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Summary

The purpose of this thesis is to investigate the protein-protein interaction (PPI)

networks via network growth modeling: The duplication models. The duplication

models are biologically reasonable and have been proved to give good fit for real

PPI networks. We have studied the evolutionary processes in two aspects: The

forward and the backward. Specifically, for the forward, time increases and a

network grows; for the backward, time decreases and a network is traced back.

We have studied one question in the backward aspect: What is the evolution-

ary history of an observed network? We answered this question by introducing a

novel framework which incorporates the duplication forest to reconstruct the net-

work evolutionary history. Under this framework, we reduced the searching space

for reconstruction by simplifying the likelihood ratio between two histories. We

proposed two algorithms: CherryGreedy (CG) and MinimumLossNumber (MLN)

for reconstructing network evolutionary history. MLN is based on a more intuitive

method and CG aims to provide more accurate results. Simulations show that

our algorithms outperform others. Our algorithms were used to investigate the

properties of real PPI networks from the view of evolution.

We have studied two questions in the forward aspect: (i) What is the degree

vii



Summary viii

distribution of a network when time is sufficiently large? and (ii) How does the seed

graph affect the evolutionary process of a network? For (i), we have done rigorous

mathematical analysis for the degree distribution of the partial duplication (PD)

model. First the existence of the limiting degree distribution was established. A

phase transition point for the PD model was showed. Moreover, the convergence

rates and the connected components have also been analyzed. For (ii), we have

run simulations to explore the topological statistics of four duplication models.

Several features have been presented. This part provides an open direction for

future work.
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Chapter 1
Introduction

Functioning of a living cell is attributed to the interplay between its numerous

components, such as DNA, RNA and proteins [9]. Despite their importance to

biological systems, none of these molecules can individually execute the complex

biological processes without collaboration with others. Therefore, understanding

the interaction and regulation of molecules is crucial in modern biology [110]. In

a conceptual and reductionism framework, there is a need to study the structure

and the dynamics of biological networks.

A network is a mathematical object which consists of a set of nodes and a set of

edges between them (see Subsection 1.1.1 for details). Depending on the molecules

represented by nodes and the interactions by edges, molecular networks can be

catalogued as metabolic networks, protein-protein interaction (PPI) networks and

gene regulatory networks etc. [25, 97] (Fig. 1.1). For example, in a metabolic

network, nodes correspond to biochemical metabolites and edges are chemical re-

actions that convert the reaction partners into substrates [25]. It should be kept in

mind that all these biological networks overlap with each other and none of them

stands alone in a living cell.

In the past decades, the advent of high-throughput experimental methods such

1
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(a) (b) (c)

Figure 1.1: Examples of biological networks. (a) A metabolic network of E. coli
with 574 interactions and 473 metabolites colored according to the KEGG pathway
classification [38]. (b) Yeast PPI network. Color of a node indicates its lethali-
ty [47]. (c) E. coli transcriptional regulatory network with transcription factors
colored with green and regulators colored with brown[39].

as yeast two-hybrid (Y2H) [30] and microarray [3] leads to the tremendous increase

of biological interaction data, allowing studies attempting to reveal the design

principles and evolutionary forces underlying biological networks [92]. Nonetheless,

in spite of some progresses (reviewed in [9]), the properties and mechanisms of these

biological networks are so far unknown.

1.1 PPI Networks

Among all the molecules in a living cell, proteins are essential parts of an organism

and perform the most vast array of functions [55]. In the past, proteins were

studied in isolation. Though remarkable knowledge on individual proteins has been

gained [83], the functioning machinery of an organism cannot be comprehensively

understood without investigation into the links between biological molecules, in

particular, protein-protein interactions (PPI).

Protein-protein interactions are physical contacts between two or more proteins
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in a living cell or organism, often to carry out important biological processes. For

example, G protein-coupled receptors interact with G proteins to transmit signals

from stimuli outside a cell [84]. There are two main experimental approaches in

wide use for detecting protein-protein interactions in large scale: Yeast two-hybrid

(Y2H) [30] and tandem affinity purification coupled to mass spectrometry (TAP-

MS) [81]. These high-throughput detection methods have led to the availability

of large quantity of interaction data (Fig.1.2), which enable analysis of evolution

and functionality of molecular and organisms. Large-scale experiments have been

embarked on model-organisms, such as S.cerevisiae [45, 94], C.elegans [58, 99],

Helicobacter pylori [78], D.melanogaster [36], and human [91]. These interaction

data are collected and organized in databases, such as DIP [105], IntAct [49] and

BioGRID [15], for easy reference.

Figure 1.2: Accumulation of network components during the 10 years from 1999
to 2009. Image from [106].
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1.1.1 Graph Representation and Properties

In mathematics, a network, which is also called a graph, consists of two compo-

nents: Nodes and edges, where edges are an indicator function on the set of nodes.

Specifically a set of nodes V and a set of indicator functions E = {ei,j}i,j∈V , define

a graph G(V,E), in which ei,j = 1 if there is an edge between node i and j and

ei,j = 0 otherwise. If the pair of nodes (i, j) in the subscript of the indicator func-

tion ei,j are ordered (unordered), the graph G are called directed graph (undirected

graph). Since we cannot say which protein binds with which one, protein-protein

interactions are considered to be undirected. Hence in this thesis we focus on undi-

rected networks, which means the order of the couple (i, j) does not matter and

ei,j = ej,i.

Over the past decade, networks have been used to elucidate many complex

systems in different disciplines, including computer science, biology, technology

and social science. In biology, network provides a useful tool to represent and

study interaction data of different types in cellular systems, such as protein-protein

interaction, metabolic and gene regulation [9]. By investigating the interactions at

a network level, new insights into the molecular mechanisms behind these systems

can be discovered [97]. For example, a protein-protein interaction (PPI) network of

the plant Arabidopsis thaliana containing about 6200 physical interactions between

about 2700 proteins was constructed and reported in [4]. A study [65] based on it

indicated how pathogens may exploit protein interactions to manipulate a plant’s

cellular machinery.

In PPI networks, nodes are proteins and edges are protein-protein interactions.

Usually, a PPI network represents a collection of protein-protein interaction data in

an organism. For example, by incorporating all the PPIs of the yeast obtained from

a genome-scale study (such as [45]) we can generate a yeast PPI network. In order

to understand the functioning and formation of a network, the first step should be
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to investigate its properties, which can be explored through the quantifiable tools

of network theory. Network theory developed in other fields, such as Internet,

physics, and sociology [18], can provide great help for the study of PPI networks.

Several software tools have been introduced for network analysis. For example,

the most commonly used software Cytoscape enables visualization and analysis

of networks [87]. Even more powerful applications and extensions can be made

via user-defined plug-ins. Another popular software tool GraphCrunch2 addresses

network modeling, alignment and clustering [54].

If there is a link between node i and node j, we say i is a neighbor of j and

vice versa. The number of neighbours of a node i is called its degree:

ki =
∑
j∈V

ei,j.

It has been found that the degree of a protein has significant biological implications.

The essential genes, whose malfunction would cause the death of an organism, are

found to positively correlate with their degrees [47].

Probably the most basic quantity to investigate a network is the degree distri-

bution P (k), which can be defined as the proportion of nodes with degree k or,

equivalently, the probability that a node, which is chosen uniformly at random,

has degree k. Some interesting patterns of degree distribution have been realized

in empirical networks. For example, scale-free is a widely observed characteris-

tic in real networks, which means networks with a power-law degree distribution:

P (k) ∼ k−β, where β is call the power-law exponent. In a scale-free network most

nodes have a small number of interactions and a few nodes, the so-called hubs,

interact with a large number of nodes. Owing to this property, scale-free networks

are surprisingly robust against random external attack. Disabling a few number

of nodes chosen at random would not cause fatal effect on a scale-free network. A
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scale-free network can tolerate up to 80% of its nodes to be disabled and still func-

tions properly [77]. It is believed that scale-free property is shared by a wide range

of real networks. Several non-biological networks, such as World Wide Web, social

networks and citation networks, are scale-free, with power-law exponents greater

than 2. The biological networks, such as yeast PPI network, E. coli metabolic net-

work, yeast gene expression network and gene functional interactions, also follow

a power-law, but with power-law exponents smaller than 2 (reviewed in [18]). A

quantity relative to the degree distribution regards the average degree, which is

defined to be the first moment of P (k):

D =
∑
k

kP (k) = 2e/n,

where e =
∑

i<j ei,j is the number of edges and n = |V | is the number of nodes.

Other topological features commonly investigated include diameter, clustering

coefficient and betweenness etc. Here we give a brief review on these three quanti-

ties. We first define the concept of path. Given two nodes, i and j, a path between

i and j is a sequence of edges in which i and j as the two terminals and we can

traverse from i to j by visiting each edge in the path exactly once. If there is no

cycle in the path, we call it a simple path. The length of a path is the number

of edges that the path contains. The shortest path between two nodes i and j is

the path with the shortest length, which is called the distance between these two

nodes, denoted by li,j. In a network, the maximum distances over all pairs of nodes

is called diameter:

Diameter = max
i,j∈V

li,j.

A network with a small diameter is called a small-world network, in which a node

can reach any other node by traversing a few number of connected nodes. This

property allows efficient and prompt information transition in a network. Signal
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transduction and communication are tasks of many real networks. For instance,

in PPI networks, signaling molecules from the exterior of an organism bind the

receptor protein and signals are mediated through a sequence of protein-protein

interactions to eventually activate the organism’s reaction to the external signal-

s [59]. The small-world effect has been found in many real networks, such as

film actor corporation networks, power-grid networks and the yeast coexpression

network [69, 101]. The emergence of small-world effect suggests that these real

networks are likely to organize in such a way which facilitates signal and informa-

tion transmission. Finally we introduce another important topological quantity:

Clustering coefficient. Clustering coefficient, denoted by c(u), of a given node u

with degree k is defined as the proportion of pairs of this node’s neighbors which

are connected:

c(u) =

∑
i,j∈N(u) ei,j(

k
2

) ,

where N(u) is the set of neighbors of node u. Equivalently, clustering coefficient is

the probability that u and its two neighbors that are chosen uniformly at random

from the set of the neighbors of u form a triangle. The average clustering coefficient

is the mean of the clustering coefficient over all nodes: c̄ =
∑

u∈V c(u)

|V | . Clustering

coefficient measures to what degree nodes tend to form a dense subgraph and it

is often used an indicator for the modularity of a network [9]. High clustering

coefficient has been observed in PPI networks, hinting at a high modularity. Given

a node u, the betweenness of u, denoted by b(u), is defined as the number of

shortest paths from all vertices to all others that pass through u:

b(u) =
∑
i,j

pij(u)/pij,

where pij is the number of shortest paths between i and j, and pij(u) is the number

of shortest paths between i and j passing through u. Betweenness approximates
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the information flow that passes through a node and the essentiality of a node in

the ability of a network to communicate [33].

Apart from the above quantities that describe the topology of a network, net-

works are often studied in terms of subgraphs, such as motifs and modules. Small

subgraphs with statistical significance, which are termed motifs, have gained much

attention in recent years. By applying methodologies for motif discovery, motifs of

small sizes, such as triangles, are identified [48, 63, 104, 107]. Biomolecular network

motifs are usually found to be associated with biological functions and considered

to be basic building blocks for biological networks [63]. In [104], proteins in motifs

are found to be conserved evolutionarily to a higher degree than those that are

not members of motifs, indicating the biological importance of motifs in evolution.

A module in a PPI network refers to a subgraph consisting a group of proteins

and a group of interactions among them usually carry out important functions

and may form a protein complex. Besides PPI networks, modules are also ob-

served in networks of other fields such as World Wide Web and social networks [9].

Several techniques have been proposed to detect modules in PPI networks. For

instance, Bader and Hogue [6] proposed the molecular complex detection algo-

rithm (MCODE) which makes use of the so-called core clustering coefficient to

predict molecular complexes. And Sharan et al. [88] developed a greedy likelihood

algorithm called NetworkBlast to detect modules in protein interaction networks.

Modules are evolutionary conserved parts in PPI networks.

1.2 Evolution of PPI Networks

Like other biological networks, PPI networks evolve with time. Only if we under-

stand the evolutionary processes can we understand the network we observe today.

However, due to the limited information and technology the evolutionary dynamics
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of PPI networks are still not well studied and the evolutionary mechanisms shap-

ing the topology of PPI networks are not well understood. New techniques and

methodologies are urged to explore the history of these networks.

1.2.1 The Central Dogma

Proteins are the “workhorses” that build up our body, but what monitor proteins

are DNA, a polymer that contains genetic instruction. Francis Crick’s central dog-

ma of molecular biology describes how the genetic information transfers between

the three major information-carrying biopolymers: DNA, RNA and proteins[19].

The dogma emphasises the direction of the flow of information. In short, genetic

information flow is formed by the following transfers: DNA→DNA transfer (D-

NA replication), DNA→RNA transfer (transcription) and RNA→proteins transfer

(translation), known as the three general transfers (Fig.1.3). Other transfers are

believed to be abnormal. In the process of transcription information contained

in DNA is copied to a piece of messenger RNA (mRNA). Eventually mRNA is

matched to transfer RNA (tRNA), thereby creating the corresponding amino acid-

s, which are linked and folded to form proteins.

1.2.2 Nodes Addition and Deletion

Every protein is encoded by a stretch of DNA, namely a gene. By the central

dogma, any mutation in the genome (the whole set of genes in an organism) may

cause a change in its proteome (the whole set of proteins in an organism). It is

observed that more than one third of genes in E. coli are orthologous to a human

gene but few are conserved in more than 90% of sequenced bacteria [46]. This

indicates that many genes are conserved across species and meanwhile the addition

and deletion of genes play a fundamental role in the variety of protein functions.

Gene loss, which is confirmed by the comparative analysis of sequences, is one of
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Figure 1.3: Illustration of the central dogma. Genetic information is transmit-
ted from DNA to RNA and RNA makes the proteins via translation of the cod-
ed sequences. Image from "http://en.wikipedia.org/wiki/Central dogma of

molecular biology".

the major evolutionary force [5, 64]. However, from the point of view of modeling

a lost gene can be taken as a gene that never exists. Hence hereinafter we focus

on the addition of nodes. The introduction of a new node into the genome can

be either through horizontal gene transfer or gene duplication, which is the most

frequent cases [106].

Gene duplication occurs in homologous recombination, which usually happens

as unequal crossover [37](Fig.1.4), a retrotransposition event or duplication of an

entire chromosome [109]. Gene duplication may happen in one single gene or a

large-scale region in the genome and even the whole genome, in which case we

call it the whole genome duplication (WGD). Gene duplication is widely observed

in the genomes of various species. For example, it is believed that the yeast S.

cerevisiae underwent a WGD about 150 million years ago [103]. The proportion

of duplicate genes, which are usually detected by sequence alignment methods, is

large and varies from more than 10% to over half [109]. Since the first reveal of

"http://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology"
"http://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology"
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gene duplications in 1930s and prevalence of this notion by Ohno’s book in 1970,

Evolution by Gene Duplication [72], gene duplication has been viewed as the main

source of material for proteome evolution and play an an important role in devel-

oping novel functions. For instance, gene duplication is found to attribute to cold

adaptation in Antarctic notothenioids [14, 16]. Immediately after a gene duplica-

tion event we can find two identical genes in the genome, which carry out exactly

the same functions. The duplicate copy of a gene (or protein) is released from

the pressure of natural selection at the time point of duplication and is likely to

acquire a new, beneficial function that is preserved over time or lose the function

its origin has. Specifically, the duplicate genes would be preserved via comple-

mentary or degenerate mutations. The functions carried out by the two identical

duplicates would be partitioned by the pair, or one of them degenerates or acquires

new functions [31] (Fig. 1.5). Genes that degenerate and do not function any more

are called pseudogenes. Due to the functional redundancy, most duplicate genes

become pseudogenes or lost. It is reported that there are more than 60% pseu-

dogenes in human and 20% in mice [109]. However, the duplicate genes can be

conserved if they differ in different functions. For example zebrafish engrailed-1 and

engrailed-1b are conserved duplicate genes that are expressed in different tissues of

zebrafish [70].

1.2.3 Evolutionary Dynamics

Protein-protein interactions reflect the functions of proteins. The divergence of

protein functions may cause loss or gain of interactions. Some hypotheses have

been proposed for the evolution of PPI networks. For example, several authors

emphasize the effect of domain shuffling on shaping the topology of PPI network-

s [13, 28, 34]. Among them, Evlampiev and Isambert proposed a model for PPI

network evolution based on a refined version of whole genome duplication, in which
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Figure 1.4: Illustration of gene duplication. Image from "http://en.wikipedia.

org/wiki/Gene duplication".

protein domains are introduced through different types of edges [28]. Preferential

attachment of newcomers is also considered as a factor affecting the evolution of P-

PI networks [20, 24]. For instance, based on the evolutionary conservation, Davids

and Zhang [20] classified the E. coli genes into three categories: Core genes, Non-

core genes and genes resulting from horizontal gene transfer (HGT). They claimed

that the HGT genes link with Core genes in a preferential attachment manner.

Some other authors focus on gene duplications (see [96, 98] for examples). By

studying the relation between the fraction of duplicates with at least one common

interacting neighbor and the fraction of synonymous substitutions per synony-

mous site [37], Wagner found that the higher the similarity between duplicates is

the more interactions the duplicates share [98]. Based on this observations, the

author proposed a model for the effect of gene duplications on the protein-protein

interactions. In this model, the process of evolution by gene duplication and diver-

gence is depicted as the rewiring of their adjacent links, including loss of adjacent

edges and gain of new adjacent neighbors. This mechanism links the molecular

evolution with the network evolution especially in the aspect of gene duplication.

"http://en.wikipedia.org/wiki/Gene_duplication"
"http://en.wikipedia.org/wiki/Gene_duplication"
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Figure 1.5: Evolutionary fate of duplicate genes. A gene with four functions is
duplicated. In the divergence of the duplicate genes, four cases may happen: Sub-
functionalization, neofunctionalization and degeneration. In subfunctionalization,
functions are partitioned by the two duplicate genes. In this case, each carries out
two of the four original functions. In neofunctionalization, a duplicate gene obtains
new functions. Here one gene acquires two new functions. In degeneration, one of
the duplicate genes loses its functions and become pseudogenes or unidentifiable.
Image from "http://en.wikipedia.org/wiki/Gene duplication".

1.3 Modelling PPI Networks

PPI networks that we observe today are results of millions of years of evolution.

Not only the proteins themselves undergo mutations and natural selection, but

also the interactions between them change with time. Even if the proteins remain

unchanged, the interactions may still vary (examples can be found in the conserved

modules in different species). Understanding how PPI networks evolve and how the

properties of PPI networks emerge would shed light on the functioning machinery

of a cell or organism and provide insight into human diseases at the molecular

level [97]. Like in other disciplines, such as physics, a proper model in biology can

provide a theoretical framework in the analysis of the dauntingly huge real data.

With the help of computers, processes that cannot be realized in reality (such as the

"http://en.wikipedia.org/wiki/Gene_duplication"
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reconstruction of PPI network evolutionary history, see Chapter 2 for details) can

be completed by embedding the models. A question should be asked beforehand:

What is a “proper” model? To the best of our knowledge, there is no definite

answer to it. However, the model should be simple enough to be mathematically

tractable, and consistent with biological facts and fits the real data to some extent.

Even if a model is not mathematically tractable and analytical results are difficult

to be obtained, simulation studies can also provide valuable insights into the real

networks of interest. Here we give a brief review on some interesting graph models

which may be useful in our research.

1.3.1 Random Graph Models

Probably the best known random graph is the Erdős-Rényi (ER) model [26],

which is named after Paul Erdős and Alfréd Rényi, who proposed the model in

1959. An ER model with n nodes and parameter p, denoted by M(n, p), generates

networks by independently connecting each pair in the n nodes with probability p

(Fig. 1.6). Note that there are
(
n
2

)
edges in a complete graph with n nodes and

under the ER model a network with n nodes and m edges, denoted by G(n,m), is

generated with probability pm(1 − p)(
n
2)−m. The degree distribution of ER model

is binomial [67]:

P (deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k,

which converges to a Poisson distribution when n is large and np is fixed. Further

mathematical properties of ER model is described in [27]. There is another variant

of the ER model M(n,m), where n is the number of nodes and m is the number of

edges. InM(n,m), m edges are chosen uniformly at random from the
(
n
2

)
potential

edges. When pn2 → ∞, many graph properties in M(n, p) and M(n,m), with
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m = np, are equivalent [27].
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Figure 1.6: Four non-isomorphic samples of an ER model with n = 3. Given three
nodes, every pair of nodes are linked independently with probability p. (a) None of
the edges is present. Note that the probability for an absent edge is 1− p. Hence
P (G(3, 0)) = (1− p)3. (b) In this sample, one edge is present and two are absent.
So P (G(3, 1)) = p(1 − p)2. (c) Two edges are present and one is absent. The
probability is P (G(3, 2)) = p2(1− p). (d) All edges are present: P (G(3, 3)) = p3.

In order to obtain graphs similar to PPI networks, one has to compare the

graphs generated by a model with PPI networks. Instead of identifying isomorphic

graphs, whose computational complexity is still unknown, we compare properties

of two networks such as degree distribution, which are feasible and efficient. We

know that the yeast PPI network has a high average clustering coefficient and

power-law degree distribution which has a fat tail, but the ER model has a bell-

shaped binomial degree distribution and low clustering coefficients. Hence in terms

of these two quantities ER model is not an ideal model for PPI networks.

The Watts-Strogatz model is another popular random graph model which

generates networks with small-world property and high clustering coefficients, two

important characteristics observed in various empirical networks [101]. The model

starts with a regular ring lattice with n vertices and K degree per vertex, which

can be defined by connecting each node on a ring to its K nearest neighbors

(K/2 on each side, Fig. 1.7(a)). Each edge ei,j on the lattice, where i < j, is

replaced by another edge ei,k with some probability p1, where k is chosen uniformly

1With a slight abuse of notations, we use the same p as in the ER model when the context is
clear. Similar cases occur occasionally in the following part of this thesis.
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at random from the set of vertices, which are not the neighbors of node i, and

k ̸= i (Fig. 1.7(b)). The model was designed by interpolating between regular and

random networks tuning by parameter p. When p is 0, the model is definite; when p

is 1, the model is complete disorder. Watts and his coauthor found that adjusting

p from 0 to 1 the average length of the shortest paths decrease and meanwhile

clustering coefficient decreases. Although the Watts-Strogatz model can generate

high clustering coefficient and small average length of shortest paths, it fails in

generating a scale-free network [10].

..

(a)

..

(b)

Figure 1.7: Illustration of the Watts-Strogatz model. A regular lattice is obtained
by connecting each vertex on a ring with n vertices (n = 10 in this example)
to its K (K = 4) nearest vertices. For each edge, with probability p one end is
reconnected to another vertex, which is chosen uniformly at random from the set
of nodes. Self-links and duplicate edges are forbidden. Three edges are rewired in
this example.

1.3.2 Growing Graph Models

The ER model and the Watts-Strogatz model have successfully explained the e-

mergence of some interesting properties of some real networks [67]. However, their

limitations are: (1) As mentioned above, they fail to produce scale-free networks;

(2) they generate networks on a fixed set of nodes. However, many real networks,
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especially biological networks are under processes of growth.

The Barabási-Albert (BA) model, which is also called the preferential

attachment (PA) model, is a network growth model based on the preferential

attachment mechanism [8]. A network growth model M(G0,Φ) can be re-

cursively defined as follows: For each positive integer n, the network Gn(Vn, En)

generated by the model M(G0,Φ) is obtained from Gn−1(Vn−1, En−1) by adding a

vertex, say v, into Gn−1: Vn = Vn−1 ∪ {v} and deleting or adding edges according

to some rule Φ: En = Φ(En−1). In this thesis, we usually replace Φ by the param-

eters required by a model when the context is clear. For example, the PA model

with initial graph G0 and parameter m (see below) can be denoted by M(G0,m).

The PA model is the first graph model that incorporates the concept of growth.

Following the PA model, many network growth models have been proposed. In

the PA model, the description of Φ is preferential attachment. Specifically, at

each time t, the new node v is connected to m nodes in the existing network with

probability deg(u)/(2e), where deg(u) is the degree of node u and e = |Et−1|, the

number of edges in Gt−1. Note that the new node would have more chances to

link with the nodes with high degrees. This phenomenon is usually termed as “the

rich get richer”. In the world wide web, it can be conceived as an analog of the

phenomenon that new pages link preferentially to popular web pages. If we take it

as a model of social networks, then a newcomer in a community is likely to befriend

with popular people rather than the unpopular ones.

An important consequence of the PA model is that it generates networks with

power-law degree distribution that is observed in many non-biological networks.

However, how to explain the preferential attachment in PPI networks is not clear.

Moreover, the power-law exponents generated by the PA model is different from

those in PPI networks, which are smaller than 2 but the former ones are greater

than 2 [18]. This may indicate that although both biological networks and some
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Figure 1.8: An example for the PA model with m = 1 and G0 = K2, i.e. the
complete graph with 2 nodes. (a) The seed graph is given as K2. (b) At time 3, a
new node, namely node 3, is added into the graph and connected to node 2 with
probability 1/2 since the number of edges e = 1 and deg(2) = 1. Likewise the
probability for node 3 to be linked with node 1 is 1/2 but the edge is not present
in this sample. (c) At the next step, another new node, node 4, is added again
and connected to node 2 with probability 1/2 since e = 2 and deg(2) = 2 in the
existing graph.

non-biological networks exhibit scale-free property, they undergo different growing

mechanisms.

As reviewed in Subsections 1.2.2 and 1.2.3, gene duplications have a signifi-

cant impact on the evolution of PPI networks. Duplication models are a more

biologically relevant class of network models that incorporates gene duplications.

At every time step a node in the existing network is chosen uniformly at ran-

dom as the anchor node and duplicated. The anchor node and the duplicate node

have the same neighbors after the duplication. And then edges adjacent to them

are rewired [18, 95]. In some models, new edges linking the duplicate node and

other existing nodes are allowed to be added [11, 17]. The duplication step is

considered to be a major underlying mechanism in shaping the topology of P-

PI networks[98] and duplication models are often used to investigate biological

networks[52, 85, 102]. It has been found that some of the duplication models have

a power-law degree distribution and fits biological networks well [18, 43].

The full duplication (FD) model is the simplest duplication model, in which

only node duplications occur but no modification is made to the duplicate node
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after the duplication. Specifically, starting with a seed graph Gt0 , at each time

point t > t0, an anchor node, say ut, is chosen uniformly at random from Vt−1,

the set of nodes in Gt−1, and duplicated: The new node, usually denoted by vt, is

added into the network and copies all the edges adjacent to ut (Fig. 1.9). Hence

Vt = Vt−1 ∪ {vt} and Et = Et−1 ∪ {evt,vi|evt,vi = eut,vi , i = 1, · · · , t − 1}. We call

this mechanism as the duplication step. If two nodes are duplicate nodes, we say

they are in the same family. Note that we can classify all the nodes into |Vt0|

different families. For example, in Fig. 1.9(c), there are 3 families: Node 1 itself

is one, nodes 2 and 5 are in the same family and nodes 3 and 4 are in another.

By such classification, we can model the FD model by a Polya urn, in which each

family is represented by a color and the nodes in a family is the balls with the

corresponding color. If there are nodes in two different families linking with each

other, we call the two families are adjacent. Note that the adjacency relation is

unchanged all the time. All the nodes in a family have the same neighbors which

are all the nodes in the families adjacent to this family. We know that the number

of nodes in each color would grow to infinity and thus the degree of each node will

be infinitely large too. This unrealistic degree distribution generated by the FD

model makes it difficult to be applied to real networks.
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Figure 1.9: An example for the FD model with t0 = 3 and Gt0 = K3, i.e. the
complete graph with 3 nodes. (a) The seed graph is given as K3. (b) At time 4,
node 3 is chosen as the anchor node (with probability 1/3). The new node 4 is
added into the network and connected to all the neighbors of node 3. (c) At time
5, node 2 is chosen as the anchor node (with probability 1/4). The new node 5 is
added into the network and copies all the edges adjacent to the anchor node.
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The full duplication model captures the major driving force of PPI network

evolution, i.e. gene duplication. However, the absence of gene divergence after du-

plication renders this model too ideal to mimic the real networks. The duplication

and divergence evolutionary mechanism of gene duplication on PPI networks pro-

posed by Wagner should be considered (Subsection 1.2.3). Despite its simplicity,

the partial duplication (PD) model is not the first duplication model that in-

corporates the gene divergence. To the best of our knowledge, the first duplication

model that makes use of Wagner’s model is due to Vazquez et al. [95]. For the

sake of easy understanding, the PD model will be introduced before other more

complicated duplication models.

The partial duplication model is first depicted in [18] by Chung et al. to study

its mathematical properties. The authors claimed that the networks generated

by the PD model have a power-law degree distribution and derived a formula

for the power-law coefficient. However later they stated that it is a wrong proof

and modified the model by linking each duplicate node and its anchor node at each

time, which results in a scale-free network [17]. Nonetheless their work has inspired

other efforts in the mathematical properties of duplication models (see Chapter 3

for details). In the PD model M(Gt0 , p), where Gt0 is the seed graph and 0 < p ≤ 1

is the selection probability of the model, we start with Gt0 and at each time step t,

the graph Gt is obtained from Gt−1 by the following procedures: An anchor node ut

is chosen uniformly from the set of nodes in Gt−1, and a new node vt is added and

independently connected to each neighbor of ut with probability p (see Fig. 1.10

for an illustration). From the point of view of duplication, the anchor node ut is

first duplicated as node vt and each edge adjacent to vt is independently lost with

probability 1 − p. The selection probability p is the probability that a duplicate

node preserves one interaction (function). Defining p > 0 is to make sure that the

trivial case, i.e. only singletons are generated, will not occur.
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Figure 1.10: Illustration of one step of the PD model. (C) is obtained from (A)
by one duplication step, in which node 1 is the anchor node and node 5 is the new
node. The probability that node 1 is chosen as the anchor node is 1/4 because the
network in (A) contains four nodes. Given that 1 is the anchor node and 5 is the
new node, the probability that (C) is obtained is p(1− p).

The duplication-mutation with complementarity (DMC) model pro-

posed by Vazquez et al. in [95] is another popular duplication model [34], which is

also the best model to fit the D. melanogaster PPI network according to a recent

study by Middendorf et al. [62].

In the DMC model M := M(p, pc), where p and pc are the parameters of the

model, we start with an initial graph G0, the so-called seed graph. At each time

step t, the graph Gt is obtained from Gt−1 by the following processes (see Fig. 1.11

for an illustration).

(1) (Duplication): A node ut, the anchor node, is chosen uniformly at random

from the set of nodes in Gt−1, and a new node vt, the duplicate node, is added

and connected to every neighbor of ut.

(2) (Mutation): For each neighbor of ut, say w, we choose one edge from (ut, w)

and (vt, w) with equal probability, and this chosen edge is deleted with prob-

ability 1− p.

(3) (Homodimerization): The nodes ut and vt are connected with probability pc.
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Step 1 reflects the idea that duplicate nodes have identical functions immedi-

ately after duplication and thus share the same interaction neighbors as anchor

nodes [98]. As time goes on, mutation causes the disappearance of the interactions

of the duplication pair, which is encoded in Step 2.
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Figure 1.11: Illustration of the DMC model. (B) is obtained from (A) by one
duplication step, with node 1 as the anchor node and node 4 as the duplicate
node; the probability that node 1 is chosen as the anchor node is 1/3 because the
network in (A) contains three nodes. (C) is obtained from (B) by the mutation
step, which occurs with probability p(1 − p)/2. (D) is obtained from (C) by the
homodimerization step, which occurs with probability pc.

The duplication and divergence (DD) model [73] is another duplication

model we have also investigated in this thesis. As in the PD model, an anchor node

ut is chosen uniformly at random in Gt and the new node vt copies each edge of ut

with probability p. After that, in the DD model the new node independently links

with each existing node (except the neighbors of the anchor node) with probability

r/(t − deg(ut)), where r is a parameter and deg(ut) is the degree of anchor node

ut. We call this as the divergence. Note that r is the expected number of edges

that vt can get in the divergence step.

There are some other network growth models, such as the crystal growth (CG)

model, the hierarchical networks [51, 80]. The modularity of biological networks

is obtained by the crystal growth (CG) model, which mimics the incorporation of

proteins into crystals in solution. It is shown that CG model fits the yeast PPI

network well in terms of degree distribution, distribution of clustering coefficient

and the age dependency of interaction density, which measures the connection
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Figure 1.12: Illustration of a time step in the DD model. (a)At time t = 4, G4 is
given. (b) At time t = 5, node 3 is chosen as the anchor node (with probability 1/4)
and the duplicate node 5 can copy each edge adjacent to node 3 with probability p.
(c)Here the new node preserves one common neighbor of the anchor node, namely
node 1, and links with node 4 which is not a neighbor of the anchor node with
probability r since t− deg(3) = 3− 2 = 1.

between different age group of proteins[51]. The hierarchical networks are designed

to capture the hierarchical modularity observed in biological networks. For a given

k, we define c(k) to be the average clustering coefficient of nodes with degree k. In

the hierarchical networks, c(k) is also power-law: c(k) ∼ k−γ [9].

1.4 Objectives and Organization of Thesis

This thesis studies three mathematical issues about modelling PPI networks, which

are presented in Chapters 2 to 4. Each chapter ends with a summary on the

work and the possible extensions to the work presented in the chapter. Finally,

Chapter 5 gives an overall summary on this thesis. The contents of each chapter

are organized as follows.

Chapter 2 presents a novel gene-tree-based method for reconstructing the

growth history of PPI network evolution. This method predicts the growing his-

tory of PPI networks by making use of the information of the duplication history

of proteins and PPI network topology. Experiments are done to compare two pro-

posed algorithms, namely MLN and CG, and a previously proposed algorithm by
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Navlakha and Kingsford [66]. Applications to real PPI networks are also described.

Chapter 3 discusses the limiting behavior of the partial duplication model, a

random network growth model in the duplication and divergence family. We show

that for each non-negative integer k, the expected proportion of nodes of degree

k approaches a limit as the network becomes large. This fills in a gap in previous

studies. In addition, we prove that there is a phase transition point p0 for the

expected proportion of isolated nodes converging to 1, and hence provide hints to

a question raised in [11]. We also obtain asymptotic bounds on the convergence

rates of degree distribution. Since the observed networks typically do not contain

isolated nodes, we study the subgraph consisting of all non-isolated nodes contained

in the networks generated by the partial duplication model, and show that p0 is

again a phase transition point for the limiting behavior of its degree distribution.

Chapter 4 explores the effect of seed graphs on the growth of networks gen-

erated by duplication models. This chapter is presented as an open direction of

future work. Simulations were run to investigate the topological features of the

PD model, the DD model, the DMC model and the PA model: The clustering

coefficient, the average degree, the average length of shortest paths and the degree

distribution. Results show that the seed graphs have an impact on the network

evolution but the impact is limited. For example, the clustering coefficient de-

creases with time for any chosen seed graph. The limiting degree distribution is

determined by the parameters of the models and is not affected by the seed graphs.



Chapter 2
Reconstruction of Network Evolutionary

History

2.1 Introduction

Over the past decade, it has become increasingly clear that in order to decipher

the complex relationship between genotype and phenotype, we need to investigate

protein-protein interaction (PPI), metabolic and gene regulation networks in ad-

dition to studying individual genes and their proteins [9, 71]. Since PPI networks

are available for several model organisms, a natural but important next step will

be to elucidate the evolutionary aspect of PPI networks [41, 66].

Evolutionary history of PPI and gene regulatory networks provides valuable

insight into molecular mechanisms underlying network growth [97, 98]. It helps to

understand some of the topological principles of these networks [89, 106], and even

shed light on the unicellular-multicellular and invertebrate to vertebrate transitions

[68].

Analogous to reconstructing evolutionary history at the level of the DNA or

amino acid sequence, the starting point for our approach is to choose an evolution

25
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model. Unlike many networks studied in technology and sociology, the growth

of PPI networks is mediated by gene duplication and divergence [98]. We have

introduced the several duplication models in Chapter 1. A recent study by Mid-

dendorf et al. [62] showed that the duplication-mutation with complementarity

(DMC) model, to be described in details in Section 2.2, fit the D. melanogaster

(fruitfly) PPI network better than several other commonly used growth models. In

this chapter, we shall focus on this DMC model.

In general, reconstructing the evolutionary history of an observed network under

a given growth model includes inferring the relative order of the nodes according

to which the network has evolved, and predicting edge arrival and loss events [75].

However, for the DMC model studied here it is sufficient to consider only the

relative order, which will in turn determine the edge arrival and loss events (see

Section 2.2 for details).

Several approaches have been proposed to address the problem of reconstruct-

ing network histories. Gibson and Goldberg introduced a merging algorithm to

reconstruct the evolutionary history of PPI networks using gene trees reconciled a-

gainst a species tree [35]. A novel likelihood-based framework for inferring histories

was presented by Navlakha and Kingsford in [66]. Recently, Patro et al. [74, 75]

proposed a maximum parsimony approach, in which the evolutionary history of

network is coded by a graph.

Here we introduce a new history inferring framework based on the maximum

likelihood principle. In contrast to the method in [66], our approach incorporates

not only the topology of observed networks, but also the duplication history of

the proteins in the networks. Indeed, duplication histories, which can be obtained

from reconciled gene trees, have proven to be useful in understanding PPI net-

work evolution. For example, Dutkowski and Tiuryn applied a Bayesian network
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framework to infer the posterior probability of interactions between ancestral n-

odes based on reconciled gene trees [23] for better prediction of protein modules.

A similar approach was also used by Pinney et al. [76] to infer ancestral interac-

tions between bZIP proteins. In these studies, the edge lengths are often assumed

known and hence the internal nodes in the trees can be totally ordered. However,

our approach only requires the topological information of the gene trees.

The rest of the chapter is organized as follows: In the following section, we

review some basic definitions and background concerning network reconstruction.

Section 2.3 presents some theoretical results that are key to our approach as they

enable us to reduce the problem of finding a most probable history of a given

network to a simpler optimization problem. Two efficient heuristic algorithms to

solve the latter problem are proposed in Section 2.4. Based on simulation studies,

we show in Section 2.5 that our method provides better inference than the one

proposed by Navlakha and Kingsford [66]. We also apply our approach to the

PPI networks of S. cerevisiae (budding yeast), D. melanogaster (fruitfly) and C.

elegans (worm) to obtain a set of growth parameters, and study the change of

the networks’ clustering coefficient and the relationship between the number of

duplications and the degree of nodes. We conclude in Section 2.6 with some future

research directions.

2.2 Basic Definitions and Notations

In this section, we shall introduce some basic definitions and notations related to

reconstructing network evolutionary history.
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2.2.1 Modeling Protein-protein Interaction Networks

The vertex set and edge set of a network G will be respectively denoted by V (G)

and E(G), and |V (G)| is called the size (or order) of G. Given a vertex v in G, its

neighborhood NG(v), or simply N(v) when the context is clear, contains exactly

those vertices that are adjacent to v in G. Note that by our definition v is not

contained in N(v).

Recall that the DMC model is based on three mechanisms: Duplication, muta-

tion and homodimerization, and two parameters: the selection probability p and

the homodimerization rate pc. The DMCmodel is Markovian, that is, P(Gt |Gs, s <

t,M) = P(Gt |Gt−1,M), which depends on p and pc, the parameters of M. For

example, denoting the network (A) and (D) in Fig. 1.11 by Gt−1 and Gt, respec-

tively, then the probability P(Gt|Gt−1,M) that Gt evolves from Gt−1 in one step

under the model M is p(1− p)pc/6.

2.2.2 Network History and its Reconstruction

Given an observed network G, a growth history H of G is a graph sequence

(G0, G1, · · · , Gn) such that Gn = G and for 1 ≤ t ≤ n, graph Gt can be ob-

tained from Gt−1 in one step under the DMC model M. The first graph G0 and

the number n are called respectively the seed graph and the span of the history.

Clearly, a history H induces a unique sequence θ := θ(H) of duplicate nodes. More

precisely, we have θ(H) = (v1, · · · , vn) in which for each t, node vt is the duplicate

node at time t, that is, the unique node in V (Gt)\V (Gt−1). For example, a growth

history H with span 3 is depicted in Fig. 2.1(A), in which the seed graph consists

of two connected nodes, and we have θ(H) = (2, 4, 5).

Given a network G, let H be the growth history we hope to infer. The proba-

bility of G being evolved according to history H, when viewed as a function of the

unknown history H, is called the likelihood function L(H |G,M). Since the DMC
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model is Markovian, the likelihood function can be simplified as

L(H |G,M) =
n∏

t=1

P(Gt|Gt−1,M).
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Figure 2.1: An example of growth history (A) and duplication history (B). Here
the seed graph is an edge; the duplicate sequence is (2, 4, 5) and the anchor list is
{3, 1, 2}.

Following [66], we adopt a maximum likelihood criterion to infer the history of

G as below.

Problem 1. Given a network G together with a natural number n and model M,

construct a growth history H that maximizes the likelihood L(H |G,M) among

all histories with span n.

Typical (in the sense of highest probability, as commonly understood) histories

correspond to histories with maximum probability. Maximum likelihood principle

corresponds to choosing the parameters which best explain the observed data. We

shall adopt this approach in inferring the network history. This problem is diffi-

cult since the number of possible histories grows exponentially. It is not known

whether Problem 1 is polynomial-time solvable. In [66], a greedy algorithm called

NetArch is introduced, in which a history is recursively constructed from Gn to
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Gn−1 by choosing a pair of anchor and duplicate nodes that maximizes the like-

lihood function. Since protein duplication relationship can be obtained from the

gene duplication history for gene families, we propose an alternative approach

which integrates the duplication forest (to be introduced below) to address this

history reconstruction problem.

2.2.3 Duplication History

A tree T is a connected graph that contains no cycle, and all trees considered here

are rooted. Node u is a child of v if they are adjacent, and the path from the

root to u contains v. A tree is called binary if each internal node has exactly two

children. A binary forest consists of a collection of binary trees; it is trivial if each

tree in this forest has exactly one node.

For later use, we describe a scheme that encodes the duplication history in a

growth history by a binary forest, called duplication forest. We start with a trivial

forest Γ0 with isolated nodes corresponding to the nodes in the seed graph. At each

step t, the forest Γt is obtained from Γt−1 by replacing the anchor node ut with a

cherry {ut, vt}, where vt is the duplicate node at step t. Here a cherry {u, v} means

a subtree consisting of two leaves u and v and the internal node adjacent to them.

For example, the forest Γ3 in Fig. 2.1(B) is the duplication forest of the growth

history depicted in Fig. 2.1(A). Note that this duplication forest corresponds to

the anchor list {3, 1, 2}, that is, the first three anchor nodes used are 3, 1, 2. A

different choice of anchor nodes may lead to a different duplication forest. In other

words, a duplication forest is uniquely determined by the growth history and a list

of anchor nodes.

The idea of encoding duplication history by a binary forest can be traced back

at least to the work by Chung and Lu [17]. One key observation used in our study is

that the duplication forest of a PPI network can be inferred independently without
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using the network growth history. For instance, such a forest can be reconstructed

by using the phylogenetic relationships among the genes that specify the proteins in

the network [76]. Indeed, in a different paradigm a maximum parsimony approach

to reconstruct the network history from a duplication forest is proposed in a recent

study by Patro et al. [74].

2.2.4 Backward Operator

Consider one particular step in a growth history, that is, graph Gt obtained from

Gt−1 by using anchor node ut and duplicate node vt. We want to define a backward

operator R so that Gt−1 can be reconstructed by knowing the triplet (Gt, ut, vt).

To this end, let Rut
vt (Gt) be the graph obtained from Gt by merging the two nodes

ut and vt in Gt. More precisely,

(i) for each node w in N(vt) \
(
N(ut) ∪ {ut}

)
, add an edge (w, ut);

(ii) delete the node vt and all edges incident to it.

For instance, for the graphs in Fig. 2.1(A), we haveG2 = R2
5(G3) andG1 = R1

4(G2).

Similarly, the backward operator can be applied to the duplication forest, that

is, Rut
vt (Γt) is the forest obtained from Γt by replacing the cherry {ut, vt} with the

leaf ut. Note that this definition is consistent with the backward operator defined

on graphs in the following sense: If Γt is the duplication forest corresponding to

the network Gt, then Rut
vt (Γt) is the duplication forest associated with Rut

vt (Gt).

For example, in Fig. 2.1, we have G2 = R2
5(G3) and Γ2 = R2

5(Γ3), in which Γi is

the duplication forest associated with Gi for i = 2, 3. When the anchor node ut is

clear from the context, we simply write Rvt for Rut
vt .
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2.3 Reconstruction with Known Duplication His-

tory

In this section, we shall study the problem of reconstructing network growth history

when the duplication forest is known, a simplification of Problem 1. We first show

that a growth history with known duplication forest is determined by its duplicate

sequence. We adopt the convention that a node sequence consists of distinct nodes,

whereas a node list may contain repeated nodes.

A node sequence θ = (v1, · · · , vn) and a duplication forest Γ are said to be

compatible if there exists a (necessarily unique) sequence (Γθ
0, · · · ,Γθ

n) of forests

such that Γθ
n = Γ, Γ0 is trivial, and Γθ

t−1 = Rvt(Γt) holds for each t ∈ {1, · · · , n}.

Note that a necessary condition for θ and Γ being compatible is that vt belongs to

a cherry in Γθ
t for each t. Denote the sibling of vt in Γθ

t by ut for 1 ≤ t ≤ n. The

list π = {u1, · · · , un} is called the anchor list determined by Γ and θ.

As mentioned above, a growth history H specifies a duplicate sequence θ. To-

gether with a list of anchor nodes, such growth history also determines a duplication

forest Γ. In this case, the sequence θ and the forest Γ must be compatible. On

the other hand, given a duplication forest Γ associated with a network G and a

sequence θ that is compatible with Γ, then there exists a unique growth history H

such that θ is induced from H. In other words, when the duplication forest Γ is

fixed, a growth history H = (Gθ
0, · · · , Gθ

n) is uniquely determined by a duplicate

sequence θ = (v1, · · · , vn) compatible with Γ. That is, we have Gθ
n = G, and

Gθ
t−1 = Rut

vt (G
θ
t ) for 1 ≤ t ≤ n, in which ut is the unique leaf in Γθ

t that forms a

cherry with vt. In this context, the likelihood function is defined as

L(θ |G,Γ,M) :=
n∏

i=1

P(Gθ
i |Gθ

i−1,Γ,M),
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where P(Gθ
i |Gθ

i−1,Γ,M) is the probability that Gθ
i evolves from Gθ

i−1 in one step

under the DMC model M and using the anchor node ut specified by θ and Γ. Note

that in general the probability P(Gθ
i |Gθ

i−1,Γ,M) is different from P(Gθ
i |Gθ

i−1,M).

Indeed, the latter can be regarded as the “average” of the former over all possible

anchor nodes.

The problem of inferring growth history with given duplication forest, a variant

of Problem 1, can be formally stated as below.

Problem 2. Given a network G together with a duplication forest Γ and a growth

model M, construct a duplicate sequence θ such that the likelihood L(θ |G,Γ,M)

is maximized.

In the above problem, the parameters p and pc in the DMC model M are

assumed explicitly known. However, our reconstruction methods do not require to

know the parameters of M in advance thanks to Theorem 2.3.3. Moreover, our

methods provide natural estimators for the parameters in the DMC model, which

is more computationally efficient than the estimators proposed in [66]. Before

stating our algorithms to solve the above problem in the next section, we present

here some theoretical results. The first one shows that when a network is given,

the seed graph is uniquely determined by the duplication forest.

Lemma 2.3.1. Given a network G with duplication forest Γ, for any two node

sequences θ1 and θ2 that are compatible with Γ, graph Gθ1
0 is isomorphic to Gθ2

0 .

Proof. Assume that Γ consists of k binary trees T1, · · · , Tk for some integer k ≥ 1,

and θ is a duplicate sequence compatible with Γ. For each graph G′ in the graph

sequence (Gθ
0, · · · , Gθ

n), we can associate it with a graph Π(G′) as follows. The

vertex set of Π(G′) is {1, · · · , k} and two distinct vertices i and j are adjacent if

and only if there exist some adjacent nodes gi and gj in G
′ such that gi is a leaf in

the tree Ti and gj is a leaf in Tj.
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Fix t ∈ {1, · · · , n}. Denote the anchor node and duplicate node used to obtain

Gθ
t from Gθ

t−1 in the DMC model by ut and vt, respectively. Then vt is the t-

th element contained in θ. Since θ is compatible with Γ, ut and vt are leaves

in the same tree in Γ. Note that for any vertex g that is distinct from ut and

vt, by the definition of backward operator R we know that g is adjacent to ut

or vt in Gθ
t if and only if g is adjacent to ut in Gθ

t−1 = Rut
vt (G

θ
t ). Therefore,

we can conclude Π(Gθ
t ) = Π(Rut

vt (G
θ
t )). Because t is arbitrary, we must have

Π(Gθ
0) = Π(Gθ

n). On the other hand, from the construction we know that Π(Gθ
0) is

isomorphic to Gθ
0. In consequence, for two compatible duplicate sequences θ1 and

θ2, since G
θ1
n = Gn = Gθ2

n , we can conclude that Gθ1
0 and Gθ2

0 are isomorphic, as

required.

Fix a pair of graph G and duplication forest Γ. Given a duplicate sequence

θ = (v1, v2, · · · , vn), we shall associate it with three numbers that are crucial to

our analysis. To this end, for each duplicate node vi in θ, let δ(vi) be the indicator

function that takes value 1 if vi is connected to its anchor node ui in Gθ
i , and 0

otherwise; α(vi) the number of the common neighbors of vi and ui, and β(vi) :=

β(vi, G
θ
i ) the number of nodes adjacent only to vi or ui in Gθ

i . That is, we have

α(vi) = |N(vi) ∩N(ui)| and

β(vi) =
∣∣∣(N(vi) \

(
N(ui) ∪ {ui}

))∪(
N(ui) \

(
N(vi) ∪ {vi}

))∣∣∣.
Note that 2δ(vi) + 2α(vi) + β(vi) is equal to the sum of the degree of vi and that

of ui in G
θ
i . Finally, the sums

δ(θ) :=
n∑

i=1

δ(vi), α(θ) :=
n∑

i=1

α(vi) and β(θ) :=
n∑

i=1

β(vi)

are called the homodimerization number, extension number and loss number of θ,
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respectively.

The example below illustrates these definitions.

Example: Consider Gi and Γi in Fig. 2.1 and let G = G3 and Γ = Γ3. Then

θ = (v1, v2, v3) with v1 = 2, v2 = 4, v3 = 5 is compatible with Γ. In addition, the

anchor list determined by Γ and θ is π = (3, 1, 2). It is easy to check that Γθ
i = Γi

and Gθ
i = Gi for 0 ≤ i ≤ 3. Furthermore, we have

δ(v1) = δ(v2) = 1, δ(v3) = 0;

α(v1) = α(v2) = α(v3) = 1;

β(v1) = 0, β(v2) = 1, β(v3) = 2.

This implies δ(θ) = 2, α(θ) = β(θ) = 3.

The theorem below says that the homodimerization number and the extension

number are constant over all compatible duplicate sequences.

Theorem 2.3.2. Given a network G with duplication forest Γ and two compatible

duplicate sequences θ1 and θ2, we have δ(θ1) = δ(θ2) and α(θ1) = α(θ2).

Proof. We shall establish the theorem by induction on the number of cherries in

Γ. The base case that Γ is trivial, that is, it contains no cherry, is clear because

this implies θ1 = θ2 as both of them contain no elements.

Now assume that Γ contains m cherries, and that the theorem holds when

the number of cherries in the duplication forest is at most m − 1. Fix a cherry

{u, v} in Γ and choose a label g that is not used before. Consider the network G∗

that is obtained from Ru
v(G) by relabeling u with g, and the duplication forest Γ∗

obtained from Γ by replacing the cherry {u, v} with a leaf labeled as g. Note that
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either node u or v (possible both) must appear in the duplicate sequence of θ1;

we replace them with g and denote the sequence with the first g removed by θ∗1.

Then θ∗1 is a duplicate sequence that is compatible with Γ∗. In addition, we have

δ(θ1) = δ(θ∗1) + 1 if u and v are adjacent in G, and δ(θ1) = δ(θ∗1) otherwise.

Similarly, the sequence θ∗2 obtained from θ2 in the same way is also compatible

with Γ∗. Now the induction assumption implies δ(θ∗1) = δ(θ∗2). Together with

δ(θ1)− δ(θ∗1) = δ(θ2)− δ(θ∗2),

we have δ(θ1) = δ(θ2), as required.

On the other hand, the number of edges increased from Gθ
i−1 to Gθ

i is given by

δ(vi) and α(vi), where vi is the duplicate node. Together with Lemma 2.3.1, this

implies

δ(θ1) + α(θ1) = |E(Gn)| − |E(Gθ1
0 )| = |E(Gn)| − |E(Gθ2

0 )| = δ(θ2) + α(θ2).

Since δ(θ1) = δ(θ2), we have α(θ1) = α(θ2).

We can now establish the main result in this section, which relates the likelihood

ratio of two compatible duplicate sequences to their loss numbers.

Theorem 2.3.3. Given a network G with duplication history Γ, the likelihood ratio

of two compatible duplicate sequences θ1 and θ2 is given by

L(θ1 |G,M,Γ)

L(θ2 |G,M,Γ)
=
(1− p

2

)β(θ1)−β(θ2)

.

In particular, L(θ1 |G,M,Γ) ≥ L(θ2 |G,M,Γ) if and only if β(θ1) ≤ β(θ2).

Proof. Let θ = (v1, · · · , vn) be a duplicate sequence that is compatible with the

duplication forest Γ. By Lemma 2.3.1 and Theorem 2.3.2, it is sufficient to note
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that

L(θ |G,M,Γ) = (1− pc)
n−δ(θ)pδ(θ)c pα(θ)qβ(θ)

holds with q := (1− p)/2, which follows from

P(Gθ
i |Gθ

i−1,Γ,M) = (1− pc)
1−δ(vi)pδ(vi)c pα(vi)qβ(vi) 1 ≤ i ≤ n.

One important consequence of Theorem 2.3.3 is that Problem 2 is equivalent

to the following problem, which is computationally more tractable.

Problem 3. Given a network G and its duplication forest Γ, construct a dupli-

cate sequence θ such that the loss number β(θ) is minimized among all sequences

compatible with Γ.

2.4 Reconstruction Algorithms

In this section, we present two heuristic algorithms to solve Problem 3, and hence

Problem 2. Moreover, these algorithms lead to natural estimators for the DMC

parameters.

Before stating our reconstruction algorithms, we need some further notations

and results. Two duplicate sequences θ1 = (v1, · · · , vn) and θ2 = (v′1, · · · , v′n) are

said to be adjacent at position m for some 1 ≤ m ≤ n − 1 if we have v′m = vm+1,

v′m+1 = vm, and v
′
i = vi for all other indices i.

Lemma 2.4.1. Given a network G with duplication forest Γ, if θ1 and θ2 are

two compatible duplicate sequences that are adjacent at position m, then we have

Gθ1
i = Gθ2

i for each i ∈ {0, · · · , n} with i ̸= m.
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Proof. Let θ1 = (v1, · · · , vm−1, vm, vm+1, vm+2, · · · , vn). So

θ2 = (v1, · · · , vm−1, vm+1, vm, vm+2, · · · , vn).

Clearly, we have Gθ1
i = Gθ2

i for i > m. Hence we can set Gm+1 = Gθ1
m+1 = Gθ2

m+1.

To showGθ1
i = Gθ2

i for i < m, it suffices to showGθ1
m−1 = Gθ2

m−1. For i ∈ {m,m+

1}, let ui be the anchor node of vi. Since θ1 and θ2 are both compatible with Γ, we

know that {um, vm} and {um+1, vm+1} are two distinct cherries in Γθ1
m+1 = Γθ2

m+1. In

particular, the four nodes um, vm, um+1 and vm+1 are distinct in Gm+1. Therefore,

by the definition of R we have

Rum
vm

(
Rum+1

vm+1
(Gm+1)

)
= Rum+1

vm+1

(
Rum

vm (Gm+1)
)
,

as required.

Let θ1 and θ2 be two compatible duplicate sequences that are adjacent at posi-

tion m. By Theorem 2.3.3, we know that L(θ1 |G,Γ,M) ≥ L(θ2 |G,Γ,M) if and

only if β(θ1) ≤ β(θ2) holds. On the other hand, Lemma 2.4.1 implies β(θ1) ≤ β(θ2)

if and only if for Gm+1 = Gθ1
m+1 = Gθ2

m+1, we have

β(vm+1, Gm+1) + β
(
vm,Rvm+1(Gm+1)

)
≤ β(vm, Gm+1) + β

(
vm+1,Rvm(Gm+1)

)
.

(2.1)

Motivated by the above observations, for two cherries {u, v} and {u′, v′} in a du-

plication history Γt associated with network Gt, we say {u, v} is more favorable

than {u′, v′}, denoted by {u, v} ≻ {u′, v′}, if

β(v,Gt) + β
(
v′,Ru

v(Gt)
)
< β(v′, Gt) + β

(
v,Ru′

v′ (Gt)
)

(2.2)

holds. Note that in general the relation ≻ is not transitive, that is, {u, v} ≻ {u′, v′}



2.4 Reconstruction Algorithms 39

and {u′, v′} ≻ {u∗, v∗} do not imply {u, v} ≻ {u∗, v∗}. In addition, we present a

characterization of the favorability introduced above, which is computationally

more efficient.

u v

u′ v′

u v

u′ v′

u v

u′ v′

u v

u′ v′

u v

u′ v′

u v

u′ v′

u v

u′ v′

(i) (ii) (iii) (iv) (v) (vi) (vii)

Figure 2.2: A schematic representation of the graph types used in the proof of
Proposition 2.4.2. This classification is designed according to the edges between
{u, v} and {u′, v′}, in which u and v, as well as u′ and v′, are interchangeable.

Proposition 2.4.2. For two cherries {u, v} and {u′, v′} in a duplication history Γ

associated with network G, {u, v} ≻ {u′, v′} if and only if either {u, v} ⊆ N(u′) \

N(v′) or {u, v} ⊆ N(v′) \N(u′) holds.

Proof. By the assumption of the proposition, we know that u, v, u′, v′ are four

distinct nodes in G. For simplicity, one edge is said to between {u, v} and {u′, v′}

if it connects a node in {u, v} and a node in {u′, v′}. By swapping the labeling of

u and v, and those of u′ and v′ if necessary, graph G can be classified into one of

the seven types in Fig. 2.2, according to the edges between {u, v} and {u′, v′}. For

instance, Type (i) means there is no edge between {u, v} and {u′, v′} while Type

(v) means there are four edges between them.

“⇐” Without loss of generality, we may assume {u, v} ⊆ N(u′)\N(v′), that is,

graph G belongs to Type (vii) in Fig. 2.2. Note that for two nodes x ∈ {u′, v′} and

y ∈ V (G) \ {u, v, u′, v′}, x and y are adjacent in G if and only if they are adjacent

in Ru
v(G). This implies

β(v′, G)− β
(
v′,Ru

v(G)
)
= 1
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because {u, v} ⊆ N(u′) \
(
N(v′) ∪ {v′}

)
, and u and v are merged to form Ru

v(G).

On the other hand, we have

β(v,G) = β
(
v,Ru′

v′ (G)
)

because neither u′ nor v′ contributes to β(v,G) or β
(
v,Ru′

v′ (G)
)
. Therefore, we can

conclude

β(v,G) + β
(
v′,Ru

v(G)
)
< β(v′, G) + β

(
v,Ru′

v′ (G)
)
,

as required.

“⇒” To establish this direction, assuming {u, v} ≻ {u′, v′}, then we need to

show that graph G must belong to Type (vii) in Fig. 2.2. Indeed, if graph G

belongs to Type (i)-(v), then we have

β(v,G) + β
(
v′,Ru

v(G)
)
= β(v′, G) + β

(
v,Ru′

v′ (G)
)
,

a contradiction to {u, v} ≻ {u′, v′}. On the other hand, if G belongs to Type (vi),

then we have {u′, v′} ≻ {u, v}, contradicting {u, v} ≻ {u′, v′}.

Now we present our main inference algorithm called cherry greedy (CG), which

runs as follows: At every backward reconstruction step, we choose a node from

the most favorable cherry C, that is, the number of cherries C ′ with C ≻ C ′ is

maximized. If several cherries are equally favorable, we randomly choose one of

them. More precisely, starting from Gt := G and Γt := Γ, we choose a most

favorable cherry {u, v} from Γt and randomly choose one node from the cherry,

say vt, as the duplicate node at this step. Then we construct Gt−1 as Rvt(Gt)

and Γt−1 = Rvt(Γt). This process continues until G0 is obtained. Note that

Proposition 2.4.2 provides an efficient way to find the most favorable cherry.
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Besides algorithm CG, we also introduce another greedy algorithm called min-

imum loss number (MLN), which is different from CG in that at each backward

step a pair of duplicate and anchor nodes having the smallest loss number is chosen

among all cherries in the duplicate forest. Let n be the number of the vertices in

the input PPI network. Since β(v) for each vertex v can be computed in time

O(n), and the backward operator for the duplication forest and network can be

done in O(n), we know that each backward step in MLN has running time O(n2),

and hence the running time for MLN is O(n3). On the other hand, a similar anal-

ysis shows that the theoretical running time for CG is O(n4). Algorithm MLN is

conceptually simpler than CG and typically runs faster in our experimental stud-

ies. However, CG is more accurate (see Section 2.5 for more details). We have

run some greedy algorithms in an aim to obtain optimal solutions. The optimal

solutions, in the sense of likelihood, have likelihood larger than those obtained by

the algorithms by several times. The Kendall’s tau is slightly larger than those

obtained by CG and MLN by no more than two times.

From the results in Section 2.3 and the two algorithms presented above, it

is clear that the parameters of the DMC model are not used in our inference

framework. Moreover, here we will present a method by which the parameters can

be estimated after a growth history being inferred.

To this end, assume that a growth history H = (G0, · · · , Gn), together with

the duplicate sequence (v1, · · · , vn) and anchor list {u1, · · · , un}, is given. Note

that for each neighbor w of node ui in Gi−1, the probability that w is adjacent

to both ui and vi in Gi is p. In other words, the extension number α(vi) at i-th

step, that is, the number of the common neighbors shared by ui and vi in Gi, has

the binomial distribution with parameters p and β(ui)+α(vi), where β(ui)+α(vi)

is the number of neighbors that ui has in Gi−1. On the other hand, the random

variable δ(vi) has Bernoulli distribution with parameter pc. Therefore, we are led
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to propose the estimators

p̂ =
α(θ)

β(θ) + α(θ)
and p̂c =

δ(θ)

n
(2.3)

to estimate the parameters p and pc respectively.

2.5 Experimental Results

Our reconstruction algorithms, minimum loss number (MLN) and cherry greedy

(CG), have been implemented and are available upon request. Given a network

G and duplication forest Γ, each outputs a hypothetical duplicate sequence θ that

approximates the one with the minimum loss number.

2.5.1 Simulation Studies

To compare and validate our algorithms, we generated 100 random networks for

each DMC model M(p, pc), where the parameters p and pc are chosen respectively

from {0.05, 0.1, 0.3, 0.5, 0.7, 0.9}. Each network contains 100 nodes and is generated

from the same seed graph K2 (i.e., the graph with two nodes and one edge). For

each simulated network G, its duplication forest Γ and duplicate sequence θreal

were recorded. Next, we reconstructed duplicate sequences using our algorithms.

The one output from MLN is denoted by θMLN, and the one from CG by θCG.

To compare the performance of MLN and that of CG, we calculated the av-

erage loss number for θMLN and θCG for the simulated data set. The results are

summarized in Table 2.1, from which it is clear that on average CG has smaller

loss number than MLN does. Therefore, CG performs better in terms of solving

Problem 3 and we recommend it for accuracy. However, MLN is much faster and

we recommend it when the underlying network is large.

To further assess their performance, we measured the difference between the
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HHHHHHp
pc 0.05 0.1 0.3 0.5 0.7 0.9

0.05 18.25 28.43 65.98 101.24 139.48 173.93 MLN
18.53 28.79 66.40 101.72 139.31 174.33 CG

0.1 21.45 31.07 67.12 107.94 144.57 183.64 MLN
22.13 31.03 67.00 107.55 144.02 182.92 CG

0.3 30.85 45.62 88.97 138.09 188.25 233.74 MLN
32.50 44.63 87.51 136.05 184.84 228.16 CG

0.5 63.03 76.55 128.56 197.13 258.98 317.77 MLN
65.25 73.46 122.98 189.94 252.11 306.20 CG

0.7 110.53 125.90 191.22 265.66 332.09 391.03 MLN
112.52 119.70 181.89 252.50 314.70 374.29 CG

0.9 114.76 128.09 167.59 219.05 267.88 303.71 MLN
117.61 123.88 162.70 211.43 257.47 293.07 CG

Table 2.1: Comparing the performance of the two algorithms: minimum loss
number (MLN) and cherry greedy (CG). Columns 2 to 7 correspond to pc =
0.05, 0.1, . . . , 0.9; and rows 2 to 7 for p = 0.05, 0.1, . . . , 0.9. For each pair of pa-
rameters, p and pc, 100 simulated networks were generated using the DMC model
M(p, pc). Each entry in the table consists of two numbers: The top one (respec-
tively, the bottom one) is the average of the loss numbers of the reconstructed
histories by MLN (respectively, by CG). A smaller loss number corresponds to a
higher likelihood of the reconstructed history, and hence a better reconstruction.
Smaller averages are highlighted in bold face.
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inferred duplicate sequence and the ‘real’ one. One popular index for this purpose

is Kendall’s tau Kτ [7, 66]. Formally, for two sequences θ1 = (v1, · · · , vn) and

θ2 = (v′1, · · · , v′n) on a set of nodes, Kτ (θ1, θ2) is defined as

Kτ (θ1, θ2) =
2(nc − nd)

n(n− 1)
,

where nc is the number of concordant pairs, and nd the number of discordant pairs.

For example, considering θ1 = (1, 2, 3, 4) and θ2 = (4, 2, 1, 3), then we have n = 4,

nc = 2 and nd = 4, and hence Kτ (θ1, θ2) = −1/3. Note that Kτ (θ1, θ2) = 1 if

and only if the sequences are identical, and Kτ (θ1, θ2) = −1 if and only if they are

exactly opposite.

For comparison, we reconstructed duplicate sequence θNetArch using NetArch [66].

Moreover, we computed Kτ (θreal, θ) for θ ∈ {θMLN, θCG, θNetArch} and calculated the

average Kτ for each pair of parameters. The results are summarized in Fig. 2.3. In

order to obtain a more detailed comparison between NetArch and CG, we counted

how many times one method outperformed the other. More precisely, for each

of the 100 networks with a given pair of parameters, the algorithm by which the

sequence reconstructed has higher Kendall’s tau received one vote (when there is

a tie, we split the vote). Entries in Table 2.2 represent the total number of votes

received for the given p, pc and algorithm.

From these results, we can see that compared to NetArch, our algorithms sub-

stantially increase the values of Kendall’s τ . This agrees with the intuition that

incorporating more information often leads to good reconstruction methods.

2.5.2 Parameters Estimation

As discussed in Section 2.4, after a growth history of G being inferred, the pa-

rameters p and pc in the DMC model M(p, pc) that generates G can be estimated
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HHHHHHp
pc 0.05 0.1 0.3 0.5 0.7 0.9

0.05 39 24 13 12 16 16 NetArch
61 76 87 88 84 84 CG

0.1 28 27 28 28 28 26 NetArch
72 73 72 72 72 74 CG

0.3 36 31.5 29 28 24 28 NetArch
64 68.5 71 72 76 72 CG

0.5 23 21 22.5 18 20 21 NetArch
77 79 77.5 82 80 79 CG

0.7 32 16 15 23.5 14 13.5 NetArch
68 84 85 76.5 86 86.5 CG

0.9 11 16 10 10 4 6 NetArch
89 84 90 90 96 94 CG

Table 2.2: Detailed comparison of two reconstruction methods: NetArch and cherry
greedy (CG). For each specified pc and p in the table, we generated a network under
the DMC model M(p, pc) from an edge (seed graph) until it contains 100 nodes.
We then ran algorithms NetArch and CG on this network. The algorithm with
higher Kendall’s tau received one vote, the other zero vote. When there was a
tie, we split the vote. This procedure repeated 100 times. Entries in the table
represent the total number of votes received for the given pc, p and algorithm.
A higher number of total votes, highlighted in bold face, corresponds to a better
reconstruction.
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Figure 2.3: Average accuracy of three reconstruction methods. The x-axes show
the DMC parameter pc used to grow the network, and the y-axes show the average
Kendall’s tau for three reconstruction methods. A higher Kendall’s tau indicates
that the history reconstructed is closer to the real one, and hence a better recon-
struction.

using the estimators p̂ and p̂c defined in Eq. (2.3). Recall that in [66] a pair of

estimators, denoted by pbest and pbestc , is also proposed.

To compare the performance of these two sets of estimators, we generated 100

networks using DMC models with random parameters. For each simulation, we

first generated a pair of parameters p and pc uniformly from the interval (0, 1), and

then obtained one graph G with 30 nodes from the seed graph K2 using the DMC

model M(p, pc), as well as the associated duplication forest Γ. Next, we estimated

the parameters using estimators p̂ and p̂c, as well as pbest and pbestc . Now the

accuracy of the estimator p̂ can be measure by |p− p̂|: The closer this difference to

0, the better the estimation is. Similarly, we can measure the accuracy of the other
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three estimators. The box plots for these four differences over 100 simulations are

presented in Fig.2.4, from which we can see that our method has smaller means of

errors and smaller confidence intervals for estimating p and pc.
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Figure 2.4: Box plot for errors of parameter estimation. Here 100 pairs of param-
eters (p, pc) were generated uniformly from the interval (0, 1). For each pair of
parameters p and pc, one network with 30 nodes was generated using the DMC
model M(p, pc). Then the four estimators p̂, p̂c, p

best and pbestc were computed, and
the four error numbers, |p− p̂|, |pc − p̂c|, |p− pbest| and |pc − pbestc | were calculated.

2.5.3 Application to Real PPI Networks

Note that the methods developed in this chapter are based on the assumption

that the observed network is generated by the DMC model. The adequacy of

this assumption can be checked by comparing the topological characteristics of the

DMC model and the real network. This work has been done by such as [43, 62].

In the cases that the assumption is violated but the gene tree is believable, we can

still get positive Kendall’s tau, which in general greater than those obtained by

NetArch. If the gene tree is untrue, the results depend.

We downloaded 460 gene trees from [23]: These trees were inferred from protein
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sequences extracted from DIP (http://dip.doe-mbi.ucla.edu/dip/Main.cgi) and rec-

onciled using NOTUNG [22]. The gene trees contain genes found in S. cerevisiae

(budding yeast), D. melanogaster (fruitfly) and C. elegans (worm). We derived a

family of species-specific gene trees by projecting the downloaded gene trees on

the three species respectively. For each species, these species-specific gene trees

were collected to form a duplication forest for our purpose of reconstructing net-

work duplication history. Although the original gene trees in [23] were timed, we

only made use of their topological information in this experiment. In addition, we

downloaded the PPI networks from the database DIP for the three species. The

size of these networks and the number of trees in the corresponding duplication

forests are given in Table 2.3.

For each G of these PPI networks, we inferred a duplicate sequence θ using our

algorithm CG. We then constructed the anchor list π from the duplication forest

and θ. Finally, we obtained the growth history H of G from θ and π.

Using Eq. (2.3) we estimated the growth parameters p and pc for each PPI

network (Table 2.3). Our estimation of pc is in line with the assertion that pc is

smaller than 0.1 [29, 98]. In contrast, the parameters pc and p estimated for the S.

cerevisiae network by NetArch are respectively 0.7 and 0.6 [66]. Moreover, when

the growth parameters were estimated by NetArch in [66], further information

on protein ages was used. Therefore, we demonstrated again the advantage of

incorporating duplication history in growth history reconstruction.

The reconstructed growth history enables us to further analyze two features in

the growth of these PPI networks: change of modularity and the relation between

the number of duplications and the degree of nodes in the extant network.

To measure modularity, we use the clustering coefficient that is defined as the

ratio of the number of edges between the vertices in N(v) to |N(v)|(|N(v)| − 1)/2

for each vertex v [9]. Then the clustering coefficient of a graph is the average of
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S.cerevisiae C. elegans D. melanogaster
Number of vertices 1361 2624 7027

Number of duplication trees 213 1912 5033
p̂ 0.061 0.021 0.026
p̂c 0.053 0.048 0.024

Table 2.3: Parameters and estimated parameters for three PPI networks down-
loaded from DIP. The corresponding duplication histories were obtained from the
reconciled gene trees reported in [23]. p̂ and p̂c are the estimated parameters in
the DMC model.
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Figure 2.5: Change in clustering coefficients over time in three PPI networks.
Here the growth histories were constructed by CG. The x-axes show the number
of vertices in the networks in the histories while the y-axes show the values of
clustering coefficient. An overall trend of clustering coefficient decreasing was
revealed.

clustering coefficients over all vertices. For each PPI network G, a growth history

H = (G0, G1, . . . , Gn) was obtained, where Gn is the extant network G and the

number of vertices in the seed network G0 equals to the number of trees in the

corresponding duplication forest. The clustering coefficients of these intermediate

networks for each of the three PPI networks were computed and presented in

Fig. 2.5. Note that for each PPI network, clustering coefficients decrease as the

network evolved over time, a trend only reported in [66] for the S.cerevisiae PPI

network and in [53] for metabolic networks.

Given a growth history H, the number of duplications of a node v in the extant
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Figure 2.6: Relationship between degree and number of duplications in three PPI
networks. The x-axes show the values of degrees in the extant networks while the
y-axes show the average number of duplications for the nodes with given degree.
No significant monotone relation between these two quantities has been found.
However, inverse relation is suggested in [32, 60].

network is defined as the number of times v was duplicated in the history, that

is, the number of v contained in the anchor list determined by H. It has been

suggested (for examples, [32] and [60]) that the larger the degree of a node, the

smaller the number of duplications the node has. However, our results on these

three PPI networks show no significant relation between them (see Fig.2.6), which

agree with the findings in [61].

2.6 Conclusion

Assuming the PPI networks evolve according to the DMCmodel, we have presented

a likelihood-based approach for recovering the most probable network evolution-

ary history by exploiting the known duplication history trees of paralogs in the

network. Through a series of reduction of the search space of all histories to (i)

compatible duplicate sequences and then (ii) the set of favored duplicate nodes, we

have provided a computationally efficient framework. Our approach successfully

retraces the network evolution especially in the scenario that the labels of ancestor

nodes are not necessarily to be one of the duplicates. As a useful by-product of
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our reconstruction, estimators for the model parameters are proposed.

The reconstruction framework presented in this chapter is described in the

context of the DMC model, and it would be interesting to see how it can be

generalized to other network evolutionary models. Another possible extension

to this work is to investigate network evolutions across different species, which

remains a challenging problem (see [75] for a parsimony approach). Finally, the

complexity of solving Problem 3 requires further research, to yield more insights

into the performance of the algorithms proposed here.



Chapter 3
Degree Distribution of Large Networks

Generated by The Partial Duplication

Model

3.1 Introduction

Arguably, one of the most fundamental models in the class of duplication models

is the partial duplication (PD) model studied by [18]. In this model, at each step

an anchor node is chosen uniformly from the current network and a new node

is added and independently this new node is connected to each neighbor of the

anchor node with selection probability p (see Subsection 1.3.2). This model is

particularly attractive for two reasons: it captures the basic principles behind PPI

evolution, and its simplicity enables us to conduct rigorous mathematical analysis.

By studying this model we can gain insights into other more sophisticated DD

models.

Here we focus on the degree distribution of the PD model. By degree distribu-

tion we mean the sequence {ft(k)}k≥0, where ft(k) denotes the expected proportion

52
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of nodes of degree k at time t. Note that the PD model is studied at the ensemble

level in this chapter, that is, we are mainly interested in the average behavior over

many different realizations. One general tool to study the degree distribution of

random networks is the master equation of ft(k) (see [21] and the references there-

in). However, despite the simplicity of the PD model, its master equation is still

too complicated to be solved analytically and no analytic solution is known yet,

except for the full duplication model, the special case when p = 1 [79]. Instead,

the attention has been centered on the limiting degree distribution, which provides

valuable information on the long run behavior of the model [11, 18, 52].

Since isolated nodes are generally irrelevant to the observed PPI networks, here

we also study the subgraph consisting of all non-isolated nodes in the PD model.

If f(0) < 1, the limiting degree distribution in the connected components does

exist and it is (0, 0, · · · ), that is, the expected fraction of degree k in this subgraph

tends to 0 for all k ≥ 1. Therefore, the limiting degree distribution does not follow

a power law in this region. For the case when f(0) = 1, we assume that the

limiting degree distribution exists and then prove that the entries in this limiting

distribution must be strictly positive, and they satisfy a system of equations. In

addition, the limiting degree distribution in this region also follows a power law.

Our results are then applied to three real PPI networks to obtain the power law

exponent and selection probability for each network.

An important property of the PD model is that it may produce graphs contain-

ing a large proportion of isolated nodes, that is, f(0) is typically large when p is

small. Therefore, it is of interest to know the behavior of f(0) relative to selection

probability p. Indeed, one central problem for the PD model, as stated in Section

3.1 of [11], is to characterize the values of p for which ft(0) tends to 1. Here we

attempt to answer this question by showing that there is a phase transition point

p0 ∈ [1
2
, 1√

2
] for the expected proportion of isolated nodes converging to 1. More
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precisely, f(0) < 1 for p0 < p ≤ 1, and f(0) = 1 for 0 < p < p0. In addition, we also

obtain upper and lower asymptotic bounds on the convergence rate of {ft(0)}t≥0,

as well as a uniform upper bound on the convergence rate of {ft(k)}t≥0 for all

k ≥ 1.

Prior to studying limiting degree distribution, we need to establish its existence,

that is, whether the limit of ft(k) for a given k exists as t approaches infinity. For

the special case k = 0, the existence of f(0) = limt→∞ ft(0) was proved by [11] by

showing {ft(0)}t≥0 is indeed a non-decreasing sequence. However, the other cases

remained open and it was often assumed that they do exist in previous studies. For

example, Lemma 2 in [11] states that for k ≥ 1, if ft(k) tends to a limit, then this

limit must be 0. We close this gap by showing that the limit of ft(k) does exist for

each k ≥ 0, and hence the sequence (ft(0), ft(1), ft(2), · · · ) converges pointwise to

(f(0), 0, 0, · · · ) as t approaches infinity.

The structure of the rest of this chapter is as follows. In the next section, we

describe the PD model and the master equation for the expected degree sequence.

In Section 3.3, we present some preliminary results. Section 3.4 is devoted to

the bounds on rates of convergence. In Section 3.5 we study the limiting degree

distribution of the subgraph with all isolated nodes removed, and apply the results

to three real PPI networks. In Section 3.6, we establish the existence of limiting

degree distribution and show a possible interval for the phase transition point of the

expected fraction of isolated nodes converging to 1. Finally, we end with Section 3.7

for some concluding comments and possible directions for further study.

3.2 The Model

Let Ft(k) denote the number of nodes of degree k inGt and let Ft = (Ft(0),Ft(1), · · · )

be the corresponding degree sequence. In addition, set Ft(k) := E [Ft(k)] and let
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ft(k) = Ft(k)/t be the expected proportion of nodes with degree k in Gt. S-

ince the number of nodes in Gt is always t, we know Ft(k) = 0, and hence also

Ft(k) = ft(k) = 0, for all k ≥ t. Here we also use the convention Ft(−1) = 0 for

all t ≥ t0.

The expected degree sequence satisfies the recursion equation

Ft+1(k) =
(
1− pk

t

)
Ft(k) +

p(k − 1)

t
Ft(k − 1) +

1

t

∑
j≥k

(
j

k

)
pkqj−kFt(j) (3.1)

for all k ≥ 0 and t ≥ t0, which is often referred to as the master equation for the

expected degree sequence (see [21] for a general discussion on master equation).

The master equation for the PD model was first studied by [18], and its complete

form as above was presented by [11], and also [52]. The correctness of Eq. (3.1)

can be seen in the following way. The first term on the right-hand side describes

the contribution of nodes of degree k in Gt; the second term corresponds to the

case in which a node of degree k − 1 in Gt is connected to the new node in Gt+1,

while the last term represents the probability that the new node at step t+ 1 has

degree k.

When the selection probability p and the seed graph Gt0 are given, it is clear

that the degree sequence (Ft(0), Ft(1), · · · ) is uniquely determined by Eq. (3.1).

Therefore, much information concerning the long run behavior of the model can

be obtained from the master equation. As an example, we present the solution of

Eq. (3.1) for the special case in which p = 1 and the seed graph is K2, that is, the

graph contains exactly one edge.

Example: Considering the PD model M(K2, 1), then we have

Ft(k) =
2(t− k)

(t− 1)
and ft(k) =

2(t− k)

t(t− 1)

for t ≥ 2 and 1 ≤ k ≤ t. In particular, we have limt→∞ ft(k) = 0, and limt→∞ ft(k+
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1)/ft(k) = 1, for all k ≥ 1.

The analytic solution in the above example was given in [50], which can also

be easily verified by using Eq. (3.1) and the boundary condition that F2(1) = 2

and F2(k) = 0 for k ̸= 2. For the special case when p = 1, a general solution of

Eq. (3.1) for any seed graph was obtained by [79]. However, no analytic solution

for other cases are known to us, and in this chapter we will study the long run

behavior of ft(k) without using its analytic form.

Since Gt may contain a large portion of isolated nodes and isolated nodes do

not correspond to nodes in observed PPI network, so we are led to study the non-

isolated subgraph G+
t obtained from Gt by removing all isolated nodes. Clearly,

the number of isolated nodes contained in Gt is Ft(0). By Eq. (3.1), we have

Ft+1(0) = Ft(0) +
1

t

∑
k≥0

Ft(k)q
k (3.2)

for t ≥ t0. To study the non-isolated subgraph, let F+
t denote the number of nodes

contained in G+
t , set F

+
t := E

[
F+

t

]
and let f+

t (k) := Ft(k)/F
+
t be the expected

proportion of nodes with degree k in G+
t . Then clearly we have F+

t = t − Ft(0),

F+
t = t − Ft(0) and f+

t = 1 − ft(0) for all t ≥ t0. Together with Eq. (3.2), this

implies

F+
t+1 = F+

t +
1

t

∑
j≥1

Ft(j)(1− qj) (3.3)

for t ≥ t0.

3.3 Preliminary Results and Notations

In this section, we introduce some notations and present several preliminary results

that will be used later in the chapter. To begin with, we recall some standard

asymptotic notations. For two functions a(x) and b(x) of a real variable x, a(x) =
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O(b(x)) (as x → ∞) means there exists a constant β > 0 such that a(x) < βb(x)

for all large x. In addition, we write a(x) = O(b(x)) if b(x) = Ω(a(x)) holds. If

both a(x) = O(b(x)) and a(x) = Ω(b(x)) hold, then we write it as a(x) = Θ(b(x)).

Finally, a(x) = o(b(x)) means limx→∞ a(x)/b(x) = 0. Note that similar notations

are used for real sequences {an}n≥0 and {bn}n≥0.

The lemma below is elementary; it is included here for completeness.

Lemma 3.3.1. For a constant c > 0, as t→ ∞, we have

Γ(t+ c) = Γ(t)
(
1 +O(t−1)

)
tc (3.4)

for Gamma function Γ, and

t∏
s=1

(
1 +

c

s

)
= Θ(tc). (3.5)

Proof. Eq. (3.4) follows immediately from Stirling’s formula for Gamma function

(see, for example, Lemma 1 in [18]). To establish Eq. (3.5) , let r be the smallest

integer larger than c, and put κ(t) :=
∏t

s=r(1 + (c/s)). By the Taylor series for

ln(1 + x), we have x(1− x/2) < ln(1 + x) < x for 0 < x < 1, which leads to

t∑
s=r

(c
s
− c2

2s2

)
≤ lnκ(t) ≤

t∑
s=r

c

s

for t ≥ r. Since
∑t

s=1 1/s = Θ(ln t) and
∑t

s=1 1/s
2 ≤ 2, Eq. (3.5) follows from the

above inequalities.

In order to study degree distribution, it is often instructive to consider the

average degree first. To this end, let et be the number of edges in Gt and set

et := E [et]. Then Dt, defined as the average degree of nodes in Gt, is equal to
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2et/t. In addition, setting Dt := E [Dt] then we have

2et =
∑
k≥0

kFt(k) = tDt. (3.6)

As a generalization of Lemma 1 in [11], the following result shows that the expected

average degree in Gt is determined by Dt0 , the average degree of the seed graph,

and selection probability p.

Proposition 3.3.2. The expected average degree Dt is given by

Dt = Dt0

Γ(t+ 2p)Γ(t0 + 1)

Γ(t+ 1)Γ(t0 + 2p)
(3.7)

for t ≥ t0. In particular, as t→ ∞ we have

Dt = Dt0

Γ(t0 + 1)

Γ(t0 + 2p)
t2p−1

(
1 +O(t−1)

)
(3.8)

and hence Dt = Θ(t2p−1).

Proof. As stated in the proof of Lemma 1 in [11], et+1 is given by

et+1 =
(
1 +

2p

t

)
et

for t ≥ t0. Together with Eq. (3.6) and Γ(x + 1) = xΓ(x) for x > 0, the above

formula leads to

Dt = Dt0

t0
t

t−1∏
i=t0

i+ 2p

i
= Dt0

Γ(t+ 2p)Γ(t0 + 1)

Γ(t+ 1)Γ(t0 + 2p)
,

which establishes (3.7). Finally, Eq. (3.8) follows from Eq. (3.7) by Eq. (3.4) in

Lemma 3.3.1.

From the above proposition, it is clear that if p0 is a phase transition point for
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the growth pattern of the average degree. More specifically, as t goes to infinity,

the average degree strictly decreases to 0 when 0 < p < p0, strictly increases to

infinity when p0 < p ≤ 1. As we shall see later, p0 is also the phase transition

point for several other properties of the PD model.

We end this section with the following two technical results concerning the

long run behavior of Ft(k), which will also be used in Section 3.5.

Lemma 3.3.3. Let 0 < p < 1. For each k ≥ 0, there exists an integer τk ∈

[t0, t0 + k] such that Ft(k) > 0 for all t ≥ τk.

Proof. By Eq. (3.2), the lemma clearly holds for k = 0. We shall establish the

other cases by induction on k. For the base case k = 1, by Eq. (3.1) we have

Ft+1(1) =
(
1− p

t

)
Ft(1) +

1

t

∑
j≥1

jpqj−1Ft(j) = Ft(1) +
1

t

∑
j≥2

jpqj−1Ft(j), (3.9)

which implies that {Ft(1)}t≥t0 is non-decreasing as Ft(j) ≥ 0 for all j. Since Gt0

contains at least one edge, Ft0(j) > 0 holds for some j ≥ 1. Therefore, we have

Ft0+1(1) > 0, and hence Ft(1) > 0 for t ≥ t0 + 1.

For the induction step, fix k ≥ 1 and assume there exists a number τk ∈

[t0, t0 + k] so that Ft(k) > 0 for t ≥ τk. Let τk+1 := max{τk, p(k + 1)}; then

τk+1 ∈ [t0, t0 + k] and hence it suffices to show Ft(k + 1) > 0 for t ≥ τk+1. Indeed,

by Eq. (3.1) and the choice of τk+1 we have

Ft+1(k + 1) ≥
(
1− p(k + 1)

t

)
Ft(k + 1) +

pk

t
Ft(k) ≥

pk

t
Ft(k) > 0

for all t ≥ τk+1, which completes the proof of the induction step, and hence also

the lemma.

Proposition 3.3.4. Let 0 < p < 1/2. The sequence {Ft(1)}t≥t0+1 strictly increases

to infinity as t→ ∞. Moreover, we have Ft(1) = Ω(ln t).
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Proof. Denoting Ft0+1(1) by α, by Lemma 3.3.3 and its proof, we know that

{Ft(1)}t≥t0+1 is strictly increasing and bounded below by α > 0. We next show

Ft(2) ≥ pα/2 for t ≥ 2t0 + 1. To this end, by 2p < 1 and Eq. (3.1) we have

Ft+1(2) = Ft(2)−
2p

t
Ft(2) +

p

t
Ft(1) +

1

t

∑
j≥2

(
j

2

)
p2qj−2Ft(j) ≥

(
1− 1

t

)
Ft(2) +

pα

t

for t ≥ t0 + 1. Consider the sequence {βt}t≥t0+1 defined as

βt =
t0

t− 1
βt0+1 +

(
1− t0

t− 1

)
pα

with βt0+1 := Ft0+1(2). Since

βt+1 =
(
1− 1

t

)
βt +

pα

t

holds for t ≥ t0 + 1, we have Ft(2) ≥ βt for t ≥ t0 + 1, which implies

Ft(2) ≥ βt ≥ pα/2

for t ≥ 2t0 + 1. Together with Eq. (3.9), this leads to

Ft+1(1) ≥ Ft(1) +
2pq

t

pα

2
= Ft(1) +

p2qα

t
≥ p2qα

t∑
s=2t0+1

1

s

for t ≥ 2t0 + 1, from which we can conclude Ft(1) = Ω(ln t), and in particular

Ft(1) → ∞ as t→ ∞.

Remark: It would be interesting to see whether Ft(k) = Ω(ln t) holds for all k ≥ 1.
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3.4 Rates of Convergence

To this end, let f(k) = limt→∞ ft(k) provided that the limit exists. In addition,

the limiting distribution (f(0), f(1), · · · ) is said to follow a power law if there exist

a number kmin, constant c > 0 and γ such that f(k) = c(1 + o(1/k))kγ for all

k ≥ kmin, in which γ is referred to as the exponent of the power law.

In this section, we will study the rates of the convergence of ft(k), that is,

ft(k) converges to a number f(k) as t approaches infinity (we will establish the

existence of limt→∞ ft(k) for k ≥ 0 in Section 3.6. Note that the analysis in this

section does not rely on the results presented in Section 3.6). To begin with, we

have the following results concerning F+
t , the expected number of non-isolated

nodes in Gt.

Proposition 3.4.1. For a partial duplication model M(Gt0 , p), the following s-

tatements hold:

(i) If f(0) < 1, setting c = 1− f(0) then we have c > 0 and ct ≤ F+
t ≤ t, that is,

F+
t = Θ(t). In particular, F+

t = t(1− ft0(0)) for p = 1.

(ii) If f(0) = 1, we have

c1t
p(1 +O(t−1)) ≤ F+

t ≤ c2t
2p(1 +O(t−1))

with c1 = F+
t0

Γ(t0)
Γ(t0+p)

and c2 = 2Dt0
Γ(t0+1)
Γ(t0+2p)

.

Proof. (i) From Eq. (3.2), it is clear that ft(0) is non-decreasing. We have

t ≥ F+
t = t

∑
k≥1

ft(k) = t(1− ft(0)) ≥ t(1− f(0)).
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(ii) By Eq. (3.6) and Proposition 3.3.2, we have

F+
t =

∑
k≥1

Ft(k) ≤
∑
k≥1

k Ft(k) = 2tDt = c2t
2p(1 +O(t−1)),

which establishes the upper bound.

Now we proceed to prove the lower bound. To begin with, by 0 < q = 1−p < 1

we have ∑
k≥1

Ft(k)q
k ≤ q

∑
k≥1

Ft(k) = qF+
t (3.10)

for k ≥ 1. Since F+
t = t− Ft(0), from Eq. (3.2) we have

t+ 1− F+
t+1 = t− F+

t +
1

t

∑
k≥0

Ft(k)q
k.

Together with Eq. (3.10), this implies

F+
t+1 = F+

t + 1− 1

t

∑
k≥0

Ft(k)q
k = F+

t + 1− Ft(0)

t
− 1

t

∑
k≥1

Ft(k)q
k.

= F+
t +

F+
t

t
− 1

t

∑
k≥1

Ft(k)q
k

≥ F+
t (1 +

1

t
− q

t
) = F+

t (1 +
p

t
).

Using Eq. (3.4) in Lemma 3.3.1, we can conclude

F+
t+1 ≥ F+

t0

Γ(t0)Γ(t+ p+ 1)

Γ(t0 + p)Γ(t+ 1)
= F+

t0

Γ(t0)

Γ(t0 + p)
tp
(
1 +O(t−1)

)
.

With the above proposition, we can establish the main result of this section.
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Theorem 3.4.2. Let 0 < p < 1; then the following assertions hold:

(i) We have

1− c2 t
2p−1(1 +O(t−1)) ≤ ft(0) ≤ 1− c1 t

p−1(1 +O(t−1))

with c1 = F+
t0Γ(t0)/Γ(t0 + p) and c2 = 2Dt0Γ(t0 + 1)/Γ(t0 + 2p).

(ii) For k ≥ 1, we have

ft(k) ≤ c3 t
1
p
−p−1(1 +O(t−1)),

with c3 = Γ(t0 + 2)/Γ(t0 + q + p−1).

Remark: Since ft(k) ≤ 1 by definition, the upper bound in Part (ii) is non-trivial

only if 1− p− p2 < 0, that is, p > (
√
5− 1)/2. On the other hand, recall that the

example in Section 3.2 shows that for 1 ≤ k ≤ t, ft(k) =
2(t−k)
t(t−1)

for the PD model

M(K2, 1), and Part (ii) in the above result implies ft(k) ≤ 3
t
(1 + O(t−1)). This

indicates the upper bound in Part (ii) is good when p is close to 1.

Proof. Part (i) follows directly from Proposition 3.4.1 and ft(0) = Ft(0)/t.

To establish Part (ii), we first note

∑
j≥k

(
j

k

)
pkqj−k =

1

p
(3.11)

because

∑
k≥0

∑
j≥k

(
j

k

)
pkqj−kxk =

∑
j≥0

j∑
k=0

(
j

k

)
(px)kqj−k =

∑
j≥0

(px+ q)j =
1

p(1− x)

holds for any real number x with |x| < 1.

Considering the constant c := pt0(t0 + 1)/[pt0 + (1 + p)q] and κ := 1
p
− p, then
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it suffices to show that

Ft(k) ≤ c
t−1∏
i=t0

(
1 +

κ

i

)
(3.12)

for k ≥ 1 and t > t0, because together with Eq. (3.4) in Lemma 3.3.1, this implies

Ft(k) ≤ c
Γ(t0)Γ(t+ κ)

Γ(t0 + κ)Γ(t)
= c

Γ(t0)

Γ(t0 + κ)
tκ
(
1 +O(t−1)

)
= c3t

κ
(
1 +O(t−1)

)
,

from which the conclusion clearly follows.

In the rest of the proof, we shall establish Inequality (3.12) by induction on t.

The base case t = t0 + 1 is clear, because for k ≥ 1 we have

c
(
1 +

κ

t0

)
= t0 + 1 ≥ Ft0+1(k).

For the induction step, assuming Eq. (3.12) holds for some t > t0 and we shall

show that it also holds for t + 1. To this end, we can further assume k ≤ t as

otherwise we have Ft+1(k) = 0. Since k ≤ t implies 1 − pk
t
> 0, substituting the

induction assumption Ft(k) ≤ c
∏t−1

i=t0
(1 + κ

i
) into Eq. (3.1) leads to

Ft+1(k) ≤ c

t−1∏
i=t0

(
1 +

κ

i

)(
1− pk

t
+
p(k − 1)

t
+

1

t

∑
j≥k

(
j

k

)
pkqj−k

)
= c

t∏
i=t0

(
1 +

κ

i

)
,

where the last equality follows from Eq. (3.11). By Eq. (3.5) in Lemma 3.3.1, this

completes the proof of the induction step, and hence also the theorem.

3.5 The Non-isolated Subgraph

In this section, we study the degree distribution of G+
t , the non-isolated subgraph

obtained from Gt by removing all isolated nodes. Such subgraph is useful to model
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real PPI networks as isolated nodes are typically discarded in the observed net-

works. We start with the following technical result that will be used later.

Lemma 3.5.1. Let {at}t≥0 and {bt}t≥0 be two sequences of real numbers such that

bt strictly increases to infinity as t→ ∞, and lim
t→∞

at/bt exists. If lim
t→∞

at+1−at
bt+1−bt

also

exists, then we have

lim
t→∞

at+1 − at
bt+1 − bt

= lim
t→∞

at
bt
.

Proof. Let β := limt→∞
at+1−at
bt+1−bt

, where the notation := means to define; then it

suffices to show β = limt→∞ at/bt. Here we only prove the lemma for the case

when β ∈ (−∞,∞), as the cases in which β = ∞ or β = −∞ can be established

by a similar argument. Without loss of generality, we may also assume bt is positive.

Fix an arbitrary number ε ∈ (0, 1); by definition, there exists a number t′ such

that

β(1− ε)(bt+1 − bt) < at+1 − at < β(1 + ε)(bt+1 − bt)

holds for all t ≥ t′. Summing up the above inequalities over t and canceling terms,

we have

β(1− ε)(bt+1 − bt′) < at+1 − at′ < β(1 + ε)(bt+1 − bt′).

Divide each side of the above inequalities by bt+1 and let t→ ∞; we obtain

β(1− ε) ≤ lim
t→∞

at
bt

≤ β(1 + ε),

which implies β = limt→∞ at/bt as ε is an arbitrary number in (0, 1).

Remark: Note that the condition that limt→∞
at+1−at
bt+1−bt

exists is required for the

above lemma. For example, considering at = t for t odd and at = t− 1 for t even,

and bt = t, then limt→∞
at
bt
= 1 but at+1−at

bt+1−bt
is divergent.

Recall that f+
t (k) = Ft(k)/F

+
t is the expected proportion of nodes with degree

k in G+
t . For k ≥ 1, denote limt→∞ f+

t (k) by f+(k) if this limit exists. For
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simplicity, we will also use the convention f+(0) = 0. In addition, let

λ = 1−
∑

j≥1 f
+(j)qj∑

k≥1 f
+(k)

. (3.13)

Below is the main result of this section.

Theorem 3.5.2. The following assertions hold for the partial duplication model

M(Gt0 , p):

(i) If f(0) < 1, then we have f+(k) = limt→∞ f+
t (k) = 0 for k ≥ 1.

(ii) If f(0) = 1 and f+(k) = limt→∞ f+
t (k) exists for all k ≥ 1, then

(a) we have f+(k) > 0 for all k ≥ 1;

(b) we have

λ = lim
t→∞

t
F+
t+1 − F+

t

F+
t

> 0,

and f+(k) satisfies the following equation

−pkf+(k) + p(k − 1)f+(k − 1) +
∑
j≥k

(
j

k

)
pkqj−kf+(j) = λf+(k)

for all k ≥ 1.

Proof. (i) We know that f(k) = 0 if it exists [11]. Together with F+
t = Ω(t) from

Proposition 3.4.1, this implies f+(k) = limt→∞ f+
t (k) = 0, as required.

(ii) For simplicity, set bk(j) :=
(
j
k

)
pkqj−k, and

φt(k) := t
Ft+1(k)− Ft(k)

F+
t

for t ≥ t0. Multiplying both sides of Eq. (3.1) by t/F+
t leads to

φt(k) = −pkf+
t (k) + p(k − 1)f+

t (k − 1) +
∑
j≥k

bk(j)f
+
t (j). (3.14)
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Given that limt→∞ f+
t (k) exists and the limit is bounded above by 1 for each k,

from
∑

j≥k bk(j) = 1/p (see Eq. (3.11)) we know that φ(k) := limt→∞ φt(k) exists

and is finite.

Part (ii-a) follows immediately from the two claims below:

Claim 1. If there exists a number k∗ ≥ 1 such that f+(k∗) = 0, then f+(k) = 0

for all k ≥ 1.

Claim 2. There exists some k with f+(k) > 0.

To establish Claim 1, we consider the smallest positive number k0 ≥ 1 such

that f+(k0) = 0. Together with Eq. (3.14), the choice of k0 implies φ(k0) =

limt→∞ φt(k0) ≥ 0.

We shall show φ(k0) = 0. If not, there exist ε > 0 and a number t1 ≥ t0 so that

for all t ≥ t1, we have φt(k0) > ε, that is,

Ft+1(k0)− Ft(k0) > εF+
t /t. (3.15)

On the other hand, from Eq. (3.3) we have

F+
t

t
= F+

t+1 − F+
t +

∑
j≥1

ft(j)q
j.

for all t ≥ t0. Substituting the above equation into the inequality (3.15) leads to

Ft+1(k0)− Ft(k0) > ε
F+
t

t
= ε
(
F+
t+1 − F+

t +
∑
j≥1

ft(j)q
j
)
≥ ε(F+

t+1 − F+
t ).

Summing up the above equation over t and canceling terms, we have

Ft+1(k0)− Ft1(k0) > ε(F+
t+1 − F+

t1
).

Dividing both sides by F+
t+1 and noting that Proposition 3.3.4 implies F+

t+1 → ∞
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as t→ ∞, we obtain

f+(k0) = lim
t→∞

f+
t (k0) ≥ ε > 0,

a contradiction to the assumption f+(k0) = 0. Hence we establish φ(k0) = 0.

Since f+(k0) = 0 and φ(k0) = 0, from Eq. (3.14) we have

p(k0 − 1)f+(k0 − 1) +
∑
j≥k0

bk0(j)f
+(j) = 0.

Noting that p > 0, we must have f+(k0−1) = 0. Because k0 is the smallest positive

number such that k0 ≥ 1 and f+(k0) = 0, we know k0 = 1 and hence f+(k) = 0

for all k ≥ 1. This completes the proof of Claim 1.

We proceed to establish Claim 2. For later use, we fix δ > 0 so that 2p+ δ < 1,

and k′ ≥ 1 so that 1−qk′ > 2p+δ. To obtain a contradiction, we assume f+(k) = 0

for all k ≥ 1. This implies

lim
t→∞

k′∑
k=1

Ft(k)

F+
t

=
k′∑

k=1

lim
t→∞

Ft(k)

F+
t

=
k′∑

k=1

f+(k) = 0.

Therefore, by setting δt :=
∑

k>k′ Ft(k)/F
+
t , we have δt → 1 as t → ∞. From

Eq. (3.3) and 0 < q = 1− p < 1 we have

F+
t+1 = F+

t +
1

t

k′∑
k=1

Ft(k)(1− qk) +
1

t

∑
k>k′

Ft(k)(1− qk)

≥ F+
t +

1

t

k′∑
k=1

Ft(k)(1− qk) +
1− qk

′

t

∑
k>k′

Ft(k).

Taking out the factor F+
t , this implies

F+
t+1 ≥

(
1 +

1− qk
′

t
δt

)
F+
t ≥ F+

t0

t∏
s=t0

(
1 +

1− qk
′

s
δs

)
.
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Since δt → 1, there exists a number t′ with δs > 1− δ for all s > t′. Therefore, for

t > t′ we have

F+
t+1 ≥ F+

t0

t′∏
s=t0

(
1+

1− qk
′

s
δs

) t∏
s=t′+1

(
1+

1− qk
′

s
(1−δ)

)
= Ω(t(1−qk

′
)(1−δ)), (3.16)

where the equality follows from Eq. (3.5) in Lemma 3.3.1. This contradicts F+
t =

O(t2p) as (1− qk
′
)(1− δ) > 1− qk

′ − δ > 2p, which completes the proof of Claim

2, and hence also Part (ii-a).

We proceed to establish Part (ii-b). To begin with, recall that by Lemma 3.3.3,

for each k ≥ 1 there exists τk ≥ t0 so that Ft(k) > 0 for all t ≥ τk. Therefore, for

k ≥ 1 we can define

ψt(k) := t
Ft+1(k)− Ft(k)

Ft(k)

for t ≥ τk. In other words, we have φt(k) = f+
t (k)ψt(k) for t ≥ τk. Since φ(k) =

limt→∞ φt(k) exists and is finite, f+(k) > 0 from Part (i) implies that ψ(k) :=

limt→∞ ψt(k) exists and is finite for k ≥ 1.

We first show ψ(k) ̸= 0 by contradiction. If this is not the case, there exist

0 < r < p and a number t1 so that ψt(k) < r for all t ≥ t1. By Eq. (3.5) in

Lemma 3.3.1, this implies

Ft+1(k) <
(
1 +

r

t

)
Ft(k) <

t∏
s=t1

(
1 +

r

s

)
Fs(k) = O(tr).

and hence Ft(k) = O(tr). On the other hand, we have Ft(k) = f+(k)F+
t (1+ o(1)),

where f+(k) > 0, and F+
t = Ω(tp) by Proposition 3.4.1. This implies Ft(k) = Ω(tp),

contradicting Ft(k) = O(tr) as r < p. Thus we must have ψ(k) ̸= 0.

We next show ψ(k) = ψ(1) for all k > 1. Indeed, we have

ψ(k)

ψ(1)
= lim

t→∞

Ft(1)

Ft(k)

Ft+1(k)− Ft(k)

Ft+1(1)− Ft(1)
=
f+(1)

f+(k)
lim
t→∞

Ft+1(k)− Ft(k)

Ft+1(1)− Ft(1)
,
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and hence limt→∞
Ft+1(k)−Ft(k)
Ft+1(1)−Ft(1)

must exist. Using Proposition 3.3.4 and Lemma 3.5.1,

we have

lim
t→∞

Ft+1(k)− Ft(k)

Ft+1(1)− Ft(1)
= lim

t→∞

Ft(k)

Ft(1)
=
f+(k)

f+(1)

and hence ψ(k) = ψ(1).

Since ψ(k) is a constant for all k ≥ 1, we denote it by ψ. By Proposition 3.3.4,

we have ψ(1) > 0 and hence also ψ > 0. Now from Eq. (3.14) we know that

{f+(k)}k≥1 satisfies the following equation

−pkf+(k) + p(k − 1)f+(k − 1) +
∑
j≥k

bk(j)f
+(j) = ψf+(k),

where f+(0) = 0. By summing the above equation for all k ≥ 1 and canceling the

first two summations of the left-hand side, we obtain

ψ
∑
k≥1

f+(k) =
∑
k≥1

∑
j≥k

bk(j)f
+(j) =

∑
j≥1

∑
j≥k≥1

bk(j)f
+(j) =

∑
j≥1

f+(j)(1− qj),

where the last equality follows from
∑

j≥k≥1 bk(j) = 1− qj. Hence, we have

ψ = 1−
∑

j≥1 f
+(j)qj∑

k≥1 f
+(k)

= λ,

which completes the proof of Part (ii).

Remark: Intuitively the frequencies for degree k ≥ 1 should be larger when

p is larger. However Thm. 3.5.2 concerns the non-isolated components and the

divisor of f+
t (k) is F

+
t . As p increases, F+

t increases at a larger rate than Ft(k).

The above result shows that the limiting degree distribution (f+(1), f+(2), · · · )

does not follow a power law when f(0) < 1 because f+(k) = 0 for all k ≥ 1. On

the other hand, Fig. 3.1 indicates that a power law may exist for small p. Indeed,
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Figure 3.1: Log-Log plot of degree distribution of the PDM model M(K2, p) with
p ∈ {0.1, 0.2, 0.3}. For each p, 1000 graphs with 1000 nodes were generated using
the PDM model, and the average degree distribution is depicted.

let γ be the solution of the equation

γp− p+ pγ−1 = λ, (3.17)

where λ is the constant defined in Eq. (3.13). The following result states that when

f(0) = 1, if the limiting degree distribution (f+(1), f+(2), · · · ) follows a power law,

then the exponent γ is defined above.

Corollary 3.5.3. Suppose f(0) = 1. If f+(k) = limt→∞ f+
t (k) exists for all k ≥ 1,

the power law whose exponent γ is given in Eq. (3.17) is a solution to the limiting

degree distribution (f+(1), f+(2), · · · ).

Proof. The proof is similar to that of Theorem 1 in [18]. From Theorem 3.5.2,

f+(k) satisfies the following recursion

−pkf+(k) + p(k − 1)f+(k − 1) +
∑
j≥k

bk(j)f
+(j) = λf+(k),
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for k ≥ 1, where bk(j) =
(
j
k

)
pkqj−k. Substituting f+(k) = c(1+o(1/k))k−β, where

c > 0 is a positive constant and β is to be determined later, and multiplying both

sides by kβ, we obtain

−pk
(
1 + o

(1
k

))
)︸ ︷︷ ︸

I

+ p(k − 1)
(
1 + o

( 1

k − 1

))( k

k − 1

)β
︸ ︷︷ ︸

II

+
∑
j≥k

bk(j)
(
1 + o

(1
j

))(k
j

)β
︸ ︷︷ ︸

III

= λ
(
1 + o

(1
k

))
.

Since ( k
k−1

)β = 1 + β
k
+O( 1

k2
), we have

II = p(k − 1)
(
1 + o

( 1

k − 1

))(
1 +

β

k
+O

( 1

k2

))
= p(k − 1)

(
1 + o

( 1

k − 1

))(
1 +

β

k

)
+O

(1
k

)
.

Because p(k− 1)(1+ o( 1
k−1

))(1+ β
k
) = p(k− 1)(1+ β

k
)+ o(1) and p(k− 1)(1+ β

k
) =

pk(1 + β
k
)− p+ o(1), we have II = pk + pβ − p+ o(1) and hence

I + II = pβ − p+ o(1).

From Lemma 1 in [18], we have

(
j

j − k

)(k
j

)β
=
(
1 +O

(1
k

))(j − β

j − k

)
.

Applying this formula to III leads to

III =
∑
j≥k

pkqj−k
(
1 + o

(1
j

))(j − β

j − k

)(
1 +O

(1
k

))
=
(
1 +O

(1
k

))∑
j≥k

pkqj−k

(
j − β

j − k

)
.
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Let l = j − β. The above equation can be simplified as

III =
(
1 +O

(1
k

)) ∑
l≥k−β

pkql+β−k

(
l

k − β

)
= pβ

(
1 +O

(1
k

)) ∑
l≥k−β

(
l

k − β

)
pk−βql−(k−β)

= pβ−1
(
1 +O

(1
k

))
.

Therefore, we see that β satisfies the equation βp− p+ pβ−1 = λ as k → ∞, which

completes the proof.

As an application, we applied the above results to three real PPI networks,

S. cerevisiae (budding yeast), D. melanogaster (fruitfly) and C. elegans (worm),

downloaded in August 2012 from DIP (http://dip.doe-mbi.ucla.edu/dip/Main.cgi).

Since a protein is collected in the database only if it is involved in an observed inter-

action, these networks can be better modeled by the non-isolated graph generated

by the PD model. Corollary 3.5.3 states that the long-run degree distribution of

the non-isolated graphs may follow a power law distribution. Indeed, we estimated

the power law exponent γ for each network using linear regression. In addition, by

Eq. (3.17) we inferred the selection probability p for each network using the degree

distribution and estimated γ. The results are presented in Table 3.1.

C. elegans S.cerevisiae D. melanogaster
γ 1.6 1.7 2.0
p 0.01 0.4 0.3

Table 3.1: Estimated power law exponent γ and selection probability p for three
PPI networks. The networks were downloaded from DIP. For each network, the de-
gree distribution was computed, from which the power law exponent and selection
probability were estimated.
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3.6 Limiting Behavior of Degree Distribution

In this section, we shall establish the existence of the limiting degree distribution

for the PD model. We first recall the following results by [11]: The sequence

{ft(0)}t≥t0 is non-decreasing, and hence limt→∞ ft(0) exists with f(0) ≤ 1. In

addition, for each k ≥ 1, if limt→∞ ft(k) exists, then f(k) = limt→∞ ft(k) = 0. One

consequence of their results is that the limiting degree distribution cannot follow

a power law. However, one important problem remained unsettled is whether

limt→∞ ft(k) exists for k ≥ 1, which is the subject of the following theorem, where

we also show that a phase transition exists for the expected proportion of isolated

nodes converging to 1 (see Fig. 3.2 for some numeric results), and hence give some

hint to a question raised in [11].
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Figure 3.2: Expected proportion of isolated nodes in the PDM model M(K2, p).
Here the result is obtained by numerically solving Eq. (3.1) with boundary condi-
tion F2(1) = 2 and F2(k) = 0 for k ̸= 2.

Theorem 3.6.1. The following assertions hold for the partial duplication model

M(Gt0 , p):

(i) For k ≥ 1, limt→∞ ft(k) = 0.

(ii) For 0 < p < 1/2, we have f(0)=1; for 1/
√
2 < p < 1 we have f(0) < 1.
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Proof. (i) When p = 1, M(Gt0 , p) is reduced to the full duplication model, and

the statement is well known to hold (see, for example, [79]). So we assume p < 1,

and hence also q = 1 − p > 0. For each k ≥ 1, we introduce a function ck on

non-negative intergers defined as

ck(j) =



(
j
k

)
pkqj−k j > k

pk − pk j = k

p(k − 1) j = k − 1

0 0 ≤ j < k − 1

.

Note that we have ck(j) ≥ 0 for all j ̸= k, and ck(0) = 0 for all k ≥ 1. Now

Eq. (3.1) can be rewritten as

Fs+1(k) = Fs(k) +
∑
j≥0

ck(j)
Fs(j)

s
,

where s ≥ t0. By definition, this is equivalent to

(s+ 1)fs+1(k) = s fs(k) +
∑
j≥0

ck(j)fs(j).

By summing the above equation over s up to t, we get

t∑
s=t0

(s+ 1)fs+1(k) =
t∑

s=t0

sfs(k) +
∑
j≥0

(
ck(j)

t∑
s=t0

fs(j)
)
.

Therefore, canceling terms and dividing by t+ 1 on both sides leads to

ft+1(k) =
t0ft0(k)

t+ 1
+
∑
j≥0

(
ck(j)

t∑
s=t0

fs(j)

t+ 1

)
. (3.18)
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On the other hand, by Eq. (3.2) we have

(s+ 1)
(
fs+1(0)− fs(0)

)
=
∑
j≥1

fs(j)q
j

for s ≥ t0. Summing the above equation over s up to t leads to

(t+ 1)ft+1(0)−
t∑

s=t0

fs(0)− t0ft0(0) =
∑
j≥1

t∑
s=t0

fs(j)q
j.

Since q > 0, for any j ≥ 1 the above equation implies

∑t
s=t0

fs(j)

t+ 1
≤ q−j

(
ft+1(0)−

∑t
s=t0

fs(0)

t+ 1
− t0

ft0(0)

t+ 1

)
.

Since limt→∞ ft(0) always exists and is necessarily finite, the right-hand side of the

above inequality converges to 0. In other words, for each j ≥ 1 we have

lim
t→∞

∑t
s=t0

fs(j)

t+ 1
= 0. (3.19)

Therefore, from Eq. (3.18) and (3.19) we have

lim
t→∞

ft(k) = lim
t→∞

∑
j ̸=0

ck(j)
t∑

s=t0

fs(j)

t+ 1
=
∑
j ̸=0

ck(j) lim
t→∞

t∑
s=t0

fs(j)

t+ 1
= 0

for each k ≥ 1. The interchange of the summation and the limit follows from

the dominated convergence theorem:
∑t

s=t0

fs(j)
t+1

≤ 1 and
∑

j ̸=0 ck(j) < ∞. This

completes the proof of Part (i).

(ii) Since Proposition 3.3.2 implies that Dt, the expected average degree in Gt, is

asymptotically ct2p−1 + o(1) for some constant c, we have

ft(0) = 1−
∑
k≥1

ft(k) ≥ 1−
∑
k≥1

k ft(k) = 1−Dt = 1− 2ct2p−1 + o(1)
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for 0 < p < 1
2
. This implies f(0) = limt→∞ ft(0) = 1 for 0 < p < 1

2
, as required.

Recall that we have f+(k) > 0 if F+
t = o(t) by Thm. 3.5.2. Together with

Thm. 3.4.2, we have

0 < f+
t (k) ≤

t1/p−p

F+
t

.

If p >
√
5−1
2

, which means 1/p − p < 1, F+
t should not have a higher order than

t1/p−p, i.e. F+
t = O(t1/p−p). On the other hand, we have F+

t = Ω(tp). It follows

that p ≤ 1/p − p, i.e. p ≤ 1/
√
2. In another word, if p > 1/

√
2, then F+

t = Θ(t)

and f(0) < 1.

Motivated by [11], a model M(Gt0 , p) is called defective if
∑

k≥0 f(k) < 1.

For instance, the PD model M(K2, 1), the example studied in Section 3.2, is

defective. Note that defective model is usually identified with the existence of a

giant component, and it is observed in [11] that M(Gt0 , p) is defective for p = 1,

and not defective for p < 1/2, and the problem remained open is at what value of

p the model becomes defective. The following result provides an possible interval

for the phase transition point of M(Gt0 , p).

Corollary 3.6.2. There is a phase transition point p0 ∈ [1/2, 1/
√
2] for the partial

duplication model M(Gt0 , p).

Proof. We first show that f(0) is a decreasing function of p. Suppose p1 < p2, Ft(0)

and F̃t(0) correspond to the number of singletons in M(Gt0 , p1) and M(Gt0 , p2)

respectively. Recall that Ft+1(0) = Ft(0) +
1
t

∑
k≥0 Ft(k)q

k. Obviously Ft0+1(0) ≥
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F̃t0+1(0). Suppose Ft(0) ≥ F̃t(0) for t. The difference at time t+ 1 is

Ft+1(0)− F̃t+1(0)

=(1 +
1

t
)(Ft(0)− F̃t(0)) +

1

t

∑
k≥1

(Ft(k)− F̃t(k))q
k

=(1 +
1

t
)
∑
k≥1

(F̃t(k)− Ft(k)) +
1

t

∑
k≥1

(Ft(k)− F̃t(k))q
k

=
∑
k≥1

(F̃t(k)− Ft(k))(1 +
1

t
− qk

t
)

≥
∑
k≥1

(F̃t(k)− Ft(k))

=
(
t− F̃t(0)

)
−
(
t− Ft(0)

)
≥ 0.

Hence Ft(0) is a decreasing function of p and so is ft(0). Taking limits we have

f(0) is a decreasing function of p. Together with Thm. 3.6.1 we have the results

as claimed.

3.7 Discussion

This chapter presents a rigorous analysis on the degree distribution of the partial

duplication (PD) model, as a step toward understanding the long run behavior of

more sophisticated network growth models in the duplication and divergence family

that have been developed to model protein-protein networks and other biological

networks.

Although the main focus in this chapter is the mathematical properties of

the PD model, the results obtained here are biologically relevant. For example,

Theorem 3.6.1 shows that in terms of degree distribution, a popular summary

statistic used in describing biological networks, the network generated under the

PD model stabilizes at the ensemble level as it grows. In other words, when the
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network is sufficiently large, adding new vertices will not change the overall degree

distribution of the network.

Our results also clarify the existence or the lack of power-law degree distribu-

tions under the PD model. [11] proved that degree distribution of the networks

generated under the PD model does not follow a power-law distribution. This

corrects a claim in [18] and leads to a further question: whether the subgraph

consisting of all non-isolated nodes in the PD model follows a power-law distribu-

tion? Theorem 3.5.2 and Corollary 3.5.3 show that, for this subgraph, a power-law

distribution possibly exist only when the graph is defective.

In addition, our results provide further insights into the simulation study of

biological networks. For instance, in applying the PD model to simulate biological

networks, one wants to know which feasible values of the parameter p will generate

reasonably realistic networks. Theorem 3.6.1 shows that one should restrict the

choice of p to be in (1/
√
2, 1) if the expected network contains a relatively small

proportion of singletons. On the other hand, to generate biological networks with a

power-law distribution, Theorem 3.5.2 and Corollary 3.5.3 indicate that one should

choose p in (0, 1/2) and consider the subgraph consisting of all non-isolated nodes.

Finally, Theorem 3.4.2 on convergence rate can be used to determine the bounds

on the size of the simulated networks when the expected degree distribution is

known.

It is also worthy to note that the results obtain in this chapter show that

many features related to the long-run degree distribution, such as the existence of

limiting distribution and the phase transition point for the expected proportion of

isolated nodes converging to 1, are dependent on the selection probability p and

independent of the seed graph. This agrees well with the observation made in [43]

through simulation: The degree distribution of large-scale networks generated by

many duplication models is solely determined by the model parameters, and not
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by the initial ‘seed’ graph.

Several problems remain open from this study. The first one is about the rates

of convergence. Some rates are established in Theorem 3.4.2, but they may not

be best possible. In addition, we have shown that the expected fraction of nodes

with degree one grows as Ω(ln t/t), and it remains to see whether similar bounds

hold for nodes with higher degree. The second one concerns the limiting behavior

of the non-isolated subgraph in the region f(0) = 1. In particular, a proof of the

existence (or lack) of the limiting degree distribution in this region is required.

Although a range is given, the exact value of the phase transition point has not

been obtained in our study.

Many extensions of the PD model have been proposed in the literature. A

natural extension is to allow connecting the anchor node and new node in each

step of the PD model with a probability pc. When pc = 0, this extension reduces

back to the PD model studied in this chapter. The special case when pc = 1 was

studied by Chapter 4 of [17] and it was shown that the limiting degree distribution

in this case exists. Some further analysis of this extended model for general pc

was conducted by [52], and the tools developed in this study could be applied to

study this model, as well as several others, such as the duplication-mutation with

complementarity (DMC) model studied by [62], and the model proposed by [73].

The PD model has been studied at the ensemble level in this chapter, that is,

the average behavior over many different realizations is considered. However, [50]

presented an example to show that the behavior of a single realization of the PD

model could be very different from the average one. As pointed out by [40], a

statement about convergence of the expected proportions does not imply a similar

statement about the proportions in a single realization. Therefore, one interesting

direction for future research is to see whether the results obtained in this chapter are

also valid at the level of individual realizations. For instance, we have shown there
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is a phase transition point for several properties of the PD model at the ensemble

level, and it remains to see whether this is also the case for some properties at the

individual level, such as the emergence of giant components.



Chapter 4
Effect of Seed Graphs on The Evolution

of Network Topology

4.1 Introduction

The structure of PPI networks has been extensively studied [9, 106]. Properties,

such as power-law [1], high clustering coefficient [108] and modularity [36] etc., are

observed in PPI networks (reviewed in [9]). On the other hand, evolutionary mech-

anisms shaping the topology of networks have been proposed [13, 98, 100], which

aim to explain the emergence of some topological features of PPI networks [18, 43].

Based on the evolutionary mechanisms several graph models for PPI networks are

developed [95, 100], such as the duplication models and hierarchical networks. The

validity of a graph model is usually affirmed by comparing the topology of the net-

works generated by the graph model with that of the empirical networks. The

more topological features they share, the more similar they are. For example, 5

graph models were compared with the yeast PPI network in terms of 7 topological

measures in [34] leading to a conclusion that the iSite model, which was proposed

by the authors, gives the best fit. However, since a PPI network is only a snapshot

82
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of the network history, this strategy of validating PPI network models is limited

in the context of evolution, in which the topology of a PPI network may also be

evolving. Exploring how the topology of a PPI network changes with time can

shed further light on the formation of the extant PPI networks and understanding

the evolution of PPI networks.

A potential factor that may have significant impact on the formation of the

topology of an observed network is the network it started with, called seed network

or graph. In [43], the effect of seed graphs on shaping the topology of networks

generated by the preferential attachment (PA) model and the duplication and

divergent (DD) model was studied. Hormozdiari et al. [43] demonstrated that

different seed graphs may lead to different topology in the observed network. The

study of the effect of seed graphs on the topology of networks can guide us in

selecting seed graphs to generate networks for modeling real networks. In [86] the

choice of seed graphs by Hormozdiari et al. [43] was applied to produce families

of PPI networks in a network synthetic model, i.e. a model of selecting proper

models for input networks. Intuitively, seed graphs affect not only the topology

of the extant networks but also the evolutionary processes. Therefore, we are

interested to ask “How do networks evolve from different seed graphs?” In other

words, we are not only interested in the final resulting network but the whole

process in which the network evolves.

The models we shall investigate are the partial duplication (PD) model, the

duplication and divergent (DD) model, the duplication-mutation with complemen-

tarity (DMC) model and the preferential attachment (PA) model (see Section 4.2

for definitions). Analogous to comparing networks, the evolutionary processes can

be studied in terms of the network characteristics such as degree distribution and

clustering coefficient. In our study of network history reconstruction [57] we found
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that clustering coefficient generally decreases as time increases. Similar observa-

tions were made in [66]. Here we explore the conditions under which such a pattern

would exist. Other topological features will also be investigated, see Section 4.3

for further details.

4.2 Network Models and Parameters

Scale-free property is widely observed in many empirical networks, such as the yeast

PPI network, world wide web and citation networks (reviewed in [18]). The four

graph models investigated in this chapter are all aimed to capture this property.

Besides, many real networks are under a process of growth. In another word, the

number of nodes and edges in the networks increase with time. We have defined

the definition of network growth model in Subsection 1.3.2 and we will briefly

recall the terminology below. In a network growth model, the model starts with a

seed network. At every time step, a new node is added into the existing network

and with some probability the topology of the network may be rewired according

to some rules, which are defined by the model. We have also introduced the

definitions of the PD model, the DD model, the DMC model and the PA model in

Subsection 1.3.2. For convenience, we denote the selection probability in the PD

model by pPD , that in the DD model by pDD and that in the DMC model by pDMC.

Note that there is one more parameter for each of the DD model and the DMC

model, namely the divergence rate r for the DD model and the homodimerization

rate pc for the DMC model. The PD model, the DD model and the DMC model all

belong to the class of duplication models, a biologically relevant class of network

models [12, 18, 44, 90, 93, 95], which are based on the duplication step. The PA

model is based on another mechanism: The preferential attachment, in which the

new node v connects to each existing node, say u, with a probability proportional
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to its degree:

P (eu,v = 1) = min{cdeg(u)
2e

, 1},

where e is the number of edges and c is a parameter of the model.

With different choice of the parameters, a model may generate networks with

different topology. How the parameters of the models should be chosen is still

not settled [34]. Parameters can be either estimated by fitting the topology of an

empirical network [43, 95] or calculated in the aspect of evolutionary studies [34,

57]. In [57] we inferred the parameters of the duplication and mutation with

complementarity model (DMC) in the process of reconstructing the evolutionary

history of networks. For the DMC model, we chose the same parameters as those

estimated for the yeast PPI network in Chapter 2: pDMC = 0.061 and pc = 0.053

(see Table 2.3). We set pPD = pDMC = 0.061 in the PD model. For the DD model,

we applied the same parameters used in [43], i.e. r = 0.12 and pDD = 0.365,

which is also used by Rito et al. in [82] to construct gene duplication network in

investigating the relation between protein age and their degree. Recall that in the

PA model given a node u, the probability that it is connected to the new node is

c
deg(u)

2e
. Let Iu to be the indicator function of the edge between node u and the

new node and X to be the degree of the new node. We have X =
∑

u∈Vt−1
Iu.

Hence the expected number of edges the new node can get is

E(X) =
∑

u∈Vt−1

E(Iu) =
∑
u∈V

c
deg(u)

2e
= c.

In [73], it is reported that c = 1.83 is the average degree of a yeast PPI network.

In our experiments, we chose the same c.
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4.3 Topological Statistics

Networks are characterized by some commonly used statistics. We have introduced

some topological statistics in Subsection 1.1.1. Here we give a review on three

commonly used quantities that are used in our experiments. The connectivity of

a network is usually measured by clustering coefficient, which can be defined as

follows. Given a node v, let T (v) be the number of triangles that v is involved in

as a vertex of a triangle. Then the clustering coefficient C(v) of v is calculated

as c(v) = 2 ∗ T (v)/(deg(v) ∗ (deg(v) − 1)). The clustering coefficient is usually

applied to estimate the existence of an inherent modularity. Recall that c(k) is the

average clustering coefficient of nodes with degree k. In hierarchical networks the

clustering coefficient as a function of degree follows a power-law: c(k) ∝ k−1. It is

shown that in the PA model for all k, c(k) is fixed [9]. To the best of our knowledge,

no theoretical results about the clustering coefficient is known for the DD and PD

models. Another frequently studied feature of a network is the degree distribution.

Given a non-negative integer k, P (deg(v) = k) is the proportion of nodes with

degree k. It is shown in [56] that the PD model produces networks with trivial

limiting degree distribution for pPD less than 0.5, i.e. the fraction of nodes with

positive degree asymptotically approaches to 0. The limiting degree distribution of

the PA model follows a power-law: P (k) ∝ k−3 [8]. For the DD model, a power-law

degree distribution is also demonstrated in [11], where the power-law exponent is

associated with the duplication parameter pDD. The average degree is defined as

D =
∑

k kP (deg(v) = k), a quantity we experimented. As discussed above, the

average degree of the PA model has an expectation of c [8]. The average degree

of the PD model converges to 0 as the order of the network is large when pPD is

smaller than 0.5 [56]. In [42], the author showed that the expected number of

edges in the DD model satisfies the recursive relation: e(t+1) = e(t)(1+2p/t)+ r.

Solving a corresponding ODE e′ = 2p
t
e + r we have e(t) = at2p + r

1−2p
t, where a
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is a constant dependent on the initial condition and the average degree D(t) =

2e(t)/t = 2at2p−1 + 2r
1−2p

, converging to 2r
1−2p

as t → ∞ for p < 0.5. Note that all

experiments were run for connected components, so the expected average degree

should be not smaller than that in the whole graphs. Another commonly observed

property in empirical networks is the small-world property, i.e. a network with

small diameter. The average length of the shortest paths for the PA model l ∝ ln t
ln ln t

as time is sufficiently large [2]. For the DD model and the PD model, to the best

of our knowledge, there is no analytical results for the average length of shortest

paths.

4.4 Experiments and Results

Since all nodes in a PPI network has degree of at least 1, we only considered

connected components in our experiments. Specifically, at the end of each time

step, we remove the singletons if there are any. For each seed graph, every model

was run until the order of the network, i.e. the number of nodes, reached 1000. We

have run experiments on the topological statistics described above to explore the

effect of seed graphs on the network topology. For each feature, we selected 9 seed

graphs which were classified into three groups. The three seed graphs in each group

have different topology but the same feature that is under investigation. By such

choice of seed graphs, we can test whether the initial value of the feature affects

the growing behavior of the network. If it does, then we can further look into that

under the same setting of the feature, whether the topology of the network has an

impact on the network evolution or not. The topological statistics of seed graphs

are summarized in Table 4.1.

Figure 4.1 depicts how the clustering coefficient varies with time for 9 different

seed graphs. At each time step, clustering coefficient of every network was calcu-

lated. The plots are based on the average over 100 runs. The seed graph used in
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each plot is included in the title. Notice that the PD model will not generate any

triangles if there is no triangle in the seed graph. Hence in the first row of Fig. 4.1,

where the seed graphs have a clustering coefficient of 0, the clustering coefficient

for the PD model is always 0. It can be observed that even if they start with the

same seed graphs the DD model, the PA model and the PD model may generate

networks with different clustering coefficients. This may suggest that the initial

clustering coefficient may be a determining factor for its growing curve.

Figure 4.2 plots how the average degree changes with time. The first row of

the seed graphs have average degree of 2, the second have average degree of 3 and

the third have average degree of 4. We can see that for all the four models the

average degree tends to a limit as the number of nodes gets larger and larger. All

the observed average degrees are larger than the theoretical ones for the whole

networks. For the DD model, an expected average degree of 2r
1−2p

≈ 0.92 was

obtained above and is smaller than 4.7 which is the observed average degree of the

connected components with order 1000. The average degrees of the PD model and

the DMC model are very close. This suggests that under our choices of parameters,

the selection probability p plays a major role in shaping the average degree of

networks and the homodimerization rate pc only has a minor effect. The expected

average degree of the PA model is also larger than the theoretical one for the whole

graph, which is c = 1.83.

Figure 4.3 plots the average length of shortest paths (ALSP) at each time point

from the initial time to time point 1000. Seed graphs in the first row have ALSP

of 1, the second have ALSP of 1.5 and the ALSP in the third row is 5/3. We can

see that all the four models generate networks with ALSP no more than 10, which

implies the small-world property of these networks. For all the three models, the

ALSP increases as the networks expand. For the same model, all the curves have

no significant difference when t is large. This indicates that the ALSP may be an
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inherent property of the model and its parameters.

Figures 4.4, 4.5, 4.6 and 4.7 describe the degree distribution at 5 different time

points: t0, t0+2, t0+5, t0+10 and t0+900. All nodes in the 4 seed graphs in the

first row have degree 2. In the second row, 2/3 nodes have degree 2 and 1/3 nodes

have degree 3. In the third row, 2/5 nodes have degree 1, 2/5 nodes have degree 2

and 1/5 have degree 4. We can see that the initial degree distribution determines

the plots of the degree distribution, while the topology of the seed graph does not

affect the degree distribution a lot when the initial degree distribution is fixed.
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4.5 Discussion

We have done simulation studies on the duplication and divergence model, the pref-

erential attachment model, the duplication-mutation with complementarity and

the partial duplication model to investigate how the seed graphs affect the evo-

lution of networks generated by these four models. The topological statistics we

explored include clustering coefficient, average degree, average length of shortest

paths and degree distribution. We found that in all the four models the clustering

coefficient decreases as time is sufficiently large. The average degree of the DD

model and the PA model approximately approach to a limit while the average de-

gree of the PD model increase to infinity. These models all produce networks with

small-world property, i.e. networks with small average length of shortest paths.

We also find that the degree distribution of networks generated by these three

models converge fast to a limit and the convergence rate depends on the degree

distribution of the seed graph.



Chapter 5
Conclusion and Future Work

In summary, this thesis is devoted to modelling biological networks, especially

the protein-protein interaction (PPI) networks, focusing on both the forward and

backward properties of the network growth models.

For the backward issue of reconstructing the evolutionary history of PPI net-

works, we introduced a novel framework, based on the duplication-mutation with

complementarity (DMC) model, to incorporate the information of the duplication

history of its proteins. In earlier works of other authors, this problem was either

studied by inference solely on networks [66] or methods combining the gene trees

and PPI networks. The definition of duplication forest was introduced to repre-

sent the duplication history of the proteins in a PPI network [35]. The difficulty

is that despite restricting histories to be compatible with a given duplication for-

est, the space of the network evolutionary history is still large, let alone the cases

without duplication histories, in which the number of all possible histories are 2n

(n is the number of nodes). We observed that the seed graphs of two histories

which are compatible with a given duplication history forest are isomorphic (Lem-

ma 2.3.1). Based on this observation, the likelihood ratio between two histories

has been proved to depend on only one parameter, the so-called loss number: The
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likelihood of one history is bigger than another if and only if its loss number is

smaller than another (Theorem 2.3.3). This simplification allows us to formulate

two efficient heuristic algorithms: MLN and CG. Simulation studies showed that

MLN is faster than CG, but CG gives better results than MLN. Comparisons be-

tween our algorithm and an existing algorithm NetArch were done. Our methods

outperformed NetArch in both speed and accuracy. Applications to the PPI net-

works of the baker’s yeast, the worm and the fly were presented and analyzed. Our

methods are based on the DMC model. Methods based on other models can be

explored under the same framework.

The second issue deals with the degree distribution of networks generated by

the partial duplication (PD) model. The PD model, just like the DMC model,

belongs to the class of duplication models. The existence of the limiting degree

distribution was established. Starting with the master equation Eq. 3.1, we proved

that there is a phase transition point p0 ∈ [1/2, 1/
√
2] in the sense that the model

generates networks with almost all nodes being singletons for p < p0. Convergence

rates were also derived. The existence of the limiting degree distribution for the

connected components was also established. In contrast to the whole graph, the

connected components were showed to be highly dense for p < p0 when time is large.

Furthermore for p > p0 the connected components of the PD model were shown

to follow a power-law degree distribution with the power-law exponent satisfying

Eq. 3.17. The degree distribution of other duplication models can be investigated

via the corresponding master equation too. Limiting analysis may also provide

insight into other topological statistics.

The final part of the thesis explored the effect of seed graphs on the evolution

of network models. Simulations to calculate the properties as a function of time

were done for the DMC model, the duplication and divergent (DD) model, the PD

model, and the preferential attachment (PA) model. Results have shown that the
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seed graphs have an impact on the evolution of the network models but this impact

is not significant but limited. For instance, the decreasing tendency of the clus-

tering coefficient is independent of the seed graphs. Extension of this part can be

made to compare the topological features revealed by different methods for recon-

structing evolutionary history which were considered in the first part of the thesis.

Moreover, the seed graphs under consideration were all small graphs (with the

number of nodes smaller than 20). However, the ancient networks obtained from

many methods such as network comparisons and our two reconstruction algorithms

are usually far larger than the seed networks we selected. Hence experiments can

be designed for sufficiently large networks (such as networks with several hundred

nodes) to see how the size of the seed graphs affects the network evolution.
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