusterc with medoidp
L Updatesampleregiortovering ther.

w

© 00 N o o b

10

11 UpdateC as all the objects in the clustewith medoidp € H
// sampling on sampleregion

12 p «— SamplingT opNIm, w)

13 K «— FilterClusteringk, a, p)

14 OutputK to user

15 User chooses interesting subbkand setk

16 Output final set of skyline objects user preferred

3.4.2 Visualization

To support our hierarchical browsing process, we providesaalization tool to
ensure that users can easily see tlfketknce between the representatives and select
the representatives that are of interest to them.

Parallel coordinate6f] is a common way of visualizing high-dimensional geometry
and analyzing multivariate data. To show a set of objectsdrdanensional space,
this technique represents data dimensiond parallel lines spaced equally. Data
object ind-dimensional space is represented as a polyline linkingtices on each
axes. Thd™ vertex is mapped to position i axis proportional to its value for
that dimension. For our purpose, each of these axis regeeaetimension in the
weight space and users can thus indirectly indicate thefemed weight setting by
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selecting the clusters based on the visualization. For elaster, we take th&BR
that represent its coverage and plot the bounding valueg &ach dimension on the
corresponding axes. To enhance the visualization funtbeetake the average values
of the samples along each dimension and plot a line that goasgh these averages
for each dimension. Users can estimate the average weitjingsier each dimen-
sion by looking at this line. Generally, the range dfelient clusters overlapping and
crossing each other, which renders the graphic repregamiatclear. Instead, we
approximate display the cluster coverage. For the clustie weight settingv be-
longstoitifm,[1l] = pA p € c. Let the mean value of all the weight settings belongs
to clusterc on thei™™ dimension bey;(c), and the standard deviation of themd¢c).

To ameliorate the visualization, we restrict the rangeugs)[— oi(C), ui(c) + o(C)]

on thei™ dimension to control the size of the cluster

1.0 1.0 1.0 1.0 1.0

0.0 0.0 0.0 0.0 0.0
w2 W3 we wil W5

Figure 3.2: Visualization Example

Figure 3.2 gives an example of our visualization technique. Accordmghe def-
inition of weight space, all dimensions are within the ram§®.0 to 1.0. In the
diagram, three clusters are represented with three repisgses: rep-1, rep-2 and
rep-3. Each cluster is visualized as a polygon. In each dsmenthe cluster re-
gion is restricted by the upper bound and the lower bouncectsely. Furthermore,
the polyline in the middle of each region is shown for useredtimate the average
weight settings of the cluster in each dimension. In addjtibe values of each of
the representative skyline in the data space are also peesstm users to link their
preferences back to the actual domain that is familiar tonthEo distinguish dter-
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ent clusters, the polyline and representative label béhgnp the same cluster are

colored similarly, while the colors areftikrent between clusters. This framework
supports highlighting cluster as well. For instance, thester with representative

rep-1 is highlighted with red color in Figu@2

Ordering of Axes: Another simple but powerful feature of our visualizatiomwlto

is that it supports dynamic ordering of the axes based on d¢lexted clustec.
The dimensions are arranged from left to right following trderw;, ws, ..., Wy

if up(c) > ux(c) > ... > uyg(c). By looking at the order of these dimensions, users
can quickly assess the strength of the cluster by lookinigeatelative ranking of the
dimensions and compare these ranking against what thegrprdf

Furthermore, the gradient of the polyline after the ordggive a good indication of
the trade between clusters’ attributes. A steep gradient indicdtasthe tradefd
between the attributes is high while a gentle gradient ateis that the importance
of attributes are almost the same. For example, the dimesgibFigure3.2 are
reordered to bgws, ws, Wy, Wi, Ws}. The underlying meaning is that this cluster of
skyline objects ranks high mainly because of the dominancatwibutesw,. Fur-
thermore, the steep gradient of this cluster demonstragtdhe quality on attribute
A; andAs must drop substantially in the cluster to sustain the stieagA,.

Alternatively, users will also be allowed to rank the dimens themselves. Once
they ordered the dimensions, they can identify clusterstefest to them by looking
for polylines that are approximately decreasing from leftight. Among all those

that are decreasing, they can also assess the ffdgjelooking at the gradients.

3.5 Experiments

We now present the experimental study to evaluate ordezebig@presentative sky-
lines. For simplicity, we refer to our algorithm &ampleClusin Section3.5.1 the
proposed algorithm is measured with respect to thieiency as well asféective-
ness on synthetic datasets. Sect®®b.2further illustrates its performance on the
real NBA dataset)(]. At last, the éfect of diferent monotonic functions and the
process of hierarchical elicitation are evaluated in 8@@&i5.3 All experiments are
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executed on the Windows operating system with Intel Cores@ processor and 4
GB RAM.

3.5.1 Synthetic Data

The synthetic datasets are created using the anti-cadetiistribution according
to the classical methodlf]. Every attribute on each dimension is normalized to
[0,1]. Table3.1 shows the range and default values (in bold) of the paraseter
In each experiment, we adjust a single parameter while keethie rest at their
default values. Note that the confidence intervaliland margin of erroé are two
variables for controlling suitable sampling size. Due te fipace constraint, other
two parametera andp are fixed in our experimental settings. The default value for
a 1S 0.01 as we expect the representative skyline object coveeast bne percent of
the weight space. The default valuegat set to be 1k, i.e. ST M(p,q) > 8= 0.1,
since the closest representative should be better tharnvénage case to represent
the non-representative objects. The experimental studyamdg are reported and
can be found in the full technical repértThe evaluation is based on the dot linear
product preference function.

Table 3.1: Parameter Settings

Parameter Range
y 0.10.20.3,04
1) 0.010.020.03,0.04
Dimensionality 23,45
k 4,6,810,12
Data Size(100K 2,4,6,810

Table 3.2: Varyingy
vy 0.1 0.2 0.3 0.4
Sampling Size | 4,774| 3,618 2,956| 2,492
Sampling time(ms) | 1,676| 1,254| 1,025| 865

We measure the performance of the algorithm in seven aspéwtdirst five refer to
# top objects, # replacemen®uality(K, S), V(R(K)), andEr(K, S), which evaluate

2This file cannot be cited though because of anonymous reqaire
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Table 3.3: Varying
1) 0.01 | 0.02 | 0.03 |0.04
Sampling Size | 14,474| 3,618 | 1,607| 904
Sampling time(ms)| 5,056 | 1,254 | 559 | 330

the dfectiveness of the algorithm. The first one reflects how masidit skyline
objects appear as top objects in the samples. The # replateisaitilized to eval-
uate the robustness of the clustering algorithm, whichrgscthe number of objects
varying from one cluster to another due to the alteratioraoffgling size. Recall that
the Quality(K, S) is described in definitio8.2.1 TheV(R(K)) is the summation of
all V(R(p)) as long asp € K since they are mutually exclusive. Far(K,S), it
indicates the representative error to measure the distategeen the representative
skylines and the other skyline object&p]. The remaining two aspects, # IO and
CPU time, assess thdfieiency of the algorithm. # 10 consists of two parts, the
random access times (RA) and the sorted access times (SA¢ovir, CPU time is
also divided into sampling time and clustering time for eetinderstanding the per-
formance of oulSampleCluslgorithm. The breakdown of execution time provides
a deeper and clearer view of the experimental result. Furibie, due to the random
nature of the sampling output, we repeat each experimerttrtess and report the
average measurements.

We first investigate how the confidence intervaljtand margin of erroé affect the
performance oSampleClusSince thex and thegs are fixed, the sampling sid¢ is
determined by these two parameters. TabRshows how sampling size variesyas
changes from 0.1 to 0.4 while fixin§) = 0.02. On the other hand, by increasifig
from 0.01 to 0.04 withy = 0.2, we derive the sampling size in Tal3e8. Because
the sampling quality is directly related to the samplingsiwe continue the analy-
sis based on the sampling size. To begin with, we generataitfed k-partitioning
clusters using 4326 samples, which is the mean of all the kagngizes in Table
3.2and 3.3 Additionally, by varying the sampling size, we record # tgects,
# replacementQuality(K, S) andV(R(K)), and display them in Figurd.3. Gen-
erally, the trend of # top objects suggests that it increasts growing sampling
size. However, the increase ratio tends to converge to #leéttep objects, which is
larger at the beginning while smaller at the end. Concerthiegf replacements, the
large amount of replacements for sampling size 904 is becailiss low accuracy.
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Other than this, the tiny fierence is mainly due to the randomness of the sampling
process. Most importantly, th@uality(K, S) andV(R(K)) of the clustering results
demonstrat&SampleClus robustness although the change in sampling size is no-
ticeable. Thestdevof Quality(K, S) is 0.007 and that o¥/(R(K)) is 0.006. This is
primarily determined by the small number of replacementsthr stability of thek
representatives to incorrect approximationSdf M p, g) when it happens with low
probability.

# top points

quality

(a) # Top Points

0.6

904 1,607 2,492 2,956 3,618 4,77414,474

Sample size

# replacements

904 1,607 2,492 2,956 3,618 4,77414,474

Sample size

(c) Quality(K,S)

—~
—~

R(K

-

\Y

0.7
0.6
0.5
0.4
0.3
0.2
0.1

904 1,607 2,492 2,956 3,618 4,77414,474
Sample size

(b) # Replacements

904 1,607 2,492 2,956 3,618 4,77414,474
Sample size

(d) V(R(K))

Figure 3.3: Robustness vs. Sampling Size

Furthermore, the sampling time is linear related to the damgsize as shown in
Tables3.2 and 3.3, since finding the topn skyline objects for each sample almost
costs the same amount of time. Taking both the clusteringstoless and sampling
time into consideration, we conclude that moderate sizeaofpges is enough for
good clustering outputs. Based on this observation, wesdwe 0.2 ands = 0.02,
which determine the sampling size to be 3618.
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Figure3.4 shows the comparison betweSampleClusandl-greedywith respect to
dimensionality. Note that we generate ten sample sets titharthe one used in
SampleClugo test the representative skylines of two algorithms. Tgeré sug-
gests thaBampleCluss superior td-greedyboth for Quality(K, S) andV(R(K)) in
any dimensionality. Th&(R(K)) is multiplied by the sampling size for clearer dis-
play. The closeness of the two algorithms in two dimensicaaks is because the
number of skyline objects is 57, which is in the same orderafnitude as the num-
ber of representatives. Other than this, the distancedbapeesentative skylines can
hardly represent the order information as analyzed in tké@€2. Furthermore, the
distance based metric is sensitive to the dimensionalitg Joal ofl-greedyalgo-
rithm is to minimize theEr(K, S). Accordingly, we define a relative representative
error NormEr(K, S) asEr(K, S)/ Vd, where Vd is the maximal possible distance
between two objects id dimensional normalized space. By varying dimensionality
from 2to 5, as shown in Tab®4, Er(K, S) as welladNormEr(K, S) increases along
with the rise in dimensionality. It suggests that this goeshfunction deteriorates
in high dimensional cases.

0.8 SampleClus —*— 10000 " SampleClis —»—
I-greedy --&-- / I-greedy -
0.6 X 1000 ™, K
_-é‘ /{/\ § ,
5047 ] 8 100 |
[, Q
2 = B
0.2 - e Bl 101 e T
R e = 1|
o
0 : 1
2 3 4 5 2 3 4 5
dimensionality dimensionality
(a) Quality(K,S) (b) V(R(K))- Sample Size

Figure 3.4: Hectiveness vs. Dimensionality

Figure3.5shows the fiiciency measures as a function of dimensionality. As dimen-
sionality varies from 2 to 5, thi| increases dramatically because of the property of
anti-correlated distribution. The corresponding skybimes equal to 57, 990, 7745,
36290 for dimensionalities 2 to 5 respectively. Thereftwath # 10 and CPU time
rise linearly with respect to dimensionality.

Next, we vary the number of representatikes explain how this parameteffacts
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Figure 3.5: Hiciency vs. Dimensionality

Table 3.4: The Relative Representative Error
Dimensionality | 2 3 4 5

Er(K,S) 0.09| 0.39| 0.64| 0.86
NormErK,S) | 0.06| 0.23| 0.32| 0.38

the dfectiveness of our algorithm. Th&R(K)) is multiplied by the sampling size
for clearer display. As shown in Figu6, the Quality(K, S) and V(R(K)) of I-
greedyalmost remain constant as the number of representativesases. FoSam-
pleClus the Quality(K, S) andV(R(K)) are always greater than thoseleajreedy
and increase as more representatives are returned.

In Figure 3.7, we present theffect of k on the dficiency measurements. An
equals tgS|/k, when the skyline set is fixean decreases along with the increase
of k. Therefore, both of the random access times and sortedsatoess decrease
accordingly. Similarly, we need to discover smaller tagkyline list for each sam-
ple, so the sampling time reduces since the sampling sizeskieeariable. On the
other hand, the search space enlarges with resp&gcldaading to the growing of the
clustering time.

The last set of experiments focuses on the scalability oafgorithm as the function
of cardinality. Although the cardinality of the datasetrie&ses, the related skyline
sizes are 773, 808, 936, 1101, 990 for cardinality 200K to ENure 3.8 presents
the result. The performance does not show any significamgeasasince the major
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Figure 3.7: Hiciency vs.k

factor is the skyline size, but not the dataset cardinalltye trend of the curve is
proportional to the number of skyline objects.

3.5.2 Real Data

In this section, we report results of experiments perfororetheN BAdatasetNBA
includes 16399 nine-dimensional objects. We denote egelstasp(A, Ao, . . ., Ag),
representing the regular season performance of a playar¥8y¥3-2008 on nine at-
tributes: points per game (pts), rebounds per game (rebjtaper game (ast), steals
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Figure 3.8: Hiciency vs. Cardinality

per game (stl), blocks per game (blk), assists to turnoags field goal percentage
(fgp), free throw percentage (ftp) and three points peamgm{tpp). The skyline set
of NBAconsists of 1024 players. Since the dataset’s properteixad, we adjust
v, 6 andk to measure the performance.

First, we show the quality of the results as a functiory@inds¢ in Figure3.9. Fol-
lowing the same setting of andé, the derived sampling size is the same as that of
the synthetic data. The values of # top objects, # replacen@uality(K, S) and
V(R(K)) with respect to sampling size are shown in Fig8r@ Although the ro-
bustness properties are similar, there exist severahdigins due to the correlations
betweenN BA attributes. As such, the # top points is fewer and the # rept@nts
becomes larger. Furthermore, the region sizes betweékaratht skyline objects are
skew, resulting in betteQuality(K, S) and large’V(R(K)) when compared to these
measurements for the synthetic data.

Table 3.5: Sampling Time vs. ands

Y 01| 02| 03| 04
Sampling time(ms) | 2,731| 2,025| 1,653 1,409
) 0.01 | 0.02 | 0.03 | 0.04
Sampling time(ms) | 8,363| 2,025| 898 | 515

Figure 3.10displays the relationship betwe&rand the &ectiveness of the repre-
sentatives. Th&(R(K)) is multiplied by the sampling size for clearer display.eTh
I-greedyalgorithm exerts no explicit relationship with the chand&.oOn the other
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Figure 3.9: Robustness vs. Sampling Size

hand, the order-based representative skylines preseat Qefality(K, S) as well as
V(R(K)) in comparison to distance-based representative slgy/litgnce theNBA
dataset has correlated character, the gain of the two nesagi8ampleClusire not
so significant by adding more representatives.

Figure 3.11 shows the relationship betwednand the éiciency of the represen-
tatives. Wherk varies from 4 to 12, the values af are 256, 171, 128, 102, 85
respectively. Consequently, except for clustering timgroportion tok, the random
access times, sorted access times and sampling time deasascreases.

3.5.3 Case Study of Preference Elicitation

In this section, we further investigate thigext of preference function and the process
of hierarchical browsing. Both these two factors exert apanant influence on
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the outcome of preference elicitation. The experimentcarelucted on th&lBA

dataset.

To begin with, we test the algorithm onffirent monotonic functions. Unlike
distance-based representative skylines, the order-baepegsentative skylines could
vary on the same skyline set to reflect the underlying interedifferent users.

We illustrate three dierent monotonic functions in Tab86 to show the distinct
perspectives on thdBA dataset. For the functiofl_(-j, the user favors players who
are comparable in attributes ast, stl ayig\ahile m could be a good choice if the
user prefers players with better reb and blk. Comparing eéetwliable3.7 and3.8,
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Table 3.6: The Preference Functions
Attributes

() | (pts Vreb,ast, st?, vblk, a/t?, fgp, ftp,tpp)

() | (ptsrel? ast stl blk? a/t, fgp, /ftp, vipp)
fa(: (pts reb, ast stl, bk, a/t, fgp, ftp,tpp)

Table 3.7: Them Representatives
Player ID pts | reb | ast| stl | blk | a/t | fgp | ftp | tpp
2006Nash | 18 | 4 |12 |08|0.1| 3 | .63 |.90| .45
1975Jabbar | 28 | 17 | 5 | 15| 4.1|0.0| .53|.70| .00
1987 Bird 30 6 16| 08|22| .53].92| .41
1987 Jordan | 35 6 [3.2|16|19| .54| .84 .13
1991 Stockton| 16 14 1 3.0/ 03|39]| 48| .84| 41

w| o1 ©

the five order-based representative skylinesm andm are of noticeable dis-
tinction. The former contains good assisters such as Naststotkton, while the
latter includes outstanding defenders: Gilmore, Ewingiaddoo. Moreover, tak-
ing ast for instance, the average ast of representativeshle3.7 are much higher
than that in Tabl&.8 Note that the output changes according to monotonic fancti
is totally different from ranking based on specific function. The ordeethasp-
resentative skylines achieve a traffdmetween accuracy and heterogeneity, so the
all-round players have the high probability to be selectetha representatives, such
as Jordan and Jabbar. Besides comprehending the ovaratlait of the skyline set,
users are likely to find desired objects as well. Howevenekalts of distance-based
representative skylines, as shown in TaBI@ are less satisfactory. Although close
to other skyline objects in Euclidean distance, most of épeesentatives themselves
are not quite important. Furthermore, the result is fixed amable to express the
difference between the preference functions.

Table 3.8: Them Representatives
Player ID pts | reb | ast| stl | blk | g/t | fgp | ftp | tpp
1980 Gilmore | 18 | 10 06| 24|07\ .67|.70| .00
1975 Jabbar | 28 | 17 15,4100 .53|.70| .00
1989Ewing | 29 | 11 1.0, 40| 07| .55|.77| .00
1986Jordan | 37 | 5 29|115|14| 48| .86 .18
1974Mcadoo | 35 | 14 11)21|00]| .51| .81 .00

NG NOTN
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Table 3.9: The Distance-based Representatives

Player ID pts | reb | ast| stl | blk | a/t | fgp | ftp | tpp
1989Bogues | 11 | 3 9 | 13|00|51| .48|.89] .19
1997Rodman| 5 | 15| 3 | 06| 0.2 | 16| 43| .55| .17
2003 Wallace | 17 | 7 3 108|16|13| .44 | .74 .34
2008 Diener | 4 2 2 105/01|58].41|.80]| .39

1986Jordan | 37 | 5 51129|15|14| .48 | .86| .18
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(b) Second Level Visualization

Figure 3.12: Example of Hierarchical Browsing

As displayed above, the tabular view of result is not inteitespecially for high
dimensional case. We thus visualize the process of hiacaichrowsing ofm
using the approach presented in SecBioh Since we adopt the linear function, the
five representative players are averagely excellent. Inrgig.12a), the axes are
ordered according to highlighted representative Jabldawsw strengths are blk and
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reb. Also, the set of representatives are well separated@rating large area on the
weight space. For example, the representative Stocktonndwes distinct region
comparing with Jabbar, which is reasonable because theptatly different kinds
of players. Following the highlight representative, thesaenpling is performed and
five new representatives are shown in Fig8r&b). These representatives are all
excellent defenders as the Jabbar in higher level, nicdigwiong the interest of the
user. Note that one object represents one regular seasom reiccertain player,
so Jabbar appears twice in the new representative skyliileshe records in 1973
and 1977 respectively. Furthermore, the ordering of atteibin the second figure is
very close to that in the first one, suggesting that Olajuwamsithe similar strength as
Jabbar. In summary, the hierarchical browsing approachlesasers to drill down
to the preferred regionfkectively, especially with the help of our visualization koo

3.6 Summary

In this chapter, we have introduced the order-based remiases skylines, a novel
concept that integrates the discovery of representativitsorder preference. Un-
like previous work, we brought the preference function bist& the picture when

determining representative skylines in order to elicitpheference. Moreover, a hi-
erarchical sampling-clustering framework was developsseld on the new notion.
To further consolidate this interesting framework, we pded visualized view to

guide the user’s refinement of the result. The outcomes froexaerimental study
demonstrated that our order-based representative skydize provide more infor-
mative views of data.
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Chapter 4

Diversified Keyword Search in
Databases

4.1 Overview

In this chapter, we propose to develop a novel keyword sesrstem to support di-
versified keyword search and browsing over databases. Te thakpossible, three
new challenges must be overcome:

(1) Diversity Measurement: Intuitively, result diversification is a tradefdetween
having more relevant results of the “correct” intent andihgwiverse results in the
top positions for a given quengp]. As such, aside from considering the relevance
of answers, we also need to take into account the pairwiBereince between them.
Therefore, our first and the most important challenge is fmd@& meaningful mea-
sure between substructures tailored for keyword searchtabdses. Varioudferts
have been made to measure the dissimilarity of keyword Beastilts 109, 35, 51].
While we will discuss these papers in detail subsequerntiffices to point out
here that none of them capture both textual and structui@nration when trying

to diversify keyword search answers.
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(2) Query Answering: Due to the NP hardness of result diversificatidg][ it is
thus necessary to develop afii@ent scheme to produce diversified results. Al-
though finding representatives in clustering problem is redickate solution, it is
imperative to notice that clustering method also has highpdational cost. More
importantly, the diversity quality of the clustering methis shown low compared
with heuristic approache87]. Although we try to divide results intk groups, our
objective is to make the distinction betwedeanswers as large as possible.

(3) Result Representation:Our ultimate goal is to facilitate search experience and
database usability. Since the original structural answegscomplex and not easy
to understand, we need to simplify them in order to let useiskdy perceive the
underlying diterence between answers. To achieve this goal, the chaliengef-
fectively summarize distinct features from rich structuaed contents in diversified
results.

To overcome these challenges, we develop a novel systemidassing and diver-
sified keyword searching in databases, i.e. BROAD (BROADnisaeronym for
BROwsing And Diversified keyword searching). Our contribas towards diversi-
fied keyword search in databases are as follows:

e We have devised arffective kernel distance to measure the diversity of key-
word search results. This metric integrates both the téxditi@rence and the
structural distinction in the answer trees.

e We have developed arffeient algorithm to findk diverse keyword query
answers based on cover tree index structure. Unlike thegrosessing ap-
proach, our solution seamlessly combines both relevanttrdscovery and
diverse result set selection, allowing us to dynamicallglatp the search re-
sults.

e We have provided a hierarchical browsing interface to frrtenhance our
system. By coupling our solution with summarization teciugis, we enable
users to #iciently locate desired results by drilling down to relevanswers
incrementally.
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e We have conducted extensive experiments on two real datasshow that
our framework is both fective and &icient.

The rest of the chapter is organized as follows. Secfighdefines the problem
handled throughout this work and proposes our new divenségsure. Sectiofh.3
introduces the BROAD system architecture. Sectighpresents thef&cient index
based solution. The browsing interface of diversified esubdescribed in Sec-
tion 4.5and followed by a demonstration in Sectibi®. Our extensive experimental
study is reported in Sectich7. Sectiord.8 concludes the chapter.

4.2 Problem Definition

In this section, we introduce the keyword search modelitceescribe the diversity
problem studied in this work. Furthermore, we propose a diversity measure to
capture both content and structure information.

4.2.1 Keyword Search Modeling

We model a database as a graph since it is the widely used mgdeiitable for
unstructured, semi-structured and structured dédla Database schema is a directed
graphGs calledschema graph in which nodes represent tables and edges represent
foreign key references. Eddge — S between tableR and S indicates that the
foreign key onS refers to the primary key oR. Note that there may exist multiple
edges between tables to represent multiple foreign keyardes. Given the schema
graphGs, the data graph Gp consists of nodes representing tuples and directed
edges representing the foreign key references betweasstupbnsider arkeyword
queryq {ci, Cp, ..., G}. Typically, the result ofj onGp, is represented as follows.

Definition 4.2.1 (Answer tree)

An answer tree T to the keyword query q is a rooted subtree eofittia graph,
satisfying: T contains all the keywords, and any subtree of fiot a valid answer
tree. Denote the root of T as(T) and the node set of T as(N).
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Note that we assume the result has a single root in this wognelly, without
restriction on the size of an answer tree, w e will find a largenber of meaningless
trees due to long paths between nodes. Instead, we reb&ices$ults to those trees
that have a radius less than or equat td\ote that the radius indicates the largest
path length between the root node and leaf nodes, whichsvaiitd respect to the
dataset. This is a common approach for keyword search ithases §9, 61].

Definition 4.2.2 (Res(qr))
Given keyword query g and radius r, an answer tree T is in tealteset Re@), r) iff
the path lengths between(ir) and all the keyword nodes are less than or equal to r.

4.2.2 Diversity Problem Definition

We first assume that the dissimilarity between two answestocan be measured by
a distance functionlist(T,, Ty) (with larger distance being more dissimilar), which
will be discussed later in this section. There are typically ways to define diver-
sity. One is the rank aware diversity; another is based orbgttve function. The
former defines diversity by re-ranking the result takingedsity into consideration.
However, since dierent users have fiierent criteria, it does not always make sense
to present a universal ranking. Instead, we discover a sah®ivers based on an
objective function as follows and let users discover whiok & higher intention.

Problem 2 (Keyword Search Diversification)
Given keyword query g and radius r, find a set of k answer tfeefRes(qr) which
maximizey {dist(T,, Tp)} where T, Ty, € S.

Max-sum objective is a widely used diverse definitidé,[109, 37]. Nevertheless,
our solution can be easily adopted to other popular defimstisuch as the threshold
based measurd 25 and the max-min measuré]. Without loss of generality, we
use Problen? to illustrate our idea throughout this work.
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4.2.3 Kernel Based Diversity Measure

The core of diversity problem is the need to measure the psardissimilarity be-
tween answer trees, i.dist(T,, T,). Here, we choose a kernel based method for this
purpose and will explain our choice subsequently.

Answer Tree Kernel

Formally, a kernel function1[09 is a function measuring the similarity of any pair of
objects{x, X'} in the input domairX. It is written ask(X, X') = (#(X), (X)), in which

¢ is a mapping fronX to a feature spacg. Given a set of exampl€s,, X, . .., Xm},
the Gram matrix is defined as thex mmatrix G* whose entries aref; = K(Xi, X;).

A kernel function is valid if and only if it is symmetric posie semidefinite, i.e. if
any of its Gram matrices is symmetric positive semidefiriReaders are referred to
the book [LOF for a comprehensive introduction on kernel methods.

To ensure fiicient computation of the kernel, we utilize the subtree &kfhl4] as

the starting point since it is a linear complexity kernel ficee structural data. This
kernel is extended from the state-of-the-art convolutiemkl [60]. The basic idea

is to express a kernel on a discrete object by a sum of kerhetsamnstituent parts.

The features of the subtree kernel are proper subtrees afghetreeT. A proper
subtreef; comprises node; along with all of its descendants. Two proper subtrees
are isomorphic if and only if they have the same tree strect@onsidering’; and

T, in Examplel, all of their proper subtrees are shown in Figdr& Both answer
trees contain four dierent proper subtrees, and they share three of them, namely,
f1, fo, f3. The definition of subtree kernel is as follows.

Definition 4.2.3 (Subtree Kernel)
Given two trees Jand T,, the Subtree Kernel is:

KS (Ta, Tb) = Z Z A(na, nb)
NaeN(Ta) NheN(Tp)

whereA(n,, mp) = X1 1i(na)li(ny), and where i(n) is an indicator function which
determines whether the proper subtreés footed at node n.
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Figure 4.1: Kernel Example

Originally, the subtree kernel is designed to compare omg structures without
taking node contents into consideration. For example, éneed scores(T,, T7) =
1x2+1x1+1x1 = 4 only because they share the substructiyel, f;. In our case,
the comparison between answer trees needs to consider aontints as well. Al-
though Bloehdorn et all1p] has integrated textual information into the convolution
kernel, their approach is designed for parsing tree in grananalysis. Our paper is
the first attempt to design a kernel for structural keywomatcle answers. We devise
a new tree kernel which takes the keyword semanti@inces as well as answer
tree structural dierences into consideration, and can be computed in linewes. ti
The diferences between the kernel it6] and our kernel are two-folds. First, the
text kernel in [LG] is based on subset structures, which include internahfieags,
while our kernel is based on subtree structures, since wesfon the connections
between keyword nodes. Second, the partial match6hdnly considers the termi-
nal term diferences according to the parsing tree structures, whilelseenged to
take the internal textual flerence into consideration.

The idea of answer tree kernel is to tak@,, n,) as a fuzzy match between proper
subtrees. Since answer trees contain textual informati@ncould compare the
content similarity of two proper subtrees from two answee$ that have the same
structure. Letf? be a proper subtree ifi, and f° be a proper subtree ifi, that
share the proper subtrde We merge the textual content in the noded.dand f°
into d* anddP and refer to them as documents. Next, we represent each éntum
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asv = (W, Ws, ..., W) with each dimension corresponding to a separate term. If a
term occurs in the document, its value in the vector is nan-z&pplying one of the
best known schemes, i.e. TF-IDF weighting, we obtaji(d?, d?) = (v*,*) where

V@ andV? are the weighted term vectors dff andd? respectively. Furthermore, the
keyword queryq provides another source of semantic information. Intalgiyf?

and f° contribute more to the overall kernel if they share more kayls. Thus,

we introduce a weight setting., = +/s/I wheres indicates the number of shared

keywords and represents the total number of input keywords, yielding:

Definition 4.2.4 (Answer Tree Kernel)
Given two trees Jand T,, the Answer Tree Kernel is:

a(TaTo)= > > WapA'(Ng, 1)

Na€N(Ta) NpeN(Tp)

whereA’ (Mg, ) = 371 1i(na) i (N)ko (02, dP), and where (n) is an indicator function

| 127

which determines whether the proper subtreis footed at node n.

In order to define a metric distance, we proof that the anskgerkernel is valid in
Lemma4d.2.1

Lemma 4.2.1 Answer tree kernel is a valid kernel.

Proof 4.2.1 For a convolution kernel, if the kernels on the subparts aositive
semidefinite, the overall kernel is also positive semidefioid]. As the answer tree
kernel accords with the convolution kernel format, we neeprove thatkp (d?, d”

is valid. This can be shown by the kernel definition becag$e?, d°) is computed
explicitly in terms of a dot product. Therefore, the answee tkerneka(Ta, Tp) is a

valid kernel and we map the answer tree to a doc product space.

Answer tree kernel serves as diieetive method to map original answer trees to a
kernel space. However, in the original answer tree keraedelr trees have higher
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chances to share many common features with any small treeovdi@come this
drawback, we compute a normalized kernel, i.e.

k(Ta, To) = Ka(Ta, To)/ VKa(Ta, Ta) - ka(To, To) (4.1)

Finally, we define a norfiT|| = (T, T) = «(T, T), and then obtain the metric distance
via [105:

diSt(Ta, Tb) ||Ta - Tb”
V(Ta Ta) + (To, To) — 2(Ta, Tp)
\/K(Ta, Ta) + K(Tb’ Tb) - 2K(Ta’ Tb)

V2(1 - i(Ta, To))

The above deduction relies @(T,, T,) = «(Tp, Tp) = 1 by substituting Equatios. 1

Alternative Methods

There exist several fierent ways to define the similarity between answer trees. We
could extract a finite-length feature vector for each ansine®, and then map it

to a feature space to calculate the similarity via dot proditowever, explicitly
defining an &ective feature space needs domain expert knowledge. Anote

is to adopt tree edit distanc&4]. This metric is defined as the minimal number
of edit operations to transform one tree to another. Howes@nputing tree edit
distance for tree$, andT, sufers an expensive computational complexdy|T,| +
ITu))®) [34]. Compared to these methods, the kernel based approacie camiputed

in linear time and capture both structural and textual sinty without the need for
domain knowledge.

Besides, we can decompose answer trees into a set of nodesilazedJaccard’s
distance to measure thefidrence. This method idt&cient but sacrifices the result
quality. First, it only considers the exact match of nodag, ignores the textual
similarity between them. Second, it fails to measure thecttiral connections due
to a decomposition. Two recent workY, 109 apply the Jaccard’s distance by
separating answer trees into a set of nodes. We compare tittrow method in
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the experimental section to show the kernel distance camazhetter precision and
recall.

4.3 System Architecture

We next present the BROAD system architecture as in Figuze We try to use
a pipelined framework to overcome the challenges we digclsarlier. When a
user inputs onékeyword query in the browsing interface, it will be sent &ylord
search engine generating candidate answer treg.sere we rely on the standard
keyword search engine in graph databases, which discomevgea trees from the
data graph building on top of relational database$§]. Note that this component
can be easily replaced with the relational keyword seargmer{64]. Our BROAD
system builds the connection between user interface anddtelysearch engine. It
mainly consists of three components: Cover Tree Indexeee Result Generator
and Hierarchical Browsing Operator. The results from therc®e engine can be
progressively inserted into cover tree index in an onlishilan. Based on this index
structure, we will discover diverse result set and intevatt users in a hierarchical
browsing manner. For better illustration, we briefly expldde functionality of these
components in BROAD system as follows.

e Cover Tree Indexer: This module is the core of our system aificoe dis-
cussed in details in Sectigh4. It dynamically manages the answer trees that
are returned by search engine. The kernel calculator sasv@subcomponent
that computes the distance between answer trees based schérea graph,
so that the cover tree can index resulteetively.

e Diverse Result Generator: The generator relies on the Ciregr Indexer to
discoverk diverse results. This can not only directly show resultsders,
but also provides them with the Hierarchical Browsing Oparé#or further
improvement.

e Hierarchical Browsing Operator: This component allowsrsise browse an-
swer trees in a hierarchical fashion and will be discussesieiction4.5. The
hierarchy is constructed by partitioning answer trees kngwoups based on
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their similarity to thek diverse results, and then recursively applying partition-
ing to each group. By summarizing the answer trees in eadhed groups,
we provide a way for users to quickly locate the desired tssul

( Result Browsing Interface )
(T T T T T T _____________ T’ l _____ |
: Diverse Result Hierarchical |
| Generator Browsing Operator | | B
| ' R
Keyword| | T i : (@)
query | | I A
' Cover Tree Indexer Kernel I
I Calculator | D
I y I
e e e e e e - - —_—— — —
Result|trees Schemalgraph

Data graph

Keyword Search Engine Relational Database

Figure 4.2: BROAD System Architecture

4.4 Methodology

In this section, we propose affieient algorithm computing the tree kernel distance.
Based on this, we develop a cover tree based algorithm te subblen®. Alterna-
tive approaches are listed in Sectibd.3

4.4.1 Kernel Distance Computation

To compute the tree kernel distance, a naive calculatibowie naturally from the
idea in Definition4.2.4 Intuitively, this method checks all the possible comhiorad
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between nodes of two answer trees and sums up the sharedopaltsin the final
score. It is straightforward but fiers fromO(|T,||Tp|) computational complexity.
Here we consider this problem from another aspect. The nuoflpgoper subtrees
in a tree equals to the size of the tree. Let us consider Figuragain. T, has
four proper subtreesf,, f,, fs, f4}, andT; has five{fy, f1, f,, f3, fs}. Therefore, we
could directly enumerate all proper subtrees instead afkithg every possible node
combination.

Based on this intuition, we design a novel bottom-up algamito merge answer trees
into a directed acyclic graph. The graph at the bottom of Feégulis generated from
answer tree$; andT;. The number inside each node represents the correspondence
between a tree node and a graph node. For instance, the natdabel 3 in two
answer trees can be merged into the graph node with labeis3bdtcause they have
the same structur, in which all the nodes come from the “paper” table. Due to the
bottom-up traversal, the children of newly accessed nods& brimapped to certain
graph node before it. Thus, by checking the child correspoaés, we could easily
determine whether this node should be mapped to an existidg ar we need to
create a new graph node. At last, each graph node representsral of proper
subtree, because we create a new graph node if and only ifsge\ir a new proper
subtree. In this example, the two answer trees are mergedhatgraph with five
nodes, indicating that they contain fiveffédrent substructures in total. Following
Definition 4.2.4 we calculate and sum up kernel scores of all the substestor
derive the final kernel score.

The improved algorithm contains two major subcomponentgaalgorithm 4.
FunctionbuildDAG merges two answer trees into one directed acyclic g@ph
Following the bottom-up order, we add nodedjinto theleftsetof nodes inG and
nodes inTy, into therightsetof nodes inG. We then utilizeG in thekernel function.
This component computes semantic scores based omgtiisetand theleftsetof
each graph node, and adds them up to obtain kernel scoree indim algorithm, we
need to derive the self kernels fox and T, and the cross kernel betweégpandT,,.
Finally, we can calculate the kernel distartist(T,, T,) in line 4. Concerning the
computational cost, the merging part needs single bottprmaverse of two answer
trees, and the computing part @8G|) complexity with|G| < | T4 +|Ty|. Obviously,
the total complexity of Algorithnd is linear to the answer tree size.
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Algorithm 4 : KernelDistance

Input: Answer treed , andT,
Output: The kernel distancdist(T,, Ty)
1 DAG Ggp «— buildDAG(T,, Tp)
2 DAG Gga «— buildDAG(T,, Ta)
3 DAG be — bUI|dDAG(Tb, Tb)
4 dist(T,, Tp)=

\/2(1— kerne(Gap)/ Vkerne(Gaa)kerne(Gpy))
buildDAG (Answer tre€el,, Answer tre€l )
1 enqueud,’s andTy’s leaf nodes into queu@
2 create empty DAGS
3 while Q is not emptyo
4 dequeue node from Q ; found«— false
foreach node ve G in bottom up ordedo
break ifv andw have diterent heights, outdegrees, or provenances
if v.and w have the same childrémen
L if we T,then addwtov.leftset

© 00 N o O

else ifw € Ty, then addw to v.rightset

10 found «— true; break

11 if_found: falsethen

12 add a new nodeto G

13 if we T,then addwtov.leftset

14 else ifw € T, then addw to v.rightset
15 L add arcs irG from v to all children ofw

16 if w# Rootand parent(w)’ children are processdtien enqueue node
| parent) into Q
kernel(DAG G)
1 Kp €< 0
2 foreachnode ve G in bottom up ordedo
3 d, < U text content of v.leftset
dy, < | text content of v.rightset
Wap «— VS/T; A'(V) = kp(da, db)
Ka+ = WapA'(V)

o O b
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4.4.2 Cover Tree Based Diversification

Cover Tree Overview

The cover treel4] is a metric tree to index data and perform nearest neighdaoch

in metric spaces. Itis a leveled tree where each level iseftdor the level beneath

it. Each level is indexed by an integer scalghich starts from zero (root node) and
increases as we descend the tree. For instance, a coven trégure4.3 indexes
fifteen results of Examplg. Every answer tree repeats in the lower level after it first
appears, so the lowest level contains all the answer trees.

Assume that we use the cover ti€& to index our answer sét based on answer
tree distances, ar@ to indicate answer trees 0 associated with the nodes at level
i. Cover tree obeys three important properties for all level9:

e NestingC; c Ciy

e Covering For every tre€l, € Ci,q, there is a tre@}, such thadist(T,, Tp) <
1/2' and exactly one such, is a parent off .

e SeparationFor all treesT,, Ty, € G, the distance froni, to Ty, is greater than
1/2'.

Note that the cover tree definition in our case eatent from the original definition
in [14]. In contrast to the Euclidean distance without upper botine kernel dis-

tance between answer trees ranges from 0 to 1, so we assigiotlod the cover tree
as level 0 with the maximal distance coverage 1, and destencbwverage through
the tree level by level.

In order to better illustrate the diversification on top oveptree structure, next
we summarize the procedure of the cover tree constructibe.ifituitive idea is to
iteratively insert answer trees into the cover tree and lked¢sp the three properties
stated above. Each answer tfees recursively inserted starting from level O until
the highest possible levelsuch thafT has the distance greater thaf2'1to all the
answer trees in leve] and is covered by the answer tree in levell within distance
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1/20-1. TakeTy in Figure4.3as an example. In level 0, it is covered Bywithin
distance 1, so that it drops to level 1. Similarly, itis fuatltovered by, andT- until
itis inserted into level 3. The authors ib4] proved the correctness of this insertion.
Besides, they also provide a batch construction which isicafly superior to a
sequence of single point insertions. Readers are refevrie tcover tree papei §]

for a comprehensive explanation.

® T ™ oo

@ @ @ T @ @ T C
@ @ T @ @ W @ @O WG B & WG

Figure 4.3: Cover Tree Example

Diversification on Cover Tree

We next describe a cover tree solution to findiversity answers out dil answer
trees. We assumd > k throughout the paper, since it is trivial to return all the
candidates as diverse results whén< k. The separation property of cover tree
suggests that nodes at higher level are more diverse. Therehstead of discov-
eringk diverse results from the whole answer set, we could make fuge @over
tree to dficiently find good candidates for the result diversificatioolgem. Unlike
the nearest neighbor search on cover tree, we propose aygakgdithm to meet
our need. Intuitively, the idea is to discover diverse ressinl the highest possible
level on the cover tree. As illustrated in AlgoritlBnwe access cover tree one level
at a time, and stop at the first level including at ldasibdes, which is denoted as
the working levelC;. If the size ofC; equalsk, all the answer trees in this level are
returned as diverse results. OtherwiBg; is selected as the partial results, for that
they are more separate in general according to the sepamtperty. Next, we
heuristically expand the farthest node in the working lewsil |S| = k. Whenk is
set to 3 for the cover tree in Figude3, the algorithm proceeds as follows. At level
0, it only contains the root node. Then the algorithm corésito the next level with
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four nodes. The number of nodes is larger tkaso this level becomes the working
level andTg from the above level is selected as the partial result. NexdndT ;s are
further included by means of farthest expanding. Finallg,discover{Tg, T3, T1s}
as diverse results for this running example.

In this algorithm, we first construct the cover tree indexJi@®N In N) time for the
expansion constac{14]. The basic operation later in this algorithrsistdis{T, S),
I.e. Yr.cc dis(T, Ty), which requiredS| distance computations. Sing# < k, we
obtains its complexity a®(k). This operation is performe®(k|/C;|) times in the
while loop. In the worst caséCi| equals toO(N). Combining the above two parts,
the final complexity of this algorithm i©(c®NInN + kN) in terms of distance
computations.

Furthermore, we propose an update method to support ugdaek diverse results
when the candidate set is progressively generated. Thelyimdeidea is to check
whether this newly added answer tfEg,, affects the working level, and then adjust
thek diverse results by means of swapping betw&gy andT,q in original results.
The swapcodfT ew Tow) indicates the sum distance change when we replage
With Thewin S, i.e. setdistTew S) — setdistTqq, S). The complexity of Algorithné
consists of two components. The first is the beginning irmewith a complexity
of O(In N) [14]. The following part ha©(k?) complexity since thewapcosbpera-
tion is performedO(k) times. Thus, the total complexity of the update algoritlsm i
O(In N + k?) in terms of distance computations.

The complexity of Algorithm6 consists of two components. The first is the inser-
tion at the beginning, which has a complexity ©fin N) according to 4]. The
basic operation of the following part svapcoHfT ew Tow), Which has the same
complexityO(Kk) as thesetdistoperation. Thus, this part has complex@fk?) since
the swapcosbperation is performe®(k) times. In summary, the total complexity
of the second algorithm i©(In N + k?) in terms of distance computations.

To sum up, the cover tree based approach has several adeantagst, instead
of diversifying results in the whole answer set, we utililes separation property
to reduce the number of distance computations. Furtherncoreer tree supports
progressive insertions with minofferts. Finally, the tree-like structure makes it a
great tool for hierarchical browsing, which will be furthexplained in Sectiod.5.
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Algorithm 5: CoverTreeDiversification

Input: Answer tree sef ", k
Output: Thek diverse result se$

1 build cover treeCT from answer tree sét
// find the working level

2 Ci_1 «— NULL

3 Ci — Co

4 while |G| < kdo

5 Cii =G
6 Ci=Cin

// discover Kk diverse results

7 if |G| = kthen
8 S « |J all the answer trees iG;
9 else

10 S « |J all the answer trees iG;_;
11 while |S| < kdo

12 find answer tre@ € C; \ S, s.t.
setdis{T, S) = maxsetdis{T,S) : T € C; \ S}
13 S — SU(T}

Algorithm 6 : Update

Input: Cover treeCT, Answer tre€l ey, Result setS
Output: The refinedk diverse result se$’
insertThewintoCT
if working level G e CT is not changethen
if |Ci_1] = kthen

S’ « |J all the answer trees iG;_;
L set the working level to b€;_;

a A W N P

6 elseS’ — S

7 else
8 maxcost— 0; swaptree«— NULL
9 foreach answer tree 4 € S do

10 if swapcodfTew Tolw) > Maxcosthen
11 maxcost— swapcoTew Toid)
12 L swaptree— Tqyqg

13 if maxcost> 0then

14 replaceswaptrean S with Tpey

15 S «— S
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4.4.3 Alternative Solutions

We propose two state-of-the-art alternative approacheshe the diversification
problem. One solution is adapted from the farthest exparedgorithm B7, 52]. It
maintains two sets of trees: the answer treegsand diverse result s&. Initially,

the size of7” is N and the size oS is zero. The farthest answer trees are itera-
tively moved from7 to S until |7] = N — k and|S| = k, as shown in Algorithn?.
setdis(T, S) in line 4 is the sum distance between answer Tremd all answer trees
inS, i.e. Y1.csdist(T, Ty). Although guarantees a 2-approximation to Prob&sn
optimal solution $2], this algorithm has complexit®(N?) in terms of distance com-
putations, which is relatively high when the number of anstsees is large. One
possible relaxation of the quadratic complexity is to ranfjoselect the first result
and expand to regt— 1 results. However, this method needs to select diversésesu
from the whole answer set and is sensitive to the first reatilich needs multiple
restarts to obtain a stable performance.

Another approach, thiemedoids clustering, is derived from CLARANSZ. The
idea is to cluster candidates inkogroups and select medoids lasliverse results.
The number of distance computationgd@k(N — k)?), wherel is the number of
iterations. This method $iiers high computational cost. Furthermore, it also re-
quires starting from multiple initial medoids to approadblzl optimal results. The
detailed comparison among these algorithms will be showhedrexperimental sec-
tion.

Algorithm 7 : FarthestExpanding

Input: Answer tree sef, k

Output: Thek diverse result se$
1 find Ty, Ty, s.t.dist(T,, Ty) = maxdist(T,, Ty) : Ta, To € T, Ta # Ty}
2 8§ {Ta, Tp}
3 while |S| < kdo
4 find answer tre@ € 7\ S, s.t.

setdis{T, S) = maxsetdis{T,S) : T € 7 \ S}

5 S — SU({T}
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4.5 Result Representation

To improve the usability of the BROAD framework, we implenetha demo sys-
tem [L34] with an interactive visual interface, so that the user cgriage the query
results by means of hierarchical browsing.

4.5.1 Hierarchical Browsing

Hierarchical browsing is anfiective approach to interact with users and can be el-
egantly supported by the cover tree structure. We proceddllasis. First, we
separate answer trees in the working level inemswer tree grougs based on their
kernel similarities to thé& diverse results. A user then selects a sudseff interest.
Second, we fetch all nodes in the next level coveredhyand treat them as nodes
in a new working level. Thus, we can perform Algoritftnagain to obtain a new set
of diverse results. This procedure iteratively proceeds we obtain the intended
answer trefs. For instance]g, Tz and Tys in Figure4.3 are diverse results found
previously. We first assigiii, to T3 due to the kernel similarity and these four an-
swer trees form three groups. Assume that users are irdgdrigsthe grougTs, T4},

so we drill down to the next level with answer tree SBf, T4, T7}. They are directly
selected as new diverse answers because the size of tHisdgwads to three.

45.2 Visual Interface

To support hierarchical browsing, we develop a circulamwte summarize both
structures and contents of a group of answer trees. As ssels gan quickly browse

and select preferred answer trees from the whole answeifl betbasic idea is de-
rived from the Circos projecf73] and we adapt it for the answer trees’ summariza-
tion. In the following, we take answer trde to show the process of mapping one
answer tree into a circle. Figudeda depictsT; and it is transformed to the red part in
Figure4.4b and4.4c. The root node and keyword nodes are mapped to segments, and
pathes between nodes are mapped to ribbons. Answer treentgnivhich will be
discussed later, are selected as representative wordschttoel circle. We also sup-

port the focused view when a user chooses certain answeltisalisplayed with
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color and path structures, while other answer trees beca@msgarent. To illustrate,
T, in Figure4.4c is shown in red and highlighted with the structure “authpaper”
between the root node and the “skyline” keyword node. Fooagof answer trees,
the shared nodes among answer trees are presented jusb@ae tspace. For in-
stance, Figurel.4b only contains two “skyline” nodes and three “rank” nodes fo
eight answer trees. As a result, the circular view for a gr@ftanswer trees salvages
large spaces compared to the original layout. Furthermazeitilize diterent colors
to distinguish answer trees so that users can quickly cajptonv many of them are
covered in a group. In general, this view is suitable for kesthsearch, becaugas
usually much less than one hundred in real keyword searchasss.

Ribbon corresponds to
one path in an answer tree

Name
Title Abstract
Title Abstract
Title Abstract
ef
Title Abstract

Pbro,
->author->paper
¢

Segment corresponds to
one node in an answer tree
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Figure 4.4: Result Representation

Aside from structural summarization, representative word, are attached to the
related segments in order to distinguish the circles thmbarthe same level of the
hierarchy. Given any segmestlet the node it represents Ime The ribbons that
connects to other segments in the circle represent paths in the ansees that
connectn to other nodes in the answer trees. For each segment, ctaaideds
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Algorithm 8 : Word Selection

Input: Segmens, Answer tree group§

Output: Representative word®/,

1 obtain candidate word$/; of segmens

2 obtain groupg that segmens belongs to
3 foreach candidate word we ‘W do
4 7’ « all the answer trees ig containingw
5 7« all the answer trees ig
6
7
8
9

w.CoverRatio— |7|/|7T |
G’ «— all the groups ing containingw

w.Frequency— |G'|/|G]
w.S core«— w.CoverRatiox log(1/w.Frequency

10 sort'W, with decreasing scores
11 selectW, proportional to the width of segmest

W, are selected from these pathes. Candidates for the higddighot segment in
Figure4.4c are all the words from nodes iry. We then obtairi; from these can-
didates as in Algorithn®. In short, we compute a TF-IDF like score for candidate
words, and select top candidates as representative worslsuéh, we sketch out
the distinct contents of answer trees. The number of reptathee words selected
depends on the width of the segment. For the green root segmieigure4.4f, the
words “network”, “distributed”, “peer” and “neighbor” aselected as representative
words, since they have highest scores. To further emph#szeord distinctions
within a segment, we present the selected wordsftierdint font sizes, according to
their term frequencies in one segment. The words “netwonk! ‘gpeer” are high-
lighted with the biggest font size since their term freques@re the largest in the
segment.

The circular representation provides a summarized view foststructural and tex-
tual information about an answer tree group, which enhatieeprocess of hierar-
chical browsing. In Figured.4d, 4.4e and4.4f, we show three circles representing
three groups of answer trees on the lower level of the brayfsiaerarchy. The left
circle consists of two answer trees with one “rank” node amal ‘tskyline” nodes.
The content is mainly about the web services. The middldecaontains three an-
swer trees. The major topic is the relationship betweerktgpery, skyline query
and preference discovery. The right circle with three amsvees emphasizes the
connection between skyline algorithm and distributed@mment. In summary, cir-
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cles can show distinct and summarized information aboutfggpwhich help users
to browse and select desired answer trees. Note that cieskeis¥ a complement but
not a substitution of presenting trees. Thus, we show baifciftle view and the
tree view in the demo. Users may quickly obtain the summarg fgroup of answer
trees in the circle view. They can further know the detaitgdimation in the answer
tree view.

4.6 Demonstration

In demonstration, we develop a web based browsing intérfacgipport interactive
diversified keyword search. As shown in Figdr§, the interface consists of a search
input area and a result display area. Search input area awphef the interface
contains keyword input field, zoom/mut buttons and setting fields for user-specified
parametersk(andn). Therefore, we enable user to search by keyword query ds wel
as perform hierarchical browsing using zoonfoutt buttons.

Skyline rank I Bensony " (Zoominy iZoomauty k' R 5

Thumbnail View Focused View Answer Tree View

1of3 ™

->author->paper

Figure 4.5: BROAD Interface

Result display area on the bottom is composed of three views feft to right:
thumbnail view, focused view and answer tree view. The thueillview displays

k circles to summariz& answer tree groups as a list of thumbnail images. Conse-
guently, users can click the desired circle and enlargethénfocused view, which

Ihttpy/db128gb-b.ddns.comp.nus.edu.sg:gb8tad
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allows users to focus on certain segments or ribbons. Theethelement is high-
lighted with color, while other elements become transparéve also make use of
a tooltip to describe the structure of selected path. Furibes, the corresponding
answer tree will be represented in the answer tree view. Vibig utilizes a tree

layout to depict the answer tree structure in node labeld de@pict the answer tree
content in tooltips.

Take the keyword quergskyline,rank as an example in Figuee5. A user set& = 3
andn = 15 to discover three diverse answers from fifteen candidates thumbnail
view shows a preview of three circles, so the user can bromeseverview through
a scroll bar and select the desired one to display in the &mtugew. For example,
the top circle in the thumbnail view is selected with the dethinformation in the
center. Besided[s is highlighted with red color because the user clicks on ¢t r
segment offs. Moreover, when mouse hovers over on the ribbon betweerotite r
node and the “skyline” keyword node, a tooltip “authguaper” shows the structure
information. Correspondingly, the tree layout in the anstnee view visualizes the
structure and the content @§. If the user ticks the top checkbox in the thumbnail
view and then presses the zoom in button, the system carddvilh to next level
and present a set of new circles.

In summary, our BROAD system provides a user friendly itegfthat helps users
search and explore diversified keyword search results. &beist of our knowledge,
our work is the first attempt to support interactive hierazahbrowsing on keyword
search in databases.

4.7 EXxperiments

We present experimental studies to evaluate the BROAD msygtethis section.
Without loss of generality, we implemented the state-efdint graph based keyword
search algorithmd9] to discover candidate answer trees. It retiMnsandidates and
we then discovek diverse answers out of it. Tabfel explains the parameters used
throughout this section. It also shows the range and theutiefalues (in bold) of
the parameters. In each experiment, we adjust one parawtaterkeeping the other
one at its default value.
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4.7.1 Datasets and Queries

We use two real datasets to assess our system. One is CeSeeollection of
scientific and academic papers focusing on computer andmafiton science. We
choose this dataset for two reasons: i) It maintains a lamgguat of paper abstracts
as well as citations between papers; ii) It is a dataset fmrdine search engine as-
sociated with a query log. Another is Yagbl[J, a huge semantic knowledge base
derived from Wikipedia and WordNet. Originally, Yago dattss stored as a set of
triples(subject,property,object). It contains severdliom of entities and 88 property
types between them. According to the entities’ type attabuwe transform Yago to
a traditional database storage by separating entitiestereint tables and connecting
them by foreign key references. For instance, people estitecome tuples in peo-
ple table and may connect to tuples in location table by borederences. Statistics
about the graphs generated from the datasets is shown ia &bl As in Defini-
tion 4.2.2 we tune radius with respect to dterent datasets to generate meaningful
candidate set respectively.

Table 4.1: Parameter Settings

Parameter Description Range
N answer tree set siz€| | 25,50, 75,100
k diverse result sizgS| 2,4,6,8,10

Table 4.2: Dataset Statistics
Property | CiteSeerX Yago
Node count| 1,127,838 | 9,960 479
Edge count| 3,414,540 | 16,666 533
Radiusr 6 3

To obtain a reasonable query set, we adopt a two-stage pnecdd the first stage,
we extract meaningful query terms for each dataset. FOSE#eX, there is a query
log which is dominated by short queries with no more than 2nkeys & 94%).

As such, we derive query terms from the log instead of diyeadiing it. This is

done by extracting terms with term frequencies larger tiarFbr Yago, we extract
ambiguous terms from wikipedia disambiguation pagesmbiguous terms refer to
more than one topic. For example, “Healer” may refer to a fitra music aloum. We

2httpy/en.wikipedia.orgwiki/Wikipedia:Disambiguation
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collect and use them as query terms. The second step is tcageReyword queries
by randomly combining query terms. For query sizeiom 2 to 5, we produce
1000 initial queries for each value bf In order to guarantee correctness, we test
the queries using the keyword search engine, and filter egiénat cannot produce
enough answer trees. Then we rank the remaining queriestgdo the number of
different keyword nodes in a descending order. Finally, we s#ledop-10 queries
for eachl, i.e. 40 queries per dataset.

4.7.2 Evaluation Metrics

In IR community, evaluating the accuracy of diverse quesylits is well studied and
several evaluation metrics are established, such as $-aadaS-precision127), a-
NDCG [31], NDCG-IA [5] and so forth. The metrics extended from NDCG are
not suitable for our problem, for these metrics rely on theulteranking. There-
fore, we will evaluate our system based on S-Recall and Sigtoa. However, we
need to carefully adapt them for keyword search in databdsegeneral, most of
these evaluation metrics are based on subtopics or nuggets indicate semantics
covered by answers. Berently, in the context of database keyword search, we are
required to capture both semantic information and strattnformation. Therefore,

we consider substructures as a complement to subtopics.

We first generate subtopics for two datasets respectivelyCReSeerX dataset, each
paper is associated with a conference or a journal. We thuixedethe topic infor-
mation based on the research area of the conference or timiajoNote that author
nodes may be related to multiple topics because they pddliphpers to dierent
research areas. Since entities in Yago dataset have typmites derived from the
wikipedia categories, we then utilized them to assign nedtgsdifferent subtopics.
As for substructures, if the result set contains moféedent pathes from the root
node to keyword nodes, it intuitively covers more divergeicttiral information.
So we decompose each answer treé pathes from the root node to all the key-
word nodes to evaluate the structural diversity. As a reaniwer trees are reliably
mapped to subtopics and substructures. Let subtpaicssubstructdor queryq be
the subtopics and substructuresNrcandidates, and subtopi@g(and substruct3i)
be the relevant subtopics and substructures in answeitre&/e formally define
S-recall in database keyword search as follows:
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Definition 4.7.1 (S-recall)
Given k results for keyword query q,

1Us-q subtopicgTa)|
|subtopicg

| UX_; substructéT,)|
' |substructg

S-recall =

(1-a)

wherea € (0,1) is a parameter to balance semantic information and steia-
formation. The above metric refers to the percentage ofogitd and substructures
covered by one of thk results. However, it is trivial to achieve recall of 100% by
returning all candidates in response to any query. Thezef@ define S-precision
as a complement to S-recall. The subtoparsd substructgefer to the ideal size of
subtopics and substructuresdnesults, assuming that all the keyword nodes contain
distinct topics andl different pathes.

Definition 4.7.2 (S-precision)
Given k results for keyword query q,

| Us-, subtopicgTy)|
' |subtopicgl

| UX_, substructT,)|
' |substructg

S-precision = «

(1-a)

wherea € (0, 1) is a balance parameter same as that in the definition of&krén
the following experiments, we set= 0.5 to treat semantic @fierence and structural
difference equally. Besides taking substructures into coradida, our S-precision
still differs from the S-precision in papetq7. They defined S-precision based
on S-recall. Given S-recad}, S-precision equals t@inRe$S, ., S)/MinRess, s,).
minResS, s) indicates the minimal size of results having S-resallThis definition
is not straightforward in the first place, since it is derifemm S-recalls instead
of result sizek. Moreover, the computation is impractical due to the hasdref
generating the optimal solution. These two reasons drivie adter the definition
of S-precision. Nevertheless, our definitions of S-recatl §-precision are natural
analogy of the standard recall and precision measures.
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4.7.3 Kernel Distance v.s. Other Distance Functions

In order to verify the &ectiveness of the kernel distance, we compare it with two
state-of-the-art distance functions: tree edit distamceJaccard distance. The fol-
lowing figure shows the diverse result for three distancél thie default parameter
settingN = 50 andk = 6).

O Semantic Part O Semantic Part
1Lk O Structural Part 1Lk O Structural Part
— 08} 5 08F
3 @
(5]
2 06 0 06
(o}
1% %)
& 04 204t
. z 0.
0.2} 0.2}
0 0
£8% £8% £8% £8%
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CiteSeerX Yago CiteSeerX Yago
(a) S-recall (b) S-precision

Figure 4.6: Comparison of Distance Functions

This figure compares three distance functions on S-recdllSaprecision for two
datasets. We present the detailed components of S-rechbqumecision, i.e. the
semantic part and structural part. As can be seen, Jaccdehde has better score
on the semantic part while tree edit distance has bettee smothe structural part.
Since kernel distance captures both semantteidince and structuralféirence, it
shows much higher overall score than other two distancetifum: Therefore, we
utilized kernel distance to compare algorithms in the folfg.

4.7.4 Cover Tree Algorithm v.s. Other Algorithms

To assess cover tree diversificatidierseK), we compare it with top-k candidate
answersTopK), Farthest Expanding algorithrgrthestK) and Clustering algorithm
(ClusterK).
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Effectiveness Evaluation

We first varyk to study how it &ects the &ectiveness of four approaches. To be-
gin with, we present the average S-recall in Figdré It is clear that this metric
has an ascending trend with the increask fafr all schemes. Sincsubtopicgand
substructg remain the same for all schemes, S-recall is only dependatiteonu-
merator parts of its definition. Their values increasé ascreases, bringing about
the ascent of S-recall. Nevertheless, we can easily ndtaedistinction in perfor-
mance from the bar grapf.opK performs worst because its ranking only relies on
the relevance of the keyword query. AlthoughusterKgroups answer trees accord-
ing to the similarity, it is not optimized to select pairwdiéerent medoids, so it also
produces low quality results. FérarthestKandDiversekK it can be seen that they
acquire the best results since they both apply the greediegir to discover results
with respect to Problerfd's objective. Comparing the two datasets, the S-recall for
Yago in Figured.7bis lower than that of CiteSeerX in Figude7a since the number
of 7’s subtopics and substructures in Yago is larger than th@tteSeerX.

Figure4.8depicts the ffect ofk on the average S-precision for both datasets. The rel-
ative performances among all approaches are similar tortakysis for S-recall but
the trend is negatively proportional ko Our solution together witlfrarthestKdis-
covers the most diverse results among these four algorjinte higher S-precision
indicates smaller subtopic and substructure overlap tweaswer trees. Compar-
ing Figure4.8aand Figure4.8hh we observe that the S-precision for Yago is higher
than that of CiteSeerX. This again is due to the rich numbesubtopics and sub-
structures iry~, which results in Yago having a lower chance of obtaininglayped
result trees.

Next, we show theféectiveness measures by varyiNg The comparisons with re-
spect to average S-recall and average S-precision areralied in Figure4.94.10
respectively. Like the case of varyikgour solution as well aBarthestKgives the
best quality answers and outperfor@kisterK andTopK by 20% to 40%. This re-
sult shows the féectiveness of our solution. In Figu#e9, S-recall decreases &b
increases. This is becauibtopicg and|substructg increase withN. In Fig-
ure 4.10 when subtopicg and substructg remain the same with invariatkt S-
precision is proportional to the numerator parts of the &ision definition, i.e. the
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(b) Yago

(a) CiteSeerX

precision w.r.t. k

Figure 4.8: avg S-
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coverage of th& results. The results diopK have the same coverage. The coverage
of clusterKhas a small fluctuation, because tedoids of clustering method are
affected by the randomly selected initial medoids. For therdthe algorithms, the
fication excluding the time to discover candidate set. Thissicause we used identi-

guality increases wittN. This observation is accordant with the intuition that we
cal keyword search engine withoutecting the comparison among algorithms. We

have more chances to discover better results asreases.
We then report thefciency results considering the response time for resudirdiv

Efficiency Evaluation
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Figure 4.9: avg S-recall w.r.t. N
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Figure 4.10: avg S-precision w.r.t. N

also show the update cost for cover tree based solutionttagdkexibility. In sum-

mary, by evaluating above metrics, we expect to investitp®verheads and gains

of our framework. One important observation is the repedistnce computations

waste a lot of time for all three algorithms. In our implenagian, we cached the
computed kernel distances in the main memory and reusedithegse they needed

again. Because each distinct distance is calculated ordg,dhe running time can

be improved. Note that this tradékdetween time and space is meaningful because

the answer tree set si2¢ is remarkably small compared to the cardinality of the

dataset.

Figure4.11 displays the relationship between the running time AindAlthough

the response time for three algorithms increase at a supgarltrend, the cover
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tree based algorithm is still at least twice faster thanRdwthestK ClusterKis the
slowest one since it needs multiple iterations and eactiter takes quadratic time.
Respecting to the running time for two datasets, we perdé&eYago queries are
faster than CiteSeerX queries on average. The underlyaspreis the average an-
swer trees size of Yago is smaller than that of CiteSeerX. Aesalt, the individual
distance computation takes less time for Yago datasetdBgsihe cover tree based
solution supports dynamical updates as shown in Algor@hihis operation aver-
agely takes 27ms for CiteSeerX and 15ms for Yago on the dgfatdmeter settings,
which just incurs a small overhead compared to discoveriog fscratch. Readers
are referred to our technical repoit35 for a comprehensivefgciency comparison.
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Figure 4.11: avg Runtime w.r.t. N

In summary, we show that the BROAD system is bofie@ive and #icient from

the above experiments. The proposed kernel distance ruaptyres the diversity of
answers. Aiming at the same objective, the cover tree badati® is comparable
to the FurthestK algorithm, which is much better than the clustering method a

the original topk answers. Also, it has the best response time and can dyrmica
updatek diverse results instantly.

4.8 Summary

In this chapter, we have introduced BROAD, a novel systerititegrates the dis-
covery of diverse results with the current keyword searajirenin databases. Un-
like previous works, we proposed a new kernel distance mie¢tween answer trees
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which captures both structural and semantic informatiororédver, a cover tree
based approach was developed in order to quickly and preigeds return diverse
results. To further consolidate this interesting frameuare provided a hierarchical
browsing interface that helps navigate users in refiningaoaising keyword search
results. The outcomes from an experimental study demdedtthat the BROAD

system can provide broad views of the answers that are estloy keyword search
engine.
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Chapter 5

Social Network Visual Analytics

5.1 Overview

In this chapter, we propose an analytic system which allosesuto perform intu-
itive, visual browsing on a large scale social networks. rérege two major chal-
lenges must be overcome:

First of all, how to improve the scalability is one potentibbllenge of cohesive sub-
graph discovery for social network analysis. Most of these®g approachesl[L6
117, 128 mainly focus on the dense region recognition for moderate graphs.
However, many practical social network applications needtbre the large scale
graph in disks or databases. Like Facebook, over 800 midiive actors use its
service per month all over the world ], which is impossible to fit in memory.
Therefore, besides providing memory based solutions, wasf@mn developing a
solution to handling a large scale social graphs stored irmphgdatabase, which
is more scalable for graph operations than a relationabdata Like Twitter, re-
cently it migrated its social graph to FlockDBZ], a distributed, fault-tolerant graph
database for managing data at webscale. By leveraging giapbases, we extend
memory based algorithms t@d eficient solutions for large scale social networks.

Additionally, exploring and analyzing social network cam time consuming and
not user-friendly. Visual representation of social netygois important for under-
standing the network data and conveying the result of thisisa However, it is a
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challenge to summarize the structural patterns as welleasdghtent information to
help users analyze the social network. One previous widr] jproposes a novel lin-
ear plot for graph structure, which sketches out the digtiain of dense regions and
is suitable for static dense pattern discovery. Unlike wWosk, our system insulates
users from the complexities of social analysis by visuaiziohesive subgraphs and
the contents in an interactive fashion. For graph structwes propose an orbital
layout to decompose the graph into a hierarchy with resetttd cohesive value,
in which more important social actors are located in theareriigurel.4bshows
an orbital layout for the graph in Figufie4a Briefly speaking, this layout consists
of four orbits with four different colors, in which the more cohesive vertices are lo-
cated closer to the center. Like the 5-cliqeely c, d, f), all five vertices are in the
innermost orbit. As for vertices size setting, ordering adde filtering, we will ex-
plain them in details later. For the contents, we make usag€tlud technique to
summarize the major semantics for a group of social actoese@lly speaking, our
visualization is flexible and can be easily applied to otlwdresive graph concepts.

In this work, we develop a novel social network visual analffamework for large
scale cohesive subgraphs discovery. Our contributionsiarenarized as follows:

e We have introduced a novel cohesive subgraph concept taregpie intrinsic
feature of social network analysis nicely.

e By leveraging graph databases, we have devisedtianebalgorithm to com-
pute global cohesive subgraph&@ently. Moreover, we have developed an
online algorithm to further refine local cohesive subgrdpdesed on the results
of offline computations.

e We have developed an orbital layout to decompose the cahsshgraph into
a set of orbits, and coupled with tag cloud summarization¢kvhallows users
to locate important actors and their interactions insidegsaphs clearly.

e We have conducted extensive experiments, and the reswols thlat our ap-
proach is both #ective and #icient.

The rest of the paper is organized as follows. Sechi@uefines the cohesive sub-
graph discovery problem handled throughout this work. i8ed.3 presents the
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offline computations in the graph database. The online viswwy@nsystem is de-
scribed in Sectiob.4and followed by a demonstration in Secti®®. Our extensive
experimental study is reported in Secti®®. Section5.7 concludes the paper.

5.2 Problem Definition

In this section, we first introduce the preliminary knowledthen define the max-
imal k-mutual-friend finding problem, and show several impor{aaperties about
this concept. Furthermore, we compare it with cligkkepre, DN-Graph as well as
truss decomposition in depth.

5.2.1 Preliminaries

As stated in Sectiob.1, we model a social network as an undirected, sinsplgal
graph G(V, E) in which vertices represent social actors and edges repréegerac-
tions between actors. Themutual-friend subgraph proposed in this work is derived
from a clique and-core [L0Z. Clique is a fully connected subgraph, in which every
pair of vertices is connected by an edge. If the size of a eliga, we call the clique

a c-clique. k-core is one successful degree relaxation of clique corefied as
follows.

Definition 5.2.1 (k-core Subgraph)
A k-core is a connected subgraph g such that each vertex v émea dv) > k
within the subgraph g.

Thek-core is motivated by the property that every vertex hasetsd(v) = c— 1 in
a c-clique. k-core also needs to satisfy the degree condition, but thaatasn on
subgraph size is not required. As sukkgore can beféiciently computed irO(|E|)
time complexity [L0Z. Differently, based on the observation in Secttof, we
propose thé&-mutual-friend subgraph to emphasize on tie strength. Gmpoitant
property about edges in a clique is that every edge is sugghtntTr(e) = k — 2
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triangles in a&k-clique. Analogous to th&-core definition, th&k-mutual-friend sets
a lower bound for every edge’s triangle count. Next we wilinfially define the
k-mutual-friend and show its relationships to other cohesivuctures.

5.2.2 Thek-mutual-friend Subgraph

Definition 5.2.2 (k-mutual-friend Subgraph)

A k-mutual-friend is a connected subgraphegG such that each edgglev) is
supported by at least k other vertices which connect to bettex u and vertex v
within g. The k-mutual-friend number of this subgraph, ded@asM(g), equals K.

Note that we need to exclude the trivial situation to consalsingle vertex as a
mutual-friend. Given the parameterwe may discover mank-mutual-friend sub-
graphs that overlap with each other. In the worst case, theuofk-mutual-friend
subgraphs can be exponential to the graph size. Therefadunther define the
maximalk-mutual-friend subgraph to avoid redundancy.

Definition 5.2.3 (Maximal k-mutual-friend Subgraph)
A maximal k-mutual-friend subgraph is a k-mutual-friendb@@ph that is not a
proper subgraph of any other k-mutual-friend subgraph.

To compare with clique and core, we present two interestioggrties about the
k-mutual-friend subgraph.

Property 5.2.1 Every(k + 2)-clique of G is contained in a k-mutual-friend of G.

Proof 5.2.1 Since a(k + 2)-clique is a fully connected subgraph with orderk,
each edge is supported by k triangles. Therefore, it is doathin a k-mutual-friend
subgraph by Definitio®.2.2

Property 5.2.2 Every k-mutual-friend of G is a subgraph ofla+ 1)-core of G.
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Proof 5.2.2 For each vertex vingit connects to at least k triangles. Every triangle
adds one neighbor vertex to v except the first adding two beigh so that v has
(k+ 1) neighbors, i.e. (V) > (k + 1). Therefore, gqualifies as gk + 1)-core of G.

The above two properties suggest one important observation 2)-cliquec k-
mutual-friendC (k + 1)-core, showing that the mutual-friend is a kind of cohe-
sive subgraph between the clique and the core. Note thattleese of the above
two properties are not true. Again in Figuted, the 4-clique £, n, p,q) is a sub-
graph of the 2-mutual-friendh{ n, p, g, t, u), while 2-mutual-friend &, b, c,d, e, f)
and m,n, p, g, t, u), both of them are contained in the 3-coaelt, c,d, e, f,m,n, p, g, t, u).
Finally, we define the main problem we investigate in thisk.as follows.

Problem 3 (Maximal k-mutual-friend Subgraph Finding)
Given a social graph @/, E) and the parameter k, find all the maximal k-mutual-
friend subgraphs.

Comparison to DN-Graph

Before we illustrate the solution to Proble3nwe further state an interesting con-
nection between the mutual-friend concept and@iNeGraph concept proposed by
Wang et al. 117] recently. ADN-Graph, denoted b%’(V’, E’, 1), is a connected
subgraplG’(V’, E’) of graphG(V, E) that satisfies the following two conditions: (1)
Every connected pair of vertices @ shares at least common neighbors. (2) For
anyv e V\V’, A(V' U{V}) < 4; and for any € V’, A(V' — {v}) < A.

At the first glance DN-graph is similar to the maxima-mutual-friend subgraph.
However, these two concepts are distinct due to the secamditam in DN-Graph
definition. Intuitively, theDN-graph defines a strict condition that the maximal sub-
graphs need to reach the local maximum even for adding otidiglenly one vertex.

On the other hand, the maximaimutual-friend defines the local maximal subgraph
that is not a proper subgraph of any otlkemutual-friend subgraph. As demon-
strated in Figurel.4a (m,n, p,q), (p,g,t,u) and fn,n, p,q,t, u) are allDN-Graphs
with A = 2, since thel value can only decrease if adding or removing any vertices.
However, only fn,n, p, g, t,u) is the maximal 2-mutual-friend since other two are
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its subgraphs. This example shows that Bfé-Graph finding may generate many
redundant subgraphs. Furthermore, due to the hardnestisiyisay the second con-
dition, solving theDN-Graph problem is NP-Complete as proven by the authors. To
solve it they iteratively refine the upper bound for each ebgapproach the real
value, but it still has high complexity and is not suitablelirge scale graph. Actu-
ally, the mutual friend finding is inspired by tiEN-Graph concept and we improve

it by providing dficient solution in polynomial time subsequently.

Comparison to Truss Decomposition

Truss decomposition is a process to computekttreiss of a grapl for all 2 <

k < kmax In Which k-truss is a cohesive subgraph ensures that all the edges in it
are supported by at leadt £ 2) triangles [15. The truss definition is similar to
but proposed independently with the mutual friend definethisi work except the
meaning fork. Besides, the authors for truss decomposition realizerttehory
solution can not handle large scale social networks. Thegldp two JO eficient
algorithms. One is a bottom-up approach that employsi@cteve pruning strategy
by removing a large portion of edges before the computatfaaohk-truss. The
second one takes a top down approach, which is tailor foriegins that prefer
the k-trusses of larger values &f Differently, we store the social graph in graph
database that is scalable for graph traversal based dlguit

5.3 Offline Computations

In this section, we first propose memory based solutionslt@$eroblem3 in poly-
nomial time, and then leverage the graph database to extensbtution for large
scale social network analysis.

5.3.1 Memory Based Solution

Given a social grapls and the parametek, the intuitive idea of discovering the
maximalk-mutual-friend is to remove all the unsatisfied vertices adgdes fronG.
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Based on the Definitios.2.2 we iteratively remove edges that are not contained
in k triangles until all of them satisfy the conditidinr(e) > k. The procedure is
illustrated in Example.

Example 2 Considering a maximal k-mutual-friend finding withk 2 over the
graphin Figureb.13 the left part of Figurel.4a First, edgeg(e, i), (e h), (e, g), (f, h)}
are removed since their triangle counts are less tAaNext,{(d, g), (f, g), (g, h)} are
further removed since their triangle counts become less thavhile €d, €) is still
part of the2-mutual-friend due to T(e(d,e)) = 2. In the third loop, T(e(d, f))
reduces ta3 but still satisfies the condition. Because all the remairedges with
triangle counts larger than or equal @ the graph remains unchanged and the loop
terminates. Lastly, we delete all the isolated vertices ahthin 2-mutual-friend
(a,b,c,d, e f)asin Figure5.1h

(a) Step one (b) Step two

Figure 5.1: Example of in Memory Algorithm

Although this is a straight forward solution, the compuwia#l complexity is rela-
tively high because it has lots of unnecessary triangle ctdatipns. In the worst
case it removes one edge at a time and ndgdsnes loops to remove all the edges
fromG. As such, the total complexity IE|X 3’ ¢yv)ec (d(U)+d(V)), in whichd(u)+d(v)

is the complexity to compute the triangle count for one edbas expression can
be further simplified to the order ¢E| x Y, d(v)?, because we need to get the
V's neighborsd(v) times in one loop. For practical case, we seldom encouhigr t
extreme situation, but a large number of iterations isatibttleneck of this solution.
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As such, we propose an improved algorithm based on the folpwbservation.
When an edge is deleted, it only decreases the triangle £ofitite edges which are
forming triangles with that edge. Thus we can obtain edgiexi@d by the deleted
edge and only decrease triangle counts for them. This iotuis reflected in Al-
gorithm9, which can be divided into three steps. First, one necessargition for
Tr(e(u,v)) > kisd(u) > k+1 andd(v) > k+1 as in the proof of Propery.2.2 This

is a lightweight method of deleting many vertices and thedjaeent edges before
removing unsatisfied edges with ifBaient triangles. The remaining graph is then
processed by the second step, which costs most of the wdridadamove edges not
supported by at leagttriangles. From line 6 to 9, we first check all the edges’ tri-
angle counts. Th® is implemented as a hash set to record non-redundant removed
edge elements. Next, instead of computing the triangle bthaledges to check
the stability of the graph, we iteratively retrieve theated edges fror® until Q is
empty. This is the indicator that the graph becomes unclehrigeally, the removal
of inadequate edges likely results in isolated verticesclvare removed in the end.
We show the procedure in the running example as follows.

Example 3 We consider a maxim&-mutual-friend finding in Figures.1la again
based on Algorithn®. According to the degree condition, we first remove vertex
i and the edgde, i) since the degree of i is less th@8nWe then check the edge’s tri-
angle counts and deletée, 9), (e, h), (f, h)}. Moreover, we record these edges in Q
for affected edges. Edgéd, 9), (f, g), (g, h)} are further removed until Q is empty.
Finally, we delete all the isolated vertices and generageghme result as in Exam-
ple 2.

We next prove the correctness of Algoritthin two aspects. On one hand, the re-
maining vertices and edges are part of the maxikaautual-friend subgraphs. This
aspect is true according to the definitionkamutual-friend subgraph. On the other
hand, the removed vertices and edges are not part of the raBkimutual-friend
subgraphs. Because the only modification®is the removal of edges, bringing
about the decrease of triangle counts, the edges supportedgsthark triangles
can be safely deleted since they cannot be partlefrautual-friend subgraph any
more.

As for complexity analysis, the improved algorithm outpenfis the naive one re-
markably because it avoids a great deal of unnecessarglgiaomputations. The
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Algorithm 9: Improved k-mutual-friend
Input: Social graplG(V, E) and parametek
Output: k-mutual-friend subgraphs
// filter by degree of vertices
1 foreachv e V do
2 L if d(v) < k+ 1then

3 L removev and relatec from G

// delete edges with insufficient triangles
4 initialize a queud) to record removed edges
5 initialize a hash tabl@ r to record triangle counts
6 foreache= (u,v) € Edo
7 computeT r(e) based orN(u), N(V)
8 if Tr(e) < kthen
9 | enqueueto Q

10 while H # 0 do

11 dequeue from Q

12 find out edge&’ forming triangles withe
13 removee from G

14 foreache € E’ do

15 Tr(e) - -
16 if Tr(¢') < kthen
17 | enqueue to Q

// delete isolated vertices
18 foreachv e G do
19 | if d(v) == Othen removev from G

20 return G

first step take®©(|V|) complexity to check vertices’ degree. The second step €domi
nates the whole procedure. The initial triangle countingtrae complexity}, g d(v)>.
From line 10 to 17, finding all the edges forming triangleshwiite current edge
e(u, v) takesd(u) + d(v) work. In the worst case, all the edges are removed from
Q. SinceQ only stores each edge one time, the total codg,)c(d(u) + d(v)),
equal toY,g d(v)?. The last step also tak€X|V|) complexity to delete isolated ver-
tices. As a whole, the total time complexity@>", s d(v)?). It not only avoids the
unnecessary iterations, but also reduces the graph siberelétive small &ort in

the first step. Although the above algorithm fE@ent, but is not suitable for large
scale graph processing stored in disk. Retrospect theithiggiit need<O(|E|) space
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1stEdge
l—q——l @ Vertex store Edge store

1stNode 2ndNode 1stPrevEdge 1stNextEdge 2ndPrevEdge 2ndNextEdge

Figure 5.2: Graph Database Storage Layout

complexity, which is too large to store in memory. So we edtito the disk based
solution in the following section.

5.3.2 Solution in Graph Database

In this section, we first introduce the concept of graph detaband then present a
streaming solution in graph database and improve it by megpartitioning.

The graph database

A graph databaseé[] represents vertices and edges as a graph structure iraftead
storing data in separated tables. It is designed specyfitaligraph operations. To
this end, a graph database provides index-free adjaceatg\bry vertex and edge
has a direct reference to its adjacent vertices or edges.e kbqlicitly, there are
two fundamental storage primitives: vertex store and edge swhich layouts are
shown in Figureb.2 Both of them are fixed size records so that we could tikse=b

as a “mini” index to locate the adjacency in the file. Vertearstrepresents each
vertex with one integer that is théfset of the first relationship this node participates
in. Edge store represents each edge with six integers. Hteéviio integers are the
offset of the first vertex and thdfeet of the second vertex. The next four integers are
in order: The dfset of the previous edge of the first vertex, tlfiiset of the next edge

of the first vertex, the fbset of the previous edge of the second vertex and finally the
offset of the next edge of the second vertex. As such, edges faloalaly linked

list on disk, so that this model possesses a significant aagganthere is a near con-
stant time cost for visiting adjacent elements in a graplomesalgorithmic fashion.
This is actually a primitive operation in graph-like querigr algorithms, naturally
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suitable for shortest path finding, maximal connected sytigproblem and graph’s
diameter computations and so on. Furthermore, it can scate naturally to large
data sets as they do not typically require expensive joimaijoss.

Instead, the typical way to store graph data in relationtdlo#se is to create edge
table with index on vertices:

CREATE TABLE Edge (
1stNode int NOT NULL,
2ndNode int NOT NULL
)
CREATE INDEX IndexOne ON Edge (1stNode)
CREATE INDEX IndexTwo ON Edge (2ndNode)

Based on the above schema, we need to use index to suppdnttgraersal since
we cannot directly obtain the adjacent elements from thie tdbxample4 shows a
comparison between graph database and relational database

Example 4 Consider the process of the triangle counting. Givém @, we need

to fetch Nu) and N(v). In relational database, we can utilize vertices to query th
edge table index with @bg|V|) 1/O cost, and then compute the shared neighbors
as the triangle count. This procedure can be largely imptdowvegraph database.
According to the edge store, we can retriev@iNand N(v) as the traversal in the
double linked listprevEdgeand nextEdgen Figure 5.2 provide reference to all the
neighbors of vertices u and v, so that we can finish this stép @(d(v)) I/O cost,
which is invariant to the graph size.

Later in this section, we make use of the traversal operatending the in memory
algorithm to JO-efficient algorithms in a graph database. We define the travepsal
erator agraversdelem step for better demonstration, which means that the length
of shortest paths from graph elemaimto the satisfied results cannot be larger
thanstep For exampletraversdu, 1) retrieves all the vertices that are directly con-
nected tou and the edges among them. For implementation, we utilizéNtuwi}

Ihttpy/neo4j.org
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graph database, which is build on the graph storage laydtigure5.2 Note that
we could easily migrate our algorithms to other popular grdptabases as long as
they are optimized for graph traversal, such as BEXientDB® and so forth.

Streaming based solution

The streaming based solution is modified from AlgoritBnand implemented in
the graph database. The major changes are two-fold. On ok the use graph
traversal to access vertices and edges (line 1 and 3), asawelbmpute triangle
counts (line 5 and 6). On the other hand, we build index on adigéutes to mark
edges as deleted (line 7, 9 and 15) and record edges’ trianglds (line 8, 13 and
14). Note that the edge attributes are in the ordegD@E|), so they still need to be
maintained out of core for large graph datasets. In this waymake full use of the
graph database, and keep all the advantages in the impramdim algorithm.

We next analyze the/® cost in this algorithm. Filtering by degree and deleting
isolated vertices need(|E|) I/O. The most costly part is removing edges with insuf-
ficient triangles. For edgei(V), finding triangle count takeS(d(u) + d(v)) 1/O work.
Similar to the analysis for memory based algorithm, eacleedm only be marked

as deleted once. We conclude that this step n€¢d5. d(v)?) 1/O cost, which is
also the total order of© consumptions. Besides, the traversal on vertices andedge
is dominated by sequentigld, which further reduces th¢gd cost.

Partition based solution

Since all the triangle computations are directly operategtaph database, the stream-
ing algorithm fails to make full use of the memory. Therefose proposed an im-
proved approach based on the graph partitioning, and lodidigras into memory to
perform in memory triangle computations to say@ tost and improvef&ciency.

To begin with, we derive a greedy based partitioning metimo#éligorithm 11 from

the heuristics in papeflpg. The basic idea is to streamingly process the graph and

httpy/www.sparsity-technologies.cgdex
Shttpy/www.orientechnologies.com
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Algorithm 10: Streaming based Algorithm
Input: Social graplG(V, E) and parametek
Output: k-mutual-friend subgraphs
// filter by degree of vertices
1 traverse the vertices &
2 removev and related edgesdi(v) < k+ 1
// delete edges with insufficient triangles
3 traverse the edgds of G
4 foreache= (u,v) € Edo
5 N(u) «— traversdu, 1);N(v) <« traversdv, 1)
6 computetr(e) according toN(u), N(v)
7
8

if Tr(e) < kthen marke asdeleted
| elsesete's mutual number attribute akr(€)

9 while exist edges(®, v) marked as deletedo

10 E’ «— edges form triangles within traverse(e,1)
11 removee from G

12 foreache € E’ do

=

13 Tr(e) - -
14 if Tr(¢') < kthen
15 L marke asdeleted

16 delete isolated vertices frof
17 return G

then assign every vertex to the partition where it has tlgeelmumber of edges con-
necting to. As in line 11 in Algorithmil, localPartitionNumrecords the number
of edges in each partition, @ |gi| x p/|G|) suggests that partitions with larger size
have smaller weight, and the product of the above two factecsdes which parti-
tion the current vertex belongs to. This algorithm, requgrone breadth first graph
traversal, is #icient with linear JO complexity. However, the resulting partitions
cannot be directly used because this algorithm is a vertdgikipaing. Typically, it
only extends partitions by including all the vertices cortimgy to the vertices inside
the partition, which may result in the loss of triangles. A&igureb.3g the running
example is partitioned into three paftg, g2, 93}. In this case, the triangleyj, p) is
missing since its vertices are separated into three mansitiin order to keep all the
triangles, we define an induced subgraph as in DefinBiGril

Definition 5.3.1 (Induced Subgraph)
Denote ¢+ = (Vi+, Ej+) as an induced subgraph of a partition(\g;, E;) of G. The

102



CHAPTER 5. SOCIAL NETWORK VISUAL ANALYTICS

extended vertex set is defined as ¥ V; J{v: u e V,v e V\V,(uV) € E}. The
extended edge set is defined as E {(u,V) : (u,V) € E,u € V;} | AE;. whereAE;
are edges satisfyingv,w) : ue Vv,

(u, V), (u,w) € E, v.partition # w.partition, u.id < v.id,

u.id < w.id}.

(a) Partition into{gs, g2, 93} (b) Computation omy;

Figure 5.3: Example of Partition based Algorithm

Based on the induced subgraph, the trianglg, (p) in Figure5.3ais allocated ing;
as shown in Figur®&.3h because ic is smaller thanj, p in this triangle. Next we
formally prove the correctness of the partitioning methotdémmas.3.1

Lemma 5.3.1 Induced subgraph§y;, ..., gy} derived from p partitions of G have
the same set of triangles as G.

Proof 5.3.1 The lemma is equivalent to the statement that every triafuglew) in

G appears once and only once in all partitions. The proof carlivided into three
cases. If three vertices belong tpaf partition i, the triangle can only be inside the
same patrtition. If any two of three vertices belong te¥partition i, without loss
of generality, we assume thatwe V; and we V. The triangle is in partition i but
not in partition j, sincgu, v) can only be assigned to partition i. If three vertices are
located in diferent partitions, we assign the triangle to the vertex wittallest id as
defined inAE;, so this triangle only appears once in induced subgraphs.

Finally, we provide a partition based solution in AlgoritHi. First we partition
the graph intop partitions, and for each partition, we do the in memory edge r
moval. Note that we only consider inside edges, which offilgca triangles satis-
fying {(u,v,w),u,v,w € V;}. As such, we make use of the memory to reduce the
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Algorithm 11: Graph Partitioning

Input: Social graptG(V, E), partition numbeip
Output: {9, ..., gp} partitions

foreachv € G in BFS orderdo

2 if d(v) < k+ 1then

L removev and related edges; continue

=

w

4 initialize the arraylocalPartitionNumwith size p
5 N(v) «— traversdu, 1); foreach u e N(v) do

6 ind «— u’s partition index

7 L if ind > 0 then localPartitionNunjind]++

8 maxWeight— 0; curWeight— 0

9 plndex«— -1

10 for i from1to pdo

11 curWeight«— localPartitionNunji] x (1 — |gi| x p/|Gl)
12 if curWeight> maxWeighthen

13 maxWeight— curWeight

14 L plndex«— i

15 | setv's partition index aplndex
16 return G

graph size as well as keeping the correctness of the soluAfter this, we write
the induced subgraphs back to graph database and use Algdftto do post pro-
cessing. We take the induced subgraphin Figure5.3bto find 2-mutual-friend
subgraph. Note that edgé®, j), (a, p), (J, p)} are outside edges, while others are
inside edges. For inside edges, we directly apply in memiggrighm and remove
edges in dotted lines with triangle counts less than 2. Bubfitsside edges, we can-
not delete them since they maffect triangle counts in other partitions. After we
deal with all the partitions, we post process the refinedyteging Algorithm10to
obtain the final result. In the worst case, this algorithm thassame/O complex-
ity as Algorithm10. But in practice, it loads and processes the induced subgrap
to memory and avoids many disk triangle computations. Thaileéed comparison
between this two disk-based solutions will be presenteterekperimental section.
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Algorithm 12: Partition based Algorithm
Input: Social graptG(V, E), parametek, and partition numbep
Output: k-mutual-friend subgraphs
1 partition the graph based on Algorithii
2 for ifrom1lto pdo
3 load induced subgrapl+ into memory from the partition
// Do in memory edge removal
queueQ «— 0
hash tablgr «— 0
foreache = (u,v) € Ej+ A eisinsidedo
computeT r(e) based orN(u), N(v)
if Tr(e) < kthen
| enqueueto Q

© 00 N o O b

10 repeatly remove inside edges ur@ilis empty
11 write gi+ back to the graph database

12 use Algorithm10to do post processing
13 return G

5.4 Online Visual Analysis

Based on the algorithms proposed in the previous sectiodewelop a client-server
architecture to support online interactive social visuelgsis. As in Figuré.4, the
offline computations are the base for the online visual anali#sisonline analysis,
we retrieve a local subgrapi close to the user selected vertex on top ffirme
computing result, online compute the exadtvalues for graph elements inside
and generate the orbital layout for visualization. Morgpwe select representative
tags to summarize the textual information in the local grdplthe client side, users
can search and browse the visualized subgraph.

5.4.1 Online Algorithm

Based on the ffline computations, we retrieve a local subgraph associaitictie

input keywords from graph database and compute ektealues for every edge and
vertex inside the subgraph. This is a fundamental step tpatigraph layout later
in this section. User can select a focused vewténom a list of vertices containing

105



CHAPTER 5. SOCIAL NETWORK VISUAL ANALYTICS

[ Visual Analytic Browsing Interface J
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Figure 5.4: Social Network Visual Analytic System

the keywords, and our system will return a local subgrapluding all the vertices
within the distance from v and the edges among these vertices,traversdv, 7).
For dficient online computation, we show one important stabilitygerty of the
k-mutual-friend subgraph as follows.

Property 5.4.1 The k-mutual-friend is stable with respect to the paramé&teire.

Ok+1 € Ok

For every edge in subgraphgy,1, Tr(e) > k+ 1 > k suggests that this subgraph
is also agx. Therefore, based on the stability property, if one wantsdmpute
the exactM values for graph elements, we can make use of tiae result as
input, with much less work than computing from scratch. Remnore, the filine
computations provide a useful upper bound for online comtpsts.

Lemma 5.4.1 Given QV, E) after gfline computation, the edges from the online lo-
cal subgraph o= G satisfy{Mgy(€) < Try(€) < Trs(e), e g}.
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Proof 5.4.1 Since g is a subset of G, for every edge g, its local triangle count
should be smaller or equal to the global triangle count, Teg(e) < Trg(€). Based
on the definition of k-mutual-friend subgraph, the locaatgle count bounds the
Mg value. All in all, we obtain the relationshipy(e) < Trgy(€) < Trg(€).

We implement Algorithml3 based on the above observations. The first step is to
retrieve the local subgraph within the distanc® v. Then, we iteratively compute
the exacig,, from m = My, to m = Max Finally, we merge all the, to obtain
the local subgraphs with exastl values. To illustrate, we retrieve a local subgraph
by traversda, 2) from the graph in Figurd.1, and the result local graph is shown
in Figure5.5a The number shows the triangle counts computed by fiie® algo-
rithm, which are the upper bound for the exaAdtvalues. Verticesk, I, j} and edges

in dotted lines are immediately removed since their triargglunts are smaller than
2. In the first loop, we remove vertekand edge®(d, g), &(f, g) because theiM
values become one in the local graph. The rest of the grapte i&-mutual-friend.

In Figure 5.5h we use the similar procedure to find 3-mutual-friend frora #h
mutual-friend, which includes vertic¢s, b, ¢, d, f} and edges connecting them. The
algorithm terminates since thel,,ax is updated to the current largest triangle count
equal to three.

Algorithm 13: Online Algorithm

Input: G(V, E), k, vertexv, and distance threshotd
Output: Local subgraphs with exad¥ values

1 g « traversdv, )

2 Mmax<— maXTrg(e) : e€ g}

3 Muin <K

4 for m from Mp,in to Minaxdo

5 computem-mutual-friend and updatgby Algorithm 9

6 On<— {e:e€qg,Tr(e) =m}

7 Mmax «— max{Try(€) : ee g}

g8 return gu,,, U --- U Imo

5.4.2 Visualizingk-mutual-friend Subgraph

Based on the online algorithm results, we next visualizddhal subgraph reflect-
ing the characteristics of tHemutual-friend in social network. To begin with, we
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(a)traversda, 2) to 2-mutual-friend (b) 2-mutual-friend to 3-mutual-friend

Figure 5.5: Example of Online Computation

propose an orbital layout to decompose the network intcalhely. Subsequently,
we describe the implementation details of this layout in\asmal system.

Orbital layout

As claimed in the introduction, themutual-friend definition is proposed to capture
the tie strength property in social network. Intuitivelgrtices with largem values
are more important since they are closely connected with e#ter in the social
network with many mutual friends. Therefore, a good layautkkmutual-friend
needs to emphasize elements with largé¢wvalues since they compose more cohe-
sive subgraphs. With this observation we propose a layailt avset of concentric
orbits. Vertices with largeM values are located close to the center, while vertices
with smaller M values are placed on orbits further away from the centeiceSine
layout is analogous to the planetary orbits, it is calledtafltbayout as depicted in
Figurel.4bh The most connected part of the network is also the mostalestich

as the 5-cliqued, b, ¢, d, f) in the innermost orbit.

Furthermore, since we organize vertices witfiatent M values into separated cir-
cles, the orbital layout forms a hierarchical structure. sfish, users can filter out
outer orbits and focus on the most central vertices, esiheaseful when the graph
size is too large to clearly view. More importantly, the ¢ablayout is stable in the
sense that the central part has the similar topologicalgti®s as the original graph.
Figure5.6 shows the cumulative degree distribution for the Epiniasa network
introduced in Tablé.2 Yet interestingly, the shape of the distributions is net af
fected by the parameté&r Note that the degree is normalized by the corresponding
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average degree in each k-mutual-friend, since it tendsue higher average degree
for largerk. They-axis showd>. (d), i.e. the probability that the vertex degree in this
k-mutual-friend subgraph is larger thdn Based on this nice property, the filtering
operation on the hierarchy is reasonable without losinghatieictural information.
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Figure 5.6: Stability Test on Epinions Social Network

Note that users can perceive more insights using orbitalisgomparing with other
popular layout algorithms, such as the radial lay@aj pnd the force directed lay-
out [48]. Although radial layout is a hierarchical structure, isinsitive to the fo-
cused vertex in the center and the layout may totally chanteandifferent center.
Force directed layout represents the topology well but tsartderarchical structure
to highlight social actors with many mutual friends. Alsbisi not scalable due to
O(IV[?) complexity. The qualitative comparison among these l&sy@summarized
in Table5.1

Table 5.1: Layout Comparison

Hierarchy | Stability | Cost

Orbital layout Yes Yes Median
Radial layout Yes No Low
Force directed layout  No Yes High
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Implementations

To improve the visual fect, we need to overcome the visual complexity of orbital
layout, because it is a challenge to clearly present thestedisubgraph with a large
number of vertices. First, we setfidirent colors to distinguish vertices infidirent
orbits. Retrospect the motivating example in Figli4h it consists of four orbits in
different colors representing vertices with fourvalues from 3 inside to O outside.
In order to distinguish vertices within one orbit, the sifeertices is proportional to
vertex degree to reflect the importance. For instance,v@rteas the largest degree
so that it has the biggest size.

Next, we consider how to visualize edges to further redueevibual complexity.
Since vertices within one orbit may form several connectadutual-friend sub-
graphs, so we carefully order vertices such that verticésnige to one subgraph
are located successively on the orbit. As such, we can higesedithin one orbit
without losing much connection information. As the Figirdbshows, verticeg
andh are near in the orbit and verticgsk and| are near in the orbit. Furthermore,
inspired by the radial layout, we put a vertex close to coteteeertices in the inner
orbit to minimize crossing edges. For example, vertigesid h are located in the
top left since they are close to the inner neighbor veetex

5.4.3 Representative Tag Cloud Selection

Besides structure visualization, another dimension ofasoetwork analysis is to
understand the interactions among social actors, whickedoom, for instance, the
newfeeds from Facebook or tweets from Twitter. Since usexg select a group of
social actors with a great number of textual contents, werjparate the tag cloud
approach to summarizing various topics inside it. A potdmtnallenge is how to se-
lect the most important tags to capture the major interddtsese actors. Moreover,
for distinct topics, the challenge might be how to discoveetof tags so that they
could be comprehensive enough to covéfadent interests inside the same group.

To tackle these challenges, we compute a score for each tailiplying two fac-
tors, the significance and diversity. On the one hand thafgignce measure guar-
antees the truly popular tags can be selected, and on othe tediversity measure
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captures various rather than only similar topics. In ourlengentation, we adopt the
TF-IDF approach for significance and the semantic distand&ardNet 1] for
diversity. In representative tag selection, we first geteetap N frequent words to
form a candidate set, and filter out infrequent words to iniprtbie éficiency. Then,
we utilize a greedy strategy that iteratively moves tagé e largest score from
the candidate set to the representative set until the nuofleaiected tags reaches
n,n < N, a user adjustable parameter. As such, we discover repatgiseriags sum-
marizing the interactions inside the local subgraph. Usarsquickly select and
browse preferred subgroup of actors to explore what aigs/they are involved in,
or what topics they are taking about, etc.

5.5 Demonstration

To support online visual analysis, we implement a visuariattive system accessi-
ble on the Wef, and provide a use case on Twitter dataset in Fi§Lir¢o illustrate
our idea.

SOC. ) i Veterans Affairs . @ Frontend © Backend ¥ Color/Gray[2 | Depth
w
womenshealthgov[m=3] |..
Barack Obama[m=3]
@ USAirForce [m=5]
Veterans Affairs [m=7] =y
: ~ . W
air veteran force mi - @ 9
. 3 o i 2 .
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Figure 5.7: Visual Analysis Interface

Based on the real use case on Twitter social graph, we #ligsthe functionalities
and the advantages of our visual analytic browsing interfacFigure5.7, which

“httpy/db128gb-b.ddns.comp.nus.edu.sg:808emo
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consists of three parts, i.e. search input area on the tegrmation summarization
in the left column, and subgraph visualization in the maanfe. After users in-
put keywords in search box and select a focused vertex nmgfthe keywords, our
system visualizes the local subgraph in the main frame, atouers can select ver-
tices they are interested in with the summarization in tftecldumn. Without loss
of generality, this example shows the 3-mutual-friend breg the keyword “white
house”, in which vertices represent twitter actors and sdggeresent the “following”
relationships. The depth, equivalent to the distance limidsis set to 2.

With the help of online algorithm and layout generation, wandatically reduce
the visual complexity in the main frame. The visible subgramly contains 89
vertices and 527 edges, which is much smaller the initiadllsabgraph with 2006
vertices and 2838 edges. As a result, we could quickly pezabiat the network-
ing of “The White House” is dominated by various US departta@md government
officials, which is unlikely to obtain from thousands of verticeith messy infor-
mation. Furthermore, users can highlight several veréestheir neighbors while
other vertices and edges become transparent. Considargugrie cases subgraphs
are quite large, users can use frontend search to locatermefvertices within the
current subgraph, or adjust thd value lower bound to filter out unsatisfied graph
elements using the slide bar at the top left corner. Moreovesupport zoom jout
function to focus on part of the graph and users can view teéckkof the whole
subgraph with a thumbnail at the bottom right corner.

The left column displays tha1 values of the highlighted vertices, the corresponding
tag cloud as well as the link information for the vertex reyerging dficials of “Vet-
erans Afairs”. The tag cloud is a helpful tool that summarizes thetrsamificant
and diverse topics in their tweets. In this example, we s&écepresentative tags
out of 100 candidates, where “Veteranffalr's” may show great concern about the
PTSD (Post Traumatic Stress Disorder) and discriminatioblpms while “women-
shealthgov” mainly focuses on topics like health, breasteaand baby. In order to
know the source of these tags, hovering over specific tageiteitp cloud will trigger
the source vertices being highlighted. If we point to thestirance” tag, the Twitter
actor “Barack Obama” will be highlighted indicating that p&ys close attention to
the insurance issue.
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5.6 Experiments

We present experimental studies to evaluate our socialanktwsual analysis sys-
tem in this section. For simplification, we refer to the itizé algorithm in Section
5.3.1asmNaive Algorithm 9 asmimprovedwhile refer to AlgorithmlLOasdStream
Algorithm 12 asdPartition. ThemOnlineis short for the online algorithm. We im-
plement these algorithm in Java language and evaluate owith@ows operating
system with Quad-Core AMD Opteron(tm) processor 8356 a@GE2RAM.

We compare our solutions on a great deal of real social n&tdatasets described in
Table5.2, most of which are collected from the Stanford Network As&yProject’s
websit€. The datasets are sorted in increasing order of edge nuriewtilize
moderate size datasets (the first three) to compare in meatgoyithms, while use
large size datasets (the last three) to compare algorithrgeaph database. More-
over, Twitter and DBLP datasets are selected for onlinealianalysis since they
contain rich textual information.

Table 5.2: Dataset Statistics
Dataset Vertex | Edges Description

Epinions 75k 405 Who-trusts-whom graph
Twitter 45% 81k Who-follows-whom graph
DBLP 916k 3,06k Who-cites-whom graph
Flickr 1,715 | 2261% | Flickr contact graph

FriendFeed 65% 27,811k | Friendship graph
Facebook | 72 661k | 160 975 | Friendship graph

5.6.1 Hine Computations Evaluation
Memory based Algorithms

We comparenNaiveand mimprovedalgorithms on three datasets and results are
summarized in Figur®.8. This figure depicts thefiect of k on the response time
of three datasets. For Epinions and DBLP datasebs\provedutperformanNaive

evidently, while their performances on Twitter datasetiarthe same level. This is

Shttpy/snap.stanford.edu
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because Twitter dataset having average degree less thanuZzsmore sparse than
the other two datasets. Therefore, even the naive algogdmreach the stable state
very fast without incurring a great deal of unnecessannglia computations. For
other two datasetsnimproveds about one order faster thamNaiveaveragely.
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Figure 5.8: Comparison of Memory Algorithms

One interesting observation is that the response time iguit¢ related td, but
mainly determined by the triangle computing times in eago@dhm, i.e. how many
times the algorithm calls the triangle counting operatcs. ifthe first two rows in
Table5.3 the triangle computing times for Epinions datasemiNaiveis about ten
times of that inmimproved which is close to the ratio of response time. Thus,
the result again justifies our conclusion in Sec#o®.1thatmimprovedutperforms
mNaivemainly because it largely reduces the amount of trianglegugations. More
specifically, wherk = 1, because we only remove edges not in any triangles without
affecting other edgesnNaivecan finish in two iterations (make sure that the graph
is unchanged in the second iteration), amkinprovedonly needs one iteration. The
response time famNaivedecreases whdnequals to 5 since the number of triangle
computations drops to, 23%, smaller than the number whénequals to 3 and 4.
The triangle computing times for DBLP dataset in the lasttowes in Tables.3have
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the similar pattern. For Twitter dataset, both algorithreedhthe number of triangle
computations in the same level, which determines that theponse time also close
to each other. To sum umimproveds much faster thamNaivemainly because it
reduces the number of triangle computations, especialgrvthe graph is dense.

Table 5.3: Triangle Computing Times

1 2 3 4 5
mNaive 717k | 2,219k | 2,840k | 3,088k | 2,439k

mimproved| 130k 202k 249k 284k 311k
mNaive | 1,097k| 1,261k | 1,324k | 1,364k | 1,391k

mimproved| 873k 867k 836k 819k 817k
mNaive | 5,950k | 24,767k | 22,950k | 25,166k | 21,085k

mimproved| 288k | 1,028k | 1,921k | 2,671k | 3,240k

Disk based Algorithms

Next we evaluate the disk based algorithms with three lacgdesdatasets. For
partition based algorithm, we control the usage of memorgrily allowing to store

a subgraph with at mostaB size. As such, we can estimate the number of partitions
p for each dataset according to the graph size in graph datalsas Tablé&.4. Since
the response time is not determinedihyve setk as 3 to compare the performance
of two disk based algorithms. The results in Figire@depicts the response time for
the three datasets with two partgOltime and CPU time. All in all, the partition
based algorithm is about five times faster than the streab@sgd algorithm, and the
response times for both of them are increasing with respetietincrease of graph
size. In particulargdStreamalgorithm is dominated by th¢® time, whiledPartition

is dominated by the CPU time, in accord with our analysis icti®a 5.3,

In essence, the majorftkrence betweedStreamanddPartitionis the cost for trian-
gle computations. As shown in TalBe5, the average cost for triangle computations
in dPartitionis only one tenth of that idStreambecause most of the triangle com-
putations in the former approach are in memory while all tlegle computations
in the later one are in graph database. Comparing threeadsitéise average triangle
computing time for Facebook is the fastest for both algarghdue to the smallest
average degree of Facebook. As a result, although the nurhbdges in Facebook
is much larger than that in FriendFeed, the response timaoélook is slightly
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Figure 5.9: Comparison of Disk Algorithms

larger than that of FriendFeed. Moreover, Tablé summarizes the percentages of
the partitioning part and the computing part fifPartition algorithm. Because the
partitioning algorithm reads the input graph only once anites the partitions back
to graph database, the partitioning part costs small anafitimhe comparing to the
computing part.

Table 5.4: Number of Partitions in Algorithd?
Flickr | FriendFeed | Facebook
Size(GB)| 1.57 1.92 11.6

p 2 2 12

In conclusiondPartitiontrades & a lightweight graph partitioning for fast triangle
computing in memory. The result verifies our claim in Sec&oBthat the partition
based algorithm igO-efficient in practice.

Table 5.5: 10k Times Triangle Computing Cost

Dataset | dStream| dPartition
Flickr 122.1s 11.3s
FriendFeed 349.6s 33.5s
Facebook | 12.9s 1.3s
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Table 5.6: Percentages of Response Time
Flickr | FriendFeed | Facebook
Partitioning partf 9.1% 10.5% 13.2%
Computing part| 90.9% 89.5% 86.8%

5.6.2 Online Analysis Evaluation

By randomly selecting 10 focused vertices on Twitter and PBlatasets respec-
tively, we obtain the average performance of online analygth three components:
mOnlinealgorithm, orbital layout generation and tag cloud setectiAll the exper-
iments are based on the 3-mutual-friend graph calculatedeogitline solution. For
tag cloud selection, we obtain 20 representative tags old@fcandidates from the
text in focused vertices. The major objective is to test Wwhaebur system can well
support online analysis.

Table 5.7 shows the fiiciency measures by varying the distance threshdidm

1 to 3. Itis clear that the total response time has an ascgricknd with the in-
crease ofr for both datasets. Taken separately, the costs of onlir@itigh and
the layout generation are largely increasing with respeet tThe major reason is
that the response time for the first two components is prapat to the number of
edges, which increases obviously with respeet s in the bottom row of Table 7.
However, the speed of tag cloud selection remains stabde #ins only dfected by
the textual content in the focused vertex. Comparing tlikerdince between two
datasets, the tag cloud selection for Twitter is much sldvemause the number of
words in tweets is large than that in paper title.

Table 5.7: Average Response Time(in ms)
distance threshold

| Twitter | DBLP

Component 1 2 3 1 2 3
OnlineAlgo 1 32 | 563 | 2 | 16 | 498
Layout 2 6 138 | 2 5 | 108
TagCloud | 1986| 1726| 1829 | 164 | 176 | 189

| Avgedgenum| 2 | 368 | 9856 22 | 348| 7727 |

Moreover, the average edge number suggests that distarsbdidr = 2 is a practi-
cal setting for online analysis, generating local subgnajth reasonable size. Note
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that we don’t consider network transmission time since mnstable and highly

affected by the network condition, which is not the focus of #évaluation. In sum-

mary, the whole analytical procedure can be finished lessttitae second so that it
is acceptable for online interactive applications.

5.6.3 Evaluation based on the ground-truth communities

According to the methodology proposed by Jaewon etl&3[ we further evalu-
ate the &ectiveness of thk-mutual-friend definition in identifying the ground-truth
communities. In 123, the authors compared the performance of six represeatati
community scoring functions with respect to a set of goodmastrics. In order
to do experiments comparing with these scoring functions, e need to define a
scoring function based on thkemutual-friend subgraph. Inspired by the triangle par-
ticipation ratio, which is the fraction of nodes in commuri that belong to a triad,
we propose the mutual-friend participation ratio, sincanigle is the special case of
k-mutual-friend subgraph witk equals to one. Specifically, given the paraméter
the mutual-friend participation ratio is defined #&="<%9<3 in whichng is the
number of nodes i1$. In particular, it is a generalized triangle participati@tio,
which is exactly the same as triangle participation ratiemk= 1.

Next, we briefly review three goodness metrics definedLizd], i.e. separability,
density and clustering céiicient. The goodness metrigéS) are defined for one
communityS. Separability measures the ratio between the internaltamehtternal
number of edges 06: g(S) = % in which ms is the number of edges i8 and
Cs is the number of edges on the boundarySof Density builds on intuition that
good communities are well connected. One way to captureghis characterize
the fraction of the edges (out of all possible edges) thaeappetween the nodes
inS, g(S) = @ Clustering cofficient is based on the premise that network
communities are manifestations of locally inhomogeneasisidutions of edges. It
is the number of closed triplets (or 3 times number of triasybver the total number
of triplets (both open and closed). To sum up, the above gesglmetrics quantifies
different desirable properties of a community.

We test on the real-world networks with ground-truth comities downloaded from
the SNAP website][07], including DBLP dataset, Amazon dataset and LiveJournal
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Figure 5.10: Cumulative Average of Goodness Metrics

dataset. The experiments are formulated as follows. Fdér &adal network dataset,
we have a set of ground-truth communiti&sFor each community scoring function
f(S), we rank the ground-truth communities by the decreasingedqS). We mea-
sure the cumulative running average value of the goodneggésS) of the topk
ground-truth communities. If the scoring function ranks tommunities in the de-
creasing order of the goodness metric, the cumulative ngnaverage value would
decrease monotonically witkk In this way, we could know whether the scoring
function can capture the characteristic of the goodnessanet

We found qualitatively similar results on all our dataséigre we only present re-
sults for the DBLP dataset in FiguBe10to show our findings. We vary the setting
of parametek from 1 to 4 to compare the performancetdience with respect to
k. First of all, Figure5.10ashows the results of separability for DBLP ground-
truth communities ranked by four mutual-friend participatratio with diferentk.
Moreover, we use a curve “U” to present upper bound, i.e.cthmeulative running
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average of separability when ground-truth communitiescadered by decreasing
separability. It can be easily observed that all of them catrwell represent the sep-
arability. This is because the mutual-friend participatratio prefer densely linked
ground-truth communities, which tend to connect to mangot#ertices outside the
ground-truth communities.

Similarly, Figuress.10h5.10cshow the cumulative running average of density met-
rics and clustering cdgcient respectively. We observe that all the mutual-friend
participation ratios have the similar trend with respedh®upper bound curve, be-
cause all of them tend to rank denser and more clustered dptoutih communities
higher. More specifically, with largee value, the curve is more closer to the upper
bound curve in general, since we tend to discover denser coities with largekk
value. Based on the above analysis, we conclude tha-thetual-friend subgraph
definition is meaningful for identifying cohesive commuestin real life networks.

5.7 Summary

In this chapter, we have introduced a novel framework thiggirates the cohesive
subgraphs discovery with the visual social network analygnlike previous works,
we proposed a new cohesive subgraph definition c&Heuitual-friend to take the
tie strength into consideration. Moreover, a memory basédisen is proposed and
extended to the scalable solution in the graph databaseurffeef consolidate this
interesting framework, we provided a visual analytic brimgsnterface that helps
navigate users in searching and browsing the graph steuatiwell as semantics.
The outcomes from an experimental study demonstrated thrasaution is both
efficient and &ective. As for future research, we expect to extend our freonlefor
other graph based analytic applications, such as protei@ip interaction analysis,
RDF graph analysis etc. Another challenging direction imeintain the cohesive
subgraphs with frequently updates. As such, we shall peogideal time analytic
toolkit to monitor everyone’s evolving social network.
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Chapter 6

Conclusions

In this thesis, we claim that making database applicatiaessible to ordinary
users is as important as improving database capabilityudls,sve have conducted
an intensive study to convert data into intelligence by mseafndata analytics and
data visualization, in order to make database usable.cRatiy, we identified new
data analyzing problems anffieiently solved them in three key aspects, i.e. prefer-
ence mining, keyword search in databases as well as sotmbrkeanalysis. Exten-
sive experiments were conducted and the results validagefasibility and the ef-
ficiency of these approaches. Furthermore, we provideadiyot systems for users
to test, and found that they were indeed helpful because ugesne able to interact
with the visualized interfaces and drilled down to desiresutts by understanding
the key information from the summarized result view inuety.

Subsequently, the following states the major contribioithis thesis in interactive
data analysis in three key aspects and then present the flitactions for this thesis.

6.1 Results and Contributions

For eliciting users’ preference, we addressed a user praferquery on top of multi-
dimensional datasets. We proposed to elicit the preferrédrimg of a user by uti-
lizing skyline objects as representatives of possible imde With the notion of

121



CHAPTER 6. CONCLUSIONS

order-based representative skylinespresentatives were selected by means of sam-
pling based on the orderings that they represented. Toduf#cilitate preference
exploration, a hierarchical clustering algorithm was &apto compute a denogram
on the skyline objects. By coupling the hierarchical clusgp with visualization
techniques, this framework allowed users to refine theifepeace weight settings
by browsing the hierarchy. We conducted extensive experispeand the results
showed that our approach was bofteetive and #icient.

We next applied the hierarchical browsing approach in th@iegtion of keyword
search in databases. To this end, we implemented a novehsydlowing users to
perform diverse, hierarchical browsing on keyword seaedulits. It partitioned the
answer trees in the keyword search results by selekfiligerse representatives from
the answer trees, separating the answer treekigtoups based on their similarity
to the representatives and then recursively applying thigipaing for each group.
By constructing summarized results for the answer treeacdh ef thek groups, we
provided a visual interface for users to quickly locate thguits that they desired.
Extensive experiments were conducted, and the resulidatetl the feasibility and
the dficiency of our system.

We finally introduced a novel subgraph concept to capturecttesion in social
interactions, and proposed aplefficient approach to discover cohesive subgraphs.
In addition, we proposed an analytic system which allowestsiso perform intu-
itive, visual browsing on a large scale social network. Wardnichically visualized
the subgraph out on orbital layout, in which more importaial actors are located

in the center. By summarizing textual interactions betwsarial actors as the tag
cloud, we provided a way to quickly locate active social camities and their in-
teractions in a unified view. The experiments conducted oiowa social network
datasets validated théectiveness and thdfiency of our system.

6.2 Future Directions

This thesis only covers three important aspects in the dri@éevactive data analysis
in databases. As for future research, there are many résdaections relating to

the interactive data analysis in databases. We will dissaste of these directions
as described below.
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6.2.1 Unified Interactive Data Analytical Platform

Although we presented visualized systems implemented/nyekey topic we stud-
ied in, there is still room for improvement by developing afieal interactive data
analytical platform, in order to support solutions for wars interactive data analyti-
cal problems in database applications. The advantagessqiflt#tform are two fold.
To begin with, it is more flexible for users since they can harmifterent types of
data analysis transparent to the complex underlying stofagrthermore, data anal-
ysis can be more productive by means of cross analyzing oaftoplti-structured
data, which means a variety of data formats and types. Inathis users probably
obtain more insights about the data than single data arglyse

This unified platform will bring about many challenging rasgh directions. First of
all, we need a powerful database system or storage platfmtredt both structured
and unstructured data as first class citizens natively wittiee loss of &iciency. As

for the visualized interface, the challenge is to suppontentomplex analyses while
keeping the intuitiveness anéfectiveness. Both of the above directions are promis-
ing research topics and are the most important foundatimma @inified interactive
data analytical platform.

6.2.2 Big Data Analysis

According to research by MGI and McKinsey’s Business Tebtty Office [87],
the amount of data in real world applications has been expipdand analyzing
large data sets, so-called big data, will become a key basmapetition, underpin-
ning new waves of productivity growth, innovation, and aem&r surplus. There-
fore, there exist big opportunities for database reseasdbanove towards big data
analysis. To this end, we need to take advantage of padadiglbuted processing
using modern hardware, such as cloud computing, GPU gemenabse computing
(GPGPU) as well as multi-core processing. There may existkinds of chal-
lenges. On one hand, data analytical problems usually rg@dsticated algorithms
to solve, so how to devisdiicient parallel algorithm for these problems is challeng-
ing. On the other hand, even if some algorithms already havallp)distributed
solutions, it is still a challenge to apply these algorithmsnaking full use of these
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modern hardwares. Future work must be done on these twaidimedn order to
make big data analysis feasible for real life applications.
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