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Abstract 

 

 

Poor scaffold function could impair vascular tissue regeneration, limiting the clinical 

translation of tissue-engineered vascular grafts. In this work, poly(ε-caprolactone) 

(PCL) films with anisotropic geometries and micropore patterns were developed and 

fabricated, to mimic the extracellular matrices (ECM) for the complex architecture 

reconstruction of blood vessels. Uniaxial stretching induced three-dimensional 

orientated ridge/groove arrays on PCL films with enhanced mechanical properties. 

Mesenchymal stem cells (MSCs) grew and aligned well on the PCL films with up-

regulated expression of contractile smooth muscle cell genes. In addition, the PCL 

films exhibited inherent stability in an erosive environment, thereby better retaining 

the anisotropic geometries. PCL films with micropore patterns could be achieved via 

femtosecond laser drilling, which mimicked the vascular basement membrane for 

nutrient permeability, MSCs alignment on one surface of the films, and rapid 

endothelialisation on the opposite surface of the films. In short, this thesis explores 

the use of anisotropic geometries and micropore patterns for the generation of multi-

functional film scaffolds that are capable of mimicking ECM for facilitating vascular 

tissue regeneration. 
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3; ***, p <0.001; **, p <0.01; *, p <0.05; NS, p >0.05). [Page 107] 

Figure 4-7 Cytoskeletonal reorganisation of MSCs on UXHP-PCL. Cells 
(Passage-6, 5 k/cm2, for 5 days of culture in D10) were stained 
with F-actin (Red colour) and DNA (Blue colour), and examined 
using CLSM. (A) MSCs on HP-PCL flat surfaces. (B) MSCs on 
UXHP-PCL ridge/groove arrays (Double-headed arrows: ridge 
direction; Scale bar = 50 µm). [Page 108] 

Figure 4-8 MSCs nucleus deformation on UXHP-PCL. Cells (Passage-6, 5 
k/cm2, for 5 days of culture in D10) were stained with DNA using 
DAPI (Blue colour). (A) CLSM images of MSCs nuclei on HP-
PCL and UXHP-PCL surfaces (Double-headed arrows: direction of 
PCL ridge/groove arrays; Scale bar = 100 µm). (B) Quantitative 
analysis of nucleus alignment and elongation (n = 3; ***, p 
<0.001). [Page 109] 

Figure 4-9 Gene expression change of SMCs contractile markers in MSCs on 
UXHP-PCL. Cells (Passage-6, 5 k/cm2) were cultured with tissue 
culture plate (TCP, Control group) flat surfaces, HP-PCL flat 
surfaces and UXHP-PCL ridge/grooves in D10 for 5 days. 
Quantitative reverse transcription polymerase chain reaction (qRT-
PCR) analysis showed that UXHP-PCL up-regulated the expression 
levels of ACTA2, CNN1 and MYH11 in MSCs. (n = 3; vs HP-
PCL group: ***, p <0.001; NS, p = 0.15). [Page 111] 

Figure 4-10 Protein expression change of SMCs contractile markers in MSCs 
on UXHP-PCL. Cells (Passage-6, 5 k/cm2) were cultured on HP-
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PCL flat surfaces and UXHP-PCL ridge/grooves in D10 for 5 days, 
and immunocytochemistry-labeled with IgG isotypes (Negative 
control) and SMCs contractile markers: SM-α-actin for early-term 
differentiation (A), calponin for middle-term differentiation (B), 
and SM-MHC for late-term differentiation (C). MSCs on UXHP-
PCL positively expressed SMCs contractile filaments in the 
ordered organisation towards ridges (DNA: blue colour; SMCs 
contractile markers: green colour; Double-headed arrows: direction 
of PCL ridge/groove arrays; Scale bar = 50 µm). [Page 113] 

Figure 4-11 Quantitative analysis of the protein expression of SM-α-actin, 
calponin and SM-MHC. (A) Positive cell number. (B) 
Fluorescence intensity. Flow cytometry (FACS) analysis showed 
that MSCs (Passage-6, 5 k/cm2, for 5 days of culture in D10) on 
UXHP-PCL achieved enhanced expression of SMCs contractile 
markers in both positive cell number and expression intensity (n = 
3; ***, p <0.001; **, p <0.01; *, p <0.05). [Page 114] 

Figure 4-12 (A) Schematic diagram for engineering 3D vascular scaffolds (Red 
arrows: flow direction; blue arrows: ridge direction). (B) A small-
diameter 3D tubular scaffolds from UXHP-PCL. FESEM images 
revealed ridge/grooves similarly presented on both wall surfaces in 
a direction perpendicular to the tube (Blue arrows: ridge direction; 
Scale bar = 100 µm). (C) Patency of the 3D tubular scaffolds from 
UXHP-PCL, UXCS-PCL and UXSC-PCL after immersion in culture 
medium. (D) Engineering of layered-MSCs/PCL/MSCs with 
similar direction in different layers (Blue arrows: ridge direction; 
scale bar = 200 µm). [Page 116] 

Figure 5-1 Morphological stability of UXHP-PCL ridge/groove arrays against 
degradation. Film samples were hydrolysed in an alkaline medium 
for 20 days at room temperature. Field emission scanning electron 
microscopy (FESEM) images reveal overall ridge/groove arrays 
that still existed on UXHP-PCL (FS: flat surfaces; R: ridges; G: 
grooves; Double-headed arrow: stretching direction; Scale bar = 
200 and 20 µm for low and high magnified FESEM images, 
respectively). [Page 129] 

Figure 5-2 Morphological evolution of UXHP-PCL ridge/groove arrays with 
alkaline hydrolysis at room temperature for day 0-30. Degradation 
of UXHP-PCL ridge/groove arrays occurred on film surfaces with 
ridges being degraded into small parallel ridge-islands (FS: flat 
surfaces; R: ridges; G: grooves; Double-headed arrow: stretching 
direction; Scale bar = 20 µm). [Page 130] 
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Figure 5-3 Morphologies of UXHP-PCL ridge/groove arrays (A) and HP-PCL 
flat surfaces (B) after 30 days of degradation. FESEM images 
reveal integrated surfaces with overall orientated geometries on 
UXHP-PCL. In contrast, HP-PCL flat surfaces were degraded into 
fragments (Double-headed arrow: stretching direction; Scale bar = 
100 µm). [Page 131] 

Figure 5-4 Film weight loss of PCL films hydrolysed in an alkaline medium at 
room temperature for 0-39 days. UXHP-PCL ridge/groove arrays 
followed an “S-shape” behaviour of film weight loss, while HP-
PCL flat surfaces experienced a “parabola-shape” behaviour (FS: 
flat surfaces; R: ridges; G: grooves; n = 5). [Page 132] 

Figure 5-5 Surface hydrophilicity of PCL films with alkaline hydrolysis for 
different time. UXHP-PCL ridge/groove arrays obtained increased 
surface hydrophilicity after degradation, and retained similar water 
contact angle (WCA) of >40 o in both parallel (//) and 
perpendicular (⊥) directions for 20 days of degradation (FS: flat 
surfaces; R: ridges; G: grooves; n = 5). [Page 133] 

Figure 5-6 Film mechanical properties of PCL films after alkaline hydrolysis 
at room temperature for different time. (A) Typical tensile stress-
strain curves. (B) Film yield stress, yield strain, Yong's Modulus, 
and ultimate stress and strain. Over the investigated degradation 
period, UXHP-PCL ridge/groove arrays experienced slight increase 
in film yield stress and strain, resulting in less change at film 
Yong's Modulus (FS: flat surfaces; R: ridges; G: grooves; n = 3). 
[Page 134] 

Figure 5-7 Cellular responses to geometric degradation of UXHP-PCL 
ridge/groove arrays. Human MSCs (P6, 5k per cm2) were cultured 
on UXHP-PCL ridge/groove arrays hydrolysed in an alkaline 
medium for different time (0-30 days), and stained using TRITC-
conjugated phalloidin (Red colour: F-actin, cytoskeleton) and 
DAPI (Blue colour: DNA, nuclei). (A) MSCs on HP-PCL flat 
surfaces organised randomly (Neg Ctrl; Dot line: nucleus angle 
frequency of an Isotropic sample with a value of ~0.56 %). (B) 
MSCs on hydrolysed UXHP-PCL ridge/groove arrays (Double-
headed white arrows: ridge direction). (C) Nucleus alignment 
described as a normalised nucleus number in ±10 o (Dot line: 
nucleus alignment of an Isotropic sample with a value of ~11.7 %). 
(D) Nucleus elongation described by a CNSI. A CNSI of 1 
represents a circle (*, ** and *** represent significant differences 
as compared to Neg Ctrl; n = 3; *, p <0.05; **, p <0.01; ***, p 
<0.001) [Page 137] 
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Figure 5-8 Summarised relationships among film weight loss of UXHP-PCL, 
geometric evolution of ridge/grooves and MSCs responses. At less 
than ~20 % film weight loss, degradation resulted in gradually 
rougher surfaces with stable MSCs alignment. At more than ~20 % 
film weight loss, ridges degraded into small ridge-islands, leading 
to MSCs response with declined nucleus alignment and elongation 
(Hollow arrows: concaves at ridge-edges in [C] and direct loss of 
ridge-islands in [D]). [Page 144] 

Figure 6-1 Uniaxial stretching and femtosecond laser drilling of PCL films 
resulted in orientated ridge/groove arrays and pore patterns. (A) 
HP-PCL flat surfaces. (B) UXHP-PCL ridge/groove arrays (double-
headed arrows: redge direction). (C) PUXHP-PCL with orientated 
ridge/groove arrays and pore patterns (Scale bar = 500 µm). [Page 
155] 

Figure 6-2 (A) Pore morphologies top and bottom film surfaces. FESEM 
images of PUXHP-PCL reveal through-hole after femtosecond laser 
drilling, which was rounded with lip-like melting and formed into 
an ellipse-like shape towards ridges (Scale bar = 20 and 200 µm 
for high and low magnifications, respectively). (B) Pore 
morphologies on HP-PCL top film surface revealed more rounded 
and more ejection (Scale bar = 50 and 500 µm for the high and low 
magnifications, respectively). [Page 156] 

Figure 6-3 Control of pore position. (A) x-axis was defined as the ridge 
direction, while y-axis was perpendicular to ridges. (B) Different 
pore patterns on PUXHP-PCL (Scale bar = 500 µm). [Page 157] 

Figure 6-4 (A) Light microscopy images of melting ejection. Higher Epulse 
produced thicker ejection fibers (Npulse = 20), while higher Npulse 
resulted in less ejection (Epulse = 20 µJ). (B) Influences of Epulse and 
Npulse. Pore diameters increased with raised Epulse (Npulse = 20), but 
exhibited less changes when Npulse was varied (Epulse = 20 µJ; n = 
6). [Page 158] 

Figure 6-5 Permeability evolution of PUXHP-PCL. Cumulative concentration 
of FITC-dextran increased with diffusion time, and achieved ~100 
% of diffusion at 288 hrs (FITC-dextran: marker molecule; UXHP-
PCL: control group; n = 6). [Page 159] 

Figure 6-6 (A) Schematic diagram illustrating the experimental design. MSCs 
seeded on PUXHP-PCL in D10 and D0 were set as positive (P-Ctrl) 
and negative (N-Ctrl) control, respectively. (B) Cellular adhesion 
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and proliferation on PUXHP-PCL. Cells (Passage-6, 5k per cm2) 
were seeded and cultured for 1 and 3 days. MSCs on PUXHP-PCL 
achieved increased cell adhesion (day 1) and proliferation (day 3) 
as compared to those of UXHP-PCL group (n = 3; ***, p <0.001; 
NS, p >0.05). [Page 160] 

Figure 6-7 Pore influence on MSCs alignment. (A) UXHP-PCL. MSCs aligned 
on UXHP-PCL towards the ridge directions. (B-E) PUXHP-PCL. 
MSCs exhibited aligned growth towards the ridge/groove arrays 
when they could extend freely, half-cell alignment when cellular 
extension was obstructed only at one end, and disturbed alignment 
when MSCs extension was obstructed at one end and the other end 
attached to substrate/cells that were not in ridge direction (Double-
headed arrows: ridge direction; Green arrows: free extension of 
cells; Yellow arrows: cell extension being obstructed and attached 
to substrate or cells; Scale bar = 100 µm). [Page 161] 

Figure 6-8 Influence of pore pattern on MSCs alignment. (A) CLSM images 
reveal different MSCs organisation on PUXHP-PCL (Red arrows: 
cells disturbed by pores; Scale bar = 200 µm). (B) Normalised 
MSCs alignment efficiency. MSCs exhibited the declined degree 
of alignment efficiency towards ridge/grooves depending on pore 
patterns (n = 3; ***, p <0.001; NS, p >0.05). [Page 162] 

Figure 6-9 Non-interfered MSCs alignment on PUXHP-PCL. Cells (Pasage-6, 
5k per cm2) seeded on PCL films were cultured for pre-determined 
time. (A) DIC images of HP-PCL, PHP-PCL, UXHP-PCL and 
PUXHP-PCL (Inter-pore-distance: 500 µm; Double-headed arrows: 
ridge direction). (B) Normalised cell alignment efficiency. MSCs 
alignment on PUXHP-PCL achieved significant increase than that 
of PHP-PCL, and was non-reduced as compared to that of UXHP-
PCL (n = 3; ***, p <0.001; NS, p >0.05). (C) Cellular organisation 
at a confluence status. MSCs after 8 days of culture still retained 
aligned growth on UXHP-PCL and PUXHP-PCL in a controllable 
direction towards ridges (Double-headed arrows: ridge direction). 
[Page 163] 

Figure 6-10 Cellular ingrowth of MSCs into PUXHP-PCL via (i) bridging, (ii) 
sidewall depth and (iii) coverage. Cells (Passage-6, 5k per cm2) 
seeded on PUXHP-PCL:X500Y500 were cultured for 3 days in D10 
(Red arrows: cellular anchors that adhered to the pore sidewall; 
Blue arrows: cellular anchors that extended into the pore depth; 
Scale bar = 20 µm). [Page 165] 

Figure 6-11 Direct MSCs-HUVECs contact. PHK26-labeled MSCs (Red 
colour; Passage-6, 10k per cm2) seeded on one surface of PUXHP-
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PCL:X500Y500 were cultured in D10 for 1 day, and GFP-labeled 
HUVECs (Green colour; Passage-6, 15k per cm2) were then seeded 
onto the other film surface and co-cultured in EGM10 for further 3 
days. (A) 3D construction of section-scanning CLSM images from 
DIC, Green and Red channels. Yellow colour represented the co-
localisation of green and red colours. (B) Crossing-section view. 
Yellow colour distrusted not only around the green and/or red 
colour areas but also within each other (Scale bar = 20 µm). [Page 
166] 

Figure 6-12 (A) CLSM images of cell-contact between GFP-labeled HUVECs 
(Green colour) and PHK26-labeled MSCs (Red colour) for 2 and 5 
days of co-culture in EGM10 (Scale bar = 500 µm). (B) 
Normalised pore number that occurred HUVECs-MSCs contact (n 
= 4). [Page 167] 

Figure 6-13 Influence of direct MSCs-HUVECs interaction. (A) Total system 
NO level. Direct cell-cell interaction increased the total NO level 
of HUVECs/MSCs co-culture system, while in-directed interaction 
declined the system total NO level (n = 4; *, p <0.05; **, p <0.01; 
***, p <0.001). (B) HUVECs adhesion and proliferation. Direct 
cell-cell interaction increased HUVECs proliferation as compared 
to that of co-culture system with in-direct cell-cell interaction and 
single-culture system (n = 3; *, p <0.05; ***, p <0.001; NS, p 
>0.05). [Page 168] 
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Chapter 1	  Introduction 

 

 

1.1 Background 

There is great unmet need for vascular grafts. According to the World Health 

Organisation's report, cardiovascular disease is the leading cause of death globally 

[1]. In the U.S., over 60 million Americans live with the influences of heart attacks or 

strokes [2-4], and in Europe, almost one half of the death is associated with 

atherosclerosis [5]. In developing countries such as China, the death rates related to 

cardiovascular diseases will surge up to 73 % by 2030 [6]. Surgical bypass is the 

procedure of choice in a number of patients for cardiovascular disease therapy [7]. 

There are ~1.4 million arterial bypass operations performed annually in the U.S. alone 

[4, 8]. Surgical bypass is also considered to be more cost-effective and preserve the 

quality of patient’s life better than other therapeutic strategies such as amputation [8]. 

However, ~7 % of 17.5 million patients worldwide who require surgical bypass 

procedures do not have suitable vessels for use [9]. 

 

The patient's own arteries or veins remain the gold standard of vascular grafts for 

surgical bypassing [8]. For patients who do not have suitable own vessels, vascular 

grafts from foreign tissues (e.g. the same or different species) and synthetic materials 

are used for surgical bypassing. However, long-term patency rates remain the major 

concern of current vascular grafts, in particularly for small-diameter bypass grafting 

(e.g. the coronary arteries) [4, 10]. The 5-year patency of autografts (patient's own 
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vessels) and synthetic grafts for the above-the-knee femoropopliteal arteries is only 

~74 and ~39 %, respectively [8]. Besides that, availability is the other major 

limitation for autografts [2, 11, 12] and any vessel harvest is associated with 

indispensable donor site [13], while allografts, xenografts and synthetic grafts often 

accompany with toxicity and immune-rejection. New strategies for an ideal vascular 

graft have become in an urgent need for cardiovascular disease therapy. 

 

Vascular tissue engineering (VTE), a new developing field, has emerged and achieved 

considerable advances over the past 10 years. The ultimate goal of VTE is to generate 

autologous tissue-engineered vascular grafts (TEVG) that not only are living, 

immunecompatible and capable of physiological response as autologous grafts, but 

also have sufficient availability, meet patient-specific requires and minimise the 

procedures and time required before implantation, finally approaching the "off-the-

shelf" idea [14]. There are four basic concepts for VTE including the cells, scaffolds, 

signals, and engineering techniques [14, 15], among which cells and scaffolds are the 

key components of TEVG. 

 

Vascular scaffolds provide the temporal mechanical support to withstand the 

hemodynamic strength and strain. They are also crucial for the vascular tissue 

remodeling via delivering biochemical and/or mechanical signals for the cell 

behaviour regulation such as spreading, growth, migration, differentiation and the 

secretion of extracellular matrices (ECM) [16]. The materials of vascular scaffolds 

can be natural or synthetic polymers [15]. Polyglycolic acid (PGA), polylactic acid 

(PLA) and poly(ε-caprolactone) (PCL) are the most widely used synthetic polymers 

in biomedicine [14]. However, vascular scaffolds from PGA after the surgical sutures 
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tend to lose their mechanical strength over 2-4 weeks post-implantation [15]. 

Furthermore, both PGA and PLA are easy to undergo plastic deformation and failure 

when exposed to long-term cyclic strain [17], limiting their applications as suitable 

materials for mechano-active tissue regeneration (e.g. TEVG). In contrast, PCL is a 

versatile biomaterial and has been extensively applied for regeneration of various 

tissues (Table 1-1). PCL has superior mechanical properties [17]. In vivo, PCL 

degrades slowly via the hydrolysis of ester linkages and eliminates the resultant 

fragments by giant cells and macrophages [14, 15]. Another unique property of PCL 

is its rubbery state at room temperature because of its low glass transition temperature 

of about −60 oC [17]. Therefore, PCL is most suitable for the design of long-term 

implantable system such as TEVG. The first human clinical study based on PCL and 

its co-polymer scaffolds conducted recently in Japan gave promising long-term 

outcomes [14]. 

 

Table 1-1: Applications of PCL in various tissue regeneration 

Tissue 
Engineering Specific Applications Ref. 

Bone (i) Fused deposition modeled porous 3D scaffolds for critical-size 
femoral defects repair; 

(ii) Porous scaffolds with platelet-rich plasma for orthotopic defect 
repair: vascular ingrowth and functional integration. 

[18, 19] 

Blood Vessel (i) Bi-axial-stretched film with CD34 modification for hemo-
compatibility and construction of tunica intima and media; 

(ii) Electropun fibrous film for endothelium regeneration; 

(iii) Rolled sheets for media reconstruction. 

[20-22] 

Skin (i) Bi-axial stretched film for dermal fibroblast growth. [23] 

Nerve (i) Electropun fibers for peripheral nerve regeneration. [24] 
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Vascular cells are responsible for the neotissue and function regeneration. These 

include the endothelial cells (ECs), smooth muscle cells (SMCs) and fibroblasts 

(FBs). ECs function as the thromboresistance, antipseudointimal hyperplasia and 

inhibition of SMCs migration, overgrowth and ECM secretion [15]. SMCs and FBs 

contribute to the structural integrity, mechanical support and vasoactive responses. 

Furthermore, SMCs and FBs can also stabilise the ECs-composed intima [25]. 

Besides those cells, stem cells have gained more attention in recent years, and serve 

as an alternative vascular cell source, due to the self-renewability and potential 

differentiation into vascular cells [26]. 

 

Currently, VTE, however, is far away from the generation of an ideal graft that should 

be engineered, autologous and "off-the-shelf" [27]. The major problem is that TEVG 

from the current manipulations does not match the compliance of native vessels [27]. 

The cells and filaments are not able to organise in the specific circumferential 

alignment of native vessels [14, 28]. SMCs have limited renew capability, and are 

easy to lose their contractile apparatus and shift into a synthetic phenotype, resulting 

in the over cell proliferation and ECM secretion, the migration into intimal regions, 

and final regulation failure of blood pressure and flow [15, 29]. 

 

To overcome the problems of current TEVG, major efforts have been directed to 

understand the importance of vascular cell micro-environment, and mimic it for the 

design of de novo vascular scaffolds. In native vessels, one important structure is the 

basement membrane (BM), the two sides of which are located with the orientated 

SMCs and ECs. It has been known that BM plays a crucial role in the vascular 

development and physiological function such as the anti-thrombosis, compliance, 



Chapter 1 Introduction 

	   -5- 

selective permeability and patency of blood vessels [9, 30]. Importantly, the recent 

study demonstrated that BM is a meshwork composed of orientated fibers and 

interconnected pores [9]. Such complex architecture should have important impacts 

on the vascular cell organisation and function, and have potential to facilitate better 

compliance for TEVG. 

 

1.2 Objectives 

This project aims to develop novel functional vascular scaffolds that mimic the 

complex architecture of BM, with capability to guide the ordered organisation and 

differentiation of stem cells, and support the rapid endothelialisation. For this 

objective, PCL will be used as the scaffold materials, and mesenchymal stem cells 

(MSCs) and ECs will be used as the cell sources for the tunica media and intima, 

respectively.  

 

• Specific Aim-1: Uniaxial stretching of PCL films results in the orientated 

three-dimensional (3D) ridge/groove arrays, with robust capability to support 

effective and long-term stem cell alignment. 

• Specific Aim-2: Uniaxial-stretched PCL films, with elevated mechanical 

properties and 3D orientated ridge/groove arrays, promote the alignment and 

differentiation of MSCs into a contractile SMCs-like phenotype, and facilitate 

the tubular scaffold construction. 

• Specific Aim-3: Uniaxial-stretched PCL films obtain enhanced stability 

against erosive environments, with better-retained surface hydrophilicity, 

mechanical properties, and 3D orientated ridge/groove arrays for the 

prolonged cell regulation. 
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• Specific Aim-4: A combination of uniaxial stretching and femtosecond laser 

drilling results in engineered BM, with 3D orientated ridge/groove arrays and 

microporous patterns for the ordered MSCs organisation and rapid 

endothelialisation from ECs. 

 

1.3 Scope 

Chapter 1 is the introduction, which gives a brief background and specifies the 

research objectives and novelty of VTE applications. 

 

Chapter 2 is the literature review, which focuses on current research progress related 

to the objectives of this project including the human blood vessels and regeneration, 

stem cells for VTE applications, geometric cues for engineered BM, and porous 

patterns for engineered BM. 

 

Chapters 3-6 are the experimental parts. As shown in Figure 1-1, Chapter 3 will focus 

on the development of using uniaxial stretching to generate orientated ridge/groove 

arrays on PCL films for stem cell organisation control. A series of materials and 

cellular characterisations will be performed. Chapter 4 will focus on PCL film 

selection, which should have sufficient mechanical properties and proper geometries 

for MSCs alignment, differentiation and TEVG scaffold construction. Based on 

Chapter 4, Chapter 5 will focus on the understanding of how erosive environment 

influence the orientated ridge/groove arrays on selected PCL films, changes of film 

properties, and further MSCs responses. Chapter 6 will focus on the using of 

femtosecond laser beam to drill micropore patterns on the selected films. Therefore, 

the PCL films will have orientated ridge/groove arrays and microporous patterns. 
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Parameters for femtosecond laser drilling and materials characterisations will be done. 

Biological studies including the nutrient diffusion, MSCs alignment and direct cell-

cell interaction between MSCs and ECs will be performed for evaluating the 

performances of PCL films as the engineered BM for VTE applications. 

 

 

Figure 1-1: Schematic diagram illustrating the scope of experimental parts including Chapter 3 (i), 
Chapter 4 (ii), Chapter 5 (iii), and Chapter 6 (iv). 
 

Chapter 7 is the conclusions, which will focus on the summarisation of main 

conclusions that this project contributed. 

 

Chapter 8 is the future work, which will focus on the examination of limitations of 

current work, and point out the potential directions for future research. 
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1.4 Novelty 

The unmatched compliance of TEVG remains a major challenge for VTE. This 

project using a biomimical strategy to incorporate anisotropic geometries and 

microporous patterns on PCL films will facilitate the development of functional 

scaffolds for TEVG to approach the compliance of native vessels. The PCL films will 

function as an engineered BM for aligned cell organisation as in native tunica media 

and rapid endothelialisation on the opposite film surface as tunica intima. Therefore, 

this work will provide a novel multi-functional PCL film as an engineered BM for 

VTE application. The work will also enhance the understanding on how geometric 

cues regulate MSCs fate, how pores influence cellular alignment towards the 

anisotropic geometries, and how direct cell-cell interaction affects the 

endothelialisation. 

 

This project will develop two innovative methods. The first technique is using 

uniaxial stretching to produce film geometric cues in a solvent-free and simple 

manner. The other technique is using a combination of uniaxial stretching and 

femtosecond laser drilling for fabricating multi-functional films with anisotropic 

geometric cues and microporous patterns in a controllable manner (e.g. pore size and 

position) for non-inferential cellular alignment. These two techniques should facilitate 

the development of function vascular scaffolds for an "off-the-shelf" TEVG. 
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Chapter 2	  Literature Review 

 

 

2.1 Human Vascular System and Regeneration 

2.1.1 Blood Vessel Structure 

Blood vessels extend throughout the body and form into a circulation system for gas 

and nutrient exchange, waste transport and immune defense. Human vascular system 

includes arteries that carry nutrient and oxygenated blood away from the heart to the 

body; capillaries that response to the exchange of nutrient and oxygen among the 

arteries, tissue and veins; and veins that carry blood back into the heart. Except for the 

capillaries, all arteries and veins in large, middle and small diameters posses three-

layered structures [16]. From the luminal side outward, they are tunica intima, media 

and adventitia, mainly composed of ECs, SMCs and FBs, respectively (Figure 2-1) 

[31]. 

 

Tunica intima consists of ECs monolayer, forming as a tight nonthrombogenic barrier 

between lumen side and the rest of vessel wall. This layer function as (i) anti-

thrombosis, (ii) anti-infection/inflammation from the underlying tissues, and (iii) 

regulation signals to SMCs [32]. To biomimic the micro-environment of tunica 

intima, strategies can be utilising the flow shear stress for mechanical biomimicry and 

modifying the scaffold surface for anti-thrombosis (e.g. heparin and CD34) [33-35]. 

Seeding of ECs has also been used for the increased patency of vascular grafts [36]. 
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Figure 2-1: Schematic diagram illustrating the vascular structure of normal artery and vein. (Adapted 
from the webpage of University of Miami, 2013 [31]) 
 

Tunica media has an anisotropic architecture consisting of SMCs and ECM of 

collagen type I and III, elastin, and other proteins and proteoglycans [32]. In the 

development of blood vessels, SMCs secrete ECM in an ordered organisation [16]. 

Elastin arranges as fenestrated sheets, and is connected by the collagen fibers, 

proteoglycan thin layers and SMCs [37]. It has been known that elastin and collagen 

account for ~50 % of the dry weight of vessels [38]. Elimination of SMCs does not 

alter significantly the static mechanical properties of mature arteries [39], suggesting 

that before successful remodeling, vascular scaffolds should be able to provide 

sufficient bust strength support. SMCs embedded in the collagen-enriched ECM and 

organised into the circumferential alignment with a herringbone helical arrangement 

[40]. Tunica media contributes most to (i) the secretion, integrity and mechanical 

support [16], (ii) vasoactive response to signals from ECs (e.g. cytokines) [32], and 

(iii) regulation on ECs [15]. Studies to biomimic tunica media include the targeting of 

biochemical components, mechanical stimuli and geometric architecture (Table 2-1) 

[28, 41, 42]. 
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The adventitia consists of FBs and loose collagen-enriched ECM, serving two main 

functions to support vascular wall and anchor vessels to the surrounding tissue as well 

as regulate endothelium function [15, 32]. 

 

Table 2-1: Strategies to biomimic the micro-environment of tunica media 

 Natural Tunica 
Media 

Signal 
Pathways VTE Scaffolds Function Ref. 

Biochemical 
components 

Elastin Non-integrin 
heterotrimer 
G-protein-
coupled 
pathway 

Recombinant 
elastin-like 
polypeptides 
on PU fibers 

Contractile 
phenotypes with 
organised actin 
stress fibers and 
biological 
markers 

[41] 

Mechanical 
Stimuli 

Cyclical strain RhoA/ROCK 
and (FAK)/c-
Src pathway 

Equiaxial and 
uniaxial strain 

Up-regulated 
expression of 
contractile SMCs 
markers via 
cyclical uniaxial 
strain 

[42] 

Geometric 
Morphologies 

Anisotropic 
organisation 

Mechano-
transduction 

An amphiphilic 
comb polymer 
micropatterns 

Increased SMCs 
contractile marker 
expression 

[28] 

 

2.1.2 Vascular Grafts 

An ideal vascular graft for the surgical bypassing should meet the requirements of the 

four aspects (Table 2-2): safety (e.g. anti-infection, biocompatibility and appropriate 

mechanical properties), function (e.g. long-term patency, growth potential and 

vasoactive responses), operation (e.g. ease of handling and non-leaking), and 

availability (e.g. off-the-shelf supply, ease of storage and low cost) [8, 11, 12, 16, 17, 

43]. Current vascular grafts can be divided into five categories namely autografts, 

allografts, xenografts, synthetic grafts and TEVG. 

 

Autografts possess the most of physiological properties and are biocompatible 

without either toxicity or immune-rejection. Long-term performances of these grafts 
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demonstrate the highest percent of 5-year patency among the current grafts, and good 

compliance and healing with rare formation of intimal hyperplasia [8, 13, 44-46]. 

Allografts can be obtained from cadaver donors, and have been demonstrated with 

poor patency than that of autografts, but better than that of synthetic grafts [47]. 

Xenografts have "off-the-shelf" availability from bovine arteries. These grafts can be 

considered as the treated natural materials from a decellularisation process, and have 

been demonstrated with lower infection, thrombosis and reintervention rate than those 

of synthetic grafts. Being similar to xenografts, synthetic grafts can also be "off-the-

shelf" and are mostly based on polyethylene terephthalate (PET), 

polytetrafluoroethylene (PTFE) and polyurethanes (PU). However, as shown in Table 

2-3, these grafts are still far away from the characteristics of an ideal vascular graft. 

Intimal hyperplasia at distal anastomosis and thrombogenicity of artificial surface are 

the main reasons that result in mechanical and diameter mismatch between the 

vascular grafts and native arteries, lack of ECs and de-differentiation of SMCs. 

 

Table 2-2: Characteristics of an ideal vascular graft 

Safety Function Operation Availability 

Sufficient mechanical 
support: flow stress 
and long-term cyclic 
strain [8, 17] 

Biocompatibility: no 
toxicity or 
immunogenicity [8] 

Infection: no [8] 

Long-term patency: 
resistance to thrombosis, 
aneurysm and/or 
calcification in vivo [8, 11, 
16, 43] 

Mechanical matching: 
vasoactive response, 
structure remodeling and 
incorporation to host tissue 
[11, 16] 

Living and growth potential: 
[16, 43] 

Surgical handing: 
suturability and 
simplicity [8] 

Being leak-proof: at 
the distal 
anastomosis [12] 

"Off-the-shelf": 
various diameters 
and lengths [8, 11] 

Storage: easy [11] 

Cost: reasonable 
manufacturing fee 
[8] 
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Table 2-3: The advantages and limitations of current vascular grafts (Adapted from Bujan et al. 2004; Chlupac et al. 2009) 

 Autograft Artery Autograft Vein Allograft Xenograft Synthetic Grafts 

Examples Internal and external 
iliac, superficial 
femoral, internal 
thoracic arteries 

Great saphenous, arm, 
popliteal and superficial 
femoral veins 

Arteries and large 
saphenous, umbilical 
and cryopreserved veins 

Bovine carotid or internal 
thoracic arteries 

Woven and knitted PET-based 
Terylene or Dacron; 

Porous ePTFE-based Teflon or 
Gore-Tex; 

Fibrillar and foamy PU scaffolds 

First Trial Jaboulay and Briau at 
1896 

Goyannes et al. at 1906 Gross et al. used allo-
arteries at 1948 

Hurt et al. at 1983 Ku et al. at 1957 

Safety +++ +++ ++ ++ +++ 

Function Very good ~65-75% 5-year patency; 

Complete healing with rare 
aneurysms or intimal 
hyperplasia 

~60% 5-year patency; 

Un-complete healing with 
degenerative disease and 
calcifications 

~59% 5-year patency; 

Diseases with calcification, 
intimal hyperplasia and 
transmission 

~40% 5-year patency; 

Diseases with intimal hyperplasia; 
thrombosis, obstruction, suture 
and aneurysms 

Operation + + ++ ++ +++ 

Availability Very limited with a 
length at several cm  

Limited with a diameter of ~1-
6 mm and length of <1 m 

Limited/good with a length 
of <1 m 

Good with a length of <40 
cm 

Very good with a diameter of <30 
mm and length of <1 m 

Ref. [8, 44] [8, 13, 44-46] [8, 44, 48] [8, 44, 49, 50] [8, 44, 51-54] 

Symbols: +++, Favourable; ++, Less favourable; +, Unfavourable. 
 



Chapter 2 Literature Review 

	   -14- 

Recently, VTE has been proposed for generating engineered, autologous, and "off-

the-shelf" TEVG. As shown in Figure 2-2, this is a rapidly developing field. The 

average citation of VTE in the past 20 years is even higher than that of bone TE (26.3 

vs 22.4). VTE is to biomimic the cellular microenvironment for vascular tissue 

remodeling, strategies of which can be divided into three major categories: (i) 

biochemical factors (e.g. cytokines and transcription factors), (ii) mechanical stimuli 

(e.g. stress and strain), and (iii) geometric cues (e.g. ridge/groove arrays and pits).  

 

 

Figure 2-2: Publication and citation numbers in vascular tissue engineering (VTE). (According to the 
Web of Science, 2013) 
 

For example, the healthy vessels contain lots of type IV collagen and laminin (LN) in 

tunica media [16]. Vascular scaffolds, in incorporation of LN, have been shown to 

promote SMCs expression of contractile apparatus [55]. Growth factors such as 

transforming growth factor beta 1 (TGF-β1), insulin-like growth factor 1 (IGF-1), 

heparin and Ang-II have also been used for VTE to promote SMCs differentiation 

[56]. However, these factors are known to have side effects, if optimal conditions had 

not been achieved, and could result in atherosclerosis [57]. Recently, mechanical 

stimuli such as shear stress [58] and cyclic stretch [59-61] have been shown to be 
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beneficial in regulating vascular cells. However, mechanical stimuli are not suitable 

for the generation of an "off-the-shelf" TEVG, as the operation is complex and 

difficult to be replicated in vivo. The latest strategy known as geometric cues is 

designing specific geometric structures to biomimic the complex vascular architecture 

for cellular behaviour control [59]. Promising outcomes using geometric cues have 

been shown to align vascular cell organisation as in native vessels [2, 3, 40, 62]. 

Moreover, compared to the former two strategies, geometric cues could allow the 

incorporation into the scaffolds for implantation, and are easy available and operation 

without side effects. 

 

2.1.3 BM Architecture and Function 

BM is an important structural feature and cell regulator of native vessels, and 

localises between tunica intima and media. Constituents of BM are the large insoluble 

molecules including heparin-sulfate proteoglycans (HSPGs), type IV collagen, LN, 

and enactin/nidogen. Minimal components include SPARC/BM-40/osteopontin, type 

XV and XVIII collagen, fibulins, and agrin [63, 64]. These constitutes come together 

to form sheet-like meshwork via a process known as "self-assembly" [64], with a 

complex architecture consisting of orientated fibers and pores in submicron and 

nanoscales [9]. Thickness and the pore and fiber diameters vary significantly at 

different locations and physiological statuses [9, 65]. Large vessels generally have 

larger pores and fiber diameters than the small ones. 

 

BM Function. The function of BM can be summarised into three aspects namely 

structural support, vascular development and physiological regulation (Table 2-4). For 

example, BM helps the maintenance of vascular shape and mechanical support. In 
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normal vessels, BM serves as a basolateral for both ECs and SMCs, and separates 

them from each other [64, 66], while in the diseased vessels, SMCs run across BM 

and migrate into intima, resulting in thrombosis. Vascular diseases such as the Alport 

syndrome and Knoblach syndrome are often associated with the disordered function 

of BM [67].  

 

Table 2-4: Function of human vascular BM 

Vascular BM Important Functions Ref. 

Structural Support (i) Compartments to separate the endothelium from the vascular 
stroma; 

(ii) Basolateral for the ECs and SMCs; 

(iii) Vascular shape maintenance; 

(iv) Mechanical responses to the pulsatile blood flow and 
vasoconstriction 

[64, 66] 

Vascular 
Development 

(i) Direct cell-cell contact between pericytes and ECs; 

(ii) Alteration of the components and structures; 

(iii) Vascular maturation: SMCs recruitment 

[64, 68, 
69] 

Biochemical 
Regulation 

(i) Vascular hemostasis; 

(ii) ECs: shape, migration, proliferation and differentiation; 

(iii) SMCs: orientated organisation, proliferation, activation of 
contractile function; 

(iv) Cell-cell interaction: selective permeability for nutrition and 
growth factors (e.g. VWF) from ECs, SMC and others 

[66, 68, 
70] 

 

During vascular development, mesenchymally divided pericytes ember into BM, and 

interact intimately with ECs through a direct cell-cell contact and interdigitation [69], 

revealing final similarities (e.g. the contractile function) to SMCs in larger vessels. 

Furthermore, the meshwork of BM could accumulate von Willebrand factor (vWF) to 

recruit SMCs for vascular modeling [68].  
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Interestingly, BM also plays a crucial role for the physiological regulation of vascular 

vessels. BM of normal blood vessels is shared by SMCs and ECs on its both surfaces, 

and directly interacts with them to transmit signals. During vascular remodeling 

process, SMCs anchor BM via a dystrophin–glycoprotein complex (DGC) to bind to 

LN [71, 72]. The SMCs multi-layers organise along a similar direction according to 

BM fibers [70]. Besides those, type IV collagen and LN of BM are crucial for the 

maintenance of SMCs contractile phenotypes [15], while SMCs in vitro tend to lose 

the contractile phenotype and shift into a synthetic status, with over-secretion of 

ECM, but lack of organised contractile apparatus [29, 69]. ECs anchor BM via an 

interaction between integrin and LN or type IV collagen [64]. The late one is able to 

promote ECs proliferation and migration. Moreover, BM geometric architecture has 

been shown to influence the shape, migration, proliferation and differentiation of ECs 

[9]. 

 

BM Biomimicry. Currently, BM biomimicry for VTE focuses on the chemical 

components such as LN, type IV collagen. Study has suggested that LN could up-

regulate contractile markers' expression in SMCs [55], while electrospun nanofibrous 

scaffolds in incorporation of type IV collagen triple peptides (Cys-Ala-Gly), resulted 

in significant increase of ECs adhesion, but decrease of SMCs adhesion [73]. 

Compared to BM components, researches that biomimic the BM geometric 

architectures are very limited [68, 74-77]. These include the decellularized arteries 

and veins [76, 77], amniotic membranes [74], and porous or nano/micropatterned 

polymeric films [75]. A study by Liliensiek et al. [9] firstly preformed a thorough 

characterisation on human BM architecture. However, so far, no scaffold design for 

VTE that targets to biomimic the BM complex architecture has been proposed. 
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2.1.4 Vascular Neotissue Regeneration 

Vascular neotissue regeneration of TEVG has been predicated from the direct 

contribution of seeded cells when scaffolds degrade [78]. However, the early evidence 

that significant cell loss (up to ~95 %) occurred after the first 24 h exposure to 

pulsatile flow [79] suggested that the seeded cells might not have direct contribution 

as cellular components to vascular neotissue. Recently, the study performed by Roh et 

al. [80] exhibited how the neotissue regeneration occurred for TEVG in vivo. The 

results suggested that TEVG transformed into mature vessel might follow an 

inflammation-mediated remodeling (Figure 2-3), which involved the protein 

absorption (e.g. the integrin of inflammatory to recognise the biomaterials surface), 

complement activation for mediating the inflammation, macrophage adhesion to 

biomaterials via chemkines, giant cell formation for the degradation of large 

biomaterials fragments (e.g. reactive oxygen intermediates, oxygen free radicals, 

enzymes and acid), and ECM remodeling (e.g. M-2 macrophage for ECM secretion 

and degradation) [15]. Stem cells on seeded grafts could act as an indirect role for the 

macrophage recruitment, but not as a direct cell component of neotissue. However, 

other study also showed that stem cells could be retained when they got 

differentiation into SMCs [81]. Nevertheless, these observations clearly pointed out 

that vascular scaffolds should have (i) sufficient open interconnected pores to 

facilitate cell transmural recruitment, and (ii) capability of guiding the cell 

reorganisation. These further emphasise the importance of vascular BM architecture, 

and should give helpful guidance for vascular scaffold design. Besides that, stem cells 

have shown the important role in vascular neotissue regeneration, and are promising 

for VTE applications. 
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Figure 2-3: Mechanism for vascular neotissue regeneration. BMCs release MCP-1 and recruit 
Mon/Mac towards the grafts (A). Mon/Mac infiltrate and release multiple angiogenic cytokines and 
growth factors (e.g. VEGF) during scaffold degradation, to recruit SMCs and ECs onto grafts (B). 
Mon/Mac migrate away after complete scaffold degradation leaving behind autologous TEVG (C). 
(BMC: bone marrow stem cells; MCP-1: monocyte chemoattractant protein-1; Mon/Mac: 
monocyte/macrophage; VEGF: vascular endothelial growth factor) (Adapted from Roh et al. 2010 
[80]) 
 

2.2 Stem Cells for Engineered BM 

The gold standard of cellular source for TEVG is the patients' autologous cells 

including FBs, SMCs and ECs. However, the mature differentiated cells have a 

limited self-renewed capability, and tend to lose their activity during the in vitro 

culture expansion [11, 82]. Stem cells have shown to be promising potential cell 

source for VTE applications [83-85]. This section summarises the exciting work that 

has been reported in this area, with a focus on the applications and current research 

challenges. 

 

2.2.1 Stem Cells 

Stem cells have tremendous potential for regenerative medicine such as VTE [85]. 

Compared to the traditional cell sources, stem cells are easily available from various 

tissues (e.g. muscle, bone marrow and fat [84]), and have high expansion potential 

[86], reproducible phenotype [85] and potential to differentiate into functional 

vascular cells (e.g. SMCs [87] and ECs [88]). Current methods for the isolation of 

stem cells include the (i) Percoll® gradient centrifugation, (ii) selection via the 
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preferential cell adhesion, and (iii) sorting via immunophenotyping [84, 85]. These 

isolated stem cells can be the mononuclear cells from bone marrow (BM-MNCs), 

MSCs from fat, bone marrow and muscle, pericytes from capillaries and endothelial 

precursor cells (EPCs) from bone marrow and cord blood. 

 

BM-MNCs are a heterogeneous population including MSCs, ECs, EPCs and other 

cells and therefore, could be used as the cell source for SMCs and/or ECs [84]. BM-

MNCs can be pre-differentiated before implantation (e.g. SMCs [89]) or implanted in 

their undifferentiated status as the first human clinical study conducted in Japan [14]. 

However, it is still unclear why TEVG with BM-MNCs after implantation resulted in 

a graft composed of SMCs and ECs, although the inflammatory has been considered 

to be crucial for the vascular remodeling [80, 84]. Pericytes have also been used as a 

SMCs source for TEVG construction [90], while EPCs are mostly used as the cell 

source instead of ECs for vascularisation [91]. 

 

Compared to the BM-MNCs, pericytes and EPCs, MSCs are a homogeneous 

population with a typical immunophenotype (Table 2-5), and can be harvested from 

almost every organ, faster expansion to the differentiated vascular cells, and lacking 

expression of major histocompatibility complex (MHC) II antigens [84, 92]. TEVG 

from MSCs could be capable of significantly saving the waiting time to obtain the 

clinically required cell numbers and allowing the immune-privilege for allogeneic cell 

delivery [93], leading to the "off-the-shelf" vascular grafts. Furthermore, recent study 

demonstrated that bone marrow derived MSCs (BM-MSCs) have antithrombotic 

properties to inhibit platelet adhesion as ECs do [94]. These unique properties make 

MSCs to be attractive for TEVG construction.  
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Table 2-5: Minimal criteria for the identification of MSCs* 

Criteria Performances 

Morphology Plastic adhesion 

Immuno-
phenotype 

Positivity (>95 %) for CD73, CD90 and CD105 surface molecules; 

Negativity (>95%) for CD14, CD34, CD45 and human leukocyte antigen-DR (HLA-
DR) surface molecules 

Stemness Multi-differentiation potential to fat, cartilage and bone 

*According to the Mesenchymal and Tissue Stem Cell Committee of the International Society for 
Cellular therapy (ISCT) (Adapted from Mariani et al. 2012 [95]). 
 

2.2.2 Stem Cells for VTE Applications 

MSCs have been the subject of intensive study for VTE [15]. Gong et al. [96] studied 

the differentiation of BM-MSCs into SMCs using a bioreactor system and 

successfully constructed a small-diameter TEVG. Wang et al. [97] used human 

adipose MSCs and PGA mesh, in incorporation of growth factors and a pulsatile 

bioreactor system, obtained the similar small-diameter TEVG expressing the SMCs 

phenotype. Compared to the traditional cell source-SMCs, MSCs possess several 

advantages for TEVG generation (Table 2-6). Interestingly, although MSCs are multi-

differentiated, lots of current studies utilised MSCs as a cell source instead of SMCs. 

This could be a reasonable trend as MSCs themselves share certain SMCs phenotype 

[87, 96]. Furthermore, MSCs are found to secrete growth factors (e.g. MCP-1) to 

recruit ECs from circulation system for endothelialisation [80]. 

 

In vivo animal studies using MSCs-seeded TEVG have provided encouraging results 

[15]. Hashi et al. [94] engineered a small-diameter TEVG using BM-MSCs and 

PLLA mats, and found that MSCs-seeded grafts exhibited a long-term patency, while 

scaffolds alone resulted in obvious platelet adhesion and thrombus formation. Zhang 
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et al. [98] engineered a three-layered tubular scaffold seeded with MSCs and 

implanted it into a dog model. The grafts exhibited a long-term patency (3 months) 

with confluent ECs on lumen. Zhao et al. [99] implanted the decellularised arterial 

scaffold with pre-differentiated MSCs seeding into a sheep model, and found that the 

grafts remained patency and antithrombotic over 5 months, while unseeded grafts 

failed in 2 weeks. 

 

Table 2-6: Advantages of using MSCs for vascular tissue regeneration as compared 
to SMCs 

Characteristics SMCs MSCs Ref. 

Accessibility Limited self-renew ability; 

Autologous; 

Over proliferation in 
dedifferentiated status à 
intimal hyperplasia  

Easy accessibility; 

Autologous and allogeneic cell; 

Self-renewable and high expansion 
potential 

[86] 

Phenotype Dedifferentiation à lose of 
the contractile apparatus 

Reproducible phenotype and 
stemness within 1-million-fold 
expansion; 

Lack of sufficient SMCs contractile 
markers 

[86] 

Immune 
Response 

Positive expression of MHC II 
and T cell co-stimulators à 
immune-rejection for 
allogeneic cells; 

Potential tumor formation 

Lack of MHC II and co-stimulator 
for T cells (CD 40, 80 and 86) à 
immune-privilege for allogeneic 
cells and differentiation; 

No tumor formation potential; 

Ameliorate tissue damage via a 
paracrine mechanism 

[15, 85, 
92, 93] 

 

Interestingly, Mirza et al. [81] used green fluorescence protein (GFP)-labeled MSCs 

and seeded them on a PU scaffold. Using a rat model, they found that MSCs-seeded 

group caused better endothelisation. Interestingly, they observed the co-expressed 

GFP and SMC markers in MSCs, supporting the hypothesis that MSCs can 

differentiate into SMCs in vivo, and be retained if they differentiated into SMCs 
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successfully. However, the MSCs-differentiated SMCs exhibited a slight difference in 

phenotype from mature SMCs, indicating that probably only a partial differentiation 

occurred for MSCs [85]. In the next section, the focus will be on how physiological 

environment to differentiate MSCs and what kinds of strategies could be performed 

potentially for TEVG biomimicry. 

 

2.2.3 MSCs Differentiation into SMCs 

MSCs to function as the cell source for TEVG are needed to differentiate into SMCs 

or ECs. Such immunophenotype differentiation towards vascular cells can be 

distinguished by the expression of identified biomarkers and functional assays [85]. 

Table 2-7 summarises the criteria used for MSCs differentiation identification.  

 

Table 2-7: Criteria for MSCs differentiation towards vascular cells 

Vascular Cells Performances Ref. 

SMCs Positive immunophenotype:  
Early-term marker: SM-α-actin, SM22; 
Middle-term: calponin; 
Late-term: SM-MHC, smoothelin 

[87, 100] 

ECs Positive immunophenotype: 
Platelet ECs adhesion molecular: CD31; 
Vascular endothelial (VE)-cadherin; 
Von Willibrand Factor (vWF); 

Functional assay: 
Tubular formation; 
Uptake of acetylated low-density lipoproteins 

[85] 

 

It is worth noting that smooth muscle (SM) alpha actin (SM-α-actin) and calponin can 

also be positively expressed in undifferentiated MSCs, while the late-term markers of 

smoothelin and SM myosin heavy chain (SM-MHC) can only be observed in the 

mature contractile SMCs [96, 100]. It should also note that MSCs, although there 

exists standard criteria for distinguishing the differentiation, could have slight 
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variation in the growth capability, gene expression and differentiated potential. For 

example, the MSCs from umbilical cord have been reported to have the longest and 

highest proliferated potential during in vitro expansion [101]. However, they could 

not differentiate towards an adipogenic lineage [102]. Such variations should be taken 

into consideration when MSCs were used for VTE applications. Differentiation of 

MSCs into vascular cells could be triggered by growth factors, mechanical stimuli and 

artificial scaffold matrix.  

 

Growth Factors. Growth factors are multifaceted in regulating MSCs fate. As shown 

in Table 2-8, the growth factors used for vascular cell differentiation include TGF-β1, 

BMP, PDGF, FGF and VEGF [85]. TGF-β1 is known to differentiate MSCs towards 

a SMCs-like phenotype, while PDGF and VEGF could differentiate MSCs following 

ECs pathways. An interesting thing is that these factors can also be released from 

SMCs, ECs and even MSCs themselves (e.g. PDGF, VEGF, MPC-1) [83], suggesting 

that vascular cells could communicate each other via a paracrine pathway. Besides the 

growth factors, biochemical factors such as all-trans retinoic acid have also been used 

to differentiate MSCs into SMCs [57, 103]. Interestingly, recent studies have 

observed that a combination of different growth/biochemical factors made MSCs 

differentiate into SMCs to be more effective than the single factor [57, 87]. However, 

these factors are generally derived from animals, expensive to use, and difficult to 

control the optimum concentration for effective differentiation [104]. The mechanism 

that MSCs differentiation triggered by these growth factors remained not well-known, 

and side effects have often occurred. For example, TGF-β1 and BMP4 could also 

promote MSCs differentiation into osteoblasts and adipocytes, leading to potential 

atherosclerosis during the vascular tissue remodeling [57]. Similarly, retinoic acid has 
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also been known as a powerful teratogen [104]. 

 

Table 2-8: Effects of biochemical factors on MSCs differentiation 

Biochemical 
Factors Cell Sources Key Results Ref. 

VEGF Human bone 
marrow MSCs 

Increased KDR and FLT-1 expression (2 % 
serum); 

Capillary-like structures 

[105] 

TGF-β1 Human embryonic 
MSCs 

Human bone 
marrow MSCs 

Increased SM-α-actin, calponin and SM-MHC 
expression: 
àTGFβR1/Alk5 pathway (0 % serum) 
à Notch signaling (10 % serum) 
à ERK/MAPK inhibition 

[106-
108] 

All-trans 
retinoic acid 

Rabbit & human 
bone marrow 
MSCs 

Increased myocardin, caldesmon, SM22 and SM-
MHC 

[57, 
103] 

 BMP4 Human adipose 
MSCs 

Increased SM-α-actin, SM22, calponin and SM-
MHC expression (TGF-β1, 1 % serum); 

Contractile property 

[87] 

 

Mechanical Stimulation. Mechanical stimuli are to biomimic the mechanical 

environment that vascular cells encounter. In native blood vessels, ECs within 

endothelium experience continuous fluid shear stress of 10-20 dynes/cm3 [109]. 

Meanwhile, both ECs on lumen and SMCs in tunica media are subjected to cyclic 

strain from pulsatile stress (5-30 % strain and 30-90 cycles/min [110]). Therefore, in 

vitro shear stress and strain models have been developed for understanding the 

mechanical influence on MSCs differentiation [85].  

 

Contrary results have been observed for the shear stress studies. One group exposed 

fibroblast-like stromal cells to shear flow, and found that cells could have enhanced 

expression of SMCs-specific markers [111]. In contract, the other study carried out by 

Wang et al. [112] observed that murine embryonic MSCs subjected to shear flow 
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differentiated towards ECs-like cells. However, studies have not examined the ECs or 

SMCs markers when the differentiation of MSCs into SMCs or ECs was argued, 

respectively. Therefore, the findings are not sufficient to claim that MSCs have gotten 

a full differentiation. One possible reason for the contrary observation might be that 

stimuli from flow shear stress are un-specific for MSCs differentiation. An interesting 

thing is that both studies have found that MSCs did align along a direction parallel to 

the flow. However, in native vessels, SMCs are perpendicular to the blood flow. 

Using flow shear stimuli to trigger circumferential alignment of SMCs remains a big 

challenge. 

 

The strain model can be uniaxial or equiaxial that involves cells cultured on an elastic 

substrate [85]. Kurpinski et al. [60] demonstrated that uniaxial strain could increase 

the calponin expression in MSCs, decline the cartilage matrix markers, and align 

MSCs being perpendicular to the strain axis, whereas equiaxial strain tended to 

decrease the SMCs makers' expression [85]. These exciting findings suggest that 

mechanical strain could be a suitable strategy for MSCs differentiation. However, 

both the uniaxial and equiaxial strains exist in native vessels. How MSCs response to 

the strains in vivo is still unknown. An important observation is that when uniaxial 

strain was applied parallel to a micropatterned substrate, MSCs exhibited enhanced 

SMCs markers' expression, while when uniaxial strain was perpendicular to the 

micropatterns, MSCs showed a decline expression of SMCs markers [60], indicating 

that geometric structures could influence MSCs differentiation. 

 

Artificial Scaffold Matrix. Scaffold matrix serves as a "niche" for MSCs, of which 

scaffold rigidity and surface geometric structures could influence MSCs behaviour. 
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Rigidity is known as a bulk property of vascular scaffolds and characterised by the 

Young's Modulus. The rigidity of native tissues from brain to bone varies within 

three-orders magnitude [85]. It has been hypothesised that soft scaffold matrix could 

mimic the brain and induce MSCs differentiation in a neurogenic pathway. A stiffer 

one mimics the muscle and differentiates MSCs following a myogenic pathway, and a 

rigid one mimics the bone and differentiates MSCs along an osteogenic pathway [15]. 

Park et al. [113] demonstrated that MSCs cultured on stiffer substrates expressed the 

higher myogenic SM-α-actin and calponin 1, but elevated the expression of 

chondrogenic marker of collagen-II and adipogenic marker of lipoprotein lipase on 

soft substrates. Moreover, stiffer substrates appeared to facilitate the stress filament 

formation via a Rho GTPase in-dependent pathway. However, the organisation of 

cells and stress filaments remains in a random manner, deviated from the ordered 

architecture of native vessels, while the recent study demonstrated that cellular 

alignment was important for muscle cells (e.g. cardiomyocyte) to realise the 

contractile function [114]. Geometric structures refer to the surface 

nano/micropatterns of VTE scaffolds. Such cues have shown to be promising 

potential in regulating cellular alignment and SMCs markers expression [28, 115]. 

 

2.3 Geometric Cues for Engineered BM 

On tunica media side of BM, SMCs organise into a circumferential alignment. 

Various strategies have been proposed for VTE to realise cell alignment, which can 

be divided into two categories: chemical cues (e.g. glial cell line-derived neurotrophic 

factor (GCNF) and fibronectin (Fn)) and physical cues such as the mechanical stimuli 

(e.g. cyclic strain [60], shear stress [116]), electrical cues [117] and topographical 

geometries. Among these strategies, geometric cues hold great potential for TEVG 
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applications because they have no requirement of external stimuli, and are more stable 

than chemical cues in regards to the surgical durability and degradation resistance. 

 

2.3.1 Fabrication of Anisotropic Geometries 

For anisotropic tissues (e.g. TEVG), the geometric cues used can typically be divided 

into two main categories: orientated fibers [118] and ridge/groove arrays [2]. Fibrous 

geometric cues possess an unique advantage of the high porosity, and can be 

generated from the adapted electrospinning and flow shear [118, 119], while the 

substrates with ridge/groove arrays have better mechanical properties, and are able to 

be fabricated from various methods such as lithography [104], soft lithography [120], 

direct laser writing [121] and using abrasives [122]. Table 2-9 summarises the 

strategies that are mostly used for the generation of anisotropic geometry cues for TE 

applications. 

 

Electrospinning. Electrospinning uses an adapted collector such as the two frames 

and the rotating disc or mandrel instead of the traditional flat one. On the traditional 

flat collector, electrospun fibers are often deposited as randomly orientated and 

nonwoven mats, due to the bending instability of the spinning jet [118]. Interestingly, 

with rotating of a disc, highly orientated fibers can be obtained [123]. Similarly, 

orientated fibers have been obtained by using a rotating mandrel [124]. 

Comparatively, electrospining using a disc is able to generate highly orientated fibers 

at a relatively smaller rotating speed, while electrospinning using a mandrel generally 

requires a speed larger than 1,000 rpm. Several reasons could contribute to the fiber 

orientation, which include the dramatic increase of field strength at the disc edge, 

uniaxial pulling from rotating as well as the air flow [118]. However, these two 
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methods are easy to induce discontinuous fibers due to the large pulling from rotating, 

and peeling is difficult. An alternative method using a collector consisting of two 

conductive frames separated by a void gap has also been demonstrated to align fibers 

effectively [125]. The underlying mechanism has been proposed that under 

electrostatic forces in the opposite directions, fibers between the two frames could be 

stretched to align themselves perpendicular to the edge of the gap [118]. Compared to 

the rotating disc or mandrel, this method facilitates the transfer of aligned fibers to 

other substrate and allows the stack of aligned fibers at different angles in alternative 

layers. However, the width of the gap is limited up to several centimeters [118, 125]. 

 

Orientated fibrous mats from electrospinning hold advantages of a high porosity and 

could be applicable for large scale of biomaterials. Limitations of such technologies 

include: (i) the use of chemical solvents, since the potential risk of residuals leads to 

problems with regard to the safety considerations [126], (ii) the use of a high voltage 

and complex setup, but a low efficiency of aligned fiber yield, (iii) the poor 

mechanical property that remains a big concern on the applications of electrospinning 

fibers for mechano-active tissue regeneration (e.g. TEVG with a burst strength robust 

enough) [27, 127].  

 

Flow Shear. Orientated fibers from flow shear are using a hydrodynamic flow. A 

study carried out by Lanfer et al. [128] firstly reported this method with a setup of the 

microfluidic system, substrate and collagen solution. Flow shear allows the 

preparation of aligned collagen fibers with a variable orientation, density and 

morphologies. A mechanism behind the fiber orientation involves the combination of 

collagen fibrillogenesis and flow shear force. If one end of the fibril attaches to the 
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substrate surface, the streaming fluid can align the remaining part in a position of low 

hydrodynamic resistance [128]. Compared to electronspinning, this technique is easier 

and safer for operation, and has a potential to be applicable for a large scale 

production. However, this method remains being limited for TE applications due to 

problems such as too small area of fibrous mats (limited to several square 

millimeters), in-homogenous morphologies and low alignment efficiency. In addition, 

how to peel fibers from substrates for further processing steps and applications is also 

a big problem yet to be solved. 

 

Lithography. Lithographic processing involves a wide range of techniques that allow 

specific well-defined geometric structures to be realised for the copy of biological 

patterns (e.g. cells, ECM fibers and proteins) [129]. Such methods utilise UV, X-ray, 

and the beams of electrons and ions, and share an underlying principle to transfer the 

patterns from a master. The procedures include coating of surface, exposure to 

irradiation, development and washing. The mask used can be a negative or positive 

resist that occurs cross-links or deteriorates after the action of exposure (Figure 2-4). 

Direct lithography allows the precise control of structure parameters (e.g. groove 

width and depth) and is capable of fabricating various designed geometries (Table 2-

9). However, it requires a complementary set of patterning tools and processes, and 

the use of toxic chemical solvents for the developmental procedures [121, 126, 129]. 

Furthermore, direct lithography is compatible with a limited scale of materials that 

should be photo-resistant such as silicon [130] and PUA [104], while these materials 

often have little value for the translational research as they are not biodegradable 

[131]. 
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Figure 2-4: Schematic diagram illustrating the positive and negative resist for lithography. (Adapted 
from Roach et al. 2010 [129]) 
 

Soft Lithography. Soft lithography is the most common and widely used method for 

nano/micropatterns via self-assembly and replica modeling, with feature sizes ranging 

from nano to hundreds of micrometers [132]. During the process, an elastomeric 

stamp of patterned relief structures on its surface is applied to create the patterned 

structures (Table 2-9). Compared to the direct lithography, soft lithography extends 

the applicability of lithography to many biodegradable polymers such as collagen [3], 

PLA [117], PCL [132], poly(methyl methacrylate) (PMMA) [133] and poly(lactic-co-

glycolic acid) (PLGA) [134]). Moreover, it allows fabrication of structures in 

different shapes. However, soft lithography needs a pre-fabricated model and has an 

additional procedure to peel substrate from the model, which often results in structural 

defects for the large-scale feature generation [126, 132]. Furthermore, geometric cues 

generated from this technique require the use of chemical solvents, and often lack 

porosity that fibrous mats have. 

 

Direct Laser Writing. Direct laser writing offers an excellent strategy for TE to 

create geometric cues at precise structure parameter control. Compared to 

electronspinning and soft lithography, this technique avoids the involvement of toxic 

solvents, and fabricates structures in a rapid, non-contact and single-step manner 

[121]. So far, direct laser writing has been developed for biomaterials such as PCL 
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[135], PLC [121] and poly(D-lacticacid) (PDLA) [132]. The underlying mechanism, 

applications and unmet problems in regard of direct laser writing for biomedical 

applications will be reviewed in Section 2.4 in detail. 

 

Abrasive. Another method for the generation of orientated ridge/groove arrays is 

using abrasives, with the first report performed by Shimizu et al. [122]. This 

technique allows fabrication in a simple and low-cost manner. Firstly, the 

micropatterns are created on an iron block through grinding on sandpaper in one 

direction, which is then used as a model to transfer geometries on PDMS substrate. 

Structural parameters can be variable if different sandpapers were used. However, 

topographical features generated from this method result in destruction of substrates 

accompanying with non-clean features. Furthermore, using abrasives probably 

requires the substrates to be more rigid with a large thickness, and might not be 

suitable for the thin film surface patterning that is extensively applied for VTE [22]. 

 

Besides the orientated fibers and ridge/groove arrays, topographical features 

generated from top-down freezing and self-forming ion beam procedures have also 

been reported as cues to regulate cellular behaviour [136, 137]. However, to-date no 

ideal geometric cues to biomimic the BM have been proposed. It has become an 

urgent need to develop novel strategies for creating geometric cues in a reproducible, 

simple, solvent-free and homogeneous manner for facilitating the "off-the-shelf" 

TEVG. Moreover, the strategies should also allow geometric cues to be compatible 

with sufficient porosity and ease of construction for 3D tubular scaffolds. 
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Table 2-9: Technologies for the fabrication of anisotropic topographical geometry cues 

Strategies Setup* Examples* Advantages Main Limitations Ref. 

Electrospinning (i) Disk 
Rotating 

 

P(LLA-CL) fibers 

 

Highly orientated fibers with high 
porosity 

Being applicable for various 
polymers 

Potential toxic residue due to the 
use of solvent; 

Low efficiency with a complex 
setup; 

Poor mechanical properties; 

Safety concern for the high 
voltage and rotating speed 

[123] 

(ii) Mandrel 
Rotating 

 

PCL fibers 

 

[124] 

(iii) Two 
Frames 

 

Carbon fibers 

 

[118] 

Lithography (i) Direct 
Lithography 

 

PUA arrays 

 

Precise control of parameters; 

Various geometries 

Cumbersome set of patterning 
tools and procedures; 

Toxic solvent use; 

Limited applicable materials 

[104] 

(ii) Soft 
Lithography 

 

DMA arrays 

 

Various shapes with proper 
tunable parameters; 

Increased scale for applicability 

Cumbersome set of patterning 
tools and procedures; 

Toxic solvent use 

[120] 
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Continued 

Direct Laser Writing 

 

P(LLA-CL) arrays 

 

Precise control of parameters; 

Various geometries 

High cost with specific technique 
require; 

[121] 

Flow Shear 

 

Collagen fibers 

 

Easy and safe operation Low efficiency of alignment; 

Use of solvent;  

Difficult for a large scale 

[119] 

Abrasive 

 

PDMS arrays 

 

Highly orientated features Limited to stiff materials [122] 

Top-Down Freezing Procedure 

 

Collagen walls 

 

High porosity Specific technique require [136] 

Self-Forming Ion Beam 
Procedure Under patent 

Silicon waves 

 

Disconnected and orientated 
waves 

Poor performance on cell 
alignment 

[137] 

*Figures were adapted in sequence from Xu et al. 2004; Baker et al. 2008; Li et al. 2004; Lee et al. 2012; Sun et al. 2010; Yeong et al. 2010; Lanfer et al. 2010; Shimizu et 
al. 2009; Bozkurt et al. 2009; and Tocce et al. 2010, respectively. 

Abbreviations: P(LLA-CL): copolymer of PLA and PCL; PUA: polyurethane acrylate; DMA: dimethacrylate; and PDMS: polydimethylsiloxane. 

 



Chapter 2 Literature Review 

	   -35- 

2.3.2 Vascular Cell Responses to Geometric Cues 

Cells can recognise the anisotropy of engineered architecture from fibers and 

ridge/groove arrays in either nano or micron-scales. Compared to the isotropic 

morphologies, vascular cells such as FBs [138, 139], SMCs [28, 123, 140], ECs [134] 

and MSCs [43, 113, 141] on the orientated fibers and ridge/groove arrays have 

revealed a robust capability of self-alignment. The cellular alignment in TE has also 

been observed for cardiomyocytes [142], C2C12 myoblasts [122], schwann cells 

[143], osteoblasts [144, 145], liver carcinoma cells [146]. 

 

2.3.2.1 Cellular Alignment and Elongation 

Cellular response to the topographical features is intuitive, and has been used for cell 

behaviour control since 1964 [147]. It is generally accepted that cells elongate and 

align towards the anisotropic features via a mechanism known as "contact guidance". 

During the dynamic process, focal adhesions and actin filaments are confined on 

intervening ridges, leading to orientation of the long axe of focal adhesions along the 

anisotropic features [142, 148]. The recent study using a ridge/groove gradient further 

explores the underlying mechanisms, and suggests that the orientation of focal 

adhesion is because of the anisotropic rigidity and deformation resistance of 

ridge/groove arrays that stabilise the focal adhesions enriched on ridges for a final co-

orientation with ridges [138]. On the other hand, promotion of cell marginal 

expansion in the ridge direction in incorporation of the inhibition of cell lateral 

extension across grooves, might also contribute to the elongated cell morphology 

[149]. This mechanism can be evidenced by the rapid retraction of protrusion along 

the perpendicular direction of ridges and invading in the parallel direction [150]. 

 



Chapter 2 Literature Review 

	   -36- 

Orientated Ridge/Groove Arrays. The scale of ridge/groove arrays is crucial for 

eliciting cell responses. Recent studies have shown that ridge depth can dictate the 

extend to which cells will response to a given lateral dimension [137, 145]. Human 

corneal epithelial cells (HCECs) do not preferentially align to the underlying arrays 

when the ridge depth is less than 150 nm [151]. While when the ridge depth increases 

from 150 to 800 nm, enhanced cell alignment and elongation have been observed 

[137, 145, 151]. Interestingly, the minimal ridge depth reported for osteoblasts can be 

as small as 33 nm [144, 145]. This indicats that cells might have specific requirements 

on ridge depth. Such phenomena can be reasonable as cells from different tissues are 

surrounding with ECM at different scales (e.g. sub-micron to micron-scale ECM for 

HCECs [137] and nonometric ECM for bone [145]) 

 

Cells are known to align less on ridge/groove arrays with nanodimensions and more 

on features with micron dimensions [144]. The increase in groove width is found to 

increase the cellular alignment and elongation for HCECs [137]. Cells on the features 

with a width of 4 µm have much higher alignment efficiency as compared to the 

nanoscale geometries. However, too big sizes especially for a groove width of >50 

µm, often result in delayed and lower alignment, and cellular confluence is required 

before alignment occurs [126]. As early as 1970s, Ohara and Buck [145, 148] have 

hypothesised that cells cannot align to geometric features if focal adhesions fail to 

sense the arrays with an excessive pitch. The delayed alignment of cells are probably 

because that if the groove width were larger than the cell dimensions, the focal 

adhesions will sense the underlying substrates as isotropic rigidity for the cells, 

resulting in cell morphologies as that observed on flat surfaces [138]. 
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Beside the ridge depth and width, the presence of crossing ridges can also affect 

cellular alignment towards the ridges [139]. Too small an aspect ratio between the 

parallel and perpendicular directions could result in significant reduced cell 

alignment. 

 

Orientated Fibrous Mats. Anisotropic fibrous mats are well-studied for neural 

regeneration to provide spatial guidance for the neurite extension following the fiber 

directions [147]. However, in vivo study showed that neurite preferred to grow 

perpendicularly in the direction of fiber alignment at the implant-brain interface 

[152]. A "Janus feature" is observed for dorsal root ganglia (DRG) cultured at border 

between the random and aligned fibers, which indicates a radial organisation of 

neurite on the random fiber side, but orientated growth at the side with aligned fibers 

[131]. Interestingly, DRG on an double-layered mats are able to sense both the 

anisotropy of fiber layers instead of the top-layer only [131]. A further study suggests 

the neurite can align following the crossing fibers, while DRG remain in the mats 

direction [143]. Orientated fibers are also used to biomimic the ECM of tunica media, 

and realise SMCs to align into a spindle-like contractile phenotype [123]. 

 

Other Factors. Mechanical stimuli (e.g. cyclic strain) impacted on nanopatterns 

could cause cellular reorientation in a perpendicular direction to ridges [144], 

suggesting that cells probably have preferential response to the mechanical stimuli. 

Furthermore, cell seeding density and serum of medium can also influence cellular 

alignment to the anisotropic features. Higher seeding density can result in better initial 

cell alignment [43, 114], while the lack of serum dramatically inhibits HCECs 

alignment, compared to the culture in normal medium [153].  
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2.3.2.2 Cellular Migration 

Cell migration plays a critical role in a variety of physiological and pathological 

phenomena [139]. The migration of FBs, SMCs, ECs and MSCs can contribute to 

vascular wound healing and tissue regeneration [80]. It has been known that 

compared to continuous surfaces, FBs on orientated ridge/groove arrays have 

considerable enhancement at the migration along ridge direction, [138]. The presence 

of crossing ridges can further increase cell mobility, particularly for the grids that 

have a smaller size than the cells [139]. Similarly, ECs have also been found to 

migrate preferentially along the long axis of ridges [154]. Moreover, on a 

ridge/groove gradient (1-9.1 µm in groove width), FBs exhibited a migration speed 

dependent on the ridge density, with the fastest speed observed on an intermediate 

density of ridge patterns, but lower speeds on the denser or sparse ridge patterns 

[138]. In addition, lower ridge depth tends to fast cellular migration along the ridges 

[139]. All these studies suggest that vascular scaffolds with anisotropic ridge/groove 

arrays could be able to guide cell migration during vascular remodeling. 

 

2.3.2.3 Cellular Adhesion and Proliferation 

Cellular adhesion and proliferation are other vital functions that may affect the 

development of TEVG. Xu et al. [123] demonstrated that SMCs grew on the aligned 

fibers of an average diameter of 500 nm achieved increased rates of adhesion and 

proliferation. In contrast, Thakar et al. [61, 155] cultured SMCs on orientated 

ridge/groove arrays and observed reduced SMCs proliferation and DNA synthesis (10 

and 2.8 µm in groove width and depth, respectively). ECs from rat arteries have been 

shown to enhance the cell proliferation on titanium nano/micropatterns [156], while 
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cells from human umbilical veins tend to response as decreased proliferation to small 

ridge/groove arrays (e.g. 400 and 80 nm pitch) [154]. Besides these, C2C12 

myoblasts exhibit similar proliferation on the flat and micropatterned surfaces [122]. 

These observations suggest that cell proliferation on geometric cues is heterogeneous, 

depending on the substrate and cell source. Interestingly, HCECs on the nanopatterns 

(e.g. 400 nm pitch) are observed with enhanced adhesion strength against flow shear 

[130]. Such function of ridge/groove arrays should benefit the recruited ECs adhesion 

for stable endothelialisation.  

 

2.3.2.4 Cellular Differentiation 

To increase the possibility of in vivo adaptation, vascular grafts are expected to be 

capable of maintaining an appropriate phenotype of cells as in native healthy blood 

vessels [157]. It has become clear that topographical geometry cues are crucial in 

regulating the cell shape and function for VTE applications. Mechanism behind these 

regulations is known as a mechano-transduction pathway that could be direct and/or 

indirect [144]. Direct mechanotransduction relies on the links between a cell shape 

and nucleus through the cytoskeleton and nuclear lamins. Cellular elongation 

orientates cytoskeleton, up-regulates and move nuclear lamins onto the nucleus 

periphery, and deforms nucleus shapes, resulting in genomic adaptation [158]. 

Indirect mechanotransduction involves chemical signaling cascades that can be 

initiated by focal adhesion-associated proteins [159], and probably includes the 

integrin-mediated Rho GTPase and the FAK signaling network [160]. 

 

SMCs. SMCs of current TEVG are easy to lose their contractile apparatus and shift 

into a synthetic phenotype, with excessive proliferation, ECM secretion, and 
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migration into the intimal regions that lead to intimal hyperplasia [15, 29]. These 

SMCs typically exhibit the "hill and valley" morphologies, well spread, and random 

organisation [56]. Furthermore, the recent opinion suggests that synthetic phenotype 

of SMCs dominates with increasing passage number in culture, although the status is 

reversible both in vitro and in vivo [28]. Thakar et al. [61] suggested that 

micropatterned topographies could be used for SMCs regulation. In a recent study, 

they observed that micropatterned geometric cues could regulate SMCs as what TGF-

β1 does [155]. Williams et al. [28] confirmed the findings. In the study, micropatterns 

were found to be as effective as TGF-β1 on up-regulating the expression of SM-α-

actin and SM-MHC in the low passage SMCs. However, the regulation seems to be 

cell passage dependent, as the enhancement has not been observed for the large 

passage SMCs. Another study carried out by Cao et al. [115] cultured primary SMCs 

on microchannel scaffolds and observed similar effects on up-regulated SMCs 

contractile markers' expression including the SM-α-actin, calponin and SM-MHC. 

This study further indicated that the total amount of deposited elastin and collagen 

could be lower, when SMCs got aligned and elongated. These observations suggest 

that topographical geometric cues are capable of regulating the expression of SMCs 

contractile genes, although SMCs exhibit inherent limitations for TEVG construction. 

 

MSCs. The effects of topographical geometric cues on MSCs differentiation are 

complex. Xie et al. [161] cultured human embryonic MSCs on the random and 

aligned fibrous mats, and found that after retinoic treatment, MSCs on the aligned 

fibers achieved enhanced differentiation into the neural lineage with guided neurite 

outgrowth. Similar observations are found for MSCs cultured on nanoscale 

ridge/groove arrays, even without drug treatment [104]. These findings suggest that 
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topographical geometries are capable of inducing neural gene expression in MSCs, 

regardless if the substrate is fibrous or solid bulk. Furthermore, the study represents a 

great advantage in the protocols for MSCs differentiation because the authors avoided 

the use of growth factors. However, differentiated direction of MSCs induced by 

topographical geometric cues appears to be dependent on the sources of stem cells. 

Dang et al. [141] demonstrated that MSCs from bone marrow on the aligned fibrous 

mats could obtain the induced myogenic differentiation, and Li et al. [162] further 

suggested that MSCs on the orientated ridge/groove arrays could selectively 

differentiate towards the myogenic lineages, with up-regulated myogenic gene 

expression but reduced expression in the osteogenic and neural genes. Similar 

observations were found on the aligned fibrous mats [163]. However, these studies 

have not performed the investigation on the contractile SMCs markers' expression, 

although MSCs have shown potential to differentiate into SMCs for VTE 

applications. 

 

Clearly, the regulation of topographical geometric cues is profound on the cellular 

function differentiation. The expression of contractile SMCs markers could be up-

regulated through using geometric cues. However, such influence has not been 

studied for MSCs. On the other hand, MSCs are promising for differentiation into 

SMCs, and on the orientated ridge/groove arrays, they can self-align into the 

elongated shapes, which have been known as an indicator of SMCs differentiation 

[126, 164]. Therefore, it should become an interest for VTE applications if 

topographical geometries alone could promote the SMCs contractile markers' 

expression in MSCs. 
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2.3.3 Current Applications of Geometric Cues for TEVG 

The applications of topographical geometric cues for VTE are currently on the bench-

top analysis [2, 165]. Zorlutuna et al. [2, 3] developed a vascular scaffold with 

nanopatterns on both the inner and outer sides, and further demonstrated increased 

ultimate tensile stress of the grafts through SMCs alignment, with a Young's Modulus 

in the range of native arteries and veins. Recently, Jana et al. [165] using a novel 

electrospinning setup successfully obtained 3D tubular scaffolds with 

circumferentially aligned fibers and SMCs. These achievements reveal promising 

potential of incorporating the geometric cues for TEVG design. Interestingly, a recent 

study also suggested that geometric cues could influence the contractile function of 

cell/material constructs through affecting the organisation of actin cytoskeleton and 

focal adhesion complexes [114]. Besides those, geometric cues have effects on the 

orientated remodeling of the underlying ECM [140], leading to the increased 

mechanical properties of the aligned cell/material constructs [166]. Furthermore, the 

orientated ECM have been shown to allow continuous cell alignment even when 

substrates were removed [141] and support 3D cellular alignment construction 

according to the underlying ECM organisation via a matrix metalloproteinases-

mediated (MMPs) pathway [146].  

 

2.3.4 Stability and Degradation Behaviour of Geometric Cues 

While topographical geometries are promising for VTE scaffolds to biomimic the BM 

anisotropic architecture for compliance matching through potential cell alignment and 

functional differentiation, design of an ideal VTE scaffold should consider the 

degradation behaviour of geometric structures because scaffold's properties will be 

deteriorated after being implanted into the in vivo circulation system which filled with 
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various erosive biochemical agents, cells and hemodynamic forces. The degradation 

properties are therefore of crucial importance in the design of biomaterials for VTE 

applications. 

 

2.3.4.1 Factors Influencing Degradation 

Biodegradability refers to the degradability of an implantable polymer giving 

fragments, which can move away from the site through fluid transfer, but not 

necessarily from the body [167]. However, bioresorbability is total elimination of the 

initial foreign materials either through filtration or metabolisation of the degraded bio-

products with no residual side effects [167]. Biopolymers such as silks degrade in the 

presence of enzymes (e.g. MMPs), while the synthetic polymers mainly follow a 

hydrolytic pathway [168]. PCL is one bioresorbable synthetic polymer [17]. Similar 

to PLA, PGA and PLGA, PCL degrades by the random hydrolysis of ester bonds. 

However, PCL has clear advantages over other synthetic biomaterials in several 

aspects of degradation: (i) no side effects of by-products, (ii) a wide range of 

tailorable degradation rates, and (iii) the unique mechanical performances to 

withstand hemodynamic forces [17, 169]. 

 

Degradation studies can be performed both in vivo and in vitro. While evaluation 

from the in vivo studies provide closer physiological environmen biomimicry, in vitro 

degradation for synthetic polymers is approximated to in vivo one, and the 

information can be used as an initial estimate of the degradation rate and other 

corresponding properties [170]. Moreover, in vitro degradation can allow the 

accomplished degradation profile in an acceptable timeframe, particularly for the 

biomaterials with slow degradation. Importantly, in vitro degradation allows 
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environmental parameters to be controlled, while in vivo studies are often affected by 

the animal species and different implant positions [168]. Typical in vitro model 

consists of soaking the biomaterials in an aqueous solution at 37 oC and similar pH to 

the body fluids [170]. Accelerated models can be adapted from temperature at an 

elevated one (e.g. 80 oC for PCL [171]) or the pH to be a lower and higher one (e.g. 

5M NaOH for PCL [172]). 

 

PCL has been known to undergo a two-stage degradation progress [17]: (i) non-

enzymatic hydrolytic cleavage of ester groups, and (ii) intracellular metabolisation via 

the citric acid cycle. The hydrolytic process can be divided into three main steps [17, 

170, 173]: (i) diffusion of medium into bulk polymer, which is strongly affected by 

the surface hydrophilicity, pore size and porosity, and swelling effects; (ii) polymer 

degradation to generate soluble cyclic oligomers and monomers; and (iii) weight loss 

via the diffusion of fragments. Table 2-10 summarises the main influence factors for 

the hydrolytic process, including degradation environment, materials properties and 

scaffold characteristics. It is worth noting that scaffold dimension and pore/porosity 

play an important role in determining the degradation manner. Scaffolds with a large 

wall thickness and small porosity could result in the accumulation of carboxyl end 

groups, lower the pH value, and lead to autocatalysis for a rapid degradation [170]. 

The underlying mechanism is that the diffusion of products is lower than the polymer 

degradation [173]. Such degradation behaviour has been known as "bulk erosion" 

whereas when diffusion is faster than polymer degradation, "surface erosion" can 

occur. It should also be noted that in vitro enzymatic degradation could result in a 

faster mass loss (e.g. lipase [174, 175]). However, such enzyme has not been found in 

the human body [176]. Interestingly, the presence of cells accelerates PCL 
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degradation rates [177], which probably explained the reason of rapid degradation in 

vivo than in vitro. 
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Table 2-10: Factors influencing TE scaffold degradation 

Influence Factors Typical Examples Ref. 

Environment (i) Enzymes PCL particles: PBS < lipase, with changed degradation mechanism [174, 175] 

(ii) Bacteria Faster degradation that preferred in amorphous area via a chain scission mechanism [178] 

(iii) Cells PCL degradation rate: PBS < DMEM < DMEM + fibroblast [177] 

(iv) In vivo PLGA (50:50) and PCL fibers: in vitro < in vivo [179, 180] 

Molecules (i) Molecular structure In vitro PBS buffer: star-shaped and network PCL degraded faster than linear one [172, 173] 

In vitro enzyme: network PCL degraded slower than the linear one in lipase [175] 

(ii) Composition In vivo PCL/collagen VTE scaffolds: better consistence of properties than PCL fibers alone; 

Unchanged degradability for PCL/PEO as compared to PCL alone, due to phase change; 

Increased PCL degradation by CaP 

[171, 179, 
181, 182] 

(iii) Modification UV treatment of PCL increased the degradation with changed rate profile; 

NaOH treated PCL enhanced the degradation in enzymes 

[178, 183] 

Scaffolds (i) Dimension Bulk erosion mostly for thick materials and surface one for thin materials [170] 

(ii) Surface/volume ratio Higher surface area ratio, faster degradation [184] 

(iii) Pore size and porosity In vitro and in vivo: larger surface/internal pore sizes and porosity increased the degradation [185] 

Abbreviations: PCL: Poly(ε-caprolactone); PLGA: poly(d,l-lactic-co-glycolic acid); PEO: poly(ethylene oxide); PBS: phosphate buffered saline; DMEM: dulbecco’s 
modified Eagle’s medium 
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2.3.4.2 Degradation and TEVG Properties 

The effects of degradation on TE scaffold properties are generally described using the 

changes of molecular weight, polydispersity, by-product release, medium pH changes, 

weight loss, dimension changes, and mechanical loss [170]. Wu and Ding [186] 

performed an in vitro study on the degradation of PLGA 3D porous scaffolds (Table 

2-11). For the first time, they suggested the three stages for the changes of scaffold 

properties. Interestingly, PLGA scaffolds during the first 10 weeks exhibited a 

consistent structural integrity and unchanged mechanical properties, but reduced 

relative number (Mn/Mn0) and viscosity (Mv/Mv0) of average molecular weight. The 

next stage corresponded to the weight loss, structural deformation and mechanical 

deterioration, and the third stage referred to the scaffold disruption. To closer mimic 

the vascular environment, Cao et al. [185] designed a flow system for studying the in 

vitro degradation of PLGA scaffolds under hydromechanics. They found that the 

surface pore sizes were crucial for scaffold function changes (Table 2-10). However, 

they did not compare scaffold degradation in static and fluid flow environments. 

Another VTE-related work by Theiler et al. [173] studied the degradation of PCL 

micropatterns. Although their interest focused on the effects of molecular structure on 

PCL degradation rate, the results showed that micropatterns were completely removed 

at a very small mass loss (<15 %), indicating geometric failure at very early of 

degradation. One interesting work performed by Sung et al. [187] linked the scaffold 

degradation to cell response and further in vivo performances. The key findings of (i) 

faster degradation resulted in poorer cell viability; and (ii) PCL facilitated proper 

inflammatory and angiogenesis better than PLGA were probably because of the 

autocatalysis-induced acidification. 
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The performances of VTE scaffolds subjected to the in vivo degradation have been 

studied in several animal models (Table 2-11). Jeong et al. [188] implanted PLCL 

scaffolds using a nude mice subcutaneous dorsum model, and found that the PLCL 

scaffolds had slow degradation with an excellent tissue compliance with the SMCs by 

investing the SMCs makers' expression. Pektok et al. [176] compared the PCL and 

expanded polytetrafluoroethylene (ePTFE) scaffolds. They found that PCL grafts 

degraded slowly, with no stenosis and faster endothelialization, extracellular matrix 

formation and neoangiogenesis than the undegradable ePTFE grafts. Moreover, 

macrophages and fibroblasts presented with PCL grafts indicating inflammatory 

occurred. These studies clearly suggested that PCL scaffolds were promising for VTE 

applications. A slow degradation of VTE scaffold with proper inflammatory could 

facilitate the vascular neotissue remodeling [189]. Such proposal could be evidenced 

by the recent study that compared the different degradation rates of scaffolds for heat 

repairmen [190]. They concluded that degradation rate influenced the functional 

benefits of patch replacement, and a moderately slow degrading provided improved 

outcomes. 

 

On the aspects of degradation, several characteristics have been proposed for an idea 

TEVG scaffold: (i) degradation products should be biocompatible, with proper 

inflammatory for cellular recruitment, ECM deposition and neoangiogenesis [176, 

191]; (ii) degradation rate should be comparable to the neotissue growth [191]; (iii) 

dynamical compliance of mechanical properties [17]; (iv) sufficient porosity, pore 

size and interconnectivity to avoid autocatalysis for cell ingrowth, requirements of 

oxygen, nutrients and waste removal and cell-cell communication [187, 192]; (v) 
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stability-enhanced geometric cues for guiding cell and ECM reorganisation during 

remolding. 
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Table 2-11: The influences of degradation on TE scaffold properties 

Degradation Models Key Performances Ref. 

In vitro PBS, PH7.4, 37 oC; 

3D PLGA porous scaffolds 

(i) stage I: constant structural integrity and mechanical property; reduced Mn/Mn0 and Mv/Mv0; 

(ii) stage II: slight structural change; reduced E/E0; weight loss; 

(iii) stage III: significant weight loss to complete solution 

[170, 186, 
193] 

TEVG 

in vivo 

Nude mice subcutaneous dorsum; 

PLCL pre-seeded with SMCs 

(i) Slow degradation with ~81 % mass loss after 15 wk; 

(ii) Rapid Mn loss: ~54 % retention at 3rd wk and ~23 % at 15 wk; increased Mw/Mn for chain scission; 

(iii) Caprolactone degraded faster than lactide 

[188] 

Sprague–Dawley rats subcutaneous 
pockets; 

Slower degradation: more neovascularization and thicker fibrous capsule (using a PLLA/PGA porous film) [189] 

Rat abdominal aorta; 

PCL fibers 

(i) Gradual degradation with ~20 % Mw loss and ~22 % Mn loss up to 24 wk; 

(ii) Degradation triggered by cell infiltrates: macrophages, fibroblasts and new capillaries (<12 wk) and 
giant cell at outside (just after implanation) 

[176] 

Rabbit aortoiliac bypass; 

PCL/collagen fibrous scaffold 

Reduced but still comparable biomechanical strength to native artery  [169] 

Porcine coronary artery; 

Commercialized PLLA scaffolds 
coated with PDLLA 

Complete bioresorption with gradually reduced molecular weight and no significant inflammatory up to 3 
years  

[194] 

Abbreviations: PLGA: poly(d,l-lactide-co-glycolide); PLCL: poly(l-lactide-co-ε-caprolactone); PCL: Poly(ε-caprolactone); PLLA:  poly-L-lactide; PDLLA: poly-d, l-lactide. 
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2.4 Porous Patterns for Engineered BM 

Vascular BM serves critical signaling roles for vascular cells, and the fibrous 

architectures are organised with circumferential alignment and high porosity [9]. 

While many techniques allow the fabrication of scaffolds with anisotropic geometric 

cues for organised cell alignment as in native tunica media, less of them 

simultaneously provide the interconnected porous structures as what present on BM. 

It has been generally accepted that 3D TE scaffolds should have sufficient pores, 

porosity and interconnectivity for the requirements of oxygen, nutrients, and waste 

removal [192]. Artificial tissue without pores could have a maximum thickness of 

~150-200 µm for gas exchange [195]. Secondly, TEVG scaffolds, if there were no or 

too small pores, would result in bad cellular infiltration, and slower transmural (out-

to-lumen or lumen-to-out) and anastomotic (limited to <1 cm [196]) tissue ingrowth 

(e.g. only ~600 µm thickness of cell ingrowth for the aligned PCL fibrous mats for 12 

weeks in vivo [166]) [197, 198]. Moreover, presence of the pores can increase 

elasticity and reduce compliance mismatching [198]. In the coming section, methods 

for the pore incorporation into scaffolds will be reviewed, with an aim to create the 

engineered BM with anisotropic geometric cues and interconnected pores 

simultaneously. 

 

2.4.1 Techniques for Pore Incorporation 

Current techniques for the incorporation of pores into TE scaffolds include: (i) 

electrospinning, (ii) leaching, (iii) phase separation, (iv) direct/soft lithography, and 

(v) direct laser writing. Table 2-12 summarises the techniques, the resulted 

morphologies, and their benefits and limitations.  
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Electrospinning. Procedures for electrospinning and lithography have been reviewed 

in Section 2.3.1. It is worth noting that although electrospinning allows simultaneous 

generation of the aligned fibers and interconnected pores, such porous mats have 

inherent limitations for the in vivo application. The smaller rotating speed lowers the 

fiber alignment, while the higher rotating speed, although it allows highly aligned 

fibers, results in significant fiber packing with reduced pore size and inhibited 

cell/tissue ingrowth [118, 124]. Recently, Baker et al. [124] utilising a selective 

removal of sacrificial fibers (e.g. PEO) offset the packing effect and achieved highly 

aligned fibers with a large porosity. Apart from the great advantages achieved, the 

high porous aligned fiber mats are far away for VTE application due to the poor 

mechanical properties and significant dimensional deformation when they are 

contacted with liquid.  

 

Lithography and Phase Separation. The direct and soft lithography for pore 

generation hold a great advantage in the precise pore size and position control. Such 

techniques have achieved the application for 3D tissue construction in vitro and 

exhibited robust capability of cellular infiltration [199, 200]. However, it seems 

difficult for such methods to integrate the orientated ridge/groove arrays and pore 

patterns together. Being similar to lithography, phase separation has also met 

problems to incorporate anisotropic geometries on scaffold surfaces although it allows 

excellent pore generation in 3D scaffolds [201]. 

 

Leaching. To create anisotropic geometry cues and pores simultaneously, one 

promising method is leaching. Using this technique, Sarkar et al. [40], Papenburg et 
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al. [62], and Yucel et al. [202] reported the substrates with micropatterned structures 

and interconnected porosity. The principle can be divided into two parts: (i) 

biodegradable polymers (e.g. PLGA, PMMA) solution mixed with the porogens for 

pore generation, and (ii) casting of polymer/porogen solution into a 

nano/micropatterned model for anisotropic geometries' generation. The procedures 

are similar to those of soft lithography, with a combination of leaching and soft 

lithography. The porogens used can be salt [186], sugar [40] and/or water-soluble 

polymers such as PEO [124] and PEG [202], and the pore size and porosity can be 

varied by controlling the size and concentration of porogens [198]. Although the 

porous micropatterned substrates have been demonstrated to allow proper nutrient 

diffusion and cell alignment [40, 62], several problems remain not yet to be resolved, 

and limit the VTE applications. Firstly, although the pores could be interconnected, 

they are difficult to allow cell migration across the scaffolds for vascular neotissue 

regeneration as well as direct cell-cell interaction. Secondly, while the precise control 

of pore size is important, the pore size generated from leaching is not homogeneous, 

As required, the pore size should be sufficient for cell ingrowth, yet small enough to 

prevent excessive blood leakage [198]. Thirdly, the pore position generated from 

leaching seems difficult to be controlled. Fourth, while the large pore size and 

porosity would give better interconnectivity and avoid the autocatalytic erosion [187], 

they have been observed to induce poor durability [197] and significant reduction in 

cell alignment [40]. 

 

Direct Laser Writing. Recently, more attention has been attracted to a newly 

emerging technique of direct laser writing for TE. Tiaw et al. [135] reported the use 

of femtosecond and excimer lasers for the direct drilling of biodegradable polymers 
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(e.g. PCL). At the same time, Aguilar et al. [203] reported the quite similar findings 

and studied the molecule structural changes. Both studies confirmed that direct laser 

writing could be an excellent technique for micropatterning the biodegradable 

polymers without significant change of bulk properties. Based on the above findings, 

Yeong et al. [121] applied the Ti-sapphire femtosecond laser wrote orientated 

ridge/groove arrays on PLC films, and achieved highly aligned cell organisation when 

cell were seeded. The major advantages of direct laser writing compared to other 

techniques for anisotropic geometric cues' generation are described in Section 2.3.1. 

For pore generation, Tiaw et al. [135, 204] reported the use of Ti:Sapphire doped 

crystal femtosecond, KrF excimer laser and diode-pumped solid state Nd:YAG laser 

for drilling pores on bi-axial-stretched PCL films. Compared to the above reviewed 

techniques (e.g. electrospinning, leaching, lithography and phase separation), direct 

laser writing has advantages of the integrity of precise control at the pore size and 

position [135]. Moreover, pores penetrated the scaffolds are in a linear manner that 

would facilitate vascular cell migration and transmural tissue ingrowth, as well as the 

cell-cell communication similar to that of cells on the two sides of BM [205]. Direct 

laser writing is different from the lithography, phase separation or leaching that 

require the one-step fabrication and in theory, could be compatible with the current 

techniques (for geometric cues generation) to further create porous patterns on the 

aligned fibrous mats or ridge/groove arrays. 

 

To-date, the laser used for TE scaffolds can be divided into two categories: (i) long 

pulse laser (>10 ns) and (ii) short pulse laser (x10-15 s). The long pulse laser (e.g. CO2 

laser, UV laser) are mostly used for engineered plastics such as PMMA, PLLA [206]. 

These lasers breakdown the polymers through the high-energy photon absorption 
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[204], and generate a pulse longer than the thermal wave propagated in polymers, 

leading to possible thermal-induced material changes [121]. Femtosecond lasers (e.g. 

Ti:Sapphire femtosecond laser) breakdown polymers through a multi-photon 

absorption [204] and can remove almost any target materials due to the high peak 

energy (>1012 w/cm2) [121, 135]. The basic science underling the femtosecond laser 

ablation involves five phenomena: (i) ionizing of targeted materials at the early of 

laser pulse time; (ii) absorption of free electrons; (iii) formation of a strong electric 

field due to the electrons that break free from the bulk materials; (iv) ions out of the 

bulk materials if electron energy is larger than binding energy; and (v) materials 

remove [135]. 
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Table 2-12: Technologies for the incorporation of pores into films 

Strategies Examples* Advantages Limitations Ref. 

Electrospinning 
(Rotating disk and mandrel) 

PCL 

 

Simultaneous alignment and pores Solvent-usage and potential residues; 

High speed à higher fiber packing à small 
pores à no cell infiltration 

[152] 

Leaching Salt PLGA 

 

High porosity and interconnectivity; 

Easy control of porosity and mean size of pores; 

Potential one-step for incorporation of patterns 
and pores; 

Potential tissue-scaffold integrity 

Solvent usage and potential residues of solvents 
and porogens; 

Inhomogeneous pore size; 

Difficult for cell infiltration 

[189] 

Sugar PCL 

 

[62] 

Polymers 
(PEO, PEG) 

PHBV-PLGA

 

[202] 

Phase Separation PLGA 

 

Better resistance to degradation; 

Larger porosity and surface area than leached 
scaffolds; 

Less solvent residues 

Inhomogeneous pores: graded reduce in pore 
size from inner to surface; 

Larger foreign body giant cell response and 
less tissue ingrowth; 

Use of solvent and potential residues 

[185, 201] 
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Continued 

Direct Lithography Silicon 

 

Precise pore shape and position; 

Direct punching 

Mask-required and Limited applicability for 
photo resistant materials; 

Toxic solvent usage 

[207] 

Soft Lithography PDMS 

 

Applicable for biodegradable materials; 

Precise pore shape and position 

Solvent usage and potential residues; 

Cumbersome set of tools and procedures (e.g. 
model-needed); 

[208] 

Direct Laser Writing PCL 

 

Applicable for biodegradable materials; 

Precise pore shape and position; 

Direct punching and simple procedures 

Expensive-equipment require; 

Time-consume for a large number of pores or 
patterns 

[204] 

*Figures were adapted in sequence from Nisbet et al. 2009; Kaushiba et al. 2007; Papenburg et al. 2007; Yucel et al. 2010; Safinia et al. 2008; Khung et al. 2008; Wang et 
al. 2009; Tiaw et al. 2008, respectively. 

Abbreviations: PCL: poly(ε-caprolactone); PLGA: poly(d,l-lactide-co-glycolide); PEG: polyethylene glycol; PEO: poly(ethylene oxide); PHBV: poly(3-hydroxybutyrate-co-
3-hydroxyvalerate); PDMS: polydimethylsiloxane. 
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2.4.2 Vascular Cell Responses to Porous Patterns 

The nano/micro-structural features of BM are known as a crucial indicator for healthy 

status. Liliensiek et al. [9] firstly examined the porous morphologies of human 

vascular BM, and pointed out the importance of VTE applications. Their subsequent 

studies explored the effects of mimicking the aligned BM fibrous structures on human 

ECs regulation [154, 209]. However, the porous structures have not been incorporated 

into their studies. Currently, studies in regards to the regulation of pores have been 

performed on various cell types (e.g. FBs [210], SMCs [211], ECs [210], HECEs 

[212], MSCs [213]). From these studies, the presence of pores on the substrates has 

shown to affect cell adhesion, morphology, proliferation and differention. O’Brien et 

al. [214] observed that cellular attachment on collagen–glycosaminoglycan scaffolds 

decreased with increasing the mean pore size. Such finding was confirmed by Khung 

et al. [207] using a porous gradient with an average pore size from 600 to 3000 nm. 

Their results further suggested that cells could even sense a feature size as small as 

~20 nm. Moreover, Karuri et al. [212] demonstrated that cells on nanoscale pores 

exhibited fastened adhesion against flow shear with more numerous filopodia and 

retraction fibers than the cells on microporous features. The reason could be that the 

pore edges facilitate cell-substrate adhesion by acting as nucleation for the cells-

materials interaction. Interestingly, ECs have been suggested to preferentially adhere 

to pores less than 80 µm, while SMCs and FBs preferred a pore size of 63-150 µm 

and 38-150 µm of PLLA scaffolds, respectively [210, 211, 214]. 

 

Besides the adhesion, pores have shown significant impacts on the cellular 

morphology and migration. Wang et al. [208] showed that pores could inhibit cell 
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spreading, with a slower spreading for the pores at a small diameter. Cells exhibited 

confined morphologies with more and longer protrusions stretched out towards 

sidewalls as compared on the flat surfaces. These morphology and migration changes 

increased the cell activity, but lowered the alkaline phosphatase activity in Caco-2 

cells. Such differentiated effects have also been observed in MSCs on PMMA porous 

substrates [213]. Clearly, cells are responsible to the porous features of scaffolds. 

However, how vascular cells (e.g. SMCs, ECs and MSCs) to response to the 

combined anisotropic geometries and porous structures of BM remains unknown. 

 

2.4.3 Porous Patterns and Current Vascular Scaffold Design 

Pores have been incorporated for TEVG design. Kaushiva et al. [189] using salt 

leaching developed a PLLA/PLGA film with an average pore size of ~60 µm, and 

found that slow degraded films with had better capillarity ingrowth and thinner 

fibrous capsule. Hu et al. [215] developed a microporous fibrous VET scaffold using 

electrospinning, and found that the micropores (~125-250 µm) could support SMCs 

ingrowth both in vitro and in vivo and promote SMCs differentiation. Both studies 

have suggested that pores could not only facilitate the capillary ingrowth, but also 

promote cellular differentiation. However, the films generated from leaching and 

electrospinning are poor in mechanical stability and limited at cell organisation 

control. Another group led by Matsuda [197, 216] in Japan utilised elastomeric PU 

films and KrF excimer laser drilling for producing microporous VTE scaffolds. They 

found that pore patterns did increase the scaffold elasticity, and pores promoted the 

endothelialisation on lumen surface with a thin intimal tissue. However, their design 

lacked the capability of aligning SMCs on tunica media side. Recently, Sarkar et al. 

[40] and Papenburg et al. [62] firstly created porous micropatterned PLGA substrates 
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through sugar leaching, and carried out a feasibility study on stacking the substrates 

into multi-layered cell/material architectures as tunica media. Although the substrates 

were designed for the tunica media conduction only and have been found with 

limitations in cell alignment and nutrient diffusion of 3D construction, they have 

stimulated an ambitious idea for me to incorporate the anisotropic geometric cues and 

micropore patterns on bioresorabable thin films as an engineered BM, to faciliate the 

aligned and differentiated MSCs organizsation on the tunica media side, and promote 

endothelialisation on the lumen side. 
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Chapter 3 Uniaxial Stretching for Generation of 

Three-Dimensional Anisotropic Geometries  

on Poly(ε-caprolactone) Films 

 

 

3.1 Introdution 

Proper tissue function and regeneration rely on robust spatiotemporal control of 

cellular microenvironments [217]. In vivo, many tissues such as skeletal and 

myocardial muscles, blood vessels, nerves as well as bone are physiologically 

anisotropic, with architectures consisting of highly aligned cells and cell-matrices 

[218, 219]. Such alignment plays an important role in dictating tissue functions. For 

example, the aligned organisation of cardiomyocytes and fibroblasts is critical to the 

electrical and mechanical properties of the heart [220], whereas circumferential 

alignment of smooth muscle cells (SMCs) in blood vessels is required for the 

generation of contractile force and modulation of vascular tone [61, 221]. However, 

the inability of scaffolds to guide cell behaviour has often resulted in poor cell and 

cell-matrix organisation [222, 223]. Tissue constructs based on such scaffolds will 

have limited capability of eliciting function regeneration, especially for anisotropic 

tissues. 

 

Scaffolds with versatile topographical geometries, have been shown to deliver cell-

matrix-regulator signals to regulate cell behaviour, and serve as powerful artificial 
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microenvironments for recapitulating tissue architectures and functions [217, 224]. 

Chapter 2, Section 2.3.1 reviews the different development of geometries, fabrication 

techniques, and the related cellular performances in regenerative medicine. The two 

main strategies for incorporating of geometric cues on poly(ε-caprolactone) (PCL) 

films are soft-lithography and electrospinning. However, geometric cues generated 

from soft-lithography typically requires mechanical separation of PCL films from the 

mould, which often results in the formation of defects on surface features [132]. In 

addition, this technique refers to a cumbersome set of patterning tools and procedures 

[122, 225]. Modified electrospinning set-up using a rotating mandrel or void gap has 

been used to generate orientated PCL nanofibrous meshes. However, the poor film 

mechanical property remains a concern. In particularly, both soft-lithography and 

electrospinning methods use chemical solvents (e.g. chloroform, tetrahydrofuran, 

acetone and ethyl acetate) [132, 226, 227], and the potential risk of residuals leads to 

problems with regard to safety concerns. Hence, it is imperative to develop alternative 

strategies that eliminate the use of solvents and be simple and reproducible for the 

incorporation of geometric cues on PCL films.  

 

In this work, a novel method of uniaxial stretching has been developed to create PCL 

films with biomimetic 3D self-assembling anisotropic geometric cues, which allows 

the fabrication in a simple, solvent-free and reproducible manner. A robust and long-

term capability of eliciting stem cell alignment in a controllable direction has also 

been demonstrated for potential VTE application. 
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3.2 Materials and Methods 

3.2.1 Experimental Design 

A novel fabrication for geometric cues is being developed for PCL films (Scheme 3-

1). A series of materials and cellular characterisations have been performed focusing 

on the aspects of morphological features, formation mechanism, parameter control, 

potential for desired modification and regulations on stem cell behaviour. 

 

 

Scheme 3-1: Schematic diagram illustrating the experimental design in this work. PCL films with flat 
surfaces were subjected to uniaxial stretching at 54 oC. Surface morphologies and the performances on 
cellular alignment and elongation were examined to understand that whether the generated geometric 
features can function as cues. Influences on parameter's control, potential for surface modification, 
applicability and formation mechanism and cell cytotoxicity were also studied for developing uniaxial 
stretching as a novel technique for fabrication of film geometric cues. 
 

3.2.2 Materials 

PCL (MW 80,000), phosphate buffer saline (PBS), penicillin-streptomycin (PS), 

TRITC-conjugated phalloidin, paraformaldehyde (PFA), triton-X 100, bovine serum 

albumin (BSA), fluorescein diacetate (FDA), propidium iodide (PI) and 4',6-

diamidino-2-phenylindole (DAPI) were purchased from Sigma-Aldrich (Singapore). 
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Dulbecco's modified eagle medium (DMEM), trypsin-	   ethylenediaminetetraacetic 

acid (EDTA) and fetal bovine serum (FBS) were purchased from Life Technologies 

(Singapore). Cell strainers, tissue culture plates (TCP) and flash and low-adhesion cell 

culture plate were purchased from BD Bioscience (Singapore), Thermo Fisher 

Scientific (USA), Nunc (Singapore) and Corning (Costar, Singapore), respectively. 

 

3.2.3 Generation of PCL 3D Anisotropic Geometries 

As shown in Scheme 3-2, heat-press PCL (HP-PCL, ~120 µm in thickness) films 

were fabricated via two-roll milling and subsequent pressing at 80 oC, 300 MPa [228]. 

Anisotropic geometries were created on PCL films using a solvent-free method. 

Briefly, HP-PCL were cut into rectangular pieces (5x3 cm2), heated to 54 oC and 

subjected to uniaxial stretching before cooling down to room temperature. The HP-

PCL after uniaxial stretching was named as UXHP-PCL.  

 

 

Scheme 3-2: Schematic diagram illustrating PCL film fabrication. Anisotropic 3D ridge/groove arrays 
on UXHP-PCL were obtained by uniaxial stretching of HP-PCL (DR: draw ratio). 
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3.2.4 Field Emission Scanning Electron Microscopy (FESEM) 

The morphologies of PCL films before and after uniaxial stretching were examined 

by FESEM (S-4300, Hitachi, Japan). Briefly, samples were sputter-coated with gold 

at 10 mA for 30 s. Images were taken at a voltage of 15 kV. Ridge orientation, inter-

ridge-distance and ridge-length were measured from FESEM images using the built-

in functions of NIH ImageJ (USA). Briefly, angle-variation was described as the 

mean of standard variations of ridge orientation. Inter-ridge-distance was measured by 

drawing lines perpendicular to the stretch direction, and described as the length of a 

line divided by the crossed ridge number (Scheme 3-3). Ridge-length was measured 

by drawing a straight line from the start point to the end point of individual ridge. 

Four samples were used for each measurement above. 

 

 

Scheme 3-3: Schematic diagram illustrating the measurement of ridge-length and inter-ridge-distance. 
Ridge-length is equal to the length of a line from the start point to the end point of individual ridge. 
Inter-ridge-distance is defined as d = l / (n + 1), where d is the average distance between two ridges, l is 
the length of a cross line, and n is the number of ridges the line crossed. 
 

3.2.5 Atomic Force Microscopy (AFM) 

PCL film morphologies were examined using AFM (MFP-3D, Asylum Research, 

USA). Images were captured using a tapping scan over an area of 60x60 µm2 on film 

surfaces. Height-profile was analysed via Igor Pro6 (USA). 
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3.2.6 Water Contact Angle (WCA) 

Surface hydrophilicity was evaluated by WCA measurement using a video contact 

angle system (Advanced Surface Technologies, VCA2000, USA). Briefly, a drop 

volume of 1 µl was used, and images were taken 5 s after the drop dispersion for full 

drop development. Measurement was performed followed two mutually perpendicular 

directions. On UXHP-PCL, one direction was towards the ridges (Scheme 3-4). Three 

samples and five random positions of each sample were analysed. 

 

 

Scheme 3-4: Schematic diagram illustrating the measurement of water contact angles (WCA) on 
UXHP-PCL (Yellow and Red arrows: direction of WCA measurement followed). 
 

3.2.7 Differential Scanning Calorimeter (DSC) 

DSC (DSC60, Shimadzu, Japan) was used to examine the crystallinity of PCL films. 

Briefly, a scanning range from 20 to 90 oC was performed at a heating rate of 10 

oC/min in air ambient. PCL film crystallinity was determined by comparing with 100 

% crystalline PCL, which has an enthalpy of fusion of 139.5 J/g [228]. 

 

3.2.8 Polarized Light Microscopy (PLM) 

The effect of uniaxial stretching on PCL molecular chain reorientation was examined 

using PLM (EMM0307, Nikon, Japan) with a magnification of x400. 
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3.2.9 Cellular Isolation and In Vitro Culture 

Human tissue collection for research purposes was approved by the Domain Specific 

Review Board of National Healthcare Group, in compliance with international 

guidelines regarding the use of fetal tissue for research [229]. In all cases, patients 

gave separate written consent for the use of collected tissues. 

 

Human mesenchymal stem cells (MSCs) were isolated as previously described [229]. 

Briefly, single-cell suspension was obtained by flashing femurs using a 22-gauge 

needle. Tissue fragments were removed by passing the suspension through a cell 

strainer (40 µm). Cells (106 per cm2) were seeded on tissue culture flask (75 ml) and 

cultured in D10 medium (DMEM + 10 % FBS + 1 % PS). Non-adherent cells were 

removed by changing the medium at day 3. Adherent cells (MSCs) were recovered 

from the primary culture after one week. In vitro culture expanded MSCs (Passage-6) 

were characterised with positive expression of stem cell phenotype. 

 

3.2.10 Confocal Laser Scanning Microscopy (CLSM) 

The responses of MSCs to PCL film anisotropic geometries were investigated using 

cytoskeletal and cytoplasmic staining. The flat surface of HP-PCL was used as a 

control group. Cells were immediately examined using CLSM (FV1000, Olympus, 

Japan). 

 

Cytoskeletal staining: 

MSCs after culture for pre-determined period were fixed using PFA (3.7 % in PBS) 

for 15 min, followed by permeabilisation using Triton-X 100 (0.1 % in PBS) for 10 
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min, and blocking using BSA solution (2 % in PBS) for 30 min. Cells were then 

incubated with TRITC-conjugated phalloidin (1:200 in PBS) for 1 hour to label the F-

actin cytoskeleton. After washing thrice with PBS, cells were further incubated with 

DAPI (1:1000) for 5 min to visualise nuclei. 

 

Cytoplasmic staining: 

Live MSCs were incubated with FDA (8 µg/ml) for 10 min. After removing the FDA 

solution, cells were further incubated with PI (4 µg/ml) for 5 min, followed by 

washing thrice with PBS.  

 

3.2.11 Cellular Alignment and Elongation Analysis 

Images of live cells were analysed using the built-in function of NIH ImageJ software 

(USA) as described in previous report [146]. For single-cell analysis, MSCs were 

analysed at sub-confluence on PCL films. All cells in contact with other cells and 

cells contact with the image edges were manually removed from the data sets. 

Cellular arrangement angle was defined as the orientation of the major elliptic axis of 

individual cell. Preferential cell orientation was defined as the angle that a range of 10 

o below and above it has the largest cell number. The preferential cell orientation was 

set as 0 o, and all the cellular angles and ridge direction were normalised to it. Cell 

number within each degree from -90 to +89 o was calculated and normalised such that 

the total sum was unity, and plotted as a curve to describe the frequency distribution 

of cell angles. Cells with angles fell into ±10 o were considered to be aligned [230]. 

Cellular elongation was described using a cell shape index (CSI, circularity = 

4*π*area/perimeter2) [146]. Three samples and four random regions of each sample 

were analysed. 
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3.2.12 Cellular Proliferation Assay 

The effect of UXHP-PCL anisotropic geometries on MSCs proliferation was 

investigated using a colorimetric MTS assay (CellTiter 96 AQueous One solution, 

Promega, Madison, WI) [223]. HP-PCL and TCP flat surfaces were set as positive 

controls, and five samples were used. Briefly, cells after culture for pre-determined 

period were washed with PBS and incubated with 20 % MTS reagent in serum-free 

medium for 3 h at 37 oC. The absorbance of obtained dye was measured at 490 nm 

using a spectrophotometric plate reader (FLUOstar Optima, BMG Lab Technologies, 

Offenburg, Germany).  

 

3.2.13 Data Analysis 

Data analysis was performed on Prism 5 software. Results were reported as mean ± 

SD. A value of p <0.05 was considered to be statistically significant. 

 

3.3 Results 

3.3.1 Biomimetic 3D Self-Assembling PCL Anisotropic Geometries 

Figure 3-1A reveals a relatively flat surface for HP-PCL. Uniaxial stretching resulted 

in anisotropic geometries on UXHP-PCL consisting of two distinct portions: (1) 3D 

micro-scaled ridges that were discontinuous and preferentially orientated towards the 

stretching direction, with variations of ridge angles being less than ±1.56 o (Figures 3-

1B and C), and (2) continuous grooves that separated the ridges from each other. 

AFM examination of UXHP-PCL revealed similar results as observed from FESEM, 

with a typical height-profile of ridge-depths varying from 200 to 900 nm (Figure 3-

1D). 
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Figure 3-2 shows the morphological consistency of UXHP-PCL. FESEM images of 

representative regions (X-0 à X-5, Y-0 à Y-4) revealed anisotropic geometries in a 

consistent orientation on the whole film surface of UXHP-PCL. The inter-ridge-

distance of regions from X-0 to X-5 tended to increase slightly. However, no 

significant change was observed in the regions from X-0 to X-3 (p >0.05). Moreover, 

the anisotropic geometries did not exhibit conspicuous changes at inter-ridge-distance 

for the regions from Y-0 to Y-5, although some inter-ridge-distance reduction was 

found at the region near the film edge (Y-4; p >0.05). 
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Figure 3-1: Uniaxial stretching of PCL films resulted in anisotropic geometries. (A) Field emission 
scanning electron microscopy (FESEM) image of HP-PCL revealed a flat surface (Scale bar = 200 
µm). (B) Low and high magnified FESEM images of UXHP-PCL revealed anisotropic geometries 
(Double-headed arrow: stretching direction; Scale bar = 200 and 20 µm). (C) Atomic force microscopy 
(AFM) images of UXHP-PCL. 
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Figure 3-2: Morphological consistency of UXHP-PCL. Representative regions (2x2 mm2; Y-0 to Y-4) 
from the film center to the edge, and regions (X-0 to X-5) from the film center to the two ends with an 
inter-region-distance of ~2 cm. FESEM images revealed similar inter-ridge-distance within regions of 
X-0 à X-3 and Y-0 à Y-4 (Double-headed arrow: stretching direction; Scale bar = 100 µm). * 
represents the significant difference as compared to the inter-ridge-distance of film central region (n = 
4; *, p <0.05). 

 

3.3.2 Effects of Stretching Temperature (Ts) and Draw Ratio (DR) on Ridge-

Length and Inter-Ridge-Distance 

Figure 3-3 shows the influences of Ts and DR on the anisotropic geometries of UXHP-

PCL. At elevated Ts, more ridges were formed on UXHP-PCL, with the ridge/groove 

shapes becoming clearer. However, DR did not show such effect on the geometries. 

Quantitative analysis of the anisotropic geometries of UXHP-PCL showed that when 

Ts and DR increased, the inter-ridge-distance tended to be reduced, and the ridge-

length was increased, indicating proper tailorability of the geometries in a certain 

range (Table 3-1). 

Y-4 �
Y-3 �
Y-2 �
Y-1 �

X-0, Y-0 � X-1 � X-2 � X-3 � X-4 � X-5 �

X-0, Y-0 � Y-1 � Y-2 � Y-3 � Y-4 �

X-1 � X-2 � X-3 � X-4 � X-5 �

7.5 ± 0.4 µm � 7.5 ± 0.3 µm � 7.5 ± 0.2 µm � 7.2 ± 0.1 µm �

Edge �

6.8 ± 0.4 µm �

7.2 ± 0.2 µm � 7.6 ± 0.4 µm � 8.3 ± 0.5 µm � * 10.2 ± 0.4 µm � * 12.4 ± 0.6 µm �

100 µm �
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Figure 3-3: FESEM images of UXHP-PCL fabricated at a consistent DR of 4 and different Ts (21 oC, 37 
oC and 54 oC) or consistent Ts of 54 oC and different DR (2, 3 and 4; Scale bar = 50 µm). 

 

Table 3-1: Inter-ridge-distance and ridge-length of UXHP-PCL ridge/groove arrays (n 
= 4) 

Structural 
Parameters (µm) 

Ts (oC)  DR  

21 37 54 2 3 4 

Inter-ridge-distance 15.7 ± 1.1 11.2 ± 1.4 6.1 ± 0.9 17.4 ± 0.4 11.6 ± 2.5 6.9 ± 0.8 

Ridge-length 28.1 ± 3.7 42.8 ± 7.4 89.0 ± 11.2 62.9 ± 5.0 66.6 ± 10.9 92.2 ± 9.2 
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3.3.3 Surface Modification 

Figure 3-4A shows that the surface of UXHP-PCL anisotropic geometries was 

relatively hydrophobic (WCA >80 o). The WCA on UXHP-PCL anisotropic 

geometries in their parallel direction was similar to that on HP-PCL flat surface (82.3 

vs 82.6 o, p >0.05). Moreover, UXHP-PCL anisotropic geometries exhibited 

anisotropic surface hydrophilicity, with additional increase in WCA of ~7 o in their 

perpendicular direction than in the parallel direction (p <0.001). However, the surface 

hydrophilicity was isotropic for HP-PCL flat surface, with similar WCA along the 

two mutually perpendicular directions (81.8 vs 82.6 o, p >0.05). Compared to HP-

PCL flat surface, uniaxial stretching made the anisotropic geometries of UXHP-PCL to 

be more hydrophobic, with larger WCA in their perpendicular direction (p <0.001). 

 

PCL is relatively hydrophobic for cell attachment [17, 231]. Figure 3-4B shows the 

modification of UXHP-PCL anisotropic geometries via alkaline hydrolysis for 

achieving enhanced surface hydrophilicity. The WCA on UXHP-PCL anisotropic 

geometries gradually decreased with increasing hydrolysing time. Comparatively, the 

decline of WCA in the perpendicular direction of UXHP-PCL anisotropic geometries 

was slower than that in the parallel direction, resulting in an increased WCA 

difference between the two mutually perpendicular directions. The rate of WCA 

decline on UXHP-PCL anisotropic geometries in the parallel direction was similar to 

that on HP-PCL flat surface, achieving a desired WCA range for cell growth (50-60 o) 

after 24 hr of hydrolysis [232]. Moreover, FESEM images of UXHP-PCL anisotropic 

geometries revealed well-maintained ridge/groove shapes over the investigated period 

(Figure 3-5). The surface of ridges exhibited more local integrity than that on groove 

surface after 12 hr of hydrolysis, indicating larger resistance against hydrolysis. 
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Figure 3-4: Increased surface hydrophilicity of UXHP-PCL. (A) WCA before hydrolysis. UXHP-PCL 
revealed a WCA in parallel direction being similar to that of HP-PCL, but with an additional increase 
(~7 o) in perpendicular direction. * represents the significant difference as compared to WCA in the 
parallel direction (n = 5; ***, p <0.001; NS, p >0.05). (B) WCA after hydrolysis (NaOH, 3M). UXHP-
PCL achieved enhanced surface hydrophilicity, with continuous WCA decrease in both directions (n = 
3). 

 

 

Figure 3-5: Morphological stability of UXHP-PCL during surface modification. FESEM images 
revealed well-maintained ridge/groove shapes for hydrolysis (NaOH solution, 3M) of different time 
(Dark arrows: local integrity of ridge surface; Scale bar = 10 µm). 
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3.3.4 Aligned Cellular Growth 

The UXHP-PCL anisotropic geometries were further evaluated via interaction with 

MSCs in vitro. Figure 3-6 reveals an aligned and elongated growth of MSCs on 

UXHP-PCL anisotropic geometries, with orientations preferentially towards the 

geometries after 5 days of culture. In contrast, MSCs on HP-PCL flat surface (control) 

did not exhibit any trend of alignment. Moreover, live staining of MSCs using 

FDA/PI dyes to avoid potential artifacts arising from the fixation process revealed 

distinct cellular alignment and elongation on UXHP-PCL anisotropic geometries. The 

alignment of MSCs was observed to be present in a consistent direction on the whole 

UXHP-PCL sample (1x1 cm2) as indicated by the cell organisation in different regions 

(Z1-Z5; Figure 3-7). 

 

 

Figure 3-6: Confocal laser scanning microscopy (CLSM) images of cytoskeletal (Phalloidin: red, F-
actin; DAPI: blue, DNA; Scale bar = 200 µm) and cytoplasmic (FDA: green, live cells; PI: red, dead 
cells; Scale bar = 500 µm) staining of MSCs (Passage-6, 5k per cm2, for 5 days of culture) on UXHP-
PCL anisotropic geometries and HP-PCL flat surface (Control; White arrow: ridge direction; Scale bar 
= 500 µm). MSCs cultured with UXHP-PCL anisotropic geometries aligned and elongated preferentially 
towards the ridge direction. In contrast, MSCs organised randomly in control group. 
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Figure 3-7: Consistent MSCs alignment. (A) UXHP-PCL sample of 1x1 cm2. (B) CLSM images of 
MSCs organization in representative zones (Z1-Z5) revealed consistent cell alignment in a controlled 
direction along ridges (Phalloidin: red, F-actin; DAPI: blue, DNA; White arrow: ridge direction; Scale 
bar = 500 µm). 

 

Quantitatively, the angulation of MSCs on UXHP-PCL anisotropic geometries was 

confined in a small range of -15 to +15 o, with a preferential orientation 

approximately parallel to the geometries (Angle-shift: 1.3 ± 0.9 o; Figure 3-8A). In 

contrast, the cellular arrangement angles of control group were evenly distributed, 

approaching the frequency distribution curve of a perfectly isotropic sample. 

Quantitative analysis of cellular alignment and elongation showed that MSCs cultured 

with UXHP-PCL anisotropic geometries achieved significant increase in the 

normalised cell number in ±10 o (3.9x of control, p <0.001; Figure 3-8B) and decrease 

in the CSI (0.7x of control, p <0.001; Figure 3-8C). 
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Figure 3-8: (A) Quantitative analysis of cellular arrangement angles. The angles of MSCs (Passage-6, 
5k per cm2, for 5 days of culture) on UXHP-PCL concentrated within a small range of ±15 o, while cell 
angle frequency of control group (HP-PCL flat surface) approximated to that of an isotropic sample 
(Red line: frequency of MSCs angle distribution; Dashed-dark line: frequency of cellular angle 
distribution of an isotropic sample, which is ~0.56 %; Dashed-blue line: ridge direction; Solid-blue 
line: preferential cell orientation). (B) MSCs alignment represented by the normalised cell number 
within ±10 o (Dashed-dark lines: expected values of a perfectly isotropic sample, which is ~11.7 %). 
(C) MSCs elongation represented by CSI (CSI of 1 representing a circle). MSCs cultured with UXHP-
PCL anisotropic geometries achieved significant increase in cellular alignment and elongation as 
compared to control. * represents the significant difference compared with that of control group (n = 3; 
***, p <0.001). 

 

3.3.5 Dynamic and Long-Term Cellular Alignment  

Figure 3-9 shows the dynamic organisation and morphology of MSCs on UXHP-PCL 

anisotropic geometries. MSCs on UXHP-PCL were found to align towards the 

anisotropic geometries after 12 hr of culture, exhibiting a wide range (-30 to +10 o) 

for cellular arrangement angles to distribute (Figures 3-9A and B). However, MSCs 

seemed to adjust towards the anisotropic geometries, leading to a narrower angle 

range at day 3, and maintained with minimal changes up to day 10. In contrast, MSCs 
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in the control group were observed to distribute randomly over the investigated 

period. 

 

Quantitatively, MSCs for the initial culture of 12 hr on both UXHP-PCL anisotropic 

geometries and HP-PCL flat surface revealed large CSI (>0.8) and low alignment 

efficiency (<35 %; Figures 3-9C and D). MSC alignment greatly increased from 12 hr 

to day 3, (1.3x increase, p <0.001), and exhibited slight, continuous increment over 

day 3-10 (80.3 vs 85.4 %, p >0.05; Figure 3-9C). Meanwhile, the CSI of MSCs on 

UXHP-PCL anisotropic geometries reduced rapidly from 12 hr to day 3 (1.3x 

reduction, p <0.001) and remained stable over day 3-10 (0.35 vs 0.32, p >0.05; Figure 

3-9D). Compared to the control, MSCs interacting with UXHP-PCL anisotropic 

geometries achieved considerable increase in cellular alignment efficiency (Day 3, 

2.8x of control, p <0.001; Day 10, 2.8x of control, p <0.001) and a significant 

reduction in CSI (Day 3, 0.9x of control, p <0.01; Day 10, 0.8x of control, p <0.001). 

The aligned and elongated growth of MSCs was maintained on UXHP-PCL 

anisotropic geometries in a consistent orientation along the geometries, even when 

cells got confluent (15 days of culturing; Figure 3-10). In contrast, MSCs of the 

control group revealed local alignment only. 
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Figure 3-9: Dynamic cell alignment and elongation. (A) CLSM images of MSCs revealed aligned 
growth towards the anisotropic geometries of UXHP-PCL over the investigated period (Control: HP-
PCL flat surface; White arrow: ridge direction; Scale bar = 500 µm). (B) Frequency distributions of 
MSCs angles on UXHP-PCL anisotropic geometries. Cell arrangement angles fell into a narrower range 
with increasing the culture time. (C & D) Dynamic cell alignment and elongation. MSCs on UXHP-
PCL achieved the rapid increase in cell alignment and elongation during initial culture of 3 days, and 
kept the efficiencies un-increased for further culture. * represents the significant difference compared 
with that of control group at each time point (n = 3; **, p <0.01; ***, p <0.001; NS, p >0.05). 
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Figure 3-10: Long-term cell alignment capability. CLSM images from FDA/PI live-cell staining 
revealed a long-term aligned growth of MSCs on UXHP-PCL after achieving confluence, but local 
cellular alignment only in control group (White arrow: ridge direction; Scale bar = 500 µm). 

 

3.3.6 Cytotoxicity and Cellular Proliferation 

Cytotoxicity of MSCs was evaluated by FDA/PI staining. MSCs after 0.5, 3, 5, 10 and 

15 days of culturing on UXHP-PCL anisotropic geometries revealed 100 % FDA-

stained live cells (Green colour), without the presence of PI-stained dead cells (Red 

colour; Figures 3-6, 9A and 10). Results from MTS assay showed that MSCs 

proliferated well (Day 3 vs Day 6, p <0.001; Day 6 vs Day 12: p <0.001), with similar 

phenomena being observed on HP-PCL flat surface (p >0.05; Figure 3-11). With 

increasing culture time, MSCs proliferation on UXHP-PCL anisotropic geometries 

approached that on positive control group. 



Chapter 3 Generation of 3D Geometric Cues 

	   -82- 

 

Figure 3-11: MSCs proliferation on UXHP-PCL anisotropic geometries, HP-PCL flat surface and TCP 
flat surface (Positive control). UXHP-PCL ridge/grooves supported MSCs growth with similar 
proliferation to that on HP-PCL flat surface, approaching that of positive control group with increased 
culture time (n = 5; ***, p <0.001; NS, p >0.05). 

 

3.4 Discussion 

In this study, a novel technique of uniaxial stretching was developed to create 

anisotropic geometries on PCL films. The anisotropic geometries of UXHP-PCL 

consisted of self-assembling, highly orientated micro-3D ridges and grooves, with 

inter-ridge-distance and ridge-length being variable by Ts and DR. The anisotropic 

geometries enabled MSCs growth, with significant increase in the average cell 

alignment and elongation on UXHP-PCL for over two weeks. Previous studies using 

soft-lithography and electrospinning methods have attempted to incorporate 

anisotropic geometries on PCL films. However, these techniques have considerable 

drawbacks such as unstable yield, non-uniform geometries in a large area, tedious 

procedures and/or chemical solvent usage and residual remains [132, 226, 227]. The 

method as described in this study had added advantages in providing a solvent-free, 

reproducible and simple fabrication for facilitating the incorporation of anisotropic 

topographies on PCL thin films. On the other hand, although PCL films have been 

used extensively in many applications, most of them lack functional topography 
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geometries [22, 233, 234]. The use of uniaxial stretching has achieved unique 

anisotropic geometries on PCL film surfaces. This strategy could enable a whole new 

range of complementary applications of PCL films for controlling cellular alignment 

and elongation in biomimetic tissue engineering. 

 

It should be noted that uniaxial stretching in this work was applied mainly to PCL 

films. This method, however, could also be applicable to other thermoplastic 

polymers. In Figure 3-12, uniaxial stretching of polyethylene (PE) films resulted in 

similarly orientated wave-like structures as those observed on PCL films. To the best 

knowledge, the presenting method of uniaxial stretching is suitable for semi-

crystalline polymers because the formation of micro-ridges required polymeric 

crystals. In this study, uniaxial stretching resulted in the micro-ridges and grooves on 

UXHP-PCL. Meanwhile, it orientated the PCL molecular chains (Figure 3-13) with 

increased film crystallinity (Table 3-2), suggesting that recrystallisation of PCL 

crystals occurred, and a correlation between them and the resulted geometries 

structures existed. The thorn-like structures (~50 nm of width) and their perpendicular 

orientations to the stretching direction (Figure 3-14) agreed with the characteristics of 

the multilayered lamellas of polymeric films after uniaxial stretching [235]. Further 

degradation revealed a larger resistance of the ridges to hydrolysis, suggesting that the 

ridges were generated from the recrystallised PCL crystals [236]. Because the 

crystalline structures were more rigid than the amorphous structures, the recrystallised 

PCL crystals during uniaxial stretching would experience less deformation, while the 

superficial amorphous regions were easy to be deformed and formed into grooves to 

reveal the crystals from film surface as ridges (Figure 3-15).  
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Figure 3-12: Anisotropic polyethylene (PE) geometries. Commercial PE films were stretched at Ts of 
70 oC and DR of 4. (A) Light microscopy and AFM images revealed orientated wave-like geometries 
on PE films after uniaxial stretching, but non-anisotropic structures on un-stretched films (Double-
headed arrows: stretching direction; Scale bar = 40 µm). (B) Typical height profile of uniaxial-
stretched PE films [along the red-line shown in AFM images]. 
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Figure 3-13: Polarised light microscopy (PLM) images of HP-PCL and UXHP-PCL. Uniaxial 
stretching resulted in orientated molecular chains of UXHP-PCL. 

 

Table 3-2: Effects of uniaxial stretching on PCL film crystallinity 

Films HP-PCL UXHP-PCL 

Crystallinity (%) 36.2 54.0 
 

 

Figure 3-14: Ridges and grooves of UXHP-PCL subjected to alkaline hydrolysis (NaOH, 3M) for 12 hr 
(A) and 20 days (B). FESEM images of ridges exhibited thorn-like structures (Dark arrows; ~50 nm in 
width) perpendicular to stretching direction, and larger resistance against hydrolysis as indicated from 
the less caves presented than grooves did (Double-headed arrows: stretching direction; White arrows: 
caves in the grooves; Scale bar = 2 and 200 µm). 
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Figure 3-15: Schematic diagram illustrating formation of UXHP-PCL ridges and grooves. Uniaxial 
stretching re-orientated the multilayered lamellas of HP-PCL, which self-packed into new crystals 
along stretching direction. During that process, film superficial amorphous regions formed into grooves 
because of being easily deformed, while the crystals experienced less deformation and were revealed 
out from film surface as elongated ridges. 

 

It should also be noted that during the initial elastic deformation, the center of UXHP-

PCL might experience a larger extent of stretching than the film at the two ends. This 

effect probably resulted in the smaller inter-ridge-distance observed in the film center 

because of larger Poisson’s contraction [237]. However, most regions of UXHP-PCL 

from the center to the two ends might experience similar extent of stretching because 

the changes of film contraction existed mainly near the film ends, and no significant 

difference of inter-ridge-distance was found in the regions of film central area (X-0 to 

X-3). Additionally, boundary effects could exist during the stretching process. A 

reduction in the inter-ridge-distance was found in the regions near the film edge (Y-

4), probably because of the larger DR that the edge parts experienced [238]. However, 

the reduction observed was limited to the film edge location and did not result in 

distinct morphology difference as compared to the film center. In addition, all the film 

samples used in this work were taken from film central area of Y-0 to Y-2 and X-0 to 

X-3. 
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The UXHP-PCL exhibited anisotropy in both geometric structures and surface 

hydrophilicity. However, due to the intrinsic properties of low melting point (~60 oC) 

and ester bond, PCL surfaces were susceptive to undergo the subsequent modification 

steps such as plasma and hydrolysis treatment [17]. Interestingly, the micro-ridges 

and grooves of UXHP-PCL were shown to be resistant to hydrolysis within the period 

investigated, suggesting that the anisotropic geometries conferred by uniaxial 

stretching could undergo proper modification for incorporating more desired 

physicochemical characteristics such as RGD-peptides and CD34, on UXHP-PCL for 

specific applications [222, 239]. The anisotropic surface hydrophilicity observed on 

UXHP-PCL could be attributed by the increased surface roughness in perpendicular 

direction due to the presence of 3D micro-ridges and grooves [240]. It was worthy to 

note that during the hydrolysis period, the anisotropy of surface hydrophilicity was 

retained. This suggested that in addition to “contact guidance”, alterations to the 

physico-chemical interactions at the biomaterial surface might be introduced to 

induce gradients that further influence and initiate cellular alignment [146, 241]. 

 

The biological benefits of UXHP-PCL were demonstrated in modulating MSCs 

behaviour. MSCs were selected because of their potential as a cell source for tissue 

engineering [242]. UXHP-PCL anisotropic geometries were capable of eliciting MSCs 

alignment in a controllable direction, as demonstrated by both cytoskeletal and 

cytoplasmic staining. Ridge-depth, during the cell-substrate interaction, has been 

known to influence cellular responses to a given lateral dimension [243, 244]. The 

MSCs alignment on UXHP-PCL anisotropic geometries suggested that the ridge-depth 

conferred by uniaxial stretching was able to facilitate cellular responses to the 

geometric structures. A limitation of the current process as compared to other 
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microfabrication techniques was the inability to control precisely ridge-depth, which 

ranged from 200 to 900 nm in the UXHP-PCL. An “optimum” ridge-depth, however, 

remains to be elucidated, with recent studies suggesting that topography 

heterogeneity, rather than absolute dimensions, are more physiologically relevant 

[138]. Further work was warranted to better understand the influence of 

heterogeneous ridge-depth on MSCs responses including differentiation and function. 

 

Cell alignment in previous studies has been relatively loosely defined such as the 

cumulative cell number within ±10 ° [230], ±15 o [121] and ±30 o [245]. Here, a more 

accurate measurement was employed. Although geometric dimensions tend to 

influence the interaction between cells and substrates, the reported alignment 

efficiency of MSCs on UXHP-PCL (>85 %, ±10 °) was comparable with the previous 

reports on PCL micropatterns [227] and considerably higher than those on other 

reported patterns (e.g. Silicon: ~50 %, ±10 o [230]; PLLA-PCL: <70 %, ±15 o [121]). 

It was likely that both the 3D micro-ridge/grooves and anisotropic surface 

hydrophilicity acted as cues to contribute simultaneously to the high alignment 

efficiency [146, 241]. Interestingly, the MSC alignment as observed was a dynamic 

one. MSCs were able to adjust their orientations according to the ridges, which 

achieved high degree of cellular alignment over time. It has been known that 

substrates with microdimensions had better ability to modulate cell alignment than 

those with nanodimensions [219]. However, too large a dimension, particularly in 

groove-width larger than 50 µm, often resulted in delayed and low alignment 

efficiency, and cellular confluence was required before alignment occurred [146, 

246]. In comparison, MSCs were able to align rapidly on UXHP-PCL anisotropic 

geometries despite low cell density. 
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One important aspect concerning the actual applications of anisotropic topography to 

generate aligned tissue constructs was the consistent regulation of cues on cellular 

alignment. Here, the aligned MSC organisation within the entire film remained for 

more than two weeks, with no observed reduction in the alignment efficiency, 

suggesting the ability of UXHP-PCL in facilitating long-term MSCs alignment. 

Moreover, the alignment orientation of MSCs was consistent over time, with a 

controllable direction determined by the ridges. In contrast, cell alignment on 

chemical patterns was known to undergo changes in cellular orientations during cell 

proliferation [245], likely attributed to the preference of cells to 3D topographical 

structures over 2D chemical cues [247]. This demonstrated a consistent elicitation of 

UXHP-PCL topographies on MSC alignment. In potential applications of engineering 

3D layer-stacked cell-scaffold constructs, the orientation of cell alignment in each 

layer could be tailored by the adjustment of placed film angles. Meanwhile, UXHP-

PCL anisotropic geometries increased MSC elongation as compared to the control 

group, with stable cellular elongation after 3 days of culturing. Such consistent 

regulation in cellular alignment and elongation was known to have profound effects 

on MSC fate including differentiation towards muscle cells [246, 248]. Moreover, 

UXHP-PCL did not present any cytotoxicity, but allowed MSCs to proliferate over 

time. The anisotropic topographies of UXHP-PCL achieved robust spatial and 

temporal regulation of MSC elongation and alignment. 

 

3.5 Summary 

In this work, a novel solvent-free, reproducible and simple method of uniaxial 

stretching was developed to create geometric cues on bioresorbable films for stem cell 
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alignment control. Results showed that uniaxial stretching of PCL films resulted in 

anisotropic geometries, consisting of 3D self-assembling micro-ridges and grooves 

(Ridge-length: ~90 µm, Inter-ridge-distance: ~6 µm, Ridge-depth: 200-900 nm) that 

highly orientated and homogeneously distributed towards the stretching direction over 

film surface. The inter-ridge-distance and ridge-length could be varied through 

changing of stretch temperature and draw ratio. The PCL ridge/groove arrays allowed 

surface modification such as hydrolysis for achieving improved hydrophilicity, while 

maintaining the ridges and grooves well. MSCs cultured with the PCL ridge/groove 

arrays revealed an aligned organisation in a controllable orientation along the ridges, 

without indication of cytotoxicity or reduction in cellular proliferation. Compared to 

HP-PCL flat surfaces, MSCs interacting with the anisotropic geometries achieved 

larger increase in cellular alignment (>85 %) and elongation for a prolonged period 

(>2 weeks). These results demonstrated that uniaxial stretching could have potential 

in patterning film surface for biomimetic VTE applications. PCL films with 

anisotropic ridge/groove arrays could be used as “functional cues” for eliciting cell 

alignment and elongation as well as “basic units” in conjunction with stem cells for 

regenerating complex tissue such as blood vessels that require high cellular alignment 

and anisotropic functions. 
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Chapter 4	  Regulated Mesenchymal Stem Cell 

Behaviour via Anisotropic Geometries for 

Vascular Tissue Engineering 

 

 

4.1 Introduction 

Tissue engineering (TE) offers a novel therapy to improve or regenerate vascular 

function using a combination of biomaterials, cells and engineering techniques [11, 

16]. As an essential structure, tunica media is crucial for healthy artery functions to 

maintain the endothelium phenotypes, support mechanical strength and regulate blood 

pressure by contraction and relaxation to a variety of stimulus [16, 249]. These have 

been known to rely on the specific architectures of tunica media, which composed of 

circumferentially aligned vascular smooth muscle cells (SMCs) and elastin/collagen-

enriched extracellular matrices (ECM) [16, 28, 115, 215, 249]. 

 

Geometric features consisting of orientated fibers [250] and ridge/groove arrays [2] 

have been designed to mimic the anisotropy in tunica media architectures for vascular 

tissue regeneration. It has been known that SMCs cultured on ridge/groove arrays 

achieved reduced cell proliferation rates and anisotropic patterns as in native tunica 

media [2, 61, 155]. Moreover, geometric features have shown potential to modulate 

SMCs phenotypes towards the contractile status [28, 115]. Despite these great 

achievements of basic research, the incorporation of geometric features onto three-



Chapter 4 Stem Cell Regulation  

	   -92- 

dimensional (3D) tubular vascular scaffolds remains a challenging issue yet to be 

solved. Currently available techniques such as soft-lithography, electrospinning and 

direct-laser-writing often involved tedious procedures and/or chemical solvent usage 

and residue [251]. Furthermore, both soft-lithography and direct-laser-writing are 

more suitable for thick substrates than thin films in a small area, hampering the 

generation of "off-the-shelf", non-cytotoxic and cost-effective vascular grafts. 

 

Traditionally, patient-specific SMCs have been utilised as a classic cell source for 

tunica media regeneration [252]. Recent studies, however, found that adult mature 

SMCs have limited proliferation with decreased collagen and elastin secretion, and 

tend to de-differentiate towards the synthetic status, leading to construction of 

vascular grafts becoming difficult [85, 96, 249]. Mesenchymal stem cells (MSCs) are 

potentially useful for vascular tissue regeneration [85]. In vitro, MSCs can be 

expanded and differentiated into SMCs under stimulus of various biochemical factors 

including transforming growth factor (TGF-β1), platelet-derived growth factor and 

ascorbic acid [57, 85, 96, 249]. Moreover, MSCs as compared to adult mature SMCs 

have advantages in antithromogenicity [94], easy access [85] and lack of expression 

of major histocompatibility complex II antigens to response for immune rejection [93]. 

However, using growth factors to differentiate MSCs is expensive. Optimal 

concentration is difficult to control and the side effects of growth factors may result in 

atherosclerosis [57]. 

 

In Chapter 3, poly(ε-caprolactone) (PCL) film geometric cues have been developed 

using uniaxial stretching, and shown robust capability of aliging MSCs. In this work, 

PCL films with the ridge/groove arrays are applied to biomimic the anisotropy of 
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vascular basement membrane (BM) and modulate MSCs behaviour for vascular TE 

(VTE) application. The PCL films have been shown to up-regulate the expression of 

SMCs contractile markers in MSCs, and facilitate the construction of 3D tubular VTE 

scaffolds. This work would support the potential of using geometric cues to biomimic 

BM anisotropy in conjuction with stem cells for VTE application. 

 

4.2 Materials and Methods 

4.2.1 Experimental Design 

PCL films with biomimetic 3D geometric cues in incorporation of human MSCs were 

utilised towards vascular TE application. As shown in Scheme 4-1, uniaxial stretching 

was applied on PCL films fabricated from different methods. Selection of PCL films 

has been performed, and the PCL films with best mechanical property and proper 

geometries were ultilised to promote regulate MSCs function towards a contractile 

SMCs-like phenotype and for the construction of 3D vascular scaffolds. 
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Scheme 4-1: Schematic diagram illustrating the experimental design. Uniaxial stretching was applied 
to generate ridge/groove arrays on various PCL films. Materials characterisations focused on surface 
morphologies and film mechanical properties. In vitro cellular studies included MSCs alignment, 
cytoskeleton and nucleus changes, and the expression of SMCs contractile markers. Finally, PCL films 
with ridge/groove arrays in incorporation of MSCs were used for the construction of 3D tubular VTE 
scaffolds. 
 

4.2.2 Materials 

Monoclonal mouse anti-human smooth muscle α-actin (SM-α-actin), calponin, 

myosin heavy chain (SM-MHC), IgG2a and IgG1 were purchased from Dako 

(Singapore). Goat anti-mouse IgG (H+L)-fluorescein isothiocyanate (FITC) was 

obtained from Life Technologies (Singapore). RNeasy mini kit and RT² first strand 

kit were obtained from Qiagen (Singapore). Other materials and cells used were 

obtained as described in Chapter 3, Section 3.2.2. 
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4.2.3 Sample Preparation 

PCL pallets were dissolved in dichloromethane to obtain PCL solution at a 

concentration of 2 wt.%. Solvent-cast PCL (SC-PCL) films were obtained through 

casting of the PCL solution into a glass mold followed by evaporation in a fume hood. 

Cast-stretch PCL (CS-PCL) films were obtained using an in-house developed 

machine via cast extrusion. Heat-press PCL (HP-PCL) films were fabricated via heat 

press of PCL solid mass at 80 oC and 300 MPa. The PCL films were then subjected to 

uniaxial stretching at a temperature of 54 oC and a draw ratio of 4 [126], and named 

as UXSC-PCL, UXCS-PCL and UXHP-PCL, respectively. 

 

4.2.4 Field Emission Scanning Electron Microscopy (FESEM) 

PCL film morphologies were examined via FESEM (S-4300, Hitachi, Japan).  Inter-

ridge-distance was measured following the description in Chapter 3, Section 3.2.4. 

Three samples were used for each kind of PCL film. 

 

4.2.5 Atomic Force Microscopy (AFM) 

PCL film morphologies were also examined via AFM (MFP-3D, Asylum Research, 

USA) examination. Ridge-depth was measured following the description in Chapter 

3, Section 3.3.5. Data were present as the average of the mean from each 

measurement. Three samples were used for each kind of PCL film. 

 

4.2.6 Tensile Testing 

PCL films were cut into rectangular shapes measuring 5x30 mm2. Thickness was 

measured using a Digimatic Micrometer (APB-1D, Mitutoyo Corporation, Japan) at 5 

random positions of each sample. Tensile testing was performed using a tensile test 
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machine (Model 3345, Instron, USA) with a load cell of 100 N and a pulling rate of 

10 mm/min. An offset-strain of 0.005 was used to determine the yield stress and strain 

for UXCS-PCL, UXSC-PCL and UXHP-PCL. A low yield point just beyond the 

maximum point after linear-elastic region was used to determine the yield stress of 

HP-PCL. The corresponding strain at linear-elastic part was determined as the yield 

strain. Three samples were used for each kind of PCL film. 

 

4.2.7 Cell Isolation and Culture 

MSCs were isolated and cultured following the description in Chapter 3, Section 

3.2.9. In this work, MSCs used were within Passage-6. 

 

4.2.8 Confocal Laser Scanning Microscopy (CLSM) 

Images of fluorescence-labeled cells were examined using CLSM (CLSM, FV1000, 

Olympus, Japan) following the description in Chapter 3, Section 3.2.10. 

 

4.2.9 Cell Alignment and Elongation 

MSCs were labeled via both fixed-cell cytoskeletal and live-cell cytoplasmic staining 

using TRITC-conjugated phalloidin and FDA, respectively. Cellular angles were 

analysed from the CLSM images of live cells using the built-in function of NIH 

ImageJ software (USA). The method was described in Chapter 3, Section 3.2.11. 

Cells with angles that fall into ±10 o were considered to be aligned [126]. The 

alignment efficiency was described as the normalised cell number within ±10 o. A 

perfectly isotropic sample would be expected to have an alignment efficiency of 

~11.7 %. The cell elongation was described using a long-to-short elliptic axis index, 

which was equal to the ratio of major and minor elliptic axis of a cell. A circle would 
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have a long-to-short index of 100 %. Three copies were used and four random regions 

per copy were analysed for each PCL film sample. 

 

4.2.10 Cell Nucleus Alignment and Elongation 

Cell nuclei were visualised using DAPI and images were captured via CLSM 

following the description in Chapter 3, Section 3.2.10. The angle of cell nucleus was 

analysed using the built-in function of ImageJ. Cellular nuclei with angles that fall 

into ±10 o were considered to be aligned. Alignment efficiency was described as a 

percentage number of aligned nuclei. A perfectly isotropic sample would be expected 

to have an alignment efficiency of ~11.7 %. Nucleus elongation was determined using 

a cell nucleus shape index (CNSI, circularity = 4*π*area/perimeter2), with a CNSI of 

1 representing a circle. Three samples were used and four random regions per sample 

were analysed for each kind of PCL film. 

 

4.2.11 Real-time Quantitative Reverse Transcription Polymerase Chain Reaction 

(qRT-PCR) 

Real-time qRT-PCR was performed to investigate the expression of interested gene 

targets (Table 4-1) in MSCs. Briefly, MSCs seeded on TCP flat surfaces (control 

group), HP-PCL flat surfaces and UXHP-PCL ridge/groove arrays were cultured in 

D10 under identical conditions for 5 days. Total RNA was extracted using RNeasy 

mini kit. cDNA was synthesized using RT² first strand kit. qRT-PCR was performed 

on a ABI Prism 7000 real-time detection system (AB Applied Biosystem, USA) for 

45 cycles. Primers specific to the targeted genes were obtained from PrimerBank 

(http://pga.mgh.harvard.edu/primerbank/). The normalised expression levels of each 

gene targeted were determined by comparing the quantified cDNA transcript level to 
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that of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, used as the internal 

standard) [126]. The results were finally normalised to the relative expression levels 

of each gene of TCP group. Three experiments and triplicates were done. 

 

Table 4-1: Compiled list of gene targets probed for SMC contractile markers 

GenBank Accession 
Number 

Gene Target Sequence (5’-3’)  Amplicon Length (bp)  

NM_001256799 GAPDH ACAGTTGCCATGTAGACC 
TTTTTGGTTGAGCACAGG 

95 

NM_001613 ACTA2 AGATCAAGATCATTGCCCC 
TTCATCGTATTCCTGTTTGC 

116 

NM_001299 CNN1 CATCATTCTTTGCGAATTCATC 
CAATTTTGGGTTGACTCATTG 

75 

NM_022844 MYH11 CTATCTGCTAGAAAAATCACGG 
CACTTCTCATCTTCTCCTTG 

104 

 

4.2.12 Immunocytochemistry Assays 

Immunocytochemistry assays were performed to investigate the expression of 

contractile SMCs markers in MSCs at protein level. MSCs seeded on HP-PCL flat 

surfaces and UXHP-PCL ridge/groove arrays were cultured in D10 for 5 days. After 

fixation, permeabilisation and blocking, cells were incubated with primary 

monoclonal antibodies (Table 4-2) for 60 min at room temperature. Cells incubated 

with the corresponding IgG isotype of each primary antibody were set as negative 

control (Neg Ctrl). After washing thrice with PBS, cells were further incubated with 

the second antibody (goat anti-mouse IgG-FITC) for another 60 min at room 

temperature. After washing thrice with PBS, cells were then incubated with DAPI 

(1:1000 in PBS) for 5 min for the nucleus visualisation. Cell images were captured by 

CLSM. The parameters used for each SMCs contractile marker were kept the same 

for all groups. 
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Table 4-2: Compiled list of monoclonal antibodies for SMCs contractile markers 

1
st
 Monoclonal Antibodies 

(Mouse anti-human SM) 
IgG Isotypes Dilution in 1-wt% BSA 

Solution (v/v) 

SM-α-actin IgG 2a k 1:100 

Calponin IgG 1 k 1:100 

SM myosin heavy chain (SM-MHC) IgG 1 k 1:50 

2
nd

 antibody 
(Goat anti-mouse IgG-FITC) 

/ 1:500 

 

4.2.13 Flow Cytometry 

Intracellular Quantitative Analysis: Fluorescence-activated cell sorting (FACS) 

was applied to quantify the protein expression levels of targeted SMCs contractile 

markers. MSCs were seeded and cultured following the description in Chapter 4, 

Section 4.2.12. After 5 days of culture, cells were treated with trypsin-EDTA (0.25 

%) and collected through centrifugation (400 rcf, 5 min). Cells were then incubated 

with SMCs-specific primary monoclonal antibodies and related IgG isotypes (Neg 

Ctrl). Intracellular fluorescence was detected using a flow cytometry (Beckman, 

USA) equipped with an argon laser emission of 488 nm. Data were analysed from 

10,000 cells per sample using the built-in function of Summit V4.3.02 software 

(Beckman, USA). The gate was set with a positive cell number in Neg Ctrl being less 

than 0.5 %. Three experiments and triplicates were carried out. 

 

Extracellular Quantitative Analysis: Cellular surface protein expression of targeted 

markers on the isolated MSCs was analysed using FACS. Briefly, MSCs were 

cultured in cell culture flask to get ~75 % confluence. Cells were then trypsinised, 

fixed and incubated with monoclonal antibodies that were specific for stem cell 

immunophenotype and related IgG1 isotypes (Neg Ctrl). Cellular fluorescence was 
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determined and analysed following the description in Section 4.2.13 (Intracellular 

Quantitative Analysis). 

 

4.2.14 Data Analysis 

Data analysis was performed on Prism 5 software. Results were reported as mean ± 

SD. A value of p <0.05 was considered to be statistically significant. 

 

4.3 Results 

4.3.1 Stem Cell Immunophenotype of Isolated Human MSCs 

In vitro isolated, culture-expanded human MSCs (Passage-6) grew as plastic-adherent 

cells (Figure 4-1). FACS analysis of surface markers' expression of the cells revealed 

typical stem cell immunophenotype, which was negative (<1.5 %) for the 

haemopoietic and endothelial markers: CD19, CD31 and CD34, and positive (>95 %) 

for the mesenchymal markers: CD73 (SH-3, SH-4), CD105 (SH-2) and cell adhesion 

molecules: CD90 (Table 4-3). These observations suggested that the isolated, culture-

expanded MSCs were stem cells [253]. 

 

Table 4-3: Stem cell immunophenotype of isolated MSCs (Passage 6) 

Stem-Cell-Specific 
Monoclonal Antibodies IgG Isolypes 

Positive Cell Number 

Neg Ctrl (%) Experimential (%) 

CD73 IgG1-APC IgG1-APC 0.05 99.95 

CD45 IgG1-FITC IgG1-FITC 0.33 0.36 

CD90 IgG1-FITC 99.76 

CD19 IgG1-RPE IgG1-RPE 0.05 0.03 

CD34 IgG1-RPE 1.22 

CD105 IgG1-RPE 99.48 
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Figure 4-1: Light microscopy images of in vitro culture expanded human MSCs (Passage-6). 
 

4.3.2 Anisotropic 3D Ridge/Groove Arrays on PCL Films 

As shown in Figure 4-2A, FESEM images of PCL films revealed different 

morphologies. SC-PCL, HP-PCL and CS-PCL exhibited honeycomb-like surfaces, 

flat surfaces with some indentations, and smooth surfaces, respectively. Interestingly, 

FESEM images of all these PCL films after uniaxial stretching showed anisotropic 

geometries, consisting of highly orientated micro-3D ridges and grooves following 

the stretching direction (Figure 4-2B). The ridge/groove arrays were confirmed by the 

examination of AFM. 
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Figure 4-2: (A) Field emission scanning electron microscopy (FESEM) images of SC-PCL, HP-PCL 
and CS-PCL revealed different surface morphologies (Scale bar = 200 µm). (B) FESEM and atomic 
force microscopy (AFM) images of UXSC-PCL, UXHP-PCL and UXCS-PCL revealed film morphologies 
of anisotropic geometries (Scale bar = 50 µm for FESEM images). 
 

As shown in Figure 4-3A, the ridge/groove arrays of UXSC-PCL revealed the widest 

inter-ridge-distance among the three films investigated (9.0x of UXHP-PCL and 10.2x 

of UXCS-PCL, p <0.001). UXHP-PCL and UXCS-PCL exhibited similar inter-ridge-

distance (p >0.05) of ~5 µm. Furthermore, Figure 4-3B shows that UXSC-PCL also 

possessed the largest ridge-depth, which was 2.9x of UXHP-PCL and 17.5x of UXCS-

PCL (p <0.001). The ridge/groove arrays of UXHP-PCL exhibited a larger ridge-depth 

than that of UXCS-PCL (5.1x increase, p <0.001). 
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Figure 4-3: (A) Inter-ridge-distance. (B) Ridge-depth. Among three-stretched PCL films, UXHP-PCL 
ridge/groove arrays revealed medium inter-ridge-distance and ridge-depth. (n = 3; ***, p <0.001; NS, p 
>0.05) 
 

4.3.3 Film Mechanical Properties 

As shown in Figure 4-4A, tensile testing of UXSC-PCL, UXCS-PCL and UXHP-PCL 

exhibited similar stress-strain correlations, with the curves consisting of linear 

segments up to the proportionality limit and non-linear parts characterising with 

increased elongation, but non-corresponding rise in the loading stress. Analysis from 

the stress-strain curves showed that UXHP-PCL ridge/groove arrays as compared to 

UXSC-PCL and UXCS-PCL had better film mechanical performances in regards to the 

yield stress (0.3-0.5x increase, p <0.05), Young's Modulus (2.1-2.6x increase, p 

<0.001), ultimate stress (0.8-2.4x increase, p <0.001) and ultimate strain (0.3-0.5x 

increase, p <0.001; Table 4-4). Moreover, the film yield strain of UXHP-PCL 

ridge/groove arrays was similar to that of UXCS-PCL ridge/groove arrays (p >0.05) 

and much larger than that of UXSC-PCL ridge/groove arrays (0.9x increase, p <0.001). 
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Figure 4-4: (A) Tensile stress-strain curvesof PCL films. (B) Enlarged stress-strain curves of UXHP-
PCL and HP-PCL. UXHP-PCL exhibited continuous stress increase after achieving the linear stress-
strain segment, which was similar to those of UXSC-PCL and UXCS-PCL, and different from that of 
HP-PCL. 
 

A comparison was then performed between HP-PCL flat surfaces and UXHP-PCL 

ridge/groove arrays. As shown in Figure 4-4B, UXHP-PCL ridge/groove arrays 

exhibited a different film stress-strain correlation from that of HP-PCL flat surfaces. 

The film stress-strain curve of HP-PCL flat surfaces after achieving the proportional 

limit experienced a dip in the stress value following with a considerable elongation, 

but less raise in loading stress. Furthermore, UXHP-PCL ridge/groove arrays as 

compared to HP-PCL flat surfaces had significant increase in film yield stress (2.5x 

increase, p <0.001), Young's Modulus (2.1x increase, p <0.001) and ultimate stress 

(2.6x increase, p <0.001; Table 4-4). Meanwhile, uniaxial stretching did not result in 

any obvious reduction in the film yield strain (P >0.05). 
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Table 4-4: Film mechanical properties and theoretical burst stress (n = 3) 

PCL film 
Thickness Yield stress Yield strain Young's Modulus Ultimate stress Ultimate strain Burst pressure* 

(µm) (MPa) (%) (MPa) (MPa) (%) (mmHg) 

UXCS-PCL 24.7 ± 5.6 42.8 ± 8.1 35.8 ± 4.3 107.3 ± 23.4 81.0 ± 4.2 277.5 ± 10.6 2280.2 ± 322.5 

UXSC-PCL 16.3 ± 1.6 15.9 ± 3.0 16.8 ± 1.3 94.6 ± 20.4 43.3 ± 4.3 315.0 ± 30.4 1305.1 ± 322.5 

UXHP-PCL 37.9 ± 5.5 55.7 ± 7.2 31.3 ± 2.8 336.8 ± 34.9 145.9 ± 15.0 419.3 ± 15.0 5873.0 ± 652.6 

HP-PCL 169.7 ± 17.1 16.0 ± 3.0 30.7 ± 2.8 109.2 ± 33.2 40.9 ± 9.8 2450.0 ± 0.0 / 

*TEVG scaffolds based on single film-layer with a radius of 2.3 mm. 
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4.3.4 MSCs Alignment and Elongation 

Figure 4-5A shows the live-cell cytoplasmic staining of MSCs. CLSM images 

demonstrated that MSCs grew on the surfaces of CS-PCL, SC-PCL and HP-PCL 

exhibited random organisation. Interestingly, MSCs on UXSC-PCL and UXHP-PCL 

ridge/groove arrays achieved preferential aligned growth towards the ridge directions 

(Figure 4-5B). However, MSCs on UXCS-PCL ridge/groove arrays were found to 

organise randomly (similar to CS-PCL flat surfaces). 

 

 

Figure 4-5: Confocal laser scanning microscopy (CLSM) images of MSCs. Cells (Passage-3, 5 k/cm2) 
were cultured in D10 for 4 days and stained with cytoplasm using FDA (Green colour). (A) MSCs on 
un-stretched PCL film surfaces exhibited random organisation. (B) MSCs aligned towards the 
ridge/grooves of UXSC-PCL and UXHP-PCL, but randomly organized on UXCS-PCL (Double-headed 
arrows: ridge direction; Scale bar = 250 µm). 
 

Quantitative analysis of cellular angles from the CLSM images showed that MSCs 

cultured on UXSC-PCL and UXHP-PCL ridge/groove arrays achieved considerable 

increase in cell alignment efficiencies as compared to those cells on SC-PCL (2.7x 
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increase, p <0.001) and HP-PCL (2.7x increase, p <0.001) surfaces, respectively 

(Figure 4-6A). However, MSCs on UXCS-PCL ridge/groove arrays did not exhibit 

increased cellular alignment as compared to those cells on CS-PCL flat surfaces (p 

>0.05). Interestingly, the alignment efficiencies for MSCs on the three un-stretched 

PCL film were less than 20 %, although they exhibited quite different morphologies. 

 

 

Figure 4-6: Quantitative analysis of MSCs alignment and elongation. Cells (Passage-3, 5 k/cm2, for 4 
days in D10) were examined by CLSM using FDA live-cell cytoplasmic staining. (A) Cell alignment 
efficiency descripted by the normalised cell number in ±10 o. (B) Cell elongation descripted by the 
ratio of long-to-short elliptic axis. Compared to UXCS-PCL and UXSC-PCL, UXHP-PCL organized 
MSCs with better cellular alignment efficiency and elongation (n = 3; ***, p <0.001; **, p <0.01; *, p 
<0.05; NS, p >0.05). 
 

Besides the increased cellular alignment, MSCs on UXSC-PCL and UXHP-PCL 

ridge/groove arrays also achieved considerable increase in cellular elongation (Figure 

4-6B). The long-to-short elliptic index for MSCs on UXSC-PCL and UXHP-PCL 

ridge/groove arrays was 0.5-fold higher than those of the cells on SC-PCL and HP-

PCL surfaces, respectively (p <0.001). MSCs on UXCS-PCL ridge/groove arrays also 

achieved increased cellular elongation as compared to cells on CS-PCL flat surfaces 

(0.1x increase, p <0.05). This suggested that cell alignment might not be the only 

determination to cellular elongation. 
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Based on the analysis above, UXHP-PCL ridge/groove arrays showed a larger 

capability of eliciting MSCs alignment (1.3x of UXSC-PCL, 3.9x of UXCS-PCL, p 

<0.001) and elongation (1.1x of UXSC-PCL, 1.4x of UXCS-PCL, p <0.01) than those 

of UXSC-PCL and UXCS-PCL ridge/groove arrays. Further optimisation was 

performed on UXHP-PCL ridge/groove arrays.  

 

4.3.5 Reorganised MSCs Cytoskeleton and Nucleus Deformation 

Effects of UXHP-PCL ridge/groove arrays on sub-cellular organelles of MSCs were 

further investigated. As shown in Figure 4-7A, CLSM images of F-actin-labeled 

cytoskeleton revealed a plasticity phenotype for MSCs on HP-PCL flat surfaces, with 

well spreading morphology and the more but random stress fibers. However, MSCs 

cultured on UXHP-PCL ridge/groove arrays exhibited a typically contractile SMC-like 

phenotype, with spindle-like morphology, reduced spreading area, and the fewer and 

ordered stress fibers orientated towards the ridges (Figure 4-7B) [28, 56, 113]. 

 

 

Figure 4-7: Cytoskeletonal reorganisation of MSCs on UXHP-PCL. Cells (Passage-6, 5 k/cm2, for 5 
days of culture in D10) were stained with F-actin (Red colour) and DNA (Blue colour), and examined 
using CLSM. (A) MSCs on HP-PCL flat surfaces. (B) MSCs on UXHP-PCL ridge/groove arrays 
(Double-headed arrows: ridge direction; Scale bar = 50 µm). 
 

Figure 4-8A shows the influences of UXHP-PCL ridge/groove arrays on MSCs nuclei. 

CLSM images of DNA-labeling exhibited obvious structure deformation of MSCs 
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nuclei, with orientated and elongated shapes towards UXHP-PCL ridge/groove arrays. 

In contrast, MSCs nuclei were more rounded and randomly organised on HP-PCL flat 

surfaces. Comparatively, the nuclei for MSCs cultured on UXHP-PCL ridge/groove 

arrays achieved considerable increase in the nucleus alignment as compared to those 

cells on HP-PCL flat surfaces (2.5x increase, p <0.001; Figure 4-8B). Furthermore, 

MSCs nuclei exhibited increased nucleus elongation on PCL ridge/groove arrays, 

with significant decline at CNSI as compared to those cells on the PCL flat surfaces 

(0.28x reduction, p <0.001; Figure 4-8C).  

 

 

Figure 4-8: MSCs nucleus deformation on UXHP-PCL. Cells (Passage-6, 5 k/cm2, for 5 days of culture 
in D10) were stained with DNA using DAPI (Blue colour). (A) CLSM images of MSCs nuclei on HP-
PCL and UXHP-PCL surfaces (Double-headed arrows: direction of PCL ridge/groove arrays; Scale bar 
= 100 µm). (B) Quantitative analysis of nucleus alignment and elongation (n = 3; ***, p <0.001). 
 

4.3.6 MSCs Differentiation 

Impacts of UXHP-PCL ridge/groove arrays were linked to MSCs differentiation 

towards vascular TE applications. Results from qRT-PCR analysis showed that MSCs 
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obtained considerable increase in the targeted gene expression levels of ACTA2, 

CNN1 and MYH11 on UXHP-PCL ridge/groove arrays, which were 3.2-fold, 2.8-fold 

and 0.4-fold higher than those of the control group of TCP flat surfaces, respectively 

(Figure 4-9). Here, ACTA2, CNN1 and MYH11 were the targeted gene markers for 

the early- (SM-α-actin), middle- (calponin) and late-term (SM-MHC) differentiation 

of vascular SMCs into a contractile phenotype, respectively [28, 56, 113, 249]. In 

contrast, MSCs on HP-PCL flat surfaces exhibited similar gene expression level for 

ACTA2, and lower levels for CNN1 and MYH11 as compared to those of the TCP 

control. Comparing HP-PCL and UXHP-PCL groups, MSCs cultured on PCL 

ridge/groove arrays achieved increased gene expression levels of ACTA2 (2.7x 

increase, p <0.001), CNN1 (3.8x increase, p <0.001) and MYH11 (2.4x increase, p = 

0.15). 

 

Immunocytochemistry analysis was performed to understand the regulation of UXHP-

PCL ridge/groove arrays on the targeted gene expression at a more functional level of 

proteins. Figures 4-10A-C show the CLSM images of immunocytochemistry-labeled 

MSCs on HP-PCL flat surfaces and UXHP-PCL ridge/groove arrays. Results revealed 

positive protein expression of SMCs contractile markers including SM-α-actin, 

calponin and SM-MHC in MSCs cultured with UXHP-PCL ridge/groove arrays, 

although fluorescence intensity was reduced gradually for markers from the early- to 

late-term differentiation. No fluorescence was detected for MSCs in the isotype 

negative control (Neg Ctrl) of each investigated marker, demonstrating that the 

positive expression of contractile SMCs genes observed in MSCs at the protein level 

was not from the non-specific immune-conjunction. 
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Figure 4-9: Gene expression change of SMCs contractile markers in MSCs on UXHP-PCL. Cells 
(Passage-6, 5 k/cm2) were cultured with tissue culture plate (TCP, Control group) flat surfaces, HP-
PCL flat surfaces and UXHP-PCL ridge/grooves in D10 for 5 days. Quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) analysis showed that UXHP-PCL up-regulated the expression 
levels of ACTA2, CNN1 and MYH11 in MSCs.  (n = 3; vs HP-PCL group: ***, p <0.001; NS, p = 
0.15). 
 

Comparing HP-PCL and UXHP-PCL groups, MSCs cultured on PCL ridge/groove 

arrays showed increased protein expression of SMCs contractile markers, with more 

positive-stained cells and higher fluorescence intensity. MSCs through interaction 

with UXHP-PCL ridge/groove arrays further achieved ordered organisation of 

contractile SMCs-like stress filaments, preferentially orientated towards ridge 

directions, while the filaments organised randomly for MSCs on HP-PCL flat 

surfaces. 
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Figure 4-10: Protein expression change of SMCs contractile markers in MSCs on UXHP-PCL. Cells 
(Passage-6, 5 k/cm2) were cultured on HP-PCL flat surfaces and UXHP-PCL ridge/grooves in D10 for 5 
days, and immunocytochemistry-labeled with IgG isotypes (Negative control) and SMCs contractile 
markers: SM-α-actin for early-term differentiation (A), calponin for middle-term differentiation (B), 
and SM-MHC for late-term differentiation (C). MSCs on UXHP-PCL positively expressed SMCs 
contractile filaments in the ordered organisation towards ridges (DNA: blue colour; SMCs contractile 
markers: green colour; Double-headed arrows: direction of PCL ridge/groove arrays; Scale bar = 50 
µm). 
 

Figures 4-11A and B exhibit the quantification of protein expression of SMCs 

contractile markers in MSCs. FACS analysis of the immunochemistry-labeled cells 

confirmed that MSCs on UXHP-PCL ridge/groove arrays and HP-PCL flat surfaces 

positively expressed SMCs contractile markers. Positive cell number for the three 

investigated markers were larger than 30 % on both PCL film surfaces, but less than 

0.5 % in the isotype Neg Ctrl (p <0.001). Compared to HP-PCL group, MSCs on 

UXHP-PCL ridge/groove arrays achieved significant increase in the positive cell 

number for the three SMCs contractile markers, with approximate 9.8, 7.9 and 11.3 % 
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increase for SM-α-actin, calponin and SM-MHC, respectively (p <0.001; Figure 4-

11A). Furthermore, MSCs obtained up-regulated expression intensity of SMCs 

contractile markers at the protein level, with the fluorescence detected being much 

higher than that of HP-PCL group (SM-α-actin, 23.5 % increase, p <0.001; calponin, 

24.3 % increase, p <0.05; and SM-MHC, 17.1 % increase, p <0.01; Figure 4-11B). 

 

 

Figure 4-11: Quantitative analysis of the protein expression of SM-α-actin, calponin and SM-MHC. 
(A) Positive cell number. (B) Fluorescence intensity. Results from flow cytometry (FACS) showed that 
MSCs (Passage-6, 5 k/cm2) cultured with UXHP-PCL ridge/groove arrays for 5 days achieved enhanced 
expression of SMCs contractile markers at the protein level, with increase in both positive cell number 
and expression intensity. (n = 3; ***, p <0.001; **, p <0.01; *, p <0.05) 
 

4.3.7 3D Vascular Scaffold Construction 

Figure 4-12A shows the schematic for engineering of 3D tubular construction. 

Uniaxial-stretched PCL films were rolled around a round bar and sutured via heat 

welding. Figure 4-12B shows a UXHP-PCL-based 3D tubular construction with a 

diameter of ~2.3 mm. FESEM images of the construction revealed similar 

ridge/groove arrays on both sides of the wall, with orientations being circularly 
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perpendicular to the inside flow. With an immersion test using culture medium, the 

construction from UXHP-PCL ridge/groove arrays showed well-maintained tubular 

shapes and patency, while UXCS-PCL and UXCS-PCL ridge/groove arrays-based 

constructions obviously collapsed (Figure 4-12C). Furthermore, UXHP-PCL 

ridge/groove arrays-based constructions showed a larger theoretic burst stress as 

compared to those of constructions from UXCS-PCL and UXSC-PCL ridge/groove 

arrays according to Laplace's Law (Table 4-4) [254]. Seeding MSCs on both sides of 

the wall, layered-MSCs/PCL/MSCs were achieved for 5 days of static culturing, with 

controlled orientations being the same in the three layers (Figure 4-12D). 
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Figure 4-12: (A) Schematic diagram for engineering 3D vascular scaffolds (Red arrows: flow 
direction; blue arrows: ridge direction). (B) A small-diameter 3D tubular scaffolds from UXHP-PCL. 
FESEM images revealed ridge/grooves similarly presented on both wall surfaces along a direction 
perpendicular to the tube (Blue arrows: ridge direction; Scale bar = 100 µm). (C) Patency of the 3D 
tubular scaffolds from UXHP-PCL, UXCS-PCL and UXSC-PCL after immersion in culture medium. (D) 
Engineering of layered-MSCs/PCL/MSCs with similar direction in different layers (Blue arrows: ridge 
direction; scale bar = 200 µm). 
 

4.4 Discussion 

Geometric cues have offered a novel strategy to regenerate vascular tissue in 

anisotropic architectures. In this work, anisotropic ridge/groove arrays on PCL films 
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were generated to modulate human MSCs behaviour for vascular TE applications. 

Uniaxial stretching of different PCL films resulted in orientated ridge/groove arrays 

towards the stretching direction, with different ridge-depth and inter-ridge-distance. 

Compared to UXCS-PCL and UXSC-PCL, UXHP-PCL exhibited better film mechanical 

properties and proper ridge-depth and inter-ridge-distance for higher efficiencies of 

MSCs alignment and elongation. UXHP-PCL ridge/groove arrays modulated MSCs 

into a contractile SMCs-like phenotype, and up-regulated the expression of SM-α-

actin, calponin and SM-MHC at both the gene and protein levels. Furthermore, UXHP-

PCL ridge/groove arrays facilitated the engineering of 3D tubular constructions and 

were able to generate a wall of layered-MSCs/PCL/MSCs with the anisotropy as in 

native tunica media. 

 

It has been demonstrated that uniaxial stretching is capable of fabricating geometric 

cues and is applicable for semi-crystalline polymers such as PCL and polyethylene 

[126]. However, a concern was that whether it could be compatible with current film 

fabrication techniques. The results of this work demonstrated that uniaxial stretching 

produced orientated ridge/groove arrays on PCL films from different techniques such 

as heat-press, solvent-cast and cast-stretch, suggesting that uniaxial stretching could 

have a good compatibility with these techniques. Furthermore, uniaxial stretching of 

different PCL films resulted in variations in ridge-depth and inter-ridge-distance even 

at the same stretching temperature and draw ratio. This indicated that the film pre-

fabrication could have significant influences on the parameters of the resulted 

ridge/groove arrays. These findings would facilitate the further development of 

uniaxial stretching to be a robust technique for the generation of film geometric cues. 

 



Chapter 4 Stem Cell Regulation  

	   -118- 

Geometric cues to align cells are known via a mechanism of contact guidance [3, 146, 

255]. The PCL ridge/groove arrays from uniaxial stretching have shown a capability 

of eliciting cellular alignment that could be effective as geometric cues generated 

from soft-lithography, electrospinning and direct-laser-writing [126]. The efforts 

presented in this study highlighted the importance of identifying factors that 

influenced MSCs alignment. Compared to UXCS-PCL, the ridge/groove arrays of 

UXHP-PCL had a similar inter-ridge-distance but much higher ridge-depth. MSCs on 

UXHP-PCL aligned towards the ridge/groove arrays, but grew randomly on UXCS-

PCL surfaces. This indicated that the ridge-depth might be crucial for MSCs to align 

on the PCL ridge/groove arrays. Too small ridge-depth (e.g. ~116 nm of UXCS-PCL 

ridge/groove arrays) would not result in expected responses to the geometries. Such 

phenomena supported that a threshold of ridge-depth might be existed to determine 

whether the geometric features could be recognised by the cells [256]. Comparing 

UXSC-PCL and UXHP-PCL, the former had ridge/groove arrays with larger ridge-

depth. However, MSCs aligned to UXSC-PCL ridge/groove arrays at a lower 

efficiency than that of cells on UXHP-PCL ridge/groove arrays. This thus suggested 

that besides ridge-depth, inter-ridge-distance also impacted influences on MSCs 

responses, and cells tended to align at a higher efficiency to the PCL ridge/groove 

arrays with smaller inter-ridge-distances. These illustrated how geometric parameters 

are able to affect MSCs alignment to the PCL ridge/groove arrays. 

 

Recently, more in-depth effects of geometric cues have been linked to cellular 

function differentiation, especially for stem cells [28, 104, 115, 141, 161, 162]. Here, 

MSCs cultured on UXHP-PCL ridge/groove arrays were found to exhibit contractile 

vascular SMCs-like phenotype, with spindle-like morphology, smaller spreading area, 
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and the fewer cytoskeleton fibers [28, 155, 257]. Furthermore, MSCs on UXHP-PCL 

ridge/groove arrays up-regulated the expression of SMCs contractile markers: SM-α-

actin, calponin and SM-MHC. This has been demonstrated by both qRT-PCR and 

immunocytochemistry staining at both the gene and protein levels, respectively. 

These observations suggested that UXHP-PCL ridge/groove arrays probably 

modulated MSCs to differentiate towards a contractile SMCs-like status. Such effects 

of UXHP-PCL ridge/groove arrays on MSCs were in agreement with the previous 

findings in SMCs [28], and suggested that geometric cues could be used as tools for 

up-regulating the contractile SMCs-specific gene expression in MSCs and SMCs. 

Compared to the biochemical factors such as TGF-β1 [10, 57, 249], ascorbic acid [57] 

and bone morphogenetic protein-4 [249], geometric cues were much cheaper with less 

side effects (e.g. atherosclerosis) and could provide continuous stimulation [126]. 

Besides these advantages, it should also be noted that the expression level of SMCs 

late-differentiation marker (SM-MHC) was still lower in MSCs than those of the 

early- and middle-term markers. This suggested that MSCs might not be fully 

differentiated, although the increased expression of investigated makers was observed. 

 

It was generally suggested that geometric features to differentiate cell function 

through a mechanotransduction pathway [248]. Geometric structures adjusted the 

distribution of focal adhesion and cell migration and extension to align and elongate 

cells [114]. This resulted in re-orientation of cytoskeletons and tugging of nuclei to be 

aligned and elongated, leading to changes in the accessibility of transcriptional 

factors, structures of DNA and nucleus pores (affecting DNA, mRNA, protein factors, 

ion flux) and finally regulated the gene expression [258]. Here, MSCs aligned to 

UXHP-PCL ridge/groove arrays and re-oriented the cytoskeletons. Furthermore, MSCs 
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nuclei were found to align and elongated significantly than cells on the PCL flat 

surfaces. These evidences indicated that MSCs up-regulated the expression of SMCs 

contractile markers could be attributed to the mechanotransduction mechanism via 

nucleus deformation. Meanwhile, the increased material stiffness of UXHP-PCL 

ridge/groove arrays probably contributed to the higher expression of SMCs-specific 

genes in MSCs simultaneously, as recent evidences suggested that MSCs on stiff 

substrates could have up-regulated muscle cell gene expression [113, 259]. In 

addition, cellular source might influence the selective gene expression for stem cells 

on anisotropic geometric features. Studies suggested that stem cells divided from 

bone marrow (e.g. human fetal bone MSCs) tended to differentiate towards 

myocardial lineages [162, 163, 248], while embryonic stem cells followed the 

direction towards neurons regardless whether the cues were ridge/grooves arrays or 

fibrous substrates [104, 161]. The results presented in this study further demonstrated 

that MSCs also achieved enhanced expression of SMCs-specific genes on UXHP-PCL 

ridge/groove arrays. Together with the previous findings, this work suggested that 

geometric cues could generally elevate the expression of both myogenic and SMCs-

specific genes in MSCs [126, 162, 163, 248]. 

 

PCL films have been extensively used for vascular regeneration [22, 40, 176], due to 

their slow degradation and unique mechanical properties [17]. UXHP-PCL 

ridge/groove arrays of this work were designed to biomimic the BM anisotropy for 

tunica media regeneration. Uniaxial stretching not only created the ridge/groove 

arrays, but also enhanced the film mechanical properties without sacrifice in its 

elasticity, indicating that 3D tubular scaffolds from UXHP-PCL ridge/groove arrays 

would support enhanced mechanical support while not affecting the graft's 
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contraction/relaxation. Such retained film yield strain could be due to the heating 

effects that resulted in relax of stretched PCL molecular chains in amorphous regions. 

According to Laplace's Law [254], to estimate theoretic burst stress of vascular grafts, 

the geometry of 3D tubular scaffolds should be taken into consideration to avoid 

overestimation. Compared to UXSC-PCL and UXCS-PCL, the engineered 3D tubular 

scaffolds based on UXHP-PCL exhibited the higher theoretic burst stress and no 

reduction in elasticity. Targeted for human mammary artery (φ: ~2.3 mm) application, 

the 3D tubular grafts based on UXHP-PCL ridge/groove arrays could have a theoretic 

burst stress of >5000 mmHg, which would be enough to bear the pulsatile pressure in 

normal arteries [254]. Besides the safety ensuring, UXHP-PCL-based tubular grafts 

exhibited a good capability of maintaining the patency shapes after filling with 

liquids. This would help the operative storability and simplicity of surgical handling 

[8, 260]. Such shape maintenance could be attributed to the better mechanical 

properties of UXHP-PCL. In addition, the ridge/groove arrays were generated on films, 

which might also facilitate the 3D tubular geometry. MSCs on UXHP-PCL 

ridge/groove arrays were demonstrated to express a contractile SMCs-like phenotype 

and up-regulate the expression of SM-α-actin, calponin and SM-MHC at both gene 

and protein levels. Meanwhile, the ridge/groove arrays of UXHP-PCL-based 3D 

tubular grafts allowed construction of a wall of layered-MSCs/PCL/MSCs with 

similar anisotropy as in native tunica media. 

 

4.5 Summary 

In this work, biomimetic 3D anisotropic geometries were created on PCL films to 

biomimic the BM anisotropy for regulating phenotype. Results showed that uniaxial 

stretching of PCL films not only resulted in increased mechanical properties, but also 
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created 3D anisotropic ridge/groove arrays towards the stretching direction. 

Optimisation studies showed that MSCs on deeper but narrower ridge/groove arrays 

exhibited better alignment. Further studies demonstrated that MSCs cultured on PCL 

ridge/groove arrays expressed a contractile SMCs-like phenotype and up-regulated 

the expression of SM-α-actin, calponin and SM-MHC at gene and protein levels. 

Small-diameter tubular scaffolds engineered from the PCL film ridge/groove arrays 

allowed a wall of layered-MSCs/PCL/MSCs construction with similar anisotropy as 

in native media. These findings suggest that PCL film ridge/groove arrays could 

biomimic the BM anisotropy, and regulate MSCs behaviour for the applications in 

tunica media regeneration. This work also highlights the significant implications of 

using geometric cues and MSCs for vascular tissue regeneration. 



	  

	   -123- 

Chapter 5 Degradation Behaviour of 

Anisotropic Geometries and Mesenchymal 

Stem Cell Responses 

 

 

5.1 Introduction 

Geometric cues have offered a novel strategy for vascular scaffolds to mimic the 

vascular basement membrane (BM) anisotropy and regulate cell behaviour in a 

precise and near-physiological fashion [224]. Geometric cues of TE scaffolds have 

been known to reorganise stem cells into specific tissue-like patterns or alignment 

[251]. TE scaffolds with versatile geometric features have also impacted upon the 

functional performances of cells (e.g. mobility [139], adhesion/proliferation [130], 

and differentiation [131, 224, 251]) and tissue constructions (e.g. anisotropy [261] and 

mechanical property [3]). 

 

According to the material properties, geometric cues on scaffold's surfaces can 

typically be divided into two main categories: biodegradable and non-biodegradable. 

The latter one such as poly(dimethyl siloxane) (PDMS) micropatterns, however, have 

little value for translational research as they are not biodegradable [131]. Geometric 

features on biodegradable scaffolds such as collagen [3], poly(ε-caprolactone) (PCL) 

[131, 251] and poly(lactic acid) (PLA) [262] have achieved widespread applications 
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for tissue regeneration of blood vessels, skeletal and myocardial muscles, nerves and 

bone, and hold potential to be applied for translational research. However, upon 

implantation, biodegradable geometric cues are directly contacted to the environments 

in vivo, filled with various erosive fluids, biological enzymes and physiological 

inflammation responses [170]. Stability of geometric cues has thus been a concern for 

the successful functionalisation. 

 

Accelerated hydrolysis in vitro using an acidic [184], alkaline [172] or basic medium 

[173] provides an efficient way to understand the influence of erosive environment on 

materials properties. Compared to in vivo studies, accelerated hydrolysis in vitro 

could function as an initial estimate and hold advantages to accomplish the 

degradation process in a more acceptable timeframe [170, 172, 175]. Hydrolytic 

degradation of poly(ε-hydroxy) esters in vitro can follow a surface or bulk erosion 

pathway [17]. Chapter 2, Section 2.3.4 reviews the main steps occurred for surface 

and bulk erosion, respectively. Currently, degradation studies have been extensively 

performed for different TE scaffolds (e.g. film [173, 263, 264], fiber [180], foam [17], 

bulk [182] and nano/microspheres [265, 266]). However, degradation behaviour of 

geometric cues is less well-known. 

 

PCL is one promising synthetic poly(ε-hydroxy) esters with unique mechanical 

properties and slow degradation rates, allowing the applications for long-term 

vascular cell capture and tissue regeneration, especially for elder patients who had 

low healing capability [17, 173]. In previous Chapters 3 and 4, uniaxial-stretched 

heat-pressing PCL (UXHP-PCL) films have shown promising capability to biomimic 

the anisotropy of vascular BM. The research interest of this work is focusing on the 
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stability of UXHP-PCL ridge/groove arrays in erosive environment for providing the 

insights of how degradation affects geometric cues and further cellular responses in 

regards to VTE applications. 

 

5.2 Materials and Methods 

5.2.1 Experimental Design 

As shown in Scheme 5-1, accelerated alkaline hydrolysis in vitro was performed for 

UXHP-PCL ridge/groove arrays. For comparison, HP-PCL flat surfaces and 

ridge/groove arrays were used. Characterisation of topographical morphologies, film 

weight loss, surface hydrophilicity, mechanical properties and cellular responses have 

been carried out. 

 

 

Scheme 5-1: Schematic diagram illustrating the experimental design. Anisotropic ridge/groove arrays 
were generated on UXHP-PCL via uniaxial stretching of HP-PCL. Accelerated alkaline hydrolysis 
(NaOH solution, 3M) in vitro was performed at room temperature for 0-39 days. HP-PCL flat surfaces 
and ridge/groove arrays were used for comparison. Characterisations including morphology, weight 
loss, surface hydrophilicity, mechanical property and stem cell alignment have been performed. 
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5.2.2 Materials 

Materials and mesenchymal stem cells (MSCs) in this work were obtained as 

described in Chapter 3, Section 3.2.2. 

 

5.2.3 Sample Preparation 

Flat surfaces and anisotropic ridge/groove arrays were created on heat-press PCL 

(HP-PCL) and uniaxial-stretch HP-PCL (UXHP-PCL) films, respectively (Chapter 3, 

Section 3.2.3). Orientated ridge/groove arrays were also created on HP-PCL via 

direct-laser-writing [135]. 

 

5.2.4 Hydrolysis 

Degradation behaviour of UXHP-PCL ridge/groove arrays was studied via an 

accelerated alkaline hydrolysis in vitro. Briefly, PCL film samples were cut into 

rectangular shapes of dimensions measuring 1x5 cm2, and immersed in an aqueous 

alkaline medium at room temperature (NaOH solution, 3M, 10 ml per sample in a 6-

well plate). Samples were taken out periodically, washed thrice with distilled water 

and dried in a dry cabinet for 1 week. For comparison, HP-PCL with flat surfaces and 

ridge/groove arrays were also hydrolysed in parallel. 

 

5.2.5 Field Emission Scanning Electron Microscopy (FESEM) 

FESEM characterisation was performed following the description in Chapter 3, 

Sections 3.2.4. 

 

5.2.6 Water Contact Angle (WCA) 

WCA characterisation was performed as described in Chapter 3, Section 3.2.6. 
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5.2.7 Weight Loss 

Samples with initial weight of W0 were degraded for pre-determined time. Superficial 

liquid was gently removed by using Kim Wipes (USA). Samples at this step had wet 

weight of Wtw. Samples after drying completely in a dry cabinet for 1 week had dry 

weight of Wtd. Degradation degree of PCL films was presented as a percentage of 

weight loss calculated using the following equations (1) and (2): 

Weight loss at wet conditions %wet = (W0 – Wtw) / W0 x 100 %          (1); 

Weight loss at dry conditions %dry = (W0 – Wtd) / W0 x 100 %            (2). 

Five samples were used at each degradation time point per group. 

 

5.2.8 Tensile Testing 

After degradation for a pre-determined time, the thickness of PCL samples was 

measured. Tensile testing was performed as described in Chapter 4, Section 4.2.6 

using dimensions measuring 5x30 mm2. An offset-strain of 0.005 was used to 

determine the yield stress and strain for UXHP-PCL (day 0-30) and HP-PCL (day 30). 

A low yield point just beyond the maximum point after linear-elastic region was used 

to determine the yield stress for HP-PCL (day 0-20), and the corresponding strain at 

linear-elastic part was determined as the yield strain. Three samples were used at each 

degradation time point per group. 

 

5.2.9 Cell Isolation and Culture 

MSCs were isolated and culture expanded as described in Chapter 3, Section 3.2.9. 

MSCs used were within Passage-6. 
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5.2.10 Confocal Laser Scanning Microscopy (CLSM) 

MSCs were labeled with cytoskeleton and DNA using TRITC-conjugated phalloidin 

and DAPI, respectively. Images of fluorescence-labeled cells were examined using 

CLSM (Chapter 3, Section 3.2.10). 

 

5.2.11 Cell Nucleus Alignment and Elongation 

The angles of MSCs nucleus were analysed as described in Chapter 4, Section 4.2.10. 

MSCs cultured on HP-PCL flat surfaces were set as negative control (Neg Ctrl). An 

isotropic sample would have an efficiency of ~11.7 % of nuclei to be aligned, and a 

cell nucleus shape index (CNSI) of 1 (a circle). 

 

5.2.12 Data Analysis 

Data analysis was performed on Prism 5 software. Results were reported as mean ± 

SD. A value of p <0.05 was considered to be statistically significant. 

 

5.3 Results 

5.3.1 Stability of UXHP-PCL Ridge/Groove Arrays 

Figure 5-1 reveals preferentially orientated ridge/groove arrays on UXHP-PCL along 

the stretching direction, while only some indentations on HP-PCL flat surfaces. To 

study the morphological resistance, 20 days of accelerated alkaline hydrolysis in vitro 

was performed for UXHP-PCL ridge/groove arrays and HP-PCL flat surfaces and 

ridge/groove arrays. UXHP-PCL ridge/groove arrays showed a larger morphological 

stability against degradation, with ridge shapes still existed, although increased 

surface roughness was observed. In contrast, HP-PCL flat surfaces degraded into 
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macroporous topographies, while the ridge structures of HP-PCL ridge/groove arrays 

were removed completely by degradation. 

 

 

Figure 5-1: Morphological stability of UXHP-PCL ridge/groove arrays against degradation. Film 
samples were hydrolysed in an alkaline medium for 20 days at room temperature. Field emission 
scanning electron microscopy (FESEM) images reveal overall ridge/groove arrays that still existed on 
UXHP-PCL (FS: flat surfaces; R: ridges; G: grooves; Double-headed arrow: stretching direction; Scale 
bar = 200 and 20 µm for low and high magnified FESEM images, respectively). 
 

5.3.2 Morphological Evolution 

Time-dependent studies were performed to understand the influence of degradation 

on the morphological evolution of UXHP-PCL ridge/groove arrays. As shown in 

Figure 5-2, FESEM images of UXHP-PCL ridge/groove arrays revealed smooth 

surface structure before degradation. After hydrolysis for 2 days, degradation 

occurred throughout the surfaces of UXHP-PCL ridge/groove arrays. Although 

rougher surfaces were observed with ongoing hydrolysis, UXHP-PCL ridge/groove 

arrays were able to maintain the ridge shapes well till day 10.  
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Figure 5-2: Morphological evolution of UXHP-PCL ridge/groove arrays with alkaline hydrolysis at 
room temperature for day 0-30. Degradation of UXHP-PCL ridge/groove arrays occurred on film 
surfaces with ridges being degraded into small parallel ridge-islands (FS: flat surfaces; R: ridges; G: 
grooves; Double-headed arrow: stretching direction; Scale bar = 20 µm). 
 

Further hydrolysis resulted in small concaves formed at UXHP-PCL ridge-edges, 

developing into a series of parallel grooves across the ridges. At day 30, ridges were 

found to transform into ridge-islands. Nevertheless, the overall geometries of UXHP-

PCL ridge/groove arrays still existed, as observed from the FESEM images over a 

large area (Figure 5-3A). In contract, HP-PCL flat surfaces after only 5 days of 

hydrolysis were degraded completely with in-growing pores (Figure 5-2). Further 

hydrolysis of HP-PCL flat surfaces resulted in degradation invaded into the inside 

bulk of films, leading to fragments observed at day 30 (Figure 5-3B) 
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Figure 5-3: Morphologies of UXHP-PCL ridge/groove arrays (A) and HP-PCL flat surfaces (B) after 30 
days of degradation. FESEM images reveal integrated surfaces with overall orientated geometries on 
UXHP-PCL. In contrast, HP-PCL flat surfaces were degraded into fragments (Double-headed arrow: 
stretching direction; Scale bar = 100 µm). 
 

5.3.3 Film Weight Loss Behaviour 

Figure 5-4 shows the influence of degradation on film weight loss of UXHP-PCL 

ridge/groove arrays. Degradation resulted in an "S-shape" behaviour of film weight 

loss for UXHP-PCL ridge/groove arrays, consisting of three phases: rapid weight loss 

(day 0-10) à slow weight loss (day 10-25) à rapid weight loss (day 25 onwards). In 

contrast, HP-PCL flat surfaces exhibited film weight loss as a "parabola-shape" 

behaviour, with two distinct phases: slow weight loss for day 0-5 and accelerated 

weight loss for day 5 onwards. Over the degradation period, the film weight loss 

curves at wet and dry conditions overlapped for UXHP-PCL ridge/groove arrays with 

indication of little medium absorption, but exhibited clear deviation for HP-PCL flat 

surfaces after 5 days of hydrolysis, suggesting absorption of erosive medium. 
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Figure 5-4: Film weight loss of PCL films hydrolysed in an alkaline medium at room temperature for 
0-39 days. UXHP-PCL ridge/groove arrays followed an “S-shape” behaviour of film weight loss, while 
HP-PCL flat surfaces experienced a “parabola-shape” behaviour (FS: flat surfaces; R: ridges; G: 
grooves; n = 5). 
 

5.3.4 Surface Hydrophilicity Changes 

Surface hydrophilicity is a crucial factor for the successful implementation of TE 

scaffolds, since a too hydrophobic or hydrophilic surface is not beneficial for cellular 

adhesion and proliferation [267]. Figure 5-5 shows the influence of degradation on 

surface hydrophilicity of UXHP-PCL ridge/groove arrays. Results from WCA 

measurement exhibited that both UXHP-PCL and HP-PCL surfaces were hydrophobic 

before hydrolysis, with WCA being larger than 80 o. After 2 days of degradation, 

increased surface hydrophilicity with a rapid decline in WCA was achieved for UXHP-

PCL ridge/groove arrays, in both parallel and perpendicular directions. Although 

further degradation resulted in continuous WCA reduction, the decline rate became 

much slower, especially in the parallel direction since the WCA change during day 2-

20 was less than 7 o. In contrast, although HP-PCL flat surfaces also obtained 

enhanced hydrophilicity during the initial 2 days of degradation, they displayed a 

continuous and more rapid decline in WCA. The WCA change during day 2-20 was 

more than 25 o. At day 20, UXHP-PCL ridge/groove arrays obtained similar WCA 
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larger than 40o in both directions (p >0.05), while the WCA of HP-PCL flat surfaces 

was less than 18 o. 

 

 

Figure 5-5: Surface hydrophilicity of PCL films with alkaline hydrolysis for different time. UXHP-PCL 
ridge/groove arrays obtained increased surface hydrophilicity after degradation, and retained similar 
water contact angle (WCA) of >40 o in both parallel (//) and perpendicular (⊥) directions for 20 days of 
degradation (FS: flat surfaces; R: ridges; G: grooves; n = 5). 
 

5.3.5 Film Mechanical Property Evolution 

Figure 5-6A shows the effect of degradation on the changes of film tensile stress-

strain curves. With the on-going degradation of UXHP-PCL ridge/groove arrays and 

HP-PCL flat surfaces, film ultimate stress and strain generally declined. However, 

UXHP-PCL ridge/groove arrays retained higher film ultimate stress (44 vs 16 % at day 

30, 1.8x increase, p <0.05) and strain (32 vs 3 % at day 30, 9.6x increase, p <0.01) 

than those of HP-PCL flat surfaces (Figure 5-6B). Although the film Young's 

Modulus increased after degrading for 1 day, degradation for day 5 onwards tended to 

increase slightly both the film yield stress and strain for UXHP-PCL ridge/groove 

arrays, resulting in less change to the film Young's Modulus. However, degradation 
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after day 5 showed a continuous decline at the film yield stress, yield strain and 

Young's Modulus for HP-PCL flat surfaces, especially after day 20. 

 

 

Figure 5-6: Film mechanical properties of PCL films after alkaline hydrolysis at room temperature for 
different time. (A) Typical tensile stress-strain curves. (B) Film yield stress, yield strain, Yong's 
Modulus, and ultimate stress and strain. Over the investigated degradation period, UXHP-PCL 
ridge/groove arrays experienced slight increase in film yield stress and strain, resulting in less change 
at film Yong's Modulus (FS: flat surfaces; R: ridges; G: grooves; n = 3). 
 

3.5.6 Stem Cell Responses 

The effect of geometric degradation on cellular responses was evaluated by measuring 

human MSCs alignment on hydrolysed UXHP-PCL ridge/groove arrays at different 
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degree. Figure 5-7A shows that MSCs cultured on HP-PCL flat surfaces (Neg Ctrl) 

organised randomly with less cellular elongation. Interestingly, MSCs cultured on 

UXHP-PCL ridge/groove arrays hydrolysed different times exhibited different degree 

of aligned organisation and elongated cell shapes, with orientations towards the ridges 

(Figure 5-7B). For less than 10 days of hydrolysis, UXHP-PCL ridge/groove arrays 

elicited better MSCs alignment and elongation. With further degradation, UXHP-PCL 

ridge/groove arrays exhibited weaker guidance on MSCs reorganisation. However, 

certain degree of MSCs alignment and elongation could still be observed even at 30 

days of degradation. It should also be noted that for more than 10 days of hydrolysis, 

the cell number on the confocal images tended to reduce gradually. This could be 

attributed to the continuous WCA reduction of UXHP-PCL ridge/groove arrays that 

declined cellular adhesion/proliferation capability [267]. Moreover, the on-going 

hydrolysis caused increased width of the small crossing grooves within ridges, which 

has been known to increase cell mobility and result in loose cell adhesion [130, 138]. 

This probably resulted in cells being washed off easily during the intracellular 

staining process and therefore, resulting in the gradual reduced cell numbers on 

UXHP-PCL with longer hydrolysis. 

 

Analysis of MSCs nucleus angle frequency confirmed the observed cellular responses 

to the geometric degradation of UXHP-PCL ridge/groove arrays (Figures 5-7A and B). 

The angle frequency of MSCs nuclei in Neg Ctrl exhibited as multi-peaks around the 

even distribution line of an Isotropic Ctrl. However, the angles of MSCs nuclei 

distributed into small angle-ranges, and presented as single dominating peak above 

the even distribution line of an Isotropic Ctrl. For UXHP-PCL ridge/groove arrays with 

less than 10 days of hydrolysis, the single dominating peaks of MSCs nucleus angle 



Chapter 5 Degradation Behaviour 

	   -136- 

frequency showed similar peak-height and width. Quantitative analysis of the nuclei 

revealed non-significant differences at the nucleus alignment efficiencies of 40-48 % 

(p >0.05) (Figure 5-7C) and elongation with CNSI of 0.7-0.8 (p >0.05) (Figure 5-7D). 

For ongoing hydrolysis, the single dominating peaks of MSCs nucleus angle 

frequency showed gradual reduction in peak-height and increase in peak-width. 

Moreover, non-dominating peaks were observed for UXHP-PCL ridge/groove arrays 

with more than 20 days of hydrolysis (Figure 5-7B). Correspondingly, the efficiencies 

of MSCs nucleus alignment and elongation were found to decrease gradually (Figures 

5-7C and D). However, compared to Neg Ctrl, UXHP-PCL ridge/groove arrays 

hydrolysed for 30 days still resulted in considerable increase in nucleus alignment 

(0.4x increase, p <0.05) and elongation (0.1x reduction of CNSI, p <0.05). 
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Figure 5-7: Cellular responses to geometric degradation of UXHP-PCL ridge/groove arrays. Human 
MSCs (P6, 5k per cm2) were cultured on UXHP-PCL ridge/groove arrays hydrolysed in an alkaline 
medium for different time (0-30 days), and stained using TRITC-conjugated phalloidin (Red colour: F-
actin, cytoskeleton) and DAPI (Blue colour: DNA, nuclei). (A) MSCs on HP-PCL flat surfaces 
organised randomly (Neg Ctrl; Dot line: nucleus angle frequency of an Isotropic sample with a value of 
~0.56 %). (B) MSCs on hydrolysed UXHP-PCL ridge/groove arrays (Double-headed white arrows: 
ridge direction). (C) Nucleus alignment described as a normalised nucleus number in ±10 o (Dot line: 
nucleus alignment of an Isotropic sample with a value of ~11.7 %). (D) Nucleus elongation described 
by a CNSI. A CNSI of 1 represents a circle (*, ** and *** represent significant differences as 
compared to Neg Ctrl; n = 3; *, p <0.05; **, p <0.01; ***, p <0.001) 
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5.4 Discussion 

Upon implantation of the engineered vascular scaffolds, geometric cues are contacted 

directly to the physiological erosive environments, and subjected to degradation 

inevitably in vivo. In this work, a degradation study on the stability of three-

dimensional ridge/groove arrays on bioresorbable PCL films was performed. Results 

showed that UXHP-PCL ridge/groove arrays achieved an enhanced morphological 

stability against degradation, compared to HP-PCL flat surfaces and ridge/groove 

arrays. UXHP-PCL ridge/groove arrays followed a surface-controlled erosion, with an 

overall geometries be retained even at ~45 % film weight loss. During the 

investigated period of degradation, UXHP-PCL ridge/groove arrays exhibited an "S-

shape" behaviour of film weight loss, and maintained more stable surface 

hydrophilicity and film mechanical properties than those of HP-PCL flat surfaces. 

MSCs were able to align better towards UXHP-PCL ridge/groove arrays when the 

geometries were retained, and became sensitive with gradually declined nucleus 

alignment and elongation to the geometric degradation of ridges. 

 

Geometric cues have a larger surface/volume ratio than flat surfaces, and thus make 

them more susceptible to degradation in erosive environment [184]. In this study, HP-

PCL flat surfaces were found to degrade completely into macroporous morphologies 

at ~5 % film weight loss. This phenomenon indicated that HP-PCL ridge/groove 

arrays could be degraded at an even smaller film weight loss. In fact, upon hydrolysis 

in vitro, the ridge areas of HP-PCL ridge/groove arrays were preferentially degraded 

and removed, further suggesting that geometric cues were susceptible to degradation, 

and could be removed in erosive environment with a small film weight loss. 
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Comparing HP-PCL flat surfaces and UXHP-PCL ridge/groove arrays, original surface 

morphologies were well-maintained on UXHP-PCL after the hydrolysis, suggesting 

that UXHP-PCL ridge/groove arrays had an increased stability against degradation in 

erosive environment. Such enhancement was not due to the different surface 

geometries as HP-PCL ridge/groove arrays also lost the original ridges. It has been 

known that uniaxial stretching of polymeric films made closer chain packing, reduced 

free volume and restricted chain mobility, leading to inhibited penetration of erosive 

liquid into polymer bulk [236, 268, 269]. Meanwhile, PCL film crystallinity has been 

known to increase after uniaxial stretching [126]. This effect could also slow down 

the degradation of UXHP-PCL ridge/groove arrays [126, 173]. Furthermore, UXHP-

PCL ridges were generated from the recrystallised PCL crystals [126]. Therefore, they 

had higher resistance against degradation than other regions [236], and probably 

resulted in the overall ridge/groove arrays being maintained. These suggested that 

uniaxial stretching could be the reason for the enhanced stability of UXHP-PCL 

ridge/groove arrays against degradation. 

 

UXHP-PCL ridge/groove arrays exhibited a different morphological evolution from 

HP-PCL flat surfaces, suggesting that they might experience a different degradation 

mechanism [172]. It was valuable to note that over the investigated period, the 

degradation of UXHP-PCL ridge/groove arrays occurred on film surfaces, without 

formation of in-growing or penetrating pores, while HP-PCL flat surfaces experienced 

interior degradation into the film bulk and presented as lots of in-growing macro-

pores. These observations were in accordance with the commonly accepted fact for a 

surface and bulk-controlled erosion, respectively [17, 170, 172, 173]. The determining 

factor for which degradation takes place is the diffusion-reaction phenomena [17, 
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172]. The superficial degradation of UXHP-PCL ridge/groove arrays suggested that 

the penetration of erosive liquid into PCL molecular chains was slower than that 

occurring for HP-PCL flat surfaces, because both PCL films had an identical 

hydrolysis rate constant of ester bonds [170]. This further explained the enhanced 

stability for UXHP-PCL ridge/groove arrays, and agreed with the effect of uniaxial 

stretching that inhibited erosive liquid penetration [236, 268, 269]. 

 

One study has applied soft-lithography to micropattern PCL substrates with orientated 

ridge/groove arrays [173]. However, these structures have not obtained enhanced 

stability, and lost the geometries at less than 15 % weight loss during hydrolysis 

[173]. Similarly, HP-PCL ridge/groove arrays from direct-laser-writing during 

hydrolysis were found to preferentially remove the ridges and exhibited macroporous 

morphologies, which was similar the observations on HP-PCL flat surfaces. These 

suggested that apart from structure fabrication, techniques such as soft-lithography 

and direct-laser-writing were incapable of providing structures with enhanced 

stability. Comparatively, uniaxial stretching allowed not only the generation of 

ridge/groove arrays, but also the enhanced stability against degradation, facilitating 

the function of bioresorbable geometric cues in erosive environment. Furthermore, 

uniaxial stretching has been demonstrated to allow fabrication of geometric cues in a 

simple, solvent-free and reproducible manner, making it be a suitable method to 

generate film geometric cues for "off-the-shelf" and potentially clinical applications 

in vascular TE [126]. 

 

UXHP-PCL ridge/groove arrays were found to follow an "S-shape" behaviour of film 

weight loss. Owing to the semi-crystalline properties, the initial film weight loss of 
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UXHP-PCL ridge/groove arrays could be attributed to the preferential degradation in 

amorphous phases near the film surfaces [17]. Meanwhile, uniaxial stretching of 

polymeric films has often accompanied with surface wrinkling, cracking and residual 

tesile stress, which could facilitate erosive liquid penetration and/or molecular chain 

scission [17, 269, 270]. These probably resulted in the initially rapid film weight loss 

for UXHP-PCL ridge/groove arrays. However, further degradation of UXHP-PCL 

ridge/groove arrays resulted in reduced film weight loss rate, particularly for day 10-

25. It was found that this period corresponded to the ridge disassembly. Since UXHP-

PCL ridges were generated from the recrystallised PCL crystals [126], they had closer 

chain packing and were more difficult for erosive liquid penetration than the 

superficial amorphous phases. Therefore, film weight loss rate during this period was 

reduced. Interestingly, accelerated film weight loss was obtained again from day 25 

onwards. This was probably attributed to more surface areas being exposed as well as 

direct loss of small ridge-islands due to the formation of a series of parallel grooves 

across ridges [17, 184]. 

 

In regenerative medicine, PCL is known to exhibit slow degradation rates as 

compared to other biodegradable polymers (e.g. PLA and PGA) [17], and lots of 

efforts have been directed to accelerate the degradation rate of PCL [173]. However, 

these would not benefit the function of geometric cues, which relies on the shapes of 

surface structures. Moreover, the results of this work and together with previous 

findings, suggested that geometric features generated from methods such as soft-

lithography and direct-laser-writing would be susceptible to erosive environment. It 

would be useful if PCL vascular TE scaffolds could have a faster degradation rate to 

give space for neotissue, while the functionalised geometric features remained 
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unaltered. Interestingly, UXHP-PCL ridge/groove arrays exhibited a larger film weight 

loss than that of HP-PCL flat surfaces till ~35 % of the whole film weight, and then 

maintained the overall geometries. This was probably because of the generalist effects 

of uniaxial stretching that on one hand, accelerated the PCL film degradation [269, 

270], and on the other hand conferred UXHP-PCL ridges with enhanced resistance to 

degradation [126, 173, 236, 268, 269].  

 

For the regeneration of vascular tissues, TE scaffolds should at least meet the basic 

safety requirements, although the complex mechanical property profile of blood 

vessels in most cases was beyond reach [173]. Although polymers such as PLA and 

PGA have achieved common use, they were susceptible to plastic deformation, 

limiting their use in mechano-active tissue reconstruction [17]. Comparatively, PCL is 

known to have superior mechanical performances [17, 173]. Meanwhile, UXHP-PCL 

ridge/groove arrays have been demonstrated with enhanced mechanical properties, 

without scarifying the film elasticity. Here, the results further showed that UXHP-PCL 

ridge/groove arrays under erosive environment could experience up to ~45 % film 

weight loss, without significant reduction in the film yield stress and strain. This 

indicated that in vivo, UXHP-PCL ridge/groove arrays functioning as vascular 

geometric cues could also provide a stable mechanical support. 

 

The changes of mechanical properties during degradation process are known to 

attributed to two opposite effects [175]: (1) the amorphous regions tended to 

hydrolyse faster than crystalline structures, leading to increased film crystallinity and 

Young's Modulus; and (2) the degradation generates mass loss and porosity inside or 

near the film's surface, resulting in a decreased Young's Modulus. The observation of 
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increased film yield stress, reduced yield strain and increased Yong's Modulus after 

the initial degradation for 1 day could be caused by the rapid weight loss in the 

superficial amorphous regions of UXHP-PCL ridge/groove arrays [17]. Besides these, 

UXHP-PCL ridge/groove arrays followed a surface-controlled erosion, which might 

also lead to a more stable film mechanical performance, as hydrolysis did not affect 

the internal bulk [17, 170, 173].  

 

MSCs have shown to be a promising as vascular tunica media cell source, and UXHP-

PCL ridge/groove arrays exhibited robust regulation on MSCs alignment and 

elongation [126]. However, UXHP-PCL ridge/groove arrays would undergo inevitable 

degradation in vivo [170], and whether they could support such regulation in a lasting 

manner as well as how vascular cells response to the structure geometric degradation 

remain unknown. The results of this work suggested a close correlation between the 

geometric degradation and stem cell responses. MSCs were found to align better on 

UXHP-PCL ridge/groove arrays when the geometries were retained (Figures 5-8A and 

B). However, MSCs become sensitive to the geometric degradation of ridges with 

gradually declined nucleus alignment and elongation (Figures 5-8C and D). This 

could be attributed to the lowered height of ridges due to the ongoing hydrolysis, as 

studies suggested that ridge height could affect cell response to the given ridge/groove 

arrays [255, 271, 272], and lower ridges tended to result in decreased cell alignment 

[114, 273]. Besides this, the declined aspect ratio between ridges and grooves could 

also contribute to the observed reduction in MSCs nucleus alignment and elongation 

because of the presence of crossing grooves that divided ridges into small ridge-

islands [139]. These observations suggested that stability-enhanced geometric cues 

would be preferable for vascular tissue regeneration. It was valuable to note that 
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because of uniaxial stretching, UXHP-PCL ridge/groove arrays achieved an enhanced 

stability against degradation, and were able to maintain an overall geometries for 

increased MSCs nucleus alignment and elongation even at ~45 % film weight loss. 

These suggested that UXHP-PCL ridge/groove arrays could provide a long lasting 

regulation on stem cells, and could be applied as suitable geometric cues for long-

term vascular tissue regeneration with anisotropic architecture. 

 

 

Figure 5-8: Summarised relationships among film weight loss of UXHP-PCL, geometric evolution of 
ridge/grooves and MSCs responses. At less than ~20 % film weight loss, degradation resulted in 
gradually rougher surfaces with stable MSCs alignment. At more than ~20 % film weight loss, ridges 
degraded into small ridge-islands, leading to MSCs response with declined nucleus alignment and 
elongation (Hollow arrows: concaves at ridge-edges in [C] and direct loss of ridge-islands in [D]). 
 

5.5 Summary 

This work studied the influence of degradation on UXHP-PCL ridge/groove arrays and 

further MSCs responses. UXHP-PCL ridge/groove arrays achieved an enhanced 

morphological resistance to degradation in erosive environments, compared to the flat 

surfaces and ridge/groove arrays of HP-PCL. UXHP-PCL ridge/groove arrays 

experienced a surface-controlled erosion, with overall geometries existed even at ~45 
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% film weight loss. During the investigated period of degradation, UXHP-PCL 

ridge/groove arrays exhibited an "S-shape" behaviour of film weight loss, and 

maintained more a stable surface hydrophilicity and larger retainment of film 

mechanical properties than those of HP-PCL flat surfaces. MSCs tended to align 

better towards UXHP-PCL ridge/groove arrays when the geometries were retained, 

and became sensitive with gradually declined nucleus alignment and elongation to the 

geometric degradation of ridges. It was concluded that uniaxial stretching could be 

used as a suitable method for the generation of film geometric cues with enhanced 

stability against degradation. This study also provides insights of how degradation to 

influence the geometric cues and further cell responses, and has implications for the 

design of biomaterials with stability-enhanced geometric cues for long-term vascular 

tissue regeneration. 
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Chapter 6 A Combination of Uniaxial 

Stretching and Femtosecond Laser Drilling for 

Engineered Vascular Basement Membrane 

 

 

6.1 Introduction 

Vascular basement membrane (BM) is essential for homeostasis of vascular cells and 

influences the patency of tissue-engineered vascular grafts (TEVG) [9]. Components 

of normal vascular BM are collagen IV, elastin, enactin/nidogen, heparin/sulfate 

proteoglycans and laminin, and they assemble as complex three-dimensional (3D) 

architectures consisting of orientated fibers and pores in submicron and nanoscale [9, 

63]. These topographies have profound impact on the cell shape, growth/proliferation, 

migration and differentiation of endothelial cells (ECs) [9]. Furthermore, tunica media 

outwards BM consists of cells organised as a circumferential alignment and functions 

for maintaining the stress and stability of vascular vessels [40]. To function properly, 

engineering of vascular scaffolds must closely replicate these essential characteristics 

of the native vessels. 

 

Geometric cues such as orientated fibers and anisotropic ridge/groove arrays have 

shown promise in aligning and regulating differentiation of cells (e.g. vascular smooth 

muscle cells [SMCs] and mesenchymal stem cells [MSCs]) for vascular TE [28, 113]. 

Chapter 2, Section 2.3.1 reviews the various geometric cues generated from methods 
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such as soft-lithography and direct-laser-writing. Chapter 2, Section 2.3.2 reviews the 

current findings that how these geometric cues influence cellular behaviour including 

morphology, migration, growth/proliferation, and differentiation as well as engineered 

tissue property. However, current geometric cues have been developed mainly based 

on the cubes and/or thick sheets, lacking sufficient interconnected pores. 

 

For vascular tissue regeneration, high porosity and pore connectivity of the scaffolds 

are required for providing sufficient gas and nutrient diffusion, and allow removal of 

metabolic products [274]. Furthermore, porous scaffolds appear to support cellular 

interaction across the substrates and promote cellular attachment and differentiation 

[9, 62, 275]. Therefore, geometric cues with the incorporation of pores could faciliate 

vascular tissue regeneration with similar organisation and function as in vivo. Chapter 

2, Section 2.4.1 reviews the different techniques for introducing pores into scaffolds 

such as phase separation (e.g. freeze drying) and particulateleaching. In addition, 

needle-operated robot and laser beam punching have also been used [135]. Recent 

studies have demonstrated that by using the combination of soft-lithography/melt 

molding or soft-lithography/phase separation molding, pores have been successfully 

incorporated onto polymeric sheets [40, 62]. Despite the advantages achieved, pores 

generated from these methods were not homogeneous in size and shape, had poor 

interconnectivity, and were unable to control the pore positions, thus leading to 

interference on cellular alignment. As a comparison, laser beam is a promising 

technique for pore drilling in situ, and allows parameters such as pore size to be 

tunable [135]. 
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In the work of Chapters 3, 4 and 5, uniaxial stretching has been demonstrated with 

capability of incorporating anisotropic 3D ridge/groove arrays on poly(ε-caprolactone) 

(PCL) films for biomimicking the anisotropy of vascular BM to regulate MSCs 

behaviour. Here, a combined method of using uniaxial stretching and femtosecond 

laser drilling, has been developed for creating complex architectures on PCL films 

including 3D orientated ridge/groove arrays and through-hole pore patterns. Such 

PCL films could be able to regulate cell organisation and simultaneously, allow direct 

cell-cell interaction, which has the potential to be used as an engineered BM for 

tunica media and intima regeneration. 

 

6.2 Materials and Methods 

6.2.1 Experimental Design 

PCL films after uniaxial stretching were drilled using femtosecond laser beam 

(Scheme 6-1). Pore morphology, diameter and position at the top and bottom film 

surfaces were characterised to understand the influence of beam parameters on pore 

formation. Studies of nutrition diffusion, cellular alignment and direct cell-cell 

interaction were also performed to understand the designed biological performances. 
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Scheme 6-1: Schematic diagram illustrating the experimental design of this work. PCL films were 
subjected to uniaxial stretching for the generation of orientated ridge/groove arrays, and femtosecond 
laser drilling for perforation. Characterisations of morphology, nutritient diffusion, cellular alignment 
and direct cell-cell interaction were performed for evaluating the designed function. (Epulse: pulse 
energy; Npulse: pulse number) 
 

6.2.2 Materials 

Endothelial growth medium (EGM) were purchased from Lonza (Singapore). Nitric 

oxide (NO) assays kit was purchased from Cell Biolabs, Inc. (USA). FITC-Dextran 

(MW: 40,000) and PHK cell linker dyes kit were purchased from Sigma-Aldrich 

(Singapore). Green fluorescent protein (GFP) labeled human umbilical vein 

endothelial cells (HUVECs) were provided as a gift from Dr. Mark Seow Khoon 

Chong (National University of Singapore). Other materials and mesenchymal stem 

cells (MSCs) in this work were obtained as described in Chapter 3, Section 3.2.2.  

 

6.2.3 Sample Preparation 

Heat-pressed PCL (HP-PCL) films were fabricated using a combined method of two-

roll milling (80 oC) and heat pressing (300 MPa, 80 oC) (Chapter 3, Section 3.2.3). 
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Uniaxial-stretched PCL (UXHP-PCL) films were then generated from HP-PCL at a 

stretching temperature of 54 oC and a draw ratio of 4. 

 

Pores were drilled on HP-PCL and UXHP-PCL using a spectra-physics millenia-

pumped tsunami femtosecond laser. The femtosecond laser uses a Titanium 

(Ti):Sapphire doped crystal as the medium with a wavelength of 800 nm and pulse 

duration of 110 fs. Pore arrays were designed using a U500 MMI (Aerotech, UK) 

software. The femtosecond laser drilled films were named as PUXHP-PCL. 

 

 

Scheme 6-2: Schematic diagram illustrating the fabrication of PCL films. (A) PCL pallets were passed 
through a two-roll mill to obtain uniform PCL solid mass. (B) HP-PCL films with flat surfaces were 
obtained from heat press of PCL solid mass at 300 MPa and 80 oC. (C) UXHP-PCL films were 
generated from uniaxial stretching of HP-PCL films at 54 oC and a draw ratio of 4. (D) PUXHP-PCL 
films were obtained by program-controlled drilling of UXHP-PCL using a femtosecond laser. 
 

6.2.4 Field Emission Scanning Electron Microscopy (FESEM) 

FESEM characterisation was performed as described in Chapter 3, Section 3.2.4. 

 

6.2.5 Nutrition Diffusion Test 

Nutrition diffusion of PUXHP-PCL was evaluated using a marker of FITC-labeled 

Dextran. PCL films (UXHP-PCL) without drilling were used as a control group. The 

setup was schematically shown in Scheme 6-3. Briefly, 1 ml (2 mg/ml) was injected 

via a small pore into the PCL film sealed tubes. The sealed tube was then put into a 
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black bottle, which contained 21 ml of PBS. The system was then immersed into a 37 

oC water bath in a dark environment. Samples with a volume of 50 µl PBS were taken 

out at pre-determined time points of 1, 3, 7, 24, 50, 120 and 288 hrs. The samples 

were diluted 10 times with PBS, and fluorescence detection was performed using a 

microplate reader (Tecan Group Ltd, Infinite® M1000 PRO, Switzerland). Standard 

curves (FITC-Dextran contractions ranged from 0.05 to 0.001563 mg/ml) were 

performed for each detection time point. Normalised cumulative concentration of 

FITC-Dextran was used to describe the film permeability (Ccumulative = Creal / Cfull-

diffusion * 100 %). Six samples were used for each time point per group. 

 

 

Scheme 6-3: Schematic diagram illustrating the measurement of FITC-dextran diffusion. UXHP-PCL 
without drilling was set as a control. The diffusion system was under a constant temperature of 37 oC. 
 

6.2.6 Cell Isolation and Culture 

MSCs were isolated and expanded as described in Chapter 3, Section 3.2.9. HUVECs 

were cultured in EGM10 (EGM + 10 % FBS). Cells used were within Passage-6. 

 

6.2.7 MSCs and HUVECs Co-culture 

Co-culture of MSCs and HUVEC was performed using a ring as illustrated in Scheme 

6-4. Briefly, PCL film was put at the middle of the ring, and MSCs (10k per cm2) 

were seeded firstly. After culturing in D10 for 1 day, films were turned over using a 
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sterilised forcep, and HUVECs were seeded onto the opposites of MSCs. MSCs and 

HUVECs were then co-cultured in EGM10. 

 

 

Scheme 6-4: Schematic diagram illustrating the co-culture of MSCs and HUVECs. MSCs (10k per 
cm2) were firstly seeded onto the film. After 1 day culture in D10, the films were turned over, medium 
was changed to EGM10 and HUVECs were seeded onto the opposites of MSCs at a density of 20k per 
cm2 for co-culture. 
 

For direct cell-cell contact study, fluorescence-labeled cells were used. MSCs were 

labeled with red fluorescence using PHK26 kit. Briefly, once MSCs reached ~70 % 

confluence, they were collected by trypsinisation and centrifugation. Cells were 

washed with PBS twice to remove any FBS. Cellular pallets were then re-suspended 

in Diluent (2x final concentration, 0.5 ml). Meanwhile, PHK26 dye was diluted into 

2x solution (0.5 ml), and immediately mixed with cell suspension. After incubation at 

room temperature for <5 min, FBS (1 ml) was added to stop the reaction, and cells 

were washed with D10 thrice. PHK26-labeled cells were examined using CLSM. 

HUVECs were labeled with GFP. 

 

6.2.8 Confocal Laser Scanning Microscopy (CLSM) 

For alignment study, cells after culturing for pre-determined time were visualised via 

cytoplasmic live-cell (FDA) and cytoskeletal fixed-cell (TRITC-conjugated 

phalloidin: F-actin; DAPI: DNA) staining. All fluorescence-labeled cells were 

examined using CLSM as described in Chapter 3, Section 3.2.10. Cell number was 

determined following a nucleus counting as described in previous reports [276, 277]. 
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For characterisation of cell-cell contact, a Z-scanning was performed on CLSM, and 

3D image construction was performed using the built-in function of Imaris (Bitplane, 

Switzerland). 

 

6.2.9 Cellular Alignment 

Cellular angles were analysed using the built-in function of ImageJ as described in 

Chapter 4, Section 4.2.10. Cells grew on UXHP-PCL ridge/groove arrays and HP-PCL 

flat surfaces were set as a positive (P-Ctrl) and negative control (N-Ctrl), respectively. 

An isotropic sample would have an efficiency of ~11.7% of cells to be aligned. 

 

6.2.10 NO Assay 

The NO level of co-culture system was evaluated using a NO assay kit. Experiment 

was designed with five groups: (1) EGM10; (2) EGM10 + porous film + MSCs; (3) 

EGM10 + porous film +HUVECs; (4) EGM10 + non-porous film + MSCs + 

HUVECs; and (5) EGM10 + porous film + MSCs + HUVECs. Briefly, MSCs and 

HUVECs were seeded on UXHP-PCL or PUXHP-PCL with single- or co-culture in 

EGM10 (2.5 ml) for 8 days. At day 3 and 5, 0.5 ml EGM10 was added for nutrition 

supply. After 8 days of culture, the total nitrate/nitrite (NO3
-/NO2

-) level in culture 

medium was examined following the procedures of NO assay kit. Briefly, 10 µl 

sample (cell culture medium) was added to a 96-well plate, and adjusted to 80 µl 

using the assay buffer. 10 µl enzyme cofactors and 10 µl nitrate reductase were then 

added in sequence, and incubated at room temperature for 30 min to reduce nitrate 

into nitrite. 10 µl 2,3-diaminonaphthalene (DAN) was then added and incubated for 

further 10 min. 20 µl NaOH solution was added to end the reaction, with enhanced 

fluorescence intensity. For standard curve, 10 µl EGM10 with 70 µl assay buffer was 
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used as the blank. 10 µl EGM10 with 20 µl assay buffer and 50 µl nitrate standard 

was used as gradient. Fluorescence detection was performed on a microplate reader at 

Ex/Em of 380/461 nm. Four samples were used. 

 

6.2.11 Data Analysis 

Data analysis was performed on Prism 5 software. Curve fitting for the FITC-dextran 

diffusion was implemented using Excel 2011 software with a R2 value of 0.99. 

Results were reported as mean ± SD. A value of p <0.05 was considered to be 

statistically significant. 

 

6.3 Results 

6.3.1 Anisotropic Geometries and Pore Patterns on PCL Films 

Figure 6-1 shows the morphologies of PCL films after uniaxial stretching and 

femtosecond laser drilling. Before stretching, HP-PCL exhibited relatively flat 

surfaces (Figure 6-1A). After uniaxial stretching, orientated micro-ridge/groove 

arrays were homogeneously presented on UXHP-PCL (Figure 6-1B). When 

femtosecond laser beam was drilled onto UXHP-PCL, pores were formed (Figure 6-

1C). These circular pores distributed homogeneously on PCL films, with lip-like 

melting towards the ridge direction.  

 

Figure 6-2A shows the morphologies of pores on both the top and bottom surfaces of 

UXHP-PCL. FESEM images from the two surfaces demonstrated that the pores 

generated by femtosecond laser drilling were through-hole. The pores exhibited as an 

approximated circle on the top film surface, but an ellipse on the bottom film surface, 

with the long-axis perpendicular to the ridges. Furthermore, melting of PCL was 
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observed and exhibited as sprayed fibers around the pores. Comparatively, the 

sprayed melting was severer on film bottom surface accompanying with porous 

melting covered on ridges. Low magnified FESEM images of both PUXHP-PCL 

surfaces further showed that the melting was restricted within the neighboring area 

(radius: <20 µm), and did not affect the ridge/groove arrays in other film regions. In 

contrast, the melting was more rounded on the top surface of HP-PCL with more 

ejection observed (Figure 6-2B). 

 

 

Figure 6-1: Uniaxial stretching and femtosecond laser drilling of PCL films resulted in orientated 
ridge/groove arrays and pore patterns. (A) HP-PCL flat surfaces. (B) UXHP-PCL ridge/groove arrays 
(double-headed arrows: redge direction). (C) PUXHP-PCL with orientated ridge/groove arrays and pore 
patterns (Scale bar = 500 µm). 
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Figure 6-2: (A) Pore morphologies top and bottom film surfaces. FESEM images of PUXHP-PCL 
reveal through-hole after femtosecond laser drilling, which was rounded with lip-like melting and 
formed into an ellipse-like shape towards ridges (Scale bar = 20 and 200 µm for high and low 
magnifications, respectively). (B) Pore morphologies on HP-PCL top film surface revealed more 
rounded and more ejection (Scale bar = 50 and 500 µm for the high and low magnifications, 
respectively). 
 

6.3.2 Tailorability of Pore Position and Diameter 

During the drilling process, pore position was adjusted by moving the stage, which 

was controlled via a program. As shown in Figure 6-3A, the direction along the ridges 

was defined as the x-axis, and the perpendicular direction as the y-axis. The pore 

patterns were realised through programing a path to guide the stage movement. Figure 
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6-3B shows the pore patterns on PUXHP-PCL, with different inter-pore-distance in the 

x and y directions (e.g. X200Y200, X200Y500 and X500Y200). Pore position could 

be adjusted in both x and y directions, and pore shapes were homogeneous over the 

sample surface, without tailing phenotypes observed.  

 

 

Figure 6-3: Control of pore position. (A) x-axis was defined as the ridge direction, while y-axis was 
perpendicular to ridges. (B) Different pore patterns on PUXHP-PCL (Scale bar = 500 µm). 
 

Figure 6-4A shows the changes of melting on film top surfaces. Higher pulse energy 

Epulse tended to produce thicker ejection fibers, while a higher pulse number Npulse 

resulted in a less melt ejection. Figure 6-4B shows the tailoring of pore size by 

controlling Epulse and Npulse. Results from the size measurement showed that pores of 

PUXHP-PCL exhibited a larger diameter on film top surface and smaller one on film 

bottom surface. With increasing Epulse from 10 to 80 µJ, the pore diameters on both 

the film top and bottom surfaces increased. When Epulse was lower than 10 µJ, 

femtosecond laser beam resulted in less change to the pore diameter on film top 

surface, and mesh-like structures instead of a penetrated pore on film bottom surface 

(Figure 6-4B). Compared to Epulse, Npulse did not make any significant change to the 

pore diameters on both the film top and bottom surfaces (Figure 6-4A). 
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Figure 6-4: (A) Light microscopy images of melting ejection. Higher Epulse produced thicker ejection 
fibers (Npulse = 20), while higher Npulse resulted in less ejection (Epulse = 20 µJ). (B) Influences of Epulse 
and Npulse. Pore diameters increased with raised Epulse (Npulse = 20), but exhibited less changes when 
Npulse was varied (Epulse = 20 µJ; n = 6). 
 

6.3.3 Enhanced Permeability for MSCs Adhesion and Proliferation 

Figure 6-5 shows the evolution of permeability of PUXHP-PCL. During 0 to 120 hrs, 

the curve of cumulative FITC-dextran concentration approximated to a line. After 120 

hrs, the increase of cumulative FITC-dextran concentration was slower. FITC-dextran 

achieved ~100 % diffusion across PUXHP-PCL at around 288 hrs (around 12 days). In 

contrast, no obvious diffusion was observed for UXHP-PCL. The cumulative FITC-

dextran concentration was around 0 % over the investigated period. 
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Figure 6-5: Permeability evolution of PUXHP-PCL. Cumulative concentration of FITC-dextran 
increased with diffusion time, and achieved ~100 % of diffusion at 288 hrs (FITC-dextran: marker 
molecule; UXHP-PCL: control group; n = 6). 
 

The enhanced permeability of PUXHP-PCL was further demonstrated. Figure 6-6A 

shows the experimental design. PCL films were sealed onto the rings to separate the 

testing (D0) and nutrition (D10) medium. MSCs seeded onto PUXHP-PCL in D10 and 

D0 were set as the P-Ctrl and N-Ctrl, respectively. Results from cell nucleus counting 

showed that compared to UXHP-PCL, MSCs seeded on PUXHP-PCL in D0 achieved 

increased cell adhesion at culture day 1 (1.9x increase, p <0.001), and exhibited an 

enhanced cellular proliferation at day 3 of culture (2.2x increase, p <0.001), although 

both were lower than those cells in P-Ctrl. Furthermore, MSCs on UXHP-PCL in D0 

and PUXHP-PCL in D0 showed similar cellular adhesion at day 1 (p >0.05) and 

proliferation at day 3 (p >0.05), suggesting that micropore patterns did not affect the 

cell adhesion. 
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Figure 6-6: (A) Schematic diagram illustrating the experimental design. MSCs seeded on PUXHP-PCL 
in D10 and D0 were set as positive (P-Ctrl) and negative (N-Ctrl) control, respectively. (B) Cellular 
adhesion and proliferation on PUXHP-PCL. Cells (Passage-6, 5k per cm2) were seeded and cultured for 
1 and 3 days. MSCs on PUXHP-PCL achieved increased cell adhesion (day 1) and proliferation (day 3) 
as compared to those of UXHP-PCL group (n = 3; ***, p <0.001; NS, p >0.05). 
 

6.3.4 MSCs Alignment 

Figure 6-7A shows the cell cytoskeletal organisation on UXHP-PCL. CLSM images of 

F-actin exhibited that MSCs aligned along the UXHP-PCL ridge/groove arrays, with 

highly orientated cytoskeletal stress filaments. MSCs on PUXHP-PCL near the pores 

revealed three types of organisation. As shown in Figure 6-7B, MSCs retained 

alignment when cells were able to extend freely. If pores obstructed cellular extension 

at one end only, MSCs exhibited re-organised cytoskeleton fibers being confined to 

the pore shapes; MSCs still self-aligned the left half-part with orientated cytoskeletal 

fibers extended along the ridge/groove arrays (Figure 6-7C). However, cell alignment 

was disturbed if the other extension end of MSCs was attached to the ridges/grooves 

or cells that were not in the ridge direction (Figures 6-7C and E). 
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Figure 6-7: Pore influence on MSCs alignment. (A) UXHP-PCL. MSCs aligned on UXHP-PCL towards 
the ridge directions. (B-E) PUXHP-PCL. MSCs exhibited aligned growth towards the ridge/groove 
arrays when they could extend freely, half-cell alignment when cellular extension was obstructed only 
at one end, and disturbed alignment when MSCs extension was obstructed at one end and the other end 
attached to substrate/cells that were not in ridge direction (Double-headed arrows: ridge direction; 
Green arrows: free extension of cells; Yellow arrows: cell extension being obstructed and attached to 
substrate or cells; Scale bar = 100 µm). 
 

Figure 6-8A shows the influence of pore patterns on MSCs alignment towards 

PUXHP-PCL ridge/groove arrays. On X200Y200, CLSM images of cytoplasmic 

staining exhibited that MSCs between two pores tended to be deviated from the ridge 

directions. Comparatively, the pore pattern of X200Y500 showed more interference 

on MSCs alignment. Cells grew closely around the pores. Interestingly, MSCs on 

X500Y200 exhibited better alignment. Although MSCs tended to distribute around 

the pores, cells between the two pores were able to extended freely. Quantitative 

analysis of cellular angles showed that the presence of pores resulted in declined 

MSCs alignment (vs P-Ctrl: ~32-53 % reduction, p <0.001). Compared to PUXHP-

PCL:X200Y200, MSCs on X200Y500 exhibited a lower alignment efficiency (p 
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>0.05), and a higher efficiency on X500Y200 (p >0.05), although significant 

differences were not observed. Moreover, MSCs on PUXHP-PCL:X500Y200 showed 

a higher alignment efficiency than that of cells on X200Y500 (p <0.001). 

 

 

Figure 6-8: Influence of pore pattern on MSCs alignment. (A) CLSM images reveal different MSCs 
organisation on PUXHP-PCL (Red arrows: cells disturbed by pores; Scale bar = 200 µm). (B) 
Normalised MSCs alignment efficiency. MSCs exhibited the declined degree of alignment efficiency 
towards ridge/grooves depending on pore patterns (n = 3; ***, p <0.001; NS, p >0.05). 
 

Figure 6-9A shows the drilled pore patterns with a pore distance of 500 µm in both 

the x and y directions. Results from quantitative analysis of cellular angles showed 

that pores of X500Y500 did not affect MSCs alignment (Figure 6-9B). Cells grew on 

PUXHP-PCL:X500Y500 achieved non-reduced cellular alignment efficiency as 

compared to those of UXHP-PCL group for 1, 3 and 5 days of culture, respectively (p 

>0.05).  
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Figure 6-9: Non-interfered MSCs alignment on PUXHP-PCL. Cells (Pasage-6, 5k per cm2) seeded on 
PCL films were cultured for pre-determined time. (A) DIC images of HP-PCL, PHP-PCL, UXHP-PCL 
and PUXHP-PCL (Inter-pore-distance: 500 µm; Double-headed arrows: ridge direction). (B) 
Normalised cell alignment efficiency. MSCs alignment on PUXHP-PCL achieved significant increase 
than that of PHP-PCL, and was non-reduced as compared to that of UXHP-PCL (n = 3; ***, p <0.001; 
NS, p >0.05). (C) Cellular organisation at a confluence status. MSCs after 8 days of culture still 
retained aligned growth on UXHP-PCL and PUXHP-PCL in a controllable direction towards ridges 
(Double-headed arrows: ridge direction). 
 

Compared to PHP-PCL, MSCs on PUXHP-PCL showed considerable increase in 

cellular alignment efficiency  (p <0.001). Meanwhile, MSCs exhibited similar lower 

alignment efficiencies on PHP-PCL and HP-PCL (p >0.05). MSCs retained 
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orientation-controlled alignment on UXHP-PCL and PUXHP-PCL, when cells got 

confluent (Figure 6-9C). However, MSCs still organised randomly on both HP-PCL 

and PHP-PCL. 

 

6.3.5 Direct MSCs-HUVECs Interaction 

Figure 6-10 shows the ingrowth of MSCs into the pores of PUXHP-PCL after 3 days 

of culturing. FESEM images revealed three types of cellular ingrowth: (i) bridging: 

MSCs extended and bridged across the pores via two anchors (red arrows). Another 

cellular protrusion could extend into the pore depth (blue arrow) depending on the 

pore sidewall, (ii) sidewall depth: MSCs adhered well to the inner side of the pores, 

thereby extending along the surfaces (red arrows), and (iii) coverage: MSCs spread 

around the pores, and teded to cover the pores using several anchors (red arrows). 

 

Figure 6-11A shows the direct contact between GFP-labeled HUVECs and PHK26-

labeled MSCs. 3D construction of section-scanning CLSM images demonstrated that 

PUXHP-PCL allowed HUVECs to grow into the pores from the top film surface and 

MSCs from the bottom film surface. The cells met each other within the pores and 

direct cell-cell contact occurred, presenting as yellow colour. To escape the false 

positivity due to different viewing angles, crossing-section view was performed 

(Figure 6-11B). Images showed that around the middle depth of the pores, GFP-

labeled HUVECs co-localised with PHK26-labeled MSCs and exhibited as yellow 

areas. Interestingly, the yellow dots were found not only around the red or green 

colour areas, but also within each other. 
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Figure 6-10: Cellular ingrowth of MSCs into PUXHP-PCL via (i) bridging, (ii) sidewall depth and (iii) 
coverage. Cells (Passage-6, 5k per cm2) seeded on PUXHP-PCL:X500Y500 were cultured for 3 days in 
D10 (Red arrows: cellular anchors that adhered to the pore sidewall; Blue arrows: cellular anchors that 
extended into the pore depth; Scale bar = 20 µm). 
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Figure 6-11: Direct MSCs-HUVECs contact. PHK26-labeled MSCs (Red colour; Passage-6, 10k per 
cm2) seeded on one surface of PUXHP-PCL:X500Y500 were cultured in D10 for 1 day, and GFP-
labeled HUVECs (Green colour; Passage-6, 15k per cm2) were then seeded onto the other film surface 
and co-cultured in EGM10 for further 3 days. (A) 3D construction of section-scanning CLSM images 
from DIC, Green and Red channels. Yellow colour represented the co-localisation of green and red 
colours. (B) Crossing-section view. Yellow colour distrusted not only around the green and/or red 
colour areas but also within each other (Scale bar = 20 µm). 
 

Figure 6-12A shows the direct cell-cell contact between GFP-labeled HUVECs and 

PHK26-labeled MSCs. Direct cellular contact was found at 2 days of co-culturing. 

Pore number with positive cellular contact increased with increasing co-culturing 
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time. Quantitative analysis from pore counting of CLSM images exhibited that there 

was ~50 % of pores that occurred direct HUVECs-MSCs contact for 2 days of co-

culturing, and ~84 % for 5 days of co-culturing (Figure 6-12B). 

 

 

Figure 6-12: (A) CLSM images of cell-contact between GFP-labeled HUVECs (Green colour) and 
PHK26-labeled MSCs (Red colour) for 2 and 5 days of co-culture in EGM10 (Scale bar = 500 µm). (B) 
Normalised pore number that occurred HUVECs-MSCs contact (n = 4). 
 

Figure 6-13A shows the effects of direct cell-cell interaction on NO level of co-

cultured system. Results exhibited that compared to EGM10, culturing of MSCs 

increased the total NO level (p <0.001), while HUVECs declined the total NO level (p 

<0.01). Co-culturing of MSCs and HUVECs through UXHP-PCL resulted in reduced 

total NO level as compared to MSCs only (p <0.01), but higher total NO level than 

that of HUVECs single-culture (p <0.05). Interestingly, co-culture through PUXHP-

PCL resulted in significant increase in total NO level as compared to the single-

culture of MSCs (p <0.01) and/or HUVECs (p <0.01) and co-culture via UXHP-PCL 
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(p <0.01). Figure 6-13B shows the further effects of direct cell-cell interaction on 

HUVECs adhesion and proliferation. Results form cell nucleus counting exhibited 

that presence of MSCs reduced HUVECs adhesion as compared to that of HUVECs 

alone (p <0.05). Presence of pores further reduced HUVECs adhesion. Compared to 

HUVECs alone, HUVECs adhesion at the presence of MSCs and pores (MSC/Pore: 

+/+) was lower than that of MSC/Pore: -/+ group (p <0.001). After cellular 

proliferation for further 4 days, HUVECs in MSC/Pore: +/+ group exhibited much 

higher cell number as compared to both MSC/Pore: +/- (~27 % increase, p <0.001) 

and MSC/Pore: -/+ (~17 % increase, p <0.001) groups. Furthermore, HUVECs in 

MSC/Pore: +/- group continuously showed a lower cell number than that of 

MSC/Pore: -/+ group (~8 % reduction, p <0.001). 

 

 

Figure 6-13: Influence of direct MSCs-HUVECs interaction. (A) Total system NO level. Direct cell-
cell interaction increased the total NO level of HUVECs/MSCs co-culture system, while in-directed 
interaction declined the system total NO level (n = 4; *, p <0.05; **, p <0.01; ***, p <0.001). (B) 
HUVECs adhesion and proliferation. Direct cell-cell interaction increased HUVECs proliferation as 
compared to that of co-culture system with in-direct cell-cell interaction and single-culture system (n = 
3; *, p <0.05; ***, p <0.001; NS, p >0.05). 
 

6.4 Discussion 

Geometric cues form soft-lithography, direct-laser-writing and electrospinning are 

inherently dense and lack of sufficient interconnected pores to facilitate mass transfer 
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and cell-cell interaction across the substrates, impeding their applications for vascular 

tissue regeneration. In this study, a novel PCL film with anisotropic ridge/groove 

arrays and micropore patterns were presented. Results showed that after femtosecond 

laser drilling, PUXHP-PCL exhibited through-hole, with tunable position and diameter 

of pores. Compared to the control group, PUXHP-PCL allowed nutrition diffusion 

across the PCL films for the enhanced MSCs adhesion and proliferation in D0. The 

presence of pores was found to interfere with the MSCs alignment. Cellular alignment 

efficiency was dependent on the pore-patterns, and non-reduced alignment efficiency 

could be achieved by controlling the inter-pore-distance. Furthermore, PUXHP-PCL 

allowed direct HUVECs-MSCs contact, and resulted in an increase in the total NO 

level of co-culture system and HUVECs proliferation as compared to those of in-

direct interaction system, respectively. 

 

The development of laser-assisted nano/micropatterning of polymer surfaces is a 

rapidly growing and developing field [135, 203, 278]. In femtosecond laser ablation, 

pulse energy has to be delivered with engery over than the binding energy of atoms 

for removing the atoms from bulk material [279]. Thus, pores were formed at the 

position where femtosecond laser beam interacted with the PCL film molecules. For 

polymeric materials, heat diffusion and energy loss of femtosecond laser beam are 

limited [135, 280]. Therefore, pore drilling of PUXHP-PCL has been realised in a 

precise manner without severe thermal damage to the surrounding ridge/groove 

arrays. The melting effect was limited within the range of several micrometers. The 

melting was observed to form lip-like structures around the pores, and this 

phenomena probably due to the anisotropic residual stress from uniaxial stretching. 

During the drilling process, the residual stress at film surface lancinated the melt and 
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pull them away from each other. This also explained the reason why laser drilling on 

HP-PCL and biaxial-stretched PCL films resulted in melts in a circular shape [135]. 

 

During the pores' perforation of PUXHP-PCL, pulse energy Epulse was observed to 

affect the diameter of femtosecond laser drilled pores. The pore diameter generally 

increased at a higher Epulse as laser beam energy was in a Gaussian distribution [135]. 

The pore diameter and Epulse followed in an approximate linear relationship during an 

Epulse of 20-60 µJ, suggesting that the pore size could be properly tailored. Moreover, 

Epulse determined whether the drilled pores were blind or through holes. In this study, 

the pores of PUXHP-PCL (film thickness: ~37.9 µm) would become blind when Epulse 

was less than 10 µJ. Because of the high energy of femtosecond laser pulse, previous 

study found that PCL films could be generated at a pulse number Npulse of 2 [135]. 

Here, optimisation study further found that variation of Npulse affected less on the pore 

diameter at both the film top and bottom surfaces. However, the ejection of melt 

tended to be reduced when Npulse increased, suggesting that it would be preferable to 

perform femtosecond laser drilling at a higher Npulse for less ejection generation. 

 

While uniaxial stretching resulted in anisotropic ridge/groove, it simultaneously 

densified the PCL molecular chains, resulting in less hydrophilic permeability of 

UXHP-PCL. Previously, perforated PCL films have been developed using a needle-

operated robot [281]. However, the flaps that formed at the sites of needle punching 

tended to close when placed in a culturing medium [135]. Other techniques such as 

foaming and particulate leaching have also been used for pore generation, but have 

been found to exhibit limited inter-pore-connectivity [62]. Comparatively, the 

presenting technique using femtosecond laser drilling allowed the production of 
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through-hole. Because of the materials being removed, the flaps did not close when 

immersed in PBS and/or cell culture medium. Moreover, the FITC-dextran diffusion 

study demonstrated that PUXHP-PCL had achieved enhanced hydrophilicity 

permeability, and was able to allow nutrition diffusion for MSCs growth in serum-

free medium. Previously, ablation of femtosecond laser using a pre-fabricated 

stainless steel mask has been applied to perforate PCL films [135]. However, this 

method was time consuming, and due to the flexibility of PCL films, focusing of laser 

beam at a same height for all pores has become difficult, leading to un-homogeneous 

pore diameters in a large area. Furthermore, the using of mask made it become 

difficult if pores with different diameters and patterns were needed. In this work, 

femtosecond laser drilling at different pore sizes and positions was realised by simply 

adjusting the laser power and stage movement using a computer program. This 

method was mask-free, and allowed specific focus depths at certain pore positions as 

well as various pore patterns for different design requirements. 

 

The combination of pore size in microscale and micropatterning for function-

improved TE scaffolds has not been fully developed. One major reason was that the 

presence of pores was found to interfere the function of micropatterns to guide 

cellular organisation, in particularly for pores with diameters larger than 10 µm [40, 

62, 282]. In this work, observations revealed how pores interfere cellular alignment 

along the geometric cues. On UXHP-PCL, MSCs grew as an elongated and spindle-

like shape. If cells on PUXHP-PCL could extend freely, MSCs remained alignment in 

regardless of the pores. If one end of the cellular extension was obstructed, MSCs 

would conform partialy to the pore edges, and kept the left parts of cells remained in 

alignment along the ridges with the orientated F-actin cytoskeleton. If one cellular 
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extension end of MSCs was confined by pores, and meanwhile, the other extension 

ends contacted to other cells or surface features that were not in the ridge direction, 

MSCs would lose the alignment along ridge/groove arrays 

 

Pores to interfere in cell alignment were found to be dependent on the inter-pore-

distance. Edges of the substrate features have been proposed to facilitate cellular 

adhesion by acting as nucleation sites [212]. Here, MSCs on PUXHP-PCL were also 

observed to distribute preferentially around the pores. Compared to pore patterns of 

X200Y200, the inter-pore-distance increased in either x or y direction resulted in 

more cells in the adjacent area of the pores. This could be attributed to the weakened 

attraction of pores to the cells [212]. Interestingly, although the inter-pore-distance for 

pore patterns of X200Y200 in the x and y axes were 200 µm (smaller than the length 

of elongated MSCs), MSCs have not been observed to anchor and bridge across the 

two adjacent pores in the y direction, suggesting that MSCs preferentially conformed 

to the ridge/groove arrays. 

 

The interference of cellular alignment observed on different pore patterns of PUXHP-

PCL was explainable. A distance of 200 µm allowed MSCs to anchor at and bridge 

two adjacent pores in the x-axis. If cells were not able to extend over the pores along 

the ridges, they would adjust the extension direction and anchor at the other positions, 

resulting in a final cell extension deviating from ridges and a declined efficiency of 

cell alignment. An inter-pore-distance of 500 µm was sufficient to allow MSCs 

extension freely in the ridge directions and avoid cellular bridging of two adjacent 

pores. In addition, MSCs, although pores might confine their extension at one end, 

were able to crawl freely at the other extension end and retained alignment. These two 
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reasons explained why the alignment efficiency for MSCs on X500Y200 was larger 

than that on X200Y200. However, inter-pore-distance increase in the y-axis did not 

result in better MSCs alignment for pore patterns of X200Y500 as compared to that of 

X200Y200. This could be attributed to the more surrounded cell growth around the 

pores on PUXHP-PCL for X200Y500. Such enhanced cellular growth could be due to 

the following two reasons: (i) reduced pore attraction in the y-axis direction, thus 

leading to more cells conforming to the ridge/groove arrays, and (ii) small inter-pore-

distance in the x-axis direction, thus leading to confined cell extension. It was worth 

noting that compared to pore patterns of X500Y200, the inter-pore-distance increase 

in the y-axis direction resulted in increased cell alignment for pore patterns of 

X500Y500. This was probably because that the inter-pore-distance of 500 µm 

allowed MSCs to extend freely, and therefore, resulted in non-reduced efficiencies of 

cellular alignment as compared to positive control of UXHP-PCL at cellular sub-

confluence and confluence.  

 

The design of PUXHP-PCL has complex architectures consisting of anisotropic 

ridge/groove arrays and penetrated pore patterns in microscale. In Chapter 4, the 

alignment of MSCs on PCL ridge/groove arrays were found to couple with a 

contractile SMCs-like phenotype including spindle shapes, fewer but aligned 

cytoskeletal stress filaments, and up-regulated and orientated expression of SM-α-

actin, calponin and SM-MCH filaments. In this work, PUXHP-PCL with proper pore 

patterns such as X500Y500 retained MSCs alignment, which was similar to that on 

UXHP-PCL. Meanwhile, the presence of pores enhanced the permeability of PCL 

films, and was sufficient to allow nutrition diffusion across the films for MSCs 

growth. All these suggested that PUXHP-PCL was able to support MSCs growth, 
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forming aligned cellular organisation and differentiation towards a contractile 

phenotype as those observed in tunica media. Furthermore, MSCs on PUXHP-PCL 

were found to contact via the pores with HUVECs on the opposite film surface. The 

observed colour dots superimposed with the other colour areas suggesting that MSCs 

and HUVECs did not just meet each other within the pores, but formed direct cell-cell 

interaction with complex interdigitated networks, resulting in up-regulated NO level 

of the co-culture system and increased HUVECs proliferation. Such findings 

suggested that PUXHP-PCL through allowing direct cell-cell interaction could 

facilitate the endothelisation simultaneously and thus, was promising to act as an 

engineered BM for vascular tissue regeneration. 

 

6.5 Summary 

In this work, a combined method of uniaxial stretching and femtosecond laser drilling 

was used to generate complex PCL film architecture. PUXHP-PCL consisted of 

anisotropic ridge/groove arrays and pore patterns. Drilling using femtosecond laser 

beam allowed perforative PCL films with regular pore shapes and tunable pore 

diameters and positions. Compared to UXHP-PCL, PUXHP-PCL exhibited an enhanced 

permeability of FITC-dextran, and allowed nutrition diffusion for increased cellular 

adhesion and proliferation. MSCs on PUXHP-PCL aligned towards ridge/groove 

arrays following a manner depending on the pore patterns. Through fine-adjustment 

of pore distance, non-interfered MSCs alignment was achieved on PUXHP-PCL as 

compared to that on UXHP-PCL at sub-confluence and confluent status, respectively. 

PUXHP-PCL allowed cell ingrowth into pores in three manners of "bridging", 

"sidewall depth" and "coverage", and facilitated MSCs-HUVECs interaction via 

direct cell-cell contact, leading to up-regulated total NO level of co-culture system 
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and increased HUVECs proliferation. This work demonstrates that multi-functional 

PCL films with anisotropic geometries and microporous patterns, could biomimic the 

complex architectures of vascular BM, and are promising for using as an engineered 

BM for the potential tunica media and lumen regeneration simultaneously. This work 

also suggests that a combination of uniaxial stretching and femtosecond laser drilling 

could be a suitable method for generating the complex film architectures for VTE 

application. 
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Chapter 7 Conclusions 

 

 

Cardiovascular diseases are the leading cause of death worldwide, requiring surgical 

bypassing of effective vascular grafts to achiev good healing. However, current 

available vascular grafts cannot fulfill the clinical needs due to several significant 

drawbacks including the shortage of autografts, slow healing of allografts and 

xenografts, and poor long-term patency rates for small-diameter bypass grafting of 

synthetic grafts. Vascular tissue engineering (VTE) sets out to address the deficiency 

of effective vascular grafts. However, its further development has been beset. Current 

tissue-engineered vascular grafts (TEVG) cannot match the compliance of native 

vessels (e.g. distortion of ordered architecture, SMCs dedifferentiation, and poor 

endothelialisation). This project thus proposed a novel design for de novo TEVG 

through biomimicking the complex architecture of BM and using MSCs as an 

alternative cell source, and to realise the effective cell alignment, elevated 

differentiation of MSCs into a SMCs-like phenotype and rapid endothelialisation. 

 

In the first part of this thesis, orientated ridge/groove arrays have been created on PCL 

thin films to biomimic the BM anisotropic architecture. PCL films after uniaxial 

stretching obtained 3D self-assembling micro-ridges and grooves that were highly 

orientated towards the stretching direction (angle variation: less than ±1.56 o) with 

homogeneous distribution of a large film area (X0 à X3, Y0-Y4; ~2x12 cm2). The 

ridge/groove arrays allowed structural parameters (e.g. inter-ridge-distance and ridge-
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length) to be varied by controlling the stretch temperature (Ts) and draw ratio (DR). 

The ridge/groove arrays further allowed modification of the desired surface properties 

(e.g. hydrolysis), while retaining the geometries intact. MSCs on stretched PCL films 

achieved an aligned organisation as cells arranged in tunica media. MSCs alignment 

was in a controllable direction and homogeneous over the film sample (~1x1 cm2), 

with significant increase in the cellular alignment efficiency (>85 %) and elongation 

over a prolonged period (>2 weeks). 

 

In the second part of this thesis, optimal PCL film was achieved for enhanced MSCs 

differentiation and TEVG scaffold construction. Uniaxial stretching was applied on 

various PCL films obtained via solvent casting, cast stretching and heat pressing. 

Among these films, uniaxial-stretched heat-pressed PCL (UXHP-PCL) films showed 

the best mechanical properties, and the proper ridge-depth and inter-ridge-distance for 

the highest alignment efficiency of MSCs. Furthermore, UXHP-PCL as compared to 

un-stretched films has achieved significant increase in yield stress (2.5x, p <0.001), 

Yong's Modulus (2.1x, p <0.001) and ultimate stress (2.6x, p <0.001) with un-reduced 

elasticity. MSCs cultured on UXHP-PCL showed a contractile SMCs-like phenotype, 

with up-regulated expressions of SM-α-actin, calponin and SM-MHC at protein and 

gene levels. UXHP-PCL facilitated construction of small-diameter 3D vascular 

scaffolds, with a wall that allows the construction of orientated MSCs/PCL/MSCs 

multi-layers. 

 

In the third part of this thesis, in vitro hydrolysis has been employed to evaluate the 

stability of UXHP-PCL under erosive environment. UXHP-PCL from uniaxial 

stretching obtained an enhanced stability against degradation, and experienced surface 
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erosion, with an overall geometries being retained even at ~45 % weight loss. Over 

the investigated period of degradation, UXHP-PCL exhibited an "S-shape" behaviour 

of weight loss, more stable hydrophilicity and better retainment of mechanical 

properties than the un-stretched films. UXHP-PCL could withstand up to ~20 % 

weight loss without causing reduction in cell alignment. At up to ~45 % weight loss, 

UXHP-PCL could still retain increased cell alignment as compared to un-stretched 

PCL films. These findings represent the enhanced stability of UXHP-PCL against 

erosive environment. 

 

In the last part of this thesis, micropores have been further incorporated onto UXHP-

PCL (PUXHP-PCL), to fully biomimic the complex architecture of BM. The pores 

drilled by femtosecond laser exhibited regular pore morphologies, and tunable pore 

sizes and positions. Compared to UXHP-PCL, PUXHP-PCL achieved an enhanced 

nutrient diffusion for MSCs proliferation. Through fine-adjustment of pore positions, 

un-interfered MSCs alignment has been obtained on PUXHP-PCL at cellular sub-

confluence and confluent status. PUXHP-PCL supported MSCs ingrowth into pores 

and interaction with HUVECs on the opposite film surface via direct cell-cell contact, 

leading to up-regulated total NO level of the co-culture system and increased 

HUVECs proliferation.  

 

This project explores the use of anisotropic geometric cues and micropore patterns to 

generate the engineered BM with demonstrated multi-functions, in incorporation of 

stem cells, for facilitating VTE applications. This work also provides two innovative 

techniques with benefits of reproducible, solvent-free and simple fabrication for 

applications in regenerative medicine. 
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Chapter 8	  Future Work 

 

 

This PhD project provided a novel strategy for do novo TEVG scaffold design, and 

has realised an engineered BM of PUXHP-PCL to align and differentiate MSCs, and 

promote HUVECs proliferation. However, current research work remained limited on 

several specific aspects. Identification of these limitations may help the future work to 

be of great interest. 

 

Recommendations for Uniaxial Stretching. There is a limited range for the inter-

ridge-distance to be varied. The current variation could be from 6 to 17 µm, during 

which different sensing of MSCs might not be triggered. Further research work is 

required to systematically investigate the conditions (e.g. post annealing) that could 

affect the structural parameters generated from uniaxial stretching. This may enable 

multifaceted functions of UXHP-PCL for not only the cellular alignment, but also 

allowing investigation of how cells adjust themselves towards the PCL topographical 

structures.  

 

Recommendations for MSCs. UXHP-PCL has differentiated MSCs with up-regulated 

expression of SMCs contractile markers. While both the ridge/groove arrays and film 

stiffness have been known to influence SMCs marker expression [28, 113], it is 

unknown how much each of them has contributed to promote MSCs differentiation. 

Further research work is needed to understand MSCs differentiation into SMCs on 
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micropatterned and flat surfaces for the same materials stiffness. This may reveal the 

intrinsic influence of geometric cues on MSCs differentiation, and the synergistic or 

antagonistic effects to those materials' stiffness.  

 

Recommendations for In Vivo Degradation. The ridge/groove arrays of UXHP-PCL 

have shown increased stability against erosive environment and capability of eliciting 

increased MSCs alignment even at ~45 % weigh loss. It is unknown whether UXHP-

PCL in vivo could present similar performances. This is because that experiments in 

vitro were performed using the direct cell seeding on the degraded UXHP-PCL, and 

avoided the influence from degradation by-products, pH changes, mechanical flow, 

and various biochemical factors and cells. Further research work is needed to perform 

in vivo degradation study of UXHP-PCL. This should help to understand the in vivo 

degradation behaviour of UXHP-PCL, and may reveal better vascular tissue 

remodeling due to the surface erosion manner and ordered cell organisation. 

 

Recommendations for Mechanical Compliance. It is unknown whether micropore 

patterns of PUXHP-PCL can provide better compliance for TEVG scaffolds in regards 

to the mechanical matching. For VTE applications, grafts should be able to withstand 

a high physiological pressure and have mechanical properties close to those of human 

arteries (burst pressure: >2000 mmHg) [191]. Further research work is required to 

systematically investigate how micropore patterns influence PUXHP-PCL mechanical 

properties. This would offer better understanding on the relationship between film 

mechanical properties and pore parameters (e.g. pore size, diameter and number 

around the circumference), facilitating the tailorable mechanical properties of PUXHP-

PCL for better vascular compliance. 
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Recommendations for PUXHP-PCL. Future work with PUXHP-PCL should not be 

limited to VTE. In human body, almost all-important tissues consist of highly ordered 

anisotropic organisation: the skins, bone, ligament, tendon, nerves, skeletal muscle, 

heart and vascular vessels [157]. Future work can use PUXHP-PCL as the basic "unit" 

to engineer more complex TE scaffolds for various tissue regeneration such as rolling 

for TEVG, ligament, tendon and bone applications, and layer-by-layer stacking for 

skin, skeletal, and cardiac and smooth muscles. Anisotropic ridge/groove arrays could 

serve as cues for guiding the ordered architecture reconstruction, while microporous 

patterns support the transportation of nutrient/oxygen, cell-cell interaction, and tissue 

ingrowth with neovascularisation. A new concept of anisotropic tissue engineering 

(aTE) should be proposed for defining the important features of these applications. 
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