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Summary 

 

C1q plays an important role in innate immunity. By acting as the 

recognition subunit in the classical pathway, C1q helps in the removal of 

invading pathogens by activating the complement system. Other than its 

involvement in the complement system, C1q is also involved in many 

functions such as clearance of apoptotic cells, modulation of immune cells and 

various cellular processes. Thus, C1q is essential in health but is also 

implicated in the pathogenesis of several diseases such as Alzheimer’s disease, 

atherosclerosis and rheumatoid arthritis. Furthermore, hereditary or acquired 

C1q deficiency is associated with systemic lupus erythematosus (SLE). 

 

Despite being an abundant serum protein, serum C1q may not be 

involved in regulating the functions of various cell types as it may have limited 

access to tissues. Thus, local synthesis of C1q is crucial in mediating its 

diverse functions. In view of the importance of local C1q biosynthesis, we 

investigated possible cellular sources of C1q. Osteoclasts were chosen based 

on the similarities that the cells have with macrophages and dendritic cells 

(DCs), known C1q producers in the body.  

 

Osteoclasts were first differentiated from isolated human monocytes 

and the phenotypes were characterized. Using multiple techniques, C1q was 

consistently detected in the cultured osteoclasts at both the mRNA and protein 

levels. In cultured osteoclasts, mononucleated osteoclasts or preosteoclasts 

preferentially produced C1q, suggesting a role for C1q in osteoclast 

differentiation. Furthermore, C1q was shown to be present in endogenous 

preosteoclasts and mature osteoclasts of human femoral bone samples. C1q 

production in cultured osteoclasts can be regulated by cytokines and Toll-like 

receptor (TLR) ligands. IFNγ induced a large increase in the production of C1q 

by both preosteoclasts and mature osteoclasts. The role of C1q in the bone 

microenvironment is investigated and immobilized, but not soluble, C1q was 

shown to augment osteoclastogenesis. 

 



x 
 

 Existing data and our study show that C1q regulates the development of 

monocytes. In addition, C1q affects the morphologies of cells which may be 

linked to its effects on monocyte development. Thus, we proceed to determine 

the C1q receptor involved in mediating C1q-induced morphological changes.  

 

Immobilized C1q caused cells to be more rounded and led to the 

formation of cell clusters. The effects were not only applicable to monocytes 

but all cell types used in the study were affected to varying extent. The 

morphological changes were accompanied by decreased adherence of the cells 

and a correlation was observed in which cells showing more changes in 

cellular morphology had decreasing adherence. However, such effects were not 

observed in cells incubated with soluble C1q which corresponded to the results 

obtained for osteoclast differentiated in the presence of soluble C1q. Known 

C1q receptors such as α2β1, CD35, CD91, CD93 and gC1qR were not 

responsible for mediating the effects of immobilized C1q as determined by 

flow cytometry and antibody blocking experiments. Interestingly, commercial 

anti-C1q antibodies enhanced the kinetics of immobilized C1q though anti-C1q 

autoantibodies of SLE patients did not exert any effects on the kinetics of 

immobilized C1q. 

 

(488 words) 

  



xi 
 

List of Figures 

 

Figure 1.1. The complement pathways. ............................................................. 7 
 

Figure 1.2. Formation of functional C1q molecule. ......................................... 11 
 

Figure 3.1. Surface expression of CD14 on isolated human monocytes. ......... 58 
 

Figure 3.2. Generation and characterization of osteoclasts. ............................. 61 

 

Figure 3.3. Phenotypic properties of osteoclasts, macrophages and dendritic 

cells (DCs). ....................................................................................................... 63 
 

Figure 3.4. C1q expression by monocytes, osteoclasts, macrophages and DCs 

at the transcriptional level. ............................................................................... 65 
 

Figure 3.5. Production and secretion of C1q by osteoclasts, macrophages and 

DCs. .................................................................................................................. 67 

 

Figure 3.6. Preferential production of C1q by preosteoclasts. ......................... 69 

 

Figure 3.7. Induction of C1q production in osteoclasts, macrophages and DCs 

by IFNγ. ............................................................................................................ 72 

 

Figure 3.8. Presence of C1q-positive mononucleated cells in human femoral 

bone. ................................................................................................................. 74 
 

Figure 3.9. Presence of C1q-positive multinucleated cells in human femoral 

bone. ................................................................................................................. 75 

 

Figure 3.10. Induction of gene expression for osteoclast markers by 

immobilized C1q. ............................................................................................. 78 

 

Figure 4.1. Morphological changes induced by immobilized C1q in different 

cell types. .......................................................................................................... 84 
 

Figure 4.2. Cellular morphologies were not affected by soluble C1q. ............. 84 

 

Figure 4.3. Cell adherence is associated with immobilized C1q-induced 

morphological changes. .................................................................................... 86 
 

Figure 4.4. Changes in cell morphologies and adherence of the cells mediated 

by immobilized C1q are specific. ..................................................................... 89 
 

Figure 4.5. Immobilized C1q had an immediate effect on the cells which did 

not require protein synthesis. ........................................................................... 93 

 

Figure 4.6. Known C1q receptors are not involved in mediating the effects of 

immobilized C1q. ............................................................................................. 96 



xii 
 

Figure 4.7. Intact C1q is essential for the morphological changes mediated by 

immobilized C1q. ........................................................................................... 100 
 

Figure 4.8. Anti-C1q antibodies enhanced the morphological changes mediated 

by immobilized C1q. ...................................................................................... 104 

 

Figure 4.9. Anti-C1q antibodies of SLE patients do not enhanced the 

morphological changes of immobilized C1q. ................................................ 105 
 

Figure 5.1. Proposed model for the augmentation of osteoclastogenesis by C1q.

 ........................................................................................................................ 114 

 

  



xiii 
 

List of Tables 

 

Table 1.1. Activators of the classical complement pathway. ........................... 12 
 

Table 2.1. List of antibodies used in the study. ................................................ 34 
 

Table 2.2. List of cell lines used for the study. ................................................ 42 
 

Table 2.3. List of primers used for PCR and qPCR. ........................................ 47 

 

Table 2.4. Composition of SDS-PAGE gel ...................................................... 50 
 

 

  



xiv 
 

List of abbreviations 

 

ABC   Avidin-biotin complex 

αMEM   Alpha minimum essential medium 

AP   Alkaline phosphatase 

APC   Antigen presenting cell 

APS   Ammonium persulfate 

BCS   Bovine calf serum 

BSA   Bovine serum albumin 

C1q   Complement component 1, subcomponent q 

C1qRp   C1q receptor for phagocytosis 

CAII   Carbonic anhydrase II 

CatK   Cathepsin K 

CD   Cluster of differentiation 

cDNA   Complementary DNA 

CHX   Cycloheximide 

CLR   C-type lectin receptor 

CR1   Complement receptor 1 

CRP   C-reactive protein 

CTR   Calcitonin receptor 

DAB   3,3’-diaminobenzidine 

DAPI   4',6-diamidino-2-phenylindole 

DC   Dendritic cell 

DEC   Decidual endothelial cell 

DMEM  Dulbecco’s modified Eagle’s medium 

DNA   Deoxyribonucleic acid 

ECM   Extracellular matrix 

EDTA   Ethylene diamine tetra acetic acid 

ELISA   Enzyme linked immunosorbent assay 

ER   Endoplasmic reticulum 

F-actin   Filamentous actin 

FAK   Focal adhesion kinase 

Fc   Fragment crytallizable 

FCS   Fetal calf serum 

FITC   Fluorescein isothiocyanate 

Fz   Frizzled 

GM-CSF  Granulocyte macrophage-colony stimulating factor 

HI   Heat inactivated 

HRP   Horse radish peroxidase 

ICAM   Intercellular cell adhesion molecule 

IFN   Interferon 

Ig   Immunoglobulin 

IL   Interleukin 

ITAM   Immunoreceptor tyrosine-based activating motif 

ITIM   Immunoreceptor tyrosine-based inhibitory motif 

kD   Kilodalton 

KIR   Killer cell immunoglobulin-like receptor 

LAIR   Leukocyte-associated Ig-like receptor 

LPS   Lipopolysaccharide 



xv 
 

LRP    Low density lipoprotein-related protein 

LTA   Lipoteichoic acid 

LHR   Long homologous repeat 

MAC   Membrane attack complex 

M-CSF  Macrophage-colony stimulating factor 

M-CSFR  M-CSF receptor 

MHC   Major histocompatibility class 

mRNA   Messenger RNA 

NFATc1  Nuclear factor of activated T cells cytoplasmic 1 

 NF-κB  Nuclear factor kappa-B 

NK   Natural kill 

OD   Optical density 

PAMP   Pattern associated molecular pattern 

PBMC   Peripheral blood mononuclear cell 

PBS   Phosphate buffered saline 

PCP   Planar cell polarity 

PE   Phycoerythrin 

PFA   Paraformaldehyde 

PGN   Peptidoglycan 

PRR   Pattern recognition receptor 

PS   Phosphatidylserine 

PVDF   Polyvinylidene difluoride 

qPCR   Quantitative real-time PCR 

RAGE   Receptor for advanced glycation endproducts 

RANK   Receptor activator of NF-κB 

RANKL  RANK ligand 

RIG   Retinoic acid-inducible gene 

RLR   Rig-I-like receptor 

RNA   Ribonucleic acid 

RPMI   RPMI-1640 culture medium 

RQ   Relative quantification 

SAP   Serum amyloid protein 

SCR Short consensus repeat 

SDS-PAGE Sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis 

SLE   Systemic lupus erythematosus 

SP   Surfactant protein 

TAE   Tris-acetate-EDTA 

TBS   Tris buffered saline 

TEMED  Tetramethylethylenediamine 

TLR   Toll-like receptor 

TMB   3,3’,5,5’-Tetramethylbenzidine 

TNF   Tumor necrosis factor 

TPBS   Tris-PBS 

TRAP   Tartrate-resistant acid phosphatase 

Tris   Tri-hydroxymethyl-aminomethane 

VCAM  Vascular cell adhesion molecule 

VLA   Very late antigen 

  



xvi 
 

List of publication 

 

Teo, B.H., Bobryshev, Y.V., Teh, B.K., Wong, S.H., and Lu, J. (2012). 

Complement C1q production by osteoclasts and its regulation of osteoclast 

development. Biochem J 447, 229-237. 

 

 

 

 

 



1 
 

Chapter 1 – Introduction 

 

1.1   The immune system 

  

The immune system is traditionally divided into two branches namely 

the innate and adaptive immunity (Dempsey et al., 2003; Medzhitov and 

Janeway, 2000). Innate immunity exists much earlier than adaptive immunity 

and can be found in almost all muticellular organisms. By contrast, adaptive 

immunity is only present in vertebrates and cartilaginous fish. 

 

The main difference between these two immune systems is the effector 

mechanism deployed for immune recognition. Innate immunity depends 

mainly on germline-encoded receptors which recognize highly conversed 

molecular patterns of pathogens (Dempsey et al., 2003; Medzhitov and 

Janeway, 2000). On the other hand, adaptive immunity displays more elasticity 

in which the receptors are generated somatically. This gives rise to a huge 

repertoire of receptors that are able to recognize unique antigens of the 

pathogens (Dempsey et al., 2003; Medzhitov and Janeway, 2000). For the 

immune system to be effective, the interplay and regulation of these 2 branches 

of immune systems are highly important. 

 

 

1.1.1   Adaptive immunity 

 

Adaptive immunity is able to clear infections more effectively than 

innate immunity. It depends mainly on the lymphocytes – the T and B cells – 

which have a vast repertoire of receptors that can recognize different antigens. 

Furthermore, adaptive immunity provides immunological memory and can 

deal with subsequent infections faster and more efficiently (Litman et al., 

2010). 

 

 

 



2 
 

1.1.1.1   Antigen presenting cells (APCs) 

  

Providing the link between innate and adaptive immunity, APCs are 

critical regulators of the immune system (Vyas et al., 2008). Present in many 

tissues, they carry out a sentinel function in detecting pathogens. Upon 

encountering pathogens, these cells internalize and process these pathogens. 

They then present the proteolytic peptides in association with major 

histocompatibility complex (MHC) and engage antigen-specific T cells, 

resulting in the activation of the adaptive immunity. Depending on the MHC 

molecule – MHC class I or MHC class II molecule – cell-mediated or humoral 

immunity will be induced respectively. 

  

 DCs, macrophages and B cells are professional APCs and they possess 

several characteristics which allow efficient antigen presentation 

(Guermonprez et al., 2002; Rodriguez-Pinto, 2005; Unanue, 1984). Recent 

studies have also indicated that osteoclasts are able to present antigens to T 

cells and activate adaptive immunity (Grassi et al., 2011; Kiesel et al., 2009; Li 

et al., 2010). 

 

 

1.1.1.2   T cells 

  

Two major classes exist in T cells and these two classes differ in their 

effector functions (Koch and Radtke, 2011). They are identified by the 

expression of cell surface proteins CD4 and CD8. CD4 T cells are T helper 

cells which are involved in the activation of humoral immunity through the 

recognition of MHC class II-peptide complex presented by APCs (Vyas et al., 

2008). On the other hand, CD8 T cells are cytotoxic T cells which recognize 

MHC class I-peptide complex of APC or host cells and are involved in cell-

mediated immunity (Vyas et al., 2008).  

 

During development in the thymus, T cells undergo somatic 

rearrangement of the genes encoding T cell receptor (TCR) (Koch and Radtke, 

2011; Litman et al., 2010). This gives rise to vast numbers of T cell clones 
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having unique TCRs which recognize different peptides. Positive and negative 

selection allows T cells which recognize self MHC molecules but not self 

peptide complexed with self MHC molecule to survive (Koch and Radtke, 

2011). This ensures that the selected T cells are MHC-restricted and self-

tolerant. 

 

 

1.1.1.3   B cells 

 

 Similar to the T cells, B cells also undergo somatic rearrangement for 

the genes encoding B cell receptor (BCR – membrane bound antibody) in the 

bone marrow (Hardy and Hayakawa, 2001; LeBien and Tedder, 2008; Litman 

et al., 2010). This gives rise to a high repertoire of B cell clones which are able 

to recognize diverse antigens. To prevent autoreactive B cells, receptor editing 

is triggered for autoreactive BCRs before clonal deletion is activated. Clonal 

deletion removes B cells that have high affinity to self antigen ensuring self 

tolerance (Hardy and Hayakawa, 2001; LeBien and Tedder, 2008).  

 

 Upon activation by armed T helper cells, B cells differentiate into 

plasma cells and this enables the secretion of antibodies (LeBien and Tedder, 

2008). Differentiation of B cells is accompanied by somatic hypermutation and 

class switching which increases the repertoire for effective immune response.  

  

Despite the diversity and versatility of adaptive immunity, 4 -7 days are 

required for antigen presentation and clonal expansion so that the adaptive 

immune system can mount an effective immune response (Dempsey et al., 

2003). During this period, pathogens are able to damage the host. Thus, innate 

immunity plays an important role in controlling the pathogens as its response is 

immediate. This provides sufficient time for the adaptive immune response to 

mature and assist in the eventual clearance of invading pathogens if the innate 

immune response is insufficient in removing the pathogens. 
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1.1.2   Innate immunity 

 

Besides the physical and chemical barriers that prevent the entry of 

pathogens, innate immunity is the first line of defence against these pathogens. 

The innate immune system consists of cellular and humoral responses. 

 

 

1.1.2.1   Cellular response 

  

Upon encountering pathogens, cellular mediators such as macrophages, 

neutrophils and natural killer (NK) cells are activated and recruited to the site 

of infection (Soehnlein and Lindbom, 2010). Macrophages and neutrophils are 

phagocytes which are responsible for the phagocytosis of the microbes. 

Phagocytes depend on germline receptors that recognize conserved motifs on 

pathogens but not on host cells (Dempsey et al., 2003). These phagocytic 

receptors include scavenger receptors, mannose receptor and Dectin-1 which 

bind to surface motifs of pathogens and mediate their uptake (Underhill and 

Ozinsky, 2002). In addition, pathogens are opsonized by humoral mediators 

such as complement and antibodies and this allows the phagocytosis of 

pathogens by complement receptors and Fc receptors respectively (Underhill 

and Ozinsky, 2002). After ingesting the pathogens, the phagocytes produce 

toxic mediators such as nitric oxide, reactive oxygen species and hydrogen 

peroxide to kill the pathogens. 

 

 NK cells are involved mainly in anti-viral immunity. They express 

various activating and inhibitory receptors that help to stimulate or dampen cell 

reactivity respectively (Bryceson et al., 2006; Vivier et al., 2011). An example 

is the MHC class I-specific inhibitory receptors that include killer cell 

immunoglobulin-like receptors (KIRs) and CD94/NKG2A heterodimers 

(Bryceson et al., 2006; Vivier et al., 2011). In virus-infected cells, cell surface 

MHC class I molecules are downregulated and the lack of signaling from 

inhibitory receptors activate the NK cells, resulting in the killing of the virus-

infected cells (Vivier et al., 2011). 
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1.1.2.2   Humoral response 

 

Other than cellular response of innate immunity, the humoral response 

also plays an important role in the first line of defence against invading 

pathogens. Anti-microbial peptides, cytokines, chemokines and complement 

form this part of innate immunity (Dempsey et al., 2003). 

 

Anti-microbial peptides are small, cationic proteins and an example is 

defensins. These peptides interact with negatively charged membrane of Gram-

negative bacteria, disrupt the membrane and allow binding with other anionic 

targets, thus killing the bacteria in the process (Hancock and Scott, 2000). 

Found mainly in the mucous layer covering and protecting epithelial tissues, 

these peptides are produced by epithelial cells, neutrophils and intestinal 

Paneth cells (Dempsey et al., 2003; Hancock and Scott, 2000). 

 

 Other than killing the pathogens directly through phagocytosis, 

phagocytes also induce the next phase of innate immunity by causing 

inflammation. Inflammation recruits other immune cells to the site of infection 

and is dependent on the cytokines and chemokines produced by phagocytes 

(Dempsey et al., 2003; Takeuchi and Akira, 2010).  Cytokines such as TNF-α, 

interleukin (IL)-1β and IL-6 and chemokines such as CCL2 and CXCL8 are 

produced during the process. The production of cytokines and chemokines are 

dependent on the recognition of pathogen-associated molecular patterns 

(PAMPs) – conserved and repetitive surface structures on pathogens – by 

germline-encoded pattern recognition receptors (PRRs) (Dempsey et al., 2003; 

Takeuchi and Akira, 2010).  

 

 There are 4 classes of PRR families identified and they include Toll-

like receptors (TLRs), C-type lectin receptors (CLRs), Retinoic acid-inducible 

gene (RIG)-I-like receptors (RLRs) and NOD-like receptors (NLRs). They can 

be further classified into transmembrane (TLRs and CLRs) and cytosolic 

(RLRs and NLRs) PRRs (Takeuchi and Akira, 2010). Phagocytic receptors 

such as scavenger receptors, mannose receptor and Dectin-1 are also PRRs. 

Engagement of PRRs triggers various intracellular signaling cascades which 
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eventually leads to transcriptional and translational expression of inflammatory 

cytokines and chemokines, helping in the clearance of infections (Takeuchi 

and Akira, 2010). 

 

 

1.1.3   Complement system 

 

The complement system plays an important role in the humoral arm of 

innate immunity by helping to defend against bacterial infections, linking the 

innate and adaptive immune systems and clearing of immune complexes and 

products of inflammation (Walport, 2001). First discovered in 1896, the 

complement system is a heat-labile component of the serum and complements 

the antibacterial properties of heat-stable antibodies. To date, more than 30 

complement proteins are found which consist of both plasma and membrane 

associated proteins (Walport, 2001). These proteins formed a series of 

proteolytic reactions, amplifications and complex formations to mediate their 

functions. 

 

There are three different pathways for the activation of the complement 

system and they are namely the classical pathway, the lectin pathway and the 

alternative pathway (Figure 1.1) (Dunkelberger and Song, 2010; Walport, 

2001). The three pathways differ from one another at the initiation step in 

which they recognize different targets for activation (Dunkelberger and Song, 

2010; Walport, 2001). For the classical pathway, it is antibody-dependent and 

is activated upon the binding of C1q to immune complexes (Duncan and 

Winter, 1988). The lectin pathway is initiated through the binding of mannose-

binding lectin (MBL) on specified carbohydrate patterns on microbial 

pathogens (Fujita et al., 2004). Lastly, the alternative pathway is constantly 

activated but at low levels. Full activation of the alternative pathway is 

prevented by surface-bound and soluble regulators on host cells. However, this 

inhibition is absent on foreign cells which allows their removal from the body 

(Ricklin et al., 2010; Thurman and Holers, 2006). 
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 Despite the differences between the three pathways, all of them 

converge in the formation of the C3 convertase (C4bC2a for classical and 

lectin pathways and C3bBb for alternative pathway) (Dunkelberger and Song, 

2010; Walport, 2001). This allows the clearance of the pathogens via different 

means such as phagocytosis of the opsonized pathogens by phagocytes, 

production of anaphylatoxins for the recruitment of inflammatory cells and 

direct lysis of the pathogens through the formation of the membrane attack 

complex (MAC)  (Dunkelberger and Song, 2010; Walport, 2001). 

 

 

Figure 1.1. The complement pathways. The complement system can be 

activated via three different pathways namely classical, lectin and alternative 

pathways. Each pathway differs from each other mainly at the initiation stage 

in which different ligands are required for activation. In the classical pathway, 

the recognition of clustered Fc regions of antibodies (IgG or IgM) by C1q 

activates the pathway. For the lectin pathway, mannose-binding lectin (MBL) 

binds to specific carbohydrate structures on microbes and activates the 

pathway. The alternative pathway consists of low level constitutive 

complement activation which is regulated by host cells.  In the absence of such 

regulators on pathogens, the pathway is fully activated and caused the removal 

of the pathogens. All three pathways converged in the formation of the C3 

convertase C4bC2a for classical and lectin pathways and C3bBb for alternative 

pathway. This leads to different modes of action such as inflammation, 

opsonization and lysis which aid in the removal of invading threat. The figure 

is adapted from Dunkelberger and Song, 2010.  
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1.1.4   Classical complement pathway 

 

 The classical pathway is the first complement pathway to be described 

and plays an important role in antimicrobial defense (Walport, 2001). It can 

bind to pathogens directly or indirectly after recognition by antibodies. In 

addition, the classical pathway is known to be involved in immune tolerance 

(Lu et al., 2008) and rejection in xenograft transplantation (Sacks and Zhou, 

2012). 

 

The pathway is initiated by C1, a 790 kD pentameric complex. C1 

complex (C1qC1r2C1s2) consists of a recognition subunit C1q and a catalytic 

subunit calcium-dependent tetramer C1r2C1s2 in a ratio of 1:2:2 (Arlaud et al., 

2002). The C1r and C1s molecules exist as proenzymes which are single-

chained serine proteases and they exist as two-chain proteases after activation 

(Arlaud et al., 2002). 

  

Upon binding to the fragment crystallizable (Fc) regions of the 

antibody-antigen complex by C1q, a conformation change is induced in the 

C1complex and this results in the autoactivation of C1r. Subsequently, the 

active C1r cleaves and activates C1s. Activated C1s then cleaves C4, forming 

C4a and C4b. C4b binds convalently to the bacteria surface and recruits C2 

which is cleaved by C1s. This produces C2a and C2b.  C2a is a serine protease 

and together with C4b, they form the C3 convertase (C4bC2a). The C3 

convertase cleaves C3 into C3a and C3b and the resulting C3b binds to C4b in 

the C3 convertase, forming the C5 convertase (C4bC2aC3b).  C3b also acts as 

the acceptor site for C5 in C5 convertase which cleaves C5 into C5a and C5b. 

This initiates the formation of the MAC with C5b binding to C6 and the 

C5bC6 complex will then recruit C7. The binding of C7 to C5bC6 complex 

induces a conformation change in the molecule, exposing the hydrophobic 

region and allow the insertion of the complex (C5bC6C7) into the membrane 

of the bacteria. C8 is subsequently recruited and similar to C7, the association 

of C8 to C5bC6C7 complex exposes its hydrophobic site and causes the 

insertion of C8 into the membrane. The resulting complex (C5bC6C7C8) then 

recruits and induces the polymerization of 10 - 16 C9 molecules into the 
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membrane of the bacteria, forming the terminal MAC. This results in pore 

formation on the bacteria causing the eventual lysis of the bacteria. 

 

 During the process of complement activation, other molecules formed 

as a result of proteolytic cleavages are also involved in the host defense against 

the pathogens (Walport, 2001). For example, C3a, C4a and C5a are 

anaphylatoxins which are involved in the chemotaxis and activation of 

leukocytes to the affected sites (Walport, 2001; Zhou, 2012). The initiation and 

regulation of inflammation by anaphylatoxins assist in the elimination of the 

infection (Zhou, 2012). Furthermore, opsonins such as C3b and its proteolytic 

fragments and C4b are deposited on the surfaces of the pathogens. This 

enhances the removal of the pathogens by phagocytes through phagocytosis 

(Underhill and Ozinsky, 2002). 
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1.2   C1q 

 

1.2.1   Structure of C1q 

 

C1q is a 460kD macromolecule made up of 18 polypeptides consisting 

of 6 A, 6 B and 6 C chains (Figure 1.2) (Lu et al., 2008).  Each polypeptide 

consists of a collagenous N-terminal and a globular C-terminal (Kishore and 

Reid, 1999). The A and B chains dimerize with the help of a disulphide bond at 

the N-terminal ends to form a heterodimer (Reid and Porter, 1976; Yonemasu 

and Stroud, 1972). Similarly, 2 C chains form a homodimer through the 

formation of a disulphide bond at the N-termini (Reid and Porter, 1976; 

Yonemasu and Stroud, 1972). The A-B heterodimer and a single C chain form 

a triple helix at the collagen-like regions and this brings 2 such structures 

(ABC heterotrimer) together through the C-C homodimer (Lu et al., 2008; 

Reid and Porter, 1976). Further interactions at the collagenous N-termini allow 

three ABC-CBA structures to form the “stalk” of the functional C1q molecule 

(Lu et al., 2008; Reid and Porter, 1976). Due to disruptions in the Gly-Xaa-

Yaa motifs of the collagenous domains, the “stalk” diverges into 6 “arms” of 

heterotrimeric ABC structures followed by their globular heads (Reid and 

Porter, 1976). For the globular heads, they exist as compact, almost spherical 

heterotrimeric assemblies which are held together by non-polar interactions 

(Gaboriaud et al., 2003). This explains the ability of C1q to recognize a wide 

range of ligands (Gaboriaud et al., 2003; Kojouharova et al., 2003). Under the 

electron microscope, the functional C1q molecule is viewed as a “bundle-of-

tulips” (Knobel et al., 1975). 

 

 In human, the C1q genes are found highly clustered within a genomic 

region of approximately 25 kb in chromosome 1 in the order of C1qA-C1qC-

C1qB (Sellar et al., 1991). The clustered genes allowed the coordinated 

expressions of these genes under basal and induced conditions (Chen et al., 

2011). This accounts for the 1:1:1 ratio for the three C1q subunits in the 

assembly of the functional C1q molecule. 
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Figure 1.2. Formation of functional C1q molecule. Each chain consists of a 

collagenous N terminus and globular C terminus. Disulphide bonds are formed 

between the A and B chains and 2 C chains giving rise to A-B and C-C hetero- 

and homodimers respectively. Further interactions at the collagenous and 

globular domains bring the A, B and C chains together, forming a 6-chain 

structure. More interactions at the collagenous N termini allows three such 

structures to come together to form the functional C1q molecule. The figure is 

adapted from Lu et al., 2008. 

 

 

1.2.2   Role of C1q in complement activation 

 

 As the recognition subunit in the classical pathway, C1q binds to the 

Cγ2 and Cμ3 domains of the fragment crytallizable (Fc) regions of 

immunoglobulin (Ig) G or IgM bounded on immune complexes respectively 

(Cooper, 1985; Kishore and Reid, 1999). This is achieved through its 

heterotrimeric globular heads with all three chains involved though the 

globular region of B chain may have a more central role in C1q-IgG interaction 

(Kojouharova et al., 2004). C1q binds aggregated IgG approximately 10,000-

fold more efficiently than soluble monomeric IgG accounting for the activation 

of C1 complex on immune complexes. Among the IgG subclasses, C1q has the 

strongest interaction with IgG3 followed by IgG1 and IgG2 whereas IgG4 

shows minimal binding to C1q (Cooper, 1985; Kishore and Reid, 1999). 

 

 Other than activating the classical pathway through antibody-dependent 

mechanism, C1q is able to bind to a wide range of other ligands to activate the 

complement system (Table 1) (Cooper, 1985). These include Gram-positive 

and Gram-negative bacteria, viruses, cellular and subcellular structures from 

damaged cells, apoptotic cells, proteins, carbohydrates, lipids and polyanions.  

There are no common structures in these diverse ligands and some of them can 

activate the complement system more effectively than Igs. C1q binds these 
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ligands mainly through its globular heads though the collagen tails are 

involved occasionally (Cooper, 1985; Kishore and Reid, 1999).  

 

Table 1.1. Activators of the classical complement pathway. The table is 

adapted from Cooper, 1985 

 
 

Immune activators 

  Antigen–antibody complexes containing IgM or IgG 

 

Non-immune activators 

  Various bacterial strains (Escherichia coli, Salmonella and Klebsiella) 

  Mycoplasma (Mycoplasma pneumoniae) 

  Various viruses (Sindbis, Newcastle disease and Epstein–Barr virus) and 

retroviruses [human immunodeficiency virus (HIV)] 

  Parasites (Schistosoma mansoni and Trypanosoma brucei) 

  Cellular and subcellular membranes, and apoptotic cells 

  Proteins [C-reactive protein (CRP), long pentraxin PTX3, myelin, β-

amyloid peptide, serum amyloid P component and prion protein) 

  Oligosaccharides and polysaccharides 

  Lipids (lipid A, cardiolipin and enzymatically modified form of low-

density lipoprotein) 

  Polyanions (heparin and DNA) 
  

 

 

1.2.3   Clearance of apoptotic cells by C1q 

 

 C1q is involved in the clearance of apoptotic cells through direct 

opsonization or indirect opsonization via complement activation (Lu et al., 

2008; Nayak et al., 2010).  This is mainly due to the ability of C1q to bind to 

diverse ligands leading to various effector mechanisms in removing the 

apoptotic cells. 

 

 

1.2.3.1   Direct opsonization of apoptotic cells 

 

 During apoptosis, cells will undergo multiple changes which include 

blebbing and exposure of intracellular molecules on their surfaces (Elmore, 

2007). C1q binds to apoptotic blebs (Korb and Ahearn, 1997) and this is 

mediated through the interaction between its globular heads and surface-
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exposed DNA and phosphatidylserine (PS) on apoptotic blebs (Paidassi et al., 

2008a; Paidassi et al., 2008b). C1q then binds to calreticulin/CD91complex on 

the cell surfaces of phagocytes through its collagenous tails to calreticulin 

(Ogden et al., 2001). The apoptotic cells are eventually removed by phagocytes 

via CD91-mediated macropinocytosis (Ogden et al., 2001). 

 

 

1.2.3.2   Opsonization of apoptotic cells through complement activation 

 

 C1q can also enhance apoptotic cell clearance by complement 

activation. One of the mechanisms is mediated through the binding of C1q to 

polyclonal IgM on apoptotic cells. This results in C3 deposition on apoptotic 

cells which enhances clearance by phagocytes (Ogden et al., 2005; Zwart et al., 

2004). However, IgM binds only to late but not early apoptotic cells (Zwart et 

al., 2004). 

 

 Many molecules exposed on apoptotic cells can bind to C1q directly or 

indirectly, activate the complement system and results in deposition of 

opsonins on apoptotic cells. On apoptotic cells, C1q binds directly to DNA 

(Jiang et al., 1992) and PS (Mevorach et al., 1998) whereas it binds indirectly 

to phosphorylcholine and chromatin through CRP and serum amyloid protein 

(SAP) (Lu et al., 2008). Complement activation by C1q is likely to be more 

effective in removing apoptotic cells as a single molecule can lead to 

deposition of multiple C3 molecules provided C3 activation does not lead to 

excessive inflammation and tissue damage (Lu et al., 2008). 

 

 

1.2.4   Immune modulation of cells associated with C1q 

 

 C1q can regulate the functions and activities of various immune cells 

such as macrophages, DCs and lymphocytes (B and T cells) (Lu et al., 2008; 

Nayak et al., 2010). This leads to an effective immune system due to the 

coordination of these immune cells. 
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1.2.4.1   Regulation of macrophages 

 

 Macrophages are scavengers in our body and they interact with both 

foreign and host cells. Besides phagocytic activities, macrophages are able to 

secrete inflammatory mediators to aid in the immune response. C1q is able to 

interact with soluble and cellular molecules of both foreign and host cells to 

affect the activities of macrophages (Lu et al., 2008). 

 

 Foreign cells such as bacteria are targets for the immune system. C1q is 

shown to bind to and directly opsonizes Listeria monocytogenes for enhanced 

phagocytosis by macrophages (Alvarez-Dominguez et al., 1993). This process 

also results in increased cytotoxicity to the bacteria due to upregulation of 

IFNγ-induced superoxide and nitric oxide production by macrophages 

(Alvarez-Dominguez et al., 2000). In additional, C1q can induce complement 

activation on Streptococcus pneumonia in which direct binding of C1q to the 

bacteria is not required (Kang et al., 2006). Both C1q and S. pneumonia bind to 

lectin receptor SIGN-R1 and the binding of C1q to SIGN-R1 causes direct 

complement activation, leading to C3 deposition on S. pneumonia (Kang et al., 

2006).  

  

C1q can also affect macrophages directly and help in the removal of 

pathogens. Soluble C1q, produced endogenously and increased by Lipid A 

(Jiang et al., 1996a), is shown to upregulate the expression of tumor necrosis 

factor (TNF)-α receptor in macrophages (Jiang et al., 1996b). This enhances 

autocrine signaling by TNF-α, resulting in increased nitric oxide production 

though nitric oxide synthase and causes more cytotoxicity to the bacteria (Jiang 

et al., 1996a; Jiang et al., 1996b). Furthermore, soluble C1q induces TNF-α 

and C3 production in macrophages which helps in enhanced phagocytosis 

(Bajtay et al., 2000). On the other hand, immobilized C1q has been shown to 

engage CD93 on macrophages directly and augment Fc receptor- and CR1-

dependent phagocytosis in macrophages (Bobak et al., 1988; Bobak et al., 

1987; Nepomuceno et al., 1997).  
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 As mentioned earlier in 1.2.3, clearance of apoptotic cells can be 

enhanced by C1q through direct and indirect opsonization (Lu et al., 2008; 

Nayak et al., 2010). This allows efficient phagocytosis by macrophages and 

maintains self tolerance. 

 

 

1.2.4.2   Regulation of DCs 

 

 DCs are sentinels of the immune system and they are involved in 

detecting pathogens and subsequent activation of adaptive immunity. C1q is 

able to modulate their functions through apoptotic cells or during their 

differentiation from monocytes. 

 

 C1q-mediated opsonization is required for the uptake of apoptotic cells 

by DCs although questions remain if C1q alone can mediate apoptotic cell 

uptake (Baruah et al., 2006; Fraser et al., 2009; Nauta et al., 2004). 

Furthermore, C1q-opsonized apoptotic cells modulate cytokine production by 

DCs (Baruah et al., 2006; Fraser et al., 2009; Nauta et al., 2004). A study 

showed increased IL-12p70 production by DCs when stimulated with both LPS 

and C1q-opsonized apoptotic cells (Baruah et al., 2006).  However, two other 

studies showed more similar results. The first study indicated increased TNF-α, 

IL-6 and IL-10 but unchanged IL-12p70 levels in the presence of C1q-

opsonized apoptotic cells (Nauta et al., 2004). Another study showed LPS and 

C1q-opsonized late apoptotic cells induced TNF-α, MCP-1 and IL-10 but 

inhibit MIP-1α production (Fraser et al., 2009). 

 

 Besides affecting DCs through C1q-opsonized apoptotic cells, C1q can 

regulate the differentiation of DC from monocytes (Castellano et al., 2007; 

Csomor et al., 2007; Fraser et al., 2009; Teh et al., 2011). DCs differentiated in 

the presence of soluble C1q gave rise to immature cells with high phagocytic 

capacity and low surface expression of CD80, CD83 and CD86 (Castellano et 

al., 2007). No difference in phagocytic capacity was observed between these 

DCs and normal DCs. When exposed to LPS, there was a significant inhibition 

in the production of TNF-α, IL-6 and IL-10 accompanied with limited 
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upregulation of CD80, CD83 and CD86. These DCs also had impaired ability 

in stimulating allogeneic T cells and IFNγ production by these T cells 

(Castellano et al., 2007).  

 

 For DCs differentiated on immobilized C1q, there are conflicting 

results from different studies (Csomor et al., 2007; Fraser et al., 2009; Teh et 

al., 2011). One study showed immobilized C1q induced maturation of DCs as 

indicated by the upregulation of co-stimulatory molecules CD83, CD86, CCR7 

and MHC II (Csomor et al., 2007). Furthermore, these DCs produced more IL-

10, IL-12 and TNF-α and stimulated both proliferation and IFNγ production of 

allogeneic T cell proliferation (Csomor et al., 2007). However, another recent 

study shows contrasting results for DCs differentiated on immobilized C1q 

(Teh et al., 2011). These DCs, both immature and mature, had similar 

expression of cell surface immune molecules like MHC class I, MHC class II, 

CD40, CD80, CD83, CD86 and CCR7 as normal DCs though they 

phagocytosed more apoptotic cells than normal DCs. When stimulated, they 

showed increased IL-10 level but reduced IL-12 and IL-23 levels. There was 

reduced induction of Th1 and Th17 T cells when incubated with allogeneic T 

cells and a concomitant decrease in the production of IFNγ and IL-17 by these 

T cells (Teh et al., 2011). Another study also showed similar results when DCs 

differentiated on immobilized C1q produced less cytokines such as IL-1β, 

TNF-α, MCP-1, IL-6 and IL-10 as compared to control DCs (Fraser et al., 

2009).  

 

  

1.2.4.3   Regulation of B and T cells 

 

 B and T cells are important regulators of adaptive immunity. Both cell 

types express C1q receptors and C1q has been shown to regulate the functions 

of both lymphocytes (Nayak et al., 2010).  

 

Aggregated C1q enhanced Ig production in B cells through its collagen 

tail (Daha et al., 1990). The increased Ig production by C1q was also validated 

in another study using activated B cells (Young et al., 1991).  Using C1q 
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knockout mice, the absence of C1q decreased negative selection of 

autoreactive conventional B cell and increased positive selection of B1b B 

cells and IgM autoantibodies by intracellular antigens exposed during 

apoptosis, leading to reduction in B cells tolerance (Ferry et al., 2007).  

 

 C1q was shown to inhibit proliferation and activation of T cells (Chen 

et al., 1994). In C1q knockout mice, IFNγ production was reduced in antigen 

specific T cells (Cutler et al., 1998). This led to abnormal humoral response 

and production of IgG2a and IgG3was impaired (Cutler et al., 1998). However, 

in humans, immobilized C1q did not affect IFNγ  level but it inhibited IL-4 

production and enhanced IL-10 production in T cells (Lu et al., 2007). 

 

 

1.2.4.3   Regulation of other immune cells 

 

 C1q has also been shown to modulate the activities of other immune 

cells. It can activate microglial cells and attenuate their proliferation (Farber et 

al., 2009). Furthermore, C1q enhanced the uptake of apoptotic neurons and its 

blebs by microglial cells and suppressed the subsequent production of 

proinflammatory cytokines such IL-1α, IL-1β, IL-6 and TNF-α by LPS 

stimulation (Fraser et al., 2010). 

 

 For platelets, C1q alone can cause their aggregation and activation 

(Peerschke et al., 1993). It also augments platelet aggregation and activation in 

the presence of immune complexes during tissue damage and inflammation 

(Peerschke and Ghebrehiwet, 1997). C1q is shown to induce superoxide 

production in neutrophils through its collagen tail (Tenner and Cooper, 1982).  

A study indicates that C1q is required for IL-6 production by mast cells when 

stimulated with immune complexes (Edelson et al., 2006).  Furthermore, the 

proliferation of mast cells was also inhibited by C1q due to decreased DNA 

synthesis (Ghebrehiwet et al., 1995). 
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1.2.5   Additional functions mediated by C1q 

 

 C1q also regulates various processes such as adhesion, chemotaxis, 

pregnancy and cancer formation (Lu et al., 2008; Nayak et al., 2010). Many 

cell types are influenced by C1q and these cells mainly have C1q receptors. 

  

 The interaction of the C1q collagen tail and its receptor enhanced 

fibroblast adhesion (Bordin et al., 1990).  C1q also induces adhesion and 

spreading of human dermal microvascular endothelial cells (HDMVEC) which 

required the cooperation of C1q receptors and β1 integrins (Peerschke et al., 

1996). Immune complexes containing C1q enhanced endothelial cells 

adhesiveness to leukocytes by increasing endothelial expression of adhesion 

molecules such as E-selectin, intercellular cell adhesion molecule (ICAM)-1 

and vascular intercellular adhesion molecule 1 (VCAM)-1 (Lozada et al., 

1995). In addition, C1q has been shown to regulate adhesion of monocytes (Ma 

et al., 2012) and platelets (Peerschke and Ghebrehiwet, 1997; Peerschke et al., 

1993). 

 

 C1q is able to regulate chemotaxis of various cell types which includes 

DCs (Vegh et al., 2006), eosinophils (Kuna et al., 1996), fibroblasts (Oiki and 

Okada, 1988), mast cells (Ghebrehiwet et al., 1995) and neutrophils (Leigh et 

al., 1998). The process is highly dependent on C1q receptors present on these 

cells (Ghebrehiwet et al., 1995; Kuna et al., 1996; Leigh et al., 1998; Oiki and 

Okada, 1988; Vegh et al., 2006). It is also shown that C1q was involved in 

chemokinesis of mast cells (Ghebrehiwet et al., 1995). 

 

During pregnancy, the presence of C1q on the surface of decidual 

endothelial cells (DECs) acts as an intercellular molecular bridge between 

DECs and endovascular trophoblasts (Bulla et al., 2008).  C1q, together with 

gC1qR and β1 integrins, helps in the adhesion and migration of trophoblasts, 

allowing trophoblasts to invade the deciduas during placentation (Agostinis et 

al., 2010).  C1q knockout mice exhibited defective invasion by trophoblasts 

and resulted in restricted embryonic growth (Agostinis et al., 2010). 
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 C1q can modulate the proliferation and cell death of cancer cells. In 

addition of inhibiting the proliferation of mast cells (Ghebrehiwet et al., 1995), 

microglial cells (Farber et al., 2009) and T cells (Chen et al., 1994), C1q has an 

anti-proliferative effect on several malignant cell lines (Ghebrehiwet et al., 

1990). C1q activates tumor suppressor WOX1 and destabilizes cell adhesion in 

prostate cancer cells, leading to apoptosis of the cells (Hong et al., 2009). The 

same study also indicated C1q induced similar WOX1-mediated apoptosis in 

breast cancer cells and neuroblastoma cells (Hong et al., 2009).  

 

 

1.2.6   Diseases associated with C1q 

 

Given that C1q plays multiple roles in many different functions, 

immune or non-immune, and affects diverse cell types, it is not surprising that 

C1q is associated with a wide array of diseases. These diseases include 

autoimmune, cardiovascular, neurological and infectious diseases in which 

C1q plays a direct or indirect role in their manifestations. 

 

 

1.2.6.1   SLE 

 

SLE is a systemic autoimmune disease which affects multiple organs. It 

has diverse clinical symptoms and these include rash, arthritis, anaemia, 

thrombocytopenia, serositis, nephritis, seizure and psychosis (Rahman and 

Isenberg, 2008). Most of the patients are predominantly females but it is not 

known if it is due to female hormones having a critical role in causing the 

disease, the protective effects of male hormones or the effects of genes on the 

X chromosome (Rahman and Isenberg, 2008). 

 

In contrast to the confusion over the predominant nature of SLE in 

females, great strides have been made in the understanding of the disease.  SLE 

is characterized by the production of anti-nuclear autoantibodies, formation 

and deposition of immune complexes and extensive tissue damage (Lewis and 

Botto, 2006; Rahman and Isenberg, 2008). Many studies involving different 
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populations have also shown the polygenic nature of SLE (Deng and Tsao, 

2010). Out of these genes, hereditary deficiencies in early complement proteins 

of the classical pathway have been shown to be a strong risk factor for SLE 

(Lewis and Botto, 2006; Truedsson et al., 2007).  

 

Patients with hereditary complement deficiencies tend to have an early 

onset of SLE and have more severe disease presentations (Pickering et al., 

2000). Furthermore, the female to male predominance in these patients is lost 

as compared to the majority of SLE patients (Pickering et al., 2000). A 

hierarchal association is observed that the position of the early complement 

factors in the classical pathway affects the susceptibility factor for SLE in the 

absence of such factors (Lewis and Botto, 2006). C1q has the strongest 

association with SLE in which C1q deficiency has a 93% risk of developing 

SLE. This is followed by a risk factor of 75% and 10% for C4 and C2 

deficiency respectively (Lewis and Botto, 2006).  

 

As C1q is required for the clearance of apoptotic cells (Korb and 

Ahearn, 1997; Ogden et al., 2001; Quartier et al., 2005), the absence of C1q 

caused the accumulation of apoptotic cells and exposure of autoantigens 

(Casciola-Rosen et al., 1994). This eventually leads to the formation of 

autoantibodies observed in SLE patients (Rahman and Isenberg, 2008). 

Furthermore, C1q deficiency resulted in impaired clearance of immune 

complexes (Schifferli et al., 1986) which explained the presence of such 

complexes in different tissues. Although C1q deficient individuals are rare, 

many SLE patients displayed low levels of C1q during renal flares (Sinico et 

al., 2009; Tsirogianni et al., 2009) and this further strengthens the role of C1q 

in SLE. 

 

Despite its seemingly important role in the prevention of SLE, C1q has 

also been implicated in the inflammatory stage of the disease (Cook and Botto, 

2006; Lewis and Botto, 2006; Rahman and Isenberg, 2008; Truedsson et al., 

2007). Immune complexes, deposited or formed via the binding of 

autoantibodies to autoantigens, found in SLE patients are able to activate the 

classical complement pathway via C1q. This results in the generation of 
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anaphylatoxins (C3a and C5a), recruitment of inflammatory cells and release 

of inflammatory mediators, causing tissue injury and enhancing the 

inflammation process (Cook and Botto, 2006; Rahman and Isenberg, 2008). 

Thus, C1q acts as a double edged sword in SLE.  

 

To establish the association between C1q deficiency and SLE, Botto 

and colleagues (1998) first generated C1q-deficient mice in which the C1qa 

gene was disrupted by gene targeting. These C1qa
-/-

 mice did not have 

detectable levels of circulating C1q protein and haemolytic activity was also 

absent thus assimilating C1q-deficient patients (Botto et al., 1998). These mice 

displayed highly similar phenotypes as C1q-deficient patients and the 

phenotypes include anti-nuclear autoantibodies, glomerulonephritis with 

immune complex deposits and presence of apoptotic bodies in glomeruli (Botto 

et al., 1998). Thus, this supports the hypothesis that C1q deficiency leads to 

SLE. 

 

However, the development of the lupus-like phenotypes was dependent 

on the mice strain used as these phenotypes were found mainly in 129/Ola x 

C57BL/6 hybrid strains but not but not pure 129/Ola inbred mice (Botto et al., 

1998). Another study has also validated that background genes played a 

significant role in the development of the autoimmune disease in the absence 

of C1q (Mitchell et al., 2002). This is hardly surprising given the polygenic 

nature of lupus in both human (Deng and Tsao, 2010) and mice (Morel et al., 

1994; Vyse and Kotzin, 1998). 

 

 

1.2.6.2   Cardiovascular diseases 

 

 C1q and its associated complement activation are involved in 

cardiovascular diseases. Complement proteins including C1q were found 

upregulated at mRNA and protein levels in human heart at areas of old and 

recent myocardial infarction (Yasojima et al., 1998). Similarly, C1q 

accumulation was observed in canine model of myocardial infarction with the 

recruitment of neutrophils in C1q-rich ischemic regions (Rossen et al., 1985). 
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Furthermore, C1q can bind to CRP, which was found in infarcted heart tissues 

of patients who died of acute myocardial infarction (Lagrand et al., 1997), 

leading to complement activation (McGrath et al., 2006). These studies suggest 

that complement activation aggravates the damage during myocardial 

infarction.  

 

 Beside the involvement of C1q in myocardial infarction, it is also 

linked to atherosclerosis. C1q can bind modified low density lipoproteins and 

activate the complement system (Biro et al., 2007). In addition, C1q can 

associate with endothelial cells, trigger complement activation and worsen 

inflammation of the endothelium (Yin et al., 2007). Further complement 

activation can occur through vascular injury during atherosclerosis which is 

due to platelet activation after binding to C1q (Peerschke et al., 2009). These 

factors contribute to the pathogenesis of atherosclerosis by complement 

activation. 

 

 

1.2.6.3   Neurological diseases 

 

 C1q plays contrasting roles in the central nervous system (CNS). Firstly, 

it is involved in synapse pruning during brain development (Stevens et al., 

2007). C1q knockout mice exhibited increased epilepsy due to the failure to 

prune excessive synapses during development (Chu et al., 2010). Microglial 

cells are phagocytes of the CNS and help in removing debris during 

development and injury.  C1q has a protective role in which it enhances the 

removal of apoptotic cells by microglial cells and suppresses proinflammatory 

cytokines production during early stages of cell death (Fraser et al., 2010). A 

study showed the involvement of C1q in clearing extracellular neuromelanin 

and degenerated neurons from the substantia nigra in Parkinson disease, 

preventing inflammation (Depboylu et al., 2011).  

 

 On the other hand, C1q and complement activation are involved in 

many neurological diseases contributing to the pathology of the diseases by 

causing inflammation and tissue injury. C1q can activate microglial cells and 
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induce the production of proinflammatory cytokines (Farber et al., 2009).  In 

the rat model of global ischemia, biosynthesis of C1q by microglial cells were 

upregulated and C1q was also found in the cerebrospinal fluid (Schafer et al., 

2000). In humans, C1q, C3c and C4d depositions were detected in ischemic 

lesions (Pedersen et al., 2009). This implies that proinflammatory activities of 

C1q may contribute to the pathology of cerebral ischemia (Pedersen et al., 

2009; Schafer et al., 2000). Alzheimer’s disease is a neurodegenerative disease 

characterized by deposition of β-amyloid plaques and neurofibrillary tangles. 

In the brains of patients with Alzheimer’s disease, expression of C1q and other 

complement proteins were upregulated as compared to controls (Yasojima et 

al., 1999). C1q has been shown to bind to the primary constituents of the 

plaques and tangles, β-amyloid (Rogers et al., 1992; Tacnet-Delorme et al., 

2001) and tau (Shen et al., 2001) respectively, and activate the complement 

system. Furthermore, C1q is involved in mediating synapse loss in glaucoma 

and possibly other CNS neurodegenerative diseases (Stevens et al., 2007). 

  

C1q is also involved in the pathogenesis of scrapie diseases (Klein et 

al., 2001; Mabbott et al., 2001). C1q knockout mice showed protection against 

transmissible spongiform encephalopathy after exposure to scrapie (Klein et al., 

2001; Mabbott et al., 2001). The prion protein can bind to C1q and activate the 

complement system (Mitchell et al., 2007). This may help in the transmission 

of the protein to lymphoid tissues by attaching to C3 fragments and cause the 

eventual attachment to follicular DCs (Mitchell et al., 2007). In addition, the 

absence of C1q prevents the uptake of prion protein by conventional DCs and 

the subsequent accumulation on follicular DCs, delaying the development of 

the disease (Flores-Langarica et al., 2009). 

 

 

1.2.6.4   Infectious diseases 

 

 As part of the first line of defense against pathogens, C1q helps in 

removing pathogens through various means such as complement activation and 

opsonization for the uptake by phagocytes (Lu et al., 2008). Thus, the absence 

of C1q would lead to increased host susceptibility to infections. C1q knockout 
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mice showed increased susceptibility to Plasmodium (Taylor et al., 2001), 

polymicrobial peritonitis (Celik et al., 2001) and Salmonella (Warren et al., 

2002) infections. 

 

C1q can control infections through additional means other than the 

complement system. An example is that C1q enhanced the potency of 

antibodies against West Nile virus by modulating the stoichiometric 

requirements for neutralization (Mehlhop et al., 2009). This helps to prevent 

antibody-dependent enhancement (ADE) infection of the cells as C1q reduced 

the number of antibodies needed for neutralization below that of the threshold 

required for ADE, preventing exacerbation of the disease (Mehlhop et al., 

2009). 

 

 

1.2.6.5   Other diseases 

 

 Complement activation by C1q is also proposed to be involved in many 

inflammatory diseases. Small leucine-rich repeat proteins were shown to bind 

C1q and activate the complement (Sjoberg et al., 2005; Sjoberg et al., 2009). 

Thus, it is suggested that these proteins which are found in the extracellular 

matrix may mediate chronic inflammation in diseases such as rheumatoid 

arthritis, osteoarthritis and chronic obstructive lung disease (Sjoberg et al., 

2009). 

 

 During aging, serum C1q concentration and expression of C1q in 

various tissues were increased (Naito et al., 2012). This is also accompanied 

with increased Wnt signaling which is activated by C1q. Thus, this leads to 

impaired muscle regeneration in aged mice and could be possibly involved in 

other aging-related phenotypes. 
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1.3   C1q receptors 

 

 To mediate the various functions of C1q, it is difficult to imagine that 

only one receptor is involved. There are many proteins, both cell surface and 

intracellular, that help in triggering or enhancing different cellular functions by 

binding to C1q and act as C1q receptors.  gC1qR and cC1qR are two well 

known receptors that are ubiquitously expressed in cells and bind to the 

globular head and collagen tail of C1q respectively (Lu et al., 2008). 

 

 

1.3.1   g1qR/p33/C1qBP 

 

 gC1qR, also known as p33 or C1qBP, is a 33 kD acidic protein and has 

a pI of 4.74 (Lu et al., 2008). The presence of a high affinity receptor 

recognizing the globular heads of C1q was first reported in fibroblasts (Bordin 

and Page, 1989) and  was subsequently characterized in Raji cells 

(Ghebrehiwet et al., 1994). C1q binds to residues 74 - 95 of gC1qR and the 

interactions between C1q and globular heads of C1q are thought to be 

primarily ionic interactions though other interactions may be possible 

(Ghebrehiwet et al., 1994). To date, gC1qR is found on the surfaces of B cells 

(Ghebrehiwet et al., 1994), DCs (Vegh et al., 2006), eosinophils (Kuna et al., 

1996), fibroblasts (Bordin and Page, 1989), mast cells (Ghebrehiwet et al., 

1995), neutrophils (Leigh et al., 1998) and platelets (Peerschke et al., 1994). 

 

 However, gC1qR lacks a transmembrane domain and is primarily found 

in the mitochondria (Dedio et al., 1998)  with some nucleus localization  

detected (Matthews and Russell, 1998). However, several mechanisms may 

explain the presence of gC1qR on cell surfaces. gC1qR may associate with 

other transmembrane proteins, leading to surface expression and signaling via 

these transmembrane proteins (Ghebrehiwet et al., 2001). A study also showed 

that mitochondria targeting of gC1qR can be affected by adding a small tag to 

the N-terminus of gC1qR, resulting in localization on cell surface and in 

endoplasmic reticulum(van Leeuwen and O'Hare, 2001). This implies that the 
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association of gC1qR with other proteins might interfere with it mitochondria 

localization. 

 

 

1.3.2   cC1qR/Calreticulin 

 

 cC1qR, also known as calreticulin, is a 60 kD acidic protein and has a 

pI of 4.29 (Lu et al., 2008). It is the first receptor suggested for C1q(Dickler 

and Kunkel, 1972) and binds to the collagen tail of C1q (Arvieux et al., 1984). 

Subsequently, partial sequence of the receptor was determined (Malhotra et al., 

1993) and combined with other studies (Eggleton et al., 1994), calreticulin is 

identified as cC1qR.  Calreticulin has three domains namely N-domain, P-

domain and C-domain (Michalak et al., 1999) and the collagen tail of C1q was 

determined to bind at the intersection between the N- and P- domains (Stuart et 

al., 1997). Furthermore, calreticulin is also known as the collectin receptor as it 

binds MBL, surfactant protein (SP)-A and SP-D (Malhotra et al., 1990). It is 

ubiquitously expressed and can be found in cells such as eosinophils (Kuna et 

al., 1996), mast cells (Ghebrehiwet et al., 1995), neutrophils (Eggleton et al., 

1994) and platelets (Peerschke and Ghebrehiwet, 1997; Peerschke et al., 1993) 

to mediate the effects of C1q. 

 

 Similar to gC1qR, calreticulin is an intracellular protein and localizes to 

the lumen of endoplasmic reticulum (ER) due to C-terminal KDEL ER 

retrieval signal. The main functions of calreticulin in the endoplasmic 

reticulum are regulating calcium homeostasis and ensuring correct protein 

folding by acting as chaperone (Michalak et al., 1999). To mediate its C1q 

effects, calreticulin has been shown to interact with surface molecule CD91 

and enhanced clearance of apoptotic cells through binding to C1q-opsonized 

apoptotic cells (Ogden et al., 2001). 
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1.3.3   α2β1/Very late antigen (VLA)-2/CD49b/CD29 

 

 α2β1, also known as VLA or CD49b/CD29, exists as a heterodimer and 

is a type I transmembrane receptor (Zutter and Edelson, 2007). Belonging to a 

subset of β1 (CD29) integrins which bind collagens (α1β1, α2β1, α10β1 and 

α11β1), α2β1 was shown to bind to the collagen tail of C1q through its α2 I 

domain (Edelson et al., 2006). α2β1 also binds MBL and SP-A which could be 

mediated through their collagen tails (Edelson et al., 2006). α2β1 is expressed 

by B cells, mast cells, monocytes, neutrophils, NK cells and T cells (Zutter and 

Edelson, 2007). 

 

 

1.3.4   CD35/Complement receptor 1 (CR1) 

 

 CD35, also known as CR1, is a 190- 280 kD type I transmembrane 

receptor and has a pI of 6.57 (Lu et al., 2008). It has a long extracellular 

domain which consists of 30 short consensus repeats (SCRs) each having 60 to 

70 amino acids. These SCRs are further grouped in 4 long homologous repeats 

(LHRs) (LHR-A, -B, -C and -D) consisting of 7 SCRs. C1q was shown to bind 

to LHR-D (SCR 22 - 28) and the last two SCR (SCR 29 and 30) of CD35 and 

the collagen tail is responsible for the interaction between CD35 and C1q 

(Klickstein et al., 1997). In addition, CD35 also recognizes C3b, C4b 

(Klickstein et al., 1997) and MBL (Ghiran et al., 2000) The receptor is found 

on B cells, erythrocytes, monocytes, neutrophils (Fearon, 1980) and T cells 

(Yaskanin and Waxman, 1995). 

 

 

1.3.5   CD91/α2 macroglobulin receptor/Low density lipoprotein-related 

protein (LRP) 

 

 CD91, also known as α2 macroglobulin receptor or LRP, is a 500 kD 

type I transmembrane receptor and binds to at least 30 different ligands (Herz 

and Strickland, 2001). The extracellular domain is acidic having a pI of 5.16 

(Lu et al., 2008) which is further grouped into 4 ligand-binding clusters 
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(Cluster I - IV) (Herz and Strickland, 2001).  Besides associating with 

calreticulin and help in the phagocytosis of C1q-opsonized apoptotic cells 

(Ogden et al., 2001), C1q was shown to bind to CD91directly (Duus et al., 

2010). Both the globular head and collagen tail of C1q are involved in the 

binding to CD91 (Duus et al., 2010). Although the exact binding site on CD91 

is not known, it is suggested that C1q can bind to Cluster II, Cluster IV or both 

based on competitive binding with known CD91 ligands α2 macroglobulin and 

exotoxin A which binds to Cluster II and Cluster IV respectively (Duus et al., 

2010). The receptor is present on monocytes (Duus et al., 2010), fibroblasts, 

hepatocytes and keratinocytes (Binder et al., 2000). 

 

 

1.3.6   CD93/C1q receptor for phagocytosis (C1qRp) 

 

 CD93, also known as C1qRp, is a 126 kD type I transmembrane 

receptor and has a C-type carbohydrate recognition domain and 5 EGF-like 

domains in its extracellular domain which has a pI of 4.95 (Lu et al., 2008; 

Nepomuceno et al., 1997).  It is first identified as a C1q receptor by cloning 

based on its ability to enhance C1q-mediated phagocytosis of apoptotic cells 

(Nepomuceno et al., 1997). The receptor recognizes the collagen tail of C1q 

and it also recognizes MBL and SP-A as all three molecules have similar 

structures (Nepomuceno et al., 1997). However, the involvement of CD93 in 

enhancing C1q-mediated apoptotic cell clearance is unclear as CD93
-/-

 

macrophages showed similar enhancement in C1q-mediated phagocytosis 

(Norsworthy et al., 2004). CD93 is expressed on B cells, endothelial cells, 

platelets, T cells and phagocytes such as DCs, macrophages and neutrophils 

(Greenlee-Wacker et al., 2012). 

 

 

1.3.7   Other C1q receptors 

 

 Beside the known C1q receptors such as calreticulin, gC1qR, α2β1, 

CD35, CD91 and CD93, recent studies have identified additional receptors that 
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interact with C1q and mediate its various functions (Ma et al., 2012; Naito et 

al., 2012; Son et al., 2012).  

 

Receptor for advanced glycation endproducts (RAGE) belongs to the Ig 

superfamily and is a multiligand receptor which binds to many proteins such as 

advanced glycation endproducts (AGE), high mobility group box 1 (HMGB1), 

S100 and collagen I (Sparvero et al., 2009). It is recently shown to be a C1q 

receptor and helps in mediating adhesion of monocytes (Ma et al., 2012). The 

receptor also enhanced phagocytosis of C1q-opsonized apoptotic cells by 

monocytes and can activate the complement system. An antibody recognizing 

C1q globular heads blocked C1q binding to RAGE whereas antibody against 

C1q collagen tails did not have any effect on C1q and RAGE interactions, 

indicating that C1q binds RAGE through its globular heads. Together with its 

co-receptor Mac-1, RAGE has higher affinity to C1q. RAGE is present on B 

cells, DCs, monocytes, macrophages, neutrophils and T cells (Sparvero et al., 

2009). 

  

The Wnt pathways are involved in diverse biological functions and 

three different pathways can be activated upon Wnt receptor activation (Amin 

and Vincan, 2012; MacDonald and He, 2012). These pathways are the 

canonical Wnt/β-catenin pathway, the planar cell polarity (PCP) pathway and 

the Wnt/Ca
2+

 pathway. The canonical pathway regulates transcription via β-

catenin whereas non canonical pathways (PCP and Wnt/Ca
2+

 pathways) do not 

regulate the transcriptional activity of β-catenin directly. For the canonical 

pathway, Wnt receptors are heterodimers consisting of Frizzled (Fz), a G-

coupled protein, and LRP5/6, a single transmembrane protein (Amin and 

Vincan, 2012; MacDonald and He, 2012). C1q is shown to bind to the 

cysteine-rich domain of Fz and activates the canonical Wnt signaling pathway 

(Naito et al., 2012). Upon binding, C1q induced C1r/C1s activation which 

cleaved the extracellular domain of LRP5/6, leading to activation of Wnt 

signaling. Serum concentration of C1q increases with aging and subsequent 

Wnt signaling activation impairs muscle regeneration in aged mice (Naito et al., 

2012). Fz is widely expressed in most cells and these include DC, epidermal 
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cells, fibroblasts, satellite cells, stem cells and T cells (Huang and Klein, 2004; 

Naito et al., 2012). 

 

Lastly, C1q also binds to leukocyte-associated Ig-like receptor 1 

(LAIR-1) through its collagen tail (Son et al., 2012). This regulates the 

differentiation and activation of DCs.  In addition, LAIR-2 was shown to bind 

to C1q though the interaction was weaker as compared to that of LAIR-1 (Son 

et al., 2012). Similar to RAGE, LAIR-1 belongs to the Ig superfamily 

(Meyaard, 2008). It is a type I transmembrane receptor that has an extracellular 

C2-type Ig-like domain which binds to collagen and two immunoreceptor 

tyrosine-based inhibitory motifs (ITIMs) in its cytoplasmic tail. The main 

function of LAIR-1 is to inhibit the signals transduced by immunoreceptor 

tyrosine-based activating motifs (ITAMs)-bearing receptors but it can also 

inhibit cytokine-mediated signals. LAIR-1 is found on many immune cells 

including B cells, basophils, DCs, eosinophils, mast cells, monocytes, NK cells 

and T cells (Meyaard, 2008). 
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1.4   Producers of C1q 

 

Most complement proteins are synthesized by hepatocytes in the liver. 

C1q is unique in which it is produced mainly by myeloid cells but not 

hepatocytes (Lu et al., 2008). This is shown in a study where wild type mouse 

bone marrow cells are able to restore C1q production in irradiated C1qA
-/- 

mice, 

suggesting C1q production by hemapoietic cells (Petry et al., 2001). 

 

 

1.4.1   Macrophages 

 

Macrophages are derived from monocytes and they show a high degree 

of heterogeneity (Gordon and Taylor, 2005). Differences in macrophages 

reflect the specialized functions that they carry out in their respective tissues. 

For example, alveolar macrophages are responsible for clearing pathogens in 

the lungs, thymic macrophages and tingible-body macrophages help in the 

removal of apoptotic lymphocytes during the development of immune response 

in the germinal centre and osteoclasts are involved in bone remodeling 

(Gordon and Taylor, 2005). 

 

Macrophages are one of the first few cell types known to produce C1q. 

Initial studies were mainly performed with peritoneal (Loos et al., 1980; Loos 

et al., 1981) and alveolar macrophages (Loos et al., 1980) which showed the 

biosynthesis of C1q by macrophages. Subsequently, studies have also shown 

that other macrophages such as Kupffer cells (macrophages in the liver) 

(Armbrust et al., 1997), microglial cells (macrophages in the brain) (Haga et 

al., 1996; Schafer et al., 2000) and bone marrow macrophages (Tripodo et al., 

2007) produce C1q.  

 

 

1.4.2   DCs 

 

 Similarly, different subsets of DCs are found both in human and mouse 

(Shortman and Liu, 2002). The differences in the subsets are attributed to their 
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locations, migratory pathways, specific immunological function and the 

mechanism of generation. Despite the differences, all DC subsets are capable 

of antigen uptake, processing and presentation to naive T cells. 

 

 The presence of C1q in DC is first detected in follicular DCs and 

interdigitating DCs in the spleen of rat (Schwaeble et al., 1995). Additional 

studies also showed the production of C1q by both mouse (Castellano et al., 

2010; Tripodo et al., 2007) and human DCs (Cao et al., 2003; Castellano et al., 

2004). 

 

 

1.4.3   Other known C1q-producing cells 

 

Other than macrophages and DC, many other cell types are shown to 

produce C1q.  In the brain, besides microglial cells, retinal ganglion cells also 

expressed C1q and the expression is upregulated in the presence of astrocytes 

(Stevens et al., 2007). During pregnancy, both DECs (Bulla et al., 2008) and 

trophoblasts (Agostinis et al., 2010) express C1q at the both the mRNA and 

protein levels. The expression of C1q is critical in trophoblast invasion and 

placental development (Agostinis et al., 2010; Bulla et al., 2008). Conflicting 

data exist with regards to whether monocytes produce C1q (Bensa et al., 1983; 

Cao et al., 2003; Tenner and Volkin, 1986). Lastly, chondrocytes (Bradley et 

al., 1996), epithelial cells (Bing et al., 1975; Colten et al., 1968; Morris et al., 

1978), fibroblasts (Al-Adnani and McGee, 1976; Reid and Solomon, 1977) and 

mesenchymal cells (Morris et al., 1978) are also known to produce C1q.  
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1.5   Aims of study 

 

 C1q is able to modulate diverse physiological and pathological 

functions (Lu et al., 2008; Nayak et al., 2010). These functions are not 

restricted to immune responses but can also be observed in development, 

pregnancy, aging and cancer. This is achieved by regulating the different cell 

types present in tissues and organs through binding multiple receptors with its 

globular heads and collagen tails and activating distinct signaling pathways. 

 

 Despite the fact that serum contains large amounts of C1q, it is still 

unknown if a large macromolecule like C1q with its extended structure is able 

to pass through the walls of blood vessels and access different tissues. This is 

especially so when blood vessels have limited permeability in the absence of 

inflammation. Thus, in order for C1q to exert its effects on the different cells 

types, local synthesis of C1q is important. This can be observed in arteries, 

articular cartilage, brain, esophagus, liver and placenta (Agostinis et al., 2010; 

Armbrust et al., 1997; Bobryshev et al., 2010; Bradley et al., 1996; Bulla et al., 

2008; Cao et al., 2003; Schafer et al., 2000; Stevens et al., 2007). However, the 

possible cellular sources of C1q in many tissues and organs remain unknown. 

 

 Thus, the aim of the study is to identify cellular sources of C1q which 

can contribute C1q to their local microenvironments. In addition, the potential 

roles that C1q may play in the local microenvironment will be investigated. 

Osteoclasts are our candidate cells as they share many similarities with 

macrophages and DCs, known producers of C1q, which will be discussed later. 
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Chapter 2 – Materials and Methods 

 

2.1   Antibodies, buffers and media 

 

2.1.1   Antibodies 

 

Table 2.1 provides details of the antibodies used throughout the study. 

 

Table 2.1. List of antibodies used in the study.  

 

Target Host Conjugation 
Clone 

(Isotype) 
Usage Source 

Primary Antibodies 

β-actin Mouse - 
AC15 

(IgG1) 
WB S-A 

C1q Goat - - E, WB S-A 

C1q Mouse - 
3R9/2 

(IgG1) 

E, FC, 

IF 
AbD 

CD1a Mouse PE 
CB-T6 

(IgG1) 
FC Ancell 

CD11b Mouse PE 
ICRF44 

(IgG1) 
FC eBio 

CD11c Mouse PE 
B-ly6 

(IgG1) 
FC BD 

CD14 Mouse PE 
UCHM1 

(IgG2a) 
FC Ancell 

CD35 Mouse - 
E11 

(IgG1) 
FC SC 

CD35 Mouse - 
J3D3 

(IgG1) 
FC SC 

CD40 Mouse PE 
5C3  

(IgG1) 
FC eBio 

CD80 Mouse PE 
L307.4 

(IgG1) 
FC BD 
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CD86 Mouse PE 
BU63 

(IgG1) 
FC Ancell 

CD91 Mouse - 
A2MR-α2 

(IgG1) 
FC BD 

CD93 (C1qRP) Mouse - 
MAB4314 

(IgG2b) 
FC Chemi 

EEA-1 Rabbit -   IF SC 

gC1q-R/p33 Mouse - 
MAB1160 

(IgG1) 
FC Chemi 

gC1q-R/p34 Mouse - 
MAB1161 

(IgG1) 
FC Chemi 

MHCI Mouse PE 
3F10 

(IgG2A) 
FC Ancell 

MHCII Mouse PE 
TDR31.1 

(IgG1) 
FC Ancell 

Secondary Antibodies 

Mouse IgG Goat FITC - IF JI 

Mouse IgG Goat AP - WB B-R 

Mouse IgG Goat HRP - E Dako 

Mouse IgG Goat PE - FC Dako 

Rabbit IgG Goat cy3 - IF JI 

Goat IgG Rabbit AP - WB B-R 

 

Keys:  

Usage 

E – ELISA    FC – Flow cytometry 

 IF – Immunofluorsence  WB – Western blot 

 

Source 

AbD – AbD Serotec, Oxford; UK B-R – Bio-Rad, Hercules, CA 

Chemi – Chemicon, Billercia, MA eBio – eBioscience, San Diego, CA  

JI – Jackson Immunoreseach, West Grove, PA 

S-A – Sigma-Aldrich, St Louis, IL 

SC – Santa Cruz Biotechnology Inc, Dallas, TX 
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2.1.2   Buffers 

 

2.1.2.1   Cell biology 

 

1 x PBS pH 7.4 (Diluted from 10 x stock) 

KH2PO4 1.76 mM 

Na2HPO4 10.4 mM 

NaCl  137 mM 

KCl  2.7 mM 

 

FACS wash buffer 

1 x PBS 

Heat inactivated (HI) fetal bovine serum (FBS) 2.5% (v/v) 

Sodium azide      0.05% (w/v)  

 

 

2.1.2.2   Molecular biology 

 

1 x TAE pH 8.0 (Diluted from 10 x stock) 

Tris-acetate 40 mM 

EDTA  1 mM 

 

 

2.1.2.3   Protein chemistry 

 

Tris buffered saline (TBS) 

Tris-HCl pH 7.4 50 mM 

NaCl   150 mM 

 

10 x SDS-PAGE electrophoresis buffer 

Tris base 250 mM 

Glycine 2.5M 

SDS  1% (w/v) 

Adjust the pH to 8.3 
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5 x Reducing Laemmli buffer 

Tris-HCl pH 6.8 250 mM 

Glycerol  50% (v/v) 

SDS   10% (w/v) 

Bromophenol Blue 1% (w/v) 

Dithiothreitol (DTT) 0.5 M 

 

10 x Western blot transfer buffer 

Tris base 250 mM 

Glycine 1.92 M 

For 1 x Western blot buffer, 1 unit of the 10 x buffer was added to 7 units of 

deionized water and 2 units of 100% methanol. 

 

PBS-T/TBS-T buffer 

1X PBS/TBS  

Tween-20 0.05% (v/v) 

 

Western blot blocking buffer and antibody diluent 

1 x TBS-T 

Non-fat milk 5% (w/v) 

 

Western blot stripping buffer 

Tris-HCl pH 6.8 62.5 mM 

SDS   2% (v/v) 

β-metacaptoethanol 0.1 M 

 

 

2.1.3   Cell culture media 

 

The following reagents for making the media were purchased commercially: 

αMEM, high glucose DMEM with L-Glutamine, RPMI-1640 (Invitrogen, 

Carlsbad, CA), BCS, FBS (Hyclone, Waltham, MA), 200 mM L-glutamine, 

100 x penicillin/streptomycin (10,000 U/ml or 10 mg/ml) (PAA Laboratories, 

Pasching, Austria) and 10 x trypsin-EDTA (Sigma-Aldrich). 
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Monocyte adhesion media 

RPMI-1640 

BCS    5% (v/v) 

Penicillin/streptomycin 100 U/ml 

 

Osteoclast culture media 

αMEM 

HI FBS   10% (v/v) 

L-glutamine   2 mM 

Penicillin/streptomycin 100 U/ml 

 

DC/Macrophage culture media 

RPMI-1640 

BCS    10% (v/v) 

L-glutamine   2 mM 

Penicillin/streptomycin 100 U/ml 

Sodium pyruvate  1 mM 

β-metacaptoethanol  0.0012% (v/v) 

 

Cell stimulation media 

RPMI-1640 

HI BCS   10% (v/v) 

Penicillin/streptomycin 100 U/ml 

 

Cell culture media 

High glucose DMEM 

HI FBS   10% (v/v) 

L-glutamine   2 mM 

Penicillin/streptomycin 100 U/ml 
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2.2   Cell biology techniques 

 

2.2.1   Isolation of monocytes from human buffy coats 

 

Enriched peripheral blood leukocytes were derived from healthy donors 

in the form of buffy coat preparations (National University Centre, Blood 

Donation Centre, Singapore). The buffy coat was diluted two-fold in PBS. 30 

ml of the diluted buffy coat was layered over 12 ml of Ficoll-Paque 

(Amersham Bioscience Corp., Piscataway, NJ) in a 50 ml tube. The tube was 

centrifuged at 400 x g for 30 minutes (acceleration – 1, deceleration – 0). 

Peripheral blood mononuclear cells (PBMC) were collected at the gradient 

interface, PBS was added to 50 ml and the cells were centrifuged at 200 x g for 

15 minutes. The cell pellet was resuspended and washed with PBS at the same 

conditions. Another two washes were performed at 100 x g for 10 minutes. The 

extensive washings were done to remove the platelets. The cells were then 

resuspended in 60 ml monocyte adhesion media, divided into three T75 cell 

culture flasks and cultured for 1 hour in a humidified incubator with 5% CO2 at 

37
o
C. 

 

 The non-adherent cells, which were mainly lymphocytes, were 

removed with four washes using the monocyte adhesion media. The adherent 

cells, which were mainly monocytes, were harvested by gentle scraping. The 

purity of the isolated monocytes were at least 90% based on the expression of 

CD14 (Figure 3.1). 

 

 

2.2.2   In vitro generation of DC, macrophages and osteoclasts from 

monocytes 

 

2.2.2.1   Osteoclast culture 

 

Osteoclasts were differentiated from the isolated monocytes as 

described previously (Quinn et al., 1998). Briefly, monocytes were cultured at 

a density of 0.5 x 10
6
 cells/ml in osteoclast culture media supplemented with 
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20 ng/ml M-CSF (R & D Systems Inc., Minneapolis, MN) and 40 ng/ml 

RANKL (Peprotech, Rocky Hill, NJ). This was done in 6-well culture plates 

with 2 ml of cell suspension seeded into each well. Half of the media was 

replaced with fresh media containing cytokines every 3 days. 

 

Most of the experiments were performed using Day 8 osteoclasts. For 

experiments involving different time points, cells were harvested at each time 

point as indicated.  

 

 

2.2.2.2   Macrophage culture 

 

Macrophages were differentiated from monocytes by culturing the cells 

at a density of 0.5 x 10
6
 cells/ml in DC/Macrophage culture media 

supplemented with 20 ng/ml M-CSF (R& D Systems Inc.). This was done in 6-

well culture plates with 2 ml of cell suspension seeded into each well. Half of 

the media was replaced with fresh media containing cytokines every other day. 

The cells were used at either Day 6 or Day 8. 

 

 

2.2.2.3   DC culture 

 

DC were differentiated from monocytes by culturing the cells at a 

density of 0.5 x 10
6
 cells/ml in DC/Macrophage culture media supplemented 

with 20 ng/ml GM-CSF and 40 ng/ml IL-4 (R & D Systems Inc). This was 

done in 6-well culture plates with 2 ml of cell suspension seeded into each well. 

Half of the media was replaced with fresh media containing cytokines every 

other day. The cells were used at either Day 6 or Day 8. 

 

All cell cultures were performed in a humidified incubator with 5% 

CO2 at 37
o
C. 
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2.2.3   Culturing of cell lines 

 

 The DC2.4 and N9 cell lines were a generous gift from Dr Wong Siew 

Heng and the remaining cell lines were obtained from the American Type 

Culture collection (ATCC) (Rockville, MD). The cell lines used (Table 2.2) 

were maintained in cell culture media and cultured in a humidified incubator at 

37
o
C in the presence of 5% CO2.  

 

 The cell lines were sub-cultured either using trypsin/EDTA or gentle 

scrapping. For the trypsin/EDTA method, the culture medium was first 

removed and the cells were washed with 1 x PBS. 2 ml of 1 x trypsin/0.5 mM 

EDTA (Sigma-Aldrich) was then added and incubated for 1-10 minutes at 

37
o
C depending on the cell line. 8 ml of cell culture media was added and the 

cell suspension was centrifuged at 400 x g for 5 minutes. The cell pellet was 

resuspended in cell culture media and the cells were seeded at a desired density 

in new T-75 flasks. For the gentle scrapping method, the adherent cells were 

removed by gentle scrapping with a cell scrapper, centrifuged at 400 x g for 5 

minutes and the cell pellet was resuspended in cell culture media. Cells were 

then seeded at a required density in new T-75 flasks. 

 

 For long term cryostorage, the cells were resuspended to a density of 

0.5 - 1 x 10
7
 cells/ml in cell culture media.  DMSO was added to the cell 

suspension to a final concentration of 10%. The cell suspension was then 

aliquoted into cryogenic vials (Nalge Nunc International A/S, Roskilde, 

Denmark), frozen at -80
o
C overnight and transferred to liquid nitrogen for long 

term storage. 
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Table 2.2. List of cell lines used for the study.  

 

Name Cell Type Tissue 
Sub-culture 

ratio 

Cell 

removal 

Human Cell Lines 

HEK293T Epithelial cell 
Embryonic 

kidney 

1:6, every 2 to 3 

days 

Trysin/ 

EDTA 

HeLa Epithelial cell Cervix 
1:6, every 2 to 3 

days 

Trysin/ 

EDTA 

HepG2 Epithelial cell Liver 
1:6, every 2 to 3 

days 

Trysin/ 

EDTA 

MCF-7 Epithelial cell 
Mammary 

gland 

1:4, every 2 to 3 

days 

Trysin/ 

EDTA 

Murine cell lines 

C2C12 Myoblast Muscle 
1:8, every 2 to 3 

days 

Trysin/ 

EDTA 

DC2.4 DC 
Bone 

marrow 

1:6, every 2 to 3 

days 

Trysin/ 

EDTA 

N9 Microglia 
Embryonic 

brain 

1:6, every 2 to 3 

days 

Trysin/ 

EDTA 

J774 Macrophage Ascites 
1:6, every 2 to 3 

days 
Scrapping 

NIH-3T3 Fibroblast Embryo 
1:8, every 2 to 3 

days 

Trysin/ 

EDTA 

RAW264.7 Macrophage Ascites 
1:6, every 2 to 3 

days 
Scrapping 

 

 

2.2.4   Tartrate-resistant acid phosphatase (TRAP) staining 

 

TRAP staining was performed using the acid phosphatase/leucocytes 

(TRAP) kit (Sigma-Aldrich) with some modifications. Cells cultured in tissue 

culture plates were fixed with acetone/citrate/formaldehyde solution for 30 

seconds. After fixing, the cells were washed extensively with deionized water 

and incubated with acetone/naphthol AS-BI phosphoric acid-tartrate staining 

solution for 1 hour at 37
o
C in the dark. The cells were then washed with 
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deionized water, air-dried and examined using the Olympus IX81 inverted 

microscope and the ImagePro Plus software (Olympus Co., Tokyo, Japan). 

 

 

2.2.5   Bone resorption assay 

 

Monocytes were seeded on BioCoat
TM

 Osteologic discs (BD 

Biosciences, San Diego, CA) and differentiated into osteoclasts according to 

the method described in 2.2.2.1. After 8 days of culture, the cells were 

removed with bleach (6% NaOCl, 5.2% NaCl) and washed extensively with 

deionized water. Macrophages were also cultured on the discs as a control. The 

resorption pits were observed using the Olympus IX81 inverted microscope 

and the ImagePro Plus software (Olympus Co.). 

 

 

2.2.6   Cell stimulation assay 

 

Differentiated cells were harvested at Day 8 by gently scrapping using 

a cell scrapper and washed twice. For washings and culture media for 

stimulation, the osteoclast culture media was used for osteoclasts whereas the 

cell stimulation media was used for macrophages and DC. The cells were 

seeded at a density of 0.5 x 10
6
 cells/ml in 96-well plates. 100 μl of the cell 

suspension was seeded in each well and each stimulus was performed in 

triplicates. For extraction of RNA and flow cyotmetry analysis, 1 x 10
6
 cells 

were seeded per condition in 2 ml of media in a 6-well plate. 100 ng/ml IFNγ 

(R& D Systems Inc.) and 500 ng/ml LPS (Sigma-Aldrich) were used to 

stimulate the cells for 48 hours. 

 

 

2.2.7   Cell adhesion assay 

  

To examine the adherent properties of the cells, 96-well culture plates 

were pre-coated with BSA or C1q. 30 or 50 μg/ml of solution was normally 

used for coating. Both BSA and C1q were purchased from Sigma-Aldrich. In 
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some experiments, the concentration of solution used for coating varied. The 

plates were coated overnight at 4
o
C and washed twice with PBS before use. 0.5 

x 10
6
 cells (200 μl) were then seeded into each well and each condition was 

performed in triplicates. Adherent cells were normally determined after 24 

hours of incubation.  The cells were washed twice with warm culture medium 

before 100 μl of 0.1% (w/v) crystal violet in 10% ethanol (v/v) in PBS was 

added to the wells and incubated for 10 minutes at 37
o
C. Crystal violet staining 

solution was then removed and the wells were washed thrice with warm PBS. 

50 μl of 2% SDS was added to release crystal violet from the adherent cells 

and absorbance was read at 570 nm. 

 

 To compare the effects of immobilized and soluble C1q, 50 μg/ml of 

C1q was used to coat the culture plates for immobilized C1q whereas C1q was 

added to the culture medium to a final concentration of 50 μg/ml for soluble 

C1q. The cells were then incubated for 24 hours before microscopic 

examination was performed to determine the morphologies of the cells. BSA 

was used as a control for both immobilized and soluble states. 

 

 To inhibit protein synthesis, cycloheximide (CHX) was used to pre-

treat the cells for 30 minutes before the cells were seeded into the wells.  
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2.3   Molecular biology techniques 

 

2.3.1   Total RNA isolation and purification 

 

 Total RNA was extracted using the Nucleospin RNA II (Clontech, 

Mountain View, CA) kit following manufacturer’s protocol.  Briefly, cells 

were lysed with 350 μl buffer RA1 and 3.5 μl β-mecapthoethanol and mixed 

vigorously. 350 μl 70% ethanol was then added to the cell lysate and vortex 

twice for 5 seconds each. The mixture was transferred to the RNA column and 

centrifuged for 30 seconds. Subsequently, 350 μl membrane desalting buffer 

was added and centrifuged for 1 minutes. 95 μl DNase reaction mixture was 

added incubated at room temperature for 15 minutes and the reaction was 

stopped with 200 μl buffer RA2. The column was centrifuged for 30 seconds, 

washed twice with 600 μl and 250 μl buffer RA3 and centrifuging it for 30 

seconds and 2 minutes respectively. Lastly, the RNA was eluted from the 

column with 40 μl of nuclease-free water. All centrifugations were performed 

at 11,000 x g. RNA concentration was determined using the Nanodrop 

spectrophotometer (Thermo Scientific, Waltham, MA) and the A260/280 ratio 

was typically above 2.1. The isolated RNA was stored in -80
o
C for long-term 

storage. 

 

 

2.3.2   Reverse transcription 

 

 First strand cDNA was generated by reverse transcription (RT) from 

RNA using iScript
TM

 cDNA synthesis kit (Bio-Rad). 0.2 - 1.0 μg of RNA was 

normally used, added to 4 μl of 5 x iScript reaction mix and 1 μl of iScript 

reverse transcriptase and nuclease-free water was added to top up the reaction 

mix to 20 μl. The complete reaction mix was then incubated at 25
o
C for 5 

minutes, 42
o
C for 30 minutes and 85

o
C for 5 minutes using 2720 Thermal 

Cycler (Applied Biosystems Life Technologies, Carlsbad, CA). cDNA was 

diluted to 100 μl total volume with nuclease-free water and stored in -20
o
C for 

long term storage. 
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2.3.3   Polymerase chain reaction (PCR) 

 

 PCR reactions were performed in a 25 μl reaction mix with 1 μl cDNA, 

5 μl 5 x green reaction buffer, 1.5 μl 25 mM MgCl2, 0.5 μl 10 mM dNTP, 0.2 

μl  GoTaq DNA polymerase (Promega, Madison, WI), 1 μl forward and 

reverse primer mix (10 μM each)  and 15.8 μl  nuclease-free water. The 

conditions used were 95
o
C for 2 minutes (initial denaturation), 35 cycles of 

95
o
C for 1 minutes, 5

8o
C for 1 minute and 72

o
C for 1 minute and 72

o
C for 5 

minutes (final extension).  The PCR products were visualized on 1.5% (w/v) 

agarose gel. 

 

 The primers were designed using the PerlPrimer open source software 

(Marshall, 2004) or obtained from PrimerBank (Spandidos et al., 2010; Wang 

et al., 2012), a public resource with validated primers for PCR specificity and 

efficiency (Table 2.3). For the designing for primers, primers spanning two 

consecutive exons would be selected whenever possible so as to eliminate the 

possibility of amplifying the target gene on unspliced genomic DNA. 

 

 

2.3.4   Quantitative real-time PCR (qPCR) 

 

 qPCR was performed in triplicates for each sample in a total reaction 

volume of 20 μl in a 96-well reaction plate (Applied Biosystems Life 

Technologies). Each reaction mix consisted of 2 μl cDNA, 10 μl 2 x GoTaq 

qPCR Master Mix (Promega), 1 μl forward and reverse primer mix (10 μM 

each) and 7 μl nuclease-free water. The reaction plate was then ran on the ABI 

Systems 7500 Real-Time PCR machine (Applied Biosystems Life 

Technologies) using the Comparative Ct quantitation method. The conditions 

for the run were 50
o
C for 2 minutes, 95

o
C for 10 minutes and 40 cycles of 

denaturation (95
o
C for 15 seconds) and annealing and extension (60

o
C for 1 

minute). The dissociation curve analysis was performed at the end of each run 

to ensure the specificity of the primers used. Relative expressions of respective 

genes were calculated based on the ΔΔCt method by using GAPDH as the 

endogenous control. The primers used are listed in Table 2.3. 
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Table 2.3. List of primers used for PCR and qPCR.  

 

Target gene 
Forward (Sense) primer/ Reverse 

(Antisense) primer 

Human Primers 

ACTB 
ACCACACCTTCTACAATGA 

AAACATGATCTGGGTCATCTT 

ACP5 
TGCAGACTTCATCCTGTC 

CAAAGGTCTCCTGGAACC 

C1QA 
CTTCCTCATCTTCCCATCT 

GTTCAGCAGACACAGACA 

C1QB 
AGGCGTCTGACACAGTATG 

CCTGGAAGCCCTTTCTCT 

C1QBP 
ATCAACTCCCAATTTCGTGGTT 

TCCTCTGGATAATGACAGTCCAA 

C1QC 
ACCTGCAGTTCCTTCTCC 

TTCTCCCTTCTGCCCTTT 

CA2 
AAACACAACGGACCTGAG 

TTGCTTGATCATAGGAAACAG 

CALCR 
CTTCTTCTAAATCACCCAACC 

CATCCATCATCTTCTTTCGTC 

CD93 
CCGGAAGTAACATTGAGGGCT 

TCTGAGTCTCGTCCTTGTCAC 

CR1 
CACGAAGCCGCCAATTTGTC 

CCCACTTGATCGTCATTGCTG 

CSF1 
AGGAACAGTTGAAAGATCCA 

AGACATTCTTGACCTTCTCC 

CSF1R 
ACATTCATCAACGGCTCT 

CCTCATCACACCTATCAGT 

CTSK 
ATAACAACAAGGTGGATGAAA 

TGGGATATAAAGGGTGTCAT 

GAPDH 
CGGAGTCAACGGATTTGGTCG 

TCTCGCTCCTGGAAGATGGTGAT 
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IL6 
CCCAGGAGAAGATTCCAA 

CTCTTGTTACATGTCTCCTTTC 

IL10 
AATGCCTTTAATAAGCTCCAAGA 

TCTCAGTTTCGTATCTTCATTGT 

ITGA2 
CCTACAATGTTGGTCTCCCAGA 

AGTAACCAGTTGCCTTTTGGATT 

ITGB1 
GTAACCAACCGTAGCAAAGGA 

TCCCCTGATCTTAATCGCAAAAC 

LRP1 
CTATCGACGCCCCTAAGACTT 

CATCGCTGGGCCTTACTCT 

MMP9 
CGGACCAAGGATACAGTT 

CAGTGAAGCGGTACATAGG 

NFATC1 
AAGAAGATGGTCCTGTCTG 

ACCAGAGAATTCGGCTTG 

TGFB1 
AACCCACAACGAAATCTATGA 

AATTGTTGCTGTATTTCTGGTA 

TNFRSF11A 
AGATCGCTCCTCCATGTA 

TGTACTTTCCTGGTTCACAT 
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2.4   Protein chemistry techniques 

 

2.4.1   Preparation of cell lysate 

 

 Cells were harvested and washed thrice with PBS. Cold lysis buffer 

(Biosource, Camarillo, CA) supplemented with Protease Inhibitor Cocktail 

(Sigma-Aldrich) was added to the cells and incubated on ice for at 30 minutes. 

The cell lysates were vortexed occasionally to ensure complete lysis. After 

lysis, the cell lysates were centrifuged at maximum speed for 10 minutes to 

remove insoluble material. This was performed at 4
o
C. The supernatant was 

then transferred to a clean tube and store at -80
o
C until further use. 

 

 

2.4.2   Determination of protein concentration 

 

 The protein concentrations of cell lysates were determined using the 

Bio-Rad protein assay kit. Eight serially diluted BSA standards were first 

prepared with the initial concentration of 1 mg/ml. 10 μl of the standards and 

samples (diluted 5 times) were then added into the wells of a 96-well plate. 

The 5x dye reagent was diluted with deionized water and filtered through a 

0.45 μm filter. Subsequently, 200 μl of the diluted dye reagent was added to 

each well and the mixtures were incubated at room temperature for 5 minutes 

before absorbance was read at 595 nm. The standard curve was constructed by 

plotting the BSA concentrations against the absorbance at 595 nm and samples 

concentrations were determined from the curve. 

 

 

2.4.3   SDS-PAGE 

 

 10 - 20 μg of protein samples were used for each condition and 5 x 

reducing Laemmli buffer was added to each sample.  The samples were then 

incubated at 95
o
C for 10 minutes to denature and reduce the proteins. After 

denaturation and reduction, the samples were centrifuged at maximum speed 

for 3 minutes before loading into the wells of a 10 or 12.5% SDS-PAGE gel 
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(Table 2.4). The proteins were resolved in 1 x SDS-PAGE electrophoresis 

buffer at 100 – 120 V until the samples reached the bottom of the gel. 

 

 

Table 2.4. Composition of SDS-PAGE gel  

 

Components Resolving gel Stacking gel 

  10% 12.5% 4% 

Water (ml) 4.02 3.22 3.02 

0.5 M Tris-HCl pH 6.8 (ml) - - 1.25 

1.5 M Tris-HCl pH 8.8 (ml) 2.5 2.5 - 

10% (w/v) SDS (μl) 100 100 50 

30% (w/v) Acrylamide/Bis (ml) 3.33 4.13 0.65 

10% (w/v) APS (μl) 50 50 25 

TEMED (μl) 5 5 5 

Total volume (ml) 10 10 5 

 

 

2.4.4   Coomassie Blue (Blue Silver) staining 

 

 To visualize the proteins in the SDS-PAGE gels, the gels were stained 

overnight using the Blue Silver staining protocol (Candiano et al., 2004). The 

staining solution contained 10% (v/v) phosphoric acid, 10% (w/v) ammonium 

sulfate, 0.12% Coomassie G-250 (Bio-Rad) and 20% methanol dissolved in 

deionized water. Gels were destained with deionized water. 

 

 

2.4.5   Western blotting 

 

 After SDS-PAGE, the proteins were electroblotted to a polyvinylidene 

difluoride (PVDF) membrane (Bio-Rad) with the 1 x Western blot transfer 

buffer at 100 V for 90 minutes at 4
o
C. The membrane was then blocked with 

blocking buffer at room temperature for 1 hour. The membranes were washed 

before diluted primary antibody was added to the membrane and incubated at 
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4
o
C overnight. Washing was carried out followed by the addition of diluted 

secondary antibody. The membrane was incubated for 1 hour at room 

temperature and washing was performed after incubation. Proteins were 

visualized using the Immno-Star
TM

 AP Chemiluminescent substrate (Bio-Rad). 

Primary and secondary antibodies were diluted in blocking buffer and each 

washing after incubation with antibodies consisted of washing thrice with 

TBS-T for 10 minutes each time. All incubations were performed on a shaker 

with constant shaking. 

 

 To detect another protein after chemiluminescent detection, the 

membrane was rinsed thrice with TBS-T. Next, 10 ml of Western blot stripping 

buffer was added to the membrane and sealed in ziplock bags. The membrane 

was then incubated at 50
o
C for 20 minutes with periodic shaking. After 

stripping, the membrane was washed thrice with TBS-T for 10 minutes each 

time, blocked and reprobed with another antibody according to the method 

mentioned previously. To ensure proper removal of the antibodies, the stripped 

membrane was incubated with chemiluminescent substrate and tested for the 

presence of any signal. The absence of signal indicates successful removal of 

the antibodies from the membrane. 

 

 

2.4.6   Flow cytometry 

 

2.4.6.1   Surface staining 

 

 Cells were harvested, washed twice with cold PBS and resuspended in 

cold 1% goat serum in PBS. Antibodies were then added to the cells and 

incubated on ice for 30 min. For flurochrome-conjugated antibodies, the cells 

were washed thrice with FACS wash buffer and fixed with cold 1% (w/v) 

paraformaldehyde (PFA) in PBS. For non-conjugated antibodies, the cells were 

washed twice and incubated with PE-conjugated goat anti-mouse antibody on 

ice for 30 minutes. Subsequently, the cells were washed thrice with FACS 

wash buffer, fixed with cold 1% PFA in PBS and stored in 4
o
C before analysis. 
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2.4.6.2   Intracellular staining 

 

 Cells were harvested and washed twice with PBS. The cells were then 

processed with the BD Cytofix/Cytoperm
TM

 Fixation/Permeabilization kit (BD 

Biosciences) according to the manufacturer’s protocol. Briefly, 1 x 10
6
 cells 

were fixed with 250 μl Fixation/Permeabilization solution on ice for 20 min 

and washed twice with Perm/Wash solution. The fixed and permeabilized cells 

were resuspended in 50 μl Perm/Wash solution containing 1% goat serum, 

incubated with antibody on ice for 30 – 60 min and washed thrice with 

Perm/Wash solution. PE-conjugated goat anti-mouse antibody was then added 

to the cells, incubated on ice for 30 – 60 min and washed thrice. The cells were 

resuspended in PBS containing 1% HI FBS and stored in 4
o
C before analysis.  

 

Flow cytometry analysis was carried out on the Dako CyAn flow 

cytometer using the Summit 4.3 software (Dako, Glostrup, Denmark). 

 

 

2.4.7   Enzyme-linked immunosorbent assay (ELISA) 

 

2.4.7.1   C1q ELISA 

 

 To detect C1q in cell culture supernatant, a lab-developed sandwich 

ELISA system was used. The capture antibody was polyclonal goat anti-C1q 

and 100 μl of the diluted (0.5 μg/ml diluted in PBS) was used to coat each well 

of the Maxisorp plates at 4
o
C overnight. The wells were then washed, blocked 

with 3% BSA in PBS for 1 hour at room temperature and washed again. 

Samples or C1q standards were diluted in 1% BSA in PBS with 100 μl of 

sample/standard added into each well, incubated at 4
o
C overnight and the wells 

were washed. 100 μl of monoclonal mouse anti-C1q antibody (0.4 μg/ml 

diluted in 1% BSA in PBS) was the added to each well, incubated at room 

temperature for 2 hours and washed. A goat anti-mouse IgG conjugated with 

HRP (Dako) was diluted in 1% BSA in PBS to a final concentration of 1 μg/ml 

and 100 μl was added to each well and incubated at room temperature for 2 

hours in the dark. The wells were washed before 100 μl of TMB substrate was 
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added. The reaction was stopped with 50 μl of 1 M sulphuric acid and the 

absorbance was measured at 450 nm. All washes consisted of washing thrice 

with PBS-T. 

 

 

2.4.7.2   Anti-C1q ELISA 

 

 To detect anti-C1q autoantibodies in plasma samples of SLE patients, a 

lab-developed ELISA system was used. 50 μl of C1q (5 μg/ml diluted in PBS) 

was used to coat each well of the Maxisorp plates at 4
o
C overnight. The wells 

were then washed, blocked with PBS-T for 2 hours at room temperature and 

washed again. Samples were diluted in PBS-T containing 1 M NaCl with 50 μl 

of sample added into each well, incubated at 4
o
C overnight and the wells were 

washed. 50 μl of monoclonal goat anti-human IgG antibody (0.5 μg/ml diluted 

in PBS-T containing 1 M NaCl) was the added to each well, incubated at room 

temperature for 2 hours and washed. A donkey anti-goat IgG conjugated with 

HRP (Dako) was diluted in PBS-T containing 1 M NaCl to a final 

concentration of 1 μg/ml and 50 μl was added to each well and incubated at 

room temperature for 2 hours in the dark. The wells were washed before 50 μl 

of TMB substrate was added. The reaction was stopped with 25 μl of 1 M 

sulphuric acid and the absorbance was measured at 450 nm. All washes before 

and after sample incubation were done with PBS-T and PBS-T containing 1 M 

NaCl respectively. 

 

 

2.4.8   Immunofluorescence staining 

 

 Osteoclasts and macrophages were differentiated from monocytes on 

glass coverslips. Day 8 cells were washed thrice with PBS, fixed with 4% PFA 

in PBS for 20 minutes and washed 5 times with PBS. The cells were then 

permeabilized with permeabilizing buffer 0.1% (w/v) saponin in PBS for 30 

minutes. Primary antibody, diluted in permeabilizing buffer containing 1% 

goat serum, was added and incubated for 1- 2 hours. Excess antibody was 

removed by washing the coverslips thrice with permeabilizing buffer. Next, 
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secondary fluorochrome-conjugated antibodies, diluted in permeabilizing 

buffer containing 1% goat serum, was added and incubated for 1 hour in the 

dark. For the staining of F-actin rings, rhodamine-phalloidin was added in this 

step. The coverlips were washed thrice with permeabilizing buffer and 

mounted on glass slide using VectaShield mounting medium with DAPI 

(Vector Laboratories Inc., Burlingame, CA). All incubations were performed at 

room temperature. 

 

For the stimulation of osteoclasts, the coverlips were incubated with the 

stimulants for 48 hours before immunofluorescence staining was carried out. 

The stained cells were then examined using the Olympus BX-60 digital 

microscope/ImagePro Plus software or Leica TCS SP5 confocal 

microscope/LeicaAF software. Co-localization between two signals were 

determined by Pearson’s correlation analysis which was performed using the 

LeicaAF software. 

 

 

2.4.9   Immunohistochemistry 

 

 Immunohistochemistry was performed by Dr Yuri V. Bobryshev, 

Faculty of Medicine, University of New South Wales. 

 

Tissue specimens of femoral bone were obtained at the Department of 

Pathological Anatomy, 1st Medical Institute, Leningrad/St Petersburg, Russia. 

The study was carried out in accordance with the principles outlined in the 

Helsinki Declaration of 1975, as revised in 1983. Tissue specimens were fixed 

in 10% neutral-buffered formalin solution and were decalcified for 5 h using 

Decalcifying Solution-Lite (Sigma-Aldrich) prior to further processing and 

embedding into paraffin blocks. These blocks were cross-cut into 3 μm tissue 

sections. For single immunostaining, after elimination of endogenous 

peroxidase activity by 3% H2O2, sections were pre-incubated with normal non-

immune serum and then tested by avidin-biotin complex (ABC) using a 

standard ABC immunoperoxidase method as described previously(Bobryshev 

et al., 2010; Cao et al., 2003). C1q was identified using a goat anti-C1q 
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antibody (Sigma-Aldrich). After washing in Tris-PBS (TPBS), pH 7.6, the 

sections were incubated with a biotin-labelled secondary antibody, followed by 

a treatment with ABC. After washing in TPBS, brown staining was produced 

by 5 min treatment with 3,3’-diaminobenzidine (DAB). All of the incubations 

were completed at room temperature (22◦C). For negative controls, a non-

immune goat IgG was used in place of the anti-C1q antibody. None of the 

negative control sections showed positive immune staining. Counterstaining 

was performed with Mayer’s haematoxylin. 

 

 

2.4.10 IgG Precipitation 

 

IgG precipitation was carried out to isolate the anti-C1q autoantibodies 

from SLE patients. 10 patients with the highest amount of anti-C1q 

autoantibodies were selected and 100 μl of sample was used for IgG 

precipitation. The samples were pooled and warmed to 25
o
C. 0.18 g sodium 

sulphate was added into the serum and vortexed to ensure the salt was 

completely dissolved. The solution was allowed to precipitate for 30 minutes at 

25
o
C and the precipitate was pelleted at 3,000 g for 30 minutes at 25

o
C. 500 μl 

of water was used to dissolve the pellet. Subsequently, 0.044g sodium sulphate 

was dissolved in the solution and allowed to precipitate for 30 minutes at 25
o
C. 

The pellet was dissolved in 500 μl of water and stored in 4
o
C till future uses. 

 

 

2.4.11 Preparation of different C1q domains 

 

2.4.11.1 Preparation of C1q collagen tails 

  

C1q was first dialyzed with 100 mM sodium acetate pH 4.5 at 4
o
C 

overnight. Subsequently, 5% (w/w) pepsin (Sigma-Aldrich) was added and 

incubated at 37
o
C for 24 hours. The digestion was stopped by adjusting the pH 

of the mixture to 7.0 using 1 M Tris. C1q collagen tails were purified by using 

the ÄKTA FPLC machine with Mono S
TM

 5/50 GL column (GE Healthcare, 

Piscataway, NJ). 100 mM sodium acetate pH 5.0 containing 150 mM NaCl 
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was used to equilibrate the column and bounded C1q collagen tails were eluted 

with 100 mM sodium acetate pH 5.0 containing 1M NaCl on a 50% salt 

gradient. Isolated C1q collagen tails were then dialyzed with 1X PBS. The 

purity of the collagen tails was determined by Coomassie blue staining and its 

concentration was determined by densitometry using intact C1q as standards. 

 

 

2.4.11.2 Preparation of C1q globular heads 

 

C1q was first dialyzed with 25 mM Tris pH 7.4 and 10 mM CaCl2 at 

4
o
C overnight. Subsequently, 2.5 units collagenase, Type III (Sigma-Aldrich) 

was added for every 10 μg of C1q used and incubated at 37
o
C for 16 hours. 

C1q globular heads were purified by using the ÄKTA FPLC machine with 

Mono S
TM

 5/50 GL column (GE Healthcare). 25 mM Tris pH 7.4 containing 

10 mM CaCl2 and 150 mM NaCl was used to equilibrate the column and 

bounded C1q globular heads were eluted with 25 mM Tris pH 7.4 containing 

10 mM CaCl2 and 1M NaCl on a 50% salt gradient. Isolated C1q globular 

heads were then dialyzed with 1X PBS. The purity of the collagen tails was 

determined by Coomassie blue staining and its concentration was determined 

by densitometry using intact C1q as standards. 

 

 

2.5   Experimental repeats and statistical analysis 

 

 Most experiments were performed three times and the figures presented 

are representative of these experiments unless stated otherwise. Data were 

expressed as mean values of experimental triplicates ± standard error. 

Student’s t test (two-sided, unpaired) was used to determine statistical 

significance unless stated otherwise. For significance level in the graphs, * 

respresents p < 0.05, ** respresents p < 0.01 and *** represents p < 0.001. 
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Chapter 3  – C1q production by osteoclasts and its regulation of 

osteoclastogenesis 

 

3.1   Introduction 

 

Despite serum having abundant C1q, tissue access to C1q may be 

limited in the absence of inflammation. Thus, local synthesis of C1q is critical 

in mediating the diverse functions of C1q. Unlike most of the other 

complement proteins which are synthesized by the hepatocytes, C1q is mainly 

produced by myeloid cells – macrophages and DCs (Lu et al., 2008). Present in 

most tissues, they are APCs which are key scavengers and are involved in the 

induction and maintenance of tolerance, providing a link between the innate 

and adaptive immune system (Guermonprez et al., 2002; Martinez-Pomares 

and Gordon, 2007; Mellman and Steinman, 2001; Unanue, 1984).  

 

Macrophages display a high degree of heterogeneity in our bodies with 

various forms in different organs (Gordon and Taylor, 2005). This raises the 

question if the production of C1q is a common characteristic of these cells. 

Studies have shown that Kupffer cells and microglial cells express C1q 

(Armbrust et al., 1997; Haga et al., 1996; Schafer et al., 2000). However, the 

production of C1q by osteoclasts – macrophages in the bone – has not been 

determined previously. Osteoclasts are chosen for several reasons. Firstly, 

osteoclasts share the same precursor cells as macrophages and DCs (Boyle et 

al., 2003) – the main producers of C1q in the body (Lu et al., 2008). Secondly, 

osteoclasts are demonstrated to be immune-competent and can act as APCs 

(Grassi et al., 2011; Kiesel et al., 2009; Li et al., 2010). Lastly, as the plasma 

concentration of C1q is approximately 180 mg/L (Sontheimer et al., 2005), the 

bones which constitute a large part of our body may be a likely source of 

serum C1q. Thus, we investigate the possibility of C1q production by 

osteoclasts and the likely role that C1q may play in the bone microenvironment. 
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3.2   Generation and characterization of in vitro differentiated osteoclasts 

 

3.2.1   Differentiation of monocytes into osteoclasts and characterization of 

osteoclasts 

 

For this part of the study, primary osteoclasts, macrophages and DCs 

are differentiated from human monocytes for all experiments. Monocytes were 

isolated from buffy coats of healthy blood donors using Ficoll-Paque gradient 

centrifugation followed by plastic adhesion methods. Each buffy coat typically 

yielded 10 - 40 million monocytes. The purity of the monocytes was 

determined by flow cytometry using CD14, a marker for monocytes, and at 

least 90% of the cells expressed CD14. 

 

 

Figure 3.1. Surface expression of CD14 on isolated human monocytes.  

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coat 

using the Ficoll-Paque gradient centrifugation method and platelets were 

removed by washing repeatedly. The cells were then resuspended and allowed 

to adhere onto plastic culture flasks for 1 h. Non-adherent cells were removed 

by multiple washings and the remaining adherent cells were harvested with 

gentle scraping. These cells were then stained with antibodies against CD14 

and CD1a to determine the purity of the isolated cells. Solid histogram 

represents isotype control and black line represents CD14 or C1a. 

 

 

Osteoclasts were then differentiated from the isolated monocytes based 

on the method described by Quinn et al. in which M-CSF and RANKL were 

added were added to the culture and incubated for 8 days (Quinn et al., 1998). 

This was done in 6-well culture plates and 1 million monocytes were seeded 

per well. Half of the media was replaced with fresh media containing cytokines 
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every 3 days. The Day 8 cells were subjected to a series of experiment for 

osteoclast characterization. 

  

Firstly, by microscopic examination, osteoclasts were observed to be 

much larger than macrophages (Figure 3.2A). In addition, osteoclasts were 

heterogeneous in shape and size whereas macrophages displayed uniformity in 

their shape and size (Figure 3.2A). Next, the expression of different osteoclast 

markers [calcitonin receptor (CTR) (CALCR), carbonic anhydrase II (CAII) 

(CA2), Cathepsin K (CatK) (CTSK), matrix metallopeptidase 9 (MMP9) 

(MMP9) and tartrate-resistant acid phosphatase (TRAP) (ACP5)] (Boyle et al., 

2003; Sorensen et al., 2007) was examined using quantitative real-time PCR 

(qPCR). Osteoclasts expressed increased levels of these markers by 1.2 to 65 

fold as compared to that of macrophages (Figure 3.2B). By TRAP staining, 

high level of the protein, as indicated by the purple granules, was also found in 

osteoclasts and these were largely absent in macrophages (Figure 3.2A). This 

is reflective of the increased expression of TRAP mRNA in osteoclasts as 

compared to macrophages. The majority of the osteoclasts was multinucleated 

as shown by DAPI staining whereas macrophages are mononucleated (Figure 

3.2C). A small population of mononucleated cells was also found in the 

osteoclast culture and they are considered as osteoclast precursor cells or 

preosteoclasts. This is consistent with previous studies which showed 

heterogeneity in osteoclast cultures (Grassi et al., 2003; Sorensen et al., 2007). 

 

 In the bone, osteoclasts function as the main effector cells for bone 

resorption. To facilitate resorption, osteoclasts form a tight, sealed 

compartment – the resorption lacunae – against the bone surface which is 

mediated mainly by a ring of filamentous actin (F-actin) fibres and αvβ3 

integrins (Nakamura et al., 2007; Vaananen and Horton, 1995). This allows the 

acidification of the resorption lacunae and secretion of proteases for bone 

resorption to occur (Teitelbaum, 2000). F-actin rings were present in the 

multinucleated osteoclasts whereas no such structures were seen in the 

macrophages (Figure 3.2C). Lastly, the resorption ability of the in vitro-

derived osteoclasts was determined. Monocytes were seeded and differentiated 

to osteoclasts in chamber slides coated with calcium phosphate to mimic the 
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bone surface. After 8 days, the cells were removed and resorption pits of 

various sizes were seen in the osteoclast culture (Figure 3.2D, right panel). 

However, no resorption pits were detected in the macrophage culture (Figure 

3.2D, left panel). This is consistent with the upregulation of genes such as CA 

II, CatK and MMP9 (Figure 3.2B) which are all involved in the resorption 

process (Teitelbaum, 2000). These results showed that the in vitro generated 

osteoclasts are similar to the in vivo osteoclasts in terms of morphological 

features and functionality. 
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Figure 3.2. Generation and characterization of osteoclasts. Isolated 

monocytes were cultured in αMEM supplemented with M-CSF and RANKL 

for differentiation into osteoclasts. As a control, macrophages were 

differentiated from monocytes by only adding M-CSF. The cells were cultured 
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for 8 days with half of the medium replaced with fresh medium containing 

cytokines every 3 days. (A) Macrophages (left panel) and osteoclasts (right 

panel) grown in tissue-culture plates were fixed and stained to detect the 

expression of (tartrate-resistant acid phosphatase) (TRAP) (osteoclast marker) 

using the Acid Phosphatase, Leukocyte (TRAP) kit. The presence of TRAP 

will cause the formation of purple granules in the cytoplasm of the cells. (B) 

Quantitative real-time PCR (qPCR) was carried out to detect the expression of 

osteoclast markers using cDNA - reverse-transcription (RT) from total RNA - 

of monocytes, macrophages and osteoclasts. The expression levels of these 

markers for macrophages and osteoclasts represent the fold increase as 

compared to that of monocytes which were normalized to 1. GAPDH was used 

as the endogenous control. The data is representative of three independent 

experiments. (C) Macrophages (left panel) and osteoclasts (right panel) were 

grown on coverslips for 8 days. After differentiation, the cells were fixed, 

permeabilized and stained with DAPI and rhodamine-phallodin to observe the 

nuclei and characteristic F-actin rings (red) of osteoclasts respectively. (D) 

Macrophages (left panel) and osteoclasts (right panel) were differentiated on 

BD BioCoat
TM

 Osteologic
TM

 Discs to assess the resorption ability of the in 

vitro generated osteoclasts. Scale bar represents 25 μm. 

 

 

3.2.2   Phenotype of in vitro osteoclasts  

 

Recently, osteoclasts were demonstrated to be immune-competent and 

can act as APCs (Grassi et al., 2011; Kiesel et al., 2009; Li et al., 2010). Thus, 

the surface expression of immune molecules which are important in antigen 

presentation was determined. For comparison, known APCs such as 

macrophages and DCs were used as controls. Phenotypic analysis showed that 

all three cell types expressed MHC molecules, MHC class I and MHC class II, 

and costimulatory molecules such CD80, CD86 and CD40. In addition, these 

cells also expressed CD11b and CD11c. CD1a, a DC marker, was only found 

on the surface of DC and not on the surfaces of osteoclasts and macrophages 

(Figure 3.3). However, CD14 was prominently expressed by both osteoclasts 

and macrophages and not by DC (Figure 2). The results showed that 

osteoclasts expressed surface molecules which are necessary for antigen 

presentation and are consistent with previous reports (Grassi et al., 2011; 

Kiesel et al., 2009). Thus, the above results showed that the in vitro generated 

osteoclasts not only have the traditional characteristics of osteoclasts 

(expression of osteoclast markers, formation of F-actin rings and resorption) 

but they also possess immunogenic properties discovered recently. 
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Figure 3.3. Phenotypic properties of osteoclasts, macrophages and dendritic cells (DCs). Monocytes were differentiated into 

osteoclasts (top row), macrophages (middle row and DC (bottom row) after 8 days of culture using M-CSF + RANKL, M-CSF 

and GM-CSF + IL-4 respectively. The cells were harvested and stained with flurochrome-conjugated antibodies against CD1a, 

CD14, MHCI, MHCII, CD80, CD86, CD40, CD11b and CD11c. Surface expression of these molecules was determined by flow 

cytometry. The results shown are representative of three independent experiments. Solid histogram represents isotype control and 

black line represents the respective antibodies. 

 

 

 

 

6
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3.3   Production of C1q by in vitro osteoclasts 

 

3.3.1   Expression of C1Q mRNA by in vitro osteoclasts 

 

With the generation of in vitro osteoclasts, the possibility of C1q 

production by these cells was first determined at the mRNA levels. This was 

done by qPCR and cells were observed for 21 days of culture.  For comparison, 

the expression of C1QA, C1QB and C1QC in macrophages and DCs was also 

examined. Monocytes, which produce insignificant amounts of C1q 

(Bobryshev et al., 2010; Cao et al., 2003), were used as a negative control.  All 

three C1Q subunits were detectable in developing osteoclasts by Day 3 and 

their expressions peaked at Day 6 which remained unchanged for the rest of 

the culture period (Figure 3.4). However, the expression of C1Q in osteoclasts 

was lower than that of macrophages and DC. Macrophages had the highest 

expression of C1Q, followed by DCs and then osteoclasts (Figure 3.4). Very 

low levels of C1Q mRNA were detected in monocytes by qPCR and RT-PCR 

(Figure 3.4, Appendix 1). CatK, an osteoclast marker, was used as a control. 

As shown in Figure 3.4, osteoclasts had the highest expression of CTSK as 

compared to macrophages and DCs which had very low levels of expression. 

This validates the osteoclastogenic property of the cells and the results show 

that osteoclasts, like macrophages and DCs, obtain increased C1Q mRNA 

expression as they differentiate from monocytes. 
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Figure 3.4. C1q expression by monocytes, osteoclasts, macrophages and 

DCs at the transcriptional level. Osteoclasts (◆), macrophages (■) and DCs 

(▲) were differentiated from monocytes for different time points (3, 6, 9, 12, 

16 and 21 days) and total RNA was isolated at each time point. The RNA of 

monocytes (●) was also isolated. cDNA was generated by RT and qPCR was 

used to detect the expression levels of C1QA, C1QB and C1QC mRNA in 

these cells. The expression levels of C1QA, C1QB and C1QC for osteoclasts, 

macrophages and DCs represent the fold increase as compared to that of 

monocytes which were normalized to 1. Cathepsin (CatK) (CTSK) and 

GAPDH were used as osteoclast marker and endogenous control respectively. 

The graphs are representative of three independent experiments. 

 

 

3.3.2   Production and secretion of C1q by in vitro osteoclasts 

 

Given that the cultured osteoclasts expressed C1Q mRNA, the 

production of C1q at the protein level was evaluated. Similarly, cells were 

harvested over 21 days at various time points and the cells lysates were 

subjected to Western blotting. A polyclonal anti-C1q antibody was used to 

detect the presence of C1q and a 26-27 kD band, equivalent to the sizes of 

C1qA and C1qB chains, was found in the osteoclast culture across various time 

points (Figure 3.5). A smaller and fainter band of approximately 24kD, 

equivalent to the size of C1qC chain, was also found in some of the samples. 

Osteoclasts produced detectable amounts of C1q protein by Day 3, peaked at 
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Day 6 and had approximately the same amount of C1q protein for the rest of 

the culture period (Figure 3.5A) and this is reflective of the C1Q mRNA 

expression in osteoclasts (Figure 3.4). C1q protein was not detected in 

monocytes (Figure 3.5A) which produce insignificant amounts of C1q as 

reported in previous studies (Bobryshev et al., 2010; Cao et al., 2003). This is 

in contrast with the very low level of RNA detected in monocytes as shown in 

Figure 3.4 and Appendix 1.  

 

Consistent with the C1Q mRNA results (Figure 3.4), in general, 

macrophages and DCs produce more C1q as compared to osteoclasts (Figure 

3.5A). Macrophages have a similar pattern of expression as osteoclasts in 

which C1q protein was detected by Day 3, peaked at Day 6 and maintained its 

expression for the rest of the culture period. Interestingly, C1q production in 

DCs was only detected on Day 6 whereas C1q protein was found in both 

macrophages and osteoclasts on Day 3 (Figure 3.5A). This resulted in the delay 

of its peak production of C1q (Figure 3.5A). The reason for the overall delay 

may be due to the low C1Q mRNA expression levels in DC at Day 3 (Figure 

3.4).  

 

As C1q is a plasma protein, the secretion of C1q by osteoclasts, 

macrophages and DCs was examined using sandwich ELISA. Culture media 

were collected over the 21 days of culture and used for analysis. As shown in 

Figure 3.5B, secreted C1q was generally undetectable for all three cell types on 

Day 3 despite the presence of intracellular C1q in osteoclasts and macrophages 

(Figure 3.5A). Similar to C1q mRNA and protein expression (Figures 3.4 and 

3.5A), macrophages secreted the highest amount of C1q whereas osteoclasts 

secreted the least amount of C1q. In addition, macrophages and DCs showed 

increasing levels of secreted C1q over the culture period, indicating the 

continual secretion by these cells. However, C1q secretion by osteoclasts 

seemed to plateau in the later stages of the culture period which is reflective of 

the constant expression and production of C1q after Day 6 of culture (Figures 

3.4 and 3.5A). 
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Figure 3.5. Production and secretion of C1q by osteoclasts, macrophages 

and DCs. Osteoclasts, macrophages and DCs were differentiated for different 

time points (3, 6, 9, 12, 16 and 21 days). The cells were lysed and media were 

collected at each time point. (A) Cell lysates of monocytes, osteoclasts, 

macrophages and DCs were processed for Western blotting and probed for the 

presence of intracellular C1q. β-actin was used as an endogenous control. (B) 

The amounts of C1q secreted by osteoclasts (◆), macrophages (■) and DCs (▲) 

into the media at different time points were determined by ELISA. The results 

shown are representative of three independent experiments. 

 

 

3.3.3   C1q is preferentially produced by preosteoclasts 

 

 Given that cultured osteoclasts is heterogeneous (Figures 3.2A and 

3.2C), consisting of both preosteoclasts and mature osteoclasts representing 

mono- and multinucleated osteoclasts respectively, it is interesting to 

determine which population of cells produce C1q. Immunofluorescence 
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microscopy was used as it allows the study of C1q production at single cell 

level. As shown in Figure 3.6, C1q was detected in only a fraction of cells and 

these were mainly the preosteoclasts. No signal was detected in the mature 

osteoclasts indicating that the multinucleated cells produced low levels of C1q 

(Figure 3.6). However, not all mononucleated cells were stained for C1q and 

this may be due to the differences in the developmental stages for the cells. To 

determine if the intracellular C1q detected is synthesized de novo, early 

endosomes were also co-stained using an antibody against the early endosomal 

marker, early endosome antigen 1 (EEA-1). This is to rule out that the 

possibility that C1q was taken up from extracellular medium via endocytosis. 

However, no co-localization was observed between C1q and EEA-1 stainings 

(Figure 3.6). In addition, by Pearson’s correlation analysis, no significant co-

localization was obtained for the C1q and EEA-1 signals (data not shown). 

Thus, this implies that the detected C1q molecules are synthesized de novo by 

the cultured osteoclasts. 

 

 Based on the results obtained so far, C1q is indeed produced and 

secreted by in vitro osteoclasts especially by the preosteoclasts. This may 

account for the constant C1q levels detected in the osteoclast culture media 

after 9 days of culture as there were more mature osteoclasts than 

preosteoclasts (Figure 3.5B). The preferential production of C1q by 

preosteoclasts may imply a role for C1q during the differentiation of 

monocytes to osteoclasts. 
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Figure 3.6. Preferential production of C1q by preosteoclasts. Osteoclasts were grown on coverslips and immunofluorescence staining was 

performed after 8 days of culture.  Confocal immunofluorescence microscopy analysis was performed using anti-C1q (green) and anti-EEA-1 

(red) antibodies. Arrowheads indicate C1q-positive mononucleated osteoclasts. Scale bar represents 25 μm. The results shown are representative 

of three independent experiments. 
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3.4   Induction of C1q in osteoclasts by IFNγ 

 

3.4.1   Induction of C1Q gene expression by IFNγ and LPS 

 

 The production of C1q in macrophages can be regulated by many 

stimuli which include microbial structures, cytokines, hormones and drugs and 

IFNγ is one of them (Lu et al., 2008). A recent study also showed that IFNγ 

induced C1Q gene expression in DCs (Chen et al., 2011). However, the effects 

of IFNγ on C1q production in osteoclasts are unknown. Thus, Day 8 

osteoclasts were stimulated with IFNγ for 48 hours and the cells were analyzed 

at RNA and protein levels. Lipopolysaccharide (LPS) was also used for the 

stimulation. Macrophages and DCs were also similarly treated and used for 

comparison. After stimulation with IFNγ, osteoclasts showed a significant 

increase in C1Q gene expression compared to the untreated cells (Figure 3.7A, 

left panel). LPS also increased the C1Q gene expression in osteoclasts though 

the effect was not as great as IFNγ (Figure 3.7A, left panel). Similar results 

were also observed for macrophages and DCs (Figure 3.7A, middle and right 

panels). 

 

 

3.4.2   Increased synthesis and secretion of C1q by IFNγ-, but not LPS-, 

treated osteoclasts 

 

 Next, protein expression was investigated after the cells were 

stimulated with IFNγ and LPS and intracellular C1q was evaluated by flow 

cytometry. As seen in Figure 3.7B, untreated osteoclasts showed low level of 

intracellular C1q whereas both macrophages and DCs had significantly higher 

amounts of intracellular C1q. This is consistent with the Western blot result 

(Figure 3.5A). Upon stimulation with IFNγ, all three cell types displayed 

drastic increase in intracellular C1q and the effect was more pronounced in 

osteoclasts (Figure 3.7B). In contrast to the substantial upregulation of C1Q 

gene expression by LPS (Figure 3.7A), moderate increase was observed for the 

intracellular C1q levels in LPS treated cells as compared to the untreated cells 

(Figure 3.7B).  
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 In addition, fluorescence microscopy was also used to determine the 

effects of IFNγ and LPS on the production of intracellular C1q in osteoclasts. 

Day 10 osteoclasts also the staining pattern as the Day 8 osteoclasts in which 

intracellular C1q could be detected mainly in the preosteoclasts (Figures 3.6 

and 3.7C, left panel). Upon IFNγ stimulation, C1q was detected in both the 

preosteoclasts and mature osteoclasts (Figure 3.7C, middle panel). The signals 

in the IFNγ-stimulated cells were more intense as compared to the untreated 

cells, indicating the increased production of C1q by IFNγ (Figure 3.7C, left 

and middle panels). Similar to the untreated osteoclasts, the preosteoclasts still 

produced higher levels of C1q as compared to the mature osteoclasts in IFNγ-

stimulated osteoclasts despite the general increased production of C1q (Figure 

3.7C, left and middle panels). No significant increase in C1q staining was 

observed for LPS-stimulated osteoclasts (Figure 3.7C, right panel). 

 

Lastly, the effects of IFNγ and LPS on secreted C1q were determined 

by ELISA. C1q secretion by untreated osteoclasts was low but this was 

increased substantially when IFNγ was used to stimulate the cells (Figure 3.7C, 

left panel). Untreated macrophages and DCs were able to secrete significant 

amounts of C1q and IFNγ further increased the C1q secretion by several folds 

(Figure 3.7C, middle and right panels).  Once again, LPS had limited effects on 

C1q secretion for all three cell types (Figure 3.7C). Although the significant 

induction of C1q by IFNγ and the function of osteoclast-derived C1q remain to 

be investigated, these results consistently point to the production and secretion 

of C1q by osteoclasts. 
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Figure 3.7. Induction of C1q production in osteoclasts, macrophages and 

DCs by IFNγ. Osteoclasts, macrophages and DCs were cultured for 8 days, 

washed and stimulated with IFNγ (100 ng/ml) or LPS (500 ng/ml) for 48 hours. 

(A) qPCR was performed to quantify the expression levels of C1QA, C1QB 

and C1QC after stimulation. For each cell type, the expression levels of C1QA, 

C1QB and C1QC for IFNγ- and LPS-treated cells represent the fold increase as 

compared to that of control cells which were normalized to 1. GAPDH was 

used as the endogenous control. (B) After stimulation, the cells were harvested, 

fixed, permeabilized and stained with an anti-C1q antibody. Flow cytometry 

analysis was carried out to determine the levels of intracellular C1q. Isotype 

control (—), control (—), IFNγ (—) and LPS (—). (C) Osteoclasts were grown 

on coverslips and treated with IFNγ (middle panel) and LPS (right panel) or 

left untreated (left panel) for 48 hours. Confocal immunofluorescence 

microscopy analysis was performed using anti-C1q (green) and anti-EEA-1 

(red) antibodies. Arrows and arrowheads indicate C1q-positive multinucleated 

and mononucleated osteoclasts respectively. Scale bar represents 25 μm. The 

results shown are representative of three independent experiments. (D) ELISA 

was done to determine the amounts of secreted C1q by the cells after 

stimulation. Results are average for three independent experiments. 
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3.5   Presence of C1q in endogenous osteoclasts 

 

To validate the production of C1q by in vitro generated osteoclasts, 

endogenous osteoclasts were examined for the production of C1q. Human 

femoral bone samples were fixed, decalcified and 3 μm sections were stained 

for the presence of C1q. Both endogenous mononucleated and multinucleated 

cells, representing preosteoclasts and mature osteoclasts, showed C1q staining 

near the bone tissues with the preosteoclasts having higher C1q staining as 

compared to that of mature osteoclasts (Figures 3.8 and 3.9). It was also noted 

that the mature osteoclasts displayed intense perinuclear staining (Figure 3.9). 

The results obtained are similar to the observations made for in vitro 

osteoclasts except that little C1q was detected in the in vitro mature osteoclasts 

(Figure 3.6). This may reflect the imperfect culture conditions for the in vitro 

osteoclasts. Collectively, the in vitro and in vivo results showed that osteoclasts 

are indeed C1q producers. 
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Figure 3.8. Presence of C1q-positive mononucleated cells in human 

femoral bone. 3 μm sections of human femoral bone samples were obtained 

and stained using anti-C1q or pre-immunization IgG (negative control) 

antibody. (A-D) The presence of C1q was indicated by brown staining which 

was produced using the standard avidin-biotin complex (ABC) 

immunoperoxidase method and 3,3’-diaminobenzidine (DAB) substrate. 

Counterstaining was done with Mayer’s haematoxylin. (E) Negative control. 

Arrows indicate C1q-positive mononucleated cells. (Images are courtesy of Dr 

Yuri V. Bobryshev, Faculty of Medicine, University of New South Wales.) 
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Figure 3.9. Presence of C1q-positive multinucleated cells in human 

femoral bone. 3 μm sections of human femoral bone samples were obtained 

and stained using anti-C1q or pre-immunization IgG (negative control) 

antibody. (A-C) The presence of C1q was indicated by brown staining which 

was produced using the standard ABC immunoperoxidase method and DAB 

substrate. Counterstaining was done with Mayer’s haematoxylin. (D) Negative 

control. B is a magnification of A. Arrows indicate C1q-positive 

multinucleated cells. (Images are courtesy of Dr Yuri V. Bobryshev, Faculty of 

Medicine, University of New South Wales.) 

 

 

  



76 
 

3.6   Immobilized C1q augments osteoclastogenesis 

 

Given that C1q was mainly found in preosteoclasts (Figure 3.6), we 

hypothesized that C1q may play a role in osteoclastogenesis – a process in 

which mature osteoclasts are formed from precursor cells (Boyle et al., 2003; 

Teitelbaum and Ross, 2003). Previously, C1q was shown to regulate the 

differentiation of DC from monocytes (Castellano et al., 2007; Teh et al., 

2011). One study shows that the addition of soluble C1q inhibited the 

responses of DC when stimulated with LPS (Castellano et al., 2007). Another 

study shows that immobilized C1q caused DC to acquire tolerogenic 

phenotypes (Teh et al., 2011). In addition, recent studies have shown that 

complement proteins are able to regulate osteoclastogenesis (Ignatius et al., 

2011; Sato et al., 1993; Tu et al., 2010). Thus, the effects of both soluble and 

immobilized C1q on the differentiation of monocytes to osteoclasts are 

examined. The cells were cultured for 8 days and bovine serum albumin (BSA) 

was used as a control for both soluble and immobilized C1q. Gene expression 

of osteoclast markers such as nuclear factor of activated T cells cytoplasmic 1 

(NFATc1) (NFATC1), CTR (CALCR), CAII (CA2), CatK and TRAP (ACP5) 

were first examined. As shown in Figure 3.10, for osteoclasts cultured in the 

presence of immobilized C1q (imC1q osteoclasts), the expression of these 

osteoclast markers were upregulated 2 - 7 folds. In contrast, the markers of 

osteoclasts cultured with soluble C1q (sC1q osteoclasts) were not affected 

except for the slight induction in the expression of CTR which was not 

significant (Figure 3.10).  

 

Subsequently, the effects of C1q on the expression of other molecules 

involved in osteoclastogenesis were determined. CSF1R [M-CSF receptor (M-

CSFR, also known as c-fms)] and TNFRSF11A (RANK) were upregulated at 

least 2 folds in imC1q osteoclasts and this was not observed in sC1q 

osteoclasts (Figure 3.10). This may account for the increased expression of 

osteoclast markers in imC1q osteoclasts as these two receptors mediate the 

actions of M-CSF and RANK, the two essential cytokines required for 

osteoclastogenesis (Boyle et al., 2003; Nakashima et al., 2012; Teitelbaum and 

Ross, 2003).  
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The gene expression of cytokines such as M-CSF (CSF1), IL-6 (IL6), 

IL-10 (IL10) and TGF-β1 (TGFB1), which are produced by osteoclasts and 

regulate osteoclastogenesis (Boyle et al., 2003; Evans and Fox, 2007; Jilka et 

al., 1992; Kaneda et al., 2000; Kurihara et al., 1990; Mohamed et al., 2007; 

Quinn et al., 2001), were also examined. A drop in CSF1 expression was 

observed for imC1q osteoclasts although the decrease was not statistically 

significant (Figure 3.10). IL6 was upregulated in both imC1q and sC1q 

osteoclasts though the upregulation for sC1q osteoclasts was not significant 

(Figure 3.10). IL-6 is known to promote osteoclastogenesis (Jilka et al., 1992; 

Kurihara et al., 1990) and this may also cause the increased expression of 

osteoclast markers for imC1q osteoclasts. A significant increase in IL10 

expression was seen in imC1q osteoclasts (Figure 3.10). Despite IL-10 is 

shown to inhibit osteoclastogenesis (Evans and Fox, 2007; Mohamed et al., 

2007), the inhibition may not be effective in the presence of other 

osteoclastogenesis promoting factors. No difference was observed in the 

expression TGFB1 for both types of C1q osteoclasts (Figure 3.10). Collectively, 

the results showed that immobilized C1q positively affects osteoclastogenesis. 

This could be due to the effective cross-linking of C1q receptor(s) by 

immobilized C1q as compared to soluble C1q or the exposure of conformation-

dependent binding sites on immobilized C1q. 

 

 



78 
 

 
 

Figure 3.10. Induction of gene expression for osteoclast markers by 

immobilized C1q.  Osteoclasts were differentiated from monocytes in the 

presence of immobilized BSA (imBSA), immobilized C1q (imC1q), soluble 

BSA (sBSA) (50 μg/ml) and soluble C1q (sC1q) (50 μg/ml) for 8 days. For 

imBSA and imC1q, 50 μg/ml of the proteins was used to coat the wells. Total 

RNA was then isolated and qPCR was carried out to determine the expression 

levels of different molecules. The expression levels of these molecules for 

osteoclasts generated in imC1q, sBSA and sC1q represent the fold increase as 

compared to that of osteoclasts generated in imBSA which were normalized to 

1. GAPDH was used as the endogenous control. Results are average of three 

independent experiments. Statistical analysis was performed by one-way 

ANOVA and Bonferroni’s post-test. 
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Chapter 4 – Anti-adhesive effects of solid phase C1q 

 

4.1   Introduction 

 

 We have shown that osteoclasts produce C1q and preosteoclasts 

express more C1q as compared to that of mature osteoclasts. This leads us to 

investigate the effect of C1q on the development of osteoclasts. Immobilized 

C1q augments osteoclastogenesis and this is likely due to the upregulation of 

the receptors for M-CSF and RANKL, M-CSFR and RANK respectively, 

which renders the cells more sensitive to the cytokines used for differentiation. 

 

Previously, our lab has also shown that immobilized C1q leads to the 

generation of tolerogenic DCs (Teh et al., 2011). These DCs produced more 

anti-inflammatory cytokine IL-10 but lesser proinflammatory cytokines such as 

IL-12 and IL-23. In addition, imC1q DC displayed increased ERK, p38 and 

p70S6 kinase activation than control DC when stimulated with LPS. Lesser 

Th1 and Th17 induction from allogenic CD4 T cells was observed for these 

DC in mixed lymphocyte reaction. 

 

 These data indicate that immobilized C1q is able to interact with 

receptors present on monocytes and regulate their differentiation to DC and 

osteoclasts. We also observed that immobilized C1q induced distinct 

morphological changes in monocytes and they were less adherent (data not 

shown). DC cultured in the presence of immobilized C1q displayed similar 

expression of surface molecules as control DCs (Teh et al., 2011). However, 

these DC still retained the distinct morphological changes observed in 

monocytes and were also less adherent. Hence, understanding how C1q affects 

cellular morphology will provide insights on the possible mechanisms involved 

in the regulation of monocyte development by C1q. These observations 

indicate that these two cell types may express a common receptor which 

mediates the effects of immobilized C1q. 

 

 Thus, we hypothesized that a common receptor is present on monocytes 

and DCs that interacts with immobilized C1q and affect the morphological and 



80 
 

adherent properties of these cells. The presence of such a receptor in other cell 

types which might mediate the effects of immobilized C1q will also be 

investigated. By identifying the receptor, this could provide more 

understanding on how immobilized C1q modulates monocyte development. 

This will provide more insights into the role C1q plays in maintaining 

tolerance and preventing diseases such as SLE. 
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4.2   Immobilized C1q affects the morphologies and adherence of cells 

 

4.2.1   Immobilized C1q, but not soluble C1q, induces morphological 

changes in different cell types 

 

 To test the hypothesis, we first differentiated monocytes into 

macrophages and DCs. After 6 days of culture, the macrophages expressed 

high levels of CD14 whereas the DCs expressed high levels of C1a, indicating 

that the cells are fully differentiated (Figure 3.3). C1q was then immobilized on 

the culture plates before monocytes, macrophages and DCs were added. As a 

control, BSA was also used to coat the plates. The morphologies of the cells 

were subsequently observed under the microscope after 24 hours of culture. As 

seen in Figure 4.1A, cells cultured with immobilized C1q exhibited 

aggregation and were less spread out as compared to control cells. Upon closer 

examination, imC1q cells, especially macrophages and DC, appeared more 

rounded and tended to stick together (Figure 4.1B, lower panels). On the other 

hand, control macrophages and DCs appeared flatter and had more cellular 

extensions (Figure 4.1B, upper panels). For monocytes, clustering of the cells 

was apparent though spreading of the cells was not affected (Figure 4.1B). The 

insignificant changes in the spreading of monocytes are not surprising as 

monocytes are known to have little cytoplasmic extensions (Almeida et al., 

2001).  

 

 Based on the results, it seems that the effects of immobilized C1q are 

not limited to monocytes. This raises the question if other cell types would be 

similarly affected by immobilized C1q. Different cell lines were then used in 

the same assay to determine the effects of immobilized C1q on these cells. 

Similarly, immobilized C1q induced aggregation and rounding up of cells for 

both human and murine cell lines (Figures 4.1C and 4.1D). Cells cultured with 

immobilized BSA appeared normal and spread out nicely. For human cell lines, 

HEK293T cells displayed the most significant changes whereas the other cells 

lines had both rounded cell clusters and normal spreading cells (Figure 4.1C). 

For murine cell lines, the immune cell lines (DC2.4, J774, RAW264.7 and N9) 

showed distinct clustering of cells and the cells were more rounded (Figure 
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4.1D). The non-immune cell lines (C2C12 and NIH-3T3) were also affected by 

immobilized C1q in which cells were clustered and rounded though some cells 

remained extended (Figure 4.1D). Thus, immobilized C1q is able to affect the 

morphologies of different cell types. 
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Figure 4.1. Morphological changes induced by immobilized C1q in 

different cell types. BSA and C1q were coated on tissue culture plates before 

cells were seeded into the individual wells. The cells were examined under the 

microscope after incubating for 24 hours. (A) Human primary cells including 

monocytes, macrophages and DCs were used for the experiment. (B)  The 

boxed areas in A were enlarged to show changes in cell morphologies for cells 

in C1q-coated wells as compared to control cells. (C) Human cell lines were 

used and they were differentially affected by immobilized C1q. (D) Similarly, 

mouse cells lines were incubated with immobilized C1q and their 

morphologies were also affected. Scale bar represents 25 μm. The results are 

representative of three independent experiments. 

 

 

Previously, in another study (Castellano et al., 2007), soluble C1q has been 

shown to be able to generate DC with a rounded morphology. Thus, soluble 

C1q was also used to determine if it can mediate morphological changes in the 

cells. Using HEK293T and RAW264.7 cells, which exhibit the most obvious 

morphological changes with immobilized C1q (Figures 4.1C and 4.1D), 

soluble BSA or C1q was added to the culture media and incubated for 24 hours. 

However, no significant morphological changes were observed in cells 

cultured with soluble C1q as compared to cells cultured with immobilized C1q 

(Figure 4.2). Given that soluble C1q did not have significant effects on 

osteoclast differentiation (Figure 3.10), the results obtained here strengthen the 

link between cellular morphological changes and regulation of monocyte 

development by immobilized C1q. 

 

 

Figure 4.2. Cellular morphologies were not affected by soluble C1q. 

HEK293T and RAW264.7 cells were cultured in BSA- or C1q-coated wells or 

in the presence of 50 μg/ml BSA or C1q. Microscopic examinations were then 

performed on the cells after incubating for 24 hours. Scale bar represents 25 

μm. The results are representative of three independent experiments. 
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4.2.2   Adherence of the cells is associated with the induced morphological 

changes 

 

As the morphological changes induced by immobilized C1q were found 

to affect the adherence of DCs (Teh et al., 2011), adherence of the cells was 

also examined in the presence of immobilized C1q. Cells were incubated in 

plates coated with BSA or C1q for 24 hours and crystal violet staining was 

performed to determine the amount of adherent cells.  

 

Monocytes, macrophages and DCs were significantly less adherent in 

the presence of immobilized C1q (Figure 4.3A). However, the decrease in 

adherence for imC1q monocytes was lesser than that of imC1q macrophages 

and DC as compared to their respective controls (Figure 4.3A). This can be 

correlated to the reduced morphological changes observed in imC1q 

monocytes as compared to that of imC1q macrophages and DC with their 

respective control cells (Figure 4.1B).  

 

Similarly, a correlation between morphological changes and adherence 

by immobilized C1q can be observed in the human and murine cell lines 

(Figures 4.3B and 4.3C). All human cell lines showed significant decreases in 

adherence when incubated with immobilized C1q (Figure 4.3B). HEK293T 

cells, which exhibited distinct morphological changes among the human cell 

lines (Figure 4.1C), showed the greatest drop in adherence (Figure 4.3B).  

 

The correlation was further validated by the murine cell lines in which 

all immune cell lines (DC2.4, J774, RAW264.7 and N9) were significantly less 

adherent when added to C1q-coated wells  (Figure 4.3C). These cell lines also 

displayed extensive morphological changes as compared to the non-immune 

cell lines (Figure 4.1D). However, the slight decrease in adherence for C2C12 

and NIH-3T3 cells was not significant (Figure 4.3C) and this correlates with 

their morphological changes which were modest as compared to those of the 

immune cell lines (Figure 4.1D). Thus, the morphological changes induced by 

immobilized C1q are highly associated with cell adherence. 
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Figure 4.3. Cell adherence is associated with immobilized C1q-induced 

morphological changes. Cells were incubated in BSA- or C1q-coated wells 

and incubated for 24 hours. Crystal violet staining was carried out to quantify 

the number of adherent cells. (A-C) Human primary cells, human cell lines and 

murine cell lines were used for the experiment respectively. Triplicates were 

performed for each condition and presented as mean ± S.D. The results are 

representative of three independent experiments. 
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4.3   Anti-adhesive effects of solid phase C1q is specific 

 

 Given that immobilized C1q induced significant morphological 

changes and affected the adherence of cells, we would like to determine if 

these effects were specific. Thus, different concentrations of C1q were used to 

coat the culture plates and the morphologies and adherence of the cells were 

then observed after 24 hours of culture. Cells cultured with low concentrations 

of solid phase C1q (1 and 5 μg/ml) exhibited minimal changes in morphologies 

with some clustering observed (Figure 4.4A). However, with increasing 

concentrations of solid phase C1q, aggregation of the cells and rounder cells 

became more obvious (Figure 4.4A). Not surprisingly, the increased 

morphological changes were accompanied with decreased adherence of these 

cells (Figure 4.4B). The decrease in adherence was significant when 10 μg/ml 

C1q was used to coat the wells as compared to control cells in uncoated wells 

(Figure 4.4B). The cells showed decreasing adherence when 20, 30, 40 and 50 

μg/ml C1q were used for coating (Figure 4.4B).  

 

To further validate that the effects were specific, C1q was heat 

inactivated (HI) at 56
o
C for 30 minutes before coating was carried out. Cells 

were then incubated for 24 hours and adherence of the cells was determined. 

Heat inactivation of C1q increased the adherence of the cells as compared to 

when fresh C1q was used to coat the plate (Figure 4.4C). On the other hand, 

heat inactivation did not affect the adherence of cells added to BSA-coated 

wells (Figure 4.4C). To ensure that HI did not affect the coating of C1q on 

tissue culture plate, coated C1q was eluted and quantified with silver staining. 

Equal amounts of C1q were detected for fresh and HI C1q-coated wells 

(Appendix 3). Hence, the results from these experiments suggest that the 

effects observed by immobilized C1q were specific. 
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Figure 4.4. Changes in cell morphologies and adherence of the cells 

mediated by immobilized C1q are specific. (A) Different concentrations of 

C1q were used to coat the wells before RAW264.7 cells were added. After 

incubating for 24 hours, microscopic examination was performed to observe 

the morphologies of the cells. Arrows indicate cell clusters. Scale bar 

represents 25 μm. (B) Similar to A, the amount of adherent cells was 

determined by crystal violet staining. Statistical analysis was carried out by 

comparing with C1q-coated wells with uncoated wells. (C) BSA and C1q were 

heat inactivated (HI) before coating was carried out. The cells were then 

seeded and the amount of adherent cells was quantified after 24 hours with 

crystal violet staining. For the cell adhesion assay, triplicates were performed 

for each condition and presented as mean ± S.D. The results are representative 

of three independent experiments. 
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4.4   Protein synthesis is not required for the effects mediated by solid 

phase C1q 

 

4.4.1   Immediate effects of immobilized C1q on morphologies and 

adherence of the cells 

 

In order to increase understanding of the mechanisms in which 

immobilized C1q mediates the effects observed, cells were observed at various 

time points during culture with immobilized C1q. As seen in Figure 4.5A, 

aggregation of the cells was observed by 1 hour of incubation with 

immobilized C1q.  The extent of aggregation increased at the later time points 

and larger cell clusters were also observed (Figure 4.5A). This may be due to 

either the clustering of various small cell aggregates, the proliferation of cells 

which increases the sizes of the aggregates or both. The adherence of the cells 

was also determined and decreased adherence was observed at all the time 

points (Figure 4.5B). These data further validated previous observations in 

which morphological changes in the cells were highly associated with their 

adherence (Figures 4.1 and 4.3). 

 

 

4.4.2   Inhibition of protein synthesis does not reverse the effects of 

immobilized C1q 

 

As the effects mediated by immobilized C1q was immediate, this 

suggests that protein synthesis is not involved in the process. To verify this, 

CHX, an inhibitor of protein synthesis, was used. Cells were pre-treated with 

different concentrations of CHX before adding into culture plates coated with 

BSA or C1q. The inhibition of protein synthesis did not abrogate the decreased 

adherence of cells by immobilized C1q (Figure 4.5C). Instead, decreased 

absorbance was observed when cells were pre-treated with 0.1 μg/ml CHX and 

incubated with immobilized BSA at the later time points. This is mainly due to 

the toxic effects of CHX as apoptotic cells were observed in these cultures 

(data not shown). To show that CHX was effective in inhibiting protein 

synthesis, CHX pre-treated cells were stimulated with IFNγ and western blot 
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was carried out. Upon stimulation with IFNγ, Stat1 was up-regulated but this 

up-regulation was inhibited when the cells were pre-treated with CHX (Figure 

4.5D). Hence, protein synthesis is not required to mediate the effects of 

immobilized C1q. 
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Figure 4.5. Immobilized C1q had an immediate effect on the cells which 

did not require protein synthesis. (A and B) RAW264.7 cells were seeded 

into BSA- or C1q- coated wells and incubated for various time points. 

Microscopic examination (A) and crystal violet staining (B) were performed at 

each time point to observe the morphological changes and cell adherence 

respectively. Scale bar represents 25 μm. (C) The cells were pre-treated with 

cycloheximide (CHX) and added to BSA- or C1q- coated wells. At different 

time points, crystal violet staining was carried out to determine the amount of 

adherent cells. (D) Cells pretreated with CHX were stimulated with IFNγ and 

incubated for 8 or 24 hours. Western blotting was done to determine the 

expression of Stat1. The results are representative of three independent 

experiments. 
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4.5   Known C1q receptors are not likely to be involved in the effects of 

immobilized C1q 

 

 Given that protein synthesis is not required for immobilized C1q to 

exert its effects, existing C1q receptors should be involved in mediating the 

effects. Studies have identified many different C1q receptors which are 

important in mediating various cellular functions (Lu et al., 2008). Previously, 

we showed that HEK293T cells had the greatest changes in their morphologies 

and adherence in the presence of immobilized C1q whereas the remaining 

human cell lines exhibited moderate changes in their morphologies and 

adherence (Figures 4.1 and 4.2). Similar observations were also made for the 

murine cell lines. As these cell lines displayed varying morphological changes 

and adherence with immobilized C1q, it is interesting to investigate if there is 

any correlation between the expression of these known C1q receptors and the 

phenotypes observed. Using the different human cell lines, RT-PCR and flow 

cytometry were used to determine the expression of these receptors at the 

mRNA and protein levels respectively. At the mRNA level, α2β1 (ITGA2 and 

ITGB1), CD91 (LRP1) and gC1qR (C1QBP) were detected in all cell lines 

(Figure 4.6A). However, no distinct correlation between the expression of 

these receptors and the observed phenotypes was found. 

 

Next, surface staining using various antibodies specific against the C1q 

receptors was performed. α2β1 and CD91were detected on the cell surfaces 

(Figure 4.6B). gC1qR was not detected on the surfaces of these cells (Figure 

4.6B) but the presence of gC1qR was detected via intracellular staining (data 

not shown). This is not surprising as gC1qR is known to be an intracellular 

molecule (Dedio et al., 1998; van Leeuwen and O'Hare, 2001). Similarly, no 

correlation was observed between the surface expression of C1q receptors and 

immobilized C1q-induced phenotypes.  

 

To determine if the receptors present on the human cell lines were 

involved in the effects observed, antibodies specific for these receptors were 

used to block the receptors on the cells before incubating in C1q-coated wells. 

HEK293T cells were used in this experiment as they do not express Fc 
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receptors and this will not affect interpretation of the results. As shown in 

Figure 4.6C, blocking of these receptors did not abrogate the effects mediated 

by immobilized C1q and the cells remained clustered and rounded. Thus, α2β1, 

CD35, CD91, CD93 and gC1qR are not likely to be responsible for the effects 

of immobilized C1q. 
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Figure 4.6. Known C1q receptors are not involved in mediating the effects 

of immobilized C1q. (A) The expression of C1q receptors were examined at 

the mRNA level. RT-PCR was performed to determine the levels of C1q 

receptors for each cell line.  Human primary monocytes were used as a positive 

control. GAPDH was used as an endogenous control. (B) Surface expression of 

C1q receptors were determined by surface staining and analyzed by flow 

cytometry. (C) Antibodies specific against α2β1, CD91 and gC1qR which are 

present on HEK293T cells were used to block the receptors. The cells were 

then added into BSA- or C1q-coated wells and examined under the microscope 

after 24 hours. Scale bar represents 25 μm. The results are representative of 

three independent experiments. 
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4.6   Augmentation of the morphological changes by anti-C1q antibodies 

 

4.6.1   Intact C1q is required to induce changes in the morphologies of 

cells 

 

The functional C1q molecule is made up of 18 polypeptide chains (6 A, 

6 B and 6 C chains) and consisted of globular heads and collagen tails (Figure 

4.7A) (Lu et al., 2008; Reid and Porter, 1976). It is of interest to understand if 

the effects observed for immobilized C1q were mediated by the different 

domains of C1q. This may lead to the identification of receptors that interact 

with either the globular heads or collagen tails of C1q. 

 

Collagen tails were generated by pepsin digestion of C1q which 

removed the globular heads. FPLC was carried out to purify the collagen tails 

and the purity was determined by Coomassie Blue staining (Figure 4.7B). 

After obtaining pure C1q collagen tails, various concentrations were used to 

coat culture plates and cells were cultured for 24 hours. No obvious 

morphological changes were observed on cells cultured with C1q collagen tails 

(Figure 4.7C).  This is in contrast to the cell clusters and rounded cells that 

were observed in cells cultured with immobilized C1q (Figure 4.7C). 

 

Next, the role of C1q globular heads in mediating the effects of 

immobilized C1q was determined. Globular heads were generated by the 

collagenase digestion of C1q which removed the collagen tails. FPLC was 

carried out to purify the globular heads and the purity was determined by 

Coomassie Blue staining (Figure 4.7D). After obtaining pure C1q globular 

heads, various concentrations were used to coat culture plates and cells were 

cultured for 24 hours. Similarly, the globular heads did not affect the 

morphologies of the cells whereby the cells remained flat and extended (Figure 

4.7E). Thus, the results indicate that intact C1q is required to mediate the 

effects of immobilized C1q. 

 



98 
 

 

9
8
 



99 
 

 

9
9
 



100 
 

 

Figure 4.7. Intact C1q is essential for the morphological changes mediated by immobilized C1q. (A) Schematic diagram of the globular 

heads and collagen tails of C1q. The figure is adapted from Reid and Porter, 1976. (B) Collagen tails were obtained by pepsin digestion of C1q 

followed by FPLC purification. The purity of the collagen tails was determined by Coomassie Blue staining. Arrows indicate the collagen 

domains of three C1q chains. (C) Different concentrations of collagen tails were used to coat the wells before HEK293T cells were added. After 

incubating for 24 hours, microscopic examination was performed to observe the morphologies of the cells. (D) Globular heads were obtained by 

collagenase digestion of C1q followed by FPLC purification. The purity of the globular heads was determined by Coomassie Blue staining. 

Arrowheads indicate the globular domains of three C1q chains. (E) Similar to C except that globular heads were used to coat the wells instead. 

Scale bar represents 25 μm. The results are representative of three independent experiments. 
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4.6.2   Anti-C1q antibodies enhanced the morphological changes by 

immobilized C1q 

 

Previously, we have shown that immobilized C1q, but not soluble C1q, 

is required to mediate the changes in morphology and adherence of the cells 

(Figures 4.2 and 4.3). Thus, this could be due to effective cross-linking of C1q 

receptor(s) by immobilized C1q as compared to soluble C1q or exposure of 

conformation-dependent binding sites on immobilized C1q. However, given 

that intact C1q but not high amounts of globular heads and collagen tails is 

required to mediate these changes (Figure 4.7), it is likely that neoepitopes 

exposed during C1q immobilization are involved in these changes. Studies 

have shown that some SLE patients have anti-C1q antibodies and these 

antibodies only recognize immobilized but not soluble C1q (Antes et al., 1988; 

Uwatoko et al., 1987; Wener et al., 1989). Hence, we would like to determine 

if the blocking of such epitopes by anti-C1q antibodies is able to abrogate the 

effects observed for immobilized C1q. 

 

Commercial anti-C1q antibodies were first used to test the hypothesis. 

Polyclonal goat anti-C1q antibody was used to block the immobilized C1q 

before HEK293T cells were seeded into the wells. Goat IgG and a non-specific 

antibody, goat anti-C1s, were used as controls. After 1 hour, the cells in C1q-

coated exhibited rounded morphology whereas those in BSA-coated wells 

started to have some cellular extensions (Figure 4.8A). The cells remained 

rounded and cell clusters were obvious at 4-hour time point in the presence of 

immobilized C1q (Figure 4.8A). The control cells continued to spread and 

appeared flat after longer incubation (Figure 4.8A). Although the kinetics for 

HEK293T cells seemed slower as compared to RAW264.7 cells in forming cell 

clusters (Figure 4.5A), differences between HEK293T cells seeded in BSA- 

and C1q-coated wells could be observed in the earlier time points (Figure 

4.8A). Surprisingly, upon the addition of goat anti-C1q to C1q-coated wells, 

cells were observed to clump at a much earlier time point (Figure 4.8A). Goat 

anti-C1q also induced the formation of larger but lesser cell clusters in C1q-

coated wells after 24 hour of incubation (Figure 4.8A). In contrast, isotype and 
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non-specific antibodies did not enhance the morphological changes of cells in 

both BSA- and C1q-coated wells at different time points (Figure 4.8A).   

 

 Next, a monoclonal mouse anti-C1q antibody which is specific against 

the globular heads of C1q was used. Similar to the polyclonal goat anti-C1q 

antibody, binding of antibody to immobilized C1q induced faster formation of 

cell clusters as compared to the isotype control (Figure 4.8B). Larger cell 

clusters were also observed at the later time points (Figure 4.8B).  Cells 

incubated in BSA-coated wells remained flat and well spread out no matter 

whether isotype or mouse anti-C1q antibody was added (Figure 4.8B). To 

ensure specific binding of the antibodies to immobilized C1q, ELISA was 

performed and both polyclonal and monoclonal anti-C1q antibodies displayed 

binding to C1q-coated wells but not BSA-coated wells (Figure 4.8C). The 

other control antibodies exhibited little binding to both BSA- and C1q-coated 

wells, indicating that the anti-C1q antibodies are specific (Figure 4.8C). 

 

 Given that the commercial antibodies enhanced the effects of 

immobilized C1q, the effects of anti-C1q autoantibodies in SLE patients were 

also investigated. Plasma of SLE patients were screened using ELISA in which 

high salt was used to prevent the binding of immune complexes to the C1q-

coated wells. As seen in Figure 4.9A, all patients showed higher readings for 

C1q-coated wells as compared to control wells which were not coated. 

Furthermore, the amount of anti-C1q autoantibodies was higher in all samples 

as compared to the negative control (Figure 4.9A). 10 samples with the highest 

readings were then chosen, pooled and anti-C1q autoantibodies were 

concentrated by IgG precipitation. After concentrating the samples, the IgG 

fraction, which contained anti-C1q autoantibodies, showed higher reading as 

compared to most of the original samples except Patient D which still had a 

higher reading (Figure 4.9B). 

 

 The human anti-C1q antibody was used to block immobilized C1q and 

the effects on the cells were determined. In contrast to the commercial 

antibodies, human anti-C1q did not augment the morphological changes of 

cells incubated in C1q-coated wells (Figure 4.9C). No distinct differences were 
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observed between the isotype and human anti-C1q antibody for cells added to 

BSA- or C1q-coated wells (Figure 4.9C). To ensure that there is binding 

between the human anti-C1q autoantibodies and immobilized C1q, ELISA was 

carried out and the results indicated binding of the autoantibodies to C1q-

coated wells (Figure 4.9D). Thus, the autoantibodies of SLE patients do not 

inhibit or enhance the effects of immobilized C1q. 
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Figure 4.8. Anti-C1q antibodies enhanced the morphological changes 

mediated by immobilized C1q. (A and B) Tissue culture plates were first 

coated with BSA or C1q. The plates were then blocked and subsequently 

incubated with various antibodies including goat anti-C1q (A) and mouse anti-

C1q (B). Goat IgG, goat anti-C1s and mouse IgG were used as controls. Cells 

were then added to the wells and microscopic images were taken at various 

time points. Scale bar represents 25 μm. (C) ELISA was performed to ensure 

that the antibodies were binding specifically to immobilized C1q. High salt 

(1M NaCl) was used in the ELISA to prevent the binding of immune 

complexes to immobilized C1q. The results are representative of three 

independent experiments. 
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Figure 4.9. Anti-C1q antibodies of SLE patients do not enhance the 

morphological changes of immobilized C1q. (A) SLE patients were screened 

for the presence of anti-C1q antibodies in their plasma. High salt (1M NaCl) 

was used in the ELISA to prevent the binding of immune complexes to 

immobilized C1q. To ensure the specificity of the assay, wells without C1q-

coating were also used. (B) Plasma of 10 patients with high concentrations of 

anti-C1q antibodies were pooled and concentrated via IgG precipitation. The 

IgG fraction was then compared with the original samples to ensure the 

samples were concentrated. (C) Tissue culture plates were first coated with 

BSA or C1q. The plates were then blocked and incubated with human IgG or 

human anti-C1q (IgG fraction) before the adding of cells to the wells. 

Microscopic examination was performed at indicated time points. Scale bar 
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represents 25 μm. (D) ELISA was performed to ensure specific binding of 

antibodies to immobilized C1q. The results are representative of three 

independent experiments. 
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Chapter 5 – Discussion 

 

5.1   Production of C1q by osteoclasts 

 

Macrophages exist in different organs and they exhibit diverse 

phenotypes and functions (Gordon and Taylor, 2005). Derived from monocytes, 

they are phagocytes which help in the clearance of pathogens and apoptotic 

cells (Dempsey et al., 2003; Lu et al., 2008). Although multiple studies have 

shown C1q biosynthesis by some subsets of macrophages (Armbrust et al., 

1997; Haga et al., 1996; Loos et al., 1980; Loos et al., 1981; Schafer et al., 

2000; Tripodo et al., 2007), it is still unknown if the production of C1q is a 

common characteristic of macrophages. Local synthesis of C1q is critical as 

the availability of serum C1q to tissues remains unknown. This can be seen in 

arteries, brain, esophagus, liver and placenta in which C1q is produced locally 

(Agostinis et al., 2010; Armbrust et al., 1997; Bobryshev et al., 2010; Bulla et 

al., 2008; Cao et al., 2003; Schafer et al., 2000; Stevens et al., 2007). As C1q 

regulates many functions and is involved in both health and diseases (Lu et al., 

2008; Nayak et al., 2010), it is important to know its production so as to further 

understand how it modulates these diverse functions.  

 

 In this study, the production of C1q by osteoclasts and the potential role 

of C1q in the bone microenvironment are investigated. In vitro osteoclasts 

were first differentiated from monocytes using M-CSF and RANKL and 

subsequently characterized. These osteoclasts exhibited characteristic 

osteoclast features which include expression of osteoclast markers such as 

CTR, CAII, CatK, MMP-9 and TRAP, presence of F-actin rings and most 

importantly, the ability to resorb bone (Figure 3.2). In addition, these cultured 

osteoclasts possessed immune molecules which are involved in antigen 

presentation (Figure 3.3) and this explains their role in activating the adaptive 

immunity (Grassi et al., 2011; Kiesel et al., 2009; Li et al., 2010). The 

production of C1q by in vitro osteoclasts was clearly demonstrated at both the 

transcriptional and translational levels (Figure 3.4 and 3.5). These results were 

further validated through immunohistochemistry of human femoral bone 

samples by showing the expression of C1q in endogenous osteoclasts (Figures 
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3.8 and 3.9). Thus, osteoclasts produce C1q, adding osteoclasts to the list of 

macrophages that produce C1q (Armbrust et al., 1997; Haga et al., 1996; Loos 

et al., 1980; Loos et al., 1981; Schafer et al., 2000; Tripodo et al., 2007) and 

this increases the possibility of C1q being a common trait for different subsets 

of macrophages. Further studies involving extensive characterization of other 

subsets such as red-pulp macrophages, white-pulp macrophages and 

metallophilic macrophages or the generation of a transgenic C1q mouse are 

required to validate this hypothesis. 

 

 Mononucleated and multinucleated osteoclasts, representing 

preosteoclasts and mature osteoclasts respectively, were observed both in vitro 

and in vivo (Figures 3.2, 3.6, 3.8 and 3.9). C1q was mainly detected in cultured 

preosteoclasts by immunofluorescence staining (Figures 3.6 and 3.7). However, 

upon IFNγ stimulation, C1q was also expressed in mature osteoclasts though 

the expression level was still lower than that of preosteoclasts (Figure 3.7). The 

lack of co-localization with endosomal marker EEA-1 suggests that C1q is 

synthesized de novo by both types of osteoclasts (Figures 3.6 and 3.7). In 

contrast, expression of C1q was detected in both endogenous preosteoclasts 

and mature osteoclasts (Figures 3.8 and 3.9). This may reflect the imperfect 

culture conditions for the in vitro osteoclasts and such observations were also 

made in an earlier study involving chondrocytes (Bradley et al., 1996). 
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5.2   Regulation of C1q production in osteoclasts 

 

 The production of C1q can be regulated by multiple factors such as 

cytokines, drugs and TLR ligands (Lu et al., 2008). It also depends largely on 

the origin of the cells used in the study. This is reflected by IFNγ where 

conflicting data exists and depends on the cells used. For example, IFNγ 

reduced C1q synthesis and secretion in rat Kupffer cells (Armbrust et al., 

1997). Furthermore, C1q mRNA level and secretion were inhibited in non-

stimulated and thioglycollate-activated murine peritoneal macrophages by 

IFNγ (Faust and Loos, 2002). However, IFNγ induced a dose-dependent 

increase in C1q mRNA level and secretion in paraffin oil-activated murine 

peritoneal macrophages (Zhou et al., 1991a). In addition, IFNγ increased both 

C1q mRNA level and secretion in murine microglial cells (Haga et al., 1996). 

A similar increase in C1q production was also observed in human THP-1 

derived macrophages (Walker, 1998), human monocyte-derived macrophages 

(Chen et al., 2011; Kaul and Loos, 2001) and human monocyte-derived DCs 

(Chen et al., 2011).  

 

Our study clearly demonstrated that IFNγ increased the levels of C1q at 

the transcriptional and translation levels for primary osteoclasts (Figures 3.7A, 

3.7B and 3.7C). These were accompanied with increased C1q secretion by 

osteoclasts (Figure 3.7D). Similar results were also obtained primary 

macrophages and DCs (Figure 3.7). These results generally correspond to the 

data observed in IFNγ-stimulated human cells (Chen et al., 2011; Kaul and 

Loos, 2001; Walker, 1998). The physiological relevance of C1q induction in 

osteoclasts by IFNγ remains unknown but could potentially play a role during 

local bone infection or inflammation which will be discussed later.  

 

 TLR ligands also exhibit varying effects on C1q production in different 

cell types (Lu et al., 2008). LPS, lipoteichoic acid (LTA) and peptidoglycan 

(PGN) enhanced C1q secretion in human monocyte-derived DCs though LPS 

had a greater effect than that of LTA and PGN (Baruah et al., 2006). In 

addition paraffin oil-activated murine peritoneal macrophages exhibited 

increased C1q mRNA and secretion after stimulation with LPS and C3b-
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opsonized zymosan (Zhou et al., 1991b). LPS also increased C1q production in 

human THP-1 derived macrophages (Walker, 1998) and human monocyte-

derived macrophages (Castellano et al., 2004). However, in the same study 

which showed increased C1q production in human macrophages (Castellano et 

al., 2004), LPS induced maturation of both human monocyte-derived DCs and 

CD34
+
 hematopoietic stem cell-derived DCs and inhibited C1q secretion 

(Castellano et al., 2004). Similiarly, LPS reduced C1q synthesis and secretion 

in rat Kupffer cells (Armbrust et al., 1997). No difference in C1q mRNA was 

observed in microglial cells after LPS stimulation as compared to control cells 

(Haga et al., 1996).  

 

 Given the diverse effects of LPS on C1q production, it is not surprising 

to observe varying effects of LPS in our study. In general, the expressions of 

C1QA, C1QB and C1QC were upregulated by LPS in osteoclasts, macrophages 

and DCs (Figure 3.7A). However, the upregulation in mRNA was only 

accompanied by a slight increase in C1q protein synthesis (Figures 3.7B and 

3.7C). C1q secretion was not affected by LPS stimulation in macrophages and 

DCs though a significant difference was observed in osteoclasts (Figure 3.7D). 

Existing data (Lu et al., 2008) and our results indicate that although C1q is 

produced by different cell types, regulation of its production might be different 

in spite of the same stimulant used. This further reflects the diversity of cell 

types and the effect of microenvironment might have on the local synthesis of 

C1q. 
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5.3   Regulation of osteoclastogenesis by C1q 

 

Osteoclastogenesis is a process in which cells of the 

monocyte/macrophage lineage differentiate into osteoclasts near the bone 

surface (Figure 5.1) (Boyle et al., 2003; Teitelbaum and Ross, 2003). The 

process is highly dependent on two cytokines, M-CSF and RANKL. Cells of 

the monocyte/macrophage lineage are first recruited from the blood. M-CSF 

and RANKL, produced by mesenchymal cells or osteoblasts, induce the 

activation of precursor cells through their respective receptors M-CSFR and 

RANK to differentiate into mononucleated osteoclasts or preosteoclasts. This 

also induces the activation of transcription factor NFATc1, the master 

regulator of osteoclastogenesis, leading to the expression of osteoclast markers 

such as CatK, CTR and TRAP. Multinucleated osteoclasts or mature 

osteoclasts are subsequently formed by the fusion of preosteoclasts. For bone 

resorption to occur, further activation of the mature osteoclasts by RANKL is 

required which leads to the initiation of bone remodeling. 

 

 We have shown the preferential expression of C1q in preosteoclasts 

(Figures 3.6 and 3.7C) which suggests the involvement of C1q in 

osteoclastogenesis. Hence, the effects of C1q on osteoclastogenesis were 

investigated. Using both immobilized and soluble C1q, we found that 

immobilized C1q enhanced the expression of various osteoclast markers 

(Figure 3.10). In contrast, soluble C1q did not have any significant effect in 

influencing osteoclast differentiation (Figure 3.10). Upon further examination, 

immobilized C1q was also shown to increase the expression of CSF1R and 

TNFRS11A (Figure 3.10). These two genes encode for M-CSFR and RANK 

respectively and could potentially explain the increased expression of 

osteoclast markers in imC1q osteoclasts by making the cells sensitive to the 

cytokines used for differentiation. In addition, the expression of IL6 was 

upregulated in imC1q osteoclasts (Figure 3.10). IL-6 is known to promote 

osteoclastogenesis and this could be another reason for enhanced 

osteoclastogenesis observed for immobilized C1q. 
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 Immobilized C1q also affected the expression of several genes which 

may negatively affect the differentiation of osteoclasts. IL10 was significantly 

upregulated in imC1q osteoclasts (Figure 3.10). Furthermore, the expression of 

CSF1 was decreased by immobilized C1q though the downregulation did not 

reach significance (Figure 3.10). IL-10 is known to inhibit osteoclast 

differentiation (Evans and Fox, 2007; Mohamed et al., 2007). However, given 

that osteoclastogenesis is augmented instead of inhibited, this indicates that 

inhibition of osteoclastogenesis due to the changes in gene expression for IL-

10 and M-CSF is overwhelmed by the effects of other positive mediators 

involved in osteoclastogenesis. 

  

 Thus, with the results obtained, we proposed a model for the role of 

C1q in osteoclastogenesis (Figure 5.1). Precursor cells recruited from the blood 

are stimulated with M-CSF and RANKL. During the process of differentiating 

into preosteoclasts, these cells also acquire the ability to produce and secrete 

C1q. Some of the secreted C1q interacts with the bone surface and gets 

immobilized. The immobilized C1q binds to an unknown C1q receptor present 

on the preosteoclasts and activate specific signaling pathway. It is previously 

reported that the receptors M-CSFR and RANK are sequentially expressed in 

precursor cells during osteoclast differentiation (Arai et al., 1999). Hence, it is 

likely that immobilized C1q first increased the expression of M-CSFR and 

upon binding to M-CSF, RANK expression was subsequently upregulated. 

Further experiments examining the effects of immobilized C1q on osteoclasts 

at earlier time points are required to validate the hypothesis. The increased 

expression of M-CSFR and RANK makes the cells more responsive to M-CSF 

and RANKL, induces increased NFATc1 activation and enhanced the 

expression of osteoclast markers such as CTR, CAII, CatK and TRAP. Mature 

osteoclasts decrease their C1q production and this may represent an intrinsic 

regulation of osteoclastogenesis, preventing the formation of excessive 

osteoclasts. 
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Figure 5.1. Proposed model for the augmentation of osteoclastogenesis by 

C1q. Precursor cells of monocyte/macrophage lineage are recruited to the bone. 

M-CSF and RANKL, produced by the mesenchymal cells/osteoblasts, are 

essential cytokines required for osteoclastogenesis (1). The binding of M-CSF 

to M-CSFR induces the expression of RANK (2) and allows increase binding 

of RANKL to the precursor cells. As the precursor cells mature, they also start 

to produce and secrete C1q (3). Some of the C1q are deposited on the surface 

on the bone and the mononucleated osteoclasts/preosteoclasts are “primed” by 

these immobilized C1q. This increases the expression of M-CSFR and RANK 

and increase the sensitivity of these cells to M-CSF and RANK (4). 

Subsequently, the transcription factor NFATc1 – master regulator of 

osteoclastogenesis – is induced which leads to the upregulation of the 

osteoclast markers (5). In the mean time, fusion between the mononucleated 

osteoclasts/preosteoclasts leads to the formation of the multinucleated 

osteoclasts which eventually become bone-resorbing osteoclasts (6). During 

the process, the production of C1q is decreased and this may represent an 

intrinsic regulation of osteoclastogenesis, by preventing excessive priming of 

the osteoclasts. 

 

 

 Previous studies have indicated the role of complement in 

osteoclastogenesis (Ignatius et al., 2011; Sato et al., 1993; Tu et al., 2010). 

Complement activation in the bone microenvironment produced C3a and C5a 

which enhanced osteoclast differentiation through modulating IL-6 production 

(Tu et al., 2010). Furthermore, C3a and C5a can induce the production of 

RANKL by osteoblasts in the presence of IL-1β which also help in osteoclast 

differentiation (Ignatius et al., 2011).  In our assay, we did not use a co-culture 

system in generating osteoclasts. Furthermore, the serum used for cell culture 

was HI and complement activation is not likely to occur in our setup. Hence, 

the effects of complement activation on osteoblasts are not involved in the 

observed augmentation of osteoclastogenesis by immobilized C1q. 

 

However, cells in the bone microenvironment also synthesize other 

complement proteins. Bone marrow cells were found to produce Factor B and 

Factor D (Tu et al., 2010). Complement regulatory proteins such as CD46, 

CD55 and CD59 were expressed by mesenchymal stem cells, osteoblasts and 

osteoclasts (Ignatius et al., 2011). Mesenchymal stem cells and osteoblasts also 

produced C3 and C5 whereas only C3 was detected in osteoclasts (Ignatius et 

al., 2011). We have also detected the presence of C1r and C1s in osteoclasts at 

the mRNA levels (data not shown). Although other cell types are not used in 
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the generation of osteoclasts, we cannot rule out that complement activation is 

involved in the effects given that we also observed the upregulation of IL-6. 

However, given that soluble C1q did not exert any effects on osteoclast 

differentiation (Figure 3.10), we believe that complement activation may not 

play a significant role in augmenting osteoclastogenesis and the effects 

observed are mainly due to a direct effect of immobilized C1q.  

 

To rule out the involvement of complement activation in immobilized 

C1q-enhanced osteoclastogenesis, the presence of complement activation 

products such as C3a and C5a in the culture media can be measured by ELISA. 

In addition, antagonists against the receptors for C3a and C5a, which were 

involved in complement activation-mediated osteoclastogenesis (Tu et al., 

2010), can be used to determine the role of complement activation in our 

system. 

 

 During the study, commercially available C1q is often used in many 

experiments. The purity of C1q used for the study was determined for by silver 

staining (Appendix 2). No contaminants were detected in the C1q used for our 

assays. Hence, we can conclude that the effects observed are due to C1q. 
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5.4   Clinical significances of C1q-mediated osteoclastogenesis 

 

5.4.1   Significance in SLE 

 

SLE presents diverse clinical manifestations and musculoskeletal 

symptoms are one of them (Rahman and Isenberg, 2008). Patients with SLE 

reported articular pain and have rheumatoid-like deformities (ulnar deviation, 

tendinopathies and subluxation) (Schwarz et al., 2006). However, unlike other 

inflammatory arthritis such as rheumatoid and psoriatic arthritis, cartilage 

degradation and bone resorption are absent from most patients. The joint 

presentations of SLE patients are similar to that of Jaccoud’s arthritis in which 

joint deformities are found without bone and joint damage. No previous report 

has shown the role of complement in lupus arthritis or Jaccoud’s arthritis. Our 

results showing C1q augments osteoclastogenesis suggest possible 

involvement of C1q in these diseases. 

 

 Despite the rarity of genetic C1q deficiency, acquired C1q deficiency is 

commonly observed in SLE patients especially during renal flares (Sinico et al., 

2009; Tsirogianni et al., 2009). Acquired C1q deficiency is due to increased 

consumption of C1q by the presence of immune complexes and anti-C1q 

autoantibodies (Greisman et al., 1987; Sinico et al., 2009; Tsirogianni et al., 

2009). In pediatric SLE patients, they have increased bone loss which is linked 

to drugs used in the treatment but not increased osteoclastogenesis (Baker-

Lepain et al., 2011). Instead, these patients displayed reduced osteoclast 

development and functions as indicated by decreased serum TRAP and urine 

N-telopeptide (Baker-Lepain et al., 2011). Furthermore, the severity of 

pediatric SLE is correlated with decreased level of serum C1q (Wu et al., 

2011). These evidence and our results suggest the possibility of C1q being 

involved in mediating the effects observed in SLE patients. However, 

additional experiments are required to establish the link between C1q and the 

non-erosive nature of lupus arthritis or Jaccoud’s arthritis. 
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5.4.2   Significance in other inflammatory diseases 

 

Many inflammatory diseases are associated with bone resorption. These 

include rheumatoid arthritis and periodontal disease in which bone erosions are 

observed at the joints and alveolar bone of the jaw respectively (Lacativa and 

Farias, 2010). During inflammation, many soluble factors are produced which 

include cytokines and chemokines. These factors mediate the recruitment of 

other inflammatory cells and the activation of resident cells and newly 

recruited cells (Feghali and Wright, 1997). For example, TNF-α can mobilize 

osteoclast precursor cells from the bone marrow in inflammatory arthritis (Li et 

al., 2004). Cytokines such as TNF-α, IL-6 and IL-17A promote 

osteoclastogenesis through direct effects on osteoclast precursor cells or 

indirect effects by inducing the production of other positive regulators of 

osteoclastogenesis such M-CSF and RANKL in osteoblasts and fibroblasts 

(McInnes and Schett, 2007). Not only does the cytokines promote 

osteoclastogenesis, some cytokines like IL-1α, IL-1β and RANKL also cause 

osteoclast activation. 

 

Our results have shown that IFNγ and LPS can regulate production of 

C1q in osteoclasts (Figure 3.7). Furthermore, the production of C1q in other 

cell types can be regulated by cytokines, drugs and TLR ligands (Lu et al., 

2008). This indicates cytokines such as TNF-α, IL-1β and IL-17A present in 

inflammatory conditions may potentially regulate the production of C1q by 

osteoclasts, enhance osteoclast differentiation and help in the pathogenesis of 

the disease. Additional experimental work is required to investigate the effects 

of various stimulants on C1q production in osteoclasts and their respective role 

in osteoclastogenesis. 

 

In addition, activated T cells express RANKL which promotes 

osteoclastogenesis and mediates bone loss in arthritis (Horwood et al., 1999; 

Kong et al., 1999). T cells also produce IFNγ during inflammatory conditions 

(Schoenborn and Wilson, 2007). IFNγ produced by T cells is shown to inhibit 

osteoclastogenesis by interfering with the RANK-RANKL signaling pathway 

(Takayanagi et al., 2000). Thus, during health, the positive and negative 
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regulators are balanced and prevent excessive osteoclast formation. However, 

in diseases, the balance is shifted in favor of the positive regulators, causing 

aberrant formation and activation of osteoclasts and results in bone erosion. 

 

We showed that IFNγ is able to stimulate the production of C1q in 

osteoclasts by a large magnitude (Figure 3.7). The increased C1q production 

was observed in both preosteoclasts and mature osteoclasts (Figure 3.7C) and 

this could potentially break the intrinsic regulation of osteoclastogenesis by the 

upregulation of C1q in mature osteoclasts. Thus, IFNγ-induced C1q may be 

one of the factors that tilt the balance, augment osteoclastogenesis and cause 

bone erosion during inflammatory arthritis. This provides another dimension in 

the regulation of osteoclastogenesis by T cells during health and disease 

though more experiments are needed to establish these links. 

 

Similar to SLE, C1q deficiency and suppression are linked to the 

development of rheumatoid arthritis (Mizuno, 2006). However, C1q also acts 

as a double edged sword in rheumatoid arthritis by activating the complement 

system. Complement activation can induce and augment inflammation 

(Walport, 2001) and is involved in the pathogenesis of rheumatoid arthritis. 

Complement proteins and its activation products are detected in the synovial 

fluid and synovial membrane of patients (Gulati et al., 1994; Morgan et al., 

1988; Neumann et al., 2002). Furthermore, products of complement activation 

are elevated in the synovial fluid of patients with rheumatoid arthritis (Brodeur 

et al., 1991; Morgan et al., 1988).  

 

Previously, both classical and alternative pathways are involved in the 

pathogenesis in collagen-induced arthritis in mice (Hietala et al., 2002; Hietala 

et al., 2004). Collagen-induced arthritis is an experimental animal model for 

human rheumatoid arthritis and shares several pathological features such as 

synovial hyperplasia, infiltration of mononuclear cells, pannus formation, 

cartilage degradation and bone erosion (Brand et al., 2007). Furthermore, C3a 

and C5a produced by complement activation through the alternative pathway 

promote osteoclast differentiation (Tu et al., 2010). C1q production by 

osteoclasts in the bone microenvironment may be involved in maintaining bone 
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homeostasis by removing apoptotic cells or immune complexes. However, in 

inflammatory diseases such as rheumatoid arthritis, excessive osteoclast 

formation and local synthesis of C1q by osteoclasts may exacerbate the disease 

by inducing more complement activation through the classical pathway. This 

may lead to the increased formation of osteoclasts and also result in more 

tissue injuries. The potential effects of C1q in inflammatory diseases that are 

associated with bone resorption remain to be studied. 
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5.5   Anti-adhesive effects of immobilized C1q 

 

Cells express many cell surface adhesion receptors such integrins 

which interact with the extracellular matrix (ECM) (Arthur et al., 2002).  

Integrins control cellular adhesion and shape which are critical factors for cell 

survival (Stupack and Cheresh, 2002). Adhesion to the ECM involves adhesive 

structures such nascent adhesion, focal complex and focal adhesion that differ 

in localization, size, shape, protein composition and dynamics (Parsons et al., 

2010; Valdembri and Serini, 2012). During the formation of cell-ECM 

adhesions, cells display morphological changes which include rearrangement 

of actin cytoskeleton mediated by Rho family GTPases. Several stages are 

involved in the adhesion of cells to the ECM (Frame and Norman, 2008; 

Huveneers and Danen, 2009). Upon contact to the ECM, early spreading of the 

cells and assembly of focal adhesions occur. This is accompanied with the 

activation of Rac1 and Cdc42 which enhances actin-mediated protrusive 

activities at sites of adhesion. RhoA is also inhibited to suppress actomyosin 

contractibility. Subsequently, at the later stages, the activity levels of RhoA 

increase with inhibition of the activities of Rac1 and Cdc42, leading to 

formation of stress fibres, maturation of focal adhesions and actomyosin 

contractibility. Contacts between actomyosin contraction and ECM slow actin 

rearward movement and favor spreading of microtubules, leading to adhesion 

maturation and fully spread cells. During the process, focal adhesion kinase 

(FAK) is activated and it is involved in controlling survival, proliferation, 

apoptosis and migration of the cells (Abbi and Guan, 2002). 

 

Cells of the myeloid lineage such as macrophages and DCs have small 

and highly dynamic adhesions that facilitate rapid movement on ECM 

substrates (Parsons et al., 2010). On the other hand, contractile cells such as 

endothelial cells and fibroblasts have more prominent and stable adhesions. 

Thus, this accounts for the morphologies of the different cell types. Our results 

showed that myeloid cell types, primary cells or cell lines, generally exhibited 

rounded morphology whereas contractile cell types (epithelial cells, fibroblasts 

and myoblasts) were fully spread and extended (Figure 4.1).  All the cell types 

displayed varying changes in their morphologies in the presence of 
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immobilized C1q. In general, cells became more rounded and tended to cluster 

together (Figure 4.1).  However, some cell types still displayed certain extent 

of spreading and these were mainly the non-immune cell types (Figure 4.1).  

 

 It is shown previously that soluble C1q can affect DC morphology 

when used for the generation of DC from monocytes (Castellano et al., 2007). 

Hence, the effects of soluble C1q on were also tested in our system. In contrast 

to the distinct effects observed for immobilized C1q, soluble C1q did not affect 

the morphologies of the cells (Figure 4.2). We have also shown that 

immobilized but not soluble C1q enhanced osteoclast differentiation (Figure 

3.10). This further strengthens the idea that the morphological changes induced 

by immobilized C1q are linked to the regulatory effects that C1q has on 

monocyte development. 

 

As cell adhesion is associated with cell morphology, we also 

investigated the effects of immobilized C1q on the adhesion properties of 

different cell types. Most of the cell types exhibited reduced adhesion in the 

presence of immobilized C1q (Figure 4.3). In addition, there is a correlation 

between morphological changes and cell adhesion in which cells grown in 

C1q-coated wells were less adherent and they displayed more morphological 

changes as compared to control cells (Figures 4.1 and 4.3). This is reflective of 

the mechanisms mediating cell adhesion and cell spreading (Huveneers and 

Danen, 2009). Thus, the results suggest that the effects of immobilized C1q are 

ubiquitous and not restricted to monocytes or monocyte-derived cells. A 

common receptor among these cell types may be involved in mediating these 

effects. This also reflects the ability of C1q to regulate the functions of 

different cell types (Lu et al., 2008; Nayak et al., 2010). 

 

Detachment of cells from the ECM will induce apoptosis, a process 

known as anoikis (Frisch and Screaton, 2001). Integrin-mediated adhesion to 

the ECM provides cell survival signals via FAK (Abbi and Guan, 2002; Frisch 

and Screaton, 2001). Furthermore, cellular adhesion is required for the 

proliferation of the cells. In the presence of immobilized C1q, cells are 

generally non-adherent which may lead to their apoptosis. To overcome this 
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problem, they adhere to each other through cell-cell adhesions and form cell 

clusters. Cadherins are molecules that mediate intercellular adhesion by 

calcium-dependent homophilic interactions (Fukata and Kaibuchi, 2001). 

Although cadherin-mediated cell-cell adhesions have a distinct 

phosphorylation pattern as compared to integrin-ECM adhesion, many 

common proteins and signaling pathways are activated in both cell-cell and 

cell-ECM adhesion (Westhoff and Fulda, 2009).  

 

The formation of cell clusters in the presence of immobilized C1q is 

similar to one of the mechanisms in which tumor cells prevent anoikis upon 

ECM detachment. Tumor cells show reduced apoptosis when they form 

aggregates after detachment from ECM (Bates et al., 2000; Westhoff and 

Fulda, 2009). The exact mechanism is not elucidated but may potentially 

involve the PI3K/Akt signaling pathway and pathways regulating cell cycle 

progression, pathways which are also activated by integrin-mediated cellular 

adhesion. Although the effects of immobilized C1q were observed in the 

cancer cell lines used, primary cells such as human monocytes, macrophages 

and DCs also showed similar effects. Thus, forming cell clusters may be a 

common mechanism to prevent anoikis and possibly account for our results 

though more studies are required to establish the links. 

 

An interesting point for the cell clusters observed is that they resemble 

spheroids. Spheroids are generated from spheroid culture which is a type of 

three-dimensional (3D) cell culture system (Fennema et al., 2013).  Cells in 3D 

culture are different to those in 2D cultures as they have gene expression 

profiles that are reflective of endogenous expression profiles. Spheroid models 

of embryonic stem cells and tumor cells have been used to study cellular 

differentiation, cell-cell interactions, hypoxia response and therapeutic 

purposes (Bates et al., 2000; Fennema et al., 2013; Frith et al., 2010; Wang et 

al., 2009). Many methods are available for the generation of spheroids and the 

main principle is preventing the adherence of cells to the substratum (Bates et 

al., 2000; Lin and Chang, 2008). This is similar to our setup as immobilized 

C1q acts as the anti-adhesive layer which prevents the adherence of cells, 

leading to the formation of spheroid-like cell clusters. 
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Spheroid human mesenchymal stem cells secrete more anti-

inflammatory proteins than cells grown as adherent monolayer (Bartosh et al., 

2010). These cells also showed decreased activation of macrophages in vitro 

and reduced inflammation in vivo. Furthermore, DC generated on immobilized 

C1q exhibit similar spheroid formation and are tolerogenic (Teh et al., 2011). 

Thus, aggregation of cells or formation of spheroids may be important in 

generating an anti-inflammatory response. The changes in signaling patterns 

from integrin-mediated to cadherin-mediated could be responsible for the anti-

inflammatory effects observed though the exact mechanism remains to be 

investigated. 
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5.6   Known C1q receptors are not likely to be involved in immobilized 

C1q-induced effects 

 

Many proteins are found to bind to C1q and mediate its functions in 

different cells (Lu et al., 2008). These C1q receptors include α2β1, CD35, 

CD91, CD93 and gC1qR. We have shown that immobilized C1q is able to 

affect the morphologies and adhesion of various cell types to varying extents 

(Figures 4.1 and 4.3). Furthermore, the effects of immobilized C1q are specific 

and immediate (Figures 4.4 and 4.5). This implies that the cells used may 

express a common C1q receptor which mediates the effects of immobilized 

C1q. Depending on the cell type used, the kinetics for the effects of 

immobilized C1q differed (Figures 4.5A and 4.8A). RAW264.7 cells displayed 

aggregation after 1 hour of incubation and the extent of aggregation became 

more obvious at later time points (Figure 4.5A). For HEK293T cells, cell 

aggregation was only obvious after 4 hours of incubation (Figure 4.8A). 

However, both cell lines exhibited similar morphological changes after 

incubating for 24 hours (Figures 4.5A and 4.8A). Thus, the results suggest that 

the amount of C1q receptor present on the cells may affect the kinetics of 

immobilized C1q. This may also account for the different extent in 

morphological changes and decrease in adhesion observed for different cell 

types (Figures 4.1 and 4.3). 

 

A comparison between different human cell lines was then performed 

to establish if the expression of known C1q receptors differs which can explain 

the results observed. However, detection of the receptors at both the mRNA 

and protein levels did not yield any significant association between the 

receptor levels and the observed morphological changes (Figures 4.6A and 

4.6B). Next, antibodies specific to C1q receptors were used to determine if 

these receptors were involved in mediating the morphological changes by C1q. 

Blocking of the receptors did not inhibit the effects of immobilized C1q 

(Figure 4.6C). An issue is that the nature of these antibodies is not fully 

characterized and it is not known if they can function as blocking antibodies. 

However, we believe that binding of the antibodies should provide structural 

hindrances for the interactions between the receptor and C1q. Furthermore, 
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these antibodies are not likely to provide activating signals similar to that of 

immobilized C1q as no morphological changes were observed in control cells 

incubated with these antibodies (Figure 4.6C). 

 

 The whole C1q molecule consists of two major domains which are the 

globular heads and collagen tail (Figure 4.7A) (Reid and Porter, 1976). The 

identified C1q receptors are known to bind to either the globular head or the 

collagen tail. Thus, the two domains were generated which may allow the 

screening of receptors that mediate the effects of immobilized C1q. However, 

both domains did not affect the morphologies of the cells as compared to cells 

incubated with immobilized C1q (Figures 4.7C and 4.7D). The results further 

validate that α2β1, CD35, CD91, CD93 and gC1qR are not involved in 

immobilized C1q-induced effects as they bind specifically to the globular head 

or collagen tail of C1q. During the course of the study, new C1q receptors such 

as RAGE, Fz and LAIR-1 are identified (Ma et al., 2012; Naito et al., 2012; 

Son et al., 2012). Hence, these receptors or an unknown C1q receptor may 

mediate the effects of immobilized C1q. More experimental work is required to 

identify the receptor involved. 
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5.7   Augmentation of morphological changes by anti-C1q antibodies 

 

Anti-C1q autoantibodies are present in many SLE patients and they are 

associated with lupus nephritis (Sinico et al., 2009; Tsirogianni et al., 2009). 

Increases in anti-C1q autoantibodies have been associated with renal flares. 

Furthermore, lupus nephritis does not develop when anti-C1q autoantibodies 

are absent in patients (Trendelenburg et al., 1999). These autoantibodies 

mainly target neoepitopes exposed at the collagen tails after immobilization of 

C1q (Antes et al., 1988; Uwatoko et al., 1987; Wener et al., 1989). Our results 

suggest that these neoepitopes may be involved in mediating the effects of 

immobilized C1q given that high amounts of globular heads and collagen tails 

were not able to induce morphological changes in the cells as compared to that 

of immobilized intact C1q (Figure 4.7). Hence, commercial anti-C1q 

antibodies and anti-C1q autoantibodies from patients were used to test the 

effects of blocking immobilized C1q. 

 

 Interestingly, commercial anti-C1q antibodies enhanced the kinetics of 

immobilized C1q (Figures 4.8A and 4.8B). The augmentation of immobilized 

C1q-induced effects are likely due to the binding of anti-C1q antibodies to C1q 

globular heads as the monoclonal anti-C1q antibody is specific for globular 

heads of C1q. Binding of C1q to immune complexes is not involved in 

enhancing the kinetics as high salt was used during incubation with anti-C1q 

antibodies which prevented immune complexes from binding to immobilized 

C1q (Kohro-Kawata et al., 2002). Furthermore, isotype controls did not affect 

the kinetics of immobilized C1q. Thus, specific interactions between anti-C1q 

antibodies and globular heads mediate the rapid changes in morphologies of 

the cells. In addition, isolated C1q globular did not affect the morphology of 

the cells (Figure 4.7E) and the addition of anti-C1q antibodies also did not 

mediate any changes (Appendix 4). Hence, anti-C1q antibodies may increase 

the exposure of neoepitopes in the collagen tails upon binding to the globular 

heads of intact C1q. This allows easier access for C1q receptor to the exposed 

neoepitopes, increases engagements between C1q receptor and immobilized 

C1q and enhances the speed of morphological changes in the cells. 

 



127 
 

However, unlike the commercial anti-C1q antibodies, anti-C1q 

autoantibodies from SLE patients did not modulate the effects of immobilized 

C1q (Figure 4.9C). Several reasons may potentially explain for the lack of 

morphological changes for anti-C1q autoantibodies. The morphological 

changes are likely due to neoepitopes present in immobilized C1q and the 

enhancement of such changes is due to the increased exposure of such epitopes 

as discussed earlier. The commercial anti-C1q antibodies are likely to exert 

these effects via binding to the globular heads of C1q. Most of anti-C1q 

autoantibodies recognize and bind to the C1q collagen tails (Antes et al., 1988; 

Uwatoko et al., 1987; Wener et al., 1989). Despite studies showing the 

presence of anti-C1q autoantibodies in SLE patients that recognize C1q 

globular heads (Tan et al., 2009; Tsacheva et al., 2007), the prevalence of such 

antibodies is low and similar to that of control patients (Tan et al., 2009). Thus, 

it is not likely to observe augmentation of cellular morphological changes in 

the presence of anti-C1q autoantibodies. 

 

A recent study has identified two linear epitopes in which a specific 

anti-C1q Fab can recognize but only one epitope could bind the Fab in ELISA 

(Vanhecke et al., 2012). Furthermore, anti-C1q Fabs are able to recognize 

different regions of the C1q collagen tails (Schaller et al., 2009). These studies 

suggest the diversity of neoepitopes present in immobilized C1q. We also 

showed that purified collagen tails did not induce changes in cellular 

morphologies (Figure 4.7C). As anti-C1q autoantibodies can bind to C1q 

collagen tail-based ELISA (Uwatoko et al., 1987; Wener et al., 1989), the 

results suggests that neoepitopes recognized by anti-C1q autoantibodies may 

not be involved in mediating the effects of immobilized C1q. Thus, some new 

and uncharacterized neoepitopes which are not recognized by anti-C1q 

autoantibodies could be possibly mediating the morphological changes 

observed. 

 

On the contrary, neoepitopes recognized by anti-C1q autoantibodies 

may mediate the effects of immobilized C1q. Given the range of neoepitopes 

recognized by anti-C1q autoantibodies, the amount of autoantibodies present in 

the samples may be too low to block the neoepitopes responsible for 
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immobilized C1q-induced morphological changes. Commercial anti-C1q 

antibodies are enriched in antibodies against C1q whereas anti-C1q 

autoantibodies are part of the antibody repertoire of the SLE patients. To 

enrich the anti-C1q autoantibodies, IgG precipitation was carried out and the 

results showed concentration of the samples as compared to original samples 

(Figure 4.9B) However, these concentrated antibodies did not show saturation 

in our ELISA assay even when high amounts were used whereas both goat and 

mouse anti-C1q antibodies were able to reach saturation easily (Appendix 5).  

 

Although no morphological changes were observed in cells incubated 

in collagen tails-coated wells (Figure 4.7C), neoepitopes recognized by anti-

C1q autoantibodies may still mediate the effects of immobilized C1q. C1q 

collagen tail-based ELISA normally has lower readings than intact C1q-based 

ELISA (Trinder et al., 1996; Uwatoko et al., 1987). This may indicate some of 

the neoepitopes recognized by anti-C1q autoantibodies may be masked in 

immobilized C1q collagen tails and unable to affect the morphologies of the 

cells. These masked epitopes may be responsible for the effects of immobilized 

C1q and are further exposed by commercial anti-C1q antibodies such that 

enhanced kinetics of immobilized C1q was observed. More experiments are 

required to establish the links between anti-C1q autoantibodies and the effects 

of immobilized C1q.  
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5.8   Future work 

 

5.8.1   Determine the role of C1q in osteoclastogenesis in vivo 

 

In our study, we have shown that immobilized C1q augments 

osteoclastogenesis. Furthermore, as discussed in 5.4, C1q may play a role in 

the pathogenesis of several diseases such as Jaccoud’s arthritis and rheumatoid 

arthritis. Thus, it is important to establish the role of C1q in osteoclastogenesis 

in vivo. 

 

Previously, C1q-deficient mice were generated and these mice 

displayed highly similar phenotypes as SLE patients (Botto et al., 1998). Using 

this mouse model, the bones and skeletal structure could be examined to 

determine if there are any defects in the absence of C1q. Subsequently, the 

bone marrow cells could be used to generate osteoclasts. This will allow us to 

determine if lack of C1q affects the differentiation of these precursor cells to 

osteoclasts. The findings will further strengthen our data that C1q regulates 

osteoclastogenesis and also account for any defects in the bones if observed. 

 

 Other than osteoclasts, both osteoblasts and osteocytes are essential in 

maintaining bone homeostasis (Nakashima et al., 2012). Furthermore, these 

two cell types also regulate osteoclastogenesis by producing M-CSF and 

RANKL. Given that C1q is present in the bone microenvironment, the effects 

of C1q on osteoblasts and osteocytes can be investigated using the C1q-

deficient mouse model. This will increase the understanding the role of C1q in 

the bone microenvironment and how it affects bone remodeling in general. 

 

For Jaccoud’s arthritis, the absence of bone and joint damage may be 

due to the decreased levels of C1q in SLE patients, leading to inhibition of 

osteoclast formation. The C1q-deficient mouse model may provide insights to 

the pathogenesis of the disease and establish the link between C1q and the non-

erosive nature of Jaccoud’s arthritis. The mouse model can also be used to 

increase the understanding of the role of C1q-induced osteoclastogenesis in 

diseases associated with bone resorption. 
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5.8.2   Investigate the effects of IFNα and C1q on osteoclast differentiation 

 

Other than the role of C1q in SLE, type I IFN have been shown to play 

a critical role in the pathogenesis of SLE (Banchereau and Pascual, 2006). The 

severity of the disease was found to correlate with serum levels of IFNα 

(Hooks et al., 1979). Furthermore, PBMCs of SLE patients have been shown to 

have the IFN transcriptome in which IFN-regulated genes are highly 

upregulated (Baechler et al., 2003; Bennett et al., 2003). Type I IFN is also 

shown to inhibit osteoclastogenesis (Coelho et al., 2005; Takayanagi et al., 

2002). A recent study has shown that IFNα in SLE directs monocytes to 

differentiate into myeloid DC instead of osteoclasts, leading to decreased bone 

erosion observed in Jaccoud’s arthritis (Mensah et al., 2010).  

 

Understanding the interplay between osteoclast-derived C1q and type I 

IFN may further our knowledge on osteoclast differentiation in both normal 

and pathological conditions. For example, osteoclasts incubated with 

immobilized C1q could be more resistant to Type I IFN inhibition. In addition, 

osteoclast-derived C1q may inhibit IFNα production by plasmacytoid DC, the 

main producers of IFNα, in the bone microenvironment. On the other hand, 

Type I IFN may inhibit osteoclast differentiation by suppressing production of 

C1q by preosteoclasts. These possibilities required more experimental work to 

be done to further understand the roles of C1q and IFNα in osteoclastogenesis. 

 

 

5.8.3   Identify the C1q receptor involved in mediating the anti-adhesive 

effects of immobilized C1q 

 

Beside its role in complement activation, C1q is involved in diverse 

biological processes (Lu et al., 2008; Nayak et al., 2010). In particular, our 

study and previous studies have shown the significance of C1q in modulating 

the development of monocytes (Castellano et al., 2007; Fraser et al., 2009; Teh 

et al., 2011). Immobilized C1q limits the immune response of monocytes, 

macrophages and DCs to LPS (Fraser et al., 2009). Furthermore, tolerogenic 

DCs are generated from monocytes in the presence of C1q which reduce T cell 
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response (Castellano et al., 2007; Teh et al., 2011). Our results have also 

indicated that C1q is able to modulate osteoclast differentiation from 

monocytes. Thus, we set out to determine the C1q receptor responsible for 

these effects induced by immobilized C1q. However, despite our attempts, the 

C1q receptor remains elusive.  

 

 New C1q receptors such as RAGE, Fz and LAIR-1 are identified 

during the course of study (Ma et al., 2012; Naito et al., 2012; Son et al., 2012). 

These receptors are not considered during the start of our study and may 

potentially be involved in modulating the effects of immobilized C1q on 

monocytes. Hence, these receptors will be further studied to determine if they 

are involved in modulating monocyte development by C1q. Furthermore, 

knockdown of specific C1q receptors can be employed to determine their role 

in mediating the effects of immobilized C1q.  

  

 An unknown C1q receptor may be responsible for the regulation of 

monocyte development by C1q. To identify this receptor, cell surface proteins 

can be biotinylated and concentrated with strepavidin beads (Weekes et al., 

2010). Concentrated surface proteins are then incubated with C1q-coated beads 

to isolate potential receptors. The identities of these pull-down receptors will 

be determined and the involvement of these receptors in immobilized C1q-

induced effects will be validated using knockdown experiments. As 

commercial anti-C1q antibodies enhanced the kinetics of immobilized C1q 

(Figures 4.8A and 4.8B), C1q-coated beads can be incubated with these 

antibodies first before pull-down of the receptors is performed. This may 

increase the chances of obtaining the unknown C1q receptor. Identification of 

the receptor will enable understanding of the mechanism involved in C1q 

regulation of monocyte development. 
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Chapter 6 – Conclusion 

 

C1q plays many roles in immune and non-immune functions (Lu et al., 

2008; Nayak et al., 2010). This is partially achieved through regulating the 

activities of different cell types. As tissue access to serum C1q may be limited, 

local synthesis of C1q is essential to regulate cellular functions. Localized C1q 

can be observed in many tissues and organs such as arteries, articular cartilage, 

brain, esophagus, liver and placenta (Agostinis et al., 2010; Armbrust et al., 

1997; Bobryshev et al., 2010; Bulla et al., 2008; Cao et al., 2003; Schafer et al., 

2000; Stevens et al., 2007). Thus, we hypothesized that osteoclasts may be a 

potential source of C1q given that many similarities exist between osteoclasts 

and known C1q producers, macrophages and DC. 

 

In our study, we found that cultured osteoclasts produce C1q which was 

determined by various methods such as qPCR, Western blot, flow cytometry 

and ELISA. The results were validated using human femoral bone samples and 

immunohistochemistry which showed the presence of C1q in endogenous 

osteoclasts. Similar to macrophages and DC, the production of C1q can be 

regulated by different stimulants. A remarkable increase in C1q was observed 

when osteoclasts were stimulated with IFNγ and this may be potentially 

involved in the pathogenesis of inflammatory diseases. Furthermore, 

immobilized C1q increased the expression of osteoclast markers and suggests a 

potential role of C1q in osteoclastogenesis. However, the in vivo role of C1q in 

regulating osteoclast differentiation and pathogenesis of osteoclast-related 

diseases remain to be investigated. 

 

Previous studies have shown tolerogenic DCs were generated from 

monocytes in the presence of C1q (Castellano et al., 2007; Teh et al., 2011). 

Our study also showed that C1q regulated osteoclast differentiation from 

monocytes. Distinct morphological changes were also observed in DCs when 

C1q was used during differentiation (Castellano et al., 2007; Teh et al., 2011). 

Thus, the role of C1q on monocyte development may involve the 

accompanying morphological changes observed.  Understanding how C1q 

affects cellular morphology will provide insights on the possible mechanisms 
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involved in the regulation of monocyte development by C1q. We hypothesized 

that a common receptor is present on monocytes and DCs that interacts with 

immobilized C1q and responsible for the effects of immobilized C1q. 

 

 We found that immobilized C1q affected the morphologies and 

adhesive properties of all the primary cells and cell lines used. However, 

soluble C1q did not mediate any morphological changes in the cells. This 

reflects the results obtained with osteoclasts in which soluble C1q did not 

affect osteoclast differentiation and strengthen the link between C1q-induced 

morphological changes and regulation of monocyte development by C1q. 

However, known C1q receptors such as α2β1, CD35, CD91, CD93 and gC1qR 

are not involved in mediating the effects of immobilized C1q. Although we did 

not identify the C1q receptor involved in our observations, we determined that 

intact C1q was required for the effects of immobilized C1q. Furthermore, 

commercial anti-C1q antibodies were able to enhance the effects of 

immobilized C1q by increasing the speed of morphological changes. The 

results imply that neoepitopes exposed during C1q immobilization may be 

involved in mediating the effects observed and warrants further investigation. 

 

 In conclusion, local synthesis of C1q plays an important role in 

regulating cellular functions. Although C1q may be produced in low amounts 

in the microenvironment, the concentration may be high enough to have a 

significant role in regulating cellular functions. This is especially critical given 

that access to serum C1q may be limited in the absence of inflammation. 

Furthermore, local synthesis of C1q may contribute to the pathogenesis of 

diseases in association with bone resorption. Given that many receptors are 

known to bind C1q, it is not surprising that activities of many cell types are 

regulated by C1q. By understanding the mechanisms in which C1q affects 

monocyte development, the findings can be extended to other cell types 

potentially affected by similar mechanisms or vice versa. Thus, more insights 

of the role C1q plays in different diseases such as SLE, rheumatoid arthritis 

and Alzheimer’s disease can also be obtained. 
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Appendices 

 

Appendix 1. Expression of C1q genes by human primary cells. 

 

 

 

RT-PCR was performed to determined the expression of C1q (C1QA, C1QB 

and C1QC) genes in monocytes (Mono), osteoclasts (OC), macrophages (M) 

and DC. CTSK and GAPDH were used as osteoclast marker and endogenous 

control respectively. 
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Appendix 2. Purity of C1q used for the study. 

 

 

 

The purity of commercial C1q used for the study was determined by silver 

staining under reducing and non-reducing conditions. The three chains (A, B 

and C chains) are observed under reducing condition. Without reduction, the 

three chains exist as A-B heterodimer and C-C homodimer due to the 

disulphide bonds joining the chains. 
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Appendix 3. Quantification of the amounts of coated C1q for fresh and HI 

C1q. 

 

 

 

C1q was HI at 56
o
C for 30 minutes before coating was performed with both 

fresh and HI C1q. The tissue culture plate was washed thrice with 1X PBS 

after coating. Coated C1q, fresh and HI, was then eluted from the wells with 2% 

SDS. The amounts of coated C1q were then determined by silver staining. 
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Appendix 4. Effects of commercial anti-C1q antibodies and C1q globular 

heads (GH) on cellular morphologies. 

 

 

Tissue culture plates were first coated with BSA, intact C1q or C1q globular 

heads (GH). The plates were then blocked and subsequently incubated with 

various antibodies including goat anti-C1q and mouse anti-C1q. Cells were 

then added to the wells and microscopic images were taken at various time 

points. Scale bar represents 25 μm. The results are representative of three 

independent experiments. 
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Appendix 5. Dose titration of anti-C1q antibodies. 

 

The amount of anti-C1q antibodies in the commercial anti-C1q antibodies and 

human anti-C1q autoantibodies were determined by ELISA. Wells were either 

uncoated or coated with C1q before anti-C1q antibodies – goat anti-C1q (A), 

mouse anti-C1q (B) and human anti-C1q (C) – were added in the presence of 

high salt (1M NaCl) to prevent the binding of immune complexes to 

immobilized C1q. The results are representative of two independent 

experiments. 


