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ABSTRACT

Database systems are adept at performing efficient computations over large

datasets, as long as the queries are issued by users who understand the schema

and can formulate their goals in the precise framework of SQL. However, the

explosion of data over the past two decades has led to more and messier pro-

cessing tasks than those envisioned by the creators of the SQL standard in the

1970s. One of the reasons for this departure from the classical model of us-

er interaction with a DBMS is the fact that some crucial information is often

unavailable.

In this thesis, we work towards designing solutions for relational databas-

es to discover the information that is often undocumented and yet useful for

people to understand and work with the data. More specifically, we first pro-

pose a general rule, termed Randomness, which effectively discovers meaningful

foreign keys, including multi-column foreign keys. Second, we design a data ori-

ented solution that identifies strong relationships between relational columns

and clusters them into semantic attributes, i.e. the columns that have same or

similar meaning are clustered together. Lastly, we provide a principled solution

to discover complex generating queries for the cases where the user has the

query answer and wants to find out the generating query for further investiga-

tion and analysis. Such information is invaluably helpful for database users to

express their goals into SQL queries and generally to better understand and ex-

plore the data. We validate our proposed approaches via extensive experiments

using real and benchmark databases.
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CHAPTER 1

Introduction

In the age of information explosion, people are facing technical difficulty in

organizing, storing and managing the data. For that reason, relational database

systems are developed to provide an effective tool that simplifies the above tasks

and assists people in extracting useful information in a timely fashion. However,

as the databases increase, both in size and number, it is getting more and more

difficult to understand and work with the data.

One of the reasons for this consequence is the fact that some crucial informa-

tion, such as the database structure, integrity constraints and view definitions,

are often unavailable due to insufficient (or missing) documentation or perfor-

mance and security concerns. When this happens in enterprise databases, which

easily contain hundreds or thousands of inter-linked tables, even domain expert

users will have a difficult time understanding the data in order to express their

goal in the form of SQL queries. Therefore, to ensure that the databases are as

useful and helpful as they ought to be, automatic tools and methodologies are

required to help people understand the data in relational databases.

In this chapter, we first briefly review the data representation and explo-

ration in relational databases, and attempt to analyse the reasons why relational

data are often not easy to interact with. Subsequently, we overview our practi-

cal solutions to assist users in understanding the data by means of discovering

useful information from the data. Finally, we summarize the objectives of this

research work and outline the thesis organization.

1



CHAPTER 1. INTRODUCTION

1.1 Brief Review of Relational Databases

A relational database is a collection of data items organized based on relational

model [20], which was first introduced by Edgar F. Codd of IBM Research in

1970. Due to its simplicity and mathematical foundation, the relational model

has attracted immediate attention and become the predominant data model

in storing and managing the data. It forms the basis for today’s commercial

database management systems (DBMSs) including IBM’s DB2 and Informix,

Microsoft’s SQLServer and Access, Oracle and Sybase. In addition, several

open source systems, such as MySQL and PostgreSQL, are implemented based

on the relational model as well.

1.1.1 Data Representation

The relational model represents the database as a collection of relations (or

tables), where each relation is a table with rows (or tuples, or records) and

columns (or attributes, or fields). The relational schema specifies various prop-

erties of the tables in the database, e.g., the table names, the columns within

each table, the type of data contained in each column, indices, constraints

etc. [50] One of the most important constraints is the foreign key constrain-

t that defines the referential relationship between columns of different tables.

Specifically, the foreign key column in the referencing table must be a subset

of the primary key column in the referenced table. The schema graph is often

used to visualize the structure of a database, and defined as follows: the n-

odes correspond to the tables and the edges to the foreign/primary key (fk/pk)

relationships.

We take a portion of a UNIVERSITY database as an example, which con-

tains six tables, STUDENT, STAFF, DEPARTMENT, MODULE, PREREQUISITE and

GRADE REPORT. As shown in Figure 1.1, the schema graph presents the tables,

columns in each table, data type and the foreign/primary key relationships

between the columns.

1.1.2 Querying Relational Databaes

SQL (Structured Query Language) is a standard language designed for accessing

and manipulating the data held in relational databases. SQL is comprehensive:

2



CHAPTER 1. INTRODUCTION

STUDENT

PK id:  INTEGER

FK major: INTEGER

name: STRING
age: INTEGER
gpa: REAL
prgm: STRING

MODULE

PK id:  STRING

FK1
FK2
FK3

tutor: INTEGER
dept: INTEGER
TA: INTEGER

name: STRING
credit: INTEGER

STAFF

PK id:  INTEGER

FK dept: INTEGER

name: STRING
salary: REAL
addr: STRING
phone: STRING

DEPARTMENT

PK id:  INTEGER

FK dean: INTEGER

name: STRING

PREREQUISITE

FK prereq: STRING

module: STRING

GRADE_REPORT

FK1
FK2

stud: INTEGER
course: STRING

grade: STRING

Figure 1.1: Excerpt of the schema graph of the UNIVERSITY database.

it has statements for specifying the data definitions, for defining integrity con-

straints, for creating views on the database and for altering the schema and the

data etc.

The most common operation in SQL is the query, which is the way to re-

trieving information from a database. Queries in SQL can be very complex.

The basic form of SQL queries is a SELECT-FROM-WHERE structure, where

the SELECT clause specifies the projection attributes (the attributes whose val-

ues are to be retrieved), the FROM clause lists the tables required to process

the query and the WHERE clause specifies the selection conditions and the join

conditions (if any). More complex queries contain aggregates, arithmetic ex-

pressions, nested queries etc. by means of GROUPBY, EXISTS and other oper-

ators. A query that involves only selection and join conditions plus projection

attributes is known as a Select-Project-Join (SPJ) query. The next example is

a SPJ query with two projection attributes, one selection condition and two

join conditions over the UNIVERSITY database (see Figure 1.1 for the schema

graph).

Query 1: Retrieve the name and address of all staff who work for the

‘Computer Science’ department and have teaching experience.

3



CHAPTER 1. INTRODUCTION

SELECT STAFF.name, STAFF.addr
FROM STAFF, DEPARTMENT, MODULE
WHERE DEPARTMENT.name = ‘Computer Science’
AND STAFF.dept = DEPARTMENT.id
AND STAFF.id = MODULE.tutor

1.2 What Makes the Data Not Understand-

able

Database systems are adept at managing large datasets and performing efficient

computations as long as the queries are issued by the users who understand the

schema and are familiar with the data. Nevertheless, understanding the data

in complex databases is sometimes rather challenging.

First of all, the schema information, which is the basis for users to under-

stand the database structure, is often unavailable. Sometimes, this is the result

of poorly documented legacy databases [24, 25]. The following was reported in

a real case study of the Holy Cow Corp. in [24].

“The documented metadata was a microscopic part of the metadata

needed to correctly interpret the data. ”

“Furthermore, the taskforce found that there were many changes

made daily without documentation or notification.”

Sometimes it may even be the deliberate decision of the database admin-

istrator to not specify integrity constraints (e.g., foreign/primary key relation-

ships) for performance considerations. In other cases, it is not feasible to specify

those constrains due to the data inconsistencies that may arise from data inte-

gration or database evolution. However, it is nearly impossible to extract useful

information through SQL queries without understanding the schema. For ex-

ample, one has to know the foreign/primary key relationships between STAFF,

DEPARTMENT and MODULE to form the join conditions in the SQL of Query 1.

Indeed, developing algorithms for the automatic discovery of schema informa-

tion has attracted much interest in research community and is an ongoing area

of research.

In a more complex scenario, the desired information may be spread across

multiple database sources, each with its own schema. In order to issue appro-

priate SQL queries and extract useful information out of the relevant sources,

4



CHAPTER 1. INTRODUCTION

one has to understand each local schema as well as the global structure. This re-

quires the identification of semantic correspondence between different database

instances. Finding such matching relationships, also known as schema match-

ing, is not only a crucial step in exploring and querying the databases but also

a fundamental task in data integration process.

In practice, many database users could share database instances. They

compute an SQL answer and store it into a view or a temporary table, then

share it without annotating it with the generating query. To make the matters

worse, even the table creator himself might forget the generating query after

a while if it is not documented properly. However, knowing how tables are

generated is very useful. For instance, someone may notice inconsistencies in

the output and want to investigate, or they may want to generate a slightly

different output for further analysis. Awareness of the generating query of the

output tables can also prevent creating redundant tables.

Finally, the explosion of data over the past two decades aggravates the

above problems. As the databases grow more massive and the schemata become

more complex, understanding and exploring the databases becomes extremely

challenging. It is thus imperative to develop automatic tools that simplify the

process of understanding the relational data.

1.3 Uncovering the Hidden Relationships in the

Data

In this thesis, we aim to design new approaches to analyze database instances

to efficiently and accurately discover information that is useful for assisting

users in understanding and exploring the relational databases. In view of the

practical scenarios that we discussed in the previous section, we tackle the task

from the following three perspectives.

1.3.1 Identification of Foreign Key Constraint

As we have seen in earlier discussion, knowledge of database schema enables

richer queries (e.g., joins) and more sophisticated data analysis. For that reason,

we first bring our attention to one of the most important schema elements, the

foreign key constraint.
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id major … 

1 12 

… … 

5000 6 

id dean name 

1 69 

… … 

20 34 

id dept … 

1 9 

… … 

100 13 

DEPARTMENT STAFF STUDENT 

Figure 1.2: A subset of the UNIVERSITY database schema with three foreign
keys.

We propose a novel approach for efficiently and accurately discovering mean-

ingful foreign keys in relational databases, including multi-column foreign keys,

which have not been considered by pervious studies. Even for single-column

foreign keys, existing work concentrates mainly on identifying inclusion depen-

dencies (the detailed review will be provided in Chapter 2). This is simply

because the containment relationship between the primary/foreign key column

is the only formal requirement for specifying the foreign key constraint. Howev-

er, checking only for inclusion can easily lead to a large number of false positives.

Consider the columns in the UNIVERSITY database in Figure 1.2 as an exam-

ple. There are six columns in the figure containing integers ranging in different

intervals. While STUDENT.id fully contains the other five integer columns,

none of them is in fact related to STUDENT.id. Thus, a simple inclusion test

would incorrectly report something like STUDENT.id and STAFF.dept is in

a foreign/primary key relationship. This scenario arises frequently in real-world

databases since the auto-increment fields are commonly used in practice.

However, our approach can effectively reduce the number of false positives

produced by the inclusion test. Regarding to the example in Figure 1.2, on-

ly the three true foreign keys, i.e. STUDENT.major → DEPARTMENT.id,

DEPARTMENT.dean → STAFF.id and STAFF.dept → DEPARTMENT.id

will be reported as meaningful foreign keys in the output of our approach.

Our approach is based on the key insight that in most cases the values in

a foreign key column form a nearly uniform random sample of the values in

the primary key column. In other words, it is highly unlikely that a database

instance is designed such that a foreign key column is a biased sample of the
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respective primary key, e.g., a prefix or a suffix in the ranked order. Even if

this is the case at the first time the database instance is populated, for dynamic

databases the distribution of the values in foreign/primary key is expected to

change over time, and eventually such bias should be eliminated. Based on this

observation, we conjecture the closer a column F is to a uniform random sample

of a primary key column P , the higher the likelihood that the (F, P ) pair is a

meaningful foreign/primary key constraint. We thus propose a novel foreign key

discovery rule, termed Randomness, that uses the data distribution (previous

works apply simple heuristic rules such as column names and min/max values

to prune the false positives produced by the inclusion test) to measure the

randomness of a candidate foreign key column with respect to a specific primary

key column. This way, we can quantify the likelihood that a pair of columns

that satisfy inclusion is a useful foreign/primary key constraint. Applying the

randomness rule to the example in Figure 1.2, it is clear that unrelated column

pairs like STUDENT.id and DEPARTMENT.id can be effectively eliminated

from the candidates which have passed the inclusion test, since the subset

column (DEPARTMENT.id) forms a biased sample (prefix) of the other one.

1.3.2 Discovery of Semantic Matching Attributes

The second practical problem we address is automatic discovery of semantic

matching attributes in relational databases. We have seen earlier that the

data in relational databases are described in the form of relational schema.

While the schema provides us a way to specify various properties of the data

contained in the databases, including the data type for each column and the

foreign/primary key relationships between columns, it has certain limitations

in practice. In particular, one cannot accurately name the columns that can be

“semantically” joined/unioned (other than the foreign/primary keys) by just

looking at the schema only and not fully understanding the data. Clearly, the

columns that are in the same primitive data type are very likely to be unrelated,

e.g., STUDENT.gpa and STAFF.salary are both real numbers. To make the

matter worse, the foreign keys are sometimes not specified in the schema for

various reasons (see discussion in Section 1.2).

In this thesis, we design an automatic, unsupervised and purely data ori-

ented approach for clustering relational columns into semantic matching at-
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MODULE.id 
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GRADE_REPORT.stud 

MODULE.TA 

 

Figure 1.3: The semantic matching attributes of the UNIVERSITY database.

tributes. We do not rely on the existence of any external knowledge, e.g.,

foreign/primary key relationships, column names etc. As an illustration, we

show the clustering of the columns in the UNIVERSITY database (see Fig-

ure 1.1) in Figure 1.3. (The columns that are absent in Figure 1.3 do not

have matching columns and form a cluster on their own.) We see from the

figure that the following types of columns are clustered together: (1) the for-

eign/primary key, e.g., GRADE REPORT.course and MODULE.id, (2) the

foreign keys that refer to the same primary key, e.g., GRADE REPORT.course

and PREREQUISITE.prereq, (3) even the columns that have no explicit

relationship but semantically equivalent, e.g., GRADE REPORT.course and

PREREQUISITE.module. Two more types are possible when views exist in

the database instance: (1) the column in the view table and its corresponding

column in the base table, (2) the columns (in view tables) that are from the

same corresponding column in the base table.

Our approach provides a robust tool that identifies all of the above types of

relationships (our first work has studied the type 1 but not the rest of them) and

reports a clustering of columns into semantic matching attributes. Apparently,

such information is invaluably helpful for database users to formulate their join

queries and generally, to better understand and work with the data. Our work

can also be used as a valuable addition to the existing techniques for designing

automated data integration and schema mapping tools.

1.3.3 Mining the Generating Query for SQL Answer Ta-

ble

The third problem we focus on is the following inverse problem: suppose that

a user already has the output table of an SQL query and the source database

(or multiple database instances), and intents to discover the generating query

8
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that produces the table.

Note that for most of the queries (if not all), there exist instance-equivalent

queries [56], i.e. the queries that produce equivalent output table with respect to

a database instance. By default, our approach returns the instance-equivalent

query with the smallest complexity assuming that a complexity measure (e.g.,

the number of joins/tables etc.) is pre-defined over the queries. A few variants

of the problem are as well considered in our approach. For example, one may

wish to generate a query that outputs a superset of the given SQL answer. In

other cases, one may want to know all of the instance-equivalent queries.

As discussed previously, this problem has numerous potential applications,

both by itself, and as a building block for other problems. For instance, in the

area of database exploration and analysis the ability to discover the query for

SQL answer is very useful, especially when the required documentation and

metadata are incomplete, missing or nowhere accessible. In addition, deriving

the instance-equivalent queries could aid in uncovering the hidden relationships

that are interesting to the users but unknown a priori. As an example, one might

be surprised to find that the students who did well in a particular module are

in fact the ones who come from a particular department (the example queries

are shown below in Query 2 and Query 3) through the instance-equivalent

queries.

Query 2: Retrieve the id and name of all students who got ‘A+’ grade in

‘Decision Making’ module.

SELECT STUDENT.id, STUDENT.name
FROM STUDENT, MODULE, GRADE REPORT
WHERE STUDENT.id = GRADE REPORT.stud
AND MODULE.id = GRADE REPORT.course
AND MODULE.name = ‘Decision Making’
AND GRADE REPORT.grade = ‘A+’

Query 3: Retrieve the id and name of all students who are from ‘Computer

Science’ department in ‘Decision Making’ module.

However, solving this problem is non-trivial. First of all, the number of

potential candidate queries is usually super-exponential to the query graph

size, especially for the case of cyclic schema graph. Thus, simple solutions like

brute-force approaches that enumerate and test all possible queries (up to some

complexity) are certainly not suitable.
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SELECT STUDENT.id, STUDENT.name
FROM STUDENT, MODULE, GRADE REPORT, DEPARTMENT
WHERE STUDENT.id = GRADE REPORT.stud
AND MODULE.id = GRADE REPORT.course
AND STUDENT.dept = DEPARTMENT.id
AND MODULE.name = ‘Decision Making’
AND DEPARTMENT.name = ‘Computer Science’

DEPARTMENT

STAFF2STAFF1
id name id name

(a) Q1

DEPARTMENTSTAFF1
id name

STAFF2
id name

MODULE1 MODULE2

(b) Q2

DEPARTMENTSTAFF1
id name

STAFF2
id name

MODULE

(c) Q3

Figure 1.4: Examples of join queries over the UNIVERSITY database.

Consider the following queries (the query graphs are illustrated in Figure 1.4

where the projection tables are with the projection columns next to them):

Q1: Find all pairs of staff members who work in the same department.

Q2: Find all pairs of staff members who work in the same department and

have teaching experience.

Q3: Find all pairs of staff members who work in the same department and

teach (taught) the same module.

Clearly, the outputs of these three queries are overlapping but not identical.

Effectively distinguishing between the queries that have similar results become

another challenge.

We have a crucial insight that any join query can be characterized by the

combination of a simple structure, called a star, and a series of merge steps

over the stars. Based on the observation, we propose an efficient approach that

uses the star construct to discovers arbitrary join queries.
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1.4 Objectives and Contributions

To summarize, the following specific problems exist in relational databases in

reality:

• The foreign/primary key relationship, one of the most important con-

straints in a database, is often not known to database users for various

reasons. Without the information of the foreign keys, performing da-

ta exploration and analysis become rather challenging, especially for the

databases with complex schema.

• Even when the database schema is available (but not additional helpful

documentation), the schema itself is inadequate for users to fully under-

stand the data in terms of the semantically joinable columns.

• Unless the original query is somewhere properly documented, it is of great

difficulty for database users to figure out the query that generates an

output table and to further investigate or utilize it.

In this thesis, we work towards designing solutions for relational databases

to discover the information that is often undocumented and yet useful for people

to understand and work with the data. In particular, we seek to achieve the

following specific objectives:

• To design an effective approach to discover foreign key constraints. The

approach should be able to reduce a large number of false positives pro-

duced by the inclusion checking in order to make the identification of

useful relationships feasible.

• To provide a solution to identify the strong relationships between columns

in terms of the semantic equivalence, i.e. to identify the strongly con-

nected columns that have same or similar meaning within the context of

certain domain.

• To study the problem of discover the query for SQL answer tables and

design a principled solution. The solution should be able to efficiently

prune out a large number of false candidates and scale to large databases

and complex queries.
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The main contributions of this thesis are summarized as follows: First,

we propose a novel rule, termed Randomness, which can effectively discovers

meaningful foreign keys, including multi-column foreign keys that have not been

considered by previous work. Second, we introduce a robust and data oriented

solution that use statistical measures to cluster relational columns into semantic

attributes. Finally, we propose an efficient method for discovering arbitrary join

queries (in contract, related prior work imposes restrictions on the structure

of the query). We design several optimizations that significantly reduce the

running time, making our method scalable.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 discusses the related works.

Chapter 3 addresses the problem of discovering single and multi-column

foreign keys. A novel distance measure is defined to quantify the likelihood

that a pair of columns which satisfy inclusion is a meaningful foreign/primary

key constraint.

Chapter 4 studies the problem of identifying semantic matching attributes

from the data. A two-phase approach is presented to cluster relational columns

into attributes based on their semantic equivalence.

Chapter 5 introduces a principled approach to the problem of discovering

complex join queries for SQL answer tabless. An efficient algorithm is proposed

to efficiently explore the set of candidates and quickly prune out a large number

of infeasible queries.

Chapter 6 concludes the thesis and discusses possible future work.

12
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Literature Review

There have been a lot of research work proposed to assist users in understanding

and interacting with database systems from various aspects. In this chapter,

we review those that are closely related to this thesis. In particular, we first

discuss the existing techniques on discovering the key-based relationships. We

next introduce current solutions of clustering relational columns. We also briefly

review the schema matching techniques. Finally, we discuss the work on mining

query structures and analyse the limitations of the prior methods.

2.1 Mining the Key-based Relationships

Understanding the structure and relationships in databases is important and

yet a difficult task especially for large industrial-scale databases with poor doc-

umentation. Tools and techniques have been proposed to make sense of the re-

lational data from various aspects. For example, the tool developed by AT&T,

called Bellman [25], collects compact statistical summaries of the database con-

tents and uses these summaries to mine the database structure. In this section,

we mainly review the related work on discovering primary and foreign keys.

2.1.1 Discovery of Primary Keys

A primary key is a special case of a functional dependency [19], since it trivially

determines the values of all columns in the same table. A large body of work
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has concentrated on exact and approximate functional dependencies.

Functional Dependencies

Functional dependencies (FDs) are relationships between attributes of a rela-

tion: Given a relation R, a set of attributes X ⊆ R is said to functionally

determine another set of attributes Y ⊆ R, written as X → Y , if and only if

tuples that agree in all attributes of X must agree in all attributes of Y . A FD

is said to be minimal if Y is not functionally dependent on any proper subset

of X. Algorithms for computing minimal functional dependencies are proposed

in [34, 38, 57].

Huhtala et al. proposed and implemented TANE system [34, 33] for find-

ing both functional and approximate dependencies from large databases. Their

approach is based on the idea of partitioning the set of rows with respect to

their attribute values. The use of partitions allows them to easily identify

erroneous/exceptional values and quickly discover approximate functional de-

pendencies. Dep-Miner [38] takes in stripped partition databases as input. A

stripped partition database encompasses stripped partitions for each attribute.

A stripped partition is no difference with the partition in TANE, except that the

partition must have a size greater than one. Using such partitions, agree sets

and maximal sets are then generated. Finally, FDs according to the maximal

sets are found. Both TANE and Dep-Miner search for FDs in a breadth-first or

levelwise manner. FastFDs [57] differs from Dep-Miner only in that FastFDs

uses a depth-first search strategy.

Primary Keys

Little work has tackled the discovery of primary keys in particular, especial-

ly multi-column primary keys (a.k.a composite keys). Even for single-column

keys current algorithms use a brute-force approach. The Bellman system [25]

implemented a levelwise key finding algorithm simlar to TANE [33]. The state

of the art for efficient, automatic discovery of single and multi-column primary

keys is GORDIAN [54]. GORDIAN formulates the problem as a cube com-

putation [29] that corresponds to the computation of the entity counts of all

possible column projections. The algorithm first discovers all non-keys, since

a non-key can usually be identified after looking at only a small subset of the
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entities.

2.1.2 Discovery of Foreign Keys

Inclusion Dependencies

Surprisingly, very little work has dealt with discovery of foreign keys. Most

work focuses on computing inclusion dependencies only [41, 17, 10, 42, 37].

Bauckmann et al. [10] proposed Spider for efficiently detecting single-

column inclusion dependencies. The algorithm first sorts the distinct values

in all columns and then uses a parallel merge-sort like algorithm to compute all

inclusions simultaneously. Spider computes inclusions exactly, but the cost is

super-linear to the size of the data. The algorithm is also based on paralleliza-

tion, where all columns are scanned concurrently.

A similar approach was proposed by Marchi et al. [41], using a linear pass

over the data to compute an inverted index over each data type (e.g., strings,

floats, integers). Subsequent passes over the index can discover single/multi-

column inclusions.

Marchi and Petit [42] proposed a hybrid technique based on association

rule mining to find low-dimensional inclusions and an optimistic exploration

of high-dimensional inclusions using clique-finding. Koeller and Rundensteiner

[37] utilize clique-finding for discovering high-dimensional inclusions. Partial

inclusion is not addressed in these works.

Dasu et al. [25] proposed using minhash sketches to find potential associa-

tions between columns (or sets of columns) as a function of Jaccard coefficient.

However, Jaccard is not a good indicator of inclusion coefficient when the set

sizes differ substantially.

Foreign Keys

Inclusion is not a sufficient condition for foreign keys, resulting in a large num-

ber of spurious keys. Rostin et al. [51] introduced a machine learning approach

for discovering foreign keys that is based not only on inclusion, but on a variety

of other properties of good foreign keys. The authors use the Spider algorithm

to discover all inclusion dependencies, and use SQL queries to evaluate various

properties on the data, resulting in a very expensive pre-processing step. Most
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importantly, the algorithm requires a learning step, which implies the availabil-

ity of datasets with known foreign/primary keys. The quality of the training

dataset affects performance significantly. Finally, multi-column foreign keys are

not addressed in that work.

Lopes et al. [39] proposed a query workload based approach to discover

foreign key relationships based on the assumption that SQL join queries use

foreign/primary keys. This approach is based on the availability of a query

workload.

2.2 Mining Semantic Relationships

From a data analysis perspective, knowing the semantic relationships between

relational columns is a necessary step to understand and process the data. Pre-

vious work tangentially related to discovering semantic relationships is that

on quickly identifying columns that contain similar values. A number of sta-

tistical summaries have been developed for that purpose, including min-hash

signatures [16], and locality sensitive hashing [28]. These techniques cannot be

used for discovering semantic relationships, since they only capture the data

intersection relationships between columns.

2.2.1 Type-based Categorization

In the context of relational databases, there has been little work that concen-

trates on classifying columns into semantic clusters. The only previous work

that we are aware of is by Ahmadi et al. [7], that utilizes q-gram based signa-

tures to capture column type information based on formatting characteristics of

data values (for example the presence of ‘@’ in email addresses). The technique

builds signatures based on the most popular q-grams within each column and

clusters columns according to basic data types, like email addresses, telephone

numbers, etc. In that respect, the goal of this work is orthogonal to ours: It

tries to categorize columns into generic data types.

2.2.2 Schema Matching

Schema matching is the process of identifying that two columns are semanti-

cally related. Automating the process of schema matching has been one of the
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fundamental tasks of data integration. Related work from the field of schema

matching has concentrated on three major themes.

• The first is semantic matching that uses information provided only by the

schema and not from particular data instances.

• The second is syntactic schema matching that uses the actual data in-

stances.

• The third uses external information, like thesauri, standard schemas, and

past mappings.

Most solutions use hybrid approaches that cover all three themes. Rahm and

Bernstein [49] conducted a survey on schema matching techniques. Current ap-

proaches use string-based comparisons (prefix/suffix tests, edit distance, etc.),

value ranges, min/max similarity, and mutual information based on q-gram

distributions [35, 26, 27, 40, 43].

2.3 Mining Query Structure

There have been a lot of research work that aim to mine the query structure

for a particular SQL answer table. Formally, they address the following reverse

engineering problem: Given an output table Out, discover the query Q that

generates Out. All related results we are aware of impose restrictions on the

structure of the query graph Q. Thus, they only explore a subspace of possible

solutions. We mention the specific restrictions for each case as below.

2.3.1 Query by Output

The algorithm proposed in [56], dubbed TALOS, focuses on the selection condi-

tions of an SPJ query: given a query graph Q, it computes its output Out(Q),

then discovers the best selection conditions that, when applied to Out(Q), gen-

erate table Out. The graph of Q is assumed to be a subgraph of the schema

graph, and computed by exhaustive enumeration. However, many queries are

not subgraphs of the schema graph; e.g., the queries in Figure 1.4 (see Figure 1.1

for its schema graph). Moreover, exhaustive enumeration is either infeasible or

impractical.
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2.3.2 Synthesizing View Definitions

The work by Das Sarma et al. [52] has a problem statement that Out is a view

instance and the goal is to find the view definition. They consider different

metrics for ordering queries:

• Family of queries: a restriction that forces Q to be from a specific family

of queries, e.g., single predicates or conjunctive queries.

• Level of approximation: a relaxation that allows the output of Q is close

to but not exactly Out.

• Succinctness: a factor that measures the complexity of the return query

Q.

However, they only consider views derived by (different families of) selection

predicates over a specified single table. In other works, the queries that involves

joins are not addressed in this work.

2.3.3 Keyword Search

In the area of keyword search over databases, table Out has only one tuple

whose fields consist of the specified keywords. Some of the prior work [6, 14]

computes a SQL query that generates a superset of Out, although the majority

of results [12, 31, 32, 48] connect the keywords via graphs at tuple level. For

our problem setup, we would have to issue a separate keyword search query for

each tuple in Out. However, we may get back different SQL queries for different

tuples, or else a single query that generates a superset of Out. Moreover, the

query is usually a tree at tuple level [6, 12, 31, 32], whose leaves contain at

least one keyword. There are however many counterexamples. For instance, at

tuple level, Q3 in Figure 1.4(c) is not a tree, and Q2 in Figure 1.4(b) does not

contain keywords in its leaves.

The approach in [48] discovers more complex tuple graphs, dubbed com-

munities: they are superpositions of all depth-d trees whose leaves contain

the keywords. However, a (tuple-level) community may lead to multiple SQL

queries, and its model is still too restrictive for certain generating queries.
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2.3.4 Sample-Driven Schema Mapping

In schema mapping with output samples [46], we are given the source schema(s),

source table(s) and table Out, which consists of a small number of tuples from a

table in the destination schema. The SQL query Q usually generates a superset

of Out; once computed, it is included in the schema mapping. In [46] the

query graph is assumed to be a tree (at instance level), which is a limitation in

practical settings.

2.4 Summary

In this chapter, we have reviewed related work on discovering foreign keys. Most

of the work focus on identifying the inclusion dependencies between relational

columns [41, 17, 10, 42, 37], which however may yield a large number of spurious

foreign keys. The recent machine learning approach [51] fails to discover the

multi-column foreign keys. Various techniques [7, 35, 26, 27, 40, 43] have been

proposed to mine the relationships between relational data columns. However,

existing data driven approaches have not used any distributional information to

discover relationships between columns, apart from simple statistics. Finally,

we have reviewed related prior work on mining the query structures [56, 52,

6, 12, 31, 32, 46]. However, they all impose conditions on the structure of the

query graph Q, and thus they have limitations in practical settings.
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Foreign Key Discovery

A foreign/primary key relationship between relational tables is one of the most

important constraints in a database. From a data analysis perspective, dis-

covering foreign keys is a crucial step in understanding and working with the

data. Nevertheless, more often than not, foreign key constraints are not spec-

ified in the data, for various reasons; e.g., some associations are not known to

designers but are inherent in the data, while others become invalid due to data

inconsistencies. In this chapter, we propose a robust algorithm for discover-

ing single-column and multi-column foreign keys. Previous work concentrated

mostly on discovering single-column foreign keys using a variety of rules, like

inclusion dependencies, column names, and minimum/maximum values. In this

chapter, we first propose a general rule, termed Randomness, that subsumes a

variety of other rules. We then develop efficient approximation algorithms for e-

valuating randomness, using only two passes over the data. Finally, we validate

our approach via extensive experiments using real and synthetic datasets.

3.1 Introduction

A foreign/primary key relationship between relational tables is one of the most

important constraints in a database. From a data analysis perspective, discov-

ering foreign keys is a crucial step in understanding and working with the data.

For that reason, database systems allow the explicit specification of foreign key

20



CHAPTER 3. FOREIGN KEY DISCOVERY
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Figure 3.1: A small subset of the TPC-E schema with one multi-column and
several single-column foreign keys.

constraints in the database schema. Nevertheless, in practice, database design-

ers frequently fail to specify such constraints for various reasons, including: they

are not aware of implicit relationships inherent in the data; such relationships

might hold across multiple databases; it is not feasible to specify the constraints

due to data inconsistencies (e.g., those arising from data integration or from

database evolution over time); or because of performance considerations. When

this happens in enterprise databases, which often contain hundreds of tables,

thousands of columns and insufficient (or missing) documentation, even expert

users have a difficult time identifying foreign key constraints.

In this chapter, we propose a novel approach for discovering foreign/primary

key (fk/pk) relationships between single or multiple columns in relational databas-

es. Surprisingly, little previous work deals with the case of discovering multi-

column foreign keys [41]. Even for single-column keys, existing work is limited

and focuses mainly on identifying inclusion dependencies, since the only formal

requirement for specifying a foreign key constraint is that the foreign key be

a subset of the primary key [41, 10]. However, checking only for inclusion can

lead to a large number of false positives.

For example, Figure 3.1 shows a portion of the benchmark TPC-E schema,

which represents a stock transaction system. It has information about customer

accounts, companies, brokers, stock trades, etc. Column Trade.TID contains all

integers in the interval [1, 10000], while column Broker.BID, which is unrelated

to TID, contains all integers in [1, 100]. A simple inclusion test would incorrect-

ly report (Broker.BID, Trade.TID) as a foreign/primary key pair. This scenario

arises frequently in practice because of auto-increment fields. Of course, one
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could adapt the test so that it discards pairs in which one column is a con-

secutive subset (e.g., a prefix or a suffix) of the other. However, that is not

sufficient. Notice that the values in column Customer Account.BID, which is a

foreign key of column Broker.BID, are a random subset of a prefix of Trade.TID.

Hence, the inclusion test adapted as above would still incorrectly report (Cus-

tomer Account.BID, Trade.TID) as a foreign/primary key pair. To complicate

matters further, this problem is not limited to numerical attributes. It arises

with date-time fields that may contain consecutive values, or even alphanumer-

ic fields composed of letters followed by a number (e.g., A-1, A-2). The same is

true for multi-column keys. For example, Holding.(CID, SMB) is a two-column

foreign key of Holding Summary.(CID, SMB). However, Broker.(BID, STID) is

not a valid foreign key of Trade History.(TID, STID), even though column-wise

inclusion is satisfied.

Reducing the number of false positives is a critical requirement in order

to make the identification of useful relationships feasible. As we show in the

experimental section the number of false positives (i.e., pairs of columns that

satisfy inclusion but are not valid fk/pk constraints) can be in the order of

hundreds. Even for domain experts the task of sifting through and manually

validating candidates is overwhelming. Previous work has proposed heuristic

rules to reduce the number of false positives by identifying important properties

that a good foreign key should satisfy. A comprehensive list of such properties,

compiled based on extensive experimentation, appears in Rostin et al. [51].

Some of the most important rules are:

1. A foreign key should have significant cardinality;

2. A foreign key should have good coverage of the primary key;

3. A foreign key should not be at the same time a primary key for too many

other foreign keys;

4. The set of values of a foreign key should not be a subset of too many

primary keys;

5. The average length of the values in foreign/primary key columns should

be similar (mostly for strings);

6. The primary key should have only a small percentage of values outside

the range of the foreign key;
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7. The column names of foreign/primary keys should be similar.

Indeed, a lot of previous work, especially in the realm of schema matching, has

used similar rules to find associations between columns [35].

It is important to note that counter-examples exist for any rule one tries to

devise. One can easily come up with such examples for rules 1 and 2. A counter-

example for rules 3 and 4 is when social security numbers or telephone numbers

are used in a database as primary keys. Such keys are expected to appear in a

large number of tables. Kang and Naughton [35] give several counter-examples

for rule 7, i.e., columns with no meaningful association but very similar names.

In this work, we propose a novel method for measuring the likelihood that a

pair of columns that satisfy inclusion is a useful fk/pk constraint. Our approach

subsumes a variety of previous rules, and, as we show in Section 3.6, is both

highly scalable and accurate.

Consider the set of values in a primary key P , ordered by the natural order

in the underlying domain (i.e., numerical order for numeric attributes, lexico-

graphic order for strings). We conjecture that in most cases the values in a

foreign key column F form a (nearly) uniform random sample of the values

in P . For example, consider columns Broker.BID and Customer Account.BID

from Figure 3.1. The broker ids that appear in Customer Account are expected

to be “sprinkled” uniformly throughout the ordered set of all broker ids. This

is because we have no reason to expect a correlation between the semantics of

the foreign key constraint (“this broker works with these customers”) and the

mechanism through which the broker ids are generated. For example, ids may

be consecutive numbers between 1 and 100 generated via auto-increment. By

contrast, the subset of broker ids that appear in Customer Account may reflect,

say, those brokers with great reputation. It is highly unlikely that a database

instance is designed such that a foreign key is a biased sample of the respec-

tive primary key (e.g., a prefix or a suffix in the ranked order). Even if this is

the case, for dynamic databases the distribution of fk/pk values is expected to

change over time, eventually eliminating such bias. The closer a column F is

to being a uniform random sample of a primary key P , the higher we consider

the likelihood that (F, P ) is a useful fk/pk constraint.

Randomness is a strong requirement that implies rules 1-6: If F is a uniform

random sample of P , rule 2 (and by extension rule 1 relative to the cardinality of

P ) is satisfied. Similarly for rule 6. If the underlying distribution of column F
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is the same as column P , and F is a random sample of P , then the probability

that a substantial number of columns F ′ are random samples of F , without

any real correlation between F and F ′, is very small (rule 3). Similarly, if F

is a random sample of P , and F is a random sample of some other column P ′

with the same underlying distribution as P , then P and P ′ are clearly highly

correlated. First, it is unlikely that a large number of such correlated columns

P ′ exist (rule 4). Second, any such association (F, P ′) has high confidence if

(F, P ) has high confidence, so it is equally valid. Finally, if F is a random

sample of P rule 5 is straightforwardly satisfied.

Nevertheless, one can come up with counter-examples for the randomness

rule as well. Consider a data warehouse that contains a table P with all histor-

ical transactions, and a table F that references only the last month of trans-

actions (for the purpose of efficiently answering queries on the latest data).

If transaction identifiers are assigned using an auto-increment field, then the

transaction id field in table F is a foreign key to table P and the transaction

id values in F form a suffix of the ids in P . Note that this example also in-

validates rule 6. Unless a foreign key constraint is specified in the schema, no

formal method can decide with 100% certainty whether a column F is a foreign

key with respect to primary key P . As mentioned above, useful fk/pk relation-

ships are often data-dependent, and may not be specified in the schema. Hence,

we cannot expect to find a solution with 100% precision/recall. However, as

we show via extensive experiments over a large number of real databases, the

randomness rule eliminates a very large number of false positives in practice.

In this chapter we show that Randomness efficiently discovers meaningful

foreign keys, including multi-column foreign-keys (which have not been consid-

ered by previous work). Our experiments show that our approach has higher

accuracy than previously proposed methods, scales to very large datasets, and

does not require any prior knowledge of the data (in contrast with the method

in [51]). Our contributions in this chapter are summarized as follows:

• We define a distance measure between distributions, which allows us to

quantify Randomness. This leads to a novel foreign key discovery rule

that prunes a large number of false positives.

• We design fast approximate algorithms for evaluating randomness over a

large set of columns, using quantile summaries.
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• We design an I/O efficient algorithm for discovering single and multi-

column foreign keys, which requires only two linear scans of the data.

It outputs a list of fk/pk pairs, in descending order of their randomness

scores. The score reflects the likelihood that the pair is a useful foreign

key constraint.

• We present a comprehensive experimental validation of our approach us-

ing a large number of real and synthetic datasets.

3.2 Preliminaries

We assume that the single and multi-column primary keys are known, either

from schema specification or from a preprocessing phase. In the latter case,

GORDIAN [54] can be used to compute them. We now formalize the problem

of foreign key discovery as follows:

Definition 3.1 (Foreign Key Discovery). Let T be a collection of relational

tables, possibly from multiple databases. Let C be the set of all columns in T.

Let Ps (Pm) denote the set of single-column (multi-column) primary keys and

P = Ps ∪ Pm. Foreign Key Discovery is the process of discovering the set of

single-column and multi-column foreign keys with respect to P.

For the remainder of this chapter, we use F (P ) to refer to both a single

and multi-column foreign (primary) key. Abusing notation, F and P refer both

to the names of the columns (or multi-columns) and to their respective set of

distinct values (or tuples). In general, F and P are multi-sets. Let |X| be

the number of distinct values in multi-set X (or distinct tuples if X is multi-

column). Table 3.1 summarizes the notations used in this chapter.

In order to cope with data inconsistencies, we relax the inclusion property

that a foreign key must satisfy. More precisely, we require that

σ(F, P ) =
|F ∩ P |
|F |

≥ θ,

where σ(F, P ) is the inclusion coefficient and θ is user-defined. In our experi-

ments, we use θ = 0.9, i.e., partial inclusion is satisfied if at least 90% of the

values in F are also contained in P . We use the notation F ⊂θ P to denote

that σ(F, P ) ≥ θ.
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Symbol Description

T Set of tables
C Set of columns
Ps Single-column primary keys
Pm Multi-column primary keys
Fs Single-column candidate foreign keys
Fm Multi-column candidate foreign keys
B Hash table for bottom-k sketches
Q Hash table for quantile/distribution histograms
F Single/multi-column candidate foreign key
P Single/multi-column primary key

Ĉ Bottom-k sketch of C

F̂ Bottom-k sketch of F

P̂ Bottom-k sketch of P
P̄ Quantile histogram of P
F̄P Distribution histogram of F with respect to P

σ(F, P ) Inclusion coefficient
θ User-defined threshold for inclusion coefficient

Table 3.1: Notation used throughout Chapter 3.

Computing σ(F, P ) is very expensive, especially when considering the po-

tentially very large number of multi-column candidate fk/pk pairs. Therefore,

we estimate all inclusion coefficients by computing a bottom-k sketch [21] for

each column . We briefly review bottom-k sketches as below.

Given a set F , a bottom-k sketch F̂ for F is computed as follows: Assign

ranks to all values in F uniformly at random, and let F̂ be the set of k values

with the smallest ranks. In practice, to compute the rank assignment we choose

a hash function h, hash each value in F , and keep the k values corresponding

to the smallest k hash values. If F is a set of tuples, rather than simple values,

we first concatenate all values in a tuple using a predefined field separator and

hash the resulting string as a whole. Figure 3.2 shows an example bottom-1

sketch for a set of tuples. Clearly, a bottom-k sketch can be computed in one

pass over F .

Bottom-k sketches have been used to estimate various measures, such as

the Jaccard coefficient ρ(F, P ) = |F∩P |
|F∪P | (see [21]) or the intersection size |F ∩P |

(see [11]). The estimators require that the same hash function h be used for

computing both bottom-k sketches F̂ and P̂ (hence, the sketches are called

coordinated).
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CID SMB ...

10 INTC

2 AAPL

217 GOOG

Hash

h(10|INTC) = 10

h(2|AAPL) = 1

h(217|GOOG)=5

Bottom-1

2|AAPL, 1

Figure 3.2: Constructing a Bottom-k sketch.

Section 3.4 provides details on how to efficiently compute bottom-k sketches

for both single and multi-column candidate keys. We then use the SCS esti-

mator from [21], which estimates the Jaccard coefficient ρ(F, P ) = |F∩P |
|F∪P | . Since

σ(F, P ) = ρ(F,P )
ρ(F∪P,F )

, we estimate σ(F, P ) by dividing the estimators for the t-

wo Jaccards. In Section 3.6 we discuss two alternative estimators we used in

our experiments. Each has a significant drawback. By contrast, this estimator

proved highly accurate.

3.3 Randomness

In this section we assume that the inclusion coefficients between all pairs of

single/multi-column pks and columns in C have been computed, and pairs

that do not satisfy partial inclusion have been discarded. As mentioned in

Section 3.1, we conjecture that randomness is a strong indicator of the quality

of an fk/pk pair. Formally:

Definition 3.2 (Randomness test). Given two sets of values (tuples) F and

P , test the statistical hypothesis that the distinct values (tuples) in F have the

same underlying distribution as the distinct values (tuples) in P .

Figure 3.3 shows an example of a two-column primary key and two candidate

foreign keys. Set F is a good fk, since it appears to be a random subset of

values from the pk. Set F ′ is a contiguous subset of the pk and does not pass

the randomness test.

Domain Order. The randomness test requires the existence of an un-

derlying order over the domain of the primary and foreign keys. To see this,

consider the example in Figure 3.4. If the values are sorted numerically, then

the candidate column F is a prefix of the primary key. However, when the

same values are sorted lexicographically, F falsely appears to be a random

sample of the primary key. To handle this issue, we adopt the following nat-
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Figure 3.3: A good foreign key F is a set of random values from the primary
key. Column F ′ fails the randomness test.
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Figure 3.4: A column containing numeric values might falsely appear to be a
random sample of a primary key based on lexicographic sorting of values.

ural convention: numeric values are sorted numerically, and strings are sorted

lexicographically. The implicit assumption is that it is very rare that a column

containing only numeric values is a foreign key for a primary key that contains

strings (in which case it should have been sorted lexicographically, rather than

numerically). When columns contain both numeric, alphanumeric, and string

values, we use a combination sort (same as the Unix “sort -n” command). For

multi-column keys we define an order along each dimension, as above.

Randomness measure. A standard, non-parametric statistical test for

randomness is the Wilcoxon rank-sum test [53]. Assume that F, P are single-

column candidate keys. Sort the values in the multi-set union F ∪ P and rank

them. Since F ⊂θ P , the majority of values in F appear in P , so there are

duplicate values. Assign the mean rank for duplicate values (i.e., if a duplicate

value is 3rd and 4th in the sorted order, it is assigned rank 3.5; see Figure

3.5). Finally, compute the sum of ranks of all values in F . This rank-sum

is an indication of whether F and P are drawn from the same distribution.

Intuitively, if the rank-sum is too small, then most values in F are contained

in a prefix of P , and if the rank-sum is too large then most values in F are

contained in a suffix of P .

The Wilcoxon test is straightforward for univariate distributions but does

not generalize to multivariate distributions, so it cannot be used for multi-

column keys. Attempting to apply the Wilcoxon test separately for each di-
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Figure 3.5: The Wilcoxon test: 1. Sort values in multi-set F ∪ P ; 2. Assign
ranks; 3. Compute the rank-sum of values in F (13.5 in this example).

mension of a multi-column key results in false negatives. For example, consider

the multi-column key F in Figure 3.3. Even though F appears to be a uniform

random sample of P , the projection of F in either dimension is not a uniform

sample due to the multiplicity of some of the values (two points project into

the same value in both dimensions). An independent Wilcoxon test in either

dimension would dismiss F .

We now propose a novel approach for deciding whether two multi-dimensional

sets are drawn from the same distribution. Our method computes a value that

reflects how close the distributions of the two sets are. We start by defining a

probability distribution for each set, so that the total probability mass is 1 (this

step is detailed later in the section). A standard distance measure between two

probability distributions is the Earth Mover’s Distance (EMD) [45]. Formally,

Earth Mover’s Distance is defined as follows:

Definition 3.3. Given probability density functions (pdfs) C and C ′ on an

underlying metric space, let a unit amount of work be equal to moving a unit

of probability mass for a unit distance. Then, EMD(C,C ′) is equal to the

minimum amount of work needed to convert pdf C into pdf C ′.

The smaller the value EMD(F, P ) is, the closer the distributions of F and

P are. The output of our algorithm is the list of (F, P ) pairs, in increasing

order of their (normalized) EMD values.

Intuitively, EMD measures the amount of work needed to convert the set

of values of the foreign key into the set of values of the primary key. If we

regard each distribution as piles of dirt spread over some space, EMD is the

least amount of effort needed to convert the first set of piles into the second.

The effort is the amount of dirt that needs to be moved times the distance it

has to travel. Figure 3.6 illustrates the computation of EMD for pairs (F, P )

and (F ′, P ) from Figure 3.3. In this example, all points in a set have equal

29



CHAPTER 3. FOREIGN KEY DISCOVERY

P

SMB

F F'

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.1

0.1

C
I
D

Figure 3.6: EMD quantifies the amount of work required to convert one set of
values into another.

probability and the sum in each set is equal to 1. To convert F into P , a

probability mass of 0.1 needs to be moved from each point p ∈ F to the nearest

point np(p) ∈ P \F . Similarly for F ′ and P . Since the points of F are uniformly

distributed over P the average distance between p and np(p) is smaller than

the average distance for F ′. Hence, the amount of work needed to convert

distribution F to P is smaller than the one to convert F ′ to P .

While the definition of EMD applies to single and multi-dimensional sets,

it has a crucial restriction: unlike the Wilcoxon test, EMD requires a metric

distance between the values of the two distributions. A metric distance can be

used only when both columns F and P contain numeric values, but not when

they contain strings. Even for numeric values, using the underlying distance

is undesirable because we need to be able to compare EMD values between

different candidate pairs for sorting pairs according to confidence. However,

given distinct F, F ′, P, P ′, if F and P have larger ranges of values than F ′ and

P ′, then EMD(F, P ) will generally tend to be larger than EMD(F ′, P ′), even

if F is a “more random” subset of P than F ′ is for P ′. Therefore, a uniform

way of defining a distance function for numeric and string columns is needed,

which is independent of the range of values in any column.

We propose using the distance between the ranks of the values in the pk

column. For single-column F and P , rank all values in P in the underlying

ordered space, then define the rank distance between two values in F or P to

be the (absolute) difference between their ranks in P . For multi-columns F and

P , define the rank distance to be the sum of single-dimensional rank distances

(i.e., the Manhattan distance). However, the rank distance will still introduce

bias when comparing EMD(F, P ) and EMD(F ′, P ′) if the number of values

in |P | is much larger than the number of values in |P ′|. Therefore, the rank

distance is normalized by the number of values, in effect replacing ranks by
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quantiles:

Definition 3.4 (Quantile Distance). Given a multi-column set X consisting of

n columns, a total order in each column Xi, a function qi(x) that returns the

quantile order of value x in column Xi, and two tuples v, w ∈ X, the quantile

distance is

d(v, w) =
∑

1≤i≤n

|qi(v)− qi(w)|.

Notice that the quantile distance is independent of the type of values in

X as long as a total ordering of the values in each dimension is defined. We

refer to the EMD measure using the quantile distance as Quantile-EMD. A

final normalization is needed to compare (F, P ) and (F ′, P ′) when they have

different dimensionality. Let EMDn(F, P ) = EMD(F, P )/n, where n is the

dimensionality of F and P .

Computing Quantile-EMD. We now consider the problem of efficiently

approximating EMD(F, P ) for all pairs of candidate keys (F, P ). The first

step is to define a probability distribution for F and P . The easiest choice is

to let each value in F have a probability mass of 1/|F |, and each value in P

have a probability of 1/|P |. Computing EMD is equivalent to the well-known

transportation problem and can be solved by the Hungarian algorithm [23].

However, the Hungarian algorithm has cubic complexity and is very inefficient

over large F and P . For our purposes, it is sufficient to compute EMD on

coarser probability distributions. More precisely, we use a quantile histogram

to define the probability distribution in the primary key, since quantiles best

approximate the original distribution w.r.t. the quantile distance. The proba-

bility distribution in the candidate foreign key is then defined with respect to

the quantiles of the primary key.

For every single/multi-column key P ∈ P construct a quantile histogram

based on the `-quantiles of P (for some constant `). In one dimension, the

histogram is equi-depth. In multiple dimensions, compute quantiles separately

on each dimension (over the distinct values in that dimension) and construct

a grid based on the quantiles in each dimension. An example 2-dimensional

4-quantile histogram is shown in Figure 3.7. Notice that in this particular

example there exists a three point tie in each dimension. After projecting the

points in either dimension there are only 8 distinct values left. Hence, the 1st

4-quantile is the point with rank 8 · 1/4, the 2nd is the one with rank 8 · 2/4,
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Figure 3.7: Constructing a 2-dimensional 4-quantile histogram for primary key
P .

etc. The probability distribution of P based on the corresponding histogram is

defined as:

Definition 3.5 (Quantile Histogram). Given a multi-column primary key P

consisting of n columns, let Qi = {qi1, . . . , qi`i} be the `i-quantiles of P in

column i (different columns may have different number of quantiles). Let

GP = Q1 × . . . × Qn be the corresponding n-dimensional quantile grid. The

quantile histogram P̄ is defined as the number of values of P within each grid

cell of GP . The total number of grid cells is |GP | = `1× . . .×`n. The probability

distribution over P is defined as the normalized P̄ ; i.e., the count in each cell

is divided by |P |.

For a candidate multi-column F , the probability distribution histogram

based on the quantile grid GP of P is defined as:

Definition 3.6 (Distribution Histogram). Given a candidate pair (F, P ), the

distribution histogram F̄P of F with respect to P is defined as the number of

distinct values of F within each grid cell of the quantile grid GP . The probability

distribution over F is defined as the normalized F̄P ; i.e., the count in each cell

is divided by |F |.

We now describe how to approximate EMD(F, P ) using the quantile his-

tograms. Assume that the probability mass of a grid cell is concentrated in

its upper right corner. Therefore, the distance between two grid cells is de-

fined as the quantile distance between the upper right corners of the cell-

s. For example, in Figure 3.7, the distance between grid cells A and B is

(3/4 − 2/4) + (2/4 − 1/4) = 0.5. As before, the Hungarian algorithm is used

to compute the EMD between the two distributions. The input size is now

|GP | = `n � |P | (usually 1 ≤ n ≤ 4 and ` is small). Once the normalized

histograms are computed, the method requires no additional access to the raw
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data. Note that the value ` need not be the same for all primary keys. S-

ince Quantile-EMD uses the quantile distance we can compare EMD(F, P )

and EMD(F ′, P ′) even if the quantile histograms were computed for different

values of `. This is important, since some primary keys may have only a few

values. On the other hand, a larger ` for larger primary keys will improve

accuracy.

Now we can bound the approximation error for the Quantile-EMD in the

grid space GP versus the initial space P .

Lemma 3.1. Let n be the space dimensionality, 1/` be the side length of the cells

in GP (in every dimension without loss of generality), and EMDn,P , EMDn,GP

be the normalized EMD in the primary space P and reduced space GP respec-

tively. Then

|EMDn,P − EMDn,GP
| ≤ 2/`.

Proof. Let EMDP=n·EMDn,P and EMDGP
=n·EMDn,GP

be the unnormalized

EMD values in the primary space P and the reduced space GP respectively.

Consider a movement of mass m that EMDP executes in the primary space P ,

from a point p to a point q. Its cost is m ·d(p, q). Let a and b be the upper right

corners of the cells that contain p, respectively q. Then we can define a valid

movement of mass m in the space GP , between a and b. The cost of this mass

movement is m ·d(a, b) ≤ m(d(a, p)+d(p, q)+d(q, b))≤ md(p, q) +m2n
`

. Making

this transformation for all mass movements in EMDP , we obtain a valid mass

movement in GP , of cost at most EMDP + 2n
`

∑
m ≤ EMDP + 2n

`
(the sum

is over all the mass moved in EMDP ). Since EMDGP
is the minimum cost

movement in GP , we deduce EMDGP
≤ EMDP + 2n/`. A similar argument

holds for the other inequality, by transforming mass movements from EMDGP

into valid mass movements in P . We deduce that |EMDP −EMDGP
| ≤ 2n

`
.

3.4 Overall Algorithm

Throughout this section, we use the notations from Section 3.2 (see also Ta-

ble 3.1 for a notation summary). To discover foreign keys, we first compute

inclusion between all pairs of primary keys and columns in C and then evalu-

ate randomness only on the pairs satisfying inclusion. We accomplish this by

computing bottom-k sketches and quantile histograms with two passes over the
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data. A pseudocode of the algorithm described below appears in Algorithm 3.1.

For single-column candidate foreign keys and single/multi-column primary

keys, the bottom-k sketches can be computed in one linear scan of the database.

Multi-column candidate foreign keys are challenging due to their potentially

large number. However, if P is a primary key consisting of columns (C1, . . . , Cn)

and F is a candidate foreign key consisting of columns (C ′1, . . . , C
′
n), then

σ(F, P ) ≤ minni=1σ(C ′i, Ci). Hence, it is sufficient to consider only candidates

F such that σ(C ′i, Ci) ≥ θ, for all i, where all C ′is belong to the same table.

We expect only a small number of pairs (F, P ) to have these properties (and

confirm this experimentally). For such pairs (F, P ), we compute the bottom-k

sketch of F and estimate σ(F, P ), with a second pass over only the relevant

columns in F (recall that the sketch of P has been computed during the first

pass).

Quantile histograms for a single-column primary key P can be computed ex-

actly in one linear scan if there exists an index on P – as is usually the case for

pks – by reading P in sorted order and computing the quantiles incrementally

(this requires knowledge of |P | which can be found from table statistics). If

an index does not exist we can approximate the quantiles in linear time using

quantile summaries [30]. The distribution histograms of single-column candi-

date fks can be trivially computed in linear time after the quantile histograms

of all pks have been computed and stored in memory; for an fk F we simultane-

ously compute all histograms w.r.t. all pks P for which (F, P ) passes inclusion.

In our experiments, the average number of such pairs, for a fixed F , was less

than 10.

For a multi-column primary key P , the quantile histogram requires two

passes over the data. In the first pass, we compute the quantile grid for each

column C ∈ P (either using an index or a quantile summary) and construct a

multi-dimensional quantile grid. A subtle point here is that a column C of a

multi-column pk might not be a pk itself; estimating quantiles on the distinct

values in C requires using duplicate insensitive quantile summaries [22]. In the

second pass, we scan P and populate the quantile grid. We also scan each multi-

column fk F and simultaneously compute all relevant distribution histograms.

In our experiments, the average number of such pairs, for a fixed F , was less

than 5.

We now summarize each of the two linear scans:
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Algorithm 3.1: Discover Foreign Keys (C,Ps,Pm, θ)

// Phase 1.
1 Fs ← ∅,Fm ← ∅, B ← ∅, Q← ∅, S ← ∅
2 foreach C ∈ C do

3 B[C]← Ĉ

4 foreach P = {C1, . . . , Cn} ∈ (Ps ∪Pm) do
5 for p← 1 to n do
6 foreach Cf ∈ C do

7 if σ(Ĉf , Ĉp) ≥ θ /* Ĉf , Ĉp ∈ B */
8 then
9 if n = 1 then

10 Fs ← (Cp, Cf )

11 if n > 1 then
12 S[P,Cp]← Cf

13 if n > 1 then

14 B[P ]← P̂

15 Q[P ]← P̄ /* For n = 1, P̂ already in B */

// Phase 2.
16 foreach P = {C1, . . . , Cn} ∈ Pm do
17 foreach T ∈ T do
18 Fm ← ({{C ′1, . . . , C ′n} | C ′i ∈ S[P,Ci] ∩ T}, P )

19 foreach F = ({C ′1, . . . , C ′n}, P ) ∈ Fm do

20 Build F̂

21 if σ(F̂ , P̂ ) ≥ θ /* P̂ ∈ B */
22 then
23 Q[P ]← P̄
24 Q[F ]← F̄P

25 else
26 Remove (F, P ) from Fm

27 foreach (F, P ) ∈ Fs do
28 Q[F ]← F̄P

29 foreach (F, P ) ∈ (Fs ∪ Fm) do
30 Compute EMDn(F, P ) /* Using Q */

31 Output F = Fs ∪ Fm in increasing order of EMDn
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Phase 1. Read all columns in table-wise order (i.e., row by row) and build

bottom-k sketches for all columns in C, as well as for all multi-column primary

keys in Pm. Also build quantile grids for all single/multi-column primary keys.

All structures are stored in two hash tables B (for bottom-k sketches) and Q

(for quantile/distribution histograms), using the name of the column(s) as the

hash key. Evaluate all (single-column) inclusions between F ∈ C and P ∈ Ps

and store candidate pairs in Fs. Finally, evaluate (single-column) inclusions

between C ∈ C and Ci ∈ P, P ∈ Pm and store candidates in S(Ci).

Phase 2. For each multi-column pk P = (C1, . . . , Cn), consider the n sets

S(Ci) = {C ∈ C | σ(C,Ci) ≥ θ, 1 ≤ i ≤ n} computed in Phase 1. Then

F = (C ′1, . . . , C
′
n) ∈ S(C1)× . . .× S(Cn) is a candidate fk for P if there exists

a table T s.t. ∀1 ≤ i ≤ n : C ′i ∈ T . Compute, for each multi-column pk P the

set of its candidate foreign keys and insert pairs (F, P ) in Fm. This requires

access only to the sets S(C1), . . . , S(Cn), which are stored in memory.

Next, for each (F, P ) ∈ Fs, scan each single-column F and compute its dis-

tribution histograms w.r.t. all relevant primary keys P . Compute EMD1(F, P )

and store it in memory. For each multi-column candidate (F, P ) ∈ Fm scan F

and compute its multi-column bottom-k sketch as well as its distribution his-

tograms w.r.t. all P . For each such P , verify whether (F, P ) satisfies inclusion

(recall that the multi-column bottom-k sketch of P was computed in Phase

1). If (F, P ) does not pass the test, discard the distribution histogram F̄P and

remove (F, P ) from Fm. Finally, compute EMDn(F, P ) for all (F, P ) ∈ Fm

and return F = Fs ∪ Fm, sorted in increasing order of EMDn values.

3.5 Schema and Data Updates

Our methods can easily handle insertions and deletions of new tables and

columns given the existing bottom-k sketches and quantile/distribution his-

tograms. Let the new set of columns be C′. First, identify new primary keys

and insert them in Ps,Pm. Then, re-run Algorithm 3.1 on C′,Ps,Pm, θ, build-

ing only the new bottom-k and quantile/distribution histograms, as necessary.

Handling data insertions and deletions on existing columns is a little harder.

Existing bottom-k sketches can easily be updated under insertions only. The

new values are simply hashed and inserted in the corresponding sketches if

necessary. However, deletions are not straightforward: if a deleted value was
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part of the bottom-k sketch, a rescan of the corresponding column is needed

in order to identify the new k-th minimum hash value. One way to handle

deletions without rescanning the data is to maintain larger bottom-k sketches

(e.g., twice as large as needed). That way, we only rescan the data infrequently.

Since in practice we expect a balanced insertions and deletions workload, this

simple strategy is likely to obviate the need of a rescan in most settings.

Updating the quantile/distribution histograms is generally hard, both under

insertions and deletions. A small number of insertions or deletions can be

accommodated by identifying the histogram cells that contain the respective

tuples, and incrementing or decrementing their counters. However, if a large

amount of data is inserted or deleted, the distribution of the underlying columns

is likely to change. As a result, the quantile grids on each dimension also change.

This requires rescaning the data in order to compute a new quantile grid and

a new histogram. A simple way of reducing the cost of updates is to use the

existing quantile grid for a batch of updates and rebuild it only after a certain

number of updates. Depending on the application and the underlying data we

can also use well known techniques to detect a change in the distribution and

trigger a rebuild [36].

3.6 Experimental Evaluation

We evaluate our algorithm for discovering fk/pk constraints on two benchmark

synthetic databases (TPC-E and TPC-H), as well as on two real datasets:

a Wikipedia (WP) snapshot from March 2008 and an IMDB snapshot from

January 2010. We implemented our algorithms in C++, and performed the

experiments on an Intel Core2 Duo 2.33 GHz CPU with 4GB RAM running

MySQL. We use three standard accuracy measures to evaluate our method:

precision, recall and F-measure (the harmonic mean of precision and recall).

Each measure is applied to two sets of fk/pk constraints: the “golden stan-

dard” set specified in the schema, and the top-X% constraints reported by our

algorithm (for various X). We start by evaluating the accuracy of EMD com-

putation, then evaluate the overall algorithm for both accuracy and scalability.

In addition, we discuss how the results change if we also take into account the

similarity of column names. Finally, we compare our results with the machine

learning approach of Rostin et al. [51], which uses the 7 rules discussed in Sec-
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tion 3.1. For completeness, we also include experiments on bottom-k sketches,

which show that the partial inclusion estimator is highly accurate and does not

influence the overall results.

3.6.1 Dataset Descriptions

The datasets can be downloaded from the following sites: TPC-H from http:

//www.tpc.org/tpch, TPC-E from http://www.tpc.org/tpce, WP

from http://www.archive.org/details/enwiki-20080312, IMDB

from http://www.imdb.com/interfaces.

When generating instances for the synthetic datasets, we use the following

parameter settings: For TPC-H we use scale factor 1. For TPC-E we use 1000

customers, 20 trading days, and scale factor 1000. The characteristics of all

datasets are given in Table 3.2, where |T| is the number of non-empty tables,

|CT | and max |CT | are the average and maximum number of columns per table,

and |RT | and max |RT | are the average and maximum number of rows per table.

|T| |CT | max |CT | |RT | max |RT |
TPC-H 8 8 16 1,082,504 6,000,003

TPC-E 32 6 24 171,127 4,469,625

WP 15 6 16 24,356,005 227,867,141

IMDB 9 2 2 1,136,607 5,107,802

Table 3.2: Datasets characteristics.

All these datasets come with a schema specification. Table 3.3 summarizes

the single/multi-column foreign/primary keys explicitly stated in each schema.

Notice that, e.g., TPC-E specifies nine 2-column primary keys but only one

2-column foreign key.

TPC-H TPC-E WP IMDB
PK FK PK FK PK FK PK FK

SC 6 9 20 44 5 10 5 8
2 2 1 9 1 7 − 4 −

MC 3 − − 2 − 3 − − −
4 − − 1 − − − − −

Total 8 10 32 45 15 10 9 8

Table 3.3: Foreign/primary keys according to schema specifications.
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` 4 16 64 256 1024 256(A)

Diff 0.06 0.009 0.002 3 10−4 4 10−5 4 10−4

Top-25%
R 1 1 1 1 1 1
P 0.9 0.9 0.9 0.9 0.9 0.9

Top-20%
R 0.78 0.78 0.89 0.89 0.89 0.78
P 0.88 0.88 1 1 1 0.88

Top-15%
R 0.56 0.67 0.67 0.67 0.67 0.56
P 0.83 1 1 1 1 0.83

Table 3.4: EMD accuracy for different quantile grid sizes; Diff=EMDn,G`
−

EMDn,G2048 .

3.6.2 EMD Computation

By Lemma 3.1, the error in the computation of EMD(F, P ) is bounded by 2/`,

where ` is the number of quantiles in each dimension. In practice, this error

is negligible even for small `. Table 3.4 shows the average difference between

the EMD computed using ` ∈ {4, . . . , 1024} quantiles and 2048 quantiles. The

averages are over all columns in the TPC-H database that pass inclusion. The

reason we do not compute the differences to the actual EMD value (i.e., using

all quantiles) is that EMD has cubic complexity, which is very expensive to

compute when the primary key has Ω(104) values. Clearly, the EMD values

converge very quickly as ` increases. Therefore, small values of ` are sufficient.

The last column of Table 3.4 shows that, when using 256 approximate quan-

tiles, the difference is only 10−4 bigger than for 256 exact quantiles. This is not

surprising, since the quantile histograms of foreign keys should remain roughly

the same over small shifts in the quantile grids. The main difference between

approximate versus exact quantiles is computation time. To our surprise, com-

puting exact quantiles was about 20% faster! The reason is that the vast

majority of primary keys are indexed, so using an Order By SQL query had

the complexity of a linear scan. By contrast, computing approximate quantiles

incurred the overhead of maintaining the quantile summaries [30]. Henceforth,

all reported results are for exact quantiles.

Since normalized EMD values determine the order in which we report fk/pk

pairs, we also measured the effect of quantile grid sizes on the precision and

recall of the final results. Smaller grid sizes, as well as approximate quantiles, do

impact both precision (P) and recall (R) for the top-15% and top-20% reported

pairs (see last 4 rows in Table 3.4). However, they have no effect for the top-
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Dataset TPC-H TPC-E WP IMDB

SC-FK 9 44 10 8
MC-FK 1 1 0 0
θ = 0.9 1 0.9 1 0.9 1 0.9 1

Cand. SC 38 34 304 214 12 8 24 24
Cand. MC 1 1 4 3 0 0 0 0

Table 3.5: Number of candidate pairs that satisfy inclusion; SC=single-column,
MC=multi-column.

25% pairs. The reason is that EMD values are very close to each other within

the top-25% pairs, so even small changes impact the order of results. However,

pairs below top-25% have EMD values at least one order of magnitude larger.

As we discuss below, we use precisely this jump in EMD values to determine

the best set of constraints to present to a user. For TPC-H, the best set is the

top-25%, which remains unchanged for all grid sizes.

3.6.3 Overall Algorithm

For all experiments in this section, we use ` = 256 quantiles for single-column

primary keys, and ` = 16 quantiles per dimension for multi-column primary

keys. Table 3.5 shows the number of candidate fk/pk pairs that pass the inclu-

sion test for each dataset. This illustrates the large number of false positives

our algorithm must eliminate. For example, 217 pairs pass inclusion for TPC-

E (214 single-column pairs and 3 multi-column pairs). Of these, only 45 are

specified in the schema.

To evaluate the utility of our method, we measure the precision, recall and

F-measure after selecting the top-X% results as the answer set, and comparing

them with the golden standard specified in the schema. We report the results

in two groups, for reasons that we explain later in this section.

TPC-H, WP and IMDB: Figure 3.8 shows the results for these three databas-

es. A larger X (i.e., a bigger answer set) implies a larger number of false pos-

itives, hence lower precision. On the other hand, a smaller X has more false

negatives (i.e., undiscovered fk/pk constraints), and thus worse recall. There

is a sweet spot, which depends on each dataset, that balances precision and

recall. That spot also corresponds to a big jump in the respective EMD values;

we illustrate this by plotting the EMD values on the same graph. For TPC-H
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Figure 3.8: Utility measures on TPC-H, Wikipedia and IMDB.

the sweet spot occurs at X = 25, for IMDB at X = 35, and for WP at X = 80.

Thus, by examining the significant jumps in EMD values, the algorithm auto-

matically proposes one or more answer sets deemed “relevant” (note that for

WP, an EMD jump also occurs for X = 60). An answer set can then be ver-

ified either experimentally (e.g., by running queries and testing if the results

are meaningful), or by a domain expert.

For all three datasets in Figure 3.8, we achieve F-measure above 0.8 at

their respective sweet spot X. For TPC-H, the answer set (top-25%) has only

one false positive: the pair of columns PartSupp.PS AVAILQTY and Suppli-

er.S SUPPKEY, the first containing values from 1 to 9999 and second from 1

to 10000. Clearly, only a supervised algorithm would be able to recognize this

false positive. For IMDB, the answer set is exactly the golden standard.

For WP, the loss in recall originates from an unlikely source. The schema

specifies that ImageLinks.il to is a foreign key to the primary key Image.img name.

However, its inclusion coefficient is only 51%. Since we set the inclusion thresh-

old at 90%, this results in a false negative. (We note that three other specified

fk/pk pairs have inclusion coefficient below 1, but higher than 0.9). Such data
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Figure 3.9: Utility measures on TPC-E using the golden standard and extended
constraints.

inconsistencies verify the intuition that real data does not always follow the

ideal rules from database theory.

TPC-E: For this database, we report two sets of experiments. In the first

set (Figure 3.9(a)) we measure precision/recall with respect to the golden s-

tandard specified in the schema. Notice that the F-measure is below 0.6 across

the board. A careful analysis of the data reveals that the reported accuracy is

misleading: many false positives occur either because of symmetry or transitiv-

ity. Symmetry refers to the case when a pair of primary key columns (A,B) is

specified in the schema as fk/pk in one direction, but not in the other. How-

ever, (B,A) is clearly a valid constraint in this case. Transitivity occurs when,

for three columns A, B and C, with B and C being primary keys in their re-

spective tables, the constraints (A,B) and (B,C) are specified in the schema,

while (A,C) is not (although it is clearly valid). By applying symmetry and

transitivity rules, we extend the set of valid constraints against which we test

our results. Reporting precision/recall with respect to this augmented set of

constraints improves results significantly; see Figure 3.9(b).

Nevertheless, none of the measures reaches 1. We attribute this to the data

generation process itself. A total of 15 false positive pairs (some pairs are

counted in both directions) are between only eight columns. These columns

belong to seven different tables and contain exactly the same number of rows

and number of distinct values: the numbers 1 to 5000. Clearly, only a domain

expert can label them as false positives (in our case, we used the extensive

TPC-E documentation). The algorithm also fails to discover 8 out of 45 true

constraints and 28 implied constraints; the pairs are shown in Table 3.6. Five of
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Foreign Key Primary Key
Column Values Column Values

Exchange.ex ad id 1-4 Address.ad id 1-7504
Company.co ad id 5-2504 Address.ad id 1-7504
Customer.c ad id 2505-7504 Address.ad id 1-7504

Trade.t st id B Status type.st id A,. . .,E
Broker.b st id A Status type.st id A,. . .,E

Company.co st id A Status type.st id A,. . .,E
Customer.c st id A Status type.st id A,. . .,E
Security.s st id A Status type.st id A,. . .,E

Table 3.6: False negatives in TPC-E (A=Active, B=Completed, C=Canceled,
D=Pending, E=Submitted).

these foreign keys contain only one distinct value (either the status ‘Completed’

or ‘Active’). Clearly, the generator assigns a default value for this column for

every row in the table, since not all trades in Trade can be completed, while

all trades in Broker are active. One column contains address identifiers 1 to 4

even though the corresponding primary key contains 7504 distinct addresses.

Finally, the other two address columns are (almost) a prefix and a suffix of the

primary key and constitute a counter-example for the randomness rule.

3.6.4 Scalability

We tested the scalability of our method on TPC-H, for which it is easy to

generate instances of progressively larger sizes. We used five instances with

sizes 1MB, 10MB, 100MB, 1GB and 10GB. The running times for each of the

two phases, as well as the total time are shown in Figure 3.10. For readability,

we use a logarithmic scale on both axes. As expected, each phase takes linear

time. The second phase is faster because we only have to scan the columns that

satisfy inclusion (while in the first case, we scan all columns). For the 10GB

instance, the total running time is less than 2.5 hours, making our method

applicable to enterprise-scale datasets.

3.6.5 Column Names

So far our foreign key discovery process has been a data-driven approach. How-

ever, it is easy to enhance it by considering the orthogonal approach of looking
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Figure 3.10: Scalability results.

at the column names (rule 7 in Section 3.1). As shown in [35], comparing col-

umn names is not necessarily straightforward, and can lead to false conclusions.

For example, in TPC-E columns that form valid fk/pk constraints have very

different names, because they contain an abbreviation of the table name as a

prefix (e.g., columns Trade History.th t id and Trade.t t id are an fk/pk pair;

the prefixes ’th’ and ’t’ in the column names stand for Trade History and Trade

respectively). Fortunately, TPC-E has extensive documentation that explains

the naming conventions, so we can delete these prefixes and compare the re-

maining strings. The resulting names are identical only if the pair is a valid

constraint.

We are not aware of any method for automatically determining which string

similarity measure to use for any given schema. In Table 3.7, we report our

results using string identity (for TPC-E, we apply this to column names after

deleting their table prefixes). The results are generated as follows: First, we

compute for each database the most relevant answer set, i.e., the top-X% for

the best value X. We then delete all pairs from these sets whose column names

are not identical, and compute the precision/recall on the resulting answer set.

For TPC-E, we also report results using the extended set of valid constraints.

For WP there is no single pair with identical column names, hence we exclude

it from this experiment.

3.6.6 Comparison With Alternatives

The algorithm of Rostin et al. [51] uses a learning phase to train four different

classifiers that are then used to discover single-column keys only. Each classifier

uses a training set consisting of known fk/pk pairs from four out of five different
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Precision Recall F-measure

TPC-H 1 1 1
TPC-E 0.57 0.82 0.67

TPC-E Ext. 1 0.89 0.94
IMDB 1 1 1

Table 3.7: Results after eliminating non-matching column names.

databases. The goal is to learn the relative importance of rules 1-7 stated in

Section 3.1, then apply them to the fifth database. No classifier was consistently

the best across all datasets.

We compare our results over TPC-H using the results already reported

in [51]. As reported in that paper, the best classifier (J48) for the TPC-H

dataset results in F-measure equal to 0.95, with the average value over all

classifiers being 0.915. The success of J48 for TPC-H can be largely attributed

to the use of rule 7 (matching column names), making TPC-H an easy target.

Our method achieves an F-measure of 1 for TPC-H when using column names

(even without column names, F-measure is 0.95).

3.6.7 Inclusion Estimators

We considered two alternative estimators for the inclusion coefficient σ(F, P ):

1. The estimator proposed in [15], which is unbiased. However, it is de-

fined over sketches whose sizes are a user-defined fraction of the size of

the original column. This is generally too large for practical purposes

(e.g., the Wikipedia database has size O(109), so the size of 1%-sketches

is O(107)). Note that the size of sketches impacts not just storage re-

quirements, but more importantly, the running time for computing all

inclusion coefficients.

2. Divide the estimated value of |F ∩P | by the estimated value of |F |. Both

estimated values are computed using the estimators proposed in [11]. The

advantage is that these estimators work over bottom-k sketches which

have constant size. Figure 3.11 shows an experimental comparison (over

TPC-E) of this estimator, denoted Estimator2, to the one described in

Section 3.2, which we denote as Estimator1. Clearly, Estimator1 is sig-

nificantly more accurate, and it also uses bottom-k sketches. Therefore,
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Figure 3.11: Accuracy of bottom-k estimators for the inclusion coefficient, as a
function of k.

all our experiments use Estimator1 for the inclusion coefficient. We set

k = 256.

3.7 Summary

In this chapter, we introduced the notion of Randomness and showed that it

can be used effectively to reduce a large number of false positive pairs produced

by partial inclusion. We also provided an efficient approximation algorithm

for evaluating randomness between pairs of multi-column candidate keys. We

presented a combined algorithm that can discover good single/multi-column

foreign keys with only two linear scans over the data. Finally, we performed a

comprehensive experimental evaluation showing the efficacy of our techniques.

This work has been published as a full research paper in the 36th Interna-

tional Conference on Very Large Data Bases (VLDB) 2010 [59].
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Attribute Discovery

In this chapter we design algorithms for clustering relational columns into at-

tributes, i.e., for identifying strong relationships between columns based on the

common properties and characteristics of the values they contain. For exam-

ple, identifying whether a certain set of columns refers to telephone numbers

versus social security numbers, or names of customers versus names of nation-

s. Traditional relational database schema languages use very limited primitive

data types and simple foreign key constraints to express relationships between

columns. Object oriented schema languages allow the definition of custom data

types; still, certain relationships between columns might be unknown at design

time or they might appear only in a particular database instance. Nevertheless,

these relationships are an invaluable tool for schema matching, and generally

for better understanding and working with the data. Here, we introduce data

oriented solutions (we do not consider solutions that assume the existence of

any external knowledge) that use statistical measures to identify strong rela-

tionships between the values of a set of columns. Interpreting the database as

a graph where nodes correspond to database columns and edges correspond to

column relationships, we decompose the graph into connected components and

cluster sets of columns into attributes. To test the quality of our solution, we

also provide a comprehensive experimental evaluation using real and synthetic

datasets.
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4.1 Introduction

Relational databases are described using a strict formal language in the form of

a relational schema. A relational schema specifies various properties of tables

and columns within tables, the most important of which is the type of data

contained in each column. There is a well defined set of possible primitive da-

ta types, ranging from numerical values and strings, to sets and large binary

objects. The relational schema also allows one to define relationships between

columns of different tables in the form of foreign key constraints. Even though

the relational schema is a powerful description of the data, it has certain lim-

itations in practice. In particular, it cannot accurately describe relationships

between columns in the form of attributes, i.e., strongly connected sets of val-

ues that appear to have the same or similar meaning within the context of a

particular database instance.

For example, consider a database instance that contains columns about tele-

phone numbers and social security numbers. All such columns can be declared

using the same primitive data type (e.g., decimal), but in reality there is never

a case where these two types of columns need to be joined with each other:

semantically, there is no reason why these columns should belong to the same

type. Even though this fact might be known to users (or easy to deduce), it is

nowhere explicitly specified within the schema. As another example, consider

a database instance that contains a table of customer names and defines two

views, one with European and one with Asian customers. Ostensibly, the cus-

tomer name columns in the European and Asian views will not have any (or

very few) values in common. Nevertheless, all three customer name columns

belong to the same attribute. Moreover, suppose that there exists a fourth col-

umn that contains nation names. Clearly, nation names should not be classified

in the same attribute as customer names even though these columns contain the

same types of values (i.e., strings). Differentiating between these fundamentally

different attributes can be an invaluable tool for data integration and schema

matching applications, and, generally speaking, for better understanding and

working with the data.

Existing schema matching techniques for identifying relationships between

columns use simple statistics and string-based comparisons, e.g., prefix/suffix

tests, edit distance, value ranges, min/max similarity, and mutual information
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based on q-gram distributions [35, 26, 27, 40, 43]. Other approaches use external

information like thesauri, standard schemas, and past mappings. Our work on

discovering attributes can be used as a valuable addition to all of the above,

for designing automated schema mapping tools.

It is important to note here that attribute relationships are not always

known in advance to database designers, so it is not always possible to encode

them a priori (for example, by using constraints or object oriented schema

languages). Certain relationships might hold solely for a particular database

instance, others develop over time as the structure of the database evolves, yet

others are obvious in hindsight only. Furthermore, there exists a large number

of legacy databases (sometimes with sizes in the order of hundreds of tables

and thousands of columns) for which schema definitions or folklore knowledge

of column meanings might have been lost. To make matters worse, in many

practical situations users have access only to a keyhole view of the database (due

to access privileges). In such cases users access the data through materialized

views, without any information about the underlying schema, or even about

the view definitions. In other words, as far as the user is concerned, all schema

information has been lost.

Our approach for discovering attributes is purely data oriented. We do

not examine solutions that depend on external knowledge about the data. We

compute various statistical measures between all pairs of columns within the

database, and derive positive and negative relationships between certain pairs

of columns. Viewing the database instance as a graph where every column is

a node and every positive/negative relationship is an edge, we decompose the

graph into connected components. Then, we further decompose each compo-

nent into a set of attributes.

In particular, in order to discern the type of relationship between any pair

of columns, we use Earth Mover’s Distance to find the similarity between the

distributions of the values contained in the columns. We introduce two types

of connections, one based on the overall distribution of values and one based on

the intersection distribution (distribution with respect to the common values

only). Low distribution similarity strongly suggests no attribute ties. High

intersection distribution similarity suggests very strong attribute ties. We also

propose the notion of a witness column for introducing relationships by indirect

association (i.e., for columns that have no values in common directly, but share
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Figure 4.1: Excerpt of the TPC-H schema.

a lot of values with the witness column).

To summarize, our main contributions in this chapter are as follows:

• We provide a robust, unsupervised solution that reports a clustering of

columns into attributes.

• We perform a comprehensive empirical study using real and synthetic

datasets to validate our solution, and show that it has very high precision

in practice.

4.2 Preliminaries

Conventionally, in relational database terminology the term attribute is a syn-

onym for a column. In this work, we use the term attribute to refer to a

much stronger notion, based on the actual meaning of the values contained in

a column. Formally:

Definition 4.1 (Attribute). An attribute is a set of relational columns, such

that columns in the same attribute are semantically equivalent to each other.

In other words, an attribute is a logical notion based on common proper-

ties and characteristics of the values contained in the columns comprising that

attribute.

For example, Figure 4.1 shows an excerpt of the schema of the TPC-H

benchmark [55], which models a business environment and contains informa-

tion about products, suppliers, customers, orders, etc. The figure shows three

tables, CUSTOMER, NATION and ORDERS, and foreign-primary key relation-

ships between some columns of these tables. A customer is associated with

six columns in this example: CUSTKEY, NAME, ADDRESS, NATIONKEY,
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Figure 4.2: Attributes in TPC-H example, which contains three base tables and
two materialized views of CUSTOMER table.

PHONE and COMMENT. Since CUSTOMER.NATIONKEY is a foreign key of

NATION.NATIONKEY, the two NATIONKEY columns are by definition seman-

tically equal and hence they belong to the same attribute. The same is true

for ORDERS.CUSTKEY and CUSTOMER.CUSTKEY. Another example appears

in Figure 4.2 which shows a slightly more complex scenario that considers the

existence of materialized views, i.e., ASIAN CUSTOMER and EUROPEAN CUS-

TOMER created from the CUSTOMER table based on NATIONKEY. The ideal

clustering of the six columns contained in the CUSTOMER table is shown on

the right side of the figure. Clearly, all columns from the three related tables

belong to the same attribute, even if there is no direct association specified in

the schema (e.g., in the form of primary/foreign keys) and despite the fact that,

probably, EUROPEAN CUSTOMER and ASIAN CUSTOMER have no values in

common.

We now formalize the problem of attribute discovery as follows:

Definition 4.2 (Attribute Discovery). Given a collection of relational tables,

denoted T, let C be the set of all columns in T. Attribute Discovery is the

process of partitioning C into m clusters A = {A1, A2, . . . , Am} such that each

Ak = {Ck
1 , C

k
2 , . . . , C

k
nk
} is an attribute with respect to the set of tables T.

Table 4.1 summarizes the notations used in this chapter. According to

Definition 4.1, two columns C and C ′ are part of the same attribute if and
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Symbol Description

T Set of tables
C Set of columns
A Set of attribute clusters
NC Neighborhood of C
DC Distribution cluster
GD Distribution graph
GA Attribute graph
φC Cutoff value for C
θ Global threshold for computing φC

Table 4.1: Notation used throughout Chapter 4.

only if semantically they behave the same. The semantics of two columns can

be inferred by the type of relationship these columns have within a database

instance. We define the following relationship types:

1. A primary/foreign key;

2. Two foreign keys referring to the same primary key;

3. A column in a view and the corresponding column in the base table;

4. Two columns in two views but from the same column in the base table;

5. No explicit relationship but semantically equivalent (e.g., non-key, cus-

tomer name columns from different tables).

The first four relationship types are, by definition, indicators of strong attribute

ties. The fifth relationship type encompasses all columns that are semantically

equivalent where this information cannot be inferred from the database schema,

but only from the actual values contained in the columns. Only relationship

type 1 has been studied in the past. To the best of our knowledge no previous

work has studied relationship types 2-5. Nevertheless, existing work can easily

be adapted to identify types 2-4. In what follows, we list a set of existing

techniques that can be used to identify pairs of columns belonging to these

relationship types. In each case, we point out why they are insufficient for

identifying all relationship types - particularly type 5.

52



CHAPTER 4. ATTRIBUTE DISCOVERY

4.2.1 Name Similarity

It is natural to consider using the similarity of column names to infer column

semantics, since, to a certain extent, names reflect the meaning of the values

within a column. Indeed, previous work, especially in the area of schema match-

ing, has applied this technique to identify associations between columns [44].

However, this is not always a robust solution for three reasons. First, a given

database might not use strict naming conventions. Second, columns with no

meaningful associations oftentimes have similar or even identical names. For

instance, a column called NAME appears in both the NATION and CUSTOMER

tables of TPC-H, even though the two columns refer to two semantically unre-

lated concepts. Third, two semantically related columns may happen to have

very different names. For example, the columns in a view might have completely

different names from the source columns in the base table. This happens when

views are generated automatically, or when long, representative column names

have to be abbreviated due to length constraints (e.g., the 30 characters limit

in Oracle). Hence, simply relying on column name similarity can lead to both

false positives and false negatives, for the purpose of discovering attributes.

4.2.2 Value Similarity

Another straightforward technique is to consider the similarity of the data val-

ues contained in a set of columns. The Jaccard coefficient J(C1, C2) = |C1∩C2|
|C1∪C2|

(or any other set similarity measure) can be used for this purpose, which can be

efficiently estimated in practice [18]. However, this idea has its own drawbacks.

For example, in our TPC-H database instance, column CUSTOMER.CUSTKEY

contains values from 1 to 150,000, while column PART.PARTKEY contains all

integers from 1 to 200,000. The overlap of the values in these two columns

is very high: their Jaccard coefficient is 0.75. Nevertheless, the columns are

not semantically related. Conversely, two columns can have a strong seman-

tic relationship but no common values at all, e.g., EUROPEAN CUSTOMER

and ASIAN CUSTOMER. Of course, one could argue that in this case the two

columns belong to two different attributes. However, in our solution we would

like to cluster these columns primarily as customer names (as opposed to, for

example, nation names) and, optionally, also partition them into sub-attributes.

In this case, using data value similarity alone would lead to a false dismissal.
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Figure 4.3: Data distribution histograms of two examples from TPC-H.

4.2.3 Distribution Similarity

Data distribution similarity has been used in Chapter 3 to discover meaningful

primary/foreign key constraints using Earth Mover’s Distance (EMD). Com-

puting distribution similarity is a necessary step in our setting for attribute

discovery, since we can use it to discover primary/foreign key constraints (one

of the core relationship types we are interested in). However, it is not suffi-

cient for the purpose of discovering attributes. Consider for example the values

in CUSTOMER.ADDRESS and ORDERS.COMMENT. If we sort them in lexi-

cographic order for the purpose of computing EMD, they follow very similar

distributions. The proportion of strings from one column that fall within a giv-

en range of strings from the other column in lexicographic order is very similar.

To illustrate this point, we plot the two distributions in Figure 4.3(a). The

buckets are constructed using an equi-depth histogram based on the quantiles

of column ORDERS.COMMENT. Then, we simply tally the number of strings

from column CUSTOMER.ADDRESS that fall within each bucket. The plot

clearly shows that the values in CUSTOMER.ADDRESS also follow a nearly u-

niform distribution across buckets. Indeed, the EMD between the two columns

is only 0.0004. Still, computing distribution similarity does eliminate a large

number of other column pairs: for example, the histograms for columns CUS-

TOMER.CUSTKEY and PART.PARTKEY, whose EMD is 0.125, are shown in

Figure 4.3(b). We conclude that EMD values are a useful but insufficient filter.

The main reason why EMD works for discovering primary/foreign key relation-

ships, but not for discovering attributes, is the fact that for primary/foreign

keys a containment relationship needs to hold: By definition, most, if not all,

values from the foreign key must belong to the primary key. Thus, we would
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never consider ORDERS.COMMENT and CUSTOMER.ADDRESS as a valid pri-

mary/foreign key candidate in the first place, since they are not expected to

have many strings in common. By contrast, for columns belonging to the same

attribute no containment relationship needs to hold (e.g., EUROPEAN CUS-

TOMER and ASIAN CUSTOMER).

4.3 Attribute Discovery

It is clear that simply applying the aforementioned methods for discovering

attributes will not yield accurate results. In this section we present a novel

two-step approach. Intuitively, most of the time columns that belong to the

same attribute tend to contain values that are drawn from the same underlying

distribution. Conversely, if the values of two columns have different distri-

butions, they more likely belong to different attributes. Therefore, here we

advocate an algorithm that uses data distribution similarity, based on EMD,

for partitioning columns into distribution clusters. This first step is used to sep-

arate columns into major categories, for example clusters that contain strings

and clusters that contain only numerical columns. Furthermore, this step will

also separate numerical columns with widely differing distributions, based for

example on the range of values within the columns.

The use of EMD to create distribution clusters has some limitations. First

and foremost, as can be seen from the example in Figure 4.3(a), not all the

columns in one distribution cluster belong to the same attribute, especially

when it comes to columns containing strings. String columns tend to have

very similar distributions irrespective of the attribute these strings are derived

from (e.g., addresses and comments). Second, using EMD might place some

columns that belong to the same attribute into different clusters. This will

happen for example if several views are defined on a table containing regions

and telephone numbers, and the views select telephone numbers only from

particular regions. Clearly, the telephone numbers in each view will start with a

particular prefix. These correlations result in significantly different distribution

of values between columns of the same attribute, rendering distribution based

measures ineffective.

To solve the first problem, we use a subsequent, refinement phase that relies

on computing the similarity of the distribution based on the intersection of two
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columns. We also use indirect associations through witness columns for cases

where two columns have no values in common. We leave the solution of the

second problem as future work, and identify this scenario as a limitation of our

algorithm. From our experience, columns that have been generated based on

indirect correlations do exist, but are rare in practice.

4.3.1 Phase One: Computing Distribution Clusters

Given a set of columns C, we form distribution clusters by computing the EMD

between all pairs of columns in C. Since EMD is a symmetric measure, this

step requires |C|(|C|−1)
2

EMD computations. Then, given all pairwise EMDs we

need to decide how to partition columns into clusters. The main idea here

is to derive for every column a set of neighboring columns with small EMD,

such that no two columns that intuitively belong to the same attribute are

ultimately split into separate clusters. For every column C, we sort its EMD

values to every other column in increasing order. Now we have to choose a

cutoff EMD threshold that will determine the neighborhood NC of C. After all

neighborhoods have been determined, we will form a graph GD, where nodes

correspond to columns and undirected edges are created between a column C

and all other columns in NC . Finally, the distribution clusters are formed by

computing all connected components in GD.

In practice, a small EMD value is not only subjective, but also attribute de-

pendent. From our experience, different types of attributes exhibit significantly

different behavior in terms of the similarity of the distribution of values across

columns of that attribute, even when they are of the same primitive data type.

We illustrate this with an example from TPC-H in Figure 4.4. For columns

CUSTOMER.CUSTKEY and NATION.NATIONKEY, we sort their EMD values

to all other columns in the database in increasing order of EMD, and plot the

top-30 results. From careful, manual analysis of the data, we have determined

that the columns belonging to the same attribute as CUSTKEY and NATION-

KEY fall in the green region of the plots. We can clearly see that both the cutoff

EMD value and the value of k that bound the green regions in the plots, differ

significantly for these two attributes. For our purposes we would like to be able

to identify the EMD cutoff threshold for each column automatically (and not

by choosing a global EMD threshold or value k), and clearly this means that
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Figure 4.4: EMD plot of two examples in TPC-H.

we have to resort to heuristics.

We observe an interesting property that holds for most columns, in all test

cases that we have examined. Given a column C and all pairwise EMD values,

it appears that there usually exists a big gap in the magnitude of EMD values,

in the sorted order. For example, in both Figures 4.4(a) and 4.4(b) we observe a

big gap in the sorted EMD order, after the cutoff region (the dotted red lines in

the plots). Intuitively, the gap signifies a cutoff point below which other columns

seem to have similar distributions with C, and above which columns seem to be

completely unrelated to C (recall that small EMD means similar and large EMD

means different). This is expected for most column types in realistic scenarios.

For example, numerical columns are more similar to each other than string

columns (hence, a big gap exists in the EMD values where numerical columns

end and string columns begin); even among numerical columns, smaller gaps

occur because of the different ranges of values in the columns (e.g., salaries vs.

zip codes). Conservatively choosing this gap to be the cutoff EMD threshold

that defines the neighborhood NC guarantees that most false cluster splits are

avoided in practice (in other words we do not end up with too many clusters).

In addition, we can also use a conservative global EMD cutoff threshold θ (a
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value large enough to signal that two distributions are significantly different)

to make sure that the opposite problem does not occur either, i.e., we do not

end up with too few distribution clusters.

Algorithmically identifying the cutoff EMD threshold for a column C is

straightforward. Let θ be the global threshold, and L(C) be the sorted list of

EMD values for C, i.e., L(C) contains all values e = EMD(C,C ′), ∀C ′ ∈ C, in

increasing order. We truncate L(C) to values smaller than θ and identify the

largest difference between two consecutive EMD values in the truncated list.

The pseudo code appears in Algorithm 4.1. In the algorithm we also add θ in

the list of EMD values to capture the special case were the largest gap between

two values happens to involve θ.

Algorithm 4.1: ComputeCutoffThreshold (L(C), θ)

1 L = L ∪ (θ, ∅)
2 Sort L in increasing order of EMD values
3 φC = 0, i = 0, gap = 0
4 while L[i+ 1] ≤ θ do
5 if gap < L[i+ 1].e− L[i].e then
6 gap = L[i+ 1].e− L[i].e
7 φC = L[i].e

8 i = i+ 1

9 Return φC

Algorithm 4.2: ComputeDistributionClusters (C, θ)

1 GD = ∅
2 for i← 1 to |C| do
3 for j ← i+ 1 to |C| do
4 e = EMD(Ci, Cj)
5 A[Ci].insert(e, Cj) /* A is a hash table of (e, C) */

A[Cj].insert(e, Ci)

6 GD.AddNode(Ci)

7 for i← 1 to |C| do
8 φCi

= ComputeCutoffThreshold(A[Ci], θ)
9 foreach Cj ∈ NCi

do
10 GD.AddEdge(Ci, Cj)

11 Return connected components of GD
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Once the cutoff value φC for each column C has been computed we can

define the neighborhood of a column as follows:

Definition 4.3 (Neighborhood). The neighborhood NC of column C consists

of all columns C ′ with EMD(C,C ′) ≤ φC.

Then, we build the distribution graph, which is defined as follows:

Definition 4.4 (Distribution Graph). A Distribution Graph GD = (VD, ED) is

an undirected graph where each column C ∈ C corresponds to a node C ∈ VD,

and an edge between nodes C and C ′ exists iff C ∈ NC′ ∨ C ′ ∈ NC.

Alternatively, we can define the edges as C ∈ NC′ ∧ C ′ ∈ NC , but our

experimental evaluation shows that in practice this does not affect precision.

The distribution clusters are obtained by computing the connected compo-

nents in the resulting distribution graph:

Definition 4.5 (Distribution Cluster). Let Gi = (V i
D, E

i
D), V i

D ⊂ VD, E
i
D ⊂

ED, 1 ≤ i ≤ n be the set of n connected components in distribution graph GD.

The set of columns corresponding to the nodes in V i
D determines distribution

cluster DCi.

The pseudo code for computing distribution clusters is shown in Algorith-

m 4.2. We can compute the connected components of graph GD (line 13 of

Algorithm 4.2) using either depth-first or breadth-first search.

Figure 4.5 shows the distribution clusters of the TPC-H example in Fig-

ure 4.2, which contains three base tables and two materialized views (table

names EUROPEAN CUSTOMER and ASIAN CUSTOMER are shortened to EC

and AC). Using the distribution graph, twenty six columns are partitioned

into eight clusters. Columns from distinctly different domains are immediate-

ly separated (e.g., numeric values and strings). The numeric columns with

different ranges of values are also correctly clustered (e.g., key columns like

CUSTKEY, NATIONKEY, ORDERKEY and REGIONKEY), as well as columns

that contain specially formatted values (e.g., PHONE which contains numerals

and dashes). However, distribution clusters cannot always differentiate between

different string columns (e.g., ADDRESS and COMMENT).
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Figure 4.5: Distribution clusters of TPC-H example.

4.3.2 Phase two: Computing Attributes

We now describe in detail how to further decompose distribution clusters into

attributes, specifically for identifying columns that have very similar distribu-

tions overall but do not belong to the same attributes, as is the case for many

string columns. We use an intersection distribution metric and witness column-

s, to construct one attribute graph per distribution cluster and then correlation

clustering to decompose the cluster into attributes.

The Attribute Graph

In order to decompose clusters into attributes we create one attribute graph GA

per cluster. Given that all columns within the same distribution cluster have

similar distributions of values, we need to differentiate between attributes by

also taking into account the values these columns have in common. Clearly,

columns with large intersection of values are highly related and should belong

to the same attribute (this is similar to automatically identifying whether two

columns have a primary/foreign key relationship, as in Chapter 3). On the other

hand, columns that have very few or no values in common, might or might not

belong to the same attribute (e.g., as is the case of EUROPEAN CUSTOMER

and ASIAN CUSTOMER, and conversely, ADDRESS and COMMENT).

We make here the following key observation. We can determine whether

two columns with empty intersection come from the same attribute by using a

witness column, i.e., a third column that is highly related to both columns. In
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other words, we introduce relationships by indirect association. For example, we

know for a fact that both EUROPEAN CUSTOMER and ASIAN CUSTOMER

have a large number of values in common with CUSTOMER, but not with

each other. After identifying that CUSTOMER is related with EUROPEAN

CUSTOMER and ASIAN CUSTOMER, we can deduce with high confidence that

EUROPEAN CUSTOMER and ASIAN CUSTOMER are also related. Formally:

Definition 4.6 (Witness Column). Consider three distinct columns C,C ′, C ′′.

Column C ′′ is a witness for C and C ′ if and only if both conditions hold:

1. C ′′ and C are in the same attribute.

2. C ′′ and C ′ are in the same attribute.

Clearly, if two columns belong to the same attribute, have no values in

common, and no witness column, then we will not be able to identify these

columns. This is one more limitation of our approach, but in practice, such cases

might either be identifiable using orthogonal techniques (e.g., column name

similarity), or in other cases might be hard to identify using any unsupervised

solution.

Based on these observations, we create the attribute graph of each cluster

DC, similarly to the distribution graph of C. Here, a node corresponds to a

column of DC and an edge corresponds to an intersection relationship between

two columns.

We also have to define a measure over these edges, which we call Intersection

EMD. Intersection EMD measures the likelihood that a pair of columns are part

of the same attribute, taking into account the distribution of the values within

each column with respect to the common values. In general, for an edge (C,C ′),

EMD(C,C ∩C ′) 6= EMD(C ′, C ∩C ′). Since the edge is undirected, we define

its weight as the arithmetic mean of these two values. Formally:

Definition 4.7 (Intersection EMD). Given columns C,C ′, the Intersection

EMD is defined as:

EMD∩(C,C
′) =

1

2
(EMD(C,C ∩ C ′) + EMD(C ′, C ∩ C ′)).

Let EMD∩(C,C
′) =∞, if C ∩ C ′ = ∅.
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Clearly, Intersection EMD can differentiate between columns like ADDRESS

and COMMENT, since their intersection is empty. Even if they did have a small

number of values in common, their Intersection EMD would be very large.

Similar to the case of computing distribution clusters, we need to decide

whether the Intersection EMD between two clusters is small enough to place

the columns into the same attribute. We are trying to balance the number of

attributes to create (small thresholds will result in too many attributes and

large thresholds in too few). For each individual column, we compute a cutoff

threshold as before (see Algorithm 4.1), but instead of using EMD we use

Intersection EMD. Similarly, we define the neighborhood NC of a column C,

this time with respect to Intersection EMD.

We now give the formal definition of the attribute graph corresponding to

a distribution cluster:

Definition 4.8 (Attribute Graph). The attribute graph GA = (VA, EA) of a

distribution cluster DC is a complete graph over the set of vertices of DC,

such that the weights of edges in EA are either 1 (positive edges) or −1 (negative

edges). Let E+
A , E

−
A denote the set of positive, resp. negative, edges in GA. To

define them, consider an arbitrary pair of vertices C,C ′ ∈ VA.

1. Neighborhood: If C ∈ NC′ ∨ C ′ ∈ NC, then eCC′ ∈ E+
A1.

2. Witness: If ∃C ′′ ∈ VA s.t. eCC′′ ∈ E+
A1 ∧ eC′C′′ ∈ E

+
A1, then eCC′ ∈ E+

A2.

We define E+
A = E+

A1 ∪ E
+
A2, and E−A = EA \ E+

A .

Figure 4.6 shows the attribute graph of distribution cluster DC1 from Fig-

ure 4.5. The green lines in the figure denote positive edges while the red lines

are negative edges. The edges between the three nodes outside the dashed

box to all other nodes are negative. Using Intersection EMD we are able

to separate columns like ADDRESS and COMMENT, while AC.ADDRESS and

EC.ADDRESS are connected through the witness column C.ADDRESS. The

same holds for AC.COMMENT and EC.COMMENT.

The next step is to decompose the graph into attributes. Clearly, we could

decompose the graph into connected components (by simply ignoring negative

edges) similarly to phase one. Nevertheless, due to the nature of Intersection

EMD and the fact that after phase one, attribute graphs consist of a small
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Figure 4.6: A possible attribute graph of distribution cluster DC1.

number of nodes, in practice attribute graphs tend to comprise of a single (or

very few) connected components. A better approach here is to use the negative

weights productively to find an optimal clustering of nodes into attributes that

minimizes the number of conflicting nodes that end up into the same cluster

and the number of related nodes that end up in different clusters. As it turns

out, this is exactly the goal of correlation clustering.

Correlation Clustering

Let G = (V,E) be an undirected graph with edge weights 1 or −1. Let E+ be

the set of positive edges, and E− be the set of negative edges; E = E+ ∪ E−.

Intuitively, edge euv ∈ E+ if u and v are similar; and euv ∈ E− if u and v are

dissimilar. The correlation clustering problem [9] on G is defined as follows:

Definition 4.9 (Correlation Clustering). Compute disjoint clusters covering

V , such that the following cost function is minimized:

cost = |{euv ∈ E+ | Cl(u) 6= Cl(v)}|+

|{euv ∈ E− | Cl(u) = Cl(v)}|,

where Cl(v) denotes the cluster node v is assigned to.

This definition minimizes the total number of disagreements, i.e., the num-

ber of positive edges whose endpoints are in different clusters, plus the number

of negative edges whose endpoints are in the same cluster. Alternatively, one
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can define the dual problem of maximizing the total agreement. More gener-

al versions of the problem exist, e.g., when weights are arbitrary real values.

However, this version is sufficient for our purposes.

Correlation clustering can be written as an integer program, as follows. For

any pair of vertices u and v, let Xuv = 0 if Cl(u) = Cl(v), and 1 otherwise.

The integer program is

Minimize: ∑
euv∈E+

Xuv +
∑

euv∈E−
(1−Xuv)

s.t.

∀u, v, w : Xuw ≤ Xuv +Xvw

∀u, v : Xuv ∈ {0, 1}

The condition Xuw ≤ Xuv+Xvw ensures that the following transitivity property

is satisfied: if Xuv = 0 and Xvw = 0, then Xuw = 0 (note that this is equivalent

to: if Cl(u) = Cl(v) and Cl(v) = Cl(w), then Cl(u) = Cl(w)). Therefore X

defines an equivalence relationship, and the clusters are its equivalence class-

es. Correlation clustering is NP-Complete [9]. Nevertheless, the above integer

program can be solved exactly by IP solvers (e.g., CPLEX [1]) for sufficiently

small graphs. For larger graphs, one can use polynomial time approximation

algorithms [8].

Going back to the example of Figure 4.6, correlation clustering on this

graph will further decompose nine columns into five attributes, as shown in

Figure 4.7. If all the edges in the attribute graph are correctly labeled, such

as the simple example in Figure 4.6, then the graph results in perfect cluster-

ing, meaning that there are no disagreements. (When this is the case, simply

removing all the negative edges and computing the connected components in

the remaining graph also returns the correct attributes.) However, if a few

edges are assigned conflicting labels, there is no perfect clustering. For exam-

ple, Figure 4.8 shows a different attribute graph for distribution cluster DC1,

obtained by setting a higher threshold θ in Algorithm 1. The edge between

AC.ADDRESS and AC.COMMENT is now labeled positive. In addition, two

other positive edges are created, since AC.ADDRESS and AC.COMMENT act

as witnesses for C.ADDRESS and C.COMMENT. As it turns out, in this case

correlation clustering is still able to separate the columns correctly, by finding
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N.NAME

N.COMMENT

O.COMMENT

AC.ADDRESS AC.COMMENT

EC.ADDRESS EC.COMMENT

C.ADDRESS C.COMMENT

A1 A2

A3

A4

A5

Figure 4.7: Attributes discovered in the attribute graph of distribution cluster
DC1.

C.COMMENT

N.NAME

N.COMMENT

O.COMMENT

AC.ADDRESS

AC.COMMENT

EC.ADDRESS

C.ADDRESS

EC.COMMENT

+ edge

- edge

Figure 4.8: Another possible attribute graph of distribution cluster DC1.

a partition that agrees as much as possible with the edge labels. Of course, in

some cases correlation clustering will result in mistakes, but in the end our so-

lution will decompose the graph into attributes that can be manually inspected

much more easily than having to look at the complete distribution graph.

We now summarize phase two. The pseudo code is shown in Algorithm 4.3.

For each distribution cluster computed in phase one, compute the Intersection

EMD between each pair of columns in the cluster and store the resulting val-

ues in a hash table I in increasing order of Intersection EMD. Then compute

the cutoff threshold for each column. Construct the attribute graph GA ac-

cording to Definition 4.8. Creating positive edges based on witness columns

is implemented by creating positive edges between nodes with path of length

two. This is accomplished by first computing the adjacency matrix E of graph

GA1 = (VA, E
+
A1), where E[Ci][Cj] = 1 means the edge between node Ci and Cj

is positive. The adjacency matrix of graph GA = (VA, E
+
A2) can be computed

by multiplying E by itself. The sum of the two matrices is the final adjacency

matrix M of attribute graph GA = (VA, EA). Finally, we compute attributes
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using correlation clustering on graph GA.

Algorithm 4.3: ComputeAttributes (DC, θ)

1 GA = ∅, E[][] = 0, M [][] = 0
2 for i← 1 to |DC| do
3 for j ← i+ 1 to |DC| do
4 e = EMD∩(Ci, Cj)
5 I[Ci].insert(e, Cj) /* I is a hash table of (e, C) */

I[Cj].insert(e, Ci)

6 φCi
= ComputeCutoffThreshold(I[Ci], θ)

7 foreach Cj ∈ NCi
do

8 E[Ci][Cj] = 1

9 GA.AddNode(Ci)

10 M = E + E × E
11 for i← 1 to |DC| do
12 for j ← 1 to |DC| do
13 if M [i][j] = 0 then
14 GA.AddNegativeEdge(Ci, Cj)

15 else
16 GA.AddPositiveEdge(Ci, Cj)

17 Return correlation clustering of GA

4.4 Performance Considerations

Clearly, due to the difficult and subjective nature of this problem, no unsu-

pervised solution will lead to 100% precision 100% of the time. The solution

provided here can be used in conjunction with other techniques for improving

quality. Notice that the two phases of our algorithm are quite similar. We cre-

ate a graph based on some similarity measure and decompose the graph based

on connected components or correlation clustering. The heuristic nature of the

algorithm raises a number of questions about possible alternative strategies.

For example, we could reverse the two steps, or use Intersection EMD instead

of EMD first. We can also use correlation clustering in the first phase of the

algorithm.

We use EMD first simply because it is a weaker notion of similarity than

Intersection EMD. EMD acts upon all values of two columns, while Intersection
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EMD acts upon the common values. EMD is used to roughly decompose the

instance graph into smaller problems, by separating columns that clearly be-

long to different attributes; strings from numerical columns and columns with

significantly different ranges and distributions of values. The graph based on

EMD edges alone (without any Intersection EMD edges) is sparse and easy to

partition into smaller instances. Of course, we could combine both phases into

one by creating a graph with EMD, Intersection EMD and witness edges, but

we use a two phase approach here for efficiency. For the same reason we do not

use correlation clustering in the first phase. Running correlation clustering on

the distribution graph GD can be very expensive due to the large number of

nodes. On the other hand, running correlation clustering independently on the

much smaller connected components is manageable.

Notice that the cost of computing EMD and Intersection EMD depends on

the size of the columns involved. Clearly, for columns containing a very large

number of distinct values the cost of computing all pairwise EMD and Inter-

section EMD values can be prohibitive. For that reason we can approximate

both measures by using the technique proposed in Chapter 3, which is based on

quantiles. We shall briefly describe the technique here for explanation purpose.

Essentially the technique computes a fixed number of quantiles from all columns

(e.g., 256 quantiles) and then computes EMD between two columns by using the

quantile histograms. In particular, given two columns C and C ′, EMD(C,C ′)

is computed by taking the quantile histogram of C and performing a linear scan

of C ′ to find the number of values in C ′ falling into each bucket of the histogram

of C (notice that we cannot compute EMD between two quantile histograms

directly, since the bucket boundaries might not coincide, in which case EMD is

undefined). Then EMD(C,C ′) is approximated as the EMD between the two

resulting histograms. The intuition here is that quantile summaries are a good

approximation of the distribution of values in the first place, hence the EMD

between two quantile summaries is a good approximation of the EMD between

the actual columns. Moreover, this approach has a proven bounded error of

approximation, as shown in Chapter 3.

Computing Intersection EMD entails computing the intersection between

all pairs of columns, which of course is a very expensive operation, especially

if no index exists on either column. In order to improve performance we build

Bloom filters [13] and use the Bloom filters to compute an approximate inter-
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section between sets. Given two columns C and C ′, we first perform a linear

scan of column C, probe the Bloom filter of C ′, and if the answer is positive,

use the existing quantile histograms of C and C ′ to (approximately) compute

both EMD(C,C ∩ C ′) and EMD(C ′, C ∩ C ′). Optionally, we can improve

the approximation of the intersection by also scanning column C ′ and probing

the Bloom filter of C. Given that Bloom filters introduce false positives, this

approach can result in cases where two columns have an empty intersection,

but their approximate Intersection EMD is finite. Nevertheless, for columns

of very large cardinality (especially in the absence of indexes), using Bloom

filters results in significant performance improvement. One can further balance

accuracy and performance, by using exact intersection computations for small

columns, and Bloom filters for large columns.

As discussed above, correlation clustering is NP-Complete. Nevertheless, we

solve it exactly, by running CPLEX [1] on its corresponding integer program.

In our experiments, CPLEX was able to find solutions for large graph instances

very fast. The largest graph instance we tried contained 170 nodes, 14365

variables, and 2.5 million constraints and took 62 seconds to complete using

four Intel IA-64 1.5GHz CPUs and four threads. Alternatively, one can use

polynomial time approximation algorithms [8] if faster solutions are required

for larger graphs.

4.5 Experimental Evaluation

We conducted extensive experiments to evaluate our approach on three datasets

based on the TPC-H [5] benchmark (with scale factor 1), and the IMDB [3] and

DBLP [2] databases. For each dataset, we created a large set of materialized

views to simulate a more complex scenario. The detailed statistics of all datasets

are given in Table 4.2. The views are created from a selection of rows based on

the values of a specific column (mostly columns that contain categorical data)

and each of the views represents a semantically meaningful subset of the data

in the base table. Table 4.3 summarizes the views generated in each dataset.

The experiments were run on an Intel Core2 Duo 2.33 GHz CPU Windows XP

box and CPLEX was run on a four Intel IA-64 1.5GHz CPU Linux box.

We use two standard metrics, precision and recall, to measure the quality

of discovered attributes. The gold standard was manually identified from a
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Base tables Views Columns Rows

TPC-H 8 110 785 12,680,058
IMDb 9 118 254 12,048,155
DBLP 6 66 285 8,647,713

Table 4.2: Datasets statistics.

Dataset Base Table View No. Selection Description

TPC-H

CUSTOMER

1-2 ACCTBAL
Customers with positive/negative
account balance.

3-7 MKTSEGMENT
Customers in each market segmen-
t.

8-37 NATIONKEY
Customers from each na-
tion/region.

NATION 38-42 REGIONKEY Nations in each region.

PART
43-67 BRAND Parts of each brand.
68-72 MFGR Parts by each manufacture.

SUPPLIER 73-102 NATIONKEY Suppliers from each nation/region.

ORDERS
103-105 ORDERSTATUS Orders in each status.
106-110 ORDERPRIORITY Orders with each priority.

IMDb MOVIE
1-28 COUNTRY Movies released in each country.

29-118 YEAR Movies released in each year.

DBLP

ARTICLES 1-20 YEAR
Journal papers published in each
year.

INPROCEEDINGS 21-38 YEAR
Conference papers published in
each year.

BOOKS 39-66 YEAR Books published in each year.

Table 4.3: Description of materialized views.

careful analysis of each dataset. Given the nature of the problem, we define

precision as a measure of purity of a discovered attribute (how similar is the

set of columns contained in the attribute with respect to the gold standard),

and recall as a measure of completeness. Let the set of discovered attributes

be A = {A1, A2, . . . , Am} and the gold standard be T = {T1, T2, . . . , Tm′}. We

first define the precision and recall of a discovered attribute Ai. Each column

in Ai belongs to an attribute in T. Let Ai correspond to Tj if and only if the

majority of columns in Ai also belong in Tj. Then, the precision and recall of

Ai are defined as:

Precision(Ai) =
|Ai ∩ Tj|
|Ai|

, Recall(Ai) =
|Ai ∩ Tj|
|Tj|

.

We then define the precision and recall of the final result A as the average over

all attributes:

Precision(A) =

∑m
i=1 Precision(Ai)

m
, Recall(A) =

∑m
i=1Recall(Ai)

m
.
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Figure 4.9: Distribution histograms of EMD values between all pairs of columns
in the same attribute for TPC-H and DBLP.

4.5.1 Distribution Similarity

As already discussed, in most cases columns that belong to the same attribute

tend to have similar distributions, and columns that have different distributions

more likely belong to different attributes. First, we run experiments to verify

this intuition. For each dataset, we examine the EMD values between all pairs

of columns in the same attribute, based on the gold standard, and plot the

distribution histograms (for efficiency we approximate all EMD computations

using quantile histograms). Figure 4.9 shows the results for TPC-H and DBLP.

For TPC-H 87.3% EMD values between columns of the same attribute are

smaller than 0.05. For DBLP 62.5% are below 0.05 and only 2.8% are above

0.2. This verifies our intuition that EMD is a robust measure for phase one of

the algorithm.

Notice that a few pairs of columns in TPC-H have very large EMD. This

is caused by the four attributes shown in Table 4.4. View1 and View2 select

customers with positive and negative balance (see Table 4.3), which results

in a horizontal partition of the base table and very different distributions in

each partition. The same happens for attributes phone number and order

date. Since View8-37 and View73-102 select customers and suppliers from a

particular nation/region, the phone numbers in each view start with the same

prefixes. View103-105 are the orders in each particular status and order status

is correlated to the date when the order is placed. Distribution similarity fails

to discover the associations between columns if such correlations exist, and this

is a limitation of our approach. However, we can see here that distribution

70



CHAPTER 4. ATTRIBUTE DISCOVERY

Attribute Columns

Customer account balance ACCTBAL in CUSTOMER and View1-2

Customer phone number PHONE in CUSTOMER and View8-37

Supplier phone number PHONE in SUPPLIER and View73-102

Order date DATE in ORDERS and View103-105

Table 4.4: Attributes that contain horizontally partitioned columns in TPC-H.

similarity between columns of the same attribute holds for the large majority

of columns. After removing the horizontal partitions mentioned above from

TPC-H (65 columns in total), the EMD values between all pairs of columns

within the same attribute are below 0.2 and for up to 99.5% of the pairs, EMD

is below 0.05.

To illustrate the point that columns of the same attribute do not necessarily

have too many values in common, in Figure 4.10 we plot a histogram of the

pairwise Jaccard similarity of columns within the same attribute, based on the

golden standard. Recall that a high Jaccard value implies a large number of

common values and vice versa. We observe that for TPC-H 70% of colum-

n pairs have Jaccard similarity smaller than 0.1, and only 19% have Jaccard

above 0.9. The results for DBLP are even more striking, with more than 80%

of column pairs having Jaccard similarity smaller than 0.1. It is thus clear that

Jaccard similarity is a poor measure for clustering columns into attributes.

In particular, a naive approach for discovering attributes would be to create

a column similarity graph with edges weighted according to pairwise Jaccard

similarity, then remove edges with Jaccard similarity smaller than some thresh-

old, and finally compute the connected components. Figure 4.10 clearly shows

that dropping edges with reasonably small Jaccard similarity would result in

a very sparse graph, separating columns into atomic attributes. On the other

hand, retaining all edges would tend to separate columns into two attributes,

one for numerical attributes and one for strings.

4.5.2 Attribute Discovery

Here we measure the accuracy of our technique for discovering attributes. We

use a single global threshold θ for computing the distribution clusters in Phase

one as well as building the attribute graph in Phase two. Furthermore, we

use Bloom filter for all columns, across the board, to approximate Intersection
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Figure 4.10: Distribution histograms of Jaccard values between all pairs of
columns in the same attribute for TPC-H and DBLP.

EMD. In the experiments, we vary θ from 0.1 to 0.2. Table 4.5 shows the

accuracy results for all datasets. For TPC-H, we report two sets of results.

TPCH-1 refers to the results with respect to the original dataset. TPCH-2

refers to the results with respect to a reduced dataset, obtained by removing

the horizontally partitioned columns. For readability, we also plot the precision

and recall in Figure 4.11. We can see that for large ranges of thresholds θ

(0.16-0.2) we achieve high precision and recall for all datasets, which makes our

approach easy to use in practice.

For the TPC-H dataset, as already explained, 65 columns (belonging to only

4 attributes out of 45) are from horizontal partitions of the base tables due

to indirect correlations between columns. Here, distribution similarity fails to

cluster such columns together, more precisely each view becomes its own cluster,

resulting in more than 100 attributes overall. However, as shown in TPCH-2, by

drilling down we can see that our approach achieves high precision and recall for

discovering attributes in the remaining set of columns. It should be noted here

that columns that form unit clusters can be singled out and treated separately

during post-processing. For future work, we are investigating whether it is

possible to identify if unit clusters belonging to horizontally partitioned columns

can be concatenated as a subsequent step.

Our approach discovers fewer attributes than the gold standard. Table 4.6

shows the attributes that cause the errors for θ = 0.12. As shown, nine dis-

tinct attributes are clustered into four attributes by our algorithm (one at-

tribute per row), and that accounts for the five missing attributes. Here,

9997 out of 10000 values in SUPPLIER.ADDRESS are identical to the values
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Threshold θ 0.1 0.12 0.14 0.16 0.18 0.2

TPCH-1

m′ 46
m 108 107 106 103 102 101
P 0.986 0.985 0.984 0.984 0.983 0.983
R 0.379 0.383 0.377 0.388 0.382 0.385

TPCH-2

m′ 45
m 41 40 39 39 38 38
P 0.962 0.961 0.957 0.957 0.953 0.953
R 0.976 1 1 1 0.999 0.998

IMDB

m′ 10
m 12 11 11 10 10 10
P 0.958 0.955 0.955 0.95 0.95 0.95
R 0.75 0.818 0.818 0.9 0.9 0.9

DBLP

m′ 14
m 19 14 13 12 12 12
P 0.949 0.93 0.924 0.918 0.918 0.918
R 0.632 0.857 0.92 0.997 0.997 0.997

Table 4.5: Accuracy results on TPC-H, IMDB and DBLP for different thresh-
olds θ; m′ true number of attributes; m attributes in our solution; P is precision;
R is recall.
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Figure 4.11: Accuracy results on TPC-H, IMDB and DBLP for varying thresh-
olds θ.
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1 DISCOUNT TAX
2 SUPPKEY AVAILQTY
3 CUSTOMER.ACCTBAL SUPPLIER.ACCTBAL
4 CUSTOMER.ADDRESS SUPPLIER.ADDRESS LINEITEM.COMMENT

Table 4.6: Attributes that are incorrectly clustered together in TPC-H for
θ = 0.12.

in CUSTOMER.ADDRESS (due to the way addresses are generated in TPC-

H), making these two columns indistinguishable; DISCOUNT contains all val-

ues in TAX; the same is true for SUPPKEY and AVAILQTY; 12.8% of values

in SUPPLIER.ACCTBAL appear in CUSTOMER.ACCTBAL. Finally, LINEIT-

EM.COMMENT has no intersection with ADDRESS, but the false clustering

here occurs due to false positives produced by the Bloom filter in phase two.

Correlation clustering proves to be a robust way of separating attributes in

the attribute graph. Figure 4.12 shows an attribute sub-graph of TPC-H, for

varying θ from 0.14 to 0.2 (negative edges are removed for readability). For

θ = 0.14, the four clusters are totally disconnected (there are no positive edges

between different attributes). Correlation clustering (or even connected compo-

nents) in this case would separate the graph into four attributes. Our method is

able to separate CUSTOMER.COMMENT views from PART.COMMENT views,

while, for example, the method of comparing column names will fail in this

case. On the other hand, CUSTOMER.ADDRESS and SUPPLIER.ADDRESS

are clustered together, but this is clearly because 9997 out of 10000 addresses

are the same. As θ increases, the number of positive edges across attributes

increases as well. This is evident in Figure 4.12(d). However, after running

correlation clustering we are still able to separate the graph into four attributes

once again, with very few errors. For θ = 0.16, the result is exactly the same

as for θ = 0.14. For θ = 0.18, correlation clustering will place one view of

PART.NAME in the attribute of CUSTOMER.COMMENT. For θ = 0.2, one

view of PART.COMMENT will be placed in the attribute for ADDRESS.

For IMDB we achieve 0.95 precision and 0.9 recall for θ ranging from 0.16

to 0.2. In our result, ACTOR.NAME and DIRECTOR.NAME are clustered

together due to very large overlap of values. Since most directors are also

actors, in this case choosing whether directors and actors should be treated

differently depends on application context. In this case of course, a simple

solution based on column names can provide an answer. Another problem is
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(a) θ = 0.14 (b) θ = 0.16

(c) θ = 0.18 (d) θ = 0.2

Figure 4.12: An attribute sub-graph of TPC-H for varying thresholds θ.

column MEXICO.MOVIENAME which is not included in the movie names at-

tribute. Some simple data analysis here shows that 14.0% of movie names

in MEXICO.MOVIENAME start with la/las/los and 11.5% names start with

el, making the distribution of this column significantly different from movie

names in other views. Decreasing θ to 0.14 and 0.12 results in splitting S-

PAIN.MOVIENAME out as well, for the same reason. When using threshold

θ = 0.1, HONGKONG.MOVIENAME and TAIWAN.MOVIENAME are also sep-

arated. This is not surprising, since both mainly contain names in Chinese and

have small overlap with the movie names in other views.

Finally, for the DBLP dataset we also achieve precision above 0.9 and recall
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above 0.997, for θ ranging from 0.16 to 0.2. The errors occur in four attributes.

Here, AUTHOR.NAME and EDITOR.NAME are clustered together given that

596 out of 621 editors appear in the AUTHOR table as well. The same is true

for ARTICLES.TITLE and INPROCEEDINGS.TITLE, since it seems that the

majority of papers submitted to journal publications have the exact same title

as the conference versions of the papers.

Overall, clearly it is in some cases difficult even for humans to decide what

constitutes an attribute, without additional application dependent context.

Our technique is able to separate major attributes very well, and make only

minor mistakes that can either be corrected by supervision and simple statisti-

cal analysis, or by using orthogonal approaches (e.g., column name matching,

if meaningful schema information exists).

4.6 Summary

We argued that discovering attributes in relational databases is an important

step in better understanding and working with the data. Toward this goal, we

proposed an efficient solution, based on statistical measures between pairs of

columns, to identify such attributes given a database instance. Our solution

was able to correctly identify attributes in real and synthetic databases with

very high accuracy.

This work has been published as a full research paper in 2011 ACM SIG-

MOD/PODS Conference [60].
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CHAPTER 5

Join Query Discovery

In this chapter, we study the following problem: Given a database D with

schema G and an output table Out, compute a join query Q that generates

Out from D. A simpler variant allows Q to return a superset of Out. This

problem has numerous applications, both by itself, and as a building block for

other problems arising in data mining, keyword search and schema mapping.

Related prior work imposes conditions on the structure of Q which are not

always consistent with the application, but are used for ease of computation.

We discuss several natural SQL queries that do not satisfy these conditions and

cannot be discovered by prior work.

We propose an efficient algorithm that discovers queries with arbitrary join

graphs. A crucial insight is that any graph can be characterized by the combi-

nation of a simple structure, called a star, and a series of merge steps over the

star. The merge steps define a lattice over graphs derived from the same star.

This allows us to explore the set of candidate solutions in a principled way and

quickly prune out a large number of infeasible graphs. We also design several

optimizations that significantly reduce the running time. Finally, we conduct

an extensive experimental study over a benchmark database and show that our

approach is scalable and accurately discovers complex join queries.
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5.1 Introduction

Database systems are adept at performing efficient computations expressed as

SQL queries over large datasets, and much work in the literature has focused

on improving the efficiency of answering SQL queries. In this chapter, we focus

on the following inverse problem: Suppose that a user already has the answer

to a SQL query, and her goal is to find the query itself. This scenario appears

quite often in practice. Many database users compute a SQL answer into a

spreadsheet or a view, then share it without annotating it with the generating

query [56]. However, knowing the generating query can be very useful: e.g.,

someone may notice inconsistencies in the output and want to investigate, or

they may want to generate a slightly different output for further analysis.

We discover join queries with arbitrary graphs, where each join in the gen-

erating query is an equi-join over foreign/primary key columns - a problem for

which we are not aware of any prior solution. Partial results have been pro-

posed before (see, e.g., [6, 14, 46, 52, 56]) for simple join graph structures such

as trees, or subgraphs of the schema graph where each table appears at most

once. While equi-joins over foreign/primary key columns are the most common

kind of joins, many other joins are also used in practice, e.g., equi-joins between

foreign keys, inequality joins over ordered attributes, etc. Our framework can

be extended to support more join types if they are pre-defined in the schema;

this may result in higher computation cost for some queries. Note, however,

that computing a generating query with arbitrary arithmetic expressions in the

joins is PSPACE-hard [56].

We now formalize the problem of join query discovery as follows:

Definition 5.1 (Join Query Discovery). Let D be a database with schema graph

G. Let Out be an output table generated from D by an unknown join query

using the constraints in G. Join Query Discovery is to compute a generating

join query Q that produces table Out from the tables in D, i.e., out(Q) = Out.

In general, a complexity measure is defined over the queries, and the goal is to

return the query with smallest complexity.

Because of their potential applications in other areas, we also consider a few

variants of the problem. Thus, we may wish to compute a query that generates

a superset of Out, or to compute multiple queries that generate (a superset of)

Out, in order of increasing complexity. However, unless otherwise specified, our
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Region

Nation

LineItem PartSupp SupplierOrdersCustomer

Part

(a) Schema graph of TPC-H.

Supplier1 Supplier2

Nation

PartSupp1 PartSupp2Part

s_name s_name

(b) RQ1

s_name s_name

Nation Supplier2Supplier1

LineItem2LineItem1

(c) RQ2

Figure 5.1: The TPC-H schema and two Running example Queries over it.

presentation assumes that we return the query whose output is exactly table

Out.

Example: Figure 5.1(a) shows the schema graph of the TPC-H bench-

mark [55], which models a business environment and contains information about

products, suppliers, customers, etc. Figures 5.1(b) and 5.1(c) show two queries

(in graph form) over TPC-H; they serve as running examples throughout Chap-

ter 5. Query RQ1 in Figure 5.1(b) outputs a table Out1 of pairs of supplier

names (from table Supplier) that are located in the same country, and supply

at least one identical product. To distinguish between two different instances of

the same table, we add a counter after the name (e.g., Supplier1 and Supplier2).

The query corresponds to two cyclic traversals in the TPC-H schema: Supplier-

Nation-Supplier and Supplier-PartSupp-Part-PartSupp-Supplier. However, the

graph of RQ1 is not a subgraph of TPC-H, because we use multiple instances

of Supplier and PartSupp. Query RQ2 in Figure 5.1(c) outputs a table Out2 of

pairs of supplier names that are located in the same country and each supplies

at least one line item. The two joins with the LineItem tables are a proper filter:

deleting them changes the output. The red ovals indicate the tables from which

the projection columns are selected. Tables Out1 and Out2 are overlapping but

not identical, so we must distinguish between RQ1 and RQ2 in our answers.

Any algorithm that solves this problem must exhibit scalability. Even for a

simple schema like TPC-H, the number of candidate graphs is usually super-

exponential in the graph size, and many graphs behave like cross-products
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(because they contain multiple copies of the same table, and the size of the

query output can be at least quadratic in the size of such a table). Thus, while

one could design various brute-force approaches that enumerate and test all

candidate queries (up to some size), such approaches will not scale in practice.

We also emphasize correctness, i.e., we are able to discover a query that

generates the exact table Out (not a subset or superset of it). Below we show

why related work falls short of this goal. Finally, we discuss completeness: our

algorithm can discover all query graphs (up to some fixed complexity) that

generate exactly Out.

In summary, we propose an efficient method for reverse engineering arbitrary

join queries. Our contributions in this chapter can be summarized as follows:

• We prove that any graph can be characterized by the combination of a

simple structure, called a star, and a series of merge steps over the star.

The merge steps define a lattice over graphs derived from the same star.

The proof relies on “unwinding” the Euler tour of a graph.

• We propose a novel algorithm that uses the star and lattice constructs to

reverse engineer arbitrary join queries.

• We design several optimizations that significantly reduce the running time

of the algorithm, making it practical for large, complex queries.

• We conduct an extensive experimental study over the TPC-H benchmark

and for complex query graphs. The study shows that our algorithm,

enhanced with our optimization strategies, is fast and scalable. We expect

this good performance to extend to other databases, as well.

5.2 Preliminaries

5.2.1 Overview

We start by identifying possible sets of projection tables. For each set there

is a combinatorial explosion of candidate queries (as we see below). Thus, the

ability to quickly validate or eliminate candidates is crucial for the algorithm.

Challenges: Before giving an intuition for our ideas, we illustrate the main

challenges of the problem. We show where prior methods fail, and why naive
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Supplier1 Supplier2

Nation

PartSupp1 PartSupp2

(a) C1

Supplier1 Supplier2

Nation

PartSupp

(b) C2

Supplier1

Nation

PartSupp Region

Supplier2

(c) C3

Figure 5.2: Example candidate graphs for RQ2: naive approach.

approaches cannot scale. We then use this discussion to motivate the techniques

we propose.

Suppose we start with table Out = out(RQ2), where RQ2 is the query in

Figure 5.1(c), and that we correctly identify the projection tables to be two

distinct copies of Supplier. The obvious next step is to construct a graph that

connects these copies via join edges. For this simple case, prior approaches

would return connecting paths of some maximum length `p - let’s call them

“core paths”; e.g., for `p = 2, some core paths are Supplier1-Nation-Supplier2,

Supplier1-PartSupp-Supplier2, and so on. However, this is not enough: to dis-

cover query RQ2 we need to extend prior approaches and add the two “hanging”

edges LineItem1-Supplier1 and LineItem2-Supplier2 to the core path Supplier1-

Nation-Supplier2. How do we explore all possibilities in a principled way?

A naive approach is to fix some number of additional edges (say, 2), and

enumerate all ways for adding them to the core path. Figure 5.2 shows three

such candidate graphs, out of more than 30 possible graphs (over all core paths

of length 2).

The crucial issue to keep in mind is that testing all potential candidates

(by running each query against the database and comparing its output to Out)

can be extremely expensive. For RQ2, potential candidates (and indeed, the

query itself) behave almost like cross-products of table Supplier with itself. In

general, the number of candidates increases super-exponentially in the graph

size, and testing them may take hours or even days of computation; e.g., starting

from the output of query Q5 in Table 5.3 (Section 5.5), there are so many

candidate queries, even after significant pruning by our algorithm, that the

testing could not finish after a day. However, after applying several optimization

ideas, our approach managed to correctly discover query Q5 in 3 minutes.

A basic observation that we exploit below is that some candidate graph-

s need not be tested. Consider graphs C1 and C2 in Figure 5.2. Clearly,
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Supplier1

LineItem1

Supplier3

Nation

Supplier4

LineItem2

Supplier2 LineItem2LineItem1

NationMerge

Supplier13 Supplier24

Star(Nation) RQ2
*

(a) RQ2 is obtained from Star(Nation) via table
merges.

Supplier1 Supplier4

Supplier2Supplier3

LineItem1 LineItem2

Nation

(b) Touring RQ2 to get
Star(Nation).

Figure 5.3: Illustration of our graph characterization result.

out(C2) ⊆ out(C1). If Out 6⊆ out(C1), we can rule out C2 without testing.

Conversely, if Out ⊂ out(C2) (strict inclusion) and we want a solution that

matches Out exactly, then we rule out C1. However, no relationship can be

inferred between, e.g., out(C3) and out(C2), so we can prune neither based on

the other. Hence, we need a formal way of reasoning about candidate graphs.

Our techniques We now give a brief description of how we solve the chal-

lenges discussed above. The exact details are in the next two sections.

Our main insight is as follows: Any query graph can be generalized into a

union of disjoint paths connecting its projection tables to a center table. We re-

fer to this union as a star, and the center table as the star center. Figure 5.3(a)

illustrates this for the graph RQ2: The graph Star(Nation) connects the star

center Nation to projection tables Supplier1 and Supplier2 via disjoint paths.

We show that out(RQ2) ⊆ out(Star(Nation)), which is why the star is a gener-

alization. To specify RQ2, we add two restrictions to the star: tables Supplier1

and Supplier3 are the same, and tables Supplier2 and Supplier4 are the same.

If we merge Supplier1 and Supplier3 into Supplier13 (the naming convention

shows which copies are collapsed), and similarly Supplier2 and Supplier4 into

Supplier24, we obtain a graph isomorphic to RQ2. Thus, a complete description

of RQ2 consists of Star(Nation) and the sets of tables to be merged.

How did we come up with Star(Nation)? Imagine we take a tour around

RQ2 as follows: start in Supplier1, go to LineItem1, then back to Supplier1,

then Nation etc. The tour ends in Supplier2. We “unwind” this tour by making

a new copy of a table each time we revisit it: e.g., when coming back from

LineItem1 to Supplier1, we rename it Supplier3 (new copy); see Figure 5.3(b).

The unwound tour is Star(Nation). To obtain RQ2, we merge back copies

of the same table. Lemma 5.1 shows that such a construction exists for any

82



CHAPTER 5. JOIN QUERY DISCOVERY

graph.

There are two advantages to using this construction. First, we obtain a

clean and simple algorithm for enumerating candidate solutions: We discover

stars that are potential generalizations of the solution, and explore possible

table merges in each star. For the latter step, we use a lattice structure rooted

at that star, that describes how graphs are derived from each other via merge

steps. Second, lattices allow us to avoid testing a significant number of potential

candidates; see Section 5.3.4.

Finally, we design several optimizations so we can discover complex solutions

faster. We illustrate this on the graph RQ1 from Figure 5.1(b). It has an

unwound tour of length 10. The resulting star star(Nation) has radius 5 (i.e.,

the maximum distance from the center to a projection table). Exploring all

stars up to radius 5 generates too many candidates which are expensive to

test. Instead, we observe that RQ1 is the intersection between two smaller

graphs: the upper chain (a star of radius 1 centered at Nation), and the lower

chain (a star of radius 2 centered at Part). These graphs are discovered in

early iterations, and can be combined into a solution. We describe the general

form of this optimization in Section 5.4, along with several other ideas. The

intersection approach reduced the running time from a day to 3 minutes for the

example mentioned above. Full details are in Section 5.5.

5.2.2 Definitions

Let D be a database with tables T = {R1, . . . , Rn}, which we refer to as base

tables. Let G = (T , E) denote the schema graph of D, defined in the usual way:

the nodes correspond to the tables in T and for each fk/pk constraint between

(single- or multi-) columns of R1 and R2, there is an edge in E between the nodes

corresponding to R1 and R2. Each edge is labeled by its respective constraint.

Thus, G may contain self-loops, as well as parallel edges between the same pair

of tables. We consider G undirected. However, we sometimes depict the edges

directed from fk to pk, to convey more information.

Definition 5.2. A query graph is an arbitrary graph Q = (V, F ) with the

following properties:

(a) Q is compatible with the schema graph G = (T , E), i.e., there exists a

labeling function λ : {V ∪ F} → {T ∪ E} such that for each edge (A,B) ∈ F ,
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λ((A,B)) is a fk/pk constraint in G between λ(A) and λ(B).

(b) Q has a subset of specially marked vertices P ⊂ V called projection nodes

(or tables), 1 ≤ |P| ≤ |V |. Each A ∈ P is associated with one or more columns

from λ(A): these are the projection attributes in the SQL query corresponding to

graph Q, i.e., the attributes in the SELECT . . . FROM portion of the query.

The complexity of Q is |V |, i.e., the number of nodes (tables) in the query

graph.

Other definitions for the complexity of Q are also possible, e.g. |F | (the

number of joins in Q). No complexity measure is obviously optimal, so we

choose |V | because it is simple and intuitive. By abuse of notation, we refer to

a join query and its query graph interchangeably.

Example The graph in Figure 5.1(b) is compatible with TPC-H: λ(Part) =

Part, λ(Supplier1) = λ(Supplier2) = Supplier, etc. Also, λ((Supplier1, Nation))

= λ((Supplier2, Nation)) = Supplier.s nationkey–Nation.n nationkey, etc. (To

improve readability, we omit the edge labels from all figures. Since the TPC-

H schema does not have parallel edges, this is unambiguous.) The projection

nodes in Figure 5.1(b) are Supplier1 and Supplier2, marked by a red oval;

each has one projection attribute, s name. We omit projection attributes in

subsequent figures, for simplicity. The graph complexity is 6.

Definition 5.3. A star is a union of paths which are mutually disjoint ex-

cept for a common endpoint, called the star center. Its radius is the length of

the longest path from the star center to an endpoint. The star is compatible

with a schema graph G = (T , E) if its nodes and edges can be labeled as in

Definition 5.2(a).

The star generalizes a query graph Q if there is a one-to-one correspondence

between the projection tables of Q and the star endpoints, and a one-to-many

correspondence between the edges of Q and the star edges.

As an example, recall that Star(Nation) in Figure 5.3(a) generalizes the

graph RQ2. A graph can be generalized by many stars of different radii. By

abuse of notation, a tuple-level instantiation of a star will also be called a star,

with a corresponding (tuple-level) star center. Our meaning will be clear from

the context, but we will be more precise when necessary.
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Figure 5.4: Example of lattice. An edge corresponds to a merge step.

Definition 5.4. Let Q = (V, F ) be a query graph compatible with a schema

graph (via function λ), and with projection nodes P . A merge step in Q involves

a pair of nodes R1, R2 ∈ V such that λ(R1) = λ(R2) and proceeds as follows:

- replace R1 and R2 by a new node R12: λ(R12) = λ(R1);

- let the edges incident on R12 be the union of the edges previously adjacent

on R1 or R2 (eliminating duplicates);

- if neither R1 nor R2 are projection nodes in P , then R12 6∈ P. Else,

R12 ∈ P ; its set of projection attributes is the union of projection attributes in

R1 and R2 (if any).

The resulting graph is denoted QR1=R2.

Definition 5.5. Let Q be a query graph. The lattice structure rooted at Q,

Lattice(Q), is defined recursively as follows:

- Lattice(Q) contains Q;

- For any graph G1 ∈ Lattice(Q) and any graph G2 derived from G1 via a

merge step, Lattice(Q) contains G2, as well as a directed edge G1 → G2.

Example In Figure 5.4, let Q be the topmost graph, i.e., the lattice root.

Then the graphs on the row below Q are, respectively, QR1=R2, QS1=S2, QS2=S3

and QS1=S3. In the next row, the leftmost graph is equal to both (QR1=R2)S1=S2

and (QS1=S2)R1=R2. Hence, it has two parent nodes, QR1=R2 and QS1=S2.
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The following lemma is proven in Section 5.3.

Lemma 5.1. Let Q be a query graph. There exists at least one star S that

generalizes Q, and Q is a node in the latttice rooted at S.

5.3 Query Generation

We now describe our algorithm for computing candidate query graphs, given

an output table Out and a database D with schema graph G. Consistent with

prior work, we assume that all joins are fk/pk. This is for ease of presentation

only: any fk/fk join is equivalent to two consecutive joins fk/pk, pk/fk involving

their primary key.

Algorithm 5.1: Overview of our approach

Input: D,G: DB and its schema, Out: output table
Output: Q: generating query of Out

1 foreach depth d ≤ dmax do
2 Step 1:
3 ({Trees(Out.Ai)}, StarCtrs) := ExploreSchema(d);
4 Θ ⊆ Out: random subset of tuples
5 foreach θ ∈ Θ do
6 foreach T ∈ ∪iTrees(Out.Ai) do
7 Step 2.a: T := ExploreInstanceTree(T, θ);

8 Step 2.b:
9 StarCtrs := UpdateStarCenters(StarCtrs, θ);

10 foreach C ∈ StarCtrs do
11 Step 3: CandGraphs := ExploreLattice(C);

12 Step 4: SolutionSet := Test(CandGraphs);
13 if SolutionSet 6= ∅ then
14 output SolutionSet;
15 exit;

Our overall approach is described in Algorithm 5.1. We enumerate all s-

tars that might generalize the solution (Step 1), explore their lattices (Step 3),

then test the candidate graphs in those lattices (Step 4). However, to achieve

scalability, we interpose partial validations in Steps 2 and 3: We select a ran-

dom subset of output tuples Θ ⊆ Out and eliminate those graphs that cannot

generate all tuples in Θ. In our experiments, a small Θ (of size at most 5) was
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Figure 5.5: Computing the query in Figure 5.1(c) via Algorithm 5.1.

sufficient to prune out most invalid graphs, and the validation overhead was

negligible.

Figure 5.5 illustrates how our algorithm discovers query RQ2 from Fig-

ure 5.1(c). We abbreviated table names in the obvious way and added a unique

count to distinguish nodes labeled by the same table; e.g., nodes S1, S2, S3 and

S4 are different instances of table Supplier, L1, L2 are instances of LineItem,

and so on.

In Step 1 we generate all stars of radius d that could generalize the solution

graph. First, we determine a candidate set of projection tables. We then work

backwards from the projection tables towards the star center. This means ex-

ploring outward from each projection table along join edges to generate a tree

of depth d. Figure 5.5(a) shows two trees rooted at S and of depth d = 3. Any

table that occurs in all trees is a star center. For example, in Figure 5.5(a), ta-

bles S,N and L are all star centers, and each leads to a different star. Moreover,

since table S occurs multiple times per tree, we also specify which occurence

is the star center (and enumerate all choices). Figure 5.5(b) depicts the star

centered at N . This process is similar to the “distinct root semantics” from

keyword search; see, e.g., [31, 47] and references therein. We execute it first at

schema level (Step 1), then at instance level (Step 2).

After forming a star, we explore its lattice. Figures 5.5(c) and (d) show how

two merge steps in the lattice of Star(N) generate a graph isomorphic to the

desired solution RQ2. Lattices are explored in Step 3. As far as we are aware,

this is a novel approach which leads to a principled exploration of the query

space. Moreover, it allows us to quickly prune out a large number of candidate

queries, as well as design more efficient testing strategies in Step 4.

We detail each of the four steps below. For scalability reasons, we execute

the above framework in parallel, on several levels: over all choices of projection

tables, all choices of star centers, and all instantiations from a tuple in Θ. This
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requires maintaining several data structures, as we illustrate via an example.

5.3.1 Step 1: Schema Exploration and Pruning

This step, denoted ExploreSchema(d) in Algorithm 5.1, is executed primarily

at schema level (with one exception). It consists of the following phases:

Candidate projection tables: Compute, for each column Out.A, the

set Cand(Out.A) of all columns in the base tables that contain Out.A: these

are all the possible columns from which Out.A could have been generated via

projection. See Figure 5.7(a) for an example. The candidate projection tables

are tables whose columns appear in the union of lists Cand(Out.A).

This is the only computation in Step 1 that depends on the size of table

Out: the more distinct values a column Out.A contains, the more expensive it

is to check that it is included in a base table column. On the other hand, the

larger the number of distinct values in Out.A, the smaller the expected size of

Cand(Out.A), which in turn can lead to significantly fewer trees and stars.

Schema-level Trees: These data structures guide our instance-level ex-

ploration in Step 2. For each candidate projection column R.C, we compute

a tree T (R.C) rooted at R and of depth d. Its nodes are base tables, and its

edges correspond to a fk/pk constraint between them. To distinguish among

multiple nodes labeled by the same table, we add a count after the table name.

Tree T (R.C) is computed via a bfs exploration of the schema, starting from

R. Figure 5.7(b) shows three trees of depth 2 over TPC-H: T (PS.suppcost),

T (L.shipdate) and T (O.orderdate). Note that a schema edge may appear mul-

tiple times on a path; e.g., the edge PS.ps partkey–P.p partkey appears twice

on the path PS1-P1-PS3. If there are multiple fk/pk constraints between two

tables S and T , then multiple edges Si−T j,. . . , Si−Tk are created. We also

create edges Si−Sj for each self-join constraint of S.

For each column Out.Ai, let Trees(Out.Ai) be the set of all trees T (R.C),

whereR.C ∈ Cand(Out.Ai). Hence, Trees(Out.B) = {T (L.rcpdate), T (L.shipdate)}.
Although the two trees are isomorphic, they will be explored differently at in-

stance level.

Schema-level Star Centers: We compute a bit vector StarCtrs which

is 1 for tables that are star centers, and 0 otherwise. Details are omitted for

lack of space. We mark all tree nodes labeled by a star center and call them
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tid pkey skey suppcost
1 a α 20
2 a β 20
3 a γ 10
4 b β 70
5 d γ 20

(a) PS

tid okey orderdate totprice
18 o1 7/22/12 20
19 o2 7/25/12 10
20 o3 7/23/12 70

(b) O

tid skey
10 α
11 β
12 γ
13 δ

(c) S

tid pkey skey okey rcptdate shipdate extprice
14 a α o1 7/29/12 7/24/12 20
15 a β o2 7/28/12 7/28/12 20
16 a γ o3 7/30/12 7/24/12 10
17 b β o3 7/24/12 7/24/12 70

(d) L

tid pkey retailprice
6 a 20
7 b 70
8 c 10
9 d 30

(e) P

Figure 5.6: TPC-H instance (only relevant tables and columns are shown; col-
umn names are abbreviated).

Out.A Out.B Out.C
O.totprice L.rcptdate O.orderdate
L.extprice L.shipdate

P.retailprice
PS.suppcost

(a) Cand lists for output columns.

*
*

Stars(PS)

(1,2,5)PS1

O1 P2

L1

S2

P1

L2

S1

N1 L3

(1,2,3,5)PS2 PS3 PS4(1,2,3,4,5)(1,2)

P3

L5

PS7(2,4)

L6N2

S3

L4

PS5

(1,2,3)PS6S4L7 P4

O2(2)

O3

C2 L9

PS8

N3 O4 O5 P5 S5

(3,4)C1 L8

Star1 Star2 Star3

PS8

PS6
PS3

(3)

P1

L9
P3

L4

PS1

O3

L9

PS

O3PS1 L4

(3)

P1 P3

(3)PS

PS1 L4 O3

S1 P3 L9

(4)PS

S1 S3 L9

L4 O3PS1*
*
* * * *

*

* * ***

(b) Trees/stars instantiated by θ = (20, 7/28/12, 7/23/12).

Figure 5.7: Algorithmic steps for table Out = “SELECT PS.suppcost,
L.shipdate, O.orderdate FROM PartSupplier as PS,
PartSupplier as PS1, Part as P, Supplier as S, LineItem
as L, LineItem as L1, Orders as O WHERE PS1.skey =
S.skey and S.skey = PS.skey and PS1.pkey = P.pkey and
P.pkey = L.pkey and PS1.pkey = L1.pkey and PS1.skey =
L1.skey and L1.okey = O.okey” (its graph is isomorphic to Star2).
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starred nodes; see, e.g., the PS nodes in Figure 5.7(b) (star marks for other

nodes were omitted for clarity). When a set of starred nodes from different

trees can be merged to form a star center, we call the set a star center, as well

(slightly overloading the term).

Bottom-up Pruning: Stars are unions of paths between tree roots (i.e.,

projection tables) and starred nodes labeled by the same table (i.e., a star

center). Hence, we can delete the subtrees below these starred nodes, as long

as they contain no other starred node. Equivalently, we prune each tree bottom-

up until all its leaves are starred.

5.3.2 Step 2: Instance Trees and Star Centers

In this phase we explore at instance level the trees computed in Step 1, starting

from a set of randomly selected output tuples Θ ⊆ Out. We assume that all

tuples in the database have a unique identifier tid; e.g., this can be their table

name followed by their primary key value, or a unique numeric value assigned

in a pre-processing phase. During this step some of the starred nodes become

un-marked. Whenever we refer to starred nodes, we mean those nodes that are

currently marked.

We first illustrate our ideas over the example in Figure 5.7, starting from

output tuple θ = (20, 7/28/12, 7/23/12). The algorithm iterates over all trees;

we focus on the leftmost one, T (PS.suppcost). First, we annotate the root

with the list of tid’s from table PS that have value 20 (=θ[1]) on column

suppcost; this is because PS.suppcost is a candidate for the first output col-

umn Out.A. The result is a list TID(PS1, θ) = (1, 2, 5), since tuples 1, 2,

5 have PS.suppcost = 20. We then traverse down the tree and recursively

annotate each node, as follows. After traversing edge PS1 − L1 (labeled by

(PS.pkey, PS.skey) = (L.pkey, L.skey)), we create TID(L1, θ) to contain all

tuples in L1 that join with any tuple in TID(PS1, θ) over this edge. Thus,

TID(L1, θ) = (14, 15) since tuples 14 and 15 join with tuples 1 and 2, respec-

tively. Similarly, TID(PS2, θ) = (1, 2) contains all tuples in PS that join with

tuples 14 or 15 via the same constraint (which also labels the edge L1− PS2).

We annotate all nodes this way. For clarity, Figure 5.7(b) only shows the TID

lists of PS nodes.

Intersecting TID lists yields star centers whose respective stars generate
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tuple θ. For example, since tid = 3 is in the intersection of TID lists for nodes

PS3, PS6 and PS8, the star obtained by merging these nodes generates θ at

instance level (see Star1 in Figure 5.7(b)). We say that tid = 3 validates the

starred set {PS3, PS6, PS8}. On the other hand, tid = 1 and tid = 2 do not

appear in the third tree. This means that: (a) no instance-level star centered

at either tuple 1 or tuple 2 can generate θ, so we call these tuples invalid; and

(b) the nodes PS2 and PS5, which only contain invalid tuples, cannot form a

star center.

While there are 4 × 3 × 1 = 12 different sets of starred PS nodes (one

from each tree) that we could merge to form a star center, we do not need to

enumerate all of them. Instead, since only tuples 3 and 4 occur in the third

tree, it means that any valid set contains either nodes in which 3 is stored, or

nodes in which 4 is stored. Hence, there are 2× 1× 1 + 1× 1× 1 = 3 valid sets.

The resulting three stars are depicted in Figure 5.7(b).

Inverted lists: To efficiently determine valid tuples and sets, we compute,

for each tid in a starred node, the list IL(tid, θ) of nodes in which tid occurs.

In Figure 5.7(b), IL(3, θ) = {PS3, PS4, PS6, PS8}. This implicitly represents

the two validated starred sets (A,PS6, PS8) for A ∈ {PS3, PS4}. The set of

all validated starred sets, denoted V alid(PS, θ), contains all inclusion-maximal

IL lists and encodes all stars of center PS that generate θ. In Figure 5.7(b),

V alid(PS, θ) = {IL(3, θ), IL(4, θ)}.
In Algorithm 5.1, procedure UpdateStarCenters(StarCtrs, θ) maintains

valid starred sets via this approach.

Pruning and negative witnesses: Pruning occurs both in Step 2.a and

in Step 2.b, and results in changes to the data structures (denoted by the assign-

ment operator in Algorithm 5.1). During procedure ExploreInstanceTree(T , θ),
if a list TID(Sj, θ) is empty, we delete node Sj (and its subtree) from T .

We say that θ is a negative witness for the edge e between Sj and its par-

ent, since θ cannot be generated by any query that contains e. We then ap-

ply bottom-up pruning (see Section 5.3.1) until all leaves of T are starred.

Note that the deleted nodes will not be explored in any subsequent calls to

ExploreInstanceTree(T , θ′) for other θ′ ∈ Θ (at current depth d).

Similarly, during UpdateStarCenters(StarCtrs, θ), θ can be a negative wit-

ness for certain starred nodes. Let Si be a starred node such that TID(Si, θ)

contains only invalid tid’s; hence, Si cannot form a star center. We delete its
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star mark, then apply bottom-up pruning until all leaves are starred. For ex-

ample, in Figure 5.7(b), θ is a negative witness for PS2 and PS5: their star

marks are removed and PS2 will be deleted by bottom-up pruning.

Cross-tuple pruning: Let θ, θ′ ∈ Θ be two random output tuples. In

general, the lists in V alid(S, θ) and V alid(S, θ′) are different. A star must

generate both θ and θ′, so its star center must be validated by both. Let

V alid(S) be the list of star centers validated by all θ ∈ Θ. We maintain

V alid(S) incrementally, as a cross-intersection with each new V alid(S, θ): For

each list  L ∈ V alid(S) and each inverted list IL(tid, θ′) ∈ V alid(S, θ′), we

compute  L′ =  L ∩ IL(tid, θ′). If  L′ contains at least one table from each set

Trees(Out.Ai), 1 ≤ i ≤ k, then  L′ is a valid list. The new set V alid(S) contains

all valid lists  L′. If a starred node Si does not occur in any list of V alid(S),

we remove its star mark then apply bottom-up pruning. If V alid(S) = ∅, then

all S nodes are un-starred, and we remove S from StarCtrs.

The more random tuples θ we explore, the higher the chance of finding

negative witnesses and reducing the tree sizes and the number of validated

starred sets. However, this comes at the cost of increasing the running time of

Step 2. We explore the tradeoffs in Section 5.5.

5.3.3 Step 3: Exploring Lattices

Let S be a star center table. For each starred set {S1, . . . , Sk} represented in

V alid(S) (where Si is a node in Trees(Out.Ai)), we form a star as a union of

paths between each Si and its tree root; the nodes S1, . . . , Sk are merged into

a single node S. Figure 5.7(b) illustrates this process for Star1 and shows all

three stars centered at PS (we assume that V alid(S) = {IL(3, θ), IL(4, θ)}).

We then build the lattices rooted at these stars. This requires determining

sets of mergeable tables, by maintaining lists Merge(R) similar to the lists

V alid(S). For lack of space, we omit the details. An important property of the

lattice is that we can compute any candidate solution in it without materializing

its ancestors (by using the Merge(·) lists). This allows us to use different testing

strategies in Step 4.
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5.3.4 Step 4: Query Testing

The lattice structures imply two important relationships between candidate

graphs from the same lattice. If graph Q1 is the ancestor of graph Q2 in a

lattice, then: 1. Q2 has smaller complexity than Q1 (each merge step reduces

the node complexity by 1); and 2. The output of Q2 is included in the output

of Q1 (Q2 can be regarded as Q1 with additional conditions that force multiple

table copies to be identical).

The first relationship suggests a strategy of testing the lowest graphs in a

lattice first: if, e.g, Q2 passes the test, there is no need to test Q1 since it has

higher complexity. On the other hand, the second relationship suggests the

opposite strategy of testing the highest graphs first. If the output of Q1 is

not a superset of Out, there is no point in testing any of its descendants. In

particular, if the root of a lattice does not generate a superset of Out, we can

drop all the lattice nodes from the testing phase. However, testing a lattice

root tends to be expensive, since the star contains a large number of tables and

it may behave like a cross-product query.

We test both strategies in Section 5.5. Intermediate strategies can also be

considered, such as testing graphs in the middle of the lattice, or testing only

a subgraph of a query graph (if the subgraph is invalid, then all graphs in

the lattice that contain that subgraph are invalid). Since the same graph may

appear in multiple lattices, we store the graphs tested so far. Before a candidate

solution Q is tested, we check for isomorphism with the stored graphs. Due to

our node labeling procedure, this can be done in time linear in the number of

edges in Q.

Problem Variants: As discussed in Section 5.1, some variants of our

problem may accept a solution Q that generates a superset of Out. We handle

this by modifying Step 4 accordingly: a graph passes the test if it generates

a superset of Out (instead of an exact match). In general, this leads to much

faster executions of our algorithm, since a solution is usually found at a small

depth d.

Other variants may ask for all solutions Q (up to a certain depth dmax),

for either the exact match or the superset semantics. In that case, we simply

delete the “exit” statement from Algorithm 5.1.

Correctness and completeness: Any graph Q returned by Algorithm 5.1

passed the test out(Q) = Out in Step 4; thus, Algorithm 5.1 is always correct.
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Figure 5.8: Proof of Theorem 5.1: (a) A query graph Q (black edges) and its
directed version Qd (green edges); (b) Modified Euler tour Em; (c) Discovering
a star whose lattice contains Q.

Assuming dmax is “large enough”, our algorithm is also complete if it does not

contain the “exit” clause (with the ‘exit” clause present, some queries may

never be returned, because they have simpler equivalent queries). We now

formally state this claim as a theorem below.

Theorem 5.1. Let Q be an arbitrary query graph that generates table Out

over a database D with schema G. Then Algorithm 5.1 (with the “exit” state-

ment deleted) outputs Q when provided with the input (D,G, Out) (for dmax

sufficiently large).

Proof. To prove Theorem 5.1, we first prove Lemma 5.1.

Proof of Lemma 5.1 We illustrate the main ideas in Figure 5.8. In the

following, we use small letters (e.g., x, y) as unique identifiers of graph nodes.

These are distinct form the node labels (e.g., λ(x) = λ(y) = R), which denote

tables and may be the same for many nodes. The proof has two phases: In the

first, we create copies x1, x2, . . . of a node x, with λ(xi) = λ(x). In the second,

we merge back all copies x1, x2, . . . of the same node x. It is important to note

that the merge does not involve any nodes yi that may have the same table

label, but are copies of a different node y.

Let Qd be the directed graph obtained from Q by replacing each undirected

edge x − y by a pair of directed edges x → y and y → x. It is well known

that Qd admits at least one Euler tour Ed.
1 We travel along Ed starting from

an arbitrary position and enumerate the nodes in the order they are encoun-

tered, incrementing a counter for each node every time the node is visited.

Figure 5.8(b) illustrates such a trip around an Euler tour of the (directed)

graph in Figure 5.8(a); the trip starts in node c1 and visits b1 first. This yields

1An Euler tour traverses each edge once, but may visit a node multiple times.
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a modified tour, denoted Em, with the same number of edges as Ed but with

more nodes; each node has degree 2 in Em. We make all edges in Em undirected.

Let c be an arbitrary node in the original graph Q. We show that Algo-

rithm 5.1 discovers a star centered at c which contains Q in its lattice, and

the proof follows. Let u be a projection node in Q. We define the following

trip: starting from u1, travel once around Em, ending back in u1; then reverse

direction and travel back to the nearest copy of c. Figure 5.8(b) illustrates two

such trips, from u1 and v1. The red arrows show the initial directions of each

trip, and the green lines show the portion of the tour that is visited twice (once

in each direction).

The trip from u1 visits some nodes multiple times. Replace those nodes

by new copies, incrementing their counters appropriately. The result is a path

Π(u, c). Figure 5.8(c) shows Π(u, c) and Π(v, c); e.g., in Π(u, c), the tour portion

u1-a1-c3 that was traversed in reverse direction is replaced by u4-a3-c5, which

contains new nodes not in Em. Form Star(c) by connecting the paths at c. Then

Star(c) generalizes Q. In the lattice of Star(c), merge all copies x1, x2, . . . of

a node x, for all x. The result is graph Q.

Proof of Theorem 5.1 We use the notations from the above proof. Let

d = maxu |Π(u, c)| be the radius of Star(c). Then Algorithm 5.1 discovers

Star(c) in iteration d. It remains to prove that it does not discard Q because

of pruning. Since Q generates Out, for any θ ∈ Θ ⊆ Out and for any node

x in Q, there exists a tuple t(x, θ) such that the tuple set {t(x, θ)} satisfies Q

and generates θ via projections. This implies that {t(x, θ)} satisfies all paths

Π(u, c) (with t(x, θ) instantiating all copies x1, x2 . . . of node x). Therefore,

Step 2.a of our algorithm does not prune any edge on these paths; and Step 2.b

maintains, for each node x, the list {x1, x2 . . .} of all its copies in the union of

paths Π(u, c) as mergeable. Hence, Q is a candidate solution in Step 3, and it

passes the test in Step 4.

5.4 Optimizations

As we show in Section 5.5, the running time of Algorithm 5.1 is dominated

by Steps 2 and 4. For most queries, Step 4 is the bottleneck. Its running

time increases significantly when going from depth d to d + 1: the number of
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Figure 5.9: Computing the query in Figure 5.1(b) via Algorithm 5.1: (a)no
optimizations, d = 5; (b) generalized stars, d = 3; (c) intersection, d = 2.

candidate solutions can increase (super)geometrically with each outer iteration,

and the candidate graphs are larger, making their testing more expensive. The

running time of Step 2 also depends on d, as well as the size of the TID lists

in the tree nodes. Below, we describe several optimizations that address both

issues.

5.4.1 Decreasing the depth d

We describe two optimizations that decrease the depth d at which Algorithm 5.1

discovers a solution, making it practical for large, complex graphs. We illus-

trate our ideas in Figure 5.9, which shows how query RQ1 from Figure 5.1(b) is

discovered (only the computation of its lattice root is shown): Figure 5.9(a) il-

lustrates the execution of Algorithm 5.1, which requires d = 5.2 The generalized

stars optimization in Figure 5.9(b) reduces this to d = 3. And the intersection

optimization in Figure 5.9(c) requires only d = 2.

Generalized Stars: Recall that a star was formed by merging a set of k

starred nodes, one each from a tree in Trees(Out.Ai), 1 ≤ i ≤ k. A generalized

star is formed by merging m ≥ k starred nodes from k trees, one from each

Trees(Out.Ai), such that each tree contains at least one of the m starred nodes.

For example, in Figure 5.9(b), we merge PS2, PS3 and PS4, where PS2 and

PS3 are from the same tree. The result is a star with parallel paths between

the star center and some of the tree roots.

We implement this by changing the star computation in Step 3 as follows:

For each list  L in V alid(S), enumerate all different subsets S = {S1, . . . , Sm} ⊆
 L, m ≥ k, where the nodes in S are from exactly k trees, and each tree is in a

different set Trees(Out.Ai), 1 ≤ i ≤ k. Form a star as a union of paths between

2The graph in Figure 5.1(b) is obtained from the star in Figure 5.9(a) via Merge(S2, S3),
Merge(S1, S4), Merge(PS2, PS3), Merge(PS1, PS4), and Merge(P1, P2).
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each Si ∈ S and its tree root; merge the nodes S1, . . . , Sm into a single node S.

In particular, this procedure also generates all stars as before (for m = k).

Intersection: Note that we generate portions of the graph in Figure 5.1(b)

during early iterations: We generate the upper path S1-N-S2 at d = 1 as a star

query Q1 of center N ; see Figure 5.9(c). Similarly, the path S1-PS1-P-PS2-S2

is a star query Q2 of center P, generated at d = 2. Neither Q1 nor Q2 pass

testing, since each generates a superset of Out. However, Q1∩Q2 = Out. Here,

Q1∩Q2 denotes the intersection of the outputs of Q1 and Q2. At a graph level,

Q1 ∩ Q2 corresponds to “gluing” the graphs of Q1 and Q2 by merging their

respective projection tables (in this example, S1 and S2), while keeping all

other nodes distinct.

This suggests the following optimization: At the end of each iteration d, if

a solution is discovered, return it. Otherwise, compute the intersection of all

inclusion-minimal query outputs generated during Step 4 of any prior iteration

(including d), which are a superset of Out (the inclusion-minimal condition

implies that if Q1 is an ancestor of Q2 in a lattice, and they both compute a

superset of Out, then Q1 is not used in the intersection). We use Bloom filters

for large query outputs to speed up computation. If the intersection is equal to

Out, then we have a solution. We reduce the complexity of this solution via the

following greedy approach: Eliminate one query at a time from the intersection,

as long as the resulting intersection is equal to Out. Queries are eliminated in

decreasing order of their complexity (i.e., their number of nodes). Although the

greedy approach does not necessarily generate the minimum complexity query,

it is likely to work well in practice. This is because the problem of computing

the smallest complexity queries whose intersection is equal to Out is equivalent

to Set Cover (we omit the proof for lack of space). It is well known that Set

Cover is NP-Hard, but the greedy algorithm achieves a good approximation.

Remark: In Figure 5.9 the intersection optimization is sufficient to discover

the query graph from Figure 5.1(b). However, for more complex queries we

need both generalized stars and intersection to reduce d. For example, the

(undirected) graph Q in Figure 5.8(a) can be generated at depth d = 3 as the

intersection of two graphs: Graph Q1 is the subgraph over vertices {u, v, d, e},
and is computed at d = 2 in the lattice of Star(e). Graph Q2 is the subgraph

over vertices {u, v, a, b, c, g, f} and is computed at d = 3 in the lattice of the

generalized star GenStar(f) in which f has two parallel paths to u.
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5.4.2 Bounding TID list sizes

We now propose a second type of optimizations that bounds the size of the

TID lists to reduce the execution time of Step 2.

Wild card: Step 2 instantiates the lists TID(Si, θ) by executing joins along

tree edges. When a join is in the pk/fk direction, the size of the child node’s

TID list generally increases. The increase can be significant if the parent TID

contains tuples with high fanout, and it grows geometrically as we traverse

down the tree.

We propose the following optimization: Let α be a threshold value. While

executing Step 2, whenever |TID(Si, θ)| ≥ α for some node Si, we set TID(Rj, θ) =

{wc} for all nodes Rj in the subtree rooted at Si (including Si). Here, wc de-

notes a special tid (called wild card) that matches any other tid by definition.

Thus, if TID(Si, θ) = {wc} and TID(Sj, θ) = {tid1, tid2, . . .}, then Si and

Sj are mergeable. To enforce this we add Si to ILa(tidr, θ) (and IL(tidr, θ) if

defined) for all tidr stored in S nodes. We define IL(wc, θ) = ILa(wc, θ) = ∅.
Wild cards have two advantages: First, we do not need to execute any

instance-level joins below a wild card. Instead, we just traverse the in-memory

subtree structure and set the TID’s appropriately. Second, computing the

lists in V alid(S) and Merge(S) is much faster: (a) S nodes that contain wild

cards occur by default in each list of V alid(S), resp. Merge(S); and (b) nodes

without wild cards have TID’s of size at most α. This implies an upper bound

of O(nα2) for computing each V alid(S) (where n is the number of nodes in all

trees). We study the impact of different α values in Section 5.5.

Blacklisted values: One drawback of wild cards is that we might generate

more candidate stars and larger lattices: the wild cards may lead us to declare

more and larger sets of nodes as mergeable. To mitigate this drawback, we

would like to select output tuples from Out such that at least one tuple acts

as negative witness for any pair of nodes that are not mergeable. Clearly, if

two selected tuples θ and θ′ have θ.Ai = θ′.Ai = v, then θ and θ′ instantiate

the same TID’s in all trees of Trees(Out.Ai). In particular, if θ creates wild

cards, so does θ′, and neither can be a negative witness for the wild card nodes.

To avoid this, whenever a selected tuple θ creates at least one wild card in a

tree of Trees(Out.Ai), we blacklist v = θ.Ai for column Out.Ai. We maintain

blacklisted values for each output column, and adapt the random sampling from

Out so that we only select tuples θ′ whose values are not currently blacklisted
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for their respective columns (if v is blacklisted for Out.Ai but not for Out.Aj,

we may still select tuples θ′ with θ′.Aj = v).

Value blacklisting is useful even in the absence of wild cards. By blacklisting

values that generated large TID lists, we can speed up the computation of Step

2 for subsequent tuples θ′.

5.5 Experimental Evaluation

We evaluate our approach on the TPC-H benchmark database, whose schema is

shown in Figure 5.1(a). We generate an instance using a tool [4] which creates

skewed column distributions (unlike the standard generator, which creates a

uniform distribution). This is because we wish to study the effect of different

tuple fanouts and join selectivities on the performance of our algorithm. The

generated TPC-H instance has size 140MB.

Experimental Setup We conducted two sets of experiments. The first set

is over the TPC-H querylog - as we show in Section 5.5.1, we reverse-engineer

all but one query within a small running time. The second set is created by

us in order to study the effects of various parameters and optimizations, and

is described in Section 5.5.2. Our algorithm is implemented in C++ and the

experiments were performed on a Windows server with a Quad-Core AMD

Opteron 2.3 GHz CPU and 128GB RAM running MySQL.

Methodology We execute each query Q over our TPC-H instance to produce

a table Out, then call Algorithm 5.1 with inputs Out and the TPC-H database.

We set dmax = ∞, i.e., we increment d until we discover a query Q′ such that

out(Q′) = Out. (The simpler variant that outputs any query with out(Q′) ⊇
Out is also discussed in relevant cases.) We refer to this process as running

the algorithm for query Q; however, we emphasize that our algorithm is not

given any information on the original query Q, other than its output. The

parameter settings we used are summarized in Table 5.1; the default values are

shown in bold.

5.5.1 TPC-H Queries

There are 22 queries provided with the TPC-H benchmark – which we de-

note TQ1,. . .,TQ22. Most of them contain aggregates, arithmetic expressions,
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Parameter Setting

Schema-level pruning no, yes
Lattice testing top-down, bottom-up
Nr. of random tuples in Θ 1, 2, 3, 4, 5
Wild card threshold α 100, 1K, 10K, 100K, 1M
Value blacklisting no, yes

Table 5.1: Experiment parameters and settings

groupby statements, selection conditions etc. - which go beyond the scope of

this paper. Therefore, we modify the TPC-H queries by dropping all such op-

erators. However, we maintain all the join conditions, i.e., the TPC-H query

graphs are unchanged. The projection tables are all those tables whose columns

appeared in the original query as projection columns, or in any selection condi-

tions or groupby statements. Note that the more projection tables we use, the

more columns in table Out and the more trees and stars we have to examine.

# Joins TQ
Runtime (s) dmax # Graphs

Discovered?
min-max min-max min-max

1
4,12-15,

0.8− 34 1 1 Yes
17,19,22

2
3, 11,

0.9− 11.2 1 1 Yes
16, 18

3 10 6.4 2 1 Yes
4 2, 20 8.4− 39.7 1− 2 1 Yes
5 7, 9, 21 11.9− 135.8 2− 3 1− 2 Yes
6 5 − − − No
7 8 202.2 3 3 Yes

Table 5.2: Results on TPC-H queries (grouped by number of joins)

Of the 22 queries, TQ1 and TQ6 are selection queries from a single table,

i.e., with no joins. We discover them at depth d = 0 within 1 second. Our

results on the remaining queries are shown in Table 5.2. For each query, we

measure the running time, number of tested candidate graphs, and the depth

dmax at which a solution is discovered. We group the queries by their number

of joins, and report the min/max values of these measures within a group. The

second column in Table 5.2 shows the query id’s in that group.

The last column indicates whether our algorithm discovered the original

query: all queries in all groups are efficiently re-discovered by our algorithm,
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with the exception of TQ5 (group 6). The output of TQ5 only contains 4

tuples. Thus, any query graph that generates a superset of these 4 tuples is a

candidate graph: there are 21 candidates at depth 2 and 70 at depth 3. Our

algorithm can efficiently discover them, but testing takes too long (we stopped it

after several hours). We manually checked that TQ5 was among the candidate

graphs generated at depth 3. Thus, given sufficient time, the algorithm would

have discovered it. For all other TPC-H queries, our method was successful

within less than 3.5 minutes.

5.5.2 Our Queries

We study different aspects of our algorithm via the queries in Table 5.3; the

projection tables are underlined in the graphs, and their projection attributes

are shown in column “Projection.” The queries range from simpler ones (Q1

and Q2) to more complex (Q3 through Q6). We deliberately included 4 queries

that all have a pair of Supplier projection tables, in order to illustrate the

challenges of distinguishing among queries whose outputs are similar, but not

identical.

We study the benefit of schema-level pruning via query Q1. For more com-

plex queries, this benefit decreases, since at higher depths d most tables are star

centers. We use Q4 to investigate the effects of instance-level pruning. The rea-

son is that Q4 contains two joins S − L and the tuple fanouts along this join

can be very large, leading to large TID lists. Thus, we also study the effects of

wild card and value blacklisting via Q4. Queries Q2 and Q3 are case studies for

lattice exploration and testing, and illustrate two different scenarios. Queries

Q5 and Q6 are then used to study the effects of the intersection optimization.

5.5.3 Schema-Level Pruning

We study the benefits of schema-level pruning in terms of the number of n-

odes/edges that are deleted from the trees, as well as the savings in running

time. We report results for query Q1. Figure 5.10(a) shows the number of

nodes and edges in schema-level trees, before and after schema-level pruning:

we prune 19 out of 33 tree nodes and 12 out of 19 edges. As a sanity check,

Figure 5.10(a) also includes the number of lattices and graphs before and after

schema-level pruning. Note that the number of candidate graphs is the same in
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QID Query Graph Projection Description Discovered?

Q1 C O L

C.c custkey
O.o orderdate
L.l shipdate

Find the customers
and the order/ship
dates of their orders.

No. Simpler
query discov-
ered instead.

Q2 NS1 S2

S1.s suppkey
S1.s name
S2.s suppkey
S2.s name

Find all pairs of suppli-
ers located in the same
nation.

YES

Q3

L

SPS1 PS2P1 P2

P1.p name
P2.p name

Find all pairs of part-
s that are supplied by
the same supplier who
has supplied line item-
s.

YES

Q4 OL1 L2S1 S2
S1.s name
S2.s name

Find all pairs of sup-
pliers supplying in the
same order.

YES

Q5

N

PPS1 PS2S1 S2

S1.s name
S2.s name

Find all pairs of suppli-
ers located in the same
nation and supplying
the same part.

YES

Q6

RN1 N2

PPS1 PS2S1 S2

S1.s name
S2.s name

Find all pairs of suppli-
ers located in the same
region and supplying
the same part.

YES

Table 5.3: TPC-H query set. (The projection tables are underlined.)

Number avg Fanout max Fanout

Θ1 5 72.0 280
Θ2 5 2151.1 34720

Table 5.4: Characteristics of Θ1 and Θ2.

either case, i.e., pruning only deletes unnecessary tree nodes and edges, without

affecting correctness.

Figures 5.10(b) and 5.10(c) show the reduction in the running time of each

step, starting from two different sets of random tuples, Θ1 and Θ2. Exploring

each set generates widely different sizes of TID lists, as indicated in Table 5.4.

The table shows the average/max fanout over all tuples explored in all trees

during Step 2.

As expected, the total time is dominated by the database-related opera-

tions, i.e., the instance-level exploration (Step 2) and the testing phase (Step

4). The nodes/edges that are not present in the final stars would not have

passed instance-level pruning anyway. Thus, removing them at schema-level

only saves time in Step 2, but does not affect Steps 3 and 4. However, the

savings for Step 2 are significant: its running time decreases by 52%, resp. by

65%, on tuple sets Θ1, resp. Θ2. As a result, we save 37%, resp. 61%, of
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Figure 5.10: Effects of schema-level pruning for Q1.

total processing time on each set. Clearly, the higher the fanout of a set Θi,

the more we benefit from pruning. The overhead of schema-level pruning is

negligible (0.02 seconds). We conclude that schema-level pruning is very fast

and should always be applied. Its benefits decrease for more complex queries,

but are very significant for simpler ones.

Interestingly, our algorithm was able to find a simpler SQL query (1 join, 2

tables) that generates the same output as Q1 (2 joins, 3 tables). The computed

query, shown below, is clearly correct, since O.o custkey is a foreign key of

the originally projected primary key C.c custkey:

SELECT N0.o custkey, N0.o orderdate, N1.l shipdate
FROM ORDERS N0, LINEITEM N1
WHERE N0.o orderkey = N1.l orderkey

5.5.4 Instance-level Pruning

Recall that instance-level pruning occurs when output tuples in Θ are negative

witnesses for tree edges and nodes, as well as for starred sets (Section 5.3.2).

We now study the effect of varying the size of Θ and report our results for query
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Figure 5.11: Instance-level pruning for Q4, as a function of |Θ|.

Q4. Over 10 random draws of Θ, we report the worst case: this occurred when

the first two tuples in Θ did not yield any instance-level pruning. However,

tuples 3, 4 and 5 each reduced the number of nodes, edges and starred nodes;

refer to Figure 5.11(a). For |Θ| = 5, we are able to prune 14 out of 24 nodes,

14 out of 22 edges and reduce the number of starred nodes from 24 to 4. This

is a significant reduction, especially for starred nodes, which results in fewer

lattices and candidate graphs. Figure 5.11(b) shows that tuples 4 and 5 reduce

the number of lattices: for |Θ| = 5, the number of lattices decreases from 11

to 2, and the number of candidate graphs from 16 to 2. We note that further

reductions are not possible, because each of the remaining two candidate graphs

generates a superset of Out. Therefore, any additional tuple in Θ will validate

both queries. This is the reason we only report results up to |Θ| = 5.

For Q4, the running time of the algorithm is highly dominated by the test-

ing in Step 4. Thus, reducing the number of candidate graphs has significant

impact. Figure 5.11(c) shows that, by using 5 random tuples in Θ, we are able

to reduce the running time by 3 orders of magnitude! This is because some
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of the graphs invalidated by the additional tuples are among the most expen-

sive to test, since they behave like cross-products. We report both worst and

average cases (over all possible testing orders). Recall that we stop once we

discover the query that generates table Out.

The cost of exploring additional tuples can be high, but we use our wild

card optimization to bring it back down. In this experiment, we used the

default wild card threshold α = 100K. Experiments with other thresholds are

discussed in the next subsection. Figure 5.11(d) shows that for α = 100K, the

running time of Step 2 increases linearly with the number of tuples in Θ (as

expected), but the cost is only about 1.2 seconds per additional tuple. This

incremental cost was relatively consistent across all the queries we tried, and

depends mostly on the characteristics of the database instance (e.g., average

tuple fanout). For example, Figures 5.10(b) and 5.10(c) imply a cost of about

1 second, resp. 5 seconds, per tuple for Q1 (after schema-level pruning; recall

that |Θ1| = |Θ2| = 5). For the sake of completeness, Figure 5.11(d) also shows

the running times of Steps 1 and 3, which are negligible.

Finally, we mention that we observed overall reductions in running time for

most of the queries we tried, when selecting between 3 and 5 random tuples

in Θ. The savings varied from query to query. But, given the small overhead

in Step 2, versus the much larger potential benefit in Step 4, we conclude that

we should always select multiple tuples in Θ. The size of Θ can be adjusted

dynamically, using heuristic estimates for the cost/benefit of each additional

tuple.

5.5.5 Optimizations: bounding TID size

Instance-level pruning is closely correlated to the optimization techniques de-

scribed in Section 5.4.2 that bound the size of the TID lists. Hence, we report

experiments on these optimizations on the same query Q4 as above. The two

sets of experiments should be evaluated together.

Wild card

We study the effect of varying the wild card threshold α on the running time of

Step 2. The result (using 5 tuples in Θ) is plotted in Figure 5.12(a). We report

two statistics: ILT is the time for instance-level tree traversal, i.e., retrieving the
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Figure 5.12: Bounding TID sizes.

tuples in all TID lists from the database; and LBS is the time for computing the

lattice-building data structures (i.e., the V alid and Merge lists). For α = 100,

the LBS time is slightly higher than for α=1K–100K, since we increase the

number and size of mergeable lists. The cost of ILT increases very slowly

from α = 100 to α = 100K. At the other extreme, α = 1, 000, 000 causes a

huge increase for both ILT and LBS. For this threshold, ILT becomes the most

expensive part of the algorithm (10 minutes), dominating even testing (113

seconds).

However, a threshold of up to 100K results in a combined ILT and LBS time

of about 6 seconds, or an average of 1.2 seconds per tuple in Θ. Thus, we can

maintain a small incremental cost per additional tuple in Θ by using the wild

card optimization and appropriate thresholds.

Value blacklisting

We blacklisted the values that incurred large fanouts during the instance-level

traversal, to ensure that we do not increase the number of lattices and candidate

graphs. Thus, the testing time remained the same as in Figure 5.11(c) (for

|Θ| = 5). We also applied blacklisting in the absence of wild cards, to observe

its effects on the ILT and LBS running times; see Figure 5.12(b). In this

experiment, we randomly chose 10 different sets Θ. Out of these, 4 contained

tuples that created blacklisted values; there were 2 blacklisted values. We report

the average over these 4 sets of results. The running time decreased by 1 second

for ILT and 6.5 seconds for LBS.
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Figure 5.14: Lattices for Q3; d = 3.

5.5.6 Lattice Exploration and Testing

Lattices are the key structure for exploring candidate graphs. They not only

allow us to discover arbitrary graphs, but also guide the testing step. In this

section we illustrate two different scenarios encountered by our algorithm for

queries Q2 and Q3, and discuss two testing strategies for each: bottom-up and

top-down (Section 5.3.4). Figures 5.13 and 5.14 show the lattices for Q2, resp.

Q3, for the depth d where each is discovered. Q2 is discovered at d = 1 and has

a single lattice with 3 graphs; Q3 is discovered at d = 3 and has 5 lattices with

15 graphs. The smaller lattice complexity for Q2 is because it is discovered at

smaller depth d, and it has a larger number of output columns. Both factors

imply fewer star centers (and lattices).

Q2 asks for all pairs of suppliers located in the same nation and selects both

the id and the name of each supplier. Since the output table has four columns,

this results in stars with four branches. The algorithm detects one star center

at d = 1, i.e., table Nation. The star is graph G1 in Figure 5.13. It has t-

wo potentially valid merges, Merge(S1, S2) and Merge(S3, S4). However, the
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Query graph G1 G2 G3
time 1 h 38.95 s 0.22 s

Table 5.5: Testing time of query graphs for Q2.

resulting graphs are isomorphic, so one of them is eliminated. The grandchild

graph is the result of executing both merges, and is the same as Q2. Table 5.5

shows the testing time of the three candidate graphs from Figure 5.13. The

testing time is much higher for G1 than for G2 and G3. This is because G1 is

a 4-way cross-product query (among subsets of Supplier). The more columns

a table Out has, the more expensive it is to test its stars. However, our lattice

exploration discovers simpler descendant graphs when tables are truly merge-

able. Bottom-up testing returns the correct query G3 without exploring the

others, in a total time of 9 seconds; most of this is spent in Step 2. By contrast,

top-down testing requires more than an hour, and tests all three queries.

Q3 generates all pairs of parts that are supplied by the same supplier,

who also supplies at least one line item (not every supplier instantiates the

join to table LineItem). Figure 5.14 shows the 5 lattices generated by our

algorithm (labeled by Li), with a total of 15 graphs (Gi). (For better readability,

we removed the numbers from node labels). Note that G1, G9 and G13 are

isomorphic, so only one of them is tested. There are two graphs, G2 and G3,

that return exactly table Out. However, G3 has lower complexity than G2.

Thus, while either graph is correct, G3 is the better answer (it is also the same

as Q3).

Table 5.6 shows the candidate queries that are tested by the two strategies.

Graph G1 is considered by both strategies. However, it is also generated during

the prior iteration d = 2. Hence, we include it in Table 5.6 but not in Table 5.7,

which shows worst and average case statistics for both strategies. Table 5.7 is

computed as follows. For either strategy, queries that do not have an ances-

tor/descendant relationship in some lattice are tested in random order. We

ignore G1 (tested at d = 2), and G9 and G13 (isomorphic to G1). The average

case statistics are computed over all permutations of the remaining graphs in

each strategy, with the top-down strategy stopping after G2 is tested, and the

bottom-up strategy stopping after G3. Thus, the bottom-up strategy tests 3

graphs in the worst case, and 2.2 on the average. By contrast, the top-down

strategy tests 4 (3.0) graphs in the worst (average) case. Moreover, the running
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time of the top-down approach is much longer than for bottom-up in each case.

Since top-down also returns the more complex answer G2, we conclude that

the bottom-up strategy is more efficient and likely to find simpler answers.

top-down G1 G2 G4 G14 G10
bottom-up G1 G3 G8 G15 G13 G9

Table 5.6: Tested candidate graphs for Q3 (note: G1=G9=G13).

Worst Case Average Case
number time(s) number time(s)

top-down 4 18918.0 3.0 13051.1
bottom-up 3 480.5 2.2 331.5

Table 5.7: Number of graphs and testing time for Q3, at d = 3.

Problem Variants For the superset semantics, a graph passes testing if it

generates a superset of Out. In this case, graph G1 passes the test at d = 2

and the algorithm returns.

In another variant, we want all graphs that pass the test (either for exact

match or superset semantics) at d = 3. In this case, the bottom-up strategy

tests only one more graph than above, i.e., graph G6. This is because G8 does

not generate a superset of Out, so its ancestor G6 is a potential candidate.

Graphs G9 and G13=G15=G1 do generate strict supersets of Out, so we need

not test their ancestors: they pass the test for the superset semantics, and fail

it for the exact match. The top-down strategy, by contrast, needs to test all

graphs for this variant.

5.5.7 Optimizations: decreasing depth d

We investigate the effects of the intersection optimization for queries Q5 and

Q6. A simple analysis shows that this optimization reduces d from 5 to 2 for

Q5 (see also Figure 5.9), and from 6 to 2 for Q6. Figure 5.15(a) shows more

details for Q5: with intersection, the number of lattices is reduced from 28 to

6, and the number of candidate query graphs decreases from 71 to 13.

For both queries, the algorithm without intersection could not finish after

one day. However, with intersection, the running times were reduced to 162.5

seconds for Q5, and 305 seconds for Q6. Figure 5.15(b) shows the running times
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Figure 5.15: Effects of intersection for Q5 and Q6.

for all the queries. (Note: for Q3, the time is higher than in Table 5.7 since it

includes the time for iterations 0 ≤ d ≤ 2). Since Q1 and Q2 are discovered

at d = 1, Q4–Q6 are discovered at d = 2, and Q3 is discovered at d = 3,

Figure 5.15(b) also shows a trend where the running time increases by a factor

of 2 to 5 when incrementing d by 1. This is further evidence that reducing d is

essential for making our approach able to compute complex graphs.

5.6 Summary

In this chapter, we proposed a new approach for reverse engineering arbitrary

join queries. Our approach relies on a novel characterization of graphs, based

on the notions of stars and merge sets, which may be of independent interest.

In our experiments over TPC-H we were able to compute complex queries due

to a variety of proposed optimizations which make our method scale to complex

graphs. Our algorithm is quite general, and can be used for several problem

variants and application scenarios.

This work has been published as a full research paper in 2011 ACM SIG-

MOD/PODS Conference [58].
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Conclusion and Future Work

6.1 Conclusion

Complex databases with poor or missing documentation result in great difficul-

ties for users to understand and extract useful information from the data. In

this thesis, we designed automatic and purely data oriented approaches to dis-

cover helpful information that aids the users in understanding the relationships

between relational tables and columns.

Our first goal was to design an effective approach to discover foreign key

constraints in relational databases. In Chapter 3, we have introduced the notion

of Randomness and showed that it can be used effectively to reduce the false

positives produced by inclusion test. We also provided an efficient approx-

imation algorithm which uses quantile summaries for evaluating randomness

over a large set of columns. In addition, we designed an I/O efficient algorith-

m which requires only two passes over the data for outputting the final list

of foreign/primary key pairs. This leads to a novel and effective foreign key

discovery rule that is applicable to relational databases in practice. Notably,

multi-column foreign keys are also addressed in our work, which have not been

considered by previous work.

The next objective of this thesis was to provide a solution to discovering

semantically equivalent attributes. Towards this goal, we have proposed in

Chapter 4 a robust, unsupervised solution that was able to efficiently and ac-
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curately identify the semantic correspondence between relational columns. Our

solution is purely data oriented. We do not rely on any form of external knowl-

edge about the data. Through an extensive experimental study over real and

benchmark datasets, we have shown our approach was able to correctly identi-

fy attributes with very high accuracy. Having the efficiency and accuracy, our

approach can be an invaluable tool for data integration and schema matching

applications, besides for assisting users in understanding the relational data.

We also aimed to design a principled solution to mine the relationship be-

tween a given SQL answer table to the remaining tables in the database. We

focused on join queries. We have proposed in Chapter 5 a novel and quite

general approach that can be used for several problem variants and application

scenarios. We have introduced the notions of stars and merge sets and proved

that any graph can be characterized by the combination of the stars and a

series of merge steps over the stars. In contrast with prior work where specific

restrictions are imposed on the structure of the query graph, we have shown

that our approach could discover queries with arbitrary graphs. We have al-

so designed a variety of optimizations that significantly improve the efficiency,

making our approach scale to very complex graphs and applicable in practice.

6.2 Future Work

In the future, we plan to investigate whether the techniques proposed in Chap-

ter 3 and 4 can be extended to discover multi-column attributes (for example

when customer names are expressed as separate first/last name columns).

Further, we have identified the use of randomness and EMD to create dis-

tribution clusters has one limitation, i.e. for the scenarios where horizontally

partitioned attributes (e.g., telephone numbers based on locations) appear. In

the future, we would like to explore whether information theoretic techniques

can be used to solve this problem.

Another possible direction is to integrate our approach presented in Chap-

ter 5 with the method of [56], which reverse engineers the selection conditions

of a query. Together, it would enable the discovery of general SPJ queries. We

also note that reverse engineering a query that contains arbitrary arithmetic ex-

pressions is PSPACE-hard, so SPJ queries are the best we can hope to achieve

with a general methodology.

112



CHAPTER 6. CONCLUSION AND FUTURE WORK

In addition, we would also like to extend our work to handle OLAP queries

which contain group-by and aggregations. Reverse engineering the aggregation

queries with selection conditions is not trivial even if there is no arbitrary arith-

metic expression inside the aggregation. Given that there may exist selection

conditions, we can have multiple guesses for one aggregation value. For exam-

ple, a SUM over a small subset of tuples is also likely to be AVE, MIN or MAX

over another subset of tuples. Designing an efficient algorithm to explore all

the possibilities become challenging.
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