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Abstract

Determining the minimum energy conformation of polypeptides from its amino

acid sequence is an essential part of the problem of protein structure prediction.

Our research focuses on developing ab initio methods to minimize the nonlinear,

nonconvex potential energy function of proteins constrained by the bounds on

dihedral angles. We use the CH AR MM energy function which calculates the

total potential energy of a protein as a sum of its interaction energies. Two new

approaches belonging to the class of interior-point methods have been proposed

to solve the above-mentioned problem.

The first approach uses a barrier function to transform the original problem

into a sequence of subproblems. A key feature of our method lies in how such

subproblems are solved. First-order necessary conditions are used to generate

a search direction, which is the direction of descent for the subproblem being

solved. In order to determine the steplength we employ the golden section search

method. Issues related to the algorithm implementation, parameter initialization

and parameter updates are also discussed. The performance of the proposed

approach is also shown by applying it to a number of standard test problems

from the literature.

The second approach is also based on the barrier function method. H owever,

it does not employ an external function to be used as a barrier function. Utilizing



ix

an external function will only complicate an already complex objective function.

H ence, the term for Lennard-Jones 6-12 potential, which is used to model the

van der Waals interactions in the CH AR MM energy function is used as a barrier

function. Thus a hypothetical barrier problem using the Lennard-Jones term is

formulated. The Lennard-Jones term satisfies the properties required of a barrier

function and hence its usage guarantees at least a good local solution, if not

a global one. In order to gauge the performance of the proposed approach, a

number of problems in the area of energy minimization of Lennard-Jones clusters

are solved.

The two proposed solution approaches have been utilized to solve a number

of dipeptide structures of amino acids. The dipeptide structures serve as a good

starting point for testing the effi ciency of the proposed methods. The ability of

the solution methods to handle larger problems is also tested by applying it to

several polypeptide structures to determine their minimum energy conformation.

The performance of the solution methods is also compared with that of a genetic

algorithm implementation. Apart from this, the results obtained are also com-

pared with those available the literature. B ased on the comparison, we conclude

that the proposed approaches are computationally inexpensive and provide good

quality solutions.
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C hapter 1

Introduction

Peptides are short polymers of amino acids. They play an important role in

physiological and biochemical functions of life. Shorter peptides consisting of

two amino acids and joined by a single peptide bond are called dipeptides. A

linear chain of 20 or more amino acids joined together by peptide bonds are

called polypeptides. One or more polypeptides combine to form proteins. As it is

widely believed that the three-dimensional (native) structure of protein is the one

which minimizes its potential energy. H ence, determining the minimum energy

conformation of proteins form an integral part of protein structure prediction.

1.1 Motivation

The problem of protein structure prediction is one of the prominent problems in

the field of molecular biology. In spite of rigorous research done over the past

years, the problem still remains an unsolved one. The problem in question is to

find the native three-dimensional (stable) structure of the protein from its linear

sequence of amino acids. In the following, we discuss the potential applications

and importance of solving the problem of protein structure prediction.

Currently, the protein structure is determined through experimental tech-
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niques such as X -ray crystallography and nuclear magnetic resonance (NMR )

spectroscopy. Though these methods are productive, Wider (2000) mentions that

they are extremely time consuming and very expensive. Moreover, the author de-

scribes the diffi culty of some proteins which cannot be crystallized and hence the

X -ray crystallography method cannot be used to study the structure of the pro-

tein. For NMR methods to be used, the protein in solution should be of specific

density. If the protein of interest, in its solution form does not measure up to

the required density levels, then NMR techniques cannot be used. H ence, devel-

opment of computational techniques to address the problem of protein structure

prediction is of high importance.

One of the main applications of protein structure prediction is its usability in

de novo protein design, i.e. helping to identify the amino acid sequences that fold

into proteins with desired functions. As Floudas et al. (2006) states, the main

goal of protein design is not only to achieve the desired structure but also to

render specific functions or properties to the novel protein. Most of the diseases,

Alzheimer’s disease, Parkinson’s disease to name a few, occur due to malfunction-

ing of proteins or misfolded proteins. Thus, with the artificially designed proteins,

we will be able to treat the diseases that occur due to improper functioning of

proteins. This is made possible by artificial drug design for which the structure

of protein representing the minimum energy is required. The problem of peptide

docking, closely related to the protein folding problem, requires identification of

equilibrium structures for a macromolecule-ligand complex. B y treating it as a

protein folding problem, apart from correctly identifying the binding site for the

target molecule it also helps to identify a number of equilibrium structures for

candidate docking molecules.
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The problem of protein structure prediction is similar to the problem of molec-

ular structure prediction. Knowledge of molecular structure is essential for design

of molecules for specific applications. Examples of these types of applications pro-

vided by Meza & Martinez (1994) include development of enzymes for toxic wastes

removal, development of new catalysts for material processing and the design of

new anti-cancer agents. The design and development of these drugs depends on

the accurate determination of the structure of the corresponding molecules. B ut

for smaller molecules, molecular structure prediction is still an unsolved problem.

Molecular Dynamics (MD) simulation, one of the many techniques in the area of

computational chemistry, is used to study the macroscopic properties of complex

chemical systems. The initial step in the Molecular dynamics studies is to pro-

vide a structure of the molecule that minimizes its free energy. B etter results are

obtained from MD studies with structures that truly represent its global mini-

mum state. As of now, structures for which true global minimum is not known,

a set of low-energy conformations, which often represent meta stable states are

used (Wilson & Cui, 1988). Thus solution methods that are developed to deter-

mine the minimum energy conformation can also easily be adapted to solve the

molecular structure prediction problem.

The application of energy minimization problems is not restricted to compu-

tational chemistry or structural biology. Moloi & Ali (2005) mentions the appli-

cability of minimizing the potential energy equation in nano-scale devices within

the semiconductor industry. Thus the problem of energy minimization, with its

wide areas of application and uses, should be dealt in greater detail to provide

elaborate, meaningful and effi cient solutions that could be put to practical use.
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1.2 C urrent Scenario

R ecombinant DNA techniques facilitated rapid determination of DNA sequences

which in turn helped in discovering the amino acid sequences of proteins from

structural genes. The number of such sequences is increasing almost exponen-

tially whereas the progress on the structure prediction front is on the lower side.

The functional properties of proteins depend on their three-dimensional struc-

ture. In order to aid the process of protein structure prediction, the National

Institute of General Medical Sciences (NIGMS), launched the Protein Structure

Initiative (PSI), in 1999. The overall strategy of PSI is to experimentally deter-

mine unique protein structures, thereby creating a systematic sampling of major

protein families and a large collection of protein structures (National Institute of

H ealth, 1999). Structures thus created will serve as templates for computational

modeling of related sequences.

Several methods have been developed to predict the minimum energy confor-

mation of protein structures by comparing the target sequence to a given tem-

plate. Though success rate has been higher, these methods require a template to

which it can compare and predict the structure of the sequence in question. The

other class of methods, called ab initio methods, predicts the three-dimensional

structure directly from the amino acid sequence without resorting to any tem-

plate. H owever, such methods require a scoring function which could accurately

model the folding pathway of the protein.
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1.3 C hallenges

Ever since Anfinsen (1973) suggested that the three-dimensional structure of a

native protein is the one in which the Gibbs free energy of the whole system is

the lowest, several quantitative and qualitative systems for modeling the energy

function of proteins has been developed. Anfinsen’s hypothesis led to a redef-

inition of the problem of protein structure prediction to finding the minimum

energy conformation of proteins. Such a formulation led to the use of several

optimization techniques in search of local as well as global optimal solutions.

The most common optimization techniques employed in this area are simu-

lated annealing (Liu & B everidge, 2002; Liu & Tao, 2006; R ohl et al., 2004; Son

et al., 2012), genetic algorithm (B rain & Addicoat, 2011; de Sancho & R ey, 2008;

John & Sali, 2003; Schneider, 2002) and monte carlo simulation (Al-Mekhnaqi et

al., 2009; Guvench & MacKerell, 2008; Kolinski & Skolnick, 1994). These meth-

ods help in searching of the vast conformational space of the energy hypersurface

to find good solution(s). Over the years, different variations of these methods

have been tried and good solutions have also been reported. Of the number of

exact methods that have been proposed, only alpha B ranch and B ound algorithm

developed by Maranas et al.(1996) have reported encouraging results. The main

focus of our research is to develop effi cient exact methods to solve the problem

of energy minimization. The choice of exact methods has its advantages because

of the mathematical basis that it provides to determine the quality of solution

obtained. It will help to determine if the solution obtained is local or global

optimum, failing which we would at least have an idea of how far it is from the

optimum.
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1.4 B ackground

Proteins are arguably the most complex and vital components of life. Proteins are

a class of bio-macromolecules that make up the primary constituents of biological

organisms. Each protein that we know of has specific functions to perform which

is highly dependent on its three-dimensional structure. Functions include, but are

not limited to, catalyzing chemical reactions, storage and transport of ligands,

and immune response. This section aims to give an overview of proteins and the

components that make them, the different structures they adapt, its geometrical

representation and the existing methods to predict their structures.

1.4.1 Amino Acids

Amino acids are the basic building blocks of proteins. In nature, there are only

20 different types of amino acids. All the amino acids have a carboxyl group

(COOH), an amino group (NH2) and a hydrogen atom attached to the central

carbon atom (Cα). H owever, the difference between the amino acids arises due

to the different side chain (R) that is attached to Cα. Figure 1.1 represents a

schematic diagram of an amino acid. The amino acids are generally classified

N

H

H

C

C

O

OH

H

R

Figure 1.1: Structure of an amino acid
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Table 1.1: Amino acid classification and notation

H ydrophobic Alanine(Ala, A), Valine(Val, V), Phenyalanine(Phe, F)

Proline(Pro, P), Methionine(Met, M), Isoleucine(Ile, I)

Leucine(Leu, L)

C harged Aspartic acid(Asp, D), Glutamic acid(Glu, E), Lysine(Lys, K)

Arginine(Arg, R )

Polar Serine(Ser, S), Threonine(Thr, T), Tyrosine(Tyr, Y )

H istidine(H is, H ), Cysteine(Cys, C), Asparagine(Asn, N)

Glutamine(Gln, Q ), Tryptophan(Trp, W)

according to the side chain attached to the central carbon atom. The side chain

could be a simple hydrogen atom or sometimes a complex aromatic ring. B randen

& Tooze (1991) classifies amino acids as H ydrophobic, Charged and Polar. Table

1.1 lists the classification of amino acids along with the three letter and single

letter notation that are commonly used. As seen in Table 1.1, each protein can

be uniquely represented by a sequence of three-letter or one-letter codes. Amino

acids are joined end to end during the synthesis of protein. This is made possible

by condensation reaction in which a molecule of water is shed and a peptide bond

is formed between adjacent amino acids. Thus numerous amino acids are joined

end to end to form a polypeptide or a protein. The repeating -NCαC- chain of

a protein is called its backbone. H ormones are the smallest proteins and have

about 25 to 100 amino acid residues, typical globular proteins have about 100 to

500, while fibrous proteins may have more than 3000 residues.
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N

H

H

C

C

O

N

H

H

C

C

O

OH

N

H

H

C

C

O

OH

N

H

C

C

O

OH

H H

H

R R

R

R H

HOH

Peptide Bond

Figure 1.2: Peptide bond formation

1.4.2 Typ es of Protein Structure

The first X -ray crystallographic structural results on a globular protein molecule,

myoglobin, reported in 1958, showcased the lack of symmetry and the complexity

that the protein’s structure possess. Such irregularity in structure is essential for

proteins to fulfill their functions. In spite of the irregularity, there are certain

regular features that help to classify protein structures.

The linear chain of amino acids is called the P rim ary Structure. Though, the

structure is extremely short-lived, it contains the sequence of amino acids that

are required to form the final shape. Figure 1.3 shows the primary structure of a

protein.
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Figure 1.3: Primary structure of a protein

It has been observed that in a folded protein, the interior of the molecule is

hydrophobic, whereas the surface is hydrophilic. The side chain components of

water-soluble proteins are hydrophobic. In order to minimize the exposure of side

chain components to the solvent, the side chains are bought into the core, which

helps in stabilizing the folded state. Side chains which are charged and polar are

situated on the surface, thereby interacting with the surrounding environment.

Apart from the hydrophobic side chains, hydrogen bond formation also helps

in stabilizing the protein structure. These hydrogen bond formations lead to

what is called the Secondary Structure of the protein molecule. Such secondary

structure is usually of two types: Alpha H elices and B eta Sheets. B oth types have

the main chain NH and CO groups participating in the formation of hydrogen

bonds. Figure 1.4 shows the commonly occurring α helix and β sheet structures.

The final specific geometric shape that a protein assumes is called the Tertiary

Structure. This final shape is determined by a variety of bonding interactions
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Figure 1.4: Secondary structure of a protein

between the side chains of the amino acids. These interactions between side

chains may cause a number of folds, bends, and loops in the protein chain. The

interactions could be due to hydrogen bonding, disulfide bond or hydrophobic

interactions. It is in this final shape, the proteins perform the function that it was

intended to do. Figure 1.5 shows a tertiary structure of Asparagine Synthetase.

Figure 1.5: Tertiary structure of asparagine synthetase
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The fourth level of protein structure, called the Q uaternary Structure, occurs

due to the interaction of two or more polypeptide chains, which associate and

form a larger protein molecule. The forces that stabilize a quaternary structure

are much the same as those that stabilize the secondary and tertiary structure.

Examples of proteins with quaternary structure include hemoglobin, DNA poly-

merase, and ion channels. Figure 1.6 shows an example of quaternary structure.

Figure 1.6: Q uaternary structure of a protein

1.4.3 Protein Structure Prediction

The problem of protein structure prediction lies in determining its tertiary struc-

ture from the given sequence (target sequence) of amino acids. As Anfinsen (1973)

mentions, the primary sequence of a protein contains the necessary information

for determining its conformational arrangement, and thus it is feasible to predict

the tertiary structure of a protein based on its sequence alone. This is one of the

areas that have been actively researched and still the solution continues to elude

the researchers involved. The gap between the protein sequences and its pre-

dicted structure continues to increase, highlighting the need for techniques that
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could predict the protein structure with considerable accuracy. The growth in the

number of protein sequences can be attributed to the various genomic sequencing

projects that have been actively undertaken around the world. H owever, simi-

lar results did not surface in the area of protein structure prediction. In order to

accelerate the process of structure prediction, researchers have been using the bio-

logical knowledge and the available computational techniques to their advantage.

Over the years, many protein structure prediction methods have been developed

and can broadly be classified into the following three categories, namely, H omol-

ogy Modeling, Protein Threading and ab initio Folding. The first two methods

are template based and the third one does not resort to any template.

1.4.3.1 H omology M odeling

H omology Modeling is one of the methods that is known to have a reasonable

success in predicting the three dimensional structure of a protein. This method,

also known as Comparative Modeling, develops the three dimensional structure

of proteins from its sequence based on the structures of homologous proteins,

referred to as template. Though, homology primarily means sequence similarity

or structural similarity, it is however, not restricted to that. H omologous proteins

may also mean that they might have evolved from the same ancestors. Thus the

term “homology” is more of qualitative in nature. One important assumption

in this method, as mentioned in Chothia & Lesk (1986), is that if two or more

proteins are said to be homologous, then their three-dimensional structure are

more conserved than their primary sequence. It is this observation that has

helped to develop the three-dimensional structure of proteins that has very low

sequence similarities.
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The first step involved is to determine the homologous protein(s) from avail-

able structural databases and identify the sequence similarity. This set of pro-

teins is referred to as the parent template. Next is the sequence alignment phase,

wherein the multiple sequence similarities between the target sequences and the

homologous proteins are identified. After the known structures are aligned, they

are examined to identify the structurally conserved regions from which an aver-

age structure, or framework, can be constructed for these regions of the proteins.

Variable regions in which each of the known structures may differ in conformation,

should be identified so that it could be treated as loops in the finally constructed

structure. Once the identification of regions is done, the coordinates of the back-

bone atoms in the core region is obtained by copying them from the similar atoms

in the homologous protein. A side chain rotamer library is used to model the side

chain conformations. The variable regions are mostly modeled as loops, while in

some cases, if similarity exists, then the coordinates from the homologous protein

are copied. In order to improve the accuracy, refinement of the predicted model

is done. Various computer programs that helps in structural analysis, such as

PROCH ECK and 3D-Profiler, can be used. Sometimes, minimizing the energy

function is also used as one of the methods to tweak the predicted structure.

1.4.3.2 Protein Threading

Protein Threading, also known as Fold R ecognition, is widely used and effective

because of its underlying assumption. It is believed that there are a strictly lim-

ited number of unique protein folds in nature, mostly as a result of evolution but

also due to constraints imposed by the basic physics and chemistry of polypeptide

chains. Thus, there is a 70− 80% chance that a protein which has a similar fold
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to the target protein has already been studied either by X -ray crystallography or

NMR spectroscopy which can be found in the Protein Data B ank. H ence, these

methods are applied to those target sequences which has similar fold as proteins

with known structures but do not have homologous proteins.

The basic idea is that the target sequence is compared with the collection of

backbone structures of template proteins and a“goodness of fit”score is calculated

for each sequence-structure alignment. This goodness of fit is measured mostly in

terms of an empirical energy function but many other scoring functions have also

been proposed and tried over the years. The most useful scoring functions include

both pairwise terms (interactions between pairs of amino acids) and solvation

terms. Many different algorithms that incorporate dynamic programming in some

form have been proposed for finding the correct threading of a sequence onto a

structure.

Jones (1999) reports three problems associated with this method that con-

tribute to its lack of use - slowness of the programs, the requirement of human in-

tervention to interpret the results and the inaccuracy of sequence-structure align-

ments produced. Though different methods proposed suffer from either of these

handicap, the above-mentioned article proposes an algorithm, GenTH R EADER ,

which recognizes protein folds with improved accuracy and reasonably fast. More-

over, the algorithm does not require any kind of human intervention.

1.4.3.3 Ab Initio Folding

Though, comparative modeling is the most accurate prediction method, the non-

availability of template structures for the majority of proteins makes one to look

into alternative methods. For those proteins which do not have templates, the ab
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initio method serves as the only alternative available now. The ab initio method

predicts the structure of a protein directly from its given sequence, without resort-

ing to any parental template. This method, however, is limited only to smaller

proteins. Major advances in computational power would take this method to the

next level.

The thermodynamical hypothesis governing the process of protein folding pro-

posed by Anfinsen (1973) forms the basic principle of ab initio methods. The

hypothesis states that the native structure of the protein would be at its global

free energy minimum. This has paved way for modeling the protein folding prob-

lem as an optimization problem. Different versions of the equation that represent

the energy of the protein have been derived and used as an objective function

which has to be minimized, in order to find its global minimum. Detailed ex-

planation of the energy function can be found in the Section 3.2. This method,

which utilizes the energy function of a protein is referred to as the atomic force

field approach. Various algorithms have been proposed to locate the minimum

point on the complex, nonconvex energy surface.

The other approach, often referred to as the knowledge-based method, relies

on simulating the folding pathway to predict the protein tertiary structure. B ut,

due to limited knowledge of the folding pathway and the complex bio-chemical re-

actions that take place in a fraction of a second, simulation is a highly improbable

task. Several algorithmic implementations have been tried and the success stories

are very few. During the process of folding, there are a multitude of interactions

taking place between the atoms. Since, there are huge number of such inter-

atomic interactions taking place, computational modeling of the system becomes

extremely complex. Duan & Kollman (1998), successfully simulated a protein of
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36 amino acids for one micro second, with 256 cray processors running for about

two months.

1.5 O rganization of T hesis

The remainder of the thesis is organized as follows: Chapter 2 is a literature

review composed of two distinct parts: Firstly, a literature review of various

methods in protein structure prediction is presented. Secondly, various optimiza-

tion techniques involved in the problem are classified and reviewed accordingly.

The problem formulation is described in Chapter 3 along with the protein geom-

etry. Chapter 4 gives a background of interior point methods and discusses the

proposed barrier function algorithm. Numerical results for some of the standard

test problems are also discussed. Chapter 5 proposes an intrinsic barrier function

algorithm to solve the problem of minimum energy determination. The intrinsic

barrier function algorithm is applied to the problem of minimum energy con-

formation of Lennard-Jones clusters to gauge the performance of the algorithm.

The proposed algorithms are then applied to polypeptides and the computational

experience, along with comparisons to other methods are presented in Chapter

6. An overall conclusion and the scope for future work is detailed in the final

Chapter 7.
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C hapter 2

L iterature Survey

The ab intio method of protein structure prediction deals with predicting the

native structure of protein given the linear sequence of amino acids. This so-

called protein folding problem is one of the most challenging problems in the field

of bio-chemistry, and as stated in Neumaier (1997), it is a very rich source of

interesting problems in mathematical modeling and numerical analysis, requiring

an interplay of techniques in eigenvalue calculations, stiff differential equations,

stochastic differential equations, local and global optimization, nonlinear least

squares, multidimensional approximation of functions, design of experiment, and

statistical classification of data. Although, a variety of solution techniques and

methods have been proposed, our research focuses on the optimization techniques

utilized to solve the problem in question. H ence, the literature review presented

here will handle two different topics; Firstly, we will review the studies till date

on the problem of protein structure prediction in general and ab intio methods in

particular. The survey will also cover the different energy functions (force fields)

that have been used to calculate the potential energy of a molecule. Secondly,

we will give an overview of widely reported optimization solution techniques that

have been utilized for solving the problem of protein structure prediction. Focus
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will be on both the exact algorithms and heuristics, which would help build our

solution method.

2.1 Introductory R eferences

As the area of protein structure prediction is a multi-disciplinary one, it is not

uncommon to look for introductory references in this area. Neumaier (1997)

serves as an excellent starting point for those from different backgrounds and are

willing to further their research in the area of protein structure prediction. For

a complete review of the advances in the field of protein structure prediction,

the reader is referred to Floudas et al. (2006), Floudas (2007) and Zhang (2008).

B randen & Tooze (1991) and B rooks et al. (1988) are some of the books which

provide an introduction to proteins and its structure. Pardalos et al.(1994) gives

an account of various optimization methods that could be used to solve the energy

minimization problem.

2.2 E xisting R esearch on Pred iction Methods

In spite of numerous research activities spanning different areas, the problem of

protein structure prediction still remains an unsolved one. Since the problem

has been in existence for more than three decades, a vast amount of literature

pertaining to this problem is available. This section reviews those literature which

seems to fit the overall objective of our research.

Ever since Anfinsen (1973) pointed out that the primary sequence of protein

contains the necessary information to determine its three-dimensional structure,

much attention was devoted to this area. Different classes of methods that were
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developed was discussed in Section 1.4.3. This section surveys the existing liter-

ature on these methods.

2.2.1 H omology M odeling

H omology modeling, as explained before, deals with the structure prediction of

those sequences which has homologous proteins. One of the earlier works in

this area, much before Anfinsen’s hypothesis, was done by Needleman & Wunsch

(1970). They developed a method to determine if significant homology exists

between proteins. The protein sequences are compared using a pair of amino

acids, each from one protein, using a two-dimensional array. Such methods have

been successfully used to identify related proteins. Later, Jurasek et al. (1976),

successfully built the structure for Streptoyces trypsin-like protein from that of

bovine trypsin using the ideas of homology modeling. Greer (1981) modeled

eleven structurally unknown proteins which belong to the mammalian serine pro-

teases family. Apart from predicting the structurally conserved region, Greer was

also able to find the possible structure of the variable region using the available

homologous proteins.

Swindells & Thornton (1991) reviews the methods that were developed until

1991, during which the concentration was only on those proteins which exhibits a

considerable similarity in sequence identity. Only later the ideas were extended to

those sequences for which the similarity between two proteins were undetectable.

H avel & Snow (1991) converted the multiple sequence alignments into distance

and chirality constraints and used them in distance calculations. This method

provides numerous conformations for the unknown structure, the difference of

which can be used as an indicator for the accuracy of predicted structure. The idea
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of homology modeling was also extended to the side-chain structure prediction as

in Laughton (1994). It calls for a method which involves the comparison of the

local environment of each residue whose side-chain conformation is to be predicted

with a database of local environments. The method was tested on eight proteins,

ranging in size from 46 to 323 amino acid residues, and it predicted 59.8% of all

side-chain dihedral angles within ±30 degrees of the crystal structure values.

Markov models were developed by Karplus et al.(1998) to find the remote ho-

mologs of the protein sequences. The method begins with a single target sequence

and iteratively builds a hidden Markov model from the sequence and homologs

are found using the H MM for database search. Notredame (2002) advocates

multiple sequence alignment methods and identifies the potential strengths and

weaknesses of existing methods. H omology modeling generally suffers from the

error occurring due to the alignment phase. In order to overcome that John &

Sali (2003) has adopted a genetic algorithm approach which starts with a set

of initial alignments and then iterates through re-alignment, model building and

model assessment to optimize the value of a scoring function. The accuracy in

the prediction is said to have increased from 43% to 54%. Tramontano & Morea

(2003) provides a recent review of the progress in the area of H omology Modeling.

Some of the research done in this area has been implemented either as auto-

matic or semi-automatic programs to predict the three-dimensional structure of

homologous proteins. Šali & B lundell (1993) developed a program called MOD-

ELLER , which finds the three-dimensional structure by satisfying the spatial

restraints. The spatial restraints are expressed as probability density functions

and are derived from the alignment between the sequence and the homologous

proteins. SWISS-MODEL, developed by Guex & Peitsch (1997) is a completely
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automatic prediction server, which can be used when there is a higher similar-

ity between the sequence and the template. Several variations of the B LAST

program has been used to search protein and DNA databases for sequence sim-

ilarities. Altschul et al. (1990) presents one such tool, which is a heuristic that

attempts to optimize a specific measure. H owever, the method has to do a trade-

off between the speed and sensitivity. Altschul et al. (1997) developed a new

heuristic called gapped B LAST that generates gapped alignments and runs at

three times the speed of the original. An additional heuristic was also incorpo-

rated for automatically combining statistically significant alignments produced by

B LAST into a position-specific score matrix and utilize it to search the database.

Position-Specific Iterated blast (PSI-B LAST) program was reported to be more

sensitive to weak similarities. Sequence Alignment and Modeling Tools, SAMT,

a software suite developed by Karplus et al. (1998) uses hidden markov models

to predict the three-dimensional structure.

2.2.2 Protein Threading

Protein Threading determines the three-dimensional structure of a protein se-

quence for which homology modeling methods does not provide a reasonable

prediction. It is believed that the structure is more conserved than the sequence

and that there are only quite a few unique folds compared to the multitude of

protein sequences available. While aligning the sequence to the protein structure,

the pairwise contact potential can either be ignored or considered. If the pairwise

potentials are considered along with the gaps, Lathrop (1994) proved that the

threading problem will become NP-hard.
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Jones et al.(1992), in their work, fitted the target sequences directly onto the

backbone coordinates of known protein structures in the full three-dimensional

space, incorporating specific pair interactions explicitly. Then they used the dy-

namic programming approach to predict the final three-dimensional structure.

Lathrop & Smith (1994) guarantees to find the optimal threading of a protein

sequence using a branch-and-bound algorithm, while including both the pairwise

contact potential and amino acid interactions. Lathrop & Smith (1996) considers

both the variable-length gaps and the pairwise contact potential, to find the exact

global optimum protein threading using the branch-and-bound approach.

X u & X u (2000) models the pairwise interaction between the residues as a

mean force between residues and the values are derived from already existing

structures. They also allow for alignment gaps in the loop regions. Kim et al.

(2003) suggests running the program without considering the pairwise contact

potential in the first stage. The contact potential is inferred from the first stage

and later included in the program for further run to globally optimize the scor-

ing function. X u et al. (2004) solves the protein threading problem by adapting

branch-and-cut approach. They claim that the linear relaxation of the integer

program possesses two well-known cuts in the constraint set and it solves to in-

tegral optimal solutions directly. Andonov et al.(2004) proposes a mixed-integer

programming model to solve the protein threading problem. They decompose the

problem into several subproblems and use a effi cient parallel algorithm to solve

the subproblems.

PR OSPECT (PROtein Structure Prediction and Evaluation Computer Toolkit)

is a computer program developed by X u et al. (1998) for protein structure pre-

diction. The threading algorithm in PROSPECT employs a divide-and-conquer
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strategy and guarantees to find the globally optimal alignment between a query

sequence and a template structure, while optimizing a certain energy function.

Later Kim et al. (2003) developed PROSPECT II, which does not consider the

pairwise interaction between the residues initially. It uses a dynamic program-

ming algorithm to solve the alignment problem and only later it includes the

interactions as a distance-dependent term in the second phase. PR OSPECT II

which is much faster than its earlier version did not fair well in the recognition

of targets.

Kelley et al. (2000) developed 3D-PSSM (three-dimensional position specific

scoring-matrix) which utilizes multiple sequence profile to recognize the fold tar-

gets. It actually calculates three different alignments between the target and the

template and updates the resulting values in a scoring matrix. A dynamic pro-

gramming algorithm is used to evaluate the optimal alignment. X u et al. (2003)

adapted a integer programming approach in their program, R APTOR : R APid

Protein Threading by Operations R esearch technique. A branch-and-bound ap-

proach was used to solve the linear relaxation model which accounted for both

the pairwise contact potential and the gapped penalties. The CAFASP3 evalua-

tion ranked R APTOR as the No.1 prediction server among individual prediction

servers in terms of the recognition capability and alignment accuracy.

The success of protein threading models depends on the recognition of correct

templates and generation of accurate sequence-template alignments. In case of

protein with low-homology, Peng & X u (2010) presents a profile entropy scoring

function for low-homology protein threading. While most of the protein threading

methods use only one template, Peng & X u (2011) uses multiple template to

improve modeling accuracy. The use of multiple templates helps to improve
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pairwise sequence-template alignment accuracy, thereby increasing the predictive

correctness of the model.

2.2.3 Ab Initio Folding

Given the linear sequence of amino acids, the ab initio method predicts the native

conformation of the protein without any aid from external databases or structural

templates. The basic idea in this method lies in searching the entire conforma-

tional space of the protein to identify the most stable state. Searching the entire

conformational space for proteins with large number of residues is a daunting task

even with the computational capability available today. H ence several techniques

in this area aim to reduce the search space or reformulate the problem in such

way that it can identify the most favorable state.

In order to identify the native structure of the protein one has to minimize

its energy function as proposed by Anfinsen (1973). Any of the energy functions

discussed in Section 3.2.1 is used to find the native state of the protein considered.

H owever, the energy surface is highly complex and its nonconvex nature makes it

one of the hardest problems to solve. Caution is required while using optimization

techniques as it may converge to a local optimum point rather than the global

optimum. Several global optimum methods have been developed to counter this

problem. Since the ab initio methods mostly employ optimization techniques,

the literature in this area are presented in the Section 2.3 which introduces and

presents the work carried out in the area of mathematical optimization pertaining

to the problem of protein structure prediction.
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2.3 O ptim ization Methods

With the advent of high speed computers, optimization techniques have become

popular among computational biologists. Depending on the problem type, opti-

mization methods help to locate optimal or near-optimal solutions of the problem

being pursued. In the area of computational biology, the formulated problems

are often nonlinear, and hence global optimization methods tend to be highly

relevant.

Global optimization addresses the computation and characterization of global

optima of nonconvex functions constrained in a specified domain Floudas (2000).

A general global optimization problem statement provided by Pintér (1996): given

a bounded set D in the real n-space, Rn and a continuous function f : D → R,

find

min f(x)

s.t. x ∈ D.
(2.1)

The general problem statement shown in (2.1) covers almost all specific global

optimization problems. Characterizing the global optima for the problem depends

very much on the complexity of the function f and the constraint set D. It is the

nature of the function and that of the constraint set that dictates the technique

to be used. Floudas (2000) details the theoretical and algorithmic advances in

deterministic global optimization whereas Pétrowski & Taillard (2006) describes

the various metaheuristics available to solve the problem.



26

2.3.1 O ptimization Techniques for Protein Structure Pre-

diction

The primary idea of this section is to elucidate the techniques that have at-

tracted much attention for solving the potential energy minimization problems

particularly in the area of ab intio methods of Protein Structure Prediction. As

mentioned before, these problems often have been formulated as optimization

problems to determine the lowest energy conformation. The nonconvex potential

energy equation which is used as the objective function for the problem makes

it diffi cult to develop solution techniques that could locate the true global mini-

mum. H owever, existing techniques have been employed to find good solution(s),

if not global ones. This section will review some of the more popular techniques

that have been used to handle the problem of protein structure prediction.

2.3.1.1 S imulated Annealing

The dauntingly complex conformational space of large-scale optimization prob-

lems inspired Kirkpatrick et al.(1983) to develop the method of simulated anneal-

ing, which has much in common with the physical annealing process. H eating a

metal and cooling it slowly, gives it a uniform crystalline state, which is believed

to minimize its free energy (global minimum). One of the earliest applications of

simulated annealing in structure prediction can be attributed to Wilson & Cui

(1988), who used the idea in their computer program to predict the structure

of peptide systems. Later the method was successfully applied to the “dipeptide

models”of all the 20 natural amino acids by Wilson & Cui (1990). They produced

a R amachandran-type plot on φ/ψ scale tracing the random walk for each run

only to find that as the temperature is lowered, the molecule spent more time
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in the lowest energy regions making the annealing process converge to the global

minimum.

H uber & McCammon (1997) propose a weighted-ensemble simulated anneal-

ing technique which uses multiple copies of the system that move independently.

As the temperature is lowered, copies that are trapped in high energy system

are deleted and those which move in a favorable direction towards the global

minimum are duplicated. This facilitates parallel computation and hence lesser

computational time. Liu & B everidge (2002) adapts a similar approach, in which

a number of replicas of the initial structure is subjected to individual simulated

annealing process. All the back bone torsion angles were allowed to move with

equal probability. Fragment assembly methods to predict protein structures often

employ simulated annealing as in R ohl et al. (2004). The technique was used to

randomly combine the identified fragments to form a compact structure which

was then minimized using a scoring function. An application of generalized sim-

ulated annealing algorithm on ab initio protein structure prediction is discussed

in Melo et al. (2012). The stochastic search algorithm that they employ depend

on utilizing the long-range interactions to predict the protein structure.

2.3.1.2 G enetic Algorithm

Genetic algorithm developed by H olland (1973), on the lines of biological evo-

lution, allows mutations and crossing over among the candidate solutions in a

hope to derive better ones. Though the genetic algorithms were not employed

for tertiary structure prediction initially, Tuffrey et al. (1991) used it to assign

side-chain rotamer conformations with the known fixed backbone conformation

of a protein. B lommers et al. (1992) used it to analyze the conformations of
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a dinucleotide photodimer. Sun (1993) used genetic algorithm to successfully

fold the protein melittin and apamin with a root mean square error of 1.66 Å.

Simultaneous optimization of the conformation population was done with the

probability set to unity for all the conformations to be replicated in order to

achieve maximal accessible search. Pedersen & Moult (1995) applied the ideas

of gentic algorithm-based search methods to fold small polypeptides and protein

fragments using double crossovers. A 200-step Monte Carlo simulation for each

member of the running population between crossovers was performed. Khimasia

& Coveney (1997) looks at the genetic algorithm design for the problem of protein

structure prediction. For this purpose they use a modified version of Simple Ge-

netic Algorithm Goldberg (1989) and used the R andom Energy Function Derrida

(1980) as the objective function to be minimized. They postulate that high reso-

lution building blocks attainable by multi-point crossovers and a local dynamics

operator to fine tune good conformations are required of the genetic algorithms

used to predict the protein structure. The genetic algorithm approach without

much change was adapted by Schneider (2002) in order to identify the confor-

mationally invariant and flexible molecules of a protein rather than predicting

the actual structure. John & Sali (2003) used genetic algorithm in their program

MODELER which was fashioned on the five genetic algorithm operators, namely,

single point crossover, two point crossover, gap insertion, gap deletion, and gap

shift. Kondov (2013) uses particle swarm optimization to study the low-energy

conformations of peptides by applying periodic boundary conditions to the search

space.
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2.3.1.3 O ther M ethods

The branch-and-bound method, widely used to solve integer programming prob-

lems has numerous applications in a variety of areas. In the area of our concern,

it has been mainly used to solve formulations that are encountered in the pro-

tein threading problem rather than the ab initio methods. In the past, Lathrop

& Smith (1994) used this technique to model the pairwise contact potential of

the protein threading problem. They divide the entire search space into sub-

sets of possible threading sequences and using a tight lower bound developed,

each and every set is scored only to further divide the set which gives the in-

fimum score. Androulakis et al. (1995) proposed the much popular and widely

adapted variation of the branch-and-bound technique called αBB. The method

develops a convex lower bounding function by the addition of a convex separable

quadratic term for each variable to the objective function. αBB attains a finite

ε−convergence to the global minimum by continuous dividing and sub-dividing

of the search space based on the lower bound. Maranas et al. (1996) exploited

this technique to predict the structure of oligopeptides by ab inito methods using

the ECEPP/3 energy function.

Lathrop & Smith (1996) used branch-and-bound for gapped protein align-

ment with five different scoring functions, to rank the sequences according to

the score calculated. Eyrich et al. (1999), in their ab initio methods, adapted

a variation of αBB algorithm. In fact, they propose three variations - a differ-

ent quadratic smoothing function, using inter-residue distance instead of dihedral

angles as search space and annealing approach to smooth the potential of the

volume terms excluded due to repulsion. Moreover, a Monte Carlo minimiza-
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tion is done before invoking the αBB algorithm. Lin et al. (2002) utilized the

branch-and-bound technique to assign NMR peaks to the protein backbone, a key

step in studying protein NMR structure. Das et al.(2003) formulates the protein

structure prediction problem as a nonlinear constrained minimization problem.

They use a hybrid global optimization method which combines the α-B ranch and

B ound approach with the conformational space annealing method.

McAllister & Floudas (2010) applies hybrid methods for large-scale uncon-

strained optimization of protein models such as B ovine Pancreatic Trypsin In-

hibitor(B PTI) and R nase. A basin-hopping approach to global optimization was

used by H offmann & Strodel (2013). H owever, they utilize additional constraints

by imposing NMR shift restraints. B hattacharya & Cheng (2013) propose a

method to refine protein structures by bringing the low-resolution predicted mod-

els close to high-resolution native structures. This is achieved by optimizing the

hydrogen bonding network and applying the atomic-level energy minimization on

the optimized model. A parallel implementation of protein structure prediction

has been discussed in Tyka et al.(2012). Mirzaei et al.(2012) discusses the use of

energy minimization techniques in protein - protein docking. They utilize LB FGS

quasi-Newton method for local optimization since it uses only gradient informa-

tion to obtain second order information about the energy function. R odrigues

et al. (2012) also propose a fast method for protein structure refinement using

knowledge-base potential of mean force.

2.3.1.4 Interior-Point M ethods

Interior-Point methods, unlike simplex method, travel from the starting point

and move through the feasible space in search of the optimal point. It enjoys a
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polynomial-time convergence and has been frequently used to solve nonlinear and

nonconvex problems. H owever, the application of these methods in the area of

protein structure prediction is virtually non-existent. MELLER et al. (2002) ad-

dresses the problem of feasibility while modeling the protein threading problem as

a linear program. They determine the largest number of constraints that could be

satisfied with the available set of data using the method of analytic centers. MaxF

heuristic, that they propose, identifies those constraints that are hard to satisfy

from the easily satisfiable ones. Though not a direct implementation, Wagner

et al. (2004) have used interior-point methods to solve the linear programming

formulation of a protein threading problem. They have used a publicly available

software, PCx, which utilizes the primal-dual predictor-corrector method. Other

than these two works, to the best of our knowledge, we are not aware of any

other research done in the application of interior-point methods to the problem

of protein structure prediction, especially in ab initio methods.

2.4 C onclusion

A detailed review in the area of protein structure prediction and that of mathe-

matical techniques to solve optimization problems pertaining to the problem of

interest has been given. Studies show that mathematical programming techniques

have gained popularity over the years in solving problems that are in the interest

of the biologists. Linear Programming and Integer Programming approach has

been generously borrowed to tackle the problem of protein threading. Simulated

Annealing, Genetic Algorithm and B ranch-and-B ound techniques have gained the

most attention of researchers working on ab initio methods. H owever, interior-

point methods, for unknown reasons has never been thought of in this particular
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direction. It is this finding that gives us the scope and iterates the significance of

our research.
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C hapter 3

Problem D escription

The problem of protein structure prediction has been modeled and solved using

different methods. Various algorithms for database searching in case of homology

modeling, adaptation of optimization techniques to optimize a scoring function

in case of protein threading and a variety of optimization solution techniques

while dealing with the ab initio methods have been proposed and are reviewed

in Chapter 2. This chapter describes the protein geometry and gives a detailed

account of the potential energy equation of proteins. The problem formulation

for the ab initio method of protein structure prediction is also presented.

3.1 Protein G eom etry

The complete structure of a protein can geometrically be described by a three-

dimensional vector assigned to each and every atom in the structure. The mathe-

matical description that follows in this section is based on Maranas et al.(1996).

Let ri be the vector representing the position of the ith atom, given as in (3.1).

ri =





xi
yi
zi



 , i = 1, ..., N, (3.1)
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where N is the total number of atoms in the protein molecule. The bond length

between two consecutive atoms i, j is given by the bond vector, rij as in (3.2).

The bond length between two consecutive atoms i, j is given in (3.3).

rij =





xj − xi
yj − yi
zj − zi



 , (3.2)

|rij| =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2. (3.3)

The bond vectors, bond angles and the dihedral angles in a protein are denoted

by the same notation throughout the protein community in order to facilitate

clarity of thought and communication among different researchers. Figures 3.1

and 3.2, give a pictorial representation of a protein structure along with its bond

vectors, angles and dihedrals. θijk is the covalent bond angle formed between the

Figure 3.1: B ond vectors and bond angles taken from Maranas et al. (1996)

vectors rij and rjk and can be computed using the dot product and cross product

of the associated bond vectors as given in (3.4) and (3.5).

cos(θijk) =
rij .rjk
|rij ||rjk|

, (3.4)

sin(θijk) =
rij × rjk
|rij||rjk|

. (3.5)
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Figure 3.2: Dihedral angles in a protein, taken from Maranas et al. (1996)

ωijkl ∈ [−180, 180] is the dihedral angle, which is nothing but the angle be-

tween the atom i and the plane formed by the atoms j, k, l. The dihedral angle

can also be thought of as the angle formed between the normals of the two planes

formed by the atoms i, j, k and j, k, l. The functional form used to calculate the

dihedral angle is shown in (3.6) and (3.7). Sometimes, the complementary torsion

angle, 180◦ − ω, is also used to measure the relative orientation between a chain

of atoms. Apart from the bond lengths, bond angles and dihedral angles, used

to determine the structure of a protein, out-of-plane bending or improper torsion

angles, τ = ^(i− j − k − l) is also used when the situation warrants.

cos(ωijkl) =
(rij × rjk).(rjk × rkl)

|rij × rjk||rjk × rkl|
, (3.6)

sin(ωijkl) =
(rkl × rij).rjk|rjk|

|rij × rjk||rjk × rkl|
. (3.7)

Various dihedral angles in a protein follow a standard nomenclature. As can

be seen from Figure 3.2, the dihedral angle between the normals of the planes

formed by the atoms C ′i−1NiCα,i and NiCα,iC
′

i respectively is called φi, where
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i − 1 and i are two adjacent amino acid residues. The angle formed between

the planesRiCα,iC
′

i and Cα,iC
′

iNi+ 1 respectively is called ψi, where i and i + 1

are two adjacent amino acid residues. ωi is the dihedral angle defined by the

planes Cα,iC
′

iNi+ 1 and C
′

iNi+ 1Cα,i+ 1. The letter χi is used to denote the dihedral

angle associated with the side groups Ri. Though the bond lengths, bond angles

and dihedral angles are used to describe the structure of a protein, it often over

determines the structure. Under biological conditions, as stated in Maranas et al.

(1996), the bond lengths and bond angles are fairly rigid and it can be assumed

to be fixed at their equilibrium values. Thus, the assumption manifests, that only

the backbone dihedral angles is enough to fully determine the geometrical shape

of the protein and it also helps in reducing the problem size when compared to

that using cartesian coordinates for representing the protein structure.

3.2 Protein Force Fields

In order to adapt any of the above-said methods, a scoring function is required to

quantitatively evaluate the appropriateness of the predicted structure. The force

field or the potential energy equation developed is a popular candidate among the

several scoring functions available. This section gives an overview of the various

force fields and their components.

Theoretical studies of biological molecules permit the study of the relation-

ships between structure, function and dynamics at the atomic level. Any study of

biological systems as such involves many atoms and hence dealing with them at

the electron level becomes much diffi cult and sometimes may not be feasible. In

such cases, the problem becomes more tractable when empirical potential energy

functions, called force fields, are used. Effective application of force fields is based
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on the accuracy of the developed function. There are numerous approximations

that goes into the development of the empirical function and thereby paving way

for different forms of empirical functions. This chapter intends to describe the

functional form of the force fields used for the study of proteins.

In order to derive the empirical form of the potential energy of a protein, re-

searchers adapt a classical description of molecules. The atoms are considered to

be the smallest particle in the calculations. Proteins, generally consist anywhere

from 500 to 500,000 or more atoms. Apart from the interaction between these

atoms, one should also consider the environment surrounding the protein and the

atom’s interaction with its environment. If one should consider all the interac-

tions, the problem presents itself as dauntingly complex. H owever, assumptions

such as protein folding in vacuum, absence of long range interactions, a simple

mathematical function representing the energy of the protein are commonly used

in developing force field equations.

3.2.1 Survey of E nergy Functions

The static forces in a molecule can fully be determined by V(x) as given in (3.11).

H ence, modeling a molecule simply amounts to specifying the contribution of the

various interactions to the potential. These models also called as force fields

derive their final form from molecular dynamics and different versions of them

are available mainly due to the difference in the assumptions that are involved.

This section surveys the various force fields that are widely used.

CH AR MM developed by Mackerell et al. (1998), is an all-atom empirical en-

ergy function that has gone through several versions, the latest of them being

CH AR MM22 and CH AR MM27. CH AR MM27 has been specifically optimized
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for simulating DNA, however, both the versions are almost the same when used

for purely protein systems. AMBER force field developed by Cornell et al.(1995)

emphasizes on the accurate representation of the electrostatics and simple rep-

resentation of bond and angle energies, while optimizing the electrostatic and

van der Waals parameters for condensed phase simulations. GROMOS force field

was developed in conjunction with the GROMACS program package by Scott

et al.(1997). GROMOS force field was mainly designed for proteins, nucleotides,

or sugars in aqueous or apolar solvents using the concept of united atoms. It

was later extended to an all-atom model applicable only to sugars. Nemethy

et al.(1992) developed ECEPP/3, the latest and the updated version of the first

ECEPP developed by Momany et al. (1975). The model developed empirical

interatomic potentials for calculating the energetically most favorable conforma-

tions of polypeptides and proteins.

Though the above-mentioned force fields used molecular dynamics simulation

and parameter optimization, there were also efforts by others to develop force

fields using different techniques. Knowledge-based force field was first developed

by Tanka & Scheraga (1976) who used B oltzmann distribution to derive them.

Later, Lathrop et al. (1998) used a B ayesian network approach to deduce the

energy function of a protein system while Maiorov & Crippen (1992) used a

linear programming approach for determining the force field. With the evolution

of so many force fields, high quality decoys were are also developed to test the

effectiveness of a force field.
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3.2.2 Potential E nergy E quation

The energy, V , of a protein is often expressed as a function of its atomic posi-

tion, R, of all the atoms in the system. The position of the atoms are generally

expressed in terms of cartesian coordinates. The total energy of a protein system

is thought of as contributions from its bonded terms and non-bonded terms as

shown in (3.8) below:

V (R) = Ebonded + Enon−bonded. (3.8)

The energy due to atoms that are bonded, Ebond, takes into account the in-

teractions between the atoms that are involved in the formation a bond, angle

or a dihedral plane. Whereas, the energy derived through non-bonded atoms,

Enon−bonded , represents the interactions due to the partial atomic charges on the

atoms and the van der Waals interactions. The energy contributions from the

non-bonded interactions are generally much higher when compared to that of

the bonded interactions. (3.9) and (3.10) elucidate the above discussion in an

empirical fashion.

Ebonded = Ebond + Eangle + Edihedrals, (3.9)

Enon−bonded = EvanderWaals + Eelectrostatic. (3.10)

A general form of the equation representing the potential energy, V, of a system

as a function of its structure, r, as given in Ponder & Case (2003), is provided

below in (3.11).

V (r) =
∑

bonds

kb(b− b0)
2 +

∑

angles

kθ(θ − θ0)
2 +

∑

torsions

kφ[cos(nφ+ δ) + 1]

+
∑

nonbonded

pairs

[

qiqj
rij

+
Aij

r12ij
−
Cij

r6ij

]

,
(3.11)
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where kb, kθ, kφ are the bond, angle, and dihedral angle force constants respec-

tively; b, θ, φ are the bond length, bond angle and dihedral angle, respectively,

with the subscript zero representing the equilibrium terms for the corresponding

terms. The first three summations run over bonds (1-2 interactions), angles (1-

3 interactions) and dihedral (1-4 interactions). The last summation term runs

over all the atom pairs that are involved in the non-bonded interactions. B oth,

the coulombic or electrostatic and van der Waals interactions contribute to the

non-bonded interactions. The constants, qi, qj correspond to the partial charges

on the atoms and rij denotes the Euclidean distance between the atoms i and j.

Constants, Aij and Cij represent the minimum interaction distance between the

atoms.

As mentioned earlier, due to different objectives and hence differing assump-

tions a variety of force fields have been developed. Each and every force field, thus

developed adapt a slightly different empirical form. The most popular force fields

that are effi cient and currently in use are ECEPP, MM2, ECEPP/2, CH AR MM,

AMBER and GROMOS to name a few. For explanations and references of these

force fields in the literature, refer to Section 3.2.1.
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3.3 C H A R MM Potential E nergy Function

For the purpose of our research, we are using the empirical form of the CH AR MM

potential energy function, developed by Mackerell et al.(1998) as given in (3.12).

V (r) =
∑

bonds

Kb(b− b0)
2 +

∑

UB

KUB(S − S0)
2+

∑

angles

Kθ(θ − θ0)
2 +

∑

dihedrals

kφ(1 + cos(nφ− δ))+

∑

nonbonded

pairs

{

ε

[

(

Rminij

rij

)12

−

(

Rminij

rij

)6
]

+
qiqj
ε1rij

}

,

(3.12)

As mentioned in (3.9), the CH AR MM potential energy function is calculated as

the sum of interaction energies caused by both bonded and nonbonded terms.

The following two equations explicitly mention the components involved in both

the bonded and nonbonded interaction terms as given by the CH AR MM energy

function.

Ebonded = Ebond + Eangle + Eimproper + Edihedrals, (3.13)

Enonbonded = EvdW + Eelec. (3.14)

3.3.1 B onded Interactions

The first term in the CH AR MM energy equation, Ebond represents the interaction

between two atoms separated by a covalent bond and is often referred to as either

1,2-interactions or 1,2-pairs. If b is the actual bond length and b0 is the ideal bond

length, the following equation approximates the energy due to displacement from

its ideal bond length.

Ebond =
∑

bonds

Kb(b− b0)
2, (3.15)
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where Kb is a force constant. B oth Kb and b0 are specific to the atoms partici-

pating in the bond. Similarly, the bond angle θ may deviate from its ideal bond

angle θ0 and the energy is calculated as shown below

Eangle =
∑

angles

Kθ(θ − θ0)
2, (3.16)

where Kθ is a force constant specific to the atoms involved in the angle formation.

It may be noted here that the three atoms are separated by two covalent bonds

and is referred to as either 1,3-interactions or 1,3-pairs. The potential function

which describes the interaction energy of four atoms separated by three covalent

bonds (1,4-interactions) is

Edihedrals =
∑

dihedrals

Kφ(1 + cos(nφ− δ)), (3.17)

where Kφ is a force constant and φ is the dihedral angle. The potential due to

dihedrals is assumed to be periodic and hence it is modeled using a cosine function

with periodicity n and phase δ. The equations (3.18) and (3.19) represent the

Urey-B radley term and the improper term. Energy due to Urey-B radley is derived

out of the distance that separates the three atoms that are involved. Eimp is a

term used to maintain chirality and planarity.

EUB =
∑

UB

KUB(S − S0)
2, (3.18)

Eimp =
∑

impropers

Kimp(ϕ− ϕ0)
2, (3.19)

where KUB and Kimp are corresponding force constants. S is the Urey-B radley

1,3-distance and ϕ is the improper dihedral angle, with the subscript zero repre-

senting the equilibrium values for the respective terms.
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3.3.2 N onbonded Interactions

As shown in (3.14), the nonbonded interaction energy consists of van der Waals

and electrostatic interaction term . The van der Waals interaction term models

the potential energy of two interacting atoms based on the distance of separation.

Lennard-Jones 6-12 potential, proposed by Sir John Edward Lennard-Jones is

often used to model the van der Waals interaction and is given by the following

equation:

Estd−vdW = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

, (3.20)

where Estd−vdW is the intermolecular potential between two atoms, ε is the well

depth, r is the distance of separation between the atoms involved and σ is the

distance at which the intermolecular potential between the two particles is zero.

B oth attraction and repulsion between atoms involved are empirically described

by (3.20). Figure 3.3 shows the intermolecular potential energy as a function

of r. At short distances, the first term in (3.20) dominates thereby modeling

the repulsion between atoms when they are brought very close to each other.

At longer distance, the second term dominates to mimic the force of attraction

between atoms. Thus, the van der Waals equation in (3.20) leads to an equilibrium

value where the minimum of (3.20) is reached at r = σ.

In CH AR MM energy function a modified Lennard-Jones 6-12 potential is used

to model the van der Waals energy component caused by interactions of non-

bonded atoms. The empirical form of the modified Lennard-Jones 6-12 potential

is shown below

EvdW =
∑

nonbonded

pairs

ε

[

(

Rminij

rij

)12

−

(

Rminij

rij

)6
]

, (3.21)
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Figure 3.3: Lennard-Jones potential, taken from Gockenbach et al. (1997)

where and Rminij
is the distance at Lennard-Jones minimum. rij is the distance

between two atoms i and j. The Lennard-Jones parameters between pairs of

different atoms are obtained from the Lorentz-B erthelodt combination rules, in

which εij values are based on the geometric mean of εi and εj and Rminij
values are

based on the arithmetic mean between Rmini
and Rminj

(Mackerell et al., 1998).

This rule has been designed to reduce the number of parameters associated with

the overall energy function.

The electrostatic potential between a pair of atoms is modeled by Coulomb

potential as follows

Eelec =
∑

nonbonded

pairs

qiqj
ε1rij

, (3.22)

where qi and qj are the partial charges assigned to atoms i and j and ε1 is

the effective dielectric constant. In order to obtain a balanced parametrization,

particularly for the peptide group, ε1 is set to 1. The partial charges of the
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atoms approximate the electrostatic potential of the electron cloud. Thus the

energy is a consequence of the distortion of electronic distribution which generates

induced electric moments. H owever, the Coulomb interaction is valid only for a

homogeneous dielectric medium.

Thus the total potential energy of a molecule is calculated as the sum of all

the energy components described in equations (3.15) to (3.22), as given below

E = Ebond + Eangle + Edihedrals + EUB + Eimp + EvdW + Eelec. (3.23)

Nonbonded interaction terms included for all atoms are separated by three or

more covalent bonds. An approximation included in the CH AR MM model is

that it only considers the pairwise interaction potential of atoms and it does not

take into account the simultaneous interaction of three or more atoms.

3.4 Problem Form ulation

The thermodynamical hypothesis proposed by Anfinsen (1973) forms the basic

premise on which all the problem formulations, especially ab inito methods, are

based on. Simply stated, the formulation involves the minimization of a free

energy function which captures the potential energy interactions of a protein

system. Mathematically speaking, it is a nonconvex nonlinear optimization (min-

imization) problem. Though the structure of the problem formulation has not

varied over the years, the difference lies in the solution methods that have been

proposed.

The objective function of the problem requires an empirical form of an energy

function which has to be minimized. Various potential energy functions have been

developed and are discussed in Section 3.2.1. For the purpose of our research we
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are using CH AR MM energy function for its popularity among the protein com-

munity and its effi cient parametrization (Mackerell et al., 1998). The CH AR MM

energy function stated in (3.12) is restated here for clarity. The notations and

the variable definitions stay the same here.

V (r) =
∑

bonds

Kb(b− b0)
2 +

∑

angles

Kθ(θ − θ0)
2 +

∑

UB

KUB(S − S0)
2 +

∑

impropers

Kimp(ϕ− ϕ0)
2

∑

dihedrals

kφ(1 + cos(nφ− δ)) +

∑

nonbonded

pairs

{

ε

[

(

Rminij

rij

)12

−

(

Rminij

rij

)6
]

+
qiqj
ε1rij

}

.

(3.24)

The CH AR MM energy function described in (3.24) computes the potential energy

as a function of cartesian coordinates of atoms. In case of problems pertaining

to protein structure, the energy function is generally used as a function of in-

ternal coordinates, viz. bond lengths, bond angles and dihedral angles. Such

a representation also reduces the number of variables involved when compared

with the model using cartesian coordinates of atoms for representation. Cartesian

coordinates representation requires three variables for each atom in the protein

structure which increases the number of variables in the model. The general as-

sumption in the bio-chemistry community is that the energy required to perturb

the bond length and the bond angles from their equilibrium values is relatively

large and hence the parameters can be assumed to have a fixed value (B yrd et al.,

1996). We, in our research espouse the same assumption, thereby formulating the

optimization problem as a function of dihedral angles alone. H ence, the objective
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function that we consider for our research is stated in (3.25).

V (r) =
∑

dihedrals

kφ(1 + cos(nφ− δ)) +

∑

nonbonded

pairs

{

ε

[

(

Rminij

rij

)12

−

(

Rminij

rij

)6
]

+
qiqj
ε1rij

}

.
(3.25)

The first four terms of (3.24), which approximates the energy due to displacement

from their equilibrium value is ignored in (3.25). B ased on the above assumptions

and the definitions, the energy minimization problem can be sated as follows:

Minimize V (Φ)

Subject to:

−π ≤ φij ≤ π, i = 2, ..., N − 1,

j = 3, ..., N,

j = i+ 1,

Φ ∈ <N−2.

(3.26)

V is the expression for the total potential energy of the protein as a function of

its dihedral angle as given in (3.25). Φ = {φij : i = 2, ..., N − 1, j = 3, ..., N, j =

i + 1} ∈ <N−2 is a vector of dihedral angles around the atoms i and j, while N

is the total number of atoms in the protein considered. As opposed to what is

generally followed in the literature, for instance Maranas et al. (1996), here we

adapt a single variable representation for the dihedral angles irrespective of the

atom type involved. Generally, the variable φi is used to represent the torsion

around C ′i−1−Ni−Cα,i−C
′

i, ψi to represent the torsion aroundRi−Cα,i−C
′

i−Ni+ 1

and χi to denote the torsion around side chain components, where i represents

the amino acid residues. In the formulation (3.26), we have used the sequential

atomic numbers, denoted by i and j, to differentiate the various dihedral angles.
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This, we feel, is only a matter of convenience and has no effect, whatsoever, on the

problem as such. The objective function,V, accounts for both the bonded and

the non-bonded interactions. H owever, in some cases non-bonded interactions

consider only those atoms that are separated only by two other atoms. Long-

range interactions are not considered owing to the fact that the potential energy

due to such long-range interactions is considerably low as atoms become farther

apart.

The energy function V, is a nonconvex function of dihedral angles. Therefore,

a number of local minima exists even for molecules of modest size. These local

minima correspond only to the metastable states of the molecules (Maranas et al.,

1996). H ence the solution method developed should identify the energetically

most favorable state, bypassing the multitude of local minima points.



49

C hapter 4

Interior Point M ethods

A number of algorithms which involve perturbation of suffi ciency conditions for

a point to be a local constrained minimum of a nonlinear programming problem

(NLP) has been proposed. The term interior point method was originally pro-

posed by Fiacco & McCormick (1968) to describe any algorithm that computes a

local minimum of a nonlinear programming problem by solving a sequence of un-

constrained minimization problems. This method searches for the local minimum

within the interior of the feasible region of the NLP problem.

4.1 Interior Point U nconstrained Minim ization

Consider the following inequality constrained problem

minimize f(x)

subject to gi(x) ≥ 0, i = 1, ..., m,
(4.1)

where f(x) and gi(x) are C
2 functions. Fiacco and McCormick propose to solve

the problem (4.1) as a series of unconstrained minimization problems by defining

two scalar valued functions I(x) and s(r) with specific properties as illustrated

below.
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Definition 4.1. I(x) is a scalar valued function w ith the follow ing properties:

Property 1 I(x) is continuous in the region R0 = {x | gi(x) > 0, i = 1, . . . , m}.

Property 2 If {xk} is any infinite sequence of points in R0 converging to xB such

that gi(xB) = 0 for at least one i, then limk→ ∞ I(x) = +∞.

Definition 4.2. s(r) is a scalar valued function of the single variable r w ith the

follow ing properties:

Property 1 If r1 > r2 > 0, then s(r1) > s(r2) > 0.

Property 2 If {rk} is an infinite sequence of points such that limk→ ∞ rk = 0,

then limk→ ∞ s(rk) = 0.

Given the functions, I(x) and s(r) as in Definitions 4.1and 4.2, the interior

unconstrained minimization function, as defined by Fiacco & McCormick (1968)

is

U(x, rk) = f(x) + s(rk)I(x). (4.2)

Starting from a point x0 ∈ R0, the unconstrained function U(x, r1) is solved to

yield a local minimum x(r1) ∈ R
0. Subsequently, the function U(x, r2) is solved

to find its local minimum, with x(r1) as its initial point. Continuing in this

fashion, a local minimum of U(x, rk), x(rk) is found starting from x(rk−1). Under

appropriate assumptions, Fiacco and McCormick prove that the sequence of local

minima exists and converges to a local minimum of the original problem (4.1).

Theorem 4.1. Assum ing functions f , g1, . . . , gm are continuous and function U

defined as in 4.2, w here I(x) and s(r) satisfies the properties as defined in 4.1 and

4.2, then the problem (4.1) has at least one local m inim um in the closure ofR0,

and {rk} is a strictly decreasing null sequence. M oreover, there exists a sequence
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ofpoints {x(rk)} such that limk→ ∞ f [x(rk)]= f(x∗), w here x∗ is an isolated local

m inim izer of the problem (4.1).

P roof. See Theorem 8 in Fiacco & McCormick (1968).

4.2 B arrier Function

In the context of interior point methods, barrier functions are used to transform

a constrained problem into an unconstrained problem or into a sequence of un-

constrained problems. Given that the solution methods starts from the interior

of the feasible region, these functions set a barrier against leaving the feasible

region. Two types of barrier function are often used when interior point methods

are utilized to solve an optimization problem. Let

I(x) = −

m
∑

i=1

ln(gi(x)) and s(µk) = µk. (4.3)

Using (4.12), the constrained nonlinear programming problem (4.1) can be trans-

formed into the following interior unconstrained minimization function.

UL(x, µk) = f(x)− µk

m
∑

i=1

ln(gi(x)). (4.4)

The function UL in (4.4) is referred to as the logarithmic barrier function. In

order to illustrate the other type of barrier function,let

I(x) =

m
∑

i=1

1

gi(x)
and s(µk) = µ2

k. (4.5)

Using the above definitions of I(x) and s(µ), the transformation of (4.1) is

UI(x, µk) = f(x) + µk
2

m
∑

i=1

1

gi(x)
. (4.6)
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Figure 4.1: Interior point unconstrained functions

The function UI in (4.6) is referred to as the inverse barrier function. N ote

that I(x) and s(µ) in both logarithmic and inverse barrier functions satisfy the

properties stated in D efinitions 4.1 and 4.2.

For example, consider the following problem from Floudas et al. (1999)

minimize x6 − 15x4 + 27x2 + 250

subject to − 5 ≤ x ≤ 5.
(4.7)

The interior point unconstrained function utilizing either the logarithmic barrier

function or inverse barrier function for the problem (4.7) can be obtained as

UL(x, µk) = x6 − 15x4 + 27x2 + 250− µk(ln(x+ 5) + ln(5− x)), (4.8)

UI(x, µk) = x6 − 15x4 + 27x2 + 250 + µ2

k

(

1

x+ 5
+

1

5− x

)

. (4.9)

Figure 4.1 shows a plot of the interior point unconstrained function shown in

(4.8) and (4.9) for µk = 10.
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Figure 4.2: C ontours of problem (4.10)

Thus by varying the barrier parameter µk, the interior point function in (4.8)

or (4.9) provides a sequence of unconstrained minimization function such that

when µk → 0, the sequence of solution obtained approaches the local minimizer

of the original problem. The success of barrier function method also depends on

the initialization of barrier parameter µ. The initial value of µ and its subse-

quently updated value can largely influence the quality of the solution obtained.

G enerally, initializing µ to a large value and then reducing it gradually results in

obtaining a good quality solution.

In order to illustrate how the logarithmic barrier function converges to a so-

lution, consider the following problem from B azaraa et al. (1993)

minimize (x1 − 2)4 + (x1 − 2x2)
2

subject to x2

1 − x2 ≤ 0.
(4.10)

Figure 4.2 shows the contours of the objective function and the boundary of

the feasible region, as marked by the equality constraint x2
1−x2 = 0. The solution
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Table 4.1: Summary of computations for the barrier function method

k µk x1(µk) x2(µk) f(x) UL(x, µk)
1 10 0.7051 1.5452 8.5012 5.3990
2 1 0.8798 0.9980 2.8205 2.5720
3 0.1 0.8813 0.9132 2.4594 2.4366

to the problem (4.10) is known to be x∗ = (0.9456, 0.8941). The logarithmic

barrier reformulation of the problem is obtained as shown below:

minimize UL(x, µk) = (x1 − 2)4 + (x1 − 2x2)
2 − µk ln(x2 − x2

1). (4.11)

Thus the above unconstrained minimization problem, can be solved for a single

local minimum for each value of µk. The values of x1(µk) and x2(µk) for various

values of µk are given in the Table 4.1. Figure 4.2 shows the contour plot of

problem (4.11) along with the local minima and the path traced by the barrier

trajectory. The figure geometrically shows the values of points corresponding to

the values of µk as provided in Table 4.1. As µk → 0, the sequence of minimizing

points approaches the solution (0.9456, 0.8941). From the table, as µk decreases,

it can be observed that the objective function (f(x)) and the auxiliary function

(UL(x, µk)) are nondecreasing functions of µk.

The barrier function method can be used to solve a constrained nonlinear

programming problem only when the feasible region has a nonempty interior.

Finding an initial point for some problems may be challenging and often heuristics

have been used to overcome this diffi culty. M oreover, due to the structure of

the barrier function, for small values of the parameter µk, the search procedure

may face diffi culty due to ill-conditioning and round-off errors.This effect is more

pronounced as the solution approaches the boundary of the feasible region.
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Figure 4.3: B arrier trajectory path
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4.3 Logarithmic Barrier Function

As discussed in Section 4.2, the barrier methods transform a constrained problem

into an unconstrained problem or into a sequence of unconstrained problems. In

order to achieve this, the inequality constraints of a problem are often integrated

with its objective function by a barrier term. The barrier function, Ω(x) , that

we intend to use is defined to be

Ω(x) = −

n
∑

i=1

1

(xi − li) ln(xi − li) + (ui − xi) ln(ui − xi)
(4.12)

The barrier function above is well-defined for values of li ≤ xi ≤ ui, i = 1, 2, . . . , n,

and can be used to reformulate problem (4.23) into an unconstrained problem as

shown below:

M inimize f(x)− µ

n
∑

i=1

1

(xi − li) ln(xi − li) + (ui − xi) ln(ui − xi)
, (4.13)

where µ > 0 is a barrier parameter. For a specific value of µ, the unconstrained

problem (4.13) can be solved using a variety techniques that exist today. The

solution of the unconstrained problem, for a specific value of µ can be used as the

initial point for solving the subsequent unconstrained functions with a reduced

value of µ. This procedure is repeated until µ reaches zero, at which point the

subproblem will resemble the original problem to be solved. The key benefits of

this method are as follows:

• E limination of inequality constraints totally.

• R eduction in objective function value and the non-violation of constraints

are simultaneously achieved.
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• Transforming the original problem into a sequence of unconstrained prob-

lems facilitate the use of a number of known methods for minimizing an

unconstrained function.

• Irrespective of the search method, the transformed problem eliminates mo-

tion along the boundary completely. M oving along the boundary of the

feasible region is a cumbersome process, more so if the surface is nonlinear.

The convexity of the barrier term, Ω(x) as shown in (4.12) is essential for the

solution methodology and is one of the important properties of the barrier func-

tion. G iven a convex barrier function, then for a large µ, the function f(x)+µΩ(x)

will also be convex. Thus the barrier parameter, µ, acts as a smoothing param-

eter to render the nonconvexity of f(x) ineffective by avoiding the possibility of

multiple local minimum solutions.

4.4 P rop erties of Barrier Function

In this section, we describe the properties of barrier function, Ω(x) and that

of the transformed objective function, (4.13). Firstly, the following lemmas are

presented, which are later required to prove Theorem 4.2.

Lemma 4.1. If the range of bounds on the variable xi, ui − li ≤ 1, then the

function, qi(x) = (xi − li) log(xi − li) + (ui − xi) log(ui − xi) is negative for all

xi ∈ X0, w here X0 := {xi | li < xi < ui, i = 1, 2, . . . , n}.

P roof. Suppose x ∈ X0 be any feasible point, then

0 < u− x < 1.
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Taking log on both sides of the above inequality,

log(u− x) < 0. (4.14)

Similarly,

0 < x− l < 1.

Taking log on both sides of the above inequality,

log(x− l) < 0. (4.15)

D ividing (4.14) by (4.15) gives,

log(u− x)

log(x− l)
> 0. (4.16)

Also, note that

x− l

u− x
> 0 or −

x− l

u− x
< 0. (4.17)

From (4.16) and (4.17)it follows that

log(u− x)

log(x− l)
> −

x− l

u− x
.

Since log(x− l) < 0,

(u− x) log(u− x) < −(x− l) log(x− l).

Therefore,

(x− l) log(x− l) + (u− x) log(u− x) < 0.

Lemma 4.2. If the range of bounds on the variable xi, ui − li ≥ 2, then the

function, qi(x) = (x− l) log(x− l) + (u− x) log(u− x) is positive for all xi ∈ X0,

w here X0 := {xi | li < xi < ui, i = 1, 2, . . . , n}.
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P roof. Let xi ∈ X0 be any feasible point. Let ui − li = δi ≥ 2.

Taking the limits on each of the terms in qi(x), as xi → u−i , we have

lim
xi→u−

i

(ui − xi) log(ui − xi) = 0, (4.18)

lim
xi→u−

i

(xi − li) log(xi − li) = δi log δi > 0, (∵ δi ≥ 2). (4.19)

Adding (4.18) and (4.19), we have

lim
xi→u−

i

(ui − xi) log(ui − xi) + (xi − li) log(xi − li) > 0.

Similarly, it can be proved that,

lim
xi→l+

i

(ui − xi) log(ui − xi) + (xi − li) log(xi − li) > 0.

Lemma 4.3. If the range of bounds on the variable xi, 1 < ui − li < 2, then the

function, qi(x) = (xi − li) log(xi − li) + (ui − xi) log(ui − xi) is either positive or

negative depending on the position of xi ∈ X0, w here X0 := {xi | li < xi < ui, i =

1, 2, . . . , n}.

P roof. Let ui − li = δi. Taking the limits on qi(x), we have

lim
xi→l+

i

(xi − li) log(xi − li) + (ui − xi) log(ui − xi) = δi log δi ⇒ qi(x) > 0.

lim
xi→

li+ui
2

(xi − li) log(xi − li) + (ui − xi) log(ui − xi) = δi log

(

δi
2

)

⇒ qi(x) < 0.

lim
xi→u−

i

(xi − li) log(xi − li) + (ui − xi) log(ui − xi) = δi log δi ⇒ qi(x) > 0.

As xi varies from li to ui, the sign of (qi(x) varies from positive to negative to

positive, when 1 < ui − li < 2.
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Theorem 4.2. Suppose Ω : X → < is a C2 function, w here X ⊂ [l, u]n. T hen

for all x ∈ X \D, Ω(x) is a strictly convex function, w here D := {x | x ∈ X, 1 <

uxi
− lxi

< 2, i = 1, 2, ..., n}, uxi
and lxi

are the upper and low er bounds on xi,

respectively.

P roof. From the expression of Ω(x) as defined in (4.12) and its derivatives given

in (4.21) and (4.22), the H essian matrix of Ω(x) at any x ∈ X \D is given by

∇2

xxΩ(x) = Diag





(

1

ui−xi
+ 1

xi−li

)

qi(x)2
−

2 ln
(

xi−li
ui−xi

)

qi(x)3



 , i = 1, ..., n,

where qi(x) = (xi − l) ln(xi − li) + (ui − xi) ln(ui − xi) and D iag(x) denotes a

diagonal matrix with the components of x as its diagonal elements. Let

t1 =

(

1

ui−xi
+ 1

xi−li

)

qi(x)2
and t2 =

2 ln
(

xi−li
ui−xi

)

qi(x)3
.

In order for the diagonal elements of the H essian matrix to be nonnegative, t1

should be greater than or equal to t2. C onsider the following three cases:

C ase 1: uxi
− lxi

≤ 1

From Lemma 4.1, it follows that qi(x) < 0 for uxi
− lxi

≤ 1.

Suppose that t2 > t1. Then,

2 ln
(

xi−li
ui−xi

)

qi(x)3
>

(

1

ui−xi
+ 1

xi−li

)

qi(x)2
.

Since qi(x) < 0, rearranging the terms in above inequality, we have

ln

(

xi − li
ui − xi

)

<
qi(x)

3

(

1

ui−xi
+ 1

xi−li

)

2qi(x)2
.
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Since the R H S of the above inequality is negative,

0 <
xi − li
ui − xi

< 1⇒ li < xi <
ui + li

2
,

which contradicts that x ∈ [l, u]n. H ence, t1 > t2 and the H essian of Ω(x)

is positive definite.

C ase 2: uxi
− lxi

≥ 2

From Lemma 4.2, it follows that qi(x) > 0 for uxi
− lxi

≥ 2.

Suppose that t2 > t1. Then,

2 ln
(

xi−li
ui−xi

)

qi(x)3
>

(

1

ui−xi
+ 1

xi−li

)

qi(x)2

Since qi(x) > 0, rearranging the terms in above inequality, we have

ln

(

xi − li
ui − xi

)

>
qi(x)

3

(

1

ui−xi
+ 1

xi−li

)

2qi(x)2

Since the R H S of the above inequality is positive,

xi − li
ui − xi

> 1⇒ xi >
ui + li

2
,

which contradicts that x ∈ [l, u]n. H ence, t1 > t2 and the H essian matrix of

Ω(x) is positive definite.

C ase 3: 1 < uxi
− lxi

< 2

From Lemma 4.3, we see that the sign of qi(x) varies and hence the sign of

diagonal elements of the H essian matrix could either be positive or negative

depending on the range of bounds on the variable xi.
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Since the H essian of Ω(x) is positive definite for all x ∈ X \D, Ω(x) is strictly

convex on X \D.

The figure 4.4 illustrates the behavior of the barrier function for different

values of the range of bounds, as detailed in three cases above. B oth the figure

4.4 and Theorem 4.2, show that the convexity of the barrier function and that of

the transformed function highly depends on the range of bounds of the variable

involved. In the interest of Lemma 4.4 to be proved later, we present below the
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Figure 4.4: E ffect of range of bounds on barrier function, Ω(x)

transformed problem and its derivatives: The transformed problem is

F (x, µ) = f(x) + µΩ(x), (4.20)

where µ > 0 is the barrier parameter.
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The first derivative of F (x, µ) is

∂F (x, µ)

∂xi

=
∂f(x)

∂xi

+ µ
ln
(

xi−li
ui−xi

)

qi(x)2
, (4.21)

where qi(x) = (xi − li) ln(xi − li) + (ui − xi) ln(ui − xi), i = 1, . . . , n. The second

derivative of F (x, µ) is given by

∂2F (x, µ)

∂xi
2

=
∂2f(x)

∂xi
2

+ µ

{
(

1

ui−xi
+ 1

xi−li

)

qi(x)2
−

2 ln
(

xi−li
ui−xi

)

qi(x)3

}

. (4.22)

Lemma 4.4. If f : X \D → < is a C2 function and Ω is as defined in (4.12),

then there exists a real M > 0 such that if µ ≥ M , then f + µΩ is a strictly

convex function on (l, u)n.

P roof. Let x ∈ X \D. Then, the H essian of Ω(x) is a diagonal matrix with the

ith diagonal entry as
(

1

ui−xi
+ 1

xi−li

)

qi(x)2
−

2 ln
(

xi−li
ui−xi

)

qi(x)3
.

The above function has a minimum at

xi =
ui + li

2
,

which implies that every diagonal entry of ∇2Ω(x) is at least

4

((ui − li) ln(
ui−li

2
))2

.

Thus the minimum eigenvalue of the H essian of Ω(x),

λm in(∇
2Ω(x)) ≥

4

((ui − li) ln(
ui−li

2
))2

and hence from Theorem 4.3, we conclude that f+µΩ is a strictly convex function

on X \D. The result of this lemma follows from Theorem 4.3.
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To close this section, Theorem 4.3 is presented below. Since its proof can be

found in M urray & N g (2008), it is omitted here.

Theorem 4.3. (Murray & Ng (2008)) Suppose that f : [l, u]n → R is a C2

function and Ω : X → < is a C2 function such that the minimum eigenvalue of its

H essian matrix ∇2Ω(x) is greater than ξ(> 0) for all x ∈ X, w here X ⊂ [l, u]n.

T hen there exists a constant M > 0 such that, w hen µ > M , f + µΩ is a strictly

convex function on X .

Since the transformed problem f + µΩ is convex, for a suffi ciently large value

of µ, there exists a unique solution x∗(µ) for problem (4.13). B ased on Theorem

8 in Fiacco & M cC ormick (1968), if x∗(µ) is a solution of problem (4.13), then

there exists a sequence of points {x(µ)}, such that limµ→0 x
∗(µ) = x∗, where x∗

is the solution to the original problem (4.23).

Thus the original nonconvex problem with box constraints, (4.23) has been

converted to a smooth unconstrained nonlinear program. For a suffi ciently large

value of µ, each and every unconstrained problem will have a unique (global)

minimizer, x∗(µ). B y using an appropriate method to solve the transformed

problem, we hope to obtain a global or at least a good local minimum of the

original problem by solving a sequence of unconstrained problems.

4.5 Barrier Function A lgorithm

The solution methods that we propose to solve the energy minimization problem

belongs to a class of interior point methods, which are often employed to solve

linear and nonlinear optimization problems. A variety of solution techniques for

solving the nonconvex energy function have been proposed and were discussed
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above. Specialized algorithms with nice convergence properties for a particular

class of problems (K lepeis et al., 1997) or application oriented heuristics which

gives approximate solutions have always been developed. A book series that

runs for more than 80 volumes have been published by Springer on the title

“N onconvex O ptimization and its Applications”. Pardalos et al. (1994) discusses

different optimization methods that are used in the minimization of nonconvex

potential energy functions.

H ere, we will discuss our proposed solution approach to solve nonlinear non-

convex optimization problems with bound constraints as shown below in problem

(4.23).

M inimize f(x)

subject to li ≤ xi ≤ ui, i = 1, . . . , n,
(4.23)

where f(x) is a twice-continuously differentiable function, x ∈ <n, li and ui are

the lower and upper bounds on the variable xi, respectively. It is also assumed

that li and ui, i = 1, 2, . . . , n, are finite, which results in a bounded feasible region.

The reason for our interest in such problems is its relevance to the optimization

problems in the area of computational biology. Specifically, these type of problem

structures are very common in the area of minimum energy determination of

molecules. H ence, the solution methodologies that we propose is built around

solving problems of type (4.23) for a sequence of decreasing µ. As D oyle (2003)

observes, the difference between different barrier function methods lies in their

choice of algorithms to solve the problem, how µ is adjusted, and the choice of

termination conditions. B ased on a particular descent direction, similar to the

one in D ang & X u (2000), the search method that we propose finds a solution

to the problem (4.23). We derive the direction of search based on the first-order
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necessary conditions and later, prove that it is a descent direction of the function

F (x, µ). The following section illustrates how the search direction is obtained

and proves it to be the descent direction of the function F (x, µ).

4.5.1 Determining the Descent Direction

For any positive µ and x ∈ X \D, the first-order necessary optimality conditions

for problem 4.20 is

∂F (x, µ)

∂xi

= 0, i = 1, 2, . . . , n.

Then from (4.20), it implies that

∂f(x)

∂xi

+ µ
ln
(

xi−li
ui−xi

)

qi(x)2
= 0, i = 1, 2, . . . , n, (4.24)

where qi(x) = (xi − li) ln(xi − li) + (ui − xi) ln(ui − xi). From (4.24), we obtain

xi =
ui + li exp

(

qi(x)
2

µ

∂f(x)

∂xi

)

1 + exp
(

qi(x)2

µ

∂f(x)

∂xi

) , i = 1, 2, . . . n. (4.25)

Let

ηi(x) = exp

(

qi(x)
2

µ

∂f(x)

∂xi

)

, i = 1, 2, . . . , n,

and rearranging (4.25), we let

γi(x) =
ui + liηi(x)

1 + ηi(x)
− xi, i = 1, 2, . . . , n.

Thus, for any x in the interior of the feasible region of problem (4.20) and for any

µ > 0, the following lemma shows that γi(x) is a descent direction of F (x, µ).

Lemma 4.5. For any µ > 0, and x ∈ X \ D, γi(x) is a descent direction of

F (x, µ) w hen γi(x) 6= 0.
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P roof. In order to prove γi(x) to be the descent direction of F (x, µ), it would

suffi ce to prove that ∇xF (x, µ)>γi(x) < 0.

C ase 1: When γi(x) > 0, we have

ui + liηi(x)

1 + ηi(x)
− xi > 0. (4.26)

R earranging the terms in (4.26), we get

ηi(x)
xi − li
ui − xi

< 1.

Substituting the value of ηi(x),

xi − li
ui − xi

exp

(

qi(x)
2

µ

∂f(x)

∂xi

)

< 1.

Taking the logarithm on both sides of the above inequality,

log

(

xi − li
ui − xi

)

+
qi(x)

2

µ

∂f(x)

∂xi

< 0. (4.27)

M ultiplying µ

qi(x)2
> 0 on both sides of (4.27), we get

∂F (x, µ)

∂xi

=
∂f(x)

∂xi

+
µ

qi(x)2
ln

(

xi − li
ui − xi

)

< 0.

Thus, when γi(x) > 0,
∂F (x, µ)

∂xi

< 0.

C ase 2: When γi(x) < 0, we have

ui + liηi(x)

1 + ηi(x)
− xi < 0. (4.28)

R earranging the terms in (4.28), we get

ηi(x)
xi − li
ui − xi

> 1.
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Substituting the value of ηi(x),

xi − li
ui − xi

exp

(

qi(x)
2

µ

∂f(x)

∂xi

)

> 1.

Taking the logarithm on both sides of the above inequality,

log

(

xi − li
ui − xi

)

+
qi(x)

2

µ

∂f(x)

∂xi

> 0. (4.29)

M ultiplying µ

qi(x)2
> 0 on both sides of (4.29), we get

∂F (x, µ)

∂xi

=
∂f(x)

∂xi

+
µ

qi(x)2
ln

(

xi − li
ui − xi

)

> 0.

Thus, when γi(x) < 0,
∂F (x, µ)

∂xi

> 0.

C ase 3: When γi(x) = 0, we have

ui + liηi(x)

1 + ηi(x)
− xi = 0. (4.30)

R earranging the terms in (4.30), we get

ηi(x)
xi − li
ui − xi

= 1.

Substituting the value of ηi(x),

xi − li
ui − xi

exp

(

qi(x)
2

µ

∂f(x)

∂xi

)

= 1.

Taking the logarithm on both sides of the above equation,

log

(

xi − li
ui − xi

)

+
qi(x)

2

µ

∂f(x)

∂xi

= 0. (4.31)

M ultiplying µ

qi(x)2
> 0 on both sides of (4.31), we get

∂F (x, µ)

∂xi

=
∂f(x)

∂xi

+
µ

qi(x)2
ln

(

xi − li
ui − xi

)

= 0.

Thus, when
∂F (x, µ)

∂xi

= 0, γi(x) = 0, .

H ence, we conclude that γi(x) is the descent direction of F (x, µ) and γi(x) = 0 if

and only if ∇xF (x, µ) = 0.
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4.5.2 P rop osed A lgorithm

B ased on the descent direction obtained above, we develop an interior point based

algorithm, which could find a solution for problems of type (4.23). The framework

of the proposed B arrier Function Algorithm (B FA) is shown in Algorithm 1. The

iterative scheme that we propose is based on the barrier parameter µ, which is

reduced in every iteration of the algorithm. The barrier function, Ω(x), added to

the objective function, f(x), ensures that the minimum of the function is achieved

in the interior of the feasible region.

From Section 4.5.1, we know that γ(x) is the direction of descent of F (x),

where F (x) = f(x)+µΩ(x). O nce the direction of search is found, it is imperative

to find the steplength, α for determining the next iterate x+αγ(x). While there

are plenty of line search methods available, we use the G olden Section Search

(G SS) method, the framework of which is provided in Algorithm 2. The reasons

for using the G SS are three-fold,

• It does not use any derivative information

• It is computationally inexpensive

• It is effi cient and easy to implement

The G SS works well with the B FA, and since we are interested only in the per-

formance of B FA, we have not proposed any enhancements to the G SS method.

The G SS method is implemented as it is described in B azaraa et al. (1993). The

interval of uncertainty for the steplength is taken to be [0,1]. As we are dealing

with interior point methods, care must be taken to ensure that the subsequent

iterates also lie in the interior of the feasible region.
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A lgorithm 1 B arrier Function Algorithm

Set µ0 = initial barrier parameter,
εD = tolerance for the magnitude of direction,
εµ = tolerance for barrier parameter,
θµ = reduction factor,
n = total number of variables,
K = maximum number of iterations,
r = any feasible starting point.

Set µ = µ0.

while µ > εµ
Set x0 = r.

for k = 0, 1, . . . , K
C ompute γi(x

k), ∀i = 1, 2, . . . , n.
if ‖ γ(xk) ‖< εD
Set xK = xk, k = K.

else
C ompute λ such that it is optimal to

minλ∈[0,1]F
(

xk + λγ(xk), µ
)

.
Set xk+ 1 = xk + λkγk(x).

end if
end for

Set µ = θµµ,
r = xK .

end while
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A lgorithm 2 G olden Section Search for determining steplength

Let [ak, bk] = interval of uncertainty
F (·) = function to be minimized
l = allowable length of uncertainty
γ = reduction factor
λ = steplength
k = iteration counter

Set [a1, b1] = [0, 1]
γ = 0.618
α1 = a1 + (1− γ)(b1 − a1)
β1 = a1 + γ(b1 − a1)
k = 1
flag = 0

C ompute F (α1) and F (β1)

while flag = 0
if bk − ak > l
if F (αk) > F (βk)
ak+ 1 = αk

bk+ 1 = bk
αk+ 1 = βk

βk+ 1 = ak+ 1 + γ(bk+ 1 − ak+ 1)
C ompute F (βk+ 1)
k = k + 1

else
ak+ 1 = ak
bk+ 1 = βk

βk+ 1 = αk

αk+ 1 = ak+ 1 + (1− γ)(bk+ 1 − ak+ 1)
C ompute F (αk+ 1)
k = k + 1

end if
else

α = a(k)+ b(k)

2

flag = 1
end if

end while
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In barrier function methods, it is imperative to choose an interior feasible

point as the initial iterate. This is why a nonempty feasible region forms a

important part of the requirements of a barrier function. The initial iterate for

the problem, x0 belonging to the interior of the feasible region X, is generally

preferred to be away from the boundary of the feasible region. To begin the search

process starting from a point close to the boundary will render the search method

ineffi cient. H owever, for a large value of initial barrier parameter, there are no

inherent risks in picking any point in the interior of the feasible region. Thus

an unbiased initial iterate, compatible with the barrier parameter and located in

the interior of the feasible region is highly important and is commonly referred to

as the “neutral point” in the literature. O ne such point is the analytic center of

the feasible region, which is often used as the starting point for the interior point

algorithms. For more about analytic center, the reader is referred to Ye (1997).

Apart from the initial starting point, it is also important to carefully choose

the parameters associated with the proposed algorithm. As discussed in Lemma

4.4, a large value of barrier parameter is required to maintain the convexity of the

objective function. Thus a large initial barrier parameter value is important for a

trajectory of iterates converging to either a global minimum or a good local min-

imum. Similarly, care should be taken while choosing the value for updating the

reduction parameter after every iteration. A large value of reduction parameter

could cause the path of iterates to change from one trajectory to another. H ence

it is always better to initialize the parameters conservatively. Though this might

translate to an increased computational time, the chances of obtaining a good

quality solution are very high. B ased on computational experience, the range of

parameters used in the B FA are shown in Table 4.2.



73

Table 4.2: R ange of parameters used
Parameter R ange

Initial barrier parameter, µ0 100 to 1000
R eduction factor, θµ 0.85 to 0.99
Tolerance for µ, εµ 0.01 to 0.0001

Tolerance for direction, εD 0.05 to 0.1

4.6 C omputational E xp erience

In order to evaluate the proposed algorithm, we use some of the standard test

problems from the literature. Floudas et al. (1999) provides a collection of test

problems and their global optimal solutions, obtained from various sources. These

test problems are widely used as the benchmark test problems in the area of global

optimization and we utilize the same problems to test our proposed algorithm.

The list of test problems that we use are listed below:

Test P roblem 1

The following problem is a minimization of a 50th degree polynomial of single

variable.

M inimize

50
∑

i=1

aix
i

subject to 1 ≤ x ≤ 2,
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where a = (−500, 2.5, 1.666666666, 1.25, 1, 0.8333333, 0.714285714, 0.625,

0.555555555, 1,−43.6363636, 0.41666666, 0.384615384, 0.357142857,

0.3333333, 0.3125, 0.294117647, 0.277777777, 0.263157894, 0.25,

0.238095238, 0.227272727, 0.217391304, 0.208333333, 0.2, 0.192307692,

0.185185185, 0.178571428, 0.344827586, 0.6666666,−15.48387097, 0.15625,

0.1515151, 0.14705882, 0.14285712, 0.138888888, 0.135135135, 0.131578947,

0.128205128, 0.125, 0.121951219, 0.119047619, 0.116279069, 0.113636363,

0.1111111, 0.108695652, 0.106382978, 0.208333333, 0.408163265, 0.8).

Test P roblem 2

M inimize 0.000089248x− 0.0218343x2 + 0.998266x3 − 1.6995x4 + 0.2x5

subject to 0 ≤ x ≤ 10.

Test P roblem 3

M inimize 4x2 − 4x3 + x4

subject to − 5 ≤ x ≤ 5.

Test P roblem 4

M inimize x6 − 15x4 + 27x2 + 250

subject to − 5 ≤ x ≤ 5.

Test P roblem 5

M inimize x4 − 3x3 − 1.5x2 + 10x

subject to − 5 ≤ x ≤ 5.
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Test P roblem 6

M inimize x6 −
52

25
x5 +

39

80
x4 +

71

10
x3 −

79

20
x2 − x+

1

10

subject to − 2 ≤ x ≤ 11.

Test P roblem 7

M inimize cosx1 sin x2 −
x1

x2
2 + 1

subject to − 1 ≤ x1 ≤ 2

− 1 ≤ x2 ≤ 1.

Test P roblem 8

The following problem is known in the literature as the G oldstein and Price

function.

M inimize
[

1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2

2)
]

×

[

30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2

2)
]

subject to − 2 ≤ x1 ≤ 2

− 2 ≤ x2 ≤ 2.

Test P roblem 9

The following problem is popularly known in the literature as the three-hump

camel-back function.

M inimize 2x2

1 − 1.05x4

1 +
1

6
x6

1 − x1x2 + x2

2

subject to − 5 ≤ x1, x2 ≤ 5.
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Test P roblem 10

The following problem is popularly known in the literature as the six-hump camel-

back function.

M inimize 4x2

1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2

2 + 4x4

2

subject to − 3 ≤ x1 ≤ 3

− 2 ≤ x2 ≤ 2.

The ten above-mentioned problems were solved using our proposed algorithm

and the results are shown in Table 4.3. The Source column in the table cites

the paper from which that particular test problem was taken. Under the R e-

ported column, the table also shows the global optimal objective value and the

corresponding variable values at optimality. The column Found displays the val-

ues found by our method. The last two columns show the time taken and the

number of iterations involved. All the computations were carried out on a PC

with Intel C ore 2 D uo processor running at 1.83 G H z and 1 G B of memory. The

algorithms were implemented in M ATLAB Version 7.2.

The initial value of barrier parameter (µ) in our Algorithm 1 is set to 100 and

is reduced by a factor of 0.95(θµ) when εD ≤ 0.01. The method terminates when

εµ < 0.01. The solution found by the proposed method almost always matches

with that of the reported solution except for Problem N o. 6. R esults reported for

Problem N o.6 shows that the objective function value of -29763.2330 is achieved

when x = 10. A mere substitution of the value, x = 10 into the corresponding

objective function does not yield the reported value. Under the Found column for

the corresponding problem, we report the results that we have obtained for that

problem. For Problem N o. 4, irrespective of the starting point, the algorithm

always found the local optimum solution of 250 when x = 0. In order to get out
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of the local minima, we set the initial value of barrier parameter to 1000 and θµ

to 0.99 and ran the algorithm again to find the reported global optimal solution

of 7 at x = 3. An alternate solution is also known to exist for the problem at

x = −3.

The test problems used above are very effective in determining the effi ciency

of the search method when polynomials of higher degree are encountered. It does

not test the capacity of the method when the number of variables involved are

larger. H ence, we use the following problem from Pardalos (1991) to determine

the effectiveness of the proposed algorithm for larger problems.

Test P roblem 12

M inimize − (n− 1)

n
∑

i=1

xi −
1

n

n/2
∑

i=1

xi + 2
∑

i< j

xixj

subject to xi ∈ {0, 1}, i = 1, 2, · · · , n,

(4.32)

where n is an even positive integer.

This problem has an exponential number of discrete local minima. For a prob-

lem of size n, the unique global minimum point of (4.32) is x∗ = (1, · · · , 1, 0, · · · , 0),

which has n/2 ones followed by n/2 zeros, with an optimal objective value of

−(n2+2)/4. We have used our proposed Algorithm 1 to solve the relaxed version

of (4.32) up to 500 variables. For all the problems tested here, the analytic centre

of the feasible region, 1

2
e is taken to be the initial iterate for the algorithm. The

other parameters are set at their default values as before and the results obtained

are shown in Table 4.4. The objective value, Z∗ shown in Table 4.4 gives the

global optimum objective function value, which can be verified analytically. The

values given under the column Z are the ones found by our Algorithm. It may be

observed from the table that Z 6= Z∗ and this is due to the fact that the value Z
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Table 4.4: N umerical results for problem (4.32)

Variables Time O bj Value O bj Value Z − Z∗ Iterations
(min) (Z) (Z∗)

50 0.45 -623.31 -625.5 2.19 233
100 0.94 -2496.13 -2500.5 4.37 251
150 2.14 -5618.95 -5625.5 6.55 255
200 4.62 -9991.77 -10000.5 8.73 258
250 9.18 -15614.59 -15625.5 10.91 430
300 26.63 -22486.74 -22500.5 13.76 536
350 52.35 -30608.67 -30625.5 16.83 743
400 75.76 -39982.50 -40000.5 18.00 760
450 106.27 -50594.37 -50625.5 31.13 690
500 137.47 -62478.52 -62500.5 21.98 700

Figure 4.5: E ffect of variables on % G ap
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Figure 4.6: No. of iterations and time taken by B FA

is calculated at the non-integral values of the variables (before rounding). If the

variables are rounded to its nearest integer values, it has been verified that the

objective value found by our method is globally optimal. The effectiveness ofan

algorithm can be gauged by its ability to produce results as close as possible to the

global optimum value. The absolute difference, Z − Z∗ shown in the table helps

in this regard. Thus, the relative gap in % measure is calculated as 100(Z−Z
∗

Z∗
)

and is plotted against the number ofvariables in Figure 4.5. As expected, the %

gap increases with increasing number ofvariables. Similar trend can be observed

with time and number of iterations against the number of variables (see Figure

4.6). Thus the algorithm has been tested using polynomials of varying degrees

and bounds. B ased on the results obtained, it can be seen that the algorithm is

able to find good quality solutions within reasonable time.
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Chapter 5

Intrinsic Barrier Function

Algorithm

The B FA algorithm discussed in C hapter4 utilizes an external logarithmic barrier

function, which conforms to the properties required of it. G iven the complexity

of the potential energy equation of polypeptides, adding an external function

might complicate an already complex objective function. H ence, in this chapter,

we explore the possibility ofusing a particular term in the energy function as a

barrier function. We also propose an algorithm, called Intrinsic B arrier Function

Algorithm (IB FA), which utilizes the intrinsic barrier function and solves the

problem in question. Part ofthe contents and results ofthis chapterwas published

in Ng et al. (2011).

5.1 Proposed Solution Method

Though a plethora of methods are available to solve nonconvex optimization

problems that are similar to the one that we encounter in the protein structure

prediction, interior point methods are quite uncommon in the area of ab initio

methods. H ence, we propose a solution technique based on inherent barrier func-
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tion to solve the formulation shown in (3.26). This involves using the steepest

descent method for minimizing the transformed objective function.

5.1.1 Description of the Algorithm

From the potential energy equation of peptide systems given in (3.12),we can

hypothetically treat the energy function as a combination of just the dihedral

and electrostatic interactions and formulate the problem as given in (5.1).

Hypothetical Primal Problem

M inimize f(Φ) =
∑

dihedrals

kφ(1 + cos(nφ− δ)) +
∑

nonbonded

pairs

qiqj
ε1rij

Subject to

rij(Φ) ≥ 0,

− π ≤ Φ ≤ π,

(5.1)

H ere, rij is a function ofthe dihedral angle Φ. To handle the constraints in (5.1),

a barrier function method is used. When added to the objective function, barrier

functions prevent the generated points from leaving the feasible region. They

generate a sequence of feasible points whose limit is a solution to the original

problem. The requirement of a barrier function is that it should be continuous

in the interior offeasible region and it takes a value of∞ on its boundary. This

would make sure that successive feasible points that are generated stay within

the feasible region (B azaraa et al., 1993). In our problem, the term for van der

Waals interaction turns out to be a good candidate for such a function and is

given below:

vdW(Φ) =
∑

nonbonded

pairs

εij

[

(

Rminij

rij(Φ)

)12

−

(

Rminij

rij(Φ)

)6
]

. (5.2)
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The van der Waals interaction term, vdW(Φ), is continuous over the region,

{Φ : r(Φ) > 0}, and approaches ∞ as the boundary ofthe region {Φ : r(Φ) ≥ 0}

is reached. Ifµ is the barrier parameter and the van derWaals interaction term

is used as the barrier function, B(Φ), then the barrier problem can be formulated

as follows:

Hypothetical B arrier Problem

min
Φ

θ(Φ, µ) = inf{f(Φ) + µB(Φ) : rij(Φ) ≥ 0,−π ≤ Φ ≤ π}

where B(Φ) =
∑

nonbonded

pairs

εij

[

(

Rminij

rij(Φ)

)12

−

(

Rminij

rij(Φ)

)6
]

.

(5.3)

Note that the constraints present in the original formulation (3.26) have been

included in the objective function using the barrier function. Thus a series of

problems are solved by decreasing the value ofbarrier parameter µ from a large

initial value at every iteration and the optimal solution of the ith iteration is

used as an initial solution for the (i + 1)th iteration. Algorithm 3 shows the

Intrinsic B arrier Function Algorithm (IB FA) that we propose. For a given value

ofthe barrier parameter, the method searches for a minimum point ofthe barrier

function along the descent direction.

5.1.2 M ethod of Steepest Descent

The method of steepest descent, also called gradient descent method, proposed

by C auchy continues to be the basis ofseveral gradient based solution procedures.

The method uses first order approximation ofthe function being minimized. The

method starts at an initial point, say, xk and moves to the next point xk+ 1 by

minimizing along the line extending from xk in the descent direction, −∇ f(xk).

Let f : <n → <1 be a differentiable function in x. G iven an initial point xk,
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A lgorithm 3 Intrinsic B arrier Function Algorithm

Initialization Step

Let ε > 0 be a termination scalar. Let µ1 > 1, β ∈ (0, 1) and k = 1. Let the
randomly generated torsion angle Φ1 be the starting solution.

Step 1:

Starting with Φk, µk, solve the following problem using the method of steepest
descent:

min
Φ

θ(Φ, µ)

Let Φk+ 1 be a solution to the barrier problem; G o to Step 2.

Step 2:

Ifµk ≤ 1, solve the barrier problem using Φk+ 1 and µk+ 1 = 1 as the initial points
and stop. O therwise let µk+ 1 = βµk, k ← k + 1 and go to Step 1.

the method of steepest descent iteratively finds the next point xk+ 1 such that

f(xk+ 1) < f(xk), where xk+ 1 is given by xk+ 1 = xk + λd. H ere d is the direction

of steepest descent of f at xk, given by d = −∇ f(xk) and λ is the step length

satisfying the following:

M inimize f(xk + λd)

Subject to λ > 0
(5.4)

The method ofsteepest descent, though locates the local optima, has a very slow

convergence rate when functions with long and narrow valleys are encountered. It

also poorly performs as it reaches the optimum (B azaraa et al., 1993). M oreover,

the method is highly dependent on the quality ofthe initial solution provided.

5.2 G enerating Initial Solution

In order to generate a good quality initial solution for the IB FA algorithm, we

propose a H euristic for Initial Solution (H IS), based on a guided search through
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the domain ofthe feasible region. The objective is to find a suitable set ofdihedral

angles that would minimize the energy function. The problem formulation is the

same as in Section 3.4, where the variables are allowed to take on any values

from −180 ◦ to 180 ◦. The search procedure proposed here utilizes some problem

specific ideas and is shown in Algorithm 5.2. From the energy function to be

minimized shown in (3.12), it is obvious that in order for the functional value

to be minimum, the variable, rij should be as big as possible. H owever, rij, the

distance between the atoms i and j, cannot be infinitely big as it is constrained

by the size ofthe molecule. Since atoms i and j are non-bonded atoms, they are

not constrained by the fixed bond length. An increase in the value ofrij could be

obtained by increasing the bond angles. Since the bond angles are constants, the

required effect could be achieved by varying the dihedral angle. This is achieved

using the variables α and β, set at 0.5 and 0.25 respectively. The values ofα and

β used here have been found after trying out various combinations ofα and β.

Thus, a fraction ofthe bond angle is used to perturb the current set ofdihedrals

in a view to obtain new values that would minimize the energy function.

C onsider atoms 1, 2, 3, and 4 connected in that order to form a dihedral in a

protein. Then rij (r14) is the distance between the atoms i (1) and j (4). Now, in

order to increase the distance between the atoms 1 and 4, we increase the current

torsion around 2 and 3 by a fraction of bond angles, ∠ 1-2-3 and ∠ 2-3-4. The

variable ichange in the algorithm makes sure that after every fixed number of

iterations, there is a suffi cient change in the objective function value recorded.

Failing which, the fraction ofbond angle added to the torsion is increased to help

break out of the situation which causes it. B y no means, we are proposing this

algorithm to obtain an optimal solution to the original problem. O ur intention
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A lgorithm 4 H euristic for Initial Solution

Let ε = objective function tolerance,
n = multiplication factor,
fold = arbitrarily large value,
imax = maximum number of iterations,
ichg = no. of iterations for which the change in objective is less than ε,

Set i = 1,
n =1,
α =0.5,
β =0.25,
φct ∈ Φ be initial set oftorsion angles.

R epeat until i < imax

C ompute f(i)← V (φ)
If f(i) < fold T hen

fold ← f(i), φnew ← φct

E nd if

If i > ichg ∗ n T hen

If f(i)− f(i− ichg ∗ n) < ε T hen

φnew = φct + α× bond angle
E nd if

n← n + 1
E lse

φnew = φct + β × bond angle
E nd if

If φnew > 180 T hen

φnew = φnew −

⌊

φnew

180

⌋

× 180

E nd if

If φnew < −180 T hen

φnew = φnew +

⌊∣

∣

∣

∣

φnew

180

∣

∣

∣

∣

⌋

× 180

E nd if

i← i+ 1
E nd R epeat
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is to rapidly generate a good solution which can be used as an initial solution

to the IB FA algorithm. Algorithm 5.2 presents the pseudo code of the proposed

method.

5.3 C om putational E xperience

In general, initial tests on performance ofan algorithm are done on a standard set

ofproblems for which the solution is known. Performing tests on such problems

will help us to determine the ability of the proposed algorithm based on the

quality of solutions obtained. Similar tests were done in Section 4.6 for B FA

algorithm to gauge its performance. H owever, for IB FA algorithm we are using

problem specific characteristics in the proposed method and this will render the

standard test problems ineffective in this case.

In order to circumvent this, we use the widely studied model problem for

molecular conformation, which is minimizing the Lennard-Jones potential. The

objective is to find the minimum energy configuration ofLennard-Jones clusters.

The scaled Lennard-Jones potential which is used in the computation is

υ(r) =
1

r12
−

2

r6
, (5.5)

where r is the distance ofseparation. The function in (5.5) is similar to the bar-

rier function used in IB FA algorithm. Therefore using this function to generate

test problems for IB FA would help to gauge the true potential ofthe proposed al-

gorithm. Thus the following problem statement follows from M aranas & Floudas

(1992):

G iven N interacting particles, find their configuration(s) in three-

dim ensional Euclidean space involving the global m inim um potential
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energy.

The mathematical formulation of the above-mentioned problem statement in

(xi, yi, zi) coordinate space can be written as follows:

minV =

N−1
∑

i=1

N
∑

j=i+ 1

υij

where υij =
1

[(xi − xj)2 + (yi − yj)2 + (zi − zj)2]
6
−

2

[(xi − xj)2 + (yi − yj)2 + (zi − zj)2]
3

(5.6)

The formulation in (5.6) is an unconstrained nonconvex optimization problem

with large number ofvariables. D iffi culties associated with solving the problem in

(5.6) mainly involves dealing with the numerous local minima. O ften, bounds on

the interatomic distance and the energy function value are employed to constrain

the feasible region of the problem. H owever, developing bounds and solution

procedures applicable to the above-mentioned problem is not in the scope ofour

work. O ur sole purpose ofusing (5.6) as test problem is to compare our solution

with those already reported in the literature.

For this purpose we adapt the approach used in G ockenbach et al. (1997) to

compare numerical results. Since the putative global minimum is known, the

values ofcoordinates are perturbed so as to obtain a completely new coordinate,

which will be used as a starting point. Ifpi is the coordinate ofthe i
th atom, then

the new starting point is obtained as follows

pi = pi + ρupi, (5.7)

where ρ is the perturbation factorand u is a value from (pseudo-)random uniform

distribution on [−0.5, 0.5]. The formulation in (5.6) has 3N variables for a total
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Table 5.1: Numerical results for Lennard-Jones clusters

Putative E nergy R elative
N Variables M in Found Time G ap

(kcal/mol) (kcal/mol) (min) (%)
5 15 -9.1038 -9.1036 1.04 -0.0022
10 30 -28.4225 -28.4164 1.02 -0.0215
15 45 -52.3226 -52.3226 3.81 0.0000
20 60 -77.1770 -76.8713 4.18 -0.3961
25 75 -102.3726 -101.9281 10.19 -0.4342
30 90 -128.2865 -126.3547 14.21 -1.5058
35 105 -155.7566 -150.0031 19.54 -3.6939
40 120 -185.2498 -171.3761 25.16 -7.4892

of N participating atoms. In order to remove the translational and rotational

degrees of freedom, we set x1, y1, z1, y2, z2, z3 to 0, i.e., we fix the first atom at

the origin, second atom on the x-axis and the third atom on the xy-plane. Thus

for a N -atom problem we have 3N − 6 variables to describe the coordinates ofN

atoms.

The formulation (5.6) was solved using the IB FA algorithm for values ofN

ranging from 5 to 40 (15 to 120 variables). Setting the value of ρ = 0.75, the

initial point is obtained as in (5.7). H ence, we do not use the H IS algorithm and

directly employ the IB FA algorithm to solve the problem and the results obtained

are shown in Table 5.1. The columns titled N and Variables list the number

of atoms considered and the number of variables associated with the problem,

respectively. The energy value found (V ) by IB FA algorithm and the time taken

to solve the problem are also reported. The table also lists the putative minimum

(V ∗) obtained from G ockenbach et al. (1997). All the computations were carried

out on a PC with Intel C ore 2 D uo processor running at 1.83 G H z and 1 G B of

memory. The algorithms were implemented in M ATLAB Version 7.2.
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(a)

(b)

Figure 5.1: E ffect ofvariables on (a) % G ap (b) Time

The barrier parameter, µ, in the algorithm is reduced from 100 to 1 by 5%

at every iteration and the algorithm is terminated when µ ≤ 1. Then µ is set to

1 and the problem is solved again to obtain the final solution. The energy value

found by IB FA very closely matches the putative minimum value. The relative

gap in % measure is calculated as 100
(

V−V ∗

V ∗

)

and is plotted against the number

of variables in Figure 5.1(a). As the number of variables increases, so does the
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difference between energy value found and the putative minimum. For problems

with variables less than 75, the relative gap is negligible and it reaches up to 7.5%

for problems with 120 variables. From Figure 5.1(b), we can see a similar trend

in the effect of variables on computational time. B ased on the results obtained,

we conclude that the performance ofIB FA algorithm is very competitive.
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Chapter 6

Application to Peptides

The main objective of this C hapter is to test the effi ciency and the applicabil-

ity of the proposed algorithms in finding the minimum energy conformation of

peptides. While the ability of B FA and IB FA algorithms was demonstrated by

solving the standard test problems in O R literature (see Section 4.6), its appli-

cability to peptide systems is yet to be tested. H ence, the algorithms are used to

solve a number ofpolypeptides to determine its minimum energy conformation.

The results thus obtained are also compared with the solution found by other

methods. All the computations were carried out on the same PC with Intel C ore

2 D uo processor running at 1.83 G H z and 1 G B ofmemory. B oth the algorithms

were implemented using M atlab version 7.2. In order to generate the values for

constants ofthe energy function and other interaction energy values, Tinker v4.2,

a software suite developed by Ponder (2004) is used.

6.1 C om putational D etails

There are a variety of factors to be considered before actually solving the prob-

lem ofminimum energy conformation. The type of peptide to be modeled, its

corresponding data set for the parameters involved and the means to implement
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Figure 6.1: B locking ofalanine dipeptide

the coordinate conversions should be taken care of. In the following section, we

explain the various factors and implementation details required for setting up the

problem.

6.1.1 Dipeptide Structures

D ipeptides are nothing but a continuous chain of amino acids, which are fre-

quently used to test the performance and robustness of newly developed algo-

rithms. H ence, in order to test the effi ciency of the proposed methods we adapt

the dipeptide structures. D ue to blocking ofamino and carboxyl end groups, dif-

ferent forms ofdipeptides of the same amino acid are available. B oth the amino
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Figure 6.2: Schematic structure ofdi-alanine

and the carboxyl end group of the chain is replaced with the methyl group by

the process ofacetylation and methylation respectively. This creates two peptide

bonds with a single amino acid. The process ofconverting the naturally occurring

amino acid, alanine, into its dipeptide form is shown in Figure 6.1. In order to re-

duce the computational cost, sometimes the analogues ofdipeptides are also used.

Forourresearch, we consider the di-alanine formed when two alanine amino acids

are joined together by a peptide bond. Figure 6.2 shows the schematic structure

ofdi-alanine, which has 23 atoms connected by 22 bonds. It has 39 triples (bond

angles) and 49 dihedrals.

6.1.2 Parameters

The equation for the energy function involves a lot ofconstants that are specific

to the type of atoms that are involved in a particular interaction. M oreover,
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bond lengths and bond angles ofatoms are also required to model and solve the

problem. Values for these constants and other parameters are determined via

experimental techniques or ab initio methods and is a complex process by itself.

Such parametrization is available for different energy functions and we used the

one that is consistent with the C H AR M M force field. In order to generate the

required values, Tinker v4.2, a publicly available software suite developed by

Ponder (Ponder, 2004) is used. We use the C H AR M M 27 parametrization data

that is provided by the software for our calculations.

6.1.3 C oordinate C onversions

The term rij , which appears in the objective function represents the E uclidean

distance between the atoms i and j and is a function of internal coordinates

(bond lengths, angles and dihedrals). U nfortunately, computing distances using

the internal coordinates is extremely diffi cult and is not advocated in case of

optimization problems where it has to be executed repeatedly. H ence, conversion

to a cartesian system ofcoordinates is imperative. O ne ofthe effi cient algorithms

for this has been proposed in Thompson (1967), and is often used for performing

the conversions (B yrd et al., 1996; Floudas, 2000; L im, B eliakov & B atten, 2003).

C onsider four atoms, 1,2,3 and 4 that are connected to form a chain. A base

coordinate system is defined by the positions ofatoms 1, 2 and 3 by fixing atom

1 at the origin and atom 2 on the negative x-axis at a distance of r12 (bond

length). Now, the 3rd atom could be placed anywhere on the x-y plane with

the bond length and bond angle information. Now, subsequent atoms could be

fixed in the sequence if we know the bond length, bond angle and dihedral of

the corresponding atom. A series of equations have been derived in Thompson
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(1967) and we have adapted those to perform the coordinate conversions for our

problem.

Forexample,let the position offirst three atoms in a sequence be fixed, i.e., the

first one is fixed at the origin, (0, 0, 0), the second one is positioned at (−l2, 0, 0)

and the third one at (l3cosθ3 − l2, l3sinθ3, 0), where the variable lk denotes the

bond length between the atoms k and k − 1. A conversion scheme form atom

sequence, with bond angle, θ and dihedral angle, φ is detailed below:








xm
ym
zm
1









= B1 B2 . . . Bm









0
0
0
1









∀m = 1, ..., n, (6.1)

where xm, ym, zm represents the three-dimensional cartesian coordinates of the

mth atom and the matrices B1, B2, ..., Bm are given as in (6.2) and (6.3).

B1 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, B2 =









−1 0 0 −l2
0 1 0 0
0 0 −1 0
0 0 0 1









, (6.2)

Bi =









−cosθi −sinθi 0 −licosθi
sinθicosφi −cosθicosφi −sinφi lisinθicosφi

sinθisinφi −cosθisinφi cosφi lisinθisinφi

0 0 0 1









, ∀i = 3, ..., m. (6.3)

Thus with the explicit expressions for the cartesian coordinates, xm, ym, zm, the

E uclidean distance, r1m, can be found as
√

x2m + y2m + z2m.

6.2 C om putational R esults

6.2.1 Prob lem B ackground

We intend to test the proposed algorithms with the di-alanine structure discussed

in Section 6.1.1. There are a total of49 dihedral angles present in alanine dipep-

tide, including the backbone dihedral angles. We consider different number of
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dihedral angles as variables to test the computational effi ciency ofthe algorithm

developed. Such an experiment also helps to identify several minimal energy con-

formations ofthe peptide that is considered. The minimum energy conformations

that were identified by our method, can be used as initial conformers for other

programs and would hence reduce the overall computational cost in other appli-

cations, such as protein structure prediction, peptide docking and drug design.

The work in this paper also illustrates the possibility ofexploiting the structure

ofphysical functions encountered so that suitable computational methods can be

used to solve the underlying optimization problem effectively.

It is common to consider only 2 to 5 variables for determining the minimum

energy conformation ofdi-alanine. This is done to reduce the computational load

and the accurate empirical value ofenergy function is derived by interfacing the

solution method developed with other force field programs available. We vary

the number of dihedrals (variables) considered for each experiment and do not

interface with any ofthe force field programs available. The energy value reported

is completely calculated using the solution method developed. The dihedrals, van

derWaals and electrostatic interaction energy are calculated only for the number

of participating dihedral angles and it is due to this that the energy values are

different in all the four cases. M oreover, we allow the torsional angles to take on

any value between −π and π to determine the minimum energy configuration.

All the computations were carried out on a PC with Intel C ore 2 D uo processor

running at 1.83 G H z and 1 G B ofmemory. The algorithms were implemented in

M ATLAB Version 7.2.
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6.2.2 C omputational E xperience of B FA

The B FA algorithm was used to solve the energy conformation problem of di-

alanine and the results are reported in Table 6.1. The analytic center of the

feasible region was chosen to be the initial iterate for the algorithm. The initial

value ofbarrier parameter (µ) in ourAlgorithm 1 is set to 100 and is reduced by

a factor of0.95(θµ) when εD ≤ 0.01. The method terminates when εµ < 0.01. We

also ran the algorithm repeatedly from different set of starting points and each

run always converged to the same minimum solution which is reported.

The Varcolumn in Table 6.1 refers to the numberofdihedral angles considered

for that experiment, while Vstart & Vend refer to the energy values in kcal/mol

of the starting and ending conformation, respectively. The number of atomic

interactions that were considered for each experiment are listed under the column

heading Interactions. The value ofdihedral angles φ and ψ are also reported for

the minimum energy conformation found. The last column, Itns refers to the total

number iterations required to determine the reported minimum energy value.

The number of atomic interactions reported here is important because it forms

a core component of the total energy function. M oreover, for each interaction

considered, the distance between the end atoms (rij) has to be calculated, thereby

increasing the computational cost.

For the 2-variable problem, we consider only the backbone atoms, excluding

the side chain atoms, and fix the torsion around the peptide bond, ω, to 180 ◦.

In the case of 5 variables, we include the two side chain carbon atoms and also

allow ω to vary between −π and π. For the 15-variable problem, we include

the end group hydrogen atoms and oxygen atoms along with the hydrogen and
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Table 6.1: M inimum energy values ofdi-alanine computed via B FA

Var Vstart Vend Time Interactions φ ψ Itns
(kcal/mol) (kcal/mol) (sec) (deg) (deg)

2 64.48 27.78 14 6 -0.17 -2.38 17
5 83.72 25.64 16 13 0 180 43
25 286.72 -147.61 528 73 76.24 107.13 156
49 48.39 -231.56 3947 192 -83.26 -47.64 258

oxygen atoms that form the peptide plane. The complete structure ofdi-alanine

is considered for the 49-variable case. G enerally the hydrogen bond interactions

are not included and a cut-off distance is also used to reduce the computational

load. H owever, we do not consider such assumptions so that we could study the

structure in its entirety.

6.2.3 C omputational E xperience of H IS and IB FA

In this Section, we discuss our computational experience ofusing H IS and IB FA

algorithms to determine the minimum energy conformation ofdi-alanine. B efore

invoking the IB FA algorithm, the H IS algorithm is utilized to find a good ini-

tial point for the IB FA algorithm. The underlying premise of H IS is that, by

increasing the distance between end atoms, the energy function value would de-

crease. This is done by adding a fraction ofthe bond angle to the dihedral under

consideration which was detailed in Section 5.2. The number ofvariables in the

peptides considered is varied and the minimum energy conformation found for

each of them is shown in Table 6.2. In all the cases where ω is fixed at 180o,

understandably, the energy value obtained has been better than the other cases,

which is due to the extended planar structure ofthe peptide at that dihedral val-
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Table 6.2: M inimum energy values ofdi-alanine computed via H IS

Var Vstart Vend Time Interactions φ ψ Itns
(kcal/mol) (kcal/mol) (sec) (deg) (deg)

2 42.23 27.88 1.98 6 174.00 177.00 692
5 1.4×104 27.05 4.31 13 -113.25 -177.37 242
25 5.3×106 -32.75 25.74 73 -120.00 52.00 537
49 23.28 -56.05 71.75 192 89.00 179.00 916

Table 6.3: M inimum energy values ofdi-alanine computed via IB FA

Var Vstart Vend Time Interactions φ ψ Itns
(kcal/mol) (kcal/mol) (sec) (deg) (deg)

2 27.88 27.86 8 6 174.73 176.90 90
5 27.05 25.11 12 13 -179.52 -176.98 90
25 -32.75 -149.54 354 73 112.00 68.00 90
49 -56.05 -229.89 3667 192 -85.33 -53.40 90

ues. Foreach instance, 1000 iterations were run in order to perform an exhaustive

search. The lowest energy value found is recorded and the iteration in which it

was obtained is also reported.

The difference in the energy between the starting conformation and the end-

ing conformation, as presented in Table 6.1, shows the effi ciency of the IB FA

algorithm. The reason for the difference being less in the first two cases is the

ability ofH IS algorithm to identify the minimum energy configuration. The bar-

rier parameter, µ, in the IB FA algorithm is reduced from 100 to 1 by 5% at every

iteration. In a general barrier function method, the barrier parameter is usually

reduced to close to zero, at which point, the augmented objective function be-

comes close to the original objective function and the solution obtained at that

instance is considered to be an approximate solution for the original problem.
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In our case, since we use the van derWaals function which is inherently present

in the objective function as the barrier function, allowing the barrier parameter

to converge to zero would not solve the original problem. H ence, the framework

of the algorithm is altered to suit the barrier function that we are using. The

augmented objective function will resemble the original objective function when

µ = 1. Therefore, while reducing the value ofµ at every iteration, the algorithm

is terminated when µ ≤ 1. At this point, we set µ = 1 and use the optimum solu-

tion obtained in the preceding iteration as the initial point to solve the problem

again.

G enerally, a barrier algorithm is terminated when µ approaches 0. H owever,

in the proposed B FA algorithm, we intend to terminate the algorithm when µ ≤ 1

due to the aforementioned reasons. In order to confirm ifthis affects the quality

of solution obtained, we performed some experiments in which we allowed µ to

approach 0, and the solution obtained was used as an initial solution to solve the

original problem. These experiments showed that the quality ofsolutions obtained

in such settings were much inferior to what was obtained earlier. H ence, based

on this inference we terminate the algorithm when the barrier parameter, µ ≤ 1.

Such an early termination also has an advantage ofavoiding ill-conditioning issues

encountered in barrier function methods when the barrier parameter approaches

0. M oreover, it also helps to avoid getting trapped at a local solution.

6.2.4 C omputational E xperience of G enetic Algorithm

While seeking to compare the performance ofourmethod with othermethods in

the literature, we do not find much work that solves the problem under the same

assumptions or conditions adopted in our work. As an example, even though
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Figure 6.3: E xample ofcrossover operation

the αB B approach in M aranas et al. (1996) belongs to the ab inito methods, the

results reported are for blocked dipeptide structures by interfacing the algorithm

with other energy programs and holding the dihedral angles at known constant

values. M oreover, the αB B approach uses the E C EPP energy function. D ue

to the difference in assumptions, parameter values and even the different energy

functions used, it is diffi cult to find a benchmark against which we can compare.

H ence, we have instead used a genetic algorithm approach to compare with the

performance ofthe proposed methods. The C H AR M M energy function (3.25) was

used as the fitness function with the variables taking on values between −180 ◦ to

180 ◦. The genetic algorithm was implemented with a scattered crossover function

which generates a random binary vector and selects the genes from parent 1 ifthe

component ofa random vector is 1, and the genes from parent 2 ifthe component

of that random vector is 0. This crossover operation is illustrated in Figure 6.3.

The mutation operation was achieved using a crossoverfraction, which determines

the percentage of crossover children in the next generation without including

the elite children. The crossover fraction is varied from 0 to 1, by a factor of

0.05 at every run of the algorithm. Starting from an initial population of 20,
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Table 6.4: C omparison ofresults from B FA, IB FA and G A

Variables E nergy (kcal/mol) Time (sec)
B FA IB FA G A B FA IB FA G A

2 27.78 27.86 58.52 14 8 144
5 25.64 25.11 25.13 16 12 131
25 -147.61 -149.54 -132.54 528 354 582
49 -231.56 -229.89 -171.69 3947 3667 1530

the algorithm is terminated when the population size reaches 500. This genetic

algorithm was also implemented in M ATLAB .

The results obtained by the genetic algorithm are presented in Table 6.4 and

compared against the results ofB FA and IB FA. It can be inferred from the table

that both the B FA and the IB FA method locates a minimum conformation which

is better than the one found by the genetic algorithm method. A comparison of

energy value found and the computation time required by B FA, IB FA and G A is

shown in Figure 6.4. From the figure, we also infer that G A is computationally

more expensive than B FA and IB FA. Though, the time taken by B FA and IB FA

methods is more than that ofG A for the 49 variables case, it is compensated by

the significant improvement in the energy values identified.

6.2.5 Application to Polyalanines

In this section, we discuss the computational experience ofapplying the proposed

solution approaches to larger peptide systems. For this purpose, we adapt the

structure of polyalanines, AcNH -(Ala)n-C O NH C H 3, where n is the number of

alanine residues considered in the study. The minimum energy conformation is

determined by considering two dihedral angles (φ/ψ) as variables for each ofthe
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(a)

(b)

Figure 6.4: C omparison ofresults from B FA, IB FA and G A for (a) E nergy value
determined (b) C omputational time

alanine residue in a given polyalanine. This particular structure has been studied

using simulated annealing (SA) in Wilson & C ui (1990). The energy values found

by the SA approach is compared with that ofthe B FA and IB FA methods. Table

6.5 provides a detailed comparison of the energy values and the time taken to

solve the problem by the aforementioned methods. E nergy values in Wilson &
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C ui (1990) are reported in K J/mol, whereas the energy values calculated by our

algorithm are in kcal/mol. In order to facilitate ease of comparison, the energy

values in K J/mol are converted to kcal/mol using 1 K J/mol = 4.2 kcal/mol.

(a)

(b)

Figure 6.5: C omparison of energy values obtained (a) B FA Vs SA (b) IB FA Vs
SA

In the SA approach, each problem is solved 10 times and the results are

reported for each run. In Table 6.5, the columns M in E nergy and Avg E nergy
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correspond to the minimum value and the average value ofthe energy found in 10

runs, respectively. The time taken per run in minutes is also reported for the SA

approach. The energy value found and time taken for both the B FA and IB FA

approach are also reported.

From Table 6.5, we see that the energy values determined by B FA and IB FA

are consistently lowerthan the average energy value determined by the SA method.

While comparing the results obtained with the minimum energy determined by

the SA method, the results are mixed. In order to understand the results ofcom-

parison better, we calculate the relative gap (in %) between the energy values

reported as follows:

ξB1 = 100×

(

EBFA − SAm in

EBFA

)

,

ξB2 = 100×

(

EBFA − SAavg

EBFA

)

,

(6.4)

where EBFA, SAm in and SAavg denote the energy values reported by the B FA

method, minimum energy reported by SA method and the average energy re-

ported by SA method, respectively. ξB1 & ξB2 denote the corresponding relative

gap in % measure. The values of ξB1 & ξB2 are plotted against the number of

variables involved in that problem in Figure 6.5(a). Similar graph is also plot-

ted in Figure 6.5(b) to study the performance ofIB FA algorithm against the SA

approach.

The IB FA’s results are better when compared to that of the average energy

values reported by the SA approach. While the IB FA matches the minimum

energy found by SA in some cases, the difference is more pronounced as the

variable size increases. The B FA method also compares with the SA method in

a fashion similar to that of IB FA. While the trend is similar, the % deviation is
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Figure 6.6: Performance comparison ofB FA and IB FA

much lesser in B FA. It should be noted that the SA approach utilizes an energy

function which is different from what we have used. From the results, we can also

see that the time taken by each of the B FA and IB FA approach is much lesser

than that required by the SA approach. Although both approaches use different

energy functions, the results indicate that both B FA and IB FA approaches are

able to obtain comparable energy values in lesser time.

In order to study the performance comparison between B FA and IB FA Figure

6.6 is plotted. Since the energy values and computation time of both B FA and

IB FA are very close to each other, plotting the absolute value will be ofno avail.

H ence, we plot the % deviation of B FA’s solution from that of IB FA’s. Similar

to (6.4), the relative gap (in %) between the B FA’s solution and IB FA’s solution
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is calculated as given in (6.5) and is plotted in Figure 6.6.

κ = 100×

(

EBFA − EIBFA

EBFA

)

,

τ = 100×

(

TBFA − TIBFA

TBFA

)

,

(6.5)

where EIBFA, TIBFA and TBFA denote the energy value reported by the IB FA

method, computational time required for the IB FA method and the B FA method,

respectively. κ and τ denote the corresponding relative gap in % measure.

Figure 6.6 shows that B FA finds the minimum energy configuration in most of

the cases and in particular, as the variable size increases, B FA’s solution is much

better than that ofIB FA. With respect to computational time, B FA takes lesser

time than that ofIB FA initially and as the variable size increases, the time taken

by B FA is more than that ofIB FA. H owever, the increase in computational time

is compensated by the quality ofsolution found.

6.3 A pplication to L ennard-Jones C lusters

In order to gauge the performance of the B FA and IB FA algorithms for bigger-

sized problems, the Lennard-Jones cluster problem discussed in Section 5.3 is

utilized. B oth the B FA and IB FA algorithms are used to solve the problem with

variables ranging from 60 to 510. In order to compare our results with that

of other methods, we refer to the hybrid approach proposed by Zhang (2011).

The hybrid method uses the combination of discrete gradient method for the

local search phase and simulated annealing for the global search phase. R esults

obtained from B FA and IB FA method are presented in Table 6.6 along with that

ofthe hybrid approach.

In Table 6.6, N represents the number ofatoms in the Lennard-Jones cluster
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Table 6.6: C omparison ofresults for Lennard-Jones clusters

E nergy Values (kcal/mol)
No. of Putative H ybrid

N Variables M inimum M ethod B FA IB FA
20 60 -77.177043 -77.177043 -77.177038 -76.871300
23 69 -92.844472 -92.844461 -92.844232 -92.695193
25 75 -102.372663 -102.372663 -102.372631 -101.928100
27 81 -112.873584 -112.825517 -112.867814 -112.685649
30 90 -128.286571 -128.09696 -128.089248 -126.354700
34 102 -150.044528 -150.044528 -150.044437 -148.953821
44 132 -207.688728 -207.631655 -207.644635 -207.229583
49 147 -239.091864 -239.091863 -239.090741 -238.693910
56 168 -283.643105 -283.324945 -283.378529 -282.195297
65 195 -334.971532 -334.014007 -333.984813 -332.847311
84 252 -452.657214 -452.26721 -452.463515 -451.869512
93 279 -510.877688 -510.653123 -509.647385 -508.775928
148 444 -881.072971 -881.072948 -879.758314 -876.489319
170 510 -1024.791797 -1024.791771 -1022.649288 -1015.739136

and the second column denotes the numberofvariables considered in the problem.

The column Putative M inimum gives the best known global optimum value. The

remaining columns give the energy values obtained from the respective methods.

B ased on the results, we see that the B FA algorithm is able to provide results

close to the putative minimum. The results ofB FA algorithm are generally close

to that ofhybrid algorithm forvariables up to 279. As the variable size increases,

the quality of the solution obtained by B FA slightly decreases when compared

to the hybrid method. IB FA’s performance when compared to that ofB FA and

hybrid method is on the lower side. E ven though IB FA finds solutions in the

vicinity ofputative minimum, the quality ofthe solution is lower when compared

to the other methods. Thus it can be seen that both the proposed methods are

competitive and has the ability to find good solution(s).
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Chapter 7

Conclusions and Future Work

The primary focus ofthis thesis is to develop solution methods to determine the

minimum energy conformation ofpolypeptides. The solution methods developed

here could be extended to other areas ofcomputational biology as well. C onclu-

sions and further work to be done are discussed in this chapter.

7.1 C onclusions

In summary, we have developed interior-point methods to solve nonlinearnoncon-

vex optimization problems with box constraints. Interior-point methods, seldom

used in the area of computational biology was effectively utilized to solve the

problem ofminimum energy conformation ofpolypeptides.

It is particularly important to have a set oflow energy conformations ifa num-

ber ofpopulated states are present (Wilson & C ui, 1990). First pass optimization

methods play a vital role in identifying a set oflow energy conformations. These

low energy conformations can be used to approximate the entropic contributions

associated with the stability of the molecule. O nce a suffi cient ensemble of low

energy minima has been identified, a statistical analysis can be used to estimate

the relative entropic contributions (K lepeis & Floudas, 1999). M ethods such as



112

the one proposed in this paper help to identify both the stable three-dimensional

structure (global minimum), as well as a set of low energy conformations (local

minimum). The advantages of ab initio methods as proposed by M cAllister &

Floudas (2010) lies in its ability to

• predict structures when a related structural homologue is not available

• extend the predictions to different environments

• provide insight into the mechanism, thermodynamics, and kinetics of pro-

tein folding

M oreover, new structures continue to be discovered, which would not be possible

by methods that rely on comparison to known structures (Floudas et al., 2006).

Two approaches, namely B FA and IB FA have been proposed. B oth the meth-

ods utilize a barrier function to transform a constrained problem into an uncon-

strained problem or into a sequence of unconstrained problems. The difference

lies in the type of barrier function that was utilized. While B FA employs an

external barrier function, IB FA utilizes the vdW term in the energy function as

the barrier function. This illustrates the possibility of exploiting the structure

ofphysical functions encountered so that suitable computational methods can be

used to solve the underlying optimization problem effectively. B oth the methods

have been tested with standard problems in the literature before applying them

to solve polypeptide structures. B FA in particular was tested with polynomials

of higher degrees. The performance of both, B FA and IB FA was found to be

encouraging. The results were also compared with that of a genetic algorithm

implementation.
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Interior-point methods are highly dependent on the initial solution provided.

H ence, for both the methods it is imperative to have a good quality initial solu-

tion. The starting solution provided might influence the quality offinal solution

obtained. While B FA utilizes the analytic centre ofthe feasible region as an initial

solution, IB FA uses the H IS algorithm to find a good starting solution. B arrier

parameters are set to a constant value for each subproblem that is being solved.

It would be helpful to dynamically update the barrier parameter value based on

the variable it is associated with. Such an approach would help us to have more

control on the behavior ofvariables involved. O ne could also consider using other

types ofbarrier functions to solve the problem ofminimum energy conformation.

Improvement in terms ofperformance could also be achieved by considering other

search directions and line search procedures.

7.2 Future Work

The problem of protein structure prediction, is nothing but minimizing a non-

convex potential energy equation which possess a plethora oflocal minima points

in the multivariable potential energy hyperspace. Though the focus of this the-

sis is on interior-point algorithms for determining minimum energy conformation

of polypeptides, it is possible to extend and adapt the algorithm to solve opti-

mization problems arising from other areas. The following section elaborates the

possible future work.

7.2.1 M olecu lar Structure Prediction

Atoms, the building blocks ofmolecules remain the same in every molecule. It

is only the orientation of the atom that changes with different molecules calling



114

for methods to predict the molecular structure. Similar to proteins, there are

several force fields that are developed for determining the total potential energy

ofthe molecule. The assumption that the most energetically stable conformation

of the molecule is the one that corresponds to the global minimum potential

energy holds good here as well. The difference between protein and molecular

structure prediction is in the potential energy equation and the interaction terms

that are involved in it. Since the problem structure is so similar an extension into

this area should only be natural. M aranas & Floudas (1994a) and M aranas &

Floudas (1994b) gives an in-depth information regarding the energy functions and

implementation aspects pertaining to molecular structure prediction methods.

7.2.2 Peptide Docking

The problem ofpeptide docking comes as a natural extension ofthe protein folding

problem. It requires identification ofequilibrium structures for a macromolecule-

ligand complex which highlights the complexity of the problem. The free energy

equation which accounts for solvation terms is used as the objective function for

this problem. The most obvious and most diffi cult approach would be to optimize

the entire system oftwo interacting peptides.

G enerally, the first step in solving the problem is the identification of a

“pocket” or the binding site. A mathematical model accounting for all the inter-

actions of the specific pocket and a naturally occurring amino acid is developed.

Any ofthe protein force fields along with solvation terms could be used to model

the energy function. The difference between the global minimum energy of the

complex and that ofthe naturally occurring amino acid is calculated and used as

a measure to gauge the binding affi nity between the pocket and the given amino
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acid. Androulakis et al. (1997) details the prediction of peptide docking to a

particular protein using the αB B algorithm.

7.2.3 Incorporating Sequence-Structure R elations

It is ofour interest to predict only the tertiary structure as it is only at this native

structure the protein performs the function it is intended to. The other forms,

such as the primary and secondary structure are extremely short-lived and do

not have any impact directly on the end function. B ut, the information of the

secondary structures such as α−helix, β−sheets and coils could be used in the

prediction of the tertiary structure. When a particular sequence of amino acids

occur, based on the data available, it is possible to say what kind of secondary

structure it would adapt. From this information, angle and distance restraints

could be derived and used. H owever, resorting to information other than the

sequence ofamino acids contradicts with the idea ofab initio prediction methods,

which does not use any external information. With the rapid improvement in the

prediction methods the boundaries between different classes ofprediction methods

have been blurred (Floudas et al., 2006) and is generally accepted to include some

external information which could aid the prediction process.

M oreover, biological data are available in plenty at several databases that

are maintained around the globe and is publicly available. Available data for

a particular protein under study could be used to infer details which can be

included in the problem formulation as constraints. Sometimes partial data from

failed NM R experiments is also available which can be used to tighten the feasible

space. Information pertaining to distance between atoms and bond angles of

atoms involved can also be deduced and used accordingly.
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