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SUMMARY

Our work in this thesis consists of two parts. The first part (Chapter 1) deals

with dimension reduction in nonparametric regressions. In this Chapter we propose

to use different single-index models for observations in different regions of the

sample space. This approach inherits the estimation efficiency of the single-index

model in each region, and at the same time allows the global model to have multi-

dimensionality in the sense of conventional dimension reduction (Li, 1991). On the

other hand, the model can be seen as an extension of CART (Breiman et al, 1984)

and a piecewise linear model proposed by Li et al (2000). Modeling procedures,

including identifying the region for every single-index model and estimation of the

single-index models, are developed. Simulation studies and real data analysis are

employed to demonstrate the usefulness of the approach.



xii Summary

The second part (Chapter 2) deals with nonlinear time series analysis. In this

Chapter, we modify the Whittle likelihood estimation (WLE; Whittle, 1953) such

that it is applicable to models in which the theoretical spectral density functions of

the models are only partially available. In particular, our modified WLE can be ap-

plied to most nonlinear regressive or autoregressive models with residuals following

a moving average process. Asymptotic properties of the estimators are established.

Its performance is checked by simulated examples and real data examples, and is

compared with some existing methods.
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CHAPTER 1

A Piecewise SIM for Dimension

Reduction

1.1 Introduction

Exploring multivariate data under a nonparametric setting is an important

and challenging topic in many disciplines of research. Specifically, suppose y is the

response variable of interest and x = (x1, ..., xp)
⊤ is the p−dimensional covariate.

For a nonparametric regression model

y = ψ(x1, ..., xp) + ε, (1.1)



2 Chapter 1. A Piecewise SIM for Dimension Reduction

where ε is the error term with mean 0, the estimation of unknown multivariate

function ψ(x1, ..., xp) is difficult. There are several different ways to do the non-

parametric regression. The two most popular techniques are local polynomial ker-

nel smoothing and spline smoothing. But no matter which technique we use to do

the nonparametric regression, as the dimension increases, the estimation efficiency

drops dramatically, which is the so-called curse of dimensionality.

1.1.1 Effective Dimension Reduction (EDR) Space

Numerous approaches have been developed to tackle the problem of high di-

mensionality. One of the most popular approaches is searching for an effective

dimension reduction (EDR) space; see for example Li (1991) and Xia, Tong, Li

and Zhu (2002). The EDR space was first introduced by Li (1991) who proposed

the model

y = f̃(β⊤
1 x, · · · , β⊤

q x, ε), (1.2)

where f̃ is a real function on Rq+1 and ε is the random error independent of x. Our

primary interest is on the q p-dimensional column vectors β1, ..., βq. Of special

interest is the additive noise model

y = f(β⊤
1 x, · · · , β⊤

q x) + ε. (1.3)
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where f is a real function on Rq. Denote by B = (β1, · · · , βq) the p × q matrix

pooling all the vectors together. For identification concern, it is usually assumed

that B⊤B = Iq, where Iq denotes the q by q identity matrix. The space spanned

by B⊤x is called the EDR space, and the vectors β1, ..., βq are called the EDR

directions.

If we know the exact form of f(·), then (1.3) is not much different from a simple

neural network model, or a nonlinear regression model. However, (1.3) is special

in that f(·) is generally assumed to be unknown and we need to estimate both B

and f(·).

There are essentially two approaches to do the estimations. The first is the

inverse regression approach first proposed by Li (1991). In his sliced inverse re-

gression (SIR) algorithm, instead of regressing y on x, Li (1991) proposed to regress

each predictor in x against y. In this way, the original p-dimensional regression

problem is reduced to be multiple one-dimensional problems. The SIR method has

been proven to be powerful in searching for EDR directions and dimension reduc-

tion. However, the SIR method imposes some strong probabilistic structure on x.

Specifically, this method requires that, for any β ∈ Rp, the conditional expectation

E(β⊤x|β⊤
1 x, · · · , β⊤

q x)

is linear in β⊤
1 x, · · · , β⊤

q x; i.e., there are constants c0, · · · , cq depending on β such
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that

E(β⊤x|β⊤
1 x, · · · , β⊤

q x) = c0 + c1β
⊤
1 x+ · · ·+ cqβ

⊤
q x.

An important class of random variables that do not satisfy this assumption is the

lagged time series variable x := (yt−1, ..., yt−p) where {yt} is a time series.

The second approach of searching for the EDR directions is through direct

regression of y on x. One of the most popular methods in this category is the

minimum average variance estimation (MAVE) method introduced by Xia et al

(2002). In this method, the EDR directions are found by solving the optimization

problem

min
B

{E[y − E(y|BTx)]},

subject to B⊤B = Iq, where E(y|BTx) is approximated by a local linear expansion.

Through direct regression, the condition on the probability structure of x can be

significantly relaxed. So as compared to the inverse-regression based approaches,

MAVE method is applicable to a much broadened scope of possible distributions of

x, including the nonlinear autoregressive modeling aforementioned which violates

the basic assumption of the inverse-regression based approaches.
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1.1.2 Single-Index Model (SIM)

The single-index model (SIM) is actually a special case of model (1.3) which

only has one EDR direction. Specifically, a typical SIM can be written as

y = f(β⊤
1 x) + ε, (1.4)

where ε is independent of x. The SIM is singled out here mainly for its popularity

in many scientific fields including biostatistics, medicine, economics and financial

econometrics. It is in the intersection of both the EDR approaches introduced

above and the projection pursuit regression (PPR) approach proposed by Friedman

and Stuetzle (1981) which is another popular method in dimension reduction. It is

also the non-parametric counterpart of the generalized linear model (GLM) which

is one of the prevailing regression models in practice.

In the last two decades a series of papers (Powell, Stock, and Stoker, 1989;

Hädle and Stoker, 1989; Ichimura, 1993; Klein and Spady, 1993; Härdle, Hall, and

Ichimura, 1993; Sherman, 1994; Horowitz and Härdle, 1996; Hristache, Judits-

ki, and Spokoiny, 2001; Xia et al, 2002; Yu and Ruppert, 2002; Yin and Cook,

2005; Xia, 2006; Cui, Härdle and Zhu, 2011) have investigated the estimation of

the parametric index β1 with focus on root-n estimability and efficiency issues.

Among these methods, the most popular ones up to now are the average deriva-

tive estimation (ADE) method proposed by Powell, Stock and Stocker (1989) and
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Härdle and Stoker (1989), the simultaneous minimization method of Härdle et al

(1993) and the MAVE of Xia et al (2002).

As the single-index β⊤
1 x can be estimated with root-n consistency, the nonpara-

metric estimation of the link function f(·) is able to achieve the best nonparametric

efficiency with properly chosen smoothing techniques. However, the flexibility of

the SIM in modeling is more or less restricted by involving only one global EDR

direction. It has already been observed, e.g., in Xia et al (2002), that some real

data sets can have more than one EDR direction for which the SIM does not work

well. On the other hand, if we include more EDR directions into the model, we

take the risk of losing the optimal estimation efficiency of the link function f(·).

There has not been a well-developed method that not only keeps the estimation

efficiency of SIM but also allows more than one EDR direction from a global view.

1.1.3 Piecewise Regression Models

Another important approach on approximating the function ψ(·) in (1.1) is

through a piecewise regression model, which is also called the tree-structured mod-

el. Piecewise models partition the feature space into several disjoint subspaces and

fit each subspace with a simple regression model. Specifically, if we assume the

subspaces take the shape of rectangles and the function value within each subspace
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is a constant, we reach the famous CART model of Breiman, Friedman, Olshen and

Stone (1984), i.e., assuming we have M such subspaces {R1, ..., RM}, the function

ψ(·) in (1.1) is approximated by

ψ̂c(x) =
M∑

m=1

cmI{x ∈ Rm},

where cm are constants and I{A} is the indicator function of set A. To estimate

this model, CART starts from the whole space (the root) and searches for the

best cut-point for a univariate split by optimizing a cost function. If we do this

recursively on the resulting nodes, we end up with a large initial tree. CART then

prune down the size of the tree by a cross-validation procedure. The cm for region

Rm is estimated by the simple average of the response variables within Rm.

Li, Lue and Chen (2000) extended this idea by allowing cm to be a linear

combination of x. Their new model is called tree-structured linear regression with

the form

ψ̂l(x) =
M∑

m=1

β⊤
mx I{x ∈ Rm}.

where the regions Rm are partitioned by linear straight lines estimated through

the so-called primary PHD directions; see also Li (1992).

In piecewise modeling, to give a reasonable partition of the feature space of x

is crucial for building a useful model. Most piecewise methods in current literature

rely on some parametric assumptions on the partitioning rules among the regions
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{R1, ..., RM}, e.g. rectangle shape as assumed by CART or linear partitions as

assumed by tree-structured linear regression. Although by imposing on paramet-

ric assumptions we usually improve the stability of the fitted model, we lose the

flexibility and capability to model more complicated data structures.

1.1.4 Piecewise Single-Index Model (pSIM)

Following the direction of last subsection and given the efficiency of SIM, it is

natural to consider the piecewise SIM defined as

ψ̂s(x) =
M∑

m=1

fm(β
⊤
mx) I{x ∈ Rm}. (1.5)

Gramacy and Lian (2012) has studied this form of model in the context of Bayesian

approaches by restricting that {R1, ..., RM} are partitioned by binary splits of the

coordinates in x. In this thesis, model (1.5) is investigated through a frequentist’s

point of view with weaker restrictions.

Our method will build on the two general categories of approaches to the curse

of dimensionality as discussed in subsection 1.1.1 to subsection 1.1.3. First of all,

we assume that the link function ψ(·) in model (1.1) satisfies

ψ(x1, ..., xp) = ϕ(η⊤
1 x, ...,η

⊤
d x)
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with d < p, and thus

y = ϕ(η⊤
1 x, ...,η

⊤
d x) + ε, (1.6)

where ϕ is an unknown link function and ηk, k = 1, 2, ..., d, are constant vectors.

In this Chapter, we consider a piecewise single-index model (pSIM) to perform

nonparametric regression in a multidimensional space. Our model can be written

as

y =



ϕ1(β
⊤
1 x) + ε1, if x ∈ R1,

· · · · · ·

ϕm(β
⊤
mx) + εm, if x ∈ Rm,

(1.7)

where βg, g = 1, ...,m, are p × 1 vectors, ϕg, g = 1, ...,m, are smooth functions

on R, E(εg|x, Rg) = 0, ∪m
g=1Rg = Rp and Ri ∩ Rj = Ø for any i ̸= j. The

regions Ri, i = 1, ...,m, need not be contiguous. The error term εg is assumed to

be independently and identically distributed within region Rg. Heteroscedasticity

of the error terms across different regions are allowed. We call βg the piecewise

single-index for region Rg. Model (1.7) is an extension of the tree-structured linear

regression model proposed by Li et al (2000) that splits the sample space into

several regions through linear combinations of x. To link model (1.6) with model

(1.7), we further assume that the boundaries of R1, ..., Rm are uniquely determined

by (β⊤
1 x, ...,β

⊤
mx). In other words, the relationship between y and x in model (1.7)

is uniquely determined by (β⊤
1 x, ...,β

⊤
mx), so in this case model (1.7) can also be
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written in the form of model (1.6) with d = m and βk = ηk, for k = 1, ...,m.

However, model (1.7) enjoys a more specific description of the relationships between

y and x with only one effective dimension in each region. Moreover, as compared

with the dimension reduction model (1.6), model (1.7) allows more than p regions

in the model, i.e., it is possible that m ≥ p, in which case the dimension can not

be reduced by model (1.6).

Similar models have been considered in the literature. Chipman, Geoge and

McCulloch (2002) proposed a Bayesian approach to fit the tree models that split

the sample space into smaller regions, recursively splitting on a single predictor,

applying different linear models on the terminal nodes. Gramacy and Lian (2012)

extended this idea to allow single-index link functions in each of the terminal

nodes. In fact, the pSIM model can be regarded as a special case of the hierarchical

mixture experts (HME) which assign every observation according to a specific rule

to different models. HME is more general in its form than the piecewise models,

but its estimation is more complicated; see for example Villani, Kohn and Giordani

(2009) and Montanari and Viroli (2011) for more details.

In this Chapter, we propose to partition the sample space according to the

gradient direction at each sample point. The rationale is the fact that points with

the same gradient direction follow the same single-index model and thus should fall

into the same region. Many efficient methods are available for the estimation of
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gradient directions. See for example Härdle and Stoker (1989), Ruppert and Wand

(1994) and Xia et al (2002). In this Chapter, we adopt the estimation method

of Xia et al (2002) that uses the first few eigenvectors of the average of outer

product of gradients (OPG) as the directions for dimension reduction. A rigorous

theoretical justification of the estimation can be found in Xia (2007). This idea will

be used in this Chapter to reduce the effect of high dimensionality and to improve

the accuracy of estimation.

The rest of the Chapter is organized as follows. Section 1.2 discusses the

methodology for model estimation and selection. A method is developed to par-

tition the whole sample space; and local linear smoothing is used to estimate the

link functions. A BIC-type criterion is employed to select the number of regions.

To check the usefulness of our approach, Section 1.3 gives two simulation examples

and Section 1.4 studies three popular real data sets. Section 1.5 and Section 1.6

are devoted to the asymptotic analysis of the estimators.

1.2 Estimation of pSIM

Estimation of model (1.7) consists of two parts. First, we need to partition the

whole space into m subsets or regions. Secondly, we need to use semiparametric

methods to estimate the single-index model in each region. The selection of m also
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needs to be investigated.

1.2.1 Model Estimation

Suppose we have a set of observations (xi, yi), i = 1, ..., n. To partition the

whole sample space, we first estimate the pointwise local gradient direction at each

observation, and use them to cluster the observations into m groups. The rationale

behind this method is that the estimated local gradient directions for the points in

the same single-index model should be close to one another while those in different

regions should be apart.

Consider the estimation of the gradient direction at a given point xi. Using

local linear approximation, we can get a preliminary estimate for the gradient bi

at xi through

(âi, b̂i) = argmin
a,b

n∑
j=1

{yik − a− b⊤(xi − xj)}2wi,j, (1.8)

where wi,j is a symmetric weight function of the form h−p
i K{h−1

i (xi − xj)} in

which hi is the bandwidth and K(·) is the kernel function. If the observations are

generated from model (1.7), for any xi ∈ Rgi , the standardized gradient direction

b̃i = b̂i/b̂
⊤
i b̂i is a local estimation for the regional single index βgi , where gi denotes

the region index of xi. Suppose conditions (A1) - (A5) in the Appendix hold, a

direct application of the Theorem 2 of Lu (1996) gives that b̃i = βgi +oP (1), where
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oP (1) is a infinitesimal item as n approaches to infinity. If xi and xj belong to the

same region Rg as defined in model (1.7), then we have b̃j = b̃i+oP (1). Thus if the

observations are generated from model (1.7), the estimated standardized gradient

directions {b̃i : i = 1, ..., n} can be separated into m subgroups with centroid

directions βg for g = 1, ...,m respectively. Then we can easily identify the regions

in model (1.7) by clustering {b̃i : i = 1, ..., n} into m subgroups.

The estimator (1.8) can be improved if the observations are also believed to

follow the model (1.6). Based on the idea of the OPG method (Xia et al, 2002), we

can estimate the effective dimension reduction directions B = (η1, ...,ηq) through

the first q eigenvectors of the OPG matrix calculated as

Σ̂ = n−1

n∑
i=1

b̂ib̂
⊤
i , (1.9)

where the value of q is chosen by a data-driven approach; see Step 2 below for

details. Then, the kernel weights wi,j in (1.8) can be refined to work on a lower

dimension space B⊤x as

wi,j = h−q
i K{h−1

i B
⊤(xi − xj)}.

The estimated gradients {b̂i : i = 1, ..., n} can be updated with the refined kernel

weights. In this way, we propose an iterative algorithm to estimate the local

direction of gradients as follows.

Step 0. Set B0 = Ip and t = 0, where Ip is the p × p identity matrix. Let
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w
(0)
i,j = h−p

i K{h−1
i B

⊤
0 (xi − xj)} for i, j = 1, ..., n.

Step 1. Calculate the solutions to (1.8) for i = 1, ..., n, a
(t)
i

b
(t)
i

 =


n∑

j=1

w
(t)
i,j

 1

xi − xj


 1

xi − xj


⊤


−1

n∑
j=1

w
(t)
i,j

 1

xi − xj

 yj.

Step 2. Let

Σ̂(t) = n−1

n∑
i=1

b
(t)
i b

(t)⊤
i ,

which is the average outer product of gradients (OPG). Make a principal

component decomposition of Σ̂(t),

Σ̂(t) = λ1η1η
⊤
1 + · · ·+ λpηpη

⊤
p ,

where λ1 > · · · > λp ≥ 0. Let Bt = (η1, ...,ηq̃) be the first q̃ eigenvectors of

Σ̂(t), where q̃ = max{2, q̃0} with q̃0 being determined by

∑
k≤(q̃0−1)

|λk|
/ p∑

k=1

|λk| < max{R0, 1− 1/
√
n},

and ∑
k≤q̃0

|λk|
/ p∑

k=1

|λk| ≥ max{R0, 1− 1/
√
n}.

To ensure the selected components contain a large proportion of information,

we take R0 = 0.95 in our calculation.

Step 3. Set t = t + 1. If q̃ < p, update w
(t)
i,j = h−q̃

i K{h−1
i B

⊤
t (xi − xj)}. Repeat

Steps 1 and 2 until convergence. Denote the final value of Bt and b
(t)
i by B

and b̂i respectively.
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Step 4. Calculate b̃i = b̂i/b̂
⊤
i b̂i for i = 1, ..., n.

The above algorithm is inspired by the OPG algorithm of Xia (2007) who

proved the convergence of the OPG-related algorithms. In practice, we usually

standardize xi by letting xi = S−1/2(xi − x̄), where x̄ = n−1
∑n

i=1 xi and S =

n−1
∑n

i=1(xi − x̄)(xi − x̄)⊤ before applying the above algorithm.

Based only on the Euclidean distances of the estimated gradient directions,

we cluster the observations into m groups through the K-means method. Let Îg

contain all the indices i of observation (xi, yi) that are in group g = 1, ...,m. After

the groups are identified, we estimate the piecewise single-index βg in each group

using all the observations in Îg through Steps 0 - 3 by fixing q̃ = 1 for t ≥ 1. By

doing this, we assume that each cluster group corresponds to a region of model

(1.7). Denote the resulting estimate by β̂g. Its asymptotic properties are studied

in Section 1.5.

As the piecewise single-index model reduces the original p-dimensional predictor

to 1-dimensional predictor in each region, the link functions ϕg(·) for group g can

be estimated well by local linear smoothing,

(ϕ̂g(x), ϕ̂
′
g(x)) = argmin

a,b

∑
j∈Îg

{yj − a− b(β̂⊤
g xj − x)}2K{(β̂⊤

g xj − x)/Hg}. (1.10)

It is shown in Section 1.5 that ϕ̂g(x) can achieve the same estimation efficiency as

if the true indices βg, g = 1, ...,m are known.
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To make prediction for a newly observed (out of the training sample) predictor

xnew, we need to classify the predictor into the most appropriate region. Based

on the partitioning results on the estimated directions {b̃i : i = 1, ..., n}, we

create a labeled training sample {(xi, gi), i = 1, ..., n}, where gi ∈ {1, ...,m} is

the group index of xi. The region identification problem is actually a supervised

classification problem. Techniques are available in the literature; see for example

Hastie, Tibshirani and Friedman (2009) for a nice review. We propose using k-

nearest-neighbor (kNN) based on the distance in the space B⊤x . We then apply

(1.10) to estimate the response value of xnew after its region is identified.

1.2.2 Selection Of Tuning Parameters

Our algorithm involves two sets of tuning parameters: the bandwidth h
(t)
i used

in gradient direction estimations and the bandwidth Hg used in estimating the link

functions.

To ensure convergence of the OPG-related algorithm, Xia (2007) suggested the

following sequence of bandwidths

h
(t+1)
i = max{h(t)i n

−1/(2(p+6)), c0n
−1/5}

for t ≥ 0 with h
(0)
i = c0n

−1/(p+6), where c0 = 2.34 as suggested by Silverman

(1986) for the Epanechnikov kernel. For ease of exposition, we propose to use
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h
(0)
i = 2.34n−1/(p+6) and then fix hi for all subsequent iterations, i.e., let h

(t)
i ≡ h0,

for t ≥ 1. In later sections of this Chapter, one h0 is used in the examples.

Then we choose the h0 and Hg, g = 1, ...,m, based on leave-one-out cross

validation (LOO-CV). More precisely, for i ∈ Îg, let ϕ̂
(−i)
g (xi) be the estimator of

ϕg(xi) obtained by (1.10) with (xi, yi) itself being excluded, i.e., ϕ̂
(−i)
g (xi) is the

LOO prediction of ϕg(xi). Note that ϕ̂
(−i)
g (xi) is a function of both h0 and Hg. We

thus denote it as ϕ
(−i)
g (xgj ;h0, Hg). The CV score of the LOO estimators in Îg is

defined as

CVg(h0, Hg) =
∑
j∈Îg

(
yj − ϕ̂(−i)

g (xj;h0, Hg)
)2
.

The total CV score is then

CV(h0, H1, ..., Hm) =
m∑
g=1

CVg(h0, Hg).

It is easy to see that with fixed h0, each CVg(h0, Hg) is a consistent criterion

for choosing the optimal smoothing parameter Hg; see for example Fan and Gijbels

(1996). On the other hand, with the optimal Hg, g = 1, ...,m, we can find h0 that

minimizes CV(h0, H1, ..., Hm).

There are many viable criteria to select m which determines the complexity

of the piecewise single-index model. Because the CV approach is computationally

more difficult, we develop a BIC (Schwarz, 1978) approach for the selection. It has

been shown that for kernel smoothing, the degree of freedom is of order 1/h, where
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h is the smoothing bandwidth; see Zhang (2003). The BIC score for the model

with m regions is calculated as

BIC(m) = log(σ̂2(m)) + log(n)
m∑
g=1

1

n̂g(m)Hg(m)
,

where n̂g(m) = #Îg(m) is the number of points in the gth region, Hg(m) is the

smoothing bandwidth used in the link function in the gth region, and σ̂2(m) is the

estimator of the overall noise variance, i.e.,

σ̂2(m) = n−1

m∑
g=1

∑
j∈Îg

(yj − ϕ̂(m)
g (β̂g(m)⊤xj))

2.

We choose the number of regions as

m̂BIC = arg min
1≤m≤M0

BIC(m),

whereM0 is a predetermined upper bound, usuallyM0 = ⌊log(n)⌋. The asymptotic

property of the selection is also discussed in Section 5.

1.3 Simulations

To assess the accuracy of model fitting and prediction, we use the average

squared error (ASE) defined by

ASE = n−1

n∑
i=1

{ϕ(xi)− ϕ̂(xi)}2,
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where ϕ̂ is the estimate of ϕ. The deviances of the estimated piecewise gradient

directions from the true gradient directions are measured by

D2(β̂,β) := 1− (β̂Tβ)2.

The noise level is measured by

SNR := corr(ϕ(x), ϕ(x) + ε).

The theoretical SNR’s of the simulated examples are reported in the corresponding

tables below. We study the treed Gaussian process single-index model (TGP-SIM)

of Gramacy and Lian (2012) in the simulations for comparison. The TGP-SIM in

the simulations studies are all estimated by the “btgp” function in the R package

“tgp”, see Gramacy (2009) for details. Our method is denoted by “pSIM”.

Example 1.3.1. We first study the following piecewise linear model of a triangle

pyramid shape used in Li et al (2000).

y =



−ξ⊤1 x−
√
3ξ⊤2 x+ 1 + 0.5ε, if ξ⊤2 x ≥ 0 and

√
3ξ⊤1 x+ ξ⊤2 x ≥ 0,

−ξ⊤1 x+
√
3ξ⊤2 x+ 1 + 0.5ε, if ξ⊤2 x < 0 and

√
3ξ⊤1 x− ξ⊤2 x ≥ 0,

2ξ⊤1 x+ 1 + 0.5ε, if
√
3ξ⊤1 x+ ξ⊤2 x < 0 and

√
3ξ⊤1 x− ξ⊤2 x < 0,

where ξ1 = (1, 1, 1, 1, 1, 0, ..., 0)⊤, ξ2 = (0, ..., 0, 1, 1, 1, 1, 1)⊤, x = (x1, ..., x10)
⊤ and

ε, x1, ..., x10 are IID standard normal random variables. After standardization, the

gradients in the three regions are respectively

β1 = (0.2236, ..., 0.2236, 0.3872, ..., 0.3872)⊤,
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β2 = (−0.2236, ..., −0.2236, 0.3872, ..., 0.3872)⊤

and

β3 = (0.4472, ..., 0.4472, 0 , ..., 0)⊤

The sample size is set as n = 200 or n = 400, and 100 replications are drawn in

each case.

An estimation example with size n = 400 is shown in Figure 1.1. The panels on

the left show the locations of the points on the subspace (ξ⊤1 x, ξ
⊤
2 x): dashed lines

represent the true boundaries among the three regions; circles ‘o’ are the points

classified by our proposed pSIM estimator to the respective region; dots ‘·’ are

the points classified into the other two regions. We can observe that the circles

generally match up with the true regions. The link functions for each group of

circles on the left are plotted on the right.

Figure 1.2 shows the boxplots of the gradient estimation errors D2(β̂i,βi) for

i = 1, 2, 3. We could see a clear improvement from n = 200 to n = 400, demon-

strating consistency.

To compare the out-of-sample prediction of TGP-SIM and pSIM, we draw an

additional test sample of 50 points randomly at each replicate. The in-sample (IS)

and out-of-sample (OS) prediction errors are shown in Table 1.1. The percentage

numbers in the parenthesis are the proportion of times that the number of regions
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Figure 1.1 A typical estimation result of Example 1.3.1 with sample size n =

400.
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Figure 1.2 The estimation errors of the three piecewise single-index D2(β̂i,βi),

i = 1, 2, 3 in Example 1.3.1.

(m) of the model is identified as three by the proposed BIC method. The TGP-SIM

method cannot give reliable prediction even though it still fits the data reasonably

well. This inferior prediction performance is partially due to the fact that the data

generated in this example are not within the tree-SIM class.

Example 1.3.2. This example is inspired by Gramacy and Lee (2008) and Gra-

macy and Lian (2012). Consider two exponential single-index functions divided by



1.3 Simulations 23

Table 1.1 Simulation results of Example 1.3.1: mean of in-sample (IS) and out-

of-sample (OS) prediction errors (ASE) from the 100 replications. The percentage

numbers in the parenthesis are the proportion of times that the number of regions

(m) of the model is identified as three by the proposed BIC method.

SNR = 0.98 Min. 1st Qu. Median Mean 3rd Qu. Max.

n = 200 TGP-SIM IS 0.2144 0.2975 0.3392 0.3429 0.3776 0.5127

OS 0.7936 1.4867 1.7061 1.8028 2.2058 3.7375

pSIM (98%) IS 0.0354 0.0665 0.0897 0.1416 0.1443 1.0956

OS 0.0517 0.1191 0.1876 0.2749 0.2913 1.8710

n = 400 TGP-SIM IS 0.2477 0.3195 0.3438 0.3454 0.3729 0.4423

OS 0.8368 1.0666 1.2415 1.2618 1.4221 1.9759

pSIM (99%) IS 0.0196 0.0380 0.0471 0.0572 0.0595 0.2039

OS 0.0202 0.0478 0.0692 0.1011 0.1176 0.6803

a straight line,

y =


(ξ⊤1 x+ ξ⊤2 x+ 1) exp(−(ξ⊤1 x+ ξ⊤2 x+ 1)2) + ε, if ξ⊤2 x ≥ 0,

(ξ⊤1 x− ξ⊤2 x+ 1) exp(−(ξ⊤1 x− ξ⊤2 x+ 1)2) + ε, if ξ⊤2 x < 0,

where x ∼ Unif([−1, 1]⊗p), and ε ∼ N(0, σ2). We consider n = 200 or 400,

p = 5, 10 or 20, σ = 0.01, 0.05, 0.1 or 0.2, and 100 replications in each case. To
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better illustrate how our new method works on high dimension problems, we set

ξ
(5)
1 = (1, 0, 0, 0, 0)⊤, ξ

(5)
2 = (0, 1, 0, 0, 0)⊤,

ξ
(10)
1 = (1, 0, 0, 0, ..., 0)⊤, ξ

(10)
2 = (0, 1, 1, 0, ..., 0)⊤,

ξ
(20)
1 = (1, 1, 0, 0, 0, ..., 0)⊤, ξ

(20)
2 = (0, 0, 1, 1, 0, ..., 0)⊤.

In this way, as the dimension of x gets larger, more coordinates get involved in the

model. Note that when p = 5, the model is in the tree-SIM class, but for p = 10

and p = 20, it is not in tree-SIM. Figure 1.3 shows four typical estimation and

classification results for four different settings of sample sizes and noise levels with

p = 20. Namely, case 1: n = 200, σ = 0.01; case 2: n = 200, σ = 0.1; case 3:

n = 400, σ = 0.01; case 4: n = 400, σ = 0.1. Each row belongs to a single case.

The panels on the left most column are the classification results on the subspace

(ξ⊤1 x, ξ
⊤
2 x). The rest two columns are the true response values (‘o’) and their

fitted values (‘+’) for the two respective pieces where β1’s and β2’s are estimated

by pSIM. The panels on the left most column are the classification results on the

subspace (ξ⊤1 x, ξ
⊤
2 x). The other two columns are the true response values (‘o’) and

their estimated values (‘+’) for the two respective groups. The nonlinear shape of

the link functions are clearly shown in the plots.

The test samples are generated in the same way as in Example 1. The in-

sample (IS) and out-of-sample (OS) prediction errors are summarized in Table

1.2 and Table 1.3. The percentage numbers in the parenthesis are the proportion
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Table 1.2 Simulation results of Example 1.3.2: mean of in-sample (IS) and out-

of-sample (OS) prediction errors (ASE) (×10−3) from the 100 replications.

n = 200 n = 400

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

SNR 0.9979 0.9978 0.9973 0.9979 0.9978 0.9973

TGP-SIM IS 0.0631 0.1365 0.1374 0.0470 0.0981 0.1008

σ = 0.01 OS 0.2055 1.9287 4.0118 0.1013 0.6005 1.6332

pSIM IS 0.2886 0.3573 0.7438 0.2017 0.2946 0.4060

BIC (100%) (100%) (100%) (100%) (100%) (100%)

OS 0.4867 0.6579 1.0468 0.2689 0.3731 0.5290

SNR 0.9500 0.9490 0.9380 0.9500 0.9490 0.9380

TGP-SIM IS 0.7397 1.9672 2.130 0.4932 1.3893 2.2794

σ = 0.05 OS 1.0644 2.8761 5.0652 0.6597 1.6096 2.9425

pSIM IS 0.6079 0.9323 1.0790 0.3560 0.4562 0.5868

BIC (100%) (99%) (100%) (100%) (100%) (100%)

OS 0.9232 1.5662 1.6663 0.4690 0.5467 0.7379

of times that the number of regions (m) of the model is identified as two by the

proposed BIC method. For n = 200, both IS and OS predictions of pSIM are better

when SNR is high, but its OS prediction performance gets worse more quickly than
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Table 1.3 Simulation results of Example 1.3.2 (continued): mean of in-sample

(IS) and out-of-sample (OS) prediction errors (ASE) (×10−3) from the 100 repli-

cations.

n = 200 n = 400

p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

SNR 0.8348 0.8324 0.8020 0.8348 0.8324 0.8020

TGP-SIM IS 1.9671 5.0168 6.1475 1.2672 3.4714 7.5732

σ = 0.1 OS 2.2142 5.5400 7.4261 1.3149 2.8766 4.0153

pSIM IS 1.5008 3.3319 4.1657 0.7420 1.1342 1.1864

BIC (98%) (98%) (97%) (100%) (100%) (100%)

OS 1.9050 5.1201 5.4902 0.8757 1.3015 1.4521

SNR 0.6050 0.5979 0.5575 0.6050 0.5979 0.5575

TGP-SIM IS 6.1535 13.854 17.831 3.7130 10.177 18.343

σ = 0.2 OS 5.7649 10.625 11.931 3.7635 6.7275 8.3592

pSIM IS 6.4114 12.1707 15.5733 2.3703 5.9173 6.7964

BIC (87%) (84%) (80%) (96%) (94%) (89%)

OS 7.8240 17.6934 23.1272 2.9535 6.7168 8.1093

TGP-SIM as SNR becomes lower. This is the cost of the higher flexibility enjoyed

by pSIM with less restrictions on the boundaries. As SNR is low and sample size is
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Figure 1.3 Four typical estimation results of Example 1.3.2.

less than sufficient, the models with more specific assumptions such as TGP-SIM

are usually able to give more robust predictions. Nevertheless, for larger samples,

namely n = 400, pSIM seems to perform better in most cases, and incurs similar



28 Chapter 1. A Piecewise SIM for Dimension Reduction

errors for both IS prediction and OS prediction. When the SNR is very high, i.e.,

for σ = 0.01, the gaps between IS and OS prediction errors from the TGP-SIM are

too wide, which is a sign of model over fitting. Keeping σ fixed, as sample size goes

bigger, our pSIM approach is more efficient in taking in the additional information

provided by more samples to give smaller IS and OS prediction errors.

1.4 Real Data Analysis

In this section, we apply our estimation method to three popular data sets. The

first data set concerns the salary of 263 baseball players; it was originally given at

1988 ASA Graphics Poster Session (Chaudhuri, Huang, Loh and Yao, 1994). The

second data set studies the atmospheric ozone concentration in Los Angeles basin

(Breiman and Friedman, 1985). The last data set considered in this section is the

cars data set which studies the fuel efficiency for automobiles; it is obtained from

the ASA Data Exposition dataset (1983) collected by Professor Ernesto Ramos

and Professor David Donoho.

Hitters’ salary data. The hitters’ salary dataset consists of 16 covariates:

times at bat (x1), hits (x2), home runs (x3), runs (x4), runs batted in (x5) and walks

(x6) in 1986, years in major leagues (x7), times at bat (x8), hits (x9), home runs

(x10), runs (x11), runs batted in (x12) and walks (x13) during their entire career up



1.4 Real Data Analysis 29

to 1986, put-outs (x14), assistances (x15), errors (x16), and a dependent variable:

annual salary (y) in 1987. In our modeling, all covariates are standardized. The

response (y) is logarithmically transformed (to natural base). It is well known that

there is “aging effect” that makes the dependence of y on x nonlinear.

To begin with, we first fit a one-piece single index model for the data. The esti-

mated single-index is denoted by β⊤
0 x. Figure 1.4 plots y against β⊤

0 x, suggesting

that there are five outliers, all of which were also detected by Li et al (2000) and

Xia et al (2002). After removing the outliers from the data set, in total we have

258 observations in our analysis. Denote by B = (η1,η2) the estimated effective

dimension reduction (EDR) directions which is a by-product of the algorithm Step

1 - 4.
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Figure 1.4 y plotted against β⊤
0 x for the hitters’ salary data.
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Table 1.4 BIC scores for the hitters’ salary data (with the outliers removed)

No. of Regions ASE BIC score

1 0.1935 -1.5711

2 0.0960 -2.0634

3 0.1372 -1.3559

4 0.0674 1.4370

5 0.0433 2.8004

Applying the BIC with scores shown on Table 1.4, we select the numbers of

regions as two, leading to the following model,

y =


g1(β

⊤
1 x) + ε1, for x ∈ R1,

g2(β
⊤
2 x) + ε2, for x ∈ R2,

where the estimated piecewise single-indices for the two regions are respectively

β̂1 = ( −0.20, 0.20, 0.03, −0.05, 0.01, 0.04, 0.14(x7), 0.39(x8), 0.70(x9),

0.19, −0.31, −0.23, 0.27, −0.02, −0.01, 0.04 )⊤,

β̂2 = ( −0.07, 0.06, 0.05, −0.13, −0.04, 0.01, 0.26(x7), 0.69(x8), −0.63(x9),

0.00, −0.02, −0.10, −0.14, −0.10, 0.02, −0.01 )⊤.

The fitting results are shown in Figure 1.5. The upper panels (a) and (b) plot

y against the two estimated piecewise single indices β̂⊤
1 x and β̂⊤

2 x, for the points
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Figure 1.5 Fitting results for the hitter’s salary data.

clustered in the respective groups. The left lower panel (c) plots the points of the

two clustered groups on the effective dimension reduction space (η⊤
1 x,η

⊤
2 x). Based

on the panel (c), R1 roughly corresponds to η⊤
1 x > 0, and R2 roughly corresponds

to η⊤
1 x ≤ 0. An alternative perspective, looking at the partition of the whole space,
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is provided by Figure 1.5(d) which plots y against x7 (years in major league). The

sign of x7 is also a good indicator of which region an observation belongs to. Note

that y increases as β̂⊤
1 x increases in region R1, while y is a decreasing function

of β̂⊤
2 x in the second region R2. The same sign of coefficients on x7 for the two

piecewise single-index actually show the “aging effect” for hitters’ salary. Namely,

for small x7 (junior hitters), i.e., in the first region, y increases as x7 increases; for

large x7 (senior hitters), i.e., in the second region, x7 is a negative factor for y.

This aging effect was first noticed by Li et al (2000). If we judge the importance

of a variable by the magnitude of its corresponding coefficient, we also observe

that within each age group, x7 is not the most influencing factor. Instead, x8 and

x9 seem to have the greatest influences on players’ salaries if we look at the two

age groups separately. Specifically, the salaries of the junior group are positively

correlated with the sum of x8 and x9, which can be viewed as a measure of a

player’s experience on the field; for the senior group, the salary increases as the

difference (x9 − x8) increases, which actually measures their hitting efficiencies on

the field.

We also applied TGP-SIM to this data. Interestingly, TGP-SIM also splits

the space based on the value of x7. The maximum a posteriori (MAP) 3-node

tree estimated by TGP-SIM is shown in Figure 1.6. The MAP 2-node tree is the

same, but with lower branch pruned and log(p) = 261.343. In addition, the data
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are randomly partitioned 100 times into training/test sets of size 208/50. The

in-sample and out-of-sample fitting errors are reported in Table 1.5. Although

TGP-SIM gives slightly smaller error in the median, it suffers more from some

extreme cases. As a result, the mean out-of-sample fitting error of our pSIM is

lower than that of TGP-SIM by 17%.

Table 1.5 Simulation results of the hitters’ salary data: mean of in-sample (IS)

and out-of-sample (OS) prediction errors (ASE) from the 100 replications.

Min. 1st Qu. Median Mean 3rd Qu. Max.

TGP-SIM IS 0.0065 0.0163 0.0191 0.0189 0.0215 0.0356

OS 0.0641 0.1084 0.1291 0.1664 0.1703 1.3847

pSIM IS 0.0693 0.0831 0.0873 0.0887 0.0945 0.1242

OS 0.0824 0.1176 0.1328 0.1417 0.1631 0.2532

LA Ozone data. The LA Ozone data consists of 330 observations on 10

variables: daily maximum 1-hour average ozone reading at Upland (y), 500mb

pressure height (m) measured at Vandenberg AFB (x1), wind speed (mph) at Los

Angles International Airport(LAX) (x2), humidity (%) at LAX (x3), temperature

measured at Sandburg (x4), inversion base height (feet) at LAX (x5), pressure

gradient (mm Hg) from LAX to Daggett (x6), inversion base temperature (◦F) at

LAX (x7), visibility (miles) measured at LAX (x8), day of the year (x9). The goal
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x7 <> −0.478207

x10 <> −0.847423

0.0012
19 obs

1

0.0017
95 obs

2

0.0057
141 obs

3

 height=3, log(p)=265.654

Figure 1.6 The maximum a posteriori (MAP) tree at height 3 estimated by

TGP-SIM for the hitters’ salary data.

is to explore the relationship between response value y and the covariates X =

(x1, ..., x9). To make the coefficients of each variable comparable, we standardize

all covariates separately.

The BIC scores for m = 1, ..., 5 are shown in Table 1.6, suggesting m = 2. So

similar to the previous example, we fit the data with the following model

y =


g1(β

⊤
1 x) + ε1, for x ∈ R1,

g2(β
⊤
2 x) + ε2, for x ∈ R2,

(1.11)
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Table 1.6 BIC scores for the LA Ozone data

No. of Regions ASE BIC score

1 15.5506 2.7982

2 11.9941 2.6810

3 12.9890 3.7057

4 12.6943 4.8083

5 12.1982 6.0141

where the estimated piecewise single-indices for the two regions are respectively

β̂1 = ( −0.14, 0.06, −0.02, 0.20, −0.04, −0.27(x6), 0.91, −0.09, −0.17)⊤,

β̂2 = ( 0.27, −0.28, 0.35, 0.23, 0.26, 0.62(x6), 0.35, −0.15, −0.28)⊤.

The estimated single-index link functions are shown in the upper two panels (a)

and (b) in Figure 1.7, which plot y against the two estimated piecewise single

indices β̂⊤
1 x and β̂⊤

2 x.

Denote the estimated dimension reduction directions by B = (η1,η2). The left

lower panel (c) of Figure 1.7 plots the points of the two clustered groups on the

effective dimension reduction space (η⊤
1 x,η

⊤
2 x). The panel (c) suggests that η⊤

2 x

is a good indicator for the two regions. As a comparison, TGP-SIM selects x7 to

split the space into two regions as shown in Figure 1.8. In fact, the regions of pSIM
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Figure 1.7 Fitting results for the LA ozone data.

can roughly be separated by the sign of x6 as shown in Figure 1.7(d).

In addition, we notice an interesting “pressure gradient effect” based on x6.

Namely, as both link functions are increasing monotonic with their respective

single-index, the sign of x6 plays different roles in the two regions. For negative
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x6, y increases as x6 increases; while for positive x6, y decreases as x6 increases. In

other words, keeping other factors fixed, the ozone level y will attain its maximum

value when the standardized x6 is around 0.

x7 <> −0.0803424

0.0034 
150 obs

1

0.0077 
180 obs

2

 height=2, log(p)=290.407

Figure 1.8 The maximum a posteriori (MAP) tree at height 2 estimated by

TGP-SIM for the LA ozone data.

Similar to the previous example, we randomly partition the data 100 times into

training/test sets of size 280/50 with the fitting results shown in Table 1.7. The

mean out-of-sample fitting error of pSIM is lower than that of TGP-SIM by 12%.

Cars data. This real data analysis gives an example that TGP-SIM model
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Table 1.7 Simulation results of the LA ozone data: mean of in-sample (IS) and

out-of-sample (OS) prediction errors (ASE) from the 100 replications.

Min. 1st Qu. Median Mean 3rd Qu. Max.

TGP-SIM IS 1.849 5.619 6.819 6.962 8.530 11.390

OS 8.246 13.184 15.739 17.391 19.887 68.109

pSIM IS 9.650 11.389 11.894 11.807 12.277 14.428

OS 7.686 12.764 14.458 15.507 18.434 29.330

can give better out-of-sample prediction performances. We think this is common

in real data applications since no method can dominate the others in all data sets

collected from the real world.

The original Cars data consists of 406 observations on 7 variables: miles per

gallon (y), number of cylinders (x1), engine displacement (x2), horsepower(x3),

vehicle weight(x4), time to accelerate from 0 to 60 miles per hour (x5), model

year(x6), and origin of a car (1 for American, 2 for European and 3 for Japanese).

There are 14 subjects having missing values in at least one variable, so we exclude

them in our analysis leaving 392 observations. Li et al. (2000) has studied its

piecewise property.

Since the last variable is a categorical variable, we define two dummy variables
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x7 and x8 to account for the 3 scenarios of the origin of a car. Namely, let x7 = 1

if a car is from America and 0 otherwise; x8 = 1 if a car is from Europe and

0 otherwise. In this way, we have (x7, x8) = (1, 0), (0, 1), (0, 0) corresponding

to American cars, European cars and Japanese cars respectively. The main goal

of our analysis is to explore the relationship between response value y and the

covariates x = (x1, ..., x8). To make the coefficients of each variable comparable,

we standardize all covariates separately.

Table 1.8 BIC scores for the cars data

No. of Regions ASE BIC score

1 7.7225 2.0944

2 6.5257 2.0510

3 6.2863 2.2392

4 6.2341 2.5531

5 6.1332 2.5868

The BIC scores for m = 1, ..., 5 are shown in Table 1.8, suggesting m = 2. So

similar to the previous example, we fit the data with the following model

y =


g1(β1x) + ε1, for x ∈ R1,

g2(β2x) + ε2, for x ∈ R2,

(1.12)
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where the estimated piecewise single-indices for the two regions are respectively

β̂1 = ( 0.90, −0.20, −0.10, −0.31, 0.02, 0.21, −0.05, 0.02)⊤,

β̂2 = ( −0.02, −0.27, 0.39, 0.71, 0.04, −0.37, 0.35, −0.05)⊤.

In-sample fitting results are shown in the upper two panels (a) and (b) in Figure

1.9. The upper panels (a) and (b) plot y against the two estimated piecewise single

indices β̂⊤
1 x and β̂⊤

1 x. The lower panels (c) and (d) plot the points of the two

clustered groups on the effective dimension reduction space B⊤x = (η⊤1 x, η
⊤
2 x).

Denote the effective dimension reduction directions estimated in the algorithm

by B = (η1, η2). Panel (c) of Figure 1.9 plots the spread of each region on the

effective dimension reduction space B⊤x. It shows three isolated “clusters”. Panel

(d) further suggests that the three clusters correspond to three sets of different

values of x1 (number of cylinders). Namely, from bottom to top the first group

consists of cases with x1 = 3, 4; the second group cases with x1 = 5, 6; and the

third group cases with x1 = 8. Note that the local gradients for the upper two

clusters corresponding to x1 = 5, 6 and 8 do not differ too much from each other.

So the pSIM model puts them together into one group. As a result, R1 in the

pSIM model (1.12) corresponds to x1 = 3, 4 and the R2 corresponds to x1 = 5, 6, 8.

For group one, i.e., for cars with small number of cylinders (≤ 4), we do not see

significant differences among the three origins of cars since the last two coefficients

of the piecewise single index are very small. But for the other region R2, we have
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Figure 1.9 Fitting results for the cars data.

a significant positive coefficient on the dummy variable for American cars. Since

in R2 the response value y (miles per gallon) is a decreasing function of β⊤
2 x, we

conclude that American cars with more cylinders (≥ 5) have lower values of miles

per gallon as compared to the European and Japanese cars. Considering the data
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was collected in the US, the conclusion is quite reasonable in that the foreign cars

have to be more fuel-efficient to be competitive to the local cars.

It is interesting to point out that Li et al (2000) noticed the similar fact about

the three cylinder groups by looking at the fitted residuals of a linear regression

model based on a different estimating procedure. The theory of Li et al (2000) also

suggested to partitioning the space into two regions. Coincidentally, the TGP-SIM

model also identifies two classes based on the value of x3 (horse power); see Figure

1.10.

V3 <> −0.98825

0.0045 
55 obs

1

0.008 
337 obs

2

 height=2, log(p)=496.004

Figure 1.10 The tree structures estimated by the TGP-SIM model for the cars

data.
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In addition, the data are randomly partitioned 100 times into training/test sets

of size 342/50. The in-sample and out-of-sample fitting errors are reported in Table

1.9. The mean out-of-sample fitting error of TGP-SIM is lower than that of pSIM

by 8.4%.

Table 1.9 Simulation results of the cars data: mean of in-sample (IS) and out-

of-sample (OS) prediction errors (ASE) from the 100 replications.

Min. 1st Qu. Median Mean 3rd Qu. Max.

TGP-SIM IS 1.422 2.740 3.384 3.390 4.041 6.163

OS 3.015 6.360 8.320 8.923 10.697 29.742

pSIM IS 5.146 6.334 7.487 7.521 8.488 9.035

OS 4.346 7.138 9.082 9.669 11.571 22.614

1.5 Asymptotic Analysis

In this section we consider the statistical theory of our proposed method in

Sections 1.2. Some of the proofs are given in the appendix. Suppose the sample

{(xi, yi), i = 1, ..., n} is generated by model (1.7) and let Ig be the index set for the

observations in Rg. For any matrix A, let ∥A∥ denote its largest singular value,

which is same as the Euclidean norm if A is a vector.
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Similar to Lu (1996) and Xia (2007), we need the following assumptions for

(1.7) to prove our theoretical results. Let µβi
(u) = E(x|β⊤

i x = u, x ∈ Ri) and

wβi
(u) = E(xx⊤|β⊤

i x = u, x ∈ Ri). We write B(x;h) = {x′ ∈ Rp : ∥x′−x∥ ≤ h}

and Vol(h) as the volume of B(x;h).

(A1) [Design of x] The density function f(x) of x has a compact support and

bounded second order derivatives on Rp, and there are positive constants

0 < cf ≤ Cf such that cf/Vol(1) ≤ f(x) ≤ Cf/Vol(1); E|x|r <∞ for some

r > 8; functions µβi
(u) and wβi

(u) have bounded derivatives with respect

to u and β̂i for β̂i ∈ {β̂i; ∥β̂i − βi∥ ≤ δ} for some δ > 0.

(A2) [Density function] The conditional density functions fy|x(y|x) and fy|{β̂⊤
i x, x∈Ri}(y|u)

have bounded fourth order derivatives with respect to x, u and β̂i ∈ {β̂i; ∥β̂i−

βi∥ ≤ δ} for some δ > 0.

(A3) [Boundaries between regions] For any region Rg considered in model (1.7),

its boundary ∂Rg is a continuously derivative function of (β⊤
1 x, ...,β

⊤
mx)

a.s. and has a measure 0 in space Rp.

(A4) [Kernel function] The kernel K(·) is a spherically symmetric density function,

i.e., there exists a univariate function k(·) such that K(z) = k(∥z∥) for all

z ∈ Rd, where d is the effective dimension for K(·).

(A5) [Regression functions] The regression functions ϕi(β
⊤
i x) have bounded sec-

ond order derivatives within its own region Ri and ϕ′
i(β

⊤
i x) ̸= 0 almost
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surely in Ri.

The accuracy of the estimated gradient direction b̃i is summarized in the fol-

lowing lemma.

Lemma 1.5.1. Under model (1.7) and assumptions (A1) - (A5), we have

max
i∈Ig

∥b̃ib̃⊤i − βgβ
⊤
g ∥ = OP

{
h20 +

( log(n)
nhp+2

0

)1/2}
, (1.13)

for g = 1, ...,m.

Lemma 1.5.1 is a direct application of the Theorem 2 of Lu (1996) and large de-

viation theory (Chapter 8, De la Pena, Lai and Shao, 2009). Let k̃ = min
g1,g2

(∥βg1β
⊤
g1
−

βg2β
⊤
g2
∥)/6, we have

Pr

(
max
i∈Ig

∥b̃ib̃⊤i − βgβ
⊤
g ∥ ≥ 1

6
min
g1,g2

(∥βg1β
⊤
g1
− βg2β

⊤
g2
∥)
)

≤ O
(
exp

{
− k̃

2

2

( n

log(n)

)4/(p+6)})
,

(1.14)

where we implicitly assume that the h0 used in Steps 1 - 3 is the asymptotically

optimal bandwidth in the sense of minimizing mean squared error. Let β
(i)
g be the

true regional single index corresponding to the ith observation and

Mi = 1
{
∥b̃ib̃⊤i − β(i)

g β
(i)⊤
g ∥ ≥ k̃

}
.

Define ne =
∑n

i=1Mi which is the number of observations that are not estimated

well.
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Lemma 1.5.2. Under the same conditions as Lemma 1.5.1, we have

ne

n
≤ OP

(
exp

{
− k̃2

2

( n

log(n)

)4/(p+6)})
, (1.15)

where k̃ = min
g1,g2

(∥βg1β
⊤
g1
− βg2β

⊤
g2
∥)/6 is a nonzero constant.

Lemma 1.5.2 implies that with probability tending to 1, the estimated gradient

directions will gather around their true values with a “safe” distance from those

in different regions and that the proportion of badly estimated gradient directions

decreases exponentially as n increases. Equation (1.15) gives an upper bound for

the proportion of the points that are mis-clustered in a single region, say Rg. More

precisely, for any cluster group whose main part is in Rg, the group would only

contain an exponentially dampening proportion of points that do not belong to

Rg. We have the following result for the OPG estimator β̂g.

Theorem 1.5.3. Under model (1.7) and assumptions (A1) - (A5), if h0 → 0 and

ng → ∞, then

∥β̂gβ̂
⊤
g − βgβ

⊤
g ∥ = OP

(
h20 + ng

−1/2
)
, g = 1, ...,m, (1.16)

where ng is the sample size in group g, i.e., ng = #Ig.

Theorem 1.5.3 states that with the refined weights based on the 1-dimensional

space β̂⊤
g x, we can achieve optimal parametric convergence in gradients estimations
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with the OPG method. Next, we give a result on the estimation efficiency of the

local linear smoother in (1.10).

Corollary 1.5.4. Suppose model (1.7) and assumptions (A1) - (A5) hold. If h0 →

0, ng/n > cg > 0, Hg → 0 and ngHg → ∞ as n→ ∞, and
(
h20 +

√
ng

−1
)
/Hg → 0,

we have

ϕ̂g(β̂
⊤
g xi)− ϕg(β

⊤
g xi) = OP{H2

g + (ngHg)
−1/2}, (1.17)

where ng is the sample size for group g and Hg is the bandwidth used in (1.10).

The convergence rate implied by (1.17) is the typical rate in nonparametric

regression analysis. Finally we present a theorem concerning the consistency of

the BIC proposed in subsection 1.2.2.

Theorem 1.5.5. Under the same conditions as Corollary 1.5.4 and assuming that

Hg = O(n−1/5) for all g, we have

m̂BIC → m0 in probability.

The ϕ̂m,g(β̂
⊤
m,gxi) involved in the estimation of BIC can be estimated either by

the Nadaraya-Watson estimator or the local linear kernel estimator, both of which

lead to a consistent estimator m̂BIC.
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1.6 Proofs

In this chapter, we consider a piecewise single-index model (pSIM) to perform

nonparametric regression in a multidimensional space. Our model can be written

as

y =



ϕ1(β
⊤
1 x) + ε1, if x ∈ R1,

· · · · · ·

ϕm(β
⊤
mx) + εm, if x ∈ Rm,

(1.18)

where βg, g = 1, ...,m, are p× 1 vectors, ϕg, g = 1, ...,m, are smooth functions on

R, E(εg|x) = 0, ∪m
g=1Rg = Rp and Ri ∩Rj = Ø for any i ̸= j.

Similar to Lu (1996) and Xia (2007), we need the following assumptions for

(1.18) to prove our theoretical results. Let µβi
(u) = E(x|β⊤

i x = u, x ∈ Ri) and

wβi
(u) = E(xx⊤|β⊤

i x = u, x ∈ Ri). We write B(x;h) = {x′ ∈ Rp : ∥x′−x∥ ≤ h}

and Vol(h) as the volume of B(x;h).

(A1) [Design of x] The density function f(x) of x has a compact support and

bounded second order derivatives on Rp, and there are positive constants

0 < cf ≤ Cf such that cf/Vol(1) ≤ f(x) ≤ Cf/Vol(1); E|x|r <∞ for some

r > 8; functions µβi
(u) and wβi

(u) have bounded derivatives with respect

to u and β̂i for β̂i ∈ {β̂i; ∥β̂i − βi∥ ≤ δ} for some δ > 0.
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(A2) [Density function] The conditional density functions fy|x(y|x) and fy|{β̂⊤
i x, x∈Ri}(y|u)

have bounded fourth order derivatives with respect to x, u and β̂i ∈ {β̂i; ∥β̂i−

βi∥ ≤ δ} for some δ > 0.

(A3) [Boundaries between regions] For any region Rg considered in model (1.7),

its boundary ∂Rg is a continuously derivative function of (β⊤
1 x, ...,β

⊤
mx)

a.s. and has a measure 0 in space Rp.

(A4) [Kernel function] The kernel K(·) is a spherically symmetric density function,

i.e., there exists a univariate function k(·) such that K(z) = k(∥z∥) for all

z ∈ Rd, where d is the effective dimension for K(·).

(A5) [Regression functions] The regression functions ϕi(β
⊤
i x) have bounded sec-

ond order derivatives within its own region Ri and ϕ′
i(β

⊤
i x) ̸= 0 almost

surely in Ri.

Proof of Theorem 1.5.3: By Lemma 5.2, we have that the probability of point

xi being misclassified diminishes exponentially to zero, so the misclassifications are

negligible in the asymptotic sense as compared to the parametric convergence rate

to be shown in this lemma. For ease of exposition, we assume no misclassification

exists. Consider the gth region with piecewise single index βg. Let

εi = b̂i − ϕ′
g(β

⊤
g xi)βg,

where ϕ′
g(β

⊤
g x) is the first derivative of ϕg(β

⊤
g x) and εi is the estimation error

studied extensively in nonparametric literatures; see Fan and Gijbels(1996). We
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have the OPG matrix for the gth matrix

Σ̂g =
(
n−1
g

∑
i∈Ig

{ϕ′
g(β

⊤
g xi)}2

)
βgβ

⊤
g + E g,

where

E g =
(
n−1
g

∑
i∈Ig

ϕ′
g(β

⊤
g xi)εi

)
β⊤
g + βg

(
n−1
g

∑
i∈Ig

ϕ′
g(β

⊤
g xi)εi

)⊤
+ n−1

g

∑
i∈Ig

εiε
⊤
i .

Since eigenvector β̂g corresponds to the largest eigenvalue of Σ̂g, it follows from

spectral analysis of random matrix that

β̂gβ̂
⊤
g − βgβ

⊤
g = O(∥E g∥), (1.19)

which implies that it is sufficient to study the asymptotic behavior of E g, or e-

quivalently, the asymptotic behavior of n−1
g

∑
i∈Ig ϕ

′
g(β

⊤
g xi)εi. So it is equivalent

to prove the following lemma:

Lemma 1.6.1. Under model (1.7) and (A1) - (A5), if ng → ∞ and hg0 → 0 we

have

∥E i∥ = OP

(
h20 +

1
√
n0

)
.

Suppose âi and b̂i are the solution to

(âi, b̂i) = argmin
a,b

n∑
j=1

{yik − a− b⊤(xi − xj)}2wi,j, (1.20)
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where wi,j is a symmetric weight function of the form h−p
i K{h−1

i (xi−xj)} in which

hi is the bandwidth and K(·) is the kernel function.

Define

ψi = (ϕ(β⊤xi), ϕ
′(β⊤xi)β

⊤
g )

⊤,

ψ̂i = (âi, b̂
⊤
i )

⊤.

We denote Yg = (yg,1, ..., yg,ng)
⊤ which is the vector of the response values of the

gth region, and the corresponding sub-sample is denoted as g = {xg,1, ...,xg,ng}.

W (i)
g = diag

{
w

(g)
1,i , ..., w

(g)
ng ,i

}
,

and

x(i)
g =


1 (xg,1 − xi)

⊤

...
...

1 (xg,ng − xi)
⊤

 .

If there are at least (p+ 1) points with positive weights, x
(i)⊤
g W

(i)
g x

(i)
g is invertible

with probability one, and

ψ̂i = (x(i)⊤
g W (i)

g x(i)
g )−1x(i)⊤

g W (i)
g Yg. (1.21)

Note that

εi = b̂i − ϕ′(β⊤
g xi)βg

is a part of ψ̂i −ψi. we will derive the property of εi through that of ψ̂i −ψi.
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It is suffice to show that

E[E g|x1, ...,xn] = OP (h
2
0), (1.22)

V ar[E g|x1, ...,xn] = OP

(
1

ng

)
. (1.23)

The key idea in Steps 1 to 3 is the refinement of the kernel functions (from p-dim

to 1-dim), which divides the proof into two parts:

(1) Asymptotic properties of using p-dim kernel;

(2) Asymptotic properties of using 1-dim kernel.

The first part follows directly from the Theorem 3 of Xia et al (2002), which

claims that under some regularity assumptions and if nhp/ log(n) → ∞ and h→ 0

as n→ ∞, then

∥β̂(0)
g β̂

(0)T
g − βgβ

⊤
g ∥ = OP (h

2
0 + log(ng)/(ng(h0)

p+1)), (1.24)

where h0 is the bandwidth. For ease of notation, we omit the suffix g hereafter,

e.g., replace β̂
(0)
g by β̂(0), βg by β, x

(i)
g by xi and W

(i)
g by Wi. The β̂

(0) serves as

an initial estimation of β for the following iterations.

For t ≥ 1, we have the updated weight functions

w
(t)
i =

1

h(t)
K(β̂(t−1)⊤(xi − xj)/h

(t)),

where h(t) is chosen by

h(t) = max{h(t−1)n−1/(2(p+6)), c0n
−1/4},
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which ensures that (β̂(t−1) − β)/h(t) = OP (1) as will be shown later.

With the updated weight functions, the conditional bias and conditional covariance

matrix of β̂
(t)
i are given respectively by

E(β̂
(t)
i |x1, ...,xn)− βi = (x⊤

i Wixi)
−1x⊤

i Wi(Φ− xiβ)

= S−1
i Ri,

Cov(β̂
(t)
i , β̂

(t)
j |x1, ...,xn) = (x⊤

i Wixi)
−1x⊤

i WiVWjxj(x
⊤
j Wjxj)

−1

= n−1S−1
i CijS

−1
j ,

where Φ = (ϕ(β⊤x1), ..., ϕ(β
⊤xn))

⊤, V = (v(β⊤x1), ..., v(β
⊤xn)),

Si = n−1

n∑
l=1

x̃lix̃
⊤
liKh(β̂

(t−1)⊤(xi − xl)),

Cij = n−1

n∑
l=1

x̃lix̃
⊤
ljKh(β̂

(t−1)⊤(xi − xl))Kh(β̂
(t−1)⊤(xyj − xl))v(β

⊤xl),

Ri = n−1

n∑
l=1

x̃li(ϕ(β
⊤xl)− ϕ(β⊤xi)− ϕ′(β⊤xi)β

⊤(xl − xi))Kh(β̂
(t−1)⊤(xi − xl)),

where

x̃li =

 1

xl − xi


Let Σ

(t)
ij = Cov(β̂

(t)
i , β̂

(t)
j |x1, ...,xn), which can be written into 4 blocks:

Σ
(t)
ij =

 Σ
(t)
ij,11 Σ

(t)
ij,12

Σ
(t)
ij,21 Σ

(t)
ij,22


where Σ

(t)
ij,22 is a p× p matrix that is the covariance matrix of εi and εj. Actually,

the asymptotic behavior of n−1
∑n

j=1 yjεj is included in that of n−1
∑n

j=1 yjβj. So
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we first study the asymptotic properties of n−1
∑n

j=1 yjβj and then extract the

information about n−1
∑n

j=1 yjεj from them.

To simplify and calculate Si, Cij and Ri, we first note that they all have forms

ready to apply the law of large numbers. But it should be pointed out that the

β̂(t−1) used in the expressions is estimated from the xi and thus is correlated to

x̃li, so the LLN is not directly applicable. However, we can evade this problem by

viewing β̂(t−1) as a point in the neighborhood of β denoted as Ω(β;h, t) which is

determined by two deterministic parameters: h and t. If we can prove an uniform

property on the neighborhood, then the case of β̂(t−1) will follow accordingly. To

this end, we apply the tricks commonly used in the nonparametric proofs that we

first pretend that the β̂(t−1) is estimated from some another set of observations

independent with the one in hand and has the same distribution and then prove

the required result is valid uniformly for any such β̂(t−1). In this way, by LLN, it

can be easily seen that

Si =

∫  1

x− xi

 (1, (x− xi)
⊤)

1

h
K

(
1

h
β̂(t−1)⊤(xi − x)

)
f(x)dx+OP

(
1√
nh

)
,

Cij =

∫  1

x− xi

 (1, (x− xj)
⊤)

1

h
K

(
1

h
β̂(t−1)⊤(xi − x)

)
1

h
K

(
1

h
β̂(t−1)⊤(xj − x)

)

×f(x)v(β⊤x)dx + OP

(
1√
nh

)
,
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Ri =

∫  1

x− xi

 (ϕ(β⊤x)− ϕ(β⊤xi)− ϕ′(β⊤xi)β
⊤(x− xi))

×1

h
K

(
1

h
β̂(t−1)⊤(xi − x)

)
f(x)dx+OP

(
1√
nh

)
.

Moreover,

E(n−1

n∑
j=1

yj(β̂
(t)
i − β)|x1, ...,xn) = n−1

n∑
j=1

yjS
−1
j Rj,

Cov(n−1

n∑
j=1

yjβ̂
(t)
j |x1, ...,xn) = n−2

n∑
i=1

n∑
j=1

yiyjn
−1S−1

i CijS
−1
j .

To prove (1.22) and (1.23), we first prove

E(n−1

n∑
j=1

yj(β̂
(t)
j − βj)|x1, ...,xn) = O(h2), (1.25)

and

Cov(n−1

n∑
j=1

yjβ̂
(t)
j |x1, ...,xn) = O

(
1

n

)
, (1.26)

i.e.,

Γ
def
= n−2

n∑
i=1

n∑
j=1

yiyjS
−1
i CijS

−1
j = O(1). (1.27)

Consider Si first. Without loss of generality, we assume β̂
(t−1)
1 ̸= 0. Let

A(xi) =

∫  1

x− xi

 (1, (x− xi)
⊤)

1

h
K

(
1

h
β̂(t−1)⊤(xi − x)

)
f(x)dx,
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and

U =



β̂
(t−1)
1 β̂

(t−1)
2 · · · β̂

(t−1)
p

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


x = Jux,

so u1 = β̂
(t−1)⊤x, x = J−1

b U and dx = dU/β̂
(t−1)
1 .

By changing the integral variable, we have

A(xi) = (β̂
(t−1)
1 )−1

∫  1

J−1
b U − xi

 (1, (J−1
b U−xi)

⊤)
1

h
K

(
1

h
(u1 − β̂(t−1)⊤xi)

)
f(J−1

b U)dU .

Let

W = diag(h−1, 1, ..., 1)U − (h−1β̂(t−1)⊤xi, 0, ..., 0)
⊤ = JhU − ηbh,

i.e., w1 = h−1(u1 − β̂(t−1)⊤xi)), U = J−1
h (W + ηbh) and dU = hdW .

By changing the integral variable, we have

A(xi) = (β̂
(t−1)
1 )−1

∫  1

J−1
b J−1

h (W + ηbh)− xi

×

(1, (J−1
b J−1

h (W + ηbh)− xi)
⊤)K(w1)f(J

−1
b J−1

h (W + ηbh))dW ,

where

J−1
b J−1

h (W+ηbh) =

(
β̂(t−1)⊤xi + hw1

β̂
(t−1)
1

− β̂
(t−1)
2

β̂
(t−1)
1

w2 − · · · − β̂
(t−1)
p

β̂
(t−1)
1

wp, w2, ..., wp

)⊤

.

Write A(xi) as
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A(xi) =



A11(xi) A12(xi) A13(xi)

A21(xi) A22(xi) A23(xi)

A31(xi) A32(xi) A33(xi)


,

where

A11(xi) = (β̂
(t−1)
1 )−1

∫
K(w1)f(J

−1
b J−1

h (W + ηbh))dW ,

A22(xi) = (β̂
(t−1)
1 )−1

∫
(J−1

b J−1
h (W + ηbh)− xi1)

2K(w1)f(J
−1
b J−1

h (W + ηbh))dW ,

A33(xi) = (β̂
(t−1)
1 )−1

∫
(W − xi)−1(W − xi)

⊤
−1K(w1)f(J

−1
b J−1

h (W + ηbh))dW ,

with (W −xi)−1 = (w2 − x2i, w3 − x3i, ..., wq − xqi)
⊤ and other items of A(xi) can

be defined accordingly.

Let β̂
(t−1)
−1

def
= (β̂

(t−1)
2 , ..., β̂

(t−1)
p )⊤, we have

A22(xi) = (β̂
(t−1)
1 )−1

∫ (
hw1 + β̂

(t−1)⊤
−1 (W − xi)−1

β̂
(t−1)
1

)2

K(w1)f(J
−1
b J−1

h (W+ηbh))dW .

Based on the values of β̂
(t−1)
−1 , we have two possible scenarios:

(1) β̂
(t−1)
−1 ̸= 0(p−1)×1.

(2) β̂
(t−1)
−1 = 0(p−1)×1,

For scenario 1, since the diagonal items of A11, A22, A33 are all integrals of positive

functions, there exists a positive number s(xi), which is a function of xi, such that

min{A11, A22, diag(A33)} > s(xi) > s0 > 0. (1.28)
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It is known that A(xi) is invertible with probability 1, which together with (1.28)

imply that ∥A(xi)∥ is O(1) bounded below and so all entries in A(xi)
−1 is O(1)

bounded above. Since A(xi) ∈ C2(xi), it follows that A(xi)
−1 ∈ C2(xi) too. Then

we have

Γ = n−2

n∑
i=1

n∑
j=1

yiyj(A(xi)
−1)−1Cij(A(xj)

−1) +OP

(
1√
nh

)
=

∫
Γ1Γ2f(x)v(β

⊤x)dx+OP

(
1√
nh

)
,

where

Γ1 =

∫
A(xi)

−1(1, (x− xi)
⊤)⊤

1

h
K

(
1

h
β̂(t−1)⊤(xi − x)

)
f(xi)ϕ(β

Txi)dxi,

Γ2 =

∫
(1, (x− xj)

⊤)A(xj)
−1 1

h
K

(
1

h
β̂(t−1)⊤(xj − x)

)
f(xj)ϕ(β

Txj)dxj.

By changing the integral variable as before, it can be easily shown that Γ1 = O(1)

and Γ2 = O(1), which implies that Γ = O(1) and as such (1.26) is valid.

As to the bias term (1.25), we can simply prove for each i, S−1
i Ri = O(h2). Note

that (β̂(t−1) − β)/h(t) = OP (1) and

K

(
1

h
β̂(t−1)⊤(xi − x)

)
= K

(
1

h
βT (xi − x)

)
+K′

(
1

h
βT (xi − x)

)
1

h
(β̂(t−1) − β)T (xi − x)

+O

(
1

h
(β̂(t−1) − β)T (xi − x)

)2

,

It can be shown that

S−1
i Ri = O(h2) +O(h(β̂(t−1) − β)) = O(h2),
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and so

E(n−1

n∑
j=1

yj(β̂
(t)
i − β)|x1, ...,xn) = n−1

n∑
j=1

yjS
−1
j Rj = O(h2).

For scenario 2, A11 and A33 are similar to scenario 1, but A22 is now simplified

to

A22(xi) = (β̂
(t−1)
1 )−1

∫ (
hw1

β̂
(t−1)
1

)2

K(w1)f(J
−1
b J−1

h (W+ηbh))dW = O(h2)a22(xi),

where a22(xi) is a positive function in C2(xi). Note that∫
K(w1)w1dw1 = 0,

and

f(J−1
b J−1

h (W + ηbh)) = f

(
wih

β̂
(t−1)
1

+
β̂

(t−1)⊤
−1 (W − xi)−1

β̂
(t−1)
1

+ xi1, w2, ..., wp

)

= f

(
β̂

(t−1)⊤
−1 (W − xi)−1

β̂
(t−1)
1

+ xi1, w2, ..., wp

)
+

∂f

∂w1

(·) wih

β̂
(t−1)
1

+O(h2),

where the first item on the right hand side of the second equation dose not include

w1. It can be easily shown that

A(xi) =



a11(xi) a12(xi)O(h
2) a13(xi)O(h

2)

a21(xi)O(h
2) a22(xi)O(h

2) a23(xi)O(h
2)

a31(xi)O(h
2) a32(xi)O(h

2) a33(xi)


,

where akl(xi) = O(1) ∈ C2(xi) for k, l = 1, 2, 3, and a11(xi), a22(xi) and a33(xi)

are bounded below by some positive constant. Then we have
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A(xi)
−1 =



ã11(xi) ã12(xi) ã13(xi)

ã21(xi) ã22(xi)O(h
−2) ã23(xi)

ã31(xi) ã32(xi) ã33(xi)


def
= Ã(xi),

where ãkl(xi) = O(1) ∈ C2(xi) for k, l = 1, 2, 3. By changing integral variables, we

have

Γ1 =

∫
Ã(J−1

b J−1
h (W + ηbh))

(
1,

hw1

β̂
(t−1)
1

,W−1

)⊤

×K(w1)f(J
−1
b J−1

h (W + ηbh))ϕ(β
TJ−1

b J−1
h (W + ηbh))dW ,

where

J−1
b J−1

h (W + ηbh) = (hw1/β̂
(t−1)
1 + x1, w2, ..., w3)

⊤ def
= (hw1/β̂

(t−1)
1 + x1,W−1)

⊤.

By Taylor’s expansion,

Ã(J−1
b J−1

h (W + ηbh)) = Ã(x1,W−1) +
∂Ã

∂w1

(x1,W−1)
hw1

β̂
(t−1)
1

+O(h2)
∂2Ã

∂2w1

(x1,W−1),

f(J−1
b J−1

h (W + ηbh)) = f(xi1,W−1) +
∂f

∂w1

(x1,W−1)
hw1

β̂
(t−1)
1

+O(h2),

ϕ(βTJ−1
b J−1

h (W + ηbh)) = ϕ(β(T (x1,W−1)) + ϕ′(βT (x1,W−1))β1
hw1

β̂
(t−1)
1

+O(h2)

then we have

Γ1 =

∫
Ã(x1,W−1)f(x1,W−1)ϕ(β

(T (x1,W−1))

(
1,

hw1

β̂
(t−1)
1

,W−1

)⊤

K(w1)dW

+

∫ (
∂Ã

∂w1

(x1,W−1) +
∂f

∂w1

(x1,W−1) + ϕ′(β(T (x1,W−1))β1

)
hw1

β̂
(t−1)
1
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×

(
1,

hw1

β̂
(t−1)
1

,W−1

)⊤

K(w1)dW +O(h2)

(
I +

∂2Ã

∂2w1

(x1,W−1)

)
= (γ11(x1), γ21(x1), γ31(x1))

⊤

where γk1 = O(1) for k = 1, 2, 3.

Similarly, we can prove that

Γ2 = (γ12(x1), γ22(x1), γ32(x1)) ,

where γk2 = O(1) for k = 1, 2, 3. As such it is easy to show that

Γ =

∫
Γ1Γ2f(x)v(β

⊤x)dx+OP

(
1√
nh

)
= O(1).

The bias term in scenario 2 can be studied quite similarly as the scenario 1; the

only difference here is to take care of the second entry of Ri which is corresponding

to A22. The details are not included here.

Combining the two scenarios discussed before, we have proved that (1.25) and

(1.26) are valid for all possible values of β. �

Proof of Theorem 1.5.5: To simplify the notations in the proof, let us assume

that the sample is from a model with two regions, recorded as

S1 =
{
(x1,1, y1,1), ..., (x1,n1 , y1,n1)

}
,

and

S2 =
{
(x2,1, y2,1), ..., (x2,n2 , y2,n2)

}
,
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where n1 + n2 = n. The true gradients at two regions are β1 and β2. Let the

corresponding estimations of local gradients at each points be

S1(β) =
{
β̂1,1, ..., β̂1,n1

}
,

and

S2(β) =
{
β̂2,1, ..., β̂2,n2

}
.

In the following proof, each point is labeled by its estimated local gradient. Let

S̃1(β) =
{
β̂1,k; ∥β̂1,kβ̂

⊤
1,k − β1β

⊤
1 ∥ ≤ 1

6
(∥β1β

⊤
1 − β2β

⊤
2 ∥)
}

with #S̃1(β) = ñ1,

and

S̃2(β) =
{
β̂2,k; ∥β̂2,kβ̂

⊤
2,k − β2β

⊤
2 ∥ ≤ 1

6
(∥β1β

⊤
1 − β2β

⊤
2 ∥)
}

with #S̃2(β) = ñ2.

It is easy to see that points in S̃1(β) will never share the same group with those

in S̃2(β).

If we choose m = 2, denote the two estimated clustering groups as Ŝ2,1 and

Ŝ2,2, then with probability exponentially going to 1, we have

Ŝ2,1 ⊆ S̃1(β) #Ŝ1 = n̂1 and Ŝ2,2 ⊆ S̃2(β) #Ŝ2 = n̂2.

In light of this fact, similar to the proof of Lemma 1.5.1, we can assume there is

no misclassifications in Ŝ2,1 and Ŝ2,2. Let (x1,k, y1,k) be the points labeled in Ŝ2,1

and #Ŝ2,1 = n2,1, by definition,

σ̂2
2,1 =

1

n2,1

n2,1∑
k=1

(y1,k − ϕ̂1(β̂
⊤
2,1x1,k))

2,
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=
1

n2,1

n2,1∑
k=1

ε
′2
1,k +

1

n2,1

n2,1∑
k=1

(ϕ1(β
⊤
1 x1,k)− ϕ̂1(β̂

⊤
2,1x1,k))

2

− 2

n2,1

n2,1∑
k=1

(ϕ1(β
⊤
1 x1,k)− ϕ̂1(β̂

⊤
2,1x1,k))ε1,k,

where ϕ̂1(·) is the NW estimator on the 1st piece. By exploiting the microstructure

of ϕ̂1(·) as a weighted summation based on a symmetric kernel function, we have

ϕ̂1(β̂
⊤
2,1x1,k) = ϕ̂1(β

⊤
1 x1,k) +OP

(
h2,1√
n1

)
,

so it follows that

σ̂2
2,1 =

1

n2,1

n2,1∑
k=1

(y1,k − ϕ̂1(β̂
⊤
2,1x1,k))

2,

=
1

n2,1

n2,1∑
k=1

ε
′2
1,k +

1

n2,1

n2,1∑
k=1

(ϕ1(β
⊤
1 x1,k)− ϕ̂1(β

⊤
1 x1,k))

2

+
1

n2,1

n2,1∑
k=1

(ϕ1(β
⊤
1 x1,k)− ϕ̂1(β

⊤
1 x1,k))OP

(
h1√
n1

)

− 2

n2,1

n2,1∑
k=1

(ϕ1(β
⊤
1 x1,k)− ϕ̂1(β

⊤
1 xy1,k))ε1,k +

2

n2,1

n2,1∑
k=1

ε1,kOP

(
h1√
n1

)
.(1.29)

We have

σ̂2(2) = n−1(n2,1σ̂
2
2,1 + n2,2σ̂

2
2,2)

=
1

n

n1∑
k=1

(y1,k − ϕ̂1(β̂
⊤
2,1x1,k))

2 +
1

n

n2∑
k=1

(y2,k − ϕ̂2(β̂
⊤
2,2x2,k))

2

=
1

n

n1∑
k=1

ε21,k +
1

n

n2∑
k=1

ε22,k +OP

(
h42,1 +

1

n2,1h2,1
+ h42,2 +

1

n2,2h2,2

)
. (1.30)

As discussed in Section 5, {h2,g, g = 1, 2} are chosen to be optimal minimizing

OP

(
h42,g +

1
n2,gh2,g

)
and as such h42,g = OP

(
1

n2,gh2,g

)
. So (1.30) can be further
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simplified to be

σ̂2(2) =
1

n

n1∑
k=1

ε21,k +
1

n

n2∑
k=1

ε22,k +OP

(
1

n2,1h2,1
+

1

n2,2h2,2

)
. (1.31)

For a given sample, the first two summation parts of (1.31) is a constant for all

possible numbers of regions.

We are to prove that

Pr
(

inf
m̸=m0

BIC(m)− BIC(m0) > 0
)
→ 1, as n→ ∞.

By definition, for any m ̸= m0,

BIC(m)− BIC(m0) = log

(
σ̂2(m)

σ̂2(m0)

)
+ k(m)− k(m0),

where k(m) is the penalty term.

The proof is divided into two parts:

(1) m = 1;

(2) m ≥ 3;

Case m = 1. For m = 1, let the estimated single-index be β̂1,1, by definition,

σ̂2(1) =
1

n

n1∑
k=1

(y1,k − ϕ̂1,1(β̂
⊤
1,1x1,k))

2 +
1

n

n2∑
k=1

(y2,k − ϕ̂1,1(β̂
⊤
1,1x2,k))

2,

= I1 + I2 − I3, (1.32)

where

I1 =
1

n

n1∑
k=1

ε21,k +
1

n

n2∑
k=1

ε22,k,
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I2 =
1

n

n1∑
k=1

(ϕ1(β
⊤
1 x1,k)− ϕ̂1,1(β̂

⊤
1,1x1,k))

2 +
1

n

n2∑
k=1

(ϕ2(β
⊤
2 xy2,k)− ϕ̂1,1(β̂

⊤
1,1x2,k))

2,

I3 =
2

n

n1∑
k=1

(ϕ1(β
⊤
1 x1,k)− ϕ̂1,1(β̂

⊤
1,1x1,k))ε1,k +

2

n

n2∑
k=1

(ϕ2(β
⊤
2 x2,k)− ϕ̂1,1(β̂

⊤
1,1xy2,k))ε2,k.

To compare (1.32) to (1.31), we need to prove that

Pr(I2 − I3 > c0 > 0) → 1 as n→ ∞, (1.33)

and

k(2)− k(1) → 0 in probability as n→ ∞, (1.34)

which ensure that

Pr(BIC(1)− BIC(2) > 0) → 1, as n→ ∞.

It is easy to see that (1.34) follows directly from the definition of k(m). We can

prove (1.33) by showing the following two results:

I2 = |OP (1)|, (1.35)

and

I3 ≤ OP

(
1

√
n1

+
1

√
n2

)
. (1.36)

Without loss of generality, we assume that β1 ̸= β̂1,1 and β1 = λβ̂1,1 + λ̃β̃1 with

β̂1,1 ⊥ β̃1. By definition,

ϕ̂1,1(β̂
⊤
1,1x1,k) =

n−1
1

∑n1

i=1Kh(β̂
⊤
1,1(x1,i − x1,k))y1,i

n−1
1

∑n1

i=1 Kh(β̂⊤
1,1(x1,i − x1,k))
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=
n−1
1

∑n1

i=1 Kh(β̂
⊤
1,1(x1,i − x1,k))(ϕ1(β

⊤
1 x1,i) + ε1,i)

n−1
1

∑n1

i=1Kh(β̂⊤
1,1(x1,i − x1,k))

,

we have

E(ϕ̂1,1(β̂
⊤
1,1x1,k)− ϕ(β⊤

1 x1,k)) =

n−1
1

n1∑
i=1

Kh(β̂
⊤
1,1(x1,i − x1,k))(ϕ1(β

⊤
1 x1,i)− ϕ(β⊤

1 x1,k)))

n−1
1

n1∑
i=1

Kh(β̂⊤
1,1(x1,i − x1,k))

,

=

∫
Kh(β̂

⊤
1,1(x− x1,k))(ϕ1(β

⊤
1 x)− ϕ(β⊤

1 x1,k)))f(x)dx

fβ̂1,1
(β̂⊤

1,1x1,k)

+OP (n
−1/2
1 ).

By changing of variables and Taylor’s expansion similar to the proofs of Lemma

1.5.1, we have

E(ϕ̂1,1(β̂
⊤
1,1x1,k)−ϕ(β⊤

1 x1,k)) =

∫
[ϕ1(λu

(1,1)
0 + λ̃w)− ϕ1(λu

(1,1)
0 + λ̃ũ0)]f̃(w)dw

fβ̂1,1
(β̂⊤

1,1x1,k)
+OP (n

−1/2
1 ),

(1.37)

where u
(1,1)
0 = β̂⊤

1,1x1,k and ũ0 = β̃⊤
1 x1,k. Without loss of generality, we assume

that P (u
(1,1)
0 = 0) > 0, otherwise, we may consider β2 in the first place. Then the

nominator of (1.37) is
∫
[ϕ1(λ̃w)−ϕ1(λ̃ũ0)]f̃(w)dw which is non-zero almost surely

by assumption (A5), and it follows that I2 = |OP (1)|.

To prove (1.36), first if we let β̂
(−k)
1,1 be the gradient estimated without x1,k,

then we have

β̂
(−k)
1,1 − β̂1,1 = OP (n

−1
1 ),

which follows from the structure of (1.21). Noting that ϕ̂1,1(β̂
⊤
1,1x1,k)) is calculated
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with x1,k itself left out, we have

E(ϕ̂1,1(β̂
⊤
1,1x1,k)ε1,k) = O(n−1

1 ),

and E(I3) = O(n−1
1 + n−1

2 ). With similar reasoning, we can show that V ar(I3) =

O(n−1
1 + n−1

2 ), which leads to (1.36) directly. Then we complete the proof for case

m = 1.

Case m ≥ 3. For m ≥ 3, our main task is to show that

σ̂2(m)

σ̂2(m0)
= 1 +

m∑
g=1

αm,g(nm,g)−
m0∑
g=1

αm0,g(nm0,g),

where m0 = 2 and{
m∑
g=1

αg(nm,g)−
m0∑
g=1

αm0,g(nm0,g)

}/
{k(m)− k(m0)} → 0. (1.38)

Then as long as Pr(k(m)− k(m0) > 0) = 1, we have

Pr(BIC(m)− BIC(m0) > 0) → 1, as n→ ∞.

In our proof, we only give the discussion about the case of m = 3, which can

be easily extended to the cases of m > 3. For m = 3, let the three groups resulted

from Algorithm 2 be Ŝ3,1, Ŝ3,2 and Ŝ3,3, corresponding to the three “core groups”:

Ŝ3,1, Ŝ3,2 and Ŝ3,3, with

#Ŝ3,1 ≥ #Ŝ3,2 ≥ #Ŝ3,3.
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Without loss of generality, we assume that

Ŝ3,1 ∩ Ŝ2,1 ̸= Ø, and Ŝ3,2 ∩ Ŝ2,2 ̸= Ø.

By the characteristics of K-means clustering we have, with probability 1, two sce-

narios:

(1) #Ŝ3,3 ≤ np(n) ⇒ Ŝ3,1 = Ŝ2,1, Ŝ3,2 = Ŝ2,2;

(2) #Ŝ3,3 > np(n) ⇒ Ŝ3,1 ⊂ Ŝ2,1, Ŝ3,2 ⊂ Ŝ2,2.

Scenario 1 is easy to handle since it only attaches an additional group to the original

two groups.

For scenario 2, since #Ŝ3,3 > np(n), it can not be “ignored” by both Ŝ2,1

and Ŝ2,2, otherwise, we would have #Ŝ2,1 + #Ŝ2,2 < n(1 − p(n)), which is not

sufficient to terminate the clustering Step III. By hierarchial clustering, Ŝ3,3 must

be aggregated by either Ŝ2,1 or Ŝ2,2, and let’s assume that in scenario 2

Ŝ3,3 ⊂ Ŝ2,1.

Consequently, we have Ŝ3,1∪ Ŝ3,3 ⊆ Ŝ2,1. The only difference between Ŝ3,1∪ Ŝ3,3

and Ŝ2,1 is a diminishing proportion of points O(p0(n)). So again we have, with

probability going to 1,

Ŝ3,1 ∪ Ŝ3,3 ⊆ Ŝ2,1 and Ŝ3,2 ⊆ Ŝ2,2.
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Then equalities

Ŝ3,1 ∪ Ŝ3,3 = Ŝ2,1 and Ŝ3,2 = Ŝ2,2 (1.39)

are followed with probability tending to 1 by the fact that

Ŝ3,1 ∪ Ŝ3,2 ∪ Ŝ3,3 = Ŝ2,1 ∪ Ŝ2,2.

The equalities (1.39) show that in scenario 2, we create one more group by splitting

one of the original groups into two which should have been together as one. So

intuitively, we can not expect such action can improve the accuracy of model fitting

significantly. Following the same reasoning that leads to (1.31), we can easily show

that

σ̂2(3) =
1

n

n1∑
k=1

ε21,k +
1

n

n2∑
k=1

ε22,k +OP

(
1

n3,1h3,1
+

1

n3,2h3,2
+

1

n3,3h3,3

)
,

where the first two items are unchanged since the noise terms for a given sample

are fixed. Finally we have

σ̂2(3)

σ̂2(2)
= 1 +OP

(
3∑

g=1

1

n3,gh3,g

)
+OP

(
2∑

l=1

1

n2,lh2,l

)
,

which implies that k(m) = log(n)
∑m

g=1(nm,ghm,g)
−1 is sufficient to ensure (1.38)

to be satisfied. �
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CHAPTER 2

WLE of Nonlinear AR Models

with MA Errors

2.1 Time Series Analysis: A Literature Review

Time series data typically refer to the observations collected sequentially over

time, in which the data in the future depend on the observations in the past.

A fundamental task of time series analysis is to discover the stochastic law that

governs the observed time series which helps us to understand the underlying dy-

namics and forecast future events. To this end, time series analysis typically rests
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on proper statistical modeling. In this section, we introduce several popular time

series models and some related analytical techniques that we will use later on.

2.1.1 Stationarity of Time Series

In time series analysis, statistical inference is useful only when the observed

underlying dynamics are sustained over a time period of interest. This leads to

the definition of stationarity which requires that time series exhibit certain time-

invariant property. Here we present the definitions of both (weak) stationarity and

strict stationarity.

Definition 2.1. A time series {yt} is stationary if E(y2t ) <∞ for each t, and

(1) E(yt) is a constant, independent of t, and

(2) Cov(yt, yt+k) is independent of t for each k.

Definition 2.2. A time series {yt} is strictly stationary if (y1, ..., yn) and (y1+k,

..., yn+k) have the same joint distribution for any integer n ≥ 1 and any integer k.

Obviously stationarity is generally weaker than strict stationarity if the process

has finite second moments. As will be introduced later, the assumption of weak

stationarity is usually sufficient in analyzing linear time series models. In contrast,

if we are to investigate nonlinear relationships, restrictions on only the first two
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moments are sometimes inadequate to yield the desired asymptotic properties.

This is why strict stationarity is introduced here.

2.1.2 Linear Time Series Models

It has been a very long history of linear time series modeling in statistics society

dating back to Yule’s autoregressive (AR) models (1927). Specifically, the class of

AR models can be represented as

yt = a0 + a1yt−1 + · · ·+ apyt−p + εt, (2.1)

where the aj are real constants, p is a finite positive integer referred to as the

order of the AR model, and the εt are zero-mean uncorrelated random variables,

called white noise, with a finite common variance σ2
ε . If {yt} follows model (2.1),

we denote yt ∼ AR(p). Model (2.1) represents the current state yt through its

immediate p past values yt−1, ... , yt−p in a linear regressive manner.

A more general class of linear models is obtained by replacing εt by a moving

average process ξt := εt + θ1εt−1 + · · ·+ θqεt−q, i.e.,

yt = a0 + a1yt−1 + · · ·+ apyt−p + εt + θ1εt−1 + · · ·+ θqεt−q, (2.2)

where the θj are real constants. Model (2.2) is referred as ARMA(p, q) model. If
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we define the backshift operator B as

Bkyt = yt−k, k = ±1,±2, ...,

then the model (2.2) can be written as

a(B)yt = θ(B)εt, (2.3)

where a(·) and θ(·) are polynomials defined as

a(s) = 1− a1s− · · · − aps
p,

and

θ(s) = 1− θ1s− · · · − θqs
q.

For ARMA models as defined in (2.3), it is always assumed that polynomials

a(s) and θ(s) do not have common factors, i.e., the p and q involved in the model are

assumed to be the smallest respectively among all possible choices. The following

theorem gives a sufficient condition for the stationary of the ARMA models (pp.

31, Chapter 2, Fan and Yao, 2003).

Theorem 2.1. The process {yt} given by (2.3) is stationary if a(s) ̸= 0 for all

complex numbers s such that |s| ≤ 1.

The condition imposed in this theorem has become a standard assumption for

most linear time series analysis.
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2.1.3 Nonlinear Time Series Models

Linear models have a reasonable flexibility in approximating many stationary

processes. Nonetheless, the linear models do not approximate well the nonlinear

phenomena we observe in many real time series data, such as sunspot data and

Canadian lynx data. Those nonlinear phenomena include, for example, nonnormal-

ity, asymmetric cycles, bimodality, nonlinear relationship between lagged variables,

variation of prediction performance over the state-space, time irreversibility, sen-

sitivity to initial conditions and others. Modeling the nonlinearity in time series is

beyond the scope of traditional linear models.

We have seen fruitful developments on various nonlinear parametric time se-

ries models. The successful examples include, among others, the ARCH-modeling

of volatility of financial data (Engle, 1982; Bollerslev, 1986) and the (smooth)

threshold autoregressive modeling of biological and economic data (Tong, 1990;

Terasvirta, 1994). The focus of this thesis is on the latter class of nonlinear mod-

els, i.e., the nonlinear autoregressive models. Specifically, {yt} is said to follow a

nonlinear autoregressive model of order p if there exists a function ϕ̃ such that

yt = ϕ̃(yt−1, yt−2, ..., yt−p, εt), t = ±1,±2, ..., (2.4)

where εt is a sequence of stationary process with E{εtεs} = 0 for t ̸= s. It is of
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special interest to study the additive noise model defined as

yt = ϕ(yt−1, yt−2, ..., yt−p) + εt, t = ±1,±2, ..., (2.5)

for some real function ϕ. A typical example of model (2.5) is the threshold autore-

gressive model (TAR; Tong, 1990). The TAR model is of the form

yt = a
(i)
0 + a

(i)
1 yt−1 + · · ·+ a(i)p yt−p + εt, if yt−d ∈ Ri, (2.6)

for i = 1, ..., k, where {Ri} forms a nonoverlapping partition of the real line. There

are also many successful smoothing extensions of the TAR model. Most of them

can be included in the class of function-coefficient autoregressive (FAR; Chen and

Tsay, 1994) model which has the form

yt = ϕ0(yt−d) + ϕ1(yt−d)yt−1 + · · ·+ ϕp(yt−d)yt−p + εt, (2.7)

where ϕj(·) are unknown coefficient functions.

Similar to the generalization from AR models to ARMA models, we can define

a more general class of nonlinear models by replacing the εt in model (2.5) with a

moving average (MA) process ξt := εt + θ1εt−1 + · · ·+ θqεt−q, i.e.,

yt = ϕ(yt−1, yt−2, ..., yt−p) + εt + θ1εt−1 + · · ·+ θqεt−q, t = ±1,±2, ..., (2.8)

We call model (2.8) nonlinear autoregressive/moving average model. The TAR

and FAR model can be generalized in a similar way. The estimation method of

model (2.8) is currently not well developed. A main contribution of this thesis is
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having established an efficient method for the estimation of the parametric models

that take the form of (2.8). The necessity of adding an MA part to the original

model is also supported by real data examples. Detailed discussions appear in the

subsequent sections of the Chapter.

2.1.4 Spectral Analysis and Periodogram

For a stationary time series {yt}, it follows that Cov(yt, yt+n) is simply a func-

tion of n. This function is called the autocovariance function of {yt} at lag n and is

denoted by γ(n). The ratio ρ(n) = γ(n)/γ(0) is called the autocorrelation function

(ACF) of {yt} of lag n. The following theorem states that the ACF can be denoted

by a Fourier transform of a certain distribution function G (pp. 51, Chapter 2,

Fan and Yao, 2003).

Theorem 2.2. A real function defined by {ρn : n = 0,±1,±2, ...} is the ACF of a

stationary time series if and only if there exists a symmetric probability distribution

on [−π, π] with distribution function F for which

ρ(n) =

∫ π

−π

einwdG(w),

where i =
√
−1 stands for the imaginary unit.

The function G is called the normalized spectral distribution function of the
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time series {yt}. If G has a density function g, then

ρ(n) =

∫ π

−π

einwg(w)dw,

and g is called the normalized spectral density function. Moreover, If ρ(n) is

absolutely summable in the sense that
∑∞

n=1 |ρ(n)| <∞, then g exists and is given

by

g(w) =
1

2π

∞∑
n=−∞

ρ(n)e−inw. (2.9)

In many applications such as engineering, spectral decomposition of the total

power, i.e., the variance, is of main interest. To this end, we define the (non-

normalized) spectral distribution function as

F (w) = γ(0)G(w),

and the (non-normalized) spectral density function as

f(w) = γ(0)g(w) =
1

2π

∞∑
n=−∞

γ(n)e−inw.

Given an observed time series {yt, t = 1, ...T}, a nature estimation of the

spectral density function f(w) is obtained by replacing the γ(n) with the sample

autocovariance

γ̂(n) =
1

T

T−|n|∑
t=1

(yt+|n| − ȳ)(yt − ȳ),

for −T < n < T , where

ȳ =
1

T

T∑
t=1

yt.
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Then we have

f̂(w) =
1

2π

T−1∑
n=−T+1

γ̂(n)e−inw.

For a time series {yt}, define the discrete Fourier transform (DFT) as (Y (w1), Y (w2),

..., Y (wT−1)), where

Y (wk) =
1√
T

T∑
t=1

yte
−itwk , (2.10)

and wk = 2πk/T are called the Fourier frequencies. The periodogram of {yt} is

defined as

I(wk) = |Y (wk)|2 =
1

T

∣∣∣∣∣
T∑
t=1

yte
−itwk

∣∣∣∣∣
2

,

where wk is the Fourier frequency. The theorem below establishes the link between

periodogram and spectral density function (pp. 62, Chapter 2, Fan and Yao, 2003).

Theorem 2.3. For k = 1, ..., T − 1,

I(wk) =
1

T

∣∣∣∣∣
T∑
t=1

yte
−itwk

∣∣∣∣∣
2

≡
T−1∑

n=−T+1

γ̂(n)e−inwk = 2πf̂(wk),

where f̂(·) and γ̂(·) are as defined above.

2.1.5 Whittle Likelihood Estimation (WLE)

One of the most successful applications of spectral analysis and periodogram

is the Whittle’s approximation to the Gaussian likelihood function. A time series

{zt} is said to be Gaussian if all its finite-dimensional distributions are normal. If
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εt are i.i.d N(0, σ2) and a(s) ̸= 0 for all |s| ≤ 1, {yt} defined by (2.3) is a stationary

Gaussian process.

Consider a set of observations ZT = (z1, ..., zT )
⊤ generated by a univariate

stationary Gaussian process. Then we have the Gaussian −2log-likelihood function

L(β, θ, σ2) = log |σ2GT |+ σ−2Z⊤
T G

−1
T ZT , (2.11)

where GT is the T × T covariance matrix of ZT . The maximum likelihood es-

timator (MLE), (β̂, θ̂, σ̂2), is obtained by maximizing (2.11) over the parameter

space. However, the direct involvement of |GT | and G−1
T in the evaluations of

L(β, θ, σ2) intensifies the computation burden to a daunting scale for moderately

large samples. Moreover, since the dimension of GT goes to infinity at the same

rate as the sample size T , the asymptotic properties of the estimator are not so

straightforward.

To avoid such a problem, Whittle (1953) used several ingenious matrix calculus

and approximated the quadratic form in (2.11) by a summation of the ratios of the

periodogram of the observations and the corresponding spectral density function

of the model taking value at the Fourier frequencies λj = 2πj/T , j = 1, ..., T − 1.

Suppose the spectral density function of zt is f(λ; β, θ) = σ2k(λ; β, θ)/(2π). The

Whittle’s approximation to the likelihood function (2.11) is

LW (β, θ, σ2) =
T−1∑
j=1

[
log(σ2k(λj; β, θ)) +

I(λj)

σ2k(λj; β, θ)

]
, (2.12)
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where I(λj) is the periodogram of zt. Since the periodogram can be calculated

easily via the fast Fourier transform, the Whittle likelihood estimation can be

implemented easily as long as the spectral density function f(λ; β, θ) has an explicit

form. The estimator based on (2.12) is called Whittle likelihood estimation (WLE).

The traditional WLE has played a fundamental role in the theoretical devel-

opment of linear and nonlinear time series analysis. Most notably, the asymptotic

theory of MLE of ARMA models was first derived by Hannan (1973) based on the

equivalence of the Whittle likelihood function LW (β, θ, σ2) and the usual likelihood

function L(β, θ, σ2). Without this equivalence, the asymptotic theory is extremely

difficult, and thus was derived many years later by Yao and Brockwell (2006).

2.2 Introduction of the Extended WLE (XWLE)

For linear or nonlinear autoregressive (AR) time series models, it is known that

the regression errors are usually not linearly independent. There are two possible

approaches to accommodate the dependence. The first approach is by increasing

the order of the autoregressive models, and the second by introducing moving av-

erage (MA) residuals. The latter is usually more efficient in the sense that it needs

less parameters. As an example, an ARMA model is more efficient than an AR

model even though any ARMA model can be approximated by a higher order AR
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model. For nonlinear time series models, to use a higher order nonlinear AR mod-

el to approximate a nonlinear ARMA model is even more intractable because the

resulted model might have a very complicated functional form. Therefore, investi-

gating nonlinear AR models with a moving average error is very important in time

series modeling. In this Chapter we consider the following nonlinear autoregressive

model with MA errors

yt = ϕ(Xt, β) + εt + θ1εt−1 + ...+ θqεt−q, (2.13)

where ϕ is a twice continuously differentiable function with unknown parameters

β = (β1, ..., βp), Xt is a vector variable that can contain either lags of yt or a

collection of exogenous variables, or both, E(εt) = 0, E(εtεs) = 0 if t ̸= s and σ2
0

otherwise. For ease of exposition, let

ξt(θ) = θ(B)εt = εt + θ1εt−1 + ...+ θqεt−q, (2.14)

where B is the backshift operator on t and

θ(s) = 1 + θ1s+ · · ·+ θqs
q.

The linear ARMA model is included in model (2.13). Another special case of

model (2.13) is the smooth threshold AR model (STAR, Chan and Tong, 1986;

Terasvirta, 1994) with MA regression errors

yt = β⊤
1 Xt + β⊤

2 Xt × It−d + ξt,
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where It−d is a smooth function of yt−d with d ≥ 1.

The estimation of model (2.13) is not trivial. First, note that the least square

method might not get a consistent estimator because

E(ξt(θ)|Xt) ̸= 0.

The maximum likelihood estimation is also not easily tractable as the nonlinearity

of the model complicates the marginal distribution of yt. On the other hand, direct

application of the traditional WLE to model (2.13) faces at least two problems.

Firstly, the likelihood function (2.11) is based on Gaussian distribution of yt, which

is usually not correct if ϕ(Xt, β) is not linear in Xt. Secondly, a time series yt

following model (2.13) usually has no theoretical spectral density function of the

parameters, and thus the Whittle’s approximation (2.12) is not available.

In this Chapter, we extend the Whittle likelihood estimation to handle these

problems by exploiting the periodogram of residuals which are assumed to follow

an MA process. So we convert a nonlinear and non-Gaussian problem to be a

linear Gaussian problem. The idea of transforming a nonlinear problem to be a

linear problem is also seen in the Whittle estimation of ARCH models (Giraitis

and Robinson, 2001). With respect to investigating the periodogram of residuals,

Shimotsu and Phillips (2005) employed a similar idea to give a semiparametric
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estimation of the memory parameter in fractionally integrated time series. How-

ever, the estimation method of Shimotsu and Phillips (2005) relies on an explicit

representation of yt by a linear combination of εt, which is usually not attainable

in nonlinear models.

The rest of this Chapter is organized as follows. In Section 2.3, we describe in

details our estimation method, called the extended Whittle likelihood estimation

(XWLE). Section 2.4 discuses the model diagnostics based on XWLE. In Section

2.5, some numerical studies are employed to check the performance of the esti-

mation method, especially as compared with the existing estimation methods if

they are applicable; two real data sets are used to illustrate the application of the

methods. Theoretical justification of the proposed methods is given in Section 2.6.

2.3 Estimating Nonlinear Models with XWLE

Suppose we have observations {yt, t = 1, 2, ..., T} and {Xt, t = 1, 2, ..., T}

satisfying model (2.13), i.e.,

yt = ϕ(Xt, β) + ξt(θ),

where Xt is a vector variable that can contain either lags of yt or a collection of

exogenous variables, or both, and ξt(θ) is a moving average (MA) process defined
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in (2.14). For a nonlinear autoregressive function ϕ(·), the theoretical spectral

density function of yt is generally not available. Instead, we know that ξt(θ) is an

MA(q) process with spectral density function

f0(λ, θ, σ
2) =

σ2

2π
k0(λ, θ) =

σ2

2π

∣∣∣ q∑
j=0

θje
ijλ
∣∣∣2,

where θ0 = 1 and i stands for the imaginary unit. The calculation of k0(λ, θ) is

very easy and so are its derivatives. Let zt(β) = yt − ϕ(Xt, β), t = 1, ..., T . When

β and θ are both correctly specified, we have that zt(β) = ξt(θ), i.e., zt(β) is an MA

process whose theoretical spectral density function is known. In order to estimate

β and θ, instead of considering the periodogram of {yt : t = 1, ..., n} directly, we

consider the periodogram of zt(β) which would coincide with f0(λ, θ, σ
2) if both β

and θ approach to their true values as T → ∞.

We assume that zt(β) is attainable from t = 1 to t = T , for simplicity of

notations. We also write zt(β) as zt in the following context. The periodogram of

zt is defined as

Iz(λ; β) = (2πT )−1
∣∣∣ T∑
t=1

zte
itλ
∣∣∣2.

Let cz(n; β) = T−1
∑T−n

t=1 zt+nzt, then

Iz(λ; β) = (2π)−1

T−1∑
n=−T+1

cz(n; β)e
−inλ. (2.15)

We define the extended Whittle likelihood function for zt as

LT (β, θ, σ
2) =

1

T

T−1∑
j=1

[
log(σ2k0(λj; θ)) +

Iz(λj; β)

σ2k0(λj; θ)

]
, (2.16)
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where λj = 2πj/T, j = 1, ..., T − 1. Following Hannan (1973) and assumption

(A5) in Section 2.6, we have that

1

T

T−1∑
j=1

log(k0(λj; θ)) = O(T 1/2−α)

for some α > 1/2. So similar to Giraitis and Robinson (2001), we estimate param-

eters (β, θ, σ2) by minimizing

WT (β, θ, σ
2) = log(σ2) +

1

Tσ2

T−1∑
j=1

Iz(λj; β)

k0(λj, θ)

with respect to β, θ and σ2. It is easy to see that given (β, θ) the solution for σ2 is

σ̂2 =
1

T

T−1∑
j=1

Iz(λj; β)

k0(λj, θ)

def
= QT (β, θ). (2.17)

Then minimizing WT (β, θ, σ
2) is equivalent to first minimizing

W̃T (β, θ) = log(QT (β, θ)) + 1

and then solving σ̂2 by (2.17), which further induces us to estimate (β, θ) by solving

(β̂T , θ̂T ) = argminQT (β, θ) = argmin
1

T

T−1∑
j=1

Iz(λj; β)

k0(λj, θ)
. (2.18)

We call the above estimation method the extended Whittle likelihood estimation

(XWLE).

Comparing our extended Whittle likelihood function (2.16) with the classic

one (2.12), the main difference between them is that we “move” the unknown

parameters β from the denominator to the numerator to avoid direct involvement
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of the spectral density function of the original time series yt. This difference makes

XWLE applicable to a much more general class of time series models. It is also

applicable to the case in which exogenous variables are involved in the model, for

which the classical WLE cannot be used. In theory, however, XWLE is much more

complicated than the conventional WLE. By moving β into Iz(λ; β) which is a

random variable with non-negligible noise (see e.g. Theorem 10.3.2 of Brockwell

and Davis, 1991), to investigate the asymptotic properties of XWLE is not an

easy job at all. The details are given in Section 2.6. Although the asymptotic

variance matrix of the XWLE is less explicit than the classical WLE, our intensive

simulation studies in Section 4 suggest that XWLE is sometimes more stable and

more efficient than the classic WLE when both methods are applicable.

2.4 Model Diagnosis Based on XWLE

For linear ARMA models with normal innovations, it is proved that the Whit-

tle likelihood function WT is asymptotically equivalent to the maximum likelihood

function; see Hannan (1973) for details. This fact induces us to apply the tradition-

al idea of model diagnostics to our new estimator for its corresponding diagnostics.
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The extensions of the classic BIC (Schwarz, 1978) to the Whittle likelihood func-

tion is defined as,

BICW = log(QT (β̂T , θ̂T )) + k log(T )/T,

where k is the number of parameters involved in the model. The model with the

smallest BICW score is the model preferred. The consistency of BICW in selecting

the number of parameters follows directly from the asymptotic equivalence of the

Whittle likelihood function and the maximum likelihood function and that zt(β)

is an MA process when β is correctly specified.

To validate the estimated model, it is also common to carry out a white noise

test for the fitted residuals ε̂t. The ε̂t here are calculated in a similar way as

we commonly do to the ARMA model. Namely, we first define ε̂−j = 0, for

j = 0, 1, ..., q − 1. Then the ε̂t are calculated as

ε̂t = yt − ϕ(Xt, β)− θ1ε̂t−1 − ...− θqε̂t−q

for t = 1, ..., T . The most popular white noise test is probably the χ2 portmanteau

test (Box and Pierce, 1970, and Ljung and Box, 1978), which depends on the

following statistic:

R
(m)
T = T (T + 2)

m∑
k=1

ρ̂2(k)

T − k
,
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where m is the so-called lag truncation number and is fixed. The empirical auto-

correlation, ρ2(k), is defined as

ρ̂2(k) =

∑T
t=k+1(ε̂t − ε̄)(ε̂t−k − ε̄)∑T

t=1(ε̂t − ε̄)2
,

where ε̄ = T−1
∑T

t=1 ε̂t. Under the assumption that εt are independent and iden-

tically distributed (i.i.d.), it can be shown that RT (m)
D→ χ2(m), where

D→ stands

for convergence in distribution.

Different values of m will result in different test statistics R
(m)
T . One way to

overcome this problem is to use the adaptive Neyman test (Fan, 1996)

R
(AN)
T = max

1≤m≤aT

R
(m)
T −m√

2m
,

where aT is some upper limit. Fan (1996) showed that under the null hypothesis

P (R̃
(AN)
T < x) → exp(− exp(−x)) as T → ∞,

where

R̃
(AN)
T =

√
2 log log aTR

(AN)
T − {2 log log aT + 0.5 log log log aT − 0.5 log(4π)}.

Although we still have a parameter aT to choose, the adaptive Neyman test is less

sensitive to aT than RT (m) tom. We call R
(m)
T LB(m)-test and R̃

(AN)
T AN(aT )-test.

The empirical performances of both tests are examined in the next section by a

simulated example.
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2.5 Numerical Studies

In this section, we illustrate the proposed modeling procedure of Section 2.3

and Section 2.4 by applying it to some simulated and real examples. We study the

performance of our estimation method by (1) comparing the estimation efficiency

of XWLE with the original WLE for the ARMA model to which both estima-

tion methods are applicable, and (2) checking the estimation efficiency of XWLE

and the model selection for a nonlinear time series model to which WLE is not

applicable.

Example 2.5.1. We first consider the following ARMA(p,1) model,

yt = β1yt−1 + · · ·+ βpyt−p + θ1εt−1 + εt,

where εt
′s are i.i.d with mean 0. Three lag-values of p are considered in this

example, namely, we study the three models:

• ARMA(1, 1),

• ARMA(2, 1),

• ARMA(5, 1).

Moreover, we take three distribution assumptions on the innovation εt respectively

for each value of p. The three distributions are



2.5 Numerical Studies 91

• N(0, 1): Standard normal distribution,

• t(1): Student’s t distribution with one degree of freedom,

• U(−1, 1): Uniform distribution between −1 and 1.

So in combination we have 9 different settings of models.

To make a fair comparison, we consider 5 values of β1: 0.1, 0.3, 0.5, 0.7 and

0.9, and let θ1 go through all its invertible region (−1, 1). For p > 1, The rest

parameters β2, ..., βp are randomly sampled from the (p − 1) dimension uniform

distribution U(−1
2
, 1
2
)⊗(p−1) in which only the stationary choices are used for further

simulation studies, otherwise, we resample them till stationarity is satisfied. For

each parameter setting, we draw a time series with length n and estimate the

parameters using different methods, including the Whittle likelihood estimation

(WLE), the extended WLE (XWLE), and the maximum likelihood estimation

(MLE). The estimation error is defined as

Err(β̂, θ̂1) =

p∑
k=1

(β̂k − βk)
2 + (θ̂1 − θ1)

2,

where β̂ = (β1, · · · , βp).

Based on 100 replications for each setting of parameters, innovation distribution

and sample size n, the logarithms of the average estimation errors are shown in

Figure 2.1 to 2.9. In each panel, the blue line with ‘o’, the green line with ‘�’

and the red line with ‘∗’ represent the estimation error of WLE, MLE and XWLE
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respectively. The y-axis is for log(Err) and the x-axis is for θ1.

Although WLE was proved to be asymptotically equivalent to MLE under

normality assumption of εt, the former is commonly found not so stable as the

latter in some situations, which is also observed in our simulations as shown in

many panels of figures when θ1 approaches to 1. It seems, however, that XWLE

is more stable than WLE in most cases. The choice of the innovation distribution

seems to be not a crucial influencing factor for the estimation accuracies of any of

the three methods.

From p = 1 to p = 5 and n = 100 to n = 400 we observe that MLE become

less attractive as compared to WLE and XWLE when both p and n become larger.

Moreover, for some of the settings, especially for θ1 >= −0.5, the errors from

XWLE method always stick to the smaller values of MLE and WLE, or attain the

minima of the three methods by themselves. This phenomenon is clearly shown in

the rows β1 = 0.3 and β1 = 0.9 of most Figures.
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Figure 2.1 Simulation results for ARMA(1, 1) models with εt ∼ N(0, 1), where

y-axes represent log(Err) and x-axes represent θ1; blue ‘o’: WLE, green ‘�’: MLE,

red ‘∗’: XWLE.
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Figure 2.2 Simulation results for ARMA(2, 1) models with εt ∼ N(0, 1), where

y-axes represent log(Err) and x-axes represent θ1; blue ‘o’: WLE, green ‘�’: MLE,

red ‘∗’: XWLE.
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Figure 2.3 Simulation results for ARMA(5, 1) models with εt ∼ N(0, 1), where

y-axes represent log(Err) and x-axes represent θ1; blue ‘o’: WLE, green ‘�’: MLE,

red ‘∗’: XWLE.
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Figure 2.4 Simulation results for ARMA(1, 1) models with εt ∼ t(1), where y-

axes represent log(Err) and x-axes represent θ1; blue ‘o’: WLE, green ‘�’: MLE,

red ‘∗’: XWLE.
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Figure 2.5 Simulation results for ARMA(2, 1) models with εt ∼ t(1), where y-

axes represent log(Err) and x-axes represent θ1; blue ‘o’: WLE, green ‘�’: MLE,

red ‘∗’: XWLE.
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Figure 2.6 Simulation results for ARMA(5, 1) models with εt ∼ t(1), where y-

axes represent log(Err) and x-axes represent θ1; blue ‘o’: WLE, green ‘�’: MLE,

red ‘∗’: XWLE.
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Figure 2.7 Simulation results for ARMA(1, 1) models with εt ∼ U(−1, 1), where

y-axes represent log(Err) and x-axes represent θ1; blue ‘o’: WLE, green ‘�’: MLE,

red ‘∗’: XWLE.
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Figure 2.8 Simulation results for ARMA(2, 1) models with εt ∼ U(−1, 1), where

y-axes represent log(Err) and x-axes represent θ1; blue ‘o’: WLE, green ‘�’: MLE,

red ‘∗’: XWLE.
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Figure 2.9 Simulation results for ARMA(5, 1) models with εt ∼ U(−1, 1), where

y-axes represent log(Err) and x-axes represent θ1; blue ‘o’: WLE, green ‘�’: MLE,

red ‘∗’: XWLE.
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Example 2.5.2. In this example we study the effects of MA errors on the following

logistic smooth threshold AR model (LSTAR) with an MA(1) error, denoted by

LSTAR(p)-MA(1),

yt = α0+α1yt−1+ ...+αpyt−p+(β0+β1yt−1+ ...+βpyt−p)×It−1+θεt−1+εt, (2.19)

where εt
′s are i.i.d N(0, σ2

ε) and It−1 = 1/(1 + exp{−γ(yt−1 − c)}). Set p = 2,

α0 = 0, α1 = 1.8, α2 = −1.06, β0 = 0.02, β1 = −0.9, β2 = 0.8, c = 0.02 and

γ = 100, such that the time series is explosive in the lower regime and stationary

in the higher regime, but the time series generated is stationary. We consider three

values for σε: 0.25, 0.5, and 1, and θ is chosen from the range −0.9 to 0.9.

Based on 200 replications, the average of estimation errors defined in the pre-

vious example are summarised in Table 2.1. We can see a clear improvement in

parameter estimations as sample size increases, demonstrating the estimation con-

sistency. Denote by LSTAR(p) the classic LSTAR model (Terasvirta, 1994) of

order p. In each replication, we fitted the data to 20 models {LSTAR(p)-MA(1),

p = 1, ..., 10} and {LSTAR(p), p = 1, ..., 10} respectively, and calculate the BICW

scores. Table 2.1 reports the proportion of replications that BICW attained its

minimum at the true model LSTAR(2)-MA(1) among the 20 candidate models.

The powers of the LB-test and AN-test in detecting the existence of MA errors are

displayed in Figure 2.10 where the y-axis of each panel is the percent of replications

of rejecting the null hypothesis that the residuals from the LSTAR(2) model are
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Table 2.1 Simulation results for Example 2.5.2.

n = 100 n = 200 n = 400

θ σε = 0.25 σε = 0.5 σε = 1 σε = 0.25 σε = 0.5 σε = 1 σε = 0.25 σε = 0.5 σε = 1

-0.9 Err 0.0767 0.1384 0.1715 0.0378 0.0404 0.0589 0.0134 0.0151 0.0229

BICW 0.71 0.72 0.85 0.73 0.7 0.77 0.8 0.81 0.75

-0.7 Err 0.1352 0.1692 0.2112 0.0447 0.0446 0.0808 0.0165 0.0223 0.0362

BICW 0.8 0.73 0.77 0.92 0.93 0.92 0.98 0.93 1

-0.5 Err 0.1568 0.1845 0.2247 0.0584 0.0630 0.1010 0.0248 0.0386 0.0536

BICW 0.7 0.73 0.74 0.98 0.93 0.95 0.99 0.98 0.97

-0.3 Err 0.1495 0.1708 0.2823 0.0571 0.0698 0.1187 0.0225 0.0328 0.0531

BICW 0.44 0.46 0.57 0.73 0.67 0.68 0.96 0.91 0.98

-0.1 Err 0.1316 0.1570 0.2720 0.0452 0.0716 0.1193 0.0266 0.0294 0.0750

BICW 0.08 0.1 0.1 0.13 0.14 0.17 0.2 0.15 0.21

0 Err 0.0699 0.1049 0.2521 0.0418 0.0534 0.1369 0.0153 0.0253 0.0513

BICW 0.03 0.07 0.04 0.04 0.02 0.04 0.04 0 0.02

0.1 Err 0.1111 0.1589 0.2690 0.0497 0.0544 0.1267 0.0221 0.0306 0.0598

BICW 0.09 0.06 0.06 0.09 0.08 0.06 0.15 0.15 0.19

0.3 Err 0.0817 0.1331 0.2841 0.0404 0.0582 0.1314 0.0205 0.0284 0.0615

BICW 0.42 0.51 0.46 0.82 0.8 0.87 0.96 1 0.96

0.5 Err 0.0765 0.1244 0.2878 0.0341 0.0514 0.1274 0.0173 0.0230 0.0631

BICW 0.89 0.88 0.87 0.97 0.97 0.94 0.99 1 1

0.7 Err 0.0618 0.1108 0.2900 0.0269 0.0479 0.0968 0.0144 0.0224 0.0605

BICW 0.91 0.88 0.84 0.93 0.94 0.97 0.98 0.93 0.96

0.9 Err 0.0558 0.0975 0.2317 0.0219 0.0433 0.0953 0.0111 0.0167 0.0402

BICW 0.73 0.75 0.75 0.79 0.73 0.85 0.8 0.82 0.87
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Figure 2.10 Rate of rejections for the LB(20)-tests and AN(20)-tests in Example

2.5.2.

from a white noise process, at level p0 = 0.05. The value of BIC
(0)
W is the percents

of replications that the best model chosen by BICW is within LSTAR(p)-MA(1)

for p = 1, ..., 10, i.e., it is the frequency that BICW favors the existence of an

MA part. In each panel, lines with ‘o’, ‘∗’ and ‘+’ denote BIC
(0)
W , AN(20)-test and
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LB(20)-test, respectively. Figure 2.10 shows that AN-test generally has a higher or

equivalent power as compared to LB-test when the null hypothesis is false. When

the null is true, AN-test also preserves the size well. All in all, BICW seems to be

the most trust-worthy criterion in detecting the existence of MA errors.

Example 2.5.3. Next we analyze the square root transformed series yt = 2(
√
1 + xt−

1) of annual sunspot numbers xt for the period 1700 − 2012. The raw data were

downloaded from the official website of the Solar Influences Data Analysis Center

(SIDC), Brussels, Belgium. The transformed data for the period 1700− 1979 have

been analyzed in details by Tong (1990) and other researchers. It is believed that

this data can be better fitted with a nonlinear time series model; see also Chen

and Tsay (1993) for the nonlinearity tests on this data. In this example we try

to improve the threshold autoregressive (TAR) model of Tong (1990) by adding

an MA term, and estimate the model by XWLE. We shall check the necessity of

adding the MA term by the prediction ability of the models.

The TAR model fitted by Tong (1990) has two regimes with lag-11 in one regime

and lag-3 in the other. We believe the long AR lags is abundant if a lag-1 MA

term is employed. By also taking advantage of the correlation analysis reported in
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Figure 2.11 Time plots for the transformed sunspot number.

Chen and Tsay (1993), we propose the following TAR-MA model,

yt =


α0 + α1yt−1 + α2yt−2 + α3yt−3 + α8yt−8 + εt + θ1εt−1, if yt−8 ≤ 11.93,

β0 + β1yt−1 + β2yt−2 + β3yt−3 + β8yt−8 + εt + θ1εt−1, if yt−8 > 11.93,

(2.20)

where we use the same structure parameter as Tong (1990) to facilitate the com-

parison. We use the same period 1700 − 1979 for in-sample fitting and reserve

the period 1980− 2012 for out-of-sample predictions. The XWLE estimates of the

parameters are

θ̂1 = −0.5162,

α̂0 = 0.8436, α̂1 = 1.4011, α̂2 = −0.4446, α̂3 = −0.1341, α̂8 = 0.0581,

β̂0 = 1.4264, β̂1 = 1.8603, β̂2 = −1.4067, β̂3 = −0.4116, β̂8 = 0.0437.

This model has 10 coefficient parameters plus one structure parameter. The overall
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residual variance is 3.817 which is slightly higher than Tong’s TAR model (3.734)

that has 16 parameters and one structure parameter. Nevertheless, as will be

shown later, this model outperforms Tong’s TAR model by a significant margin in

out-of-sample predictions. The p-values of the LB(20)-test and AN(20)-test on the

fitted residuals are respectively 0.0573 and 0.1618, both of which do not reject the

white noise hypothesis at level 0.05. The BICW of model (2.20) is 1.5599.

For comparison, we also fit a TAR(8) model to the data using XWLE as follows,

yt =


α
(0)
0 + α

(0)
1 yt−1 + α

(0)
2 yt−2 + α

(0)
3 yt−3 + α

(0)
8 yt−8 + εt if yt−8 ≤ 11.93,

β
(0)
0 + β

(0)
1 yt−1 + β

(0)
2 yt−2 + β

(0)
3 yt−3 + β

(0)
8 yt−8 + εt if yt−8 > 11.93,

(2.21)

where

α̂
(0)
0 = 1.4635, α̂

(0)
1 = 0.9950, α̂

(0)
2 = 0.1469, α̂

(0)
3 = −0.3942, α̂

(0)
8 = 0.0643,

β̂
(0)
0 = 2.5939, β̂

(0)
1 = 1.4246, β̂

(0)
2 = −0.7932, β̂

(0)
3 = 0.0189, β̂

(0)
8 = 0.1074.

The overall residual variance of model (2.21) is 3.963. The p-values of the LB(20)-

test and AN(20)-test on the fitted residuals are respectively 0.0128 and 0.0095,

both of which reject the white noise hypothesis at level 0.05. The BICW of model

(2.21) is 1.5783, which is higher than that of model (2.20). These p-values and

BICW suggest the necessity of adding the MA term.
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Next, we compare the multi-step ahead forecasts of four models: TAR(8)-

MA(1) in (2.20), the TAR(8) in (2.21), the TAR(11) of Tong(1990) and the FAR(8)

of Chen and Tsay (1993). Based on the estimated models with data from 1700-

1979, the h-step ahead prediction for 1980-2012 is made in a rolling approach with

h = 1, 2, ..., 20. More specifically, for any year t we first predict yt+1, denoted by

ŷt+1, using previous values {ys, s ≤ t}, and then predict yt+2 using {ŷt+1, ys, s ≤ t}.

The procedure is repeated until the last value yt+h is predicted. We calculate the

prediction error for the original numbers of the sunspots by taking the inverse

transformation. The results are shown on Figure 2.12. Our TAR-MA model almost

dominates the other three models in all the steps h except for h = 11 and h = 12.

It is interesting to note that the TAR(8) model is better than or comparable to

Tong’s TAR(11) model up to t = 13. The usefulness of the higher lags of TAR(11)

model starts to appear from the lead-time 14, but it is still less efficient as compared

to TAR(8)-MA(1) in (2.20).

Example 2.5.4. El Niño Southern Oscillation (ENSO) is a large-scale medium-

frequency event in the equatorial Pacific Ocean that is manifested in an abnormal

increase (El Niño) or decrease (La Niña) of the Sea Surface Temperatures (SST).

The time series variable representing the ESNO anomaly, Niño 3.4 , is derived from

the index tabulated by the Climate Prediction Center at the National Oceanic and

Atmospheric Administration. This index measures the difference in SST in the

area of the Pacific Ocean between 5◦N − 5◦S and 170◦W − 120◦W (Trenberth and
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Figure 2.12 Root mean squred prediction errors of out-of-sample multistep fore-

casts for the original numbers of the sunspots.

Stepanyak, 2001). The SST anomaly is the deviation of the Niño 3.4 monthly

measure from the average historic measure for that particular month from the

period 1971-2000.

In this study, we consider the monthly SST anomaly between January 1950

and December 2012. The nonlinearity of the this time series has been tested

and validated by Ubilava and Helmers (2013) who propose to fit the data with

an LSTAR model. Using data between January 1950 and December 2007, they

estimated the optimal lag as 6 based on the classic BIC (Schwarz, 1978). It is

interesting to study whether the lag can be shortened by an LSTAR-MA model as
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Figure 2.13 Time plots for the Niño 3.4 anomaly.

follows

yt = β1,0 + β1,1yt−1 + ...+ β1,pyt−p + δ⊤1 Dt

+ (β2,0 + β2,1yt−1 + ...+ β2,pyt−p + δ⊤2 Dt)× It

+ εt + θ1εt−1 (2.22)

where It = (1 + exp(−γ(yt−d − c)))−1 and Dt = (Dt,1, ..., Dt,11)
⊤ is a vector of

dummy variables for the month. To facilitate the comparison, we use the same

structure parameters as used by Ubilava and Helmers (2013), and let

It = (1 + exp(−1.196/0.835(yt−1 + 0.447)))−1,

and

δ1 = (0.114, 0.354, 0.340, 0.177, 0.040, 0.097,−0.036,−0.177,−0.166,−0.370,−0.183)⊤,

δ2 = (−0.159,−0.569,−0.535,−0.269,−0.037,−0.078, 0.061, 0.218, 0.162, 0.651, 0.252)⊤.
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The BICW scores for each choice of p in model (2.22) from 1 to 6 are reported in

table 2.2 in which the lag-2 has the smallest value. So with the same data between

Table 2.2 BICW scores for the Niño 3.4 SST anomaly data

Lag length QT (σ̂
2) BICW

1 0.0614 -2.5358

2 0.0552 -2.6242

3 0.0550 -2.6090

4 0.0543 -2.6031

5 0.0536 -2.5966

6 0.0531 -2.5884

January 1950 and December 2007, we obtained the following LSTAR(2)-MA(1)

model to fit the data:

yt = −0.0421 + 1.2019yt−1 − 0.2207yt−2 + δ⊤1 Dt

+ (0.0702 + 0.5692yt−1 − 0.6140yt−2 + δ⊤2 Dt)× It

+ εt − 0.5530εt−1, (2.23)

which significantly reduces the number of parameters as compared to the LSTAR(6)

model used by Ubilava and Helmers (2013). The in-sample root mean squared fit-

ting error (0.2350) from model (2.23) is only slightly larger than that obtained from



112 Chapter 2. WLE of Nonlinear AR Models with MA Errors

their LSTAR(6) model (0.2316). The p-values of the LB(20)-test and AN(20)-test

on the fitted residuals are respectively 0.1159 and 0.3155, both accept the white

noise hypothesis at level 0.05.

For comparison, we also fit an LSTAR(2) model using XWLE as follows

yt = 0.0865 + 1.0629yt−1 − 0.0455yt−2 + δ⊤1 Dt

+ (−0.1286 + 0.1543yt−1 − 0.2082yt−2 + δ⊤2 Dt)× It

+ εt. (2.24)

The in-sample root mean squared fitting error of model (2.24) is 0.2432. The

p-values of the LB(20)-test and AN(20)-test on the fitted residuals are respective-

ly 4.31 × 10−5 and 5.01 × 10−4, suggesting strong evidence that model (2.24) is

inadequate. Its BICW is −2.5647 which is also larger than that of model (2.23).

We use the data from January 2008 to December 2012 to asses the out-of-sample

prediction accuracies of three models: the LSTAR(6) of Ubilava and Helmer-

s (2013), model (2.23) (LSTAR(2)-MA(1)) and model (2.24) (LSTAR(2)). The

h-step ahead predictions are made in a similar way as the previous example with

h = 1, ..., 36. The prediction error in Figure 2.14 shows that the LSTAR(2)-MA(1)

model is the best among the three up to lead-time 16. After that, there is no

much difference between LSTAR(2)-MA(1) and LSTAR(6). The LSTAR(2) model

is generally the worst predictor up to lead-time 27 (more than 2 years), which
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Figure 2.14 Root mean squred prediction errors of out-of-sample multistep fore-

casts for Niño 3.4 SST anomaly data.

provides a strong proof that the MA part in model (2.23) plays a crucial role in

improving the out-of-sample prediction accuracies.

2.6 Asymptotics of XWLE

Let yt and Xt be two time series satisfying model (2.13), i.e.,

yt = ϕ(Xt, β) + ξt(θ),

whereXt is a vector variable that can be either lags of yt or a collection of exogenous

variables, or both, and ξt(θ) is a moving average (MA) process defined in (2.14).
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In the following discussions we shall denote the true parameters by (β0, θ0, σ
2
0).

Define zt(β̃) = yt−ϕ(Xt, β̃). Let γz(j; β̃) = cov(zt(β̃), zt−j(β̃)). Define the spectral

density function of zt(β̃) as

kz(λ; β̃) =
1

2π

∞∑
j=−∞

γz(j; β̃)e
−ijλ.

We need the following assumptions in our theoretical justification of the proposed

methods.

(A1) Time series {yt} is stationary with autocovariance function γy(k), k = 0,±1,±2, ....

(A2) There is a compact parameter space for β̃, denoted by B, such that the

time series zt(β̃) is stationary and supβ̃∈B

∑∞
j=1 |γz(j; β̃)| < ∞. Moreover,

the second order derivatives of ϕ(Xt, β̃) with respect to β̃ exists for β̃ ∈ B.

(A3) The MA part is invertible, i.e., 1 +
∑

j θ0,jx
j has no zeros inside the unit

circle, and the parameter space for θ0 = (θ0,1, ..., θ0,q) is Θ.

(A4) Assume the time series can be written as

yt − ψ(β, θ, yt−1, yt−2, ...) = εt.

In this form, we further assume yt has a unique set of parameter values

β = β0 and θ = θ0 such that E(εtεs) = 0 for t ̸= s and σ2
0 for t = s.

(A5) The spectral densities kz(λ; β), k0(λ; θ) and their first order differentials

∂kz(λ; β0)/∂β, ∂k0(λ; θ0)/∂θ belong to the Lipshitz class Λα, α > 1/2, i.e.,
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for example for kz(λ; θ0)

sup
λ

|kz(λ; θ0)− kz(λ+ δ; θ0)| = O(δα).

(A6) The stationary process {yt, ξt, ∂ϕ(Xt; β0)/β, ∂
2ϕ(Xt; β0)/β

⊤β} is α-mixing

with mixing coefficients αj satisfying
∑∞

j=1 α
δ/(2+δ)
j < ∞ for some δ >

0. Also, E(|yt|2+δ) < ∞, E(|ξt|2+δ) < ∞, E(∥∂ϕ(Xt; β0)/β∥2+δ) < ∞,

E(∥∂2ϕ(Xt; β0)/β
⊤β}∥2+δ) < ∞ and E({|ξt+n| · ∥∂ϕ(Xt+m; β0)/β∥}2+δ) ≤

K <∞ for m,n ≥ 1.

Assumptions (A1)-(A3) are standard assumptions for time series models. (A4)

is equivalent to assuming that the Whittle likelihood below has only one global

minimum point. To find the limiting distribution of (β̂T , θ̂T ), we need an additional

condition restricting the smoothness of kz(λ; β) and k0(λ; θ). (A5) is similar to the

“Condition B” of Hannan (1973) in requiring higher order smoothness of spectral

density functions. (A6) is a common assumption to obtain the limit theorems for

α-mixing processes; see for example Fan and Yao (2003, pp. 74). The assumption

on {∂2ϕ(Xt; β0)/β
⊤β} is new in nonlinear time series analysis as compared to its

linear counterpart in which case {∂2ϕ(Xt; β0)/β
⊤β} is just a zero matrix.

Let X and Y be two real random variables. Define

α = sup
A∈σ(X),B∈σ(Y )

|P (A)P (B)− P (AB)|,
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where σ(X) and σ(Y ) are respectively the σ-algebra for X and Y . The proposition

below presents the bound for Cov(X,Y ) in terms of the dependence measure α.

Its proof can be found in §1.2.2 of Doukhan (1994).

Proposition 2.6.1. If E(|X|p + |Y |q) < ∞ for some p, q > 1 and 1/p + 1/q < 1,

it holds that

|Cov(X,Y )| ≤ 8α1/r{E|X|p}1/p{E|Y |q}1/q,

where r = (1− 1/p− 1/q)−1.

In this Proposition, the smallest choices for p and q is (2 + δ) if we let p = q,

which explains how the parameters are selected in (A6).

Lemma 2.6.2. Under assumptions (A1)-(A3), we have

lim
T→∞

2π

T

T−1∑
j=1

Iz(λj; β)

k0(λj, θ)
=
σ2
0

2π

∫ π

−π

kz(λ; β)

k0(λ, θ)
dλ,

and the convergence is uniformly on B ⊗ Θδ, where Θδ = {θ : θ ∈ Θ, k0(λ, θ) ≥

δ > 0, λ ∈ [−π, π]}.

Note that by (A2) and the property of fast Fourier transformation, we have

2π
T−1∑
j=1

Iz(λj, β)/T =
T∑

j=1

zj(β)
2/T

which converges almost surely to E[zt(β)
2](<∞) uniformly for β ∈ B. The proof

of Lemma 2.6.2 is similar to that of Lemma 1 of Hannan (1973).
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Lemma 2.6.3. Under (A1)-(A4), we have

σ2
0

2π

∫ π

−π

kz(λ; β)

k0(λ, θ)
dλ ≥ σ2

0

2π

∫ π

−π

kz(λ; β0)

k0(λ, θ0)
dλ = σ2

0, (β, θ) ∈ B ⊗Θ,

and the equality holds only when β = β0 and θ = θ0.

PROOF: If the integral on the left hand side diverges to +∞, the equality

holds. We only consider the case that the integral is finite. By Corollary 7.5.3 of

Anderson (1971, pp. 412), {σ2
0kz(λ; β)}/{2πk0(λ, θ)} can be taken as the spectral

density function of the stationary process

εt(β, θ) = {θ(B)}−1{yt − ϕ(Xt, β)} = yt − ψ(β, θ, yt−1, yt−2, ...)

which is the prediction error of model yt using parameters β and θ. Its prediction

variance is not less than the prediction variance under true parameters, i.e.,

σ2(β, θ) =
σ2
0

2π

∫ π

−π

kz(λ; β)

k0(λ, θ)
dλ ≥ σ2

0.

Furthermore, assumption (A4) guarantees that the equality holds only at β = β0

and θ = θ0. �

Theorem 2.6.1. Suppose assumptions (A1)-(A6) hold. For the estimator (β̂T , θ̂T )

in (2.18), we have

lim
T→∞

(β̂T , θ̂T ) = (β0, θ0) a.s.,

lim
T→∞

σ̂2
T = lim

T→∞

1

T

T−1∑
j=1

Iz(λj; β̂T )

k0(λj, θ̂T )
= σ2

0 a.s.
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PROOF: If (β̂T , θ̂T ) ̸→ (β0, θ0), then we can find a subsequence of {(β̂T , θ̂T )},

denoted by {(β̂m, θ̂m)} such that (β̂m, θ̂m) → (β′, θ′) ̸= (β0, θ0) and

lim
m→∞

2π

m

m−1∑
j=1

Iz(λj; β̂m)

k0(λj, θ̂m)
=
σ2
0

2π

∫ π

−π

kz(λ; β
′)

k0(λ, θ′)
dλ > σ2

0,

where the last inequality follows from Lemma 2.6.3. On the other hand, since

(β̂T , θ̂T ) minimizes QT (β, θ), it follows that QT (β̂T , θ̂T ) ≤ QT (β, θ) for any (β, θ) ∈

B ⊗Θ, which implies

lim
m→∞

Qm(β̂m, θ̂m) ≤ lim
m→∞

Qm(β, θ) =
σ2
0

2π

∫ π

−π

kz(λ; β)

k0(λ, θ)
dλ,

i.e.

lim
m→∞

Qm(β̂m, θ̂m) ≤ inf
(β,θ)∈B⊗Θ

σ2
0

2π

∫ π

−π

kz(λ; β)

k0(λ, θ)
dλ = σ2

0.

Thus we arrive at a contradiction and (β′, θ′) = (β0, θ0), i.e., any subsequence of

{(β̂T , θ̂T )} must converge to (β0, θ0), hence (β̂T , θ̂T ) converges to (β0, θ0) almost

surely. As a by product, we have also proved that σ̂2
T = QT (β̂T , θ̂T ) converges to

σ2
0 almost surely. �

Theorem 2.6.2. Suppose assumptions (A1)-(A6) hold. For the estimator (β̂T , θ̂T )

in (2.18), we have

T 1/2
{
(β̂T , θ̂T )− (β0, θ0)

} D→ N(0,Ω−1ΦΩ−1),

where

Ω =
σ2
0

2π

∫ π

−π

f(λ; β0, θ0)
{∂2[f(λ; β0, θ0)−1]

∂(β, θ)⊤∂(β, θ)

}
dλ
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and

Φ =


∞∑

m,n=−∞
ϱ0(n; θ0)ϱ0(m; θ0)Φ

(11)
∞ (m,n),

∞∑
m,n=−∞

2ϱ0(n; θ0)Φ
(12)
∞ (m,n)ϱ′0(m; θ0)

∞∑
m,n=−∞

2ϱ0(n; θ0){ϱ′0(m; θ0)}⊤{Φ(12)
∞ (m,n)}⊤, Ψ

 ,

with

Φ(11)
∞ (m,n) =

∞∑
r=−∞

{
E
[∂ϕr+n

∂β⊤
∂ϕm

∂β
ξrξ0

]
− E

[∂ϕr+n

∂β
ξr

]⊤
E
[∂ϕm

∂β
ξ0

]
+ E

[∂ϕr+n

∂β⊤
∂ϕ0

∂β
ξrξm

]
− E

[∂ϕr+n

∂β
ξr

]⊤
E
[∂ϕ0

∂β
ξm

]
+ E

[ ∂ϕr

∂β⊤
∂ϕm

∂β
ξr+nξ0

]
− E

[∂ϕr

∂β
ξr+n

]⊤
E
[∂ϕm

∂β
ξ0

]
+ E

[ ∂ϕr

∂β⊤
∂ϕ0

∂β
ξr+nξm

]
− E

[∂ϕr

∂β
ξr+n

]⊤
E
[∂ϕ0

∂β
ξm

]}
,

Φ(12)
∞ (m,n) = 2

∞∑
r=−∞

{
E
[∂ϕr+n

∂β⊤ ξmξrξ0

]
− E

[∂ϕr+n

∂β
ξr

]⊤
E
[
ξmξ0

]
+ E

[ ∂ϕr

∂β⊤ ξ0ξr+nξm

]
− E

[∂ϕr

∂β
ξr+n

]⊤
E
[
ξ0ξm

]}
,

∂ϕm/∂β = ∂ϕ(Xm; β0)/∂β, and ϱ0(n; θ0) and ϱ
′
0(m; θ0) are respectively the Fourier

coefficients of k0(λ; θ)
−1 and ∂k0(λ; θ0)

−1/∂θ,

Ψ := [ψij] =

[
2×q∑
r=1

ρr(i)ρr(j)

]
i,j=1,...,q

,

ρr(i) = ρ(r + i) + ρ(r − i)− 2ρ(r)ρ(i) and ρ(r) = corr(ξt, ξt+r).

PROOF: Note that ∂QT (β̂T , θ̂T )/∂(β, θ) = 0. By Taylor’s expansion, we have

T 1/2∂QT (β0, θ0)

∂(β, θ)
= −

{ ∂2QT (β̃T , θ̃T )

∂(β, θ)⊤∂(β, θ)

}
T 1/2

{
(β̂T , θ̂T )− (β0, θ0)

}
,
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where ∥(β̃T , θ̃T )−(β0, θ0)∥ < ∥(β̂T , θ̂T )−(β0, θ0)∥, i.e., (β̃T , θ̃T ) converges to (β0, θ0).

It can be calculated that

∂QT (β0, θ0)

∂(β, θ)
=

2π

T

T−1∑
t=1

(∂Iz(λt; β0)/∂β
k0(λt; θ)

, Iz(λt, β0)
∂[k0(λt, θ0)

−1]

∂θ

)
which is taken to be a row vector, and that

∂2QT (β0, θ0)

∂(β, θ)⊤∂(β, θ)
=

2π

T

T−1∑
t=1

 Σ1t D⊤
t

Dt Σ2t

 (2.25)

where

Σ1t =
∂2Iz(λt; β0)/∂β

2

k0(λt; θ)
,

Σ2t = Iz(λt, β0)
∂2[k0(λt, θ0)

−1]

∂θ⊤∂θ
,

and

Dt =
(∂Iz(λt; β0)

∂β

)⊤∂[k0(λt, θ0)−1]

∂θ
.

To finish the proof, we need to prove the convergence of the Hessian matrix

in (2.25), and the asymptotic normality of T 1/2∂QT (β0, θ0)/{∂(β, θ)}. The last

diagonal block on the right hand size of (2.25), i.e. 2πT−1
∑T−1

t=1 Σ2T , appeared in

the Whittle likelihood estimation, converges to

Σ2 =
σ2
0

2π

∫ π

−π

kz(λ; β0)
{∂2[k0(λt, θ0)−1]

∂θ⊤∂θ

}
dλ;

see for example Hannan (1973). The other two matrices are new which only appear

in our estimation method.
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By the second formula (2.15) for Iz(λ; β), we have

∂Iz(λ; β)

∂β
=

1

2π

T−1∑
n=−T+1

∂cz(n; β)

∂β
e−inλ

=
1

2π

T−1∑
n=−T+1

[ 1
T

T−n∑
t=1

∂zt+n(β)

∂β
zt(β) +

1

T

T−n∑
t=1

zt+n(β)
∂zt(β)

∂β

]
e−inλ.

Thus

∂Iz(λ; β0)

∂β
= − 1

2π

T−1∑
n=−T+1

[ 1
T

T−n∑
t=1

∂ϕ(Xt+n; β0)

∂β
ξt +

1

T

T−n∑
t=1

ξt+n
∂ϕ(Xt; β0)

∂β

]
e−inλ.

Moreover,

∂2Iz(λ; β)

∂β⊤∂β
=

1

2π

T−1∑
n=−T+1

∂2cz(n; β)

∂β⊤∂β
e−inλ

=
1

2π

T−1∑
n=−T+1

[
− 1

T

T−n∑
t=1

∂2ϕ(Xt+n; β)

∂β⊤∂β
zt(β)−

1

T

T−n∑
t=1

zt+n(β)
∂2ϕ(Xt; β)

∂β⊤∂β

+
1

T

T−n∑
t=1

∂ϕ(Xt+n; β)

∂β⊤
∂ϕ(Xt; β)

∂β

+
1

T

T−n∑
t=1

∂ϕ(Xt; β)

∂β⊤
∂ϕ(Xt+n; β)

∂β

]
e−inλ,

i.e.

∂2Iz(λ; β0)

∂β⊤∂β
=

1

2π

T−1∑
n=−T+1

[
− 1

T

T−n∑
t=1

∂2ϕ(Xt+n; β0)

∂β⊤∂β
ξt −

1

T

T−n∑
t=1

ξt+n
∂2ϕ(Xt; β0)

∂β⊤∂β

+
1

T

T−n∑
t=1

∂ϕ(Xt+n; β0)

∂β⊤
∂ϕ(Xt; β0)

∂β

+
1

T

T−n∑
t=1

∂ϕ(Xt; β0)

∂β⊤
∂ϕ(Xt+n; β0)

∂β

]
e−inλ.

Since zt = yt−ϕ(Xt; β) = ξt+ϕ(Xt; β0)−ϕ(Xt; β), letting ∆(Xt; β) = ϕ(Xt; β0)−

ϕ(Xt; β), we have

γz(k; β) = cov(ξt +∆(Xt; β), ξt+k +∆(Xt; β))
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= cov(ξk, ξt+k) + cov(ξt,∆(Xt+k; β)) + cov(∆(Xt; β), ξt+k)

+cov(∆(Xt; β),∆(Xt+k; β)).

It follows that

∂γz(k; β)

∂β
=

∂cov(ξt,∆(Xt+k; β))

∂β
+
∂cov(∆(Xt; β), ξt+k)

∂β
+
∂cov(∆(Xt; β),∆(Xt+k; β))

∂β

= cov
(
ξt,

∂∆(Xt+k; β)

∂β

)
+ cov

(∂∆(Xt; β)

∂β
, ξt+k

)
+cov

(∂∆(Xt; β)

∂β
,∆(Xt+k; β)

)
+ cov

(
∆(Xt; β),

∂∆(Xt+k; β)

∂β

)
and

∂2γz(k; β)

∂β⊤∂β
= cov

(
ξt,

∂2∆(Xt+k; β)

∂β⊤∂β

)
+ cov

(∂2∆(Xt; β)

∂β⊤∂β
, ξt+k

)
+cov

(∂2∆(Xt; β)

∂β⊤∂β
,∆(Xt+k; β)

)
+ cov

(∂∆(Xt; β)

∂β
,
∂∆(Xt+k; β)

∂β

)
+cov

(
∆(Xt; β),

∂2∆(Xt+k; β)

∂β⊤∂β

)
+ cov

(∂∆(Xt; β)

∂β
,
∂∆(Xt+k; β)

∂β

)⊤
.

Noting that ∆(Xt; β0) = 0 and ∂∆(Xt; β)/∂β = −∂ϕ(Xt; β)/∂β, we have

γz(k; β) = cov(ξk, ξt+k) = E(ξkξt+k),

∂γz(k; β0)

∂β
= −cov

(
ξt,

∂ϕ(Xt+k; β0)

∂β

)
− cov

(∂ϕ(Xt; β0)

∂β
, ξt+k

)
= −E

(
ξt
∂ϕ(Xt+k; β0)

∂β

)
− E

(∂ϕ(Xt; β0)

∂β
ξt+k

)
,

∂2γz(k; β0)

∂β⊤∂β
= −cov

(
ξt,

∂2ϕ(Xt+k; β0)

∂β⊤∂β

)
− cov

(∂2ϕ(Xt; β0)

∂β⊤∂β
, ξt+k

)
+

cov
(∂ϕ(Xt; β0)

∂β
,
∂ϕ(Xt+k; β0)

∂β

)
+ cov

(∂ϕ(Xt; β0)

∂β
,
∂ϕ(Xt+k; β0)

∂β

)⊤
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= −E
(
ξt
∂2ϕ(Xt+k; β0)

∂β⊤∂β

)
− E

(∂2ϕ(Xt; β0)

∂β⊤∂β
ξt+k

)
+

E
(∂ϕ(Xt; β0)

∂β⊤
∂ϕ(Xt+k; β0)

∂β

)
+ E

(∂ϕ(Xt+k; β0)

∂β⊤
∂ϕ(Xt; β0)

∂β

)
.

By (A6), it can be proved that,

∞∑
n=0

∥∥∥∂lγz(n; β0)
∂βl

∥∥∥ <∞

for l = 0, 1, 2, where ∂0γz(n; β0)/∂β
0 := γz(n; β0). By the convergence theory of

trigonometric series and the uniqueness of the Fourier representation, we have

∂lkz(λ; β0)

∂βl
=

1

2π

∞∑
j=−∞

∂lγz(n; β0)

∂βl
e−ijλ, for l = 0, 1, 2,

where ∂β2 stands for ∂β⊤∂β. It is not difficult to see that as T → ∞

√
T
{ T

T − |k|
cz(k; β0)− γz(k; β0)

}
→ N

(
0, Ξ

(0)
k (β0, θ0)

)
,

√
T
{ T

T − |k|
∂cz(k; β0)

∂β
− ∂γz(k; β0)

∂β

}
→ N

(
01×p, Ξ

(1)
k (β0, θ0)

)
,

√
T
{ T

T − |k|
∂2cz(k; β0)

∂β⊤∂β
− ∂2γz(k; β0)

∂β⊤∂β

}
→ N

(
0p×p, Ξ

(2)
k (β0, θ0)

)
,

which means ∂lIz(λ; β0)/∂β
l is connected with ∂lkz(λ; β0)/∂β

l in a similar way

for l = 1, 2 as for l = 0. Following almost the same proof of Lemma 2.6.2,

2πT−1
∑T−1

t=1 Σ1t and 2πT−1
∑T−1

t=1 Dt converge to respectively

Σ1 =
σ2
0

2π

∫ π

−π

∂2kz(λt, β0)/∂β
2

k0(λ; θ0)
dλ

and

D =
σ2
0

2π

∫ π

−π

(
∂kz(λt, β0)

∂β

)⊤
∂[k0(λt, θ0)

−1]

∂θ
dλ.
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As such we have

∂2QT (β0, θ0)

∂(β, θ)⊤∂(β, θ)
→

 Σ1 D⊤

D Σ2

 = Ω a.s. as T → ∞.

Let f(λ; β, θ) = kz(λ; β)/k0(λ; θ), which is the spectral density function of

{1− θ(B)}−1{yt − ϕ(Xt, β)}. It is easy to verify that

Ω =
σ2
0

2π

∫ π

−π

f(λ; β0, θ0)
{∂2[f(λ; β0, θ0)−1]

∂(β, θ)⊤∂(β, θ)

}
dλ

=
1

4π

∫ π

−π

(
∂ log f(λ; β0, θ0)

∂(β, θ)

)(
∂ log f(λ; β0, θ0)

∂(β, θ)

)⊤

dλ,

where the last equation follows from Whittle (1951). It is worthy pointing out that

the Ω shares the same form as the covariance matrix for Whittle’s estimator in the

ARMA model; see Hannan (1973) for details.

Next we prove the normality of

T 1/2∂QT (β0, θ0)

∂(β, θ)
=

2π

T 1/2

T−1∑
t=1

(∂Iz(λt; β0)/∂β
k0(λt; θ0)

, Iz(λt, β0)
∂[k0(λt, θ0)

−1]

∂θ

)
def
= (A1T , A2T ),

where the second term A2T exists in linear Whittle’s estimation, which is proved

to be asymptotically standard normal with limit variance-covariance matrix

lim
T→∞

E{A⊤
2TA2T} = Ψ := [ψij]i,j=1,...,q,

where ψij =
∑2×q

r=1 ρr(i)ρr(j), ρr(i) = ρ(r + i) + ρ(r − i) − 2ρ(r)ρ(i) and ρ(r) =

corr(ξt, ξt+r); see the Theorem 3 of Hannan and Heyde (1972) and the Theorem 2

of Hannan (1973) for details.
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We then prove the asymptotic normality of A1T . By (A5) and (A6), we have

A1T =
√
T
{2π
T

T−1∑
t=1

∂Iz(λt; β0)/∂β

k0(λt; θ0)

}
=

√
T

∫ π

−π

∂Iz(λ; β0)

∂β
k0(λ; θ0)

−1dλ+O(T 1/2−α),

where α is defined in (A5). Following from Lemma 2.6.3, since (β0, θ0) minimizes

the integral, the corresponding derivative is a zero vector, i.e.
∫ π

−π
∂kz(λ,β0)/∂β

k0(λ;θ0)
dλ =

0. So we can write A1T as

A1T =
√
T

∫ π

−π

{∂Iz(λ; β0)
∂β

− ∂kz(λ; β0)

∂β

}
k0(λ; θ0)

−1dλ+O(T 1/2−α).

Let qT (λ; θ) > 0 be the Cesàro sum of the Fourier series of k0(λ; θ)
−1 taken to

T terms. Then by (A5), we have (see Zygmund (1959), pp. 91)

sup
λ

|k0(λ; θ0)−1 − qT (λ; θ0)| < O(T−α),

and

A1T =
√
T

∫ π

−π

{∂Iz(λ; β0)
∂β

− ∂kz(λ; β0)

∂β

}
qT (λ; θ0)dλ+O(T 1/2−α).

The Cesàro sum of the Fourier series of ∂kz(λ; β0)/∂β, denoted by k′β(λ; β0) for

short, taken to T terms is

Sc[k
′
β] =

1

2π

T−1∑
n=−T+1

(
1− |n|

T

)∂γz(n; β0)
∂β

e−inλ.

Similarly, we have

sup
λ

∥k′β(λ; β0)− Sc[k
′
β]∥ < O(T−α),
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thus

A1T =
T 1/2

2π

∫ π

−π

T−1∑
n=−T+1

{∂cz(n; β0)
∂β

−
(
1− |n|

T

)∂γz(n; β0)
∂β

}
e−inλqT (λ; θ0)dλ+O(T 1/2−α)

= T 1/2

T−1∑
n=−T+1

{∂cz(n; β0)
∂β

−
(
1− |n|

T

)∂γz(n; β0)
∂β

}(
1− |n|

T

)
ϱ0(n; θ0) +O(T 1/2−α).

Define

c′z(n) =
∂cz(n; β0)

∂β
= − 1

T

∑
t∈Tn

∂ϕ(Xt+n; β0)

∂β
ξt −

1

T

∑
t∈Tn

ξt+n
∂ϕ(Xt; β0)

∂β
(2.26)

and

γ̃′z(n) =
(
1−|n|

T

)∂γz(n; β0)
∂β

= − 1

T

∑
t∈Tn

E
[∂ϕ(Xt+n; β0)

∂β
ξt

]
− 1

T

∑
t∈Tn

E
[
ξt+n

∂ϕ(Xt; β0)

∂β

]
,

(2.27)

where Tn = {1, 2, ..., T − n} if n ≥ 0 and Tn = {−n, 1− n, ..., T} if n < 0. Since

T × cov(c′z(n), c
′
z(m)) = T

{
E[c′z(n)

⊤c′z(m)]− γ̃′z(n)
⊤γ̃′z(m)

}
=

1

T

∑
t∈Tn

∑
s∈Tm

{
E
[∂ϕt+n

∂β⊤
∂ϕs+m

∂β
ξtξs

]
− E

[∂ϕt+n

∂β
ξt

]⊤
E
[∂ϕs+m

∂β
ξs

]
+ E

[∂ϕt+n

∂β⊤
∂ϕs

∂β
ξtξs+m

]
− E

[∂ϕt+n

∂β
ξt

]⊤
E
[∂ϕs

∂β
ξs+m

]
+ E

[ ∂ϕt

∂β⊤
∂ϕs+m

∂β
ξt+nξs

]
− E

[∂ϕt

∂β
ξt+n

]⊤
E
[∂ϕs+m

∂β
ξs

]
+ E

[ ∂ϕt

∂β⊤
∂ϕs

∂β
ξt+nξs+m

]
− E

[∂ϕt

∂β
ξt+n

]⊤
E
[∂ϕs

∂β
ξs+m

]}
,

by changing the suffixes (r = t− s), we have

T × cov(c′z(n), c
′
z(m))

=
1

T

∑
r∈Rm,n

∑
s∈Sm,n,r

{
E
[∂ϕs+r+n

∂β⊤
∂ϕs+m

∂β
ξs+rξs

]
− E

[∂ϕs+r+n

∂β⊤ ξs+r

]
E
[∂ϕs+m

∂β
ξs

]
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+ E
[∂ϕs+r+n

∂β⊤
∂ϕs

∂β
ξs+rξs+m

]
− E

[∂ϕs+r+n

∂β⊤ ξs+r

]
E
[∂ϕs

∂β
ξs+m

]
+ E

[∂ϕs+r

∂β⊤
∂ϕs+m

∂β
ξs+r+nξs

]
− E

[∂ϕs+r

∂β⊤ ξs+r+n

]
E
[∂ϕs+m

∂β
ξs

]
+ E

[∂ϕs+r

∂β⊤
∂ϕs

∂β
ξs+r+nξs+m

]
− E

[∂ϕs+r

∂β⊤ ξs+r+n

]
E
[∂ϕs

∂β
ξs+m

]}
,

where #Sm,n,r = T − |n| − |r| and

Rm,n =



{−(T −m− 1), ..., T − n− 1}, for m ≥ 0, n ≥ 0,

{−(T −m+ n), ..., T − 1}, for m ≥ 0, n < 0,

{−(T − 1), ..., T − n+m}, for m < 0, n ≥ 0,

{−(T + n), ..., T +m}, for m < 0, n < 0.

By stationarity of ∂ϕt/∂β and ξt, we have

T × cov(c′z(n), c
′
z(m))

=
∑

r∈Rm,n

T − |n| − |r|
T

{
E
[∂ϕr+n

∂β⊤
∂ϕm

∂β
ξrξ0

]
− E

[∂ϕr+n

∂β
ξr

]⊤
E
[∂ϕm

∂β
ξ0

]
+ E

[∂ϕr+n

∂β⊤
∂ϕ0

∂β
ξrξm

]
− E

[∂ϕr+n

∂β
ξr

]⊤
E
[∂ϕ0

∂β
ξm

]
+ E

[ ∂ϕr

∂β⊤
∂ϕm

∂β
ξr+nξ0

]
− E

[∂ϕr

∂β
ξr+n

]⊤
E
[∂ϕm

∂β
ξ0

]
+ E

[ ∂ϕr

∂β⊤
∂ϕ0

∂β
ξr+nξm

]
− E

[∂ϕr

∂β
ξr+n

]⊤
E
[∂ϕ0

∂β
ξm

]}
:=

∑
r∈Rm,n

T − |n| − |r|
T

ΦT (m,n, r).

Following by (A6) and Proposition 2.6.1, we have

∑
r∈Rm,n

|ΦT (m,n, r)| ≤
∑

r∈Rm,n

{∣∣∣∣E[∂ϕr+n

∂β⊤
∂ϕm

∂β
ξrξ0

]
− E

[∂ϕr+n

∂β
ξr

]⊤
E
[∂ϕm

∂β
ξ0

]∣∣∣∣
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+

∣∣∣∣E[∂ϕr+n

∂β⊤
∂ϕ0

∂β
ξrξm

]
− E

[∂ϕr+n

∂β
ξr

]⊤
E
[∂ϕ0

∂β
ξm

]∣∣∣∣
+

∣∣∣∣E[ ∂ϕr

∂β⊤
∂ϕm

∂β
ξr+nξ0

]
− E

[∂ϕr

∂β
ξr+n

]⊤
E
[∂ϕm

∂β
ξ0

]∣∣∣∣
+

∣∣∣∣E[ ∂ϕr

∂β⊤
∂ϕ0

∂β
ξr+nξm

]
− E

[∂ϕr

∂β
ξr+n

]⊤
E
[∂ϕ0

∂β
ξm

]∣∣∣∣}
≤

∑
r∈Rm,n

8α
δ/(2+δ)
r−|n−m|

{{
E
∣∣∣∂ϕr+n

∂β⊤ ξr

∣∣∣(2+δ)

E
∣∣∣∂ϕm

∂β
ξ0

∣∣∣(2+δ)}1/(2+δ)

+
{
E
∣∣∣∂ϕr+n

∂β⊤ ξr

∣∣∣(2+δ)

E
∣∣∣∂ϕ0

∂β
ξm

∣∣∣(2+δ)}1/(2+δ)

+
{
E
∣∣∣ ∂ϕr

∂β⊤ ξr+n

∣∣∣(2+δ)

E
∣∣∣∂ϕm

∂β
ξ0

∣∣∣(2+δ)}1/(2+δ)

+
{
E
∣∣∣ ∂ϕr

∂β⊤ ξr+n

∣∣∣(2+δ)

E
∣∣∣∂ϕ0

∂β
ξm

∣∣∣(2+δ)}1/(2+δ)
}

=
∑

r∈Rm,n

16α
δ/(2+δ)
r−|n−m|

{{
E
∣∣∣ ∂ϕn

∂β⊤ ξ0

∣∣∣(2+δ)

E
∣∣∣∂ϕm

∂β
ξ0

∣∣∣(2+δ)}1/(2+δ)

+
{
E
∣∣∣ ∂ϕ0

∂β⊤ ξn

∣∣∣(2+δ)

E
∣∣∣∂ϕ0

∂β
ξm

∣∣∣(2+δ)}1/(2+δ)
}
,

where | · |, “X2+δ” and “≤” operate on each component of the matrixes.

By (A6),
∑

r∈Rm,n
|ΦT (m,n, r)| is a convergent summation as T → ∞ uniformly

for m and n, i.e., there exists a constant K0, such that

∑
r∈Rm,n

|ΦT (m,n, r)| ≤ K0 <∞ for m,n ≥ 1. (2.28)

Consequently,
∑

r∈Rm,n
ΦT (m,n, r), denoted by Φ

(11)
T (m,n), is a convergent sum-

mation. Then we have (see Zygmund(1959), p. 77)

T cov(c′z(n), c
′
z(m)) = Φ

(11)
T (m,n) + o(1). (2.29)
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To employ the small-block and large-block arguments, we first note that by

construction of the Cesàro sum, we have for any ε, there exists an M , such that

for any T > M ,
T∑

t=M+1

(
1− |t|

T

)
|ϱ0(t; θ0)| < ε/2.

Then, we partition the set {−T+1, ..., 0, ..., T−1} into two subsets SM = {−M, ..., 0, ...,M}

and ST\M = {−T + 1, ...,−M − 1,M + 1, ..., T − 1}, such that,

∑
t∈ST\M

(
1− |t|

T

)
|ϱ0(t; θ0)| < ε. (2.30)

Based on (2.28), (2.29) and (2.30), letting κ(n) =
(
1− |n|

T

)
ϱ0(n; θ0) and

c̃′z(n) =
∂cz(n; β0)

∂β
−
(
1− |n|

T

)∂γz(n; β0)
∂β

,

it follows that

E

∣∣∣∣∣∣T 1/2
∑

n∈ST\M

{∂cz(n; β0)
∂β

−
(
1− |n|

T

)∂γz(n; β0)
∂β

}(
1− |n|

T

)
ϱ0(n; θ0)

∣∣∣∣∣∣
≤

E
T 1/2

∑
n∈ST\M

c̃′z(n)κ(n)

21/2

=

E
 ∑

n∈ST\M

∑
m∈ST\M

T c̃′z(n)c̃
′
z(m)κ(n)κ(m)

1/2

≤

 ∑
n∈ST\M

∑
m∈ST\M

K0|κ(n)κ(m)|

1/2

≤
[
K0ε

2
]1/2

=
√
K0ε.

Thus, to study the asymptotic property of A1T , we only need to consider

Ã1T = T 1/2

M∑
n=−M

{∂cz(n; β0)
∂β

−
(
1− |n|

T

)∂γz(n; β0)
∂β

}(
1− |n|

T

)
ϱ0(n; θ0),
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where we fix M for each given ε which can be made arbitrarily small. Based on

(2.26) and (2.27), we have,

Ã1T = T 1/2

M∑
n=−M

{
1

T

∑
t∈Tn

(∂ϕ(Xt+n; β0)

∂β
ξt − E

[∂ϕ(Xt+n; β0)

∂β
ξt

])
+

1

T

∑
t∈Tn

(
ξt+n

∂ϕ(Xt; β0)

∂β
− E

[
ξt+n

∂ϕ(Xt; β0)

∂β

])}
κ(n)

:=
1√
T

M∑
n=−M

∑
t∈Tn

H(t, n)κ(n)

=
1√
T

T−1∑
t=1

min(M,T−t)∑
n=−min(M,T−t)

H(t, n)κ(n)

:=
1√
T

T−1∑
t=1

Wt(M). (2.31)

By (A6) and fixing M , Wt is an α-mixing process with mixing coefficients αj

satisfying
∑∞

j=1 α
δ

2+δ

j < ∞ for some δ > 0. Moreover, it is easy to see that Wt is

stationary and E(Wt) = 0. Then following Theorem 2.21 of Fan and Yao (2003),

we have

Ã1T
D→ N(0, Φ̃1T )

where Φ̃1T = E{Ã⊤
1T Ã1T} = E{A⊤

1TA1T} := Φ1T and

Φ1T =
T−1∑

m,n=−T+1

ϱ0(n; θ0)ϱ0(m; θ0)TE
[
(c′z(n)− γ̃′z(n))

⊤(c′z(m)− γ̃′z(m))
]
+ o(1)

=
T−1∑

m,n=−T+1

ϱ0(n; θ0)ϱ0(m; θ0)Φ
(11)
T (m,n) + o(1).

Putting what we have discussed together, we have proved that

A1T
D→ N(0,Φ1T ).
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The joint normality of A1T and A2T is seen by noting that both A1T and A2T

can be written into summations of stationary α-mixing series like (2.31). So for any

unit column vector η, the random variable Aη = (A1T , A2T )×η is also a summation

of a stationary α-mixing process satisfying the conditions of Theorem 2.21 of Fan

and Yao (2003). As such, Aη converges in distribution to a normal distribution for

any unit vector η, which implies that

T 1/2∂QT (β0, θ0)

∂(β, θ)
= (A1T , A2T )

D→ N(0,ΦT ),

where ΦT = E[(A1T , A2T )
⊤(A1T , A2T )].

Similar to the calculation of E{A⊤
1TA1T}, we have

E{A⊤
1TA2T} =

T−1∑
m,n=−T+1

ϱ0(n; θ0)ϱ0(m; θ0)TE
[
(c′z(n)− γ̃′z(n))

⊤(cz(m)− γ̃z(m))
]
+ o(1)

= 2
T−1∑

m,n=−T+1

ϱ0(n; θ0)Φ
(12)
T (m,n)ϱ′0(m; θ0) + o(1),

where ϱ′0(m; θ0) is the coefficient (row) vector of the Fourier series of ∂k0(λ; θ0)
−1/∂θ

and

Φ
(12)
T (m,n) = 2

∑
r∈Rm,n

{
E
[∂ϕr+n

∂β⊤ ξmξrξ0

]
− E

[∂ϕr+n

∂β
ξr

]⊤
E
[
ξmξ0

]
+ E

[ ∂ϕr

∂β⊤ ξ0ξr+nξm

]
− E

[∂ϕr

∂β
ξr+n

]⊤
E
[
ξ0ξm

]}
.

Let Φ2T = E{A⊤
2TA2T} → Iq×q as T → ∞. We have

ΦT = E[(A1T , A2T )
⊤(A1T , A2T )]
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=
T−1∑

m,n=−T+1

 ϱ0(n; θ0)ϱ0(m; θ0)Φ
(11)
T (m,n) 2ϱ0(n; θ0)Φ

(12)
T (m,n)ϱ′0(m; θ0)

2ϱ0(n; θ0)ϱ
′
0(m; θ0)

⊤Φ
(12)
T (m,n)⊤ 1

(2T−2)2
Φ2T

+ o(1).

The proof of Theorem 2.6.2 is completed by letting T → ∞. �
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CHAPTER 3

Conclusion and Future Works

In Chapter 1, by partitioning the sample space into several regions adaptively

and fitting a single-index model to each region, we proposed the piecewise single-

index model (1.7) as a new dimension reduction approach to improve the estima-

tion efficiency of nonparametric regression. Numerical studies suggest that the

approach is able to discover complicated structures in the data and make accurate

predictions. Statistical theories of the model has been investigated.

In terms of modeling, the piecewise single-index model has its advantages in

three essential aspects. Firstly, the single-index model itself has strong approx-

imation ability, and so does the piecewise single-index model; see Jones (1987).
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Secondly, adopting the single-index structure offers a convenient way to identify

heterogenous structure by allowing the gradients in each single-index model to take

on a unique direction. Thirdly, the model retains the decent estimation efficiency

for the univariate nonparametric functions and root-n convergency rate for param-

eter estimation. On the other hand, the piecewise single-index model extends the

popular CART (Breiman et al, 1984) and the piecewise linear model, and suggests

a direction for further research in dimension reduction techniques (Li, 1991).

In Chapter 2, we have proposed a modifiedWhittle likelihood estimation (XWLE)

to estimate general nonlinear time series models with serial correlated residuals

that follow an MA process. Even in the linear model, some good performance of

XWLE is also observed as compared the original WLE in our calculations. Adding

MA residuals to an autoregressive model can simplify the model structure as com-

pared to the pure autoregressive counterparts. The necessity of adding the MA

residuals is also demonstrated in the real data analysis. Asymptotic properties of

the estimator have been investigated. This Chapter only discusses the asymptotic

properties under parametric setting. The idea can be easily extended to nonpara-

metric or semiparametric time series models and time series models with exogenous

variables, where residuals are serial correlated.

The following are two open problems for future works:
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1. It is interesting to connect the piecewise single-index model with the smooth

adaptive Gaussian mixtures (SAGM) of Villani et al (2009) for regression density

estimation. In SAGM, the partition rule is assumed to be governed by a multino-

mial logit mixing function which is continuously differentiable with respect to the

parameters involved. The Bayesian approach proposed by Villani et al (2009) can

not be easily extended to a high dimension case due to the computation complexity

of MCMC. Under such partition rule, however, it is possible to estimate the SAGM

under a profiled MAVE framework, which can be a promising research direction to

pursue.

2. We have only studied the estimation of parametric nonlinear AR models

with MA errors. It is interesting to investigate the estimation methods of the

semiparametric and nonparametric (nonlinear) AR models (Fan and Yao, 2003) to

which we add an MA part.
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