
MODEL CHECKING STOCHASTIC SYSTEMS IN PAT

SONG SONGZHENG

NATIONAL UNIVERSITY OF SINGAPORE
2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48678093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MODEL CHECKING STOCHASTIC SYSTEMS IN PAT

SONG SONGZHENG

(BEng., Tianjin Univeristy (China), 2009)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR INTEGRATIVE SCIENCES AND

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2013

Declaration

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the

sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

Song Songzheng
15 August 2013

3

g0901845
Stamp

Acknowledgements

This thesis would not be possible without the help of many kind people around me, to only

some of whom it is possible to give particular mention here.

First of all, I really appreciate the help of my supervisor Dr. Dong Jin Song, whose kindness

begins before I came to Singapore. I still remember Dr. Dong encouraged me to apply for

NGS scholarship in NUS, and gave me the chance to pursue my PhD here. His continuous

suggestions and constant encouragement eliminate my doubts and anxiety during my PhD

study. Without his various support, I would not have completed the writing of this thesis.

Furthermore, I would like to thank my mentors: Dr. Sun Jun and Dr. Liu Yang. They help

me to decide my PhD topic soon after I arrived, which is very important for me to find the

right track quickly. Their academic vision and timely discussions always inspire me from

time to time.

In addition, I would like to acknowledge the support of my thesis advisory committee

chair: Dr. Joxan Jaffar for his participation and constructive comments on my research.

To my labmates, thank you so much for your support and friendship through my PhD

study, and this journey with you will be my precious memory.

I would like to thank my parents and my younger brother, for their continuous love and

encouragement for letting me go further and further, both in distance and my achievements.

Last, but by no means least, many special thanks go to my fiancee Nina Lu. I appreciate

her company, support and trust during the last years. Her patience and thoughtfulness get

me where I am today.

4

Contents

List of Tables . i

List of Figures . ii

List of Algorithms . i

1 Introduction and Overview 1

1.1 Summary of This Thesis . 3

1.2 Thesis Structure . 5

1.3 Acknowledgement of Published Work . 6

2 Preliminaries 9

2.1 Modeling Formalisms . 9

2.1.1 Probabilistic Automata . 9

2.1.2 Discrete-time Markov Chains . 12

2.1.3 Labeled Transition System . 14

2.2 State/Event Linear Temporal Logic (SE-LTL) 15

2.3 Reachablity Checking and SE-LTL Checking in PA 16

2.3.1 Reachability Checking . 16

2.3.2 LTL Checking . 17

2.4 PAT Model Checking Framework . 18

i

3 Model Checking Hierarchical Probabilistic Systems 21

3.1 Introduction . 21

3.2 Preliminaries . 23

3.2.1 Normalization of LTS . 23

3.2.2 Safety/Liveness Recognition in LTL Formulae 23

3.2.3 Trace Refinement Checking with Anti-Chain 24

3.3 Hierarchical Modeling . 26

3.3.1 Language Syntax . 26

3.3.2 Operational Semantics . 29

3.4 Probabilistic Refinement Checking . 32

3.4.1 Refinement Checking PCSP# . 33

3.4.2 SE-LTL Probabilistic Model Checking as Refinement Checking 35

3.5 Probabilistic Refinement Checking with Anti-Chain 36

3.6 Evaluations . 37

3.6.1 Performance of Refinement Checking 39

3.6.2 Performance Improvement Using Safety Recognition 40

3.6.3 Performance Improvement Using Anti-chain 42

3.7 Related work . 42

3.8 Summary . 44

4 Applying Model Checking in Multi-agent Systems 45

4.1 Introduction . 45

4.2 Preliminaries . 49

4.2.1 Negotiation Model . 49

4.2.2 Robustness Analysis using Empirical Game Theoretic Approach . . 50

4.2.3 Dispersion Game and Strategies Definition 52

ii

4.2.4 Counter Abstraction Technique . 54

4.3 Modeling with Counter Abstraction . 54

4.3.1 Modeling Negotiation Systems . 54

4.3.2 Modeling BSS and ESS in Dispersion Games 57

4.4 Properties Specification . 58

4.4.1 Properties in Negotiation Systems . 58

4.4.2 Properties in Dispersion Games . 60

4.5 Evaluation . 61

4.5.1 Negotiation Systems . 61

4.5.2 BSS and ESS in Dispersion Games . 68

4.6 Related Work . 71

4.7 Summary . 72

5 Improved Reachability Analysis in DTMC via Divide and Conquer 73

5.1 Introduction . 73

5.2 Preliminaries . 75

5.2.1 Discrete Time Markov Chains . 76

5.2.2 Reachability Analysis in DTMC . 77

5.2.3 States Abstraction and Gauss-Jordan Elimination 78

5.3 Divide and Conquer Approach . 80

5.3.1 Overall Algorithm . 80

5.3.2 Dividing Strategies . 83

5.3.3 Parallel Computation . 84

5.4 Implementation and Evaluation . 85

5.5 Related Work and Summary . 88

iii

6 Modeling and Verifying Probabilistic Real-Time Systems using PRTS 91

6.1 Introduction . 91

6.2 Preliminaries . 95

6.2.1 Probabilistic Formalisms for Real-time Systems 95

6.2.2 LTL-X . 95

6.2.3 Non-Zenoness . 95

6.3 PRTS . 96

6.3.1 Language Syntax . 97

6.3.2 Concrete Operational Semantics . 99

6.4 Dynamic Zone Abstraction . 103

6.5 Verification of Abstract PA . 110

6.5.1 Finiteness . 110

6.5.2 Over-approximation . 111

6.5.3 Non-Zenoness . 115

6.6 Implementation and Evaluation . 120

6.6.1 Verification Under Non-Zenoness Assumption 120

6.6.2 Probabilistic Real-time Benchmark Systems 123

6.7 Related Work . 124

6.8 Conclusion . 125

7 Conclusion and Future Work 127

7.1 Summary . 127

7.2 Future Work . 128

Appendix A Concrete Operational Semantics 143

Appendix B Abstract Operational Semantics 145

iv

Summary

Stochastic systems are useful in modeling real-world complicated systems. Probabilistic
model checking is an important approach for automatic verification of stochastic systems.
However, this approach faces various challenges. Previous work on specifying and verify-
ing stochastic systems relies on simple modeling languages. Reasoning about complicated
stochastic systems however requires not only efficient verification algorithms but also ex-
pressive modeling languages. Moreover, it is worthwhile to apply probabilistic model
checking approach in specific domains to benefit their analysis. In this thesis, we focus
on designing new modeling languages which capture the characteristics of stochastic sys-
tems, proposing optimized model checking algorithms, and applying these techniques in
analyzing multi-agent systems.

First, we propose a formal model language PCSP# to specify and verify discrete proba-
bilistic systems. PCSP# supports hierarchical structure, shared variables, concurrency and
probability. In order to capture full nondeterminism and probability, the semantic model
of PCSP# is Probabilistic Automata (PA). We develop a verification engine for PCSP# to
support reachability checking, Linear Temporal Logic (LTL) checking, reward checking
and trace refinement checking. Here a refinement relationship (with probability) is from
a PCSP# model representing a system and a non-probabilistic model representing proper-
ties. Meanwhile, two optimizations are used to speed up the verification. We show that
trace refinement checking can be used to verify complex LTL safety properties. In this case,
original automata-based LTL checking is avoided, and the verification of such properties is
faster. In addition, anti-chain based approach can be used to further increase the efficiency
of the refinement checking.

Second, we use PCSP# to model and verify multi-agent systems to demonstrate the expres-
siveness and effectiveness of our approaches. Particularly, two representing scenarios are
investigated: robustness of negotiation strategies and dynamics of dispersion game. Their
characteristics are well captured by PCSP#, and desired properties are supported either by
our existing approaches, or specific designed algorithms. Moreover, counter abstraction
technique is used in the modeling and verification of these cases, so that the state space
explosion problem can be tackled to some extent.

Third, many stochastic systems are described by Discrete-time Markov Chain (DTMC)
instead of PA due to their lack of nondeterminism, such as the dispersion game mentioned
above. Therefore, we develop a novel divide-conquer approach to speed up reachability
analysis in DTMC. Reachability analysis is used to decide the probability of reaching certain
disastrous state in a DTMC, and traditional methods for calculating reachability probability

v

have their drawbacks in scalability or efficiency. One source of the low efficiency is the
existence of loops in a DTMC. Therefore, we propose to divide the whole state space of
a DTMC into several partitions, and abstract them individually. This divide-and-abstract
can be repeated iteratively to eliminate loops. Afterwards, the remaining acyclic DTMC
can be solved efficiently via value iteration method.

Last but not least, we extend PCSP# to supported real-time characteristics since timing
constraints exist widely. Another formal modeling language called PRTS is proposed
for hierarchical probabilistic real-time systems. Based on PCSP#, PRTS introduces timed
process constructors such as within and deadline. However, dense-time semantics in PRTS
generates infinite number of states. To tackle this issue, zone abstraction is used to construct
a finite-state PA from PRTS, which is subject to model checking. Furthermore, we develop
a method to model check PRTS models with the assumption of non-Zenoness, which is
known to be conflicting with zone abstraction.

All approaches proposed in this thesis are integrated in our home-grown verification
framework PAT, which has user friendly editor, simulator and verifier. PCSP# and PRTS
are developed as two modules in PAT, focusing on stochastic systems without/with timing
constraints respectively. Meanwhile, the experimental results show the applicability and
efficiency of our approaches.

Key words: Stochastic Systems, Real-time Systems, Formal Verification, Probabilistic
Model Checking, Reachability Analysis, Multi-agent Systems, PAT

vi

List of Tables

3.1 Experiments on refinement checking . 40

3.2 Experiments on LTL checking . 41

3.3 Experiments: Probabilistic Concurrent Stack Implementation 42

4.1 Payoff matrix for the top eight negotiation strategies in ANAC 2012 average
over all domains (For each strategy profile, only the row agent’s payoff is
given since the game is symmetric.) . 62

4.2 The robustness ranking of strategies in bilateral negotiations. 63

4.3 The robustness ranking of strategies in eight-agent negotiations. 67

4.4 Probability of Convergence to an MDO of ESS 68

4.5 Probability of Deviation after reaching an MDO 69

4.6 Average Number of Rounds to Converge to (Reach) an MDO in ESS 70

4.7 The Number of States and Verification Time for Checking the Convergence
Probability of ESS with and without Abstraction 70

5.1 Experiments: A Simple Example . 85

5.2 Experiments: Benchmark Systems . 87

6.1 The Affect of Zeno Schedulers . 121

6.2 Multi-lift Systems . 122

6.3 Benchmark Probabilistic Real-time Systems 123

i

List of Figures

2.1 Transitions Representing a Fair Coin Flip . 10

2.2 A PA Example . 11

2.3 A DTMC Example . 13

2.4 An LTS Example . 14

2.5 Equation System of PA . 17

2.6 Architecture of PAT . 19

3.1 Workflow . 36

4.1 One Step of the Negotiations . 55

4.2 Finite state automaton of the model of ESS with | Ai |= 2 58

4.3 Deviation analysis graph with initial state (node 1) in which each strategy is
chosen by two agents . 66

5.1 An Example of SCC . 76

5.2 Reachability Analysis . 77

5.3 States Abstraction via Gauss-Jordan Elimination 79

5.4 Destruction of SCC during Abstraction . 82

5.5 A Simple Example: N = 3. su and sf are copied for better demonstration. . . 86

6.1 Process constructs . 96

i

6.2 A lift system model . 98

6.3 Idling calculation . 105

6.4 An Abstract Model . 109

ii

List of Algorithms

1 Trace Refinement Checking Algorithm with Anti-chain 25

2 Building PA in Probabilistic Refinement Checking with Anti-chain 38

3 Divide and Conquer Approach . 81

4 Deciding Target MECs in PA . 118

5 Removing Zeno Schedulers in PA . 119

i

Chapter 1

Introduction and Overview

Stochastic systems are common in practice. Different from concurrent systems, stochastic
systems have probabilistic characteristics in their behaviors, which means some behaviors
follow specific probabilistic distributions. This kind of systems widely exist in many
domains, from communication protocols to biology systems [48, 83, 50, 63, 64, 77]. For
example, in the randomized leader election protocol [71], multiple processes want to elect
one leader. Each process will first randomly choose a natural number from a specific range
as its id . The process with a unique highest id will be elected as a leader. If several processes
have the same highest id , the selection procedure will repeat. The uniform distribution
is necessary for each process picking an id , therefore probabilistic behaviors exist in this
election system. Because of the wide existence of stochastic systems, their correctness is
critical.

As an automatic verification technique, model checking [37, 18] has been applied to a variety
of domains from hardware to software, and from concurrent systems to stochastic systems.
In concurrent systems, people always require them be absolutely correct without any
failure. However, it is meaningful to guarantee that a stochastic system behaves as desired
with a certain probability. For example, for a real message channel with environment
noise, it is acceptable that this channel can transfer message successfully with 99%. As a
result, probabilistic verification aims at different targets compared with traditional model
checking.

In a nutshell, probabilistic model checking is a systematic way of analyzing finite-state
probabilistic systems. Given a finite-state model of a probabilistic system and a property, a

1

Chapter 1. Introduction and Overview 2

probabilistic model checker calculates the (range of) probability that the model satisfies the
property. There have been a number of probabilistic model checkers and corresponding
algorithms. Some of these tools are used to model and verify various systems, and the
results are promising. However, there are still some limitations existing in current stochastic
systems verification, which are summarized as follows.

• Existing probabilistic model checkers have been designed for hierarchically simple
systems. For instance, the state-of-the-art probabilistic model checker PRISM [80]
supports a simple state-based language, based on the Reactive Modules formalism
of Alur and Henzinger [11]. The MRMC checker supports a rather simple input
language too [72]. The input language of the LiQuor checker [35], named Probmela,
is based on an extension of Promela supported by the SPIN model checker. None
of the above tools supports analysis of hierarchical complex probabilistic systems,
therefore some complicated systems cannot be verified efficiently.

• Existing fundamental probabilistic verification algorithms are not optimal in all set-
tings. Linear Temporal Logic (LTL) verification in Probabilistic Automata (PA) [18]
is based on automata-theoretic approach, which is complicated and unnecessary in
some cases; reachability analysis in Discrete-time Markov Chains (DTMCs) always
applies value iteration method and may confront the slow convergence problem.
Therefore optimizations of these algorithms are necessary.

• Although model checking approach has been applied to some other domains, e.g.,
biological systems [63, 64, 77], more effort should be done to widen its application.
Multi-agent systems (MASs) are widely used to model system composed by different
parties, and their formal verification should be paid much attention [134]. However,
not that much work has been done on applying model checking techniques in MAS,
especially for MAS with probabilistic dynamics.

• Few existing works focus on formal verification of probabilistic real-time systems.
Uppaal [23] supports real-time, concurrency and recently data operations as well as
probability (in the extension named Uppaal-pro), but lacks support for hierarchical
control flow and is limited to maximal probabilistic reachability checking. PRISM [80]
supports the verification of Probabilistic Timed Automata (PTA), which combines
real-time and probability. However, it does not support hierarchical systems, but
rather networks of flat finite state systems. In addition, most of the tools support
only simple data operations, which could be insufficient in modeling systems with

1.1. SUMMARY OF THIS THESIS 3

complicated structures and complex data operations that are common in real-life
cases.

To tackle these limitations, in this thesis, we are aiming at automatic and systematic methods
to verify hierarchical stochastic systems with/without timing requirements. Expressive
modeling languages and efficient verification algorithms are designed to make our work
benefit to this domain. Moreover, we apply our approach in MAS to analyze its dynamics
and generate promising outputs for MAS community.

1.1 Summary of This Thesis

In this section, we briefly introduce the scope of this thesis.

First, we develop a model checker for verifying hierarchical complex probabilistic systems.
A language called PCSP# is proposed for stochastic system modeling. It is an expressive
language, combining Hoare’s CSP [69], data structures, and probabilistic choices. It extends
previous work on combining CSP with probabilistic choice [94] or on combining CSP
with data structures [113]. PCSP# combines low-level programs, e.g., sequence programs
defined in a simple imperative language or any C# program, with high-level specifications
(with process constructs like parallel, choice, hiding, etc.), as well as probabilistic choices. It
supports shared variables as well as abstract events, making it both state-based and event-
based. The semantic model of PCSP# is Probabilistic Automata (PA). We have implemented
PCSP# model checker in PAT model checking framework.

In order to increase the verification efficiency of PCSP# models, we propose two optimized
algorithms.

• We show that refinement checking can be used to verify complex Linear Temporal
Logic (LTL) safety properties. Here a refinement relationship (with probability) is from
a PCSP# model representing a system and a non-probabilistic model representing
properties. In this case, original automata-based LTL checking in PA is avoided, and
the verification of such properties is faster.

• Due to the potential nondeterminism in the specification, refinement checking often
relies on the classic subset construction approach. Therefore, we show that anti-chain

1.1. SUMMARY OF THIS THESIS 4

can be used to speed up the refinement checking between a probabilistic implemen-
tation and a non-probabilistic specification.

Next, focusing on widening the applications of our approach, we apply model checking
techniques in MAS domain to analyze its dynamics. Two MAS scenarios are taken into
consideration: robustness of negotiation strategies, and dynamics of dispersion games [120].
According to the characteristics of these two cases, different semantic models are used to
capture their behaviors. Since no stochastic behaviors exist in robustness analysis in our
setting, Labeled Transition System (LTS) is applied to model the negotiation systems. On
the contrary, we show that Discrete-time Markov Chain (DTMC) is suitable for representing
dispersion games. Because LTS and DTMC can be viewed as specific PAs, PCSP# has the
capability to model both systems. Meanwhile, counter abstraction technique is used to
reduce the state space of both MAS models due to the symmetric property existing in
the systems, thus making the analysis using model checking techniques both feasible and
efficient. Further, for specific properties such as robustness requirements, we have designed
dedicated verification algorithms to fulfill the verification.

According to our experience of DTMC systems, e.g., dispersion games, we propose a divide
and conquer approach to improve reachability analysis in DTMC. Traditional methods
of reachability analysis in DTMC have their drawbacks. For example, value iteration
may confront slow convergence problem when huge loops exist in DTMC. Our approach
partitions the state space of a DTMC and abstracts each group individually. Loops can
be eliminate afterwards, therefore the existing slow convergence problem can be solved to
some extent.

Finally, because in real-life cases many stochastic systems have timing requirements, we
develop a model checker for probabilistic real-time systems based on PCSP#. A modeling
language called PRTS is defined, which captures the behaviors of systems with stochastic
dynamics, timing requirements and hierarchical control flows. The semantic model of PRTS
is also PA. Because PRTS has dense-time semantics, there are potentially infinite number of
states in corresponding PA. To tackle this issue, we use dynamic zone abstraction approach
to generate finite-state abstract PA. Furthermore, we develop a method to model check
PRTS models with the assumption of non-Zenoness, which is known to be conflicting with
zone abstraction. This approach is also implemented in PAT.

1.2. THESIS STRUCTURE 5

1.2 Thesis Structure

This thesis has 7 chapters in total. The remaining chapters are structured as follows.

Chapter 2 recalls the preliminary knowledge which are fundamental in this thesis. In this
chapter, we first introduce the modeling formalisms used in our approach: Probabilis-
tic Automata (PA), Discrete-time Markov Chain (DTMC) and Labelled Transition System
(LTS). The first two both support probabilistic choices, while PA also captures full nonde-
terminism. LTS is for non-probabilistic systems, which supports concurrency. Second, a
widely used temporal logic: Linear Temporal Logic (LTL) is introduced. Third, we explain
reachability analysis and LTL verification in PA. Relative algorithms such as value itera-
tion method and automata-based approach are briefly presented. Lastly, since all model
checkers and corresponding algorithms proposed by this thesis are implemented in PAT
model checking framework, we introduce this toolkit.

Chapter 3-6 are the main content of this thesis, and they have the similar following structure.
First we give specific introduction to the content of this chapter. Then specific preliminary
knowledge (if there is any) for this chapter is followed. Next, we discuss the main content
of this chapter with experimental results. Related work is presented in the end.

Chapter 3 introduces our model checker for probabilistic systems. First, The syntax and
operational semantics of language PCSP# are formally defined. Further, we prove that LTL
safety properties can be verified via trace refinement checking between a PCSP# model
and a non-probabilistic specification, therefore the verification efficiency of corresponding
properties can be increased. Moreover, we show that anti-chain approach can be used to
speed up the mentioned trace refinement checking.

Chapter 4 introduces the application of our model checking approach in analyzing dynam-
ics of multi-agent systems. First, we use traditional model checking approach to check
the robustness of negotiation strategies in MAS. Later, probabilistic model checking is
used to analyze the stochastic behaviors of a multi-learner system, in particular, a scenario
called dispersion game. Convergence, deviation, and convergence rate are calculated in
the model of this game.

Chapter 5 introduces the divide and conquer approach to improve the reachability analysis
in DTMC. We show that traditional methods have their drawbacks, e.g., slow convergence
problem in value iteration approach. Then we present the state space of a DTMC can be

1.3. ACKNOWLEDGEMENT OF PUBLISHED WORK 6

partitioned to small groups, each of which can be abstracted individually. After iterative
partitioning and abstraction, the resulting DTMC is acyclic which can be verified efficiently.

Chapter 6 introduces our model checker for probabilistic real-time systems. First, the
syntax and semantics of language PRTS are formally defined. Further, dynamic zone
abstraction is used to generated finite-state abstract PA which is subject to model checking.
Moreover, we develop an algorithm to model check PRTS models against LTL properties
with non-Zenoness assumption.

Chapter 7 concludes this thesis with some further directions of research.

1.3 Acknowledgement of Published Work

Most of the work presented in this thesis has been published in international conference
proceedings.

• Model Checking Hierarchical Probabilistic Systems [119]. This paper was pub-
lished at the 12th International Conference on Formal Engineering Methods (ICFEM
2010). The work is presented in Chapter 3.

• More Anti-chain Based Refinement Checking [132]. This paper was published at
the 14th International Conference on Formal Engineering Methods (ICFEM 2012).
The work is presented in Chapter 3.

• Probabilistic Model Checking Multi-agent Behaviors in Dispersion Games Using
Counter Abstraction [60]. This work was published at the 15th International Con-
ference on Principles and Practice of Multi-Agent Systems (PRIMA 2012). The work
is presented in Chapter 4.

• Improved Reachability Analysis in DTMC via Divide and Conquer [119]. This pa-
per was published at the 10th International Conference on integrated Formal Methods
(iFM 2013). The work is presented in Chapter 5.

• PRTS: An Approach for Model Checking Probabilistic Real-Time Hierarchical
Systems [118]. This paper was published at the 13th International Conference on
Formal Engineering Methods (ICFEM 2011). Its short version is published in 24th
Computer Aided Verification (CAV 2012) as a tool demonstration paper. The work is
presented in Chapter 6.

1.3. ACKNOWLEDGEMENT OF PUBLISHED WORK 7

Moreover, the work related to apply model checking approach in robustness analysis of
negotiation strategies, which is presented in Chapter 4, has been submitted for publication.

For all these publications, I have substantial contributions in both theory and implementa-
tion.

1.3. ACKNOWLEDGEMENT OF PUBLISHED WORK 8

Chapter 2

Preliminaries

In this chapter, we define some general and fundamental notations and concepts used in
our work. First, several modeling formalisms are introduced. As the semantic model of our
language, Probabilistic Automata (PA) [110] is presented in details; meanwhile, Discrete-
time Markov Chain (DTMC) is also presented since it is critical to define related concepts in
PA; in addition, Labeld Transition System (LTS) is introduced because of its significance in
modeling concurrent systems. Further, the syntax and semantics of Linear Temporal Logic
(LTL) is presented, followed by the introduction of reachability checking and LTL checking
in PA. Moreover, we introduce PAT model checking framework, which is the fundamental
toolkit for our model checker and algorithms. Other concepts will be introduced in later
chapters where they are relevant.

2.1 Modeling Formalisms

2.1.1 Probabilistic Automata

When modeling probabilistic systems (particularly, discrete-time stochastic control pro-
cesses), PA is one of the popular models since it supports probabilistic choices and full
nondeterminism. A PA is a directed graph whose transitions are labeled with events or
probability. The following notations are used to denote different transition labels. τ de-
notes an unobservable event; Act denotes the set of observable events such that τ < Act ; a
special event X ∈ Act indicates the termination of a process; Actτ denotes Act ∪ {τ}. Given

9

2.1. MODELING FORMALISMS 10

Figure 2.1: Transitions Representing a Fair Coin Flip

a set of states S , a distribution is a function µ : S → [0, 1] such that Σs∈S µ(s) = 1. µ is a
trivial distribution or is trivial if and only if there exists a state s ∈ S such that µ(s) = 1. Let
Distr (S) be the set of all distributions over S . Formally, we have the following definition.

Definition 1 A PA is a tuple D = (S , sinit ,Act ,Pr ,AP ,L) where S is a countable set of states;
sinit ∈ S is the initial state1; Pr ⊆ S × Actτ × Distr (S) representing the transition relation, i.e.,
states in PA can reach different distributions via the same action; AP is a set of atomic propositions
and L: S → 2AP is a labeling function.

A PA D is finite if and only if S and Distr (S) are finite. In this thesis, we just focus on
finite PA. For simplicity, a transition is written as s

x
→ µ such that s ∈ S ; x ∈ Actτ and

µ ∈ Distr (S). If µ is trivial, i.e., ∃ s ′ ∈ S satisfying µ(s ′) = 1, the transition can be simplified
as s

x
→ s ′. One example of transitions in PA is demonstrated in Fig. 2.1. In this example,

one can ‘flip’ a fair coin, generating equal probabilities to ’head’ (sh) and ‘tail’ (st). Here
the rectangle represents the action, and circles represent states in the system. (s0,flip, µ) is
in the transition relation, where µ(st) = µ(sh) = 0.5.

There are two kinds of transition labels in our setting. An observable transition is labeled
with an action in Act . An un-observable transition is labeled with τ. An action x is
enabled in state s if and only if ∃µ ∈ Distr (S), (s , x , µ) ∈ Pr . Given a state s , let Act(s) =

{(x , µ) | (s , x , µ) ∈ Pr }. ; state s ′ is called an successor of s if and only if ∃(x , µ) ∈ Act(s)
satisfying µ(s ′) > 0. Pre(s ′) is defined as {s | s ′ is successor of s}, which are pre-states
of s ′. Given a set of states C , Pre(C) = {s | ∃ c ∈ C , s ∈ Pre(c)}. An infinite path
in D = (S , sinit ,Act ,Pr ,AP ,L) is an infinite sequence 〈s0, x1, µ1 s1, x2, µ2, s2, x3, µ3 · · ·〉 ∈

(S ×Act ×Distr (S))ω, which can be denoted as

π = s0
x1,µ1
−→ s1

x2,µ2
−→ s2

x3,µ3
−→ · · ·.

1Without loss of generality, we assume there is only one initial state in the system.

2.1. MODELING FORMALISMS 11

Figure 2.2: A PA Example

such that ∀ i ≥ 0, (si , xi+1, µi+1) ∈ Pr ∧ µi+1(si+1) > 0. A corresponding infinite trace of π is
denoted as ρ = s0s1s2 · · ·. Any finite prefix of π (or ρ) that ends in a state is a finite path
(or trace). Paths(s) (or Traces(s)) denotes the set of infinite paths (or traces) that start in
state s ; Pathsfin (s) (or Tracesfin (s)) denotes the set of finite paths (or traces) that start in s .
A path is rooted if it starts with sinit . Hereafter, by traces and paths we mean rooted traces
and paths unless otherwise stated.

In order to verify temporal logic, we recall the definition of Maximal End Components
(MEC) [18]. First, sub-PA is defined as follows.

Definition 2 Let D = (S , sinit ,Act ,Pr ,AP ,L) be a PA. A sub-PA of D is a pair (T, A) where
∅ , T ⊆ S and A ⊆ T × Act × Distr (S) is a relation such that: 1) for all states s ∈ T ,
there exist x ∈ Act and µ ∈ Distr (S) satisfying (s , x , µ) ∈ A and 2) (s , x , µ) ∈ A implies
{t ∈ S | µ(t) > 0} ⊆ T .

An end component of PA D is a sub-PA (T ,A) such that the graph induced by (T ,A) is
strongly connected, i.e., ∀ s , s ′ ∈ T ,∃ p = 〈s0, x1, µ1, s1, x2, µ2, s2, x3, µ3, · · · sn〉 ∈ pathfin (s0)
satisfying s0 = s ∧ sn = s ′ ∧ (∀ i ≥ 0, (si , xi+1, µi+1) ∈ A).

An end component (T ,A) ofD is called maximal if there is no end component (T’, A’) such
that (T ,A) , (T ′,A′) ∧ (∀ s ∈ T ,T ⊆ T ′ ∧ A(s) ⊆ A′(s). A bottom MEC is an MEC without
outgoing transitions. We write MEC (D) to denote all MECs contained in D. Note MECs
are disjoint, in other words, one state belongs to at most one MEC.

One simple PA is demonstrated in Fig. 2.2. Note a transition following a trivial distribution
is labeled with an action only. In this example, S = {s0, s1, s2, s3, s4}; sinit = s0; Act = {a , b, c}.

π1 = s0
a ,µ1
−→ s1

a ,µ2
−→ s2

b,µ3
−→ s4 · · · ∈ Path(s0) and π2 = s0

a ,µ1
−→ s1

a ,µ2
−→ s2

b,µ3
−→ s4 ∈ Pathfin (s0).

MEC (D) = {({s1, s3}, {(s1, a , µ4), (s3, c, µ5)}), ({s4}, {(s4, c, µ6)})}. Here µ1, µ3, µ5, µ6 are obvious

2.1. MODELING FORMALISMS 12

in Fig 2.2. µ2 and µ4 are both distributions from s1 via action a . µ2 satisfies µ2(s4) = 0.4 and
µ2(s2) = 0.6, while µ4 is a trivial distribution satisfying µ4(s3) = 1.

Throughout this paper, we assume PAs are deadlock-free following the standard prac-
tice. A deadlocking PA can be made deadlock-free by adding self loops labeled with τ

with probability 1 to the deadlocking states, without affecting the result of probabilistic
verification.

2.1.2 Discrete-time Markov Chains

From the definition, we can find that a state of a PADmay have multiple outgoing actions,
which means nondeterminism exists in D. A scheduler for D is a function to resolve the
nondeterminism, whose definition is Γ : tracesfin (sinit) → Actτ × Distr (S). A scheduler is
called memoryless if and only if for each trace sinit s1s2 · · · sn and sinit t1t2 · · · tm , as long as
sn = tm :

Γ(sinit s1s2 · · · sn) = Γ(sinit t1t2 · · · tm).

Therefore, a memoryless scheduler can be viewed as a function Γ : S → Actτ × Distr (S),
i.e., it always chooses the same action and same distribution in a given state.

Given an PA D and a scheduler δ, a Discrete Time Markov Chain [18] (DTMC) Dδ can be
defined, which just has one action and one corresponding outgoing distribution in every
state. The formal definition of DTMC is as follows.

Definition 3 A DTMC is a tuple (S , sinit ,Act ,Pr ,AP ,L) where S is a countable set of states;
sinit ∈ S is the initial state; Pr is a function: S → Actτ × Distr (S) representing the transition
relation; AP is a set of atomic propositions and L: S → 2AP is a labeling function.

Our definition of DTMC is slightly different from the traditional one [18] since we take
the actions into consideration. For each state in DTMC, there is a unique action and
corresponding distribution enabled. Without loss of generality, we have the following two
assumptions for DTMCs in this thesis. 1) There is only one initial state in the whole system
and 2) DTMC is deadlock free.

Given a DTMC Dδ = (S , sinit ,Act ,Pr ,AP ,L), a transition is written as s
x ,p
−→ s ′ such that

s , s ′ ∈ S ; x ∈ Actτ; ∃µ ∈ Distr (S) satisfying Pr (s) = (x , µ) and p = µ(s ′) > 0. If µ is

2.1. MODELING FORMALISMS 13

Figure 2.3: A DTMC Example

a trivial distribution, the transition can be simplified as s
x
→ s ′. In each transition, we

denote P (s , s ′) = µ(s ′) as long as Pr (s) = (x , µ). A path ofDδ is a finite or infinite sequence
π = 〈s0, s1, s2, · · ·〉 of states where si ∈ S such that P (si , si+1) > 0 for all i . Actions and
distributions are ignored in the paths since they are unique for each state. Let Paths(Dδ, s)
denote the set of all paths of Dδ starting in state s and let Pathsfin (Dδ, s) denote the set
of all finite paths of Dδ starting in s . Paths(Dδ) and Pathsfin (Dδ) are respectively used to
denote all paths and finite paths in Dδ starting in an arbitrary state. A state s ′ is called
reachable from state s if and only if there is a finite path from s to s ′. One simple DTMC
is demonstrated in Fig. 2.3, which is generated from the PA in Fig. 2.2 with a memoryless
scheduler δ satisfying δ(s0) = (a , µ1); δ(s1) = (a , µ2); δ(s2) = (b, µ3) and δ(s4) = (c, µ6).
Related distributions are defined in Fig. 2.2.

A set of states C ⊆ S is called connected in Dδ iff ∀ s , s ′ ∈ C , there is a finite path
π = 〈s0, s1, · · · , sn〉 satisfying s0 = s ∧ sn = s ′ ∧ ∀ i ∈ [0,n], si ∈ C . Strongly Connecte
Components (SCCs) are those maximal sets of states which are mutually connected in a
DTMC. An SCC without outgoing transitions is called bottom SCC (BSCC). An SCC is called
trivial if it just has one state without a self-loop. An SCC is nontrivial iff it is not trivial. A
DTMC is acyclic iff it only has trivial SCCs. Note that one state can only be in one SCC. In
other words, SCCs are disjoint. Take the DTMC in Fig. 2.3 as an example. It just has one
non-trivial SCC: {s4}, and it is a BSCC.

The cylinder set of a finite path π ofDδ is defined as Cyl (π) = {π′ ∈ Paths(Dδ) | π′ is infinite
and π is a prefix of π′}. The probability of the cylinder sets denoted as Pδ

D
is given by

P
δ
D

(Cyl (s0 · · · sn)) = Πn−1
i=0 P (si , si+1).

For finite paths π ∈ Pathsfin (Dδ, s0) we set Pδ
Dfin

(π) = Pδ
D

(Cyl (π)). For a set of paths
A ∈ Pathsfin (Dδ, s) we define Pδ

Dfin
(A) = Σπ∈A′P

δ
Dfin

(π) with A′ = {π ∈ A | ∀π′ ∈ A, π′ is
not a prefix of π}. Similarly, if π is infinite, then Pδ

D
(π) = Π∞

i=0P (si , si+1). For a set of paths
A ∈ Paths(Dδ, s) we define Pδ

D
(A) = Σπ∈AP

δ
D

(π). Note that for an infinite path set the

2.1. MODELING FORMALISMS 14

Figure 2.4: An LTS Example

definition may involve an infinite sum, but it always defines a probability mass between 0
and 1.

2.1.3 Labeled Transition System

Labeled transition system is a semantic formalism widely used in concurrent systems, in
which states are labeled with atomic propositions and transitions are labeled with actions.

Definition 4 A Labeled Transition System (LTS) L is a tuple (S , sinit ,Act ,T ,AP ,L) where S is
a finite set of states; and init ∈ S is an initial state; Act is an alphabet; T ⊆ S ×Act ×S is a labeled
transition relation; AP is a set of atomic propositions and L: S → 2AP is a labeling function.

A transition label can be either a visible event or an invisible one (which is referred to as
τ). A τ-transition is a transition labeled with τ. For simplicity, we write s

e
→ s ′ to denote

(s , e , s ′) ∈ T . If s
e
→ s ′, then we say that e is enabled at s . Let s s ′ to denote that s ′ can

be reached from s via zero or more τ-transitions; we write s
e
 s ′ to denote there exists s0

and s1 such that s s0
e
→ s1 s ′. A path of L is a sequence of alternating states/events

π = 〈s0, e0, s1, e1, · · ·〉 such that s0 = init and si
ei
→ si+1 for all i . The set of path ofL is written

as paths(L). Given a path π, we can obtain a sequence of visible events by omitting states
and τ-events. The sequence, written as trace(π), is a trace of L. The set of traces of L is
written as traces(L) = {trace(π) | π ∈ paths(L)}.

A set of states C ⊆ S is called connected in L iff ∀ s , s ′ ∈ C , there is a finite path π =

〈s0, e0, s1, e1 · · · , sn〉 satisfying s0 = s ∧ sn = s ′ ∧ ∀ i ∈ [0,n], si ∈ C . Strongly Connecte
Components (SCCs) are those maximal sets of states which are mutually connected in an
LTS. An SCC without outgoing transitions is called bottom SCC (BSCC). An SCC is called
trivial if it just has one state without a self-loop. An SCC is nontrivial iff it is not trivial.
SCCs in LTS are also disjoint. Take the LTS in Fig. 2.4 as an example. s0

b
→ s4 and s0

a
 s4.

Meanwhile, it just has one non-trivial SCC: {s4}, and it is a BSCC.

2.2. STATE/EVENT LINEAR TEMPORAL LOGIC (SE-LTL) 15

2.2 State/Event Linear Temporal Logic (SE-LTL)

In this part, we introduce a widely used temporal logic: Linear Temporal Logic (LTL), which
is also one main kind of properties studied in this thesis. Traditional LTL was introduced
to specify the properties of executions of a system [98]. In [31], LTL is extended to build
up from not only state propositions but also events2. The extended LTL is referred to as
SE-LTL. Given a PA D = (S , sinit ,Act ,Pr ,AP ,L), an SE-LTL formula φ can be composed
by not only atomic state propositions but also actions. The syntax is

φ ::= p | α | ¬φ | φ ∧ φ | Xφ | φUφ, where p ∈ AP and α ∈ Act .

The semantics of SE-LTL is defined as follows.

Definition 5 Let π = 〈s0, x0, µ1 s1, x1, µ2 · · ·〉 be a path in a PA D and πi the suffix of π starting
at si . The path satisfaction relation is defined as follows:

• π |= p iff p ⊆ L(s0);

• π |= α iff α = x0;

• π |= ¬φ iff π 2 φ;

• π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2;

• π |= Xφ iff π1 |= φ;

• π |= φ1Uφ2 iff there exists k ≥ 0 satisfying πk |= φ2 and for all 0 ≤ j < k , πj |= φ1.

Informally, ¬φ means φ does not hold; Xφ indicates φ should be true in next state; U

means “until”, i.e., φ1Uφ2 indicates that φ1 must be true until φ2 is true. Other properties
can be extended from these basic syntax. For example, ^p meaning eventually p can be
expressed as true U p, and �p meaning “always p” can be represented as ¬^¬p.

2Events and actions are interchangeable in this thesis

2.3. REACHABLITY CHECKING AND SE-LTL CHECKING IN PA 16

2.3 Reachablity Checking and SE-LTL Checking in PA

In this section, we recall the algorithms of reachability checking and SE-LTL (LTL for short)
checking in PA. The reason that these two properties are chosen is because they play the
key role in the properties specification in this thesis.

2.3.1 Reachability Checking

Reachability checking in PA indicates the computation of reachability probability from one
state to another. Generally, given a PA D (S , sinit ,Act ,Pr ,AP ,L) and T ⊆ S as a set of
target state, it is meaningful to measure the probability from other states to T . In order to
decide this, DTMCs should be constructed from D, and the reachability probabilities for
each DTMC should be calculated.

Here the interest is the maximal, or dually, the minimal probability of reaching a state in T

when starting in state s ∈ S . For maximal probabilities this amounts to determining

P
max
D

(s |= ^T) = supδP
δ
D

(s |= ^T)

There are potentially infinitely many schedulers inD. Fortunately, theorems in [18] guar-
antee that for any s ∈ S , there exists a memoryless scheduler which maximizes the proba-
bilities of reaching T . Therefore, the supremum can replaced by a maximum. Meanwhile,
the number of memoryless schedulers is finite sinceD is finite.

Similarly, the minimal reachability probability is defined as

P
min
D

(s |= ^T) = infδPδD(s |= ^T)

Again, there exists a memoryless scheduler to minimize the probability. Therefore the
infimum can be replaced by a minimum.

Because all properties supported in this thesis can be reduced to reachability checking, in the
following all schedulers used are assumed to be memoryless unless mentioned otherwise.
Next, we use maximal reachability property to demonstrate how to solve reachability
probabilities.

Given the transition relation of a PA, a equation system representing the transition proba-
bility from one state to another can be built. After the target states are decided, each state

2.3. REACHABLITY CHECKING AND SE-LTL CHECKING IN PA 17

Figure 2.5: Equation System of PA

in the equation system can be represented by a variable, which means the probability of
reaching the target states from this state. Take the PA in Fig. 2.2 as an example, whose
corresponding equation system is shown in Fig 2.5. Here s4 is set to be the target state, and
pi in the equation system represents the maximal probability from si to s4.

To solve the equation system, value iteration method [18] is popular due to its good
scalability. This approach starts from the target states, and uses a backward format to
update the value of the variables in the equation system step by step. Imagine we want
to calculate the maximal probability from s3 to s4 in Fig. 2.5. Assume pk

i is the maximal
probability of si after the k -th iteration. Starting from the target state s4, in k -th iteration
we update the probability of states which could reach s4 in exact k steps. Obviously,
p0

i = 0, 0 ≤ i ≤ 3. As pk
4 = 1 for any k , k is ignored in this state. In the 1st iteration, p0, p1 and

p2 can be updated. p1
0 = 0.5, p1

2 = 1 and p1
1 = max{0.4×p4+0.6×p0

2 , 1×p0
3 } = max {0.4, 0} = 0.4.

In the 2nd iteration, both p1 and p3 can be updated. It is trivial to show p2
3 = 0.1×p1

3 +0.9×p1
1

= 0.9, and p2
1 = max{0.4×p4 +0.6×p1

2 , 1×p1
3 } = max {1, 0} = 1. In the 3rd iteration, only p3 can

be updated. p3
3 = 0.1 × p2

3 + 0.9 × p2
1 = 0.99. Iteratively, p3 in the long run can be calculated.

A user-defined threshold is usually necessary to terminate the calculation, according to the
desired precision.

2.3.2 LTL Checking

Automata-theoretic approach is used to check LTL properties in stochastic systems [18].
Given a PAD and an LTL formula φ, the steps of deciding the probability thatD satisfies
φ are given as follows.

1. A deterministic Rabin automaton (DRA) equivalent to φ formula is built. The prop-
erties definable by DRA are the ω-regular languages [18], therefore for each LTL
formula, there is a corresponding DRA.

2.4. PAT MODEL CHECKING FRAMEWORK 18

2. The product of the DRA andD is then computed, and the result is still a PA, denoted
asD′.

3. MECs in D′ which satisfy the Rabin acceptance condition are identified. Any path
ofD′ reaching these MECs can be proved to satisfy φ, therefore states in these MECs
are set to be target states.

4. Now the LTL checking problem is reduced to a reachability checking issue. The
probability of reaching any state of the targets from the initial state ofD′ is calculated,
which equals the probability thatD satisfies φ.

2.4 PAT Model Checking Framework

The model checkers and related algorithms are implemented in our home-grown model
checking framework Process Analysis Toolkit (PAT)3 [114]. Therefore, in this section we
briefly introduce this toolkit.

PAT is a self-contained verification framework, which supports composing, simulating and
verifying concurrent systems, real-time systems, and probabilistic systems. Developed
mainly in C# language, PAT supports multiple operating systems include Windows, Linux
and Mac OS.

In order to handle different kinds of systems, multiple modules are supported in PAT, and
some fundamental modules are listed as follows.

• CSP module focuses on concurrent systems. A rich modeling language called CSP#
is defined by extending CSP language with shared variables.

• Real-time System (RTS) module supports analysis of real-time systems. In RTS mod-
ule, a system is modeled using a hierarchical timed process with mutable data. Timed
operators such as deadline and timeout are used to capture the dense-time scenarios.

• Web Service module is developed to offer practical solutions to important issues in
Web Services paradigm.

3http://www.patroot.com

http://www.patroot.com

2.4. PAT MODEL CHECKING FRAMEWORK 19

Figure 2.6: Architecture of PAT

• NesC module is designed for the verification of sensor networks. The modeling
language of this module is NesC [144, 142, 143], which provides fine-grained control
over the underlying devices and resources.

Moreover, PAT implements various model checking techniques catering for different prop-
erties such as deadlock-freeness, divergence-freeness, reachability, LTL properties with
fairness assumptions [115, 114], refinement checking [112, 88, 89] and probabilistic model
checking.

For development convenience, PAT has a loosely layered architecture shown in Fig. 2.6.
We briefly introduce the functionality of different layers in the following.

• On the top is the modeling layer. Each module has its own specific modeling language
to capture the dynamics of the related systems.

• Next, some potential abstraction techniques are used before or with the operational
semantics analysis in order to get a semantic model which is subject to efficiently
model checking.

• In the intermediate layer, different semantic models are used to represent the original
system. For example, Labeled Transition System (LTS) is used to represent the con-
current systems and Timed Transition System (TTS) represents the real-time systems.

2.4. PAT MODEL CHECKING FRAMEWORK 20

• At the bottom layer, suitable algorithms for different semantic models are applied to
fulfill the verification.

Because of PAT’s architecture, it is a highly extensible and modularized framework for
the technical and practical convenience of designing purpose specific model checkers. Pat
has the guide for users for customizing the syntax and semantics for their own modeling
language, and a corresponding model checker is treated as a new module in PAT. Existing
abstraction techniques and verification algorithms in PAT framework can be used in this
new module conveniently.

Chapter 3

Model Checking Hierarchical
Probabilistic Systems

3.1 Introduction

Designing and verifying probabilistic systems is becoming an increasingly difficult task
due to the widespread applications and increasing complexity of such systems. Existing
probabilistic model checkers have been designed for hierarchically simple systems. For
instance, the popular PRISM checker [80] supports a simple state-based language, based
on the Reactive Modules formalism of Alur and Henzinger [11]. The MRMC checker
supports a rather simple input language too [72]. The input language of the LiQuor
checker [35], named Probmela, is based on an extension of Promela supported by the SPIN
model checker. None of the above checkers supports analysis of hierarchical complex
probabilistic systems.

In this chapter, we aim to develop a useful tool for verifying hierarchical complex proba-
bilistic systems. First, we propose a language called PCSP# for system modeling. PCSP#
is an expressive language, combining Hoare’s CSP [69], data structures, and probabilis-
tic choices. It extends previous work on combining CSP with probabilistic choice [94] or
on combining CSP with data structures [113]. PCSP# combines low-level programs, e.g.,
sequence programs defined in a simple imperative language or any C# program, with
high-level specifications (with process constructs like parallel, choice, hiding, etc.), as well
as probabilistic choices. It supports shared variables as well as abstract events, making

21

3.1. INTRODUCTION 22

it both state-based and event-based. Its underlying semantics is based on Probabilistic
Automata (PA).

Second, we propose to verify complex safety properties by showing a refinement relation-
ship (with probability) from a PCSP# model representing a system and a non-probabilistic
model representing properties. Note that we assume that the property model is non-
probabilistic, i.e., the model is an LTS. We view probability as a necessary devil forced
upon us by the unreliability of the system or its environment. In contrast, properties
which characterizes correct system behaviors are often irrelevant of the likelihood of some
low-level failures. Refinement checking has been traditionally used to verify variants of
CSP [104, 105]. It has been proven useful by the success of the FDR checker [105]. Ver-
ification of such properties are reduced to the problem of probabilistic model checking
against deterministic finite automata, which has been previously solved (see for exam-
ple [18]). Nonetheless, we present a slightly improved algorithm which is better suited for
our setting.

Third, instead of the standard method for model checking SE-LTL formulae, we improve
it by safety/co-safety recognition. That is, if an LTL formula or its negation is recognized
as a safety property, then the model checking problem is reduced to a refinement checking
problem and solved using our refinement checking algorithm. Though the worst-case
complexity remains the same, we show that safety/co-safety recognition offers significantly
memory/time saving in practice.

Fourth, due to the potential non-determinism in the LTS representing the specification,
its normalization may have exponentially more states than the original LTS. As a result,
refinement checking may suffers from state space explosion. We show that anti-chain can
be used to improve the efficiency of the above-mentioned refinement checking in some
particular cases, based on the value iteration method.

Organization The remainder of this chapter is organized as follows. Section 3.2 presents
relevant technical definitions. Section 3.3 introduces the syntax and semantics of PCSP#.
Section 3.4 presents the verification of PCSP# models, including our trace refinement check-
ing and our approach for verifying SE-LTL formulae with safety recognition. Section 3.5
presents applying anti-chain to probabilistic refinement checking. Section 3.6 evaluates
our methods. Section 3.7 surveys the related work. Section 3.8 summarizes the content in
this chapter.

3.2. PRELIMINARIES 23

3.2 Preliminaries

3.2.1 Normalization of LTS

An LTS is deterministic if and only if given any s and e , there exists only one s ′ such
that s

e
→ s ′. An LTS is non-deterministic if and only if it is not deterministic. A non-

deterministic LTS can be translated into a trace-equivalent deterministic LTS by deter-
minization. Furthermore, non-deterministic LTSs containing τ-transitions can be trans-
lated into trace-equivalent deterministic LTSs without τ-transitions. The process is known
as normalization [104].

Definition 6 (Normalization) Let L = (S , init ,Act ,T ,AP ,L) be an LTS. The normalized LTS
of L is nl (L) = (S ′, init ′,Act ,T ′,AP ,L′) where S ′ ⊆ 2S is a set of sets of states, init ′ =

{s | init s} and T ′ is a transition relation satisfying the following condition: (N , e ,N ′) ∈
T ′ if and only if N ′ = {s ′ | ∃ s : N . s

e
 s ′}.

Normalization groups states which can be reached via the same trace. Given two LTSs L0

andL1, it is often useful to check whether traces(L0) is a subset of traces(L1) (or equivalently
L0 trace-refinesL1). There are existing algorithms and tools for trace inclusion check [104].
The idea is to construct the product ofL0 and nl (L1) and then search for a state of the form
(s , s ′) such that s enables more visible events than s ′ does. In the worse case, this algorithm
is exponential in the number of states of L1. It is nonetheless proven to be practical for
real-world systems by the success of the FDR checker [105].

3.2.2 Safety/Liveness Recognition in LTL Formulae

SE-LTL formulae can be categorized into either safety or liveness. Informally speaking,
safety properties stipulate that “bad things” do not happen during system execution. A
finite execution is sufficient evidence to the violation of a safety property. In contrast,
liveness properties stipulate that “good things” do happen eventually. A counterexample
to a liveness property is an infinite system execution (which forms a loop if the system has
finitely many states). In this paper, we adopt the definition of safety and liveness in [6]. For
instance, �(a ⇒ �b) and ^a ⇒ �b are safety properties; �a ⇒ ^b is a liveness property,
whose negation, however, is a safety property. A liveness property whose negation is

3.2. PRELIMINARIES 24

safety is referred to as co-safety, e.g., ^a is co-safety. We remark that a formula may be
neither safety nor liveness, e.g., �^a ∧ �b. It has been shown in [108] that recognizing
whether an LTL formula is safety is PSPACE-complete. A number of methods have been
proposed to identify subsets of safety. For instance, syntactic LTL safety formulae (which
is constituted by ∧, ∨, �, U, X, and propositions or negations of propositions) can be
recognized efficiently. A number of methods have been proposed to translate safety LTL
to finite state automata [76, 86].

It has been proved in [128] that for every LTL formula φ, there exists an equivalent Büchi
Automaton. There are many sophisticated algorithms on translating LTL to an equivalent
Büchi automaton [52, 109]. In addition, it is possible to tell whether an LTL formula
represents safety by examining its equivalent Büchi automaton. For instance, it has been
proved in [6] that a (reduced) Büchi automaton specifies a safety property if and only if
making all of its states accepting does not change its language. Based on this result, a Büchi
automaton representing a safety property can be viewed as an LTS for simplicity. The reason is
that all of its infinite traces must be accepting and therefore the acceptance condition can
be ignored.

3.2.3 Trace Refinement Checking with Anti-Chain

In concurrent systems, given an implementation L1 and a specification L2, the standard
trace refinement checking is to construct (often on-the-fly) the productL1×nl (L2) and then
try to construct a state of the product (s1, s2) (where s1 is a state ofL1 and s2 is a set of states
in L2) such that s2 is an empty set. Such a ‘co-witness’ state is called a TR-witness state. In
the worst case, this algorithm has a complexity exponential in the number of states of L2.

It has been shown that trace refinement checking based on anti-chain offers significantly
better performance [136]. Given two LTSs L1 and L2, the anti-chain method explores a
‘simulation’ relation in L1 × nl (L2). Given any two states (s1, s2) and (s ′1, s

′

2) of L1 × nl (L2),
let (s ′1, s

′

2) ≤ (s1, s2) denote s1 = s ′1 and s2 ⊆ s ′2.

Proposition 3.2.1 If (s ′1, s
′

2) ≤ (s1, s2) and (s1, s2) e
→ (u , v), then there exists (u′, v ′) such that

(s ′1, s
′

2) e
→ (u′, v ′) and u′ = u and v ⊆ v ′. �

By the above proposition, it can be readily shown that a TR-witness state is reachable from
(s ′1, s

′

2) implies that a TR-witness state must be reachable from (s1, s2). As a result, if (s1, s2)
has been explored, we can skip (s ′1, s

′

2).

3.2. PRELIMINARIES 25

Algorithm 1 Trace Refinement Checking Algorithm with Anti-chain
1: let working be a stack containing a pair (init1, {s | init2 s});
2: let antichain := ∅;
3: while working , ∅ do
4: pop (impl , spec) from working ;
5: antichain := antichain d (impl , spec);
6: for all (impl , e , impl ′) ∈ T1 do
7: if e = τ then
8: spec′ := spec;
9: else

10: spec′ := {s ′ | ∃ s ∈ spec. s
e
 s ′};

11: end if
12: if spec′ = ∅ then return false;
13: end if
14: if (impl ′, spec′) b antichain is not true then
15: push (impl ′, spec′) into working ;
16: end if
17: end for
18: end while
19: return true;

Formally, an anti-chain is a set A of sets such that x * y and y * x for all x ∈ A and y ∈ A,
i.e., any pair of sets in A are incomparable. An anti-chain supports two operations. One is
to check whether it contains a subset of a given set. let x be the given set, we denote x b A

if and only if there exists y ∈ A such that y ⊆ x . The other is to add a given set x in A. Ad x

is defined as {y | y ∈ A ∧ x * y} ∪ {x }, i.e., A d x contains x and all sets in A which is not a
superset of x . Obviously, an empty set is an anti-chain by definition.

Algorithm 1 shows the anti-chain based algorithm. In an abuse of notation, we write
(s ,X) b A to denote that the set ({s} ∪ X) b A; and A d (s ,X) to denote A d ({s} ∪ X). The
algorithm works as follows. After initialization, the algorithm pops one state (impl , spec)
from working and adds it to the set antichain , and then generates all successors of the state
and adds them to working unless (impl ′, spec′) b antichain is true, till the stack working

is empty or a TR-witness state is found. We remark that antichain keeps to be an anti-
chain during this algorithm, because line 5 and line 14 guarantee there are no subsets or
supersets of the new added state in the updated antichain . Soundness of the algorithm can
be referred to in [4] [136].

3.3. HIERARCHICAL MODELING 26

3.3 Hierarchical Modeling

In this section, we present PCSP#, which is designed for modeling and verifying probabilis-
tic systems. We remark that the LiQuor checker, which is based on Probmela, makes a step
towards an expressive useful modeling language. Nonetheless, Probmela is not capable of
modeling fully hierarchical systems.

3.3.1 Language Syntax

PCSP# extends the CSP# language [113] with probabilistic choices. CSP# integrates low-
level programs with high-level compositional specification. It is capable of modeling
systems with not only complicated data structures (which are manipulated by the low-level
programs) but also hierarchical systems with complex control flows (which are specified by
the high-level specification). Compared with PCSP [94], PCSP# supports explicit complex
data structures/operations.

A PCSP# model is a 3-tuple (Var , init ,P) where Var is a set of global variables (with
bounded domains) and channels; init is the initial values of Var ; P is a process. A variable
can be either of simple types like boolean, integer, arrays of integers or any user-defined
data type (which could be defined in an external imperative languages such as C# and
Java). The process P is an extension of Hoare’s classic CSP. Part of its syntax is defined as
follows.

P ::= Stop | Skip – primitives
| e → P – event prefixing
| a{program} → P – data operation prefix
| P�Q | PuQ | if b then P else Q – choices
| case{b0 : P0; b1 : P1; · · · ; bk : Pk } – multiple conditional choices
| P ; Q – sequence
| P ‖ Q | P‖|Q – concurrency
| P \X – hiding
| Q – process referencing
| pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk } – probabilistic multi-choices

where P , Pi and Q range over processes, e is a simple event, a is the name of a sequential
program; b is a Boolean expression, pri is a positive integer to express the probability
weight. Process Stop does nothing. Process Skip terminates. Process e → P engages in
event e first and then behaves as P . Combined with parallel composition, event e may

3.3. HIERARCHICAL MODELING 27

serve as a multi-party synchronization barrier. Process a{program} → P generates an event
a , executes a sequential program program at the same time, and then behaves as P . External
C# data operations can be invoked in program .

A variety of choices are supported, e.g., P�Q for external choice; PuQ for internal non-
determinism and if b then P else Q for conditional branching. Multiple conditional
choices is denoted as case{b0 : P0; b1 : P1; · · · ; bk : Pk } where bi is boolean variable. At
each state, there must be one and only one bi is true, and Pi is chosen afterwards. Process
P ; Q behaves as P until P terminates and then behaves as Q . Parallel composition of
two processes is written as P ‖ Q , where P and Q may communicate via multi-party
event synchronization. If P and Q only communicate through channels or variables, then
it is written as P‖|Q . Process P \ X hides occurrence of any event in X . Recursion is
supported through process referencing. Lastly, probabilistic choice is written in the form
of pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk }. Intuitively, it means that with pri

pr0+pr1+···+prk

probability, the system behaves as Pi . Note pri can be a constant, an integer variable, or
even a function whose return value is integer, which makes the modeling of probabilistic
choices flexible. The probability of each transition can be decided at run time.

Pacemaker A pacemaker is an electronic implanted device which functions to regulate
the heart beat by electrically stimulating the heart to contract and thus to pump blood
throughout the body. Common pacemakers are designed to correct bradycardia, i.e.,
slow heart beats. A pacemaker mainly performs two functions, i.e., sensing and pacing.
Sensing is to monitor the heart’s natural electrical activity, helping the pacemaker to gather
information on the heart beats and react accordingly. Pacing is when a pacemaker sends
electrical stimuli, i.e., tiny electrical signals, to heart through a pacing lead, which starts a
heart beat. A pacemaker can operate in many different modes, according to the implanted
patient’s heart problem. The following is a high-level abstraction of the simplest mode of
pacemaker, i.e., the AAT mode.

3.3. HIERARCHICAL MODELING 28

var count = 0;
AAT = (Heart ‖ Pacing) \ {missingPulseA,missingPulseV }
Heart = pcase {

[pA] : missingPulseA→ pulseV → Heart
[pV] : pulseA→ missingPulseV → Heart
[1 − pA − pV] : pulseA→ pulseV → Heart
};

Pacing = pulseA→ Pacing�pulseV → Pacing
�missingPulseA→ add {count + +} → pcase {
[99.54] : pulseB {count − −} → Pacing
[0.46] : Pacing
}

�missingPulseV → add {count + +} → pcase {
[99.54] : pulseW {count − −} → Pacing
[0.46] : Pacing
};

Variable count is an integer (with a default bound) which records the number of skipped
pulses. A (mode of the) pacemaker is typically modeled in the following form: Heart ‖

Pacing where Heart models normal or abnormal heart condition; Pacing models how
the pacemaker functions. In this particular mode, process Heart generates two events
pulseA (i.e., atrium does a pulse) and pulseV (i.e., ventricle does a pulse), periodically for
a normal heart or with one of them missing once a while for an abnormal heart. In the
latter case, event missingPulseA or missingPulseV is generated. Constant pA is the (patient-
dependent) probability of pulseA missing; pV is the probability of pulseV missing. Process
Pacing synchronizes with process Heart . If event missingPulseA (denoting the missing of
event pulseA) is monitored, variable count is incremented by one. Notice that the event add

is associated with the simple program of updating count . In general, it can be associated
with any state update function. It is in this way that state update is introduced in an event-
based language. Ideally, the pacemaker helps the heart to beat by generating event pulseB .
Once pulseB is generated, count is decremented by one. Similarly, it generates pulseW

when pulseV is missing. Note that it has been reported that pacemaker may malfunction
for certain rate (exactly 0.46%) [92]. This is reflected in the model again using pcase. If a
pulseB or pulseW is skipped, count is not decremented.

At the top level, the pacemaker system is a choice of different modes. Each mode is often
a parallel composition of multiple components. Each component may have internally
hierarchies due to complicated sensing and pacing behaviors. We skip the details (refer
to [20]) and remark that our modeling language is more suitable for such systems than

3.3. HIERARCHICAL MODELING 29

those supported by existing probabilistic model checkers. �

3.3.2 Operational Semantics

The underlying semantics of PCSP# is PA, which is expressive enough to capture systems
with probabilistic choices as well as nondeterminism and concurrency. A concrete system
configuration in PCSP# model is a pair (V ,P) where V is a variable valuation and P ∈ P

is a process. For simplicity, an empty valuation is written as ∅. A transition of the system
is written in the form (V ,P) x

→ (V ′,P ′) such that x ∈ Actτ. The operational semantics
is defined by associating a set of firing rules with every process construct. A special
event X ∈ Act indicates the termination of a PCSP process. Further, we assume a function
upd (V , prog) which, given a sequential program prog and V , returns the modified valuation
function V ′ according to the semantics of the program. Given a model P , α(P) is used to
denote all observable actions contained in P ; En(V ,P) represents the enabled actions in
state (V, P). The firing rules associated with probability are presented as follows.

[sk]

(V ,Skip) X−→ (V ,Stop)

• Rule sk indicates Skip can execute the termination action and become Stop. Variables
are unchanged in this step.

[as]
(V , e{prog} → P) e

−→ (upd (V , prog),P)

• Rule as indicates the event prefixing process can engage the event, and update the
value of variables according to the associated program. Afterwards, the process
behaves as P .

(V ,P) x
−→ (V ′,P ′)

[ext1]
(V ,P�Q) x

−→ (V ′,P ′)

(V ,Q) x
−→ (V ′,Q ′)

[ext2]
(V ,P�Q) x

−→ (V ′,Q ′)

3.3. HIERARCHICAL MODELING 30

• Rules ext1 and ext2 capture the behavior of external choice. Both branches are
possible as long as they are executable.

[int1]
(V ,PuQ) τ

−→ (V ,P)

[int2]
(V ,PuQ) τ

−→ (V ,Q)

• Rules int1 and int2 capture the behavior of internal choice. An extra invisible action
τ is used to choose the following behavior of the process. Variables keep unchanged
in this step.

V � b
[if 1]

(V , if (b) {P } else {Q}) τ
−→ (V ,P)

V 2 b
[if 2]

(V , if (b) {P } else {Q}) τ
−→ (V ,Q)

• Rules if 1 and if 2 capture the behavior of conditional choice. According to whether b

is true or not, P and Q are chosen to take over the control of the process.

P
X
→ P ′

[se1]
(V ,P ; Q) τ

→ (V ,Q)

(V ,P) e
→ (V ′,P ′),X < En(V ,P)

[se2]
(V ,P ; Q) τ

→ (V ′,P ′; Q)

• The above two rules describe the behaviors of sequential processes. se1 indicates
if termination event happens in P , then Q can take over control of the process; se2
indicates if X is not activated currently, the whole process still behaves as P .

(V ,P) e
→ (V ′,P ′), e < α(Q)

[pl1]
(V ,P ‖ Q) e

→ (V ′,P ′ ‖ Q)

3.3. HIERARCHICAL MODELING 31

(V ,Q) e
→ (V ′,Q ′), e < α(P)

[pl2]
(V ,P ‖ Q) e

→ (V ′,P ‖ Q ′)

P
e
→ P ′,Q

e
→ Q ′, x ∈ (α(Q) ∩ α(P))

[pl3]
(V ,P ‖ Q) e

→ (V ,P ′ ‖ Q ′)

• Rules pl1, pl2 and pl3 describe the behaviors of parallel processes. If an action is
not the common action in both P and Q , it can be executed with variable updates,
and the process without this event keeps unchanged. Otherwise, both processes will
execute this action simultaneously, and no variable can be updated in this scenario.

(V ,P) e
→ (V ′,P ′), e , X

[inl1]
(V ,P‖|Q) e

→ (V ′,P ′‖|Q)

(V ,Q) e
→ (V ′,Q ′), e , X

[inl2]
(V ,P‖|Q) e

→ (V ′,P‖|Q ′)

P
X
→ P ′,Q

X
→ Q ′

[inl3]

(V ,P‖|Q) X→ (V ,P ′‖|Q ′)

• Rules inl1, inl2 and inl3 describe the behaviors of interleaving processes. Processes
can execute their actions without affecting others, as long as the action is not X. All
X should happen simultaneously in all interleaving processes, denoted in inl3.

(V ,Q) x
→ (V ′,Q ′),P =̂Q

[def]
(V ,P) x

→ (V ′,Q ′)

• Rule def indicates that if P is a reference of Q , then they have the same behavior.

(V ,P) a
→ (V ′,P ′)

[pb1]
(V ,P) a

→ µ such that µ(V ′,P ′) = 1

3.4. PROBABILISTIC REFINEMENT CHECKING 32

[pb2]
(V ,pcase {pr0 : P0; · · · ; prk : Pk })

τ
→ µ

where µ((V ,Pi)) = pri
pr0+···+prk

for all i ∈ [0, k]

• Rules pb1 and pb2 define the semantics of pcase. pb2 states that if pcase is activated,
then it transmits to a distribution µ via action τ. The probability of reaching the
successive states follows the probability weight. Note the valuation of variables
keeps unchanged. pb1 indicates if no pcase is activated in P , the distribution from
(V ,P) is always a trivial distribution.

3.4 Probabilistic Refinement Checking

Refinement checking has been traditionally used to verify CSP [69]. Different from
temporal-logic based model checking, refinement checking works by taking a model (often
in the same language) as a property. The property is verified by showing a refinement
relationship from the system model to the property model. There are different refinement
relationships designed for proving different properties. In the following, we focus on trace
refinement and remark that our approach can be extended to stable failures refinement
or failures/divergence refinement. For instance, one way of verifying the pacemaker is to
check whether the pacemaker model (present in Example 3.3.1) trace-refines the following
model (without variables) which models a ‘fine’ heart.

OKHrt = pulseA→ pulseV → OKHrt�pulseA→ pulseW → OKHrt�
pulseB → pulseV → OKHrt�pulseB → pulseW → OKHrt

In theory, it is possible to encode the property model as temporal logic formulae (as
temporal logic is typically more expressive than LTS) and then apply temporal-logic based
model checking to verify the property. It is, however, impractical. For instance, LTL model
checking is exponential in the size of the formulae and therefore it cannot handle formulae
which encode non-trivial property model. In short, refinement checking allows users to
verify a different class of properties from temporal logic formulae.

3.4. PROBABILISTIC REFINEMENT CHECKING 33

3.4.1 Refinement Checking PCSP#

Because of probabilistic choices, refinement checking in our setting is not simply to verify
whether traces of a PCSP# model is subset of those of another. Instead, it is ‘how likely’
the system behaves as specified by the property model (in the presence of unreliability
of system components). Because we assume the property model is non-probabilistic, the
problem is thus to calculate the probability of a PA (i.e., the semantics of PCSP# model)
trace-refines an LTS (i.e., the semantics of a non-probabilistic PCSP# model).

Definition 7 (Refinement Probability) LetM be a PA and L be an LTS. The maximum prob-
ability of M trace-refines L is defined by Pmax (M w L) = Pmax

M
(traces(L)). The minimum is

defined by Pmin (MwL) = Pmin
M

(traces(L)). �

Intuitively, the probability of M refines L is the sum of the probability of M exhibiting
every trace of L. The probability may vary due to different scheduling. One way of
calculating the maximum/minimum probability [18] is to (1) build a deterministic LTSL−1

which complements L (such that traces(L−1) = Σ∗ \ traces(L)); (2) compute the product of
M and L−1; 3) calculate the maximum/minimum probability of paths of the product.

In the following, we present a slightly improved algorithm which avoids the construction
of L−1. Note that for a complicated language like PCSP#, computing L−1 is highly non-
trivial. The algorithm is inspired by the refinement checking algorithm in FDR. Firstly, we
normalizeLusing the standard powerset construction. Next, we compute the synchronous
product ofM and nl (L), written asM× nl (L). It can be shown that the product is still a
PA.

Definition 8 (Product PA) Let M = (SM, initM,Act ,PrM,APM,LM) be a PA, and L =

(SL, initL,Act ,TL,APL,LL) be a deterministic LTS without τ-transitions. The product is the
PAM×L = (SM × SL, (initM, initL),Act ,Pr ,APM ∪ APL,L) such that Pr is the least transi-
tion relation which satisfies the following conditions.

• If sm
τ
→ µ inM, then (sm , sl)

τ
→ µ′ inM×L for all sl ∈ SL such that µ′((s ′m , sl)) = µ(s ′m)

for all s ′m ∈ SM.

• If sm
e
→ µ inM and sl

e
→ s ′

l
inL, then (sm , sl)

e
→ µ′ inM×L such thatµ′((s ′m , s ′l)) = µ(s ′m)

for all s ′m ∈ SM.

3.4. PROBABILISTIC REFINEMENT CHECKING 34

L is a new labeling function satisfying L(s , s ′) = LM(s) ∪ LL(s ′), s ∈ SM and s ′ ∈ SL.

In the product, there are two kinds of transitions, i.e., τ-transitions fromM with the same
probability or transitions labeled with a visible event with probability 1. Note that τ-
transitions are not synchronized, whereas visible events must be jointly performed byM
and L. Let G ⊆ SM × SL be the least set of states satisfying the following condition: for
every pair (s , s ′) ∈ G , s ′ = ∅. Intuitively, (s , s ′) ∈ G if and only if a trace ofM leading to s

is not possible in L. The following theorem states our main result on refinement checking.

Theorem 3.4.1 LetM be a PA; L be an LTS; D = M× nl (L). Pmax (MwL) = 1 − Pmin
D

(G)
and Pmin (MwL) = 1 − Pmax

D
(G).

Proof Let δ be any scheduler forM. Note that δ can be extended to be a scheduler forD
straightforwardly. For simplicity, we use δ to denote both of them. Let X ⊆ paths(M). The
following shows that the equivalence holds with any scheduler.

P
δ
M

({π ∈ paths(M) | trace(π) ∈ traces(L)})
≡ 1 − Pδ

M
({π ∈ paths(M) | trace(π) < traces(L)}) – by def.

≡ 1 − Pδ
D

({π ∈ paths(D) | trace(π) < traces(L)}) – (1)
≡ 1 − Pδ

D
(G) – (2)

(1) is true because for every path ofM, there is a path ofDwith the same probability (asL
is non-probabilistic) and the same trace; and vice versa. (2) is true because by [104], a path
of D such that trace(π) < traces(L) if and only if it visits some state in G . It can be shown
then Pmax (Mw L), which is Pmax

M
({π ∈ paths(M) | trace(π) ∈ traces(L)}), is 1 − Pmin

D
(G)

and Pmin (MwL) is 1 − Pmax
D

(G). �

Intuitively, the theorem holds because, with any scheduler, the probability ofM not refining
L is exactly the probability of reaching G inM× nl (L). As a result, refinement checking
is reduced to reachability probability in D. There are known approaches to compute
P

max
M

(G) and Pmin
M

(G), e.g., using an iterative approximation method or by solving linear
programs [18].

3.4. PROBABILISTIC REFINEMENT CHECKING 35

3.4.2 SE-LTL Probabilistic Model Checking as Refinement Checking

Another way of specifying properties is through temporal logic. In this section, we examine
the problem of model checking PCSP# models against SE-LTL formulae. SE-LTL is an
effective property language for PCSP# as it can be constituted by state propositions as
well as events. In the pacemaker example, an SE-LTL formula could be stated as follows:
(�count ≤ 10) ∧ �(missingPulseA ⇒ X pulseB) which states count must be always less
than 10 and event missingPulseA must lead to an occurrence of event pulseB next. Given
a PAM and an SE-LTL formula φ, let Pmax

M
(φ) (and Pmin

M
(φ)) denote the maximum (and

minimum) probability ofM satisfying φ.

The standard LTL probabilistic model checking method is the automata-theoretic ap-
proach [18], which is computationally expensive due to multiple reasons. Firstly, the
construction of the deterministic Rabin automaton is expensive. Given a Büchi automaton
B, its equivalent deterministic Rabin automaton, in the worse case, is of size 2O(n log n) where
n is the size of B. Secondly, identifying the end components is expensive. The worse case
complexity is bounded by |S |×(|S |+ |T |) where |S | is the number system states and |T | is the
number of the system transitions. In this section, we show that by recognizing safety prop-
erties, we can improve probabilistic model checking of certain class of SE-LTL formulae by
avoiding constructing the Rabin automaton or computing the end components.

Given a formula φ, we check whether φ is a safety property using the following approach.
Firstly, we check whether it is a syntactic LTL safety formula [108]. If it is not, we generate
an equivalent Büchi automaton using an existing approach [52], and then check whether
all states of the Büchi automaton are accepting. If positive, by the result proved in [6], φ
is a safety property. If we cannot conclude that φ is safety, we assume that it is not. This
is a sound but not complete method for recognizing safety. In practice, we found that
it is effective in recognizing most of the commonly used safety properties, including for
example �(a ⇒ �b) and^a ⇒ �b.

Next, we adopt the workflow shown in Fig. 3.1 to improve probabilistic model checking.
Let φ be an SE-LTL formula and B be the equivalent Büchi automaton. If φ is a safety
property, then B can be simply treated as an LTS, as discussed in Section 3.2. The problem
of model checking a system modelM against φ is thus reduced to calculate the probability
of M refines the LTS B. If φ cannot be determined as a safety property, then we check
whether φ is a co-safety property. A Büchi automaton B′, equivalent to ¬φ, is generated.
If B′ is a safety property, the problem of model checking φ is thus reduced to calculate the

3.5. PROBABILISTIC REFINEMENT CHECKING WITH ANTI-CHAIN 36

If
 n

ot
If

 n
ot

Is Safety

Is Safety

Figure 3.1: Workflow

probability ofM refines the LTS B′.

Theorem 3.4.2 LetM be an PA; φ be an SE-LTL formula; B be the Büchi automaton equivalent to
φ. LetB−1 be the Büchi automaton equivalent to¬φ. If φ is safety, thenPmax

M
(φ) = Pmax (MwB)

and Pmin
M

(φ) = Pmin (M w B); If φ is co-safety, then Pmax
M

(φ) = 1 − Pmin (M w B−1) and
P

min
M

(φ) = 1 − Pmax (MwB−1). �

The proof of the theorem is sketched as follows. If φ is a safety property, any trace of B is
accepting. It can be shown that any trace ofMwhich is not a trace ofB is a counterexample
to φ. Therefore, the probability ofM exhibiting a trace ofB (i.e., the probability ofM trace-
refinesB) is the probability ofM satisfying φ. Next, the theorem states that the probability
ofM not-refining B is the probability ofM executing a finite prefix of any traces which is
not possible for B. Similarly, we can prove the result for co-safety properties.

By the theorem, probabilistic model checking of safety LTL formula or co-safety LTL for-
mula is reduced to probabilistic refinement checking, which is considerably more efficient
as we avoid constructing the deterministic Rabin automaton or identifying end compo-
nents. This is confirmed by the experiments conducted in Section 3.6.

3.5 Probabilistic Refinement Checking with Anti-Chain

In this section, we show that anti-chain can be used to improve our probabilistic refinement
checking, i.e., the implementation is given as a PA and the specification is given as an LTS.
We first introduce a lemma in the following.

3.6. EVALUATIONS 37

Lemma 1 LetD = (Sd , initd ,Actd ,Prd ,APd ,Ld) be a PA;L = (Sl , initl ,Actl ,T ,APl ,Ll) be an
LTS. LetP beD×nl (L). Let G be the set of TR-witness states ofP. For all state (u1, v1) and (u2, v2) of
P s.t. (u2, v2) ≤ (u1, v1), Prmax (P, (u1, v1),G) ≥ Prmax (P, (u2, v2),G) and Prmin (P, (u1, v1),G) ≥
Prmin (P, (u2, v2),G).

Proof The above can be proved with an induction. The base case is that (u2, v2) is in G .
By definition, (u1, v1) must be in G and therefore the lemma holds. Next, we show the
induction step. Assume that (u′2, v

′

2) satisfies the lemma above. For every distribution
µ2 from (u2, v2), by Definition 8, there must exist a distribution µ1 from (u1, v1) and for
every state (u′2, v

′

2), there exists (u′1, v
′

1) such that µ2((u′2, v
′

2)) = µ1((u′1, v
′

1)) and (u′2, v
′

2) ≤
(u′1, v

′

1). By induction hypothesis, we have Prmax (P, (u′1, v
′

1),G) ≥ Prmax (P, (u′2, v
′

2),G)
and Prmin (P, (u′1, v

′

1),G) ≥ Prmin (P, (u′2, v
′

2),G). Thus we have Prmax (P, (u1, v1),G) ≥
Prmax (P, (u2, v2),G) and Prmin (P, (u1, v1),G) ≥ Prmin (P, (u2, v2),G). Therefore, we con-
clude that the lemma holds. �

Compared to probabilistic reachability calculation for a general PA, the above lemma gives
us additional information, which can be potentially useful in speeding up the calculation.
In the following, we discuss how we can make use of the information so as to improve the
probabilistic refinement checking using the iterative calculation method.

The first step is building the product PA meanwhile finding the target states, which is shown
in Algorithm 2. The implementation and specification are defined in Definition 8. Different
from the non-probabilistic cases, the state space cannot be reduced in the probabilistic models;
instead, we define a function sub of the product state s satisfying s .sub = {t | t ∈ S ∧ s ≤ t},
where S is the state space of the product PA. Then the refinement checking is reduced to
probabilistic reachability of a set of target states, denoted by Target . During the iterative
calculation, whenever the probability of state s is updated, e.g., to p, according to lemma 1,
all states in s .sub whose probability is less than p could be set to p directly. This could
speed up each iteration and potentially improve probabilistic refinement checking.

3.6 Evaluations

Our methods have been implemented in PAT. We extend PAT with a module to support
PCSP#, integrating the existing CSP# language with probabilistic choices. Furthermore,

3.6. EVALUATIONS 38

Algorithm 2 Building PA in Probabilistic Refinement Checking with Anti-chain
1: let working be a stack containing a pair (initd , {s | initl s});
2: let visited := {(initd , {s | initl s})}; let Target = ∅; ;
3: while working , ∅ do
4: pop (impl , spec) from working ;
5: for all (impl , e , µ) ∈ Prd do
6: if e = τ then
7: spec′ := spec;
8: else
9: spec′ := {s ′ | ∃ s ∈ spec. s

e
 s ′};

10: end if
11: for all impl ′ ∈ Sd do
12: if µ(impl ′) > 0 ∧ (impl ′, spec′) < visited then
13: push (impl ′, spec′) into working ;
14: visited := visited ∪ (impl ′, spec′);
15: if spec′ = ∅ then
16: Target := Target ∪ (impl ′, spec′);
17: end if
18: for all (impl ′, spec′′) ∈ visited do
19: if (impl ′, spec′′) ≤ (impl ′, spec′) then
20: (impl ′, spec′′).sub.Add (impl ′, spec′);
21: else if (impl ′, spec′) ≤ (impl ′, spec′′) then
22: (impl ′, spec′).sub.Add (impl ′, spec′′);
23: end if
24: end for
25: end if
26: end for
27: end for
28: end while
29: return true;

we extend the library of model checking algorithms in PAT with probabilistic refinement
checking and probabilistic SE-LTL model checking with safety recognition. Moreover,
anti-chain based approach is used to speed up the refinement checking.

We evaluate our implementation using benchmark systems. Three sets of experiments are
conducted, focusing on 1) the efficiency of probabilistic refinement checking in PCSP#; 2)
the improvement of refinement checking using safety recognition; 3) the improvement of
refinement checking using anti-chain. We use the value iteration method in calculating the
probability and set termination threshold as relative difference 1.0E-6 (same as state-of-the-
art probabilistic model checking PRISM [80]). The testbed for all experiments is a PC with

3.6. EVALUATIONS 39

Intel Core 2 Quad 9550 CPU at 2.83GHz and 2GB RAM.

In the first two sets of experiments, we compare our results with PRISM version 4.0.1. In
order to perform a fair comparison, we use existing PRISM models; re-model them using
PCSP# language and re-verify them using PAT. It should be noticed that our language
is capable of specifying hierarchical systems which are beyond PRISM. Working with
existing PRISM models, which are not hierarchical, is not justified to show our advantage.
Nonetheless, we show that even for those systems, PCSP# offers an intuitive and compact
representation and PAT offers comparable performance. The following models are adopted
for comparison.

• Model ME describes a probabilistic solution to N-process mutual exclusion problem,
which is based on [100].

• Model RC is a shared coin protocol of the randomized consensus algorithm, which
is based on [13]. Note that N is the number of coins and K is a parameter used to
generate suitable probability.

• Model DP is the probabilistic N-dining philosophers under fairness, based on [87].

• Model CS is the IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with Collision
Detection) protocol, which is based on [95]. Note that N is the number of stations and
K is the exponential backoff limit.

In the third set of experiments, we use PAT with anti-chain approach to compare with
PAT without this optimization in refinement checking. This is fair since the only difference
between these two tools is the anti-chain method.

All models with configurable parameters are embedded in the latest version of PAT. In the
following, we discuss the experiments in details.

3.6.1 Performance of Refinement Checking

In general, refinement checking and temporal logic verification are good at different classes
of properties. For instance, using temporal logic formulae to capture the process OKHrt

(shown in Section 3.4) would result in a large formula which in turn result in in-efficient
verification. Our experiments, however, show that even for those properties designed

3.6. EVALUATIONS 40

System Property Result(Pmax) PAT (s) PRISM (s)
ME (N=5) mutual exclusion 1 0.359 0.282
ME (N=8) mutual exclusion 1 9.831 1.234

ME (N=10) mutual exclusion 1 81.192 3.127
RC (N=4,K=4) consensus 1 0.218 0.328
RC (N=6,K=6) consensus 1 2.813 2.543
RC (N=8,K=8) consensus 1 19.642 14.584

DP (N=5) once eat, never hungry 1 3.333 37.769
DP (N=6) once eat, never hungry 1 53.062 389.334

Table 3.1: Experiments on refinement checking

for temporal-logic based verification, probabilistic refinement checking offers comparable
performance. Given any safety property of the above mentioned models, we build a
property model and verify the property by refinement checking. Table 3.1 presents the
experiment results. PAT performs worse than PRISM for ME , comparable for RC and
better for DP . The main reason that PAT outperforms PRISM for the DP model is that PAT
has less states and its refinement checking algorithm has less computation than temporal
logic-based model checking. Note that because the models are designed to satisfy the
properties, the result probability is all 1.

3.6.2 Performance Improvement Using Safety Recognition

Next, we show that safety recognition improves probabilistic LTL model checking and
allows PAT to outperform PRISM in many cases. Safety recognition in PAT is based
on syntax analysis or simple heuristics based on the generated Büchi automata. The
computational overhead is negligible. Table 3.2 presents the experiment results on verifying
the models against safety, co-safety and properties which are neither. Column PAT (w)
(PAT (w/o)) shows the time taken with (without) safety recognition. If the property is
neither safety or co-safety, safety recognition becomes computational overhead. The cost
is however negligible as evidenced in the table. For safety or co-safety properties, PAT
performs better with safety recognition. In comparison with PRISM, PAT outperforms
PRISM (for almost all properties) for some models, e.g., ME and RC . This is mainly
because the PAT models have much less states, because of the difference in modeling. For
some other models (e.g., DP and CS), safety recognition allows PAT to outperform PRISM.

In general, PRISM handles more states per time unit than PAT. Apart from the fact that

3.6. EVALUATIONS 41

System Property Result(Pmax) PAT (w) PRISM PAT (w/o)
ME (N=5) co-safety 1 2.356 231.189 27.411
ME (N=8) co-safety 1 94.204 - 8901.295
ME (N=10) co-safety 1 1076.217 - -

RC (N=4,K=4) co-safety(1) 0.99935 0.379 21.954 12.150
RC (N=4,K=4) neither 0.54282 6.106 45.612 6.087
RC (N=4,K=4) co-safety(2) 0.15604 6.703 35.144 7.868
RC (N=6,K=6) co-safety(1) 1 5.854 1755.984 585.706
RC (N=6,K=6) neither 0.53228 457.815 - 442.008
RC (N=6,K=6) co-safety(2) 0.12493 355.027 - 453.362
RC (N=8,K=8) co-safety(1) 1 52.906 - -
RC (N=8,K=8) neither 0.52537 10179.796 - 10107.268
RC (N=8,K=8) co-safety(2) 0.10138 5923.086 - 9420.430

DP (N=5) safety 1 1.162 37.769 10.006
DP (N=6) safety 1 9.760 389.334 164.423
DP (N=5) co-safety 1 1.039 38.347 544.307
DP (N=6) co-safety 1 9.091 384.231 -

CS (N=2, K=4) co-safety(1) 1 0.615 0.921 0.736
CS (N=2, K=4) co-safety(2) 0.99902 0.933 2.314 1.034
CS (N=3, K=2) co-safety(1) 1 6.118 1.733 6.707
CS (N=3, K=2) co-safety(2) 0.85962 6.284 7.233 7.484

Table 3.2: Experiments on LTL checking

PRISM has been optimized for many years, the main reason is the complexity in handling
hierarchical models. Note that though these models have simple structures, there is over-
head for maintaining underlying data structures designed for hierarchical systems. PRISM
is based on MTBDD, whereas PAT is based on explicit state representation currently. Sym-
bolic methods like BDD are known to handle more states [29]. Applying BDD techniques
to hierarchical complex languages like PCSP# is highly non-trivial. It remains as one of
our ongoing work. The experiment results are not to be taken as the limit of PAT. The fact
that PAT handles less states per time unit does not imply that PAT is always slower than
PRISM, as evidenced in the experiments. The main reason is that 1) a system modeled
using PRISM may have more states than its model in PCSP# due to its language limita-
tion; 2) safety/co-safety recognition which avoid much computation in probabilistic model
checking.

3.7. RELATED WORK 42

System Size
Verification Time (s) #States Involved in Iterations

W/o AC With AC Gain W/o AC With AC Gain
K = 2 20600 2.74 2.21 19.3% 4.2M 3M 28.6%
K = 3 45584 15.98 12.04 24.6% 18.6M 11.7M 37.1%
K = 4 86704 48.72 37.50 22.6% 55.5M 36.2M 34.8%
K = 5 117408 123.9 80.83 34.9% 130.7M 76.3M 41.6%
K = 6 231440 271.2 182.6 32.7% 272.1M 160.7M 40.9%
K = 7 342544 511.1 340.3 33.5% 515.2M 298.8M 42.0%

Table 3.3: Experiments: Probabilistic Concurrent Stack Implementation

3.6.3 Performance Improvement Using Anti-chain

Now we evaluate whether anti-chain method is indeed beneficial. We evaluate it using
a modified system based on the implementation of a distributed concurrent stack exam-
ple [123]. Probabilistic choices are used to model a concurrent stack model composed by
two processes, so as to capture the situation in which the communication between different
processes fails from time to time. Failures do exist in real world cases and the experiments
results are summarized in Table 3.3.

We compare the efficiency of the implementation with and without (W/o) Anti-chain (AC)
using several cases. K means length of the stack; Size indicates the number of states in the
whole system; #States Involved in Iterations represents the total number of states involved
in the iterative calculation. For example, a state s updates its probability in two iterations,
then #States should increase two. From the experiments, we can see that the anti-chain
approach could reduce the total number of states accumulated during the calculation,
through dynamically updating states’ probability based on the subset relation sub. This
speeds up the verification around 29%. We remark that the gains here are not as significant
as the non-probabilistic cases, because the state space cannot be reduced; however, in some
cases, it does shorten the verification time.

3.7 Related work

This chapter is related to methods and tools for probabilistic system modeling and verifi-
cation. Existing probabilistic model checkers include at least PRISM [80], MRMC [72] and
LiQuor [35]. PRISM is the most popular probabilistic model checker. It supports a variety
of probabilistic models as well as property specification languages. The input of PRISM

3.7. RELATED WORK 43

is a simple state-based language [11]. LiQuor is a probabilistic model checker for reactive
systems [35]. MRMC is a command-line based model checker for a variety of probabilistic
models and a rather simple input language. The extended PAT checker complements the
existing checkers by 1) offering a language that is both state-based and event-based and is
capable of modeling hierarchical systems; 2) supporting both SE-LTL model checking and
probabilistic refinement checking and 3) offering a user-friendly environment for not only
model checking but also simulation.

The language PCSP# is related to many works on integrating probabilistic behaviors into
process algebras or programs, among which the most relevant are [94, 93, 33, 145]. In [94],
an extension of CSP is proposed to incorporate probabilistic behaviors in the name of
refinement checking. In [93], issues on integrating probability with Event-B has been
discussed. In [33], issues on integrating probability with non-determinism have been
addressed. Compared to [94, 93, 33, 145], this work focuses on developing a practical tool
for systematic modeling and verification of probabilistic systems.

Our work on improving temporal logic model checking with safety recognition is related to
work on categorizing safety and liveness. The work presented in [6] offers theoretical results
for recognizing safety and liveness given a Büchi automaton. Others have also considered
the problem of model checking safety LTL properties. In [108], a categorization of safety,
liveness and fairness is discussed. Further, it showed that recognizing safety LTL properties
is PSPACE-complete. Later, many theoretical results and algorithms have been presented
in [76], which generalizes the earlier work presented in [108]. A forward direction version of
the algorithm in [76] is evidenced in [53]. In [86], the author presented a translation of safety
LTL formula to a finite state automaton which detects bad prefixes. Model checking safety
properties expressed using past temporal operators has been considered in [62]. Our safety
recognition is based on [6, 108]. Different from the above, we present methods/algorithms
which improve model checking of not only safety properties but also a class of liveness
properties; not only finite state systems but also probabilistic systems.

The anti-chain approach is related to research on anti-chain based model checking. Wulf
et al. proposed the anti-chain based approach for checking the language universality and
trace refinement of NFA [136]. It has been shown that the anti-chain based approach may
outperform the standard ones by several orders of magnitude. Their following works
show that significant improvements can also be brought to the model checking problem
of LTL by using anti-chain based algorithms [45, 137]. Later Abdulla et al. improved
the approach through exploiting a simulation relation on the states of NFA [4]. Remotely

3.8. SUMMARY 44

related are anti-chain based methods for solving other problems, e.g., the LTL realizability
and synthesis problem [32, 49] and the universality and language inclusion problem of tree
automata [4, 26]. In our work, we focus on and probabilistic refinement checking.

3.8 Summary

In this chapter, we propose a model checker for hierarchical complex probabilistic systems.
A modeling language called PCSP# is defined, which combines high-level specification
language CSP with low-level imperative languages such as C# and Java. Shared variables,
user-defined data types and probabilistic choices are supported in PCSP# model. We in-
tegrated this model checker to our home-grown verification framework PAT. Meanwhile,
an alternative way of probabilistic system verification, i.e., refinement checking, is pro-
posed in PCSP# verification. In our setting, this indicates the trace refinement between
a probabilistic model and a non-probabilistic specification. In addition, PAT improves
LTL probabilistic model checking by supporting SE-LTL and safety recognition. Moreover,
anti-chain based approach is used to further improve the refinement checking in PCSP#.
Various experiments are conducted to demonstrate the effectiveness and efficiency of our
approach.

Chapter 4

Applying Model Checking in
Multi-agent Systems

4.1 Introduction

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents
within an environment. Multi-agent systems can be used to solve problems that are difficult
or impossible for an individual agent or a monolithic system to solve. Because of the co-
existence of multiple parties, a multi-agent system usually exhibits complicated behaviors,
which can be quite complex and difficult to analyze. To have a better understanding of the
system’s dynamics and further optimize the system’s performance, an accurate analysis of
the system’s behavior beforehand becomes particularly important.

Most of the existing work on analyzing MAS is based on extensive simulations [120, 38],
which is the most convenient approach to take. The disadvantage of this approach is that the
simulation results are usually inaccurate and also some important properties of the system
(e.g., convergence) cannot be directly proved [120]. Another line of research is to analyse
the system’s behavior theoretically through the construction of a mathematical model of the
system [129, 55, 127]. This approach has its merits in that it can give a better understanding
of the system’s dynamics than simulation-based approach and also the properties of the
system can be proved directly. The downside is that the proof construction is in general
quite tedious and usually requires a good deal of ingenuity. Moreover, in some cases, the
system may be too complex such that it is impossible to construct an accurate mathematical

45

4.1. INTRODUCTION 46

model.

To tackle the problems in these existing approaches, we propose using model checking
to analyze the behavior of an MAS. This approach is different from both simulation and
mathematical analysis techniques. It is not only automatic as simulation technique does,
but also provides exact rather than approximated analysis results, since it takes all possible
behaviors that the system may exhibit into consideration. To make the discussion concrete,
in this chapter, we focus on two important scenarios in MAS.

Robustness Analysis of Negotiation Strategy in MAS Negotiations exist in many aspects
of our daily life for resolving conflicts among different parties. Generally, in an environment
with multiple agents, automated negotiation techniques can, to a large extent, alleviate
human effort, and also facilitate better negotiation outcomes by compensating the limited
computational abilities of humans when they are faced with complex negotiations. As a
result, a lot of automated negotiation strategies and mechanisms have been proposed in
different negotiation scenarios [47, 106, 67].

The most commonly adopted criterion for evaluating a negotiation strategy is its efficiency,
i.e., the average payoff it can obtain under different negotiation scenarios against other
negotiation strategies. One supporting example is the annual automated negotiating agents
competition (ANAC) [15, 14] which provides a general platform enabling different nego-
tiation agents to be evaluated against a wide range of opponents under various realistic
negotiation environments. The efficiency criterion currently adopted in the competition
corresponds to the expected payoff under the competition tournament over all participat-
ing agents averaged over all negotiation domains. However, the efficiency criterion does
not reveal much information about the robustness of the negotiation strategies in different
negotiation scenarios, since it assumes that each agent’s strategy is fixed (determined by its
designer(s)) beforehand under the tournament. In contrast, in practical negotiations agents
are free to choose any strategy available to them (e.g., from the pool of strategies developed
in ANAC competitions) and may change their strategies anytime to improve their personal
benefits. Given a strategy s , it is important for us to investigate whether an agent adopting
s has the incentive to unilaterally deviate to other strategies under a particular negotiation
tournament. Similarly, we may ask whether any agent adopting other strategies be willing
to switch to s under certain negotiation domains? Because of its importance, the robustness
criterion has been given much attention recently [14, 133].

4.1. INTRODUCTION 47

Behavior Analysis in Dispersion Game Multi-agent learning is an important research
area which has been applied in a wide range of practical domains [97, 139, 46]. One im-
portant scenario in multi-learner system is modeled as dispersion games [120]. Dispersion
games are the generalization of anti-coordination games to an arbitrary number of players
and actions. This class of games has received wide attentions and they have been applied
to model a variety of practical applications, e.g., load balancing problems [139], and niche
selection in economics such as Santa Fe bar problem [21] and minority games [43]. We
focus on two novel strategies designed for dispersion games: basic simple strategy (BSS) and
extended simple strategy (ESS). Previous work [120, 7] has investigated the performance of
both strategies through extensive simulations and shown the convergence to an Maximal
Dispersion Outcome (MDO). However, only preliminary analytical results have been pro-
vided for the analysis of both strategies, and it is particularly difficult to give very accurate
analytical results.

In this chapter, we investigate how model checking techniques can be used to analyze the
robustness of negotiation strategies and the behaviors of the agents under the two strategies
(BSS and ESS) in the context of dispersion games in an accurate and automatic way.

However, there are still several challenges to successfully apply model checking in MAS:

• Accurate formal models are needed to represent the systems and the desired proper-
ties under investigation. The more complicated the system is, the more difficult it is
to build the model.

• Dedicated model checking algorithms are needed for specific properties, e.g., ro-
bustness analysis, as existing model checking algorithms are designed for different
purposes.

• The existence of multiple agents and multiple strategies in the system can easily result
in state space explosion problem, which makes the verification inefficient, and thus
appropriate state space reduction technique is required.

In this work, we tackle the above challenges as follows. First, we use PAT to model the
complex dynamics of agents’ possible behaviors. Note that according to the dynamics of
the target systems, LTS is used to describe the negotiation scenarios while DTMC is used
for dispersion games. Since LTS and DTMC can be viewed as specific PA, PCSP# module is
suitable for both cases. Second, corresponding model checking algorithms are developed to
exactly cover the properties needed for the specific properties, such as robustness analysis.

4.1. INTRODUCTION 48

Third, since the agents always adopt the same strategy and thus exhibit similar behaviors,
we propose to adopt counter abstraction technique [99, 117] to reduce the state space of the
model. Counter abstraction is a special kind of symmetry reduction where the properties
to be proved are irrelevant with the process identifiers. It has been proven suitable for both
concurrent and probabilistic models [99, 117, 84].

For experiments, we first analyze the robustness of the top-eight strategies participated in
the last year’s ANAC competition, and rankings among them are given under different
settings. The results show that our approach can greatly facilitate the robustness analysis
process. Next, for dispersion games, we focus on checking two important properties of
the system: convergence and convergence rate. We are able to automatically prove that
the outcome is guaranteed to converge to an MDO when the agents adopt BSS while the
convergence property is lost in ESS. For ESS, with probabilistic model checking we can
also obtain the exact probability that the outcome deviates from an MDO by checking the
corresponding property. For the property of convergence rate, the exact average number
of rounds for the outcome to converge to an MDO is automatically obtained.

Compared with previous work [14, 133, 120, 38, 129, 55, 127], our contributions are threefold,
as summarized below.

1. We propose a general framework to formally analyze the behaviors of MAS using
model checking approach, which we believe can greatly contribute to the advance-
ment of the MAS analysis.

2. We apply counter abstraction technique to reduce the state space of the model due
to the symmetric property existing in the systems, thus making the analysis using
model checking techniques both feasible and efficient.

3. We have implemented some dedicated verification algorithms in PAT, especially for
robustness analysis. Several bundles of experiments are conducted to show the
effectiveness and efficiency of our approach.

The remainder of this chapter is organized as follows. Section 4.2 presents relevant technical
definitions. Section 4.3 investigates the formal modeling of related MASs using counter
abstraction technique. Section 4.4 introduces the formal specification of desired properties.
Section 4.5 evaluates our method. Section 4.6 gives an overview of related work. Section
4.7 summarizes this chapter.

4.2. PRELIMINARIES 49

4.2 Preliminaries

In this section, we recall some basic concepts and backgrounds used throughout the rest of
this chapter.

4.2.1 Negotiation Model

ANAC competition is the annual competition which brings together researchers from the
automated negotiation community [15, 14, 3]. Following the settings adopted in ANAC
competitions, the basic negotiation form is bilateral negotiation, i.e., negotiations between
two agents, under the alternating-offers protocol in which the agents take turns to exchange
proposals. For each negotiation scenario, both agents can negotiate over multiple issues
(items), and each item can have a number of different values. Let us denote the set of items
asM, and the set of values for each item mi ∈ M asVi

1. We define a negotiation outcome
ω as a mapping from every item mi ∈ M to a value v ∈ Vi , and the negotiation domain is
defined as the set Ω of all possible negotiation outcomes. We assume that the knowledge
of the negotiation domain is known to both agents beforehand, and is not changed during
the whole negotiation session.

For each negotiation outcome ω, different agents may have different preferences. Here we
assume that each agent i ’s preference can be modeled by a utility function ui such that
∀ω ∈ Ω, it is mapped into a real-valued number in the range of [0,1], i.e., ui (ω) ∈ [0, 1].
In practical negotiation environments, there is usually a certain cost associated with each
negotiation. To take this factor into consideration, a real-time deadline is imposed on
the negotiation process and each agent’s actual utilities over the negotiation outcomes are
decreased by a discounting factor δ over time. Following the setting adopted in ANAC’12,
each negotiation session is allocated 3 minutes, which is normalized into the range of [0,1],
i.e., 0 ≤ t ≤ 1. Formally, if an agreement is reached at time t before the deadline, each
agent i ’s actual utility function U t

i (ω) over this mutually agreed negotiation outcome ω is
defined as follows,

U t
i (ω) = ui (ω)δt (4.1)

If no agreement is reached by the deadline, each agent i will obtain a utility of ru0
i δ, where

ru0
i is agent i ’s private reservation value in the negotiation scenario. The agents will

1HereVi can be either discrete values or continuous real values.

4.2. PRELIMINARIES 50

also obtain their corresponding reservation values if the negotiation is terminated before
the deadline. Note that the agents’ actual utilities over their reservation values are also
discounted by the discounting factor δ over time t . The agents’ preference information and
their reservation values are private and can not be accessed by their negotiating partners.

The interaction between the negotiation agents is regulated by the alternating-offers pro-
tocol, in which the agents are allowed to take turns to exchange proposals. During each
encounter, if it is agent i ’s turn to make a proposal, agent i chooses one of the following
three options: accept the offer from its negotiating partner, reject & propose a counter-offer
to its negotiating partner, and terminate the negotiation.

4.2.2 Robustness Analysis using Empirical Game Theoretic Approach

Under the ANAC competitions [3, 2], the winner is the agent who receives the highest
average payoffs in the specific competition tournament where each participation agent
adopts a different strategy designed by different parties. Each agent’s strategy in the
competition cannot be changed during the tournaments. However, in practical negotiation
scenarios, agents are free to choose any strategy available, thus it is equally important for
us to analyze the robustness of different strategies. For example, we may be interested in
knowing which strategy that most agents would have the incentive to adopt if the agents
are free to choose any strategy.

In robustness analysis of negotiation strategies, since there exists an infinite number of
possible strategies that the agents may take, the standard game-theoretic approach is not
applicable because it explicitly considers all possible strategies. Empirical Game Theoretic
(EGT) analysis [90] is a game-theoretic analysis approach based on a set of empirical
results and can be used to investigate the robustness of the strategies. EGT handles
the existence of infinite possible strategies by assuming that each agent only selects its
strategy from a fixed set of strategies and the outcomes for each strategy profile can be
determined through empirical simulations. This technique has been successfully applied
in addressing questions about robustness of different strategies in previous years’ trading
agent competitions [90] and negotiation strategies in ANAC 2011 [14].

In EGT analysis, a fixed set of negotiation strategies, say S, is given first. Each agent in the
system is free to select any strategy from S as its negotiation strategy. For each bilateral
negotiation (p, p′), the corresponding payoff Up(p, p′) received by agent p is determined as
its average payoff over all possible domains against its current opponent p′, which can be

4.2. PRELIMINARIES 51

obtained through empirical simulations (available from ANAC competition website [3]).
The average payoff of an agent in any given tournament can be determined by averaging
its payoff obtained in all bilateral negotiations against all other agents participated in the
tournament. Specifically, for a given tournament involving a set P of agents, the payoff

Up(P) obtained by agent p can be calculated as follows,

Up(P) =

∑
p′∈P,p′,p Up(p, p′)

| P | −1
(4.2)

where Up(p, p′) represents the corresponding average payoff of agent p in the bilateral
negotiation against agent p′. Note that agent p and p′ can use either the same or different
strategies. Based on Equation 4.2, now we can easily determine the corresponding payoff

profile for any given tournament. An agent has the incentive to deviate its current strategy
to another one if and only if its payoff after deviation can be statistically significantly
improved, provided that all the other agents keep their strategies unchanged. This strategy
deviation is known as single-agent deviation. There may exist multiple candidate strategies
that an agent has the incentive to deviate to (i.e., multiple single-agent deviations exist),
but here we only consider the best deviation available to that agent in terms of maximizing
its deviation benefit following previous work [14], which is called single-agent best deviation.

Before formally defining the robustness of a strategy, first we need to adopt concepts from
game theory to define the stability of a strategy profile2. Given a strategy profile under a
negotiation tournament, if no agent has the incentive to unilaterally deviate from its current
strategy, then this strategy profile is called a empirical pure strategy Nash equilibrium3. It is
also possible for the agents to adopt mixed strategies and thus we can easily define the
concept of empirical mixed strategy Nash equilibrium accordingly. However, in practical
negotiations people are risk-averse and usually would like to be represented by a strategy
with predictable behaviors instead of a probabilistic one [101]. Therefore we only consider
empirical pure strategy Nash equilibria in our analysis following previous work [14]. Notice
that in general a game may have no empirical pure strategy Nash equilibrium.

Another useful concept for analyzing the stability of the strategy profiles is best reply cycle
[140], which is a subset of strategy profiles. For any strategy profile within this subset,
there is no single-agent best deviation path leading to any profile outside the cycle. In

2A strategy profile refers to the combination of all participating agents’ strategies.
3This concept is similar to the concept of pure strategy Nash equilibrium in classical game theory, but it is

called empirical pure strategy Nash equilibrium since the analysis is based on empirical results.

4.2. PRELIMINARIES 52

other words, in a best reply cycle, all single-agent best deviation paths starting from any
strategy profile within itself must lead to another strategy profile inside the cycle.

Both empirical pure strategy Nash equilibrium and best reply cycle can be considered as two
different interpretations of empirical stable sets to evaluate the stability of different strategy
profiles. Based on these two concepts, we are ready to evaluate the robustness of a strategy
using the concept of basin of attraction of a stable set [130]. The basin of attraction of a stable
set is defined as the percentage of strategy profiles which can lead to this stable set through
a series of single-agent best deviations. Accordingly, a negotiation strategy s is considered
to be robust if it belongs to a stable set with a large basin of attraction [130, 14]. In other
words, if there exists a large proportion of initial strategy profiles which, through a series
of single-agent best deviations, can eventually lead to a stable set containing strategy s ,
then strategy s is highly robust in the long run, since the strategy s can always have the
opportunity of being adopted eventually if the tournament is sufficiently repeated due to
single-agent best deviations.

In summary, we apply the EGT analysis to identify both empirical pure strategy Nash equilib-
rium and best reply cycle and evaluate the robustness of negotiation strategies via the concept
of basin of attraction.

4.2.3 Dispersion Game and Strategies Definition

Dispersion games (DGs) [120] generalize the anti-coordination games by allowing arbitrary
number of players and actions. In this class of games, the agents prefer the outcomes in
which their action choices are as dispersed as possible over all possible actions. Formally
a N -player dispersion game is a tuple 〈N , (Ai), (ui)〉where

• N = {1, 2, . . . ,n} is the set of agents.

• Ai is the set of actions available to agent i .

• ui is the utility function of each agent i , where ui (O) corresponds to the payoff agent
i receives when the outcome O is achieved.

We assume that all agents have the same set of actions, that is, A1 = A2 = . . . = An , and
also the game is both agent symmetric and action symmetric. That is, each agent’s utility

4.2. PRELIMINARIES 53

over a particular outcome is only determined by the number of agents choosing the same
action as itself.

When the agents are interacting with one another in DG-like environments, the most
desirable outcomes would be the case that all agents’ action choices are as dispersed as
possible, from both individual agent’s and the overall system’s perspectives. This kind of
outcomes is called maximal dispersion outcomes (MDOs) [120]. Formally, an MDO can be
defined as follows.

Definition 9 Given a DG, an outcome O = {a1, . . . , ai , . . . , an } is maximal dispersion outcome
iff for each agent i ∈ N and each outcome O ′ = {a1, . . . , a′i , . . . , an } such that ai , a′i , we have
nO

ai
≤ nO ′

a ′
i

. Here nO
ai

and nO ′

a ′
i

are the number of agents choosing action ai and a′i under outcome O

and O ′ respectively.

The strategies we consider here are basic simple strategy (BSS) and extended simple strategy
(ESS). Basic simple strategy is a novel strategy for agents to make decisions in repeated DGs
proposed by Alpern [7]. This strategy is specifically designed for the case when the number
of agents n is equal to the number of actions k (k = |Ai |). According to BSS, initially each
agent i chooses a random action. If no other agent chooses the same action, agent i will still
choose the same action next round. If there exist other agents choosing the same action,
agent i will randomly choose an action from the set A′ = {a′ ∈ Ai | n

O
a ′ , 1} of actions in

the next round. Note that this strategy only requires that the agents know which actions
are chosen by only one agent in previous round.

Another strategy we consider is extended simple strategy, which extends BSS for the general
case when n , k . In each round t , each agent i chooses the same action ai as previous round
if nOt

ai
≤ bn/kc, where nOt

ai
is the number of agents choosing ai in round t . Otherwise, agent

i chooses action ai with probability n/k

n
Ot
ai

and with probability 1 − n/k

n
Ot
ai

randomly chooses an

action over the action set {a′ ∈ Ai | n
Ot

a ′ < dn/ke}.

Unlike BSS, ESS does not assign equal probability to those actions that are not chosen
by only one agent. For example, consider the case when there are 4 agents and the
action set A1 = A2 = . . . = A4 = {a1, a2, a3, a4}, and the outcome in the current round t is
Ot = {a1, a1, a2, a2}. In ESS, the agents choosing action a1 in current round t will choose
action a1 with probability 0.5 and either action a3 or a4 with probability 0.25 in round t + 1.
In contrast, the agents will randomly select one action to perform according to strategy
BSS.

4.3. MODELING WITH COUNTER ABSTRACTION 54

4.2.4 Counter Abstraction Technique

Counter abstraction is a special kind of symmetry reduction where the properties to be
proved are irrelevant with the process identifiers. If a system is composed of a large
number of behaviorally similar or even equal processes, we can abstract its state space by
grouping the processes based on which local state they reside in. For example, suppose
there are 3 behaviorally identical processes residing in a system. Instead of saying “process
1 is in state s, process 2 is in state t and process 3 is in state s”, we simply say “two processes
are in state s and one process is in state t”. In this way, the state space can be reduced by
exploiting a powerful state space symmetry.

4.3 Modeling with Counter Abstraction

4.3.1 Modeling Negotiation Systems

Given a set of agents denoted as N and a set of negotiation strategies denoted as S , the
n-agent negotiation problem can be naturally modeled as a strategic form game. Formally
it can be represented as a tuple 〈N , (Si), (Ui)〉where

• N = {a1, a2, . . . , an } is the set of agents.

• Si is the set of negotiation strategies available to ai , and we assume that all agents
have the same set of strategies, that is, S1 = S2 = . . . = Sn = S .

• Ui is the utility function of agent i , where Ui (P) corresponds to the average payoff ai

receives, given the set of agents involved in the current negotiation is P, which can
be calculated according to Equation 4.2.

Each agent (process) ai has its own negotiation strategy si ∈ Si , and each global state
s = (v , 〈s1, . . . , sn〉) = (v ,Oi), which is the combination of the valuations of the global
variables v4 and the chosen strategies of all agents (or the game outcome Oi). If global
variables are ignored, then each global state represents a unique strategy profile in the
system. The transition relation T is built based on the single-agent best deviation, i.e., an

4Here the global variables refer to all variables defined in the model apart from the local variables (s1, . . . , sn)
storing the strategy choices for each agent.

4.3. MODELING WITH COUNTER ABSTRACTION 55

(i, j, k, l, m, n, s, t)

(i‐1, j’, k’, l’, m’, n’, s’, t’)

(i’, j‐1, k’, l’, m’, n’, s’, t’)

(i’, j’, k‐1, l’, m’, n’, s’, t’)

(i’, j’, k’, l‐1, m’, n’, s’, t’)

(i’, j’, k’, l’, m‐1, n’, s’, t’)

(i’, j’, k’, l’, m’, n‐1, s’, t’)

(i’, j’, k’, l’, m’, n’, s‐1, t’)

(i’, j’, k’, l’, m’, n’, s’, t‐1)

Out_1

Out_2

Out_3

Out_4

Out_5

Out_6

Out_7

Out_8

i>0

j>0

k>0

l>0

m>0

n>0

s>0

t>0

Figure 4.1: One Step of the Negotiations

agent may change its current strategy to another one according to the maximal deviation
benefit. Thus the formal model representing the dynamics of the negotiations can be
automatically constructed and is uniquely determined.

However, in EGT analysis, the agents always choose strategies from the same strategy
group and the identities are not important, therefore this abstraction technique can be
naturally applied here. Specifically, we only need to consider how many agents choose
each strategy at the same time. Previously, given two states in which the number of agents
choosing each strategy are the same, but the identities of the agents choosing the same
strategy are different, they are defined as different states. But now they can be merged
as the same one. For example, consider an EGT analysis with 5 agents and 3 strategies
and two possible global states s = (v , 〈s1, s1, s2, s2, s3〉) and s ′ = (v , 〈s1, s2, s2, s3, s1〉). We
only need to keep track of the number of agents choosing each strategy, i.e., we have
f (s1) = 2, f (s2) = 2, f (s3) = 1, where f (s) records the number of agents choosing strategy
s , and thus the two original global states are reduced to a single one (v , f). Following the
above idea, we can reduce the state space of multi-agent negotiation models.

Next, we take the 8-agent 8-strategy negotiations as an example, which is the setting
adopted in the final round competition of ANAC, to show the formal modeling of the sys-
tem. The group of strategies is denoted as S = {s1, s2, · · · , s8}. Since the counter abstraction
is used, we do not keep record of individual agent’s strategy. Instead, states representing

4.3. MODELING WITH COUNTER ABSTRACTION 56

the overall strategies distribution between agents are defined. We take one step of the
dynamic behaviors of the system as an example, which is demonstrated in Fig. 4.1.

In Fig. 4.1, the arrows indicate the direction of the states transition. (i , j , k , l ,m ,n , s , t) is
used to represent a strategy profile in the system. i means currently there are i agents
choosing s1 and m means there are m agents choosing s5. Obviously the sum of these
integers should be 8. This combination is actually a state in the corresponding LTS. For the
whole system, given a strategy profile, there are at most 8 enabled outgoing transitions.
This is because each transition corresponds to the single-agent best deviation for each
individual strategy. Therefore, there are 8 outgoing arrows from state (i , j , k , l ,m ,n , s , t)
displayed in the figure.

let us take the uppermost arrow in the figure as an example. This is a potential transition
which means one agent choosing s1 tries to deviate to another strategy according to the best
payoff it can achieve. If this transition can happen, i must be positive, otherwise no agent
can abandon s1. A label i > 0 is used on the arrow to represent this constrain. Assume this
condition is true, then there are some agents currently choosing s1, and one of them may
have the incentive to change s1 to another strategy which can mostly increase its payoff.
Which strategy will be the agent’s new choice? The answer is decided via the negotiation
procedure represented by Out 1, which means there will be an agent replacing its strategy
s1 to another. This algorithm can be implemented by imperative programming languages
and imported to model checker. Afterwards, a new state (i-1, j’, k’, l’, m’, n’, s’, t’) will be
generated since a new strategy profile is obtained. Because one agent abandons s1, then i

becomes i-1. One of the other 7 integers will increase by 1, but we are not sure which one
it is.

After defining the transition rules of an individual state, one critical question is that what the
initial distribution of the strategies is among the agents, i.e., the initial strategy profile. This
is very important since it affects the following executions. For example, (8, 0, 0, 0, 0, 0, 0, 0)
and (0, 0, 0, 0, 0, 0, 0, 8) have totally different behaviors in their future executions because of
the different payoff of different strategies. For robustness analysis, we should consider all
possible scenarios of the system, i.e., it is better that the initial states cover all strategies
profiles. Different model checkers may have different solutions to handle this issue. For
example, if a model checker supports the declaration of multiple initial states, then all
possible strategy profiles can be defined as initial states and the system behaviors can be
analyzed afterwards. Or in some cases, the model checker just supports one initial state,
then some tricks should be used to guarantee that this single initial state can transit to all

4.3. MODELING WITH COUNTER ABSTRACTION 57

possible strategy profiles.

4.3.2 Modeling BSS and ESS in Dispersion Games

For both BSS and ESS in DGs, in each round, the agents simultaneously choose their actions
in a probabilistic manner based on the outcome of the previous round. The natural way of
modeling the agents’ dynamics in DGs is to represent each agent’s learning dynamics as
a process. The overall system exhibits highly stochastic behaviors and non-determinism
because of the coexistence of multiple probabilistic learners. However, since each agent
makes its decision independently each round, the concurrent behaviors among agents
can be equivalently modeled as a series of sequential behaviors. In this way, the non-
determinism in the system is eliminated and thus the system can be naturally modeled
as a DTMC. On the other hand, similar to the negotiation system, agents in DG also have
identical behaviors since they share the common actions. It is unnecessary to model each
individual agent. Therefore, counter abstraction technique is suitable again.

We model each action instead of each agent as a process in model implementation, and
only record the number of agents choosing this action. Each action process’s behavior is
determined by the stochastic behaviors of all agents previously choosing it. The current
local state of each action (process) is represented by the number of agents currently choosing
it, which will be updated accordingly based on the stochastic behaviors of the relevant
agents. If there is a new agent choosing action ai , then the variable recording the local state
of action ai will be increased by 1. Each global state of the system is determined by the
local states of all the action processes (the game outcome) together with all global variables.
Fig. 4.2 shows the behaviors of the model for ESS with | Ai |= 2 and any number of agents.
In this model, two processes, Action 1 and Action 2, are executing in parallel, and are also
synchronized at the end of each round. For each action process i , its current local state is
represented by the number ni of agents choosing it in the current round. The execution
path of each process is determined by its current local state and the behaviors of the agents
choosing it. Specifically, each process i repeatedly checks whether there is any agent that
takes action i in current round but has not made its next round decision yet. If yes, the
process proceeds by allowing this agent to make its decision in the way as specified by ESS
and makes update accordingly; if not, the process waits, updates its local state and starts
the next round after the other process also finishes this round. The behaviors of the model
for BSS are similar and we omit it here.

4.4. PROPERTIES SPECIFICATION 58

Check each

agent

choosing A1

all finished not finished

Wait for

action 2

Make

decision

Action 1's state n1 <= Floor[n/k] otherwise

Update its

state n'1 in

next round

Stochastic

choosing &

update

Check each

agent

choosing A2

not finished all finished

Make

decision

Wait for

action 1

otherwise Action 2's state n2 <= Floor[n/k]

Update each action’s local state

n1 = n'1
n2 = n'2

Action 1Action 2

Update its

state n'2 in

next round

Stochastic

choosing &

update

Figure 4.2: Finite state automaton of the model of ESS with | Ai |= 2

Besides, by using two sets of variables to record the local states of the action processes
(e.g, n1 and n′1 in Fig. 4.2), the behavior of each process does not have any side effect
on the behaviors of other processes. Therefore the updating of each action process can
be performed in a sequential way without involving any non-determinism, and thus it is
sufficient to model the system as DTMC instead of PA as previously mentioned.

4.4 Properties Specification

After building the model, another important issue is formally verifying suitable properties,
which can be used to analyze the behaviors of MAS.

4.4.1 Properties in Negotiation Systems

From the analysis of Section 4.2.2, empirical pure strategy Nash equilibrium, best reply cycle
and the resulting basin of attraction should be verified. In the following we describe the
corresponding model checking algorithms used to check these properties.

Empirical Pure Strategy Nash Equilibrium The existence of empirical pure strategy Nash
equilibrium means there exists some states that all agents in the negotiation setting will keep

4.4. PROPERTIES SPECIFICATION 59

their strategies, so that no outgoing transition exists from these states. From the viewpoint
of model checking, these states are deadlock states in the system. On the other hand, each
state in the system is corresponding to a strategy profile, therefore each deadlock state
existing in the model indicates the agents will not change their mind, and this state should
satisfy empirical pure strategy Nash equilibrium. As a result, deadlock checking can be used
to check whether empirical pure strategy Nash equilibrium exists in the system. In traditional
deadlock checking, the verification algorithm stops whenever a deadlock state is found,
and returns a counterexample. Otherwise there is no deadlock state existing. In our
setting, we require to find all deadlock states instead of one in order to completely analyze
the robustness. So we improve the traditional deadlock checking algorithm to capture all
deadlock states, if there is any.

Best Reply Cycle Best reply cycle describes the scenario that there are several states which
compose a loop, and these states do not have outgoing transitions to states outside this
loop. In this case, states in the loop cannot reach states which correspond to empirical
pure strategy Nash equilibrium since they can always transit to other states. From the
viewpoint of model checking, the desired loops are actually nontrivial BSCCs in the state
space. And on the other hand, it is trivial that all nontrivial BSCCs should be best reply
cycle. Therefore our target is to find out all nontrivial BSCCs. SCC searching is widely
used in model checking techniques, especially for LTL verification. Tarjan’s SCC searching
algorithm [122] can be applied here to find all nontrivial SCCs, and BSCCs are restored as
our targets.

Basin of Attraction Based on the above two properties, the stability of different strategy
profiles can be decided. All empirical pure strategy Nash equilibria and best reply cycles
compose the stable sets of the negotiation system. Accordingly, basin of attraction of a stable
set is defined as the percentage of strategy profiles which can lead to itself through a series
of single-agent best deviations, i.e., the percentage of the states in the system reaching
the deadlock states or BSCCs. It can be calculated based on the results of the above two
properties, since the total number of states reaching each stable set can be recorded. One
strategy is robust iff it belongs to stable sets with large basin of attraction.

4.4. PROPERTIES SPECIFICATION 60

4.4.2 Properties in Dispersion Games

In DGs, We mainly concentrate on the following three properties: convergence, deviation
and convergence rate.

Convergence Given a strategy in DG, convergence indicates whether the agents adopting
this strategy are guaranteed to converge to an MDO at last. This is an important property
to analyse in DG and in the literature of learning in games as well [120, 7]. If the answer
is positive, it indicates that the strategy can let the agents to stabilize on the most efficient
outcome eventually. To verify this property, we can check the probability that the system
satisfies the LTL formula as follows:

Pr (System |= ^�MDO); (4.3)

where System models the overall system. MDO is a combination of atomic propositions,
and states satisfying MDO represent the outcome of the game in these states is an MDO.
The combination of^ and� operators captures the meaning of convergence, i.e., the system
will eventually reach MDO and will always be in that state thereafter. Through verifying
property 4.3, the probability that the system converges to an MDO is obtained.

Deviation In some scenarios, convergence does not exist in DG. This means the outcome
is an MDO in round t , but the outcome in round t + 1 is not an MDO. In other words,
the outcome deviates from an MDO. For a given strategy, if this average probability of
deviation is very low, we can say that the outcome approximately converges to an MDO
under this strategy. To achieve this goal, we can check the probability that the system
satisfies the LTL formula as follows.

Pr (System |= �(MDO → X¬MDO); (4.4)

This formulae represents the probability from an MDO to an output which is not an MDO
in the ’next’ round. Through verifying property 4.4, the probability that the system deviates
from an MDO is obtained.

Convergence Rate Next we consider analyzing another important property of the strate-
gies: the convergence rate. For any strategy that has been proven to (approximately)

4.5. EVALUATION 61

converge to desirable outcomes, the natural following up question would be how fast the
convergence could be. Here we illustrate how we can analyze this property of both strate-
gies using reward checking [18] techniques. Here we skip the formal definition of reward
checking since we just use the simplest setting: we use transition reward to calculate the
average rewards from the initial state to an MDO. Specifically, we set the reward of finish-
ing each round is 1, and increase the accumulated reward by one after each round. Using
the iterative method in [18], we can calculate the average rounds (rewards) from the initial
state to an MDO. The property can be expressed as follows.

R(System |= ^MDO); (4.5)

where R indicates the rewards of reaching some target states. Through checking the above
property, the exact average number of rounds the system takes to converge to an MDO can
be obtained.

4.5 Evaluation

All proposed algorithms in this chapter have been implemented in PAT. In this section, we
evaluate our approach in negotiations and dispersion games via several sets of experiments.

4.5.1 Negotiation Systems

We perform robustness analysis on the top eight strategies participated in ANAC 2012 using
PAT, and our own strategy CUHKAgent is included. CUHKAgent is an implementation
of our adaptive negotiating strategy ABiNeS [61] for bilateral negotiations participated
in ANAC 2012 [3], and wins the first place of ANAC 2012. The set of top agents are
represented as S = {C, L, O, R, B, M, I, A}5. We use the notation P to represent the set of
agents participating in the negotiation.

The detailed payoff matrix for all possible bilateral negotiations is given in Table 4.1 which
is available from http://anac2012.ecs.soton.ac.uk/ and will be used as the basis for
performing the robustness analysis. Next, multiple experiments are conducted under

5The bold letters are the abbreviations for each strategy as follows: C - CUHKAgent, L - AgentLG, O
- OMACAgent, R - TheNegotiatorReloaded, B - BRAMAgent2, M - Meta-agent, I - IAMHaggler2012, A -
AgentMR. These abbreviations will be used in the following descriptions.

http://anac2012.ecs.soton.ac.uk/

4.5. EVALUATION 62

Table 4.1: Payoff matrix for the top eight negotiation strategies in ANAC 2012 average over
all domains (For each strategy profile, only the row agent’s payoff is given since the game
is symmetric.)

U (p, p′) C L O R B M I A
C 0.596 0.465 0.491 0.669 0.548 0.618 0.832 0.437
L 0.541 0.421 0.439 0.673 0.462 0.640 0.832 0
O 0.533 0.38 0.423 0.648 0.433 0.562 0.815 0
R 0.546 0.522 0.502 0.576 0.509 0.596 0.773 0.425
B 0.523 0.357 0.414 0.657 0.463 0.648 0.757 0.207
M 0.501 0.486 0.472 0.623 0.484 0.456 0.76 0.079
I 0.559 0.567 0.55 0.578 0.531 0.592 0.819 0
A 0.471 0 0 0.615 0.163 0.12 0 0

different negotiation settings to analyze the robustness of different strategies and illustrate
the effectiveness of our approach. All these experiments will be shown to be finished within
seconds, and thus the efficiency of this method is satisfiable.

4.5.1.1 Bilateral Negotiations among Eight Possible Strategies

In the context of bilateral negotiations, there exists 2 agents, i.e., |P| = 2, and the strategy
set S is defined as above. Each agent can choose any strategy from the set S during
negotiation. Through the counter abstraction approach, the state space of the negotiation
model is reduced from |S||P| = 82 = 64 to

(|P|+|S|−1
|S|−1

)
= 36. This reduction can also help to

reduce the verification time of PAT. The verification results are listed as follows.

• Verification time: 0.1 second.

• Deadlock states: there is no such states.

• BSCCs: there is only one nontrivial BSCC existing in the system: (1, 1, 0, 0, 0, 0, 0, 0)→
(0, 1, 0, 1, 0, 0, 0, 0)→ (1, 0, 0, 1, 0, 0, 0, 0)→ (1, 1, 0, 0, 0, 0, 0, 0).

• States reaching deadlock or BSCCs: 36 states reach the BSCC; no state reaches dead-
lock states.

According to the verification results, we find that under bilateral negotiations, there is
no empirical pure strategy Nash equilibrium and there exists only one best reply cycle, i.e.,

4.5. EVALUATION 63

Table 4.2: The robustness ranking of strategies in bilateral negotiations.

Strategy C L O R B M I A
Ranking 1st 1st 4th 1st 6th 5th 6th 8th

(1, 1, 0, 0, 0, 0, 0, 0) → (0, 1, 0, 1, 0, 0, 0, 0) → (1, 0, 0, 1, 0, 0, 0, 0) → (1, 1, 0, 0, 0, 0, 0, 0). Here 0
and 1 indicate the number of agents choosing each strategy, and the order of these numbers
in one state is consistent with the strategies order listed in S. Besides, the basin of attraction
of this cycle is 100%, i.e., for all possible initial strategy profiles, there always exists a single-
agent best deviation path which can lead to one of the strategy profiles within this cycle.
Our strategy CUHKAgent (C) is contained in two strategy profiles ((1, 1, 0, 0, 0, 0, 0, 0) and
(1, 0, 0, 1, 0, 0, 0, 0)) in this cycle. This indicates that C is very robust against other strategies
since it is always possible that the agents will be willing to adopt C no matter what their
initial strategy is in the long run. Obviously, strategies L and R are also robust in current
environment while others may be less competitive in the experiments.

Next, it is meaningful to investigate the overall ranking of these top strategies in current
setting according to their robustness. To achieve this goal, we adopt the elimination mech-
anism used in [27]. Different from [27] which eliminates the worst player, we gradually
eliminate the most robust strategies available to the agents in the experiment, and try to find
the most robust strategies in the remaining ones. Note that the robustness of one strategy
may be related with some opponents’ performance. The ranking of a given strategy may
be affected by the presence, or absence, of other strategies, and may depend on the number
of agents in the system. Therefore this kind of ranking can only be used as a reference.

According to the existence of best reply cycle, we can conclude that strategies C, L, and R rank
the 1st in all strategies in current system. Afterwards, these three strategies are removed
fromS, and the robustness analysis will be conducted in the remaining five strategies. Step
by step, the overall robustness ranking of these top strategies in bilateral negotiations will
be obtained, as listed in table 4.2. We can see that O and M have the average robustness,
while B, I and A are relatively not so robust. Therefore, the agents having the last three
strategies will try to change their choices to get better payoff.

The analysis within bilateral negotiation does not give us much information about the
robustness of our strategy within a tournament setting involving more than two agents.
Therefore, more cases are discussed in the following part.

4.5. EVALUATION 64

4.5.1.2 Eight-agent Negotiation Tournaments

We start with a simple case in which each agent is only allowed to choose one strategy
from the top four strategies6, and then we perform the robustness analysis by taking all
top eight strategies into consideration later, following the setting of ANAC competition.
For both cases, each participating agent negotiates with all the other participates, and the
average payoff of each agent can be determined using Equation 4.2. However, different
from the setting in ANAC competition, the agents are free to choose any strategy from the
set of strategies available. Different agents may select the same strategy during the same
tournament in our EGT analysis. The setting of ANAC competition can be considered
as a specific tournament in which each agent chooses a unique strategy among the eight
strategies.

One natural way is to perform robustness analysis over all domains. However, this can
hide a lot of detailed information due to the averaging effects. Besides, most of the domains
are relatively small and thus easier for the agents to negotiate to get a high utility under the
limited negotiation time (3 mins). Therefore, we conduct the robustness analysis under the
tournament setting over one challenging domain: Travel domain, similar to previous work
[133]. The Travel domain is one of the largest and most complex domains in the competition,
which thus can better reflect the practical negotiation scenarios which usually involve a
large number of possible proposals to consider. In addition, different from [133], we set the
discounting factor of this domain to the low value of 0.5 instead of 1 (without discounting).
Under the setting with high discounting effect, it requires the agents to delicately and
adaptively trade off between concession to the opponent (be fear of obtaining lower payoff

due to large discounting effect) and staying tough (hope to get higher payoff by letting the
opponent concede first) against different types of opponents. Therefore we believe that
this setting can better reflect the behavior differences between different strategies.

Negotiation Tournament Analysis over Top Four Strategies In this section, we consider
the eight-player negotiation tournament over the set S′ = {C, L, O, R} of the top tour
strategies. Similar with the analysis in bilateral negotiation, the total number of strategy
profiles considered can be reduced from | S′ ||P|= 48 = 65536 to

(|P|+|S′|−1
|S′|−1

)
= 165 considering

the symmetry of the negotiation. The verification results from PAT is listed as follows.

6The reason that we choose the top-four strategies instead of the top-three is that both OMACagent and
TheNegotiatorReloaded rank the third place.

4.5. EVALUATION 65

• Verification time: 1.2 seconds.

• Deadlock states: there is only one deadlock state in the system: (8, 0, 0, 0).

• BSCCs: there is no nontrivial BSCC in the system.

• States reaching deadlock or BSCCs: no stat reaches nontrivial BSCC; 165 states reach
the deadlock state.

Based on the verification results, we observe that there is only one empirical pure strat-
egy Nash equilibrium, (8, 0, 0, 0), in which all agents adopt our strategy CUHKAgent. From
the percentage of the states reaching this deadlock state, we can see that basin of attrac-
tion of CUHKAgent is 100%. In other words, for all non-equilibrium tournaments, there
always exists a single-agent best deviation path leading to this equilibrium. This result
indicates that our strategy CUHKAgent is very robust under the top four-agent negotiation
tournament, even though the agents’ average payoff under this equilibrium tournament
is lower compared with some other tournaments (e.g., all agents adopting the strategy
IAMHaggler2012). Similar phenomena (the inefficiency of Nash equilibrium from the so-
cial perspective) are commonly observed in non-cooperative game theory. For example, in
the prisoner’s dilemma game, mutual defection is the only pure strategy Nash equilibrium,
but there exists another Pareto-optimal outcome of mutual cooperation under which all
agents’ payoffs can be significantly increased.

We give a specific illustration of how the agents adjust their strategy choices between
different tournaments under the EGT analysis in Fig. 4.3. This deviation analysis graph is
generated automatically using the model checker PAT’s simulator. In Fig. 4.3, each node is
associated with a unique number representing different tournaments. The strategy profile
for each state is given by the label of its outgoing transitions. Each transition indicates
a single-agent best deviation for one particular type of strategy. For example, node 2
represents the tournament in which the number of agents choosing the four strategies
C, L, O, R are 3, 1, 2, 2 respectively, which is specified by the last 4 digits of the labels of its
outgoing transitions, i.e., LC .3.1.2.2, RC .3.1.2.2 and OC .3.1.2.2. The transition from node
2 to node 27 indicates that there exists a single-agent best deviation for an agent choosing
strategy L to deviate to strategy C, as indicated by its label LC.3.1.2.2. From Fig. 4.3, we
can clearly observe the overall trend that all agents choosing strategies different from C
have the incentive to deviate from their current strategies to strategy C. This deviation
analysis graph can be viewed as a graph with six levels, because the shortest pathes from
state 1 to state 13 has six transitions, such as the paths 1 → 2 → 5 → 8 → 10 → 12 → 13

4.5. EVALUATION 66

Figure 4.3: Deviation analysis graph with initial state (node 1) in which each strategy is
chosen by two agents

and 1 → 4 → 7 → 8 → 15 → 14 → 13. The transitions between every adjacent levels i

and j correspond to single-agent best deviations from states in level i to states in level j .
At the last level, all agents originally choosing strategies different from C have switched
to strategy C, thus converging to the terminating node 13, which corresponds to the pure
strategy Nash equilibrium (8, 0, 0, 0).

Negotiation Tournament Analysis over Top-eight Strategies In this section, we turn
to the analysis of the complete eight-player tournament over the top eight strategies fol-
lowing the setting of ANAC 2012. In this setting, the total number of strategy profiles
considered can be reduced from | S ||P|= 16777216 to

(|P|+|S|−1
|S|−1

)
= 6435 due to symmetry of

the negotiation. The verification results are listed as follows.

• Verification time: 10.2 seconds.

• Deadlock states: there is only one deadlock state in the system: (8, 0, 0, 0, 0, 0, 0, 0).

• BSCCs: there is no nontrivial BSCC in the system.

• States reaching deadlock or BSCCs: no state reaches nontrivial BSCC; all states reach
the deadlock state.

4.5. EVALUATION 67

Table 4.3: The robustness ranking of strategies in eight-agent negotiations.

Strategy C L O R B M I A
Ranking 1st 2st 6th 4st 4th 6th 2th 8th

The verification results are similar to results in the previous case. There also exists only one
empirical pure strategy Nash equilibrium, (8, 0, 0, 0, 0, 0, 0, 0), where all agents adopt our strat-
egy CUHKAgent, and also the basin of attraction of this equilibrium is 100%. This indicates
that our strategy CUHKAgent is also very robust under the full negotiation tournament
setting over top eight strategies. Similar deviation trends as the previous case can also be
found here: for any initial tournament, those agents choosing strategies other than strategy
C have the incentive to switch to strategy C to maximally increase their individual average
payoffs, and thus after a series of single-agent best deviations, finally the strategy pro-
file will converge to the pure strategy Nash equilibrium (8, 0, 0, 0, 0, 0, 0, 0). The deviation
analysis graph is omitted here due to space limitation.

Again, we want to get the overall robustness ranking of these eight strategies in current
eight-agent negotiations. Because CUHKAgent is the most robust one, it will be eliminated
and robustness analysis will be conducted in the remaining 7 strategies. Gradually, the
overall robustness ranking of these top strategies in eight-agent negotiations will be ob-
tained, as listed in table 4.3. We can see that different from the ranking in Table 4.2, strategy
I is quite robust; L still has excellent robustness; R and B have the average robustness; and
O, M and A have relatively bad robustness in current setting, therefore agents having these
three strategies may try to abandon them if they have other choices.

We notice that the robustness rankings in the settings of bilateral negotiation (Section 4.5.1.1)
and tournament negotiation (Section 4.5.1.2) are different. This difference can be explained
as follows: in the bilateral negotiation setting, the possible payoff increase from deviation
is caused by the negotiation efficiency difference between every pair of strategies over each
other. However, in the tournament negotiation setting, the possible payoff increase from
deviation is from the efficiency difference between each pair of strategies over the rest of
strategies being considered. Therefore the best deviation strategy in the first setting may
not be the best choice when it comes to the second setting.

4.5. EVALUATION 68

Table 4.4: Probability of Convergence to an MDO of ESS
Pc(n , k) n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
k=2 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
k=3 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
k=4 1.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0

4.5.2 BSS and ESS in Dispersion Games

In this part, we analyze the performance of both strategies BSS and ESS with probabilistic
model checking.

4.5.2.1 Convergence

We first consider the property whether the agents adopting the strategies BSS and ESS are
guaranteed to converge to an MDO.

For the first strategy BSS, it is required that the number n of players is always equal to the
number of actions | Ai |. Due to the state space explosion with the increase of problem
size, we only consider three simple cases with n = 3, 4 and 5. By automatically verifying
the previous property, the model checker PAT returns that the probability that the outcome
converges to an MDO is 1 for all cases.

For the second strategy ESS, the number of players can be different from the number of
actions. We consider the following cases here: the number of available actions k = 2, 3, 4,
and the number of players n varies from 2 to 10. Table 4.4 shows the convergence probability
Pc(n , k) for all these cases by automatically verifying property 4.3.

From Table 4.4, we can see that the strategy ESS cannot guarantee that the outcome will
always converge to an MDO, and it depends on the relation between the number of agents
and actions available to them. Specifically, for k = 2, 3, 4 and n = 1, ..., 10, the outcome
is guaranteed to converge to an MDO when k ≥ n or n%k = 0, and the convergence
property does not hold otherwise. Intuitively, the underlying reason is as follows: when
n%k , 0 and n > k , for any MDO, there always exists an unstable action such that the
agents choosing this action would always have certain probability to choose other actions
next round. If all agents choose another action next round simultaneously, the resulting
outcome will not be an MDO any more.

4.5. EVALUATION 69

Table 4.5: Probability of Deviation after reaching an MDO

Pc(n , k) n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
k=2 0.0625 0.0 0.0699 0.0 0.0746 0.0 0.0686 0.0
k=3 0.0 0.0725 0.125 0.0 0.0912 0.1368 0.0 0.092
k=4 0.0 0.0 0.122 0.1524 0.1583 0.0 0.1374 0.1573

4.5.2.2 Deviation

For the cases when the convergence property is lost in ESS, it is interesting and useful
to consider the corresponding deviation probability. By checking property 4.4, we can
automatically obtain the exact probability that the deviation happens. This property is
verified for all previous cases that the convergence property is lost in ESS, and the results
are shown in Table 4.5.

In Table 4.5, the cases with value 0 indicate that the outcome will always converge to
an MDO, which is in accordance with previous results. For the rest of cases that the
convergence property is lost, the exact probability that the outcome will deviate from
an MDO is obtained. These results give us a better understanding and more accurate
prediction of the dynamics of the agents’ behaviors.

4.5.2.3 Convergence Rate

To analyze the convergence rate of the strategy BSS, we calculate the average number of
rounds it takes for the outcome to converge to an MDO. Since we have previously shown
that the outcome will not deviate once an MDO is achieved in BSS, it is equal to check the
average number of rounds it takes for the outcome to reach an MDO for the first time. For
the strategy ESS, it does not always guarantee the convergence to an MDO. For those cases
that the convergence property is lost, here we only check the average number of rounds it
takes until an MDO is reached for the first time.

Here we only provide the results for ESS in different cases, shown in Table 4.6. For those
cases that ESS guarantees the agents to converge to MDO (denoted in black), we can see
that the average number of rounds required to converge to MDO is gradually increased
when the number of agents n becomes larger. This implies that the convergence rate is
gradually decreased with the increasing of the number of agents n . The intuitive reason
is that the overall system becomes more dynamic due to the increase in the number of

4.5. EVALUATION 70

Table 4.6: Average Number of Rounds to Converge to (Reach) an MDO in ESS

R̄(n,k) n = 3 n = 4 n=5 n=6 n=7 n=8 n=9 n=10
k=2 1.33 2.44 1.55 2.69 1.70 2.87 1.81 3.00
k=3 2.63 1.48 2.11 3.20 1.81 2.45 3.52 2.04
k=4 2.15 3.08 1.58 2.15 2.90 3.73 2.04 2.59

Table 4.7: The Number of States and Verification Time for Checking the Convergence
Probability of ESS with and without Abstraction

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
k=2 (state (W)) 42 99 158 284 400 622 814 1159 1446
k=2 (state (W/O)) 62 532 3482 35758 242602 - - - -
k=2 (time (W)) 0.015 0.017 0.027 0.027 0.061 0.043 0.168 0.064 0.276
k=2 (time (W/O)) 0.063 0.073 0.631 28.77 126.7 - - - -
k=3 (state (W)) 99 349 1155 2413 3598 8009 13323 17614 32105
k=3 (state (W/O)) 352 1985 38729 - - - - - -
k=3 (time (W)) 0.021 0.035 0.065 0.117 0.421 0.457 0.556 5.376 1.492
k=3 (time (W/O)) 0.093 0.196 35.51 - - - - - -
k=4 (state (W)) 512 1885 3588 14478 34668 72848 103108 257861 462256
k=4 (state (W/O)) 386 6662 148898 - - - - - -
k=4 (time (W)) 0.049 0.069 0.266 1.171 1.938 3.683 37.09 20.77 27.951
k=4 (time (W/O)) 0.127 0.709 32.58 - - - - - -

stochastic agents, thus making it more difficult for the agents to coordinate their actions.
Another interesting observation is that the average number of rounds before convergence
are always locally maximal (i.e., larger than that for both cases of n − 1 and n + 1) for those
cases when the condition n%k = 0 is satisfied, i.e., when the convergence property holds.

By applying counter abstraction technique in our modeling process, both the state space
and the verification time cost are greatly reduced. To show this, here we list the details
of verification time cost and state space cost of checking the convergence probability of
ESS strategy in Table 4.7. ”W” indicates counter abstraction is used while ”W/O” means
the opposite. Meanwhile, ”-” means that the verification takes more than 10 minutes. We
can see that our counter abstraction approach can significantly reduce the state space and
the verification time, and more than half cases are not able to verify within a reasonable
amount of time without abstraction.

4.6. RELATED WORK 71

4.6 Related Work

Ballarini et al. [19] apply probabilistic model checking to automatically analyse the uncer-
tainty existing in a two-agent negotiation game. In the negotiation game, there exist one
seller and one buyer bargaining over a single item, and both players exhibit probabilistic
behaviors based on the opponent’s previous behavior. They model the dynamics of the
two-player system as a discrete-time Markov chain (DTMC). They mainly illustrate how to
use the probabilistic model checker PRISM [68] to automatically analyse the probability that
the players reach an agreement within each round of the game. This property is specified
in probabilistic computation tree logic (PCTL) [59]. Their work is similar to our DG’s anal-
ysis in that both work apply the probabilistic model checking technique to automatically
analyse the dynamics of a multi-agent system in a game-like scenario. However, we study
more complex scenarios involving an arbitrary number of players, actions and strategies,
and we propose using the abstraction technique to reduce the model’s state space.

Tadjouddine et al. [121] investigate the problem of automatically verifying game-theoretical
property of strategy-proofness for auction protocols. They consider the case of Vickrey
auction protocol and check the property of strategy-proofness using the model checker
SPIN [54]. To solve the state space explosion problem, they apply two types of abstraction
approaches to solve it, i.e., program slicing technique and abstract interpretation. Program
slicing is a technique to remove portion of codes in the model which is irrelevant with
respect to the property checked. The basic idea behind abstract interpretation is to map
the original strategy domain onto an abstract and less complex domain, and then perform
model checking on the abstract model. By using these two abstraction methods, the authors
show that strategy-proofness of Vickrey auction can be automatically verified in SPIN for
any number of players. However, in their work, there does not involve any probabilistic
element within the protocol and the agents’ behaviors, while dispersion games we consider
exhibits highly stochastic behaviors.

Bordini et al. [25] review the problem of verifying multi-agent system implemented in lan-
guage AgentSpeak using model checking techniques. They aim at automatically verifying
whether certain specifications are satisfied using existing model checkers. For this purpose,
the original multi-agent system implemented in a BDI language AgentSpeak [102] need to
be transformed into the formal language supported by current model checkers first. They
introduce a variant of language AgentSpeak, AgentSpeak(F), which can be automatically
transformed into Promela, the model specification language of SPIN [54]. They also de-

4.7. SUMMARY 72

scribe another approach based on the translation of the system in AgentSpeak into a system
in Java, which then can be checked by another model checker JPF [138]. Additionally, they
adopt a simplified form of BDI logic to specify the properties to be checked, which can be
transformed into LTL, supported by previous model checkers. With the combination of
these two techniques, the properties of a multi-agent system implemented in AgentSpeak
can be automatically checked with existing model checkers. There also exists other similar
work [135] that transforms other agent-based languages such as Mable [135] into Promela
and use SPIN to perform model checking. However, in our work, the model is implemented
directly in the modeling language supported by the model checker PAT, which avoids the
additional language transformation cost. Besides, probabilistic property checking, which
is important in analysing multi-agent system dynamics, is not supported in their work.

4.7 Summary

In this chapter, we proposed to automatically analyze the dynamics of MAS using model
checking approach. Two representing scenarios are studied: robustness of negotiation strate-
gies in a general multi-agent system and basic simple strategy and extended simple strategy in
dispersion games. This approach guarantees the automaton, efficiency and completeness
of the analysis procedure. In order to reduce the state space, counter abstraction technique
is used in the modeling.

In robustness analysis, EGT analysis is used to check the strategy’s robustness, and proper-
ties representing empirical pure strategy Nash equilibrium, best reply cycle and the correspond-
ing basin of attraction are formally verified by PAT. Through the experimental results, we
can see that our negotiation strategy CUHKAgent is very robust compared with other top
strategies, and the overall robustness rankings of the strategies are given.

In BSS and ESS analysis, properties representing the system’s convergence, deviation and
convergence rate are studied. Experiments indicate that while BSS always guarantees con-
vergence, ESS may have deviation. Using probabilistic model checking, better insights of
the dynamics of these strategies were obtained compared with previous empirical evalua-
tions.

Chapter 5

Improved Reachability Analysis in
DTMC via Divide and Conquer

5.1 Introduction

Discrete Time Markov Chain (DTMC) is widely used in probabilistic model checking, such
as the models of DGs in Chapter 4. The difference between DTMC and traditional Labeled
Transition System (LTS) is that non-determinism in LTS is replaced by probabilistic choices
in DTMC. Reachability analysis plays a key role in DTMC verification. Verification of
properties such as Probabilistic Computational Tree Logic (PCTL) and Linear Temporal
Logic (LTL) can be reduced to the reachability analysis problem [18]. Therefore in this
chapter we focus on improving reachability analysis in DTMC verification.

Similar to PA, the transition probability matrix of a DTMC can be built from its transition
relation. After the target states are decided, each state in the matrix can be represented by
a variable, which means the probability of reaching the target states from this state. Next,
there are mainly two approaches to calculate the probability from initial states to the targets.
One is solving linear equations directly. In this method, variables representing intermediate
states (which are not target or initial) are eliminated gradually through equations operation,
and finally variables representing the initial states’ probability of reaching targets can be
solved. The other approach is using value iteration method, which works by finding a
better approximation iteratively until certain stopping criteria are satisfied. The approach
based on solving linear equations is straightforward to understand and it guarantees to

73

5.1. INTRODUCTION 74

deliver accurate result. However, since we need one variable for each state in the system,
a lot of variables are needed for large systems whereas state-of-the-art linear solvers are
limited to thousands of variables only. Therefore the applicability of this approach is
limited to small-scale systems. On the other hand, the value iteration method tries to find
fix-points iteratively, and it has relatively better performance in handling systems with
a large number of states. Therefore it is more popular in probabilistic model checkers
such as PRISM [80] and MRMC [73, 74]. However, this approach also has its drawback:
slow convergence, i.e., it may take a large number of iterations before the approximations
converge to a certain value. The phenomenon exists when there are complicated loops
existing in the probabilistic systems, although the state space of such systems may not
be very huge. The number of iterations is related to the subdominant eigenvalue of the
probability transition matrix [141].

To tackle the above-mentioned problems, in this chapter we propose a new approach
to verify DTMC models, especially for the ones with loops using a divide-and-conquer
strategy. Instead of directly calculating the probability from initial states to targets, we
divide the whole state space into several partitions, and solve them individually to eliminate
loops. Afterwards, the remaining acyclic DTMC can be solved efficiently via value iteration
method.

As we mentioned above, the slow convergence problem in value iteration comes from
loops. Therefore, the first step of our approach is finding Strongly Connected Components
(SCCs) in the given DTMC. This SCC-based approach is similar to previous work such
as [12, 36, 5, 85]. However, instead of using SCC’s topology order [36, 85], we solve
each SCC independently by calculating the new transition probability from input states
to output states of the SCC, which is similar to work [12, 5]. These new transitions are
denoted as abstract transitions since SCCs are abstracted by transitions from input states
to output states. However, [5] focuses on counterexample generation and abstracts SCCs
via iteratively finding the smallest SCCs. On the contrary, we divide each SCC having a
large number of states to several smaller partitions. For each partition, abstract transitions
from its input to output are calculated via solving linear equations. Here we use Gauss-
Jordan elimination [8]. Further, the states in each partition which are not input states will
be removed, and thus the states in the SCC can be reduced. Afterwards, the new SCC is
ready for next iteration of divide and conquer. This procedure for each SCC will be done
iteratively until any of the following three criteria is satisfied. First, there is no more loop
in the reduced SCC. Then this part will be left alone since it is already acyclic. Second, the
number of remaining states in reduced SCC is small enough to be solved via a linear solver.

5.2. PRELIMINARIES 75

Third, the last iteration does not reduce any states. In the second and third scenarios, the
final SCC will be solved via linear equation again, and final abstract transitions will be
generated. After all loops in SCCs are resolved, the whole DTMC becomes acyclic, and
value iteration is used to calculate the probability from initial states to targets. Since the
abstract transitions from each partition’s input states to output states are determined by the
partition itself and independent to other partitions, multi-cores or distributed computers
can be straightforwardly used here to solve each partition simultaneously, which makes
the verification faster.

Contributions Compared with previous work, our contribution is threefold, as we sum-
marize below.

1. A new divide-and-conquer approach for DTMC reachability analysis is proposed,
which combines solving linear equations and value iteration methods together and
tackles the problem that huge loops make the DTMC verification inefficient.

2. Based on the fact that each SCC and even each group in one SCC is independent from
others, we use parallel computation to further speed up the verification.

3. The new approach has been implemented into our model checking framework PAT,
and several representative experiments are conducted to show the effectiveness of
our approach.

Organization The remainder of this chapter is structured as follows. Section 5.2 recalls
relative background. In Section 5.3, we introduce our algorithm in details. The evaluation
is reported in Section 5.4. Section 5.5 surveys related work and summarizes this chapter.

5.2 Preliminaries

In this section, we recall some background knowledge, which is relevant in the rest of this
paper.

5.2. PRELIMINARIES 76

Figure 5.1: An Example of SCC

5.2.1 Discrete Time Markov Chains

In Chapter 2, we have defined SCCs of a DTMC, and a DTMC is acyclic iff it only has trivial
SCCs. Here we define an adjacent group (AG) D ⊆ S such that ∃ s ∈ D , ∀ s ′ ∈ D ∧ s ′ , s ,
there is a finite path π = 〈s0, s1, · · · , sn〉 satisfying s0 = s ∧ sn = s ′ ∧∀ i ∈ [0,n], si ∈ D , and s

is called root state in D . In the following, we refer to adjacent groups simply as groups. The
difference between SCC and AG is illustrated by the example in Fig. 5.1. Note the actions
in DTMCs are not critical for the content of this chapter, so we ignore them for simplicity.

In Fig. 5.1, {s1, s2}, {s1, s2, s3} are connected ; {s0}, {s4}, {s5} and {s1, s2, s3} are the SCCs in the
model; AGs are more complex, for example, {s0, s1, s2} and {s1, s2, s5} are AGs and there
are other possible combinations. Note that a set of states like {s0, s1, s4} is not a valid AG
because there is no root state. Connected subgraphs are AGs but the reverse is not always
true, e.g., {s0, s1, s2} is an AG but not a connected subgraph.

Similar to [12, 5], in a DTMCM = (S , sinit ,Act ,Pr ,AP ,L), given a group of states D ⊆ S ,
the input states ofD are defined as the states inD having incoming transitions from states
outside D; the output states of D are defined as states outside D which have incoming
transitions from states inD. Formal definitions are as follows.

Inp(D) = {s ′ ∈ D | ∃ s ∈ S\D. P (s , s ′) > 0}1

Out(D) = {s ′ ∈ S\D | ∃ s ∈ D. P (s , s ′) > 0}

1If sinit ∈ D, then sinit ∈ Inp(D).

5.2. PRELIMINARIES 77

Figure 5.2: Reachability Analysis

5.2.2 Reachability Analysis in DTMC

One critical question for quantitative analysis of DMTC models is to compute the proba-
bility of reaching a certain set of target states G from the initial state. Here ♦G is used to
denote the event of reaching G , and PM(sinit |= ♦G) represents the probability that G can
be reached from initial state in a DTMCM. Here PM can be written as P ifM is clear. Let
π = 〈s0, s1, · · · , sn〉 represent any finite path inM. Then we have

P(sinit |= ♦G) = P({π | s0 = sinit ∧ ∃ i ∈ [0..n], si ∈ G ∧ ∀ j ∈ [0..i − 1], sj < G})

Given the transition relation Tr ofM, there are two approaches to calculate P(sinit |= ♦G).
One is solving linear equations, while the other is using value iteration. We use pi to
represent the probability from state si to the targets. In the following we use the example
in Fig. 5.2 to show how these two approaches work. Note that state s4 is the only target
state, denoted by double cycles.

Solving Linear Equations From the model, the transition matrix between states can be
built. For example, p1 = 0.5 × p2 + 0.5 × p3 and p0 = p1. Since s4 is target, p4 = 1. s5

cannot reach target obviously, therefore p5 = 0. From these equations, each pi can be solved
through matrix operations. Although this approach can achieve accurate results, there are
drawbacks. Because each state is represented by a variable, there may be a huge number
of variables in large scale systems. The state-of-the-art linear solvers are limited to handle
thousands of variables, therefore linear equation approach may not be scalable.

Using Value Iterations In this approach, pi is calculated iteratively. This method is similar
to the value iteration in PA introduced in Chapter 2; the only difference is that for each

5.2. PRELIMINARIES 78

state in DTMC, there is one unique equation representing its transition relation. Therefore
the maximal/minimal comparison is ignored. This approach has better scalability than the
linear equations method, so it is more popular in existing model checkers. However, the
existence of loops may make the convergence slow. The probability of each state in SCCs
will be updated many times, which means a large number of iterations may be needed
before the results satisfy the terminating criteria.

5.2.3 States Abstraction and Gauss-Jordan Elimination

Here we follow the idea of [5]. Given a DTMCM= (S , sinit ,Tr ,AP ,L) and a group of states
D ⊆ S ,D can be abstracted by calculating the transition probability from Inp(D) to Out(D).
According to the proof in [5], the abstraction of any arbitrary set of states is independent
from others, and the abstract transitions do not affect the probability of reaching target
states G .

One example of the abstraction is in Fig. 6.4. Fig. 6.4 (a) is the original DTMC, which has
one SCC D = {s1, s2, s3}. Inp(D) = {s1} and Out(D) = {s4, s5}. In order to abstract D2, the
probability from Inp(D) to each state sout ∈ Out(D) should be calculated. Theoretically,
the calculation from an SCC’s inputs to outputs can be solved via linear equations or value
iteration approaches3. However, for value iteration approach, since there could be several
output states in Out(D), we have to separately calculate the probability from input states
to each output state. If there are many output states, this method could be inefficient. In
addition, the existence of loops still causes slow convergence issue. Furthermore, using
value iteration, there will be some errors because of the user-defined precision, but there
is no way to know the error bounds. Therefore, we use a specific linear equation solving
technique: Gauss-Jordan elimination [8] to do the abstraction.

Gauss-Jordan elimination is an algorithm for getting matrices in reduced row echelon form
that placing zeros above and below each pivot [8]. Here, we briefly introduce how it works
in our setting.

Assume there are m states in a set of states, sayD, and |Out(D)| = n . Then two matrices A

and B , containing linear equations information of all transitions inD, are first introduced

2Here we take an SCC as an example. Actually this abstraction can be applied to arbitrary set of states,
according to [5].

3Different from our previous discussion which focuses the calculation from the initial state to targets, here
we discuss the probability from input states to every output state of an SCC.

5.2. PRELIMINARIES 79

Figure 5.3: States Abstraction via Gauss-Jordan Elimination

as follows.

A(i , j) =

 1, if i = j ;
−Tr (i , j), otherwise.

B (i , k) = −Tr (i , k).

Here, A is an m × m square matrix. A(i , j) is a negative value of probability of transition
from i th state to j th state in D if i , j . The diagonal elements of A are filled by 1. This
records the transition relationship withinD. B is an m × n matrix to record the transition
relationship fromD to Out(D). k represents the k th state in Out(D).

Next, augmenting the square matrix A with matrix B , we will have [A | B]. Gauss-Jordan
elimination on [A | B] will then produces [I | C]. Here, I is the identity matrix with 1s on
the main diagonal and 0s elsewhere. The new transition probability e.g., Tr ′(i , k), stores the
transition probability from i th state inD and k th state in Out(D), which is actually −C (i , k).
Now take Fig. 6.4 (a) as an example. Its [A | B] and resulting [I | C] are listed as follows.
In this example, A(i , j) corresponds to Tr (si+1, sj +1) and B (i , k) indicates Tr (si+1, sk+4).

[A | B] =

1 −0.5 −0, 5
0 1 −0.5
0 −0.5 1

∣∣∣∣∣∣∣∣∣∣
0 0
0 −0.5
−0.5 0

 ; [I | C] =

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣∣∣∣
−0.4 −0.6
−0.2 −0.8
−0.6 −0.4

Here the transitions from all the states inD to Out(D) are obtained. Note that those states
which are not in Inp(D) will be removed. Therefore we are just interested in the new
transitions from Inp(D) to Out(D), which are

Tr ′(s1, s4) = 0.4; Tr ′(s1, s5) = 0.6;

5.3. DIVIDE AND CONQUER APPROACH 80

We can obtain that p1 = 0.4×p4 +0.6×p5 in the abstracted DTMC, which is shown in Fig. 6.4
(b). Given a group of statesD, this abstraction procedure is defined as a method Abs(D).

Note that in practice, most transition matrices in probabilistic model checking have a
very sparse structure that contains a large number of zeros. We adopt a compressed-row
representation [111] as a data structure for matrices in Gauss-Jordan elimination.

5.3 Divide and Conquer Approach

From the analysis in Section 5.2, for a large DTMC with complicated loop structure, both
linear equations and value iteration method are ineffective, even unworkable. In this
section, we propose a divide and conquer approach which tackles the above-mentioned
problem. Our main idea is similar to work [12, 5], which transfers the original DTMC to an
acyclic one by abstracting SCCs recursively so as to reduce the number of state and loops.

Intuitively, our approach divides large SCCs into smaller partitions, each of which will be
solved via Gauss-Jordan elimination independently. Through this approach, loops will be
eliminated. Afterwards, value iteration method is used to decide the final probability of
reaching targets. In the following, we introduce our algorithm in details.

5.3.1 Overall Algorithm

Given a DTMC M (S , sinit ,Act ,Pr ,AP ,L) and target states G ⊆ S , the probability of
reaching G , denoted as P(sinit |= ♦G), can be solved by Algorithm 4. Note that B is
an input parameter, which indicates SCCs having more than B states should be divided.
Abs(K) is defined in Section 5.2.3. VI(M,G) indicates calculating the probability of reaching
G via value iteration. The procedure of the algorithm is explained in the following.

• The first step is to find all SCCs C inM by Tarjan’s approach [122], and their input
and output states are recorded as well. This is captured by Line 1.

• For each SCCD ∈ C, we will first check whether |D| exceeds B or whether |Out(D)| >
1. If not, Abs(D) will be executed directly. States in D but not in Inp(D) will be
removed. AfterwardsD will be removed from C, as shown in Lines 4-5. The reason
why we directly abstract cases |Out(D)| ≤ 1 is as follows.

5.3. DIVIDE AND CONQUER APPROACH 81

Algorithm 3 Divide and Conquer Approach
1: Let C be the set of all nontrivial SCCs inM;
2: while |C| > 0 do
3: LetD ∈ C;
4: if |D ≤ B | ∨Out(D) ≤ 1 then
5: Abs(D) and C ← C\D;
6: else
7: DivideD into a set of AGs denoted asA;
8: for each E ∈ A do
9: Abs(E);

10: end for
11: LetD′ be the set of remaining states inD;
12: if |D′| ≤ B ∨ |D′| = |D| then
13: Abs(D′) and C ← C\D
14: else
15: Let CD′ be the set of all nontrivial SCCs inD′;
16: C ← (C\D) ∪ CD′ ;
17: end if
18: end if
19: end while
20: return VI(M,G);

– If |Out(D)| = 0, D has no outgoing transitions, then no matter whether D has
target states or not, we do not need to solveD. IfD∩ G = φ, it is obvious that
all states in D has probability 0 to reach G ; otherwise, it is trivial to show that
all states inD has probability 1 to reach G .

– If |Out(D)| = 1, assume sout is the output state. All paths entering D will leave
it eventually. Therefore, for every si ∈ Inp(D), the probability of paths entering
D via si , staying inD and exitingD to sout should be 1. SoD can be abstracted
directly.

• Lines 7-17 describe the case whenD needs to be divided, i.e., when the SCC has more
than B states. First we divide D into several groups based on some heuristics, each
of which has a reasonably small number of state, i.e., less than B . Therefore, for each
group Ewe use Abs(E) to get the abstraction. Here we choose AG as the structure of
each partition, because the existence of the root state, say sr , may remove the most
states after abstraction. In the extreme case where Inp(E) = {sr }, all states in E except
sr can be removed.

• By removing the states which are not input states of any E, the number of states in

5.3. DIVIDE AND CONQUER APPROACH 82

Figure 5.4: Destruction of SCC during Abstraction

D is often (not always) reduced. Line 12 checks two situations. 1) the size of D′ is
smaller than or equal to B , and 2) there is no reduction forD in this iteration. If 1) is
true, then there is no need to divideD′ again, and Abs(D′) is executed directly. If 2) is
true, i.e., no state is reduced after divide and conquer, the main reason should be that
each state inD has a lot of pre-states. Therefore every state in one group is an input
state and cannot be removed. In this case,D′ should also be abstracted. Afterwards,
D is removed from C. If 1) and 2) are both false, Lines 15-16 will be executed.

• Because of the abstraction, D may not be an SCC now. An example is shown in
Fig. 5.4. On the left hand side, D = {s1, s2, s3}; if we group s1 and s2 together, then
s3 is this group’s output. It is easy to get the abstract transitions between them, as
shown in right hand side. Because both s1 and s2 are input states, no state is removed.
However, it is obvious thatD′ = {s1, s2, s3} is not an SCC anymore. Tarjan’s algorithm
is used again to find new SCCs in the D′, captured by Line 15. New SCCs will be
added to C for another iteration.

• When the iteration terminates, there is only trivial SCCs inM now; in other words,
M is acyclic. Value iteration approach can be used to calculate the probability from
the initial state to targets efficiently, and this is captured by Line 20.

As we mentioned in Section 5.2.3, the iterative abstraction will not affect the final result of
the probability calculation. The following theorem establishes that the algorithm is always
terminating.

Theorem 5.3.1 Given a finite state DTMCM, Algorithm 4 always terminates.

Proof We assume Ŝ = ΣD∈C |D|, in other words, Ŝ is the total number of states in C.
Then the theorem can be proved by showing (1) Ŝ is finite at the beginning, and (2) Ŝ

5.3. DIVIDE AND CONQUER APPROACH 83

monotonically decreases after each iteration.

(1) is obviously true becauseM has finite number of states, and Ŝ ≤ |S | where S is the set
of states ofM.

Given an SCC D ∈ C, if it satisfies the condition in Line 4, then D will be removed from
C, thus Ŝ is reduced. Otherwise, from Line 6, there are two possible outputs. (i) ∃E ∈ A,
Abs(E) reduces its number of states, or (ii) ∀E ∈ A, Abs(E) does not reduce its number of
states. If (i) is true, then Ŝ is also reduced. If (ii) is true, then |D′| = |D|. According to Line
8,Dwill be abstracted directly and be removed from C. Thus Ŝ is still reduced. Therefore
(2) is true, and the theorem holds. �

5.3.2 Dividing Strategies

Although the divide-and-conquer approach is correct and terminating, its efficiency is
highly dependent on how an SCC is divided. AssumeA is the set of partitions after dividing
an SCC, then a suitable partition, say E ∈ A, should satisfy the following conditions.

1. E should not have too many states, since each partition is abstracted using Gauss-
Jordan elimination which is limited to a relatively small number of states;

2. E should not have too few states as well, otherwise there will be too many partitions
to be solved, and the states reduction for E is inefficient;

3. The smaller |Out(E)| is, the better reduction is achieved. Too many output states will
make the input states of E have too many abstract transitions, which makes the re-
maining structure complicated, and affects the efficiency of the following abstraction.

As a result, the remaining issue is that given an SCC D, is there any optimal strategy to
divide it into suitable AGs? In practice, the structure ofD could be arbitrary. This increases
the difficulty of finding a general strategy for all cases.

The simplest division method is to try to set each AG to have the same number of states.
Assume each AG should have N states. Then starting from one input state of D, depth
first search (DFS) or breadth first search (BFS) can be used to group every N states together.
Afterwards, each AG can be abstracted, and the remaining states are combined together to
do the next iteration. The advantage of this strategy is that the number of states in each

5.3. DIVIDE AND CONQUER APPROACH 84

partition is easily controlled. It can be very efficient in cases where the states in D has
few transitions. However, this method cannot control the number of output states of each
partition, and a predefined N may not be suitable forD’s structure.

Therefore, another improved strategy is used to automatically decide the number of states
in each AG . Instead of picking a constant N in the beginning, we set a lower bound BL

and an upper bound BU for each partition. Thus the number of states in each partition
should be between BL and BU . At first, BL states will be grouped into E, and |Out(E)| is
recorded. Afterwards, some states in Out(E) are added into E, and |Out(E)| is updated.
If |Out(E)| keeps unchanged or even becomes smaller after the update, we will try to add
more states into E again. If |Out(E)| is increased but the increase is not significant, a few
states will be added into E but the number should be small. Otherwise E is confirmed and
ready for Abs(E). Note the number of states in E should be always below BU . This strategy
guarantees

1. the number of states in E is under control. BL and BU guarantee that the size of E
should not be too large or too small.

2. the outputs of E are also manageable. This guarantees the states structure after
abstraction is not too complicated, and is suitable for next iteration.

Parameters B , N , BL and BU can be adjusted according to the specific DTMC to get the
optimal efficiency.

5.3.3 Parallel Computation

Previous work such as [36, 85] depends on the topological order between different SCCs.
Therefore, parallel computation is not so easy to use in their setting. On the contrary, our
algorithm eliminates loops via abstracting every SCC one by one, without considering their
order. The independence between different SCCs can be proved following the proof in [5].
What is more, even each AG in one SCC is also independent from others, and the proof
actually follows the same idea of SCC’s independence. Thus, parallelization is suitable in
our setting in order to solve different AGs simultaneously.

In details, after finding all SCCs, they are stored with their input and output states. For
each SCC, a spare thread can be used to solve it. Therefore, Lines 2-14 in Algorithm 4 can be

5.4. IMPLEMENTATION AND EVALUATION 85

System
PAT (w) PAT (w/o)

Prob Time (s) Memory (MB) Prob Time (s) Memory (MB)
N = 500 0.5 0.03 71 0.49987 0.5 24
N = 5000 0.5 0.3 83 0.49987 5.5 63

N = 50000 0.5 2.6 151 0.49987 125.2 111
N = 500000 0.5 29.7 885 0.49987 1612.8 838

Table 5.1: Experiments: A Simple Example

solved via parallel computation. In addition, whenever an AG is grouped, another spare
thread, if there is any, can be used to abstract it. Thus Line 8 in Algorithm 4 can also be
handled in parallel.

5.4 Implementation and Evaluation

We have implemented the algorithm into PAT. In the following, several experiments are
conducted to show the efficiency of our new approach. Note that we show the improvement
via comparing to PAT itself, which was based on value iteration method previously. Since
the only difference between these two versions is the algorithm of reachability analysis,
it is fair to check the effectiveness of the new method. Besides, several cases used in our
experiment have dynamically updated probabilistic distributions, and the modeling of
them by other model checkers is highly nontrivial.

In these experiments, we use the improved dividing strategy, and B , BL, BU are set to
be 300, 100, 150 respectively. In other words, an SCC with more than 300 states should
be divided; each group has states between 100 and 150. These parameters are manually
selected based on our experimental experience, i.e., generally these parameters have better
performance compared with others. The testbed is a server running Windows Server 2008
64 Bit with Intel Xeon 4-Core CPU×2 and 32 GB memory.

First, we use a simple example to show that our approach gets accurate results, resolves
the slow convergence problem and results in huge speedup. Assume there are N + 2 states
{s0, s1, ..., sN−1, su , sf } existing in this example. Each state si , i ∈ [0..N − 1], has probability
0.99 to reach s(i+1)%n , and also has probability 0.005 to reach su and sf separately. The
case N = 3 is shown in Fig. 5.5. Obviously, all states si , i ∈ [0..N − 1] compose an SCC,
and su and sf are this SCC’s outputs. We check the probability from s0 to su , and several
experiments are executed based on different value of N as listed in Table 5.1.

5.4. IMPLEMENTATION AND EVALUATION 86

Figure 5.5: A Simple Example: N = 3. su and sf are copied for better demonstration.

In Table 5.1, columns Prob represents the probability returned by the model checking
algorithms. Columns PAT (w) (PAT (w/o)) show the experimental information taken with
(without) the new approach. Columns Time represent the total time cost in the verification.
For these cases, our new approach outperforms value iteration approach dramatically by
reducing the verification time to less than 10%. On the other hand, the memory used
in new approach is higher than that used in the previous method, which is reasonable
since solving linear equations consumes more memory than value iteration approach.
Through the manual analysis, we know that 0.5 is the accurate result while 0.4998 is only
an approximation.

Next, we apply our approach to several more meaningful systems and demonstrate that
our approach can still improve the efficiency significantly.

Dispersion games [58] are used again for the experiments since the models of both BSS
and ESS are DTMCs. Their convergence probabilities are calculated respectively. Another
case used in our experiments is coin flipping protocol for polynomial randomized con-
sensus [13] (CS). This case focuses on modeling and verifying the shared coin protocol of
the randomized consensus algorithm. Here we use a safety property in the system as our
target.

The experiments based on these three models are listed in Table 5.2. BSS (N) indicates
there are N players (also N actions) in the game; ESS (N ,K) means there are N players
and K actions; CS (N ,K) indicates there are N processes and K is a constant used in the
model. Here we are interested in the ratio of model building (BM) time to the total time,
which is denoted as BMR in the table. In PAT (w), BM means the time for building acyclic
DTMC, i.e., the overall time consumed by eliminating loops in DTMC; in PAT (w/o), it
indicates the time for building the whole system. In both PAT versions, value iteration is
used to get the final result after building the model. ‘-’ indicates the verification takes more
than 1 hour thus the result is not taken into consideration. From the table, we have several
observations.

5.4. IMPLEMENTATION AND EVALUATION 87

System States Prob
PAT (w) PAT (w/o)

Time BMR Memory Time BMR Memory
BSS (4) 4196 1 1.3 92.3% 39 0.2 50% 35
BSS (5) 49572 1 3.5 94.3% 297 4.4 11.4% 142
BSS (6) 605890 1 41.4 72.7% 1297 105.3 6.7% 417
BSS (7) 7462639 1 1671 30.1% 6350 2073.1 4.1% 5039

ESS (6, 4) 32662 1 1.4 92.8% 16.3 2.7 14.8% 5.6
ESS (6, 5) 162945 1 6.7 91.1% 48.5 11.4 16.7% 13.9
ESS (7, 5) 463460 1 27.9 84.9% 310 75.8 7.1% 292
ESS (8, 5) 1114480 1 70.5 74.7% 619 278.5 6.1% 643
ESS (8, 6) 6476524 1 438.0 68.5% 4209 1168.1 7.5% 3904
CS (4, 3) 4966 0.023 0.8 87.5% 45 2.4 8.3% 35
CS (6, 3) 34529 0.023 15.7 81.5% 214 124.1 0.9% 108
CS (6, 4) 45281 0.015 24.8 86.7% 324 243.8 0.6% 81
CS (6, 5) 56033 0.012 38.6 91.2% 312 432.1 0.4% 104
CS (7, 4) 99265 0.014 102.3 87.6% 1062 983.1 0.4% 97
CS (7, 5) 122785 0.011 161.7 92.1% 1145 1384.8 0.3% 97
CS (7, 6) 146305 0.01 245.5 94.9% 1404 2409.5 0.2% 156
CS (8, 4) 200083 0.013 585.1 93.4% 1974 - - -

Table 5.2: Experiments: Benchmark Systems

1. For some small examples such as BSS (4), our new approach is slower. This is due to
the overhead taken by the SCC searching algorithm, and value iteration approach is
efficient when loops are small.

2. As the examples become larger, the verification speed is increased by our proposed
approach. This improvement is obvious especially in large-scale systems such as
ESS (8, 5), ESS (8, 6) and CS (8, 4).

3. CS consumes more resource than BSS and ESS when they have similar size of state
space, such as CS (7, 6) and ESS (6, 5). The reason is that CS has more complicated
SCCs, and both our new approach and traditional value iteration method have to
use more time and memory to solve it. As a result, the SCCs’ structure affects the
verification efficiency to a large extent.

4. According to BMR, we can see that in the previous version of PAT, building the
model costs small portion of the overall verification time compared with the value
iteration procedure. The average value of BMR is less than 10%, which means slow
convergence indeed exists in systems having large SCCs. CS has very small BMR and
this is consistent with the fact that CS has complicated SCCs. In the new approach,

5.5. RELATED WORK AND SUMMARY 88

time is mainly used by abstractions, as average BMR is more than 80%. It indicates that
the efficiency of the divide and conquer strategy is critical in the whole verification
now, and optimal dividing strategy is worthy to explore.

On the other hand, we want to share some limitations of our approach according to the
experimental information. The efficiency of this approach is dependent on whether large
SCCs exist in the system. During our experiment, the new approach performs slower than
value iteration method in several cases. The main two reasons include 1) there is no loops
in the system, thus the SCC searching algorithm makes the whole verification slow; 2)
the system just has small SCCs while the whole state space is large, thus the gain of the
abstraction is limited.

5.5 Related Work and Summary

SCCs are an important structure in both concurrent and probabilistic verification. For
probability calculation, those loops in SCCs are one of the key factors affecting the efficiency.
Some previous work has been done based on SCC decomposition for probabilistic systems,
including DTMCs and Markov Decision Processes (MDPs) [18], and we are mainly inspired
by this work.

To speed up the verification of MDP, the authors of [36] have proposed to decide the
topological order of all SCCs in the MDP, and value iteration method is used to solve the
SCCs from the bottom upwards. Based on this work, the authors of [85] have used SCC
decomposition to handle the incremental quantitative verification of MDP. The topological
order between SCCs guarantees that some changes in one SCC will not affect those SCCs
after it. Compared to their work, ours does not consider the orders of SCCs via treating
each SCC independently. This makes parallel computation approach feasible. In addition,
Gaussian-Jordan elimination is used to remove loops. Different from value iteration, which
needs a user defined precision, our approach generates accurate result.

Besides, there are several work based on SCC focusing on probabilistic counter-example
generation, such as [12, 5]. Their idea of abstracting each SCC from its input to output
is the biggest inspiration of our work. Compared with these work, ours is more focusing
on improving reachability analysis in DTMC. Therefore, we divide SCCs into smaller
partitions and solve them directly.

5.5. RELATED WORK AND SUMMARY 89

Summary In this chapter, we proposed a divide-and-conquer approach to speed up
reachability analysis of DTMCs. Because SCCs are one of main reasons that the probability
calculation is slow, we focus on abstracting SCCs via calculating the transition probability
from their inputs to outputs. We divide every SCC, whose states exceed some specific
bound, into several AGs having reasonable number of states, and can be solved efficiently
via Gauss-Jordan elimination. We have implemented our approach in PAT, and some
benchmark systems are used to show its effectiveness and efficiency.

5.5. RELATED WORK AND SUMMARY 90

Chapter 6

Modeling and Verifying Probabilistic
Real-Time Systems using PRTS

6.1 Introduction

PCSP# is expressive since it captures both concurrency and probability. However, real-life
systems might have more complicated behaviors, such as quantitative timing requirements
(e.g., time out). Two examples are shown below to demonstrate systems which cannot be
handled via PCSP# due to their real-time characteristics.

Example 1 IPv4 Zeroconf protocol [34] is a dynamic configuration protocol for IPv4 ad-
dresses; whenever an individual device is connected to a network, the device is allowed
to manage its own address configuration. First, it is required to randomly choose an IP
address from a pool of 65024 available addresses. Afterwards, the device sends notifica-
tions to other devices in the network to check whether this chosen IP is occupied or not.
This device will wait 20 seconds to obtain others’ responses. If no reply is received after
the devices resend such messages three more times, the device starts using the IP address.
Otherwise, it repeats by choosing a new IP address and sending notifications. In the whole
procedure, messages transferring in the system may get lost due to some errors. Thus,
probabilistic behavior modeling is needed in this case to specify the IP picking behavior
and the messages transmission; meanwhile, real-time constrains are needed to handle the
time limits of the message communication. In this system, the aim of each device is trying

91

6.1. INTRODUCTION 92

to get an IP address, therefore one important issue is: given a new device, what is its probability
of getting an IP (might be used or fresh) with a specific deadline?

Example 2 Multi-lift systems are widely used in high-level buildings. These systems are
heavily relying on control software, which has various requirements. A multi-lift system
consists of a hierarchy of components, e.g., the system contains multiple lifts, floors, users,
etc.; a lift contains a panel of buttons, a door and a lift controller; a lift controller may contain
multiple control units. It is complex in control logic as behavior of different components
must be coordinated through a software controller. Further, there is a degree of randomness
in the system. For example, whenever a user enters a lift and wants to go up, his target floor
is probabilistically distributed. On the other hand, if a user wants to go down, then the
probability of choosing ground floor is probably the biggest. What is more, the responding
and serving time of the lifts should also be taken into consideration, therefore quantitative
timing is also needed in multi-lift systems. In terms of correctness, one property from a user
point of view may be: if a user has requested to travel in certain direction, a lift should not pass
by, i.e., traveling in the same direction without letting the user in. However, designing multi-
lift systems which guarantee the property is extremely challenging and thus lift systems
in practice often ”violates” this property. Typically, once a user presses a button on the
external panel at certain floor, the controller assigns the request to the ‘nearest’ lift. If the
‘nearest’ lift is not the first reaching the floor in the same traveling direction, the property
is violated. One counterexample that could be returned by a standard model checker is
that the lift is held by some user for a long time so that other lifts pass by the floor in the
same direction first. One potential remedy is to re-assign all external requests every time
a lift travels to a different floor. Due to high complexity, many existing lift systems do not
support re-assigning requests. The question is then: what is the probability of violating the
property, with typical randomized arrival of user requests from different floors or from the button
panels inside the lifts, or even to quality how much better? If the probability is sufficiently low,
then the design may be considered as acceptable. Further, can we prove that choosing the
‘nearest’ lift is actually better than assigning an external request to a random lift?

Ideally, these systems shall be formally verified in order to avoid undesired failures in oper-
ation. However, model checking probabilistic real-time systems like above is nontrivial. In
particular, there are two challenges. First, a modeling language which is more expressive
than PCSP# to support features like real-time, hierarchy, concurrency, data structures as
well as probability, is required. Second, the models must be efficiently model checkable

6.1. INTRODUCTION 93

for widely used properties, such as deadlock checking, reachability checking and Linear
Temporal Logic (LTL) checking [37].

One line of work on modeling complicated systems is based on integrated formal speci-
fication languages [30, 91]. These proposals suffer from one limitation, i.e., there are few
supporting tools for system simulation or verification. Existing model checkers are limited
because they do not support one or many of the required system modeling features. For
instance, SPIN [70] supports complex data operations and concurrency, but not real-time
or probability. Uppaal [23] supports real-time, concurrency and recently data operations
as well as statistical model checking (in the extension named [39]), but lacks support for
hierarchical control flow. PRISM [80] supports the verification of Probabilistic Timed Au-
tomata (PTA) [82], which has the concurrency, probability and real-time characteristics.
However, it does not support hierarchical systems, but rather networks of flat finite state
systems. In addition, most of the tools support only simple data operations, which could
be insufficient in modeling systems which have complicated structures and complex data
operations.

In this chapter, we propose a new formal modeling language Probabilistic Real-time System
(PRTS) which covers a range of features to model the above-mentioned systems. The
following summarizes how PRTS supports different system features.

• Hierarchy: PRTS supports a rich set of compositional operators to compose system
components in different ways, e.g., conditional or unconditional choice, interrupt,
parallel composition, sequential composition, etc. Many are adopted from process
algebras with amended operational semantics [69]. As a result, PRTS models are fully
hierarchical as a system component can be composed by other components.

• Concurrency: PRTS supports parallel composition of system components. Compo-
nents running in parallel can communicate through shared variables, synchronous/asyn-
chronous channels or multi-party barrier synchronization.

• Real-time: PRTS supports a set of timed operators like deadline, time out and timed
interrupt to capture real-time requirements. Therefore, real-time system behavior can
be captured concisely and intuitively.

• Probability: PRTS supports probabilistic system modeling through probabilistic
choices. One example is that a pacemaker model has a choice of functioning cor-
rectly with probability 99.54% or 0.46% probability of malfunctioning [20].

6.1. INTRODUCTION 94

• Data structures and operations: PRTS also supports primitive data types like Boolean,
Integer, array and arbitrary user-defined data types as PCSP# does. User-defined data
types and associated data operations can be defined in imperative programming
languages such as Java and C#. Models which depend on the data types must import
the corresponding classes as an external library. The only constraint on these classes
is that they must implement a pre-defined interface so that they can be manipulated
by the model checking algorithms.

Due to quantitative timing, the state space of the systems might be infinite. Therefore,
we develop an abstraction technique based on zone abstraction [44] so as to generate a
finite-state model, which is subject to model checking. For system verification, two widely
used properties are supported in PRTS: reachability checking and LTL checking.

Compared with previous work, we make the following technical contributions.

1. We define an expressive modeling language PRTS, which is a combination of data
structures/operations, hierarchy, real-time, probability, concurrency, etc. Expressive-
ness often comes at the price of decidability. PRTS is carefully designed so that it is
expressive and at the same time model checkable.

2. Our second contribution is a fully automatic zone abstraction method. We show that
the infinite states caused by real-time transitions could be reduced by our abstraction
to a finite set of zones. As a result, we obtain a finite-state abstract PA which is subject
to probabilistic model checking.

3. We develop an algorithm to model check PRTS models against LTL properties with
non-Zenoness assumption. Intuitively, the non-Zenoness assumption guarantees that
infinitely many steps always take infinite time. It is necessary as Zeno traces (traces
which take infinitely many steps with finite time units) are unrealistic and should not
be regarded as counterexamples for the property.

4. We implement a dedicated model checker, which supports editing, visualized sim-
ulation and verifying PRTS models. The model checker employs state-of-the-art
probabilistic model checking techniques for checking PRTS models against temporal
logic properties or refinement relationship. The tool has been applied to the multi-lift
system and benchmark systems. We compare it with existing model checkers to show
its efficiency and scalability.

6.2. PRELIMINARIES 95

The remainder of the chapter is structured as follows. Section 6.2 recalls some background
knowledge. Section 6.3 introduces PRTS in detail, including its syntax and operational
semantics. Section 6.4 describes the zone-based abstraction technique. Section 6.5 de-
scribes model checking with the non-Zenoness assumption. The evaluation is reported in
Section 6.6. Section 6.7 surveys related work. Section 6.8 summarizes this chapter.

6.2 Preliminaries

In this section, we recall basic concepts and definitions relevant to model checking tech-
niques [37, 18].

6.2.1 Probabilistic Formalisms for Real-time Systems

In Chapter 2, we have introduced probabilistic formalisms such as PA and DTMC. In
this part, we add timed transitions to these formalisms so that they can capture real-time
behaviors. Besides the visible actions Act and invisible action τ, ε ∈ R+ denotes the event of
idling for exactly ε time units and R+ denotes the set of positive real numbers. Transition

s
x ,µ
→ s ′ in PA and transition s

x ,p
→ s ′ now satisfy x ∈ Actτ ∪ R+. Other definitions are

consistent with Chapter 2.

6.2.2 LTL-X

SE-LTL is also introduced in Chapter 2. However, in real time systems, it is difficult to
define “next”. Therefore in this work we focus on LTL-X property, i.e., SE-LTL without X

operator.

6.2.3 Non-Zenoness

In reality, infinite steps must take infinite time. This requirement is known as non-Zenoness,
which is formally defined as follows.

Definition 10 Given a path π = 〈s0, x0, µ1 s1, x1, µ2 · · ·〉 in a PA, π is non-Zeno if and only if π is
infinite, and Σxi∈R+xi is unbounded.

6.3. PRTS 96

P ::= Wait[d] – time delay
| P timeout[d] Q – time out
| P interrupt[d] Q – timed interrupt
| P within[d] – timed responsiveness
| P deadline[d] – deadline
| pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk } – probabilistic multi-choices

Figure 6.1: Process constructs

A path is Zeno if and only if it is not non-Zeno. In other words, a path is Zeno if and only if
it contains infinitely many steps taken in a finite time interval. For obvious reasons, Zeno
paths are unrealistic, and should be ruled out during verification.

In probabilistic systems, an infinite run may have probability 0 and therefore it is irrelevant
whether it is Zeno or not. Thus, we follow the idea of [82] and focus on non-Zeno schedulers,
as defined below.

Definition 11 A scheduler δ of a PAD is non-Zeno if and only if:

Prob{π | π ∈ Paths(Dδ) and π is non-Zeno} = 1.

Let δnz (D) denote the set of non-Zeno schedulers inD.

A scheduler which is not in δnz (D) is a Zeno scheduler. The DTMC generated from a
Zeno scheduler will have Zeno paths with non-0 probability. Zeno schedulers should be
discarded during the verification since the corresponding DTMCs have positive probability
to execute unrealistic behaviors.

6.3 PRTS

In this section, we introduce our language in details, including its syntax and operational
semantics.

6.3. PRTS 97

6.3.1 Language Syntax

An elegant modeling language not only increases the aesthetic of the model, but also
supplies convenience to users. Meanwhile, the language should cover several facets of the
requirements and the model should reflect a system exactly (up to abstraction of irrelevant
details). Based on PCSP# and Timed CSP [107], we draw upon existing approaches [82, 10,
116] and create the single notation PRTS to cover a variety of system features.

A PRTS model (hereafter model) is a 3-tuple (Var ,Vi ,P) where Var is a finite set of finite-
domain global variables; Vi is the initial valuation of Var and P is a process which captures
the control logic of the system. A process is defined in form of Proc(para) = PExpr where
Proc is a process name; para is a vector of parameters and PExpr is a process expression.
All process constructs of PCSP# can be used to construct PExpr ; besides, a number of timed
process constructs are added to capture common real-time system behavior patterns, as
shown in Fig. 6.1.

Let d denote an integer constant. Process Wait[d] idles for exactly d time units. In process
P timeout[d] Q , the first observable event of P shall occur before d time units elapse (since
process P timeout[d] Q is activated). Otherwise, Q takes over control after exactly d time
units. Process P interrupt[d] Q behaves exactly as P (so that it may engage in multiple
observable events) until d time units, and then Q takes over. Process P within[d] must
react within d time units, i.e., an observable event must be engaged by process P within
d time units. Note that P within[d] puts a constraint on P . Urgent event prefixing [40],
written as e

!
→ P , is defined as (e → P) within[0], i.e., e must occur as soon as it is enabled.

Process P deadline[d] constrains P to terminate (possibly engaging in multiple observable
events) before d time units. In the following, d is referred to as the parameter of the timed
process. Given a model, the maximum parameter of the timed processes is called the clock
ceiling. Probabilistic choice is recalled in the form of pcase {pr0 : P0; pr1 : P1; · · · ; prk : Pk },
where pri is a positive integer to express the probability weight. We remark that pcase is
also a timed process construct in our setting, because the τ-transition generated by the
pcase process must fire immediately, i.e., it must occur when it is enabled.

In the following, we use a model of the multi-lift system to demonstrate system modeling
using PRTS. The system is chosen because it is widely used in daily life with real-time
(service time constraint), stochastic behaviors (randomized user behaviors) and various
data (direction and level status of each lift), which is suitable to demonstrate language
features of PRTS. The PRTS model of this system is shown in Fig. 6.2.

6.3. PRTS 98

1. #define NoOfFloors 4;

2. #define NoOfLifts 2;

3. #define upwards 1;

4. #import "PAT.Lib.Lift";

5. var<LiftControl> ctrl = new LiftControl(NoOfFloors,NoOfLifts);

**************user’s behaviors**************

6. Users() = pcase {

7. 1 : (extreq.0.1{ctrl.AssignExternalRequest(0,1)} -> Skip)within[5]

8. 1 : (intreq.0.0{ctrl.AddInternalRequest(0,0)} -> Skip)within[1]

9. 1 : (intreq.1.0{ctrl.AddInternalRequest(1,0)} -> Skip)within[1]

10. 1 : (extreq.1.0{ctrl.AssignExternalRequest(1,0)} -> Skip)within[5]

11. 1 : (extreq.1.1{ctrl.AssignExternalRequest(1,1)} -> Skip)within[5]

12. 1 : (intreq.0.1{ctrl.AddInternalRequest(0,1)} -> Skip)within[1]

13. 1 : (intreq.1.1{ctrl.AddInternalRequest(1,1)} -> Skip)within[1]

14. 1 : (extreq.2.0{ctrl.AssignExternalRequest(2,0)} -> Skip)within[5]

15. 1 : (extreq.2.1{ctrl.AssignExternalRequest(2,1)} -> Skip)within[5]

16. 1 : (intreq.0.2{ctrl.AddInternalRequest(0,2)} -> Skip)within[1]

17. 1 : (intreq.1.2{ctrl.AddInternalRequest(1,2)} -> Skip)within[1]

18. 1 : (extreq.3.0{ctrl.AssignExternalRequest(3,0)} -> Skip)within[5]

19. 1 : (intreq.0.3{ctrl.AddInternalRequest(0,3)} -> Skip)within[1]

20. 1 : (intreq.1.3{ctrl.AddInternalRequest(1,3)} -> Skip)within[1]

21. }; Users();

*************lift’s operations***************

22. Lift(i, level, direction) = case {

23. ctrl.Open(i,level)==1:(serve.level.direction{ctrl.ClearRequests(i,level,direction)}->Lift(i,level,direction))

24. ctrl.KeepMoving(i,level,direction)==1:(reach.(level+direction).direction->Lift(i,level+direction,direction))

25. ctrl.HasAssignment(i)== 1:changedirection.i{ctrl.ChangeDirection(i)}->Lift(i,level,-1*direction)

26. default : idle.i -> Lift(i, level, direction)

27. } within[2];

28. System = (||| x:{0..NoOfLifts-1} @ Lift(x, 0, upwards)) ||| Users();

Figure 6.2: A lift system model

Multi-lift System The model has 4 parts. First, some global variable and constants are
defined. Lines 1-3 define three constants which denote the number of floors, the number
of lifts and the traveling direction of lifts. Here ”downwards” is ignored since it can be
obtained by −1 × upwards . In this example there are two lifts with 4 floors. Line 4 imports
a C# library, which defines a data type LiftControl encapsulating all data components and
operations of the lift system. Note that it is a design decision whether to maintain the data
externally in the C# library or in the model itself. A LiftControl object contains multiple
data structures, e.g., an integer array for user requests from external button panels, a two
dimensional array for requests for internal button panels, etc. Interested readers can refer
to PAT (version 3.0 or later, open it with PAT’s C# editor and compiler) for its details.
The LiftControl class also defines multiple data operations, such as assigning an external
request for traveling upwards/downwards to a lift, and responding to an internal request
for traveling upwards/downwards. The complete C# code for this library can be found
in [1]. Next, line 5 of the lift model creates a LiftControl object named ctrl .

Lines 6 to 21 define a process Users(), which models behavior of the users. In this simple

6.3. PRTS 99

modeling, user requests arrive uniformly and repeatedly1. There are 14 different requests
with 4 floors and 2 lifts (two of which are external requests). Each is given 1

14 probability,
as modeled using pcase. For instance, event extreq .0.1 models an external request at 0-floor
for traveling upwards and event intreq .0.0 indicates a user in lift 0 has an internal request
to go to level 0. For external requests from middle levels such as level 1 and 2, traveling
upwards and downwards are both possible. These events are associated with programs
which invoke the methods AssignExternalRequest and AddInternalRequest defined in the
external library for assigning requests to lifts through object ctrl . Note that user behaviors
are subject to real-time constraint. For simplicity, we assume that an external request arrives
within 5 time units and an internal request arrives within 1 time unit.

Line 22 to 27 define the process Lift which models an individual lift. The parameters
(i , level , direction) indicate the lift ID, the current floor this lift stays and its traveling di-
rection. Multiple conditional choices case is used to describe the operations of a lift. At
line 23, the lift checks whether it should open its door at current level without changing
its direction. If the answer is yes, all internal requests of reaching this floor, and external
requests at this floor with the same traveling direction are removed. At line 24, the lift
continues moving without any interruption. Afterwards, level is set to be the next floor.
At line 25, if there are requests on the opposite direction, the lift changes its direction to
serve requests. The keyword default in line 26 means if no boolean condition above is true,
then this choice will be executed, which states that the lift simply idles, waiting to pick up
a request some time later. Again, each possible action is constrained by within[2] so that
the lift will actively serve requests.

At the top level, the system is modeled as the interleaving of users and lifts at line 28. Here
the indexed interleave ||| x : {0..k }@P (x) is a syntactic sugar for P (0) ||| P (1) ||| · · · ||| P (k).
All lifts are assumed to travel upwards at the beginning.

6.3.2 Concrete Operational Semantics

In the following we present the operational semantics for PRTS.

A concrete system configuration is a pair (V ,P) where V is a variable valuation and P ∈ P

is a process. For simplicity, a valuation for no variables is written as ∅. A transition of the
system is written in the form (V ,P) x

→ (V ′,P ′) such that x ∈ Actτ∪R+, if the corresponding

1A realistic user model can be obtained by mining data of actual lift systems.

6.3. PRTS 100

distributions are trivial. The operational semantics is defined by associating a set of firing
rules with each and every process construct. The firing rules associated with probability
and real-time processes are presented as follows. The rest of the rules can be found in
Appendix A.

ε ≤ d
[wait1]

(V ,Wait[d]) ε
→ (V ,Wait[d − ε])

[wait2]
(V ,Wait[0]) τ

→ (V ,Skip)

• The semantics of Wait[d] is captured by rule wait1 and wait2. Rule wait1 states that
the process may idle for an arbitrary amount of time ε as long as ε ≤ d . As a result,
Wait[d] becomes Wait[d − ε] and the valuation of the variables is unchanged. Rule
wait2 states that when d is 0, the process becomes Skip via a τ transition.

(V ,P) e
→ (V ′,P ′), e ∈ Act

[to1]
(V ,P timeout[d] Q) e

→ (V ′,P ′)

(V ,P) τ
→ (V ′,P ′)

[to2]
(V ,P timeout[d] Q) τ

→ (V ′,P ′ timeout[d] Q)

(V ,P) ε
→ (V ′,P ′), ε ≤ d

[to3]
(V ,P timeout[d] Q) ε

→ (V ′,P ′ timeout[d − ε] Q)

[to4]
(V ,P timeout[0] Q) τ

→ (V ,Q)

• The semantics of P timeout[d] Q is captured by rules to1 to to4. Rule to1 states
that if P executes an observable event e and becomes P ′, while changing V to V ′,
then (V ,P timeout[d] Q) becomes (V ′,P ′). In other words, P has performed an
observable event before timeout occurs so that Q will not be activated. Rule to2

6.3. PRTS 101

states that if P instead performs a τ transition, then Q and timeout operator remain
(since an observable event has not been performed). Rule to3 states that if P may idle
for less than or equal to d time units, so does P timeout[d] Q . Rule to4 states that if
d is 0, Q takes over control through a τ transition.

(V ,P) a
→ (V ′,P ′), a , X

[ti1]
(V ,P interrupt[d] Q) a

→ (V ′,P ′ interrupt[d] Q)

(V ,P) ε
→ (V ′,P ′), ε ≤ d

[ti2]
(V ,P interrupt[d] Q) ε

→ (V ′,P ′ interrupt[d − ε] Q)

(V ,P) X→ (V ′,P ′)
[ti3]

(V ,P interrupt[d] Q) X→ (V ′, P ′)

[ti4]
(V ,P interrupt[0] Q) τ

→ (V , Q)

• The semantics of P interrupt[d] Q is defined by rules ti1 to ti4. Rule ti1 says if P

can execute event a , no matter observable or not (which cannot be termination event,
which is marked as X), then P interrupt[d] Q can also perform a and Q and d are
unchanged. Rule ti2 states that if a timed transition ε can be performed by P as long
as ε ≤ d , so does P interrupt[d] Q . Rule ti3 states that if P terminates, then interrupt

operator and Q will be discharged. Rule ti4 means when d is 0, Q will take control
of the process via a τ transition.

(V ,P) a
→ (V ′,P ′)

[wi1]
(V ,P within[d]) a

→ (V ′,P ′)

(V ,P) τ
→ (V ′,P ′)

[wi2]
(V ,P within[d]) τ

→ (V ′,P ′ within[d])

6.3. PRTS 102

(V ,P) ε
→ (V ′,P ′), ε ≤ d

[wi3]
(V ,P within[d]) ε

→ (V , P within[d − ε])

• The semantics of P within[d] is captured by rules wi1 to wi3. Rule wi1 indicates that
if P can execute an observable event a and changes to P ′, while updating V to V ′,
then (V ,P within[d]) can also execute a and update to (V ′,P ′). In the contrast, if an
invisible event is engaged, then within operator remains, which is captured by rule
wi2. Rule wi3 states that the process can idle for ε time units as long as P can do so
and ε ≤ d .

(V ,P) a
→ (V ′,P ′), a , X

[dl1]
(V ,P deadline[d]) a

→ (V ′,P ′ deadline[d])

(V ,P) X→ (V ′,P ′)
[dl2]

(V ,P deadline[d]) X→ (V ′,P ′)

(V ,P) ε
→ (V ′,P ′), ε ≤ d

[dl3]
(V ,P deadline[d]) ε

→ (V , P deadline[d − ε])

• Rules dl1 to dl3 define the semantics of P deadline[d]. Rule dl1 states that if P can
execute a non-termination event, whether observable or not, so does P deadline[d].
dl2 indicates that when P executes termination event, then deadline operator is dis-
charged. dl3 states that the process can idle for ε time units as long as P can do so
and ε ≤ d .

[pb]
(V , pcase {pr0 : P0; · · · ; prk : Pk })

τ
→ µ

where µ((V ,Pi)) = pri
pr0+···+prk

for all i ∈ [0, k]

• Rule pb states that if pcase is activated, then it transmits to a distributionµ via action τ.
The probability of reaching the successive states follows the probability weight. Note
the valuation of variables keeps unchanged, and the missing of timed transition rule
indicates a probabilistic choice (i.e., pcase) must be resolved immediately without
delay.

6.4. DYNAMIC ZONE ABSTRACTION 103

Given a PRTS model, a PA can be generated following these rules.

Definition 12 Let M = (Var ,Vi ,P) be a PRTS model and AP be a set of propositions on Var .
DM is a PA (S , sinit ,Act ,Pr ,AP ,L) such that S is a set of system configurations; sinit = (Vi ,P);
and Pr ⊆ S × (Actτ ∪ R+) × Distr (S) is defined by the firing rules; L((V ,P)) = {ap | ap ∈ AP

such that V � ap}.

DM is referred to as the concrete semantics of M . Because PRTS has a dense-time semantics,
the corresponding PA have infinitely many states. In order to apply model checking
techniques, a finite-state abstract PA is required.

6.4 Dynamic Zone Abstraction

In this section, we present a fully automated approach to generate a finite-state abstract PA
from a model. Without loss of generality, we have the following two assumptions.

• We assume that all variables have finite domains.

• We assume that every process reachable from the initial configuration is finite (as
required in [96]), i.e., a process expression has only finitely many process constructs.

As a result, the only source of infinity is timing, or equivalently, the infinitely many
possible values for parameters of timed process constructs. For instance, given process
Wait[1], there are infinitely many processes that can be reached by a time-transition, e.g.,
Wait[0.9], Wait[0.99], Wait[0.999], etc. One observation is that for certain properties, the
exact value of the parameters are not important, i.e., they can be grouped into equivalent
classes. This leads to the idea of using a constraint to capture the value of the parameters.
In the following, we summarize dynamic zone abstraction proposed in [116], and apply it to
PRTS models.

In order to distinguish parameters associated with different process constructs, the first
step of the abstraction is to associate timed process constructs (including pcase) with clocks.
Constraints on the clocks are then used to capture values of the respective parameters. For
instance, let P timeout[d]c Q denote that process P timeout[d] Q is associated with clock
c. P timeout[d]c Q with a constraint c ≤ 5 represents any process P timeout[d ′] Q with

6.4. DYNAMIC ZONE ABSTRACTION 104

d ′ ≤ 5. We assume that each timed process construct is associated with a unique clock. In
the following, we define the notion of abstract configuration.

Definition 13 An abstract system configuration is a triple (V ,P ,D) such that V is a variable
valuation; P is a PRTS process; and D is a zone over the clocks.

There are usually multiple timed process constructs in a process P. Nonetheless, at one
moment not all of the processes are activated, i.e., only some of them are ready to take over
control and perform a transition. We write cl (P) to denote the set of clocks activated in P

and X = 0 where X is a set of clocks to denote the conjunction of c = 0 for all c ∈ X . A
zone D is the conjunction of multiple primitive constraints over a set of activated clocks.
A primitive constraint is of the form t ∼ d or ti − tj ∼ d where t , ti , tj are clocks, d is a
constant and ∼ is either, ≥, = or ≤. Note in our setting, the clock constraints are always
closed. Intuitively, a zone is the maximal set of clock valuations satisfying the constraint.
A zone is empty if and only if the constraint is unsatisfiable. An abstraction configuration
(V ,P ,D) is valid if and only if D is not empty. The following zone operations are relevant.
Let D denote a zone. D↑ denotes the zone obtained by delaying for an arbitrary amount
of time. Note that all clocks proceed at the same rate. For instance, let c be a clock, (c ≤ 5)↑

is c ≤ ∞. Given a set of clocks X , D[X] denotes the set of valuations of clocks in X which
satisfy D . Further, we write C(D) to denote the clocks of D. Zones can be equivalently
represented as Difference Bound Matrices (DBMs) and zone operations can be translated
into DBMs manipulation [44, 24].

In order to define the abstract PA, we define a set of abstract firing rules. The abstract firing
rules eliminate timed transitions all together and use zones to ensure a process behaves
correctly with respect to timing requirements. To distinguish from concrete transitions,
an abstract transition is written in the form: (V ,P ,D) e

 (V ′,P ′,D ′). Given a process
PT , idle(P) is defined to be the maximum zone such that P can idle before performing an
event-transition. For instance, idle(P deadline[5]c) = idle(P) ∧ c ≤ 5, i.e., P deadline[5]c

can idle as long as P can idle and the reading of c is no bigger than 5. Fig. 6.3 shows the
detailed definition.

Rules idle1 to idle5 state that if the process is un-timed and none of its sub-processes is
activated, then function idle returns true, which means that the process may idle for an
arbitrary amount of time. Rules idle6 to idle9 state that if sub-processes of the process are
activated, then function idle is applied to the sub-processes. For instance, if the process

6.4. DYNAMIC ZONE ABSTRACTION 105

idle(Stop) = true – idle1
idle(Skip) = true – idle2
idle(e → P) = true – idle3
idle(a{program} → P) = true – idle4
idle(if (b) {P } else {Q}) = true – idle5
idle(P | Q) = idle(P) ∧ idle(Q) – idle6
idle(P \X) = idle(P) – idle7
idle(P ; Q) = idle(P) – idle8
idle(P ‖ Q) = idle(P) ∧ idle(Q) – idle9
idle(P) = idle(Q) if P =̂ Q – idle10
idle(Wait[d]c) = c ≤ d – idle11
idle(P timeout[d]c Q) = c ≤ d ∧ idle(P) – idle12
idle(P interrupt[d]c Q) = c ≤ d ∧ idle(P) – idle13
idle(P within[d]c) = c ≤ d ∧ idle(P) – idle14
idle(P deadline[d]c) = c ≤ d ∧ idle(P) – idle15
idle(pcasec{pr0 : P0;

· · · ;
prk : Pk }) = c = 0 – idle16

Figure 6.3: Idling calculation

is a choice (rule idle6) or a parallel composition (rule idle9) of P and Q , then the result is
idle(P) ∧ idle(Q). Intuitively, this means that process P | Q (or P ‖ Q) may idle as long
as both P and Q can idle. idle10 defines the case for process referencing. Rules idle11 to
idle15 define the cases when the process is timed. For instance, process Wait[d]c may idle
as long as c is less or equal to d . Lastly, since there is no idling allowed for pcasec , the value
of c must always be 0, which is captured by idle16.

The following shows the abstract firing rules for real-time and probability processes. Same
as the concrete rules, if the probability of a transition is 1, the probability will be removed
from the labeling for simplicity. Other rules are listed in Appendix B.

[ade]
(V ,Wait[d]c ,D) τ

 (V ,Skip,D↑ ∧ c = d)

• Rule ade states that process Wait[d] idles for exactly d time units and then engages
in event τ and the process transforms to Skip. Note that the zone of the target
configuration is D↑ ∧ c = d . Intuitively, it means that the transition occurs sometime
in the future (captured by D↑) when c reads d (captured by c = d). It should be
intuitively clear that this is ‘equivalent’ to the concrete firing rules.

[ato1]
(V ,P timeout[d]c Q ,D) τ

 (V ,Q ,D↑ ∧ c = d ∧ idle(P))

6.4. DYNAMIC ZONE ABSTRACTION 106

(V ,P ,D) τ
 (V ′,P ′,D ′)

[ato2]
(V ,P timeout[d]c Q ,D) τ

 (V ′,P ′ timeout[d]c Q ,D↑ ∧ D ′ ∧ c ≤ d)

(V ,P ,D) e
 (V ′,P ′,D ′), e , τ

[ato3]
(V ,P timeout[d]c Q ,D) e

 (V ′,P ′,D↑ ∧ D ′ ∧ c ≤ d)

• Rules ato1, ato2 and ato3 capture the abstract semantics of P timeout[d] Q . Depend-
ing on when the first event of P takes place and whether it is observable, process
P timeout[d] Q behaves differently in three ways. Rule ato1 states that if P generates
a τ transition, the timeout construct remains. Furthermore, the target zone D ′ ∧ c ≤ d

constrains that the transition must take place no later than d time units. In the con-
trast, rule ato2 states that if P generates an observable transition, then the timeout

construct is removed. Similarly, it is constrained that the transition must occur no
later than d time units. Rule ato3 captures the case when timeout occurs. Namely,
timeout occurs if and only if the reading of c is exactly d and, further, P must be able
to idle until c reads d .

(V ,P ,D) a
 (V ′,P ′,D ′), a , X

[ait1]
(V ,P interrupt[d]c Q ,D) a

 (V ′,P ′ interrupt[d]c Q ,D↑ ∧ D ′ ∧ c ≤ d)

[ait2]
(V ,P interrupt[d]c Q ,D) τ

 (V ,Q ,D↑ ∧ c = d ∧ idle(P))

(V ,P ,D) X (V ′,P ′,D ′)
[ait3]

(V ,P interrupt[d]c Q ,D) X (V ′,P ′,D↑ ∧ D ′ ∧ c ≤ d)

• Rules ait1, ait2, ait3 describe the abstract semantics of P interrupt[d] Q . ait1 states
that P can execute an observable event a (not the termination event X) before d time
units, and the interrupt operator remains. ait2 indicates that when t = d , interrupt

will happen via a τ transition and Q will take over afterwards. ait3 states ifXhappens
before d time units, then the interrupt operator will be ruled out.

6.4. DYNAMIC ZONE ABSTRACTION 107

(V ,P ,D) τ
 (V ′,P ′,D ′)

[awi1]
(V ,P within[d]c ,D) τ

 (V ′,P ′ within[d]c ,D↑ ∧ D ′ ∧ c ≤ d)

(V ,P ,D) e
 (V ′,P ′,D ′)

[awi2]
(V ,P within[d]c ,D) e

 (V ′,P ′,D↑ ∧ D ′ ∧ c ≤ d)

• Rules awi1 and awi2 define the abstract semantics of P within[d]. Rule awi1 states
that if a τ transition occurs within d time units, then the resultant process is of the form
P ′ within[d], which means that it is yet to perform some observable event before d

time units. Rule awi2 states that once an observable event occurs, the within construct
is removed.

(V ,P ,D) a
 (V ′,P ′,D ′), a , X

[adl1]
(V ,P deadline[d]c ,D) a

 (V ′,P ′ deadline[d]c ,D↑ ∧ D ′ ∧ c ≤ d)

(V ,P ,D) X (V ′,P ′,D ′)
[adl2]

(V ,P deadline[d]c ,D) X (V ′,P ′,D↑ ∧ D ′ ∧ c ≤ d)

• Rules adl1 and adl2 define the abstract semantics of P deadline[d]. Rule adl1 ensures
that all transitions of P must occur within d time units. Rule adl2 states that if P

terminates, then deadline is removed.

[apcase]
(V , pcasec {pr0 : P0; pr1 : P1; · · · ; prk : Pk },D) τ

 µ
where µ(V ,Pi ,D↑ ∧ c = 0 ∧ cl (Pi) = 0) = pri

pr0+···+prk
for all i ∈ [0, k]

• Rule apcase captures the abstract semantics of pcase. The new zone after i th transition
is D ∧ c = 0 ∧ cl (Pi) = 0, which means c is still 0 after the transition, and all new
activated clocks in Pi should be 0. This indicates that the corresponding τ transition
is instantaneous.

6.4. DYNAMIC ZONE ABSTRACTION 108

Definition 14 Let M = (Var ,Vi ,P) be a model and AP be a set of propositions on Var . Da
M

=

(Sa , inita ,Act ,Pra ,AP ,La) is the abstract PA such that Sa is a set of valid abstract system
configurations; inita = (Vi ,P ,Dinit) is the initial abstract configuration where Dinit is cl (P) = 0;
Pra ⊆ S × Actτ × Distr (S) representing the transition relation, which is defined by the abstract

firing rules; La ((V ,P ,D)) = {ap | ap ∈ AP such that V � ap}. If (V ,P ,D)
x ,µ
−→ (V ′,Q ,D ′),

then D ′ = D[cl (Q)] ∧ cl (Q) − cl (P) = 0.

Informally, given (V ,P ,D) ∈ Sa , if (V ′,Q ,D ′) is an abstract configuration obtained by
applying an abstract firing rule to the given state, D ′ is obtained by firstly pruning all
clocks which are not in cl (Q) and then setting clocks associated with newly activated
processes (i.e., cl (Q) − cl (P)) to be 0. The construct of Da

M
is illustrated in the following

example.

Example Assume a model M = (∅,∅,S) such that process S is defined as follows.

P = (a → pcasec0 {

1 : Wait[1]c1 ; (b → Skip)within[0]c3

1 : Wait[2]c2 ; b → Skip

}) deadline[2]c4 ;

Q = (Wait[2]c5 ; b → Skip)within[2]c6 ;

S = P ‖ Q ;

Note that ci , 0 ≤ i ≤ 6 are clocks associated to timed constructors. Using the abstract firing
rules, the abstract PA can be generated and is shown in Fig. 6.4.

In Fig. 6.4, we omit the self-looping transition on deadlocking states for readability. The
initial configuration state sinit is (∅,S , c4 = c5 = c6 = 0), where clock c4 is associated with
deadline[2] in P , and c5 and c6 are associated with Wait[2] and within[2] in Q respectively.
Other clocks are not activated in the initial state since their corresponding timed process
constructs are not taking control of current process. Applying rule adl2, we get the transi-
tions from state sinit to state s1 via event a , and 0 ≤ c4 = c5 = c6 ≤ 2 after this transition. c0

= 0 is also in zone of s1 since pcasec0 is activated. Alternatively, applying rule ade , another
τ transition from sinit to s2 is generated because of Wait[2]c5 in Q , which makes c4 = c5 =

c6 = 2. Note zone in s2 is c4 = c6 = 2, because c5 is expired and no longer activated after this
transition. The pcasec0 takes control of the process in s1, and the probabilistic transitions

6.4. DYNAMIC ZONE ABSTRACTION 109

Figure 6.4: An Abstract Model

should happen immediately. Therefore, we have a distribution labeled by τ from s1 to s6

and s7 according to rule apcase, and the transition probabilities are both 0.5. c0 is still 0
after these transitions, and is ruled out from the generated zone since pcasec0 expires. In s6,
P has become (Wait[1]c1 ; (b → Skip)within[0]c3) deadline[2]c4 and the corresponding zone
is 0 ≤ c4 = c5 = c6 ≤ 2 ∧ c1 = 0. Applying rule ade again, Wait[1]c1 in P generates a τ
transition from s6 to s12. Process S = P ‖ Q in s12 is now

((b → Skip)within[0]c3) deadline[2]c4 ‖

(Wait[2]c5 ; b → Skip)within[2]c6

c3 = 0 and 1 ≤ c4 = c5 = c6 ≤ 2 in zone of s12. Because b must execute simultaneously
in both P and Q , so applying ade , Wait[2]c5 in Q generates a τ transition from s12 to s14.
Note that this transition must take no time due to within[0] in P . Therefore c4 = c5 = c6 =

2 should be true both before and after this transition. Afterwards, b is enabled in both P

and Q , so a transition labeled with b is generated from s14 to s11. Meanwhile within[0]c3 in
P and within[2]c6 in Q are removed since an observable event occurs. deadline[2]c4 in P

remains and c4 = 2 is still active. Applying rule adl2, a transition from s11 to s15 labeled
with X is generated because of Skip in both P and Q . Afterwards, deadline[2]c4 expires.
Other transitions and states are similarly obtained. �

Correspondingly, we can define abstract DTMC, whose formal definition is as follows.

Definition 15 An abstract DTMC is a tuple (Sa , inita ,Act ,Pra ,AP ,La), where Sa is a set of
valid abstract system configurations; inita = (Vi ,P ,Dinit) is the initial abstract configuration

6.5. VERIFICATION OF ABSTRACT PA 110

where Dinit is cl (P) = 0; Pra is a function:Sa → Actτ × Distr (S) representing the transition
relation; AP is a set of propositions on Var ; La ((V ,P ,D)) = {ap | ap ∈ AP such that V � ap}.

PRTS vs. PTA Probabilistic Timed Automata (PTA) are an extension of Timed automata
with discrete probabilistic distribution, and they are widely used in probabilistic real-time
domain. Therefore, it is meaningful to investigate the relationship between PRTS and PTA.

Since PRTS is based on Timed CSP [107], the timed constraints in PRTS are closed while
PTA may contain both closed and open timing constraints. Different from PTA, PRTS
assumes probabilistic choices are instantaneous without time delay. These constraints
make PRTS (assuming variables are finite-domained and process expressions are always
finite) less expressive than PTA; however, PRTS is still useful in modeling probabilistic
real-time systems, which is shown in PRTS models mentioned above and those used in
Section 6.6.

On the other hand, PRTS allows probabilistic choices whose probability distributions are
decided at run-time, which makes it flexible to model real life systems, since the probability
of transitions in some scenario may change from time to time. Further, the external library
increases the convenience of modeling for systems with complicated calculations. In ad-
dition, it can be shown that every clock is bounded from above in PRTS (see the definition
of idle in Fig. 6.3 and abstract firing rules defined above), which implies zone normaliza-
tion [103] is not essential in our setting. Lastly, model checking with non-Zenoness based
on the zone graphs is feasible in PRTS, as we show in the following section.

6.5 Verification of Abstract PA

In the section, we show that the abstract PADa
M

is subject to probabilistic model checking.

6.5.1 Finiteness

We first show that all abstract PAs generated via our dynamic zone abstraction are finite,
which is captured by the following theorem.

Theorem 6.5.1 Da
M

is finite for any PRTS model M .

6.5. VERIFICATION OF ABSTRACT PA 111

Proof By definition, the size of Da
M

is bounded by |V | × |P | × |D |, where |V | denotes the
number of variable valuations; |P | denotes the number of processes; and |D | denotes the
number of zones. By assumption in Section 6.4, all variables have finite domains and
therefore |V | is finite. Similarly, all reachable processes are finite by assumption. Thus,
|P | is finite if and only if values for parameters of the timed processes are finite and the
number of clocks in cl (P) is finite. It can be shown that all abstract firing rules preserve
the parameters and therefore values for parameters are finite. By assumption, there can be
only finitely many process constructs in any reachable process. Thus, cl (P) is always finite.
Therefore, |P | is finite. Lastly it is known that the number of zones is finite given finitely
many clocks and only bounded integer constants [44]. As a result, we conclude that |D | is
finite and thenDa

M
is finite. �

6.5.2 Over-approximation

In this part, we show that given an LTL-X propertyφ,Da
M

is over-approximation ofDM , i.e.,
for any scheduler δ inDM , there exists a scheduler η inDa

M
satisfying Pη

Da
M

(φ) ≥ Pδ
DM

(φ).

First, in a concrete DTMC, there are two kinds of transitions: timed transitions s
ε
→ s ′,

which always leads to a trivial distribution according to the semantics, and event transitions
s

a ,p
−→ s ′ such that a can be both observable and un-observable. For simplicity, we write

s
ε,a ,p
−→ s ′ to denote that there exists s0 such that s

ε
→ s0

a ,p
→ s ′. Here p is unchanged since

timed transition always has probability 1. Note in this case we assume ε could be 0, which
indicates a is not delayed. On the other hand, in an abstract PA, abstract DTMC without
timed transitions can be obtained, i.e, for any s

a ,p
 s ′ in an abstract DTMC, a < R+.

Next, we define probabilistic time-abstract simulation of DTMC as follows.

Definition 16 A probabilistic time-abstract simulation relation between a concrete DTMC
C = (Sc , initc ,Act ,Prc ,AP ,Lc) and an abstract DTMC Ca = (Sa , inita ,Act ,Pra ,AP ,La) is a
relation R ⊆ Sc × Sa such that the following condition.

C1: If (sc , sa) ∈ R and sc
ε,a ,p
→ s ′c for ε ≥ 0, a ∈ Actτ and p ∈ (0, 1], then there exists s ′a such that

sa
a ,p
 s ′a and (s ′c , s ′a) ∈ R;

C2: (initc , inita) ∈ R.

6.5. VERIFICATION OF ABSTRACT PA 112

Proposition 6.5.2 If abstract DTMC Ca time-abstract simulates concrete DTMC C, then given a
certain LTL-X property φ, PCa (φ) ≥ PC (φ). �

Theorem 6.5.3 For each scheduler σ of DM , there exists a scheduler η of Da
M

such that Dσ
M

probabilistic time-abstract simulates (Da
M

)η.

Proof Given Dσ
M

= (Sc , initc ,Act ,Prc ,AP ,Lc), we first show that a sequence of timed
transitions can be treated as one timed transition in verifying LTL-X property φ. In other

words, if we have s1
ε1
→ s2

ε2
→ s3 as a part of a path in Dσ

M
, one transition s1

ε1+ε2
−→ s3 is

equivalent to the previous sequence. This is trivial since timed transitions always have
probability 1 and do not affect the variable valuation in our setting. So that the probability of
φ on this path keeps the same. Therefore, here we just considerDσ

M
in which no successive

timed transitions exist.

By definition, we need to find a schedulerηonDa
M

such that (Da
M

)η= (Sa , inita ,Act ,Pra ,AP ,La),
and there exists a probabilistic time-abstract simulation relation R between Sc and Sa . Ac-
cording to Prc defined by σ, η is constructed to choose corresponding actions and distribu-
tions in each state s ofDa

M
.

We define R as follows: ∀ sc = (Vc ,Pc) ∈ Sc ; ∀ sa = (Va ,Pa ,D) ∈ Sa , (sc , sa) ∈ R if and only
if Vc = Va , i.e., Lc(sc) = La (sa), and Pc is abstracted by Pa with D . Pc is abstracted by Pa

with D if and only if the following two conditions are satisfied.

• Pc differs from Pa only by the parameters of the timed process constructs.

• For every timed process construct of Pc , let d be the associated parameter; let d ′ be
the constant associated with the corresponding construct in Pa . If the construct is not
activated in P , then d = d ′. If the construct is activated with a clock c in Pa , then
c = d ′ − d satisfies D[c].

For instance, if Pc = Wait[3]; Wait[5] and Pa = Wait[4]c1 ; Wait[5]c2 , then Pa with zone
c1 ≤ 4 abstracts Pc . Next, we show that C 1 and C 2 of Definition 16 are satisfied by R.

C 2 is proved straightforwardly. Therefore we focus on the proof of C 1, which is done by
structural induction. Four cases are exemplified to show the correctness of C 1, where Pc

is set to be Wait[d], P timeout[d] Q and pcase {pr0 : P0; · · · ; prk : Pk }.

6.5. VERIFICATION OF ABSTRACT PA 113

• If Pc is Wait[d] and ((Vc ,Pc), (Va ,Pa ,Da)) ∈ R, then Pa is Wait[d ′]c such that c = d ′

satisfies D ′a [c]. By rule wait1 and wait2, (Vc ,Wait[d]) d
→ (Vc ,Wait[0]) τ

→ (Vc ,Skip).
Therefore σ((Vc ,Pc)) = (d , µ1) and σ((Vc ,Wait[0])) = (τ, µ2) where µ1 and µ2 are triv-

ial. Then in the generated concrete DTMC, we have (Vc ,Wait[d])
d ,τ,1
−→ (Vc ,Skip). By

rule ade , (Va ,Pa ,Da) τ
 (Va ,Skip,D↑a ∧ c = d) and thus (Va ,Pa ,Da) τ

 (Va ,Skip,D ′)
where D ′ = true (since c is removed due to its expiration and cl (Skip) = ∅).

Then let η((Va ,Pa ,Da)) = (τ, µ) such that µ((Va ,Skip,D ′)) = 1, i.e., (Va ,Pa ,Da)
τ,1

(Va ,Skip, true). It is trivial to show ((Vc ,Skip), (Va ,Skip, true)) ∈ R. Therefore C 1 is
true.

• If Pc is P timeout[d] Q and ((Vc ,Pc), (Va ,Pa ,Da)) ∈ R, then Pa is P ′ timeout[d]t Q

such that P is abstracted by P ′ with Da . Assume (Vc ,P) ε
→ (Vc ,P ′)

e
→ (V1,P1)

for some ε ≤ d . By rule to3 and to1, (Vc ,Pc) ε
→ (Vc ,P ′c) e

→ (V1,P1). Therefore
σ((Vc ,Pc)) = (ε, µ1) and σ((Vc ,P ′c)) = (e , µ2) where µ1 and µ2 are trivial. Then in

the generated concrete DTMC, we have (Vc ,Pc)
ε,e,1
−→ (V1,P1). By induction hypoth-

esis, (Va ,P ′,Da)
e,1
 (V1,P ′1,D

′
a) such that ((V1,P1), (V1,P ′1,D

′
a)) ∈ R. By rule ato2,

(Va ,Pa ,Da) e
 (V1,P ′1,D

′
a ∧ D↑a ∧ t ≤ d). Then let η((Va ,Pa ,Da)) = (e , µ) such that

µ((V1,P ′1,D
′
a ∧ D↑a ∧ t ≤ d)) = 1. By assumption, ε ≤ d and thus it is easy to show

that P ′1 with D ′a ∧ D↑a ∧ t ≤ d abstracts P1. Thus, C 1 is satisfied. Similarly, we build
η in the case where (Vc ,P timeout[d] Q)

ε,τ
→ (V1,P1 timeout[d] Q) for some ε ≤ d or

(Vc ,P timeout[d] Q)
d ,τ
→ (V1,Q).

• If Pc is pcase {pr0 : P0; · · · ; prk : Pk } and ((Vc ,Pc), (Va ,Pa ,Da)) ∈ R, then Pa is
pcasec {pr0 : P0; · · · ; prk : Pk } such that c = 0. According to rule pb, (Vc ,Pc) τ

→ µ such
that µ(Vc ,Pi) = pi = pri

pr0+pr1+···+prk
. Therefore σ((Vc ,Pc)) = (τ, µ), and in the generated

concrete DTMC, (Vc ,Pc)
0,τ,pi
−→ (Vc ,Pi) such that 0 means pcase cannot be delayed. By

rule apcase, (Va ,Pa ,Da) τ
 µ, andµ((Va ,Pi ,D

↑

a∧c = 0∧cl (Pi) = 0)) = pi . After ruling
out expired clock c, the generated zone D ′ is D↑a ∧ cl (Pi) = 0. Then let η((Va ,Pa ,Da))
= (τ, µ) such that µ((Va ,Pi ,D ′)) = pi , therefore (Va ,Pa ,Da)

τ,pi
 (Va ,Pi ,D ′). It is trivial

to show ((Vc ,Pi), (Va ,Pi ,D ′)) ∈ R. Therefore C 1 is true.

Other cases can be proved to satisfy C 1 similarly. We thus conclude that for any scheduler
σ of DM , there is a scheduler η of Da

M
such that a probabilistic time-abstract simulation

relation betweenDσ
M

and (Da
M

)η exists. �

6.5. VERIFICATION OF ABSTRACT PA 114

Based on the above theorem, we relate the verification results of abstract model and the
concrete model, which is captured by the following theorem.

Theorem 6.5.4 Given an LTL-X property φ, Pmax
DM

(φ) ≤ Pmax
Da

M
(φ).

Proof This theorem holds by proposition 6.5.2 and Theorem 6.5.3. �

In the following, we show, with an example, that the probability may not be exact, i.e.,
P

max
DM

(φ) < Pmax
Da

M
(φ). Let us take the model in Fig. 6.4 as an example, which is inspired by

examples in [82]. Suppose that φ is ^b. In Fig. 6.4, the maximal probability in the abstract
model should be 1 since two probabilistic choices from s1 can eventually execute b and
reach s11. Now let us analyze the original PRTS model in Fig. 6.4.

Note that b is a common event in P and Q , therefore it can happen only when it is enabled
by both processes simultaneously. In process Q , b occurs exactly after 2 time units due
to Wait[2] and within[2]. As a result, b must also happen at 2 time units sharp in P . For
P , the whole process should finish within 2 time units because of deadline[2]. Event a

can happen between 0 to 2 time units. Since probabilistic choices do not take any time,
and b should happen after 2 time units sharp from the beginning, we can find that the
first branch of probabilistic choice, Wait[1]; (b → Stop)within[0], must be activated after
1 time unit; and the second branch of probabilistic choice, Wait[2]; b → Stop, should be
activated without any delay. Therefore, event a should occur either after exactly 1 time
unit, or immediately. There are two schedulers corresponding to these two scenarios. In
both DTMC generated via these two schedulers, there will be only one branch satisfies that
b can eventually happen. Therefore, the maximal probability of S executing b should be 0.5
instead of 1 in the abstract model. Informally speaking, a scheduler in the abstract model
may not be feasible in the concrete model, as it may be the result of collapsing multiple
schedulers at different time points.

Given that the probability of satisfying φ in the abstract model is an over-approximation, it
can be used to check whether the probability of a system satisfying a property is under some
threshold λ, denoted as ≤ λ. For example, in the multi-lift system, a meaningful property
could be “the probability that users are passed by should not exceed 0.1”. Assume the
maximal probability for some property in an abstract model is p, then if p ≤ λ, the original
model is also under the threshold. Otherwise, the original model may or may not satisfy
its maximal probability for this property ≤ λ.

6.5. VERIFICATION OF ABSTRACT PA 115

6.5.3 Non-Zenoness

In this section, we discuss model checking with non-Zenoness in PRTS. Zeno schedulers
may exist in PRTS models. One simple PRTS example representing this scenario is demon-
strated as follows.

P = Q ; b → Skip;

Q = a → Q�Skip;

R = (b → Skip)within[1];

System = P ‖ R;

In this example, process System is composed by P and R, which are running in parallel.
Event b is required to happen within 1 time unit whenever process R is activated. Mean-
while, process Q has two choices, both of which have probability 1. One is to engage in
event a and then behave as Q , and the other is to terminate. If a scheduler of System , say
δ, always chooses to engage event a , b cannot happen and the timed constraint within[1]
always exists. Thus an infinite path happens within 1 time unit, which is unrealistic. Fur-
thermore, this path has probability 1, indicating δ is a Zeno scheduler. The existence of
Zeno schedulers may affect the results of the properties we want to check, which is shown
in Section 6.6. Therefore, we need a method to check whether a scheduler is Zeno or not,
and Zeno schedulers should be removed during the verification.

Before introducing the detailed verification algorithms, we first investigate the relation
between the Zeno schedulers in concrete PA and its abstraction. When we rule out a Zeno
scheduler in the abstract model, is it possible that some non-Zeno schedulers in the concrete
model are also removed? If so, the verification under non-Zeno assumption is not reliable. To
answer this question, we rely on identifying BSCCs in abstract DTMC. First, A transition
is called instantaneous if it cannot be delayed, such as firing the abstract rule for pcase or
transition labeled with a in (a → Skip)within[0]. Given a BSCCB composed by set of states
T in an abstract DTMC, let loopCLK (T) denote the set {x | ∀(V ,P ,D) ∈ T . x ∈ C(D)}, i.e.,
the clocks which are present in every configuration of the B. We define B is non-Zeno if it
satisfies

1. loopCLK (T) = ∅.

2. Not all transitions in B are instantaneous.

A BSCC is Zeno if it is not non-Zeno. Now we have the following theorem.

6.5. VERIFICATION OF ABSTRACT PA 116

Theorem 6.5.5 Given an abstract PA D and its scheduler δ, δ is Zeno iff DTMC Dδ has at least
one reachable Zeno BSCC.

Proof (If) Assume B is a Zeno BSCC of Dδ, composed by states set T . Then either
1) loopCLK (T) , ∅ or 2) all transitions in B are instantaneous. If 1) is true, assume
c ∈ loopCLK (T). For any infinite path reaching B, say π, it will stay in B forever, and c

never expires on π. According to our setting, all timed constraints are bounded, so does
the parameter of c. Therefore, infinitely many steps happen in a bounded time interval.
Thus π is Zeno. If 2) is true, for any infinite path reaching B, say π, it will has infinitely
many continuous instantaneous steps without leaving B. In other words, infinitely many
steps happen in 0 time unit, therefore π is Zeno. As a result, as long as B is Zeno, all
infinite paths reaching B are Zeno. BecauseDδ is reachable, the probability of reaching B
is positive. Therefore δ is Zeno.

(Only-If) SinceDδ is Zeno, there must be some Zeno paths inDδ satisfying the sum of their
probability is positive. Furthermore, all infinite paths with positive probability must reach
certain BSCC. Therefore, there exists at least one BSCC that Zeno paths can reach, which
can be denoted as B. Moreover, it is known that any path reaching a BSCC can visit all
states and transitions in this BSCC infinitely often. Therefore, any Zeno path reaching B,
say π, visits all states and transitions in B infinitely often. Since π is Zeno, there must be a
finite bound for its infinite execution. Therefore, all transitions inBmust be instantaneous.
Therefore B is a Zeno BSCC. So the theorem holds. �

The following theorem then answers the question about the relation between the Zeno
schedulers in concrete PA and its abstraction.

Theorem 6.5.6 Let D be a PRTS model. For each non-Zeno scheduler σ of DM , there exists a
non-Zeno scheduler η ofDa

M
satisfyingDσ

M
simulates (Da

M
)η.

Proof According to Theorem 6.5.3, for non-Zeno scheduler σ of DM , there must be a
scheduler η of Da

M
satisfying Dσ

M
simulates (Da

M
)η following a relation R. Therefore, we

simply need to prove η is a non-Zeno scheduler in the abstract model.

Because σ is a non-Zeno scheduler of DM , according to Theorem 6.5.5, all BSCCs in Dσ
M

are non-Zeno. For each BSCC B in Dσ
M

, we set Ba = {sa | ∀ s ∈ B, (s , sa) ∈ R} as a set of
states in (Da

M
)η. Obviously, Ba is a BSCC of (Da

M
)η. Next, we show that Ba is non-Zeno

6.5. VERIFICATION OF ABSTRACT PA 117

by contradiction. If c ∈ loopCLK (Ba), i.e., all states in Ba have clock c in their zone, we
can conclude c never expires in Ba . According to the definition of probabilistic time-abstract
simulation, c should also never expires inB, which conflicts with the fact thatB is non-Zeno.
Thus no c exists in loopCLK (Ba). Therefore loopCLK (Ba) = ∅. Meanwhile, the existence
of non-instantaneous transitions in B indicates not all transitions in Ba are instantaneous,
which can be shown by the proof of Theorem 6.5.3. Thus Ba is non-Zeno. Therefore,
all BSCCs in (Da

M
)η are non-Zeno. So η is a non-Zeno scheduler of (Da

M
)η according to

Theorem 6.5.5. �

Next, we show how LTL-X properties are verified under the non-Zenoness assumption.
After abstraction, a finite-state PA Da

M
is generated. Given an LTL-X formula φ, the

automata-theoretic approach for probabilistic model checking [18] follows these steps:
firstly, a deterministic Rabin automaton (DRA) equivalent to a given LTL-X formula is
built. The product of the automaton and the abstract PA is then computed. Thirdly, MECs
in the product which satisfy the Rabin acceptance condition are identified. Lastly, the
probability of reaching any state of the MECs is calculated via a backward value iteration
method, which equals the probability of satisfying the property. In the following, we
extend this approach to handle non-Zenoness assumptions.

Given an abstract PA D generated from a PRTS model, we first define an MECM (T ,A) of
D as non-Zeno if it satisfies the following conditions.

1. loopCLK (T) = ∅.

2. Not all transitions inM are instantaneous.

An MEC is Zeno if it is not non-Zeno. If a path reaches a Zeno MEC, then either there
exists a clock which never expires on this path, or all transitions on this path after reaching
this MEC are instantaneous. In both cases, infinite steps must happen within a finite time
interval, therefore this path is Zeno. In the following, we refer to a state in a bottom Zeno
MEC as a Zeno state.

Proposition 6.5.7 Given a Zeno state s in PA D, a scheduler σ satisfying σ(s) , ∅ is a Zeno

scheduler.

Proof Let Zeno MEC M (T ,A) contain s . Because σ(s) , ∅, a BSCC B in Dσ can be
generated fromM. SinceM is Zeno, it satisfies loopCLK (T) , ∅ or all transitions inM

6.5. VERIFICATION OF ABSTRACT PA 118

Algorithm 4 Deciding Target MECs in PA
1: LetV,Z = ∅;
2: Let C be the set of all MECs inD;
3: for each E ∈ C do
4: if E is non-Zeno then
5: if E satisfies the Rabin acceptance condition then T ← T ∪ E;
6: end if
7: else
8: if E is bottom MEC thenZ←Z∪ E;
9: end if

10: end if
11: end for
12: return T ,Z;

are instantaneous. In both cases, B is guaranteed to be Zeno. Therefore B is also Zeno.
According to Theorem 6.5.5, σ is a Zeno scheduler. �

Algo. 4 describes the modified algorithm used to decide the target states while labeling Zeno
states. The algorithm takes a PA D, which is the production of a PRTS model and a DRA
representing an LTL-X property, as input and returns target states and Zeno states of D.
Line 2 can be done via standard MEC searching algorithm in probabilistic verification [18].
Then for each MEC, we check whether it is Zeno or not. If it is non-Zeno, we check whether
it satisfies the Rabin acceptance condition. If the answer is yes, then the whole MEC should
be target states. Otherwise, we continue with next MEC. If it is Zeno as denoted by line 7,
we check whether it is a bottom MEC. If there is no outgoing transitions from this MEC,
we will add all its states into the set of Zeno states. MECs which are Zeno but not bottom
are ignored in this algorithm.

Algo. 4 terminates since the number of MECs in a finite PA is also finite. States inZ are Zeno
states according to the definition. Afterwards, it is critical to remove all Zeno schedulers in
the given PA, which is done via Algo. 5.

In Algo. 5, we have a PA D (S, sinit ,Act ,Pr ,AP ,L) and its Zeno states Z as input. First,
V representing visited states in D is set to be Z. Starting from Z, a backward search is
executed. Line 3 indicates that K represents the pre-states of Z. Then states in K are
added to V (line 4). Afterwards, states in K are checked one by one to confirm which
(α, µ) pairs lead them to Z. All these pairs are removed since schedulers choosing them
are Zeno schedulers, and Pr is updated. Lines 11 and 12 indicate that if the actions and
corresponding distributions in one state are all removed, this state will be treated as Zeno

6.5. VERIFICATION OF ABSTRACT PA 119

Algorithm 5 Removing Zeno Schedulers in PA
1: LetV = Z;
2: whileV , S do
3: LetK = Pre(Z) − Z ;
4: V ←V∪K ;
5: for each sk ∈ K do
6: for each (α, µ) ∈ Act(sk) do
7: if ∃ sz ∈ Z, µ(sz) > 0 then
8: Pr ← Pr\(sk , α, µ);
9: end if

10: end for
11: if Act(sk) = ∅ then
12: Z←Z∪ {sk };
13: end if
14: end for
15: end while
16: S ← S −Z;
17: return (S, sinit ,Act ,Pr ,AP ,L);

state and added inZ. When the while loop terminates, i.e., all states in S are visited, states
inZ are removed fromS, denoted as line 16. Afterwards, the reduced PA will be returned.

Because the state space of D is finite and the backward search eventually visits all states,
the termination of Algo. 5 is obvious.

The worst-case complexity of Algo. 5 is O(|S| × (|S| + |T |)), where T represents all the
transitions in D. This can be seen as follows. The maximal number of iterations of the
outermost loop is |S|, as in each iteration at least one state is added toV. In each iteration,
the set of states that can reachZ needs to be computed. This takes O(|S| + |T |) time, since
each state s and transition t can be checked at most once.

The following theorem indicates Algo. 5 satisfies our requirement, i.e., all Zeno schedulers
inD are removed.

Theorem 6.5.8 Given a PAD, a scheduler σ ofD is removed by Algo. 5 iff it is Zeno.

Proof (If) Let σ be a Zeno scheduler of D, then Dσ must have Zeno paths reaching Zeno
states. The backward search used in Algo. 5 (lines 4-11) rules out all paths reaching Z
by removing undesired actions and distributions, thus corresponding schedulers are also
removed. Therefore σ must be removed fromD.

6.6. IMPLEMENTATION AND EVALUATION 120

(Only-If) According to Algo. 5, (α, µ) is removed from one state s if and only if s can reach
Z through (α, µ). As a result, a scheduler σ ofD satisfying σ(s) = (α, µ) makes DTMCDσ

reaching Z with positive probability. Meanwhile, the paths reaching Z are Zeno paths
according to the definition of Zeno states. Therefore, σ is a Zeno scheduler. We conclude
that removed actions and corresponding distributions in Algo. 5 must belong to some Zeno
schedulers. Therefore a removed scheduler must be Zeno.

In summary, the theorem holds. �

After removing all Zeno schedulers, traditional value iteration approach can be used in the
reduced PA to calculate the maximal probability of reaching target states T from the initial
state.

6.6 Implementation and Evaluation

We have implemented the proposed language and algorithms in a PRTS model checker
to support system modeling and automatic verification of systems based on PRTS. This
tool has been integrated into PAT model checking framework as an independent module.
PAT is a self-contained environment for system modeling, simulation and verification.
Properties such as reachability checking and LTL checking are supported in PAT. A system
with several millions of states can be verified efficiently, and the average verification speed
is around 10K states per second (or equivalently millions in one hour).

In the following, we use three different experiments to demonstrate the efficiency of our
method and implementation. Note that for experimental results of probabilistic real-time
systems, our approach generates over-approximation of accurate results. The experiment
testbed is a PC running Windows Server 2008 64 Bit with Intel Xeon 4-Core CPU×2 and
32 GB memory. “-” in following tables indicates the corresponding experiments cannot be
finished within 1 hour. Our tool can be downloaded at http://www.patroot.com.

6.6.1 Verification Under Non-Zenoness Assumption

In this part, we use two examples to demonstrate the effects of non-Zenoness assumptions
in PRTS verification; next, the multi-lift model is used to show the efficiency of PRTS in real-
life systems. Note there is no comparison with other model checkers in this part, because

6.6. IMPLEMENTATION AND EVALUATION 121

System States
Results

PAT without NZ PAT with NZ
FDDI(3) 5084 1.0 0.0
TTA(8) 2533 1.0 0.0

Table 6.1: The Affect of Zeno Schedulers

as far as we know, our work is the only one which supports verification of probabilistic
real-time models with non-Zenoness assumptions.

First, two benchmark systems affected by Zeno schedulers are evaluated: Fiber Distributed
Data Interface (FDDI) [42] and Time Triggered Architecture (TTA) [75]. FDDI is composed
by several identical stations and a ring, where the stations can communicate by synchronous
messages through channels. Meanwhile, a TTA system is composed of host computers (the
nodes) connected over a shared bus with time-division multiple-access (TDMA) strategy.
Desired LTL-X properties are checked in these two systems. The experimental results are
listed in table 6.1. The parameters in FDDI and TTA (3 and 8) represent the number of
components or communication channels in these models respectively.

These two systems are verified with/without non-Zenoness (NZ) assumption. From the
table, we have the following conclusions. First, Zeno schedulers could affect the verifi-
cation results. Take FDDI for example. There exists an MEC in the system where the
communication occurs without consuming time, i.e., all transitions are instantaneous in
that MEC. However, this MEC satisfies the Rabin condition of the desired LTL-X property,
so it existence affects the verification result. Second, non-Zeno assumption has no affect on
the number of states evolved in the verification. Here the number of states listed are the
states in the product PA, which is generated from the abstract PA representing the model
and the automata representing the property.

Next, we verify the lift model and compare two strategies of assigning external requests.
One is to assign the request to a random lift. The other is that an external request is always
assigned to the ‘nearest’ lift. For simplicity, we assume external requests are never re-
assigned. A lift works as follows. It firstly checks whether it should serve the current
floor. If positive, it opens the door and then repeats from the beginning later. If negative,
it checks whether it should continue traveling in the same direction (if there are internal
requests or assigned external requests on the way) or change direction (if there are internal
or assigned external requests on the other direction) or simply idle (otherwise). Note that

6.6. IMPLEMENTATION AND EVALUATION 122

System Random Assign Nearest Assign
Result Time (s) Time-NZ (s) Result Time (s) Time-NZ (s)

lift=2; floor=2; user=2 0.21875 1.262 1.517 0.13889 0.685 0.755
lift=2; floor=2; user=3 0.47656 15.918 31.002 0.34722 7.317 10.305
lift=2; floor=2; user=4 0.6792 98.836 217.145 0.53781 36.077 84.114
lift=2; floor=2; user=5 0.81372 407.023 1306.378 0.68403 102.301 250.125
lift=2; floor=3; user=2 0.2551 12.172 15.205 0.18 6.757 10.112
lift=2; floor=3; user=3 0.54009 109.203 264.588 0.427 43.865 89.810
lift=2; floor=4; user=2 0.27 11.406 15.845 0.19898 6.693 10.524
lift=3; floor=2; user=2 0.22917 47.499 112.361 0.10938 22.425 36.451
lift=3; floor=2; user=3 - - - 0.27344 1493.969 -

Table 6.2: Multi-lift Systems

it is constrained (using within) to react regularly. The property that a lift should not pass
by without serving a user’s external request is verified through a probabilistic reachability
analysis problem (or equivalently a simple LTL-X formula). That is, what is the maximal
probability of reaching a state in which a lift is passing by a floor where a user has requested
to travel in the same direction. Verifications with and without non-Zenoness assumption
are both conducted. Table 6.2 summarizes the experiment results.

In table 6.2, the parameters of the system denote the number of lifts, the number of floors
and number of user requests respectively. We limit the number of user requests so as to
check how the probability varies as well as to avoid state space explosion. Columns Random
Assign and Nearest Assign demonstrate the two different strategies of assigning requests.
Column Result shows the maximum probability of violating the desired property in each
assigning strategy. Note that it can be shown that the minimum probability is always 0 (i.e.,
there exists a scheduler which guarantees satisfaction of the property). Time and Time-NZ
represent the verification time cost without/with non-Zenoness assumption. We remark
that in these experiments, non-Zenoness assumption has no affect of the verification results.

The following conclusions can be made. First, it takes at least two external requests, two
lifts and two floors to constitute a bad behavior, e.g., one lift is at top floor (and later going
down to serve a request), while a request for going down at the top floor is assigned to
the other lift. Second, the more user requests, the higher the probability is. Intuitively,
this means that with more requests, it is more likely that a request is ignored. Similarly,
the probability is higher with more floors. Third, assigning requests to the ‘nearest’ lift
performs better than random assignment, i.e., the maximum probability of exhibiting a
bad behavior with the former is always lower than with the latter in all cases. Lastly,

6.6. IMPLEMENTATION AND EVALUATION 123

System Result
PAT PRISM

States Time(s) States Time(s)
ZC(100) 0.49934 404 0.15 135 0.45
ZC(300) 0.01291 4813 0.65 1499 0.73
ZC(500) 0.00027 12840 2.39 4067 1.19
ZC(700) 1E-5 24058 5.78 7655 1.70
FA(10K) 1 1352 0.15 525 0.47
FA(20K) 1 5030 0.13 1875 1.09
FA(30K) 1 9365 0.5 4048 1.67
FA(300K) 1 726407 30.74 - -

Table 6.3: Benchmark Probabilistic Real-time Systems

non-Zenoness assumption consumes more time during verification. This is because of the
overhead of finding MECs in reachability checking, especially when the state space of the
model increases.

6.6.2 Probabilistic Real-time Benchmark Systems

Next, we compare our model checker with PRISM on verifying benchmark systems of
probabilistic real-time system. Here we use two PTA models described in [78]. Besides the
zeroconf (ZC) protocol, we pick the firewire abstraction (FA), which is used for IEEE 1394
FireWire root contention protocol. We build PTA models using PRISM and PRTS models
using PAT, and verify the desired reachability properties to check the efficiency of these
two tools. Note that PRISM supports refinement of an abstract PTA model to generate
accurate verification results [78], while in our experiments we disabled its refinement to
better compare the efficiency of these tools. Meanwhile, non-Zenoness assumption is not
enabled in these experiments for fair comparison. The experimental results are listed in
Table 6.3, and more efficient results between these two tools are highlighted in bold.

For ZC, we check the maximal probability of the device getting an IP (might be used or
fresh) after a specific deadline. ZC(d) in Table 6.3 means the deadline is d time units. For
FA, we check the maximal probability of successfully choosing a leader before a specified
deadline, and the parameter d in FA(d) also means the deadline is d time units. Through the
experimental results, we can see that PRTS and PRISM outperform each other in different
cases. The number of states are different in both tools because of the different language
design features. For ZC, when the timed constraint is small (100 and 300), PRTS has a better

6.7. RELATED WORK 124

performance since the number of states are relatively small. As d increases, PRISM is better
since the number of abstract states is increased with d and the symbolic engine in PRISM
is efficient. For FA, PRTS always has better performance. This is mainly because the state
space difference between models of these two tools is not as large as ZC. Further, when d

increases to some extend (300K), the efficiency of PRISM to build the abstract model is quite
low, which cannot be finished within 1 hour. These examples are sufficient to show the
differences between these two tools in verifying probabilistic real-time systems. We remark
that refinement from the above approximation results to get the accurate probability is one
of our future work, and the digitization of real-time requirements such as the work [81] is
also a potential method.

6.7 Related Work

There are several modeling methods and model checking algorithms for real-time proba-
bilistic systems. Alur, Courcoubetis and Dill presented a model-checking algorithm for
probabilistic real-time systems to verify TCTL formulae of probabilistic real-time sys-
tems [9]. Their specification is limited to deterministic Timed Automata, and its use of
continuous probability distributions (a highly expressive modeling mechanism) does not
permit the model to be automatically verified against logics which include bounds on
probability. Remotely related is the line of work on Continuous-Time Markov Chains
(CTMC) [17]. Different from CTMC, our work is based on discrete probability distri-
butions. A method for analyzing the stochastic and timing properties of systems was
proposed in [16]. It is based on MTBDD. Properties are expressed in a subset of PCTL. The
method was not based on real-time but in the realm of discrete time. Similar work using
discrete time includes [51, 81].

Research on combining quantitative timing and probability has been mostly based on Prob-
abilistic Timed Automata (PTA) [57, 82]. PTA extends Timed Automata [10] with discrete
probability distributions which are defined over a finite set of edges. It is a modeling
formalism for describing formally both nondeterministic and probabilistic aspects of real-
time systems. Based on PTA, symbolic verification techniques [131, 83] are developed using
MTBDDs. In [22], Beauquier proposes another model of probabilistic Timed Automata.
The model in [22] differs from PTA in that it allows different enabling conditions for edges
related to a certain action and uses Büchi conditions as accepting conditions. In [79], prob-
abilistic timed program (PTP) is proposed to model real-time probabilistic software (e.g.,

6.8. CONCLUSION 125

SystemC). PTP is an extension of PTA with discrete variables. PTA and PTP are closely
related to PRTS. Different from PRTS, models based on PTA or PTP often have a simple
structure, e.g., a network of automata with no hierarchy.

Research on verification with non-Zenoness assumption is mainly based on Timed Au-
tomata (TA). Syntactic conditions for TA to be free from Zeno runs have been identi-
fied [124, 56]. The conditions are often sufficient only [28]. In the setting of TA, it has been
shown that it is not possible to determine if a run can be instantiated to a non-Zeno run
given only zone graphs. The solution involving adding one extra clock has been discussed
in [124, 126, 125]. Recently, it has been shown that adding one clock may result in an
exponentially larger zone graph [66, 65]. The remedy is to transform the zone graph into
a guess zone graph and require that all clocks that are bounded from above must be reset
infinitely often during a run and the run must visit a state such that the clocks can be strictly
positive [66]. In our work, probabilistic systems are taken into consideration, and all clocks
are bounded and cannot be reset arbitrarily. As a result, detecting Zeno runs based on zone
graphs is feasible and efficient.

Verification support for real-time probabilistic systems often uses a combined approach,
i.e., combination of real-time verifiers with probabilistic verifiers [41]. Our approach is
a combination of real-time zone abstraction with PA, which has no extra cost of linking
different model checkers. This work is related to our previous works [116, 119], and the
significant improvements here are: 1) we seamlessly combine all the features of these two
papers to get a new language to model hierarchical probabilistic real-time systems and
2) the affect of dynamic zone abstraction is investigated to make the verification results
reliable. To our best knowledge, our implementation is the first tool to support non-Zeno
assumption in probabilistic real-time systems.

6.8 Conclusion

In this chapter we novelly propose a modeling language PRTS which is capable of specifying
hierarchical complex systems with quantitative real-time features as well as probabilistic
components. In order to apply model checking techniques, we use dynamic zone abstrac-
tion technique to reduce the state space of the model to be finite. An upper bound of
the accurate maximal probability is generated during this abstraction. Meanwhile, model
checking with non-Zenoness assumption in PRTS is discussed to rule out unrealistic re-
sults. In addition, we have extended our PAT model checker to support this kind of systems

6.8. CONCLUSION 126

so that the techniques are easily accessible. Finally, several experiments are displayed to
indicate the efficiency of PAT.

Chapter 7

Conclusion and Future Work

In this chapter, we briefly summarize the contributions of this thesis and discuss possible
future directions of our work.

7.1 Summary

In this thesis, we systematically investigate the probabilistic model checking problem with
PAT.

First, we have proposed a modeling language called PCSP# for hierarchical complex
stochastic systems. PCSP# extends CSP with shared variables, user-defined data struc-
tures and probabilistic choices. It combines low-level programs with high-level specifica-
tions. The semantic model of PCSP# is Probabilistic Automata, which supports full non-
determinism in modeling concurrent and probabilistic models. Several popular properties
are supported in PCSP# verification, including deadlock checking, reachability checking
and LTL checking. Besides, we have defined the trace refinement relation between a prob-
abilistic model and a non-probabilistic specification. In order to increase the efficiency of
LTL checking, we have developed an optimized approach based on safety recognition of
LTL formulae. Therefore the verification of safety LTL properties can be transferred to
refinement checking in our setting. In addition, we have proposed an anti-chain based
approach to speed up the probabilistic refinement checking in PCSP#.

Next, we have applied model checking techniques in multi-agent systems to analyze their

127

7.2. FUTURE WORK 128

behaviors. In some complicated MAS models, mathematical deduction and simulation
are not suitable, which makes formal verification as an alternative approach. We have
investigated two representing scenarios: robustness of negotiation strategies, and dynamics
of dispersion games [120]. A symmetry reduction technique: counter abstraction is applied
to reduce the state space of the models. In order to analyze specific properties in MAS, we
have proposed dedicated verification algorithms based on existing approaches.

In dispersion game analysis, DTMC is the actual semantic model of the corresponding
PCSP# models. In DTMC verification, reachability analysis plays the key role, because
verification of other properties, such as LTL and PCTL, can be transferred to reachability
problem. Therefore, we have proposed a divide and conquer approach to eliminate loops
in DTMC, which aims at increasing the efficiency of the traditional value iteration method.
Several related strategies have been designed to make this approach feasible.

Last but not least, in order to capture the timed constraints in various real life systems, we
have designed another modeling language named PRTS. Based on PCSP#, PRTS supports
hierarchy, concurrency, real-time and probability. Different from PCSP# models, PRTS
models have dense-time semantics, which generates PA with infinite number of states.
To tackle this issue, dynamic zone abstraction has been used to make the state space of
PRTS models finite. We have also proven that the abstract model has over-approximation
verification results compared with the concrete model. Furthermore, we have taken non-
Zenoness assumption into our consideration to rule out unrealistic verification results.

We have conducted various experiments to demonstrate the effectiveness and efficiency of
our approaches, including real life cases, benchmark systems and manually-built models.
All proposed languages and algorithms have been implemented in PAT model checking
framework, which can be freely downloaded on our website www.patroot.com.

7.2 Future Work

Although we have achieved the above contributions, there are still several future extensions
of our work, listed as follows.

• In Chapter 3, we have supported the probabilistic refinement checking, which is be-
tween a probabilistic model and an LTS specification. However, as shown in previous
work such as [94], the refinement relation between different probabilistic processes

www.patroot.com

7.2. FUTURE WORK 129

is also important. Therefore, we will explore methods for checking refinement rela-
tionship between probabilistic models.

• In Chapter 4, we have shown that model checking techniques are applicable in
analyzing some specific multi-agent systems. Two interesting directions of related
future work exist. 1) It is worthy to investigate other systems and scenarios, which are
more general and meaningful to MAS community. For example, instead of the single-
agent best deviation considered in our work, multiple-agent deviation is more critical
and complex. Suitable modeling and verification for this scenario are in demand. 2)
More state-space reduction techniques are needed in order to increase the efficiency
of verification, such as symmetry reduction and partial-order reduction, or even some
domain-specific abstraction techniques according to the characteristics of MAS.

• In Chapter 5, the divide-and-conquer approach is used to speed up the reachability
analysis of DTMC. However, currently parameters used in the algorithm such as
B , BL and BU are mainly decided via experience, and are manually set before the
experiments. Different systems may need different parameters to have the best
performance. Therefore, one potential topic is to find the more efficient division
strategies, which are automatic and suitable for general cases. In addition, besides
DTMC, PA is also a popular probabilistic formalism. Therefore, another direction is
extending our approach to PA. Concurrency also exists in many probabilistic systems,
therefore the non-determinism is unavoidable in some cases. MECs in PA can also be
eliminated via calculating the probability distributions from inputs to outputs. Due
to the nondeterminism in PA, one of the challenges is that the number of resulting
distributions may be exponential, so a suitable divide and conquer approach for PA
is important.

• In Chapter 6, PRTS is proposed for modeling and verification of probabilistic real-time
systems. However, dynamic zone abstraction can just generate over-approximation
of the accurate results. Therefore, suitable refinement methods to generate accurate
results in PRTS verification is worthy to be explored. Furthermore, currently we just
take un-timed properties into consideration. In real life systems, timed properties are
also critical. For example, in communication protocols, people may be interested in
the property ”what is the probability that one message can be delivered successfully within
1 minute?” It remains one of our future work to investigate the verification of timed
properties in PRTS models.

7.2. FUTURE WORK 130

In a nutshell, our future work includes supporting more widely used properties, designing
more efficient verification algorithm, and investigating more applications of our approach.

Bibliography

[1] PRTS Model Checker. http://www.comp.nus.edu.sg/~pat/cav12prts. 6.3.1

[2] The Second International Automated Negotiating Agent Competition (ANAC 2011), 2011.
http://www.itolab.nitech.ac.jp/ANAC2011/. 4.2.2

[3] The Third International Automated Negotiating Agent Competition (ANAC 2012), 2012.
http://anac2012.ecs.soton.ac.uk/. 4.2.1, 4.2.2, 4.5.1

[4] P. A. Abdulla, Y.-F. Chen, L. Holk, R. Mayr, and T. Vojnar. When simulation meets
antichains. In TACAS, volume 6015 of Lecture Notes in Computer Science, pages 158–
174. Springer, 2010. 3.2.3, 3.7

[5] E. Ábrahám, N. Jansen, R. Wimmer, J.-P. Katoen, and B. Becker. DTMC Model
Checking by SCC Reduction. In QEST, pages 37–46, 2010. 5.1, 5.2.1, 5.2.3, 2, 5.3, 5.3.3,
5.5

[6] B. Alpern and F. B. Schneider. Recognizing Safety and Liveness. Distributed Comput-
ing, 2(3):117–126, 1987. 3.2.2, 3.4.2, 3.7

[7] S. Alpern. Spatial dispersion as a dynamic coordination problem. Technical report,
The London School of Economics”, 2001. 4.1, 4.2.3, 4.4.2

[8] S. C. Althoen and R. McLaughlin. Gauss - Jordan reduction: a brief history. In The
American Mathematical Monthly, volume 94(2), pages 130–142, 1987. 5.1, 5.2.3, 5.2.3

[9] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for Probabilistic Real-time
Systems. In ICALP, pages 115–126, 1991. 6.7

[10] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126:183–235, 1994. 6.3.1, 6.7

131

http://www.itolab.nitech.ac.jp/ANAC2011/
http://anac2012.ecs.soton.ac.uk/

BIBLIOGRAPHY 132

[11] R. Alur and T. A. Henzinger. Reactive Modules. Formal Methods in System Design,
15(1):7–48, 1999. 1, 3.1, 3.7

[12] M. E. Andrés, P. R. D’Argenio, and P. V. Rossum. Significant Diagnostic Coun-
terexamples in Probabilistic Model Checking. In Haifa Verification Conference, pages
129–148, 2008. 5.1, 5.2.1, 5.3, 5.5

[13] J. Aspnes and M. Herlihy. Fast Randomized Consensus Using Shared Memory.
Journal of Algorithms, 15(1):441–460, 1990. 3.6, 5.4

[14] T. Baarslag, K. Fujita, E. H. Gerding, K. Hindriks, T. Ito, N. R. Jennings, C. Jonker,
S. Kraus, R. Lin, V. Robu, and C. R. Williams. Evaluating practical negotiating agents:
Results and analysis of the 2011 international competition. Artificial Intelligence Jour-
nal, To appear. 4.1, 4.1, 4.2.1, 4.2.2, 4.2.2

[15] T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, and R. Lin. The first automated negoti-
ating agents competition (anac 2010). New Trends in Agent-Based Complex Automated
Negotiations, pages 113–135, 2010. 4.1, 4.2.1

[16] C. Baier, E. M. Clarke, V. H. Garmhausen, M. Z. Kwiatkowska, and M. Ryan. Symbolic
Model Checking for Probabilistic Processes. In ICALP, pages 430–440, 1997. 6.7

[17] C. Baier, B. R. Haverkort, H. Hermanns, and J. Katoen. Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Trans. Software Eng., 29(6):524–541, 2003.
6.7

[18] C. Baier and J. Katoen. Principles of Model Checking. The MIT Press, 2008. 1, 2.1.1,
2.1.2, 2.1.2, 2.3.1, 2.3.1, 2.3.2, 1, 3.1, 3.4.1, 3.4.1, 3.4.2, 4.4.2, 5.1, 5.5, 6.2, 6.5.3, 6.5.3

[19] P. Ballarini, M. Fisher, and M. Wooldridge. Uncertain agent verification through
probabilistic model-checking. In SASEMAS’09, Lecture Notes in Computer Science,
pages 162–174, 2009. 4.6

[20] S. S. Barold, R. X. Stroopbandt, and A. F. Sinnaeve. Cardiac Pacemakers Step by Step:
an Illustrated Guide. Blachwell Publishing, 2004. 3.3.1, 6.1

[21] B.Arthur. Inductive reasoning and bounded rationality. American Economic Associa-
tion Papers, 84:406–411, 1994. 4.1

[22] D. Beauquier. On Probabilistic Timed Automata. Theor. Comput. Sci., 292(1):65–84,
2003. 6.7

BIBLIOGRAPHY 133

[23] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi, and M. Hen-
driks. UPPAAL 4.0. In QEST, pages 125–126. IEEE, 2006. 1, 6.1

[24] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient Timed Reach-
ability Analysis Using Clock Difference Diagrams. In CAV, pages 341–353, 1999.
6.4

[25] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying multi-agent pro-
grams by model checking. AAMAS, 12:239–256, 2006. 4.6

[26] A. Bouajjani, P. Habermehl, L. Holk, T. Touili, and T. Vojnar. Antichain-based uni-
versality and inclusion testing over nondeterministic finite tree automata. In CIAA,
volume 5148 of Lecture Notes in Computer Science, pages 57–67. Springer, 2008. 3.7

[27] B. Bouzy and M. Métivier. Multi-agent learning experiments on repeated matrix
games. In ICML, pages 119–126, 2010. 4.5.1.1

[28] H. Bowman and R. Gómez. How to Stop Time Stopping. Formal Aspects of Computing,
18(4):459–493, 2006. 6.7

[29] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. Inf. Comput., 98(2):142–170, 1992. 3.6.2

[30] A. Butterfield, A. Sherif, and J. Woodcock. Slotted-Circus. In IFM, pages 75–97, 2007.
6.1

[31] S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/Event-Based
Software Model Checking. In IFM, volume 2999 of LNCS, pages 128–147. Springer,
2004. 2.2

[32] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-
regular games with imperfect information. In CSL, volume 4207 of Lecture Notes in
Computer Science, pages 287–302. Springer, 2006. 3.7

[33] Y. Chen and J. W. Sanders. Unifying Probability with Nondeterminism. In FM,
volume 5850 of LNCS, pages 467–482. Springer, 2009. 3.7

[34] S. Cheshire, B. Adoba, and E. Gutterman. Dynamic configuration of IPv4 link local
addresses. Available from http://www.ietf.org/rfc/rfc3927.txt. 6.1

BIBLIOGRAPHY 134

[35] F. Ciesinski and C. Baier. LiQuor: A Tool for Qualitative and Quantitative Linear
Time Analysis of Reactive Systems. In QEST, pages 131–132. IEEE Computer Society,
2006. 1, 3.1, 3.7

[36] F. Ciesinski, C. Baier, M. Größer, and J. Klein. Reduction Techniques for Model
Checking Markov Decision Processes. In QEST, pages 45–54, 2008. 5.1, 5.3.3, 5.5

[37] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999. 1,
6.1, 6.2

[38] C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. In AAAI’98, pages 746–752, 1998. 4.1, 4.1

[39] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and Z. Wang. Time for statistical
model checking of real-time systems. In CAV, pages 349–355, 2011. 6.1

[40] J. Davies. Specification and Proof in Real-Time CSP. Cambridge University Press, 1993.
6.3.1

[41] C. Daws, M. Kwiatkowska, and G. Norman. Automatic Verification of the IEEE 1394
Root Contention Protocol with KRONOS and PRISM. International Journal on Software
Tools for Technology Transfer, 5(2-3):221–236, 2004. 6.7

[42] C. Daws and S. Tripakis. Model checking of real-time reachability properties using
abstractions. In TACAS, pages 313–329, 1998. 6.6.1

[43] D.Challet and Y.Zhang. Emergence of cooperation and organization in an evolution-
ary game. Physica A, 246:407, 1994. 4.1

[44] D. L. Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems.
In Automatic Verification Methods for Finite State Systems, pages 197–212, 1989. 6.1, 6.4,
6.5.1

[45] L. Doyen and J. F. Raskin. Antichains for the automata-based approach to model
checking. Logical Methods in Computer Science, 5(1:5):1–20, 2009. 3.7

[46] O. Etzioni. Moving up the information food chain: Deploying softbots on the world
wide web. In AI Magazine, pages 1322–1326, 1996. 4.1

[47] P. Faratin, C. Sierra, and N. R. Jennings. Using similarity criteria to make negotiation
trade-offs. Artifical Intelligence, 142(2):205–237, 2003. 4.1

BIBLIOGRAPHY 135

[48] A. Fehnker and P. Gao. Formal verification and simulation for performance analysis
for probabilistic broadcast protocols. In Proc. 5th International Conference on Ad-Hoc,
Mobile, and Wireless Networks (ADHOC-NOW’06), volume 4104 of LNCS, pages 128–
141. Springer, 2006. 1

[49] E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for ltl realizability. In CAV,
volume 5643 of Lecture Notes in Computer Science, pages 263–277. Springer, 2009. 3.7

[50] M. Fruth. Formal Methods for the Analysis of Wireless Network Protocols. PhD thesis,
Oxford University, 2011. 1

[51] V. H. Garmhausen, S. V. A. Campos, and E. M. Clarke. ProbVerus: Probabilistic
Symbolic Model Checking. In ARTS, pages 96–110, 1999. 6.7

[52] P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In CAV, volume
2102 of LNCS, pages 53–65. Springer, 2001. 3.2.2, 3.4.2

[53] M. Geilen. On the Construction of Monitors for Temporal Logic Properties. Electr.
Notes Theor. Comput. Sci., 55(2), 2001. 3.7

[54] G.Holzmann. The spin model checker. TSE, 23(5):279–295, 1997. 4.6

[55] E. R. Gomes and R.Kowalczyk. Dynamic analysis of multiagent -learning with e-
greedy exploration. In ICML’09, 2009. 4.1, 4.1

[56] R. Gómez and H. Bowman. Efficient Detection of Zeno Runs in Timed Automata.
In 5th International Conference on Formal Modeling and Analysis of Timed Systems (FOR-
MATS), volume 4763 of Lecture Notes in Computer Science, pages 195–210. Springer,
2007. 6.7

[57] H. Gregersen and H. E. Jensen. Formal Design of Reliable Real Time Systems. PhD thesis,
1995. 6.7

[58] T. Grenager, R. Powers, and Y. Shoham. Dispersion Games: General Definitions and
Some Specific Learning Results. In AAAI, pages 398–403, 2002. 5.4

[59] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6:102–111, 1994. 4.6

[60] J. Hao, S. Song, Y. Liu, J. Sun, L. Gui, J. S. Dong, and H. fung Leung. Probabilistic
model checking multi-agent behaviors in dispersion games using counter abstraction.
In PRIMA, pages 16–30, 2012. 1.3

BIBLIOGRAPHY 136

[61] J. Y. Hao and H. F. Leung. Abines: An adaptive bilateral negotiating strategy over
multiple items. In Proceedings of IAT’12, 2012. 4.5.1

[62] K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In TACAS,
volume 2280 of LNCS, pages 342–356. Springer, 2002. 3.7

[63] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic
model checking of complex biological pathways. In Proc. Computational Methods in
Systems Biology (CMSB’06), pages 32–47, 2006. 1

[64] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilis-
tic model checking of complex biological pathways. Theoretical Computer Science,
319(3):239–257, 2008. 1

[65] F. Herbreteau and B. Srivathsan. Efficient On-The-Fly Emptiness Check for Timed
Büchi Automata. In 8th International Symposium on Automated Technology for Verification
and Analysis (AVTA), Lecture Notes in Computer Science. Springer, 2010. 6.7

[66] F. Herbreteau, B. Srivathsan, and I. Walukiewicz. Efficient Emptiness Check for Timed
Büchi Automata. In 22nd International Conference on Computer Aided Verification (CAV),
volume 6174 of Lecture Notes in Computer Science, pages 148–161. Springer, 2010. 6.7

[67] K. Hindriks and D. Tykhonov. Opponent modeling in auomated multi-issue negoti-
ation using bayesian learning. In AAMAS’08, pages 331–338, 2008. 4.1

[68] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for
Automatic Verification of Probabilistic Systems. In TACAS, pages 441–444, 2006. 4.6

[69] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. 1.1, 3.1, 3.4, 6.1

[70] G. J. Holzmann. The Model Checker SPIN. IEEE Trans. on Software Engineering,
23(5):279–295, 1997. 6.1

[71] A. Itai and M. Rodeh. Symmetry Breaking in Distributed Networks. Information and
Computation, 88:150–158, 1981. 1

[72] J. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The Ins and Outs
of the Probabilistic Model Checker MRMC. In QEST, pages 167–176. IEEE Computer
Society, 2009. 1, 3.1, 3.7

[73] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov Reward Model Checker. In
QEST, pages 243–244, 2005. 5.1

BIBLIOGRAPHY 137

[74] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. H., and D. N. Jansen. The Ins and Outs of
The Probabilistic Model Checker MRMC. In QEST, pages 167–176, 2009. 5.1

[75] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, 2003. 6.6.1

[76] O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. Formal Methods
in System Design, 19(3):291–314, 2001. 3.2.2, 3.7

[77] M. Kwiatkowska, G. Norman, and D. Parker. Using probabilistic model checking
in systems biology. ACM SIGMETRICS Performance Evaluation Review, 35(4):14–21,
2008. 1

[78] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for verification of
probabilistic timed automata. In FORMATS, volume 5813 of LNCS, pages 212–227,
2009. 6.6.2

[79] M. Kwiatkowska, G. Norman, and D. Parker. A Framework for Verification of
Software with Time and Probabilities. In FORMATS, LNCS. Springer, 2010. To
appear. 6.7

[80] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic
Real-time Systems. In CAV, volume 6806, pages 585–591, 2011. 1, 3.1, 3.6, 3.7, 5.1, 6.1

[81] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance Analysis of
Probabilistic Timed Automata using Digital Clocks. FMSD, 29:33–78, 2006. 6.6.2, 6.7

[82] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic Verification
of Real-time Systems with Discrete Probability Distributions. Theoretical Computer
Science, 282(1):101–150, 2002. 6.1, 6.2.3, 6.3.1, 6.5.2, 6.7

[83] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic Model Checking
for Probabilistic Timed Automata. Information and Computation, 205(7):1027–1077,
2007. 1, 6.7

[84] M. Z. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic
model checking. In CAV, pages 234–248, 2006. 4.1

[85] M. Z. Kwiatkowska, D. Parker, and H. Qu. Incremental Quantitative Verification for
Markov Decision Processes. In DSN, pages 359–370, 2011. 5.1, 5.3.3, 5.5

BIBLIOGRAPHY 138

[86] T. Latvala. Efficient Model Checking of Safety Properties. In SPIN, volume 2648 of
LNCS, pages 74–88. Springer, 2003. 3.2.2, 3.7

[87] D. Lehmann and M. Rabin. On the Advantage of Free Choice: A Symmetric and
Fully Distributed Solution to the Dining Philosophers Problem (Extended Abstract).
In POPL, pages 133–138. ACM, 1981. 3.6

[88] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking linearizability via refinement.
In FM, pages 321–337, 2009. 2.4

[89] Y. Liu, W. Chen, Y. A. Liu, J. Sun, S. J. Zhang, and J. S. Dong. Verifying linearizability
via optimized refinement checking. IEEE Trans. Software Eng., 39(7):1018–1039, 2013.
2.4

[90] J. E. M. P. Wellman, S. Singh, Y. Vorbeychik, and V. Soni. Strategic interactions in a
supply chain game. Computational Intelligence, 21(1):1–26, 2005. 4.2.2

[91] B. P. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: An Introduction to
TCOZ. In ICSE, pages 95–104, 1998. 6.1

[92] W. H. Maisel, M. Moynahan, B. D. Zuckerman, T. P. Gross, O. H. Tovar, D. Tillman,
and D. B. Schultz. Pacemaker and ICD Generator Malfunctions. The Journal of
American Medical Association, 295(16):1901–1906, 2006. 3.3.1

[93] C. Morgan, T. S. Hoang, and J. Abrial. The Challenge of Probabilistic Event B -
Extended Abstract. In ZB, volume 3455 of LNCS, pages 162–171. Springer, 2005. 3.7

[94] C. Morgan, A. McIver, K. Seidel, and J. W. Sanders. Refinement-Oriented Probability
for CSP. Formal Asp. Comput., 8(6):617–647, 1996. 1.1, 3.1, 3.3.1, 3.7, 7.2

[95] X. Nicollin, J. Sifakis, and S. Yovine. Compiling Real-time Specifications into Ex-
tended Automata. IEEE Transactions on Software Engineering, 18(9):794–804, 1992.
3.6

[96] J. Ouaknine and J. Worrell. Timed CSP = Closed Timed Safety Automata. Electrical
Notes Theoretical Computer Science, 68(2), 2002. 6.4

[97] M. V. P. Stone. Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8:345–383, 2000. 4.1

[98] A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57. IEEE, 1977. 2.2

BIBLIOGRAPHY 139

[99] A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,∞)-counter abstraction. In CAV’02,
pages 107–122, 2002. 4.1

[100] A. Pnueli and L. Zuck. Verification of Multiprocess Probabilistic Protocols. Distributed
Computing, 1(1):53–72, 1986. 3.6

[101] J. W. Pratt. Risk aversion in the small and in the large. Econometrica, 32:122–136, 1964.
4.2.2

[102] A. S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable language. In
MAAMAW’96, pages 42–55, 1996. 4.6

[103] T. G. Rokichi. Representing and Modeling Digital Circuits. PhD thesis, 1993. 6.4

[104] A. W. Roscoe. Model-checking CSP. pages 353–378, 1994. 3.1, 3.2.1, 3.2.1, 3.4.1

[105] A. W. Roscoe, P. H. B. Gardiner, M. Goldsmith, J. R. Hulance, D. M. Jackson, and J. B.
Scattergood. Hierarchical Compression for Model-Checking CSP or How to Check
1020 Dining Philosophers for Deadlock. In TACAS, pages 133–152, 1995. 3.1, 3.2.1

[106] S. Saha, A. Biswas, and S. Sen. Modeling opponent decision in repeated one-shot
negotiations. In AAMAS’05, pages 397–403, 2005. 4.1

[107] S. Schneider. Concurrent and Real-time Systems. John Wiley and Sons, 2000. 6.3.1, 6.4

[108] A. P. Sistla. Safety, Liveness and Fairness in Temporal Logic. Formal Asp. Comput.,
6(5):495–512, 1994. 3.2.2, 3.4.2, 3.7

[109] F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL Formulae. In CAV,
volume 1855 of LNCS, pages 248–263. Springer, 2000. 3.2.2

[110] M. Stoelinga. An introduction to probabilistic automata. Bulletin of the EATCS,
78:176–198, 2002. 2

[111] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Berlin, New York: Springer-
Verlag, 2002. 5.2.3

[112] J. Sun, Y. Liu, and J. S. Dong. Model checking csp revisited: Introducing a process
analysis toolkit. In ISoLA, pages 307–322, 2008. 2.4

[113] J. Sun, Y. Liu, J. S. Dong, and C. Chen. Integrating specification and programs for
system modeling and verification. In W.-N. Chin and S. Qin, editors, Proceedings of

BIBLIOGRAPHY 140

the third IEEE International Symposium on Theoretical Aspects of Software Engineering
(TASE’09), pages 127–135. IEEE Computer Society, 2009. 1.1, 3.1, 3.3.1

[114] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards flexible verification under
fairness. In CAV, volume 5643 of Lecture Notes in Computer Science, pages 709–714.
Springer, 2009. 2.4

[115] J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Specifying and verifying event-based
fairness enhanced systems. In ICFEM, pages 5–24, 2008. 2.4

[116] J. Sun, Y. Liu, J. S. Dong, and X. Zhang. Verifying Stateful Timed CSP Using Implicit
Clocks and Zone Abstraction. In ICFEM, pages 581–600, 2009. 6.3.1, 6.4, 6.7

[117] J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong. Fair model checking with
process counter abstraction. In FM, pages 123–139. Springer, 2009. 4.1

[118] J. Sun, Y. Liu, S. Song, J. S. Dong, and X. Li. Prts: An approach for model checking
probabilistic real-time hierarchical systems. In ICFEM, pages 147–162, 2011. 1.3

[119] J. Sun, S. Song, and Y. Liu. Model checking hierarchical probabilistic systems. In
ICFEM, volume 6447 of Lecture Notes in Computer Science, pages 388–403. Springer,
2010. 1.3, 6.7

[120] Y. S. T. Grenager, R. Powers. Dispersion games: general definitions and some specific
learning results. In AAAI’02, pages 398–403, 2002. 1.1, 4.1, 4.1, 4.2.3, 4.4.2, 7.1

[121] E. M. Tadjouddine, F. Guerin, and W. Vasconcelos. Abstraction for model checking
game-theoretical properties of auction(short paper). In AAMAS’08, pages 1613–1616,
2008. 4.6

[122] R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,
1(2):146–160, 1972. 4.4.1, 5.3.1

[123] R. K. Treiber. Systems programming: Coping with parallelism. Technical report, IBM
Almaden Research Center, 1986. 3.6.3

[124] S. Tripakis. Verifying Progress in Timed Systems. In 5th International AMAST Workshop
ARTS on Formal Methods for Real-Time and Probabilistic Systems, volume 1601 of Lecture
Notes in Computer Science, pages 299–314. Springer, 1999. 6.7

[125] S. Tripakis. Checking Timed Büchi Automata Emptiness on Simulation Graphs. ACM
Transactions on Computational Logic, 10(3):1–19, 2009. 6.7

BIBLIOGRAPHY 141

[126] S. Tripakis, S. Yovine, and A. Bouajjani. Checking Timed Büchi Automata Emptiness
Efficiently. Formal Methods in System Design, 26(3):267–292, 2005. 6.7

[127] K. Tuyls, K. Verbeeck, and T. Lenaerts. A selection-mutation model for q-learning in
multi-agent systems. In AAMAS’03, pages 693–700, 2003. 4.1, 4.1

[128] M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program
Verification. In LICS, pages 332–344. IEEE Computer Society, 1986. 3.2.2

[129] J. M. Vidal and E. H. Durfee. Predicting the expected behavior of agents that learn
about agents: The clri framework. AAMAS, 6:77–107, 2003. 4.1, 4.1

[130] P. Vytelingum, D. Cliff, and N. Jennings. Strategic bidding in continuous double
auctions. Artificial Intelligence, 172(14):1700–1729, 2008. 4.2.2

[131] F. Wang and M. Kwiatkowska. An MTBDD-based Implementation of Forward Reach-
ability for Probabilistic Timed Automata. In ATVA, pages 385–399, 2005. 6.7

[132] T. Wang, S. Song, J. Sun, Y. Liu, J. S. Dong, X. Wang, and S. Li. More anti-chain based
refinement checking. In ICFEM, pages 364–380, 2012. 1.3

[133] C. R. Williams, V. Robu, E. H. Gerding, and N. R. Jennings. Using gaussian processes
to optimise concession in complex negotiations against unknown opponents. In
Proceedings of IJCAI’12, pages 432–438, 2012. 4.1, 4.1, 4.5.1.2

[134] M. Wooldridge. Agent-based software engineering. IEE Proceedings on Software
Engineering, 144(1):26–37, 1997. 1

[135] M. Wooldridge, M. Fisher, M. P. Huget, and S. Parsons. Model checking multi-agent
systems with mable. In AAMAS’02, pages 952–959, 2002. 4.6

[136] M. D. Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm
for checking universality of finite automata. In CAV, volume 4144 of Lecture Notes in
Computer Science, pages 17–30. Springer, 2006. 3.2.3, 3.2.3, 3.7

[137] M. D. Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative algorithms
for ltl satisfiability and model-checking. In TACAS, volume 4963 of Lecture Notes in
Computer Science, pages 63–77. Springer, 2008. 3.7

[138] W.Visser, K. Havelund, G.Brat, and S.Park. Model checking programs. In ASE’00,
pages 3–12, 2000. 4.6

BIBLIOGRAPHY 142

[139] Y.Azar, A.Z.Broder, A.R.Karlin, and E.Upfa. Balanced allocations. SIAM Journal on
Computing, 29(1):190–200, 2000. 4.1

[140] H. Yong. The evolution of conventions. Econometrica, 61(1):57–84, 1993. 4.2.2

[141] H. L. S. Younes, E. M. Clarke, and P. Zuliani. Statistical Verification of Probabilistic
Properties with Unbounded Until. In SBMF, pages 144–160, 2010. 5.1

[142] M. Zheng, J. Sun, Y. Liu, J. S. Dong, and Y. Gu. Towards a model checker for nesc and
wireless sensor networks. In Formal Methods and Software Engineering, pages 372–387,
2011. 2.4

[143] M. Zheng, J. Sun, D. Sanán, Y. Liu, J. S. Dong, and Y. Gu. Towards bug-free imple-
mentation for wireless sensor networks. In SenSys, pages 407–408, 2011. 2.4

[144] M. C. Zheng. An automatic approach to verify sensor network systems. Secure Soft-
ware Integration and Reliability Improvement Companion, IEEE International Conference
on, 0:7–12, 2010. 2.4

[145] H. Zhu, S. Qin, J. He, and J. Bowen. PTSC: Probability, Time and Shared-Variable
Concurrency. International Journal on Innovations in Systems and Software Engineering,
5(4):271–294, 2009. 3.7

Appendix A

Concrete Operational Semantics

The following are concrete firing rules associated with process constructs other than those
discussed in Chapter 6.

[st]
(V ,Stop) ε

−→ (V ,Stop)

[sk1]
(V ,Skip) ε

−→ (V ,Skip)
[sk2]

(V ,Skip) X−→ (V ,Stop)

[as1]
(V , e{prog} → P) ε

−→ (V , e{prog} → P)

[as2]
(V , e{prog} → P) e

−→ (upd (V , prog),P)

V � b
[if 1]

(V , if (b) {P } else {Q}) τ
−→ (V ,P)

V 2 b
[if 2]

(V , if (b) {P } else {Q}) τ
−→ (V ,Q)

143

Appendix A. Concrete Operational Semantics 144

[if 3]
(V , if (b) {P } else {Q}) ε

−→ (V , if (b) {P } else {Q})

(V ,P) e
→ (V ′,P ′)

[ex1]
(V ,P�Q) e

→ (V ′,P ′)

(V ,Q) e
→ (V ′,Q ′)

[ex2]
(V ,P�Q) e

→ (V ′,Q ′)

(V ,P) ε
→ (V ,P ′),

(V ,Q) ε
→ (V ,Q ′)

[ex3]
(V ,P�Q) ε

→ (V ,P ′�Q ′)

(V ,P) X→ (V ,P ′)
[se1]

(V ,P ; Q) τ
→ (V ,Q)

(V ,P) ε
→ (V ,P ′),X < En(V ,P)

[se2]
(V ,P ; Q) ε

→ (V ,P ′; Q)

(V ,P) e
→ (V ′,P ′),X < En(V ,P)

[se3]
(V ,P ; Q) e

→ (V ′,P ′; Q)

(V ,P) e
→ (V ′,P ′), e < α(Q)

[pl1]
(V ,P ‖ Q) e

→ (V ′,P ′ ‖ Q)

(V ,Q) e
→ (V ′,Q ′), e < α(P)

[pl2]
(V ,P ‖ Q) e

→ (V ′,P ‖ Q ′)

(V ,P) x
→ (V ,P ′), (V ,Q) x

→ (V ,Q ′), x ∈ (α(Q) ∩ α(P)) ∪R+
[pl3]

(V ,P ‖ Q) x
→ (V ,P ′ ‖ Q ′)

(V ,Q) x
→ (V ′,Q ′),P =̂Q

[def]
(V ,P) x

→ (V ′,Q ′)

Appendix B

Abstract Operational Semantics

The following are abstract firing rules associated with process constructs other than those
discussed in Chapter 6.

[aki]

(V ,Skip,D) X (V ,Stop,D↑)

V � b
[aif 1]

(V , if (b) {P } else {Q},D) τ
 (V ,P ,D↑)

V 2 b
[aif 2]

(V , if (b) {P } else {Q},D) τ
 (V ,Q ,D↑)

[aev]
(V , e{prog} → P ,D) e

 (upd (V , prog),P ,D↑)

(V ,P ,D) x
 (V ′,P ′,D ′)

[aex1]
(V ,P | Q ,D) x

 (V ′,P ′,D ′ ∧ idle(Q))

(V ,Q ,D) x
 (V ′,Q ′,D ′)

[aex2]
(V ,P | Q ,D) x

 (V ′,Q ′,D ′ ∧ idle(P))

145

Appendix B. Abstract Operational Semantics 146

(V ,P ,D) e
 (V ′,P ′,D ′), e < α(Q)

[apl1]
(V ,P ‖ Q ,D) e

 (V ′,P ′ ‖ Q ,D ′ ∧ idle(Q))

(V ,Q ,D) e
 (V ′,Q ′,D ′), e < α(P)

[apl2]
(V ,P ‖ Q ,D) x

 (V ′,P ‖ Q ′,D ′ ∧ idle(P))

(V ,P ,D) e
 (V ,P ′,D ′),

(V ,Q ,D) e
 (V ,P ′,D ′′), e ∈ αP ∩ αQ

[apl3]
(V ,P ‖ Q ,D) e

 (V ,P ′ ‖ Q ′,D ′ ∧ D ′′)

(V ,P ,D) x
 (V ′,P ′,D ′), x , X

[ase1]
(V ,P ; Q ,D) x

 (V ′,P ′; Q ,D ′)

(V ,P ,D) X (V ′,P ′,D ′)
[ase2]

(V ,P ; Q ,D) τ
 (V ′,Q ,D ′)

(V ,Q ,D) x
 (V ′,Q ′,D ′),P =̂Q

[adef]
(V ,P ,D) x

 (V ′,Q ′,D ′)

	 List of Tables
	 List of Figures
	 List of Algorithms
	1 Introduction and Overview
	1.1 Summary of This Thesis
	1.2 Thesis Structure
	1.3 Acknowledgement of Published Work

	2 Preliminaries
	2.1 Modeling Formalisms
	2.1.1 Probabilistic Automata
	2.1.2 Discrete-time Markov Chains
	2.1.3 Labeled Transition System

	2.2 State/Event Linear Temporal Logic (SE-LTL)
	2.3 Reachablity Checking and SE-LTL Checking in PA
	2.3.1 Reachability Checking
	2.3.2 LTL Checking

	2.4 PAT Model Checking Framework

	3 Model Checking Hierarchical Probabilistic Systems
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Normalization of LTS
	3.2.2 Safety/Liveness Recognition in LTL Formulae
	3.2.3 Trace Refinement Checking with Anti-Chain

	3.3 Hierarchical Modeling
	3.3.1 Language Syntax
	3.3.2 Operational Semantics

	3.4 Probabilistic Refinement Checking
	3.4.1 Refinement Checking PCSP#
	3.4.2 SE-LTL Probabilistic Model Checking as Refinement Checking

	3.5 Probabilistic Refinement Checking with Anti-Chain
	3.6 Evaluations
	3.6.1 Performance of Refinement Checking
	3.6.2 Performance Improvement Using Safety Recognition
	3.6.3 Performance Improvement Using Anti-chain

	3.7 Related work
	3.8 Summary

	4 Applying Model Checking in Multi-agent Systems
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Negotiation Model
	4.2.2 Robustness Analysis using Empirical Game Theoretic Approach
	4.2.3 Dispersion Game and Strategies Definition
	4.2.4 Counter Abstraction Technique

	4.3 Modeling with Counter Abstraction
	4.3.1 Modeling Negotiation Systems
	4.3.2 Modeling BSS and ESS in Dispersion Games

	4.4 Properties Specification
	4.4.1 Properties in Negotiation Systems
	4.4.2 Properties in Dispersion Games

	4.5 Evaluation
	4.5.1 Negotiation Systems
	4.5.2 BSS and ESS in Dispersion Games

	4.6 Related Work
	4.7 Summary

	5 Improved Reachability Analysis in DTMC via Divide and Conquer
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Discrete Time Markov Chains
	5.2.2 Reachability Analysis in DTMC
	5.2.3 States Abstraction and Gauss-Jordan Elimination

	5.3 Divide and Conquer Approach
	5.3.1 Overall Algorithm
	5.3.2 Dividing Strategies
	5.3.3 Parallel Computation

	5.4 Implementation and Evaluation
	5.5 Related Work and Summary

	6 Modeling and Verifying Probabilistic Real-Time Systems using PRTS
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Probabilistic Formalisms for Real-time Systems
	6.2.2 LTL-X
	6.2.3 Non-Zenoness

	6.3 PRTS
	6.3.1 Language Syntax
	6.3.2 Concrete Operational Semantics

	6.4 Dynamic Zone Abstraction
	6.5 Verification of Abstract PA
	6.5.1 Finiteness
	6.5.2 Over-approximation
	6.5.3 Non-Zenoness

	6.6 Implementation and Evaluation
	6.6.1 Verification Under Non-Zenoness Assumption
	6.6.2 Probabilistic Real-time Benchmark Systems

	6.7 Related Work
	6.8 Conclusion

	7 Conclusion and Future Work
	7.1 Summary
	7.2 Future Work

	Appendix A Concrete Operational Semantics
	Appendix B Abstract Operational Semantics

