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Summary

Due to the demands for location-based services, localization and tracking

of a mobile terminal (MT) have attracted much attention recently. Various ap-

proaches have been proposed, some of which are developed using the existing

communications infrastructure. When performing localization and tracking in

multiple-input multiple-output (MIMO) systems, the space-time processing capa-

bility which MIMO can provide not only enhances the estimation accuracy, but

also enable the ability to develop more unique methods than when single-antenna

systems are used. In this thesis, we aim to exploit the additional enhancements in

location estimation and accuracy which MIMO systems can provide. The space-

time processing techniques together with the prior channel state information (CSI)

are used to enhance the performance of location systems. We also study a MT

tracking method based on the space-time processing capability of MIMO systems.

We first propose a precoder design strategy to enhance the estimation of

angle-of-arrival (AoA) and location. Starting from deriving a new asymptotic

error variance bound for the MUSIC (MUltiple SIgnal Classification) algorithm,

we propose an optimal precoder to achieve the bound. As it is impractical to realize

such optimal precoder, we further propose a more feasible precoder design, which

leverages on the feedback CSI estimated at the receiver. Both precoder schemes

perform similarly and exhibit improvements in performance when compared with

the case without precoder. Furthermore, the precoder technique is applied to a

known AoA-based localization method, and the improvement on the accuracy of

the location estimate is studied numerically through simulations.

With the objective of minimizing Cramer-Rao lower bound (CRLB) of the

time-of-arrival (ToA) estimator, we next study the impact of signal pre-processing

on the ToA estimation performed in MIMO systems. Transmit beamforming is

adopted when the CSI at the transmitter (CSIT) is available, while space-time

block code (STBC) is employed as the transmit diversity technique for the case

xi



SUMMARY

without CSIT. We demonstrate that the accuracy of the ToA estimator is enhanced

with the availability of CSIT and the number of antennas.

A maximum a posterior (MAP) based channel estimation algorithm is also

proposed to jointly estimate the temporal and spatial domain channel parameters

for single-input multiple-output (SIMO) systems. The proposed algorithm lever-

ages on prior knowledge of the statistics of the channel parameters used in the

extended Saleh-Valenzuela (SV) model, and uses the expectation-maximization

(EM) algorithm to reduce computational complexity. We also discuss how the

algorithm can be extended and applied to MIMO systems.

Finally, we propose a novel efficient three-step tracking approach. An algo-

rithm based on the space-time correlation of the received signal is first developed

to estimate the radial velocity (both the speed and direction) of the MT. The ex-

tend Kalman filter (EKF) based tracking method is next adopted to estimate the

current location of the MT by using the estimated parameters and the previous

location estimate. Finally, the MUSIC algorithm is applied to obtain additional

high-resolution AoA (HR-AoA) estimate and we show how this partial location

information can be fused with the tracking results to further improve tracking

accuracy. The performances of the algorithms are studied through simulations.

xii
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Chapter 1

Introduction

1.1 Background

Due to the increasing demand for both commercial and government services

which require the location of a mobile terminal (MT) in a wireless network, the

development of radio-frequency (RF) based localization systems has attracted in-

creasing attention in the past few decades. These systems provide a new technique

of automation called automatic object location detection [1], upon which many

applications can be built, such as facilitate proximity advertisement, location-

sensitive billing, intelligent transport tracking system, location information in

emergency systems and localization of nodes in wireless sensor networks. Various

localization systems have been developed, and depending on their functionalities,

they can be classified into two categories, namely dedicated localization systems

and communication infrastructure based systems, respectively. The first approach

develops a system which primarily focuses on wireless location applications. For

example, the Global Positioning System (GPS) is a satellite-based navigation sys-

tem which finds the location of an object represented by longitude and latitude in

the globe when at least four satellites can be involved in the localization process.

The advantage of this approach is that the physical specifications and the quality

of location sensing results can be easily controlled. The second approach is to

use the existing communication infrastructure to locate a MT. Some examples

include the current standards for the Third Generation Partner Project (3GPP)

and ultra-wideband (UWB). The combination of localization and communication
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functionalities has the advantage of low cost and fast deployment.

According to the measuring principles and positioning algorithms, the cur-

rent localization techniques are classified into two categories, namely trilatera-

tion/triangulation and fingerprinting-based localization [1]. The first category is

the classic method which first measures the channel parameters such as time-of-

arrival (ToA), time-difference-of-arrival (TDoA), angle-of-arrival (AoA), received

signal strength (RSS), etc., and then uses trilateration or triangulation to estimate

the location. ToA estimate can infer the measurement of distance between a MT

and a fixed terminal (FT), and at least three FTs and ToA estimates are required

to perform trilateration. The ToA estimation techniques have been mature, and

it is well accepted due to the low requirement on devices when implemented. In

recent years, the use of UWB technique has significantly improved the resolution

of estimating the ToA of first-arriving path [2]. However, this method has two

major drawbacks. Firstly, the object and all the reference nodes must be precisely

synchronized, otherwise, a small timing error may lead to a large distance error.

Secondly, the ToA estimation consumes very large bandwidth in order to achieve

a high accuracy. The use of TDoA eliminates the requirement of synchronizing

the MT clock with the FT clocks, because it measures the time difference between

the signals arriving at two FTs. From each TDoA measurement, it can be inferred

that the MT is located along a corresponding hyperbola, and therefore, at least

two non-redundant TDoA measurements are needed to infer the location of a MT.

When the devices are equipped with an antenna array or a directional an-

tenna, the estimation of AoA can be performed with high accuracy and yet rea-

sonable computational complexity. The techniques mainly include maximum like-

lihood (ML) based and subspace-based algorithms [3, 4]. Unlike using ToA or

TDoA, this method only requires two FTs, and no synchronization is needed.

However, the drawbacks include higher cost incurred by the use of antenna array

and larger error with increased distances between the MT and the FTs. ToA,

TDoA and AoA techniques all require available line-of-sight (LOS) to obtain cor-

rect measurements. In the case of non-line-of-sight (NLOS), the performance is

degraded and special techniques need to be utilized to mitigate the errors [5–7],

which will be reviewed in detail in Chapter 2.

The RSS is another way of inferring the distance information by assuming an

appropriate signal propagation model. Similar with ToA, after the distances are

calculated, multiple FTs collaborate to localize the MT via trilateration. Since
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the RSS information can be easily obtained in the communication devices, it has

the advantage of very low system burden and cost. Besides, the NLOS condition

does not affect the RSS much, as it only leads to a shadowing effect in the sig-

nal power. However, the disadvantage in applying RSS technique is also obvious.

In practice, the signal strength often fluctuates severely, especially when the sur-

rounding environment has many scatterers and moving objects, which may result

in relatively larger distance estimation error compared with any other technique

in this category.

The second category refers to those algorithms that first collect the finger-

prints corresponds to various locations (offline stage) and then estimate the posi-

tion of the MT by matching online measurements with the closest a priori location

fingerprint (online stage). During the offline stage, the location coordinates and

corresponding fingerprints from nearby FTs are collected, and stored in a database.

In the online stage, the location of a MT is derived based on the currently observed

fingerprint by selecting the closest stored fingerprint. This technique has been first

proposed in [8] using RSS as the fingerprint, and since then many algorithms have

been developed under this framework [9]. Channel impulse response (CIR) has

also been used as a type of fingerprint in [10, 11]. The fingerprinting technique

is very suitable for complex environment, such as indoor scenarios, because the

channel in such environments is highly unpredictable. However, this technique has

two challenges. One is the time-consuming and labor-intensive offline information

collection stage. Another is that the offline training stage needs to be performed

every time when the environment has changed.

When there is a need to continuously monitor the movement of a MT, the

dynamics model of the MT can be involved in addition to the motion-dependent

parameters. Such a tracking process, which is generally described by the motion-

dependent parameters together with the dynamics model, helps reduce the fre-

quency in performing location estimation and estimation latency when supporting

real-time location monitoring. The Kalman filter (KF) is widely used to infer the

locations of a MT at discrete time instants by fusing the motion dynamics and the

motion-dependent parameters [12, 13]. The techniques for tracking a MT can be

classified into self and remote tracking. In a self tracking system, the MT is usually

equipped with inertial/magnetic sensors, such as accelerometers and magnetome-

ters, which are used to estimate the motion-dependent parameters such as speed

and direction of movement. The dead-reckoning technique is then adopted to track
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its location. The development of microelectromechanical systems (MEMSs) has

made the inertial/magnetic sensors small in size and low in cost, thus easily to be

integrated into mobile devices. However, the disadvantages includes three aspects.

Firstly, due to the noisy measurements, tracking error accumulates quickly over

time, especially for a winding path. Although there are some approaches which

utilize step detection to improve the accuracy [14, 15], they are only applicable for

pedestrian tracking and not efficient to deal with turns. Secondly, the magnetic

field of an inertial sensor can easily be distorted by ferrous objects and electrical

sources [16, 17]. Thirdly, under some conditions where the energy and computa-

tional resources at the MT are limited, it may not be always possible to provide

real-time and accurate tracking at the MT alone. On the other hand, the suc-

cessfully deployed wireless systems have boosted the research interests to develop

infrastructure-based techniques to perform remote tracking. It allows the MT to

track its relative location with respect to a FT located in its coverage area [18].

A FT can make use of the periodically transmitted beacon signals from the MT

to estimate the motion-dependent parameters. The computational complexity is

then transferred from MTs to FT. The parameters such as ToA, AoA and velocity,

are first estimated on the FT. The location is then derived by KF through the

fusion of MT dynamics and the estimated parameters. Therefore, the second and

third drawbacks of self tracking system can be eliminated. The disadvantages of

the remote tracking system are the requirement of a supporting infrastructure and

the sensitivity to the availability of LOS. However, this should not be the major

barrier if the system is built on top of the widely deployed cellular and WLAN

systems.

1.2 Motivation and Objectives

In recent years, the multiple-input multiple-output (MIMO) systems have

emerged as an important technique to provide high data rate communication ser-

vices. MIMO exploits spatial diversity through the use of smart antenna technol-

ogy at both the transmitter and the receiver to achieve high spectral efficiency

in the next generation cellular networks (4G) and WLANs. Compared to single-

antenna systems which provides signal processing capability only in the temporal

dimension, MIMO systems create an additional dimension (the spatial dimension)

4



CHAPTER 1. Introduction

to perform parameter estimation. Therefore, MIMO systems have attracted re-

markable interests in recent years [19]. When applying space-time processing tech-

niques to localization, we can achieve enhanced accuracy and capability through

the development of more unique localization methods. On the one hand, the mo-

tion dependent parameters, such as AoA, ToA and velocity, can be estimated or

improved in accuracy through space-time processing, and the location performance

is thus enhanced. On the other hand, MIMO systems enable the use of each of the

multipath components for localization under both LOS and NLOS scenarios [20],

due to its ability to differentiate the spatial paths. These additional advantages

introduced by the space-time processing and low cost widely deployed infrastruc-

ture make the development of MIMO-based localization techniques important and

justifiable.

In MIMO communication systems, many advanced processing techniques take

advantage of the channel state information (CSI) at the transmitter or the receiver

to achieve high data rate [21]. For instance, accurate CSI at the receiver (CSIR)

is required for space-time coding technique to achieve high performance [22]. If

the CSI at the transmitter (CSIT) is available, the precoding technique can be

adopted to further enhance the performance by pre-processing the signal before

transmission [23]. Since the purpose of location-dependent parameters estimation

is to extract the parameter information about a channel, it would be helpful to in-

vestigate how to make full use of the CSI to assist in estimation, so that enhanced

location-dependent parameters estimation and localization can be achieved. How-

ever, to the best knowledge of the author, the CSI has never been utilized for

such a purpose in MIMO systems. Therefore, the first objective of the thesis is

to study the benefits of applying prior CSI to location dependent parameters (i.e.

AoA and ToA) estimation and localization. In Chapters 3 and 4, we take advan-

tage of instantaneous CSIT to pre-process the signal before transmission to achieve

enhanced AoA and ToA estimation respectively. Localization improvement is eval-

uated by applying enhanced AoA. In Chapter 5, we demonstrate that the prior

statistical information on the parameters in the extended Saleh-Valenzuela (SV)

channel model makes maximum a posterior (MAP) estimation possible, and in-

creases the accuracy compared with the case when no prior channel information

is used.

When it is required to continuously monitor the location of a MT, tracking can

be a means to reduce the frequency in performing regular localization and estima-
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tion latency. The complexity of tracking is a major consideration when designing

a tracking system. If the MT has limited power, the energy consumption is also a

key problem for real-time service. Since MIMO enables an additional dimension of

signal processing, it is expected to make certain functions possible. Therefore, our

second objective is to exploit the MIMO features for designing a low complexity

and more energy-efficient tracking system. The targeted solution should have two

advantages. Firstly, the estimation of the required motion-dependent parameters

should have low computational complexity. Secondly, the system is a remote-

tracking system where the task is mainly accomplished in the FT instead of the

MT to reduce MT energy consumption. In Chapter 6, we propose a three-step

tracking approach performed at the FT, consisting of motion-parameters estima-

tion based on space-time correlation of the received signal, extended KF (EKF)

based tracking to find the location, and AoA-assisted performance enhancement

which requires additional AoA information but can be estimated less frequently.

1.3 Contributions of the Thesis

In this thesis, we exploit the additional enhancement in estimation accuracy

which a MIMO system can provide. Space-time processing techniques with prior

CSI are applied to improve the estimation accuracy of location dependent param-

eters, such as AoA, ToA and joint AoA/ToA. Furthermore, we also study the

tracking system based on the space-time processing technique in MIMO systems

and propose a three-step approach. The motion dependent parameters (i.e. ra-

dial velocity) are estimated based on space-time processing at the FT with low

complexity, and EKF is used to find the location. Additional AoA information

which can be made available in a MIMO system is utilized to assist in the tracking

process to achieve enhanced accuracy. To be more specific, the thesis includes four

contributions as follow.

The first contribution is the development of precoder design strategies to

improve the accuracy in AoA estimation using the MUSIC (MUltiple SIgnal Clas-

sification) algorithm for localization. While all the previous efforts on AoA esti-

mation and improvement in accuracy focus only on the processing of the received

signal, we raise a question of whether it is possible to improve the estimation ac-

curacy by pre-processing the transmitted signal at the transmitter. The idea on
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pre-processing the transmitted signal by taking advantage of the available CSIT

comes from the precoding technique which is exploited in MIMO communica-

tion systems to enhance the system capacity. Although the use of precoder in the

reported work is to increase the achievable system capacity [23], we apply it to im-

prove parameter estimation accuracy. Specifically, we investigate the asymptotic

error variance bound in AoA estimation based on the MUSIC algorithm where

the design of transmit signal is possible. We first derive a new asymptotic error

variance bound when the MUSIC algorithm is used to estimate the AoA and the

transmitted signal can be pre-processed. Next, we propose a precoder design to

achieve this bound. However, such an optimal precoder requires CSI exclusive of

the effect due to the receiver antenna array which cannot be separately estimated

practically. A more feasible precoder design, which leverages on the feedback CSI

estimated at the receiver, is next proposed. Using the performance of the opti-

mal precoder as a benchmark, the practical precoder design performs close to the

optimal precoder even in the high-resolution scenario. Both precoder schemes ex-

hibit performance improvement compared with the case when no precoder is used.

Finally, the performance when the practical precoder is applied to localization is

studied through simulations, and the results exhibit a considerable improvement

in the accuracy of location estimation.

The second contribution takes advantage of space-time processing technique

to enhance the ToA estimation. The general conclusion derived from previous

studies on ToA estimation is that at high SNR, the Cramer-Rao lower bound

(CRLB) gives a good performance bound to any of the TOA algorithms developed.

This gives rise to a question on how the CRLB of the estimator depends on

the transmitted signal characteristics if pre-processing for transmitted signal is

possible, and how the final accuracy of the estimator can be improved. The

objective of our work is to investigate the impact on the asymptotic performance

of the ToA estimator when it is possible to pre-process the transmitted signal in

MIMO systems. We first derive the CRLB of the ToA estimator in MIMO systems

which is used as a metric to evaluate its performance, and then adopt MIMO

beamforming and diversity techniques at the transmitter to minimize the CRLB,

in two scenarios where the CSIT are available and not available, respectively. For

MIMO with CSIT, transmit beamforming is adopted, while space-time block code

(STBC) [24] is utilized as the transmit diversity technique for MIMO without

CSIT. Receive beamforming is performed at the receiver under the assumption
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that the CSIR is always known. We demonstrate through simulation that the

case of MIMO with perfect CSIT performs better than the case of MIMO without

CSIT, and both have enhanced performances compared with the case of the single-

antenna system. The performance is further enhanced with the increase in the

number of transmit and receive antennas. Furthermore, when channel information

errors exist, performance improvement can still be observed compared with the

case where there is no CSIT.

The third contribution involves joint estimation of both spatial and temporal

parameters under the same framework. We propose a MAP-based algorithm for

joint ToA, AoA and complex amplitude estimation of multipath components in

single-input multiple-output (SIMO) systems over the extended SV channel, and

then extend it to MIMO systems. Direct solution to the MAP-based algorithm of

a MIMO system is usually not possible due to its high computational complexity.

On the other hand, by using a ML-based algorithm, the known channel statistics

will not be fully exploited for a more accurate solution. We demonstrate that

with the prior knowledge of the statistical distributions of the parameters used in

the extended SV model, we are able to develop a MAP-based algorithm. In order

to reduce the computationally intensive algorithm, the expectation-maximization

(EM) algorithm is used to resolve the high dimensional optimization problem into

iteratively solving multiple 3-dimensional (3-D) optimization sub-problems. Our

simulation results show that the proposed algorithm outperforms the ML-based

algorithm for SIMO systems. Finally, we extend and apply our approach to MIMO

systems where the AoA, angle-of-departure (AoD), ToA and complex amplitude

are jointly estimated.

The last contribution deals with the tracking problem. Due to the draw-

backs of the self tracking system, we focus on a remote tracking approach with

space-time processing and MIMO features being applied. We propose a three-

step tracking approach performed at the FT where energy consumption is not a

concern. The motion-dependent parameters, i.e. the radial velocity of the MT,

which includes both the speed and direction, are first estimated from the received

samples obtained at the FT antennas. With a suitable channel model identified,

we show that both the radial speed and direction of a MT can be jointly estimated

from the phase of the complex space-time correlation, and has low computational

complexity. The EKF algorithm is then adopted to estimate the current location

based on the estimated radial velocity parameters and the previous location esti-

8



CHAPTER 1. Introduction

mate. In order to reduce the accumulative error, we propose a novel AoA-assisted

performance enhancement scheme which requires the FT to perform the MUSIC-

based algorithm to obtain additional high-resolution AoA (HR-AoA) but can be

estimated less frequently. Using such partial location information obtains a good

compromise between accuracy and system costs, because complete location infor-

mation usually requires extensive resource, such as computational capability and

a number of FTs to perform triangulation [10]. We show how this partial loca-

tion information can be fused with the erroneous tracking estimate to improve the

tracking accuracy of EKF algorithm.

1.4 Organization of the Thesis

The rest of the thesis is organized in the following manner. Chapter 2 reviews

the related work in the literature. In Chapter 3, the precoder design strategies

are developed to improve the accuracy of the AoA estimation using the MUSIC

algorithm. The enhanced AoA estimate is also evaluated in a localization scenario

in terms of location accuracy. We next present the enhanced ToA estimation

by taking advantage of space-time processing technique in Chapter 4. Then, the

MAP-based algorithm for joint spatial and temporal parameters of multipath com-

ponents is proposed in Chapter 5. After that, we propose a three-step tracking

approach performed at the FT consisting of motion dependent parameters estima-

tion based on space-time correlation of the received signal, EKF-based tracking to

estimated the location, and HR-AoA based performance enhancement to reduce

the accumulative error in Chapter 6. Finally, Chapter 7 concludes the paper and

points out future directions.
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Chapter 2

Literature Review

In this chapter, we give a literature review on the existing work in the context

of localization and tracking. We will focus on reviewing the works which are related

to the use of geometric methods to perform localization and tracking.

2.1 AoA-Based Localization

When the devices are equipped with an antenna array or a directional an-

tenna, angle-of-arrival (AoA) estimation can be performed with low computational

complexity. With at least two AoA estimates, triangulation is adopted to estimate

the location. In this section, various AoA estimation algorithm as well as AoA

location estimation approaches are reviewed.

2.1.1 AoA Estimation

Accurate AoA estimation has received a significant amount of attention over

the last few decades. It is fundamental in many engineering applications, in-

cluding wireless communications, radar, radio astronomy, sonar, navigation and

tracking of objects. Since the multiple-input multiple-output (MIMO) technique

has emerged as an important technique for high data rate communications in the

next generation wireless networks, AoA estimation is more feasible by making

use of the available antenna array in these MIMO devices. In the literature, the

AoA estimation includes two major techniques: spectral-based and parametric
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algorithms.

The spectral-based algorithms can be further divided into two categories,

namely the beamforming and subspace-based methods, respectively. The beam-

forming method has been first proposed to estimate the AoA of the source signal

[4]. Through the linear combination of the outputs at the antenna elements, the

antenna array response is steered to every direction, and the corresponding output

power is recorded. The direction with the maximum output power corresponds

to the estimated AoA of the source signal. The conventional beamforming (also

known as Bartlett beamforming) is an extension of the Fourier-based spectral

analysis, where the transformation is performed in the spatial domain. The AoA

estimate is obtained as the angle for which the spatial spectral is maximized. This

method is computational efficient and can be implemented easily. It also often

serves as a classical standard when new array processing algorithms are proposed

and compared, and its performance has been evaluated in [25, 26]. The major

limitation is that the source signals cannot be resolved if the AoAs are spaced

closer than a beamwidth of the antenna array. In order to alleviate this limi-

tation, the Capon beamformer has been proposed [27], and its performance has

been discussed in [28]. The Capon beamformer obtains the AoAs of the source

signals by minimizing the unwanted power contributed by the noise and the in-

terference from other directions. It outperforms the conventional beamformer for

closely spaced sources although its performance still depends on the array aper-

ture and signal-to-noise ratio (SNR). An alternative version of this beamformer

has been proposed for uniform linear array (ULA) named as the root Capon which

is computational simpler and more accurate.

With the development of array signal processing technique, more accurate

spectral-based algorithms have also been proposed, among which the subspace-

based algorithms [3, 4] have drawn much attention due to their low computational

complexity and high resolution property in performing AoA estimation. This

technique utilizes the structure of the spatial correlation matrix of the received

signal from the array with spatial white noise. By decomposing the correlation

matrix, the signal subspace and noise subspace are constructed, followed by the

formulation of the null spectrum function. The values which minimize the null

spectral function are the estimated AoAs. The MUSIC (MUltiple SIgnal Classi-

fication) algorithm is a representative subspace-based algorithm which has been

proposed in [29]. It results in significant performance improvement compared
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with the beamforming methods. Since then, considerable research work in either

analyzing its performance [30–34] or developing more advanced robust MUSIC al-

gorithms [35, 36] have been proposed. The asymptotic estimation error of MUSIC

is shown to be Gaussian distributed for sufficiently large numbers of samples and

antenna elements [30]. It is also proven to be a large sample realization of maxi-

mum likelihood (ML) algorithm and achieve the Cramer-Rao lower bound (CRLB)

asymptotically when the signals are uncorrelated. When the model errors such

as imprecisely known noise covariance or array response are present, theoretical

analysis has been carried out in [31]. It is shown through simulation that the

weighted version of MUSIC performs very near to the CRLB where the weights

are optimally chosen to minimize the error variance. With the aim of reducing the

required SNR when applying the MUSIC algorithm, the root-MUSIC has been

proposed for ULA with lower computational complexity [35]. Furthermore, the

use of unitary transformation makes the root-MUSIC much more computationally

efficient [37].

In a multipath environment, the MUSIC algorithm can be used to estimate

the AoAs of various signal paths impinging on the receiver antenna array simul-

taneously [38]. The ESPRIT (Estimation of Signal Parameters via Rotational

Invariance Techniques) algorithm is another representative subspace-based algo-

rithm developed in [39]. A comprehensive study of the subspace-based algorithms

has been performed in [32], where the performances of different algorithms are

evaluated in the same framework with different types of error sources. The lim-

itation of this technique is its inefficiency when dealing with correlated signals.

Under this condition, the method called spatial smoothing is usually adopted to

reduce the correlation of signals before AoA estimation.

While all the previous efforts on spectral-based AoA estimation and improve-

ment in accuracy focus only on the processing of the received signal, in this thesis

we have proposed precoder design strategies to pre-process the transmitted signal

[40]. The proposed strategies are shown to improve the performance of the MUSIC

algorithm significantly.

The second category of AoA estimation algorithm is the parametric approach

[3, 4], which overcomes the limitation of subspace-based algorithms in estimat-

ing correlated source signals. However, the disadvantage is higher computational

complexity, as it usually requires multidimensional search. The parametric ap-

proach includes ML-based and maximum a posterior (MAP) based algorithms.
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Fig. 2.1: AoA-based localization through triangulation

It assumes the noise to be Gaussian white random process, and the AoAs are

estimated by maximizing the likelihood function. Based on the assumption of

the property of the source signals impinging on the receiver array, the ML-based

approach can be further classified into deterministic and stochastic algorithms.

The deterministic ML assumes the source signals are deterministic and unknown,

while the stochastic ML models the signals as Gaussian random process, which is

shown to approach the CRLB asymptotically.

2.1.2 AoA-Based Location Estimation

In a localization system, the fixed terminal (FT) with known location can

use the above mentioned algorithms to estimate the AoA of the source signal

transmitted through a line-of-sight (LOS) path. A line of bearing can then be

drawn from the FT, which indicates the direction of the MT. If two AoAs are

estimated at different FTs respectively, we can draw two bearing lines and the

intersection point gives the estimated location of the MT. When more than two

FTs are involved into the localization process, the location can be derived using

the least square (LS) methods [41]. An example of an AoA-based localization

scenario with two FTs is depicted in Fig. 2.1.

One of the earliest research to use AoA for localization has been reported

in [42], where a method to navigate autonomous vehicles using the angular in-

formation between FT pairs is developed. It demonstrates that accurate position

estimation can be obtained through triangulation. In addition, a practical sys-

tem has been implemented and the performance is evaluated both analytically

and experimentally. The authors in [43] have designed and implemented an AoA-

based location system where the MT locates itself by measuring the azimuths of
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several FTs with known locations using the probabilistic approach. A prototype

has been implemented on a PDA device with WLAN support. Their experiments

show that by using two FTs, the algorithm can achieve 1.9 meters accuracy in the

outdoor environment and 0.85 meters accuracy in the indoor areas. A prototype

which uses rotatable directional antenna to estimate the AoA has been developed

in [44]. It is shown that the system can be implemented with low cost yet achieve

good localization accuracy. In the presence of multipath components, a method

which jointly utilizes ML-based amplitude estimation and LS-based time-delay

estimation has been proposed to estimate the LOS AoA. Using such an enhanced

method, the system can achieve sub-meter accuracy. They have also proposed a

scheme in which the directional FTs make use of the time of earliest arrival to

detect the LOS component [45]. Based on both the WLAN infrastructure and

MIMO channel measurement techniques, an AoA-based localization approach has

been studied in [46]. It is demonstrated that with the use of a specific channel

parameter estimation algorithm, such as the simplified ML algorithm, AoA and

location estimates can be computed with low computational complexity.

The AoA-based localization has also been widely utilized for locating nodes

in wireless sensor networks. The authors in [47] have proposed an algorithm for

all nodes to determine their locations and orientations in an ad-hoc network. It is

assumed that a fraction of nodes have self-localization capabilities and all nodes

have AoA estimation capabilities. For such a distributed system, the neighboring

nodes communicate with each other and determine the relative AoAs between

nodes. Then the triangulation method is adopted to derive the location of regular

nodes from the nodes with localization capabilities in a hop by hop manner. In

[48], the problem is solved using the semidefinite programming relaxation based

method. With a weaker assumption that only the nodes with unknown locations

have the AoA estimation capabilities, a probabilistic algorithm has been developed

and the AoA estimate errors are modeled by a given distribution [49].

2.2 ToA/TDoA-Based Localization

Localization algorithms developed based on time-of-arrival (ToA) estimates

have been widely adopted. For example, the GPS utilizes the ToA estimates

between the user equipment and satellites when at least four satellites can be
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connected. In this section, ToA and time-difference-of-arrival (TDoA) estimation

algorithms and location estimation based on ToA or TDoA estimate are reviewed.

2.2.1 ToA/TDoA Estimation

In the last few decades, various ToA estimation techniques have been pro-

posed, from the conventional correlation-based algorithms to recently developed

ultra-wideband (UWB) based estimation techniques.

The conventional correlation-based technique estimates the ToA by maxi-

mizing the cross correlation between the received signal and the known template

signal [50, 51]. The optimal ToA estimator utilizes a correlation receiver with the

received waveform as the template signal and chooses the most appropriate time

shift that maximizes the cross correlation value [52]. This method has the ad-

vantage of low complexity and does not require any prior information. However,

the disadvantages are also obvious. It is not able to resolve closely spaced signals

which makes it inefficient to work under multipath environments such as urban

areas and indoor areas. Furthermore, its performance is highly sensitive to noise.

Another ToA estimation technique is the deconvolution-based method which

is a means of constrained inverse filtering approach [53]. Compared with the

conventional correlation-based method, the deconvolution method has improved

the ability to resolve closely spaced multipath components. However, it is still

not sufficient to achieve high resolution ranging. Furthermore, although the

deconvolution-based method shows reduced sensitivity to noise, it is still not ro-

bust enough to work under large noise. Besides, its increased complexity results

in higher implementation cost.

The above two techniques are both sensitive to multipath effect which can

be overcome by using ML-based algorithm. The ML-based algorithm is able to

resolve the multipath and estimate the ToAs and path coefficients simultaneously

for all multipath components [54]. The generalized ML algorithm is an approach

which has been used to estimate the ToA of the first path in a multipath channel

environment, and modified versions have been proposed to reduce the computa-

tional complexity and dense multipath effect [55, 56]. The authors in [57] have

developed an iterative nonlinear programming technique to estimate the unknown

parameters sequentially, so that the computational complexity can be further re-

duced. Compared with the previously mentioned techniques, the major advantage

16



CHAPTER 2. Literature Review

of this technique is the ability of mitigating multipath effect, as it estimates the

parameters of all the paths sequentially. However, this method has high compu-

tational complexity, since it involves multidimensional search when solving the

optimization problem.

When pre-processing the signal before transmission is possible, we have car-

ried out a study for ToA estimation in MIMO systems [58]. We utilize transmit

beamforming and transmit diversity techniques to improve the performance of

the ML ToA estimator, for both cases when the channel state information at the

transmitter (CSIT) is either available or unavailable.

In recent years, the use of UWB technique has significantly improved the

resolution in estimating the short-range ToA of the first-arriving path [2, 57, 59].

UWB approaches are suitable for localization, because it allows not only cen-

timeter accuracy in ranging, but also introduces low implementation cost and low

power consumption. According to the manner in which a UWB system accesses

the spectrum, UWB systems can be classified into two categories: impulse radio

(IR) and multiband orthogonal frequency division multiplexing (MB-OFDM). In

the literature, the researchers have developed different ToA estimation algorithms

for the two types of UWB techniques. IR UWB transmits signals that occupy the

whole frequency band. Based on IR UWB, one possible ToA estimation approach

is to use the ML algorithm to estimate all the parameters in the channel model,

including the ToAs and path coefficients of all multipath components. However,

it usually requires Nyquist sampling rate or higher during implementation, which

may not be practical due to the large bandwidth of UWB systems. An alterna-

tive approach is the use of an energy detection-based technique which requires

only sub-Nyquist rate sampling [59, 60]. In a typical energy detection-based al-

gorithm, the received signal is first passed through a bandpass filter to eliminate

the out-of-band noise, and then processed by an energy detector which consists of

a square-law device and an integrator. The ToA is determined by finding the first

path which exceeds a pre-defined threshold.

For MB-OFDM, the UWB spectrum is accessed by combining the OFDM

signals with frequency hopping technique. A correlation-based algorithm has been

proposed in [61] which calculates the correlation between two identical half-symbol

segments, and the ToA estimate is determined by finding the maximum of the cross

correlation. This algorithm has been enhanced through the design of training

symbols [62]. When a matched filter is used to correlate the received samples
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with the transmitted training sequence, the output is the sample spaced discrete

time channel. The ToA of the first path can be identified by the strongest sample

of the sampled channel [63] or the first path with energy that exceeds a given

threshold. An alternative approach is the energy leakage minimization method

which is motivated by the idea of minimizing the energy leakage from the first

channel path due to mis-sampling [64, 65].

When ToA estimates are performed at all FTs, it is straightforward to obtain

the TDoA between any two ToA estimates. Since the MT and the FTs are not

synchronized, all the ToA estimates include a timing offset due to the local time

difference between the MT and the FTs, in addition to the time of flight. By tak-

ing the difference of two ToA estimates, the timing offset can be canceled. Another

approach to estimate TDoA is cross-correlation based method [1] which computes

the cross correlation between the signals arriving at a pair of selected FTs. The

delay which maximizes the cross-correlation function is the desired TDoA cor-

responding to the pair of FTs. This approach performs well in the single-path

environment when white noise is present. However, its performance is affected

significantly by multipath conditions and colored noise. Therefore, the general-

ized cross-correlation method has been proposed to enhance its performance [50].

The signals are first filtered through a pair of receiver prefilter and then cross-

correlated.

2.2.2 ToA/TDoA-Based Location Estimation

When using ToA information for localization purpose, the distances from the

MT to all FTs are first computed from the ToAs. The location of the MT is then

inferred using trilateration with at least three distances (e.g. see Fig. 2.2).

With at least three available ToAs, it is straightforward to use the geomet-

ric approach to compute the intersection region of multiple circles inferred from

ToAs. The LS algorithm can then be applied, and the location is estimated by

minimizing the sum of squared distances from the MT to all FTs [66]. It is often

computational intensive to solve such a non-linear function because a numerical

search is required, such as Gauss-Newton method. Therefore, the linearization

technique has been developed based on Taylor’s series expansion. The non-linear

LS problem is then converted to iteratively solving linear LS problems [41]. A dif-

ferent linearization approach has been proposed in [67], where the non-linear terms
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Fig. 2.2: ToA-based localization through trilateration

can canceled by taking the difference between the distance functions between the

MT and any two FTs. The linear LS is then applied to find the solution. It is

shown that the performance is slightly worse than the Taylor’s series LS algorithm

when the measurements are corrupted by zero-mean Gaussian noise. But when

there is large bias on the measurement, such as non-line-of-sight (NLOS) bias,

it exhibits much better performance. The basic LS algorithm can be improved

through adding constraint and weights in the cost function in [68]. Weights are

assigned to measurements to distinguish their reliabilities, and the constraint is

devised from the relation of the range variable and position coordinates. The im-

proved performance is shown to achieve the CRLB at sufficiently high SNR. In

addition to LS algorithm, the ML-based approach is also applied for ToA-based

localization problem. The ML approach assumes the ToA measurements are cor-

rupted by Gaussian noise, and the position is determined by maximizing the like-

lihood function. It is statistically able to achieve the CRLB. Although closed form

solution is impossible, researchers have proposed a modified ML approach which

may achieve the CRLB asymptotically. An approximate ML approach has been

developed in [69] which first obtains a rough location estimate for initialization,

and then derives the accurate location iteratively.
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Fig. 2.3: TDoA-based hyperbolic localization

For TDoA-based localization, the differences in the ToAs between the MT

and FTs are used to estimate the location. The location is estimated through the

intersection of hyperbolic trajectories which is shown in Fig. 2.3. Compared with

ToA-based approach, this method only requires synchronization between FTs.

The MT and FTs are not necessarily synchronized. Geometrically, each TDoA

measurement defines a hyperbola on which the MT may lie in the 2-dimensional

(2-D) space. With at least two TDoA measurements, the location of the MT can

be determined by finding the intersection of corresponding hyperbolas. Mathe-

matically, we can estimate the location of the MT by solving a set of hyperbolic

TDoA equations using the non-linear regression method. The LS algorithm can

be applied by formulating the cost function as the sum of the square differences

between the measurements and the real values. Alternatively, if we treat each

measurement as a random variable which composes of the real value plus a noise

component, we can use the ML algorithm to find the location by maximizing the

likelihood function. Due to its computational complexity, an alternative approach

is to linearize the equations using Taylor’s series and solve iteratively [70]. An

efficient non-iterative algorithm has been proposed in [71] which is an approxi-

mate realization of the ML estimator and is shown to attain the CRLB near the

small error region. Compared with the Taylor’s series approach, its solution can

be expressed in an explicit form and hence it has less complexity. Another chal-

lenge with TDoA localization is the pairing problem. A TDoA measurement is
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the difference of ToAs for a signal arriving at a pair of FTs. Therefore, with Nf

FTs, there are Nf (Nf −1)/2 distinct TDoAs from all possible FT pairs. However,

there are only (Nf−1) non-redundant TDoAs. The authors in [72] have developed

an algorithm to optimally convert the full TDoA set to non-redundant set, which

is achieved via the standard LS estimation procedure. The accuracy is demon-

strated by comparing the CRLBs derived from the full set and the non-redundant

set, respectively.

2.3 Hybrid Localization Approach

With the development of channel parameters estimation techniques, various

location estimation algorithms which do not rely on a single parameter have been

proposed. These algorithms combine two or more kinds of parameters, such as the

hybrid TDoA/AoA scheme reported in [73]. In this section, we review the joint

parameters estimation techniques as well as hybrid location estimation algorithms

in the literature.

2.3.1 Joint Parameters Estimation

With the development of MIMO technology, existing mobile radio commu-

nication systems have incorporated various diversity techniques to increase data

transmission rate as well as to improve link reliability. As a result, the parameters

used to describe such a channel lie not only in the temporal domain, i.e., ToA and

fading amplitudes, but also in the spatial domain, i.e., AoA and angle-of-departure

(AoD). Estimation of the instantaneous channel parameters is essential in many

research areas.

Various highly accurate algorithms have been proposed to jointly estimate the

channel parameters for MIMO/SIMO channels. The approaches can be classified

into two categories, namely, subspace-based estimation and ML-based estimation.

As mentioned in Section 2.1.1, the MUSIC [29] and ESPRIT [39] schemes belong

to the first category. A 2-D MUSIC has been proposed to joint estimate AoA and

AoD in [74]. In order to avoid the need to perform exhaustive search, an algorithm

based on double polynomial root finding procedure has also been proposed to

jointly estimate the AoA and AoD with automatic pairing. ESPRIT has been

adopted to jointly estimate AoA and ToA in [75]. The proposed algorithm uses
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a 2-D ESPRIT-like shift-invariance technique to separate and estimate the AoA

and ToA with automatic pairing of two parameter sets from an estimated channel

impulse response (CIR). It has been then extended to jointly estimate AoA and

AoD for MIMO systems in [76, 77]. In [78], it has been further developed to jointly

estimate AoA, AoD, ToA and Doppler shift by exploiting the structure of the CIR

matrix. The subspace-based methods generally have relatively low complexity.

However, its performance is significantly downgraded by correlated signals. In

such cases, spatial smoothing is needed to mitigate the correlation. Further, the

ESPRIT-based method requires an antenna array with a translational invariance

structure [39].

The ML-based approach provides a more robust solution. However, it is very

computational intensive due to the high dimensional search involved in the opti-

mization problem. A computationally efficient algorithm for joint parameters es-

timation of multipath signals has been developed in [79] based on the expectation-

maximization (EM) algorithm. The observed data is first decomposed into signals

transmitted through multipath components, and then the parameters of each sig-

nal path are estimated separately. Based on the current parameter estimates, it is

possible to decompose the observed data better and thus increase the likelihood of

the next parameter estimates. This process is repeated iteratively, and therefore

the high dimensional problem is converted to iteratively solving low dimensional

problems. The SAGE (Space-Alternating Generalized EM) algorithm, which is

an extension of EM, has been used to jointly estimate the delay and azimuth in

a time-invariant environment [80]. A similar method has been applied to jointly

estimate the delay, azimuth, Doppler frequency and complex fading amplitude in

a time-variant environment [81]. Its performance has been studied in detail in [82]

in synthetic and real channels, and it shows high resolution and fast convergence

rate. This algorithm has been extended to jointly estimate the delays, AoAs,

AoDs, Doppler frequency and the complex amplitudes for all the paths in MIMO

systems in [83]. The ML-based estimation approach generally assumes that we do

not have any prior information about the parameters under estimation. In this

thesis, a MAP-based algorithm to jointly estimate the channel parameters by tak-

ing advantage of prior channel statistical information obtained from the existing

channel model, has been developed. The proposed algorithm has been shown to

achieve enhanced performance [84].
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2.3.2 Hybrid Location Estimation

The hybrid approach is capable of providing more robust solutions in lo-

cation estimation by combining different parameters, such as hybrid ToA/AoA,

TDoA/AoA, etc. The authors in [85] have developed a non-linear constrained

optimization based algorithm and a LS-based method, both of which utilize ToA

and AoA measurements to estimate the MT’s location with bounds on range and

angle errors inferred from geometry. The algorithms are shown to outperform the

ToA-only approaches. A hybrid ToA/AoA location estimation algorithm has been

proposed in [86] for GSM networks. In addition to using the typical ToA/AoA cost

functions, the proposed algorithm also incorporates a method which makes use of

the values of ToA and AoA to identify the degree of NLOS at each measurement.

Appropriate weights related to the degree of NLOS propagation are included to

improve the accuracy. Another approach for hybrid ToA/AoA location estima-

tion has been developed in [87]. It uses minimax mean square error criterion and

extends the spherical interpolation technique [71] to solve the linear equations for

location estimation.

Hybrid TDoA/AoA approach has also been exploited in the literature. By

assuming the availability of both TDoA and AoA measurements, the performance

improvement over TDoA-only system has been evaluated [88]. The result shows

that a significant improvement (20% − 60% in most scenarios) can be achieved.

Another hybrid TDoA/AoA algorithm has been proposed in [73]. It obtains the

solution of the non-linear TDoA/AoA location equations by extending the two-step

LS estimator which is originally developed for TDoA localization. The features

of CDMA cellular systems, e.g. FTs are precisely synchronized in time, are made

use of to achieve low signaling overhead and implementation cost. It is shown to

have high location accuracy by simulations.

In a multipath environment, the multipath components usually degrade the

localization performance, and thus their effect should be eliminated. However, a

hybrid ToA/AoA/AoD approach has been proposed in the literature to perform

location estimation by making use of the single-bound multipath components. The

approach given in [89] estimates the position of the MT by minimizing the effect of

the errors in estimating the multipath parameters. The Taylor’s series expansion

is adopted to solve the non-linear location equations in an iterative manner. How-

ever, the Taylor’s series approach requires an accurate initial estimate of the MT’s
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location in order to guarantee computation convergence. Therefore, the authors

in [90] have developed a simple linear LS-based algorithm. They also formulate

the ML approach which is shown to be able to achieve the CRLB. Since this ap-

proach only utilizes the LOS and single-bound multipath components, a scheme

has been proposed in [20] to detect and extract the LOS and single-bound paths

from multiple-bound paths. We have adopted this hybrid approach in our work,

and the results show that the performance can be further improved if a transmitter

pre-processing technique is applied to enhance angle estimation [91].

Some other hybrid algorithms, such as hybrid ToA/received signal strength

(RSS) [92] and hybrid ToA/TDoA [93], have also been discussed and the details

can be found in the respective references.

2.4 NLOS Problem

The performance of geometric-based localization technique highly depends on

the availability of LOS. Therefore, how to identify and mitigate NLOS effect has

attracted much attention in the localization field. The previous research on this

problem can be classified into the following three categories.

2.4.1 NLOS Identification

The NLOS identification technique identifies the presence of NLOS measure-

ments and discards results from NLOS. If we divide all the measurements into

multiple groups, the groups which contain only LOS measurements give consistent

location estimates. On the contrary, the groups containing NLOS measurements

produce inconsistent location estimates which result in larger residuals1 compared

with consistent estimates. The residual test is a way of NLOS identification. A

residual test algorithm has been proposed in [94] for ToA-based localization which

is based on the principle that the normalized residuals have a central Chi-Square

distribution when all measurements are obtained under LOS, but a non-central

distribution when there is NLOS. A hypothesis test comparing the residuals with

a threshold is performed to identify the presence of NLOS measurements. This

approach can achieve the CRLB when there are more LOS than NLOS measure-

1In this context, residual means the difference between a location estimate and the average
of location estimates produced by all groups of measurements.
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ments. An AoA-based residual test has been developed in [6] to identify NLOS by

coordinating measurements at all base stations. The proposed approach demon-

strates a high successful rate in identifying NLOS measurements. Other channel

statistics, such as the kurtosis, the mean excess delay spread, and the root-mean-

square delay spread, can also be used for NLOS identification [95] by performing

hypothesis test over the respective threshold.

While the above research considers only using one antenna element for NLOS

identification, Xu [96] has studied the potential to use the antenna array. Consid-

ering a narrowband MIMO system, the spatial correlation of channel coefficients

among the antenna elements is used as a metric to identify the presence of NLOS,

based on a new MIMO channel model using rough surface theory. In addition, the

statistics of the phase difference between two antenna elements has also been stud-

ied for NLOS identification. When dealing with a wideband MIMO system which

uses OFDM signaling, joint space-time-frequency channel correlation can also be

exploited to attain NLOS identification in time-varying, frequency-selective and

space-selective radio channels. This makes the NLOS identification for MIMO-

based systems exhibit higher accuracy than those based on single antenna, and

has been demonstrated in [96].

2.4.2 NLOS Mitigation

Different from the above mentioned NLOS identification approach which dis-

cards the NLOS measurements, NLOS mitigation technique includes all measure-

ments to perform localization. However, the degree of NLOS for each measurement

is computed and included in the cost function so that the overall NLOS impact is

kept at the minimum. A residual weighting algorithm has been developed in [97]

which is based on the observation that the residual error is typically larger when

NLOS FTs are involved in location estimation. The authors in [98] have also uti-

lized the residual error and proposed an algorithm which first identifies the NLOS

measurements and then incorporates them into an objective function by assuming

prior distribution of NLOS. However, the above approaches assume only a small

portion of the total measurements is obtained under the NLOS condition. The

algorithm proposed in [7] overcomes this limitation by assuming the knowledge

of prior NLOS statistics. The proposed ML location estimator can achieve high

accuracy even in the case when most FTs are NLOS.
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2.4.3 NLOS Localization Based on Single-Bound Model

While the above two categories of algorithms try to detect the NLOS errors

and reduce their effects, the third category is mainly for MIMO systems, which is

able to make use of the spatial domain processing capability to derive the NLOS

propagation paths and achieve location estimate [20, 89, 90]. In particular, the

single-bound NLOS paths, as well as the LOS path (if available), can be selected

from among the multiple-bound paths. The location can then be estimated using

one of the hybrid ToA/AoA/AoD approaches: Taylor’s series expansion based

algorithm [89], LS-based method [20, 90], and ML-based approach [90], which

have been reviewed in Section 2.3.2.

2.5 Mobile Terminal Tracking

In the context of MT tracking, the existing techniques can be classified into

three categories, namely self tracking, remote tracking and hybrid approach. The

self tracking scheme requires the MT to be equipped with inertial/magnetic sen-

sors, such as accelerator and magnetometer, to estimate the motion-dependent

parameters. The location is then derived by fusing the estimated parameters and

the previous location estimate. For remote tracking systems, a supporting in-

frastructure with FTs is required. The range or angle information is estimated

through communications between the FTs and MT for inferring the location of

the MT together with its previous location estimate. The hybrid approach takes

advantage of the above two approaches to achieve lower complexity and enhanced

accuracy.

2.5.1 Self Tracking

A conventional self tracking system includes two steps. The displacement of

the MT during a short interval is first calculated by integrating the acceleration

in the estimated direction. The current location estimate is then obtained by

adding the displacement to the previous location estimate. This technique is well

suited for instrumented vehicles, and it can also be applied to robot navigation

and pedestrian tracking [99]. Due to noisy measurements and drift effects in the

inertial measurement devices, the error in estimated location accumulates quickly

[100]. The effects of biases in the accelerometer data has been studied in [100]
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analytically, and a comparison is made between the theoretical results and exper-

imental data taken from commercial accelerometers. Calibration is recommended

before applying it in the practical systems. In order to improve the tracking ac-

curacy, a technique named as step-detection [101] has been widely exploited for

pedestrian tracking. The scheme in [101] applies the pattern recognition to ac-

celerometer signals to determine a user’s step. However, it may suffer large errors

when the user is walking up/down stairs. A robust step detection scheme has

been developed in [14] which utilizes a two-axis accelerometer and an acceleration

pattern of a step, and demonstrates enhanced performance through experiments.

2.5.2 Remote Tracking

For remote tracking techniques, the time, angle or velocity estimates are first

obtained through beacon signal transmission between the MT and FTs in the sup-

porting infrastructure. The location of the MT is then derived using the Kalman

filter (KF) by fusing the parameter estimates and the previous location estimate.

As reviewed in Section 2.1.1 and 2.2.1, the angle and time information can be

estimated using these algorithms. The speed can be obtained through estimating

the Doppler shift of the transmitted signal at the MT, which has been studied

for handoff purpose in wireless communications [102–104]. Joint estimation of

Doppler shift and other parameters are also feasible [78, 82], but with high com-

putational complexity. With known parameter information, a joint particle filter

and unscented KF (UKF) based algorithm has been proposed in [105] where the

LOS/NLOS event is tracked by a particle filter and the location is estimated by

UKF. This algorithm has been applied to ToA data to evaluate its performance,

and it can be readily extended to AoA or TDoA estimates. Robust EKF-based

MT tracking algorithms developed in [106] and [18] also makes use of ToA es-

timates between the MT and FTs. TDoA estimates have been utilized for MT

tracking in [107]. An EKF structure to process hybrid TDoA/AoA measurements

for MT positioning and tracking has been given in [108].

The complexity is an important issue when designing a tracking system. Fur-

thermore, if the MT has limited power, it is helpful to transfer the burden from the

MT to the FT, which cannot be accomplished in self-tracking system. We have

developed a tracking approach by taking advantage of space-time processing which

is performed at the FT [109]. We first propose an algorithm to jointly estimate
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the radial speed and direction at the FT based on the space-time correlation of

the received signal with low complexity. An extended KF (EKF) is next adopted

to estimate the location based on the estimated parameters, and high-resolution

AoA (HR-AoA) is applied to reduce the cumulative errors.

2.5.3 Hybrid Approach

When the MT is equipped with inertial/magnetic sensors and a supporting

infrastructure is also available, the above two schemes can be combined to track

the MT. The hybrid approach has the advantages of the two approaches. First,

the accumulative error can be reduced by performing calibration based on the

time or angle measurements within the infrastructure. Second, the infrastructure

can have a sparse structure with low cost, because the calibrations need not to be

carried out frequently thanks to the self tracking technique. The GPS output is

fused with the self tracking results [110, 111] when it is available, which achieves

an enhanced performance compared with self tracking only approach. Correction

schemes using range measurements in wireless networks have been developed in

[10, 112]. Results in [15] show that the self tracking can be significantly improved

by performing correction with reasonable frequencies.

2.6 Existing Localization Systems and Solutions

With the development of localization techniques in the last few decades, many

practical systems and solutions have been developed and available in the market.

This section gives an overview of existing geometric-based systems and solutions.

The most well-known system is GPS which determines the location in terms

of longitude and latitude by measuring ToAs and trilateration between the MT

and at least four satellites. While GPS is able to effectively used for many local-

ization and navigation applications, its performance is downgraded by scattering

environments and the absence of clear view of the sky. Another problem of GPS

is its relatively long time to first fix, and therefore it is not able to provide timely

services in emergency situations. Assisted-GPA (A-GPS) [113] has been devel-

oped to mitigate the limitations, as the cellular networks are also used to assist

in the localization process. The MT can request the cellular network to provide

satellite information, which enables the MT to acquire satellite signals quickly.
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After the MT is connected to the satellites, ToA estimation and trilateration are

performed to determine the location. Another enhancement in GPS is differential

GPS (DGPS) [114]. Fixed ground-based reference stations are installed to broad-

cast the common positioning errors in an area, such as ionosphere and troposphere

errors, so that the users can correct their estimates. This enables precise localiza-

tion with accuracy of less than 1 meter if multipath and scattering effects are not

severe.

In order to fulfill the location requirements for emergency safety services and

other location-based services (LBSs), cellular networks have included localization

as a key feature. The localization methods are based on existing communication

infrastructure and have been standardized in 3GPP standards. The enhanced cell

identity (E-CID) is a method which uses cell identity information to determine the

location of a MT and is often augmented by timing advance (TA) and AoA infor-

mation. The latest standards also support uplink TDoA (UTDoA) and observed

TDoA (OTDoA) methods. These two methods are similar and both use hyper-

bolic trilateration, but the difference is that TDoA measurements are performed

at the network for UTDoA and at the MT for OTDoA, respectively. The accuracy

of cellular-based localization methods depends on cell density and environments

[41].

Due to the high resolution in ToA estimation, UWB-based systems have been

developed for commercial applications requiring high precision. Ubisense2 is an

UWB-based localization system which requires the deployment of readers in the

target area and tags on the objects to be located. The tags transmit UWB signals

to the networked readers where ToA and AoA are measured and LS method is

employed for location estimation. The system can be applied to difficult envi-

ronments, such as manufacturing facilities and warehouses, and provides 1-meter

accuracy. Other UWB-based products are also available, such as PulsON from

Time Domain3 and location systems from Aether Wire4.

Bluetooth is another promising solution for indoor localization due to its

high handset penetration, high accuracy and ease of deployment. Nokia has de-

veloped precision indoor location technology based on Bluetooth 4.0 location pro-

tocol layer. This technology is based on measuring AoD of signals broadcast by

2Ubisense company. http://www.ubisense.net/
3Time Domain Company. http://www.timedomain.com/
4Aether Wire & Location, Inc. http://www.aetherwire.com/
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dedicated Bluetooth beacons which are deployed in the target area at the instal-

lation of the location system. Sub 5-meter accuracy can be achieved using this

technology. The Topaz local positioning solution5 is based on Tadlys Bluetooth

infrastructure and accessory products. It is able to achieve 2-meter accuracy and

is suitable for tracking humans and assets in indoor environments.

Due to the popularity of WLAN, location systems and solutions have also

been developed which can be built on top of WLAN infrastructure. AeroScout6

has developed WLAN-based location solutions. When performing a location esti-

mation, a WiFi tag and/or standard WiFi client device sends a signal to access

points where the signal is transferred to a location engine. The location engine

then uses RSS or TDoA algorithms to determine the location. Most of other

WLAN-based systems and solutions adopt fingerprinting-based techniques and

utilize RSS information as fingerprint. We will not review these fingerprinting-

based systems and solutions, as this is beyond the scope of the thesis. Interested

reader can refer to [1] for more information.

5The Topaz local positioning solution. http://www.tadlys.co.il/
6AeroScout Company. http://www.aeroscout.com/
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Precoder Design for Enhancing

AoA Estimation and Localization

In this chapter, we propose a novel algorithm to improve the accuracy in

estimating the angle-of-arrival (AoA) and hence localization. Using the MUSIC

(MUltiple SIgnal Classification) algorithm to estimate the AoA, we first derive

a new asymptotic error variance bound when the transmitted signal can be pre-

processed. We next propose a precoder design to achieve this bound. However,

such an optimal precoder requires the transmitter to have the channel state in-

formation (CSI) exclusive of the effect due to the receiver antenna array, and this

cannot be separately estimated practically. A more feasible precoder design, which

leverages on the feedback CSI estimated at the receiver, is next proposed. Using

the performance of the optimal precoder which achieves the bound asymptoti-

cally as a benchmark, the practical precoder design performs close to the optimal

precoder even in the high-resolution scenario1. Both precoder schemes exhibit

performance improvement compared with the case when no precoder is used. Fur-

thermore, the precoder technique is applied to a known AoA-based localization

method, and the improvement on the accuracy of the location estimate is studied

through simulations.

1High-resolution scenario means the AoA difference of a pair of arriving signals is smaller
than the 3 dB beamwidth of the receiver antenna array.
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3.1 Overview of Precoder Design in MIMO sys-

tems

The proposed algorithm is based on the concept of precoder design which has

been exploited in multiple-input multiple-output (MIMO) communication systems

to achieve enhanced data rate. Therefore, before proceeding to present our pro-

posed algorithm, we first give a brief overview on precoder design.

The MIMO technology has enabled a significant increase in data transmis-

sion rate as well as improving link reliability. The performance can be further

enhanced if a precoder is used to exploit the available CSI at the transmitter

(CSIT) before transmission. It essentially functions as a multimode beamformer,

optimally matching the input signal on one side to the channel on the other side

[23]. In [115], perfect CSIT has been used to compute the achievable channel

capacity. In the scenarios where instantaneous CSIT cannot be tracked reliably,

CSIT is usually provided in terms of the channel statistics such as channel mean

and covariance matrices (which are also named mean CSIT and covariance CSIT,

respectively) [23]. The use of mean CSIT and covariance CSIT to compute chan-

nel capacity have been studied in [116–118], and [116, 117, 119], respectively. Vu

et al. [120] have proposed an algorithm in which both the mean and covariance

CSIT are used.

The use of precoder in the reported work focuses on increasing the achievable

system capacity. In this chapter, we shall apply it to improve parameter estimation

accuracy. Specifically, we investigate the possibility to improve the asymptotic

error variance bound in AoA estimation when the MUSIC algorithm is used and

if transmit signal design is possible.

3.2 Improving the Performance Bound of MU-

SIC Algorithm

In this section, we describe the theory behind how the improvement to the

asymptotic error variance bound can be made through the transmit signal design.
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Fig. 3.1: The flat-fading channel model

3.2.1 Channel Model

We consider a time-invariant flat-fading channel as shown in Fig. 3.1. The

transmitter and the receiver are each equipped with an uniform linear array (ULA)

of M and N omni-directional antennas, respectively. The total number of paths

is L. Each path contains three parameters, namely the angle-of-departure (AoD)

ΩT,l, AoA ΩR,l and complex gain αl. Using the same assumption made in [29], L

should be less than min(M,N) for the purpose of AoA estimation.

The narrowband array assumption [121] is employed here; i.e. the transmit

time of the wavefront across the antenna array is assumed to be much smaller than

the reciprocal of the signal bandwidth. With this assumption, the steering vector

of an array with N elements is defined as c(Ω) = [c1(Ω), . . . , cN(Ω)]
T , where Ω is

the direction of the wave. Specifically, for a ULA, it has the following expression:

c(Ω) = [1, exp(j2πdh cosΩ/λs), . . . , exp(j2π(N − 1)dh cosΩ/λs)]
T , (3.1)

where dh is the distance between two adjacent antennas and λs is the wavelength.

For the lth propagation path, the mth transmit antenna gain response due

to the AoD ΩT,l is cT,m(ΩT,l) and the nth receive antenna gain response due

to the AoA ΩR,l is cR,n(ΩR,l). With the transmitted signal denoted by s(t) =

33



CHAPTER 3. Precoder Design for Enhancing AoA Estimation and Localization

[s1(t), . . . , sM(t)]T , the received signal for the nth antenna is expressed as

rn(t) =
M
∑

m=1

L
∑

l=1

αlcT,m(ΩT,l)cR,n(ΩR,l)sm(t) + zn(t), (3.2)

where zn(t) is the complex white Gaussian noise with mean of zero and power

spectral density N0.

We define CT (ΩT ) and CR(ΩR) as the transmit and receive steering matrices

with cT (ΩT,l) and cR(ΩR,l) as the lth column, l = 1, . . . , L, respectively. We further

denote Hα = diag {α1, . . . , αL}. Thus, the channel model may be expressed in

matrix form as

r(t) = Hs(t) + z(t), (3.3)

where

H = CR(ΩR)HαC
T
T (ΩT ),

r(t) = [r1(t), . . . , rN(t)]
T ,

z(t) = [z1(t), . . . , zN(t)]
T .

The matrix H is the channel matrix and can be estimated at the receiver.

We also define Hb = HαC
T
T (ΩT ), which is the component of the channel matrix

exclusive of the receiver array. The signal impinging on the receive antenna array

is y(t), and is expressed as y(t) = Hbs(t). For convenience, we omit the time

index t hereafter.

3.2.2 Performance Bound

We use the sum of the error variances for the L AoAs estimates as the metric

to evaluate the performance of the MUSIC algorithm. As shown in [30], when

the receiver is a ULA and N increases, the sum of the variances approaches the

following limit

varMU (ωR) =
L
∑

l=1

Eω̂R,l

[

(ω̂R,l − ωR,l)
2
]

=
6N0

IN3
tr
(

P−1
)

, (3.4)
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where ωR = [ωR,1, . . . , ωR,L] is the parameter vector under estimation, with ωR,l =

2πdh cosΩR,l/λs, l = 1, . . . , L, and ω̂R,l is the estimate of ωR,l. I denotes the

number of samples used when performing the estimation. P = Ey[yy
H ] is the

covariance matrix of y.

Conventionally, the MUSIC algorithm does not involve signal pre-processing

at the transmitter. The novelty of this work is to examine if pre-processing of

transmitted signal is possible through CSI feedback, and how the bound given in

(3.4) can be improved. Defining Q = Es[ss
H ] which is the covariance matrix of

the transmitted signal s, we have P = HbQHH
b . The problem can be formulated

as minimizing the error variance under the transmit power constraint as follow:

min
Q

tr
(

(HbQHH
b )

−1
)

subject to tr (Q) = PT

Q � 0 (3.5)

where PT is the total transmission power, and the second constraint means that

Q should be positive semidefinite. We have ignored the scaling factor in the

objective function since it does not affect the final solution. The design problem

now becomes how we can obtain the optimal transmit covariance matrix Q.

Theorem 1. Let the truncated singular value decomposition (SVD) of Hb be given

by Hb = UbΛbV
H
b , where Ub and Vb are L × L and M × L matrices with the

property UH
b Ub = IL and VH

b Vb = IL, respectively, and Λb is a L × L diagonal

matrix with its diagonal elements being the singular values of Hb permutated in

decreasing order. Then the optimal transmit covariance matrix that minimizes the

cost function in (3.5) should take the form Q = VbΣbV
H
b , where Σb is a diagonal

matrix.

Proof. Substituting the truncated SVD into the cost function in (3.5), we have

tr
(

(HbQHH
b )

−1
)

= tr
(

(UbΛbV
H
b QVbΛ

H
b U

H
b )

−1
)

. (3.6)
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Since Ub and
(

ΛbV
H
b QVbΛ

H
b

)

are both full rank, (3.6) can be simplified to

tr
(

(

UH
b

)−1 (
ΛbV

H
b QVbΛ

H
b

)−1
U−1

b

)

= tr
(

(

ΛbV
H
b QVbΛ

H
b

)−1
)

= tr
(

Λ−2
b Σ−1

b

)

, (3.7)

where Σb = VH
b QVb.

Next, we need to prove that Σb should be diagonal for (3.7) to be minimized.

We use the following lemma [122].

Lemma 1. If U and V are n × n positive semidefinite Hermitian matrices with

eigenvalues λi(U) and λi(V), respectively, arranged in decreasing order, and the

eigenvalues of the product matrix UV are λi(UV), then

tr(UV) =
n
∑

i=1

λi(UV) ≥
n
∑

i=1

λi(U)λn−i+1(V). (3.8)

From the proof in [119], we know that if matrix U in Lemma 1 is diagonal,

the equality in (3.8) holds only when matrix V is also diagonal, and vice versa.

In addition, the arrangement of diagonal elements of the two matrices should be

in the reverse order.

Applying Lemma 1 and the above conclusion to (3.7), the fact that Λ−2
b is

diagonal implies that Σ−1
b must be diagonal, so that the equality in (3.8) holds and

(3.7) obtains its minimum. So Σb is also diagonal. Besides, the diagonal elements

of Σ−1
b must be arranged in the reverse order with that for Λ−2

b . Thus, we have

VH
b QVb = Σb

⇒ Q = VbΣbV
H
b . (3.9)

Thus, Theorem 1 is proved.

By applying Theorem 1, the solution which also fulfills the two constraints

given in (3.5) can be computed as follows.

We denote Σb = diag {σb,1, . . . , σb,L} and Λb = diag {λb,1, . . . , λb,L}, where
λb,l, l = 1, . . . , L are the nonzero singular values of Hb. Substituting (3.9) into
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(3.6), we have

tr
(

(

HbQHH
b

)−1
)

=
L
∑

l=1

1

λ2b,lσb,l
. (3.10)

Furthermore, the power constraint can be simplified to tr(Q) =
∑L

l=1 σb,l =

PT . The simplified objective function may then be expressed as

min
σb,l,l=1,...,L

L
∑

l=1

1

λ2b,lσb,l

subject to
L
∑

l=1

σb,l = PT

σb,l ≥ 0, l = 1, . . . , L (3.11)

The Hessian matrix of the cost function in (3.11) is a diagonal matrix as

follows

He =









2λ−2
b,1σ

−3
b,1 · · · 0

...
. . .

...

0 · · · 2λ−2
b,Lσ

−3
b,L









. (3.12)

So it is positive definite in the solution domain which implies that the objective

function (3.11) is convex.

Applying the Lagrange multiplier method, the cost function is written as

f(λL, σb,1, . . . , σb,L) =
L
∑

l=1

1

λ2b,lσb,l
+ λL

(

L
∑

l=l

σb,l − PT

)

, (3.13)

where λL ≥ 0 is the Lagrange multiplier associated with the power constraint.

The cost function is minimized when the derivatives of f(λL, σb,1, . . . , σb,L)

over σb,l, l = 1, . . . , L, are all equal to zero. Thus we have

∂f

∂σb,l
= − 1

λ2b,lσ
2
b,l

+ λL = 0, l = 1, . . . , L. (3.14)

Solving (3.14) and then determining λL from the equality
∑L

l=1 σb,l = PT , we
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obtain the result as

σb,l =
PT

λb,l
∑L

j=1 1/λb,j
, l = 1, . . . , L. (3.15)

The last step is to verify that the diagonal elements of Σ−1
b are arranged in

the inverse order of those of Λ−2
b , so that the equality in (3.8) holds. According to

(3.15), the diagonal elements of Σ−1
b are arranged in decreasing order, while those

of Λ−2
b are in increasing order.

We conclude that the optimal transmit covariance matrix Q can be expressed

as

Qopt = VbΣbV
H
b , (3.16)

where Σb is diagonal with the diagonal elements given by (3.15).

We finally obtain the lower bound by substituting (3.16) into (3.4) as follow:

varMU (ωR) =
6N0

IN3PT

(

L
∑

l=1

1

λb,l

)2

, (3.17)

where λb,l, l = 1, . . . , L are the singular values of Hb.

3.2.3 Optimal Precoder

The derived performance bound can be achieved when an optimal precoder

is adopted. As shown in Fig. 3.2, the input signal x(t) to the precoder matrix

which is derived from the CSIT are Kx uncorrelated data streams each allocated

with equal power PT/Kx. The output of the precoder is s(t), which is expressed

as s(t) = Fx(t). With this model, the transmit covariance matrix Q has the

following expression

Q = Ex[Fxx
HFH ] =

PT

Kx

FFH . (3.18)

The optimal Qopt has been derived in (3.16), hence the optimal precoder Fopt can

be obtained by taking square root of Kx

PT
Qopt, i.e. Fopt =

√

Kx

PT
Q

1/2
opt .
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Fig. 3.2: Precoder model

3.3 Practical Precoder Design

The optimal precoder can achieve the performance bound, however, to obtain

the matrix Hb which is required at the transmitter may not be practically possible.

Instead, it is possible to make the receiver estimate the channel matrix H and

introduce a feedback channel from the receiver to the transmitter [23]. In this

subsection, we propose a practical precoder design based on the available CSIT

which will be demonstrated to have its performance close to the optimal precoder.

We postulate the objective function (3.5) using the following

min
Q

tr

(

(
1

N
HQHH)†

)

subject to tr (Q) = PT

Q � 0 (3.19)

and its relevance to the optimal precoder will be demonstrated afterwards. The

solution to (3.19) can be similarly obtained using the method in the previous

section. Let the truncated SVD of H be given by H = UhΛhV
H
h , where Uh and

Vh are N×L andM×L matrices with the property UH
h Uh = IL and VH

h Vh = IL,

respectively, and Λh = diag {λh,1, . . . , λh,L} is a L × L diagonal matrix with its

diagonal elements being the singular values of H permutated in decreasing order.

After simplifications, the objective function can be rewritten as Ntr
(

Λ−2
h Σ−1

h

)

where Σh = VH
h QVh, which is similar to (3.7). In order to obtain the solution,

Σh should be a diagonal matrix. Denoting Σh = diag{σh,1, . . . , σh,L} and using
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Lagrange method, the solution for the transmit covariance matrix when H is used

is given by






Qprac = VhΣhV
H
h

σh,l =
PT

λh,l

∑L
j=1 1/λh,j

, l = 1, . . . , L.
(3.20)

From this result, we can see that the diagonal elements of Σ−1
h are arranged in

decreasing order, which is opposite to Λ−2
h . Similar with the optimal precoder,

the practical precoder Fprac can be obtained by taking the square root of Kx

PT
Qprac,

i.e. Fprac =
√

Kx

PT
Q1/2

prac.

We shall show the impact on the estimated error variance when H is used

instead of Hb. Since H = CR(ΩR)Hb, by substituting this into the matrix trace

in (3.19), we have

tr

(

(

1

N
CR(ΩR)HbQHH

b CR(ΩR)
H

)†
)

= tr

(

(

1

N
CR(ΩR)

HCR(ΩR)

)−1
(

HbQHH
b

)−1

)

= tr
(

R−1
c

(

HbQHH
b

)−1
)

, (3.21)

where Rc =
1
N
CR(ΩR)

HCR(ΩR). For ULA, the steering vector has the form given

in (3.1), so the entries of Rc can be expressed as

(Rc)i,k =







1, i = k

1
N

∑N
n=1 exp (−j(n− 1)(ωR,i − ωR,k)) , i 6= k

. (3.22)

It can be seen that when the AoAs are sufficiently separated, the off-diagonal

elements of Rc are much smaller than the diagonal elements when N is large.

Under this condition, Rc can be approximated to an identity matrix since the

off-diagonal elements are small numbers. This explains that the trace obtained in

(3.19) approaches that given in (3.5) if all AoAs are reasonably separated. Our

simulation results will later verify this.
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3.4 Simulation of the Optimal and Practical Pre-

coders

The performance of the proposed algorithm is evaluated in a synthetically

generated channel. The channel is assumed to have two propagation paths, and

the AoAs of the two paths are separated by an angle θd whose values vary in

the following simulation. The transmitter and receiver are each equipped with a

ULA with antenna elements separated by dh = λs/2. The number of transmit

antennas is six, while the number of receive antennas varies in the simulation.

We define θ3dB as the 3 dB beamwidth of the receiver array whose value is given

by θ3dB = 0.891 λs

Ndh
when N ≤ 30 [3]. The input to the precoder consists of two

independent pseudo-noise (PN) sequences. At the receiver, the number of samples

used for the MUSIC algorithm is 1000. The impact on the receive power due to

the channel gain is removed through proper normalization. The signal-to-noise

ratio (SNR) is defined as the ratio of the transmission power and the noise power

at the receiver. As channel has been normalized, the SNR below can be treated

as transmitter or receiver SNR.

The whole simulation consists of two parts. The first part discusses the con-

ditions under which the precoder strategies approach the theoretical bound given

in (3.17), while the second part studies the performance of the precoders in the

high-resolution scenarios, i.e. when θd ≤ 0.5θ3dB.

3.4.1 Asymptotic Performance of Precoder Strategies

Since the theoretical bound shown in (3.17) is an asymptotic error variance,

this part of simulation demonstrates the conditions for the precoding strategies

to approach the bound. We perform two simulations to study the AoA estimate

errors of two precoding strategies and compare them with the bound.

Firstly, the performances are studied when the number of receive antennas

N changes. The separation angle θd is maintained at 2θ3dB, so that the effect of

closely separated signals which degrades the performance of the MUSIC algorithm

can be eliminated. The AoAs of the two paths are set at 90◦ and 90◦ + θd, while

the corresponding AoDs are set at 130◦ and 30◦, respectively. The amplitudes of

the instantaneous complex path gains used before normalization are 0.8 and 0.4.

In Fig. 3.3, the performance curves obtained by using the optimal and practical
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Fig. 3.3: Comparison of performance bound and the performances of precoders as a function of
the number of receive antennas (SNR=20dB, θd = 2θ3dB)

precoders are compared with the achievable performance bound, as a function of

N and with SNR set at 20 dB. The root mean square error (RMSE) of ω is used

as the performance metric, where ω = π cosΩ and Ω is the AoA in degree. We

see that the results of precoders get closer to the bound when N increases. When

N is sufficiently large, the two curves converge, indicating that the AoA error

variances have approached the theoretical limit. In the same figure, the system

without precoder is also shown and is found to perform significantly worse.

Secondly, we compare the bound and the two precoder strategies while chang-

ing the value of θd from 0.1θ3dB to 2θ3dB. The SNR is again set at 20 dB. The

number of receive antennas is set to be sufficiently large, and in our case we

choose N = 12. From Fig. 3.4, we can see that as θd increases, the two precoder

strategies approach the bound asymptotically. Specifically, when θd ≥ 2θ3dB, the

MUSIC algorithm with a precoder can achieve the bound. This figure also shows

the impact of estimation error when practical precoder is used instead of optimal

precoder. The two precoders get closer when θd increases. When θd > 0.6θ3dB, the

performance of the practical precoder is already very close to that of the optimal

precoder. This observation provides a proof of the correctness of the theoretical
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Fig. 3.4: Comparison of the three AoA estimation strategies as a function of the angle of sepa-
ration θd (N=12, SNR=20dB)

explanation in Section 3.3. On the other hand, when θd is small, e.g. θd = 0.2θ3dB,

although the performance of practical precoder degrades, it still shows significant

improvement over the system without precoder.

3.4.2 Performance Evaluation in the High-Resolution Sce-

nario

In this part, we study the performances of the two precoders in the high-

resolution scenario (i.e. θd ≤ 0.5θ3dB) which requires the use of the MUSIC

algorithm. In our simulation, we choose θd = 0.5θ3dB, and the following two

asymptotic schemes are studied.

The first scheme is to increase the number of antennas N while maintaining

the SNR at 20 dB. The AoDs and path gains are the same as those in the first

part of the simulation. The result is shown in Fig. 3.5. In such a scenario, the

performances of the MUSIC algorithm with and without precoder are degraded

compared with Fig. 3.3. Even though, the estimation with a precoder exhibits

significantly better performance than the estimation without precoder. For ex-

ample, the system with 8 antennas and a practical precoder has nearly the same

performance as the one with 20 antennas but without a precoder.
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Fig. 3.5: Performances of precoders as a function of the number of receive antennas in the
high-resolution scenario (SNR=20dB, θd = 0.5θ3dB)

The second scheme studies the performances while increasing the SNR and

maintaining N = 12. The RMSEs of ω are computed and shown in Fig. 3.6(a)

when the SNR changes from -10 dB to 20 dB. Compared with when no precoder

is used, the two AoA estimation algorithms with precoders show significant im-

provement in performance. To achieve the same RMSE, the improvement is about

10 dB in SNR. The RMSEs of AoA estimation in degrees which is more intuitive

in angle estimation is shown in Fig. 3.6(b).

3.5 Applying Precoder to AoA-Based Localiza-

tion Algorithm

The precoder design here can be applied to any scenarios that utilize the AoA

information to improve its performance. In our work, we apply it to localization

by using an existing known location estimation algorithm as an example. In the

literature, various AoA-based localization techniques have been proposed. We

choose the scheme proposed in [20], since it works in a MIMO system and is
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Fig. 3.6: Comparison of the performances of the three AoA estimation strategies over SNR
(N = 12, θd = 0.5θ3dB)
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robust enough to overcome the NLOS problem in localization.

The localization scheme in [20] leverages on the bidirectional estimation of

AoA and time-of-arrival (ToA) of the paths between the mobile terminal (MT)

and fixed terminal (FT) which undergo one-bound scattering. The MT initiates

the localization process by transmitting a beacon signal. The FT that receives

the signal first estimates the ToAs of all the paths using an existing algorithm

such as those proposed in [123–125], followed by estimating the AoAs using the

MUSIC algorithm. The signal used for AoA estimation is assumed to be precoded.

After obtaining the parameters of the channel from the MT to the FT (referred

to as forward link hereafter), the ToAs and AoAs of the channel from the FT to

the MT (referred to as reverse link hereafter) are subsequently estimated using

the same principle. As in the channel model described in Section 3.2, each path

is characterized by three parameters: AoD from the MT, AoA to the FT and

ToA. If the system operates in the time-division-duplex mode, the channels of

the forward link and the reverse link are symmetric, so the AoAs of the reverse

link correspond to the AoDs of the forward link. All the estimated parameters

are sent to the information processing center. After rejecting the multiple-bound

paths [20], the location is determined using the LS algorithm.

An example is depicted in Fig. 3.7, which shows the principle of finding the

possible location of the MT through a one-bound path. The FT with known

location (xf , yf ) has the measured AoA ΩR,l and ToA tl for the lth forward link

path, while the MT with unknown location (xm, ym) has the measured AoA ΩT,l

and ToA τl for the reverse link of the same path. The path length can be expressed

as the product of the speed of wave propagation c and the ToA: df,l = ctl and

dr,l = cτl. Under the constraints of the path length and the AoAs of the forward

and reverse links, the location of the MT can be uniquely determined if we have

knowledge about the location of the scatterer Sl(xs,l, ys,l). From Fig. 3.7, the

actual location of S lies along the line that initiates from the FT with the angle

ΩR,l. It was shown in [20], all possible MT locations will form a straight line which

is shown in Fig. 3.7. If we have the knowledge of two propagation paths originating

from the MT, the position of the MT can be determined as the intersection point

of the two lines of possible MT locations.

As in Fig. 3.7, in order to find the equation for the line of possible MT

locations, we first identify the locations of two endpoints of the line which are
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Fig. 3.7: Possible locations of the MT derived from the parameters of a one-bound path

given by

x1,l = xf − df,l cosΩR,l, y1,l = yf + df,l sinΩR,l,

x2,l = xf + dr,l cosΩT,l, y2,l = yf − dr,l sinΩT,l. (3.23)

Then using simple derivations, the equation of the line can be written as

ym = alxm + bl, (3.24)

where

al = − df,l sinΩR,l + dr,l sinΩT,l

df,l cosΩR,l + dr,l cosΩT,l

,

bl = yf − axf +
df,ldr,l(sinΩR,l cosΩT,l − cosΩR,l sinΩT,l)

df,l cosΩR,l + dr,l cosΩT,l

.

Define the number of FTs as Nf , and the number of paths correspond-

ing to the nth FT as Ln, n = 1, . . . , Nf . With each path corresponding to a

line of possible MT locations, there are totally
∑Nf

n=1 Ln lines. Regarding the
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mathematical expression, the coefficients in (3.24) are changed to al,n and bl,n,

l = 1, . . . , Ln, n = 1, . . . , Nf , for the nth FT and the lth path correspondingly. All

the lines can be written in the matrix form as

A

[

xm

ym

]

= b, (3.25)

where

A =

[

a1,1 . . . aL1,1 . . . a1,Nf
. . . aLNf

,Nf

−1 . . . −1 . . . −1 . . . −1

]T

,

b = −[b1,1 . . . bL1,1 . . . b1,Nf
. . . bLNf

,Nf
]T .

Therefore, the LS solution for (3.25) is given by

[

xm

ym

]

= (ATA)−1ATb. (3.26)

3.6 Simulation of Localization with Precoder

In this section, we will study the performance of the localization algorithm

when the use of precoder is possible. The MUSIC algorithm with practical pre-

coder is used to perform AoA estimation, and the algorithm described in Section

3.5 is adopted for location estimation.

The localization scenario is depicted in Fig. 3.8. The MT is located at (20, 10)

and its coordinates are the parameters under estimation. Two FTs labeled as FT1

and FT2 are located at (5, 10) and (30, 15), respectively. There are three paths

between the MT and each FT, two of which are one-bound paths and the third

is a two-bound path in dotted line. The scatterers between FT1 and the MT are

placed at (16, 13), (15, 8) for the two one-bound paths and at (7, 12), (13, 4) for

the two-bound path, while those between FT2 and the MT are placed at (24, 14),

(23, 9) for the two one-bound paths and at (27, 16), (25, 2) for the two-bound path.

The AoAs, AoDs, ToAs and path lengths are calculated according the geometric

relationship. The path gains are inverse proportional to the path length, and for

each scattering of signal, a fixed coefficient (less than 1) is multiplied. Each of the

devices is equipped with a ULA with six antennas separated by half a wavelength.
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Fig. 3.8: Scenario for the simulation of localization

In the simulation, we compare the accuracy of location estimation with and

without practical precoder. According to the geometry described above, the chan-

nel matrices between MT and two FTs are computed. In each Monte-Carlo sim-

ulation, the AoAs of forward link and reverse link between MT and FT1 as well

as the AoAs of links between MT and FT2 are all estimated using the MUSIC

algorithm, for both with and without precoder. Regarding the ToAs, we assume

the errors follow Gaussian distributions with zero mean and have the same vari-

ance, and they are generated randomly. All the required channel parameters are

then used to determine the location of MT according to the principles described

in Section 3.5.

The location errors depend on two parameters, i.e. the SNR (determine the

error of AoA estimation, and defined in the same way as in Section 3.4) and

the standard derivation of distance measurements σd (represent the error of ToA

estimation). The RMSE of the location estimation as a function of the SNR is

shown in Fig. 3.9, with σd = 0 in the first figure and σd = 1 meter in the second

figure. When σd = 0, i.e. the ToA estimation is ideal, we observe performance

improvement at both low and high SNRs in Fig. 3.9(a). The largest improvement

appears when the SNR ranges from -8 to -2 dB, and the RMSE of location is

improved by over 90%, from a few meters (without precoder) to a few centimeters

(with precoder). As the SNR increases, the difference becomes less. When SNR=0
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Fig. 3.9: RMSE of location estimate as a function of SNR when the standard derivation of
distance measurements σd = 0 and σd = 1 meter
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Fig. 3.10: RMSE of location estimate as a function of the standard derivation of distance mea-
surements σd when SNR=-6 dB

dB or higher, the precoder results in 25 − 50% improvement compared with the

system without precoder. When σd = 1 meter, as shown in Fig. 3.9(b) the

improvement at low SNR is still significant, e.g. 50− 75% improvement when the

SNR ranges from -12 to -4 dB. However, it disappears at high SNR. The reason is

that the AoA estimation errors with and without precoder are both in the order of

0.1 degree or even lower after 0 dB, and the distance error becomes the dominant

factor on localization compared with the AoA estimation error. When the SNR

is set at -6 dB and the value of σd changed from 0 to 3 meters, we get Fig. 3.10

where significant improvement can be observed.

3.7 Conclusion

In this chapter, we have derived a new asymptotic error variance bound when

the transmitted signal can be pre-processed while the MUSIC algorithm is used to

estimate the AoAs. We further propose the optimal design of a precoder to achieve

the bound asymptotically, and a practical precoder design which is realizable in

practice. The performance of the optimal precoder is demonstrated to be able to

approach the bound asymptotically through simulation. On the other hand, the
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practical precoder is shown to perform close to the optimal precoder even in the

high-resolution scenario. The two precoder schemes can considerably improve the

performance as compared with the case when no precoder is used, i.e., without

any transmit signal design. When the precoder is applied to any AoA-based

localization algorithm, the accuracy of location estimation is improved.

Let us remark that our proposed approach is different from [126, III.A] in

terms of motivation, formulation and solutions. Our work is motivated by en-

hancing the performance of the MUSIC algorithm, and minimizing the asymp-

totic AoA estimation error is the design criterion. On the other hand, the design

objective of the precoder in [126, III.A] is to minimize the minimum mean square

error (MMSE) of the received symbol. The two different design criteria lead to

two different cost functions, and therefore provide two different optimal precoders.
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Chapter 4

Improving the Accuracy of ToA

Estimation in MIMO Systems

In this chapter, with the objective to minimize the Cramer-Rao lower bound

(CRLB) of the time-of-arrival (ToA) estimator, we propose a method to improve

the accuracy of ToA estimation through pre-processing the transmitted signal

in multiple-input multiple-output (MIMO) systems. We consider two cases: (1)

transmit beamforming is adopted when the channel state information at the trans-

mitter (CSIT) is available, and (2) space-time block code (STBC) is utilized as the

transmit diversity technique for the case of unavailable CSIT. Under the assump-

tion that the channel state information at the receiver (CSIR) is always available

in both cases, we employ receive beamforming at the receiver. We demonstrate

through simulation that the performance of the ToA estimator is enhanced with

the availability of CSIT, and improved further with the increase in the number of

antennas. Under the condition of erroneous CSIT, improvement can still be ob-

served as compared with the case with unavailable CSIT when the signal-to-noise

ratio (SNR) is below a threshold.
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Fig. 4.1: System structure

4.1 Cramer-Rao Lower Bound for ToA Estima-

tion

The system model with a single-path channel is depicted in Fig. 4.1. The

transmitter and receiver are each equipped with an antenna array of M and N

elements, respectively. The receiver is assumed to estimate the channel periodi-

cally, hence CSIR is always known. The beamforming vector at the receiver, wR,

is designed according to CSIR. CSIT may or may not be available. If a feedback

channel from the receiver to the transmitter is introduced [23], i.e. the CSIT is

made available, transmit beamforming can be applied and the beamforming vector

wT is computed according to the principle presented in Section 4.2.1. On the other

hand, if the CSIT is not available, the transmit diversity technique via STBC is

adopted.

Define x(t) as the input signal which consists of modulated pulses

x(t) =
∞
∑

i=−∞

√

Esbia(t− iTs) (4.1)

where Es is the signal power, bi ∈ {−1,+1} is the transmitted data symbol, Ts

is the symbol duration and a(t) is the pulse with unit energy and time-limited to

Ts. The received signal at the receive antenna array can be expressed as

r(t) = hx(t− τ) + z(t) (4.2)
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where z(t) = [z1(t), z2(t), ..., zN (t)]
T is the additive white Gaussian noise with

power spectral density N0, and τ is the ToA of the path. When CSIT is available,

we have h = HwT where H is the channel matrix. When the CSIT is not available

and transmit diversity technique via STBC is adopted, the channel model can still

be expressed using the form of (4.2), and the details will be presented in Section

4.2.2. The output of the receive beamforming vector is expressed as

g(t) = wH
Rhx(t− τ) +wH

Rz(t). (4.3)

The beamforming vector wR should be normalized so that it does not introduce

any power gain. Therefore, wH
Rz(t) can be replaced by a single random variable

n(t) which follows Gaussian distribution with zero mean and variance N0. We also

define ζ = wH
Rh. The above equation can be simplified to

g(t) = ζx(t− τ) + n(t) (4.4)

Define Θ = [τ ζ] as the parameter vector to be estimated. We set the obser-

vation interval at the receiver as [0, T ], where T = ITs and I is an integer denoting

the number of observed symbols. Then the maximum likelihood (ML) estimate of

Θ is given by

Θ̂ML = argmax
Θ

{

ζ

N0

∫ T

0

g(t)x(t− τ)dt− ζ2

2N0

∫ T

0

[x(t− τ)]2dt

}

(4.5)

With the above ML estimate function, the Fisher information matrix (FIM) can

be expressed as follows

JΘ =

[

Jττ Jτζ

Jζτ Jζζ

]

(4.6)

where

Jττ =
ζ2

N0

∫ T

0

[x′(t− τ)]2dt,

Jτζ = Jζτ = − ζ

N0

∫ T

0

x(t− τ)x′(t− τ)dt,

Jζζ =
1

N0

∫ T

0

[x(t− τ)]2dt, (4.7)
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and x′(t) is the first-order derivative of x(t). In order to simplify the above equa-

tions, we define

Ξ =

∫ T

0

[x(t− τ)]2dt,

Ξ̃ =

∫ T

0

[x′(t− τ)]2dt,

Ξ̂ =

∫ T

0

x(t− τ)x′(t− τ)dt. (4.8)

The CRLB of the ToA estimator is the first element of the inverse of the FIM,

which is

CRLBτ = [J−1
Θ ]11 =

N0Ξ

ζ2(ΞΞ̃− Ξ̂2)
. (4.9)

H can be obtained by performing channel estimation, so the parameter ζ can

be made known before the estimation of τ . Under this situation, the CRLB is

reduced to

CRLBτ =
N0

ζ2Ξ̃
. (4.10)

For the transmitted signal that has the form shown in (4.1), it has been shown

that Ξ̃ can be expressed as follows [127]

Ξ̃ = 4π2Esβ
2
a (4.11)

where βa is the effective bandwidth of a(t) defined as

β2
a =

∫∞

−∞
f 2A2(f)df

∫∞

−∞
A2(f)df

(4.12)

where A(f) is the Fourier transform of a(t). Substituting (4.11) into (4.10), we

have

CRLBτ =
N0

4π2β2
aζ

2Es

, (4.13)

where ζ2Es/N0 is the SNR at the receiver.
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4.2 MIMO Beamforming and Diversity for ToA

Estimation

We use the CRLB derived in (4.13) as the objective function, and design ap-

propriate transmit signal and receive techniques to minimize it. It is obvious that

minimizing (4.13) is equivalent to maximizing the receive SNR. This matches to

the objective in communication system design which aims to optimize the receive

SNR in the MIMO link, and obviously some of the known results can be applied.

In the following, we will present the strategies when the CSIT is available and

not available, respectively. The tightness of this CRLB will be explained in the

simulation.

4.2.1 When CSIT Is Available

Theorem 2. Let the singular value decomposition (SVD) of H be denoted by

H = uhλhv
H
h , where uh and vh are N × 1 and M × 1 vectors with the property

uH
h uh = 1 and vH

h vh = 1, respectively, and λh is the singular value of H. Then the

beamforming vectors that maximize the receive SNR are wR = uh and wT = vh,

respectively.

Proof. See [121].

Substituting the optimal beamforming vectors into the CRLB, we have

CRLBτ =
N0

4π2β2
aEs ‖wH

RHwT‖2

=
N0

4π2β2
aEsλ2h

(4.14)

4.2.2 When CSIT Is Not Available

When CSIT is not available, optimal design through the processing of signal

at the transmitter is not possible. However, we shall examine the use of STBC

to achieve the diversity gain without reducing the spectral efficiency. On the

other hand, the receive SNR can be maximized at the receiver by maximum ratio

combining (MRC). Hence, the strategy employed here is to apply the STBC at

the transmitter, then independently decode the signals at each receive antenna,

and apply the MRC to combine the decoded signals from all receive antennas.
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The STBCs for different transmit antenna numbers are listed in [24]. In this

work, we use the case when the number of transmit antennas is two (also known

as Alamouti code [128]) as an example to derive the corresponding CRLB.

Denote the transmitted signals at time t and t + Ts as x(t) and x (t+ Ts),

respectively. Then the signals at the two transmit antennas are designed as

s(t) =

√

1

2

[

x(t)

x (t+ Ts)

]

,

s (t+ Ts) =

√

1

2

[

x∗ (t+ Ts)

x∗(t)

]

. (4.15)

After transmission through the channel, the signals at the nth receive antenna

before decoding are

r̃n(t) =

√

1

2
(hn1x(t− τ) + hn2x (t+ Ts − τ)) + z̃n(t),

r̃n(t+ Ts) =

√

1

2
(−hn1x∗ (t+ Ts − τ) + hn2x

∗(t− τ)) + z̃n(t+ Ts), (4.16)

where hn1 and hn2 are the entries of the nth row of the channel matrix H, and

z̃n(t) and z̃n(t + Ts) are i.i.d. complex Gaussian noise components each of which

has zero mean and variance N0. At the nth antenna, the decoding process is

expressed in mathematical form as follows

[

rn(t)

rn(t+ Ts)

]

=
1

√

|hn1|2 + |hn2|2

[

h∗n1 hn2

h∗n2 −hn1

][

r̃n(t)

r̃∗n(t+ Ts)

]

=





√

|hn1|2+|hn2|2

2
x(t− τ) + zn(t)

√

|hn1|2+|hn2|2

2
x(t+ Ts − τ) + zn(t+ Ts)



 (4.17)

where rn(t) and rn(t + Ts) are the signals at time t and t + Ts after decoding,

respectively, and zn(t) and zn(t+Ts) are i.i.d. complex Gaussian noise components

each of which has zero mean and variance N0.

It is obvious that the signal vector at the receive antenna array after decoding
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can be expressed using the following form which is consistent with (4.2)

r(t) =











√

|h11|2+|h12|2

2
...

√

|hN1|2+|hN2|2

2











x(t− τ) + z(t) (4.18)

According to the principle of MRC and with the model in (4.18), the receive

beamforming vector should be

wR =
1

‖H‖F

[

√

|h11|2 + |h12|2, · · · ,
√

|hN1|2 + |hN2|2
]T

. (4.19)

where ‖·‖F is the Frobenius norm. After applying the receive beamforming, we

have

g(t) =
‖H‖F√

2
x(t− τ) + n(t) (4.20)

Substituting it into (4.13), the CRLB is finally expressed as follows

CRLBτ =
N0

2π2β2
aEs ‖H‖2F

=
N0

2π2β2
aEsλ2h

(4.21)

When the transmit antenna number is larger than two, the corresponding

CRLBs can be also derived similarly.

4.3 Simulation and Performance Analysis

In this section, the performances of the above strategies are evaluated in

a synthetically generated channel. The signal a(t) consists of modulated pulses

whose pulse shape is a Gaussian doublet as follows

a(t) =







B
(

1− 4π(t−1.25ξa)2

ξ2a

)

exp
(

−2π(t−1.25ξa)2

ξ2a

)

, 0 ≤ t < Ts

0, otherwise
(4.22)

where B is used to adjust the pulse energy, and ξa determines the pulse width.

We choose proper value for B so that the pulse has unit energy. In our work,
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Fig. 4.2: Gaussian doublet used in the simulation

the symbol duration Ts is 2.5 µs, and therefore we choose ξa = 1 µs so that the

pulse values at t = 0 and t = 2.5 µs are very close to 0. The pulse shape with

the chosen parameters is shown in Fig. 4.2. The number of transmitted symbols

during observation is I = 20. The transmitter and receiver are each equipped

with an uniform linear array, and the distance between two adjacent antennas is

dh = λs/2 where λs is the wavelength. The channel has a single path whose path

gain takes the value of 1. The angle-of-departure (AoD) and AoA of the path are

50◦ and 130◦, respectively. The noise power at each receive antenna is the same,

and the SNR is defined as the ratio between the transmission power and the noise

power at each receive antenna. We use the root mean square error (RMSE) in ns

as the metric to evaluate the performance of the ToA estimator.

In our simulation, we assume perfect CSIR, but the feedback error due to

unreliable transmission and feedback delay when obtaining the CSIT is taken

into account. The error is defined as follows. We denote the CSIT as Hf =

H + Ef where Ef is the error matrix due to feedback channel comprising i.i.d.

complex Gaussian variables with zero mean and variance σ2
fξ

2. As in [19], ξ2 =

‖H‖2F /(MN) is defined as the channel normalization factor. σ2
f is the quality of

the feedback information, for instance, σ2
f = 0.1 indicates 10% error.

In the first part of simulation, we compare the three strategies, namely MIMO
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Fig. 4.3: RMSE of ToA estimation versus SNR for the cases of MIMO with CSIT, MIMO without
CSIT and SISO (σ2

f=0)

with perfect CSIT (i.e. σ2
f = 0), MIMO without CSIT and single-input single-

output (SISO). The CRLBs of the three cases are also computed. The transmit

array and receive array each consists of two elements. From Fig. 4.3, we can

see that all three strategies approach the CRLBs asymptotically as a function of

the SNR, which indicates that the CRLB is a tight bound at high SNR in our

application scenario. Compared with MIMO without CSIT, adopting the CSIT

knowledge results in about 3-4 dB performance improvement in SNR. Furthermore,

in order to achieve the same performance, the SISO case requires about 6 dB more

on the SNR compared with the case of MIMO with CSIT.

The second part evaluates the performance of our techniques while changing

the antenna number, which is shown in Fig. 4.4. The two strategies, i.e. MIMO

with CSIT and MIMO without CSIT, are simulated. The CSIT is also assumed to

be perfect (i.e. σ2
f = 0). For MIMO without CSIT, corresponding STBCs in [24]

are adopted when the antenna numbers are 3× 3 and 4× 4. From the figure, we

can see that the performance is improved with increasing the number of antennas.

Also, the performance difference between the two strategies is more intuitive. For

instance, in order to achieve the same performance, the case of MIMO without

CSIT requires a 4× 4 array pair, while the case of MIMO with CSIT only needs
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a 2× 2 array pair.

The third part of simulation demonstrates the performance of the case of

MIMO with erroneous CSIT. The transmit array and receive array each consists

of two elements. We still assume perfect CSIR, but we introduce the error in

CSIT due to feedback channel delay and noise. We change the value of σ2
f , and

the results are shown in Fig. 4.5. In general, channel estimation errors result in

an error floor in the performance curve of ToA estimation. From the figure, we

can see that the performance of MIMO with CSIT is almost not affected with

5% error. However, the performance is downgraded at high SNR when the error

increases to 10%, especially when SNR is higher than 38 dB where the errorneous

CSIT results in a worse performance compared with the case when no CSIT is

used. If the feedback error is 15%, it is better not to use the CSIT when the SNR

is higher than 24 dB.

4.4 Conclusion

By means of minimizing the CRLB of the ToA estimator, we propose a

method to improve the accuracy of ToA estimation in two scenarios where the
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Fig. 4.5: RMSE of ToA estimation versus SNR for the case of MIMO with erroneous CSIT

CSIT are available and not available, respectively. The transmit and receive beam-

forming is adopted when the CSIT is available, while the transmit diversity via

STBC and receive beamforming are utilized when the CSIT is not available. The

performance is enhanced with the availability of CSIT and the increase in the

number of antennas. Even with erroneous CSIT, improvement can be observed

compared with the case of unavailable CSIT when the SNR is below a threshold.
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Chapter 5

MAP-Based Channel Estimation

for SIMO and MIMO Systems

This chapter takes the conventional approach to improve the localization ac-

curacy through a more accurate joint parameters estimation techniques, which

include both temporal and spatial domain channel parameters. Quantifying the

localization accuracy is not the focus of this chapter. The focus is to study the

accuracy of the parameter estimation which will impact the performance of any

localization algorithm used. A maximum a posterior (MAP) based channel esti-

mation algorithm is proposed to estimate both the temporal and spatial domain

channel parameters for single-input multiple-output (SIMO) systems transmitting

over an extended Saleh-Valenzuela (SV) channel. The proposed algorithm lever-

ages on prior knowledge of statistical channel information of signal clusters and

rays within a cluster, and uses the expectation-maximization (EM) algorithm to

resolve the high dimensional optimization problem into iteratively solving the mul-

tiple 3-dimensional (3-D) optimizations. The successive interference cancellation

(SIC) method is applied in the initialization stage to obtain the initial guess to

the EM algorithm. Simulations are carried out in two typical indoor scenarios fol-

lowing the extended SV model. The proposed algorithm is shown to outperform

the maximum likelihood (ML) based algorithm reported for SIMO systems. Fi-

nally, we discuss how the algorithm can be extended and applied to multiple-input

multiple-output (MIMO) systems.
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Fig. 5.1: Cluster and ray arrivals in the temporal domain of the extended SV model

5.1 Channel and Signal Model

5.1.1 Overview of the Extended Saleh-Valenzuela Model

The extended SV model [129] results from space-time channel measurements

over indoor propagation environment for MIMO/SIMO systems. It is an extension

to the SV time-of-arrival (ToA) model [130] by incorporating the spatial informa-

tion. The model is based on the observation that all multipath rays arrive in

clusters. The channel impulse response (CIR) h(τ, θ), where τ and θ are the ToA

and the angle-of-arrival (AoA) respectively, is given by

h(τ, θ) =
Lc
∑

l=1

Kl
∑

k=1

αklδ(τ − Tl − τkl)δ(θ −ΘR,l − ϕR,kl) (5.1)

where Lc and Kl are the number of clusters and the number of rays within the lth

cluster, respectively. αkl is the complex path gain of the kth ray in the lth cluster

and follows the complex normal distribution with mean 0 and variance σ2
kl. The

total delay of each ray is the sum of Tl (the delay of the lth cluster) and τkl (the

delay of the kth ray in the lth cluster). Similarly, the AoA of each ray is the sum

of ΘR,l (the mean AoA of the lth cluster) and ϕR,kl (the AoA of the kth ray in

the lth cluster relative to ΘR,l).

In the temporal domain, the complex path gain of clusters and rays within a

cluster attenuate exponentially by two different time constants. The variance σ2
kl

is given by

σ2
kl = σ2

11 exp(−Tl/Γ) exp(−τkl/γ) (5.2)
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where σ2
11 is the variance of the complex path gain of the first ray within the first-

arriving cluster. The variance is a function of the distance between the transmitter

and receiver. The ToAs of clusters, as well as the ToAs for the rays in each cluster,

are given by two independent Poisson processes of different rates. The cluster

arrival rate Φ refers to the intercluster arrival times, and the ray arrival rate φ

refers to the intracluster arrival times. The distributions are given by

p(Tl|Tl−1) = Φ exp(−Φ(Tl − Tl−1)), Tl−1 < Tl (5.3)

p(τkl|τk−1,l) = φ exp(−φ(τkl − τk−1,l)), τk−1,l < τkl (5.4)

The two distributions are assumed to be independent of each other. In addition,

T1 and τ1l (l = 1, . . . , K1) are both assumed to be zero. In the spatial domain, the

mean AoA for each cluster is uniformly distributed over [0, 2π). For rays within

a cluster, the deviation in the AoA with respect to the respective mean arrival

angle is assumed to follow a Laplacian distribution with standard deviation σ.

p(ϕR,kl) =
1√
2σ

exp

(

−
∣

∣

∣

∣

∣

√
2ϕR,kl

σ

∣

∣

∣

∣

∣

)

(5.5)

As assumed in [129], the time and angle distributions are independent of each

other.

The above distributions and model parameters are derived by experimental

measurements in [129]. It is implied that the extended SV model could represent

the signal propagation situations in many types of buildings according to their

experiments conducted in buildings with varying construction. Therefore, in our

application, this model is adopted to develop our algorithm, and the model pa-

rameters which depends on the building construction can be obtained by field

measurements at the time when a localization system is set up inside a building.

5.1.2 Signal Model

The transmitted signal s(t) consists of infinite rectangular pulses modulated

by a pseudo-noise (PN) sequence as described in [82]. s(t) =
√
Es

∑∞
i=−∞ bia(t−

iTs), where Es is the signal energy per bit, Ts denotes the symbol duration, and

bi ∈ {−1,+1}. Here we adopt a rectangular pulse with unit energy and time-

limited to Ts for a(t).
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Fig. 5.2: Clustered multipath propagation in SIMO channel

The clustered multipath propagation of a SIMO system in a mobile radio

environment is shown in Fig. 5.2. The paths are classified into Lc clusters, and

each ray contains three parameters, i.e. complex path gain, ToA and AoA. For

simplicity, we assume that the receiver is equipped with a uniform linear array

(ULA), however, the proposed algorithm is applicable for any arbitrary array

shape. The array consists of N antennas spaced apart by dh = λs/2, where λs

is the wavelength. Thus the array steering vector can be expressed as c(Ω) =

[c1(Ω), . . . , cN(Ω)]
T , where cn(Ω) = exp[j2π(n− 1)dh cosΩ/λs], n = 1, . . . , N and

Ω is the direction of the incoming or exit wave. Since the CIR has the expression

shown in (5.1), the received signal vector r(t) = [r1(t), . . . , rN(t)]
T at the output

of the antenna array can be expressed as

r(t) =
Lc
∑

l=1

Kl
∑

k=1

αklc(ΩR,kl)s(t− Tl − τkl) + z(t) (5.6)

where ΩR,kl = ΘR,l +ϕR,kl is the AoA of the kth ray within the lth cluster, z(t) is

white Gaussian noise vector with mean zero and power spectral density N0.

By defining

u(t;θkl) = αklc(ΩR,kl)s(t− Tl − τkl) (5.7)

and

u(t;θ) =
Lc
∑

l=1

Kl
∑

k=1

u(t;θkl) (5.8)
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where θ = [θ11, . . . ,θK1,1, . . . ,θ1,Lc
, . . . ,θKLc ,Lc

] is the parameter vector of all

paths, θl = [θ1,l, . . . ,θKl,l] is the parameter vector of the rays in the lth cluster,

and θkl = [αkl, Tl + τkl,ΩR,kl] is the parameter vector of the kth ray in the lth

cluster, then r(t) can be expressed in a more compact form as

r(t) = u(t;θ) + z(t)

=
Lc
∑

l=1

Kl
∑

k=1

u(t;θkl) + z(t) (5.9)

5.2 MAP-based Estimation Algorithm

Our objective is to develop a MAP-based channel estimation algorithm of

superimposed signals. In order to reduce the computational complexity so that

the algorithm is realizable, we apply the EM algorithm. We assume that we have

prior knowledge of the parameters in the extended SV model, i.e., the values of

Φ, φ,Γ, γ and σ in (5.2) to (5.5) are known.

5.2.1 MAP Estimation

The problem is how to estimate the parameter vector θ, given a serial of

observations of the received signal r(t), sampled at the time instants t1, . . . , tI ,

respectively, where I is the total number of samples. We assume that the channel

does not change over the whole sample period. Using the MAP estimation, we aim

to find the value of θ which gives the largest value to the a posteriori distribution

p(θ|r(t1), . . . , r(tI)). According to Bayes theorem, the a posteriori distribution

can be expressed as

p(θ|r(t1), . . . , r(tI)) =
p(r(t1), . . . , r(tI)|θ)p(θ)

p(r(t1), . . . , r(tI))
(5.10)

where p(θ) is the probability of θ, p(r(t1), . . . , r(tI)) is the probability of the

observation (r(t1), . . . , r(tI)), and p(r(t1), . . . , r(tI)|θ) is the a priori probability

given by

p(r(t1), . . . , r(tI)|θ) =
I
∏

i=1

1

(πN0)N/2
exp

(

−‖r(ti)− u(ti;θ)‖2
N0

)

(5.11)
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Since p(r(t1), . . . , r(tI)) is a constant, it can be dropped in the maximization prob-

lem. By substituting (5.11) into (5.10), taking the natural logarithm and ignoring

the constants which does not affect the optimization, the estimation can be shown

to be equivalent to

θ̂MAP = argmax
θ

{

I
∑

i=1

[

2ℜ
{

rH(ti)u(ti;θ)
}

− ‖u(ti;θ)‖2
]

+N0 ln p(θ)

}

(5.12)

The maximization problem given in (5.12) is a 3
∑Lc

l=1Kl-D nonlinear optimization

problem. It has very high computation complexity and hence is not suitable for

real-time applications. Besides, it is difficult to obtain the expression for p(θ).

Thus, we need a method to simplify this problem.

5.2.2 The EM Algorithm

The EM algorithm has been first derived in [131], and it has been applied

to estimate channel parameters of superimposed signals in [79]. In our work, we

apply the EM algorithm with the aim to reduce the computational complexity of

the maximization problem given in (5.12). The (3
∑Lc

l=1Kl)-D nonlinear optimiza-

tion problem is decoupled into (
∑Lc

l=1Kl) 3-D optimization problems and solved

iteratively.

The concepts of “incomplete data” and “complete data” are the basis of the

EM algorithm. The received signal r(t) is identified as the incomplete data. As

is mentioned in [82], the set of received signals transmitted through all the paths

constitute the complete data, which is expressed as

wkl(t) = u(t;θkl) +
√

βklz(t), (k = 1, . . . , Kl; l = 1, . . . , Lc) (5.13)

where the non-negative parameter βkl satisfies the constraint
∑Lc

l=1

∑Kl

k=1 βkl = 1.

As suggested in [82], βkl is assigned with the value of 1 to simplify the analysis.

Our simulation results presented shortly show that such an approximation can still

result in reasonable good estimate. Therefore, the incomplete date and complete

date are related according to the relationship

r(t) =
Lc
∑

l=1

Kl
∑

k=1

wkl(t) (5.14)
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Fig. 5.3: Flow chart of the algorithm

The basic idea behind the EM algorithm is that we first estimate the complete

data (unknown underlying variables) using the incomplete data (the samples) and

the current estimate of the parameters through the expectation step (E-step), and

then using this inferred data to find the new estimate of the parameters through

the maximization step (M-step) [132]. This process repeats iteratively, until the

values of the parameters converge to a stable solution. The flow of the algorithm

is shown in Fig. 5.3.

Estimation of Complete Data

This step is also called the E-step. The estimate of the complete data wkl(t)

in discrete form is represented by ŵkl(ti), i = 1, . . . , I, and is based on the obser-

vations of the incomplete data r(t) and the current estimate of θ. The discrete
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complete data of the nth iteration cycle is given by

ŵ
(n)
kl

(

ti; θ̂
(n−1)

)

= E
θ̂
(n−1) [wkl(ti)|r(ti)]

= u
(

ti; θ̂
(n−1)

kl

)

+ βkl

[

r(ti)−
Lc
∑

l′=1

Kl
∑

k′=1

u
(

ti; θ̂
(n−1)

k′l′

)

]

(i = 1, . . . , I; k = 1, . . . , Kl; l = 1, . . . , Lc) (5.15)

where θ̂
(n−1)

is the estimate of θ after the (n− 1)th iteration cycle. The last step

of (5.15) comes from [79].

MAP Estimation of a Single Path

This step is referred to as the M-step. In the nth iteration cycle, after we have

obtained the complete data in the first step, we use it to find the optimum esti-

mation of parameters. We aim to find the value which maximizes the a posteriori

distribution using (5.12), which is

(

θ̂
(n)

kl

)

MAP

= argmax
θkl

{

I
∑

i=1

[

2ℜ
{

ŵ
(n)
kl (ti)

Hu(ti;θkl)
}

− ‖u(ti;θkl)‖2
]

+ βklN0 ln p(θkl)

}

,

(k = 1, . . . , Kl; l = 1, . . . , Lc) (5.16)

To obtain the expression of p(θkl), we need to consider two different cases.

1. k = 1: In this case, we estimate the parameter vector for the first-arriving

ray in each cluster. We have

p(θ1l) = p(α1l, Tl,ΩR,1l) = p(α1l|Tl)p(Tl)p(ΩR,1l) (5.17)

According to the extended SV model, the distributions of α1l and Tl con-

ditioned on Tl and Tl−1, respectively, are known. However, since T1 is zero

as assumed in the model, the time delay can be estimated sequentially in

ascending order - Tl−1 which has been estimated in the current iteration cy-

cle will be used to estimate Tl. We further assume that we do not have any

prior information on ΩR,1l and treat it as being uniformly distributed over
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[0, 2π). We therefore are able to express p(θ1l) in the nth iteration cycle as

p(θ1l)
(n) =

Φ

2π2σ2
11

exp

(

−Φ(Tl − T̂
(n)
l−1) +

Tl
Γ

− |α1l|2
σ2
11 exp(−Tl/Γ)

)

, Tl > T̂
(n)
l−1

(5.18)

where T̂
(n)
l−1 is the estimate of Tl−1 in the current nth iteration cycle.

Substituting (5.18) into (5.16), we get the expression for
(

θ̂
(n)

1l

)

MAP
. The

optimum value for α1l can be derived in a closed form as a function of Tl

and ΩR,1l by equating the first-order derivative of (5.16) with respect to α1l

to 0. This results in (5.20). Substituting the result into (5.16), we obtain

(5.19), which is a 2-D search problem to find the optimum value of ToA and

AoA. The estimate of the parameters of the nth iteration cycle is given by

(

̂Tl,ΩR,1l

(n)
)

MAP

= arg max
(Tl,ΩR,1l)











∣

∣

∣
f
(

Tl,ΩR,1l; ŵ
(n)
1l

)∣

∣

∣

2

IEs ‖c(ΩR,1l)‖2 +N0 exp(Tl/Γ)/σ
2
11

+

(

1

Γ
− Φ

)

N0Tl











, Tl > T̂
(n)
l−1

(5.19)

(α̂
(n)
1l )MAP =

f

(

̂Tl,ΩR,1l

(n)
; ŵ

(n)
1l

)

IEs

∥

∥

∥
c(Ω̂

(n)
R,1l)

∥

∥

∥

2
+N0 exp(T̂

(n)
l /Γ)/σ2

11

(5.20)

where

f(T,Ω;w) =
I
∑

i=1

cH(Ω)w(ti)s(ti − T ) (5.21)

2. k 6= 1: Similarly, we can write

p(θkl) = p(αkl, τkl,ΩR,kl) = p(αkl|τkl)p(τkl)p(ΩR,kl) (5.22)

Here, we know the distributions of αkl and τkl conditioned on τkl and τk−1,l,

respectively. After the first-arriving path in each cluster (i.e. k = 1) is

estimated, the rays within the cluster are then estimated sequentially with

ascending order of time delay. When estimating θkl, the parameters Tl, τk−1,l

and ΩR,1l are known constants. Furthermore, we are able to compute the

distribution of ΩR,kl conditioned on ΩR,1l, as shown in (5.23), based on the

fact that it is the sum of a uniformly distributed variable over [0, 2π) and a
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Laplacian distributed variable. This allows us to take advantage of the fact

that rays in the same cluster should show small deviation in AoA, rather

than estimating the AoA of each ray independently.

p(ΩR,kl|ΩR,1l) =
σ +

√
2|ΩR,kl − ΩR,1l|
2
√
2σ2

exp

(

−
√
2|ΩR,kl − ΩR,1l|

σ

)

(5.23)

Using (5.23), the expression of p(θkl) in the nth iteration cycle can be derived

in the similar way as before. Through similar derivations, the estimate of

the parameters in the nth iteration cycle is given by

(

̂τkl,ΩR,kl

(n)
)

MAP

= arg max
(τkl,ΩR,kl)











∣

∣

∣
f
(

τkl,ΩR,kl; ŵ
(n)
kl

)
∣

∣

∣

2

IEs ‖c(ΩR,kl)‖2 +N0 exp(T̂
(n)
l /Γ) exp(τkl/γ)/σ

2
11

+

(

1

γ
− φ

)

N0τkl

+N0 ln
(

σ +
√
2|ΩR,kl − Ω̂

(n)
R,1l|

)

−
√
2N0|ΩR,kl − Ω̂

(n)
R,1l|

σ







, τkl > τ̂
(n)
k−1,l

(5.24)

(α̂
(n)
kl )MAP =

f

(

̂τkl,ΩR,kl

(n)
; ŵ

(n)
kl

)

IEs

∥

∥

∥
c(Ω̂

(n)
R,kl)

∥

∥

∥

2
+N0 exp(T̂

(n)
l /Γ) exp(τ̂

(n)
kl /γ)/σ2

11

(5.25)

where

f(τ,Ω;w) =
I
∑

i=1

cH(Ω)w(ti)s(ti − T̂l − τ) (5.26)

and T̂
(n)
l , τ̂

(n)
k−1,l and Ω̂

(n)
R,1l are the estimate of Tl, τk−1,l and ΩR,1l in the current

nth iteration cycle, respectively.

5.3 Initialization Issue

The convergence speed of the EM algorithm depends heavily on the initial

value due to the non-convex optimization. In our method, we use the SIC tech-

nique described in [133] for initialization purpose. The total number of paths is

L =
∑Lc

l=1Kl. The estimate of the parameter vectors during the initialization

process is represented by θ̂
(0)

= [θ̂
(0)

1 , . . . , θ̂
(0)

L ], where θ̂
(0)

l = [α̂
(0)
l , τ̂

(0)
l , Ω̂

(0)
R,l], l =
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1, . . . , L. First, the components of θ̂
(0)

are all initialized to zero, i.e. θ̂
(0)

=

[0, . . . , 0]. Then all paths are estimated successively. Before the initialization of the

lth path, the parameters for the previous (l−1) paths have been obtained and the

estimates of remaining paths are still equal to 0, i.e. θ̂
(0)

= [θ̂
(0)

1 , . . . , θ̂
(0)

l−1, 0, . . . , 0].

When estimating the lth path, the interference caused by the previously estimated

paths are calculated and subtracted from the received signal as shown in (5.27),

and the parameters are calculated according to (5.28)-(5.30). During the initial-

ization process, the concept “cluster” is not used. Below is the derivation of SIC.

For l = 1, . . . , L, we initialize the parameter vector of the lth path as below.

r(l)(ti) = r(ti)−
l−1
∑

l′=1

u
(

ti; θ̂
(0)

l′

)

; i = 1, . . . , I (5.27)

τ̂
(0)
l = argmax

τl







N
∑

n=1

∣

∣

∣

∣

∣

I
∑

i=1

s(ti − τl)r
(l)
n (ti)

∣

∣

∣

∣

∣

2






(5.28)

Ω̂
(0)
R,l = argmax

ΩR,l







∣

∣

∣

∣

∣

I
∑

i=1

s(ti − τ̂
(0)
l )cH(ΩR,l)r

(l)(ti)

∣

∣

∣

∣

∣

2






(5.29)

α̂
(0)
l =

∑I
i=1 s(ti − τ̂

(0)
l )cH(Ω̂

(0)
R,l)r

(l)(ti)

IEs

∥

∥

∥
cH(Ω̂

(0)
R,l)
∥

∥

∥

2 (5.30)

The output of the SIC initialization is a parameter vector containing the

parameters for all paths. However, the paths are not yet grouped into clusters.

We propose a simple method to solve this problem. As in [129], the clusters are

identified in the ToA/AoA domain, i.e. the rays in the same cluster have similar

ToAs and AoAs. Each path can be represented by a point with ToA and AoA

as the coordinate on the 2-D plane. The paths within the same cluster must

be close to each other. Thus, we first assign ToA and AoA with proper weights

respectively, and then compute the weighted Euclidean distance of any pair of two

paths. The paths with distances below a predefined threshold are classified into a

cluster.
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Table 5.1: Setting of parameters of the extended SV model

Parameters First scenario Second scenario
Γ (ns) 34 78
γ (ns) 29 82

1/Φ (ns) 17 17
1/φ (ns) 5 7
σ (degree) 26 22

5.4 Simulation and Performance Analysis

The performance of the proposed algorithm is evaluated in synthetically gen-

erated propagation channels. The receiver is an ULA with eleven elements sepa-

rated by half wavelength. The modulated PN sequence consists of 1024 rectangular

pulses with duration Ts = 1 ns. The discretization steps of our algorithm are 0.4

ns and 0.2◦ for the ToA and AoA, respectively. The performance is evaluated

over 60 randomly generated channels according to the extended SV model, and

we examine the average performance. In order to simplify the analysis, all the

channels are normalized. Each channel consists of 3 clusters, and the clusters

have [4, 3, 3] rays respectively. The AoA of each ray is distributed on [0, π). We

evaluate the performance in two scenarios each of which corresponds to a group of

parameters of the extended SV model, similar to that in [129]. The first scenario

is similar with the Clyde Building in [129] which is constructed mostly of rein-

forced concrete and cinder block with all internal walls composed of cinder block,

while the second scenario is similar with Crabtree Building in [129] which is built

with steel girders with internal walls constructed by gypsum board over a steel

frame. The second building represents a scenario with a more complex geometry,

i.e. more doorways, walls, or rooms between transmitter and receiver. Table 5.1

summarizes the parameters of the model used in the two scenarios.

We compute the root mean square error (RMSE) of complex path gain, ToA

and AoA respectively, with the SNR changing from −12 to 20 dB for two sce-

narios using the two algorithms, i.e. MAP-based and ML-based estimation. The

results are presented in Figs. 5.4 to 5.6. The error in estimating the complex

path gain is computed from (|α| − |α̂|)/|α|, where α̂ is the estimate of α. It is

shown that our algorithm outperforms the ML-based algorithm, especially when

the SNR is low, for the same RMSE performance we can achieve in about 3 to 6
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dB improvement for complex path gain, 2 to 4 dB improvement for ToA and 1

to 2 dB improvement for AoA respectively. This improvement diminishes as SNR

increases. This observation coincides with (5.19), (5.20), (5.24) and (5.25), where

the prior distributions have little contributions when N0 ≪ Es.

For AoA, the improvement of the MAP algorithm compared with ML is not

significant. The reason is that we have made some approximations when deter-

mining the distribution of ΩR,1l and ΩR,kl by using (5.23). The distributions in

the angle domain are not entirely exploited. We observe that the performances in

the two scenarios are different, indicating that the performance is dependent on

the type of environment.

The performance of ToA tends to be stable when the SNR is higher than

6 dB, while for AoA, it changes much more slowly when SNR is higher than 12

dB. In our proposed algorithm, accuracy is also constrained by the discretization

steps for ToA and AoA in addition to SNR, hence, the RMSE performance does

not improve further with further improvement in SNR. The convergence rate of

our algorithm is shown in Figs. 5.7 to 5.9 when the SNR is 20 dB. In general, it

converges fast, but it may have fluctuations on some occasions. The optimization

problem has multiple parameters, so for a single parameter, the interim result

may be closer to the real value than the final result when it converges. But the

final result is optimum when considering the multiple parameters as a whole. For

instance, the RMSE of complex path gain for the first scenario is the smallest

at 18 iterations as shown in Fig. 5.7. However, the RMSE of AoA still does not

achieve its minimum yet. Thus, when considering all the three parameters, the

objective function obtains the optimality after convergence.

5.5 Extension to MIMO Systems

In this section, the previously derived algorithm is extended to MIMO sys-

tems. A numerical example is provided to show the validity of the extension.
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Fig. 5.4: RMSE of complex path gain
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Fig. 5.7: RMSE of complex path gain versus number of iteration cycles, SNR=20 dB
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5.5.1 Theoretical Derivation

To include the angle-of-departure (AoD) information at the transmitter, the

extended SV model is modified to [134]

h(t, θT , θR) =
Lc
∑

l=1

Kl
∑

k=1

αklδ(t−Tl−τkl)δ(θT−ΘT,l−ϕT,kl)δ(θR−ΘR,l−ϕR,kl) (5.31)

where θT and θR are the transmit and receive angles, ΘT,l and ΘR,l are the mean

transmit and receive angles of the lth cluster, and ϕT,kl and ϕR,kl are the transmit

and receive angles of the kth ray in the lth cluster, relative to the respective mean

angles in each cluster. The other parameters are the same as those defined in

(5.1). The distributions of complex path gains, ToAs and AoAs, are the same

with those presented in (5.2)-(5.5). For AoDs, the mean angles of clusters, ΘT,l,

are uniformly distributed over [0, 2π), while the angle of the ray with respect to its

respective mean angle of cluster also follows Laplacian distribution with standard

derivation σ, which is the same as the distribution of AoAs.

Let the transmitter be equipped with a ULA ofM antennas, the signal trans-

mitted should consists of M PN sequences in order to exploit the diversity and

distinguish the AoDs of paths. Thus the expression of the received signal (5.6) is

modified to

r(t) =
Lc
∑

l=1

Kl
∑

k=1

αklcR(ΩR,kl)c
T
T (ΩT,kl)s(t− Tl − τkl) + z(t) (5.32)

where ΩT,kl = ΘT,l + ϕT,kl and ΩR,kl = ΘR,l + ϕR,kl are the AoD and AoA of the

kth ray within the lth cluster respectively, cT (·) and cR(·) are the transmit and

receive array manifold respectively, and s(t) is the transmitted signal.

The parameter vector under estimation also includes the AoDs which is θ =

[θ11, . . . ,θK1,1, . . . ,θ1,Lc
, . . . ,θKLc ,Lc

] where θkl = [αkl, Tl + τkl,ΩT,kl,ΩR,kl]. For

the EM algorithm, the E-step and M-step are modified as follow.

For E-step, we re-define u(t;θkl) = αklcR(ΩR,kl)c
T
T (ΩT,kl)s(t− Tl − τkl). Sub-

stituting it into (5.15), the formula for computing the complete data is obtained.

For M-step, the MAP estimation of a single path is performed for two different

cases. When k = 1, i.e. estimating the first-arriving ray in each cluster, p(θ1l)

needs to include the distribution of AoD denoted by p(ΩT,1l) which is assumed to
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follow an uniform distribution over [0, 2π), the same as that for AoA denoted by

p(ΩR,1l). Using the same principle in computing (5.19) and (5.20), a 3-D search

problem is obtained to find the MAP solution of ToA, AoA and AoD, and the

complex path gain is also computed in close-form. The estimate of the parameters

after the nth iteration is

(

̂Tl,ΩT,1l,ΩR,1l

(n)
)

MAP

= arg max
(Tl,ΩT,1l,ΩR,1l)











∣

∣

∣
f
(

Tl,ΩT,1l,ΩR,1l; ŵ
(n)
1l

)
∣

∣

∣

2

∑I
i=1 ‖cR(ΩR,1l)cTT (ΩT,1l)s(ti − Tl)‖2 +N0 exp(Tl/Γ)/σ2

11

+

(

1

Γ
− Φ

)

N0Tl

}

, Tl > T̂
(n)
l−1 (5.33)

(α̂
(n)
1l )MAP =

f

(

̂Tl,ΩT,1l,ΩR,1l

(n)
; ŵ

(n)
1l

)

∑I
i=1

∥

∥

∥
cR

(

Ω̂
(n)
R,1l

)

cTT

(

Ω̂
(n)
T,1l

)

s
(

ti − T̂
(n)
l

)∥

∥

∥

2

+N0 exp(T̂
(n)
l /Γ)/σ2

11

(5.34)

where

f(T,ΩT ,ΩR;w) =
I
∑

i=1

wT (ti)c
∗
R(ΩR)c

H
T (ΩT )s(ti − T ) (5.35)

When k 6= 1, i.e. estimating other rays of each cluster, p(θkl) needs to include

the distribution of AoD which has the same distribution as AoA shown in (5.23).

Similarly, the MAP solution consists of a 3-D search problem and a closed-form

expression for complex path gain. The estimates of the parameters after the nth

82



CHAPTER 5. MAP-Based Channel Estimation for SIMO and MIMO Systems

iteration are given by

(

̂τkl,ΩT,kl,ΩR,kl

(n)
)

MAP

= arg max
(τkl,ΩT,kl,ΩR,kl)

{

N0 ln
[(

σ +
√
2
∣

∣

∣
ΩT,kl − Ω̂

(n)
T,1l

∣

∣

∣

) (

σ +
√
2
∣

∣

∣
ΩR,kl − Ω̂

(n)
R,1l

∣

∣

∣

)]

+

∣

∣

∣
f
(

τkl,ΩT,kl,ΩR,kl; ŵ
(n)
kl

)
∣

∣

∣

2
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∥

∥

∥
cR(ΩR,kl)c

T
T (ΩT,kl)s(ti − T̂

(n)
l − τkl)

∥

∥

∥

2
+N0 exp(T̂

(n)
l /Γ) exp(τkl/γ)/σ

2
11
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)

N0τkl −
√
2N0
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, τkl > τ̂
(n)
k−1,l (5.36)

(α̂
(n)
kl )MAP
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f

(

̂τkl,ΩT,kl,ΩR,kl

(n)
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(n)
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(n)
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(n)
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(n)
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(n)
kl
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2
+N0 exp(T̂

(n)
l /Γ) exp(τ̂

(n)
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11

(5.37)

where

f(τ,ΩT ,ΩR;w) =
I
∑

i=1

wT (ti)c
∗
R(ΩR)c

H
T (ΩT )s(ti − T̂l − τ) (5.38)

At the initialization phase, s(t) in (5.28) is replaced by the vector s(t). A 2-D

search for both AoA and AoD is derived to replace (5.29), which is

( ̂ΩT,l,ΩR,l) = arg max
(ΩT,l,ΩR,l)







∣
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I
∑
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sT (ti − τ̂l)c
∗
T (ΩT,l)c

H
R (ΩR,l)r

(l)(ti)

∣
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∣

∣

∣

2






(5.39)

The expression in (5.30) needs to be changed accordingly. After initialization,

the paths are grouped into clusters. Unlike in SIMO systems where clusters are

identified in the joint ToA/AoA domain, the joint AoD/AoD domain has a better

resolution to identify clusters for MIMO systems [135, 136]. Thus, the paths are

grouped into clusters according to the respective AoDs and AoAs.

From the above derivation, we can see that the extension of the proposed

algorithm is straightforward and not much different with the original one except

that the metrics used in clustering are different in the initialization phase and

a higher dimensional search problem is involved in finding the optimal solution.

The first issue does not affect the final result, since in the following iterations of
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Table 5.2: The real values and estimates of the channel parameters

Cluster 1 (4 paths) Cluster 2 (3 paths) Cluster 3 (3 paths)
1 2 3 4 1 2 3 1 2 3

Path Real 0.98 0.82 0.91 0.77 0.67 0.30 0.38 0.51 0.55 0.05
gain Estimate 0.97 0.86 0.91 0.73 0.67 0.31 0.41 0.50 0.56 0.07
ToA Real 0 4.8 6.2 7.3 57.3 65.7 69 71.3 75.3 77.5
(ns) Estimate 0 5.3 5.4 6.4 57.0 65.5 68.5 70.7 75.4 78.5
AoD Real -53.9 -72.1 -44.5 -69.7 0.2 9.3 28.0 76.6 59.1 33.7
(◦) Estimate -54.0 -69.7 -44.4 -72.1 0.2 9.0 28.4 74.6 59.4 28.1
AoA Real -79.5 -69.5 -36.3 -69.7 18.2 -13.2 36.0 50.7 40.1 44.6
(◦) Estimate -79.9 -69.7 -36.2 -69.5 18.3 -13.4 36.6 50.8 40.1 50.3

EM algorithm the parameters can be adjusted to fit the corresponding clusters.

This has been shown in Section 5.4 that finally the algorithm converges. For the

second issue, a numerical example of estimation in a randomly generated channel

is provided in the next subsection to demonstrate that the optimal solution can be

found even with higher dimensional search. The evaluation of average performance

is not provided here to avoid repetition with the simulation of the algorithm for

SIMO systems.

5.5.2 Numerical Example

The validity of the algorithm in MIMO systems is shown in this numerical

example. The transmitter and receiver are each equipped with a ULA with 11

elements separated by half a wavelength. The modulated PN sequence consists

of 1024 rectangular pulses with duration Ts = 1 ns. The discretization steps of

our algorithm are 0.4 ns for ToA and 0.2◦ for both AoD and AoA. A channel is

randomly generated according to the extended SV model for MIMO systems with

the parameters listed in Table 5.1 for the first scenario. In order to simplify the

analysis, the channel is normalized. The channel consists of 3 clusters, and the

clusters have [4, 3, 3] rays respectively. The AoD and AoA of each ray are both

distributed over [0, π). The MAP estimation is performed when the SNR is 10 dB.

Table II lists the real values and the estimates of all the parameters for all paths.

From the table, we can see that the MAP algorithm can distinguish all the paths

and achieves high accuracy.
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5.6 Conclusion

In this chapter, we propose a MAP-based algorithm for channel parameter

estimation of superimposed signals. The extended SV model provides us the prior

knowledge on the statistical distributions of these parameters, which is exploited in

the proposed MAP-based algorithm to achieve a more accurate estimate. In order

to reduce the computational complexity of our proposed algorithm, EM algorithm

is applied. Our simulation results show that the proposed algorithm outperforms

the ML-based algorithm especially at low SNR. In general, the algorithm exhibits

fast convergence. Finally, the algorithm is extended to MIMO systems.
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Chapter 6

AoA-Assisted Extended Kalman

Filter Tracking

When the location of a MT needs to be continuously monitored, a simple

tracking algorithm can be used to reduce the frequency in performing regular lo-

calization and estimation latency. In this chapter, we propose a novel mobile ter-

minal (MT) tracking approach performed at the fixed terminal (FT). The method

involves three steps: motion-dependent parameters estimation, extended Kalman

filter (EKF) based tracking and accuracy enhancement through additional partial

location information. An algorithm based on the space-time correlation of the

received signal is first used to estimate the radial velocity (both the speed and

direction) of the MT. The EKF-based tracking method is next adopted to esti-

mate the current location of the MT by using the estimated parameters and the

previous location estimate. Finally, the MUSIC (MUtiple SIgnal Classification) al-

gorithm is applied to obtain additional high-resolution angle-of-arrival (HR-AoA)

estimate and we show how this partial location information can be fused with the

tracking results to further improve the tracking accuracy. The performances of

the algorithms are studied through simulations.
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Fig. 6.1: The signal model

6.1 Estimation of Motion-dependent Parameters

At the FT, the radial velocity of the MT, which includes both the speed and

the direction, are estimated by using the space-time correlation of the received

signal.

6.1.1 Signal Model

As depicted in Fig. 6.1, the FT is equipped with an antenna array, and without

loss in generality, we assume an uniform linear array (ULA) withN elements whose

direction is used as the referenced axis (labeled as x-axis). A MT transmits beacon

signals periodically and moves at the speed v in the direction ψ with respect to

the referenced axis. The channel between the MT and the FT is assumed to

undergo Rician fading with a deterministic line-of-sight (LOS) component and a

random diffuse component. Ω0 is the LOS direction along the FT and the MT,

and ΩR,l is the direction of the lth incoming wave in the diffuse component. We

define the radial velocity of the MT as the projection of the velocity along the

LOS direction. Therefore the speed of the radial velocity is v0 = v cos(Ω0 − ψ)

which is also known as the range rate [13], and its direction is equal to the LOS

direction Ω0. The maximum Doppler frequency of the received signal is given by

fD = vfc/c, where fc is the carrier frequency and c is the speed of light, while the

Doppler frequency caused by v0 is given by f0 = v0fc/c.
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When the MT transmits an unmodulated carrier, the lowpass complex enve-

lope received at the nth antenna of the FT can be expressed as

rn(t) = un(t) + zn(t), (6.1)

where zn(t) is the complex white Gaussian noise with zero mean and power spectral

density N0. The signal un(t) includes diffuse and LOS components,

un(t) =

√

KPR

K + 1
exp {j2π(n− 1)dh cosΩ0/λs − j2πfDt cos(Ω0 − ψ)}

+

√

PR

K + 1
qn(t),

=

√

KPR

K + 1
exp {j2π(n− 1)dh cosΩ0λs − j2πf0t}+

√

PR

K + 1
qn(t), (6.2)

where PR is the total received signal power at the receiver, and K is the Rician

factor defined as the ratio of the LOS power and the diffuse power. The unit

power signal qn(t) represents the diffuse component which is

qn(t) = lim
L→∞

1√
L

L
∑

l=1

αl exp {j2π(n− 1)dh cosΩR,lλs − j2πfDt cos(ΩR,l − ψ)} ,

(6.3)

where L is the total number of the incoming waves, the complex path gains αl

are independent and identically distributed (i.i.d.) random variables with finite

variances. αl should satisfy limL→∞ L−1
∑L

l=1 Eαl
[|αl|2] = 1, so as to fulfill the

unit power constraint on qn(t).

6.1.2 Space-Time Correlation Based Radial Velocity Esti-

mation

Define the space-time correlation of the received signals between the nth and

mth antenna elements as Cr(n−m, τ), and it can be calculated by

Cr(n−m, τ) = E[rn(t)r
∗
m(t+ τ)] = E[un(t)u

∗
m(t+ τ)]. (6.4)
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The latter equation holds due to the independence property between the signal

and noise as well as between the noises at different antennas. Substituting (6.2)

into (6.4), we have

Cr(n−m, τ) =
KPR

K + 1
exp {jµ0 + jη cosΩ0}

+
PR

K + 1
lim
L→∞

1

L

L
∑

l=1

Eαl
[|αl|2] exp {jµ cos(ΩR,l − ψ) + jη cosΩR,l}

(6.5)

where µ = 2πfDτ , µ0 = 2πf0τ and η = 2π(n − m)dh/λs. According to the

derivation in [137], (6.5) can be expressed in integral form which is more convenient

for further analysis

Cr(n−m, τ) =
KPR

K + 1
exp {jµ0 + jη cosΩ0}

+
PR

K + 1

∫ 2π

0

p(θ) exp {jµ cos(θ − ψ) + jη cos θ} dθ, (6.6)

where p(θ) is the angle distribution of the waves in the diffuse component seen at

the FT receiver.

The proposed algorithm is different with those using similar correlation model

such as [102] in the following two aspects. Firstly, the estimation in [102] is

performed at the MT. Hence, its derivation is based on a correlation model without

the variable ψ, because the angle between the antenna array at the receiver (i.e.

the MT) and the moving direction of the MT is fixed. Secondly, we proposed a

joint estimation of motion parameters v0 and Ω0.

Among the various angle distributions available in the literature, the von-

Mises distribution has been widely used for estimating the channel parameters

[102]. The distribution has the following form

p(θ) =
exp {κ cos(θ − ΩR)}

2πI0(κ)
, θ ∈ [0, 2π), (6.7)

where I0(·) is the zeroth-order modified Bessel function of the first kind, ΩR is the

mean direction of the diffuse component, and the parameter κ controls the angle

spread. When κ approaches to zero, the distribution converts to uniform distribu-

tion. On the other hand, when κ is medium and large, the von-Mises distribution
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can be approximated by a Gaussian distribution with mean ΩR and variance 1/κ

[138]. In the following derivation, we assume that κ is sufficiently large such that

the von-Mises distribution can be approximated by Gaussian distribution, and un-

der this condition, it is reasonable to assume ΩR = Ω0 [139]. However, simulations

will demonstrate that as long as the Rician factor K is not small, the value of κ

has very limited effect on the estimation accuracy.

Substituting the Gaussian distribution with mean ΩR and variance 1/κ into

(6.6), and using the same approximation as in [140], the space-time correlation is

finally expressed as

Cr(n−m, τ) ≈ exp {jµ0 + jη cosΩ0}
{

KPR

K + 1

+
PR

K + 1
exp

[

−(µ sin(Ω0 − ψ) + η sinΩ0)
2

2κ

]}

. (6.8)

Evaluating Cr(n−m, τ) involves the knowledge on the channel parameters K and

κ. Nevertheless, our estimation only requires the phase information and hence the

complexity is low. Taking the phase angle of Cr(n−m, τ), we have

∠Cr(n−m, τ) ≈ µ0 + η cosΩ0 = 2πfcτv0/c+ 2π(n−m)dh cosΩ0/λs. (6.9)

By setting n = m and τ = 0, n −m = 1 respectively, the estimate of v0 and Ω0

can be finally obtained by

v̂0 ≈
c∠Ĉr(0, τ)

2πfcτ
,

Ω̂0 ≈ arccos
λs∠Ĉr(1, 0)

2πdh
, (6.10)

where Ĉr(0, τ) and Ĉr(1, 0) are the estimates of Cr(0, τ) and Cr(1, 0), respectively.

6.2 Extended Kalman Filter Based Tracking

We here present the EKF-based tracking algorithm which estimates the cur-

rent location based on the estimated motion-dependent parameters and the pre-

vious location estimate. The following state transition and measurement model
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are used in accordance with the framework of EKF.

We adopt the nearly-constant-velocity model [12], where the velocity of the

target is assumed to be nearly constant over a period TK between two consecutive

tracking time instants. The acceleration is so small that it is treated as an additive

white Gaussian noise added to the velocity. The state vector ϑ = [xm, vx, ym, vy]
T

consists of the location at (xm, ym) and velocity (vx, vy). Denoting the true state at

the kth time instant as ϑ(k), the EKF assumes that it is evolved from the previous

true state ϑ
(k−1) using the following state transition model

ϑ
(k) = Dϑ

(k−1) +G̟
(k), (6.11)

where

D =













1 TK 0 0

0 1 0 0

0 0 1 TK

0 0 0 1













, G =













T 2
K/2 0

TK 0

0 T 2
K/2

0 TK













,

̟ = [̟x,̟y]
T is the additive white Gaussian noise representing the 2-D noisy

accelerations. ̟x and ̟y are i.i.d. random variables with zero mean and finite

variances.

The measurement vector includes the estimates of the speed v̂0 and the di-

rection Ω̂0 of the radial velocity. The measurement at the kth time instant is

associated with the true state at the kth time instant ϑ(k) via the following mea-

surement model
[

v̂0

Ω̂0

](k)

= χ
(

ϑ
(k)
)

+ ι
(k). (6.12)

The vector ι = [ιv, ιΩ]
T is the measurement noise, and ιv and ιΩ are i.i.d. random

variables with zero mean and finite variances. χ (ϑ) is the function used to compute

the real value of [v0,Ω0]
T from ϑ,

χ (ϑ) =

[

(xm − xf )vx + (ym − yf )vy
√

(xm − xf )2 + (ym − yf )2
, arctan

ym − yf
xm − xf

]T

, (6.13)

where (xf , yf ) is the location of the FT that performs the tracking.

The EKF estimation process is implemented as follow. We first calculate the
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predicted state at the current time instant ϑ̂
(k|k−1)

using the relationship ϑ̂
(k|k−1)

=

Dϑ̂
(k−1|k−1)

in the prediction step, based on the EKF output at the previous time

instant, i.e. ϑ̂
(k−1|k−1)

. A standard update process is next applied to find the

updated state estimate ϑ̂
(k|k)

, i.e. the EKF output at the current time instant.

The initial state vector is required before carrying out the tracking process.

The initial guess of the MT location can be estimated at the FT using a localization

algorithm, such as those presented in [1, 2, 141], while the velocity information can

be obtained at the MT (accelerometers and magnetometers have been available on

many kinds of MTs, even hand-hold devices [10]) and transmitted to the FT. After

initialization, the MT starts to periodically transmit beacon signals, and the FT

performs the measurement and EKF-based estimation as described above using

the received signal to track the trajectory of the MT. The computation burden is

thus transferred to the FT after initialization phase, so the consumption of energy

and resources at the MT can be maintained at a low level.

6.3 Angle-of-Arrival Assisted Performance En-

hancement

When the location of the MT is tracked using the above EKF-based algorithm,

the estimation errors will be accumulated as the tracking proceeds. We propose a

fusion algorithm to overcome this problem by utilizing additional partial location

information which can be made available. For example, if the FT is equipped

with an antenna array, it is possible to perform HR-AoA estimate using subspace-

based algorithms [4] (MUSIC [29], ESPRIT [39] and etc.), and incorporate this

additional information in the tracking process to improve accuracy. Since re-

calibration by complete location information requires extensive resource, using

such partial location information at the FT to assist in tracking is a good tradeoff.

The FT that performs the enhancement needs not necessarily be the one which

performs EFK. The final processing can be made at the information fusion center.

The motivation of the enhancement algorithm is illustrated in Fig. 6.2. The

EKF-based tracking results in an uncertain region due to the noisy measurements

and the uncertain region gets larger over time if no re-calibration by the MT

is performed. The fusion of HR-AoA estimate with EKF estimates is a way to

improve the accuracy. It is performed from time to time during the tracking
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Fig. 6.2: Motivation of HR-AoA assisted performance enhancement

process by FTs. The frequency of performing such enhancement depends on the

rate that errors are accumulated and the available computational resources.

The performance enhancement is at the expense of additional complexity,

which results from the HR-AoA estimation and fusion of HR-AoA estimate and

tracking result. However, we expect the complexity not to increase much, because

the computations are both 1-dimensional search in the solution domain. Fur-

thermore, as will shown in the simulation later, the frequency of performing such

enhancement can be reduced under some conditions while the performance is only

slightly downgraded, which means less additional complexity is needed to achieve

required accuracy.

6.3.1 MUSIC-Based Algorithm for HR-AoA Estimation

In this subsection, we propose a MUSIC-based estimation algorithm to obtain

the HR-AoA estimate. As shown in Fig. 6.3, the actual location of the MT at a

specific time instant is denoted as (xm, ym). We denote FT′ which is located at

(x′f , y
′
f ) and equipped with a ULA with N elements to perform HR-AoA estima-

tion. The actual angle-of-arrival (AoA) observed by FT′ is denoted by Ω′
0 and its

high-resolution estimate is
ˆ̂
Ω′

0. If the same FT performs both the enhancement

and tracking, (x′f , y
′
f ) is equal to (xf , yf ), and Ω′

0 is equal to Ω0.
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When the MT transmits an unmodulated carrier, denote the received signal

vector at FT′ as r′(t) and the spatial correlation matrix of the received signal as

Cr′ = E[r′(t)r′H(t)]. Using the correlation model described in Section 6.1, the

element of Cr′ at the nth row and mth column can be expressed as

(Cr′)n,m ≈ exp {j2π(n−m)dh cosΩ
′
0/λs}

{

K ′P ′
R

K ′ + 1

+
P ′
R

K ′ + 1
exp

[

−(2π(n−m)dh sinΩ
′
0)

2

2κ′λs

]}

, if n 6= m, (6.14)

where P ′
R, K

′ and κ′ are the channel parameters corresponding to FT′. If n = m,

we have (Cr′)n,m ≈ P ′
R+N

′
0, where N

′
0 is the power of the white Gaussian noise at

FT′. Similarly, we also use the phase angles of elements of the spatial correlation

matrix for further analysis. We define a matrix Rr′ = exp(j∠Cr′) whose element

at the nth row and mth column is

Rr′(n,m) ≈ exp{j2π(n−m)dh cosΩ
′
0/λs}. (6.15)

Therefore, it can be decomposed as Rr′ ≈ uru
H
r , and the vector ur has the

expression ur = [1, exp (j2πdh cosΩ
′
0/λs), . . . , exp (j2π(N − 1)dh cosΩ

′
0/λs)]

T . If

we do the eigenvalue decomposition on Rr′ , the eigenvector which corresponds to

the largest eigenvalue can be used as the signal subspace, and other eigenvectors

correspond to the noise subspace. Therefore, it is straightforward to apply the

MUSIC algorithm to obtain the estimate
ˆ̂
Ω′

0.

As a summary, the algorithm includes the following steps:

1. Estimate the spatial correlation matrix Cr′ , and obtain the matrix Rr′ .

2. Apply the eigenvalue decomposition on Rr′ , and use the eigenvector which

corresponds to the largest eigenvalue to construct the signal subspace.

3. Compute the null spectrum function, and search for the minimum. The

corresponding angle is the estimated AoA
ˆ̂
Ω′

0.
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6.3.2 Enhancing the EKF Tracking Result with HR-AoA

Estimate

After obtaining the HR-AoA estimate, our objective is to fuse it with the

EKF tracking result to enhance the tracking performance. The problem here is to

find the solution that maximizes the a posterior probability p(xm, ym|x̂m, ŷm, ˆ̂Ω′
0),

given the EKF tracking result (x̂m, ŷm) and the HR-AoA estimate
ˆ̂
Ω′

0. Using the

Bayes’ theorem, we have

p(xm, ym|x̂m, ŷm, ˆ̂Ω′
0) =

p(x̂m, ŷm,
ˆ̂
Ω′

0|xm, ym)p(xm, ym)
p(x̂m, ŷm,

ˆ̂
Ω′

0)
. (6.16)

The component p(x̂m, ŷm,
ˆ̂
Ω′

0) does not depend the value of (xm, ym), and f(xm, ym)

can be assumed to be uniform. We further assume (x̂m, ŷm) and
ˆ̂
Ω′

0 are indepen-

dent variables, because (x̂m, ŷm) is estimated using the EKF tracking while
ˆ̂
Ω′

0 is

obtained separately by AoA estimation algorithm. Thus the problem is further

simplified to maximizing the product p(x̂m, ŷm|xm, ym)p( ˆ̂Ω′
0|xm, ym).

For AoA estimators, the error distribution of the estimate depends on the

specific algorithm. Much work has been done to analyze the performances of

these algorithms [30, 32]. For instance, the error of the MUSIC estimator is

shown to be Gaussian distributed asymptotically with the error variance derived

[30]. Hence, we adopt p(
ˆ̂
Ω′

0|xm, ym) following a Gaussian distribution with mean

Ω′
0 and variance σ2

Ω′ .

Since (x̂m, ŷm) is estimated from the EKF-based tracking algorithm, its error

includes the accumulation of errors in the previous steps, the noisy measurement

of the current step, linearization of the observation function, etc. If there has

been sufficient large number of steps before the current step, the Central Limit

Theorem can be applied here and (x̂m, ŷm) can be modeled as bivariate Gaussian

variables with mean xm and ym and variances σ2
x̂ and σ2

ŷ respectively. We further

assume σ2
x̂ = σ2

ŷ = σ2
0.

With the above assumptions, p(x̂m, ŷm,
ˆ̂
Ω′

0|xm, ym) can be expressed as

p(x̂m, ŷm,
ˆ̂
Ω′

0|xm, ym) =
1

2πσΩ′σ2
0

exp

{

−(
ˆ̂
Ω′

0 − Ω′
0)

2

2σ2
Ω′

− (x̂m − xm)
2 + (ŷm − ym)

2

2σ2
0

}

(6.17)

96



CHAPTER 6. AoA-Assisted Extended Kalman Filter Tracking

Fig. 6.3: Fusion of the tracking result and the HR-AoA estimate

Taking its natural logarithm and ignoring the constants which do not affect the

solution, the objective function can be expressed as

min
xm,ym

f(xm, ym) =
(

ˆ̂
Ω′

0 − Ω′
0

)2

+ Aw

[

(x̂m − xm)
2 + (ŷm − ym)

2
]

, (6.18)

where Aw = σ2
Ω′/σ2

0, and Ω′
0 = arctan

ym−y′
f

xm−x′

f

. This expression can be understood

as the weighted sum of angle error and position error, while Aw is the weight.

In practice, σ2
Ω′ depends on many factors, such as channel conditions, the

algorithm used [32] and the transmitted signal pattern [40], while σ2
0 relies on the

measurements accuracy and may increase over time. Hence, it is very difficult

to obtain the accurate value of Aw. We here use a simple method to find an

approximate value. Since AoA estimate has high-resolution, the estimated location

has a very high possibility lying near the line denoted by Line B in Fig. 6.3 which

is originated from FT′ and makes the angle
ˆ̂
Ω′

0 with the referenced axis; and this

means (
ˆ̂
Ω′

0 − Ω′
0) is very small. On the other hand, denote the distance between

(x̂m, ŷm) and Line B as d which is expressed as

d =

∣

∣

∣
(x̂m − x′f ) tan

ˆ̂
Ω′

0 − ŷm + y′f

∣

∣

∣

√

1 + (tan
ˆ̂
Ω′

0)
2

.

If d is small, the tracking estimate (x̂m, ŷm) has high probability to be reliable, and

vice versa. Based on this intuition, we set Aw ∝ 1/d2, so that we de-emphasize

the term which is likely to generate cumulative errors.
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Next, we present a method to reduce the complexity of the 2-dimensional (2-

D) search problem (6.18). Denote the solution of (6.18) as (x̃m, ỹm), and it should

make the first order derivatives of f(xm, ym) over xm and ym both equal to 0.

∂f

∂xm

∣

∣

∣

∣

xm=x̃m,ym=ỹm

=
2(
ˆ̂
Ω′

0 − Ω̃′
0)(ỹm − y′f )

(x̃m − x′f )
2 + (ỹm − y′f )

2
+ 2Aw(x̃m − x̂) = 0,

∂f

∂ym

∣

∣

∣

∣

xm=x̃m,ym=ỹm

= −
2(
ˆ̂
Ω′

0 − Ω̃′
0)(x̃m − x′f )

(x̃m − x′f )
2 + (ỹm − y′f )

2
+ 2Aw(ỹm − ŷ) = 0, (6.19)

where Ω̃′
0 is the value of Ω′

0 when substituting (x̃m, ỹm). Let us first consider a

special case where d = 0. It is obvious that under this condition, the solution

should be (x̃m, ỹm) = (x̂m, ŷm). For the case d 6= 0, (x̃m, ỹm) cannot either lie on

the line B or take the value of (x̂m, ŷm). Therefore, by performing manipulations

on (6.19), we can obtain

(

x̃m −
x′f + x̂m

2

)2

+

(

ỹm −
y′f + ŷm

2

)2

=
(x′f − x̂m)

2 + (y′f − ŷm)
2

4
. (6.20)

By adding (6.20) as a constraint and also including the special case, we can

finally write the objective function as

min
xm,ym

f(xm, ym) =
(

ˆ̂
Ω′

0 − Ω′
0

)2

+ Aw

[

(x̂m − xm)
2 + (ŷm − ym)

2
]

subject to :

(

xm −
x′f + x̂m

2

)2

+

(

ym −
y′f + ŷm

2

)2

=
(x′f − x̂m)

2 + (y′f − ŷm)
2

4

(6.21)

which is a 1-D search problem with the solution domain being a circle. Obviously,

the real location must lie near the line B and (x̂m, ŷm). Therefore in practice,

searching over the arc near the line B and (x̂m, ŷm) is sufficient to find the solution.

6.4 Simulation and Performance Analysis

Simulations are carried out to analyze the performances of the proposed ap-

proach. In the first part, the space-time correlation based algorithm for motion-

dependent parameters estimation is evaluated under different channel conditions.

In the second part, the complete tracking process, including motion parameters
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estimation, EKF-based tracking and enhancement with HR-AoA, are simulated

with the MT moving along a known trajectory. Each FT is equipped with a ULA

of 10 elements and consecutive antennas are separated by half wavelength. The

signal-to-noise ratio (SNR) is defined as the ratio of received signal power and the

noise power, i.e. PR/N0, and is set to be 10 dB at all FTs through the whole

simulation for a fair comparison. The carrier frequency used is 2.4 GHz. The

number of samples for computing the spatial and temporal correlations of the re-

ceived signal is 32 except when the algorithm is evaluated with different numbers

of samples in Section 6.4.1, and samples are taken with the frequency of 500 Hz.

In each channel realization, the number of waves in the diffuse component is set

to be sufficiently large, and in our simulation, we take L = 200. In each channel

realization, the AoAs as well as other channel parameters are randomly generated

according to corresponding distributions.

6.4.1 Simulation of Parameters Estimation Algorithm

We simulate the performance of the algorithm for motion parameters estima-

tion when K is ranged from 0 dB to 6 dB, and κ is ranged from 1 to 50. Other

parameters are fixed at Ω0 = 50◦, ψ = 0◦ and v = 1 m/s. The simulation result

is shown in Fig. 6.4, where Fig. 6.4(a) and Fig. 6.4(b) give the root mean square

errors (RMSEs) of the speed v0 and the direction Ω0 of the radial velocity, respec-

tively. The performance tends to be stable with the increase of κ for a certain

value of K, and improves when K increases. In Section 6.1.2, we assume that κ

is sufficiently large so that the von-Mises distribution can be approximated by a

Gaussian distribution. However, as shown in the figure, the effect of κ on the esti-

mation accuracy is almost negligible as long as the Rician factor K is sufficiently

large (≥ 6 dB) even when κ is small. On the other hand, if K is small (≤ 4 dB),

the effect of κ is insignificant when it is larger than 3.

Next, we evaluate the performance while changing the MT speed v and the

direction Ω0, while keeping K = 4 dB and κ = 3. The direction of the MT ψ

is still 0◦. We change v from 0.1 m/s to 5 m/s, and choose the values of 30◦,

50◦ and 80◦ for Ω0. The results are presented in Fig. 6.5. The results show that

when Ω0 is fixed, the accuracy of estimating v0 downgrades with the increase of

v, and estimating Ω0 performs in the opposite way. For a certain value of v, the

performances of estimating both v0 and Ω0 improve as the radial direction (LOS)
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Fig. 6.4: The RMSEs of the proposed parameter estimation algorithm while changing the values
of K and κ

100



CHAPTER 6. AoA-Assisted Extended Kalman Filter Tracking

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

v (m/s)

R
M

S
E

 o
f 
v

0
 (

m
/s

)

 

 

Ω
0
=30

°

Ω
0
=50

°

Ω
0
=80

°

(a) RMSE of estimating v0 - the speed of the radial velocity

0 1 2 3 4 5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

v (m/s)

R
M

S
E

 o
f 

Ω
0
 (

d
e
g
re

e
)

 

 

Ω
0
=30

°

Ω
0
=50

°

Ω
0
=80

°

(b) RMSE of estimating Ω0 - the direction of the radial velocity

Fig. 6.5: The RMSEs of the proposed parameter estimation algorithm while changing the values
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is closer to the perpendicular direction of FT.

The complexity of the algorithm highly depends on the number of samples

required. Therefore, we also simulate its performances while changing the number

of samples, which is shown in Fig. 6.6. We set other parameters at κ = 3, Ω0 = 50◦,

ψ = 0◦ and v = 1 m/s. As clearly shown in the figure, the performance is

enhanced with more samples. However, when the samples are more than 30, the

improvement is not significant. As such, the number of samples can be set to

around 30 as the best tradeoff of complexity and accuracy in practice.

6.4.2 Tracking with a Fixed MT Trajectory

We apply the complete three-step tracking approach to a scenario where the

MT moves along a fixed trajectory. The field is a 30 m × 22 m area, in which the

X-axis starts at -15 m and ends at 15 m while the Y-axis is from 0 m to 22 m.

The MT moves along an U-shape trajectory with length of 46 m, which is denoted

by “Actual trajectory” in Fig. 6.7. The trajectory starts at (−10, 14), makes two

90◦-turns at (10, 14) and (10, 8), and ends at (−10, 8). We assume the initial

location and velocity of the MT are accurately known by the FT that performs

the tracking. With the initial state, the EKF-based tracking is performed at the

frequency of 1 Hz. At each time instant, the radial velocity which includes both

v0 and Ω0 is first estimated using the algorithm described in Section 6.1, and then

EKF is adopted to estimate the location. The HR-AoA estimation is performed

at a specified frequency, and is fused with the EKF tracking result. We set the

two channel parameters κ = 3 and K to be varied in the following simulation.

We first consider the case where the same FT located at (0, 0) performs both

tracking and enhancement. The statistical performances of the proposed approach

are demonstrated in Fig. 6.8, where the speed of the MT v changes from 0.5 m/s to

2 m/s. The Rician factor K is set to be 0 dB in Fig. 6.8(a) and 4 dB in Fig. 6.8(b).

The RMSE of tracking increases when the MT moves with higher speed. The

tracking errors without performance enhancement are around 1.2 m to 3.5 m for

different values of v when K = 0 dB, and about 0.7 m to 2 m when K = 4

dB. The proposed HR-AoA based enhancement method is performed at different

frequencies, i.e. 0.1 Hz, 0.2 Hz, 0.5 Hz and 1 Hz, as shown in the figure. It can be

clearly seen that the enhancement becomes stronger while enhancement is made

more frequently. The improvement is significant for the case of K = 0 dB, which
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Fig. 6.7: A sample of MT tracking (K = 4 dB, v = 1 m/s). The EKF tracking is performed by
FT located at (0, 0), while the HR-AoA enhancement is performed by FT′ located at (0, 22).

is up to about 45%. When K = 4 dB, the enhancement is less significant which is

up to about 30%. The reason is that in the presence of stronger LOS (higher K),

space-time parameter estimation algorithm gives sufficiently good estimate and

hence HR-AoA information contributes less on the overall performance.

Next, we consider the second case where different FTs are used to track the

MT and perform the enhancement respectively. We assume the FT that tracks

the MT is located at (0, 0), while the FT that performs the enhancement is placed

at (0, 22), and the channel parameters K and κ between the MT and the two

FTs are the same. Other settings remain the same as before. The statistical

performances shown in Fig. 6.9 demonstrates that the performance enhancement

is even more significant than the first case, which is up to 70% for both K = 0 dB

and K = 4 dB. Comparing with the first case, this approach has three advantages.

Firstly, the improvement does not vary significant with how frequent enhancement

is performed, especially when v is small and medium. Even when the enhancement

frequency is as low as 0.1 Hz or 0.2 Hz, the performance improvement is still

significant. Secondly, even with higher K, the improvement is still significant,

which is different from the first case. Thirdly, the enhanced performance does not

change significantly with different values of v when the frequency of enhancement
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Fig. 6.8: Performances of EKF-based tracking and HR-AoA enhancement, and the same FT
performs both tracking and enhancement

105



CHAPTER 6. AoA-Assisted Extended Kalman Filter Tracking

0.5 1 1.5 2
0.5

1

1.5

2

2.5

3

3.5

v (m/s)

R
M

S
E

 o
f 

lo
c
a
ti
o
n
 (

m
)

 

 

Without enhancement

With enhancement (0.1 Hz)

With enhancement (0.2 Hz)

With enhancement (0.5 Hz)

With enhancement (1 Hz)

(a) K = 0 dB

0.5 1 1.5 2
0.5

1

1.5

2

2.5

v (m/s)

R
M

S
E

 o
f 
lo

c
a
ti
o
n
 (

m
)

 

 

Without enhancement

With enhancement (0.1 Hz)

With enhancement (0.2 Hz)

With enhancement (0.5 Hz)

With enhancement (1 Hz)

(b) K = 4 dB

Fig. 6.9: Performances of EKF-based tracking and HR-AoA enhancement, and different FTs
perform tracking and enhancement respectively
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is 0.5 or 1 Hz, where the errors fall into the intervals of 0.9-1.1 m when K = 0 dB

and 0.6-0.7 m when K = 4 dB. Hence, this approach is more suitable for situations

with unknown mobility and if the enhancement cannot be done frequently. It

introduces cooperation between different FTs and hence the advantages are due

to the diversity gain. However, this is at the expense of system complexity to

perform data fusion and processing.

The performance of the proposed method is also studied under non-line-of-

sight (NLOS) scenario, where the LOS signal is blocked by an object but signals

can reach the receiver through reflections and/or diffractions around the object.

Examples of such scenarios include when human body blocks the LOS signals or

a building obstructs the LOS signal between the MT and cellular tower. Under

this condition, the received signal comprises of the diffuse component only, i.e.

K = −∞ dB. In our simulation, the EKF-based tracking is done completely

without the LOS component. However, in order to obtain HR-AoA estimates for

performance enhancement, we assume the MT is able to see the LOS occasionally

and the HR-AoA based enhancement can be performed at a frequency of 0.2 Hz

or 0.1 Hz. When the LOS is occasionally present, we set K = 0 dB. For the

case when the same FT performs both tracking and enhancement as shown in

Fig. 6.10(a), the tracking without enhancement can achieve accuracy of 3 meters

when v = 0.5 m/s to 6.7 meters when v = 2 m/s. Although the enhancement is

performed at low frequencies, it still results in significantly reduction in the error,

e.g. the error after enhancement with the frequency of 0.2 Hz is around 2 meters

when v = 0.5 m/s to 4 meters when v = 2 m/s. When different FTs perform

the tracking and enhancement respectively as in Fig. 6.10(b), the improvement is

even more significant.

6.4.3 Tracking with a Randomly Generated MT Trajec-

tory

The proposed approach is next evaluated in the same scenario, but the MT

moves along a trajectory that is randomly generated according to the Gauss-

Markov mobility model [142]. The velocity of the MT is assumed to be correlated

over time and is modeled as a Gauss-Markov process. Mathematically, in a 2-D
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Fig. 6.10: Performances of EKF-based tracking and HR-AoA enhancement under NLOS con-
dition: (a) the same FT performs both tracking and enhancement; (b) different FTs perform
tracking and enhancement respectively.
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Fig. 6.12: Performances of EKF-based tracking and HR-AoA enhancement for randomly gener-
ated trajectory, and the same FT performs both tracking and enhancement
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Fig. 6.13: Performances of EKF-based tracking and HR-AoA enhancement for randomly gener-
ated trajectory, and different FTs perform tracking and enhancement respectively

plane, the velocity at the time instant t is expressed as

v(t)x = ρv(t−1)
x + (1− ρ)v̄x +

√

1− ρ2ς(t−1)
x ,

v(t)y = ρv(t−1)
y + (1− ρ)v̄y +

√

1− ρ2ς(t−1)
y , (6.22)

where ρ ∈ [0, 1] controls the memory level, v
(t)
x and v

(t)
y are the velocities on X-axis

and Y-axis at time instant t respectively, v
(t−1)
x and v

(t−1)
y are the velocities at time

instant t− 1, v̄x and v̄y are the asymptotic means, and ςx and ςy are independent

random variables with zeros mean and finite variances. The parameter ρ reflects

the randomness of the Gauss-Markov process, and a larger value represents a

higher memory level.

In the simulation ,we generate the trajectory by setting ρ = 0.9, and the mean

speed of the MT v̄ =
√

v̄2x + v̄2y = 1 m/s, which is labeled as “Actual trajectory”

in Fig 6.11. The MT starts moving at (-15, 20), and changes its speed every 3

seconds according to the model (6.22). The whole process lasts for 42 seconds.

Other settings stay the same with the previous subsection.

Firstly, we also discuss the case that the same FT located at (0, 0) performs

both tracking and enhancement. Fig. 6.12 demonstrates the statistical perfor-
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Fig. 6.14: Performances of EKF-based tracking and HR-AoA enhancement for randomly gen-
erated trajectory under NLOS condition. First case: the same FT performs both tracking and
enhancement; second case: different FTs perform tracking and enhancement respectively.

mance of the proposed approach. The tracking approach without enhancement

becomes more accurate with the Rician factor K increasing. When K = 0 dB, it

is able to achieve an average accuracy of 2.8 meters, while the accuracy is about

1 meter when K = 6 dB. Similar with the case with fixed MT trajectory, the HR-

AoA enhancement becomes more significant while increasing its frequency, which

is up to about 45% for this trajectory.

When different FTs located at (0, 0) and (0, 22) perform tracking and en-

hancement respectively, the results are shown in Fig. 6.13 where the HR-AoA

enhancement can achieve up to about 60% performance improvement. Compared

with the first case, we can observe similar advantages presented at the end of the

previous subsection.

Under NLOS condition, the performance of the complete tracking approach

is shown in Fig. 6.14. We use the same assumption as in the last section that the

MT is able to see the LOS occasionally and the HR-AoA based enhancement can

be performed at a frequency of 0.2 Hz or 1 Hz. Whenever the LOS is present, we

set K = 0 dB. We can see that the error before enhancement is nearly 6 meters.

This error is decreased to 2.5− 3.5 meters by performing enhancement.
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6.5 Conclusion

In this chapter, we propose a three-step MT tracking approach performed at

the FT. The three-step algorithm consists of motion-dependent parameters esti-

mation based on space-time correlation of the received signal, EKF-based tracking

to estimated the location, and HR-AoA based performance enhancement to reduce

the accumulative error. The motion parameters estimation algorithm is evaluated

while changing the channel parameters, followed by the location estimation with

EKF-based tracking. Performance improvement is achieved by incorporating the

HR-AoA based enhancement.
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Conclusions and Future Work

Localization and tracking have attracted considerable attention recently. In

this thesis, we study the performances of various localization and tracking algo-

rithms developed for multiple-input multiple-output (MIMO) systems. MIMO

has emerged as an important technique in the next generation wireless networks.

Since MIMO systems are equipped with antenna array at both the transmitter

and receiver, it is able to provide the processing capability in an additional di-

mension - the spatial dimension and make the so called space-time processing

possible. In this thesis, we have studied the impact of space-time processing

which a MIMO system can provide in terms of enhancement in location estima-

tion accuracy. The space-time processing techniques are applied to either the

transmitter or receiver, and channel state information (CSI) is made use of to

enhance the location-dependent parameters estimation and localization accuracy.

Furthermore, we have also studied remote tracking problem by applying space-

time processing and developed a new method for efficient tracking.

7.1 Precoder Design for AoA Estimation

In Chapter 3, we propose precoder design strategies to improve the perfor-

mance of the angle-of-arrival (AoA) and location estimation. We first derive a

new asymptotic performance bound for the MUSIC (MUltiple SIgnal Classifica-

tion) algorithm which is used as the AoA estimator, when the signal can be pre-

processed at the transmitter before transmission. The performance bound can
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be achieved asymptotically if we adopt the optimal precoder. However, such an

optimal precoder is not practical, since it requires the CSI exclusive of the effect

due to the receiver antenna array. We next propose a more feasible approach,

which makes use of the feedback CSI estimated at the receiver. We demonstrate

that the practical precoder performs close to the optimal precoder which bench-

marks the performance through both theoretical analysis and simulations. Both

precoders exhibit performance improvement compared with the case when no pre-

coder is used. Furthermore, the practical precoder technique is applied to a known

AoA-based localization method, and enhanced location estimation performance is

achieved by comparing with the case without precoder through simulations.

Although the proposed precoder schemes can achieve the bound asymptoti-

cally, there is still some performance degradation in the high-resolution scenario

which make the performances of MUSIC algorithm with and without a precoder

diverge from the performance limit, as shown in Fig. 3.4. Thus, there is still

room to improve the performance of the algorithm in the high-resolution scenario.

A future direction for this work is to study effective techniques for such scenario

which are able to approach the bound. The performance degradation is partially

due to the high correlation between closely spaced signals in the high-resolution

scenario, so an effective method to reduce such correlation is required.

7.2 ToA Estimation in MIMO Systems

The signal pre-processing technique is next applied to time-of-arrival (ToA)

estimation, and the work is presented in Chapter 4. We start from deriving the

Cramer-Rao lower bound (CRLB) when using the maximum likelihood (ML) es-

timator, which is later used as the metric. With the objective of minimizing the

CRLB, we propose our method to improve the performance of the ToA estima-

tor. When CSI at the transmitter (CSIT) is available, transmit beamforming is

adopted as the signal pre-processing technique at the transmitter, while space-time

block code (STBC) is utilized as the transmit diversity technique for the case of

unavailable CSIT. Since we can assume that the CSI at the receiver (CSIR) is al-

ways available as channel estimation is a key component in a receiver, we employ

receive beamforming at the receiver. By studying through simulations, we demon-

strate that the performance of the ToA estimator is enhanced with the availability
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of CSIT. It is further enhanced by increasing the number of antennas. Under the

condition of erroneous CSIT, improvement can still be observed compared with

the case without CSIT when the signal-to-noise ratio (SNR) is below a threshold.

The proposed approach is derived based on a single-path channel. However,

multipath components usually present in real environment, especially in the indoor

or urban areas. Under such conditions, the performance of the proposed approach

will be degraded. Therefore, the ToA estimation problem in MIMO systems in

multipath environment is a possible future direction for this work. Such a problem

can be implemented based on two criteria. The first one is to enhance the esti-

mation accuracy of the line-of-sight (LOS) path only, because many localization

algorithms in the literature only use the LOS component to perform localization.

The second criteria is to jointly reduce the errors of LOS and multipath compo-

nents. This is also useful, because the multipath components have been utilized

for localization in [20, 89, 90].

7.3 MAP-Based Joint Channel Parameter Esti-

mation

In Chapter 5, we develop a maximum a posterior (MAP) based joint tempo-

ral and spatial parameters estimation algorithm for single-input multiple-output

(SIMO) and MIMO systems. We take advantage of prior knowledge of statisti-

cal channel information obtained from the extended Saleh-Valenzuela (SV) chan-

nel model, and use the space-time processing technique to do joint estimation

such that multiple channel parameters can be estimated under the same frame-

work. In order to make the MAP-based approach feasible, we use the expectation-

maximization (EM) algorithm to resolve the high dimensional optimization prob-

lem into iteratively solving the multiple 3-dimensional (3-D) optimizations. Sim-

ulations are carried out in two typical indoor scenarios following the extended SV

model. The proposed algorithm is shown to outperform the ML-based algorithm

reported for SIMO systems. We also demonstrate that the iterative approach gen-

erally converge fast within a few iterations. Finally, we discuss how the algorithm

can be extended and applied to MIMO systems, whose feasibility is demonstrated

by a numerical example.

The proposed approach is reduced to iteratively solving multiple 3-D opti-
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mizations when applying the EM algorithm. We point out that this 3-D optimiza-

tion problem can be further reduced to three 1-D search problems by applying

the SAGE (Space-Alternating Generalized EM) algorithm [143] which has been

applied to ML-based parameters estimation in [82]. The future work on this topic

will involve studying its feasibility and performance comparison between SAGE-

based and EM-based approaches in improving the localization accuracy.

7.4 AoA-Assisted Mobile Terminal Tracking

By applying space-time processing technique to remote tracking problem, we

propose an efficient tracking approach which is presented in Chapter 6. The bat-

tery lifetime which limits the application of self tracking is resolved by performing

the tracking at the fixed terminal (FT) side. The proposed approach involves

three steps. First, we develop a space-time correlation based algorithm to esti-

mate the radial velocity (both the speed and direction) of the mobile terminal

(MT). With a suitable channel model identified, we show that both the radial

speed and direction of a MT can be jointly estimated from the phase of the com-

plex space-time correlation, and has low computational complexity. The extended

Kalman filter (EKF) is next adopted to estimate the current location by fusing

the measurements and the previous location estimate. Finally, the MUSIC al-

gorithm is applied to obtain additional high-resolution AoA (HR-AoA) estimate

and we show how this partial location information can be fused with the tracking

results to further improve the tracking accuracy. The space-time correlation based

parameter estimation algorithm is first studied through simulation and shows ef-

fective performances under different channel conditions and MT speeds. Then,

the complete tracking approach is applied to a fixed trajectory and a randomly

generated trajectory, respectively. It is shown that with different tracking and

enhancing frequencies, the proposed approach exhibits different accuracies.

In the derivation of the approach, we assume that the parameter κ is suffi-

ciently large, such that the von-Mises distribution can be approximated by Gaus-

sian distribution. Under this condition, it is reasonable to assume Ω0 = ΩR. We

then demonstrate through simulation that as long as the Rician factor K is not

small, the value of κ has very limited effect on the estimation accuracy. However,

if we consider the extreme condition when both K and κ are small (e.g. K ≤ 2
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dB and κ ≤ 2), the performance of the motion-dependent parameters estimation

algorithm is degraded. A future direction is to study effective method under this

condition. Since Ω0 and ΩR may not be assumed to be equal, the estimation be-

comes a joint estimation of both Ω0 and ΩR. Another direction is to extend the

approach to non-LOS (NLOS) scenario under the aboved mentioned extreme con-

dition. In non-extreme condition, the extension is very straightforward, since ΩR

is equal to the LOS AoA, and the performance has been studied in the simulation

of Chapter 6. However, under the above mentioned extreme scenario, we can only

obtain the estimate of ΩR which is different from LOS AoA. Therefore, the EKF

part need to be revised so as to mitigate the NLOS effect.
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