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Abstract

This thesis is concerned with the mathematical study of the boundary

wave and interior wave propagation. The models we considered are the

Broadwell model of the Boltzmann equation in the kinetic theory and a

simplified model from magnetohydrodynamics (MHD).

In the first part, the initial boundary value problem for the Broadwell

model in the half space is studied to understand the interaction of boundary

waves and interior fluid waves. The Green’s function for the linearized

system in the half space is constructed. Moreover, the optimal rate of

convergence of the solution to a global Maxwellian is obtained by combining

this Green’s function for the half space with nonlinear terms.

In the second part we study the interaction of interior nonlinear waves.

We consider two models, one is a conservative system from the MHD, the

other is the Broadwell model from the kinetic theory. We seek a unified

approach to solve the linearized problem around the general shock pro-

file with general amplitude, which is a variable coefficient PDE(system).

With the explicit structure of solution for the linearized problem, we study

the nonlinear wave propagation and to conclude the convergence with an

optimal convergent rate around the shock front.
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Chapter 1
Introduction

1.1 Background

Gas is a basic state of matter in nature without a definite shape or vol-

ume, which contain a collection of particles, e.g., molecules, atoms, ions,

electrons. The gas motions are described by the different mathematical

models at different physical scales: statistical mechanics (Newton equa-

tion) at the microscopic scale; hydrodynamics (Euler and Navier-Stokes

equations) at the macroscopic scale; kinetic theory (Boltzmann equation)

at the mesoscopic scale, which connects of macroscopic and microscopic

theories. There are close relations among these models in the sense that

some of them generally can be seen as the approximations from others after

taking limits or truncations for the special physical parameters. This has

raised many challenging mathematical problems in the theories of asymp-

totic analysis and singular perturbations.

In the theories of gas motion, there are two basic components: the

boundary layers and the interior nonlinear waves. Systematic asymptotic

expansions have been developed to study the inter-relations of these t-

wo components, see Grad [13]. In this asymptotic analysis based on the

1



2 Chapter 1. Introduction

Hilbert expansion for the hydrodynamics limits problem, three singular s-

lips, the initial layer, boundary layer, and shock layer, were excluded from

the hydrodynamic regimes. Grad proposed to study the time asymptotic

behaviors of these slips on the level of the original kinetic equation for the

purpose to develop a general asymptotic expansion theory with singular

non-hydrodynamic structures.

With the knowledge of the interaction of the fluid waves with boundary

layer, the purely kinetic phenomenon such as thermal creep, some bifur-

cations due to curvature effect, ghost effects in the rarefied gas has been

established, see the works lead by Kyoto group Sone and Aoki [31, 32].

Further analytical study requires more quantitative, pointwise estimates

on the wave interaction. It is still hardly reachable for current available

mathematical analytical tools.

Shock waves are interior nonlinear waves. For the compressible Navier-

Stokes equations, there are also the interior nonlinear waves of contact

layers and rarefaction waves. The micro-parts in the contact layers and

rarefaction waves of the Boltzmann equation, will converge to zero. Thus

on the level of contact layers and rarefaction waves, the Navier-stokes e-

quation and the Boltzmann equation are time asymptotically equivalent.

As a consequence, the time-asymptotic analysis for these two waves on the

level of the Navier-Stokes equation can be generalized to the Boltzman-

n equation. However, the micro-part of the Boltzmann shock profile is

time-invariant and the analysis designed for the Navier-Stokes equation is

not sufficient. The study of the positivity of shock waves for Boltzmann

equation, [22], established more direction connection of the kinetic theory

and shock wave theory for conservation laws. The study is based on the

energy method, which is motivated by the energy method in [12] for the

stability of a viscous shock profile, The energy method is a basic techniques

in the study of differential equations and works for the stability analysis
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of contact and rarefaction waves. Although it is not sufficient for shock

wave studies in general, It has helped to initiate the studies of nonlinear

waves, e.g., [23, 24, 25, 28, 33, 34]. In [23, 24], a Green’s function pointwise

estimate approach was initiated for the purpose of better understanding of

the qualitative and quantitative behavior of solutions. In [34], the author

generalized and refined this approach to better handling the local wave

interactions. He analysed the interaction of initial layer and shock layer

and also the time-asymptotic stability of the shock waves for the kinetic

equation. In the initial time, the kinetic particle-like behavior dominates;

in the intermediate time, the Burgers nonlinearity dominates; in the large-

time, the fluid type behavior dominates. The situation differs totally from

the Navier-Stokes equation [14].

As we have already seen above, quantitative and qualitative analysis

of wave interaction plays an important role in understanding of physical

phenomena. The Green’s function approach is indispensable, and allows

for the quantitative description of the rich phenomena resulting from the

interaction. However, the derivation of explicit formula for the Green’s

function is still a difficult task in general. Since there are many open

problems relating to the study of the interaction of the interior fluid wave

and boundary layers, initial layers, new analytical ideas are needed to give

explicit expression of the Greens function.

1.2 Main goals of dissertation

In this section, we state the main goals of this dissertation. We devote our-

selves to studying the following two issues: boundary waves and interior

waves propagation. We construct Green’s function for the initial-boundary

problem and the Green’s function for the shock profile. With the explicit

expression of Green’s function, we obtain the sharp pointwise nonlinear
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wave propagation structure respectively. We focus our effort on the fol-

lowing two models: one is the Broadwell model of the Boltzmann equation

from the kinetic theory, the other is a simplified model from the magneto-

hydrodynamics. It should be emphasized that the streamlined approaches

to deal with these two issues are general and unified, and can be applied

to other models. Our approaches rely on master relationship which is a

useful tool introduced recently by [27].

In considering the spatial domain with boundary, the derivation of ex-

plicit formula for the Green’s function for an initial boundary value problem

for constant coefficient PDE is a task of fundamental importance. Howev-

er, the explicit construction of the Green’s function is in general a difficult

task, as there are very rich and hidden wave structures along and around

the boundary. With the presence of a physical boundary, a precise point-

wise structure of the Green’s function is even more important in the sense

of relevance and richness to both physics and mathematics. There have

been many essential progress on the boundary value problems for rarefied

gas, numerical computations by Sone et.al. in[31]; analytical studies, par-

ticularly structure of Green’s function in [5], [17], [18], [25].

For a better understanding the pointwise wave structure around the

boundary, a new aspect of initial-boundary problem aroused, by deriving

the master-relationship [26, 27]. One could construct the full boundary

data in terms of the imposed boundary conditions. With such bound-

ary relation, a well-posed boundary problem, with partial information of

boundary data, would have a solution formula. In other words, the Green’s

function together with the boundary relation, yield the explicit expression

for the Green’s function for the initial-boundary value problem. Our first

work is one of a series of studies followed with the methodology developed

in that paper.

The second work in my dissertation is to study the wave behavior of
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wave perturbation around the shock profile. The shock profile can be clas-

sified into two cases: the classical Lax shocks; the nonclassical shocks which

contain overcompressive and undercompressive shocks. The shock becomes

overcompressive if more characteristics impinge into the shock area, and

undercompressive if less characteristics impinge into the shock area, as

compared to the Lax shock. The study of the stability of shock profile can

be traced back to [12], where the energy method was used. However, this

method has not been shown to be sufficient for the shock wave in general.

The study of the large time coupling of nonlinear waves was initiated by

[20] to obtain the time-asympototic convergence to a shock profile for a

system of viscous conservation laws with an artificial viscosity matrix. [28]

established a completion on the viscous shock stability along the frame-

work of [20]. All the above mentioned studies are about the Lax shock

profile with a small assumption on the shock strength. For the nonclassi-

cal case study, see [11, 28]. We seek a unified approach to solve the wave

perturbation around the general shock profile with general amplitude.

Our works of the above problem were summarized in some research

papers [8, 9, 10].

1.3 Summary

The contents of this dissertation are described as follows. We shall use the

master relationship tool to study two wave patterns. The fist application is

into the study of the boundary wave interaction, which is covered by Chap-

ter 2. The second is about the shock wave interactions, covered the rest

two chapters, from Chapter 3 to Chapter 4. The Appendix is given at the

end of dissertation including some useful lemmas for the wave interaction.

In Chapter 2, we study the half space problem for the Broadwell model

of Boltzmann equation. This problem is very interesting because of the
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characteristic boundary, where the speed of the boundary coincides with

one speed of the transport matrix. The Green’s function for the initial

boundary value problem is decomposed into two parts: one is the Green’s

function for the initial value problem, we call it the fundamental solution for

the whole space; the other is the convolution of this fundamental solution

with full boundary data. The first part has been already established in

[17]. To get the second part, we derive the master relationship: incoming-

outgoing map to get the full boundary data. Once the Green’s function is

obtained, we can prove the nonlinear time-asymptotic stability of a given

equilibrium state.

In Chapter 3, we consider the overcompressive shock wave propaga-

tion for a simple rotationally invariant system, which is originated from

the study of MHD and nonlinear elasticity. We derive the master relation-

ship: Dirichlet-Neumann map for the preparation. To handle the linearized

system around the large amplitude profile, we initiated a method in our

research. The structure of the linear wave propagation around the pro-

file for Cauchy problem could be obtained by solving a variable coefficient

PDE system. Firstly, we obtain a non-decaying structure which is caused

by initial data through a standard procedure. With this observation, we

extract the non-decaying part precisely. Otherwise, one would fail to get

the nonlinear stability. The remainder satisfies an error equation. Then,

we construct a function r to approximate the remainder, which satisfies a

modified error equation, here we only modify the values of the shock profile

at far fields. Due to this modification, one could separate the whole phys-

ical domain into three parts: two far fields, one finite domain region. This

splitting method is similar to the work by Kreiss [15, 16]. In the left and

right far field domains, we only need to consider the constant-coefficient

initial boundary problem. Structures of solution in the finite domain could

be obtained through the standard PDE method. So all the difficulties are
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shifted to how to give the boundary data in each part. It is very necessary

to emphasize that Dirichlet and Neumann data at two inside boundaries

are connected through profiles. Therefore, one could solve all the bound-

ary information by setting up several equations, not just giving arbitrarily.

Once all the boundary information is obtained, the structure in each part

is clear. Hence we get the pointwise structure of the approximate solution.

The truncation error produced in the approximate procedure satisfies a sim-

ilar variable coefficient PDE system. Therefore, based on this approximate

procedure, we define an iteration scheme to estimate the truncation error

of each approximation. The smallness and pointwise localization property

of r will assure that the series of errors
∑∞

j=0 r
j obtained in each iteration

step converges. Due the overcompressive property, the Green’s function

of the linearized problem can get a sharp exponential decaying structure,

excluding the non-decaying term. This sharp yields the global pointwise

nonlinear wave structure for the full system.

In Chapter 4, we shall analyze the Lax shock wave propagation for the

Broadwell model of Boltzmann equation. The approach is similar to the

overcompressive case. However, since there exist transversal waves which

propagate away from the shock regions, the nonlinear stability requires

more detailed analysis on the nonlinear wave coupling with the estimate of

the linearized problem.

In the Appendix, we list some lemmas on the wave interaction without

proof. Some of them are from exiting results, while others could be proved

by the hints given.





Chapter 2
Characteristic Half Space Problem for

the Broadwell Model

2.1 Introduction

The most basic initial-boundary value problem in the rarefied gas is the one-

dimensional Broadwell model given incoming boundary condition b+(t):
∂tF̃ + V ∂xF̃ = Q(F̃ ), x > 0, t > 0,

F̃ (x, 0) = Ĩ0(x),

(1, 0, 0)F̃ (0, t) = b̃+(t),

(2.1)

where

F̃ (x, t) =


f̃+(x, t)

f̃0(x, t)

f̃−(x, t)

 , V =


1 0 0

0 0 0

0 0 −1

 ,

Q(F̃ ) =


1
4
f̃ 2
0 − f̃+f̃−

−(1
4
f̃ 2
0 − f̃+f̃−)

1
4
f̃ 2
0 − f̃+f̃−

 .

Here the unknown functions f̃+, f̃0, f̃− represent the mass densities for

9



10 Chapter 2. Characteristic Half Space Problem for the Broadwell Model

the gas particles moving in x− direction with constant speed 1, 0 and −1

respectively. The part ∂tF̃+V ∂xF̃ represents the free transport mechanism

in the gas flow, Q(F̃ ) models the collision mechanism.

Even for smooth, compatible initial and boundary data, there usually

exists singularity in the solution around the boundary. The classical en-

ergy method is not enough to study the nonlinearity due to the boundary

singularity. So we need to consider the pointwise estimates of the Green’s

function for the linearized problem and then close the nonlinearity.

For the collision operator Q, the equilibrium states F̃ are the positive-

valued vector solutions of Q(F̃ ) = 0. Furthermore, an absolute equilibrium

state M satisfies

M = (1/6, 1/3, 1/6)t.

We are interested in the structure of solutions close to the absolute equi-

librium state M .

The linearized equation around the absolute equilibrium state M is

∂tF + V ∂xF = LF, (2.2)

with the linearized collision operator L:

L = −1

6


1 −1 1

−1 1 −1

1 −1 1

 .

The macro-micro decomposition (P0,P1) is based on the kernel and

co-kernel of the linearized collision operator L:
P0 : R3 7−→ kel(L), P0|ker(L) = Iker(L);

P1 : R3 7−→ cokel(L), P1 ≡ I −P0.
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Moreover, the decomposition (P0,P1) satisfies
P0L = LP0 = 0,

P1L = LP1 = L,

P0Q = 0.

The explicit forms of the operators P0 and P1 are [17]:

P0 =
1

3


2 1 −1

1 2 1

−1 1 2

 , P1 =
1

3


1 −1 1

−1 1 −1

1 −1 1

 .(2.3)

The Green’s function Gb(x, y, t, τ) = Gb(x, y, t − τ) for the linearized

initial boundary value problem of Broadwell model is a 3×3 matrix-valued

function which satisfies:
∂tGb + V ∂xGb = LGb, x, y > 0, t > τ,

Gb(x, y, 0) = δ(x− y)I,

(1, 0, 0)Gb(0, y, t, τ) = (0, 0, 0).

(2.4)

To construct Gb(x, y, t), we define a fundamental pair(G,H):
G = G(x− y, t),

H(x, y, t) = Gb(x, y, t)−G(x− y, t).

(2.5)

Here the first part is the fundamental solution of the linearized initial prob-

lem of Broadwell model for the whole space, which is also a 3 × 3 matrix

valued function satisfying:
∂tG+ V ∂xG = LG, x ∈ R, t > 0,

G(x, 0) = δ(x)I.

The second part H(x, y, t) satisfies the following system:
∂tH+ V ∂xH = LH, x > 0, t > 0,

H(x, y, 0) = 0,

(1, 0, 0)H(0, y, t) = −(1, 0, 0)G(−y, t).

(2.6)



12 Chapter 2. Characteristic Half Space Problem for the Broadwell Model

By applying the first Green’s identity to (2.6), we have the representa-

tion for the second part:

H(x, y, t) =

∫ t

0

G(x, t− τ)VH(0, y, τ)dτ. (2.7)

Because of the pointwise description of Green’s function G(x, t) ob-

tained in [17], the representation (2.7) yields a pointwise description of

the interaction of the boundary data and the propagation of the interior

fluid waves. However, the representation demands the full boundary data

H(0, y, τ), while physically the boundary data are given only for particle

moving in x− direction with speed 1. The global boundary data H(0, y, τ)

can be obtained through Fourier transformation and wellposedness of the

half space problem. One can apply complex analysis to yield the exponen-

tial sharp global estimates of the boundary data.

Once the Green’s function for the initial-boundary problem (2.4) is

obtained, we can get the representation for the solution of initial-boundary

problem (2.1). As is usually done, the solution F̃ is written as

F̃ =M +W.

The boundary value b+(t), for simplicity, is assumed to be part of the

absolute equilibrium stateM . To illustrate the wave propagation properties

of the solution, we assume the initial perturbation W0(x) ≡ Ĩ0(x) − M

satisfying ∥W0(x)∥ ≤ ϵe−σ|x|, with ϵ≪ 1. Then the perturbation satisfies
∂tW + V ∂xW − LW = Q(W ), (x, t) ∈ R+ × R+,

W (x, 0) = W0(x),

(1, 0, 0)W (0, t) = 0.

(2.8)

Now we state the main theorem in this chapter:

Theorem 2.1.1. There exists a constant C, such that the solution W (x, t)
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for (2.8) satisfies

∥W (x, t)∥ ≤ Cϵ

e−
|x− 1√

3
t|2

C(1+t)

√
1 + t

+ e−(|x|+t)/C



+Cϵ


1√

(|x+ 1√
3
t|+1)(|x− 1√

3
t|+1)

, for x ∈ (0, 1√
3
t−

√
t),

0, for x ∈ ( 1√
3
t−

√
t,∞).

The rest of this chapter is as follows. In section 2.2, we prepare the full

boundary data through Fourier transformation and wellposedness of the

half space problem. In section 2.3, we will review the Green’s function for

the linearized initial value problem, then construct the Green’s function

for the initial-boundary problem by using the aforementioned fundamen-

tal pair (G,H). In the section 2.4, we prove the main nonlinear stability

theorem. This problem is very interesting due to a particular fact that the

speed of the boundary coincides with one speed of the transport matrix.

The resonance between particles and boundary can be clearly realized by

the Green’s function we constructed. The analysis in this chapter also pro-

vides a unified tool for studying the initial-boundary value problem for this

kinetic equation with differential physical characteristics, as compared to

the previous works in [5], [17], [18].

2.2 Master relationship: incoming-outgoing

map

Consider the solution (2.7). To obtain full boundary H(0, y, τ), we make

use of the Laplace transform to construct a map

(1, 0, 0)H(0, y, τ) → (0, 0, 1)H(0, y, τ).

For convenience, we denote

H+(x, y, t) ≡ (1, 0, 0)H(x, y, t),
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H0(x, y, t) ≡ (0, 1, 0)H(x, y, t),

H−(x, y, t) ≡ (0, 0, 1)H(x, y, t).

Then

H(x, y, t) =


H+(x, y, t)

H0(x, y, t)

H−(x, y, t)

 .

For a function y(t) defined for t ≥ 0, its Laplace transform and inverse

Laplace transform are defined as follows:

Definition 2.2.1. For a function y(t) defined for t ≥ 0, its Laplace trans-

form and inverse Laplace transform are defined as follows:

Y (s) = L[y](s) ≡
∫ ∞

0

e−sty(t)dt,

y(t) = L−1[Y ](t) ≡ 1

2πi
lim
T→∞

∫ γ+iT

γ−iT

estY (s)ds,Re(s) = γ, s.t.

γ is greater than the real part of all singularities of Y (s).

Let Ls and Lξ denote the Laplace transform with respect to time vari-

able t and space variable x respectively. Take the Laplace transform of the

first equation of (2.6) in the x and t variables:

sJ[H+](ξ, y, s) + ξJ[H+](ξ, y, s) = Ls[H+](0, y, s)

−1
6
(J[H+](ξ, y, s)− J[H0](ξ, y, s) + J[H−](ξ, y, s)),

sJ[H0](ξ, y, s) =
1
6
(J[H+](ξ, y, s)− J[H0](ξ, y, s) + J[H−](ξ, y, s)),

sJ[H−](ξ, y, s)− ξJ[H−](ξ, y, s) = −Ls[H−](0, y, s)

−1
6
(J[H+](ξ, y, s)− J[H0](ξ, y, s) + J[H−](ξ, y, s)),

(2.9)

here J[H] ≡ Ls[Lξ[H]], s > 0, ξ > 0.

From (2.9), we have
J[H+](ξ, y, s) =

Ls[H+](0,y,s)−sJ[H0](ξ,y,s)
ξ+s

,

J[H−](ξ, y, s) =
Ls[H−](0,y,s)+sJ[H0](ξ,y,s)

ξ−s
.
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Substitute these two representations into the second equation of (2.9),

we get

J[H0](ξ, y, s) =
1

6s+ 1

(ξ − s)Ls[H+](0, y, s) + (ξ + s)Ls[H−](0, y, s)

ξ2 − 6s3+3s2

6s+1

.

Denote λ1(s) ≡
√

6s3+3s2

6s+1
, then

J[H0](ξ, y, s) =
Resξ=λ1J[H0](ξ, y, s)

ξ − λ1
+
Resξ=−λ1J[H0](ξ, y, s)

ξ + λ1
, (2.10)

here Resξ=λ1J[H0](ξ, y, s) means the residue of function J[H0](ξ, y, s) at λ1.

Take the inverse Laplace transform of (2.10) with respect to space variable

ξ:

Ls[H0](x, y, s) = eλ1xResξ=λ1J[H0](ξ, y, s) + e−λ1xResξ=−λ1J[H0](ξ, y, s).

For the wellposedness of a differential equation imposes the solution

LS[H0](x, y, s) decays to zero as x→ ∞. This implies that

Resξ=λ1J[H0](ξ, y, s) = 0,

which yields the following relationship:

Ls[H−](0, y, s) = −λ1 − s

λ1 + s
Ls[H]+y(0, y, s)

= −(6s+ 2−
√

(6s+ 3)(6s+ 1))Ls[H+](0, y, s).(2.11)

By the inverse Laplace transform of (2.11), we finally get the incoming-

outgoing map formula:

H−(0, y, t) = −6∂tH+(0, y, t)− 2H+(0, y, t)

+6∂t ∗
e−1/2t

2
√
πt

∗ ∂t ∗
e−1/6t

2
√
πt

∗H+(0, y, t). (2.12)

Here, instead of studying the inverse Laplace transform of
√
s, we consider

√
s
s

= 1√
s
by the usual inversion formula of the Laplace transform:

L(t) ≡ 1

2πi

∫ i∞

−i∞
est

1√
s
ds =

1

2π
√
s

∫ ∞

−∞
eis

1√
is
ds =

1√
πt
. (2.13)

The inversion of the Laplace transform has the property that division in s

corresponds to differentiation in t.
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2.3 Construct the Green’s function Gb(x, y, t)

The fundamental pair (2.5) yields the decomposition Gb(x, y, t) = G(x −

y, t)+H(x, y, t). Firstly, we recall the following theorem in [17] on Green’s

function G(x, t) for the initial value problem.

Theorem 2.3.1. There exists a positive constant C such that∥∥∥∥∥∥∥∥∥∥
G(x, t)− e−t/6


δ(x− t) 0 0

0 δ(x) 0

0 0 δ(x+ t)


∥∥∥∥∥∥∥∥∥∥

≤ C

e−
|x− 1√

3
t|2

C(1+t)

√
1 + t

+
e−

|x+ 1√
3
t|2

C(1+t)

√
1 + t

+ Ce−(|x|+t)/C , (2.14)

for all x ∈ R, t > 0.

To get the pointwise estimate for the function H(x, y, t), we also need

another lemma in [25].

Lemma 2.3.2. Suppose that λ, µ > 0. Then for given positive constants

D0 and D1, there exists D2 > 0 such that for any x, z, t ≥ 0, and α ≥ 1,

∫ t

0

e
− (x−λ(t−τ)2

D1(t−τ)

√
t− τ + 1

e
− (z−µτ)2

D0(τ+1)

(τ + 1)
α
2

dτ = O(1)

(
1

(z + 1)
α−1
2

+
1

(t+ 1)
α−1
2

)
e
−

(x−λt+λ
µz)2

D2(t+1)

√
t+ 1

.

Lemma 2.3.3.

∥G+(−y, τ)∥ ≤ O(1)

e−
|−y− 1√

3
τ |2

C(1+τ)

√
1 + τ

+
e−

|−y+ 1√
3
τ |2

C(1+τ)

√
1 + τ

+ e−(|y|+τ)/C

 ,

∥∂τG+(−y, τ)∥

≤ O(1)


e−

|−y− 1√
3
τ |2

C(1+τ)

(1 + τ)
+
e−

|−y+ 1√
3
τ |2

C(1+τ)

(1 + τ)

 (1 +
1√
1 + τ

) + e−(|y|+τ)/C

 ,
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∥∥∥∥∂τ ∗ e−1/2τ

2
√
πτ

∗ ∂τ ∗
e−1/6τ

2
√
πτ

∗G+(−y, τ)
∥∥∥∥

≤ O(1)

 e−
|−y− 1√

3
τ |2

C(1+τ)

√
1 + τ(1 + τ)

+
e−

|−y+ 1√
3
τ |2

C(1+τ)

√
1 + τ(1 + τ)

+ e−(|y|+τ)/C

 .

Proof. The fist two inequalities are straightforward. For the third one, just

apply Lemma 2.3.2 when z = 0.

Now we have the following theorem:

Theorem 2.3.4.∥∥∥∥∥∥∥∥∥∥
Gb(x, y, t)− e−t/6


δ(x− y − t) 0 0

0 δ(x− y) 0

0 0 δ(x− y + t)


∥∥∥∥∥∥∥∥∥∥

≤ O(1)

e−(|x|+|y|+t)/C +
e−

|x−y+ 1√
3
t|2

C(1+t)

√
1 + t

+
e−

|x−y− 1√
3
t|2

C(1+t)

√
1 + t

+
e−

|x+y− 1√
3
t|2

C(1+t)

√
1 + t


Remark 1. The last term represents the reflections at the boundary of

waves with negative speed − 1√
3
to waves with positive speed 1√

3
.

Proof. Denote the 0th order Particle-Wave decomposition for G(x, t) as

G(x, t) = e−t/6


δ(x− t) 0 0

0 δ(x) 0

0 0 δ(x+ t)

+W0(x, t).

From (2.7), (2.12) and Theorem 2.3.1 we have

H(x, y, t) =

∫ t

0

W0(x, t− τ)VH(0, y, τ)dτ

+

∫ t

0

e−(t−τ)/6


δ(x− (t− τ)) 0 0

0 δ(x) 0

0 0 δ(x+ t− τ)

VH(0, y, τ)dτ.
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For the first term, using Lemma 2.3.3 we have the following estimate∥∥∥∥∫ t

0

W0(x, t− τ)VH(0, y, τ)dτ

∥∥∥∥
≤ O(1)

∫ t

0

∥W0(x, t− τ)∥ (∥H+(0, y, τ)∥+ ∥H−(0, y, τ)∥)dτ

≤ O(1)

∫ t

0

e−
|x− 1√

3
(t−τ)|2

C(1+(t−τ))

√
1 + t− τ

+
e−

|x+ 1√
3
(t−τ)|2

C(1+t−τ)

√
1 + t− τ

+ e−(|x|+t−τ)/C

 (∥G+(−y, τ)∥

+

∥∥∥∥∂tG+(−y, τ) + ∂τ ∗
e−1/2τ

2
√
πτ

∗ ∂τ ∗
e−1/6τ

2
√
πτ

∗G+(−y, τ)
∥∥∥∥) dτ

≤ O(1)

∫ t

0

e−
|x− 1√

3
(t−τ)|2

C(1+(t−τ))

√
1 + t− τ

+
e−

|x+ 1√
3
(t−τ)|2

C(1+t−τ)

√
1 + t− τ

+ e−(|x|+t−τ)/C


·


e−

|−y− 1√
3
τ |2

C(1+τ)

√
1 + τ

+
e−

|−y+ 1√
3
τ |2

C(1+τ)

√
1 + τ

+ e−(|y|+τ)/C

 dτ

≤ O(1)

e−(|x|+|y|+t)/C +
e−

|x+y− 1√
3
t|2

C(1+t)

√
1 + t

 (2.15)

For the second term, we have∥∥∥∥∥∥∥∥∥∥
∫ t

0

e−
t−τ
6


δ(x− (t− τ)) 0 0

0 δ(x) 0

0 0 δ(x+ t− τ)

VH(0, y, τ)dτ

∥∥∥∥∥∥∥∥∥∥
≤ O(1)

∫ t

0

e−
t−τ
6 [(δ(x− (t− τ)) ∥G+(−y, τ)∥

+δ(x+ (t− τ)) ∥G−(−y, τ)∥]dτ

≤ O(1)

∫ t

0

e−
t−τ
6 δ(x− (t− τ))e−

|−y− 1√
3
τ |2

C(1+τ)

√
1 + τ

+
e−

|−y+ 1√
3
τ |2

C(1+τ)

√
1 + τ

+ e−(|y|+τ)/C

 dτ

≤ O(1)e−x/C

e−
|−y+ 1√

3
(t−x)|2

C(1+(t−x))√
1 + (t− x)

+ e−(|y|+(t−x))/C
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≤ O(1)e−(x+y+t)/C . (2.16)

From (2.15), (2.16) and (2.5) we get the pointwise estimate for Gb(x, y, t).

2.4 Nonlinear stability of an absolute equi-

librium state

In this section, we prove the main Theorem 2.1.1 of this chapter. For such

a problem (2.8), the solution can be represented by the Green’s function

Gb(x, y, t):

W (x, t)

=

∫ ∞

0

Gb(x, y, t)W0(y)dy +

∫ t

0

∫ ∞

0

Gb(x, y, t− τ)Q(W )(y, τ)dydτ

=

∫ ∞

0

Gb(x, y, t)W0(y)dy +

∫ t

0

∫ ∞

0

Gb(x, y, t− τ)P1Q(W )(y, τ)dydτ,

here P1 is the micro part of macro-micro decomposition (2.3).

W (x, t) can be solved by a Picard’s iteration:
W (0)(x, t) =

∫∞
0

Gb(x, y, t)W0(y)dy,

W (l)(x, t) = W (0)(x, t) +
∫ t

0

∫∞
0

Gb(x, y, t− τ)Q(W (l−1))(y, τ)dydτ,

for l ≥ 1.

By Theorem 2.3.4, there exists some constant K0 such that

∥∥∥∥∫ ∞

0

Gb(x, y, t)W0(y)dy

∥∥∥∥ ≤ K0ϵ

e−
|x− 1√

3
t|2

C(1+t)

√
1 + t

+ e−(|x|+t)/C

 .

We make an ansatz assumption:

∥W (x, t)∥

≤ 2K0ϵ

e−
|x− 1√

3
t|2

C(1+t)

√
1 + t

+ e−(|x|+t)/C
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+2K0ϵ


1√

(|x+ 1√
3
t|+1)(|x− 1√

3
t|+1)

, for x ∈ (0, 1√
3
t−

√
t),

0, for x ∈ ( 1√
3
t−

√
t,∞).

(2.17)

Now, we proof the ansatz.

Note that for G(x, t):

∥G(x, t)P1∥ = O(1)

e−
(x− 1√

3
t)2

C(1+t)

1 + t
+
e−

(x+ 1√
3
t)2

C(1+t)

1 + t
+ e−(|x|+t)/C

 .

However, the algebraic decaying rate (1 + t)−1 of G(x, y, t)P1 is not neces-

sarily true for Gb(x, y, t)P1 globally due to the presence of the boundary.

Case 1: {0 < x < 1√
3
t/2}.

We compute W (x, t) by the forward representation:

∥W (x, t)∥

= ∥
∫ ∞

0

Gb(x, y, t)W0(y)dy∥+
∫ t

0

∫ ∞

0

∥Gb(x, y, t− τ)P1Q(W )(y, τ)∥ dydτ

≤ K0ϵ

e−
(x− 1√

3
t)2

C(1+t)

√
1 + t

+ e−(|x|+t)/C


+

∫ t

0

∫ ∞

0

e−
[x−y+ 1√

3
(t−τ)]2

C(1+t−τ)

1 + t− τ
+
e−

[x−y− 1√
3
(t−τ)]2

C(1+t−τ)

1 + t− τ

 ∥W (y, τ)∥2dydτ

+

∫ t

0

∫ 1√
3
(t−τ)

0

e−
[x+y− 1√

3
(t−τ)]2

C(1+t−τ)√
(1 + t− τ)(1 + y)

∥W (y, τ)∥2dydτ (2.18)

Under the ansatz assumption (2.17), we have:

∫ t

0

∫ ∞

0

e−
[x−y+ 1√

3
(t−τ)]2

C(1+t−τ)

1 + t− τ
+
e−

[x−y− 1√
3
(t−τ)]2

C(1+t−τ)

1 + t− τ

 ∥W (y, τ)∥2dydτ

≤ O(1)K2
0ϵ

2

∫ t

0

∫ ∞

0

e−
[x−y+ 1√

3
(t−τ)]2

C(1+t−τ)

1 + t− τ
+
e−

[x−y− 1√
3
(t−τ)]2

C(1+t−τ)

1 + t− τ
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e−
(y− 1√

3
τ)2

C(1+τ)

1 + τ
+ e−(|y|+τ)/C

 dydτ

+

∫ t

0

∫ 1√
3
τ−

√
τ

0

e−
[x−y+ 1√

3
(t−τ)]2

C(1+t−τ)

1 + t− τ
+
e−

[x−y− 1√
3
(t−τ)]2

C(1+t−τ)

1 + t− τ


1

(|y + 1√
3
τ |+ 1)(|y − 1√

3
τ |+ 1)

dydτ

]
.

By Lemma A.0.2 and Lemma A.0.3 in the Appendix,

∫ t

0

∫ ∞

0

e−
[x−y+ 1√

3
(t−τ)]2

C(1+t−τ)

1 + t− τ
+
e−

[x−y− 1√
3
(t−τ)]2

C(1+t−τ)

1 + t− τ


e−

(y− 1√
3
τ)2

C(1+τ)

1 + τ
+ e−(|y|+τ)/C

 dydτ

≤ I2,2(x, t; 0, t;− 1√
3
,
1√
3
, D) + I2,2(x, t; 0, t;

1√
3
,
1√
3
, D)

≤ O(1)

e−
(x− 1√

3
t)2

C(1+t)

√
1 + t

+ e−(|x|+t)/C



+O(1)


1√

(|x+ 1√
3
t|+1)(|x− 1√

3
t|+1)

, for x ∈ (0, 1√
3
t−

√
t),

0, for x ∈ ( 1√
3
t−

√
t,∞).

By Lemma A.0.4 in the Appendix,

∫ t

0

∫ 1√
3
τ−

√
τ

0

e−
[x−y+ 1√

3
(t−τ)]2

C(1+t−τ)

1 + t− τ
+
e−

[x−y− 1√
3
(t−τ)]2

C(1+t−τ)

1 + t− τ


1

(|y + 1√
3
τ |+ 1)(|y − 1√

3
τ |+ 1)

dydτ

≤ H(x, t;− 1√
3
,
1√
3
,− 1√

3
;C) +H(x, t;− 1√

3
,
1√
3
,
1√
3
;C)

= O(1)

e−
(x− 1√

3
t)2

C(1+t)

√
1 + t

+ e−(|x|+t)/C
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+O(1)


1√

(|x+ 1√
3
t|+1)(|x− 1√

3
t|+1)

, for x ∈ (0, 1√
3
t−

√
t),

0, for x ∈ ( 1√
3
t−

√
t,∞).

∫ t

0

∫ 1√
3
(t−τ)

0

e−
|x+y− 1√

3
(t−τ)|2

C(1+t−τ)√
(1 + t− τ)(1 + y)

∥W (y, τ)∥2dydτ

≤ O(1)K2
0ϵ

2

∫ t

0

∫ 1√
3
(t−τ)

0

e−
|x+y− 1√

3
(t−τ)|2

C(1+t−τ)√
(1 + t− τ)(1 + y)

e−
|y− 1√

3
τ |2

C(1+τ)

1 + τ
+ e−(|y|+τ)/C

 dydτ

+O(1)K2
0ϵ

2

∫ t

0

∫ 1√
3
(t−τ)

0

e−
|x+y− 1√

3
(t−τ)|2

C(1+t−τ)√
(1 + t− τ)(1 + y)

1

(|y + 1√
3
τ |+ 1)(|y − 1√

3
τ |+ 1)

dydτ

≤ O(1)K2
0ϵ

2(t+ 1)−1. (2.19)

Here the decaying rate −1 in (2.19) is obtained by the similar calculation

in the proof of Theorem 1.2 in [25].

Case 2: { 1√
3
t/2 < x < 1√

3
t}.

Fix (x, t) and treat Gb(x, y, t, τ) as an operator-valued function of (y, τ).

From a symmetry consideration, we have

∥Gb(x, y, t, τ)P1∥

= O(1)(
1√

t− τ + 1
+

1√
x+ 1

)

e−
|x+y+ 1√

3
(t−τ)|2

C(1+t−τ)

√
1 + t− τ


+O(1)(

e−
|x−y+ 1√

3
(t−τ)|2

C(1+t−τ)

1 + t− τ
+
e−

|x−y− 1√
3
(t−τ)|2

C(1+t−τ)

1 + t− τ
+ e−(x+y+t−τ)).

Using the fact that, in the region x ∈ ( 1√
3
t/2, 1√

3
t),

∥Gb(x, y, t, τ)P1∥ = ∥G(x, y, t, τ)P1∥,
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by similar calculation, we can prove that∫ t

0

∫ ∞

0

Gb(x, y, t− τ)Q(W )(y, τ)dydτ

≤ O(1)K2
0ϵ

2


e−

|x− 1√
3
t|2

C(1+t)

√
1 + t

+ e−(|x|+t)/C


+

1√
(|x+ 1√

3
t|+ 1)(|x− 1√

3
t|+ 1)

 .

Case 3: {x > 1√
3
t}.∥∥∥∥∫ t

0

∫ ∞

0

Gb(x, y, t− τ)Q(W )(y, τ)dydτ

∥∥∥∥
≤

∫ t

0

∫ ∞

0

e−
|x−y+ 1√

3
(t−τ)|2

C(1+t−τ)

1 + t− τ
+
e−

|x−y− 1√
3
(t−τ)|2

C(1+t−τ)

1 + t− τ

 ∥W (y, τ)∥2dydτ

+

∫ t

0

∫ 1√
3
(t−τ)

0

e−
|x+y− 1√

3
(t−τ)|2

C(1+t−τ)√
(1 + t− τ)(1 + x)

∥W (y, τ)∥2dydτ

The calculation for the first term is similar to case 1. To deal with the

second term, note that

1√
1 + x

< O(1)
1√
1 + t

,

we bring out the decaying factor e
−

(x− 1√
3
t)2

C(1+t)
√
1+t

and the left is O(1), so∥∥∥∥∫ t

0

∫ ∞

0

Gb(x, y, t− τ)Q(W )(y, τ)dydτ

∥∥∥∥
≤ O(1)K2

0ϵ
2

e−
|x− 1√

3
t|2

C(1+t)

√
1 + t

+ e−(|x|+t)/C

 ,

and the last case is proved.

Therefore, we verify the ansatz and get the nonlinear stability theorem.





Chapter 3
Over-compressive Shock Profile for a

Simplified Model of MHD

3.1 Introduction

Consider the following simple rotationally invariant system originated from

the study of MHD and nonlinear elasticity by Freistuler [11],
ũt + (ũ(ũ2 + ṽ2))x = µũxx,

ṽt + (ṽ(ũ2 + ṽ2))x = µṽxx.

(3.1)

The characteristics are

r1(ũ, ṽ) = (ṽ,−ũ), r2(ũ, ṽ) = (ũ, ṽ),

λ1(ũ, ṽ) = ũ2 + ṽ2, λ2(ũ, ṽ) = 3λ1(ũ, ṽ). (3.2)

The 1-characteristic is linearly degenerate and the 2-characteristic is gen-

uinely nonlinear except at the origin

∇λ1 · r1(ũ, ṽ) = 0, ∇λ2 · r2(ũ, ṽ) = 6(ũ2 + ṽ2). (3.3)

A viscous shock wave has end states along the same radial direction

through the origin, i.e., in the direction of r2(ũ, ṽ). The system is rotational

25
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invariant and so, without loss of generality, consider the ends states to have

the second component zeros (ũ±, 0). When ũ± are of the same sign, the

shock is classical, and there is only one connecting orbit along the ũ− axis.

When ũ+ < 0, the shock may cross the point of non-strictly hyperbolic

point (ũ, ṽ) = 0 and becomes over-compressive.

Here we are interested in over-compressive shock, which is characterized

by

λ2(ũ−, ṽ−) > λ1(ũ−, ṽ−) > b > λ2(ũ+, ṽ+) > λ1(ũ+, ṽ+), (3.4)

b is the speed of over-compressive shock. By (3.4), the over-compressive

shock is a node-node connection. Thus when exists, there is a 1-parameter

family of viscous profiles.

The goal of this chapter is to prove that over-compressive shock profiles

for (3.1) can be stable against small perturbations: given the profile Φ =

(ϕ, ψ) of an (appropriate) over-compressive shock profile, and a function

(ũ0(x), ṽ0(x)) (of appropriate type) such that u0(x)

v0(x)

 ≡

 ũ0(x)

ṽ0(x)

− Φ

is small( in an appropriate sense), then the solution (ũ, ṽ) of (3.1) with

initial data (ũ0(x), ṽ0(x)) converges time-asymptotically to another profile

Φ∗ = (ϕ∗, ψ∗). We give the pointwise convergence rate to the new profile.

Since there is a 1-parameter family of viscous shocks with given end

states, the stability of a shock would have to be understood in the follow-

ing way: The perturbation of a stable shock profile would convergence to

another profile in the 1-parameter family. Thus, in addition of the phase

shift, the perturbation also change the time-asymptotic profile of the so-

lution. Therefore, instead of using the conservation laws to identify the

phase shift and diffusion waves as for the Laxian shocks, we should use the
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two conservation laws to identify the phase shift and the new profile. This

should make the situation well-posed as we have two conservation laws and

the same number of parameters to determine.

Theorem 3.1.1. (Main Theorem) Assume that µ = 1. Given an over-

compressive shock profile Φ = (ϕ, 0), Φ(±∞) = (ũ±, ṽ±), with (ũ−, ṽ−) =

(1, 0), (ũ+, ṽ+) = (−1
4
, 0). Let C be a universal positive constant, and let
ũ0(x)

ṽ0(x)

 = Φ(x) +


u0(x)

v0(x)


with ∥u0(x)∥, ∥v0(x)∥ ≤ O(1)εe−|x|/C. Then for ε sufficiently small, there

exists a unique profile Φ∗ with Φ(±∞) = Φ∗(±∞), such that the solution

of (3.1) satisfies:∥∥∥∥∥∥∥


ũ(x, t)

ṽ(x, t)

− Φ∗(x− bt− x0)

∥∥∥∥∥∥∥ ≤ O(1)εe−(|x−bt|+t)/C .

Here the constant x0 and profile Φ∗ are determined by∫
R

(ũ0, ṽ0)(x, 0)dx =

∫
R

((ϕ∗, ψ∗)(x− bt− x0)− (ϕ, ψ)(x− bt))dx.

This nonlinear stability will be proved in Section 3.5, after preliminary

preparation for later use in Section 3.2, brief framework introduction on

solving an simplified variable coefficient PDE system related to the lin-

earized system in Section 3.3 and rigorous analysis on linearized problem

in Section 3.4.

To handle the linearized system around the general amplitude profile,

we initiated a method in our research. The structure of the linear wave

propagation around the profile for Cauchy problem could be obtained by

solving a variable coefficient PDE system. Firstly, we obtain a non-decaying

structure which is caused by initial data through a standard procedure.
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With this observation, we extract the non-decaying part precisely. Other-

wise, one would fail to get the nonlinear stability. The remainder satisfies

an error equation. Then, we construct a function r to approximate the re-

mainder, which satisfies a modified error equation, here we only modify the

values of the shock profile at far fields. Due to this modification, one could

separate the whole physical domain into three parts: two far fields, one fi-

nite domain region. This splitting method is similar to the work by Kreiss

[15, 16]. In the left and right far field domains, we only need to consider

the constant-coefficient initial boundary problem. Structures of solution in

the finite domain could be obtained through the standard PDE method.

So all the difficulties are shifted to how to give the boundary data in each

part. It is very necessary to emphasize that Dirichlet and Neumann data at

two inside boundaries are connected through profiles. Therefore, one could

solve all the boundary information by setting up several equations, not

just giving arbitrarily. Once all the boundary information is obtained, the

structure in each part is clear. Hence we get the pointwise structure of the

approximate solution. The truncation error produced in the approximate

procedure satisfies a similar variable coefficient PDE system. Therefore,

based on this approximate procedure, we define an iteration scheme to

estimate the truncation error of each approximation. The smallness and

pointwise localization property of approximate function will assure that the

series of errors obtained in each iteration step converges.

There are many other works on the stability problem around different

profiles, using different approaches. See[20, 28, 34] for the case of small

amplitude Laxian shock profile. For the large-amplitude profile, see series

of results by Zumbrun and various collaborators, most of which are based

on the framework of the Evans-function, e.g., [29].

In the rest of introduction, we want to comment on the system (3.1) and

the non-classical shock. In physical systems of conservation laws, rotational
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invariance typically arises due to natural isotropy. Unlike the classical

conservation law theory, in which the isotropy is superposed with Galilean

invariance in a geometrically non-generic way, the MHD or elastic plane

waves display rotational symmetry in generic form, which induces (3.2),

(3.3) and (3.4). The over-compressive shock wave we study in this chapter

are good descriptions of certain non-classical shock waves that arise in

physical systems, especially in magnetohydrodynamics. Analysis shows

that viscous profiles for the over-compressive shocks are nonlinearly stable,

but not uniformly with respect to the strength of the viscosity, see [11]

and references therein. The over-compressive shocks for (3.1) are physical

provided that dissipations are not small. They are not admissible inviscid

shocks.

3.2 Preliminary

3.2.1 Profiles of over-compressive shocks

Profile (ϕ, ψ) of any viscous shock wave is a heteroclinic orbit of the O.D.E.

system

ϕ′ = (ϕ2 + ψ2 − b)ϕ− b1,

ψ′ = (ϕ2 + ψ2 − b)ψ − b2, (3.5)

in which the speed b and the relative flux b1, b2 are given by the Rankine-

Hugoniot conditions:

(ũ2+ + ṽ2+ − b)ũ+ = (ũ2− + ṽ2− − b)ũ− = b1,

(ũ2+ + ṽ2+ − b)ṽ+ = (ũ2− + ṽ2− − b)ṽ− = b2, (3.6)

with ũ± = ϕ(±∞), ṽ± = ψ(±∞).

Quote a lemma in [11]:
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Lemma 3.2.1. (i): ũ±, ṽ± satisfy the inequality (3.4) with b1 and b2 from

(3.6) if and only if (ũ−, ṽ−) ̸= (0, 0) and (ũ+, ṽ+) = α(ũ−, ṽ−), α ∈ (−1
2
, 0).

(ii): In this case, there is a 1-parameter family of viscous profiles satisfy

(3.5) and (3.6).

In the following Figure 3.1: the left is the 1-parameter family of profiles,

the right is 1-component plot for the over-compressive shock profile we give

in our main theorem: Φ = (ϕ, 0) = (4−49ex+7
√
16−24ex+49e2x

32
, 0). The end

states are (ũ−, ṽ−) = (1, 0), (ũ+, ṽ+) = (−1
4
, 0).
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Figure 3.1: Overcompressive shock profiles

3.2.2 Master relationship: Dirichlet-Neumann map

We prepare the basic materials for constructing Dirichlet-Neumann map

we will need in following sections, see [26] for more details.

Consider the following half space problem:
Vt + AVx = Vxx, for x > 0, t > 0,

V (0, t) = Vb(0, t),

V (x, 0) = V0(x),

(3.7)

A is a constant. A functional property on given boundary data Vb is im-

posed for the consistency with zero initial data and for an application
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condition for the Bromwich integral:

Vb ∈ {g|L[g](s) exists for Re(s) > 0, g[n](0) = 0 for n ∈ N ∪ {0}}.

Under the definition of (2.2.1), we define Ls as the Laplace transform

with respect to time variable t, Lξ as the Laplace transform with respect

to space variable x, L−1 as the inverse Laplace transform.

Case 1: V0(x) = 0.

Apply the Laplace-Laplace transform to the equation of V in (3.7), one

has:

(s+ Aξ − ξ2)J[V ] = (A− ξ)Ls[Vb](s)− ∂xLs[V ](0, s),

J[V ] ≡ Lξ[Ls[V ].

By the purely algebraic manipulations one can have the solution in

terms of variable ξ, s, Ls[Vb] and ∂xLs[V ]:

J[V ] =
−∂xLs[V ](0, s) + 1

2
Ls[Vb](s)(A−

√
A2 + 4s)

√
A2 + 4s(ξ − 1

2
(A+

√
A2 + 4s))

+
−∂xLs[V ](0, s) + 1

2
Ls[Vb](s)(A+

√
A2 + 4s)

√
A2 + 4s(ξ − 1

2
(A−

√
A2 + 4s))

. (3.8)

Note that the characteristic polynomial s + Aξ − ξ2 has only one positive

root ξ = 1
2
(A+

√
A2 + 4s) for s > 0, the well-posedness of V requires that

|V | <∞ as x→ ∞. This results in:

−∂xL[V ](0, s) + 1
2
L[Vb](s)(A−

√
A2 + 4s)

√
A2 + 4s

= 0,

which gives the Dirichlet-Neumann map:

∂xLs[V ](0, s) = − 2s

2A+
√
A2 + 4s

Ls[Vb](s).

Case 2: V0(x) ̸= 0.

One needs to shift the initial datum to the boundary datum for the new

variable: 
V̄ = V − I(x, t),

I(x, t) =
∫∞
0

G1(x− y, t)V0(y)dy.

(3.9)
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G1 is the fundamental solution for
G1t + AG1x = G1xx, for x ∈ R, t > 0,

G1(x, 0) = δ(x).

(3.10)

Therefore, V̄ satisfies:
V̄t + AV̄x = V̄xx, for x > 0, t > 0,

V̄ (0, t) = Vb(0, t)− I(0, t),

V̄ (x, 0) = 0,

(3.11)

which is the case 1.

3.3 A general framework to solve a variable

coefficient PDE system

In this section, we present a framework containing several steps to solve a

simplified problem: 
wt + (f(ϕ)w)x = wxx,

w(x, 0) = w0(x),

(3.12)

where 

f ∈ C1,

ϕ(±∞) =M±,M+ < 0,M− > 0,

∥ϕ′(x)∥ = O(1)e−|x|/C ,

∥w0(x)∥ = O(1)εe−|x|/C .

Conservation law for w implies that there exists a non-decaying struc-

ture due to initial data. The first step in our framework is to extract this

non-decaying part precisely. The non-decaying component is defined to be:
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β(t)φ(x), with the property that
∥β′(t)∥ = O(1)ε e

−C1t√
t+1

,

∥φ(x)∥ = O(1)e−|x|/C .

φ(x) is the stationary solution of (3.12) with φ(±∞) = 0.

The remainder z ≡ w − β(t)φ(x) satisfies
zt + (f(ϕ)z)x = zxx + S(x, t),

∥z(x, 0)∥ = O(1)εe−|x|/C ,
∫
R
z(x, 0)dx = 0,

∥S(x, t)∥ = O(1)εe−(|x|+t)/C .

(3.13)

Since the profile we considered here is strong, the approach of solving

the equation of z is based on an approximate problem:
rt + (f(ϕL)r)x = rxx + S(x, t),

r(x, 0) = z(x, 0),

(3.14)

where

ϕL(x) =


ϕ(∞), if x ≥ L,

ϕ(x), if |x| < L,

ϕ(−∞), if x ≤ −L,

(3.15)

choosing L sufficiently large, L = O(1)| ln ε|.

In the second step, we consider the problem (3.14). With the help of

approximating function ϕL(x), one could split the whole space domain in-

to three parts: the far field (−∞,−L], [L,∞), and finite domain region

(−L,L). Convergence rate for r(x, t) at each boundary can be obtained

through the wave interactions in these three domains. Once all the bound-

ary information is clear, one could solve the problem (3.14) in each domain

separately. Therefore, all the difficulties in our second step are shifted to

how to solve the boundary data for r at x = ±L.
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When |x| > L, (3.14) turns to be a constant coefficient problem. The

solvability condition for the constant coefficient problem in each far field

gives a Dirichlet-Neumann map:

Ls[r]x(−L−, s) = D1Ls[r](−L−, s) + I1(−L−, s), (3.16)

Ls[r]x(L+, s) = D2Ls[r](L+, s) + I2(L+, s). (3.17)

D1 andD2 are Dirichlet-Neumann kernels, I1 and I2 are terms due to initial

datum and source term S(x, t).

Define a transition functionG(x, s) in the Laplace space with the bound-

ary data given on purpose:
sG− f(ϕL)Gx −Gxx = 0,

G(−L, s) = 1,

G(−L, s) = −D1 − f(ϕL)(−∞).

(3.18)

Apply the Laplace transformation to the first equation in (3.14) with re-

spect to time variable, multiply it with G(x, s), integrate in the domain

[−L,L] yield∫ L

−L

G(x, s) (sLs[r] + (f(ϕL)Ls[r])x − Ls[r]xx − z(x, 0)− Ls[S](x, s)) dx = 0.

Integrate by parts, with the help of C1 continuity for r at x = −L, one has

I1(−L, s) +
∫ L

−L

G(x, s)(z0(x) + Ls[S](x, s))dx

= (Gf(ϕL)Ls[r]−GLs[r]x +GxLs[r])|L, (3.19)

which gives another relationship for Ls[r]x(L, s) and Ls[r](L, s).

Combing (3.17), (3.19) and C1 continuity for r at x = L together, we

solve Ls[r]x(L, s) and Ls[r](L, s). Similarly one could get all the boundary

information at x = −L.

The truncation error of the above approximation e(x, t) ≡ z(x, t) −
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r(x, t) satisfies:
et + (f(ϕ)e)x = exx + ((f(ϕL)− f(ϕ))r)x,

e(x, 0) = 0,

(3.20)

which is similar to system (3.13).

In the third step, based on the approximate procedure given in the

second step and the truncation error system produced by the approximation

(3.20), we introduce an iteration scheme:
r0 = r,

e0 = z,

ek = ek−1 − rk−1, k ≥ 1.

rk is the approximate solution of ek. we prove the convergence of scheme

and establish the wave propagation patterns for system (3.13).

3.4 Pointwise estimate of solution for the

linearized system

Linearizing system (3.1) around the given profile Φ = (ϕ, 0) gives the de-

coupled system: 
ut + ((3ϕ2 − b)u)x̄ = ux̄x̄,

vt + ((ϕ2 − b)v)x̄ = vx̄x̄,

u0(x̄), v0(x̄) = O(1)εe−|x̄|/C ,

(3.21)

here we have changed the coordinate system to make the presentation of

this problem convenient: 
x̄ = x− bt,

t = t.

Set f1(ϕ) ≡ 3ϕ2− b, f2(ϕ) ≡ ϕ2− b. We use the framework given in Section

3.3 to solve the system (3.21).
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3.4.1 Extract the non-decaying structure

Before extracting the non-decaying structure, we lay down a standard pro-

cedure to catch the pointwise estimate non-decaying structure.

Approximate the over-compressive shock profile with the discontinuous

function, which takes the form:

H(x̄, t) ≡


ϕ(−∞) = 1, x̄ < 0,

ϕ(∞) = α, x̄ > 0,

α ∈ (−1
2
, 0). We choose α = −1

4
.

Consider the approximate linearized equations:
ūt + (f1(H)ū)x̄ = ūx̄x̄,

v̄t + (f2(H)v̄)x̄ = v̄x̄x̄,

ū0(x̄), v̄0(x̄) = O(1)εe−C|x̄|.

(3.22)

Due to the discontinuous property of H(x, t), we separate the whole space

into two half-spaces:

ūt + ((3− b)ū)x̄ = ūx̄x̄, for x̄ < 0, t > 0,

v̄t + ((1− b)v̄)x̄ = v̄x̄x̄, for x̄ < 0, t > 0,

ū0(x̄), v̄0(x̄) = O(1)εe−C|x̄|,

ū(0−, t), v̄(0−, t) to be determined.

(3.23)



ūt + ((3α2 − b)ū)x̄ = ūx̄x̄, for x̄ > 0, t > 0,

v̄t + ((α2 − b)v̄)x̄ = v̄x̄x̄, for x̄ > 0, t > 0,

ū0(x̄), v̄0(x̄) = O(1)εe−C|x̄|,

ū(0+, t), v̄(0+, t) to be determined.

(3.24)

ū(0±, t), v̄(0±, t) will be determined by C1 continuity of (ū, v̄) and two

Dirichlet-Neumann maps.
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Apply the Laplace-Laplace transformation to the above two systems,

omitting the initial data temporarily, one could get Dirichlet-Neumann

maps, for example for ū, we have:

Ls[ū]x(0−, s) = D1Ls[ū](0−, s)

≡ 3−b+
√

(3−b)2+4s

2
Ls[ū](0−, s),

Ls[ū]x(0+, s) = D2Ls[ū](0+, s)

≡ 3α2−b−
√

(3α2−b)2+4s

2
Ls[ū](0+, s).

(3.25)

Combine (3.25) with C1 continuity of (ū, v̄) together, we have:

Ls[ū](0−, s) = Ls[ū](0+, s),

(3− b)Ls[ū](0−, s)− Ls[ū]x(0−, s)

= (3α2 − b)Ls[ū](0+, s)− Ls[ū]x(0+, s),

Ls[ū]x(0−, s)− Ls[I]x(0−, s) = D1(Ls[ū](0−, s)− Ls[I](0−, s)),

Ls[ū]x(0+, s)− Ls[I]x(0+, s) = D2(Ls[ū](0+, s)− Ls[I](0+, s)),

(3.26)

taking the initial data into account. I(0, t) is defined in the way of (3.9).

Solving (3.26),

(3− 3α2 −D1 +D2)Ls[ū](0−, s)

= −D1Ls[I](0−, s) +D2Ls[I](0+, s) + Ls[I]x(0−, s)− Ls[I]x(0+, s)

≡ Ls[I0](s).

The operator which converts Ls[ū](0−, s) into Ls[I0](s) has the estimates:

(3− 3α2 −D1 +D2)

=
3− 3α2 −

√
(3− b)2 + 4s−

√
(3α2 − b)2 + 4s

2

= 2s

(
1

3α2 − b−
√
(3α2 − b)2 + 4s

− 1

3− b+
√

(3− b)2 + 4s

)
.

Hence,

Ls[ū](0−, s) = −C1 +
√
s+ C1

s
Ls[I0](s),
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C1 is a positive constant.

With the same reason we have explained in (2.13), taking the inverse

Laplace transformation, we have the following estimates:

∥ū(0±, t)∥ ≡ ∥β1(t)∥ = ∥
∫ t

0

C1I0(τ)dτ +

∫ t

0

e−C1τ

2
√
πτ

∗ (∂τ + C1)I0(τ)dτ∥

≤ O(1)ε

∫ t

0

e−C1τ

√
τ + 1

dτ. (3.27)

Similarly, one could get the same estimate for v̄(0±, t) ≡ β2(t). For large

times, the boundary information obtained in (3.27) implies that there is a

non-decaying component caused by initial data.

Moreover, if extracting the boundary information, one could get the

pointwise estimate for (3.22) with the help of first Green’s identity:

Lemma 3.4.1.∥∥(ū(x̄, t), v̄(x̄, t))− β(t)Ψ̄(x̄)
∥∥ = O(1)εe−(x̄+t)/C ,

Ψ̄ is the stationary solution of (3.23)with Ψ̄(±∞) = 0, β(t) ≡ diag(β1(t), β2(t)).

One could have the following estimates: ∥Ψ̄(x̄)∥ ≤ O(1)e−
x̄
C , ∥β(t)∥ ≤

O(1)ε
∫ t

0
e−C1τ√
τ+1

dτ . For large times,
∫
R
β(t)Ψ̄(x̄)dx̄ =

∫
R
(ū0(x̄), v̄0(x̄))dx̄ due

to conservation laws.

If the initial data
∫
R
(ū0(x̄), v̄0(x̄))dx̄ = 0, one has

∥(ū(x̄, t), v̄(x̄, t))∥ = O(1)εe−(x̄+t)/C .

Remark 2. This lemma implies that the stationary part doesn’t exist if the

initial data carry zero mass. The proof is not hard if using the Cancelation

and Recombination Lemmas in [7], and we omit the details.

With the above observation, we introduce a non-decaying component

stacked in the shock region: β(t)Ψ(x̄), Ψ(x̄) ≡ (φ1, φ2) is a stationary

solution of (3.21) with Ψ(±∞) = 0. Extract it from (3.21), set

(z1, z2) ≡ (u, v)− β(t)Ψ,
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then 
z1t + (f1(ϕ)z1)x̄ = z1x̄x̄ + β′(t)φ1,

z2t + (f2(ϕ)z2)x̄ = z2x̄x̄ + β′(t)φ2,

∥zi(x̄, 0)∥ = O(1)εe−C|x̄|,
∫
R
zi(x̄, 0)dx = 0, i = 1, 2.

(3.28)

3.4.2 Pointwise estimate of the approximate problem

The approximate problem for (3.28) is given as follows:
r1t + (f1(ϕL)r1)x̄ = r1x̄x̄ + β′(t)φ1,

r2t + (f2(ϕL)r2)x̄ = r2x̄x̄ + β′(t)φ2,

ri(x̄, 0) = zi(x̄, 0), i = 1, 2.

(3.29)

where ϕL is defined by (3.15). We only consider the equation for r1.

Following the framework, we split the whole space domain into three

parts. The solvability of problem in the left and right far fields gives two

Dirichlet-Neumann maps:

Ls[r1]x(−L−, s) = D1Ls[r1](−L−, s) + I1(−L−, s), (3.30)

Ls[r1]x(L+, s) = D2Ls[r1](L+, s) + I2(L+, s), (3.31)

where

I1(−L−, s) =
O(1)ε

(s+ C)(
−(3−b)+

√
(3−b)2+4s

2
+ C)

,

I2(L+, s) =
O(1)ε

(s+ C)(
3α2−b+

√
(3α2−b)2+4s

2
+ C)

,

D1 and D2 are defined in (3.25).

Apply the Laplace transformation to the equation of r1 with respect to

time variable t, multiply it with G(x, s) defined by (3.18), integrate in the

domain [−L,L] by parts, with the help of C1 continuity of r1 at x̄ = −L,
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we get∫ L

−L

G(x̄, s)(z1(x̄, 0) + Ls[S](x̄, s))dx̄+
O(1)ε

(s+ C)(
−(3−b)+

√
(3−b)2+4s

2
+ C)

= (Gf1(ϕL)Ls[r1]−GLs[r1]x̄ +Gx̄Ls[r1])|L−, (3.32)

which is the second relationship for Dirichlet and Neumann data at x̄ = L.

Here S(x̄, t) ≡ β′(t)φ1.

Combine (3.32) and (3.31) together, with the help of C1 continuity of

r1 at x̄ = L, one could solve:

Ls[r1](L−, s)

=

∫ L
−L G(Ls[S]+z1(x̄,0))dx̄

G(L−,s)
+ O(1)ε

(s+C)(
−(3−b)+

√
(3−b)2+4s
2

+C)G(L−,s)

f1(ϕL(∞)) +D2 +
Gx̄(L−,s)
G(L−,s)

+

O(1)ε

(s+C)(
3α2−b+

√
(3α2−b)2+4s
2

+C)

f1(ϕL(∞)) +D2 +
Gx̄(L−,s)
G(L−,s)

=

∫ L
−L G(Ls[S]+z1(x̄,0))dx̄

G(L−,s)

3(3α2−b)−
√

(3α2−b)2+4s

2
+ Gx̄(L−,s)

G(L−,s)

+

O(1)ε

(s+C)(
−(3−b)+

√
(3−b)2+4s
2

+C)G(L−,s)

3(3α2−b)−
√

(3α2−b)2+4s

2
+ Gx̄(L−,s)

G(L−,s)

+

O(1)ε

(s+C)(
3α2−b+

√
(3α2−b)2+4s
2

+C)

3(3α2−b)−
√

(3α2−b)2+4s

2
+ Gx̄(L−,s)

G(L−,s)

. (3.33)

To invert Ls[r1], we need to find the locations of all possible poles.

Firstly, we give some observation on the transition function G(x̄, s):
sG− f1(ϕL)Gx −Gxx = 0,

G(−L, s) = 1,

Gx̄(−L, s) = −D1 − f1(ϕL)(−∞) = −3(3−b)+
√

(3−b)2+4s

2
< 0.

(3.34)

Lemma 3.4.2. There exists a positive constant C such that when Re[s] >

−C, Gx̄(L−,s)
G(L−,s)

and G(L−, s) are analytic functions having the following prop-

erties: 
G(L−, s) < 0,

3(3α2−b)−
√

(3α2−b)2+4s

2
+ Gx̄(L−,s)

G(L−,s)
< 0.

(3.35)
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Proof. Set P = −Gx̄(x,s)
G(x,s)

, which satisfies:


Px̄ = P 2 − f1(ϕL)P − s,

P (−L, s) = 3(3−b)+
√

(3−b)2+4s

2
.

When s large enough,

P (L, s) >
f1(ϕL(+∞))−

√
f1

2(ϕL(∞)) + 4s

2
.

Hence,

3(3α2 − b)−
√

(3α2 − b)2 + 4s

2
+
Gx̄(L−, s)
G(L−, s)

< 0, as s→ ∞.

Moreover, Gx̄(L,s)
G(L,s)

= O(1)
√
s, G(L, s) < 0, Gx̄(L, s) < 0. Therefore, one

could choose a suitable large constant D = O(1)L such that (3.35) is true

when Re[s] > D.

When − (3α2−b)2

4
< Re[s] < D, by the computation(for example generate

a program in the Mathematcia 8.0) one can get a positive number C1 =

0.000104 such that when Re[s] > −C1,

3(3α2 − b)−
√

(3α2 − b)2 + 4s

2
+
Gx̄(L−, s)
G(L−, s)

< 0.

There also exists a positive number C2 = 0.00012 such that when Re[s] >

−C2, G(L−, s) < 0. See Figure 3.2 for the plots of two functions at s = −C1

and s = −C2 respectively.

One can also conclude that
∫ L

−L
G(Ls[S] + z(x̄, 0))dx̄ has no pole when

Re[s] > −C2. For other terms in (3.33), the locations of poles are obvious

since C is a positive number.

Choosing a suitable positive C3, we conclude that Ls[r1](L−, s) is a

analytic function of the variable s for Re[s] > −C3. Note that Ls[r1](L−, s)

decays to zero when s→ ±i∞. Therefore, by the complex analysis we have

∥r1(L−, t)∥ = O(1)εe−t/C3

∥∥∥∥∫
R

eiηtLs[r1](L−, iη − C3)dη

∥∥∥∥ = O(1)εe−t/C4 .
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Figure 3.2: Plot of two functions with ε = 5× 10−5, L ≃ 10

Similar ways to estimate r1(−L+, t).

Once all the boundary data are clear, with the help of the spectrum

gap, one could solve the problem in finite domain and get the following

estimate:

sup
x∈[−L,L]

|r1(x̄, t)| = O(1)εe−t/C4 . (3.36)

This exponential decaying property of solution for the viscous conservation

law in the finite domain has been investigated by many authors and we

omit the proof.

Problem restricted to the left or right far field is just a constant coeffi-

cient problem in half space. Using the Green’s function for the linearized

viscous Burger’s equation around the constant state, one could obtain the

estimate easily. Consider the problem in the left far field:


r1t + (f1(ϕL(−∞))r1)x̄ = r1x̄x̄ + S(x̄, t), x̄ < −L, t > 0,

r1(x̄, 0) = z1(x̄, 0),

r1(−L, t) = O(1)εe−t/C4 .

(3.37)

The Green’s function for the linearized viscous Burger’s equation around
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the constant state is defined as follows:
Ḡt + λḠx̄ = kḠx̄x̄,

Ḡ(x̄, 0) = δ(x̄),

Ḡ(x̄, t, λ) = e−
(x̄−λt)2

4kt√
4πkt

.

With the Green’s identity, we have the solution for (3.37):

r1(x̄, t)

=

∫ −L

−∞
Ḡ(x̄− y, t, f1(ϕL(−∞)))r1(y, 0)dy

+

∫ t

0

Ḡ(x̄, t− τ, f1(ϕL(−∞)))r1x̄(0, τ)dτ

+

∫ t

0

∫ −L

−∞
Ḡ(x̄− y, t− τ, f1(ϕL(−∞)))S(y, τ)dydτ,

x̄ < −L, t > 0. (3.38)

The Neumann datum r1x̄(0, τ) can be obtained by the Dirichlet-Neumann

map (3.30). Take the inverse Laplace transform to (3.30), with the help of

complex analysis, we have the following estimates:
L−1

t [D1] =
(3−b)δ(t)+(3−b)2 e−(3−b)2/4t

√
πt

+4 e−(3−b)2/4t
√
πt

∗∂t
2

,

L−1
t [ O(1)ε

(s+C)(
−(3−b)+

√
(3−b)2+4s
2

+C)
] = O(1)εe−Ct ∗ e−(3−b)2t/4.

Substitute these into (3.38), one has:

∥r1(x̄, t)∥

=

∥∥∥∥O(1)ε∫ −L

−∞
Ḡ(x̄− y, t, f1(ϕL(−∞)))e−y/Cdy

+ O(1)ε

∫ t

0

Ḡ(x̄, t− τ, f1(ϕL(−∞)))(L−1
τ [D1] ∗ e−τ/C + e−τ/C)dτ

+ O(1)ε

∫ t

0

∫ −L

−∞
Ḡ(x̄− y, t− τ, f1(ϕL(−∞)))e(−y−τ)/Cdydτ

∥∥∥∥
= O(1)εe(−x̄−t)/C , x̄ < −L, t > 0. (3.39)

Similar computations in the right far field.
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Combining (3.36) with (3.39), we get the estimate for the whole space:

∥r1(x̄, t)∥ = O(1)εe−(x̄+t)/C , for x̄ ∈ R, t > 0, (3.40)

C is a universal positive constant. Similar procedure for r2.

3.4.3 Iterated scheme

The error function e(x̄, t) = (e1, e2) ≡ (z1 − r1, z2 − r2) of approximate

problem (3.29) to (3.28) satisfy the initial value problem:
e1t + (f1(ϕ)e1)x̄ = e1x̄x̄ + ((f1(ϕL)− f1(ϕ))r1)x̄,

e2t + (f2(ϕ)e2)x̄ = e2x̄x̄ + ((f2(ϕL)− f2(ϕ))r2)x̄,

ei(x̄, 0) = 0, i = 1, 2.

(3.41)

With the help of the estimate of (3.40) and the choice of L = O(1)| ln ε|,

we have 
∥ri∥ = O(1)εe−(x̄+t)/C , i = 1, 2,

∥fi(ϕL)− fi(ϕ)∥ = O(1)ε, i = 1, 2.

With the same method of solving (3.28), we consider the following approx-

imate problem:
r11t + (f1(ϕL)r

1
1)x̄ = r11 x̄x̄ + ((f1(ϕL)− f1(ϕ))r1)x̄,

r12t + (f2(ϕL)r
1
2)x̄ = r12 x̄x̄ + ((f2(ϕL)− f2(ϕ))r2)x̄,

r1i (x̄, 0) = 0, i = 1, 2.

Similarly, one could obtain the following estimate:

∥r1i (x̄, t)∥ = O(1)ε2e−(x̄+t)/C , for x̄ ∈ R, t > 0.

Now we introduce an iteration scheme to construct the solution of

(3.28): 
r0i = ri,

e0i = zi,

e1i ≡ e0i − r0i ,

(3.42)
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for k ≥ 1,
ek1t + (f1(ϕ)e

k
1)x̄ = ek1 x̄x̄ + ((f1(ϕL)− f1(ϕ))r

k−1
1 )x̄,

ek2t + (f2(ϕ)e
k
2)x̄ = ek2 x̄x̄ + ((f2(ϕL)− f2(ϕ))r

k−1
2 )x̄,

eki (x̄, 0) = 0, i = 1, 2,

(3.43)


rk1 t + (f1(ϕL)r

k
1)x̄ = rk1 x̄x̄ + ((f1(ϕL)− f1(ϕ))r

k−1
1 )x̄,

rk2 t + (f2(ϕL)r
k
2)x̄ = rk2 x̄x̄ + ((f2(ϕL)− f2(ϕ))r

k−1
2 )x̄,

rki (x̄, 0) = 0, i = 1, 2,

(3.44)

ek+1
i = eki − rki .

For each rki , we have the estimate:

∥rki (x̄, t)∥ = O(1)εk+1e−(x̄+t)/C , for x̄ ∈ R, t > 0. (3.45)

The solution of (3.28) can be written formally in terms of the iteration

scheme:

zi =
∞∑
k=0

rki .

From (3.45), the series is convergent, and

∥zi(x̄, t)∥ = O(1)εe−(x̄+t)/C , for x̄ ∈ R, t > 0.

To summarize, we have the follow theorem:

Theorem 3.4.3. The solution of (3.21) defines a semi-group Gt
Φ as follows:

Gt
Φ[u0, v0](x̄) ≡ (u(x̄, t), v(x̄, t))

which satisfies:

∥(u(x̄, t), v(x̄, t))− β(t)Ψ(x̄)∥ = O(1)εe−(x̄+t)/C ,
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where: ∥Ψ(x̄)∥ = O(1)e−
x̄
C ,β(t) ≤ O(1)ε

∫ t

0
e−C1τ√
τ+1

dτ , C is a universal con-

stant. For large times,
∫
R
β(t)Ψ(x̄)dx̄ =

∫
R
(ū0(x̄), v̄0)(x̄)dx̄ due to conser-

vation laws.

If the initial data
∫
R
(u(x̄, 0), v(x̄, 0)dx̄ = 0, one has

∥u(x̄, t), v(x̄, t)∥ = O(1)εe−(x̄+t)/C .

3.5 Nonlinear stability of over-compressive

shock waves

The estimate obtained in Theorem 3.4.3 tells us that there is a non-decaying

structureO(1)εe−x̄/C determined by the initial data. To prove the nonlinear

stability Theorem 3.1.1, instead of extracting the over-compressive shock

profile, the shock profile with a proper shift and a proper shape changed

is the real final state (extracting the non-decaying term). Consider the

perturbation of new profile

Φ∗ ≡ (ϕ∗(x̄− x0), ψ
∗(x̄− x0)),

which satisfies:


∫
R
(ũ0, ṽ0)(x, 0)dx =

∫
R
((ϕ∗, ψ∗)− (ϕ, ψ))dx,

∥Φ∗ − Φ∥ = O(1)εe−x̄/C .

(3.46)

Note that the phase shift x0 contributes to the integral only for the first

component, because the end states (ũ±, ṽ±) have zero second component.

For simplicity, assume that x0 = 0.
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The perturbation

 u∗(x̄, t)

v∗(x̄, t)

 ≡

 ũ(x, t)

ṽ(x, t)

− Φ∗ satisfies:



 u∗(x̄, t)

v∗(x̄, t)


t

+

(A(Φ∗(x̄))− bI)

 u∗(x̄, t)

v∗(x̄, t)




x

=

 u∗(x̄, t)

v∗(x̄, t)


x̄x̄

−Q

Φ∗,

 u∗(x̄, t)

v∗(x̄, t)




x̄

,

∥∥∥∥∥∥∥
 u∗(x̄, 0)

v∗(x̄, 0)


∥∥∥∥∥∥∥ = O(1)εe−x̄/C ,

∫
R

 u∗(x̄, 0)

v∗(x̄, 0)

 dx̄ = 0,

where A(Φ∗) ≡ |Φ∗|2I + 2Φ∗Φ∗T , Q is the quadratic remainder which is

easily checked to obey the estimate:

∥Q(Φ∗, Z)∥ ≤ 3(∥Φ∗∥+ ∥Z∥)∥Z∥2.

Due to the second estimate in (3.46), we rewrite the first equation system

of (3.46) as follows:
u∗t + (f1(ϕ, ψ)u

∗)x̄ = u∗x̄x̄ +O(1)ε(e−x̄/C(u∗ + v∗))x +Q1(x̄, t),

v∗t + (f2(ϕ, ψ)v
∗)x̄ = v∗x̄x̄ +O(1)ε(e−x̄/C(u∗ + v∗))x +Q2(x̄, t).

(3.47)

Now make an ansatz assumption on the solution:

∥u∗(x̄, t), v∗(x̄, t)∥ ≤ O(1)εe−(x̄+t)/C , (3.48)

to deal with the nonlinear term.

To verify the ansatz assumption, we only need to show that under the

ansatz assumption, the following holds:∥∥∥∥∫
R

GΦ(x̄− y, t)[u∗(y, 0), v∗(y, 0)]dy
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+

∫ t

0

∫
R

GΦ(x̄− y, t− s)[O(1)ε(e−y/C(u∗ + v∗))y

+Q1(y, s), O(1)ε(e
−y/C(u∗ + v∗))y +Q2(y, s)]dyds

∥∥
≤ O(1)εe−(x̄+t)/C , for x̄ ∈ R, t > 0. (3.49)

By Theorem 3.4.3 Gt
ϕ[u0, v0](x̄) = (u(x̄, t), v(x̄, t)),

∥Gt
ϕ[u0, v0](x̄)∥ ≤ O(1)εe−(x̄+t)/C .

From the ansatz assumption (3.48), we have:

∥O(1)ε(e−x̄/C(u∗ + v∗))x∥ ≤ O(1)ε2e−(x̄+t)/D,

and

∥Qi(x̄, t)∥ ≤ O(1)ε2e−(x̄+t)/D.

Therefore (3.49) is true and we prove the Main Theorem 3.1.1.



Chapter 4
A Strong Shock Profile for the

Broadwell Model

4.1 Introduction

In this chapter, we are interested in the wave behavior of planar wave

perturbation around a Broadwell shock profile. Consider the Broadwell

model in the whole space
∂tf̃+ + ∂xf̃+ = 1

4
f̃ 2
0 − f̃+f̃−, for x ∈ R, t > 0,

∂tf̃0 = −(1
4
f̃ 2
0 − f̃+f̃−),

∂tf̃− − ∂xf̃− = 1
4
f̃ 2
0 − f̃+f̃−.

(4.1)

The details about the Broadwell model are already introduced in the Chap-

ter 2.

A shock profile for the Broadwell model is a traveling wave F̃ (x, t) =

φ(x− bt) satisfies: 
(V − bI)φ′ = Q(φ),

φ(±∞) =M±,

(4.2)

the end states M−,M+ are equilibrium states defined above, b is the shock

profile speed and we assume the shock is forward (b > 0).

49
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The Broadwell model is a simplified kinetic description for gas dynam-

ics. The simplest related macroscopic equations are Euler equations in gas

dynamics: 
∂tρ+ ∂xm = 0,

∂tm+ ∂xẑ(ρ,m) = 0,

(4.3)

ẑ(ρ,m) ≡
ρ(2
√

1+3(m
ρ
)2−1)

3
.

Euler equations can be obtained from the Broadwell model by assuming

that the gas is a local Maxwellian at every (x, t). Though the fluid dynamic

equations do not model the shock profile, the end states of a shock profile

are governed by the Rankine-Hugoniot condition for the fluid equations:
m− − bρ− = m+ − bρ+,

ẑ− − bm− = ẑ+ − bm+.

Hence, the end states M± in (4.2) should satisfy:
(1− b)M−

+ − 2bM−
0 − (1 + b)M−

− = (1− b)M+
+ − 2bM+

0 − (1 + b)M+
− ,

(1− b)M−
+ + (1 + b)M−

− = (1− b)M+
+ + (1 + b)M+

− ,

and additional entropy condition:

b(M−
+ + 2M−

0 +M−
− ) > b(M+

+ + 2M+
0 +M+

− ).

In this chapter, without loss of generality, we set

M− =


5/14

3/7

9/70

 , M+ =


1/6

1/3

1/6

 , b = 2/3. (4.4)

Solving the system (4.2) with (4.4) , we get the explicit form of the shock

wave profile connecting these two end states [2]:
φ+

φ0

φ−

 =


− 2

21

− 1
21

2
105

 tanh(
3

20
(x− bt)) +


11
42

8
21

31
210

 .
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Setting u⃗ = (ρ,m), F(u⃗) = (m, ẑ(ρ,m)), The Euler eqs. (2.7) can be

rewritten as a 2×2 strictly hyperbolic and genuinely nonlinear system, [3],

u⃗t + F(u⃗)x = 0, u⃗ ∈ R2.

The eigenvalues of F′(u⃗),

F′(u⃗) =

 0 1

(ρ− ẑ)/(ρ+ 3ẑ) 4m/(ρ+ 3ẑ)

 ,

define two Euler characteristics

λ1(u⃗) =
2m−

√
4m2 + (ρ− ẑ)(ρ+ 3ẑ)

ρ+ 3ẑ
,

λ2(u⃗) =
2m+

√
4m2 + (ρ− ẑ)(ρ+ 3ẑ)

ρ+ 3ẑ
,

with the corresponding right eigenvector fields r1(u⃗), r2(u⃗), left eigenvec-

tors l1(u⃗), l2(u⃗),

{r1(u⃗), r2(u⃗)}

=


 − ρ+3ẑ

2
√

4m2+(ρ−ẑ)(ρ+3ẑ)

− m√
4m2+(ρ−ẑ)(ρ+3ẑ)

+ 1
2

 ,


ρ+3ẑ

2
√

4m2+(ρ−ẑ)(ρ+3ẑ)

m√
4m2+(ρ−ẑ)(ρ+3ẑ)

+ 1
2


 ,

{l1(u⃗), l2(u⃗)}

=

{(
−
2m+

√
4m2 + (ρ− ẑ)(ρ+ 3ẑ)

ρ+ 3ẑ
, 1

)
,(

−2m+
√

4m2 + (ρ− ẑ)(ρ+ 3ẑ)

ρ+ 3ẑ
, 1

)}
, (4.5)

where

F′(u⃗)ri(u⃗) = λi(u⃗)ri(u⃗),

li(u⃗)F
′(u⃗) = λi(u⃗)li(u⃗),

lj(u⃗) · ri(u⃗) = δji , i, j = 1, 2.

If the components f̃+, f̃0, f̃− of the solution are initially nonnegative, they

remain nonnegative [1]. For such a solution |m
ρ
| ≤ 1 (i.e., the average
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velocity is no larger than the molecular speed) and (ρ+3ẑ) > 0, (ρ−ẑ) > 0.

Thus λ1(u⃗) < 0 < λ2(u⃗).

The main interest in this chapter is to give the time asymptotic stability

of the Broadwell shock profile φ(x, t) with respect to small perturbation in

initial data, in the pointwise L∞-norm:
∂tF̃ + V ∂xF̃ = Q(F̃ ), for x ∈ R, t > 0,

∥F̃ (x, 0)− φ(x, 0)∥ ≤ O(1)ϵe−|x|/C , ϵ≪ 1.

(4.6)

Since the shock is forward, there is a basic compressibility condition:
λ−1 < b < λ−2 ,

λ+1 < λ+2 < b,

(4.7)

where we use the abbreviations λ−1 ≡ λ1(M
−), λ−2 ≡ λ2(M

−), λ+1 ≡

λ1(M
+), λ+2 ≡ λ2(M

+).

The nonlinear stability of shock profile for the Broadwell model was first

investigated in [3]. With the small-amplitude assumption, the solution was

consisted as the sum of a shock wave, a diffusion wave, a linear hyperbolic

wave and an error term. The stability analysis was obtained through the

energy estimates. However, this energy estimates were too global to un-

derstand the wave interactions. For the purpose of better understanding

of the qualitative and quantitative behavior of these wave interactions, a

Green’s function pointwise estimate approach was initiated for the Boltz-

mann equation in [22]. Such an idea was adopted by [17] to study the

structures of Green’s function for the Broadwell model linearized around a

global Maxwellian. They showed that the primary fluid wave structure is a

sum of transported heat kernels along each characteristic fields. With this

detailed structure, one could obtain the pointwise nonlinear wave coupling

structure around an absolute Maxwellian state. In a subsequent study,

the half space problem was resolved through the Green’s function with the
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global energy estimates [26]. Recently, following these previously studies,

[34] devised a Transverse-Compressive scheme (T-C scheme) to study the

problem such as the initial value problem of a linearized system around the

weak shock profile. However, this T-C scheme cannot be adopted to study

the nonlinear stability of strong shock profile. The aim of this chapter is

to fill this gap.

There are other attempts in studying the strong shock profiles. Pa-

per [29] and [30] established L1 ∩ H2 → Lp nonlinear orbital stability,

1 ≤ p ≤ ∞, with sharp rates of decay, of large-amplitude Lax-type shock

profiles for a general class of hyperbolic-parabolic systems and relaxation

systems under the necessary conditions of strong spectral stability, i.e., sta-

ble point spectrum of the linearized operator about the wave, transversality

of the profile, and hyperbolic stability of the associated ideal shock. Our

philosophy here is different from them.

In the last chapter, we developed an effective way to solve a viscous

conservation law. We continue to develop the program to fit into the a

simple kinetic model and hope that this could pave a way towards the

Boltzmann equation eventually. In the rest of introduction, we present the

framework to solve a linearized equation around the given shock profile φ,

which satisfies: 
∂th+ (V − bI)∂x̄h = Lφ(x̄)h,

∥h(x̄, 0)∥ ≤ O(1)ϵe−|x̄|/C .

(4.8)

In the first step, we introduce a local wave front tracing and a transver-

sal component caused by initial data. Due to the compressibility of the

shock wave, there is a non-decaying component stacked at the shock front.

We need to extract this non-decaying part from the linearzied equation

precisely. Otherwise, one would fail to get the nonlinear stability. The

construction of this component requires the essential information on the

profile, and it preserves the localized structure around the shock front as
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well as the macroscopic conservation laws. To fit these criteria, we intro-

duce a standard procedure to catch the non-decaying part, which is defined

to be diag(ℓ(t))ψ(x̄). The extraction of the transverse components toward-

s the far field depends on the Green’s function of the constant coefficient

problem at the far fields.

The reminder z(x̄, t) satisfies:
∂tz + (V − bI)∂x̄z = Lφ(x̄)z + S(x̄, t),

z(x̄, 0) = 0,

(4.9)

with S(x̄, t) = (Lφ(x̄) − LH(x̄))v(x̄, t) purely microscopic.

To handle (4.9), we consider an approximate problem:
∂tr + (V − bI)∂x̄r = LφL(x̄)r + S(x, t),

r(x̄, 0) = z(x̄, 0).

(4.10)

where

φL(x) =


φ(∞), if x ≥ L,

φ(x), if |x| < L,

φ(−∞), if x ≤ −L,

(4.11)

choosing L sufficiently large, L = O(1)| ln ε|. This is the second step.

With the help of approximate function φL(x), one could split the whole

space domain into three parts: the far field (−∞,−L], [L,∞), and finite

domain region (−L,L). Convergence rate for r(x̄, t) at each boundary can

be obtained through the wave interactions in these three domains. Once

all the boundary information is clear, one could solve the problem (4.10)

in each domain separately. Therefore, all the difficulties in this step are

shifted to how to solve the boundary data for r at x̄ = ±L.

When |x̄| > L, (4.10) turns to be a constant coefficient problem. The

solvability condition for the constant coefficient problem in each far field
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gives a incoming-outgoing map:
Ls[r0](L+, s) = M2(Ls[r+](L+, s)) + I1(L+, s),

Ls[r−](L+, s) = M3(Ls[r+](L+, s)) + I2(L+, s),

Ls[r+](−L−, s) = M1(Ls[r0](−L−, s),Ls[r−](−L−, s) + I3(−L−, s).

(4.12)

M1, M2 and M3 are incoming-outgoing kernels, I1,I2 and I3 are terms due

to initial data and source term S(x̄, t).

Define a transition functionG(x̄, s) in the Laplace space with the bound-

ary data given on purpose:
sGT (x̄, s)− (V − bI)GT (x̄, s)x̄ = LT

φ(x̄)G
T (x̄, s),

GT (−L, s) = I.

(4.13)

Apply the Laplace transformation to the equation in (4.10) with respect

to time variable, multiply it with G(x̄, s), integrate by parts in the domain

[−L,L], yields

G(L, s)(V − bI)Ls[r](L, s)−G(−L, s)(V − bI)Ls[r](−L, s)

=

∫ L

−L

G(x̄, s)Ls[S](x̄, s)dx̄. (4.14)

With the help of C1 continuity for r at x = ±L, one could solve Ls[r]0(−L, s)

Ls[r]−(−L, s) and Ls[r]+(L, s).

The truncation error of the above approximation e(x̄, t) ≡ z(x̄, t) −

r(x̄, t) satisfies:
∂te+ (V − bI)∂x̄e = Lφ(x̄)e+ S0(x̄, t),

e(x̄, 0) = 0,

(4.15)

where S0(x̄, t) = (Lφ(x̄) − LφL(x̄))r(x̄, t).

In the third step, based on the approximate procedure given in the

second step and the truncation error system produced by the approximation
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(4.10), we introduce an iterated scheme:
r0 = r,

e0 = z,

ek = ek−1 − rk−1, k ≥ 1.

rk is the approximate solution of ek. we prove the convergence of scheme

and establish the wave propagation patterns for system (4.9).

Once the linearized problem is solved, we use the Duhamel’s principle

to close the nonlinear stability of the perturbation, which satisfies:
∂th+ (V − bI)∂x̄h = Lφ(x̄)h+Q(h),

∥h(x̄, 0)∥ ≤ O(1)ϵe−|x̄|/C .

(4.16)

Now we state the main theorem of this chapter:

Theorem 4.1.1. (Main Theorem) Suppose the strength of the forward

shock wave profile is O(1), then there exists x0 > 0 such that the solu-

tion F̃ (x, t) of (4.6) satisfies:

∥F̃ (x− bt, t)− φ(x− bt− x0)∥ ≤ O(1)ϵ
χ[(λ−

1 − 2
3
)t+

√
t,0](x− bt)√

(|x− λ−1 t|+ 1)(|x− λ−2 t|+ 1)

+O(1)ϵ
e−

|x−λ−1 t|2

C(1+t)

√
1 + t

+O(1)ϵe−(|x−bt|+t)/C .

Here the constant x0 is determined by the algebraic relationship:
∫
R
(F̃ (x, 0)−

φ(x− x0, 0))dx ∈ Span{r1(u⃗−)}, and the vector r1(u⃗
−) is defined in (4.5).

When the shock is backward, one replaces Span{r1(u⃗−)} with Span{r2(u⃗−)}.

The arrangement of the rest of the chapter is as follows: in Section

4.2, we review the necessary materials for this chapter. In Section 4.3,

pointwise estimate of solution of linearized problem is obtained. In section

4.4, we make an ansatz assumption of the nonlinear wave propagation and

use the estimates obtained to verify the ansatz assumption and prove the

main theorem.
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4.2 Preliminaries

4.2.1 Green’s function of the linearized Broadwell mod-

el around a global maxwellian

For the linearized equation around a global Maxwellian state M ,

∂tF + V ∂xF = LMF,

its Green’s function G(x, t) is a solution of a particular initial condition

(completely particle-like initial data): G(x, 0) = δ(x). We use the long

wave-short wave decomposition and particle-wave like decomposition in

[26] to yield the following Green’s function linearized around M+, which is

the general form of Theorem 2.3.1:

Theorem 4.2.1. [17] There exists a positive constant C such that∥∥∥∥∥∥∥∥∥∥
G(x, t)− e−t/6


δ(x− t) 0 0

0 δ(x) 0

0 0 δ(x+ t)


∥∥∥∥∥∥∥∥∥∥

≤ C

e− |x−λ+1 t|2

C(1+t)

√
1 + t

+
e−

|x−λ+2 t|2

C(1+t)

√
1 + t

+ Ce−(|x|+t)/C (4.17)

for all x ∈ R, t > 0.

Similar result for M−.

4.2.2 Master relationship: Incoming-outgoing map

We prepare the basic materials for constructing incoming-outgoing map

we will need in next sections. Consider the following linearized problem
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around a constant equilibrium state M = (M+,M0,M−) in half space:
(∂t + (V − bI)∂x̄ − LM)F (x̄, t) = 0, for x̄ > 0, t > 0,

F (x̄, 0) = I0(x̄),

f+(0, t) = f+(t).

(4.18)

We first consider the case I0(x̄) = 0. We will convert the differential equa-

tions into an algebraic system to obtain the full boundary data. Take the

Laplace-Laplace transform of (4.18):

L[F ](x̄, s) =
∫ ∞

0

e−stF (x̄, t)dt,

J[F ](ξ, s) =
∫ ∞

0

e−ξx̄L[F ](x̄, s)dx̄.

and it becomes

J[F ](ξ, s) =
adj(s+ ξ(V − bI)− LM)

p(ξ, s)
(V − bI)L[F ](x̄, s)|x̄=0, (4.19)

where p(ξ, s) = det(s+ ξ(V − bI)− LM).

The characteristic polynomial p(ξ, s) is a degree 3 polynomial in ξ. One

denotes the three roots ξ = ξi(s, b), i = 1, 2, 3, of p(ξ, s) in ξ:

Re(ξ3(s, b)) ≤ Re(ξ2(s, b)) ≤ Re(ξ1(s, b)).

One can prove that

Re(ξ3(s, b)) < 0 < Re(ξ2(s, b)) ≤ Re(ξ1(s, b)), for Re(s) > 0.

The expression for J[F ](ξ, s) in (4.19) is a rational function in ξ so that

one can apply the inverse Laplace transform with respect to space vari-

able ξ. The wellposedness of a differential equation imposed the solution

L[F ](x̄, s) decaying to zero as x̄→ ∞, which implies that

Resξ=ξi,Re(ξi)>0
adj(s+ ξ(V − bI)− LM)

p(ξ, s)
(V − bI)L[F ](x̄, s)|x̄=0 = 0.(4.20)
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This and the boundary condition in (4.18) give a linear system on the full

boundary L[F ](0, s). One can solve the linear system to get the incoming-

outgoing map.

Take the inverse Laplace transform with respect to s variable, one could

convert L[F ](0, s) into F (0, t) by complex analysis.

For the case that I0(x̄) ̸= 0. We need to shift the initial data to the

boundary for the new variable:


F̄ = F − I(x̄, t),

I(x̄, t) =
∫∞
0

G(x̄− y, t)F0(y)dy,

(4.21)

G(x̄ − y, t) is the Green’s function defined in Section 4.2.1. Therefore, F̄

satisfies:
(∂t + (V − bI)∂x̄ − LM)F̄ (x̄, t) = 0, for x̄ > 0, t > 0,

F̄ (x̄, 0) = 0,

f̄+(0, t) = f+(t)− I+(0, t),

which is the first case.

4.2.3 Wave decomposition

(4.7) implies that there are two characteristic curves entering the shock

from the right of the shock: one characteristic curve catching up with the

shock from the left of the shock; and one characteristic curve leaving to

the left of the shock. Combine this property with our initial condition that

there’re essentially no waves in front of the shock in the initial data, we

can conclude that time-asymptotically there are no waves in front of the

shock. So we only need to take care the waves behind the shock.
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Definition 4.2.2. T-C decomposition is defined as follows:

F = F t + F c + Fm,

Transverse Component : F t ∥ r1(u⃗
−),

Compressive Component : F c ∥ r2(u⃗
−),

Microscopic Component : Fm ≡ F − F t − F c.

4.2.4 Shock profile of any strength for the Broadwell

model

The shock profile for the Broadwell model is found to satisfies (4.2). The

equation has two conservation laws which are obtained by multiplying χ1 =

(1, 2, 1) and χ2 = (1, 0,−1). The constants can be identified using the

limiting conditions and the Rankine-Hugoniot conditions. We have

(φ+ − φ−)− b(φ+ + 2φ0 + φ−) = a1,

(φ+ + φ−)− b(φ+ − φ−) = a2.

From these conservation laws we find φ+, φ− in terms of φ0, a1 and a2, as

φ = Λφ0 + a, (4.22)

where

Λ =


b

1−b

1

− b
1+b

 ,

a =


a1+a2
2(1−b)

0

− a1−a2
2(1+b)

 .

Define

Q̄(M,N) =
1

4
M0N0 −

1

2
(M+N− +M−N+).
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Then Q(φ) has the simple expression

Q(φ) = {Q̄(Λ,Λ)φ2
0 + 2Q̄(Λ, a)φ0 + Q̄(a, a)}


1

−1

1



≡ q(φ0)


1

−1

1

 .

Since M± are Maxwellian, and they satisfy the conservation laws, so M±

are two distinct roots of the quadratic q. Thus

q(φ0) = Q̄(Λ,Λ)(φ0 −M+
0 )(φ0 −M−

0 ).

Now the shock profile equation in (4.2) reduced to a single autonomous

ordinary differential equation for φ0:

φ′
0 =

1

b
Q̄(Λ,Λ)(φ0 −M+

0 )(φ0 −M−
0 ).

This has the solution

φ0(x̄) = −1

2
(M−

0 +M+
0 ) tanh

(
1 + 3b2

4b(1− b2)
(M−

0 −M+
0 )x̄

)
+

1

2
(M+

0 −M+
0 ).

Combine this with (4.22), we get the explicit form for the shock profile.

4.3 The linearized problem

Linearizing system (4.6) around the profile φ gives the following system:
∂th+ (V − bI)∂x̄h = Lφ(x̄)h,

h(x̄, 0) = a(x̄, y0)r1(u⃗
−) + b(x̄, y0)r2(u⃗

−),

(4.23)

∥a(x̄, y0), b(x̄, y0)∥ ≤ O(1)ϵe−|x̄−y0|/C .
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y0 is a parameter to model the location of the initial data. Firstly consider

the case that y0 = 0. Here we changed the coordinate system to make the

presentation of this problem convenient:
x̄ = x− bt,

t = t.

We use the framework introduced in the Section 4.1 to solve this system.

4.3.1 Non-decaying structure stacked around the wave

front

Firstly, we lay down a standard procedure to catch the non-decaying com-

ponent which stacked around the shock front. Approximate the shock

profile with a discontinuous function, which takes the form:

H(x, t) ≡


φ(−∞), x < bt,

φ(∞), x > bt.

Set

F (x, t) ≡ (f+(x, t), f0(x, t), f−(x, t))
T ,

satisfies: 
∂tF + (V − bI)∂x̄F = LH(x̄)F,

F (x̄, 0) = h(x̄, 0).

(4.24)

Separate the whole space into two half-spaces:

∂tf+ + (1− 2
3
)∂x̄f+ = −( 9

70
f+ − 3

14
f0 +

5
14
f−), for x̄ < 0, t > 0,

∂tf0 − 2
3
∂x̄f0 =

9
70
f+ − 3

14
f0 +

5
14
f−,

∂tf− − (1 + 2
3
)∂x̄f− = −( 9

70
f+ − 3

14
f0 +

5
14
f−),

F (x̄, 0) = I0(x̄),

f0(0, t) = α(t), f−(0, t) = β(t),

(4.25)
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∂tf+ + (1− 2
3
)∂x̄f+ = −1

6
(f+ − f0 + f−), for x̄ > 0, t > 0,

∂tf0 − 2
3
∂x̄f0 =

1
6
(f+ − f0 + f−),

∂tf− − (1 + 2
3
)∂x̄f− = −1

6
(f+ − f0 + f−),

F (x̄, 0) = I0(x̄),

f+(0, t) = γ(t),

(4.26)

with α(t),β(t) and γ(t) to be determined later.

A compatibility property must be satisfied on the surfaces of discontinu-

ity: when the perturbations pass through the shock, the mass, momentum

(mass flux) and momentum flux should be the same on both sides. With

the help of three algebraic relationships (incoming-outgoing map)we will

obtain below, one can represent the mass, momentum and momentum flux

in terms of α(t), β(t), γ(t), and thus solve them easily.

Apply the Laplace-Laplace transform to the above two systems (4.25)

and (4.26), temporarily omit the initial data to make the statements more

economic. Firstly, we state the algebraic properties of the roots of two

characteristic polynomials with the proof, the algebraic manipulation is

standard.

The characteristic polynomial of p(ξ, s) and q(ξ, s) for the two systems

are defined:

p(ξ, s) = 49s2 + 70s3 +
148sξ

3
+ 140s2ξ − 35ξ2

9
+

70sξ2

3
− 700ξ3

27
,

q(ξ, s) = 3s2 + 6s3 − (4s+ 12s2)ξ + (
1

3
+ 2s)ξ2 +

20

9
ξ3. (4.27)

Only consider the first characteristic polynomial p(ξ, s), there is a root

ξ ∼ O(1)s as s → 0. Thus for the purpose to approximate this root, one

could consider the following polynomial ignoring some higher order terms:

p0(ξ, s) ≡ 49s2 +
148sξ

3
− 35ξ2

9
.

Two roots of this polynomial are ξ = (222
35

+ 9
√
799
35

)s and ξ = (222
35

− 9
√
799
35

)s.

These two roots give the asymptotic behavior of the roots of p(ξ, s) = 0 as
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s→ 0. Since the production of three roots of p(ξ, s) = 0 in ξ is 189s2+270s3

100
,

ξ = − 3
20

is an asymptotic root of p(ξ, s) = 0 as s→ 0.

Now we consider a root ξ of p(ξ, s) of the form: ξ = − 3
20

+ α(s),

and by using the implicit function theory, we can define an analytic root

ξ(s) = − 3
20

+ α(s) of p(ξ, s) = 0 around s = 0 with ξ(0) = − 3
20
.

Next, use the Euclid’s algorithm to find equation of the branch point

of p(ξ, s) = 0. The necessary condition for the branch point (ξ, s) is

s2(5593 + 1899396s+ 6351408s2 + 9843120s3 + 11113200s4) = 0.

Since ξ(s) is analytic around s = 0, we get the possible branch point for

ξ(s) are the roots of

(5593 + 1899396s+ 6351408s2 + 9843120s3 + 11113200s4) = 0. (4.28)

Lemma 4.3.1. There exists C > 0 such that the root s of the polynomial

in (4.28) satisfies

Re(s) < −C.

Lemma 4.3.2. There are three analytic roots ξ = µ(s) of characteristic

polynomial p(ξ, s) = 0 for s ∈ {Re(s) > −C} and one has the following

asymptotic expansion for |s| ≪ 1:
µ1(s) = (222

35
+ 9

√
799
35

)s+O(1)s2,

µ2(s) = (222
35

− 9
√
799
35

)s+O(1)s2,

µ3(s) = − 3
20

− 165
14
s+O(1)s2.

Here, the function O(1) is an analytic function in the region Re(s) > −C.

We can also expand the roots as follows:

lim
s→∞

µ1(s)

s
= 3,

lim
s→∞

µ2(s)

s
= −3/5,

lim
s→∞

µ3(s)

s
= −3/2.
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Similarly, we have the following:

Lemma 4.3.3. There exists some positive constant C such that there are

three analytic roots ξ = ν(s) of q(ξ, s) = 0 for s ∈ {Re(s) > −C} and one

has the following asymptotic expansion for |s| ≪ 1:


ν1(s) = 3(2 +

√
3)s+O(1)s2,

ν2(s) = 3(2−
√
3)s+O(1)s2,

ν3(s) = − 3
20

− 129
10
s+O(1)s2.

Here, the function O(1) is an analytic function in the region Re(s) > −C.

One can also expand the roots as follows:

lim
s→∞

ν1(s)

s
= 3/2,

lim
s→∞

ν2(s)

s
= 3/5,

lim
s→∞

ν3(s)

s
= −3.

Now we can derive the incoming-outgoing relationship for the full bound-

ary data and construct the full boundary date in terms of the imposed

boundary conditions:

Ls[f+](0−, s) = M1(Ls[f0](0−, s),Ls[f−](0−, s))

≡ −p2(µ1,s)
p3(µ1,s)

Ls[f0](0−, s)− p1(µ1,s)
p3(µ1,s)

Ls[f−](0−, s),

Ls[f0](0+, s) = M2(Ls[f+](0+, s))

≡ − q3(ν2,s)q1(ν1,s)−q3(ν1,s)q1(ν2,s)
q2(ν1,s)q3(ν2,s)−q2(ν2,s)q3(ν1,s)

Ls[f+](0+, s)

= 1
2+60s

Ls[f+](0+, s),

Ls[f−](0+, s) = M3(Ls[f+](0+, s))

≡ − q1(ν2,s)q2(ν1,s)−q1(ν1,s)q2(ν2,s)
q2(ν1,s)q3(ν2,s)−q2(ν2,s)q3(ν1,s)

Ls[f+](0+, s)

= − 1+6s
5+150s

Ls[f+](0+, s),

(4.29)



66 Chapter 4. A Strong Shock Profile for the Broadwell Model

where 

p1(ξ, s) =
125s
3

− 125ξ
9
,

p2(ξ, s) =
68s
3

+ 140s2

3
+ 40ξ

9
+ 560sξ

9
− 700ξ2

27
,

p3(ξ, s) = −3s− 5ξ,

q1(ξ, s) =
s
3
− 5

9
ξ,

q2(ξ, s) = −4
3
s− 4s2 + 8

9
ξ + 16

3
sξ + 20

9
ξ2,

q3(ξ, s) = −5
3
s− 5

9
ξ.

With the help of (4.29), three continuities can be given in terms of

Laplace transformed functions α(s), β(s), γ(s), taking the initial data into

account:

M1(Ls[α](s)− Ls[A0](0, s),Ls[β](s)− Ls[A−](0, s)) + Ls[A+](0, s)

+2Ls[α](s) + Ls[β](s)

= Ls[γ](s) + 2M2(Ls[γ](s)− Ls[B+](0, s)) + 2Ls[B0](0, s)

+M3(Ls[γ](s)− Ls[B+](0, s)) + Ls[B−](0, s),

M1(Ls[α](s)− Ls[A0](0, s),Ls[β](s)− Ls[A−](0, s))

+Ls[A+](0, s)− Ls[β](s)

= Ls[γ](s)−M3(Ls[γ](s)− Ls[B+](0, s))− Ls[B−](0, s),

(1− b)M1(Ls[α](s)− Ls[A0](0, s),Ls[β](s)− Ls[A−](0, s))

+(1− b)Ls[A+](0, s) + (1 + b)Ls[β](s)

= (1− b)Ls[γ](s) + (1 + b)M3(Ls[γ](s)− Ls[B+](0, s))

+(1 + b)Ls[B−](0, s).

A(x̄, t) and B(x̄, t) are terms similar to I(x̄, t) defined in (4.21), taking care

the initial information.

From (4.30), we get the following relationships:

M1(Ls[α](s)− Ls[A0](0, s),Ls[β](s)− Ls[A−](0, s))

+Ls[A+](0, s) = Ls[γ](s),

Ls[α](s) = M2(Ls[γ](s)− Ls[B+](0, s)) + Ls[B0](0, s),

Ls[β](s) = M3(Ls[γ](s)− Ls[B+](0, s)) + Ls[B−](0, s).

(4.30)
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Note that:

M1(a+ b, c+ d) = M1(a, c) +M1(b, d),

M2(a+ b) = M2(a) +M2(b),

M3(a+ b) = M3(a) +M3(b).

From (4.30), we have

Ls[γ](s) = M1(M2(Ls[γ](s)),M3(Ls[γ](s))) + I1(0, s) (4.31)

where

I1(0, s) = M1 (−M2(Ls[B+](0, s)) + Ls[B0](0, s)− Ls[A+](0, s),

−M3(Ls[B+](0, s)) + Ls[B−](0, s)− Ls[A−](0, s))

+Ls[A+](0, s).

The operator which converts Ls[γ](s) into I1(0, s) satisfies:

1− p2(µ1, s)

p3(µ1, s)

q3(ν2, s)q2(ν1, s)− q3(ν1, s)q2(ν2, s)

q2(ν1, s)q3(ν2, s)− q2(ν2, s)q3(ν1, s)

−p1(µ1, s)

p3(µ1, s)

q1(ν2, s)q2(ν1, s)− q1(ν1, s)q2(ν2, s)

q2(ν1, s)q3(ν2, s)− q2(ν2, s)q3(ν1, s)

=
O(1)s

s+O(1)
.

Thus,

Ls[γ](s) = O(1)
s+O(1)

s
I1(0, s),

Ls[α](s) = O(1)
s+O(1)

s
M2(I1(0, s)) + I2(0, s),

Ls[β](s) = O(1)
s+O(1)

s
M3(I1(0, s)) + I3(0, s), (4.32)

where

I2(0, s) = −M2(Ls[B+](0, s) + Ls[B0](0, s),

I3(0, s) = −M3(Ls[B+](0, s) + Ls[B−](0, s),

M2,M3 are bounded operators. Take the inverse Laplace transformation,

we finally get the estimate of each boundary data:
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Lemma 4.3.4. The boundary data γ(t), α(t) and β(t) satisfy the following

estimates: ∥∥∥∥∥∥∥∥∥∥


γ(t)

α(t)

β(t)


∥∥∥∥∥∥∥∥∥∥
≡ ∥ℓ(t)∥ = O(1)ϵ

∫ t

0

e−Cτ

√
τ
dτ. (4.33)

According to the boundary information (4.33), we introduce a wave

front component parallelling to ψ(x̄), which satisfies the following steady

equation: (V − bI)∂x̄ψ = Lφ(x̄)ψ, with ψ(±∞) = 0.

This system contains two conservation laws:

(1, 2, 1)(V − bI)∂x̄ψ = 0, (1, 0,−1)(V − bI)∂x̄ψ = 0.

With these two conservation laws, one can solve the system and get the

following estimate on the local wave front component:

|ψ(x̄)| ≤ O(1)e−C|x̄|.

Now we can extract the non-decaying component diag(ℓ(t))ψ(x̄), the

remainder satisfies:
∂tw + (V − bI)∂x̄w = Lφ(x̄)w + diag(ℓ′(t))ψ(x̄),

w(x̄, 0) = (l1(u⃗
−), F (x̄, 0)), ∥w(x̄, 0)∥ = O(1)εe−C|x̄|.

(4.34)

4.3.2 Transverse waves

The transverse wave is devised for the purely transverse initial data in

(4.34). Consider the following approximate problem:
∂tv + (V − bI)∂x̄v = LH(x̄)v + diag(ℓ′(t))ψ(x̄),

v(x̄, 0) = w(x̄, 0),

(4.35)
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which could be separated into two systems:

∂tv(x̄, t) + (1− 2
3
)∂x̄v(x̄, t)− LM−v(x̄, t) = S1(x̄, t),

for x̄ < 0, t > 0,

v(x̄, 0) = O(1)ϵe−C|x̄|,

v0(0, t) = O(1)ϵe−Ct, v−(0, t) = O(1)ϵe−Ct,

(4.36)



∂tv(x̄, t) + (1− 2
3
)∂x̄v(x̄, t)− LM+v(x̄, t) = S1(x̄, t),

for x̄ > 0, t > 0,

v(x̄, 0) = O(1)ϵe−C|x̄|,

v+(0, t) = O(1)ϵe−Ct,

(4.37)

the source term S1(x̄, t) = diag(ℓ′(t))ψ(x̄) is bounded by O(1)ϵ e
−C|x̄|−Ct

√
t

.

Applying the first Green’s identity to (4.36) and (4.37), we have

v(x̄, t) =

∫ 0

−∞
G−(x̄− y +

2

3
t, t)v(y, 0)dy

+

∫ t

0

G−(x̄+
2

3
(t− τ), t− τ)v(0, τ)dτ

+

∫ t

0

∫ 0

−∞
G−(x̄− y +

2

3
(t− τ), t− τ)S1(y, τ)dydτ, x̄ < 0,

v(x̄, t) =

∫ ∞

0

G+(x̄− y +
2

3
t, t)v(y, 0)dy

+

∫ t

0

G+(x̄+
2

3
(t− τ), t− τ)v(0, τ)dτ

+

∫ t

0

∫ ∞

0

G+(x̄− y +
2

3
(t− τ), t− τ)S1(y, τ)dydτ, x̄ > 0.

G− and G+ are the global Green’s functions linearized aroundM− andM+

respectively.

Since λ−1 < 2
3
< λ−2 , λ

+
1 < λ+2 < 2

3
, with the help of Lemma A.0.1 in

Appendix, we have the following estimates:∫ t

0

∫ 0

−∞
G−(x̄− y +

2

3
(t− τ), t− τ)S1(y, τ)dydτ

= O(1)ϵA1,1
1 (x̄, t) +O(1)ϵe−(|x̄|+t)/C , x̄ < 0,
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∫ t

0

∫ ∞

0

G+(x̄− y +
2

3
(t− τ), t− τ)S1(y, τ)dydτ

= O(1)ϵe−(|x̄|+t)/C , x̄ > 0.

Combining these two results, we get the estimate for the problem (4.35):

∥v(x̄, t)∥ = O(1)ϵ
e−

|x̄+( 23−λ−1 )t|2

C(1+t)

√
1 + t

+O(1)ϵA1,1
1 (x̄, t) +O(1)ϵe−(|x̄|+t)/C .

The truncation error z(x̄, t) generated by (4.35) is given by
∂tz + (V − bI)∂x̄z = Lφ(x̄)z + S(x̄, t),

z(x̄, 0) = 0,

(4.38)

with S(x̄, t) = (Lφ(x̄) − LH(x̄))v(x̄, t) purely microscopic. In the solution

z(x̄, t), there are slowing decaying waves propagating in different direc-

tions. These multi-direction propagations prevent one from obtaining any

exponentially sharp structure directly. However, the source term is purely

microscopic, one can gain exponential sharp estimates in the compressive

component around the shock front for large time.

4.3.3 Pointwise estimate of the approximate trunca-

tion error problem

The approximate problem for (4.38) is given as follows:
∂tr + (V − bI)∂x̄r = LφL(x̄)r + S(x, t),

r(x̄, 0) = z(x̄, 0).

(4.39)

Following the framework, we split the whole space domain into three

parts. The solvability of problem in the left and right far fields gives
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incoming-outgoing maps:

Ls[r0](L+, s) = M2(Ls[r+](L+, s)) + I1(L+, s)

= 1
2+60s

Ls[r+](L+, s) + I1(L+, s),

Ls[r−](L+, s) = M3(Ls[r+](L+, s)) + I2(L+, s)

= − 1+6s
5+150s

Ls[r+](L+, s) + I2(L+, s),

Ls[r+](−L−, s) = M1(Ls[r0](−L−, s),Ls[r−](−L−, s)

+I3(−L−, s)

≡ −p2(µ1,s)
p3(µ1,s)

Ls[r0](−L−, s)

−p1(µ1,s)
p3(µ1,s)

Ls[r−](−L−, s) + I3(−L−, s).

(4.40)

Apply the Laplace transform to the equation of r with respect to time

variable t, multiply it with G(x̄, s), integrate in the domain (−L,L) by

parts, with the help of C1 continuity of r, we get

G(L, s)(V − bI)Ls[r](L, s)−G(−L, s)(V − bI)Ls[r](−L, s)

=

∫ L

−L

G(x̄, s)Ls[S](x̄, s)dx̄. (4.41)

Combine (4.40) and (4.41) together, one could have:


A(s) (1− b)p2(µ1,s)

p3(µ1,s)
(1− b)p1(µ1,s)

p3(µ1,s)

B(s) b 0

C(s) 0 1 + b




Ls[r+](L+, s)

Ls[r0](−L−, s)

Ls[r−](−L−, s)



≡ K(s)


Ls[r+](L+, s)

Ls[r0](−L−, s)

Ls[r−](−L−, s)

 =
∫ L

−L
G(x̄, s)Ls[S](x̄, s)dx̄,

where
A(s) = (1− b)G11(L, s)− b 1

2+60s
G12(L, s) + (1 + b) 1+6s

5+150s
G13(L, s),

B(s) = (1− b)G21(L, s)− b 1
2+60s

G22(L, s) + (1 + b) 1+6s
5+150s

G23(L, s),

C(s) = (1− b)G31(L, s)− b 1
2+60s

G32(L, s) + (1 + b) 1+6s
5+150s

G33(L, s).



72 Chapter 4. A Strong Shock Profile for the Broadwell Model

This gives that∥∥∥∥∥∥∥∥∥∥


Ls[r+](L+, s)

Ls[r0](−L−, s)

Ls[r−](−L−, s)


∥∥∥∥∥∥∥∥∥∥
= O(1)ϵ

adjK(s)

detK(s)

∫ L

−L

G(x̄, s)
e−|x̄|

√
s+ C

dx̄. (4.42)

When s is large enough, adjK(s)
detK(s)

is analytic and bounded. One could

also generate a program in the Mathematica 8.0, that when Re(s) > −C

and finite, adjK(s)
detK(s)

is analytic and has no pole. Moreover, detK(s) > 0 when

Re(s) > −C. Note that the right hand side of (4.42) decays to zero when

s→ ±i∞. Therefore, by the complex analysis we have∥∥∥∥∥∥∥∥∥∥


r+(L+, t)

r0(−L−, t)

r−(−L−, t)


∥∥∥∥∥∥∥∥∥∥

= O(1)ϵ
e−Ct

√
t

∗
∫
R

eiηt
adjK(iη − C)

detK(iη − C)

∫ L

−L

G(x̄, iη − C)e−|x̄|dx̄dη

= O(1)ϵ
e−C1t

√
t
.

Once all the boundary data are clear, with the existence of the spectrum

gap, one could have the following estimate in finite domain:

sup
x∈[−L,L]

|r(x̄, t)| = O(1)ε
e−C1t

√
t
. (4.43)

Problem restricted to the left or right far field is just a constant co-

efficient problem in half space. Using Green’s function for the linearized

Broadwell model, one could obtain the estimate easily.

To summarize, we have:

∥r(x̄, t)∥ = O(1)ϵ


e
−

(x̄+(2/3−λ−1 )t)2

C(t+1)
√
t+1

+ e−C|x̄|−Ct, for x̄ < −L,

e−Ct
√
t
, for − L ≤ x̄ ≤ L,

e−C|x̄|−Ct, for x̄ > L.

(4.44)
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4.3.4 Iterated scheme

The error function e(x̄, t) ≡ z(x̄, t)− r(x̄, t) of approximate problem (4.39)

to (4.38) satisfies the initial value problem:
∂te+ (V − bI)∂x̄e = Lφ(x̄)e+ S0(x̄, t),

e(x̄, 0) = 0,

(4.45)

where S0(x̄, t) = (Lφ(x̄) − LφL(x̄))r(x̄, t). From (4.44) and the choice of

L = O(1)| ln ε|, we have

∥S0(x̄, t)∥ = O(1)ε2
e−C(x̄+t)

√
t

.

Using the same method of solving (4.39), we consider the following

approximate problem:
∂tr

1 + (V − bI)∂x̄r
1 = LφL(x̄)r

1 + S0(x̄, t),

r(x̄, 0) = 0.

(4.46)

Similarly, one could obtain the following estimates:

∥r1(x̄, t)∥ = O(1)ϵ2


e
−

(x̄+(2/3−λ−1 )t)2

C(t+1)
√
t+1

+ e−C|x̄|−Ct, for x̄ < −L,

e−Ct
√
t
, for − L ≤ x̄ ≤ L,

e−C|x̄|−Ct, for x̄ > L.

Therefore, we introduce an iterated scheme to construct the solution of

(4.38) 
r0 = r,

e0 = z,

e1 ≡ e0 − r0,

(4.47)

for k ≥ 1,
∂te

k + (V − bI)∂x̄e
k = Lφ(x̄)e

k + Sk−1(x̄, t),

ek(x̄, 0) = 0, Sk−1(x̄, t) = (Lφ(x̄) − LφL(x̄))r
k−1(x̄, t).

(4.48)
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∂tr

k + (V − bI)∂x̄r
k = LφL(x̄)r

k + Sk−1(x̄, t),

rk(x̄, 0) = 0,

(4.49)

ek+1 = ek − rk.

For each rk, we have the estimates:

∥rk(x̄, t)∥ = O(1)ϵk+1


e
−

(x̄+(2/3−λ−1 )t)2

C(t+1)
√
t+1

+ e−C|x̄|−Ct, for x̄ < −L,

e−Ct
√
t
, for − L ≤ x̄ ≤ L,

e−C|x̄|−Ct, for x̄ > L.

(4.50)

The solution of (4.38) can be written formally in terms of the iterated

scheme:

z =
∞∑
k=0

rk.

From (4.50), the series is convergent, and

∥z(x̄, t)∥ = O(1)ϵ


e
−

(x̄+(2/3−λ−1 )t)2

C(t+1)
√
t+1

+ e−C|x̄|−Ct, for x̄ < −L,

e−Ct
√
t
, for − L ≤ x̄ ≤ L,

e−C|x̄|−Ct, for x̄ > L.

4.3.5 Summary on estimates of the linearized equa-

tion around shock layer

In this subsection, we summarize the linear estimates for the linearized

equation: 
∂th+ (V − bI)∂x̄h = Lφ(x̄)h,

h(x̄, 0; y0) = h0(x̄; y0),

(4.51)

with respect to various type of confined initial data:
∥h0(x̄; y0)∥ ≤ O(ϵ),

h0(x̄; y0) ≡ 0 for|x̄− y0| ≥ 1.
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Theorem 4.3.5. The solution of initial value problem (4.51) with the con-

fined initial data satisfies the following cases.

Case 1: Purely Macroscopic Transverse initial Data around Shock, i.e.,

y0 = 0, h0(x̄; y0)
c = 0, h0(x̄; y0)

m = 0 for all x̄.

∥h(x̄, t; y0)∥ ≤ O(1)ϵ
e−

|x̄+( 23−λ−1 )t|2

C(1+t)

√
1 + t

+O(1)ϵA1,1
1 (x̄, t) +O(1)ϵe−(|x̄|+t)/C .

Case 2: Purely Compressive initial Data around Shock, i.e., y0 = 0,

h0(x̄; y0)
t = 0, h0(x̄; y0)

m = 0 for all x̄.

∥h(x̄, t; y0)−O(1)ϵ

∫
R

(l2(M
−), h(x̄, 0))dx̄ψ(x̄)∥

≤ O(1)ϵA1,1
1 (x̄, t) +O(1)ϵe−(|x̄|+t)/C .

Case 3: Purely Microscopic initial Data around Shock, i.e., y0 = 0,

h0(x̄; y0)
t = 0, h0(x̄; y0)

c = 0 for all x̄.

∥h(x̄, t; y0)∥ ≤ O(1)ϵA1,1
1 (x̄, t) +O(1)ϵe−(|x̄|+t)/C .

Case 4: Purely Microscopic initial Data outside Shock, i.e., y0 < 0,

h0(x̄; y0)
t = 0, h0(x̄; y0)

c = 0 for all x̄.

∥h(x̄, t; y0)∥ ≤ O(1)ϵ
2∑

i=1

e−
|x̄−y0+( 23−λ−

i
)t|2

C(1+t)

1 + t
+O(1)ϵe−(|x̄−y0|+t)/C

+O(1)ϵ

∫ t

0

∫ 0

−∞
(

2∑
i=1

e−
|x̄−y+( 23−λ−

i
)(t−τ)|2

C(1+t−τ)

1 + t− τ
+ e−(|x̄−y|+t−τ)/C)

e−
|y0+( 23−λ−2 )τ |2

C(1+τ)

1 + τ
e−|y|/Cdydτ.

Remark 3. Only the second case containing a non-time decaying estimate

around the shock layers. In the previous subsections, we have proved that

for the general initial data, we have a non-decaying term around the shock

layers: diag(l(t))ψ(x), with the regularity estimate on the function l(t):

∥l(t)′∥ ≤ O(1)
e−Ct

√
t
.
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The last case is used for the nonlinear coupling outside the shock layer

region. Since the nonlinear collision operator is purely microscopic, we only

considers the purely microscopic component for the nonlinear coupling. In

the last case, we only consider the case of y0 < 0 because in the right half

region, which is the supersonic region, all wave around the shock near shock

layer will dissipate exponentially fast in time. One can ignore the nonlinear

coupling in this region.

4.4 Nonlinear stability of the shock profile

In this section, we prove the main Theorem 4.1.1 of this chapter. The

perturbation h(x̄, t) ≡ F̃ (x̄, t) − φ(x̄ − x0), of the Broadwell shock profile

φ(x̄) satisfies: 
∂th+ (V − bI)∂x̄h = Lφh+Q(h),

h(x̄, 0) ≤ O(ϵ)e−|x̄|,∫
R
hc(x̄, 0)dx̄ = 0.

(4.52)

The third condition in (4.52) is natural by choosing a suitable shock front

φ(x̄− x0) to monitor the decay of the perturbations. Thus, the total mass

of the perturbation does not contain any compressive component. For

simplicity, one may assume that x0 = 0. The shock wave is stationary

forward and the initial data of the perturbation are exponentially decaying

in x̄ so that one can expect the solution remains exponentially decaying in

x̄ > 0.

The solution can be represented by the Green’s function G(x̄, y, t):

h(x̄, t)

=

∫ ∞

−∞
G(x̄− y +

2

3
t, t)h(y, 0)dy

+

∫ t

0

∫ ∞

−∞
G(x̄− y +

2

3
(t− s), t− s)(χ− + χ−)Q(h)(y, s)dyds
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≡ Gt
φ[h(·, 0)] +

∫ t

0

Gt−s
φ [χ+(·)Q(h)(·, s)]ds(x̄)

+
∞∑

j=−∞

∫ t

0

Gt−s
φ [χ[2j−1,2j+1)(·)χ−(·)Q(h)(·, s)]ds

where χ[2j−1,2j+1)(·) is the characteristic of the interval [2j − 1, 2j + 1), Gt
φ

is the operator defined as Gt
φ[h(·, 0; y0)] = h(x̄, t; y0), see Theorem 4.3.5.

χ± are defined as

χ−(x̄) =


1, for x̄ < −L,

0, for x̄ > L,

χ+ = 1− χ−,

0 < χ′
−(x̄) ≤ O(1)e−C|x̄|.

Denote
J1 = ||

∫ t

0
Gt−s

φ [χ+(·)Q(h)(·, s)]ds(x̄)||,

J2 = ||
∑∞

j=−∞
∫ t

0
Gt−s

φ [χ[2j−1,2j+1)(·)χ−(·)Q(h)(·, s)]ds||.

Since Q is purely microscopic, we first have the following estimate:

||h(x̄, t)|| = O(1)ϵ
e−

|x̄+( 23−λ−1 )t|2

C(1+t)

√
1 + t

+O(1)ϵA1,1
1 (x̄, t) +O(1)ϵe−(|x̄|+t)/C + J1 + J2.

Ansatz Assumption

∥h(x̄, t)∥ = O(1)ϵ
χ[(λ−

1 − 2
3
)t+

√
t,0](x̄)√

(|x̄− (λ−1 − 2
3
)t|+ 1)(|x̄− (λ−2 − 2

3
)t|+ 1)

+O(1)ϵ
e−

|x̄+( 23−λ−1 )t|2

C(1+t)

√
1 + t

+O(1)ϵe−(|x̄|+t)/C . (4.53)

We estimate J1 and J2 under the ansatz assumptions. Under this assump-

tion, one has

||χ+(·)Q(h)(x̄, t)|| ≤ O(1)ϵ2(
e−ct

1 + t
+

1

t2
)e−x̄/C . (4.54)
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With this, one can apply Theorem 4.3.5 to yield that for x̄ < 0,

J1(x̄, t)

≤ O(1)ϵ2
∫ t

0

e− |x̄+( 23−λ−1 )(t−s)|2

C(1+t−s)

1 + t− s
+A1,1

1 (x̄, t− s)

 ·
(
e−cs

1 + s
+

1

s2

)
ds

≤ O(1)ϵ2(| log (1 + t)|e
−

|x̄+( 23−λ−1 )(t)|2

2C(1+t)

1 + t
+A1,1

1 (x̄, t)).

To estimate J2, from Theorem 4.3.5 case 4, one has:

J2(x̄, t)

≤ O(1)
∞∑

j=−∞

∫ t

0

2∑
i=1

∫ j

j−1

e− |x̄−z+( 23−λ−
i

)(t−s)|2

C(1+t−s)

1 + t− s
+ e−(|x̄−z|+t−s)/C


||h(z, s)||2dzds

+O(1)

∫ ∞

j=−∞

∫ t

0

2∑
i=1

∫ j

j−1

∫ t

s

∫
R

e− |x̄−y+( 23−λ−
i

)(t−τ)|2

C(1+t−τ)

1 + t− τ
+ e−(|x̄−y|+t−τ)/C


||h(z, s)||2 · e

−
|z+( 23−λ−2 )(τ−s)|2

C(1+τ−s)

1 + τ − s
e−|y|/Cdydτdzds

≤ O(1)
2∑

i=1

∫ t

0

∫
R

e− |x̄−z+( 23−λ−
i

)(t−s)|2

C(1+t−s)

1 + t− s
+ e−(|x̄−z|+t−s)/C

 ||h(z, s)||2dzds

+O(1)
2∑

i=1

∫ t

0

∫
R

e− |x̄−y+( 23−λ−
i

)(t−τ)|2

C(1+t−τ)

1 + t− τ
+ e−(|x̄−y|+t−τ)/C

 e−|y|/C ·

∫ τ

0

∫ ∞

−∞
||h(z, s)||2 e

−
|z+( 23−λ−2 )(τ−s)|2

C(1+τ−s)

1 + τ − s
dzds

 dydτ ≡ J2,1 + J2,2.

Using Lemma A.0.2, Lemma A.0.3 and Lemma A.0.4, we have

J2,1 ≤ O(1)ϵ2(
χ[(λ−

1 − 2
3
)t+

√
t,0](x̄)√

(|x̄− (λ−1 − 2
3
)t|+ 1)(|x̄− (λ−2 − 2

3
)t|+ 1)

+
e−

|x̄+( 23−λ−1 )t|2

C(1+t)

√
1 + t

),

and

e−|y|/C
∫ τ

0

∫ ∞

−∞
||h(z, s)||2 e

−
|z+( 23−λ−2 )(τ−s)|2

C(1+τ−s)

1 + τ − s
dzds ≤ O(1)ϵ2

e−|y|/C
√
τ

. (4.55)



4.4 Nonlinear stability of the shock profile 79

From (4.55) and the definition of J2,2, similar to the proof of Lemma

A.0.1 or just use the conclusion for the propagation of damping waves in

[20], one can yield that for x̄ < 0,

J2,2 ≤ O(1)ϵ2
2∑

i=1

∫ t

0

∫
R

e− |x̄−y+( 23−λ−
i

)(t−τ)|2

C(1+t−τ)

1 + t− τ
+ e−(|x̄−y|+t−τ)/C

 e−C|y|
√
τ
dydτ

≤ O(1)ϵ2
2∑

i=1

1

(
√

(x̄− (λ−i − 2
3
)t)2 + t+ 1

. (4.56)

Thus, combing the estimate (4.55) and (4.56) together, the ansatz assump-

tion (4.53) is true, and Theorem 4.1.1 is proved.





Appendix A
Wave interactions

In this appendix, we give the pointwise wave interaction in both space

and in time. This kind of estimate is very important in our analysis, and

originally started in [20].

Set

Γβ(t) ≡
∫ t

0

(s+ 1)−β/2ds

= O(1)


1, for β > 2,

log(t+ 1), for β = 2,

(t+ 1)(2−β)/2, for β < 2.

The first lemma is the result of the propagation of damping wave. With

a small mirror modification in the proofs in [20], [34] , we have the following

Lemma:

Lemma A.0.1. Suppose that α, β ≥ 0, then there exists a positive constant

C such that for all |2
3
− λ±i | = O(1), i = 1, 2,

∫ t

0

∫
R

e−
|x̄−y+( 23−λ−1 )(t−τ)|2

C(1+t−τ)

(1 + t− τ)
β
2

e−C|y|−cτ

(1 + τ)α/2
dydτ

= O(1)Aα,β
1 (x̄, t)
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≡ O(1)



( 1

(|x̄|+1)
β−2
2
√

|x̄|+1|x̄+( 2
3
−λ−

1 )t|α/2
+ e−C|x̄|Γβ−1(t+1)

(t+1)α/2

+ e−C|x̄+( 23−λ−1 )t|Γα(t+1)

(t+1)
β−1
2

)e−C|x̄+( 2
3
−λ−

1 )t|

for − (2
3
− λ−1 )(t+ 1) +

√
t < x̄ < 0,

e−CtΓα(t+1)+Γα(
√
t+1)(

√
t+1)−1

(t+1)
β−1
2

+ Γβ−1(t+1)e−Ct

(t+1)α/2

for |x̄+ (2
3
− λ−1 )t| <

√
t+ 1,

(t+ 1)−
β−1
2 [e−

|x̄+( 23−λ−1 )t|2

C(t+1) + (t+1)1/2e−C|x̄+( 23−λ−1 )t|

|x̄+( 2
3
−λ−

1 )t|α/2

+Γα(t+ 1)e−C|x̄+( 2
3
−λ−

1 )t|e−Ct]

+(x̄+ (2
3
− λ−1 )t)

(−2β+3)/2e−C|x̄−( 2
3
−λ−

1 )t|

+Γβ−1(t+1)e−C|x̄−( 23−λ−1 )t|e−Ct

(t+1)α/2

for |x̄+ (2
3
− λ−1 )t| >

√
t+ 1.

∫ t

0

∫
R

e−
|x̄−y+( 23−λ−2 )(t−τ)|2

C(1+t−τ)

(1 + t− τ)
β
2

e−C|y|−cτ

(1 + τ)α/2
dydτ

= O(1)(Γα(t+ 1)(t+ 1)
1−β
2 e−Ct + Γβ−1(t+ 1)(t+ 1)−α/2)e−C|x̄|−Ct

for x̄ < 0.

∫ t

0

∫
R

e−
|x̄−y+( 23−λ+

i
)(t−τ)|2

C(1+t−τ)

(1 + t− τ)
β
2

e−C|y|−cτ

(1 + τ)α/2
dydτ

= O(1)((Γα(t+ 1)(t+ 1)
1−β
2 e−Ct + Γβ−1(t+ 1)(t+ 1)−α/2)e−C|x̄|−Ct

for x̄ > 0.

The following two lemmas are from [25], showing the interactions of the

waves.

Define

Iα,β,γ(x, t; 0, t;λ, µ,D)

≡
∫ t

0

∫ ∞

−∞
(t− τ)−(β+γ)/2(t− τ + 1)−γ/2e−

[x−y−λ(t−τ)]2

D(t−τ) θα(y, τ ;µ,D)dydτ,

where

θα(y, τ ;µ,D) = (τ + 1)−α/2e−
(y−µ(τ+1))2

D(τ+1) .
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Lemma A.0.2. Suppose that α > 0, β ≥ γ ≥ 0, and β − γ < 3. Then

Iα,β,γ(x, t; 0, t;λ, λ,D) = O(1)[(t+ 1)(−β+1)/2Γα−1(t+ 1)

(t+ 1)(−α+1)/2Γβ−1(t+ 1)]θ(x, t;λ,D)

In particular,

Iα,β,γ(x, t; 0, t;λ, λ,D)

=


O(1)θ(x, t;λ), for α ≥ 3, β = 1,

O(1)θ3/2(x, t;λ), for α ≥ 2.5, β = 2.

Lemma A.0.3. Suppose that α ≥ 1, β ≥ γ ≥ 0, and β − γ < 3 and that

λ < µ. Then, for any given constant E > D,

Iα,β,γ(x, t; 0, t;λ, µ,D)

= O(1)(t+ 1)(−β+1)/2Γα−1(
√
t+ 1)θ(x, t;λ,D)

+O(1)(t+ 1)(−α+1)/2Γβ−1(
√
t+ 1)θ(x, t;µ,D)

0, for x < λ(t+ 1) +
√
t+ 1 or x > µ(t+ 1)−

√
t+ 1,

O(1)
[
(t+ 1)(−β+1)/2Γα−1(x− λt)θ(x, t;λ,E) + (µt− x)(−β+1)/2

·(x− λt)(−α+1)/2 + (t+ 1)(−α+1)/2Γβ−1(µt− x)θ(x, t;µ,E)
]

for λ(t+ 1) +
√
t+ 1 < x < µ(t+ 1)−

√
t+ 1.

In particular,

Iα,β,γ(x, t; 0, t;λ, µ,D)

=


O(1)ψ1/2(x, t;λ), for α = 2, β = 1,

O(1)[ψ3/2(x, t;λ) + ψ̄3/2(x, t;µ)], for α = 3, β = 2,

here

ψα(x, t;λ) = [(x− λ(t+ 1))2 + t+ 1]−α/2,

ψ̄α(x, t;λ) = [(x− λ(t+ 1))3 + (t+ 1)2]−α/3.
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Consider the following wave interaction:

H(x, t;µ1, µ2, µ3;C)

≡
∫ t

0

∫ µ2(τ+1)−
√
τ+1

µ1(τ+1)+
√
τ+1

e−
(x−y−µ3(t−τ+1))2

C(t−τ+1)

t− τ + 1

1

(y − µ1τ)(µ2τ − y)
dydτ,

where µ1 < µ2. We quote Lemma 8.3 in [25].

Lemma A.0.4. For |x− µit| = O(1)
√
1 + t,

H(x, t;µ1, µ2, µ3;C) ≤ O(1)
(log(2 + t))2

1 + t
.

For |x− µit| ≥ O(1)
√
1 + t, one has the following: If µ3 = µ2, then

H(x, t;µ1, µ2, µ3;C)

= O(1)



(log(2+t))2

1+t
e−

(x−µ1t)
2

C(t+1) , for x < µ1t−
√
t+ 1,

log(2+t)t−1/4√
(x−µ1t)(µ2t−x)

, for µ1t+
√
t+ 1 < x < µ2t−

√
t+ 1,

(log(2+t))2

1+t
e−

(x−µ2t)
2

C(t+1) , for µ2t+
√
t+ 1 < x.

If µ3 < µ1 < µ2, then

H(x, t;µ1, µ2, µ3;C)

= O(1)



(log(2+t))2

1+t
e−

(x−µ3t)
2

C(t+1) , for x < µ3t−
√
t+ 1,

log(2+t)t−1/4√
(x−µ3t)(µ1t−x)

, for µ3t+
√
t+ 1x < µ1t−

√
t+ 1,

(log(2+t)√
(x−µ2t)t

, for µ1t+
√
t+ 1 < x < µ2t+

√
t+ 1,

(log(2+t))2

1+t
e−

(x−µ2t)
2

C(t+1) , for µ2t+
√
t+ 1 < x.

If µ1 < µ1 < µ3, then

H(x, t;µ1, µ2, µ3;C)

= O(1)



(log(2+t))2

1+t
e−

(x−µ1t)
2

C(t+1) , for x < µ1t−
√
t+ 1,

log(2+t)t−1/4√
(x−µ1t)(µ3t−x)

, for µ1t+
√
t+ 1x < µ3t−

√
t+ 1,

log(2+t)t−1/4√
(x−µ3t)(µ2t−x)

, for µ3t+
√
t+ 1 < x < µ2t+

√
t+ 1,

(log(2+t))2

1+t
e−

(x−µ2t)
2

C(t+1) , for µ2t+
√
t+ 1 < x.
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