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Summary 

Protein complexes conserved across species indicate processes that are core to cellular 

machinery. While numerous computational methods have been devised to identify complexes 

from the protein interaction (PPI) networks of individual species, these are severely limited 

by noise and errors (false positives) in currently available datasets. Our analysis using human 

and yeast PPI networks revealed that these methods missed several important complexes 

including those conserved between the two species.  

In this thesis we first present a definition for the problem of identifying conserved protein 

complexes between species from protein interaction data. We then review the existing 

computational methods for this problem and its related issues. After that we propose a new 

and effective method for identifying conserved complexes by constructing interolog networks 

(IN). Our experiments were performed on human and yeast data. Here, we note that much of 

the functionalities of yeast complexes have been conserved in human complexes not only 

through sequence conservation of proteins but also of critical functional domains. Therefore, 

our method leverages the functional conservation of proteins between species through 

domain conservation in addition to sequence similarity. Our analysis revealed that the IN-

construction removes several non-conserved interactions many of which are false positives, 

thereby improving the number of conserved protein complexes detected compared to direct 

complex prediction from the PPI networks. These additional complexes included the 

mismatch repair complex, MLH1-MSH2-PMS2-PCNA, and other important ones namely, 

RNA polymerase-II, EIF3 and MCM complexes, all of which constitute core cellular 

processes known to be conserved across the two species.  

Our method  based on integrating domain conservation and sequence similarity to 

construct interolog networks also helps to produce a better quality of interolog network 

between human and yeast compared to other local network alignment based methods. 

Therefore, integrating information of domain conservation might throw further light on 

conservation patterns between yeast and human complexes. 

We observe from our experiments that protein complexes are not conserved from yeast to 

human in a straightforward way, that is, it is not the case that a yeast complex is a (proper) 

sub-set of a human complex with a few additional proteins present in the human complex. 

Instead complexes have evolved multifold with considerable re-organization of proteins and 
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re-distribution of their functions across complexes. This finding can have significant 

implications on attempts to extrapolate other kinds of relationships such as synthetic lethality 

from yeast to human, for example in the identification of novel cancer targets. 
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Chapter 1 - Introduction 

1.1. Background and Motivation 

1.1.1. Protein-protein interaction networks 

Protein interactions play a central role in most biological processes. In order to carry out 

biological functions as catalysts, signaling molecules, or building blocks in cells, proteins 

need to bind together via domain interfaces to make the corresponding chemical reactions 

happen. Thus, a critical step towards understanding the inner workings of cellular machinery 

is to build a complete map of protein-to-protein physical interactions, which is called the 

interactome.  

Protein-protein interaction network (PPI network) is a mathematical model of the 

interactome in which nodes and edges of the network represent proteins and the physical 

interactions between them. There could be also edge weights which reflect the reliability of 

interactions. Figure 1.1b is a picture of the yeast PPI network [Jeong et al., 2001], one of the 

first eukaryotic interactomes that were studied. 

 

Figure 1.1 – (a) protein-protein interaction, (b) protein-protein interaction network. 
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As efforts to get a complete image of the interactome, many high-throughput techniques 

have been developed over the last decade to detect protein interactions on a genome-wide 

level not only in yeast, two typical techniques among them are: Yeast two hybrid (Y2H) 

[Uetz et al., 2000; Ito et al., 2001] and Tandem affinity purification combined with mass 

spectrometry (TAP-MS) [Gavin et al., 2006; Krogan et al., 2006] (See section for details 

2.2.1). 

1.1.2. Protein complex and predicting protein complexes from PPI networks. 

Many proteins have to perform their functions together with other proteins to form 

protein complexes which are responsible for specific processes in a cell. Understanding how, 

why and when proteins associate into protein complexes is a critical part of understanding 

cellular life. Therefore, identifying protein complexes, along with protein pathways, which 

could be together referred to as cellular machinery, is known as one of the fundamental 

problems in molecular biology. 

 

Figure 1.2 – (a) a picture of protein complex,  (b) a graph representation of a protein 

complex.(c) core-attachment structure of protein complexes. 

One of the biggest difficulties for computational methods to detect protein complexes 

from PPI networks is that there is no mathematical definition for protein complexes but the 

observation that proteins within a complex interact closely with each other (figure 1.2a). 
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Henceforth, computational biologists usually use an early accepted model of protein 

complexes as dense (or clique-like) subgraphs (figure 1.2b) and aims to seek for dense 

regions in the PPI networks as protein complex candidates. Typical complex detection 

methods that are based on graph clustering are: MCODE [Bader et al., 2003], MCL [van 

Dongen et al., 2000], CMC [Liu et al., 2009], HACO [Wang et al., 2009].  

It is also known that protein complexes have a core-attachment structure [Gavin et al., 

2006], in which cores are the stable parts of complexes, they keep recruiting attachment 

proteins to help perform specific functions. Among attachment proteins, there are instances 

where two or more proteins are always together, which are called ‘modules’ (figure 1.2c). 

Also, attachment proteins were seen to be shared between two or more complexes, thereby 

exemplifying the view that the same protein may participate in multiple complexes [Pu et al., 

2007; Wang et al., 2009]. Typical complex detection methods incorporating core-attachment 

structure are CORE [Leung et al., 2009], COACH [Wu et al., 2009], MCL-CAw [Srihari et 

al., 2010]. For a complete literature survey on computational methods for predicting protein 

complexes from PPI networks, please refer to the recent papers [Li et al., 2010] and [Srihari 

et al., 2013]. 

Existing complex predicting methods have to face the difficulties in dealing with highly 

noisy interaction data (high false positive and false negative rates) and also low overlap 

between different data sources. Therefore, existing computational complex predicting 

methods still cannot have a complete coverage of known protein complexes. Shared proteins 

between multiple complexes in PPI networks also hinder graph-clustering based complex 

detection methods. 

Current protein complex detection methods (all approaches) also rarely have 100% match 

for each detected complex, this hinders the comparisons between any two detected complexes 

from two species to identify the conserved pairs. Due to the above obstacles, protein complex 

detection from original PPI networks are still not an optimal approach for identifying 

conserved protein complexes among species. 

1.1.3. Why do we need comparative interactomics and conserved protein 

complexes? 

One of the most important reasons behind the searching for conserved biological entities 

between species is that: conservation implies functional significance. This accounts for the 
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birth of comparative genomics to identify proteins whose functions are conserved among 

species. While sequence-conserved proteins form the basis of comparative genomics, it is 

also very important to consider the conserved patterns of interactions between proteins 

themselves, which can be referred to as comparative interactomics [Kiemer et al., 2007]. The 

reason here is that comparing interactomes among different species helps to transfer 

biological knowledge and function annotation at a higher level than comparing only protein 

sequences. 

Conserved protein complexes and functional modules is one of the main outcomes from 

solving comparative interactomics problems. Identifying conserved complexes between 

species is a fundamental step towards identification of conserved mechanisms from model 

organisms to higher level organisms, such as protein translation, DNA transcription, cell 

cycle, etc. These mechanisms, at the same time, are considered as back-bones for a unit living 

system as cell. Therefore, conserved protein complexes are highly related to core cellular 

processes and critical to be studied carefully. 

Another advantage supporting the comparative interactomics approach is that despite the 

noises in data, comparative analysis helps us to use the cross-species conservation criteria to 

focus on the more reliable parts of protein interaction networks and infer likely functional 

components. Once the number of well-studied species increases, we can use this approach to 

guide the search for protein complexes in newly-sequenced species, thereby increase the 

precision of current computational protein complex predicting methods.  

Identifying conserved protein complexes can also help to understand the evolutionary 

mechanisms of protein complexes and protein interaction networks between multiple species, 

such as deriving evolutionary rate and age measures for protein complexes [Yosef et al., 

2009].  

In summary, the generalization from finding orthologous proteins to orthologous protein 

complexes [Yosef et al., 2009] is a significant extension. 

1.2. Research objectives 

Due to the significance of detecting conserved protein complexes between species, and 

the fact that current protein complex detecting methods still cannot undertake this task, we 

now need an effective method for this purpose. There also exist methods specialized for 
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detecting conserved protein complexes, but most of them use only BLAST score for the 

whole protein sequence to decide which pairs of proteins between two species are considered 

to be conserved (see Chapter 3 for details). This can severely limit the number of protein 

pairs that are actually conserved in function. Identifying function-conserved proteins in this 

case is important because it serves as a corner-stone for predicting conserved protein 

complexes. For species that have far evolutionary distances, the above limitation causes a 

serious mistake because in these cases, their proteins have evolved many-fold in complexity, 

so simple BLAST scores for whole-sequence similarity may not be able to capture these 

complicated evolutionary processes. Henceforth, we also need an effective method in this 

aspect. Due to these research objective, the key contributions of this thesis are featured as 

follows. 

1.3. Contributions of the thesis 

1. A survey on computational methods for identifying conserved protein complexes 

between species: in this survey, computational methods for identifying conserved protein 

complexes are grouped into two classes, each uses a different approach. For each approach, a 

typical method is described in details, and the other methods are briefly described. 

Connections between methods and comparisons between the two approaches are also shown. 

Furthermore, a short summary on ortholog assignment methods is also presented due to its 

significance in the computational pipeline for identification of conserved protein complexes. 

2. A novel method for identifying conserved protein complexes by constructing interolog 

networks: This method is novel in terms of: (i) employing an innovative and effective 

framework for detecting conserved protein complexes; (ii) hypothesizing an evolutionary 

mechanism among protein complexes that integrates protein domain information. Our 

experiments on yeast and human datasets revealed that our method can identify considerably 

more conserved complexes than plain clustering of the original PPI networks. Furthermore, 

we demonstrated that integrating domain information generates many-to-many ortholog 

relationships which significantly enhances the interolog network quality and throws further 

light on conservation of mechanisms between yeast and human. 

3. A gold standard dataset for conserved protein complexes between human and yeast: By 

proposing a score to measure the conservation level between protein complexes, a collection 

of conserved complexes pairs between yeast and human is built and considered as a gold 
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standard dataset during this work. As currently there is no benchmark dataset for conserved 

protein complexes between human and yeast in the literature, the author hopes that this 

dataset could be useful for reference. Furthermore, this step also gives us a detailed 

examination on the conservation level between manually curated protein complexes of 

human and yeast. 

1.4. Organization of the thesis 

This chapter has briefly described the background and motivation, and outlined the 

research objectives of this work. The remainder of this thesis is organized as follows. Chapter 

2 first gives the definition for the problem of identifying conserved protein complexes 

between species from protein interaction data, then presents the general computational 

pipeline to solve this problem. This pipeline includes the preparation for experimental data; a 

brief survey on ortholog assignment methods for defining conserved proteins; and protein 

complex detection from all the input data. Chapter 3 will survey existing methods specialized 

for detecting conserved protein complexes and functional modules from protein interaction 

data. The two main approaches presented are network alignment and network querying, 

which have interesting computational properties. Chapter 4 features the main contribution of 

this thesis, which designs a novel method for mining conserved protein complexes from the 

interolog network built from the two species’ PPI networks. Chapter 5 concludes the work by 

figuring out the main contributions, limitations and recommendations for further research. 
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Chapter 2 - The problem of identifying conserved protein 

complexes from PPI data 

2.1. Problem definition 

The problem of identifying conserved protein complexes can be described as follows: 

Given a PPI network and a collection of manually curated protein complexes of a well-

studied species, a PPI network of a new species (the interaction data of this species might be 

far from complete, and both of the networks can contain many noisy interactions), and the 

homology information between the two species. How can we predict protein complexes in the 

new species that are conserved in the well-studied species? Conservation of protein 

interaction sub-networks is measured in terms of similarity in protein function (node 

similarity) and similarity in interaction patterns (network topology similarity).  

Figure 2.1 below illustrates a pair of conserved protein complex between a well-studied 

species as yeast and a newly sequenced species as human. For species that have a far 

evolutionary distance as human and yeast, many cellular mechanisms, though conserved in 

function, have in fact evolved many-fold in complexity. Consequently, the similarity in 

composition of the conserved protein complexes between these species is not expected to be  

 

Figure 2.1 – An example about human (right) and yeast (left) Eukaryotic initiation factor 

(eIF3) complex. 
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very high, on the contrary, there might be a high portion of difference (in terms of 

insertions/deletions of proteins) in these pairs of protein complexes. Therefore, an efficient 

method for predicting conserved protein complexes from PPI networks needs to be able to 

recognize the evolutionary mechanisms responsible for the difference part of the two 

conserved protein complexes. 

2.2. The computational pipeline 

In order to carry on identifying conserved protein complexes between species from PPI 

data, we first need to gather physical protein interactions of the two species from various 

datasets and experiments to enhance the coverage of true positive interactions. Manually 

curated protein complexes (if available) of the well-studied species are also collected to aid 

predicting conserved complex in the other species. The second key step in this computational 

pipeline is to define the correspondence of function similarity between the two set of 

proteins, each from one species. This step is usually deemed to be identical to the task of 

ortholog assignment. And finally, when the input data is available, we need a method to 

detect conserved protein complexes from these data, followed by an evaluation for the 

resulting complexes. 

2.2.1. Experimental data 

Many high-throughput techniques have been developed over the last decade to detect 

protein interactions on a genome-wide level not only in yeast, the following are the two 

typical techniques among them: 

Yeast two hybrid (Y2H) [Uetz et al., 2000; Ito et al., 2001]: is a screening technique for 

physical protein-protein and protein-DNA interactions which takes place in a living cell of 

yeast (in vivo). The two proteins of interest are injected into a genetically engineered strain of 

yeast. If they physically interact, a reporter is transcriptionally activated and we get a colour 

reaction on specific media. This technique is low-cost but can be degraded by a high number 

of false positive (as well as false negative) detections (about 70% false positive rate as in 

[Deane et al., 2002]) and a low overlap rate between the two experiments (only 20% as in 

[Shoemaker, 2007]). 
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Tandem affinity purification combined with mass spectrometry (TAP-MS) [Gavin et 

al., 2006; Krogan et al., 2006]: is an in vitro technique, which has two steps: in the TAP 

stage, the protein of interest is embedded in a cell lysate to act as a bait for its interact-able 

proteins (prey) to bind, then together they will be identified by mass spectrometry after 

washing out the contaminants. Although TAP-MS technique still has a large number of false 

positive interactions and miss a lot of known interactions as Y2H, it can report higher-order 

interactions as protein complexes while Y2H has an advantage of detecting transient 

interactions [Shoemaker et al., 2007]. 

As an inherent weakness of high-throughput techniques, protein interaction data 

generated by these techniques contains a large number of false positives. For this reason, PPI 

scoring methods are invented to assess the reliability of each interaction in the PPI network. 

Some typical PPI scoring methods are: FSweight [Chua et al., 2006], Iterative-CD [Liu et al., 

2008], which use solely the PPI network topology to evaluate the reliability of PPIs and 

predict new interactions; TCSS [Jain et al., 2010] uses semantic similarity within gene 

ontology of proteins to score PPIs. 

For manually curated protein complexes, the two famous databases providing wet-lab 

experiments and verification are: Wodak Lab CYC2008 [Pu et al., 2007, 2008], which is for 

yeast, and CORUM [Ruepp et al., 2008, 2009], which is for mammalian species. Other 

typical databases for manually curated protein complexes include: MIPS [Mewes et al., 

2006], Aloy [Aloy et al., 2004] for yeast, and Emililab [Havugimana et al., 2012] for human. 

2.2.2. Ortholog assignment 

Ortholog assignment takes a key role in this work because it defines the correspondence 

of function similarity between the two set of proteins of the two species, which is the corner 

stone for identifying protein complexes with function similarity. Orthology prediction 

methods can be grouped into three main classes: “graph-based”, “phylogenetic tree-based” 

and “synteny based”. It would be a large topic to talk about ortholog identification methods. 

At the scope of this thesis, only a brief summary with very popular methods for orthology 

inferring, some of which were used throughout this work, are mentioned. 

Graph-based methods perform pair-wise gene/protein sequence comparisons between 

whole genomes, typically using all-versus-all BLAST. A weighted graph is then constructed 

with genes as nodes and sequence similarity scores as weights. Finally, various graph 
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clustering techniques are used to identify homolog groups. COGs [Tatusov et al., 2003], 

Inparanoid [O’Brien et al., 2005], OrthoMCL [Li et al., 2003] belong to this class. 

Phylogenetic tree-based methods have the first stage similar to graph based methods, in 

which homolog groups are identified. For each of these homolog groups, a gene tree are built 

from multiple sequence alignments of homologs. These gene trees are then analyzed and 

reconciled with a trusted species tree to localize speciation and duplication events, which is 

the basis for differentiating orthologs from paralogs. For these details in analysis, many 

studies have shown that phylogenetic methods have greater precision than graph-based 

methods [Chen et al., 2007]. Typical examples of phylogenetic methods are 

EnsemblCompara [Vilella et al., 2009], PHOG [Datta et al., 2009]. 

Synteny based methods use the information of synteny blocks. This is based on a property 

that an ortholog pair is usually surrounded by many others, or ortholog pairs tend to locate 

closely to each other on the two genomes to collaborate in specific conserved functions. This 

fact is reflected in typical examples as operons in prokaryotes and conserved gene clusters in 

eukaryotes. Some instances of methods in this class are MSOAR2 [Shi et al., 2009] and 

BBHLS [Zhang et al., 2012], in which sequence similarity is combined with gene context 

similarity.  

In many existing methods for identifying conserved protein complexes, function 

similarity between proteins were measured by using BLAST score only ([Sharan et al., 2005], 

[Flannick et al., 2006], [Sharon et al., 2009]). This severely restricts the number of actual 

proteins whose functions are conserved. The following is one of the approaches that can 

overcome this weakness.  

Orthology prediction considering protein domain similarity: 

There are circumstances under which a domain-based phylogeny may be preferable to 

one that is based on whole-sequence similarity. First, the requirement that orthologs have to 

be aligned well over their entire lengths – neither much longer nor shorter – might be overly 

restrictive. This is because there are cases when species have far evolutionary distances, their 

othologs have evolved many-fold in complexity so that only their functional and structural 

domains – which are the parts that directly perform functions – are similar to each other. 

Secondly, existing methods for ortholog identification are usually based on BLAST, a local 

alignment protocol, which is not designed to distinguish between sequences sharing a 
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common domain architecture and those having only local matches. This may increase the 

potential for annotation errors. 

For these reasons, there are some ortholog assigment methods consider protein domain 

similarity in the process of inferring functional similarity. Those include Ensembl orthology 

[Vilella et al., 2009] and PHOG [Datta et al., 2009]. 

2.2.3. Protein complex detection from PPI networks 

Protein complex detection is the final stage in the computational pipeline for identifying 

conserved protein complexes, when all input data (PPI data of the two species, manual 

curated protein complexes, homology information) are ready. The recent literature surveys 

for computational methods for protein complex prediction are done in [Li et al., 2010] and 

[Srihari et al., 2013]. 

This part aims to focus on standard methods that are based on graph clustering for 

complex detection. While these methods proposed effective framework for mining protein 

complexes from protein interaction data, and some of which has reached the state-of-the-art 

performance compared to other approaches, the approach of modeling protein complexes as 

dense sub-graphs faces difficulty in having radical detection of complexes from original PPI 

networks due to the following facts. First, protein interaction datasets, especially for newly 

sequenced species as human, still contain substantial number of noisy interactions. This will 

break out the protein complex model. Secondly, in a PPI network, especially of multi-cellular 

species, each protein does not necessarily participate in all its known interactions 

simultaneously (as shown in [Liu et. al., 2011]). In other words, each protein can participate 

in many different complexes (shared attachment proteins is an example [Gavin et al., 2006]), 

so if using only the PPI network, it is difficult to know which subset of interactions take place 

together in a same complex. These factors can cause graph clustering based methods in 

missing many true complexes, many of which involve in core cellular processes that are 

conserved among species [Nguyen et al., 2013]. Some typical methods in this class are: 

MCODE [Bader et al., 2003], MCL [van Dongen et al., 2000], CMC [Liu et al., 2009], 

HACO [Wang et al., 2009]. 

Resulting complexes are subjected to a matching with manually curated protein 

complexes for evaluation. Current protein complex detection methods (all approaches) also 

rarely get 100% matched for each detected complex, this also hinders the comparisons 
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between any two detected complexes from two species to identify the conserved pairs. Due to 

the above obstacles, protein complex detection from original PPI networks are still not an 

optimal approach for identifying conserved protein complexes among species. 

 

 

 

 

 

 

 

 

Figure 2.2 – The computational pipeline for identifying conserved protein complexes. 

2.2.4. Result evaluation for conserved protein complexes 

Detected conserved protein complexes need a benchmark dataset to be matched with. If 

there are no such datasets in the literature, we have to build one. Usually, for building a 

testing dataset for conserved protein complexes, we have to devise a model for protein 

complex conservation, or a score to measure the conservation level of two given protein 

complexes. We then apply this score to every pair of complexes that we need to check if they 

are conserved. 
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Chapter 3 – Computational methods for identifying conserved 

protein complexes 

 

In general, there are two approaches for solving the conserved protein complexes from 

PPI networks, one compares the two whole PPI networks of the two corresponding species by 

aligning similar nodes and edges then searching for potential regions in the alignment 

network that could be conserved, which is called the local network alignment approach. 

Another approach uses information from the known protein complexes of a well-studied 

species then matches them to the PPI network of a new species to identify subnetworks that 

have similar shapes to the query complexes. Thus, the second approach is called network 

querying. Detailed descriptions for these two approaches are given in the following sections. 

3.1. Local network alignment approach 

Analogous to sequence alignment, network alignment is to measure the similarity 

between two networks by finding the best way to fit one network into the other. As for 

sequence alignment, there also exist local and global network alignments. Global network 

alignment searches for a unique alignment from every node in the smaller network to exactly 

one node in the larger network, even though this may lead to inoptimal matchings in some 

local regions. Because of this, global network alignment is aimed for discovering the 

common network topological properties that are preserved between the two networks. Several 

different formulations of the global network alignment problem have been proposed 

([Flannick et al., 2008; Liao et al., 2009; Zaslavskiy et al., 2009]). On the other hand, local 

alignments look at small similar sub-networks between the two networks, thus aiming to 

identify pathways or protein complexes conserved in PPI networks of different species. By 

this, a node (or a sub-network) from one network can be mapped to many nodes (or many 

sub-networks) in another network. That is why this section is dedicated for local network 

alignment. 
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3.1.1. Problem definition and general solution framework 

If a PPI network is represented by an undirected graph G(V, E), where V denotes the set 

of proteins, and (u, v)  E denotes an interaction between proteins u, v  V, then the local 

network alignment problem can be informally stated as follows: 

Local network alignment problem: given k different PPI networks of k different species, 

how can we find conserved sub-networks between these networks? 

In other words, a local network alignment is defined as a set of sub-networks chosen from 

the interaction networks of different species, together with a (label) mapping between 

corresponding (or aligned) proteins. To get an alignment uniquely specified, we require that 

the mapping is an mathematical equivalence relation. Consequently, the groups of aligned 

proteins are disjoint, and we refer to them as equivalence classes. Each of these classes can be 

called a protein family (or be usually referred to as a homology group), which represents a 

particular protein function. By this, a biological interpretation of an alignment is a collection 

of proten families whose interactions are conserved across a given set of species. 

Generally, in order to find these conserved sub-networks, we have to build an alignment 

graph (or orthology graph), in which each of its nodes represents k sequence-similar 

(homologous) proteins (each protein belongs to a different species), and each edge represents 

a conserved interaction between k species.  

When the number of species is 2 (k =2), this problem is called pair-wise network 

alignment. For the purpose of simplicity, henceforth, we will imply pair-wise network 

alignment when using the term network alignment. Figure 3.1 below gives a simple example 

of pair-wise network alignment. 

    

Figure 3.1 - A simple example for pair-wise network alignment, in which nodes having the 

same shape are considered as sequence-similar. Conserved sub-networks have thick edges. 

With the purpose of applying network alignment to find conserved protein complexes 

from PPI networks, network alignment problem is extended to allow a limited number of 



15 
 

mismatches w.r.t. nodes and edges in the resulting subgraphs, some limited number of 

insertions/deletions of nodes.  

General solution framework: a general framework for applying network alignment to 

identify conserved protein complexes can be illustrated in figure 3.2, where the first stage is 

defining a protein complex model in which every sub-network that satisfies this model will 

have a high chance being a true protein complex. The model accuracy is highly dependent on 

how good the knowledge (represented in terms of graphs) we use to define a protein complex. 

The second step is to devise a definition for protein complex conservation using the protein 

complex model of each species. This stage takes into account the homology information 

between the protein sets of the two corresponding species to build a so-called alignment 

graph (or orthology graph), which will be used for the searching stage afterwards. 

 

Figure 3.2 – A general solution framework for identifying conserved protein complexes 

using network alignment. 

When the alignment graph is built, the problem of identifying conserved protein 

complexes will be equivalent to finding heavy subgraphs (in terms of node weight and edge 

weight) in the alignment graph. Moreover, the problem of searching for induced heavy 

subgraphs in a graph is NP-hard even when considering a single species where all edge 

weights are 1 or -1 and all vertex weights are 0 [Shamir et al., 2004]. Thus a heuristic is 

employed for searching the alignment graph for conserved protein complexes. 

In this section, we will look at NetworkBLAST [Sharan et al., 2005a; Sharan et al., 

2005b] as a typical method that bases on the above solution frame work for network 

alignment, other methods are usually variants of this. 

3.1.2. NetworkBLAST [Sharan et al., 2005a; Sharan et al., 2005b] 

This method is to find conserved protein complexes by comparative analysis of two PPI 

networks, it assumes that proteins in a protein complex should be highly connected within 

themselves to help them act as a single organization. Thus a protein complex can be 



16 
 

represented in the form of a dense subgraph (clique-like). In order to evaluate how likely a 

subset of proteins can form a protein complex, and how statistically significant it is, a 

probabilistic model for protein complexes is devised as follows. 

A probabilistic model for protein complexes: 

At a top-down view, the complete protein complex model is a log likelihood ratio which 

is defined for each subset U of proteins to measure how likely they form a true complex (let 

us call it the complex likelihood): 

    
Pr( | )

( ) log
Pr( | )

U c

U n

O M
L U

O M
               (3.1) 

In this formula, OU is the observation of all interactions within U; Pr( | )U cO M is a 

likelihood that measures how likely we can observe OU given the complex model Mc (Mc 

represents for the fact that U is within a complex). The complex model Mc assumes that every 

two proteins in a complex interact with a high probability p (0.95 is used in this work). In 

terms of the graph, the assumption is that two vertices that belong to a same complex are 

connected by an edge with probability p, independently of all other pair-wise interactions and 

all other information. 

In order to have a high chance becoming a true protein complex, a subset of proteins U 

with its observed interactions OU need also to be statistically significant, and Pr( | )U nO M  

measures this quantity. In fact, this is the p-value for OU in the null model Mn. The random 

model Mn assumes that each edge is present with the probability that one would expect if the 

edges of G (the graph that represents the PPI network) were randomly distributed but 

respected the degrees of the vertexes, which means edges incident to vertexes with higher 

degrees have higher probability. More precisely, let F
G
 represents the family of all graphs 

having the same vertex set as G and the same degree sequence. The probability of observing 

the edge (u, v) is defined to be the fraction of graphs  in F
G
 that include this edge. 

Given the assumption that all pair-wise interactions are independent, the log likelihood 

function in (3.1) can be decomposed into the log likelihood ratio for individual protein pairs 

as: 
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                (3.2) 



17 
 

where  Pr( | ) Pr( , | ) Pr( , | )uv c uv uv c uv uv cO M O T M O F M      (law of total probability)                                 

                  Pr( | , )Pr( | ) Pr( | , )Pr( | )uv uv c uv c uv uv c uv cO T M T M O F M F M         

                             Pr( | ) (1 )Pr( | )uv uv uv uvO T O F                  (3.3) 

(Ouv and Mc are conditionally independent, Pr( | )uv cT M  ) 

Tuv (and Fuv) is the event that protein u truly interact (and not interact) with protein v;   

is the probability that any two proteins u and v interact with each other in the complex model 

Mc. 

Similarly,            Pr( | ) Pr( | ) (1 )Pr( | )uv n uv uv uv uv uv uvO M p O T p O F               (3.4) 

where here, as mentioned in the description of the null model Mn above, puv= Pr(Tuv|Mn) 

depends on the degrees of u and v. Hence, from (3.3) and (3.4), the log likelihood function in 

(3.2) can be rewritten as follows: 
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            (3.5) 

(after applying Bayes’s rule and cancelling common terms in the numerator and 

denominator) 

So far, the log likelihood ratio can be calculated from: Pr(T
uv

 |M
c
) or , the probability of 

a truly interaction in the complex model, which is set manually in this work as 0.95;      

Pr(T
uv

 |M
n
) or puv, the probability of an interaction if the edges are randomly distributed  but 

respected the degree of vertexes, which can be estimated by Monte Carlo estimation;     

Pr(T
uv

 |O
uv

), the reliability of the interaction between u and v, estimated  by using a PPI 

network scoring method; Pr(T
uv

), the prior probability that two random proteins interact. 

Two-species protein complex conservation model: 

Consider two subsets of proteins U
1
 from species 1 and V

2
 from species 2, and a many-to-

many mapping  
1 2:U V   between them. Then the likelihood score that measures how 

likely the 2 subsets of proteins are complexes can be computed as follows (let us call it the 

concurrent complex likelihood), 
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1 2
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1 2

Pr( | ) Pr( | )
( , ) log log
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c cU U
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L U V
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              (3.6) 

which is the sum of the two corresponding complex likelihoods, each in one species. In 

order to get a conservation score of these two subsets of proteins, we have to take into 

account the sequence conservation among the pairs of proteins defined by , which assigns 

orthologous pairs between U
1
 and V

2
. Thus here, we need to define a so-called homolog 

likelihood, which measures how likely the two proteins u and v are homologs. This log 

likelihood ratio is also in the form of ratio between the likelihoods under the conserved 

complex model and the null model as follows: 

         
Pr( | )

( , ) log
Pr( | )
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uv n
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Pr( | ) Pr( | )uv c uv uvE M E h : under the conserved complex model, u and v must be 

homologs; 
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(Euv and Mn are conditionally independent.) 

Using Bayes’s rule, a simpler formula for the homolog likelihood can be derived as:  

    
Pr( | )

( , ) log
Pr( )

uv uvh E
H u v

h
                          (3.7) 

where E denotes the BLAST E-value between u and v;  Pr(huv|Euv) is the probability that u 

and v are homologs given their BLAST E-value, this probability was calculated as in [Kelly 

et al., 2003] 

Finally, the complete complex conservation score is formed as the sum of the concurrent 

complex likelihood L(U
1
, V

2
) and the sum of homolog likelihood on all homolog pair 

between U and V. The first term measures how likely the two subsets of proteins U and V are 

true complexes in the two corresponding species while the second term measures how likely 

all homolog pairs assigned by  are truly homologs. 

          
1

1 2 1 2
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v uu U
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               (3.8) 
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Searching for conserved protein complexes: 

After the complex model and complex conservation model are built, the problem of 

identifying conserved protein complexes reduces to the problem of identifying a subset of 

proteins in each species, and a correspondence between them, such that the complex 

conservation score S exceeds a threshold. In order to facilitate the search on all possible pairs 

of subsets U and V of proteins (each from one species) to test whether they are conserved 

complexes, a concept of orthology graph (or alignment graph) is introduced. 

Let G1(E1, V1) and G2(E2, V2) be PPI networks of the two corresponding species, then the 

orthology graph OG(EOG, VOG) is built as follows: 

Each node in VOG is a pair (u, v) of proteins where u V1 and vV2.  

Edges in OG connect all possible pairs of nodes. In other words, OG is a complete graph. 

Each edge that connects two nodes (u1, v1) and (u2, v2) in OG has two weights: w1= 

L1({u1, u2}); w2= L2({v1, v2}), where L is the complex likelihood in (2), in this case, it 

measures how likely (u1, u2) and (v1, v2) form two co-complex relationships in the two 

corresponding species. 

Each node (u, v) in OG has a weight that is the homolog likelihood between them, w(u, v) 

= H(u, v). 

Figure 3.3 is an illustration of a node and an edge with two weights in the orthology 

graph. In this sense, if we can enumerate all possible subsets of nodes in OG, then those are 

all possible pairs of subsets U, V of nodes (each from one species).  

     

Figure 3.3 – An illustration of two nodes and their edge in the orthology graph. 
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Basing on the orthology graph, the problem of identifying a subset of protein in each 

species, and a correspondence between them, such that the complex conservation score is 

high, is equivalent to finding heavy subgraphs in the orthology graph. This is an NP-Hard 

problem, because it is reduced from the maximum clique problem. Thus a heuristic for 

searching was proposed as follows: 

Compute a seed around each node v, which consists of v and all its neighbors u such that 

(u, v) is a strong edge. 

If the size of this set is above a threshold (e.g. 10), iteratively remove from it the node 

whose contribution to the subgraph score is minimum, until we reach the desired size. 

Enumerate all subsets of the seed that have size at least 3 and contain v. Each such subset 

is a refined seed on which a local search heuristic is applied. 

Local search: Iteratively add a node, whose contribution to the current seed is maximum, 

or remove a node, whose contribution to the current seed is minimum, as long as this 

operation increases the overall score of the seed. Throughout the process, the original refined 

seed is preserved and nodes are not deleted from it. 

For each node in the alignment graph, record up to k (e.g. 5) heaviest subgraphs that were 

discovered around that node. 

Note that because the orthology graph is a complete graph, at any time, a constructed 

subgraph is also a clique. The resulting subgraphs may overlap considerably, thus a greedy 

algorithm is used to filter subgraphs whose percentage of intersection is above a threshold as 

follows: 

Iterative find the highest weight subgraph. 

Add that subgraph to the final output list. 

Remove all other highly intersecting subgraphs. 

 

Pruning the orthology graph: 

In order to reduce the complexity of the graph and focus on potential conserved 

complexes, nodes with low homolog likelihood are removed from the graph. They are 

considered back only they satisfy the following condition: for every node (p, y)  S, we 

check whether there exist two nodes (p1, y1), (p2, y2) S such that p interacts with p1 and p2, 
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and y interacts with y1 and y2. In this case, (p, y) serve as “bridges” in the orthology graph 

between protein pairs, whose members in each species are not known to directly interact. 

 

Experimental results: 

This method was experimented on yeast and bacterial data, it found 11 correct conserved 

protein complexes between these two species with the evaluation based on complex 

functional annotation. However, there was no benchmark data for estimating the sensitivity of 

the results. 

3.1.3. Other local network alignment based methods 

MaWIsh local network alignment method [Koyuturk et al., 2006] is based on the 

duplication/divergence models that focus on understanding the evolution of protein 

interactions. It constructs a weighted global alignment graph and tries to find a maximum 

induced sub-graph in it. Graemlin algorithm [Flannick et al., 2006] scores a possibly 

conserved module between different networks by computing the log-ratio of the probability 

that the module is subject to evolutionary constraints and the probability that it is under no 

constraints, taking into account the phylogenetic relationships of the species whose networks 

are being aligned. [Hirsh et al., 2007] also developed their own protein complex evolution 

model basing con protein interaction attachment/detachment and gene duplication events,  

then employed it to identify conserved protein complexes between yeast and fly. [Zhenping 

Li et al., 2007] formulate the local network alignment as an integer quadratic programming 

problem and then transform this into a quadratic programming problem, which almost always 

ensures an integer solution, thereby making the local network alignment problem tractable 

without any approximation. 

3.2. Network querying approach 

3.2.1. Problem definition 

If we already have a list of known protein complexes, then it would be a natural thinking 

to match these complexes to a new species’ PPI network for predicting conserved protein 

complexes, rather than aligning the whole two PPI networks and make no use of known 
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protein complex information in the well-studied species. The network querying problem can 

be stated as follows: 

Network querying problem: given a query subnetwork G
Q
 and a target network G

T
, how 

can we find subnetworks in G
T
 that are similar to G

Q
? Similarity here is in terms of both node 

label and network topology.  

Also, more general and suitable for identifying conserved protein complexes, insertion of 

proteins into the matched subnetwork, or deletion of vertices from the query subnetwork, as 

well as a limited number of mismatches, are allowed. 

In this section, we will describe a typical method of network querying for identifying 

conserved protein complexes, Torque (TOpology-free netwoRk QUErying) [Bruckner et al., 

2010].  

3.2.2. Torque – Topology-free network querying [Bruckner et al., 2010] 

“Topology-free” here means we only use the set of involved proteins of each query 

subnetwork and do not care about its topological information. The motivation of this work is 

that most of the protein complexes reported in the literature do not provide any information 

about their interaction patterns. Thus, Torque aims to find a connected component of proteins 

in the target network that matches the query set of proteins. This work first gives a 

formulation for the topology-free network querying  and then devise three solutions to the 

problem those are: randomized dynamic programming, integer linear programming (ILP) 

solver (after formulating the network querying problem as an ILP problem), and a shortest-

path based heuristic. In order to present the formulation for the problem, we firstly need to 

define a concept called colorful. 

Let G= (V, E) be a PPI network where vertices represent proteins and edges correspond to 

PPIs. Given a set of color (1, 2, …, k), a coloring constraint function : V2
C
 that assigns 

each vertex vV a subset of colors of C (we can call this is the color set of v). For any subset 

S of C, we define a subset of vertices H of V as S-colorful if |H| = |S| and each vertex v in H 

can selected one color in its color set that is distinct from the selections of the other vertices 

in H. 

Then the topology-free network querying problem can be formulated as a C-colorful 

connected subgraph basing on the colorful concept as follows. 
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C-colorful connected subgraph problem: Given a graph G = (V, E), a color set C, and a 

coloring constraint function : V2
C
, is there a connected subgraph of G that is C-colorful? 

This problem is corresponding to the topology-free network querying problem as follows: 

suppose we have a query complex with C proteins, if we assign each protein in this complex 

a distinct color (even if this protein has paralogs in this complex), then we have the color set 

C. If a protein in the target network G is orthologous with a protein in the complex, it will 

put the color of this protein complex into its color set. Thus, one protein in G can have 

multiple colors in its color set when it is orthologous with more than one protein complex. 

Therefore, if there is a connected subgraph of G that is C-colorful, then its node set will have 

the same set of protein families (or homolog groups), and each family has the same number 

of paralogs as the complex. And this subgraph is considered as a conserved protein complex 

of the query one. 

We also can find another formulation for this problem that is somehow simpler to 

visualize as follows: 

Let the query complex be a multiset M of colors in which each color represents a 

biological protein function. Thus, paralogs in this complex will have the same color. Then the 

problem is: does G have a connect subset of vertices whose multiset of colors equals M? 

(Note: two multisets are defined to be equal if they have the same multiplicity (number of 

occurrences) of each element). 

 

 

 

 

 

 

Figure 3.4 – An illustration for the query set of proteins (a) and its matched connected 

subgraph (b) in the target network, each number label represents a color. The multisets of 

colors, which represent multisets of biological protein function, in (a) and (b) are equal. 

With the topological-free network querying problem defined above, Torque designs three 

approaches for solution:  
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Randomized dynamic programming approach: 

This approach is used for firstly considering only coloring constraint functions that 

associates each vertex v  V with a single color. Then the problem is to find a connected 

subgraph that has exactly one vertex of each color in the query protein complex. Since every 

subgraph has a spanning tree, this approach looks for colorful trees. A dynamic programming 

table B is constructed with rows corresponding to vertices and columns corresponding to 

subsets of colors. B(v, S) = true if there exists in G a subtree rooted at v that is S-colorful, and 

B(v, S) = false otherwise. As initialization, when S has a single color c and v V we initialize 

B(v, c) = true iff the color set associated with v contains only c. Other entries of B can be 

computed using the following recurrence: 

   
1 2

1 2

1 2
( )

( ) , ( )

( , ) ( , ) ( , )
u N v

S S S
v S u S

B v S B v S B u S

 

   

  
  

(N(v) is neighbor nodes of v) 

This algorithm runs in O(3
k
m) time and can be generalize to the case of weithted graph by 

searching for heaviest colorful subtree rooted at each vertex and B(v, S) is a real number 

instead of a Boolean value. The weight of an optimum match is given by maxv B(v, C) and 

the recursion is modified as: 
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After having the solution for the single-colored node case, this approach is extended for 

allowing a limited number of insertions and deletions in the resulting subgraphs by 

considering that: an S-colorful solution allowing j special insertions is a connected subgraph 

H  G, where H’  H such that V(H’) is S-colorful and all other vertices of H are non-

colored, then finding a C-colorful connected subgraph with up to Nins special insertions can 

be solved in O(3
k
mNins) time. Deletions can be handled directly by the dynamic programming 

algorithm: if no C-colorful solution was found, then B(v, C) = false for all v. Allowing up to 

Ndel deletions can be done by scanning the entries of B. If there exists Ĉ C such that 

ˆ| | | | delC C N   and ˆ( , )B v C = true, then a valid solution exists. 
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Finally, this approach is generalized to multiple color constraints, where a color constraint 

function can associate each vertex with a set of colors, not just a single color as above. This 

problem arises when a protein in the network is homologous to more than one protein in the 

query complex. The basic idea is to reduce the problem to the single color case by randomly 

choosing a single valid (distinct from other vertexes) color for every vertex. In order to do 

this, a coloring graph need to be defined as a bipartite graph B = (V, C, E) where V is the set 

of target network vertices, C is the set of colors and (v, c)  E iff vertex v has color c in its 

color set. Consider a possible match to the query, the probability for a subset of vertices of 

size k to become colorful in a random coloring is at least 1/(k!). 

Integer linear programming: 

An integer linear programming (ILP) formulation is also given to the C-colorful 

connexted subgraph problem, then ILP solvers can be employed. This method allows exactly 

Nins arbitrarily insertions and exactly Ndel arbitrarily deletions. Particularly, we are given edge 

weights : E Q   and wish to find vertex subset K  V of size t= k + Nins – Ndel that 

maximizes the total edge weight 
( , ) ; , vwv w E v w K


  . For expressing the connectivity of the C-

colorful subgraph, it is formulated as finding a flow with t-1 selected vertices as sources of 

flow 1, and a selected sink r that drains a flow of t-1, while disallowing flow between non-

selected vertices. For details of this formulation, please refer to [Bruckner et al., 2010]. 

Shortest-path based heuristic: 

A heuristic based on a shortest-path algorithm is designed to obtain a fast solution for 

finding C-colorful subgraphs in the target network. This heuristic is suitable for the cases 

when the number of colored vertices is small and it does not allow insertions/deletions 

(indels) in the resulting subgraphs. This method is also used as a preliminary step, when it 

fails to return a solution or when indels are required, the dynamic programming or integer 

linear programming above will be run. 

The heuristic aims to partition the initial vertex set V of the target network into two 

subsets: Vin, which is the final solution (the connected component that is C-colorful), and Vout 

for the remaining part. To get this final result, it has to maintain a partition of V into three 

sets , Vin, Vout, and Vopen. Starting with Vopen= V, vetices are then greedily moved from Vopen 

either to Vin, meaning that they are part of the final solution, or to Vout, meaning that they are 
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rejected. Shortest-path is used in this heuristic as a criterion to move color nodes in Vopen to 

Vin.  

Experimental results: 

Torque was applied to six collections of protein complexes from: yeast, fly, human and 

used complexes from one species as queries to query against the target PPI networks of the 

other species. The result comparison showed that it outdoes QNet (which was considered as a 

state-of-the-art method for finding conserved protein complexes and pathways at that time) in 

all the cases.  

3.2.3. Other network querying based methods 

QPath [Shlomi et al., 2006] is a technique for querying PPI networks with path-structured 

queries, QNet [Dost et al., 2008] is an extension of QPath for queries shaped as trees and 

graphs with bounded treewidth (though in its implementation, only tree-shaped queries are 

handled). Both QPath and QNet are based on the color coding technique [Alon et al., 1995], a 

randomized technique for finding simple paths and simple cycles of a specified length k 

within a graph (the basic idea is to randomly assign k colors to the vertices of the graph and 

then search for colorful paths in which each color is used exactly once). In both methods, the 

total number of node insertions and deletions in the potential solutions are bounded by two 

thresholds Nins and Ndel.  

3.3. Comparison between the approaches 

Local network alignment has a sound theoretical framework for complex conservation 

modeling and identifying conserved protein complexes, so that methods basing on this 

framework easily incorporate their own definitions of protein complex evolution into it 

[Sharan et al., 2005; Koyuturk et al., 2006; Flannick et al., 2006; Hirsh et al., 2007; Nguyen 

et al., 2013].  Because network alignment is based on the co-occurrences protein interactions 

between multiple species, it helps the complex detection focus on the more reliable parts of 

the PPI networks thereby increasing the precision of the task.  

Network querying employs known protein complexes in well-studied species to query 

against PPI networks of other species. This can help to compensate for the incompleteness in 

PPI networks of some newly sequenced species. On the other hand, this approach is restricted 
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by the collections of known protein complexes and cannot be extended to detect novel 

complexes, which in turn highlights this advantage in network alignment approach. There are 

still not methods that combines the two approaches to exploit the best availability of 

information we have. Topology-free querying is flexible and robust to noises in protein 

interaction data but simultaneously, missing the important information of interaction pattern 

similarity. Table 3.1 below will summarize the comparisons between methods in local 

network  alignment approach and network querying approach. 

 

 Advantages Disadvantages 

Local network 

alignment approach 

Sound theoretical 

framework and ease in 

incorporating protein complex 

evolution models. 

Releasing noises in data by 

focusing on co-occurring PPIs, 

which are more reliable PPIs. 

Can detect novel protein 

complexes. 

Not using the information of 

known protein complexes. 

 NetworkBLAST 

[Sharan et al, 

2005a&b] 

Using a simple probabilistic 

protein complex conservation 

model basing on dense 

subgraphs and protein sequence 

similarity. 

Using only whole-sequence 

similarity (BLAST score) for 

aligning proteins.  

MaWIsh 

[Koyuturk et al., 

2006] 

Using the 

duplication/divergence models 

for protein interaction evolution. 

Using only whole-sequence 

similarity (BLAST score) for 

aligning proteins. 

Graemlin 

[Flannick et al., 

2006] 

Combining phylogenetic 

relationships of proteins in 

different species and the 

evolutionary history of 

Using only whole-sequence 

similarity (BLAST score) for 

aligning proteins.  
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interactions. 

[Hirsh et al., 

2007] 

Using protein complex 

evolution model basing on 

protein interaction 

attachment/detachment and 

gene duplication events. 

Using only whole-sequence 

similarity (BLAST score) for 

aligning proteins. 

COCIN [Nguyen 

et al., 2013] (our 

method) 

Considering protein 

domains in identifying 

functional conserved proteins. 

 

Network querying 

approach 

Using the information of 

known protein complexes to 

compensate for incompleteness 

in the queried PPI networks, and 

as a good guide for searching 

for conserved complexes. 

Not be able to detect novel 

protein complexes because it is 

restricted by the querying protein 

complexes. 

 Topology-free 

querying 

[Bruckner et al., 

2010] 

Flexible and robust to noises 

in protein interaction data. 

 

QPath [Dost et 

al., 2008] 

Simple and fast Only allows path-structured 

queries 

QNet [Shlomi et 

al., 2006] 

 

Can allow both path-

structured and tree-like queries. 
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Chapter 4 – COCIN: Conserved protein complex detection from 

Interolog Networks 

4.1. Overview  

As mentioned in Chapter 1, in spite of the significant progress in computational 

identification of protein complexes from protein interaction (PPI) networks over the last few 

years (see the surveys [Srihari et al., 2013; Li et al., 2010]), computational methods are 

severely limited by noise (false positives) and lack of sufficient interactions (e.g. membrane-

protein interactions) in currently available PPI datasets, particularly from human, to be able 

to completely reconstruct the complexosome [Srihari et al., 2013; Li et al., 2010]. For 

example, several complexes involved in core cellular processes such as cell cycle and DNA 

damage response (DDR) are not present in a recent (2012) compendium of human protein 

complexes (http://human.med.utoronto.ca/)  assembled solely by computational identification 

of complexes from high-throughput PPIs [Havugimana et al., 2012]; a web-search (as of Feb 

2013) in this compendium for BRCA1 does not yield any complexes even though BRCA1 is 

known to participate in three fundamental complexes in DDR viz. BRCA1-A, BRCA1-B and 

BRCA1-C complexes [Khanna et al., 2001; Xu et al., 2001; Wang et al., 2000]. A possible 

reason for missing these complexes is the lack of sufficient PPI data required for identifying 

them even using the best available algorithms. But, the authors of this compendium note that 

many human complexes appear to be ancient and slowly evolving – roughly a quarter of the 

predicted complexes overlapped with complexes from yeast and fly, with half of their 

subunits having clear orthologs [Havugimana et al., 2012]. Therefore, it is useful to devise 

effective computational methods that look for evidence from evolutionary conservation to 

complement PPI data to reconstruct the full set of complexes. 

In the attempt to integrate evolutionary information with PPI networks, Kelley et al. 

[Kelly et al., 2003] and Sharan et al. [Sharan et al., 2005] devised methods to construct an 

orthology graph of conserved interactions from two species, which in their experiments were 

yeast (S. cerevisae) and bacteria (H. pylori), using a sequence homology-based (using 

BLAST E-score similarity) mapping of proteins between the species. Dense sub-graphs 

induced in this orthology graph represented putative complexes conserved between the two 

species. The complexes so-identified were involved in core cellular processes conserved 
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between the two species – e.g. those in protein translation, DDR and nuclear transport. Van 

Dam and Snel (2008) [Dam et al., 2008] studied rewiring of protein complexes between yeast 

and human using high-throughput PPI datasets mapped onto known yeast and human 

complexes. From their experiments, they concluded that a majority of co-complexed protein 

pairs retained their interactions from yeast to human indicating that the evolutionary 

dynamics of complexes was not due to extensive PPI network rewiring within complexes but 

instead due to gain or loss of protein subunits from yeast to human. Hirsh and Sharan [Hirsh 

et al., 2007] developed a protein evolution-based model and employed it to identify 

conserved protein complexes between yeast and fly, while Zhenping et al. [Zhenping et al., 

2007] used integer quadratic programming to align and identify conserved regions in 

molecular networks. Marsh et al. [Marsh et al., 2011] integrated data on PPI and structure to 

understand mechanisms of protein conservation; they found that during evolution gene fusion 

events tend to optimize complex assembly by simplifying complex topologies, indicating 

genome-wide pathways of complex assembly. 

 

Integrating domain conservation: 

Inspired from these works, here we devise a novel computational method to identify 

conserved complexes and apply it to yeast and human datasets. A crucial point we note on the 

conservation from yeast to human is that many cellular mechanisms, though conserved, have 

in fact evolved many-fold in complexity – for example, cell cycle and DDR. Consequently, 

while several proteins in these mechanisms are conserved by sequence similarity (e.g. RAD9 

and hRAD9), there are others that are unique (non-conserved) to human (e.g. BRCA1); see 

Figure 4.1. These non-conserved proteins perform similar functions (e.g. cell cycle and 

DDR) as their conserved counterparts, but do not show high sequence similarity to any of the 

yeast proteins. A deeper examination reveals that these proteins in fact contain conserved 

functional domains – for example, the BRCT domain which is present in yeast RAD9 and 

human hRAD9 is also present in the non-conserved human BRCA1 and 53BP1; all of these 

play crucial roles in DDR [Bork et al., 1997]. Similar structure can be seen in the case of 

RecQ helicases – several helicase domains are conserved from the yeast SGS1 to human 

BLM and WRN, but there are three helicases RECQ1,4,5 which are unique to human that 

also contain these helicase domains [Larsen et al., 2013].  Therefore, integrating information 

on functional conservation, mainly through domain conservation, can help to identify 

considerably more (functionally) conserved complexes than mere sequence similarity, 
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thereby throwing further light on the conservation patterns of complexes in particular and 

cellular processes in general. 

         

Figure 4.1 - Conservation of complexes between yeast and human 

Many proteins in yeast have either ‘split’ into multiple proteins or fused into common 

proteins in human during evolution. This mechanism is a result of selecting optimal protein 

assemblies [Marsh et al., 2011] thereby resulting in multi-fold expansion of complexity in 

human. In order to capture these conservation mechanisms it is necessary to integrate domain 

along with PPI information. 

 

In order to achieve this, simple BLAST-based scores as used in earlier works [Kelly et al., 

2003; Sharan et al., 2005; Dam et al., 2008; Hirsh et al., 2007; Zhenping et al., 2007] to 

measure homology between yeast and human proteins do not suffice. Here, we integrate 
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multiple databases including Ensembl [Flicek et al., 2012] and OrthoMCL [Li et al., 2003] to 

build homology relationships among proteins; these databases use a variety of information to 

construct orthologous groups among proteins including checking for conserved domains. The 

integration of these databases generates many-to-many correspondence between yeast and 

human proteins instead of the predominantly one-to-one correspondence obtained by from 

BLAST-based similarity. 

We devise a novel computational method to construct an interolog network using domain 

information along with PPI conservation between human and yeast. Next, we identify dense 

clusters within the interolog network using current ‘state-of-the-art’ PPI-clustering methods 

(as against traditional clustering methods used in [Kelly et al., 2003; Sharan et al., 2005]). 

These clusters when mapped back to the PPI networks reveal conserved dense regions, many 

of which correspond to conserved complexes.  

Our experiments in this work reveal that, 

(i) integrating domain information generates many valuable interactions from the many-

to-many ortholog relationships in the interolog network, thereby enhancing its 

quality; 

(ii) interolog network also reduces false-positive interactions by accounting for conserved 

PPIs; 

(iii) our interolog network construction aids clustering algorithms to identify far more 

conserved complexes than direct clustering of the individual PPI networks;  and 

(iv)  many of these conserved complexes are involved in core cellular processes such as 

cell cycle and DDR throwing further light to the conservation of these cellular 

processes. 

We call our method COCIN (COnserved Complexes from Interolog Networks). 
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4.2. Method 

4.2.1. Constructing the interolog network 

Given two PPI networks from two species S1 and S2, and the homology information between 

proteins of the two networks, we construct an interolog network GI as follows. The two PPI 

networks are represented as G1(V1, E1) and G2(V2, E2), and the homology relationship 

between the proteins is governed by a many-to-many correspondence  : V1 V2. The 

interolog network is defined as GI(VI, EI), where VI = {vI = {p, q} | pV1, qV2, and (p, q) }, 

and EI= {(vI, v’I) | vI ={p,q} ; v’I={r,s} ; (p, r)  E1 and  (q,s)  E2}. 

Each node in the interolog network represents a pair of homologous proteins, one from 

each species. Each edge in the interolog network represents an interaction that is conserved in 

both species (interolog). However, if a protein pV1 can be orthologous to multiple proteins 

xV2 and xV2, then we add two vertices to GI namely {p, x} and {p, y}, and add an edge 

between two vertices. Doing so integrates the many-to-many relationships obtained due to 

domain conservation into the interolog network. Figure 4.2 below gives a simple example of 

this network-construction.  

     

Figure 4.2 - Construction of the interolog network – a simplified example 

Our interolog network constructing integrates PPI and domain conservation information 

to generate a network that is conducive for clustering algorithms to identify considerably 
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more conserved complexes compared to direct clustering of the original PPI networks from 

species. 

Any connected sub-network in this interolog network can be mapped back to conserved 

sub-networks in the two PPI networks, and this is similar to the orthology graph method 

introduced by Kelley et al. [Kelly et al., 2003] and Sharan et al. [Sharan et al., 2005]. 

However, one unique advantage of our interolog network offers is that we can infer a 

collection of homologous complexes between the species. This property is highly relevant for 

identifying conserved complexes between yeast and human (revisit Figure 4.1). 

In order to achieve this, we integrate multiple databases including Ensembl [Flicek et al., 

2012] and OrthoMCL [Li et al., 2003] to build our homology relationships among proteins; 

these databases use a variety of information to construct orthologous groups among proteins 

including checking for conserved domains. 

4.2.2. Clustering the interolog network and detection of conserved complexes 

We identify dense clusters in the interolog network to detect conserved complexes between 

the two species. To do this, we tested a variety ‘state-of-the-art’ PPI network-clustering 

methods, and found the following three to perform the best – CMC (Clustering by merging 

Maximal Cliques) by Liu et al. [Liu et al., 2009], MCL (Markov Clustering) by van Dongen 

[Dongen et al., 2000] and HACO (Hierarchical Clustering with Overlaps) by Wang et al. 

[Wang et al., 2009]. The comparative assessment of these methods has been confirmed with 

earlier works [Srihari et al., 2013; Li et al., 2010; Srihari et al., 2010;2012a;2012b]. 

CMC operates by first enumerating all maximal cliques in network, and ranks them in 

descending order of the weighted interaction density. It then iteratively merges highly 

overlapping cliques to identify dense clusters in the network. MCL simulates a series of 

random paths (called a flow) and iteratively decomposes the network into a number of dense 

clusters. HACO performs hierarchical clustering by repeatedly identifying smaller dense 

clusters and merging these into larger clusters. HACO has an advantage over the traditional 

hierarchical clustering because it allows for overlaps (protein-sharing) among the clusters. 

Upon finding each dense cluster in the interolog network, because one-to-many homology 

relationships may exist between human and yeast proteins (see Table 4.10 and revisit Figure 

4.2), we map back these clusters to sub-networks within the two PPI networks to eliminate 
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duplicated nodes in one species, thereby identifying the exact protein complex that is 

conserved. 

4.2.3. Building a benchmark dataset for conserved protein complexes 

Due to lack of benchmark datasets of conserved protein complexes between human and yeast 

in the literature, we built our own “gold standard” conserved dataset as follows. Using 

currently available datasets of manually curated protein complexes of human and yeast, we 

selected pairs of complexes that shared significant fraction of (homologous) proteins. 

For measuring the conservation level of a given complex pair {C1, C2}, where C1 belongs 

to species S1 and C2 belongs to species S2, we adopted the following Multi-set Jaccard score:  

Multi-set Jaccard score: Let GC1 and GC2 be the collections of ortholog groups in complexes 

C1 and C2, respectively. For any group gi Gci (i = 1, 2), let ICi represent the multiplicity of 

the group gi in complex Ci,, which essentially is the number of paralogs within the group. 

Multi-set Jaccard score is given as: 
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1 2

1 2

1 2

( )

1 2

( )

min(I ( ), I ( ))

( , )
max(I ( ), I ( ))

i C C

i C C

C i C i

g G G

C i C i

g G G

g g

MSJ C C
g g

 

 






,  

There are often duplication of genes (paralogs) within complexes and clusters. Therefore, 

MSJ takes into account the multiplicity of the groups and does a more conservative and 

accurate estimation of the conservation between C1 and C2. See Figure 4.3 for an illustration. 

We selected pairs of complexes that show MSJ ≥ 50% (see result section for details). 
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Figure 4.3 - Conservation scores for building benchmark complex datasets 

We generate a “gold standard” conserved complexes dataset to test our method. We use 

two scores here – the Jaccard score for orthologous groups and multi-set Jaccard score. 

4.3. Results  

4.3.1. Preparation of experimental data 

We combined multiple PPI datasets to enhance the coverage of our interactome. We collected 

PPIs from IntAct [Kerrien et al., 2007] (version November 13, 2012) and Biogrid [Stark et 

al., 2011] (versions 3.2.95 and 3.2.89) databases for yeast; and from Biogrid and HPRD 

[Keshava et al., 2009] (Release 9, 2010) for human. Table 4.1 and 4.2 summarise these 

datasets. 

Yeast curated complexes were gathered from Wodak database (CYC2008) [Pu et al., 

2009] and human curated complexes from CORUM (version 09/2009) [Ruepp et al., 2008]; 

these form our benchmark complex datasets (details in Table 4.3). We used Ensembl [Flicek 

et al., 2012] and OrthoMCL [Li et al., 2003] for the homology mapping between human and 

yeast proteins. 
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Table 4.1 – Properties of yeast physical PPI datasets 

Database # proteins # (non self and duplicated) interactions  

IntAct (version Nov 13, 2012) 5276 18834 

Biogrid (version 3.2.95, Nov 30, 2012) 5886 73923 

IntAct Biogrid 6332 83777 

IntActBiogrid 4620 8930 

ICDScore(IntAct  Biogrid) 5239 71636 

 

Table 4.2  - Properties of human physical PPI datasets 

Database # proteins #interactions 

HPRD (Release 9, 2010) 9617 39184 

Biogrid (April 25, 2012) 12515 59027 

HPRD Biogrid 13624 76719 

HPRDBiogrid 8615 21491 

ICDScore(HPRD Biogrid) 8521(EntrezID) 61868 

ICDEnrich(HPRD 

Biogrid) 

9764 (EntrezID) 192053 (EntrezID) 

 

Table 4.3  - Properties of manually curated protein complex datasets 

Databases  # complexes  

Wodak [28] yeast complexes 

(CYC 2008)  

149 with size>3 (36.5%)  

Total: 408 

CORUM [29] human 

complexes (September 2009)  

722 with size>3 (39.1%)  

Total: 1843 
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Criteria for evaluating predicted complexes: 

For a predicted complex Ci of one species and a manually curated (benchmark) complex 

Bj, we used Jaccard score based on collections of complex proteins: 
| |

( , )
| |

i j

i j

i j

C B
J C B

C B





, 

which considers Ci a correct prediction for Bj if J(Ci, Bj)  t, a match threshold. We chose t = 

0.50 in our experiments as suggested by earlier works [Liu et al., 2009; Srihari et al., 2010]. 

Ci  is then referred to as a matched prediction or matched predicted complex, and Bj is 

referred to as a derived benchmark complex. 

Based on this, precision is computed as the fraction of predicted complexes matching 

benchmark complexes, and the recall is computed as the fraction of benchmark protein 

complexes covered by our predicted complexes. A correctly predicted complex is also 

checked against our “gold standard” testing dataset to see if it is a conserved complex, in 

which case the derived complex is a derived conserved complex. 

4.3.2. Results of complex detection using interolog network (IN) 

Table 4.4 summarizes the interolog network constructed from yeast and human PPIs. We 

map back each predicted cluster from the IN to the original PPI networks to predict 

conserved complexes between the two species.  

 

Table 4.4  - Properties of the interolog network constructed from yeast and human PPIs 

# Mapped nodes using orthology 2470 

# Interologs 6133 

Size of biggest connected component 2434 nodes, 6112 edges 

#Other connected components 16 (size from 2-3) 

 

Firstly, we compared the results of complex detection from COCIN with direct clustering 

of the original PPI networks using CMC, HACO and MCL as shown in Tables 4.5 and 4.6. 

Interestingly, we observed that COCIN, which employs CMC, HACO and MCL for 

clustering the interolog network, yielded a better recall than these methods on the original 
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PPI networks. Further, because IN capitalises on the existence of interactions in both PPI 

networks (that is, conservation of interactions), the number of noisy dense clusters in COCIN 

is considerably reduced thereby enhancing its precision.  

Table 4.5  - Comparisons of different methods on yeast data 

Predicted complexes: resulting network clusters 

Matched predictions: resulting network clusters that match with benchmarks 

Precision = #matched prediction / #predicted complexes 

Recall = # detected conserved complexes / # gold standard conserved complexes 

Method #Predicted 

complexes 

#Matched 

predictions 

Precision #Gold 

standard 

conserved 

complexes 

# Detected 

conserved 

complexes 

Recall (of 

conserved 

complexes) 

COCIN 71 36 50.7% 42 32 76.2% 

CMC 1202 145 12.1% 42 23 54.8% 

HACO 1040 69 6.6 % 42 17 40.5% 

MCL 387 37 9.6% 42 5 11.9% 
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Table 4.6  - Comparisons of different methods on human data 

Predicted complexes: resulting network clusters 

Matched predictions: resulting network clusters that match with benchmarks 

Precision = #matched prediction / #predicted complexes 

Recall = # detected conserved complexes / # gold standard conserved complexes 

One predicted complex of COCIN can match with many benchmark complexes, this 

explains for #detected conserved complexes > #matched predictions (as illustrated in Figures 

5-8) 

Method # Predicted 

complexes 

# Matched 

predictions 

Precision #Gold 

standard 

conserved 

complexes 

# Detected 

conserved 

complexes 

Recall 

(of 

conserved 

complexes) 

COCIN 71 36 50.7% 118 78 66.1% 

CMC 1389 156 11.2% 118 66 55.9% 

HACO 1290 80 6.2% 118 36 30.5% 

MCL 631 45 7.1% 118 24 20.3% 

 

Figure 4.4 compares a predicted complex Ci through COCIN with two predictions Cy 

and Ch from the original PPI networks; Cy and Ch form a pair of orthologous complexes, but 

by direct clustering of the original PPI networks and matching them and not using COCIN. 

We noticed that Cy and Ch contained several noisy proteins and interactions among them 

which were false positives. These false positives reduced the Jaccard accuracy of these 

complexes when matched to known benchmark complexes. We also note that when we 

computed the complex-derivability index called Component-Edge score (this index measures 

how much of chance a complex can be detected given the topology of a PPI network) 

proposed in [Srihari et al., 2012], Ci had a higher CE-score compared to Cy and Ch in the 

networks. 
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Figure 4.4  - An illustration on a predicted complexes from IN 

(a) A predicted complex in the IN. 

(b) The corresponding complex in the human PPI network. 

(c) The corresponding complex in the yeast PPI network. 

 

Figure 4.5 highlights the improvement of COCIN over CMC, that is, the additional 

protein complexes of human and yeast detected by COCIN. As many noisy interactions are 

removed in the IN, among the conserved complexes that are detected by both CMC and 

COCIN, COCIN on an average obtained higher Jaccard scores.  Some important additional 

conserved complexes found using COCIN were: RNA Polymerase II, EIF3 complex, MSH2-

MLH1-PMS2-PCNA DNA-repair initiation complex, MCM complex, MMR complex, 
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Ubiquitin E3 ligase, transcription factor TFIID, DNA replication factor C, 20S proteasomes 

(descriptions of these complexes are listed in Tables 4.7 and 4.8). 

 

Figure 4.5 - COCIN compared to CMC 

COCIN over the interolog network identifies significantly more conserved complexes 

compared to direct clustering of the original PPI networks using CMC [19]. 
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Table 4.7 – Additional conserved complexes found in yeast 

ID Complex name Size Jaccard   

score 

Functional category Functional description 

96 eIF3 complex 7 0.63 Translation Eukaryotic translation initiation factor 

247 Transcription factor 

TFIID complex 

15 0.73 Transcription mRNA synthesis 

27 DNA-directed RNA 

polymerase II 

complex 

12 0.69 Transcription mRNA synthesis 

45 DNA replication 

factor C complex 

(Rad24p) 

5 0.67 DNA processing DNA synthesis and replication 

152 DNA replication 

factor C complex 

(Rcf1p) 

5 0.67 DNA processing DNA synthesis and replication 

294 Mcm2-7 complex 6 0.6 DNA processing Chromosome maintainance, DNA 

synthesis and replication 

268 SF3b complex 6 0.57 RNA processing mRNA splicing 

65 U6 snRNP complex 8 0.5 RNA processing This complex combines with other 

snRNPs, unmodified pre-mRNA, and 

various other proteins to assemble a  

spliceosome, a large RNA-protein 

molecular complex upon which splicing 

of pre-mRNA occurs. 

375 AP-3 adaptor complex 4 0.67 Cellular transport, 

vesicular transport 

This complex is responsible for protein 

trafficking to lysosomes and other 

related organelles. 

25 20S proteasome 14 0.5 Cell cycle, protein 

fate 

Proteasomal degradation 

(ubiquitin/proteasomal pathway), 

protein processing (proteolytic) 

137 Chaperonin- 8 0.67 Protein fate A multisubunit ring-shaped complex 

that mediates protein folding in the 
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containing T-complex cytosol without a cofactor. 

Table 4.8 – Additional conserved complexes found in human 

ID Complex name Size Jaccard 

score 

Functional category Function description 

4392 EIF3 complex (EIF3A, EIF3B, 

EIF3G, EIF3I, EIF3C) 

5 0.57 Translation Translation initiation 

4403 EIF3 complex (EIF3A, EIF3B, 

EIF3G, EIF3I, EIF3J) 

5 0.57 Translation Translation initiation 

104 RNA polymerase II core complex 12 0.69 Transcription mRNA synthesis 

2685 RNA polymerase II 17 0.59 Transcription mRNA synthesis 

2686 BRCA1-core RNA polymerase II 

complex 

13 0.64 Transcription mRNA synthesis 

471 PCAF complex 10 0.6 Transcription, DNA processing DNA conformation 

modification (e.g. chromatin), 

modification by acetylation, 

deacetylation, organization of 

chromosome structure. 

2200 RFC2-5 subcomplex 4 0.5 DNA processing DNA synthesis and replication 

387 MCM complex 6 0.6 DNA processing Chromosome maintainance, 

DNA synthesis and replication 

369 MMR complex 2 4 0.67 DNA processing DNA damage repair 

290 MSH2-MLH1-PMS2-PCNA 

DNA-repair initiation complex 

4 0.67 DNA processing DNA damage repair initiation 

1169 SNARE complex 4 0.6 Cellular transport, vesicular transport Vesicle fusion, synaptic vesicle 

exocytosis 

562 LSm2-8 complex 7 0.67 RNA processing mRNA splicing 

561 LSm1-7 complex 7 0.67 RNA processing Control of mRNA stability 

during splicing 

3036 Ubiquitin E3 ligase (SKP1A, 

SKP2, CUL1, CKS1B, RBX1) 

 

5 0.5 Cell cycle, protein fate Mitotic cell cycle and cell cycle 

control, modification by 

ubiquitination, deubiquitination 

2188 Ubiquitin E3 ligase (CDC34, 

NEDD8, BTRC, CUL1, SKP1A, 

5 0.5 Cell cycle, protein fate Mitotic cell cycle and cell cycle 

control, modification by 
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RBX1) ubiquitination, deubiquitination 

2189 Ubiquitin E3 ligase (SMAD3, 

BTRC, CUL1, SKP1A, RBX1) 

5 0.5 Cell cycle, protein fate Mitotic cell cycle and cell cycle 

control, modification by 

ubiquitination, deubiquitination 

 

4.3.3. The result of complex detection in the conserved subnetworks 

To further understand the advantage of the interolog network on leveraging conservation 

for better detection of complexes, we performed another experiment alternative to the 

interolog network as follows. We predicted complexes from the subset of protein interactions 

of the first species that are conserved in the second (we call this the conserved subnetwork in 

the first species). The advantage of conserved subnetworks is that is does not produce  

duplicated edges in cases of one-to-many and many-to-many homology relationships (revisit 

Figure 4.2). However, this can only find complexes of one species at a time, so we map these 

predicted complexes onto the PPI network of the other species to identify the corresponding 

conserved complexes. We employed CMC to do clustering on the conserved subnetworks.  

Complex prediction from conserved subnetworks showed similar result as COCIN –16 

additional conserved complexes in human and 9 additional conserved complexes in yeast are 

found. This supported the purpose of IN – to leverage conserved interactions for improving 

complex prediction.  

Figure 4.6 shows two other examples that explain why additional conserved complexes 

are found by COCIN but missed by CMC. We see from this picture that the predicted human 

complex from IN (the leftmost figure) and the corresponding predicted complex from the 

conserved subnetwork (the center figure) were contained in a larger CMC-predicted complex 

(the rightmost figure) from the original PPI networks. This larger complex included several 

noisy proteins that reduce the accuracy of the complex, thereby causing the complex to be 

missed. 
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Figure 4.6  - Some examples of additional conserved complexes found in IN 

The clusters detected from the original PPI networks include several noisy proteins and 

noisy interactions (false positives), thereby reducing their Jaccard accuracies. 

4.3.4. Comparisons with other complex detection methods in PPI networks 

Similar results were obtained using the other two methods HACO and MCL as well, 

thereby supporting the effectiveness of COCIN in identifying conserved protein complexes. 

Tables 4.5 and 4.6 present these comparisons in more details, while Figures 4.7 and 4.8 

highlight further substantiate these results. 
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Figure 4.7 - COCIN compared to HACO 

COCIN over the interolog network identifies significantly more conserved complexes 

compared to direct clustering of the original PPI networks using HACO [20]. 
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Figure 4.8 - COCIN compared to MCL 

COCIN over the interolog network identifies significantly more conserved complexes 

compared to direct clustering of the original PPI networks using MCL [21]. 

4.3.5. Integrating domain information significantly enhances interolog 

construction  

Finally, Table 4.9 summarizes the quality of our testing dataset for conserved protein 

complexes between yeast and human. We compared the number of benchmark conserved 

complexes found in both human and yeast using mappings from Ensembl and OrthoMCL 

under multiple conservation score thresholds (Figure 4.9). Note that Ensembl contains 

homology information based on both sequence similarity as well as domain conservation, 
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while OrthoMCL is predominantly based on sequence similarity. We noticed that using 

Ensembl homology information can yield more conserved complexes at all conservation 

score thresholds. Further, Figure 4.10 shows that there exist 1-to-many and many-to-many 

relationships of conservation between human and yeast complexes. 

Table 4.9 – Details of gold standard testing dataset for conserved protein complexes 

between human and yeast 

Score usage  MSJ threshold 

Threshold  50%  

# conserved yeast 

complexes  

42/149 with size>3 (28.1%)  

Total: 79/408 (19.3%)  

# conserved human 

complexes  

118/722 with size>3 (16.3%)  

Total: 219/1843 (11.9%)  

 

 

Figure 4.9 - Assessment of Ensembl and OrthoMCL based homology for IN construction and 

conserved-complex detection 
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Figure 4.10 – Some examples of the one-to-many and many-to-many relationships of 

complex conservation between human and yeast 
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Existing local network alignment methods (NetworkBLAST [Sharan et al., 2005a], 

MaWIsh [Koyuturk et al., 2006], Graemlin [Flannick et al., 2006]) used whole-sequence 

BLAST score for identifying homologous proteins before constructing the aligned network, 

while COCIN uses homology that considers protein domain similarity. Because homologous 

proteins take the decisive role in identifying conserved protein complexes, the comparisons 

are made by comparing the aligned network (which is equivalent to an interolog network) 

produced by using whole-sequence BLAST score based homology (OrthoMCL homology) 

and the interolog network that uses homology with domain similarity (Ensembl homology). 

The result showed that the later produced a better-quality interolog network (with a higher 

number of aligned nodes and interologs) on human and yeast data, thereby improving the 

conserved complex detection (Section 4.3.5). 

Here, we used OrthoMCL as a substitute for the whole-sequence similarity due to 

technical difficulties of running BLAST for a large number of proteins. We compared the 

performance of using OrthoMCL against using Ensembl, which uses domain conservation 

along with sequence similarity to determine orthology. Table 4.10 and Figure 4.11 show that 

we obtain an overall improvement in terms of the number of mapped protein pairs, interologs, 

as well as conserved protein complexes in both human and yeast by incorporating domain 

information (through Ensembl). This substantiates the improved performance of COCIN over 

traditional sequence-similarity based methods. 

Table 4.10 - Homology data: Ensembl and OrthoMCL 

Ensembl [Flicek et al., 2012] contains protein orthologs based on sequence similarity as 

well as domain information, while OrthoMCL [Li et al., 2003] is predominantly based on 

sequence similarity. As we can see from the table, using domain information (through 

Ensembl) generates significantly more many-to-many ortholog mappings thereby enhancing 

our interolog construction.   

  Ensembl database OrthoMCL 

database 

 

# Ortholog groups:  

# 1-to-1 groups 1096 1153 

# 1-Yeast-to-many groups 756 434 

# 1-Human-to-many groups 116 116 
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# many-to-many groups 197 167 

Total: 2165 (5503 pairs) 1870 

# Human paralog groups: 2573 2435 

# Yeast paralog groups: 426 393 

Total # homolog groups: 5164  4698 

 

 

 

Figure 4.11 – Comparison between using Ensembl and OrthoMCL in constructing the 

interolog network 

Ensembl [17] contains protein orthologs based on sequence similarity as well as domain 

information, while OrthoMCL [18] is predominantly based on sequence similarity. As we can 

see from the table, using domain information (through Ensembl) generates significantly more 

many-to-many ortholog mappings thereby enhancing our interolog construction.   
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Chapter 5 – Conclusion 

5.1. Main contributions  

Identifying conserved complexes between species is a fundamental step towards 

identification of conserved mechanisms from model organisms to higher level organisms. 

Current methods based on clustering PPI networks do not work well in identifying conserved 

complexes, and they are severely limited by lack of true interactions and presence of large 

amounts of false interactions in existing PPI datasets. Therefore, the main contributions of 

this thesis can be summarized as:  

1. We first presented a detailed survey on computational methods for identifying 

conserved protein complexes between species, which classifies the existing methods into two 

approaches: local network alignment and network querying (Chapter 3). A brief overview on 

ortholog assignment methods are also given in Chapter 2. 

2. We proposed a novel method, COCIN, which is based on building interolog networks 

from the PPI networks of species to identify conserved complexes. Our experiments on yeast 

and human datasets revealed that our method can identify considerably more conserved 

complexes that plain clustering of the original PPI networks. Further, we demonstrated that 

integrating domain information generates many-to-many ortholog relationships which 

significantly enhances the interolog network quality and throws further light on conservation 

of mechanisms between yeast and human. 

3. We built a testing dataset for conserved protein complexes between human and yeast. 

By proposing a score to measure the conservation level between protein complexes, a 

collection of conserved complexes pairs between yeast and human is built and considered as 

a gold standard dataset during this work. As currently there is no benchmark dataset for 

conserved protein complexes between human and yeast in the literature, the author hopes that 

this dataset could be useful for reference. Furthermore, this step also gives us a detailed 

examination on the conservation level between manually curated protein complexes of 

human and yeast. 
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5.2. Limitations 

The thesis is not without limitations. All the experiments and analyses about conserved 

protein complexes were performed on only one pair of species: human and yeast. This is 

because yeast is the most widely studied organism and its PPI network is more complete 

compared to other species, while human is the most important species we want to study and 

its PPI network is far from complete. Though this might be an ideal pair of species to study 

the protein complex conservation, this work need be also extended on many other pairs of 

species such as: human and mouse, human and fly. All of such studies will broaden our 

understanding about human protein complexes based on those that are well known in other 

species. Based on this we recommend the following directions for future research. 

5.3. Recommendations for further research 

1. Detection of conserved protein complexes between human and other well studied 

species: Mouse (Musculus) should be an important species to be compared to human in terms 

of protein complexes. Because mouse is mammalian, it is curious to know if the level of 

conservation in protein complexes between human and mouse is higher than human and 

yeast. The answer for this question can also help us in understanding more about protein 

complex evolution. 

2. Protein complex evolution by protein domains needs more explorations. One of the 

things we can do is to union many existing homology datasets that considering protein 

domain conservation to increase the coverage of function-conserved proteins. We can also 

devise a ortholog assignment method by using protein domains queried from Pfam database, 

because we can infer whether two proteins having similar functional domains by querying 

Pfam. 
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