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Summary

Visual saliency refers to the preferential fixation on conspicuous or meaningful re-

gions in a scene that have also been shown to correspond with important objects

and their relationships. It is naturally built into the complex biological system to

rapidly detect potential prey, predators, or mates in the real world. Visual saliency

is also crucial for human visual experience and also relevant to many applications.

Visual attention - particularly stimulus-driven, saliency-based attention - has been

an active research field over the past decades. Many attention models are now

available, which aside from lending theoretical contributions to other research ar-

eas, have given rise to successful applications in computer vision, mobile robotics,

and cognitive systems. Here in this thesis, we analyze the visual saliency and its

applications in image re-attentionizing, depth matters, video captioning and action

recognition.

In the first work, we propose a computational framework, called Image Re-

Attentionizing, to endow the target region in an image with the ability of attracting

human visual attention. In particular, the objective is to recolor the target super-

pixels by color transfer with naturalness and smoothness preserved yet saliency

augmented. We propose to approach this objective within the Markov Random

Field (MRF) framework and an extended graph cuts method is developed as a

solution. The input image is first segmented into superpixels, and those within the

target region as well as their neighbors are used to construct the consistency graphs.

Within the MRF framework, the unitary potentials are defined to encourage each

target superpixel to match with the patches with similar shapes and textures from

a large patch database, each of which corresponds to a high-saliency region in one

image, while the spatial and color coherences are reinforced as pairwise potentials.

We evaluate the proposed method on the collected Forbes Ad Dataset, and the user

studies demonstrate that for the recolored images, the target region(s) successfully

attract human attention and in the meantime both spatial and color coherences

are well preserved.

vii



In the second work, we study the saliency in 3D scenes. In literature, most

previous studies on visual saliency have only focused on static or dynamic 2D

scenes. Since the human visual system has evolved predominantly in the natural

three dimensional environments, it is important to study whether and how depth

information influences visual saliency. For this task, we first collect a large human

eye fixation database compiled from a pool of 600 2D-vs-3D image pairs viewed by

80 subjects, where the depth information is directly provided by the Kinect camera

and the eye tracking data are captured in both 2D and 3D free-viewing experiments.

We then analyze the major discrepancies between 2D and 3D human fixation data

of the same scenes, which are further abstracted and modeled as novel depth priors.

Finally, we evaluate the performances of several state-of-the-art saliency detection

models over 3D images, and propose solutions to enhance their performances by

integrating the depth priors.

In the third work, we conduct comparative studies between the static saliency

and dynamic saliency. We construct the datasets of human fixation on both images

and videos for the comparison purpose. Then we make several observations of the

relationship of static and dynamic saliency. Inspired by these observations, we

propose the noval CMASS learning framework to fuse static saliency into dynamic

saliency estimation to improve the video saliency prediction.

Furthermore, we also investigate the application of visual saliency in recog-

nizing human actions in realistic videos. Many works have been devoted to this

challenging problem, and breakthroughs have been made gradually. Therefore, we

propose transferring the visual saliency based models to such the human action

recognition task.

To summarize, our work has outperformed the state-of-the-art methods in dif-

ferent problems and validated the effectiveness of visual saliency. Beyond the afore-

mentioned directions, we foresee more applications of visual saliency in image clas-

sification, video summarization and avatar thumbnailing.
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Chapter 1

Introduction

1.1 Motivation

Human visual exploration and selection of specific regions for detailed processing

are permitted by the visual attention mechanism. The eyes remain nearly station-

ary during fixation events as humans look at details in selected locations, which

makes eye movements a valuable proxy to understand human attention. Visual

saliency refers to the preferential fixation on conspicuous or meaningful regions in

a scene that have also been shown to correspond with important objects and their

relationships. Since visual saliency is believed to drive human fixation during free

viewing [116], it is crucial for human visual experience and also relevant to many

applications, such as automatic image collection browsing, image segmentation and

image decolorization.

Over the last several decades, many research efforts have been devoted toward

the further understanding of the mechanisms that underlie visual sampling, either

through observing fixational eye movements, or considering the control of focal

cortical processing. The consideration of fixational eye movements necessarily in-

volves two distinct components, one being the top-down task-dependent influence

on these behaviors, and the second characterized by bottom-up stimulus-driven fac-

tors caused by the specific nature of the visual stimulus. The concept of saliency

has been extensively studied by psychologists [136, 50, 103, 118, 129]. Later, the

proposal for saliency computation within the visual cortex is put forth based on
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the premise that localized saliency computation serves to maximize the informa-

tion sampled from one’s environment. It is demonstrated that a variety of visual

search behaviors appear as emergent properties of the model such as information

coding, and probability [51, 18, 127]. Visual saliency also benefits other research

works [22, 58, 8].

1.2 Thesis Focus and Main Contributions

In this thesis, we will explore several different areas in multimedia and computer

vision related to visual saliency. In particular, we will introduce the applications

of saliency in the image re-attentionizing, depth matters, video saliency prediction

and action recognition. Figure 1.1 shows the foci of the thesis.

1. Image re-attentionizing. We propose a novel computational framework

to endow the target region in an image with the ability of attracting human visual

attention. In particular, the objective is to recolor the target patches by color trans-

fer with naturalness and smoothness preserved yet visual attention augmented. We

propose an approach within the Markov Random Field (MRF) framework and an

extended graph cuts method is developed. In our work, the input image is first

over-segmented into patches, and the patches within the target region as well as

their neighbors are used to construct the consistency graphs. Within the MRF

framework, the unitary potentials are defined to encourage each target patch to

match the patches with similar shapes and textures from a large salient patch

database, each of which corresponds to a high-saliency region in one image, while

the spatial and color coherences are reinforced as pairwise potentials. We evaluate

the proposed method on the AdSaliency dataset. The results demonstrate that the

target region(s) successfully attract human attention and in the meantime both

spatial and color coherences are well preserved.

2. Depth matters. We investigate the impact of depth in visual saliency.

Most previous studies on visual saliency have only focused on static or dynamic

2D scenes. In this work, we first collect a large human eye fixation database
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CHAPTER 1. INTRODUCTION

compiled from a pool of 600 2D-vs-3D image pairs viewed by 80 subjects, where the

depth information is directly provided by the Kinect camera and the eye tracking

data are captured in both 2D and 3D free-viewing experiments. We then analyze

the major discrepancies between 2D and 3D human fixation data of the same

scenes, which are further abstracted and modeled as novel depth priors. Finally,

we evaluate the performances of several state-of-the-art saliency detection models

on 3D images, and propose solutions to enhance their performances by integrating

the depth priors.

3. Video saliency prediction. We conduct comprehensive comparative

studies of dynamic saliency (video shots) and static saliency (key frames of the cor-

responding video shots), and two key observations are obtained: 1) video saliency is

often different from, yet quite related with, image saliency, and 2) camera motions,

such as tilting, panning or zooming, affect dynamic saliency significantly. Moti-

vated by these observations, we propose a novel camera motion and image saliency

aware model for dynamic saliency prediction. The extensive experiments on two

static-vs-dynamic saliency datasets collected by us show that our proposed method

outperforms the state-of-the-art methods for dynamic saliency prediction. Finally,

we also introduce the application of dynamic saliency prediction in dynamic video

captioning, and assisting people with hearing impairments to better enjoy videos

with only off-screen voices, e.g., documentary films, news videos and sports videos.

4. Action recognition. We further study the application of video saliency in

human action recognition. Human action recognition is useful for many practical

applications, e.g., gaming, video surveillance, and video search. We hypothesize

that the classification of activities can be improved by smartly designing a feature

pooling strategy in the prevalently used bag-of-words classification scheme. We uti-

lize the feature pooling driven by video saliency and propose the Spatial-Temporal

Attention-aware Pooling (STAP) scheme. Firstly, we detect salient visual seman-

tics using bio-inspired visual saliency models, and then a spatial temporal feature

pooling is performed according to the saliency levels. The kernels later match dif-

ferent levels of video foreground (salient areas) and background (non-salient areas).

Finally the kernels are fed into popular support vector machines for classification.

Extensive experiments on the evaluated datasets show that our proposed method
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Figure 1.1: The organization of our thesis. The first two works explored two aspects
of static saliency, 3d depth matters and image re-attentionizing. The last two works
focus on dynamic saliency and its application on dynamic captioning and action
recognition.

outperforms state-of-the-art bag-of-words based methods, namely 62.5% on Holly-

wood2 (better by 4.2%), 87.9% on YouTube dataset (better by 3.7%), and 95.3%

on UCF Sports (better by 0.3%).

1.3 Organization of the Thesis

The structure of the thesis is as follows. In Chapter 2, we give a brief review of

visual saliency research. In Chapter 3 we introduce the proposed methodologies

for human visual attention retargeting. Then, the work on 3D Saliency is given

in Chapter 4. The comparative studies of video saliency are presented in Section

5. We further investigate the application of video saliency in action recognition

in Section 6. Finally, Chapter 7 concludes this thesis with discussions for future

exploration.
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Chapter 2

Visual Saliency - Literature

Review

In this chapter, we summarize the research works on visual saliency. Specifically,

we introduce and discuss the experiment setups, available datasets, various saliency

computational models and the applications.

2.1 Experimental setups

The visual saliency research has been originated from the psychophysical area in

the 20th century when the modern eye tracker was not even invented yet. Eye

movements were first studied in the 1950s and 1960s by Yarbus [136]. He pio-

neered the study of saccadic exploration of complex images, by recording the eye

movements performed by observers while viewing natural objects and scenes. In

his work, Yarbus showed that the eye gazes depend on the task that the observer

has to perform. Figure 2.1 shows the stimulus and corresponding eye gaze to dif-

ferent task. The gaze tends to jump back and forth between the same parts of the

scene, for example, the eyes and mouth in the picture of a face. If the participant

was asked specific questions about the images such as human age, position, his/her

eyes would concentrate on areas of the images relevant to the questions.

Later, the research on capturing eye fixation data grows rapidly based on the

invention of eye trackers. Frank Schumann et al. introduced their work about
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recording and analyzing a large amount of video data to compare the spatial dis-

tribution of stimulus features in head and gaze centered coordinates during free

natural exploration behavior [108]. Their system, EyeSeeCam, including gaze cam-

era, eye trackers and head camera is depicted in Figure 2.2(a). The results point

out for a realistic assessment of the role of eye-movements relative to head-centered

coordinates, stimuli should be biased. Also, the results show that for a truthful

recording of natural human input, head-fixed recordings are not sufficient, and

gaze-centered stimuli should be recorded in a situation where eyes, body, and head

can freely move. The authors discovered the relationship between indoor environ-

ments and some outdoor ones, however, the classification can be done based on the

finding of similarity of features in those environments. One common issue in such

experiment is that the authors did not mention about the information and prior

knowledge of the participating observers.

Figure 2.1: Yarbus experiment. Seven records of eye movements by the same
subject. Each record lasted 3 minutes. The eye movements are different according
to the given question.
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CHAPTER 2. VISUAL SALIENCY - LITERATURE REVIEW

(a) (b)

Figure 2.2: Eye gaze tracking system. (a) The schematic view of a head mounted
display eye tracker, (b) Infrared eye tracker bar

2.2 Datasets for saliency computation

Eye fixation are an excellent modality to learn semantics-driven human understand-

ing of images, which is vastly different from feature-driven approaches employed

by saliency computation models. Following the earlier works like Yarbus’s experi-

ment and the emergence of eye trackers, a number of fixation datasets have been

constructed for visual saliency research such as Bruce’s dataset [18], FIFA [21],

NUSEF [102] or MIT [59]. The data set from Bruce and Tsotsos contains data

from 11 subjects across 120 color images of outdoor and indoor scenes. Partici-

pants were given no particular instructions except to observe the images, 4 seconds

each. For FIFA data set, fixation data were collected from 8 subjects performing

a 2-s-long free-viewing task on 180 color natural images. They were asked to rate,

on a scale of 1 through 10, how interesting each image was. Scenes were indoor

and outdoor still images in color. Images include faces in various skin colors, age

groups, gender, positions, and sizes.

The eye-tracking data set from MIT is the largest one to date. It includes 1003

images collected from Flickr and LabelMe. Eye movement data were recorded from

15 users who free-viewed these images for 3 seconds. The most recent built NUSEF,

an eye fixation database compiled from a pool of 758 images and 75 subjects, aims

to learn the preferential visual attention. The database comprises fixation pat-

terns acquired using an eye-tracker, as subjects free-viewed images corresponding

to many semantic categories such as faces (human and mammal), and actions (look,
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Figure 2.3: Exemplar images from various semantic categories (top) and corre-
sponding gaze patterns (bottom) from NUSEF. Darker circles denote earlier fixa-
tions while whiter circles denote later fixations. Circle sizes denote fixation dura-
tion.

read and shoot). Figure 2.3 depicts the exemplar images with corresponding gaze

patterns of NUSEF dataset. The consistent presence of fixations clusters around

specific image regions confirms that visual attention is not subjective, but is di-

rected towards salient objects and object-interactions. As stated in [102], detection

of visually salient image regions is useful for applications like object segmentation,

adaptive compression, and object recognition. The authors already utilized fixa-

tion data to perform tasks, e.g. applying mean-shift to cluster eye fixation data

and then performing the segmentation task.

Recently, Mathe et al. have collected, and made available to the research

community, a set of comprehensive human eye-tracking annotations for Hollywood-

2 and UCF Sports, some of the most challenging, recently created action recognition

datasets in the computer vision community [84].

2.3 Saliency computational models

Following the psychological experiments, some emerging research focused on com-

putational model from computer science community. Saliency estimation methods

can broadly be classified as bottom-up or top-down models.
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2.3.1 Bottom-up saliency models

In general, most methods employ a low-level approach of determining contrast of

image regions relative to their surroundings using one or more features of intensity,

color, and orientation. One of the pioneer is Itti with the well-known work using

winner-take-all model [51]. The model combines different visual sub-modalities

like colors, intensity and orientations into an overall saliency map. Subsequently,

a winner-take-all network defines which spatial position on this map will be con-

sidered as the next focus of attention. The weights of the different sub-modalities

can be adjusted in the process. This gives the opportunity to steer those weights

by a top-down attention mechanism. Meanwhile, Hou et al. presented a spectra

residual method to compute visual saliency [47]. The spectral residual resolves the

problem of weighting features from different channels (for example, shape, texture,

and orientations).

In the other work, Bruce and Tsotsos introduced the research about saliency,

attention and visual search based on an information theoretic approach [18]. This

work was inspired from Attneave’s experiment. Unlike the previous models offer-

ing little in explaining why the operations involved in the model have the structure

that is observed, the authors focus on explaining why certain components impli-

cated in visual saliency computation behave as they do. They proposed a new

framework, AIM, which maximizes the information to compute saliency map. The

authors mentioned sparse coding when using ICA to generate basis coefficients.

Sparse coding problem is a very interesting topic in visual saliency. Xiaodi Hou

et. al in [46] use 192-dimension sparse features, but they still achieve the similar

results to this work. Another approach using Bayesian inference theory proposed

by Chikkerur et al [26]. Their model resembles the interaction between the parietal

and ventral streams mediated by feedforward and feedback connections. One issue

is the assumption from the authors. They assumed “To achieve this goal, the visual

system selects and localizes objects, one object at a time”. However, as discussed

in [131], the human visual system does not only do serial work, but also it applies

parallel work. In addition, is it true to say “the object location and object identity

are independent”? Actually, in some cases, object location and object identity are
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not independent. The authors compare their work with other works from Itti et

al, Bruce and Tsotsos, etc. Mahadevan et al. proposed a spatiotemporal saliency

algorithm based on a center-surround framework [80]. The algorithm is inspired

by biological mechanisms of motion-based perceptual grouping and extends a dis-

criminant formulation of center-surround saliency previously proposed for static

imagery. The paper offers new insight and gives clear comparison to other meth-

ods. It has, however, some shortcomings as follows. This work from Mahadevan et

al. extended the work from Gao et al [37]. The original work proposed the usage

of discriminant saliency in static scene. In the extended work, Mahadevan et al.

applied the original work to dynamic scene. One common issue for such models is

the processing time. The processing time to compute the saliency map is very slow.

For example, for one testing frame with size 340 × 256, the average processing time

is about 7.1 seconds. Since the target of detecting salient region is to boost the

processing time for the other tasks, it is impossible to compute the saliency map

in the real-time manner.

2.3.2 Top-down saliency models

Some top-down factors in free-viewing are already known although active investi-

gation still continues to discover more semantic factors. For instance, Einhauser

et al. proposed that objects are better predictors of fixations than bottom-up

saliency [31]. Elazary et al. showed that interesting objects (annotations from

LabelMe dataset [105]) are more salient [32]. Cerf et al. showed that the meaning

objects such as faces and text attract human attention [21]. Similarly , Judd et

al., observed that humans, faces, cars, text, and animals attract human gaze in-

creasingly [59] by plotting image regions at the top salient locations of the human

saliency map (built from eye fixations). These objects convey more information

in a scene. Alongside, some personal characteristics such as experience, age, and

culture change the way humans look at images.

The basic idea is that a weighted combination of features, where weights are

learned from a large repository of eye movements over natural images, can enhance
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saliency detection compared with unadjusted combination of feature maps. Kienzle

et al. [60], Judd et al. [59] and Peters et al. [100], used image patches, a vector of

several features at each pixel, and scene gist, respectively for learning saliency. Zhao

and Koch learned optimal weights for saliency channel combination separately for

each eye-tracking dataset [141]. While they show tunning weights for each dataset

results in high accuracies, learned weights sometimes do not agree over datasets.

It is also unclear how this approach generalizes to unseen images.

2.4 Applications

There are many applications of saliency prediction models in computer vision,

mobile robotics, and other systems [12].

2.4.1 Computer Vision

Avidan et al. introduced a method for content-aware resizing of images using seam

carving [8]. Seams are computed as the optimal paths on a single image and are

either removed or inserted from an image. This method can be used for a variety

of image manipulations including: aspect ratio change, image retargeting, content

amplification and object removal. Figure 2.4 illustrates the use of seam carving.

Wang et al. presented Picture Collage which is a kind of visual image summary to

arrange all input images on a given canvas, allowing overlay, to maximize visible

visual information [126]. They formulated the picture collage creation problem

in a Bayesian framework. The salient regions of each image are firstly extracted

and represented as a set of weighted rectangles. Then, the image arrangement

is formulated as a Maximum a Posterior (MAP) problem such that the output

picture collage shows as many visible salient regions (without being overlaid by

others) from all images as possible. Sadaka et al. propose an attentive super-

resolution technique that exploits the available saliency information of the active

pixels to further reduce the computational complexity while achieving the desired
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Figure 2.4: The illustration of seam carving using saliency to resize the input image.

visual quality of the high resolution image [106]. Later, Liu et al. proposed the

new method to detect salient objects automatically with the supposition that a

salient object exists in an image [78].

2.4.2 Robotics

Regarding the mobile robotics, Dankers et al. have developed a synthetic active

visual system capable of detecting and reacting to unique and dynamic visual

stimuli, and of being tailored to perform basic visual tasks [30]. For example, when

driving a car, we tend to keep our eyes on the road, and as such we bias the lower
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half of the mosaic where we would expect to find the road. The system can be

preempted for regions not in the current view frame. Meanwhile, Siagian et al.

proposed using salient regions as the localization cues. The proposed method is

efficient since it only process on the salient regions instead on the whole scene [111].

Muhl et al. proposed a human-robot interactive system using saliency [92]. In their

work, the robot gazed at the most salient location in each video frame. The robot’s

eyes were controlled so that human partners could perceive that it was responding

to their action and was looking at an interesting location for it. Gadde et al. built

a robot to recapture a better photograph by assessing the visual quality of the

captured photo [35]. The strength of their approach is the computational efficiency

which can be applied in autonomous robots. The accuracy can be improved further

by adding symmetry in the subject region as mandatory since images with some

symmetry are rated higher than the rest and with more complicated composition

guidelines of professional photography. Courty et al. proposed using saliency for

video surveillance application [27]. The principle of this application is quite simple:

each frame acquired by the camera is processed and a feature map that includes

both spatial and spatio-temporal information is created. The global maximum of

the map is determined through a simple scanning of the feature map and given as

input of the visual servoing process. The pan/tilt camera is then focused at this

point.

2.4.3 Other applications

For intelligent advertisement, Mei et al. introduced ImageSense [86] and VideoSense

[85] which is able to automatically decompose the Web page into several coherent

blocks, utilize salient regions to select the suitable images from these blocks for

advertising, detect the nonintrusive ad insertion positions within the images and

videos. Hong et al. have developed a segmentation method to detect salient regions

in mammograms [44]. Salient regions correspond to distinctive areas that may in-

clude the breast boundary, the pectoral muscle, candidate masses and some other

dense tissue regions. Wong et al. introduced a saliency-enhanced method for the

classification of professional photos and snapshots [132]. They extract the salient
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regions from an image by utilizing a visual saliency model. Then, in addition to

a set of discriminative global image features, they extract a set of salient features

that characterize the subject and depict the subject-background relationship. Liu

et al. presented a generic virtual content insertion system [75] which determines

insertion time by detecting higher attentive shot with temporal attention analy-

sis, and determines insertion place by detecting lower attention region with spatial

attention analysis. By inserting virtual content into the attentive shots at lower

attention region, the system balances between the notice of the virtual content by

audience and disruption of viewing experience to the original content.
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Chapter 3

Image Re-Attentionizing

In this chapter, we introduce a new application of visual saliency, namely, image

attention retargeting. We propose the new framework in order to modify some

image regions so that those regions attract more human attention than the original

ones. We also introduce a new dataset which is served for the evaluation of this

task.

3.1 Introduction

Retargeting the human attention to certain part(s) of an image benefits many

applications, e.g., intelligent advertisement, image editing, and image assessment.

For example, people tend to skim through the photos when they read magazines

and newspapers, especially in the advertisement columns. Therefore to implicitly

attract readers to where the advertisers want is important. From the view-point

of an advertiser, placing the advertisement at the right spot is a critical task. As

another example, people often take amateurish photos that have the wrong object

being the objects of interest. Therefore, it is desirable to emphasize the intended

objects during photo editing.

There exist few attempts for this task, and these methods [112] [133] simply

alter the global features or local features based on neighborhood information. As

admitted in [133], maintaining naturalness is a challenging issue. For example,
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(a) (b) (c)

(d)

Figure 3.1: What is human visual attention drawn to? Visual dominance of the
subject can be achieved using (a) acutely sharp focus, (b) lighting contrast, and
(c) color contrast. (d) The blue dot in the right image receives the higher attention
than the original dot in the left image because it is different from the rest.

blurring is often utilized in saliency retargeting to force focus to the main subjects.

However, in reality, there is no blur when people perceive the scene. The blur effect

is essentially caused by human visual system. When people fixate at an interesting

area, points at fixation are sharply focused, but points away from fixation are

increasingly blurred. In fact, those effects which simulate the human biological

blur are not favored by humans [97].

In literature, some research works focused on computational saliency model

from computer vision, human vision and psychology community. In general, most

methods employ a low-level approach of determining contrast of image regions

relative to their surroundings. Itti et al. combined different visual sub-modalities

like colors, intensity and orientations into an overall saliency map [51]. Meanwhile,

Hou et al. presented a spectral residual method to compute visual saliency [47].

Bruce et al. proposed the usage of information maximization in order to predict

saliency [18]. Judd et al. applied the learning method in order to compute the

saliency value of the pixel from the low level features. Recently, many researchers
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proposed various computational models to compute saliency maps from images such

as Saliency by Induction Mechanisms (SIM) [93], Region-based Contrast (RC) [24],

Frequency Tune (FT) [5] or co-saliency models [70]. However such these works are

for saliency prediction, rather than for saliency retargeting.

In this chapter, we propose a novel computational framework, called Image Re-

Attentionizing, to recolor an image so that human attention may be relocated to

the target region and also the image naturalness may be well preserved. Following

Oxford English Dictionary [1], we adopt the definition of ‘naturalness’ as ‘lack of

artificiality in conduct or bearing’. To facilitate such an objective, we formulate

the problem within the Markov Random Field (MRF) framework [57]. Instead of

dealing with individual pixels, we follow the patch-based approach inspired from

[33, 135]. The input image is first over-segmented into patches, and each patch is

considered as a node of MRF. Then, the unitary potentials of MRF encourage the

target image patches to match the high-saliency patches in a training image patch

dataset, and the image smoothness and coherence between patches are reinforced

as pairwise potentials. The solution is effectively sought by a refined graph cuts

method.

The contributions of our approach are as follows.

1. Our method considers both spatial coherence and color coherence, and thus

the recolored image is natural.

2. We utilize a salient patch dataset that includes the recorded human fixation

data. The intention of using salient patch dataset is based on the assumption

that the patch with larger saliency ratio gets the higher chance to attract the

user attention (namely in a supervised way or using priors).

3.2 Related Works

Targeting the main subject is a classical topic in photography. As stated in [36], the

basic rule of ABC (an abbreviation of Acutely sharp, Bright, and Colorful) can
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be applied to attract human attention. Figure 3.1.(a-c) show examples of the ABC

rule. First, acutely sharp elements mean that the whole picture is blurry except

there is one sharp object. Second, bright elements refer the dark picture with

one bright object. Last, colorful elements indicate that the whole picture is black

and white or monochrome and there is only one color saturated object. Actually,

photography rules are not the only cues to locate human attention. Attneave’s

psychological experiment [7] showed that redundant regions of an image are often

skipped and instead the viewers focus on the rare regions in the image. As shown in

Figure 3.1.d, the blue dot in the right image receives the higher attention than the

original dot in the left image since it is different from the rest. The case that certain

stimuli seem to be found effortlessly from others is called the pop-out phenomenon

in psychology study.

There exist few works on saliency retargeting [112, 133, 132, 114]. Su et al. [112]

first proposed the idea of altering the predicted saliency of an image by reducing

the background saliency to redirect attention to the main subject. Their method

utilizes texture power maps to de-emphasize texture variations to decrease the

saliency of distracting regions. This method preserves key features, however since

adding white noise maintains the overall graininess, the resulting images appear too

noisy and do not seem to be as natural as their originals. Wong et al. proposed the

concept of applying saliency retargeting for enhance image aesthetics [133]. The

method modifies only the low-level image features that correspond directly to the

features used in the saliency computation model of [51]. In the cases that photos

compose only one subject, saliency retargeting can make them more acceptable

than before; in other cases, saliency retargeting cannot help improve the visual

attention if there exist many subjects and the main subjects are not salient.

The above mentioned methods can be regarded as passive methods, which

change the rest of image to force the focus to the main subject. For example, in

order to drive human attention to certain area(s), Gaussian blur [41] is applied

to the image region except the target region. However, this passive approach is

questionable. First, the blur unavoidably causes information loss in those comple-

mentary regions (the regions which are not the target regions in the image), which

sometimes are important. Second, blur might not effectively change the predicted
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saliency map. As can be seen in Figure 3.2, the generated saliency maps are similar

in both cases for images before and after processing.

Figure 3.2: The comparison results show the blurring effect does not change much
the saliency map. The transformed image (top-right) is achieved by applying the
Gaussian blur [41] on input image (top-left) with the pre-defined mask (top-mid),
and their corresponding predicted saliency maps are computed by [18] (bottom
row). Note that red values in saliency map represent higher saliency, while blue
values mean lower saliency.

3.3 Image Attention Retargeting

In this work, we propose a new computational framework which actively recolors

only the main subject to make it stand out, in both local and global sense. In this

way, the information of the complementary regions is well preserved. We utilize a

salient patch dataset that includes the recorded human fixation data. We compile

most existing eye fixation datasets. The used fixation datasets include Bruce’s

dataset [18], MIT [59], NUSEF [102] and FIFA [21]. Totally 2, 165 images with

630, 288 patches have been extracted. The patches in the salient patch dataset

are indexed as {1, 2, 3, ...}. Figure 3.3 illustrates our framework with an example,

and from the result, we may notice that the coherence of the recolored image is

maintained, e.g., the colors of the pair of gloves are consistent. The main superiority
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Figure 3.3: Exemplar illustration of image re-attentionizing framework. Note that
the human fixation map has been redirected to the target regions. For better
viewing, please see original color pdf file.

over related works is that we simultaneously consider image naturalness and the

attention retargeting within a unified framework. In the following subsections, we

introduce our MRF-based image re-attentionizing framework, including 1) how to

build the graph from the user input, 2) the detailed MRF framework, and 3) how

to perform the image recoloring.

3.3.1 Consistency Graph Construction

In order to maintain the naturalness, our framework considers the consistency in

terms of spatial and color coherence. As shown in Figure 3.3, two consistency

graphs, namely spatial consistency and color consistency graphs, are built from the

input image with pre-defined target regions. There are two types of nodes: the

modified nodes represent the patches in the target regions, and the fixed nodes

represent the patches in the complementary regions, which shall remain unchanged

after the re-color transformation.

� Spatial consistency graph G1 = (V1, E1) consists of the nodes V1, which rep-

resent patches from the target regions T (modified nodes) and their spatial
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neighbors F (fixed nodes). The edges in the graph G1 connect only the

neighboring nodes.

This graph is motivated by the fact that to achieve natural inter superpixel

appearance transition, superpixels that are transformed should be close to

each other, i.e., spatial smoothness.

� Color consistency graph G2 = (V2, E2) consists of the nodes V2, which rep-

resent only patches decomposed from the target regions T . Meanwhile, the

edge set E2 contains all the connections among the nodes in node set V2.

Intuitively, E2 is the subset of E1. Two nodes have a connection if their

original color information, i.e., color moments, is similar and the Euclidean

distance is smaller than a pre-defined threshold (25 in our implementation).

Note that color moment is a low-level color measurement and consists of the

first order (mean of color values) and the second order moments (variance of

color values) of the input image patch. After the image recoloring, two con-

nected patches should again maintain similar colors. This graph is driven by

the fact that originally color-coherent patches should still preserve the color

consistency in the transformed image, therefore the underlying structure of

the original image is not significantly changed.

In order to facilitate the problem formulation, we combine two consistency

graphs into one unified graph, G = (V,E). The set of nodes V includes the

patches decomposed from F and T . Modified nodes are from the user input while

fixed nodes are the spatial neighbors of the modified nodes. Meanwhile, the set

of edges E contains two types of edges: the spatial neighboring edges connect the

neighboring nodes, and the coherence edges connect the nodes having the similar

color information. Figure 3.4 shows a sample graph constructed from the over-

segmented image.

3.3.2 Problem Formulation for Image Re-Attentionizing

The target region(s) consist of n patches after image over-segmentation [6]. For a

patch indexed by i, f ti denotes the feature vector concatenating the sub-features
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Figure 3.4: The exemplar MRF graph built on the over-segmented image. For the
sake of clarity, only some edges are drawn. Please see original color pdf file for
better viewing.

including shape moment [43], texton histogram [110], patch height-to-width ratio

(height and width of the patch bounding box) and patch fixation ratio, where each

sub-feature is normalized to unit-norm. xi is the index of the solution patch (in

the aforedmentioned salient patch dataset) to recolor patch i (in the test image).

However, it is infeasible to consider all the patches in the salient patch dataset for

each patch in constructing MRF model. Therefore, we consider only k candidates

from the salient patch dataset which closely match the local patch in feature simi-

larity. The similarity between patch i in the test image and patch j in the dataset

is calculated as below.

d(f ti , f
d
j ) = ‖f ti − fdj ‖2, (3.1)

where fdj is the feature vector of the patch j in salient patch dataset, and ‖.‖2 is

the `2 norm. The dimensionality of feature f ti for each patch is listed as follows,

shape moment [43] - 9 dimensions, texton histogram [110] - 200 dimensions, and

patch height-to-width ratio and patch fixation ratio - 2 dimensions. We utilize this

combination since it covers both shape and texture. Note that the patch fixation

ratio in f tj is set as 1 in order to encourage the patch with higher saliency ratio

to be returned. We utilize kNN-GPU [38] which exploits the speedup of GPU and

returns the exact nearest neighbors. Denote the indices of kNN salient patches as

πi, then xi ∈ πi ∪ {0} = π̃i, where 0 means the patch remains unchanged. We

compute the color histogram H of the image regions except the target region for

the later usage.
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After constructing the unified graph G, our task is to find the label set x for

all nodes from all kNN of all the nodes, which minimizes the energy function E,

consisting of data energy term Ed (unitary potential) and smoothness energy term

Es (pairwise potential).

min
{xi∈π̃i}

{E(x) =
∑
i∈V

Ed(xi) + λ
∑
i

∑
j∈N(i)

Es(xi, xj)}, (3.2)

where N(i) denotes the set of spatial neighboring patches of the ith patch. Data

cost Ed indicates the cost of the selected patch xi in the whole image sense. λ, a

weight to balance the data term and smoothness term, is empirically set as 0.1.

When i is a fixed node,

∀i ∈ F, Ed(xi = 0) = 0, Ed(xi 6= 0) =∞, (3.3)

where F is the fixed node set as introduced above. Eqn. (3.3) means that the fixed

node will not be changed and the solution label is always 0. If i is not in the fixed

node set, Ed is calculated as below,

∀i /∈ F, Ed(xi = z) =


ϕ(xi=z)∑

k∈πi
ϕ(xi=k)

, z 6= 0,

∞ , z = 0,
(3.4)

where ϕ(xi = z) is defined as

ϕ(xi = z) =
1

l

l∑
m=1

Nl∑
p=1

Hpmδ(µzm, p), (3.5)

which measures the redundancy of candidate patch z. l is the number of color

channels and Nl is the number of color bins in channel l. µzm is the mean of

the mth color channel of the patch z and Hpm is the histogram value of bin p in

the mth color channel of the image regions except the target region(s). δ(a, b) is

the binary function, returning 1 if |a − b| < γ, and 0 otherwise; γ is set as 1

in our implementation. Note that Eqn. (3.4) captures the insight of Attneave’s

experiment: our eyes are drawn to things that are of the most importance to us,

or that will give us the most information [7]. Since the patch z is oversegmented,
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most pixels in patch z share the similar color. Therefore, the mean color is used to

represent the patch color. Should the histogram value of the color bin similar to

the patch mean color is large, the corresponding Ed(xi = z) is large accordingly.

In other words, z is not a good candidature patch. Equation 3.5 encourages the

patches to be different from the image regions which exclude the target regions.

Meanwhile, the smoothness energy Es is defined as

Es(xi, xj) = ψ(xi, xj)η(xi, xj). (3.6)

The term ψ(xi, xj) is defined as

ψ(xi, xj) =

−1 if j ∈ N(i) \R(i)

+1 if j ∈ R(i)
, (3.7)

whereR(i) is the set of neighboring patches connecting to patch i by color consistent

edge and η(xi, xj) is computed as

η(xi, xj) = ‖Cxi − Cxj‖2, (3.8)

where Cxi and Cxj are the color moment features of the possible solutions for patch

i and patch j, respectively. On the one hand, the objective of the smooth term

is to emphasize the dis-similarity between the patch and the neighborhood regions

in the local context. On the other hand, the smooth term aims to minimize the

dis-similarity between two neighboring nodes having a color coherence edge. In

other words, the proposed energy function makes the target region salient in both

global and local sense. Within the MRF framework, E(x) can be approximately

optimized by using graph cuts [15] [62] [14].

3.3.3 Image Recolorization

When transferring the color, we aim to maintain the color consistency. Hence, we

extract connected components in color consistency graph G2 instead of using G,
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and apply color transfer [104] for each connected component. Note that the new

color IT (c, r), applied for the pixel at column c and row r, is computed based on

the original color IO(c, r) as follows. The color was first converted from RGB to

lαβ color space [104]. The significant advantage in this space is that changes in

one color channel will have minimal influence to other channels. The new color

IT (c, r) is computed as follows.

IT (c, r) =
σt
σs

(IO(c, r)− µs) + µt, (3.9)

where σt, µt are standard deviation and mean color of the target components, re-

spectively. Note that the target components are the original patches. Meanwhile,

σs, µs are standard deviation and mean color of the source components, respec-

tively. The source components are from the patches obtained from the solution of

graph cuts method. The new color IT for the pixel (c, r) is updated based on the

current color IO, the deviation and the mean color of the original patch contain

that pixel, the deviation and the mean color of the solution patch. The intuition of

Eqn. (3.9) is to enforce two components to have the same color distribution in the

sense of mean and variance statistics, by subtracting the mean value of the target

component and scaling the color values based on the ratio of variances.

3.4 Experimental Results

3.4.1 Dataset Collection

As intelligent advertisement is one of the potential applications, for the evaluation,

we build up the AdSaliency Dataset 1 which includes the crawled advertisement-

related images of the top commercial brands [2]. For each brand, we download the

advertisement-related images based on the keywords “ad + brand name”. Then

we intentionally select the images containing multiple objects or humans. Totally

1The AdSaliency dataset along with the fixation data is available at:
https://sites.google.com/site/vantam/image_re_attentionizing
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31 images are used for the evaluation. All images are resized to 640 × 480 or 480

× 640 pixels, according to the aspect ratio of original images. In order to define

the target region(s) in the image, one user selects the corresponding patches. The

region(s) are randomly selected to avoid the center bias.

We evaluate the proposed approach in two perspectives: how it actually retar-

gets the human visual attentions and the naturalness of the resulting images.

3.4.2 Implementation Settings

In literature, the traditional graph cuts method utilizes the 4-neighbor grid graph

along with only one smooth cost matrix for the whole graph, which is not suitable

for our approach. That definition is not flexible, especially when we utilize the

superpixels. Therefore, instead of using the 4-neighbor grid graph, we employ

the general graph, which allows arbitrary neighbors for one node. We modified the

implementation of [25] by adding the edges between nodes. In addition, we add the

smooth cost matrix for every connection between two nodes in the graph. Again,

we change the smooth cost computation function pointing to the newly defined

smooth cost matrix.

Figure 3.5: The comparison of the results of our proposed method with different k
values. For better viewing, please see original color pdf file.

Meanwhile, k is set as 40 in our implementation for kNN search mentioned in

Section 3.3.2 as it is the maximum value for the modified graph cuts implementation

to run without memory overflow for our task. Figure 3.5 illustrates the comparison
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of the results of our proposed method with different k values. The results with

k = 1 reveal heavy color inconsistency as aforementioned. The results are different

with different k values. However, when k is large enough (k = 20 or k = 40 ), the

corresponding results are quite similar.

3.4.3 Attention Retargeting Evaluation

60 participants (students and staff members of a university) ranged from 21 to 36

years old (µ=26.9, σ=3.1), with normal or corrected-to-normal vision, volunteered

to participate in the experiments. All participants are naive to the purpose of

the study and have no prior exposure to experiments on vision. The participants

have been split into six groups. Each group performs free-viewing only one of six

following categories.

� Original images.

� Blurry effects: Gaussian blurring [41] is applied to the original image except

the target region(s).

� Monochrome effects: the original image is applied grayscale filtering [41]

except the target region(s).

Figure 3.6: Comparison results from different methods. Left to right: Original
image, transformed images using monochrome effects, blurring effects, 1 nearest
neighbor, Wong et al. method [133] and our approach. For better viewing, please
see original color pdf file.

27



Figure 3.7: (a) The setting of fixation collection with an eye-tracker, (b) Two
heatmaps: for the original image (left) and for the recolored image (right). Note
the redirection of human fixation.

� 1NN: the resulting image is obtained by color transfer based on the nearest

neighbor patch of each target patch.

� Wong et al. [133].

� Ours: the resulting image is obtained through our proposed framework.

Figure 3.6 shows transformed results from different methods. In order to record

participants’ eye gaze data, we use an infra-red based remote eye-tracker. The eye-

tracker gives less than 1o error on successful calibration. The eye tracker was

calibrated for each participant using a 9-point calibration and validation method.

Then images were presented in random order for 4 seconds followed by a gray

mask for 2 seconds. Similar to [123], in order to produce a fixation map of an

image, we convolve a Gaussian filter across all corresponding viewers’s fixation

locations, similar to the “landscape map” of [123]. Figure 3.7.a sketches the setting

of fixation collection and Figure 3.7.b illustrates the heatmaps, the images with

the embedded corresponding fixation maps, before and after applying Image Re-

Attentionizing. More resulting images with the corresponding heatmaps are shown

in Figure 3.8. Our experiments are carefully designed and conducted to evaluate

different algorithms. The evaluation on the average fixation maps shows how much

28



CHAPTER 3. IMAGE RE-ATTENTIONIZING

Figure 3.8: Some results with human fixation data. For each pair of rows: images
(top) and their corresponding heatmaps (bottom). For each row from left to right:
the original, blurring effect, monochrome effect, 1nn result, Wong et al. [133], and
our result. The target regions are highlighted as ellipses in the original images. For
better viewing, please see original color pdf file.
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the transformation methods really change the fixation center-bias existing in the

original images. In next subsections, we compute Hit Rate and then Cumulative

Score to show how much fixation is drawn on the target regions. In order to

compare the naturalness of the resulting images, we conduct the comprehensive

comparison user study, since automatically predicting the naturalness level of the

image is difficult. Moreover, it is worth noting that the problem explored in this

work is essentially novel, and its evaluation can only be based on human fixation

data.

3.4.4 Center Bias Evaluation

We compute the average fixation maps of original images, masks of target regions

and transformed images across various methods. Due to different sizes of testing

images, the average fixation maps have cross-like shape. As can be seen in Figure

3.9, the center bias remains strong in the average fixation map of original images

which agrees with the finding in [59]. The average map for target region mask

is not center-biased due to the intentional purpose of the user. Meanwhile, the

average fixation map of transformed images using monochrome effects still has a

center bias. It can be explained that the color of some target regions are close

to monochrome, which cannot be well distinguished after applying monochrome

effects. The center bias is not strong in the average fixation maps of transformed

images using remaining methods.

3.4.5 Attention Retargeting Quantitative Comparison

We utilize two measurements to evaluate the saliency retargeting performance: (1)

the Hit Rate (HR) and (2) the cumulative score (CS). For each input image I,

the corresponding human fixation map obtained by the eye tracker is denoted as

H. Given pre-defined mask is denoted as M , HR can be obtained:

HR =

∑
kHk ×Mk∑

kHk

, (3.10)

30



CHAPTER 3. IMAGE RE-ATTENTIONIZING

Figure 3.9: (a) The average pre-defined mask map and fixation maps of (b) the
original images and the transformed images across (c) monochrome effect, (d) blur
effect, (e) 1 nearest neighbor, (f) Wong et al. [133], and (g) our approach.

where Hk, in the interval of [0, 1], is the fixation value of point k in H, and Mk

is the corresponding binary value in M . This criterion indicates the proportion

of fixation data placed on the target region. We conduct another evaluation on

predicted saliency retargeting. Here we utilize Saliency by Induction Mechanisms

(SIM) [93], Region-based Contrast (RC) [24], and Frequency Tune (FT) [5] models,

which are the recent state-of-the-art saliency prediction models. Those predicted

saliency models are applied on the original images, the results of Wong et al. [133],

and the results of our method. Figure 3.10 illustrates the results of our method

and [133] and their corresponding heatmaps from saliency prediction results and

human fixation.

In terms of attention retargeting, Table 3.1 shows that the proposed framework

outperforms other methods. The HR of the original images is the lowest. HR

increases four times after applying our approach. Not surprisingly, HR values of

blurring effects is the second highest one. Meanwhile, 1NN is also a good method

to attract visual attention. The monochrome effect does not increase HR as much

as other methods. The reason is that the original color of some target regions
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Figure 3.10: The exemplar heatmaps of our results and Wong et al.[133] and their
corresponding saliency maps from state-of-the-art predicted saliency models (the
reddish pixels are salient, the blue ones are not). Please view in high 200% resolu-
tion.

is close to monochrome. Therefore, in order to evaluate the monochrome effects,

we divide the AdSaliency dataset into 2 groups: gray and non-gray target-region

groups. The target regions are considered as gray if the deviation of 3 channels of

the mean color of the target regions is smaller than the threshold θ. Here θ is set as

10. The corresponding ratio of gray/non-gray target-region groups is 10/22 in our

dataset. Then we compute HR on both groups. The HRs for gray and non-gray

target-region groups are 0.066 and 0.22, respectively. HRs of gray target-region

images are comparable to the ones of original images. Meanwhile, the higher HRs
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Table 3.1: HR values computed across different saliency prediction methods and
human fixation.

Method Original images Blurring effects Monochrome effects 1NN Wong et al.[133] Ours

SIM [93] 0.08 0.13 0.26 0.28 0.14 0.18
RC [24] 0.11 0.14 0.18 0.23 0.22 0.25
FT [5] 0.13 0.26 0.34 0.28 0.24 0.37
Human fixation 0.07 0.28 0.16 0.27 0.11 0.30

of non-gray target-region images show the monochrome effect is a good attention

retargeting method. Note that the HR of human fixation on [133] is even lower

than the ones obtained from Monochrome and Blurring effects as aforementioned.

In other words, Monochrome and Blurring effects have strong influence to human

visual attention.

Regarding saliency retargeting evaluation, we compute HR on different saliency

detection methods such as SIM, RC and FT. Table 3.1 also displays HR values com-

puted across different saliency prediction methods. HRs obtained on the original

images are still the lowest ones. Region-based saliency detection model like RC

achieves higher HR than the pixel-based saliency detection models such as SIM.

1NN yields the best result on SIM. This is because SIM model is sensitive to color

information, especially, color contrast [93]. Meanwhile, our method achieves the

best performance on FT and RC. In short, the results demonstrate that our pro-

posed method outperforms other methods in terms of visual saliency and in the

meantime both spatial and color coherence is well preserved.

The cumulative score is defined as CS(h) = NHR≥h / N × 100 %, where

NHR≥h is the number of testing images whose HR is not less than h, and N

is the number of all testing images. Figure 3.11 depicts the cumulative scores

from comparison methods. The CS curves of the original images and [133] drop

rapidly, while blurring effects and our approach yield the similar CS curves. It is

obvious and common sense that the resulting image from blurry method may lose

useful overall information. Though the user is forced to focus on the selected area,

she/he may (partially) lose the information in other areas, which is definitely not

the expectation of saliency retargeting task. Also the resulting image from blurry
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Figure 3.11: Comparison cumulative scores of different methods on AdSaliency
Dataset.

method may be unnatural, e.g., the target region of the third example in Figure

3.8 is the dressing of the second woman from the left, and the blurred face makes

the image unnatural as a whole. Therefore, we also take another important factor,

naturalness, into consideration, which is introduced in the following subsection.

3.4.6 Naturalness Evaluation

To evaluate the naturalness of the transformed images, we conduct a user study

by comparing our proposed method with three baseline methods: monochrome

transform, blurring and 1NN. All participants from the earlier saliency retargeting

evaluation joined this user study. The evaluators were requested to indicate their

satisfaction with respect to the following perspectives:

1. Smoothness: How do you think about the smoothness of color alteration?

2. Experience: How does the color alteration help you experience the image?

3. Acceptance: Do you think the altered colors are reasonable?

For each sample, the participant rates each method on a 5-point scale from

the best (5) to the worst (1). The image order is randomized. Figure 3.12 depicts

34



CHAPTER 3. IMAGE RE-ATTENTIONIZING

Figure 3.12: Results of naturalness evaluation on the AdSaliency Dataset. Our
proposed method yields the best performance while 1NN performs the worst.

the results of naturalness evaluation. Generally, our method outperforms others in

all aspects since it jointly optimizes the spatial and color coherence. Wong et al.

method [133] has the second highest scores. 1NN yields the lowest score due to the

heavy color inconsistency in the target region(s). We also observe that blurring

is not a good transformation in terms of naturalness. This is because viewers are

not willing to be forced to view specific regions, and instead they want to discover

the image themselves. Monochrome effects offer the second best solution, which

is usually used in advertisement to emphasize the target human(s) or object(s).

However, this method sacrifices the rich appearance information brought by color.

Overall, the comprehensive comparison results well demonstrate the effectiveness

of the proposed method in terms of average fixation maps, hit rate, cumulative

score and naturalness.

3.5 Discussion

In this chapter, we proposed a novel computational framework for image re-attentionizing

task. Our work is based on a premise that human eyes tend to look at the unique

area in the image in both global and local sense. The experiments demonstrated

that the recolored images successfully attracted human attention to the target re-

gion(s) and in the meantime both spatial coherence and color coherence are well

35



preserved. Although the proposed method yields a better experience, it still has

its limitations. The first is boundary artifact when selecting target regions from

patches. To overcome this issue, interactive methods can be applied to provide

better region selection [73], [91]. Another solution is to increase the number of

superpixels in the image to provide finer over-segmentation. Another issue is the

unnatural color for the objects which do not exist in the patch dataset. The remedy

for this is to increase the dataset size.
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Chapter 4

Depth Matters in Visual Saliency

In this chapter, we study the depth matters in visual saliency. We first introduce

the construction of the new dataset, NUS3D-Saliency, for this problem. We then

present some interesting observations. Finally, we propose using the depth priors

in order to enhance the performance of existing saliency prediction methods.

4.1 Introduction

Human visual exploration and selection of specific regions for detailed processing is

permitted by the visual attention mechanism [51]. The eyes remain nearly station-

ary during fixation events as humans look at details in selected locations, which

makes eye movements a valuable proxy to understand human attention. Visual

saliency refers to the preferential fixation on conspicuous or meaningful regions

in a scene [116] that have also been shown to correspond with important objects

and their relationships [102]. Visual saliency is thus crucial in determining human

visual experience and also relevant to many applications, such as automatic image

collection browsing and image cropping. Visual saliency has been extensively stud-

ied in signal processing, computer vision, machine learning, psychology and vision

research literatures (e.g., [9, 18, 51, 42, 119]). However, most saliency models dis-

regard the fact that human visual system operates in real 3D environments, while

these models only investigate the cues from 2D images and the eye fixation data are

captured in a 2D scene. However, stereoscopic contents provide additional depth
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cues that are used by humans in the understanding of their surrounding and play

an important role in visual attention [130]. Are the observer’s fixations different

when viewing 3D images compared to 2D images? How do the current state-of-

the-art saliency models perform with additional depth cues? Not only are these

questions interesting and important, answering them can also significantly benefit

areas in computer vision research, such as autonomous mobile systems, 3D content

surveillance and retrieval, advertising design, and adaptive image display on small

devices.

In this chapter, we conduct a comparative and systematic study of visual

saliency in 2D and 3D scenes. Whereas existing eye tracking datasets captured for

2D images contain hundreds of images, the largest available eye tracking dataset

for 3D scenes contains only a limited size of 28 stereo images [54]. A comprehen-

sive eye tracking dataset for 3D scenes is yet to be developed. Motivated by these

limitations, we collect a larger eye fixation dataset for 2D-vs-3D scenes. A 3D

camera with active infra-red illumination (Microsoft “Kinect”[3]) offers the capa-

3D Images

Dataset

Collection

2D Images

Eye Tracking Data

Collection

2D Eye Tracking

Kinect Camera

Depth Maps

ect Cam

3D Eye Trackingy

2D Fixation Data 3D Fixation Data

... ...

Figure 4.1: Flowchart on 2D-vs-3D fixation dataset construction. We collect eye-
tracking data on both 2D and 3D viewing settings and each 2D or 3D image was
viewed by at least 14 observers. Eye fixations are recorded for each observer. The
final fixation maps are generated by averaging locations across all the observers’
fixations.
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bility to easily extract scene depth information in order to extend 2D stimulus to

3D versions. Using an eye tracker, we collect eye fixation data to create human

fixation maps which represent where viewers actually look in 2D and 3D versions of

each scene. Our work further aims at quantitatively assessing the contribution of

depth cues in visual attention in 3D scenes and proposing depth priors to improve

the performances of state-of-the-art saliency detection models. In summary, the

contributions of our work mainly include:

1. An eye-fixation dataset is collected from a pool of 600 images and 80 partic-

ipants in both 2D and 3D scenes.

2. We analyze and quantify the difference between 2D and 3D eye fixation data.

Based on the observations, the novel depth priors are proposed and integrated

into saliency detection models.

3. We comprehensively evaluate the performances of state-of-the-art saliency

detection models augmented with proposed depth priors on 2D and 3D eye

fixation data.

4.2 Literature Review

In order to understand what human attend to and qualitatively evaluate compu-

tational models, eye tracking data are used to create the human fixation maps,

which will offer an excellent repository of ground truth for saliency model research.

Most eye tracking datasets [18, 59, 21, 102] are constructed for 2D scenes and most

saliency models only investigate the cues from 2D images or videos. In contrast,

relatively few studies have investigated visual attention modeling on 3D contents.

Recently, several researchers have pioneered visual attention research on stereo-

scopic 3D contents. Jansen et al. [54] examined the influence of disparity on human

behavior in visual inspection of 2D and 3D still images. They collected eye tracking

data from 14 participants across 28 stereo images in a free-viewing task on 2D and
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3D versions. A recent study [101] collected 21 video clips and the corresponding

eye gaze data in both versions. However, compared with 2D eye tracking datasets,

a comprehensive eye tracking dataset for 3D scenes is still absent. We believe that

the studies on a rich and comprehensive 3D eye tracking dataset can offer interest-

ing and important insights into how eye fixations are driven in real 3D environment.

Motivated by this requirement, we collect a large 3D image database in this work,

and then capture eye tracking data from an average of 14 participants per image

across both 2D and 3D versions of 600 images.

Depth cues provide additional important information about contents in the

visual field and can be regarded as relevant features for saliency detection [94].

Stereoscopic contents bring important additional binocular cues for enhancing hu-

man depth perception. Although there have been several efforts [52, 10, 34, 98] to

include the depth channel into computational attention models, a major problem

in extracting depth from stereo input is the computation time needed to process

disparities. In this chapter, we study the discrepancies in human fixation data

when viewing 2D and 3D scenes. The influence of depth on visual saliency is then

studied and serves as the basis for learning depth priors to model 3D saliency.

4.3 Dataset Collection and Analysis

4.3.1 Dataset Collection

Our dataset aims to provide a comprehensive and diverse coverage of visual scenes

for eye tracking analysis. We choose indoor and outdoor scenes that have natural

co-occurrence of common objects. Furthermore, we systematically generate vari-

ants of scenes by varying parameters like depth ranges of different objects, number

and size of objects and degree of interaction or activity depicted in the scene. We

use the Kinect camera, which consists of an infra-red projector-camera pair as the

depth camera that measures per pixel disparity, to capture a 640× 480 pixel color

image and its corresponding depth image at the same time. The dataset is named
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Figure 4.2: The relationship between 2D and 3D fixations. The fixation location
captured from participant viewing at B is the same for both 2D and 3D experiment
setups. Screen depth W is the distance from the participant to the screen, while
perceive depth P is calculated based on the depth value.

NUS3D-Saliency dataset1. To the best of our knowledge, this is the largest 3D eye

tracking dataset available to date for visual attention research, in terms of the total

number of images and size of subject pool.

Stereoscopic image pair generation for 3D display Following the collec-

tion of the color and depth image pair, the next step is to create 3D stimulus which

involves generating left and right images. Prior to generating left-right image pair,

some pre-processing on the captured images are required.

Depth alignment and correction We first perform calibration on both depth

and color cameras to find the transformation between their images in a similar

way as [4]. Next, we over-segment the color image into superpixels [6]. Each

1The NUS3D-Saliency dataset is available at:
https://sites.google.com/site/vantam/nus3d-saliency-dataset
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pixel, whose original depth value equal to 0, is assigned the average depth of the

nearest neighbors in 8 directions in the same superpixel. Finally, we apply a default

Laplacian filter with a 3 × 3 kernel for pixels whose depth values equal to 0 until

all missing depth pixels are filled.

Stereoscopic image generation The stereoscopic image pair is produced by

extracting parallax values from the smoothed depth map D and applying them

to the left image I l and right image Ir. For each pixel of the input color image

I, the value of the parallax is obtained from its depth value. Figure 4.2 shows

the relationship between 2D and 3D fixation. In both 2D and 3D viewing, for

example, the fixation location for viewing B is recorded as the same position by

the eye tracker. Considering the input image as a virtual central view, the left

and right views are then obtained by shifting the input image pixels by a value

ρ , ρ = parallax/2. In particular, the left image I l and right image Ir can be

obtained as I l(xlp) = Ir(xrp) = I(xp), where xp denotes the coordinate of the pixel

in the color image I, the coordinate of the pixel in each view is calculated as

Color Image Raw Depth Smoothed Depth 2D Fixation 3D Fixation

Figure 4.3: Exemplar data in our eye fixation dataset. From left to right columns:
color image and raw depth map captured by Kinect camera, smoothed depth map,
2D fixation map, and 3D fixation map.
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xlp = xp + ρ, xrp = xp − ρ. Following Figure 4.2, the parallax is calculated as

follows:

parallax = ζ × (1− V

W
), (4.1)

where ζ is the interaxial gap between two eyes, averaged as 60mm, V is the screen

depth or the distance from eyes to the screen and fixed as 80cm in our experiment

setup, W is the vertex depth, equal to the summation of screen depth V and

perceived depth P . For each pixel x in the image I, the perceived depth P (x) can

be calculated as P (x) = D(x) × τ , where τ (τ = 39.2) is the ratio between the

maximum depth distance captured by Kinect (10,000mm) and the maximum value

in the depth image D (255). Since our dataset aims to provide the comprehensive

and diverse coverage of visual scenes for eye tracking analysis, we reject images

that are similar or have significantly overlapping content with other images in the

dataset. Furthermore, images with significant artifacts after the smoothing process

were rejected as well in an effort to minimize problematic images.

Participants The participants (students and staff members of a university)

ranged from 20 to 33 years old (µ=24.3, σ=3.1), among them 26 females and 54

males with normal or corrected-to-normal vision. All participants are naive to the

purpose of the study and sign consent forms for public distribution of recorded

eye-fixation data.

Data collection procedure We use a block based design and free viewing

paradigm. The subject views two blocks of 100 images that are unique and ran-

domly chosen from the pool of 600 images, one of the blocks is entirely 2D and the

other one entirely 3D. 3D images were viewed by using active shutter glasses on a

3D LCD display and 2D images were shown on the same screen in 2D display mode

and the active shutter glasses switched off. In order to record subject eye gaze data,

we used an infra-red based remote eye-tracker from SensoMotoric Instruments. The

eye-tracker gives less than 1o error on successful calibration. The eye tracker was

calibrated for each participant using a 9-point calibration and validation method.

Then images were presented in random order for 6 seconds followed by a gray mask

for 3 seconds. We used a chin-and-forehead-rest to stabilize the participant’s head

position during each session.
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Human fixation maps Human fixation maps are constructed from the fixa-

tions of viewers for 2D and 3D images to globally represent the spatial distribution

of human fixations. Similar to [123], in order to produce a continuous fixation map

of an image, we convolve a Gaussian filter across all corresponding viewers’s fixa-

tion locations. Six examples of 2D and 3D fixation maps are shown in Figure 4.3,

the brighter pixels on the fixation maps denote the higher salience values.

4.3.2 Observations and Statistics

Using the recorded eye tracker data, we mainly investigate whether spatial distri-

butions of fixations are different when human subjects view 3D images compared

to 2D version. The interrelated observations are summarized as follows.

Observation 1: Depth cues modulate visual saliency to a greater extent at

farther depth ranges. Furthermore, humans fixate preferentially at closer depth

ranges.

In order to study the difference between 2D and 3D versions with respect to

different depth range, fixation data for each 2D image I and its corresponding 3D
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Figure 4.4: (a) The correlation coefficients between 2D and 3D fixations in different
depth ranges. We observe lower correlation coefficients for farther depth ranges.(b)
Saliency ratio in different depth ranges for 2D and 3D scenes respectively. The
participants fixate at closer depth ranges more often than farther depth ranges.
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Figure 4.5: We examine the ability of 2D/3D fixation map to predict the labeled
interesting objects and histogram of the AUC values for 2D and 3D fixation dataset
are comparatively shown is blue and red colors, respectively.

image I ′, are divided into n (n = 8) depth ranges. Then for each depth range

rb, b ∈ {1, · · · , n}, we compute the similarity between the 2D and 3D fixation

distributions. We use the correlation coefficients (CC)[99] as similarity measure

between two fixation maps. Figure 4.4(a) shows lower correlation coefficients for

farther depth ranges.

Furthermore, in order to create a quantitative statistic of the relationship be-

tween the fixation distributions and depth ranges, we define saliency ratio as the

description of fixation distribution. For the image I, we first compute saliency ra-

tio γ(rb) as a function of the depth range, γ(rb) =
∑

x S(x)δ(D(x) ∈ rb)/
∑

x S(x),

where δ(D(x) ∈ rb) is set to 1 if x is in the depth range rb. Figure 4.4(b) shows

the saliency ratio vs. the depth range for 2D and 3D fixation data respectively.

Looking at the data from the entire fixation dataset, the saliency ratio system-

atically decreases with the increase in depth range. From our analysis of fixation

distribution and 2D-vs-3D correlation statistics over the entire dataset, we observe,

(a) the larger discrepancy between 2D and 3D fixation data at further depth planes

and, (b) the greater attenuation of visual attention at farther depth planes.

Observation 2: A few interesting objects account for majority of the fixations

and this behavior is consistent across both 2D and 3D.

Such interesting objects such as human faces, body parts, text, cars and other
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conspicuous objects are discussed in [59]. Other studies such as [89] have shown

that the eye fixations are correlated to the locations of such objects. In order to

analyze this relationship, we follow the method in [59] by manually labeling objects

of interest. To form more object-like contours, annotation of such regions is done

by over-segmentation using superpixels [6] for each color image in our dataset.

Despite occupying only 7.6% of the image area on average, the area corresponding

to interesting objects account for 54.2% and 51.2% of the fixation points for 3D

and 2D respectively. To quantitatively measure how well a 2D/3D fixation map

predicts interesting objects on a given 2D/3D image, we compute the AUC value

[42], the area under receiver operating characteristic (ROC) curve for each image.

We use the labeled objects of interest as ground truth along with the fixation map

as the predicted map of the image, this method effectively marginalizes out the

influence of depth planes and helps to understand the role of objects in isolation.

Figure 4.5 shows the distribution of the AUC value for 600 labeled images. The

average AUC for the entire 3D fixation dataset is 0.7399 and 0.7046 for 2D fixation

dataset. Figure 4.6 gives examples of interesting objects along with corresponding

fixation maps. These results suggest that the 2D and 3D fixation points show good

correspondence with a few interesting objects.

Original

images
Interesting

objects

2D Fixation

maps
3D Fixation

maps

Figure 4.6: Exemplar interesting objects manually labeled and fixation maps for
2D and 3D images. It indicates that the participants frequently fixed on such areas.
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Low Depth-of-Field High Depth-of-Field

Figure 4.7: Examples with low and high depth-of-field values.

Observation 3: The relationship between depth and saliency is non-linear

and characteristic for low and high depth-of-field scenes.

Importantly, we observe that strong correlation exists between the depth-of-

field (DOF) of the image and the fixation distribution. The DOF value ` of the

image I is inferred from the distance between farthest and nearest depth values.

In this experiment, we assign depth values into n (n = 21) depth ranges. The ` is

defined as ` = |hs−ht| , where hs and ht denotes the mean of the depth value for the

pixels in the nearest and farthest depth ranges. Figure 4.7 shows some examples

corresponding to the different DOF values. To demonstrate the influence of DOF,

we analyze the saliency ratio defined in Observation 1 on two subsets of 200 images

each selected from our dataset, one low-DOF subset and one high-DOF subset.The

low DOF and high DOF partitions have a significant overlap of object types and

this effectively marginalizes out the influence of objects. Similar to the statistic

described in Observation 2, we create the statistic of the relationship between

saliency ratio γ and the depth range for these two image subsets respectively.

As shown in Figure 4.8, the saliency ratio distribution on different depth ranges

have noticeable discrepancies between low DOF and high DOF images, as well as

the distribution is non-linear. We find that 2D(3D) low DOF and corresponding

2D(3D) high DOF saliency ratio distributions in Figure 4.8 are dissimilar at p =

0.05 using a non parametric Kolmogorov-Smirnov test, on the other hand, saliency

ratio distribution for 2D low(high) DOF shows similarity to 3D low(high) DOF

at p = 0.05. Motivated by this observation, we use the Gaussian Mixture Models

(GMM) to model the distribution and the further implementation will be described

in the next section.
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Figure 4.8: Saliency ratio as a function of depth range. The saliency ratio distribu-
tion for 200 lowest depth-of-field images and for 200 highest depth-of-field images
calculated on (a) 3D and (b) 2D fixation dataset respectively. The plot indicates
that depth-of-field has influence on the allocation of attention in both 2D and 3D
images.

Table 4.1: The CC (correlation coefficient) comparison of fixation distribution on
the 2D and 3D fixation data.

DOF 0-0.25 0.25-0.5 0.5-0.75 0.75-1 Avg.
CC 0.8066 0.5495 0.2721 0.3057 0.4835

Observation 4: The additional depth information led to an increased differ-

ence of fixation distribution between 2D and 3D version, especially, when there are

multiple salient stimuli located in different depth planes.

In order to study the difference between 2D and 3D versions, we divide the

image dataset into four groups according the DOF values and compute the corre-

lation coefficients between two fixation maps for the four groups respectively. And

Table 4.1 shows lower correlation coefficients for high DOF image groups. Fig-

ure 4.9 shows the fixation maps from the lower and higher depth-of-field images in

2D and 3D versions respectively.
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(a) Low DOF

Images

2D Fixation

Maps

3D Fixation

Maps

(a) High DOF

Images

2D Fixation

Maps

3D Fixation

Maps

Figure 4.9: Fixation maps and fixation distributions for 2D and 3D images.The re-
sults indicate a clear difference between 2D and 3D fixation maps with the increased
Depth-of-field of the images.

4.4 Saliency Detection with Depth Priors

Based upon the above observations, we seek the global-context depth priors in

order to improve the performance of the state-of-the-art saliency detection models.

In this section, we propose to model the relationship between depth and saliency

by approximating the joint density with a Mixture of Gaussians. Note that we

focus on bottom-up depth priors due to the difficulty in reliably detecting objects

of interest in a scene.

4.4.1 Learning Depth Priors

Formally, let D and S represent the depth image and fixation map of the image I,

respectively. And d and s denote N -dimensional vector formed by orderly concate-

nating the patches from a regular partition of the image D and S respectively, N
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is the number of patches in the image. For the vector s, larger (smaller) magnitude

implies that the patch is more salient (less salient). ` is the depth-of-field value

introduced in the Section 4.3.2. The joint density between saliency response and

depth distribution is written as

p(s, d|`) =
K∑
k=1

p(k)p(s|`, k)p(d|`, k), (4.2)

where k indicates the kth component of the GMM. From the joint distribution we

calculate the conditional density required for the depth modulated saliency:

p(s|d, `) =
p(s, d|`)∑K

k=1 p(k)p(d|`, k)
(4.3)

∝
C∑
c=1

qc(`)
K∑
k=1

πkN (s;µck,Λ
c
k)N (d; νck,Υ

c
k),

where qc(·) is a quantization function for the depth-of-field. We compute a C-

bins histogram of depth-of-field on the whole dataset. If ` falls into the cth bin,

qc(`) = 1, otherwise, qc(`) = 0. Finally, the conditional expected saliency of the

test image It, with the depth vector dt and depth-of-field `t, is the weighted sum

of K linear regressors:

st =
C∑
c=1

qc(`t)

∑K
k=1 µ

c
k ∗ wck∑K

k=1w
c
k

, (4.4)

wck = πkN (dt; ν
c
k,Υ

c
k).

The parameters of the model are obtained from the training dataset and the EM

algorithm is applied for fitting Gaussian mixtures. For the image It, its correspond-

ing depth saliency map can be defined as the predicted saliency st. Note that st

has a non-linear dependency with respect to the image depth distribution dt.
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(a) 2D fixation data (b) 3D fixation data

Figure 4.10: ROC curves of different models. The results are from seven bottom-up
saliency detection models to predict on the 2D and 3D fixation data individually.

4.4.2 Saliency Detection Augmented with Depth Priors

In order to investigate whether the depth priors are helpful for determining saliency,

we extend seven existing methods to include the learned depth priors: Itti model

(IT) [51], graph based visual saliency (GBVS) [42], frequency-tuned model (FT)

[5], self-information (AIM) [18], incremental coding length (ICL) [46], local steering

kernel (LSK) [109] and low-rank representation based model (LRR) [64]. The

bottom-up saliency value predicted by the original models is denoted as ψ(x).

Note that we did not further report how to more elegantly integrate depth priors

into the models themselves, and only do simple late fusion in this work. We will

explore the methods along this direction in our further work. The final saliency

can be achieved by simply using summation ⊕ or point-wise multiplication ⊗ as

the fusion of two components. The final saliency is described by the equation:

S(x) = ψ(x)(⊕/⊗)p(s(x)|d(x), `). (4.5)

4.5 Experiments and Results

In this section, we evaluate the saliency detection performance of the state-of-the-

art models on our 2D and 3D fixation dataset. Furthermore, we quantitatively

assess the effectiveness of the depth priors improving the performances of saliency

prediction algorithms.
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Table 4.2: The AUC and CC (correlation coefficient) comparison of different
saliency models on the 2D and 3D eye fixation dataset.

Criteria AUC CC

Method 2D Fix. 3D Fix. 2D Fix. 3D Fix.

IT 0.7270 0.7299 0.2706 0.2594
GBVS 0.7486 0.7506 0.2986 0.2844

FT 0.5707 0.5726 0.1402 0.1388
ICL 0.7676 0.7673 0.3095 0.2759
AIM 0.7293 0.7308 0.2868 0.2531
LSK 0.7142 0.7158 0.2658 0.2425
LRR 0.8045 0.7971 0.3155 0.2975

2D Fix. 0.7982 0.3797
3D Fix. 0.8156 0.3797

All saliency models use default parameter settings given by the corresponding

authors. In order to learn depth priors, each image is resized to 200 × 200 pixels

and regularly partitioned into 15 × 15 patches for training Gaussian models. The

entire dataset is divided into four groups (C = 4) according to the depth-of-field

value of each image. Depth saliency prediction is satisfactory with K = 5 as the

number of the Gaussian components. For each image group, we randomly separate

into 5 subsets, 4 subsets as the training set to learn the parameters of GMM and

the remaining subset for testing. All the selected models are evaluated based on the

following widely-used ROC and AUC. We also compute the correlation coefficients

(CC) [99] between the fixation map and the predicted saliency map for evaluation.

4.5.1 Comparison of State-of-the-art Models

In this study, we examine the capability of seven bottom-up visual attention models

to predict both the 2D and 3D fixation data in a free-viewing task. Figure 4.10

and Table 4.2 show the comparison results. First of all, most of models performed

well for predicting human fixation when viewing 2D scenes. LRR exhibits stronger

consistence with human eye fixations than the other models. We also evaluate

the performance on 2D(3D) fixation maps to predict the 3D(2D) fixation maps.

Interestingly, the AUC for the 2D fixation maps to predict 3D version is equal to

52



CHAPTER 4. DEPTH MATTERS IN VISUAL SALIENCY

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

 

 

IT
GBVS
FT
ICL
AIM
LSK
LRR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FALSE POSITIVE RATE

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

 

 

IT
GBVS
FT
ICL
AIM
LSK
LRR

(a) 2D fixation dataset (b) 3D fixation dataset

Figure 4.11: ROC curves of different models. The results are from seven bottom-
up saliency detection models by integrating depth priors to predict 2D and 3D
fixation individually.

0.7982. On the contrary, the AUC of 0.8156 is obtained using 3D fixation maps to

predict 2D fixation maps.

In contrast to 2D scenes, 3D scenes contain the additional information re-

garding the depth cue. This additional information could change the saliency of

regions that are present in both 2D and 3D images. Here we show that the overall

saliency is comparable in 2D and 3D scenes in terms of AUC. Thus, the bottom-up

saliency models should also predict a fraction of the allocation of attention in 3D

scenes. However, all models conducted on 2D scenes perform significantly better

than 3D versions in terms of correlation coefficients. It further suggests that in a

3D attention model, depth could be considered as the important cue for saliency

detection.

4.5.2 Depth Priors for Augmented Saliency Prediction

In this subsection, we assess the influence of the depth priors on saliency detection.

To evaluate quantitatively the effectiveness of the proposed depth priors, the results

of saliency models integrating depth priors are shown in Table 4.3. The ROC

curves are illustrated in Figure 4.11. These results show that the models with

predicted depth priors perform consistently better than those without such depth

priors. Overall we observe a 6% to 7% increase in predictive power using depth

based cues. Another important aspect brought out in Table 2 a multiplicative
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Table 4.3: The AUC and CC (correlation coefficient) comparison of different
saliency models with the depth priors on the 2D and 3D eye fixation dataset.

Criteria Method 2D Fix. 2D Fix. 3D Fix. 3D Fix.

⊕ ⊗ ⊕ ⊗
AUC IT 0.8521 0.8536 0.8490 0.8539

GBVS 0.8541 0.8562 0.8509 0.8546
FT 0.7995 0.7458 0.7971 0.7449

AIM 0.8502 0.8517 0.8495 0.8503
ICL 0.8406 0.8088 0.8455 0.8077
LSK 0.8496 0.8233 0.8453 0.8237
LRR 0.8511 0.8495 0.8556 0.8463

CC IT 0.4000 0.4202 0.3752 0.3977
GBVS 0.4128 0.4346 0.3903 0.4128

FT 0.3355 0.2804 0.3148 0.2680
AIM 0.3651 0.4180 0.3419 0.3913
ICL 0.4126 0.3704 0.3850 0.3248
LSK 0.4064 0.3764 0.3793 0.3511
LRR 0.4065 0.4085 0.3847 0.3953

modulating effect explains the influence of depth on saliency better than a linear

weighted summation model, the latter has been used popularly in literature to

combine results saliency maps derived from individual features [49].

(a) Original images

(b) Depth saliency maps learned from 2D fixation dataset

(c)Depth saliency maps learned from 3D fixation dataset

Figure 4.12: Representative examples in depth saliency prediction on 2D and 3D
scenes respectively. The predicted depth saliency maps are similar between 2D and
3D versions due to the scenes with one conspicuous area/object clearly standing
out from the others.
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(a) Original images

(b) Depth saliency maps learned from 2D fixation dataset

(c) Depth saliency maps learned from 3D fixation dataset

Figure 4.13: Representative examples in depth saliency prediction for 2D and 3D
scenes respectively. The results show an obvious difference of the predicted depth
saliency maps between 2D and 3D versions when multiply attractive objects or no
conspicuous stimuli in the scenes.

Furthermore, Figure 4.12 and Figure 4.13 give some of the predicted saliency

maps using depth priors alone (denoted as depth saliency map). As shown in Figure

4.12, the predicted depth saliency maps are similar in their spatial distribution

between 2D and 3D versions when there is one conspicuous area or object clearly

standing out from the others. On the other hand, when the scenes include multiple

objects or no conspicuous objects, there is a noticeable difference between the

predicted depth saliency maps of 2D and 3D cases.
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Chapter 5

Static Saliency vs. Dynamic

Saliency

In this chapter, we introduce the comparative study between the static saliency and

dynamic saliency. Based on the observations on CMAO and Hollywood datasets,

we propose a new computational model for video saliency prediction. We also

utilize the video saliency into dynamic video captioning.

5.1 Introduction

The process of visual saliency has been the subject of numerous studies in psy-

chology, neuroscience, computer vision and multimedia fields. Correspondingly,

several computational models of saliency have been proposed in recent years [117,

42, 93, 139]. And many applications of automatic saliency detection have also been

proposed such as image re-sizing [8], image automatic collage creation [126] and

advertisement design [87]. Recently, other matters related to human attention such

as depth information or attractiveness have also been explored [65, 95].

Although visual saliency has attracted the attention of researchers in the com-

puter vision and multimedia fields for quite a long time, most of the visual saliency-

related research works are conducted on still images. Video saliency receives much

less research attention, though it is becoming more and more important along with
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Figure 5.1: The comparative study of Static Saliency vs. Dynamic Saliency. We
collect eye-tracking data on both static and dynamic viewing settings viewed by
at least 10 observers. The CMASS framework is proposed to improve dynamic
saliency detection.

the rapidly increasing demand of intelligent video processing. Moreover, in the

existing works of video saliency [71, 11, 137], camera motions such as tilting, pan-

ning or zooming are disregarded during the saliency estimation. However, these

camera motions ubiquitously exist in videos and may have great impacts on the

saliency distribution, as experimentally validated in this work. Motivated by these

two considerations, in this work, we conduct comprehensive comparison between

the static saliency in still images and dynamic saliency in videos. Inspired by the

observations in the comparison, we propose to utilize the static saliency as a prior

information to improve the performance of dynamic saliency estimation in videos.
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And we also investigate the role of camera motions in video saliency and integrate

the estimated camera motion information into the saliency estimation procedure.

Extensive experiments on two challenging benchmark datasets clearly show that

our proposed saliency detection method outperforms the state-of-the-arts. Apart

of proposing a novel method for saliency estimation, we introduce an interesting

application of video saliency detection, i.e., adaptive video subtitle insertion for

assisting the patient with hearing impairment.

To facilitate the comparative study of static saliency vs. dynamic saliency,

we first collect two video datasets for dynamic saliency estimation, namely the

Hollywood and the Camera Motion (CAMO). Each of the two datasets contains

the videos with camera motions. Then, volunteers are invited to participate the

eye fixation map collection for these videos. Afterwards, the raw fixation data

are converted to human fixation maps, which are considered as the groundtruth

for saliency estimation. As aforementioned, in this work, we consider both the

prior information from static saliency and camera motions in the video saliency.

And we present a novel learning framework, called Camera Motion And Static

Saliency (CMASS), to integrate the valuable information into the video saliency

estimation. In particular, we train two neural networks which takes the camera

motion parameters and position as inputs and outputs the optimal weights for

the static saliency map and dynamic saliency map. In this way, the two available

saliency maps can be adaptively fused to produce an improved dynamic saliency

map estimation.

The proposed framework is shown in Figure 5.1, which includes the static and

dynamic saliency detection for the same video and the fusion of the two detected

saliency maps. The major contributions of this work can be summarized as follows,

1. To the best of our knowledge, we comprehensively conduct the first compar-

ative study on the static saliency vs. dynamic saliency detection.

2. This is the first work to investigate the effects of camera motions in the

dynamic saliency detection.
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3. Inspired by the observed relationship between static and dynamic saliency,

we propose a novel learning framework, i.e., the CMASS method, for auto-

matically fusing these two kinds of saliency maps to improve the performance

of dynamic saliency detection.

4. We introduce a new and useful application for the dynamic saliency detection,

namely adaptive video subtitle insertion for assisting people with hearing

impairment.

5.2 Related Work

5.2.1 Learning to Predict Saliency

Through preliminary studies [19, 115], at early stages of free viewing, mainly

bottom-up factors attract human attention (e.g., color, intensity, or orientation)

and later on, top-down factors (e.g., humans, objects and interactions) guide eye

movements. Some top-down factors in free-viewing are related to semantic fac-

tors. Elazary et al. suggested that interesting objects (annotations from LabelMe

dataset [105]) direct human attention [32]. Einhauser et al. observed that objects

are better predictors of fixations than bottom-up saliency [31]. Cerf et al. discov-

ered that the meaningful objects such as faces and text attract human attention

[21]. Judd et al., further showed that humans, faces, cars, text, and animals attract

human gaze [59]. These interesting objects convey more information in a scene.

During collecting NUSEF eye fixation dataset [102], Subramanian et al. found that

fixations are focused on emotional and action stimuli.

Therefore, combining bottom-up and top-down factors may boost the existing

models in order to better predict where human looks [60, 59, 100, 141]. The basic

idea is that a weighted combination of features, where weights are learned from

a large repository of eye movements over natural images, can enhance saliency

detection compared with unadjusted combination of feature maps. [60], [59] and
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[100] used image patches, a vector of several features at each pixel, and scene gist,

respectively for learning saliency. Zhao et al. learned optimal weights for saliency

channel combination separately for each eye-tracking dataset [141].

5.2.2 Saliency Prediction Models for Static and Dynamic

Scenes

Visual attention analysis in static scenes has been long studied, while there is not

much work on the dynamic scenes. In reality, we absorb the rich visual information

that constantly changes due to dynamics of the world. Due to the large amount

of information, visual selection is performed on both current scene saliency as

well as the accumulated knowledge from chronological events. In the early works,

few researchers have extended the spatial attention from static images to video

sequences where motion plays an important role. Cheng et al. has incorporated

the motion information in the attention model [25]. The motion attention model

analyzes the magnitudes of image pixel motion in horizontal and vertical directions.

Bioman et al. proposed a spatiotemporal irregularity detection in videos [11]. In

this work, instead of reading motion features, textures of 2D and 3D video patches

are compared with the training database to detect the abnormal actions present

in the video. Le Meur et al. proposed a spatiotemporal model for visual attention

detection [90]. Affine parameters were analyzed to produce the motion saliency

map.

Recently, several researchers have studied modeling temporal effects on bottom-

up saliency. Some methods fuse static and dynamic saliency maps to produce the

final visual saliency maps (e.g., Li et al. [71] and Marat et al.[81]). A spatio-

temporal attention modeling approach for videos is presented by combining motion

contrast derived from the homography between two images and spatial contrast

calculated from color histograms. Zhai et al. introduced a dynamic fusion technique

is applied to combine the temporal and spatial models in order to achieve the

spatiotemporal attention model [137]. The dynamic weights of the two individual

models are controlled by the pseudo-variance of the temporal saliency values.
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5.3 Fixation data collection

5.3.1 Data Collection

There are many datasets of still images (for studying static saliency) and videos

(for studying dynamic saliency) [21, 59, 102]. However, none of the datasets can

be used for studying the saliency for still images and videos simultaneously. Thus,

in this work, we first construct two new datasets in order for studying these two

kinds of saliency maps together.

Dataset Construction

To study the effects of camera motion in video saliency, we collect a new dataset

named CAMO (Camera Motion) which consists of 120 videos of 6 different fun-

damental camera motions in cinematography: dolly, zoom, trucking, tilt, pan, and

pedestal motions. Each video contains one single camera motion. Similar to the

Hollywood dataset, we also randomly select one frame from each video for static

saliency map collection. The information of each camera motions is listed as below.

� Tilting : the camera is stationary and rotates in a vertical plane.

� Panning : the camera is stationary and rotates in a horizontal plane.

� Dolly : the camera is mounted to the dolly and the camera operator and focus

puller or camera assistant, usually ride on the dolly to operate the camera.

� Trucking : roughly synonymous with the dolly shot, but often defined more

specifically as movement which stays a constant distance from the action,

especially side-to-side movement.

� Pedestal : moving the camera position vertically with respect to the subject.
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Figure 5.2: The fundamental camera motions in cinematography. Six basic types
of motions are shown.

� Zooming : Technically this is not a camera move, but a change in the lens

focal length with gives the illusion of moving the camera closer or further

away.

Figure 5.2 illustrates six aforementioned camera motions. In the real world,

many camera moves use a combination of these above mentioned techniques simul-

taneously. Therefore, we also collect another dataset named Hollywood. We select

500 random videos from Hollywood 2 dataset [82]. Hollywood 2 dataset consists

of videos with natural human actions in diverse and realistic video settings. There

exists one dataset collecting eye fixation on movies [84]. Therefore, we only collect

fixation data on static images of that dataset. For each video, we extract one ran-

dom frame which is not the shot boundary and stay close to the center frame of

the video. The reason we select Hollywood 2 is that it contains realistic movies.

Human fixation data collection design

We invite 30 participants (students and staff members of a university), whose age

ranged from 21 to 36 years old (µ = 26.9, σ = 3.1), with normal or corrected-to-

normal vision, to participate in the fixation map collection. All participants are
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Figure 5.3: The exemplar images and their corresponding saliency maps and heat
maps in CAMO and Hollywood datasets.

naive to the purpose of this study and have no prior exposure to experiments on

vision. The participants have been split equally into three groups. Each group

view only one of three following categories freely: Hollywood static images, CAMO

static images and CAMO videos.

We use a block based design and free viewing paradigm. The subject views

one of four designed blocks. In order to record subject eye gaze data, we used

an infra-red based remote eye-tracker from SensoMotoric Instruments Gmbh. The

eye-tracker gives less than 1o error on successful calibration. The eye tracker was

calibrated for each participant using a 9-point calibration and validation method.

Then images were presented in random order for 6 seconds followed by a gray mask

for 3 seconds.

64



CHAPTER 5. STATIC SALIENCY VS. DYNAMIC SALIENCY

Human fixation maps are constructed from the fixations of viewers to globally

represent the spatial distribution of human fixations. Similar to [123], in order to

produce a continuous fixation map of an image, we convolve a Gaussian filter across

all corresponding viewers’s fixation locations. Some examples of fixation maps of

two new constructed datasets are shown in Figure 5.3, the brighter pixels on the

fixation maps denote the higher salience values. These two datasets, CAMO and

Hollywood are available at: https://sites.google.com/site/vantam/camo.

5.4 Observations

5.4.1 Camera Motion Effects

Using the recorded eye tracker data, we mainly investigate whether spatial distribu-

tions of fixations are different in static and dynamic settings. The key observations

are summarized as follows.

1. The fixations of each video form a subset of the ones of the corresponding

image if there is only single person or object. There are many explanations of

this observation, such as, camera motion strongly narrows one’s attention to

certain parts of the scene, the viewer does not have enough time to examine

all the details in the a moving scene, and also the accumulative knowledge of

the previous scenes. Due to the temporal limitation in movie watching, the

number of dynamic fixations is less than those of static fixations. This obser-

vation presents a close relationship between the static and dynamic saliency

maps. We can use the static saliency map as a good prior to guide the

dynamic saliency map estimation.

2. In some cases, for example, pedestal camera movement, the fixation lies on

the anticipated direction, not on the objects. This observation shows the

effect of camera motion on the dynamic saliency.
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3. In the case that there are multiple persons or objects in the video, the fixations

of the videos are not same as images. In other words, the fixations on videos

and images focus on different people or objects.

Figure 5.4: The observations of fixation data on the images (top row) and videos
(bottom row). Note the difference of human fixations from column (c) to (f).

Some examples of the camera motion effects mentioned in Observation 2 are

shown in Figure 5.4. The details of discrepancies of each camera motions are

summarized as follows.

� Pan: The fixations may be either on the object of interest (e.g., face of a

walking person) or in the anticipated direction of the motion.

� Pedestal : The subject often tends to fixate on the anticipated direction of

motion.

� Tilt : In case of a tilt shot, the subject also tends to fixate on the anticipated

direction of motion.

� Trucking : Fixations in video are either a subset of the fixations in static

images or they are in the anticipated direction of motion.

� Dolly shot : In the dolly shot, the cameraman is “moving closer” to the center

or the object of focus. Therefore, the anticipated direction of motion can be

considered to be the center or object of motion. While, the subject does

fixate on the object of interest, it is not like the dolly shot which causes
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the subject to fixate more/less on the object of interest. Thus, in case of

dolly, the movement of the camera does not cause the subject to fixate on

the anticipated direction of motion as “Pan”, “Pedestal”, or “Tilt”.

� Zoom: We notice that the fixations are either on the object of interest or the

peripheral motion of the camera.

5.4.2 Central Bias Investigation

We compute the average fixation maps to investigate the central bias of the fixation

maps. Due to different sizes of testing images, the average fixation maps have

cross-like shape. As can be seen in Figure 5.5, the center bias remains strong in

the average fixation map of original images in the static part of both datasets. This

agrees with the finding in [59]. The average map for video part of CAMO dataset

is not center-biased due to the strong effects of the camera motions. Meanwhile,

the average fixation map of Hollywood video is not so strong as the static version.

In summary, the central bias is not significantly observed in video fixation.

Figure 5.5: The average fixation static and dynamic maps from the two datasets.
Warmer color indicates stronger fixation.
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5.5 The proposed framework

In this section, we first explain the feature extraction applied on the given image

or a certain frame in the video, followed by a novel framework which learns the

mapping between image saliency and video saliency simultaneously.

5.5.1 Features

Static Features

To well describe the content of the images, we extract multiple static features

and combine them together. The extracted features together describe both low-

level appearance and high-level semantics. In particular, we use following low-

level features: 13 local energy of the steerable pyramid filters in 4 orientations

and 3 scales; 3 intensity, orientation, and color contrast channels (Red/Green and

Blue/Yellow) as calculated by Itti and Koch’s saliency method; 3 values of the red,

green, and blue color channels as well as 3 features corresponding to probabilities

of each of these color channels; 5 probabilities of above color channels as computed

from 3D color histograms of the image filtered with a median filter at 6 different

scales; 4 saliency maps of Torralba, SIM, SUN, and GBVS bottom-up saliency

models. And we extract following high-level features: the horizontal line due to

tendency of photographers to frame images and objects horizontally; person and

car detectors implemented by Felzenszwalb’s Deformable Part Model (DPM); face

detector using the Viola and Jone’s code.

Dynamic Features

In the temporal attention detection, saliency maps are often constructed by com-

puting the motion contrast between image pixels. In this work, we generate dense

saliency maps based on pixel-wise computations, mostly dense optical flow fields.
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Here, we first resize each image/video frame to 200 × 200 pixels and then extract

a set of features as aforementioned for every pixel.

5.5.2 CMASS for Dynamic Saliency Detection

Learning to Predict Image/ Video Saliency

In this subsection, we provide a simple linear regression based saliency estimation

method. In the training phase, each training sample contains features at one pixel

along with a +1 (salient) or −1 (non-salient) label. Positive samples are taken from

the top p percent salient pixels of the human fixation map (smoothed by convolving

with a Gaussian filter with window size σ = 0.1) and negative samples are taken

from the bottom q percent. We chose samples from the top 20% and bottom 40% in

order to have samples that were strongly positive and strongly negative. Training

feature vectors are normalized to have zero mean and unit standard deviation.

Assuming a linear relationship between feature vector f and saliency map s, we

solve the following optimization problem to obtain the linear model W :

min ‖FW − S‖2 + λ‖W‖2,

where F and S are matrices by column-wisely stacking the vectors f and s of the

training data. W is obtained in a closed-form manner, W = (F TF + λI)−1F TS.

For a testing image, features are first extracted and then the learned mapping was

applied to generate a vector which is later resized to a 200× 200 saliency map.

CMASS Video Saliency Prediction

Inspired by the observations given in Section 5.4, we propose a novel learning-

based method, i.e., Camera Motion And Static Saliency (CMASS), to improve

the performance of dynamic saliency prediction by utilizing the information from

camera motion and static saliency results. Each frame in the videos is divided
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Figure 5.6: The learning framework. The upper panel shows the learning process,
including the neural network parameters learning. The bottom panel shows the
testing phase.

regularly into patches with the size of 9 × 9 pixels. For the jth patch in the

training samples, let pji denote the saliency map vector obtained from the image

and pjv denote the saliency map vector from the video. The groundtruth saliency

map for the jth patch is denoted as pj. The camera motion parameter is denoted

as CM j. The position of the patch in the image is denoted as (xj, yj). According

to the Observation 1, the generated saliency map is a weighted combination of

the static and dynamic saliency maps. According to the Observation 2, camera
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motion has great impact on the saliency map. For different patches, the camera

motion and spatial position of the patches are different. Thus, the weights for their

two kinds of saliency maps should be different. Based on these two considerations,

in CMASS, we construct two neural networks to weight the static saliency map

and dynamic saliency map in the final saliency estimation, respectively. The input

to the neural network is the camera motion parameters and the position of the

patches, and the output is the weight for the saliency map. The function of the

neural networks are denoted as φi(CM
j, xj, yj) and φv(CM

j, xj, yj). And they are

learned by minimizing the following loss function,

L(φi, φv) =
∑
j

‖φi(CM j, xj, yj)pji + φv(CM
j, xj, yj)pjv − pj‖2

2.

After learning the functions of the neural network φi and φv, we can directly obtain

the saliency map for each new sample through

p̃ = φi(CM, x, y)pi + φv(CM, x, y)pv,

where CM, x, y are the motion and position parameters for the input patch, and

pi and pv are its two saliency maps.

However, directly training the neural network involves quite complicated opti-

mization procedure, which damages the efficiency of the proposed method. In this

work, we introduce two auxiliary variables wji and wjv for φji and φjv to simplify the

optimization procedure. Then the loss function is formulated as:

L =
∑
j

‖wji p
j
i + wjvp

j
v − pj‖2

2 + λ{(φji − w
j
i )

2 + (φjv − wjv)2}. (5.1)

The above optimization problem can be solved by various methods. And the algo-

rithm iteratively learns two phases within the same objective function. The solver

is used for efficiency and outlined in Algorithm 1. Step 1 of the algorithm has closed

form solution. Step 2 is solved via the optimization of the neural network. To en-

sure that the auxiliary variables approximate the original variables, the trade-off

parameter λ will be increased in each iteration.
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For the camera motions, we extract homography matrix of 15 frames with the

selected frame is the middle one. To avoid the motion of the human or object, we

use the work of [39]. Then, 8 values of the homography matrix (except the last

element on the diagonal line) represent the camera motions.

For the implementation, we utilize 2 hidden layers with Transfer functions are

‘tansig’, and ‘purelin’, respectively. Backpropagation network training function is

Levenberg-Marquardt. Note that we initialize NN of this current step by using the

weights of its previous step. λ is set as 0.1 which takes the role of controlling the

convergence speed. 40 to 50 iterations are required for convergence.

5.6 Evaluation

In this section, we describe the extensive experiments conducted on the new col-

lected datasets for the better understanding about the performance of the proposed

learning framework.

5.6.1 Learning to Predict Saliency

To quantitatively measure how well an individual saliency map predictors on a given

frame, we compute the area under the receiver operating characteristic (ROC) curve

(AUC) and linear correlation coefficient (CC) values. As the most popular measure

in the community, ROC is used for the evaluation of a binary classifier system with

a variable threshold (usually used to classify between two methods like saliency vs.

random). Using this measure, the model is treated as a binary classifier on every

pixel in the image; pixels with larger saliency values than a threshold are classified

as fixated while the rest of the pixels are classified as non-fixated. Human fixations

are then used as ground truth. By varying the threshold, the ROC curve is drawn as

the false positive rate vs. true positive rate, and the area under this curve indicates

how well the saliency map predicts actual human eye fixations. Meanwhile, CC
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Algorithm 1 Solving Problem (5.1)

Input: Saliency map vectors pji , p
j
v, p, parameters λ0, ρ = 1.5.

Initialize: t = 0, wji
(t)

= 0.5, wjv
(t)

= 0.5, λ(t) = λ0.
while not converged do

1. t← t+ 1

2. f
(t+1)
i ← φi(CM

j, xj, yj), f
(t)
v ← φv(CM

j, xj, yj)

3. Update the auxiliary variables:

wji
(t+1)

= (pji
T
pji + λI)−1 ×(

pjip
jT − pjipjv

T
wjv + λ(f

(t)
i + f (t)

v − wjv)
)

.

wjv
(t+1)

= (pjv
T
pjv + λI)−1 ×(

pjvp
jT − pjvp

j
i

T
wjv + λ(f

(t)
i + f (t)

v − w
j
i )
)

.
4. Train φi, φv.

5. Update parameters wφi of φi, wφv of φv.

6. λ(t+1) ← ρλ(t)

end while
Output: The learned neural network φi and φv.

measures the strength of a linear relationship between human fixation map and

predicted saliency map.

Table 5.1 shows the predicted results on our collected datasets, Hollywood and

CAMO. We used static features to predict static saliency. Similarly, we used static

features and dynamic features to predict dynamic saliency. The performance of

dynamic saliency prediction is worse than the static saliency prediction based on

static features only. That shows the need to improve the performance of dynamic

saliency prediction.
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Table 5.1: AUC and CC of saliency detection on the two datasets.

Dataset AUC CC
CAMO - images 0.74 0.52
CAMO - videos 0.64 0.20
Hollywood - images 0.71 0.45
Hollywood - videos 0.75 0.30

5.6.2 Dynamic Saliency Evaluation

We compare the performance of CMASS framework with the following four baseline

methods:

1. Video saliency prediction from visual features [59].

2. Video saliency prediction from visual and motion features.

3. Fixed mapping weight to fuse static saliency and video saliency.

4. Adaptive mapping weight to fuse static saliency and video saliency [137].

Their performance comparison in terms of AUC and CC are shown in Table 5.2.

As can be seen in Table 5.2, the results of the dynamic saliency prediction method

from static information only are the worst in all cases. Combining the visual and

motion features improves the performance generally across the two dataset. Fixed

mapping weight is learned from a simple linear regressor. And the performance is

further improved incrementally. The adaptive weight method of Zhai et al. achieves

better performance than the rest of baselines, improving the performance over fixed

mapping weight by around 2 to 3 percentage. Our proposed CMASS achieves

the best performance in terms of AUC and CC for both datasets, Hollywood and

CAMO. Generally it outperforms the results from Zhai et al. by 4 to 6 percentages.

This improvement is rather significant. It shows the advantages of our combined

static saliency and camera motion in boosting the performance of dynamic saliency

prediction.
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Table 5.2: Performance of CMASS on video saliency prediction on CAMO and
Hollywood datasets.

Method Hollywood CAMO
AUC CC AUC CC

Judd et al. [59] 0.72 0.25 0.61 0.18
Visual and

motion feat.
0.75 0.30 0.64 0.20

Fixed mapping
weight

0.74 0.28 0.63 0.19

Zhai et al. [137] 0.76 0.31 0.64 0.22
CMASS 0.80 0.37 0.69 0.28

5.7 Application to Video Captioning

Assisting the disabled persons by applying computer vision/multimedia techniques

consistently attracts the attention from many researchers. Recently, a technique for

assisting hearing impairment patients in watching videos [45] is developed, which

automatically inserts the dialogue nearing the talking persons to help the patients

understand who is talking and the content of the dialogue. However, there is

often a need to insert the subtitle into the video without human appearance (i.e.,

only narration appears in the video), such as documentary and introductory films.

In this section, we introduce the new application which automatically insert the

subtitle into such videos based on the video saliency map intelligently, in order to

help the patients understand the content of the narration.

The basic criteria of the subtitle insertion are two-folds. Firstly, the selected

position of the frame to insert the subtitle should have low saliency score. Oth-

erwise, the inserted subtitle will overlap with the salient objects and worsen the

watching experience of the audience. Second, the selected position should be near

to the high saliency position. Thus the inserted subtitle will not distract the audi-

ence’s attention.

The technique for the suitable position detection based on saliency map is

introduced as follows. The predicted saliency map is first split into multiple blocks,
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Figure 5.7: The usage of response map for inserting subtitles. The first row shows
the frames of the video. The second row shows the saliency map from different
saliency detection methods. The third row shows the found position for inserting
the subtitles. And the last row shows the final results.

each of which having the size of 10 × 10 pixels. Each small block i has the mean

saliency value si. We transform the saliency map to the response map for the use

of determining the position of inserted subtitles. The response value of a certain

pixel k in block i is computed as below.

rk = α1

∑
j∈N (i)

|si − sj| − α2si, (5.2)

where N (i) represent the neighboring blocks of block i and si, sj are the saliency

values of the block i and block j respectively. rk is the calculated response value for

the kth pixel. The weights α1, α2 are empirically set as 0.5 and 0.5 throughout our

implementation. The first term in the response calculation characterize the saliency

contrast while the second term encourages to find the position with low saliency.
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Figure 5.8: Results of evaluation of four methods in terms of the content com-
prehension. The compared methods include Fixed, Low Saliency Driven (LS) and
High Contrast Drive (HC) and Static saliency detection based. The vertical axis
represents the sum of the scores obtained by each group of participants. Higher
score indicates better performance.

The size of inserted text will be calculated based on its length. Then we perform the

exhaustive search on the response map in order to find the most suitable position

with the largest response value. Figure 5.7 and 5.10 illustrate the examples of

inserting subtitle into the documentary video without human appearance.

To evaluate the quality of the inserted subtitle and whether the watching expe-

rience is improved, we conduct the user study on both the content comprehensive

and user impression. There are 24 users participating in the study. Their ages vary

from 22 to 30 years old. We prepare 5 video clips with embedded caption for the

evaluation.

For the content comprehension study, we randomly divide all the participants

into four groups (each group has 6 participants) to avoid the repeated playing of

a video which will cause knowledge accumulation. Therefore, each group merely

evaluates one of the four paradigms for each video clip. We have designed five

questions related to caption content comprehension. These questions are carefully

designed to broadly cover the content in the video clips. The participant watches

the clips under the task-free setting. Their results are the converted percentage of

the correct answers. We compare the proposed high-contrast (HC) driven method

with the following three methods. The first one is that the position of the subtitle
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is fixed at the bottom of the frame. The second one is that the subtitles are

inserted into the position with low saliency value, which is called low-saliency (LS)

driven method. And the third one is also based on high-contrast but the saliency

map is estimated from static saliency detection (Static). As shown in Figure 5.8,

our method outperforms all of the other saliency detection methods for subtitle

insertion. It demonstrates that the video saliency estimation method proposed

in this work can find the most suitable position to insert the subtitle, where the

subtitle is informative to the audience. In contrast, the image saliency based one

performs worse since the inserted subtitle is not close enough to the salient regions.

And the fixed caption performs worst as the audience cannot focus on the subtitle

and video content at the same time.

Figure 5.9: Results of evaluation on the user impression. Three methods are com-
pared, namely Fixed, Low Saliency Driven (LS) and High Contrast Drive (HC).
The methods are compared in terms of four criteria, namely Enjoyment, Conve-
nience, Experience and Preference. Each user has been asked to assign a score
between 1 (most unsatisfactory) and 5 (most satisfactory) for each criterion.

We further compare the four subtitle insertion schemes, i.e., fixed, LS, Image

Saliency and HC, in terms of the user impression. We invite another 15 evalua-

tors who are requested to indicate their satisfaction with respect to the following

perspectives: 1) Enjoyment: How do you feel that the video is enjoyable? 2)

Convenience: How do you feel the visual appearance of subtitle is convenient? 3)

Preference: How do you prefer that captioning method? 4) Experience: How does

the caption help you experience the video? For each sample, the participant rates

each method on a 5-point scale from the best (5) to the worst (1)[74]. The video

order is randomized. Figure 5.9 depicts the results of user impression evaluation.
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Generally, our method outperforms others in all aspects since it optimizes allo-

cated position. Low saliency driven captioning yields relatively low score due to

uncommon appearance in the video frames.

5.8 Discussions

In this work, we have conducted comparative studying between the static saliency

and dynamic saliency. To the best of our knowledge, this is the first research

attempt to investigate this problem in depth. We first build the datasets of human

fixation on both images and videos for the comparison purpose. Then we report

several important observations of the relationship of static and dynamic saliency.

Inspired by these observations, we propose the noval CMASS learning framework to

fuse static saliency into dynamic saliency estimation to improve the video saliency

prediction. Extensive experimental evaluations on the constructed datasets well

demonstrate the effectiveness of the proposed method for video saliency prediction.

We also apply the video saliency prediction method to the application of helping

patients with hearing impairment in watching videos with narration. Suggested

future work includes extensive user studies as a means to explore the potential of

our approach under different conditions and for different application domains.
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Figure 5.10: The examples of inserting subtitle into the documentary video. The
original frames, the detected saliency maps, calculated response maps are shown
from top to down. The top panel shows the result from the dynamic saliency de-
tection. And the bottom panel shows the results from the static saliency detection.
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Chapter 6

STAP: Spatial-Temporal

Attention-aware Pooling for

Action Recognition

In this chapter, we further investigate the impact of video saliency in human ac-

tion recognition. We introduce the new saliency-guided pooling method which

outperforms the state-of-the-arts.

6.1 Introduction

Recognizing human action in realistic videos has attracted much attention in com-

puter vision community. Large-scale datasets, modern feature extraction meth-

ods and machine learning techniques are innovating this task. Improvements

have been made using classifiers trained based on bag-of-words representations,

which are computed from feature descriptors extracted at informative image loca-

tions [67, 83, 66, 113].

To some extent, action recognition in videos shares similar issues as object

recognition in static images. Both tasks have to deal with significant intra-class

variations, background clutter and occlusions. The conventional bag-of-words im-

age classification framework was first adapted for action recognition in [66]. It pools
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Figure 6.1: The illustration of the spatial-temporal attention-aware feature pooling
for action recognition. The figure shows our work is superior over spatial pyramid
matching due to the implicit background/foreground matchings. The local features
are pooled according to (b) traditional SPM pooling with 2 × 2 × 2 channels in
spatial-temporal domain and (c) the proposed saliency-aware feature pooling with
video saliency guided channels. For better viewing of all of the rest of figures in
this thesis, please see original color pdf file.

all local features averagely to obtain a video representation. Extensional work also

used pooling on spatial-temporal channels of video frames [67], which is similar to

the Spatial Pyramid Matching (SPM) [68] used in the image classification. These

approaches try to model global geometric correspondence by pooling video frame

features to increasingly fine spatial channels. The success of SPM-based meth-

ods originates from the valid assumption that the videos with similar scene and

geometry layout possibly belong to the same category.

However, we argue that the SPM-based representation may not be optimum

for action recognition in human-centric videos. Most visual cues contributing to

action recognition are not regularly located in certain spatial channel of the videos.

As Figure 6.1 indicates, the spatial channels based on SPM may cause the misalign-

ment problem due to different object locations and scene layouts. On the other
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hand, better matching in the video representation can be achieved by respectively

describing the video action/foreground area and the video scene/background area.

For example, to recognize the human kissing action as shown in the last row of

Figure 6.1, the information from the human face and the environment provides

different cues and should be modeled separately.

To construct video representation that separates the video foreground and

background information implicitly, we propose the Spatial-Temporal Attention-

aware Pooling (STAP) framework. Inspired from the fact that actions/foregrounds

attract human visual attention, we propose to utilize the video saliency to guide

the construction of the video feature representation. In particular, we propose a

new method to fuse the saliency maps from different saliency prediction models.

This new saliency model borrows the prior knowledge from existing saliency mod-

els which often reveal some visual semantics, e.g., face, moving objects. By using

such prior knowledge, we can construct a representation which matches the key

objects implicitly. We then apply spatial-temporal feature pooling driven by the

predicted video saliency maps to pool the video features. Besides the implicit fore-

ground/object correspondence, the video backgrounds can also be better matched

owing to the guidance of visual attention, since the visual saliency model can

also predict the non-salient areas in the videos. The background context such as

scene information is especially useful for certain action classification. Thus better

recognition performance can be achieved by pooling based on the foreground and

background separation in the classification process.

Our proposed spatial-temporal attention-aware feature pooling scheme is evalu-

ated on three popular video action datasets and considerable performance improve-

ments are achieved, specifically 62.5% on Hollywood2 (better by 4.2 %), 95.3% on

UCF Sports (better by 0.3 %) and 87.9% on YouTube dataset (better by 3.7 %).

6.2 Related Work

In this section, we summarize the state-of-the-art works on video action recogni-

tion regarding the commonly used features, SPM-based pooling methods and the
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integration of visual attention.

6.2.1 Feature Representations

Local descriptors computed around video interest points or on densely sampled

patches are two popular methods for video representation as shown in Table 6.1.

Interest point based local descriptors have been extended from images to videos.

Laptev [66] introduced spatial-temporal interest points by extending the Harris

detector. Other popular interest point detectors include detectors based on Ga-

bor filters [16] and the determinant of the spatio-temporal Hessian matrix [128].

Meanwhile, Wang et al. [125] introduced an approach to model videos using densely

sampled features. Since dense sampling has shown better performance [125], we

also choose the dense sampling method in this work.

Among the existing descriptors for action recognition, the combination of

HOG (Histograms of Oriented Gradients) and HOF (Histograms of Optical Flow) [66]

has achieved excellent results on a variety of datasets [67]. HOG [28] focuses on the

static appearance information, whereas HOF captures the local motion information.

Dalal et al. [29] introduced MBH (Motion Boundary Histogram) to the problem

of action recognition. The recent work [124] has demonstrated the effectiveness of

this new feature. Trajectories are also used as a description to the interest point

locations. Messing et al. [88] extracted feature trajectories by tracking Harris3D

interest points [66] with the KLT tracker [79]. Sun et al. [113] extracted trajecto-

ries by matching SIFT descriptors between two consecutive frames. There is also

a middle layer attribute description introduced by Liu et al. for the action recog-

nition [76]. Recently, inspired by the Object Bank method [72], Sadanand et al.

proposed to use action bank to explore how a large set of action detectors, which

ultimately act like the bases of a high-dimensional “action-space”, combined with

a simple linear classifier can form the basis of a semantically-rich representation for

action recognition and other video understanding challenges [107]. In this work,

the prevalent HOG, HOF and MBH features are used.
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6.2.2 Spatial Pyramid Matching based Pooling

Laptev et al. [67] presented a framework that classifies more than ten visual ac-

tion classes. Their approach to video classification was inspired from the image

recognition methods [13, 138] and extended the SPM [68] to the spatial-temporal

pyramid. They used bag-of-words representation which computes the histogram of

visual word occurrences over each particular spatial-temporal volume. This frame-

work was also further followed in [83].

6.2.3 Visual Attention and Action Recognition

The problem of visual attention and the prediction of visual saliency have long been

of interest in the human vision community [51, 18, 42, 47, 46]. Recently there has

been a growing trend of training visual saliency models based on human fixations

mostly in static images [59]. Jhuang et al. [55] proposed the model accounting

only for part of the visual system, the dorsal stream of the visual cortex, where

motion-sensitive feature detectors analyze visual inputs. Ullah et al. improved bag-

of-words action recognition with non-local cues [120]. Recently Mathe et al. [84]

explored the relationship between human visual attention and computer vision,

with emphasis on action recognition in videos. However, they only introduced

saliency as a criterion to select features for action recognition. In this chapter, we

are interested in proposing new pooling-based computational model for recognizing

actions. We are also inspired by recent works in image recognition [56, 23] which

Sampling
method

Without attention-aware pooling With attention-aware pooling

Interest points Laptev et al. (HOG/HOF) [67]
Marszalek et al. (HOG/HOF/SIFT) [83]
Dense Trajectories
(HOG/HOF/MBH/Traj.) [124]
Klaser et al. (HOG3D) [61]

Ullah et al. (HOG/HOF) [120]
Mathe et al. (HOG/HOF/MBH/Traj.) [84]

Dense sam-
pling

Wang et al. (HOG3D/HOG/HOF) [125] Our proposed method

Table 6.1: Where are we? The summary of related works of action recogntion in
videos.
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similarly utilize saliency as a cue. Table 6.1 locates our work along with the previous

works in literature.

6.3 Spatial-Temporal Attention-aware Pooling for

Action Recognition

In this section, we introduce the framework using the video saliency information for

a saliency-aware feature pooling. Figure 6.2 depicts the flowchart of our proposed

framework.

The proposed Spatial-Temporal Attention-aware Pooling (STAP) procedure

aims to pool video local descriptors into channels using the predicted video saliency

maps. As we have utilized the video saliency predictor described in Chapter 5, the

pooling procedure is introduced as below.

Given a video ϑ = {vi, i = 1, · · · ,m} with m frames and S = {Si} as their

saliency maps, the local descriptors X = {xj} can be extracted densely from the

frame patches. Note that one video frame is divided into overlapping patches. Each

Figure 6.2: The flowchart of the proposed framework for action recognition in
videos. (a) The saliency maps are predicted from the input video frames. (b) The
local features are clustered to different channels according to the video saliency
information. (c) The feature pooling is then operated on each channel to form a
representation of the video. (d) Finally, Kernel SVM is used for action classification.
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patch’s parameters include spatial patch size Ws = 15 and overlapping size O = 5.

We denote each patch’s descriptor as x = {dx, sx} where dx is a sparse histogram

vector which is the result of the projection of the raw descriptors onto the codebook

elements (the value of the closest entry’s index is one, and the rest is zero), and

sx is the patch’s saliency value. We compute sx by averaging the saliency values

within the patch area.

Unlike traditional SPM [68] where the descriptor is assigned to the correspond-

ing spatial channel based on its location, we utilize the saliency-guided descriptor

grouping for spatial domain. Denote L as the number of spatial layers, the total

number of spatial channels is 2L − 1. For l-th layer, video descriptors are grouped

to 2l−1 channels according to threshold values θl = { 1
2l−1 ,

2
2l−1 , · · · , 2l−1

2l−1}. Based

on their sx values, the local descriptors are assigned to the corresponding spatial

channel. Thus the attention-aware spatial channels of descriptor x of all L layers

can be defined as:

Ga(x) ⊂ {1, 2, · · · , 2L − 1}, (6.1)

where Ga(x) denotes the set of attention-aware channels that x belongs to. Note

that each descriptor may belong to multiple spatial channels.

Similar to spatial domain, the video frames are divided into T temporal layers

and the temporal channel of each descriptor x is denoted as:

Gt(x) ⊂ {1, 2, · · · , 2T − 1}. (6.2)

Then the visual descriptors belonging to the a-th attention-aware channel and

t-th temporal channel are pooled to produce the descriptor fat:

fat =

∑
x|l∈Ga(x),t∈Gt(x) dx∑
x|l∈Ga(x),t∈Gt(x) 1

. (6.3)

For classification, we use a non-linear kernel support vector machine (SVM)
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[121] with the kernels defined as

K(ϑ1, ϑ2) = exp
(
−

2L−1∑
a=1

2T−1∑
t=1

1

Aat
D(f1

at, f
2
at)
)
. (6.4)

Obviously, STAP pooling will fall back to a standard bag-of-words model when

L = 1, T = 1. Similar to [124, 120, 125], we choose D as a χ2 distance function

and Aat is the mean value of χ2 distances among the training samples for the at-th

channel.

6.4 Implementation Details

In this section, we introduce the implementation details used in our STAP frame-

work including the feature extraction and model learning for action recognition.

6.4.1 Video Representation

In this work, we compute the dense combination of HOG, HOF and MBH [66, 29] as

the local feature description. For both HOG and HOF, orientations are quantized

into 8 bins using full orientations, with an additional zero-motion bin for HOF,

namely, 9 bins in total. Both descriptors are normalized with their `2 norm. For

MBH, we obtain an 8-bin histogram for the horizontal and vertical components of

the optical flow and normalize them separately with the `2 norm. For both HOF

and MBH descriptors, we reuse the dense optical flow that is already computed to

extract motion magnitude images for saliency prediction [17].

Dense local feature sampling is used in this work. Two parameters related to

the dense local feature sampling, the temporal and spatial sampling size Wt and

Ws, are investigated. These two parameters denote the sampling duration and
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patch size while computing each local feature. Larger sampling size generates less

but smoother local features in videos.

For bag-of-words (BoW) representation, we construct a codebook for each de-

scriptor type (HOG, HOF, and MBH) separately and use Vector Quantization to

build the BoW representation. To limit the complexity, we train the codebooks

by clustering on 500, 000 randomly selected training features using k-means im-

plemented in [122]. The size of the codebooks C is further investigated in our

work.

Finally for the pooling parameters defined in Section 6.3, the spatial layer num-

ber L is set to 2 for all experiments in this work in order to limit the computational

complexity. But the temporal layer number T is further evaluated as shown in the

experiments.

6.4.2 Learning with Kernel SVM

We use Kernel SVM to learn action classifiers. To build a multi-class classifier, we

combine binary classifiers using one-against-all strategy. Note, however, that in

our setup all problems are binary, i.e., we recognize each class independently and

concurrent presence of multiple class labels (namely multiple actions) is allowed.

6.5 Experiments

6.5.1 Datasets and Evaluation Metrics

We systematically evaluate the effectiveness of the proposed STAP method on three

realistic human action datasets: Hollywood2, UCF Sports and YouTube. These

three databases are chosen for evaluation because they exhibit the difficulties in

recognizing human actions, in contrast to the controlled settings in other related
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databases. Figure 6.3 depicts some exemplar frames of the datasets utilized for the

evaluation.

Hollywood2 dataset has been collected from 69 different Hollywood movies.

There are 12 action classes: answering the phone, driving car, eating, fighting,

getting out of the car, hand shaking, hugging, kissing, running, sitting down, sitting

up, and standing up. In total, there are 1,707 action samples divided into a training

set (823 sequences) and a test set (884 sequences).

UCF Sports Action dataset contains ten different types of human actions:

golf swinging-bench, diving, kicking a ball, weight-lifting, horse-riding, running,

skateboarding, swinging-side, golf swinging and walking. The dataset consists of

150 video samples which show large intra-class variabilities. We use a leave-one-out

cross-validation strategy similar as in [125, 124].

YouTube dataset [77] contains 11 action categories: basketball shooting, bik-

ing/cycling, diving, golf swinging, horse back riding, soccer juggling, swinging,

tennis swinging, trampoline jumping, volleyball spiking, and walking with a dog.

This dataset is challenging due to large variations in camera motion, object ap-

pearance and pose, object scale, viewpoint, cluttered background and illumination

Figure 6.3: Exemplary frames from video sequences of UCF Sports (top row),
Hollywood2 (middle row), and YouTube (bottom row) human action datasets.
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conditions. The dataset contains a total of 1,168 sequences. We follow the original

setup [77] using leave-one-out cross validation for a pre-defined set of 25 folds.

For Hollywood2 dataset, to compare the overall system performance, we com-

pute a mean average precision (mAP) over a set of binary classification problems

as in [83, 125]. For UCF Sports and YouTube datasets, average accuracy over

all classes is reported as performance measurement as in [125, 77]. Since different

videos are in different resolutions (e.g., UCF Sports contains some videos with high

resolution, 720×576 pixels), we resize all videos to the same size, namely, 640×480

for UCF Sports dataset (smaller scale), 320 × 240 for Hollywood2 and YouTube

datasets (larger scale) to control the computational complexity.

6.5.2 Performance of Saliency Prediction

We compare our predicted saliency maps with other predicted saliency baselines.

We take 1, 000 random frames for the test set from Hollywood2 fixation dataset [84].

We compare our approach with SIM, SUN, LSK, GBVS, Cerf et al., Motion map,

and Central bias map. We first evaluate our saliency predictors under the AUC

metric, which interprets saliency maps as predictors for separating fixated pix-

els from the rest. We also report the Correlation Coefficient (CC) for comparing

predicted saliency maps to the human ground truth. As shown in Table 6.2, com-

bining predictors improves performance under those metrics, whereas bottom up

Saliency model AUC CC STAP on UCF Sports

SIM [93] 0.71 0.10 93.3
LSK [109] 0.68 0.11 91.7
GBVS [42] 0.76 0.26 92.3
SUN [139] 0.69 0.12 92.7
Cerf et al. [21] 0.66 0.18 93.0
Motion
map [17]

0.65 0.14 91.7

Central bias
map [59]

0.81 0.21 92.7

Ours 0.87 0.29 95.3

Table 6.2: Evaluation of saliency prediction models.
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saliency maps are better predictors than top down ones. GBVS achieves the high-

est AUC among static image saliency models. The central bias has a high value

of AUC which shows the bias in cinematography. Meanwhile, motion shows the

lower performance compared with ones of other saliency models. Our top perfor-

mance illustrates the significant advantage in combining various kinds of saliency

information.

6.5.3 Evaluation of Parameter Settings

To evaluate the different parameter settings for STAP, we report results on two

larger and more challenging datasets, YouTube and Hollywood2. We study the

impact of the codebook size, sampling spatial size, temporal size and temporal

layer number.

As shown in Figure 6.4, the performance degrades when the codebook size

is too small (i.e., 1000, 2000) or too large (i.e, 5000). The best performance is

achieved with codebook size C = 4000. It agrees with the finding in previous

works [67, 124]. Similarly, too small or too large sampling sizes also cause the

performance decrease. The best performance is obtained when the spatial sampling

size Ws is 32. Regarding the temporal sampling size Wt, the performance decreases

when Wt increases. However, the smaller sampling size costs more memory for

feature extraction. Therefore, 10 is acceptable in terms of performance and memory

storage since there is only a minor gain compared to Wt = 5. For the temporal

layer number T , the best performance is when T = 2 and the performance degrades

when we increase T to 3 or 4. We observe the similar patterns on both datasets

throughout the parameters setting experiments.

Finally, the parameters for our STAP are fixed to the following values, i.e., C

= 4000, Ws = 32, Wt = 10, T = 2.
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(a) Codebook size C (b) Spatial sampling size Ws

(c) Temporal sampling size Wt (d) Temporal layer number T

Figure 6.4: Results for different parameter settings on Hollywood2 and YouTube
datasets (left Y axis is for YouTube, whereas right Y axis is for Hollywood2).

6.5.4 Comparison with the State-of-the-arts

Table 6.3 compares our results with the state-of-the-arts. In all three datasets,

STAP outperforms all known methods in the literature, and in some cases by a

significant margin. On UCF Sports dataset, STAP outperforms the state-of-the-art

performance [134] by 4%. In Figure 6.5, we show the confusion matrix of human

action recognition on UCF Sports. We achieve 100% accuracy on 7 out of 10 classes.

We are aware of the small gap between our work and Action Bank [107] on UCF

Sports (0.3%). These two works, however, have two different approaches. The

target of our work is to improve the pooling of local features and hence can even

further boost the performance of [107] with better recognition to each elemental

action. For YouTube dataset, our framework outperforms the current state-of-

the-art method [124] by 3.7%. The performance of the proposed framework on
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Hollywood2 is 62.5% which is an improvement of 4.3% over [124].

Hollywood2 UCF Sports YouTube

Wang et al. [125] 47.7%
Gilbert et al. [40] 50.9%
Ullah et al. [120] 53.2%
Mathe et al. [84] 57.6%
Dense Trajectories [124] 58.3%

Klaser et al. [61] 86.7%
Kovashka et al. [63] 87.3%
Dense Trajectories [124] 88.2%
Wu et al. [134] 91.3%
Action Bank [107] 95.0%

Liu et al. [77] 71.2%
Zhang et al. [140] 72.9%
Ikizler-cinbis et al. [48] 75.2%
Le et al. [69] 75.8%
Dense Trajectories [124] 84.2%

STAP with fixation 59.6% STAP with fixation 94.3% STAP with fixation –
Our method 62.5% Our method 95.3% Our method 87.9%

Table 6.3: Comparison of our proposed method with state-of-the-art methods in
the literature.

We also compare the Average Precision per action class for Hollywood2 and

YouTube datasets. On Hollywood2, we compare against the approach of [124] and

[84]. As seen in Table 6.4, our STAP yields best results for 9 out of 12 action

classes. On YouTube, STAP gives best results for 7 out of 11 action classes when

compared with [124] and [69] as shown in Table 6.4.

Figure 6.5: The confusion matrix of STAP on UCF Sports dataset.
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Hollywood2
STAP Dense Trajectories [124] Mathe et al. [84]

AnswerPhone 44.0 32.6 23.7
DriveCar 94.6 88.0 92.8

Eat 70.5 65.2 70.0
FightPerson 77.6 81.4 76.1
GetOutCar 55.9 52.7 54.9
HandShake 34.5 29.6 27.9
HugPerson 45.0 54.2 39.5

Kiss 68.2 65.8 61.3
Run 84.9 82.1 82.2

SitDown 73.9 62.5 69.0
SitUp 25.1 20.0 34.1

StandUp 75.7 65.2 63.9
mAP 62.5 58.3 57.6

YouTube
STAP Dense Trajectories [124] Le et al. [69]

Shooting 64.6 43.0 46.5
Biking 90.3 91.7 86.9
Diving 98.7 99.0 93.0
Golf 92.3 97.0 85.0

Riding 89.9 85.0 76.0
Juggle 80.8 76.0 64.0
Swing 91.2 88.0 88.0
Tennis 89.2 71.0 56.0

Jumping 95.0 94.0 87.0
Spiking 96.6 95.0 81.0
Walking 78.1 87.0 78.1
Accuracy 87.9 84.2 75.2

Table 6.4: Average Precision and Accuracy (%) per action class for the Hollywood2
(upper) and YouTube (lower) dataset.

In addition, since we get inspired from human attention, we also conduct an-

other comparison between STAP using our saliency prediction method and STAP

with ground truth fixation. Our method achieves better results over the one with

ground truth fixation. This is because the predicted saliency is generally more

consistent in training set and testing set. We observe the failure case of action

recognition based on STAP with ground truth fixation. For example, in the horse-

riding action, the human fixation fixates on the human face, while the predicted

saliency focuses on both human and the horse which are more informative corre-

sponding to the action. We also perform STAP across various saliency prediction
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models on UCF Sports dataset. As shown in Table 6.2, the performance of all

saliency models surpasses all of baselines except [107]. STAP from our saliency

prediction model achieves the best performance which shows the advantage of our

proposed model for video saliency prediction.

6.6 Discussion

In this chapter, we have presented STAP, a simple yet effectively powerful method

for action recognition on a wide variety of realistic videos. The proposed method

combines dense sampling with spatial-temporal feature pooling driven by video

saliency information. Extensive experimental results have clearly demonstrated

the proposed STAP can achieve the state-of-the-art performances on diverse and

popular action recognition datasets.

One may argue about the costly processing time of computing predicted saliency

maps for each individual method. For a given 320 × 240 pixel image, the average

processing time in second unit is as follows: Itti-Koch (0.23), AIM (2.01), ICL

(0.89), SIM (1.1), FT (0.07), LSK (0.52), SR (0.81), GBVS (0.91), Signature-LAB

(0.12), the motion map (1.21). Note that all of the implementation is currently not

optimized in MATLAB. Our experimental computer is equipped with quad-core

2.67 GHz CPU and 16 GB RAM.

There exists a concern about the video size, which is currently fixed at 240×320

pixels for two large-scale datasets. [125] reported the performance decreasing when

the video’s resolution shrinks. It means the results are encouraging since the results

on the original videos can be even better though more time consuming.

Last but not least, it is worth noting that dense sampling produces a very large

number of features. Therefore, the experiment is more data storage and memory

consuming than the one with the relatively sparse number of interest points as in

[67, 83].
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis makes contributions on four aspects of visual saliency analysis, namely

image re-attentionizing, 3d saliency, video saliency prediction, and action recogni-

tion. Each contribution is novel and interesting. Each work provides the proposed

models with the extensive experiments which show superior performance than other

state-of-the-art methods.

Image Re-Attentionizing. We propose a novel computational framework for

the image re-attentionizing task. Our work is based on a premise that human

eyes tend to look at the unique area in the image in both global and local sense.

The experiments demonstrate that the recolored images successfully attract human

attention to the target region(s) and in the meantime both spatial coherence and

color coherence are well preserved. Although the proposed method yields a better

experience, it still has limitations. The first is the boundary artifact when selecting

target regions from superpixels. To overcome this issue, interactive methods can be

applied to provide better region selection [73], [91]. Another solution is to increase

the number of superpixesl in the image to provide finer over-segmentation. The

second issue is the unnatural color for the objects which do not exist in the patch

dataset. The remedy for this is to increase the dataset size.

3D Saliency. As aforementioned, the obtained depth from stereo images is

unreliable. In addition, the existing datasets are small-scale. Therefore, the thesis
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focuses on analyzing the depth matters on saliency based on a large-scale fixation

dataset. We introduce an eye fixation dataset compiled from 600 images for both

2D and 3D scenes viewed by 80 participants. Using the state-of-the-art models for

saliency detection, we have shown new performance bounds for this task. We expect

that the newly built 3D eye fixation dataset will help the community enhance the

study of visual attention in a real 3D environment. Furthermore, based on the

analysis of the relationship between depth and saliency, extending the saliency

models to include the proposed depth priors can consistently improve performance

of current saliency models.

Video saliency prediction. We conduct the comparative studies between static

saliency and dynamic saliency. To the best of our knowledge, this is the first re-

search attempt to investigate this problem in depth. We first build the datasets

of human fixation on both images and videos for the comparison purpose. Then

we report several important observations of the relationship of static and dynamic

saliency. Inspired by these observations, we propose the novel CMASS learning

framework to fuse static saliency into dynamic saliency estimation to improve

the video saliency prediction. Extensive experimental evaluations on the con-

structed datasets well demonstrate the effectiveness of the proposed method for

video saliency prediction. We also apply the video saliency prediction method to

help patients with hearing impairment to watch videos with narration. Exten-

sive user studies clearly demonstrate the superiority of the proposed method in

automatically determining the most suitable position to insert the subtitle.

STAP. We further investigate the application of saliency in a basic problem of

computer vision, i.e., action recognition task. To tackle this task, we present an ap-

proach to recognize actions in videos by combining dense sampling with hierarchical

spatial temporal pooling. An important contribution of this part is the proposed

Spatial-Temporal Attention-aware Pooling scheme together with designed varieties

of saliency information which can achieve state-of-art performance on diverse and

popular action recognition datasets. We believe that our work will shed light on

further researches in learning descriptors, saliency models and search algorithms for

action recognition and for validating biological models of human visual attention.
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7.2 Future Work

In the future, four applications of visual saliency, namely image re-attentionizing,

3D saliency, video saliency prediction and action recognition, will be the foci of

our research work. We plan to learn from human fixation data to de-emphasize

the areas which attract human fixation in the original image, yet are not the tar-

get region(s). The more challenging cases in dynamic scenes, namely video re-

attentionizing, may also invite further research. Superpixels show their benefits to

the image re-attentionizing.

Regarding 3D saliency, we are interested in how to integrate depth priors into

various models instead of the late fusion methods. We want to include depth

information directly into the computational models. This future approach is very

promising since it moves another step to understand the human vision. We also

would like to analyze the relationship between eye fixation and object attributes

such as size, location, depth plane.

For video saliency prediction, given that time is an important parameter in

the dynamic video scenes, we will consider the function of viewing time as in [20].

Currently the proposed framework only considers the camera motion. The target

motion will be considered in the future work.

For action recognition, more semantically meaningful saliency information and

new approaches for combining different types of saliency information will be further

explored. Our current framework will be augmented with the depth information

provided in some public datasets [96, 53]. The temporal channels are fixed in

this work, and more work will be done for automatic partition and alignment in

temporal domain.

We also would like to explore more interesting topics. For instance, though the

models do well qualitatively, they have limited applications because they frequently

do not match actual human saccades from eye-tracking data, and finding a closer

match depends on tuning many design parameters. Thus, we want to investigate
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the possibility of learning the color and depth information to predict where humans

look as discussed in [59, 141, 78]. We also intend to learn the benefits of this saliency

in more interesting applications, such as image classification, thumbnailing and

video retargeting.
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