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Summary

MPM has been shown to be a promising method of feature extraction

signal processing method in power system analysis. This thesis analyzed

the performance of MPM in greater detail and proposed a new application

in sub-cycle fault signal analysis using MPM.

Signal processing holds great importance in the analysis of electrical

power systems. At the start, a brief overview of present power system

analysis and application examples of signal processing techniques on power

system phenomena has been given. MPM is then explained in detail.

The performance of MPM in relation to sampling window width, sam-

pling frequency and damping factor has been statistically analyzed in the

first part of the thesis. For a 50 Hz signal with damping factor of less than

-593.6 s−1, the signal’s frequency can be estimated within a variance of 1

Hz2 with 0.1 to 1 cycle of sampled data of the signal.

In the second part of the thesis, MPM has been applied to realistic

fault signals simulated in the IEEE 34-bus test system [2] to classify the

fault type based on feature extraction of space vectors and zero-sequence

signals. It was found that while using MPM alone was able to provide a

correct fault classification using 15 ms of post-fault data, augmenting an

ellipse fitting algorithm to MPM could improve the performance the fault

classification to using 5 ms of post-fault data.

This classification method is computationally intensive due to the large

number of samples to be processed by MPM and takes 100 ms to 300 ms

to compute. Thus in order to reduce this time, a pre-filtering and down-

sampling process have been added. The maximum amount of time for this

improved algorithm to complete on an Intel R©Core 2TMDuo CPU T8300

vii



system is 3 ms. This fast computation thus allows the dip to be classified

within 9 to 10 ms from the onset of the dip. This is an improvement

from the original method proposed in Vanya [1] that employed Fast-Fourier

Transform (FFT) to extract the 50 Hz components as that would require a

sampling window of at least 20 ms, which is one cycle of the fundamental

frequency.
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Chapter 1

Research Background and

Problem Definition

1.1 Introduction to Signal Processing in Power

Systems

Signal processing holds great importance in the analysis of electrical

power systems. Signal processing is often the first step in extracting useful

information from the voltage and current signals. It enables the operator

or control system to make sense of the signals and come to an informed

control decision. As the trend towards “smart grid” accelerates, the appli-

cation of advanced signal processing on power system signals becomes even

more crucial. In this introduction, a brief overview of present power system

analysis shall first be given. Subsequently, application examples of signal

processing techniques on power system phenomena shall be highlighted to

illustrate the state-of-the-art. Then a description of Matrix Pencil Method

(MPM) and related methods’ application is included. Lastly, the contri-

bution of this work to the advancement of this area shall be explained and
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highlighted.

1.1.1 Overview and Trends in Power System Analysis

Conventional power systems consist of three main levels; the generation,

transmission and distribution levels. Generation is conventionally made

up of mainly electro-mechanical rotating inertial systems that maintains

a generally constant voltage frequency of 50 Hz or 60 Hz. These genera-

tion sources are relatively large and located far away from the consumers.

They are connected to the transmission networks, usually overhead lines,

that transmit electrical power at high voltages over large distances to the

distribution networks. At the distribution level, the voltages are stepped

down to medium or low voltage levels where the power is delivered to the

consumers via either overhead power lines or underground cables in densely

populated urban areas. In such conventional systems, power is virtually

transmitted in one direction [5]. The load demands are more or less pre-

dictable based on historical data and most of the intelligent sensing and

control are done at the generation and transmission levels. There is rela-

tively lesser need for additional intelligent control at the distribution levels

other than the usual protection devices.

However, this conventional top-down system is changing. The pene-

tration levels of renewable energy sources in the grid is already increasing

throughout the world. Renewable sources such as wind and solar Photo-

voltaic (PV) are often connected to the power network at the distribu-

tion level via power electronic converters as Distributed Generation (DG)s.

Their power production is often subjected to changing weather conditions

and are thus much less controllable as compared to conventional power

sources. These DGs supply power back at the distribution level and in-

crease the difficulty in maintaining the stability and power quality of the

2



grid. This inadvertently increases the need for more sensing and control at

the distribution level [6].

On top of this, conventional power systems also suffer from under-

investment and increasing load demand. As a result, the grid has to op-

erate at a higher load demand with an aging infrastructure [5]. Increased

sensing is required to enable the operators to maximize the operating en-

velope with minimum disruptions by for example, predicting and locating

imminent faults and maintaining the stability of the grid especially in case

of power swings. These trends have all but led to a renewed interest in

signal processing at all levels of the power system and especially at the

distribution level.

Time scales of Power System Dynamics

For ease of analysis, power system phenomena can be broadly classified

into four groups based on their time scales; namely, wave, electromagnetic,

electromechanical and thermodynamic as shown in Figure 1.1 [3]. The

wave group corresponds to the propagation of electromagnetic waves, for

example, surge phenomena due to lightning or switching operations. The

electromagnetic group refers to the electromagnetic dynamics due to for

example, the interaction between the generator and the electrical network.

The electromechanical group refers to the slower electromechanical dynam-

ics for example, between rotating masses of generators and other inertial

systems. The last group refers to the slowest thermodynamic changes due

to for example adjustment in fuel consumption rate in a coal power plant.

As this time frame classification is highly related to type of dynamics

occurring, the granularity and types of models used to analyze different

classes of phenomena are not the same. The signals used are consequently

different. For example, in analysis of inter-area power oscillation where

3



Figure 1.1: Time frame of Power System Dynamic Phenomena [3]

Table 1.1: Examples of Power System Dynamic Phenomena based on Phe-
nomena Groups

Wave

Fault wave propagation [11, 12], Lightning surges [13]

Electromagnetic

Electromagnetic transients during faults [9, 10], Harmonic distortions [14]

Electromechanical

Inter-area power oscillations, Transient and Voltage stability [15]

Thermodynamic

Boiler turbine system [16], [17]

the electromechanical dynamics come into play, the electromagnetic voltage

signals are implicitly assumed to be sinusoidal phasors albeit with “slowly”

changing frequencies and amplitudes [7], [8]. Whereas in electromagnetic

transient analysis for example for fault signals, instantaneous voltage and

current signals are used to analyze the phenomenon [9], [10]. Detailed

model of the electromechanical part of the power system is not needed in

this case.
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1.1.2 Application Examples of Signal Processing

There is a huge multitude of signal processing techniques that are ap-

plied in power systems and this introduction is by no means an exhaustive

survey of these techniques. Instead, this thesis shall only focus on recent

examples of a few related signal processing techniques to highlight the

state-of-the-art for such applications on power systems.

Discrete Fourier Transform (DFT)

DFT can be said to be the most commonly used signal processing tech-

nique. A well-known fast variant of DFT is called the FFT which speeds

up the processing tremendously. DFT transforms the time-domain signal

into a frequency domain spectrum, thus breaking down the signal into its

discrete frequency components. The main drawbacks of FFT are how-

ever, an inability to extract damping information, limitation of frequency

resolution by the sampling window width, and spectral leakage. Despite

these disadvantages, it is still extremely useful and popular in extracting

frequency information from the data.

For example in [18] and [19], DFT has been used to measure wide-

band grid impedance. The knowledge of wideband grid impedance is es-

pecially important for grid-connected inverters as a mismatch between the

inverter’s output impedance and the grid impedance could lead to har-

monic resonance [20]. In both cases, a frequency-rich current was injected

by rapid electronic switching while the voltage was measured. The fre-

quency dependent impedance was then estimated by dividing the voltage

frequency spectrum by the current spectrum. Another application of DFT

is the measurement of the fundamental frequency and harmonic compo-

nents of space-vectors [21], [1] to estimate positive and negative sequence

5



components in unbalanced three-phase systems. In the analysis of wide

area oscillations [22], DFT is also widely used to measure spectral signa-

tures of low-frequency power oscillations in normal situation as well as after

a disturbance event such as a fault. These signatures provide an indication

of the occurrence of dynamic events in the grid.

Wavelet Transform

Wavelet Transform (WT) is another widely researched signal processing

tool for power system signals in recent years. One of the most important

motivations for using WT is its superior ability over DFT or Short Time

Fourier Transform (STFT) to analyze non-stationary signals. It provides

information about a signal in the time-frequency domain simultaneously

through transformations with respect to a mother wavelet. A good intro-

ductory tutorial on this method can be found in [23]. WT uses a variable

wavelet that is calculated by scaling and time-shifting a mother wavelet.

This wavelet is then mathematically compared with the sampled signal

through a convolution operation. Through a series of scaling and time-

shifting of the mother wavelet, the time-frequency spectrum of the non-

stationary signal can be found.

Due to its ability of perform multi-frequency resolution analysis, WT

is used to analyze the perturbations at certain characteristic frequencies.

For example, in [24], WT is used to track the changes in amplitude at

the fault-characteristic frequency of the power signal of a wind turbine

synchronous generator. In [25] and [26], WT is used in a similar fashion

on the current signal of motor drives. A more recent development is in

the use of WT in the damping estimation of electromechanical oscillations

under ambient excitation conditions [27, 28]. The mode of interest is first

extracted using WT, then the damping ratio is estimated using random

6



decrement technique.

The drawback of WT is that it is computationally intensive [29]. Fur-

thermore, its performance is also highly dependent on the mother wavelet.

Thus much testing is required to find the optimal mother wavelet for a

particular application. Lastly, similar to the DFT, the highest frequency

resolution is limited to the inverse of the sampling window width [23].

MPM and Prony Analysis

MPM and Prony Analysis [30] are two closely related techniques that

estimates the signal as a sum of complex exponentials. The amplitudes,

frequencies, phases and the damping factors are extracted as a result. How-

ever, these two methods differ in the way the signal poles (ie. the frequen-

cies and damping factors) are extracted. Prony analysis takes a polynomial

approach [31] where the poles are found as roots to a polynomial whereas

MPM locates the poles by finding the eigenvalues to a matrix pencil. MPM

has been shown to perform better in noise and has fewer limitations in com-

parison [32], [33]. Furthermore, Prony analysis sampling window length

require at least one and a half times the period of frequency of interest [34]

to be accurate. On the other hand, it shall be shown in latter chapters

that MPM can perform relatively well even with sub-cycle sample window

width.

The advantage of these two techniques over other techniques is that they

are able to extract the damping factors. This is useful as it can estimate the

eigenvalues of a linear system from the transient response. Furthermore,

the frequency resolution is not limited to the sampling window width unlike

DFT. Thus it can estimate the frequency much more accurately given a

short sampling window. However, one drawback of these two techniques

is their high computational requirements [14]. As a result, their uses are

7



often limited to offline analysis.

Prony analysis has been used in [35], [14] and [36] as a spectral tech-

nique to estimate the frequency components in voltage signals containing

harmonic distortion and has been shown to perform better than DFT in

terms of accuracy and frequency resolution. In [14], a filter-bank struc-

ture has been augmented with Prony analysis to reduce the computational

complexity in order to speed up processing. Prony analysis and MPM

has been applied respectively in [9] and [10] to fault transient signals to

estimate the impedance and subsequently the fault distance. [9] extracts

the phase fundamental component and DC offset components for calcu-

lation while [10] estimates the zero-sequence signals’ transient dominant

frequency component parameters. In wide area power system analysis ap-

plications, Prony analysis is most widely used as a “ringdown” analytical

tool [22], [30]. Short bursts of disturbance test signals are injected into the

system using tools such as Chief Joseph dynamic brake [37] to generate

system response signals. Subsequently, modal parameters of the system

are then estimated from the response signals using Prony analysis.

Summary

The above signal processing techniques are only a small section of the

wide variety of techniques available. There continues to be much develop-

ment in the expansion and extension of these techniques. As can be seen

from the examples listed above, these techniques are not limited to one or

two aspects of power system but can often be applied on a wide variety of

signals across the different time scales.

This thesis provides a further extension to the body of knowledge that

has been accumulated by the research community thus far. The author

has found that even though MPM has been shown to be a good signal pro-
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cessing method, its performance and usage has not yet been fully exploited

yet in the power systems arena. Therefore this thesis shall focus on further

research into this method.

1.2 Contribution of the Thesis

The contribution of this thesis can be divided into two parts.

1.2.1 Part 1: Feature Extraction Performance of MPM

An extensive evaluation of the feature extraction performance of MPM

has been carried out. This study stems from the motivation to understand

how MPM performs under different parameter changes such as frequency,

damping factor, sampling frequency and sampling window width changes.

To the best of the author’s knowledge, the research literature in this aspect

of MPM has been still lacking and requires a deeper research. This under-

standing of MPM is required to fully exploit its use as a signal processing

technique for power systems area.

In this work, MPM’s accuracy in extracting the amplitude, phase an-

gle, damping factor and frequency component has been statistically ana-

lyzed using a complex exponential test signal with simulated additive white

Gaussian noise. As sampling frequency and sampling window width are

two important parameters that a power engineer can use to tweak the per-

formance of MPM, multiple combinations of these two parameters were

tested to find the optimal combination for a particular complex exponen-

tial signal. The exponential signals were also varied to provide insights

into the selection of sampling frequency and window width. This thesis

has thus provided the reader a deeper understanding of the performance

of MPM on exponential signals and also a method to choose the optimal
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sampling frequency and window width for a particular set of signals.

1.2.2 Part 2: New Application of MPM

Based on the study in Part 1, a new application of MPM on sub-cycle

fault classification has been proposed and discussed. This new application

makes use of MPM’s sub-cycle feature extraction capability to elucidate

the fundamental frequency component in highly distorted signals. MPM

is able to estimate the frequency component of a space vector using less

than half a cycle of data. The sampling frequency and window width has

been chosen based on Part 1 of the work. This is in comparison with DFT

techniques that usually will require at least a fundamental cycle length of

data. As this technique can extract the required parameters using a much

shorter sampling window width, it can potentially allow faster evaluation

and subsequent control action to mitigate faults.

MPM and its close cousin, Prony Analysis require long computational

time with increased number of samples and hence, are often deployed only

in offline analysis. In this work, a pre-filtering and down-sampling pro-

cedure has been introduced to reduce the computation time drastically.

This reduced the computation time of the algorithm to 3 ms. In total, the

improved algorithm can classify the dip within 9 ms to 10 ms from the

onset of the fault. This is an improvement over the Vanya’s [1] method of

using DFT that required at least a 20-ms sampling window. This shall be

discussed in detail in Chapter 6.

1.3 Organization of the Thesis

The thesis is organized as follows:

• Chapter 1 introduces the dynamic modeling techniques of power
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systems research in terms of time scales and the uses of signal pro-

cessing in these areas. The application, advantages and disadvan-

tages of relevant signal processing techniques are also discussed in

this chapter.

• Chapter 2 describes the mathematical formulation of MPM in de-

tail and how it can be used to extract damped complex exponential

parameters.

• Chapter 3 elaborates on the statistical analysis of MPM technique

on a variable complex damped exponential signal with additive noise.

In this chapter, the feature extraction performance of MPM on damp-

ing factor and frequency component is examined.

• Chapter 4 evaluates the feature extraction performance of MPM on

amplitude and phase components of the complex exponential signal.

• Chapter 5 describes a new application of MPM on sub-cycle fault

classification based on the findings from Chapter 3 and 4. This

method is tested on a simple case as a start. MPM is used to pro-

cess the space vectors and zero-sequence voltages of a fault signal to

extract the desired parameters in order to classify the dip with only

a quarter-cycle of a 50 Hz data.

• Chapter 6 describes the testing of the method in Chapter 5 on a

IEEE 34-bus test case. An ellipse fitting algorithm has been aug-

mented to enhance the accuracy of the method consistently. A pre-

filtering and down-sampling process is then employed to reduce the

algorithm’s computational time from 300 ms to a maximum of 3 ms.

• Chapter 7 discusses the final conclusions of this thesis and possible

future work in this area.
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Chapter 2

Matrix Pencil Method

2.1 Matrix Pencil Mathematical Formula-

tion

2.1.1 MPM

This section describes the MPM [31] in detail. MPM is a signal pro-

cessing method that approximates the analog signal, y(t) by a sum of M

damped complex exponentials. This is expressed in Equation 2.1.

y(t) ≈
M∑
i=1

Aie
jφie(αi+jωi)t (2.1)

Equation 2.2 expresses the sampled case in which the time variable, t is

replaced by nTs where n represents the sample number and Ts represents

the sampling period:

y(nTs) = y(n) ≈
M∑
i=1

Aie
jφie(αi+jωi)nTs

=
M∑
i=1

Aie
jφizni

(n = 0, ..., N − 1)

(2.2)
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where y(n) = Measured Discrete Signal,

Ai = Amplitudes of ith component,

φi = Phase Angle of ith component,

αi = Damping factor of ith component,

ωi = Angular frequency of the ith component (ωi = 2πfi) where fi is the

frequency in Hz,

zi = e(αi+jωi)Ts for i = 1, 2, ...,M

N = Number of samples.

MPM finds the estimates for the values of Ai’s, φi’s and zi’s from the

measured data y(n). It does this by a two step process. First, it finds

the poles zi’s as the solution of a generalized eigenvalue problem by using

a mathematical entity known as the matrix pencil. This matrix pencil is

formed using the sampled values of y(t). In the second step, it then uses

the new found poles to estimate the complex amplitudes, Ai’s and phase

angles, φi’s by solving a least squares problem.

A matrix pencil, X is a mathematical entity that is defined as the

combination of two matrices, Y1 and Y2 with a scalar parameter, λ where

X = Y2 − λY1. For a discrete signal of length N , y(n), we can define two

(N − L)×L matrices Y1 and Y2, as the following:

Y1 =


y(0) y(1) · · · y(L− 1)

y(1) y(2) · · · y(L)
...

...
...

y(N − L− 1) y(N − L) · · · y(N − 2)


(N−L)×L

(2.3)
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and

Y2 =


y(1) y(2) · · · y(L)

y(2) y(3) · · · y(L+ 1)
...

...
...

y(N − L) y(N − L+ 1) · · · y(N − 1)


(N−L)×L

(2.4)

where L is an integer known as the pencil parameter that can be set

arbitrarily. It has been shown that N/3 and 2N/3 are the best choices for

L where MPM is the least sensitive to noise [32]. Consequently, L has been

set as floor(N/3) so that it is close to the optimal value.

In the noiseless case, the parameters of the complex exponentials, e(αi+jωi)Ts

can be found as the generalized eigenvalues of the matrix pencil, Y2−λY1

[31]. In the presence of noise however, Singular Value Decomposition

(SVD) is used to pre-filter the matrices first before solving for the eigen-

values [31]. This SVD operation estimates the order, M of the signal y(n).

The SVD process is explained in the latter paragraphs.

The matrix Y is first constructed as shown in Equation 2.5 using the

sampled values of y(n).

Y =


y(0) y(1) · · · y(L)

y(1) y(2) · · · y(L+ 1)
...

...
...

y(N − L− 1) y(N − L) · · · y(N − 1)


(N−L)×L+1

(2.5)

Then we take the SVD of Y:

Y = U S V∗ (2.6)

where U is an (N −L)× (N − L) real or complex unitary matrix, S is

an (N − L) × (L+ 1) rectangular diagonal matrix with nonnegative real

numbers on the diagonal, and V∗ (the conjugate transpose of V) is an
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(L+ 1)× (L+ 1) real or complex unitary matrix. The individual columns

of U and V are known as the left-singular vectors and right-singular vectors

respectively while the diagonal entries of S are known as the singular values

of Y. The order, M of the underlying signal y(t) can estimated from the

rank of the matrix Y provided that M ≤ L ≤ N −M [31]. In addition, if

Y has rank M , then we can expect the last L + 1−M singular values in

S to be very close to zero [38], provided the singular values are arranged

from largest to smallest.

The order M is thus estimated and the filtered matrices built with the

following steps [31]. Using a noise tolerance setting, tol, the individual

singular values, σi, are compared with the largest singular value, σmax. If

(σi/σmax) > tol, the corresponding right singular vector in V will be kept

to form the filtered matrix Vfiltered. Otherwise, the corresponding right

singular vector shall be removed. In [31], tol was set to 10−3 when the data

was accurate up to 3 significant digits.

With M number of poles present in the signal, Vfiltered = [v1 v2 · · · vM ]

where vi’s are the corresponding column vectors of V. Subsequently, ma-

trices V1 and V2 are formed by removing the last row of Vfiltered and the

first row of Vfiltered respectively. It can be shown that the eigenvalues, zi’s

of the matrix pencil Y2 − λY1 can be estimated by the those of V+
1 V2

where V+
1 is the Moore-Penrose pseudo-inverse of V1. The damping fac-

tors, αi’s and angular frequencies, ωi’s are then determined from zi’s given

that the sampling period is Ts.

With the eigenvalues found, the amplitudes, Ai’s, and phase angles, φi’s

are then found by solving the least squares problem as shown in Equation
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2.7: 
y(0)

y(1)
...

y(N − 1)

 =


1 1 · · · 1

z1 z2 · · · zM
...

...
...

z
(N−1)
1 z

(N−1)
2 · · · z

(N−1)
M




R0

R1

...

RM

 (2.7)

where zi = e(αi+jωi )Ts , and Ri = Aie
jφi .

2.2 Software Implementation of MPM in Lab-

VIEW

The MPM has been fully implemented in LabVIEW [39] according to

the steps described in the previous section. Even though a MPM im-

plementation is available in LabVIEW as a software package, the reader

should note that this has not been used because it can only process real

input values, and not complex values as needed in our project. Secondly,

developing our own implementation gives us greater flexibility and clarity

in the algorithms deployed in the program.

Our implementation has been built with standard array manipulation

and Linear Algebra methods such as SVD, matrix inverse method and

eigenvalue method. These methods are available in the base package of

LabVIEW and hence, no additional software packages have been employed.
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Chapter 3

Performance of

MPM:Damping Factor and

Frequency Estimation

It is important to know the estimation performance of MPM in order

to fully exploit its capability in terms of processing power system signals.

There are research literature about evaluating the performance of MPM as

a signal processing technique [32], [40], [41]. These important results will

be highlighted in the following sections briefly. This project’s contribution

is however on the further extension of these results with the focus of using

MPM on power system signals.

3.1 Current Literature on Feature Extrac-

tion Performance of MPM

MPM is a powerful method to extract complex exponential parameters

from the signals and its performance has been favorably compared to other
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methods such as Prony method [42] and FFT [40]. One important perfor-

mance criteria is that of frequency resolution. José [40] evaluated how well

MPM is able to resolve two closely spaced undamped sinusoidal signals.

Total Forward-Backward Matrix Pencil (TFBMPM), which is a variant

of MPM, has been used instead of the direct MPM method described in

Chapter 2, in order to improve the performance as TFBMPM is more ap-

plicable on undamped sinusoids. Details of TFBMPM can be found in [40].

The simulation input data in [40] consisted of two complex undamped si-

nusoids of equal power with varying white Gaussian noise; one sinusoid was

of frequency 0.2Hz and the other was varied between 0.270Hz and 0.290Hz

with different phases. The observation interval was 8-sample long with a

sampling period of 1 second. The variance of the frequency estimate was

numerically computed after several iterations of the simulation.

The main conclusions from [40] were as follows:

The phase difference between the signals influences the frequency reso-

lution of MPM strongly as expressed in Equation 3.1. The variance of the

frequencies estimates reaches a minimum if

(ωm − ωn)(N − 1)Ts + 2(θm − θn) = (2k)π (3.1)

and a maximum if

(ωm − ωn)(N − 1)Ts + 2(θm − θn) = kπ (3.2)

where k is an integer. The two signals used were defined as Ame
jφmejωmt

and Ane
jφnejωnt. The number of samples, N = 8 and the sampling period,

Ts = 1s.

MPM’s frequency resolution is the worst when the frequency difference,

(ωm−ωn), is small and phase difference, (θm−θn), is close to C×90◦ where

C is an integer. It performs the best when the phase difference, (θm− θn),

is close to C × 180◦.
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In another work, El-Hadi [41] analyzed the MPM’s estimation of damp-

ing factor on damped complex exponential signals with respect to L-parameter.

It was found that the variance of the damping factor estimates was mini-

mized when L-parameter = N/3 or 2N/3. This result was similar to that

for TFBMPM for estimating the angular frequency, ωi in [32].

Even though the above works did provide important insights into the

estimation limits of MPM, it would be beneficial to explore further into how

variation in sampling frequency and sampling window width can help us

optimize the performance of MPM in analyzing power system signals. To

the author’s knowledge, there have not yet been such studies yet, which ex-

plains the motivation for the current and next chapter. These two chapters

shall evaluate the feature extraction performance of MPM with variation

in sampling frequency and sampling window width.

3.2 Statistical Analysis of MPM

3.2.1 Feature Extraction Performance of MPM for

Power System Signals

In power systems, we often have to measure and process voltage and

current signals. A typical instantaneous voltage or current signal profile

consists of a strong fundamental frequency component of 50 Hz or 60 Hz,

with some harmonic components normally in the range of about 0-5%.

Commercial power quality analyzers often can measure frequency compo-

nents up to the 50th harmonic (about 2500 Hz or 3000 Hz) as a norm.

There are also possible interharmonic, and transient components. Hence,

it would be interesting to evaluate how MPM can effectively elucidate the

parameters from such signals.
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Among the various parameters, sampling frequency and sampling win-

dow width are the most accessible parameters that the power engineer

have at hand to tweak the performance of MPM. High sampling frequency

however often results in costlier data acquisition equipment and produces

prodigious amount of data within a short sampling time. Processing of

excessively huge amount of data adds to the processing time and comput-

ing power and thus may not be desirable. On the other hand, sampling

window width determines the time length of signal information needed to

be processed before the parameters can be estimated. If a long length of

signal is needed, then that would invariably increase the time needed to

estimate the required parameter. This again may not be desirable. Thus,

an optimal sampling rate and length is required.

3.2.2 Description of the test signal

In order to analyze the effects of sampling frequency and sampling

length on MPM, a statistical analysis of the performance of MPM has

been carried out. A complex exponential signal of the following form has

been simulated as a base case test signal:

Aejφe(−α+jω)t = 1.0 ej
10
180

πe[−5.0+j2π(50)]t (3.3)

In addition, Complex Gaussian White Noise (CGWN) of variance, σ2 =

0.01, was generated and added to the signal to simulate a noised signal.

These signals were simulated and processed using MPM in Labview [39].

MPM’s performance in extracting the parameters is then evaluated.

3.2.3 Definitions of terms

Analysis was carried out on the results obtained after varying the sam-

pling period, Ts and number of samples, K. For each parameter change,
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a statistical sample size of five hundred simulations were carried out to

estimate the mean and variance of the results of MPM. by comparing the

result with the true value that was simulated.

Using a fairly large number of statistical samples (five hundred in our

case), the estimate of the required parameter from MPM can be approxi-

mated to have a normal distribution according to the Central Limit The-

orem [43] as expressed in Equation 3.4.

1

n

n∑
i=1

χi ∼ N(µ,
σ2

n
) (3.4)

where χi represents the ith parameter estimate statistical sample using

MPM, n is the number of statistical samples, µ is the estimate’s mean and

σ2 is the variance of the estimate.

The mean, µ can be estimated by the sample mean, χ̄ ≡ 1
n

∑n
i=1 χi,

while the variance, σ2 can be estimated by the sample variance estimate,

s2χ ≡ 1
n−1

∑n
i=1[χi − χ̄]2.

Test signal is defined as Ae(jφ)e(α+jω)t [p.u.]. The parameters that are

of interest to be extracted by MPM are:

Test signal Complex Amplitude ≡ A [p.u.]

Test signal Phase Angle ≡ φ [rad]

Test signal Frequency ≡ ω [rad s−1]

Test signal Damping factor ≡ α [s−1]

In addition, other symbols are defined as:

Test signal Complex Exponential angle, θ ≡ tan−1 ω
α

[rad]

Time constant of signal, τ ≡ | 1
α
| [s]

Number of samples (ie. sampling window width) ≡ K
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Number of simulations (ie. number of statistical samples) ≡ n

Parameter Estimate Actual Mean, µχ where the parameter is χ.

Mean Estimate, χ̄ ≡ 1
n

∑n
i=1 χi where the parameter is χ.

Parameter Estimate Actual Variance, σ2
χ where the parameter is χ.

Variance Estimate, s2χ ≡ 1
n−1

∑n
i=1[χi − χ̄]2 where the parameter is

χ.

Parameter Estimate error, ∆χ ≡ χ̄− χ

3.2.4 Discretized Signal and Discrete Parameters

The process of sampling discretizes the analog signal. It would be

useful to use the discrete parameters to generalize the results because, for

example, a high frequency analog signal with high sampling frequency can

yield the same discrete samples as a low frequency analog signal with a

low sampling frequency. Let’s take for example two analog signals, Signal

1: Aejφe(α1+jω1)t and Signal 2: Aejφe(α2+jω2)t, given that (α2 + jω2) =

δ.(α1+jω1) where δ is a constant multiplier factor. If we sample the Signal

1 with a sampling frequency of Ts and Signal 2 with Ts

δ
, then their discrete

damping factors and frequencies will be equal as shown in Equation 3.5.

Signal 1 :Aejφe(α1+jω1)t = Aejφe(α1+jω1)Tsk

= Aejφe(αN+jωN )k

Signal 2 :Aejφe(α2+jω2)t = Aejφeδ.(α1+jω1)
Ts
δ
k

= Aejφe(αN+jωN )k

(3.5)

where k is the discrete time index of the sampled signal, αN and ωN are

the discrete damping factor and frequency respectively.

The discrete parameters are thus defined as follows:
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Discrete damping factor, αN ≡ α.Ts

Discrete angular frequency, ωN ≡ ω.Ts [rad]

With these relationships, it is known from statistical theory that the pa-

rameter variances are then related as shown below:

Discrete damping factor variance, σ2
αN
≡ σ2

α.Ts
2

Discrete angular frequency variance, σ2
ωN
≡ σ2

ω.Ts
2 [rad2]

In addition, the errors in estimation can be defined as:

Discrete damping factor error, ∆αN ≡ (ᾱ− α).Ts

Discrete angular frequency error, ∆ωN ≡ (ω̄ − ω).Ts

3.3 Performance of MPM on Complex Ex-

ponential Signals

This section attempts to assess MPM’s performance by varying the

sampling period and the sampling window width. In addition, its per-

formance on complex exponential signals with different ratios of damping

factor and frequency is also evaluated.

The reader should note that even though a specific analog signal has

been simulated, the results are shown in discrete parameters so that they

can be applied to a more general set of sampled complex damped expo-

nential signals with appropriate mathematical manipulation.
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3.3.1 Effects of Varying the Sampling Period and Sam-

pling Window Width

In order to assess the effects of sampling period, Ts and sampling win-

dow width, K on the performance of MPM, MPM was employed to extract

the damping and frequency components of the signal given in subsection

3.2.2 with CGWN added as described. The signal is shown here for the

convenience of the reader.

Signal: Aejφe(−α+jω)t = 1.0 ej
10
180

πe[−5.0+j2π(50)]t

Ts was varied between 0.01 s and 1 µs while K was varied between 10

and 500. For each Ts and K change, five hundred simulations were carried

out to estimate the error and variance of the damping factor and frequency

estimates.

Damping Factor, α, Estimate

The results for the damping factor estimate error and variance are plot-

ted in Figure 3.1. For this test signal, the damping factor estimate vari-

ance is the least in the dark blue region where K ≈ 500 and the discrete

damping factor, αN , is about −10−2.4 = −0.004 as shown in Figure 3.1b.

(αN = αTs). The mean absolute estimate error is also the least in the

same region as shown in Figure 3.1a. Thus the optimal sampling period,

Ts can be found by:

Ts = αN
α

≈ 0.004τ

or = 800µs
(3.6)

where τ is the time constant of the signal as defined in Subsection 3.2.3.

The sampling window width, K, should be chosen as large as possible

as it can be observed that as K gets larger, the variance improves for

each sampling period. However, it should also be noted that larger K
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will increase the computational time required to do MPM. It can also be

observed that the variance is larger in the orange region when the sampling

period, Ts, is small or in other words, when the sampling frequency is

high. Hence, a high sampling frequency does not necessarily lead to a

good estimation result but instead, an optimal sampling frequency has to

be chosen for a particular sampling window width, K. An explanation

for this may be that as the sampling frequency increases for the same K,

the number of cycles of the sinusoid captured reduces. Hence, after the

optimal sampling frequency, the estimation of the frequency and damping

factor worsens.

Figure 3.1: a. Mean Absolute Estimate Error and b. Variance of Damping
Factor Estimate for different Ts and K on Signal, e(j

10
180

π)e[−5.0+j2π(50)]t

Angular Frequency, ω, Estimate

A similar plot has been done for the angular frequency estimate as

shown in Figure 3.2. It shows similar results to the damping factor estimate
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Figure 3.2: a. Mean Absolute Estimate Error and b. Variance of Frequency
Estimate for different Ts and K on Signal, e(j

10
180

π)e[−5.0+j2π(50)]t

plot. The variance reduces as the sampling window width, K, increases as

shown in Figure 3.2b. The variance is also similarly larger in the orange

region when the sampling period, Ts, is small.

The frequency estimate variance is the least in the dark blue region

where K ≈ 500 and the discrete angular frequency, ωN , is about 10−0.6 =

0.251 rad as shown in Figure 3.2b. (ωN = ω Ts). The mean absolute

estimate error is less than 10−1.5 rad s−1 in the same region as shown in

Figure 3.2a. Thus the optimal sampling period for estimating the frequency

when K=500 can be found by:

Ts = ωN
ω
≈ 0.251

2π(50)
= 0.0008s

or = 0.04 of frequency component period
(3.7)

From these results, we can observe that a large sampling window width,

K, would give a good estimate of the damping factor and frequency of a

particular damped complex exponential signal. This result is intuitive as
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a large sampling window will inevitably cover a longer length of the signal

and thus provide a more accurate estimate. In addition, for a given window

width, K, an optimal sampling frequency can be found from the statistical

results.

In comparison, for DFT which is a common signal processing tech-

nique, a larger K increases the frequency resolution of the estimate. The

frequency resolution can be calculated as follows:

Frequency Resolution [Hz] =
1

2Ts

.
1

K
(3.8)

Using the sampling frequency of Ts = 0.0008s and K = 500 obtained

earlier for MPM, the frequency resolution of DFT is 1.25 Hz. On the

other hand, for the same sampling frequency and sampling window width,

MPM’s frequency estimate’s variance is 10−4 Hz2, or in other words, a stan-

dard deviation of 0.01 Hz. For a confidence level of 99.99%, the confidence

interval is about six times the standard deviation or 0.06 Hz. Hence, MPM

gives a better resolution to the frequency than DFT with equal sampling

frequency and window width.

3.3.2 Effects of Varying the Frequency Component

and Sampling Period

Since we have found that large K gives a better estimate in Subsection

3.3.1, K is set at a constant of 500 for the analysis in this subsection. In

this subsection, the signal frequency, ω and the sampling period, Ts are

varied while setting the rest of the parameters at a constant. The objective

is to assess the effect of varying the frequency, ω, on the optimal sampling

frequency, for the same damping factor, α. As mentioned earlier, sampling

window width, K, is set at a constant 500 and damping factor, α at -5.0

s−1. The complex exponential angle, θ, defined earlier in Subsection 3.2.3,
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Figure 3.3: a. Mean Absolute Estimate Error and b. Variance of Damping
Factor Estimate for different sampling period, Ts and complex exponential
angle, θ. Sampling Window Width, K = 500, and Damping Factor, α =
−5.0s−1.

was calculated and plotted against the discrete damping factor, αN . The

frequency component was swept from 0.01 Hz to 3000 Hz. The sampling

period was varied from 1 µs to 0.01 s. The results are shown in Figure 3.3

and 3.4.

The results show that as the complex exponential angle, θ changes

from 0 to −π
2

rad, the estimate variances of damping factor and frequency

component remain quite similar for each sampling period. As shown in

Figure 3.3, the variance remains at a minimum when αN ≈ −10−2.4 for

θ in the range (-π
2
, 0). This value is very close to the one estimated in

Subsection 3.3.1. Hence, for K=500 and a fixed α of -5.0 s−1, the optimal

sampling frequency occurs at 1250 Hz (Ts = 800 µs) and is minimally

affected by the variation in frequency component. This shows a strength

of MPM as it can estimate a range of frequencies well given the same

sampling frequency.

A sudden increase in both estimate variances can be observed in the
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Figure 3.4: a. Mean Absolute Estimate Error and b. Variance of Frequency
Component Estimate for different sampling period, Ts and complex expo-
nential angle, θ. Sampling Window Width, K = 500, and Damping Factor,
α = −5.0s−1.

Figure 3.5: Blown-up Plot of Variance of Damping factor Estimate for θ
in the range [-0.486π, -0.5π]
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circled areas in Figure 3.3 and 3.4 when θ is close to −π
2
. In this region, the

frequency component becomes much larger relative to the damping factor.

A blown-up plot for damping factor variance is shown in Figure 3.5. As the

frequency component becomes large, the damping factor estimate variance

increases. It can be observed that the sampling frequency becomes close

to the Nyquist sampling frequency of the frequency component as shown

by the dashed red line in Figure 3.5.

It can be seen in Figure 3.5 that if the sampling frequency remains above

approximately 4.0 times the Nyquist frequency, then the damping factor

estimation performance will be similar to that when θ is away from −π
2
.

This corresponds to the area below the blue dashed line. In other words, the

sampling frequency should be set at least 4.0 times the Nyquist frequency

to have a good damping factor and frequency component estimation.

3.3.3 Effects of Varying the Damping factor and Sam-

pling Period

In this subsection, the signal damping factor, α, and the sampling pe-

riod, Ts, are now varied while keeping the other parameters constant. The

objective is now to assess the effect of varying the damping factor, α, on

the optimal sampling frequency, for the same angular frequency, ω. Similar

to the previous subsection, the damping factor and frequency estimation

performance is again assessed. The sampling window width, K, was set at

a constant of 500 while the angular frequency, ω was set at a constant of

2π(50.0) rad s−1. The damping factor was swept from -0.01 s−1 to -50,000

s−1. This is equivalent to varying the exponential angle, θ, from -6.3×10−3

rad to almost −0.5π rad. The sampling period was varied from 1 µs to

0.01 s.
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Figure 3.6: a. Mean Absolute Estimate Error and b. Variance of Damp-
ing Factor Estimate for different sampling period, Ts and complex expo-
nential angle, θ. Sampling Window Width, K = 500, and Frequency,
ω = 2π(50.0)rad s−1.

The complex exponential angle, θ was plotted against ωN in Figure 3.6

and 3.7. The estimate variance and the absolute error are the lowest when

θ is close to -0.5π rad and ωN is approximately between 1 and 0.01 rad as

marked out in the figures. This meant that frequency and damping factor

estimates are the most accurate when signal is lightly damped.

In order to estimate the optimal sampling frequency for a signal with a

particular ω : α ratio, one can mark out the points with the lowest variance

as shown by blue dashed line in Figure 3.8. It can also be observed that the

optimal sampling period decreases as θ becomes closer to zero or in other

words when the signal is highly damped. As the signal becomes highly

damped, the estimate variance increases. For extremely high damping

factors, MPM is not able to estimate the damping factor nor the frequency

component well. One possible reason for this is that with a high damping

factor, the signal is quickly attenuated and much lesser useful information

can be processed by MPM.
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Figure 3.7: a. Mean Absolute Estimate Error and b. Variance of Fre-
quency Estimate for different sampling period, Ts and complex expo-
nential angle, θ. Sampling Window Width, K = 500, and Frequency,
ω = 2π(50.0)rad s−1.

Figure 3.8: Variance of Frequency Estimate for different sampling period,
Ts and complex exponential angle, θ. Sampling Window Width, K = 500,
and Frequency, ω = 2π(50.0)rad s−1.

3.3.4 Summary

In summary, the following are the useful pointers after the statistical

analysis of the damping factor and frequency.
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• In general, the estimate variances reduce as the number of samples,

K, increases. Thus a large K would be desirable for higher accuracy.

In comparison with DFT, a larger K increases the resolution of the

frequency estimation using DFT. In addition, MPM gives a better

frequency resolution than DFT given the same sampling frequency

and window width as described earlier in the chapter. DFT is not

able to estimate the damping factor of the signal.

• It is found that for a fixed sampling window of K=500 and constant

damping factor, the MPM estimate performance is minimally affected

by changes in the frequency component. This shows a strength of

MPM as it can estimate a range of frequencies well given the same

sampling frequency. In addition, the sampling frequency should be

set to at least about four times the Nyquist sampling frequency of

the frequency component.

• For a fixed frequency component and K=500, the optimal sampling

frequency is highly influenced by the damping factor. As the damp-

ing factor increases, the optimal sampling frequency also increases.

The estimate variance also increases with the increase in damping

factor. MPM is unable to estimate well for highly damped signals.

One possible reason for this is that with a high damping factor, the

signal is quickly attenuated and much lesser useful information can

be processed by MPM.

• As the results are shown in discrete parameters, they can be applied

to a general set of sampled complex damped exponential signals with

appropriate mathematical manipulation.
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Chapter 4

Performance of MPM:

Amplitude and Phase

Estimation

This chapter examines the performance of MPM on extracting the am-

plitude and phase information. Similar to the Chapter 3, a statistical

analysis of the feature extraction capability of MPM has been carried out

on the test signal as described in Subsection 3.2.2.

4.1 Effects of Varying Sampling Frequency

and Sampling Window Width

In this section, the effect of changing the sampling frequency and sam-

pling window width on the estimation of amplitude and phase is examined.

The sampling period, Ts, was varied between 0.01 s and 1 µs while sampling

window width, K, was varied between 10 and 500.
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4.1.1 Amplitude and Phase Estimation

The amplitude estimate mean error and variance are shown in Figure

4.1. The discrete angular frequency, ωN , is plotted against K (ωN = ωTs).

It can be observed from Figure 4.1a and b, as ωN becomes closer to the

Nyquist frequency (ωN = π ≈ 100.5), both the estimate error and variance

increase. On the other hand, the variance of the estimate reduces for small

ωN and large K. This means that the amplitude can be best estimated

when sampling window width, K is large and the sampling period, Ts is

small.

The phase estimation results are shown in Figure 4.2. The phase es-

timation performance is very similar to that of the amplitude estimation

performance in that the phase is also best estimated when sampling win-

dow width, K is large and sampling period, Ts is small.

In comparison, the accuracy of DFT’s estimates of amplitude and phase

of the signal depends on how closely the signal’s frequency matches that

of the frequency bins. If the signal frequency lies somewhere in between

two frequency bins, then the signal will be leaked into the surrounding

frequency bins, resulting in inaccurate answers. Increasing K increases the

DFT’s frequency resolution and reduces leakage. Hence, this also improves

the accuracy of amplitude and phase estimation of DFT.

4.2 Effects of Varying the Frequency Com-

ponent and Sampling Period

In this section, the amplitude and phase estimation performances have

been assessed by varying the angular frequency, ω, and sampling period,

Ts while keeping the other parameters constant. The objective is to assess
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Figure 4.1: a. Mean Absolute Estimate Error and b. Variance of Ampli-
tude Estimate for different Ts and K on Signal, 1.0e(j

10
180

π)e[−5.0+j2π(50)]t

Figure 4.2: a. Mean Absolute Estimate Error and b. Variance of Phase
Angle Estimate for different Ts and K on Signal, 1.0e(j

10
180

π)e[−5.0+j2π(50)]t
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the effect of varying the frequency, ω, on the optimal sampling frequency.

The sampling window width, K, was set at a constant of 500, and

the damping factor, α was set at a constant of -5.0 s−1. The frequency

component was swept from 0.01 Hz to 3000 Hz and the sampling period

was varied from 1 µs to 0.01 s.

4.2.1 Amplitude and Phase Estimation

As shown in Figure 4.3 and 4.4, the estimation performance of am-

plitude and phase stays similar for the same αN . Similar to damping and

frequency estimates, the frequency component changes did not have a large

effect on the estimation performance. The variances reduce as the sampling

period, Ts, becomes shorter.

Figure 4.3: a. Mean Absolute Estimate Error and b. Variance of Am-
plitude Estimate for different sampling period, Ts and complex exponen-
tial angle, θ. Sampling Window Width, K = 500, and Damping Factor,
α = −5.0s−1.
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Figure 4.4: a. Mean Absolute Estimate Error and b. Variance of Phase
Estimate for different sampling period, Ts and complex exponential angle,
θ. Sampling Window Width, K = 500, and Damping Factor, α = −5.0s−1.

4.2.2 Comparison with Damping Factor and Frequency

Estimates

The damping factor and frequency estimate variances are put together

with those of amplitude and phase estimates for comparison in Figure 4.5.

The amplitude and phase estimate variances reduce as the sampling period

decreases. This is different from the damping factor and frequency com-

ponent estimation where the variances are the lowest when αN = −10−2.4.

The variances deteriorate even as the sampling period reduces thereafter.

4.3 Effects of Damping Factor Variation and

Sampling Frequency

In this last section, the damping factor and sampling period, Ts, are

varied while keeping K at 500 and frequency component at 50 Hz. The

objective is to assess the effect of varying the damping factor, α, on the
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Figure 4.5: Variance Estimates of a. Damping Factor, b. Frequency, c.
Amplitude and d. Phase Angle Estimate for different sampling period, Ts

and complex exponential angle, θ. Sampling Window Width, K = 500,
and Damping Factor, α = −5.0s−1.

optimal sampling frequency. The damping factor was swept from -0.01 s−1

to -50,000 s−1 while the sampling period was varied from 1 µs to 0.01 s.

4.3.1 Amplitude and Phase Estimation

The results for amplitude and phase estimates are shown in Figure 4.6

and 4.7. The amplitude and phase estimate variances reduce as sampling

period, Ts, decreases. This means that high sampling frequency can im-
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prove amplitude and phase estimation.

In addition, when the signal is lightly damped (ie when θ ≈ −0.5π rad),

both amplitude and phase can be well estimated at around ωN ≈ 10−0.5 rad.

However, as the damping factor increases, ωN has to reduce in order to get

a good amplitude estimate. This means that a higher sampling frequency

is needed for highly damped signals. For example, using a undamped 50 Hz

signal with sampling window width of K=500 as an example, a sampling

frequency of about 1 kHz can achieve a approximate amplitude estimate

variance of 10−4 s−2, whereas a sampling frequency of 100 kHz is needed

for a damped 50 Hz signal of α = −105 s−1 for a similar estimate variance.

A discrepancy is observed in Figure 4.6b, where the amplitude estimate

variance is unexpectedly low in the circled blue region. It was because

MPM was estimating the amplitude with a consistent error. This can be

observed in Figure 4.6a where the absolute error was large in the same

region.

Figure 4.6: a. Mean Absolute Estimate Error and b. Variance of Am-
plitude Estimate for different sampling period, Ts and complex expo-
nential angle, θ. Sampling Window Width, K = 500, and Frequency,
ω = 2π(50.0)rad s−1.
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Figure 4.7: a. Mean Absolute Estimate Error and b. Variance of Phase Es-
timate for different sampling period, Ts and complex exponential angle, θ.
Sampling Window Width, K = 500, and Frequency, ω = 2π(50.0)rad s−1.

4.3.2 Comparison with Damping Factor and Frequency

Estimates

Figure 4.8 shows the estimate variances for all the four parameters that

MPM extracts. All four estimates are highly influenced by the damping

factor variations. When the signal is lightly damped (ie θ ≈ −0.5π rad),

all four can be estimated well with a relatively large sampling period of

ωN ≈ 10−0.5 rad. However, as the signal becomes heavily damped, the

sampling period, Ts, has to be reduced for an accurate estimate.

The amplitude and phase estimates have a different behavior than those

of damping factor and frequency estimates. The amplitude and phase

estimations improve consistently as the sampling period decreases while

the frequency and damping factor estimates do not. The frequency and

damping factor can only be well estimated within a small region close to

θ ≈ −0.5π rad and bounded by ωN between 100.2 and 10−3 rad.
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Figure 4.8: Variance Estimates of a. Damping Factor, b. Frequency, c.
Amplitude and d. Phase Angle Estimate for different sampling period, Ts

and complex exponential angle, θ. Sampling Window Width, K = 500,
and Frequency, ω = 2π(50.0)rad s−1.

4.4 Summary

In summary, the following are the useful pointers following the statis-

tical analysis of the parameter estimates.

• In general, the amplitude and phase estimate variances reduce as

the number of samples, K, increases. In comparison, the accuracy

43



of DFT’s estimates are generally affected by leakage. Increasing K

increases the DFT’s frequency resolution, reduces leakage and hence

improves the accuracy of amplitude and phase estimation of DFT.

• The amplitude and phase estimates also perform better at higher

sampling frequencies for a fixed sampling window width, K. This

is different from damping factor and frequency component estimates

where the variances deteriorate after the sampling frequency increases

beyond the optimal sampling frequency.

• For a given damping factor and K=500, the estimate variances de-

pend largely on the sampling frequency. Varying the frequency com-

ponent did not affect the variance much.

• For a given frequency component and K=500, the amplitude and

phase estimates perform well when the damping factor is small. Gen-

erally, these estimates improve as the sampling period decreases.

Hence, the sampling period has to be reduced for good performance

when the damping factor increases. As an a interesting comparison,

this is different from the damping factor and frequency component

estimates where they are well estimated only within a small region

where damping factor is small and ωN is approximately between 100.2

and 10−3 rad.

One possible reason for better performance at high sampling frequency and

large K is that the amplitude of the signal is the largest at the start as

the signal is damped. Hence, a high sampling frequency and a large K will

capture the most information about the amplitude and phase of the signal

and hence result in a better estimation.
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Chapter 5

Application of MPM on

Subcycle Voltage Dip and

Swell Classification

5.1 Introduction

Voltage dips and swells are an important class of Power Quality (PQ)

disturbances and are often caused by faults in the power network. They

can cause large economic losses in industrial systems [49], [50] especially

with the increased use of sensitive power electronics devices in industry.

About 10 to 15% of faults exhibit incipient half-cycle self-clearing fault

events for anywhere between two cycles to two weeks before developing

into a full-blown permanent fault [51]. The analysis of such sub-cycle

faults thus presents us with an opportunity to rectify the imminent fault

before it causes a disastrous fault event. The classification of voltage dips

is certainly a first step towards the analysis of such sub-cycle faults.

As the penetration rate of Distributed Energy Resource (DER)’s in-

creases, there is a need to perform faster analysis on electrical phenomena
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especially for fault conditions. Most of these DER’s are connected at the

distribution level via sensitive power electronic converters and these con-

verters would disconnect in less than 50 ms or 2.5-cycle time when voltage

sags to below 50% of the nominal value [52]. Sub-cycle analysis of faults

or other grid events can provide timely information for the devices to react

quickly.

There is also a trend towards increased intelligence at the distribu-

tion level [53]. Distribution networks have traditionally been designed for

uni-directional power flow from transmission networks to the loads on the

distribution levels. However, with more active components such as DER’s

and batteries connected at distribution level, intelligence is needed to mon-

itor, analyze and control various operations such as bi-directional power

flows, voltage regulation, fault protection etc. at the distribution level.

Sub-cycle analysis of faults or other grid events can enable the intelligent

device to do that.

At the onset of the fault occurrence, the voltage signal will exhibit a

transient behaviour before settling down to a steady state fundamental

frequency sinusoidal fault signal. This steady-state fault signal depends on

the type of fault and is often analyzed using Fortescue’s [54] symmetrical

components. Most conventional fault analysis algorithms [55, 1, 56] rely on

the phasor information of at least 1 cycle of the steady state fault signal.

In many cases however, faults occur in an intermittent fashion before a

permanent fault occurs [57, 51]. One such example is underground cable

fault [51, 58]. They cause voltage disturbances to last only for less than

two or even one cycle before reverting to normal voltage signals. These

intermittent faults may have cleared within the cycle, and thus conven-

tional algorithms do not suffice to provide a good analysis of such faults.

A sub-cycle analysis method is required.
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Intermittent faults are also often precursors to permanent faults to

come. Hence, a proper analysis of them can glean important information

to rectify possible equipment failure to prevent imminent permanent faults

and unforeseen service outages. Such analysis can be executed offline on

recorded signals to provide a diagnosis of the situation.

Fault analysis methods often rely on mathematical transformation of

the three-phase quantities into orthogonal components. Conventionally,

the use of symmetrical components [54] is the most common method of

fault analysis. Vanya [1] on the other hand, developed an algorithm based

on Clarke [59] transformation to classify the voltage dip signatures into the

major fault types. Clarke transformation is suitable for subcycle analysis

as it deals with instantaneous quantities instead of phasor quantities.

As the electrical signals usually consist of a fundamental 50 Hz compo-

nent together with transient, harmonics, sub-harmonic and inter-harmonic

components, the signals have to be processed beforehand to extract the use-

ful components. The comparisons of various signal processing techniques

have been explained in detail in Chapter 1 and shall quickly mentioned here

for completeness. FFT is the most common signal processing technique em-

ployed to analyze electrical signals. However, FFT suffers from problems

such as an inability to extract damping information and the frequency res-

olution limited by the sampling window width. Another well-known signal

processing technique, Prony analysis [30] estimates similar components as

MPM, but they differ in the way the signal poles are extracted. MPM has

been shown to perform better in noise and has fewer limitations in com-

parison [32, 33]. Furthermore, the Prony analysis sampling window length

has to be at least one and a half times the period of frequency of interest

[34] and cannot be used for sub-cycle analysis. Based on the findings in

Chapter 3 and 4, MPM shall be further examined in this chapter to show
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that it is able to provide a relatively good estimate of the signal parameters

with only a sub-cycle sampling window or in other words, less than 20 ms

window for a 50 Hz signal.

In this chapter, the three-phase voltage signals are transformed via

Clarke transformation [59] to form a space vector using the resulting α

and β components. This space vector is then processed using the MPM

method to elucidate the fundamental positive- and negative-sequence com-

ponents. The zero-sequence signal is also processed with MPM to extract

the fundamental frequency amplitude and phase information. These infor-

mation are then used to classify the voltage dip using the criteria proposed

by Vanya [1]. The reader should note that this thesis limits the discussion

to the use of MPM on the classification of voltage dips and swells after

fault detection and segmentation. Fault detection is the process in which

the start or end points of the fault are located while segmentation is the

process in which portions of the voltage signal is divided into pre-fault,

on-fault and post-fault segments. There are already several techniques of

fast fault detection and segmentation in literature based on high frequency

content of the signals at the start and end of faults [60, 61] or based on

changes in voltage magnitudes [62]. These methods can be used to detect

and segment the signals before the application of fault classification. They

are however not included in the scope of this thesis.

Two similar and distorted fault signals were created by simulating a

two-phase fault and two-phase-to-ground fault signals. These faults were

created in a simple case test system and also in an IEEE 34-bus system

to test the efficacy of the method. The results show that MPM is able to

estimate the fundamental frequency space vector components effectively

with a 5 ms sampling window in the simple test case. An ellipse fitting al-

gorithm is augmented to the MPM to enhance the estimation performance
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in highly distorted signals in the IEEE 34-bus system. As an example,

it differentiated between two highly similar faults with a 5 ms sampling

window, demonstrating the feasibility of this scheme. A further improve-

ment was made to the method by filtering and downsampling the signals

before processing it with MPM. This reduced the computation time of the

algorithm to 3 ms. In total, the improved algorithm can classify the dip

within 9 ms to 10 ms from the onset of the fault. This is an improvement

over the Vanya’s [1] method of using DFT that required at least a 20-ms

sampling window.

5.2 Classification of Voltage Dips and Swells

using Space Vector [1]

It is well known that a complex space vector, ~v, can be formed with the

following equation using the α and β components via Clarke Transform

[59]:

~v =
2

3
[va(t) + ej(2π/3)vb(t) + e−j(2π/3)vc(t)] = vα(t) + jvβ(t) (5.1)

Space vectors are suited for the analysis of instantaneous voltages and

currents [59], [63]. However, as a simplification for a three-phase set of

unbalanced, distorted periodic phase voltages containing only harmonic

components, the space vector may be represented in Equation (5.2) as

derived by Zhang [64].

~v =
∞∑
n=1

Vn+e
jφn+ · ej(nωt) +

∞∑
n=1

Vn−e
jφn− · e−j(nωt) (5.2)

where ω is the fundamental angular frequency and n represents the har-

monic order of the component. Vn+e
jφn+ and Vn−e

jφn− represents the nth

harmonic Fortescue’s [54] positive sequence and negative sequence phasor
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components respectively. The fundamental frequency space vector compo-

nent, v1, can thus be expressed in Equation (5.3) as the sum of two phasors

contra rotating at fundamental frequency.

~v1 = V1+e
jφ1+ · ej(ωt) + V1−e

jφ1− · e−j(ωt) (5.3)

During unbalanced faults, these contra rotating phasors with different am-

plitudes and phases add together to form an ellipse. The major axis, rmaj,

minor axis, rmin, inclination angle, φinc, and shape index, SI can then be

calculated [1]. They are defined as follows:

rmaj = V1+ + V1−

rmin = |V1+ − V1−|

φinc = 0.5(φ1+ + φ1−)

SI = rmin
rmaj

(5.4)

The zero-sequence voltage is defined as:

v0(t) =
1

3
[va(t) + vb(t) + vc(t)] (5.5)

Similar to Equation 5.2, the zero-sequence voltage can be simplified into a

sum of harmonic components as:

v0(t) =
∞∑
n=1

Vn0 cos(nωt+ φn0) (5.6)

The fundamental frequency zero-sequence component can thus be defined

as:

v10(t) = V10 cos(ωt+ φ10) (5.7)

These metrics can then be used to classify ten different dip types. These

types are extracted from [4, 1] and are shown in Table 5.1. Their corre-

sponding metrics are tabulated in Table 5.2. Note that Type I* and I**

are closely related and are thus labeled as such in [1].
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Table 5.1: Dip Types’ Voltage Phasors and Space Vectors (Adapted from

[4, 1])

Voltage Phasors Space-vectors V10 Phasors

V10 = 0

V10 = 0

V10 = 0

Continued on next page
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Table 5.1 – continued from previous page

Voltage Phasors Space-vectors V10 Phasors

V10 = 0

V10 = 0

Continued on next page
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Table 5.1 – continued from previous page

Voltage Phasors Space-vectors V10 Phasors

5.3 Application of MPM

5.3.1 Signals of interest

MPM is employed to estimate the fundamental frequency space vector

component previously expressed in Equation 5.3. In order to extract the

information, a sliding window of 500 samples of the three phase voltages

were transformed into α − β − 0 components. The α − β components

form the space vector and is processed by MPM directly to estimate the

complex exponential components. Thereafter, to examine only the fun-

damental ±50 Hz components, the two components closest to 50Hz and

-50Hz respectively are extracted for evaluation. We then form the esti-

mated fundamental frequency space vector as expressed in Equation 5.3.
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Table 5.2: Classification of Voltage Dip and Swells based on Space Vector
and Zero-Sequence Voltage [1]

Dips Type
Space Vector Zero Sequence

VoltageSI φinc rmin rmaj

1-φ Dips

B 1− 2
3
d 5π

6
− nf π3 (1− 2

3
d)V V −d

3
V cos(ωt+

φ − (nf −

1)2π
3

)

D 1− d 5π
6
− nf π3 (1− d)V V 0

F 3(1−d)
3−d

5π
6
− nf π3 (1− d)V (1− d

3
)V 0

2-φ Dips

C 1− 4
3
d (1− nnf )π3 (1− 4

3
d)V V 0

E 3(1−d)
3−d (1− nnf )π3 (1− d)V (1− d

3
)V d

3
V cos(ωt+

φ − (nnf −

1)2π
3

)

G 5−6d
5−2d (1− nnf )π3 (1− 6

5
d)V (1− 2d

5
)V 0

3-φ Dips A 1 - (1− d)V (1− d)V 0

Dip with

Rise in

non-

faulted

Phases

H 1 - V V −dV cos(ωt+

φ − (nf −

1)2π
3

)

I* 1 - V V 2dV cos(ωt+

φ − (nnf −

1)2π
3

)

I** 4
3
(1− d) (1− nnf )π3

4
3
(1− d)V V V

2
cos(ωt +

φ − (nnf −

1)2π
3

)

nf = Faulted phase with dip.

nnf = Non-faulted Phase with no dip. nnf , nf = 1, 2, 3 for phase A, B and C respectively.

φ = Positive Sequence Phase Angle.

V = 1.0 p.u.

d = Dip depth.
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The 0-component is also processed separately by MPM to extract the 50

Hz component. As it is a real signal, it contains both the positive and neg-

ative frequency component with the same information. Hence, only one of

them (the positive frequency component) was extracted for post process-

ing. With these information, the metrics in Equation 5.4 can be calculated

to classify the voltage dip.

5.4 Choice of Sampling Frequency

Our objective is to analyze and classify the fault within the shortest

possible time. Hence, it is important to know how the feature extraction

performance of MPM is affected with shorter time sampling window. From

Chapter 3 and 4, the feature extraction performance of MPM has been an-

alyzed for a range of discrete angular frequency, ωN by varying damping

factors and sampling frequencies. In this section, with the same informa-

tion, we have calculated the number of cycles of the analog test signal,

1.0e(j
10
180

π)e[α+j2π(50)]t described in Subsection 3.2.2. The calculation was

done with K = 500 samples and the discrete angular frequency ωN using

Equation 5.8.

Number of Cycles = K × ωN
2π

(5.8)

Figure 5.1 shows the various estimate variances in relation to the com-

plex exponential angle, θ and number of cycles of the analog signal in the

sampling window. In this way, the feature extraction performance can

be estimated for different sampling window widths in terms of number of

sinusoidal cycles.

In Figure 5.1b, a region where the angular frequency variance, s2ω is

less than (2π)2(rads−1)2 is marked out by the dashed line. Taking the

square root of the variance, the angular frequency standard deviation, sω,
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Figure 5.1: Variance of a.Analog Angular Frequency, b.Analog
Damping Factor, c.Amplitude, d.Phase Angle Estimates of Signal,

Ae(j
10
180

π)e[
2π(50)
tan θ

+j2π(50)]t

is thus less than 2π(rads−1). This is equivalent to the frequency standard

deviation, sf , less than 1 Hz. In reference to power system context, the

frequency range for a generator to operate indefinitely without disconnect-

ing from the grid is ±1 Hz from the nominal frequency of 50 Hz according

to the European Network of Transmission System Operators for Electric-

ity (ENTSO-E) proposed harmonized grid code [65].

In this region, we can observe that for a signal with complex exponential

angle, θ < −0.20π rad or equivalently, a damping factor of less than -593.6

s−1 for a 50 Hz signal, the signal frequency can be estimated within a

variance of 1 Hz2. In addition, this can be achieved with 0.1 to 1 cycle of

the signal.

The same region is marked out on the other variance plots. The damp-

ing factor estimate standard deviation, sα, is less than
√

101.8 ≈ 8 s−1 in the

same region. For the amplitude and phase angle estimates, the variances
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reduce with lesser number of cycles and lower damping factors. They are

well estimated with 0.1 to 1 cycles of samples.

All in all, these figures show that MPM can provide a fairly good pa-

rameter estimates of a moderately damped complex exponential signal of

θ < −0.20π rad with 0.1 to 1 cycle of the signal.

A subcycle sample window of 5 ms which is 0.25 times of a 50 Hz signal

cycle has been chosen instead of 0.1 cycle for our use so as to better esti-

mate signals with higher damping factors. With 500 samples, the sampling

frequency is calculated to be 100 kHz.

5.4.1 Signal Processing and Classification Algorithm

The fundamental frequency space vectors are first estimated by MPM

to derive the ellipse parameters listed in Equation 5.4. The first step is

to categorize the dip into two groups. For 1-φ, 2-φ and I** dip types,

the value of SI depends on the dip depth, d, while for the rest of the dip

types, SI=1. They are hereby named Group 1 and Group 2 dip types

respectively. IEEE 1346-1998 standard [66] defined a sag to be a decrease

in Root-Mean-Squared (RMS) voltage with typical values of 0.1 to 0.9 pu.

Group 1 dip types will thus have SI of less than 0.933 with a minimum dip

depth, d of 0.1 pu. Hence, voltage dips with SI < 0.933 are classified under

Group 1 dip types while those with SI ≥ 0.933 are classified as Group 2

dip types.

The Group 1 dip types can be further differentiated by comparing the

inclination angle, φinc, the major axis, rmaj and the fundamental frequency

zero-sequence voltage magnitude, |V10| as shown in Table 5.3. The φinc

determines affected phase(s). The single phase dip types are B, D and F

and the two phase dip types are E, C, G and I**. |V10| and rmaj then

further differentiate among these various dip types. The threshold values
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for |V10| and rmaj in Table 5.3 are calculated by substituting the minimum

dip depth, d = 0.1 pu, into their respective equations in Table 5.2. In

order to reduce computational resources, MPM is used to extract the V10

component only when the magnitude of any of the zero-sequence voltage

samples in the sampling window is larger than 0.03 pu. Otherwise, |V10|

will be taken as 0.0 pu.

Group 2 dips consist of only Types A, H and I*. They can be further

classified by evaluating the zero-sequence voltage magnitude and phase as

shown in Table 5.4. |V10| is at least 0.1 pu for Type H and I* dips for a

minimum d of 0.1 pu, while |V10| is zero for Type A. Then the phase differ-

ence between fundamental frequency zero-sequence and positive sequence

component is used to differentiate between H and I* dips.

5.4.2 Simulation of fault and Discussion

Simulation Setup - Simple Theoretical Case

A simple theoretical case is first built in PowerFactory [67] to test the

classification algorithm. This is shown in Figure 5.2. A 20 kV three-

phase voltage source is connected to a typical Dy transformer and then

connected to a 2 km cable with capacitance modeled in. A Type E dip was

generated with a two-phase-to-ground fault [4] at the 1km point on the

cable. The fault three-phase voltage waveforms are shown in Figure 5.3.

The distortions are caused by the interactions between the capacitance and

reactances in the system.

Estimation of the Shape Index, SI, |V10|, φinc and rmaj

In the first step of the classification algorithm, the SI has to be esti-

mated to categorize the faults into either Group 1 or Group 2 dip types.
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Table 5.3: Group I Classification

φinc |V10| rmaj Dip Types Phase(s) Dip

90± 15◦

≥ 0.033 pu ≥ 0.967 pu B

< 0.033 pu ≥ 0.967 pu D Aφ

< 0.033 pu < 0.967 pu F

30± 15◦

≥ 0.033 pu ≥ 0.967 pu B

< 0.033 pu ≥ 0.967 pu D Bφ

< 0.033 pu < 0.967 pu F

−30± 15◦

≥ 0.033 pu ≥ 0.967 pu B

< 0.033 pu ≥ 0.967 pu D Cφ

< 0.033 pu < 0.967 pu F

0± 15◦

≥ 0.033 pu < 0.967 pu E

≥ 0.033 pu ≥ 0.967 pu I** Bφ and Cφ

< 0.033 pu ≥ 0.960 pu C

< 0.033 pu < 0.960 pu G

−60± 15◦

≥ 0.033 pu < 0.967 pu E

≥ 0.033 pu ≥ 0.967 pu I** Aφ and Cφ

< 0.033 pu ≥ 0.960 pu C

< 0.033 pu < 0.960 pu G

−120± 15◦

≥ 0.033 pu < 0.967 pu E

≥ 0.033 pu ≥ 0.967 pu I** Aφ and Bφ

< 0.033 pu ≥ 0.960 pu C

< 0.033 pu < 0.960 pu G
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Table 5.4: Group 2 Classification based on |V10| and φ10 − φ1+

Dip Type |V10| φ10 − φ1+

A < 0.1 pu N.A.

H ≥ 0.1 pu −(nf − 1)× (120◦) + 180◦

I* ≥ 0.1 pu −(nnf − 1)× (120◦)

Figure 5.2: Single Line Diagram of Simple Theoretical Case

Figure 5.3: Fault waveforms generated for simple case
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The results are shown in Figure 5.4. The time, t, represents the time stamp

of the last sample in the sampling window. The fault occurred at t = 0.0

s. The region between 0 and 5 ms are coloured in grey as the sampling

window straddles across pre-fault and faulted regions. Straddling causes

erratic results as MPM is unable to estimate the eigenvalues accurately.

However, this can be overcome by processing the samples only after a fault

has been detected. Examples of fast fault detection algorithms can be

found in [62, 61] and are not part of the current discussion. The faulted

SI is estimated at about 0.8 consistently after 5 ms. This classifies the dip

under Group 1.

|V10| is estimated at about 0.1 pu and rmaj at about 0.9 pu. φinc is

estimated at about 60◦ or −120◦ as shown in Figure 5.5. Using Table 5.2,

we can easily classify this fault under Type E with a A-Bφ dip correctly

using the first 5 ms of sampled data.

Figure 5.4: Estimated SI, rmaj and |V10| for Type E Dip.
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Figure 5.5: Estimated φinc for Type E Dips.

Figure 5.6: Estimated Dip Type for (left) Type C, and (right) Type G
Dips.

5.4.3 Summary of Results

We have shown that using MPM on space vectors and zero-sequence

voltage, we are able to carry out fault classification on major fault types us-
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ing sub-cycle voltage samples. The positive and negative sequence voltage

signals can be extracted from the space vectors and used for fault analysis.

A distorted fault simulation on simple system has been used to test the

proposed method. A sliding sampling window of 5 ms has been used to

process the voltage signals. The fault has been correctly classified using

the first 5 ms of data or in other words, a quarter cycle time after the fault

occurred.

One limitation of MPM fault classification is that it is unable to provide

useful information when processing data straddling across faulted and non-

faulted region. This means that this method can only be applied after the

fault has been detected.

In the next chapter, a more realistic fault classification example using

a IEEE-34 standard bus system shall be discussed.
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Chapter 6

Modifications to Fault

Classification Algorithm

In this chapter, the analysis method described in Chapter 5 shall be

more rigorously tested with a realistic case of an IEEE 34-Bus Test System

[2]. Subsequently, modifications are made to the original MPM to increase

the accuracy and speed of the algorithm. The modifications include aug-

menting an ellipse fitting algorithm to the MPM method to estimate the

parameters of the ellipse and adding a pre-filter and down-sampling process

to increase the speed of the algorithm.

6.1 Simulation Setup - IEEE 34-Bus System

To further test the efficacy of using MPM in more realistic situations,

two similar and highly distorted faults, ie Type C and Type G dips, have

been simulated in a slightly modified IEEE-34 bus test system [2] in Power-

factory [67]. As we can observe from Table 5.2 and 5.3, Type C and G dips

are the closest and most difficult to differentiate among the 2−φ dip types.

Bollen [4] showed that a Type G dip can be obtained by transforming a
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Type E dip via two Dy-transformers consecutively. Hence, buses 854F and

854G have been added with Dy-transformers to the original IEEE-34 bus

test system in order to do that. The voltage dips occurred on phases A

and B in both cases. The faults were simulated on line 834-842. This

is shown in Figure 6.1. The voltage measurements for Type C dip were

taken at node 854 while those for Type G were taken at node 854G. The

voltage dips at these nodes were less severe than those close to the faulted

point and thus were more difficult to differentiate. Type C dip and Type G

dip were generated with a phase-to-phase fault and a two-phase-to-ground

fault respectively [4].

Fault voltage waveform distortion have been recognized in urban net-

work systems where a mixture of overhead lines and underground cables

exist [68], [69]. These distortions increase the difficulty of accurately esti-

mating the fundamental frequency component. The instantaneous phase

voltages were sampled at 100 kHz and shown in Figure 6.2. Note that the

resulting fault signals look very similar and are highly distorted.

6.1.1 Results of Parameter Estimation with MPM

only

It was observed that MPM was able to estimate well the shape of the

space vector partial ellipse in the 5 ms sampling window as shown by thick

dotted red line in segment (b) in Figure 6.3 even when the recorded signals

looks very distorted. However, the estimation becomes poor when the

parameters extracted by MPM are used to extrapolate the signal to 20

ms. This is shown by segment (c) in the figure. This poor extrapolation is

however resolved by augmenting the MPM with an ellipse fitting algorithm

as described in subsequent Subsection 6.1.2. The estimation results of |V10|,
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Figure 6.1: Simulated Network

Figure 6.2: Fault voltage waveforms and MPM measured voltages during
Type C and G voltage dips.
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SI and rmaj are shown in Figure 6.5 while those of φinc are shown in Figure

6.4. |V10| was consistently estimated to be below 0.03 pu for both cases

but the initial estimates for the other parameters have large fluctuations,

causing the classification to be inconsistent until only about 15 ms after

the fault has occurred as shown in Figure 6.6. In order to improve this

performance, an ellipse fitting algorithm has been augmented as described

in the following subsection.

Figure 6.3: Measured voltage space vector, MPM estimated fundamental
frequency space vector and MPM with augmented Ellipse fitting estimate
for (1) Type C and (2) Type G Dips. Segments (a) and (b) are the MPM
estimation from (-5ms, 0s) and (0, 5ms) sampling windows respectively.
Segment (c) is the estimated space vector extrapolated to 20 ms based on
MPM’s results from first 5 ms.

6.1.2 Augmenting with Ellipse Fitting

An efficient yet robust ellipse fitting algorithm [70] has been augmented

to improve the estimation performance. With the center coordinates of the
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Figure 6.4: Estimated φinc for Type C and G Dips with and without Ellipse
fitting.

Figure 6.5: Estimated SI and rmaj for Type C and G Dips with and
without Ellipse fitting.

Figure 6.6: Estimated Dip Type for Type C and G Dips with and without
Ellipse fitting.
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ellipse at (0,0), the equation of an ellipse with three parameters (A, B, γ)

is written as:

ax2 + bxy + cy2 = 1 (6.1)

The parameters A, B and γ are shown in Figure 6.7. A is the ellipse’s x-

axis while B is its y-axis. The ellipse is rotated by angle γ from the original

reference axes. The rmin and rmaj can thus be found by determining which

of the A and B values is the major or minor axis. Then φinc can be

subsequently be determined from γ easily.

Every three points [(x1, y1), (x2, y2), (x3, y3)] from the partial ellipse can

determine a group of the three values of A, B and γ using Equation 6.2

and 6.3. We calculated A, B and γ using every three successive points,

50 samples apart, from MPM’s reconstructed 5-ms fundamental frequency

space vector and found the medians of A, B and γ from the results. As

the three points are 50 samples apart, only 7 groups of samples are used,

thus making the computation minimal.

a =
∆1

∆0

, b =
∆2

∆0

, c =
∆3

∆0

(6.2)

where ∆0 =

∣∣∣∣∣∣∣∣∣
x21 x1y1 y21

x22 x2y2 y22

x23 x3y3 y23

∣∣∣∣∣∣∣∣∣
∆1 =

∣∣∣∣∣∣∣∣∣
1 x1y1 y21

1 x2y2 y22

1 x3y3 y23

∣∣∣∣∣∣∣∣∣
∆2 =

∣∣∣∣∣∣∣∣∣
x21 1 y21

x22 1 y22

x23 1 y23

∣∣∣∣∣∣∣∣∣
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∆3 =

∣∣∣∣∣∣∣∣∣
x21 x1y1 1

x22 x2y2 1

x23 x3y3 1

∣∣∣∣∣∣∣∣∣
then

γ = 0.5 arctan b
a−c

A2 =
∣∣∣ cos 2γ
a cos2 γ−c sin2 γ

∣∣∣
B2 =

∣∣∣ cos 2γ
a sin2 γ−c cos2 γ

∣∣∣
(6.3)

Figure 6.7: Ellipse Parameters

Results

The green line in Figure 6.3 shows the estimated ellipse from the first

5 ms of data after augmenting the fitting algorithm to the MPM method.

The results clearly show that this method can greatly improve the estima-

tion of the fundamental frequency space vector ellipse.

The results of the estimation of SI, |V10|, rmaj and φinc are shown in

Figure 6.4 and 6.5. In comparison with those using only MPM method,

the augmented technique reduced the fluctuations of the estimated values

significantly, enabling the classification to be consistent after 5 ms as shown

in Figure 6.6. Using Table 5.2, we can easily classify both faults correctly

with the parameters that have been estimated.
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6.1.3 Limitations of Current Method

We have shown the use of MPM with augmented ellipse fitting method

on voltage dip signal classification. The attentive reader could have recog-

nized that even though this method can analyze the signal with a quarter-

cycle length of information, it may involve a relatively long computation

time due to the inherent computationally intensive SVD process in MPM.

When running this algorithm on an Intel R©Core 2TMDuo CPU T8300 at

2.4 GHz clock speed with a MicrosoftTMWindows-XP operating system,

the computation time was measured at about 100 to 300 ms depending on

whether MPM was also performed on the zero-sequence component or not.

The sampling window of the data on the other hand was 5 ms. Hence even

though this method can classify the fault using 5 ms of data, the length

of computation time would have exceeded 1 fundamental cycle time of 20

ms. This limits the practical use of this method.

Hence, this shall be addressed in the following section where a filtering

and down-sampling method is used to process the data before the MPM

method in order to reduce computation time.

6.2 Fast Implementation of Fault Classifica-

tion

The inherent SVD algorithm in MPM is a very computationally in-

tensive process that has a O(n3) time complexity [71]. Hence, one way

to reduce computational time is to reduce the number of samples to be

processed by down-sampling the data. However, before the data can be

down-sampled, the signal components of frequency higher than the Nyquist

frequency of the new sampling rate have to be filtered out to reduce aliasing
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effects.

Ideally, the filter should be chosen such that it can effectively attenuate

higher frequencies while having minimal transient response. In addition,

the filter should also be computationally fast. In our case, slight distortion

due to non-linear phase delay is tolerable because only the fundamental

frequency component is desired. In view of these requirements, a digital

second-order Butterworth filter with a cut-off frequency of 1200 Hz has

been chosen. The transient response for the filter to reach steady-state is

about 1 ms as shown in Figure 6.8. From the Figure, it can be seen that

any increase in the order of the filter will result in a longer time for the filter

to reach steady-state. This is undesirable as this would delay the start of

MPM processing. MPM can only process the signal after steady-state has

been reached so that the desired information can be extracted accurately.

The frequency response of the Butterworth filters are shown in Figure

6.9. Our signals of interest are the fundamental frequency signals that are

close to 50 Hz. Figure 6.9 shows that the Butterworth filters have almost

no attenuation for signals below 100 Hz and starts to attenuate signals

above this frequency. They are thus suitable for our use. A second-order

Butterworth filter with a cut-off frequency of 1200 Hz has been chosen as

a compromise between its relatively shorter transient response time and

greater attenuation of high frequency signals. The filter coefficients has

been calculated using the Labview [39] Filters module.

Figure 6.10 shows the resultant frequency plot of the filtered space

vector signal of the Type-G dip type previously generated in Subsection

6.1.1 with the modified IEEE 34 Bus network. Frequencies higher than

2.5 kHz are attenuated to lower than -40 dB. With reference to a 1.0 p.u

reference signal, -40 dB is equivalent to an amplitude of 0.01 p.u. Recalling

Chapter 2, the tolerance setting, tol, for MPM has been set to 0.001 for
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data that is accurate up to 3 significant digits. Hence, tol is now set to

0.01 corresponding to -40 dB. As frequencies above 2.5 kHz are attenuated

to below -40 dB, down-sampling of the data to a sampling rate of 5 kHz

will not cause aliasing effects that adversely affect the feature extraction

performance of MPM on 50 Hz signals.

Figure 6.8: Step Response of Low-Pass Butterworth Filter with cut-off
frequency at 1200 Hz

As a modification, a sliding window of 600 samples, or equivalently

6 ms, has been used. This is because the first 100 filtered samples shall

be discarded as they contain the transient response of the filter. Only

the remaining 500 samples are subsequently processed. The remaining

filtered samples are then down-sampled by a factor of 20. This reduces the

effective sampling rate from 100 kHz to 5 kHz. The number of samples to

be processed is also reduced from 500 to 25.

The ellipse fitting-augmented MPM algorithm is then used to process

the down-sampled signal to extract the relevant components for fault clas-
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Figure 6.9: Frequency Response of Low-Pass Butterworth Filter with cut-
off frequency at 1200 Hz

Figure 6.10: Frequency Plot of Raw and Filtered IEEE Case G-Type Dip
Space Vector Signal
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Figure 6.11: Fault Classification Process

sification. The full fault classification process is shown in Figure 6.11.

6.2.1 Simulation and Results

Two similar fault situations are again simulated in the IEEE-34 Bus

test system [2] in PowerFactory [67]. A Type D dip and a Type F dip

have been generated at node 854F separately by simulating a two-phase

and two-phase to ground faults respectively on line 834-842 and transform-

ing them through a Dy11-transformer [4] located between node 854 and

854F. The single line diagram is shown in Figure 6.1. The voltage dips

occurred on phase C in both cases. The inclination angle should therefore

be approximately −30◦ according to Table 5.2.

The voltages are sampled at 100 kHz and the fault voltages are shown in

Figure 6.12. The fault voltages look very similar and distorted immediately

after the onset of the fault.
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Figure 6.12: Fault voltage waveforms and MPM measured voltages during
Type D and F voltage dips.

Figure 6.13: Measured voltage space vector, MPM estimated fundamental
frequency space vector and MPM with augmented Ellipse fitting estimate
for (1) Type D and (2) Type F Dips. Segments (a) and (b) are the MPM
estimation from (-6ms, 0s) and (0, 6ms) sampling windows respectively.
Segment (c) is the estimated space vector extrapolated to 20 ms based on
MPM’s results from first 6 ms.
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Figure 6.14: Estimated φinc for Type D and F Dips with and without
Ellipse fitting.

Figure 6.15: Estimated SI and rmaj for Type D and F Dips with and
without Ellipse fitting.

Figure 6.16: Estimated Dip Type for Type D and F Dips with and without
Ellipse fitting.
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Both the results of using MPM only and the ellipse fit-augmented MPM

algorithms have shown in Figure 6.13, 6.14, 6.15 and 6.16.

The results are similar to those of the algorithm used without down-

sampling as described in Subsection 6.1.1. Using only MPM, the algorithm

was able to estimate well the space vector partial ellipse in the 5 ms sam-

pling window as shown by thick dotted red line in segment (b) in Figure

6.13. However, the estimation becomes poor when the parameters ex-

tracted by MPM is used to extrapolate the signal to 20 ms. This is shown

by segment (c) in the figure. This poor extrapolation also resulted in incon-

sistent classification of the fault as shown in Figure 6.16 as the fundamental

frequency component parameters were not estimated well. The estimation

results of |V10|, SI and rmaj are shown in Figure 6.15 while those of φinc

are shown in Figure 6.14. |V10| was consistently estimated to be below 0.03

pu for both cases.

The green line in Figure 6.13 shows the estimated ellipse from the first

6 ms of data after augmenting the fitting algorithm to the MPM method.

The results clearly show that this method greatly improved the estimation

of the fundamental frequency space vector ellipse and is minimally affected

by the filtering and down-sampling process.

The results of the estimation of SI, |V10|, rmaj and φinc are shown in

Figure 6.14 and 6.15. The ellipse fitting technique reduced the fluctua-

tions of the estimated values significantly, enabling the classification to be

consistent after 6 ms from the onset of the fault as shown in Figure 6.16.

Using Table 5.2, we can classify both faults correctly with the parameters

that have been estimated.

The computation time for running this improved algorithm on an Intel R©Core

2TMDuo CPU T8300 at 2.4 GHz clock speed with a MicrosoftTMWindows-

XP operating system was measured at about 1 to 3 ms. This meant it is
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able to classify the fault by 9 to 10 ms after the onset of the fault. This is

an improvement over FFT [1] which required at least 20 ms (1 fundamental

cycle) after the fault.

6.3 Summary of Results

We have shown that using MPM on space vectors and zero-sequence

components, we are able to carry out fault classification on major voltage

dip types using sub-cycle voltage samples. The fundamental frequency

positive and negative sequence voltage signals can be extracted from the

space vectors and used for fault analysis. An efficient ellipse algorithm has

been augmented to MPM for increased accuracy. A highly distorted fault

simulation on IEEE-34 distribution bus system has been used to confirm

the efficacy of the proposed method. It is shown that a sliding sampling

window of 5 ms is sufficient to classify the fault accurately, showing that

this method is robust to transients and distortions in the waveform.

This method requires a computation time of 100 to 300 ms which is

undesirable. Thus a filtering and down-sampling approach have been used

to reduce the computation time. The original signals are passed through

the second-order Butterworth filter with a cut-off frequency at 1200 Hz

and then down-sampled by a factor of 20. These signals are then processed

using the augmented-MPM approach. The results show that this improved

technique reduced the computation time to a maximum of 3 ms and still

provided consistent and accurate classification results.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, the performance of MPM in relation to sampling win-

dow width, sampling frequency and damping factor has been statistically

analyzed. It was found that a high sampling frequency does not necessar-

ily yield the best estimation performance of MPM but rather, an optimal

sampling frequency should instead be used. MPM is found to be able to

estimate the parameters reasonably well between 0.1 to 1 cycle of a mod-

erately damped complex sinusoid.

MPM has been applied to a fault classification technique. This tech-

nique performs well on a fault signal generated from a simple theoretical

case with a 5 ms sampling window. It is able to extract the fundamental

frequency components’ parameters consistently and is able to identify a

Type E fault well.

In a more realistic fault case in IEEE 34-bus test system, this technique

was only able to provide a consistent classification accurately after 15 ms

as the estimation of the parameters are affected by the fault transients.

An ellipse fitting algorithm was added to estimate the ellipse parameters
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based on fundamental frequency components estimated in the first 5 ms

by MPM. This improved the estimation and provided a consistent fault

classification using 5 ms of data. This algorithm, however, takes 100 ms to

300 ms of computation which reduces the practical uses of this algorithm.

In order to reduce the computation time, a pre-filtering and down-

sampling process have been added. The maximum amount of time for this

improved algorithm to complete on an Intel R©Core 2TMDuo CPU T8300

system is 3 ms. This fast computation thus allows the dip to be classified

within 9 to 10 ms from the onset of the dip. This is an improvement from

the original method proposed in Vanya [1] that employed FFT to extract

the 50 Hz components as that would require a sampling window of at least

20 ms, which is one cycle of the fundamental frequency.

7.2 Future Work

Future work should be done in order to further exploit the use of MPM

as a signal processing technique. One example would be to further under-

stand how MPM can improve frequency resolution when there are nearby

frequency components near the frequency of interest. This would aid in

the feature extraction performance in such situations.

Other applications of MPM in power systems analysis can also be re-

searched on as part of the future work. All in all, MPM has been shown

to be a promising method of feature extraction. Further work should be

done to fully exploit its uses in the power system signal analysis.
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