
 

 

 

 

 

 Structural and functional studies of 

a histone deacetylase-mediated gene 

silencing in Arabidopsis 

 

 

 

 
LI JIKUN (B. Sc) 

A0066424H  

 

 

 

A thesis submitted to Department of Biological Sciences  

 

The National University of Singapore  

 

In partial fulfillment for the Degree of Master of Sciences  

 

 

 

2013 

 



I 

 

 

 

 

 

DECLARATION 

 
I hereby declare that the thesis is my original 

work and it has been written by me in its 

entirety. I have duly acknowledged all the 

sources of information which have been used 

in this thesis. 

 

This thesis has also not been submitted for any 

degree in any university previously. 

 

 

 

 

___________________ 
LI JIKUN  

10 July 2013 

 

 

 



II 

 

Acknowledgement 

I would like to express my greatest gratitude to my supervisors, A/P 

He Yuehui and A/P Adam Yuan for giving me an opportunity to work on this 

interesting project and giving me guidance in the field of Structural Biology 

and Plant Biology. They have been instrumental in providing me much 

technical and moral support throughout my post-graduate studies. I would like 

to express my appreciation to all my co-workers in the lab for the kind 

encouragement, constant help and support.  

Special thanks to my thesis committee members Prof Yu Hao, A/P J. 

Sivaraman and Dr Lin Qingsong for their constructive criticism and advice 

during my Qualifying Examination and the preparation of this thesis. 

 

 

 

 

 

 

 

 

 

 



III 

 

Table of Contents 

Acknowledgement ............................................................................................ II 

Summary ........................................................................................................... V 

List of Tables ................................................................................................... VI 

List of Figures ................................................................................................ VII 

List of abbreviations ........................................................................................ IX 

Chapter 1 Literature Review .............................................................................. 1 

1.1 Introduction on structural biology ............................................................ 1 

1.2 Protein folding .......................................................................................... 2 

1.3 Introduction on Robetta, Phyre2 and Pro-sp3-TASSER modelling ......... 4 

1.4 Epigenetical gene silencing ...................................................................... 9 

1.5 Histones and chromatin .......................................................................... 12 

1.6 Gene regulation by histone deacetylation .............................................. 21 

1.7 Orthologs of Nurf55 and RBBP4 in Arabidopsis are MSI proteins ....... 27 

1.8 MSI family of genes are important histone chaperones ......................... 29 

1.9 Objectives of this study .......................................................................... 36 

Chapter 2 Materials and Methods .................................................................... 37 

2.1 Structural Modelling and PyMOL visualization .................................... 37 

2.1.1 PyMOL ............................................................................................ 37 

2.1.2 Robetta ............................................................................................. 37 

2.1.3 Pro-sp3-TASSER............................................................................. 37 



IV 

 

2.1.4 Phyre2 .............................................................................................. 38 

2.2 Sequence alignment with Clustal Omega............................................... 38 

2.3 ImageJ .................................................................................................... 38 

2.4 Plant Materials and Growth Conditions ................................................. 38 

2.5 Plant transformation ............................................................................... 39 

2.6 Plasmid construction .............................................................................. 40 

2.7 RNA isolation ......................................................................................... 40 

2.8 Analysis of FWA Transcripts by RT-PCR ............................................. 40 

2.9 Yeast two-hybrid screening .................................................................... 41 

Chapter 3 Results ............................................................................................. 42 

3.1 Structural Modelling of HDA6 using Robetta ....................................... 42 

3.2 Sequence alignment of Nurf55, RBBP4 and MSI proteins .................... 51 

3.3 Structural Modelling of MSI1 and FVE using Phyre2 and Pro-sp3-

TASSER ....................................................................................................... 55 

3.4 Screening the interacting protein of HDA6 from the Arabidopsis cDNA 

library ........................................................................................................... 60 

3.5 TEK forms a complex with SUVR5 in Arabidopsis .............................. 65 

3.6 Genetic interaction of HDA6 and SUVR5 .............................................. 67 

Chapter 4 Discussion ....................................................................................... 72 

References ........................................................................................................ 78 

 

 



V 

 

Summary 

In Arabidopsis thaliana, HISTONE DEACETYLASE 6 (HDA6) plays 

a crucial role in gene silencing. To further understand the molecular 

mechanisms underlying HDA6-mediated gene silencing, I first analysed 

HDA6 structure by modelling, based on the human HISTONE 

DEACETYLASE 2 (HDAC2) crystal structure. This allowed me to visualize 

the interaction surface of HDA6 by mapping the residues directly involved in 

ligand interaction. I also analysed and identified several interaction partners of 

HDA6 via yeast two-hybrid assays and further characterised its known 

partners including FVE and MULTICOPY SUPRESSOR OF IRA (MSI5). 

Structural modelling of MSI1 and FVE was contrasted against the solved 

structure of p55 to shed light onto why FVE and MSI5 are partners with 

HDA6 within a histone deacetylase (HDAC) complex but not MSI1, which is 

a component of the PRC2 complex. I finally analysed the genetic interaction 

of HDA6 with one of its partners in gene silencing and found that these two 

genes act largely non-additively to silence their targets. 
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Chapter 1 Literature Review 

1.1 Introduction on structural biology 

Life is extremely complex and in order to understand life, we need to 

investigate at multiple levels. Biology came a long way from the early days of 

looking at cells under the microscope since they were viewed as the most basic 

building blocks of life. Through investigation of cells on how they behave and 

organise themselves, we hoped to understand life at the multicellular level. 

However, reality proved to be much more complicated and people begin looking 

into cells for chemical pathways and individual molecules to answer some really 

difficult questions.  

Structural biology is a fairly newcomer in the field of biology where it 

seeks to understand basic biology at fundamental chemistry and physics at the 

molecular level. This goes further in depth beyond the cellular level where the 

interactions between the individual molecules manifest themselves into biological 

pathways we observe. Critically, behaviour and structure of proteins in 3-

Dimension is key to understanding them at a molecular level due to an 

inseparable link between structure and function. 

Crucial to understanding elemental and intrinsic biological functions and 

characteristics of  reproduction, metabolism, mutations and specificity of cells, 

structural biology can also help us conceptualize how cells organise and 

communicate in order to form tissue, and subsequently into the higher level of 
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organs and eventually the entire organism in terms of complex multicellular 

eukaryotes. While the three-dimensional (3D) structures of all biological 

molecules are important, it is that of proteins that garnered the most attention as 

they provided the most challenges and answers to that of biological functions. 

 A simple way to describe proteins is that they are chains of amino acids 

chemically bonded together through what we call peptide bonds. Proteins come in 

all shapes and sizes with a huge array of functions such as fibrous proteins that 

provide structural integrity, membrane proteins that are largely involved in 

cellular transport while globular proteins are involved in various chemical 

processes. 

As a linear polypeptide, it is largely uninteresting and serves neither 

specific function nor take part in any reactions of significance. Only when 

proteins are properly folded into their specific 3D structures, upon which they can 

carry out their specific functions. For centuries, the actual structures of these 

proteins have stumped biologists and chemists since the most powerful light 

microscopes are unable to shed any light on them visually. The first hints about 

protein structures begin to surface only when the late 1950s for which Kendrew 

and Perutz would eventually be duly awarded the Nobel Prize in Chemistry in 

1962 "for their studies of the structures of globular proteins".  

1.2 Protein folding 

In order to carry out their biological functions, proteins must be folded 

into specific spatial conformations. Ultimately, proteins derived their 3D structure 
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through folding in space from their primary sequences. We approach protein 

folding by seeking to understand the “folding code” and the “folding pathway”, 

both of which describes the mechanistic question of primary amino acid sequence 

determining its native 3D structure and the kinetic question of the route taken by a 

protein achieve its final native structure respectively.  

The composition of different permutations of amino acid residues 

differentiates one protein from the others and it has been deduced that the 

“folding code” must be embedded within its primary sequence. The unique amino 

acid side-chains of each of the twenty naturally occurring amino acids would 

provide folding instructions in the form of inter and intra molecular interactions 

such as hydrophobic interactions, Van der Waals-interactions, electrostatic 

interactions and hydrogen bonding. The “folding code” argues that each amino 

acid acts as a single “instructional unit” with its identity conferred by the nature of 

its side-chain and that the location of each amino acid residue in the primary 

sequence of a protein is equivalent to the logical placement of a statement among 

others in a computer source code. In this analogy, the “execution” of the folding 

code will result in the folding of the polypeptide chain into its native structure 

based on inter and intra molecular forces determined by the primary amino acid 

sequence. Famous experiments performed on ribonuclease (RNase) by Anfinsen 

and colleagues showed that the fully denatured RNase could spontaneously refold 

in vitro, indistinguishable from native proteins in terms of enzymatic activity 

(Anfinsen et al., 1961; White, 1961; Haber and Anfinsen, 1962). 
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1.3 Introduction on Robetta, Phyre2 and Pro-sp3-TASSER 

modelling 

There are many tools freely available on the web for academic use for the 

purpose of structural modelling and predictions. These tools have proved to be 

invaluable to biologists who seek to uncover the potential structures of their 

protein of interest which structures have yet to be solved via protein 

crystallization or NMR. With the ever enhancements to their prediction 

algorithms, these tools would be of greater importance as techniques and 

computing power improves over time. The bi-annual Critical Assessment of 

protein Structure Prediction (CASP) experiment for protein structure prediction 

seeks to test the structure prediction methods from different institutions and 

groups so as to conduct an independent assessment of the state of the art in 

protein structure modelling to the research community and software users. 

Consistently among the top performers are Robetta hosted at the Baker lab, Phyre 

2 hosted at Imperial College, London and Pro-sp3-TASSER hosted at Georgia 

Tech. 

The Robetta full-chain protein structure prediction server hosted at 

http://robetta.bakerlab.org/ is one of the best publicly available protein structure 

prediction services (Aloy et al., 2003; Kim et al., 2004). In modelling protein 

structure, the program first searches for structural homologs using BLAST, PSI-

BLAST, and 3D-Jury, then parses the target sequence into its individual domains, 

or independently folding units of proteins, by matching the sequence to structural 

http://robetta.bakerlab.org/
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families in the Pfam database. Domains with structural homologs then follow a 

"template-based model" (i.e., homology modelling) protocol.  

The Baker laboratory's in-house alignment program, K*sync, produces a 

group of sequence homologs, and each of these is modelled by the Rosetta de 

novo method to produce a decoy (possible structure). The final structure 

prediction is selected by taking the lowest energy model as determined by a low-

resolution Rosetta energy function. For domains that have no detected structural 

homologs, a de novo protocol is followed in which the lowest energy model from 

a set of generated decoys is selected as the final prediction. These domain 

predictions are then connected together to investigate inter-domain, tertiary-level 

interactions within the protein. Finally, side-chain contributions are modelled 

using a protocol for Monte Carlo conformational search (Chivian et al., 2005). 

The Phyre and Phyre2 servers hosted at Imperial College, London predict 

the 3D structure of a target protein based on homology modelling via sequence 

alignment, where a related sequence of known structure is used as a template 

(Kelley and Sternberg, 2009). From the currently existing database of proteins 

with known structures in Structural Classification of Proteins (SCOP) 

supplemented by new depositions in Protein Data Bank (PDB), the primary 

sequence of these known proteins are extracted and submitted to Position-Specific 

Iterated BLAST (PSI-BLAST) to gather sequence homologs against a non-

redundant sequence database which would be used to create a large database of 

Hidden Markov Models (HMM).  
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When the input of the primary sequence of the query protein is submitted 

to the server, it would search a non-redundant sequence database to look for 

homology using five iterations of PSI-BLAST which would provide an accurate 

secondary structure prediction and powerful sequence profile. The results of this 

alignment is then converted into a Hidden Markov Model (HMM) which captures 

the mutational propensities at each position in the protein to derive an 

evolutionary fingerprint. The query HMM is then scanned against the HMM 

database using a profile–profile alignment algorithm for which the alignments 

will be ranked and scored. Based on the structures of the top ten highest scoring 

alignments from the HMM database as a template, full 3D models of the query 

protein would be created. 

Pro-sp3-TASSER hosted at Georgia Tech is a modification on the treading 

step of the Threading/ASSembly/Refinement (TASSER) method to derive an 

algorithm that combines successful approaches such as meta-servers, coupling 

alignment with quality assessment, and iterative refinement (Zhou et al., 2009; 

Zhou and Skolnick, 2009).  

Step A consist of threading and alignment by the newly developed PRO-

SP3 threading method; step B is the generation of an ensemble of models by short 

TASSER simulations; step C is the selection of top models with TASSER-QA 

from the ensemble, followed by full TASSER refinement and final model 

selection (Figure 1). 
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The PRO-SP3 threading algorithm consists of five threading scores that 

align the target sequence to templates which were subsequently ranked 

independently with scores taken directly or modified from SP3 (Zhou and Zhou, 

2005) and PROSPECTOR_3 (Skolnick et al., 2004).  
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Figure 1. An overview of Pro-sp3-TASSER. This figure is adapted from (Zhou et al., 

2009). 
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1.4 Epigenetical gene silencing 

Epigenetics is a relatively new area in the field of biology. Despite the 

understanding of DNA structure and the genetic code, many biological 

mechanisms still elude the understanding of biologists as the conventional dogma 

failed to answer these questions. One example would be the basis of cellular 

differentiation where all the cells in the body contain the same DNA and yet have 

such diverse structure and function. Epigenetical controls provided answers on 

how gene expressions can be regulated on a molecular level, controlling spatial 

and temporal expression of different genes using a wide range of mechanisms.  

This complex action of gene silencing requires the coordination of many 

key players including DNA methylases, histone deacetylases and histone 

methyltransferases. Chromatin modifications such as nucleosome remodelling, 

DNA methylation and modifications to histones can result in changes in the 

chromatin structure, upon which gene expression can be regulated (Henikoff and 

Shilatifard, 2011). 

Among many developmental processes, expression for genes that regulate 

flower development is under epigenetical regulations. Polycomb Repressive 

Complex 2(PRC2) subunits CURLY LEAF (CLF), EMBRYONIC FLOWER 

(EMF) 2 and FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) repress 

the expression of FLOWERING LOCUS C (FLC). CLF is a homolog of Enhancer 

of zeste [E(z)] which repress AGAMOUS (AG), FLC and FLOWERING LOCUS T 
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(FT) via Histone 3 Lysine 27 trimethylation (H3K27me3)  to prevent H3K4me3 

and thus controlling flowering (Goodrich et al., 1997; Schubert et al., 2006).  By 

repressing FLC and FT, the two key floral transition integrator and regulator, 

PRC2 complexes are critical in the control of flowering in Arabidopsis (Jiang et 

al., 2008). 

Epigenetic regulations of transposable elements (TEs) and TE-like repeat 

sequences is very important as the failure of TE silencing can result in 

rearrangements and mutations of genes due to TE insertions, compromising 

genomic integrity alongside the temporal and spatial expression of genes (Gazzani 

et al., 2003; Liu et al., 2004; Law and Jacobsen, 2010). One key protein that 

participates in silencing TEs and TE-like sequence containing genes, such as FLC 

and FWA, is the AT-hook DNA binding protein, TRANSPOSABLE ELEMENT 

SILENCING VIA AT-HOOK (TEK) (Soppe et al., 2000; Gazzani et al., 2003; 

Liu et al., 2004). TEK directly binds to an FLC-repressive regulatory region and 

the silencing repeats of FWA and associates with Arabidopsis homologs of the 

Retinoblastoma-associated protein 46/48 (RbAp46/48), FVE and MSI5, which 

mediate histone deacetylation (Ausin et al., 2004; Gu et al., 2011). The absence of 

TEK activity would result in increased histone acetylation, reduced H3K9me2 

and DNA hypomethylation in TE and TE-like repetitive DNA sequences 

(Zaratiegui et al., 2007; Saze and Kakutani, 2011), which ultimately leads to the 

upregulation of FLC and FWA as well as TE reactivation and subsequently, 

transposition(Xu et al., 2013a; Xu et al., 2013b).  
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Figure 2. Binding of TEK on targets affect chromatin conformation and its association 

with FVE/MSI5-containing histone deacetylation complex results in repressive 

modification and subsequently, gene silencing. This figure is adapted from (Xu et al., 

2013b). 
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Epigenetical changes are heritable changes to gene expression that does 

not involve any changes to the DNA sequence. Among the many epigenetical 

controls of gene expression, common mechanisms involved are DNA methylation, 

chromatin modifications, loss of imprinting and non-coding RNA (Hamilton, 

2011). Epigenetic regulation has long-term and wide-ranging effects such as 

transcriptional regulation, cell cycle progression, and developmental events on top 

of other biological processes.  

1.5 Histones and chromatin 

There are two main classes of mammalian histone deacetylase complexes 

(HDAC) based on their sequence similarity to that of yeast HDACs (Figure 3). 

Class I HDACs includes HDAC 1, 2, 3, 8 and 11 while class II includes HDAC 4, 

5, 6, 7, 9 and 10. Class I HDACs contain a well-conserved catalytic domain 

(Khochbin and Wolffe, 1997). HDAC1 and HDAC2 were known to be important 

components of  two multi-protein complexes known as Sin3/HDAC and 

nucleosome remodelling and histone deacetylase complex (NuRD)/Mi2/NRD 

(Knoepfler and Eisenman, 1999; de Ruijter et al., 2003) while HDAC3 appears to 

be a nuclear receptor co-repressor (Ahringer, 2000). Studies have also suggested 

that HDAC3 is a member of the stable core of the Silencing Mediator for Retinoid 

and Thyroid (SMRT) receptors and/or Nuclear Receptor Co-Repressor (N-CoR) 

complexes (Huang et al., 2000; Li et al., 2000; Urnov et al., 2000; Wen et al., 

2000). 
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Figure 3. A schematic representation of Class I and Class II Histone Deacetylases 

isoforms. The black regions depict a Nuclear Localisation Signal with N and C denoting 

the N and C terminus respectively. This figure is adapted from (de Ruijter et al., 2003). 
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HDAC2 is ubiquitously expressed in different tissues and while it lacked a 

DNA binding domain (Brunmeir et al., 2009; Ma and Schultz, 2013), it plays a 

key role in the deacetylation of lysine residues at the N-terminal regions of core 

histones (H2A, H2B, H3 and H4) through the formation the core histone 

deacetylase complex with RBBP4 and RBBP7. Removal of this acetyl group is 

broadly associated with gene repression whereby HDAC2 forms transcriptional 

repressor complexes via interaction with proteins such as zinc-finger transcription 

factors. HDAC2 also interacts in the late S-phase of DNA-replication with DNA 

methyltransferase1 (DNMT1) in the other transcriptional repressor complex 

composed of CHROMATIN ASSEMBLY FACTOR-1 (CAF1). 

In order for HDAC2 to play its multiple roles in different transcriptional 

regulation activities such as cell cycle progression, cell differentiation, apoptosis 

and tissue specifications, it requires other components of the HDAC complex to 

bind to histones or chromatin. There are multiple complexes of such nature and 

each are identified by the specific components associated with them and the 

different chromatin modifications catalysed (Figure 4). 

One such protein is FRIEND OF GATA 1 (FOG-1) which is an essential 

cofactor in many complexes such as that of NuRD, Histone methyltransferases 

(HMT) and HDACs. FOG-1 forms heterodimers with the GATA family of 

transcription factors which would bind to the chromatin via its zinc finger 

domains while the N-terminal of FOG-1 recruits the various transcription 

regulatory complexes. This heterodimer formed by FOG-1 can either promote or 



15 

 

repress transcriptional activities, depending on the cell type or the promoter 

region it is bound to. 
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Figure 4. A schematic model of how HDAC complexes can be bound to the chromatin 

via different co-factors. Different HDAC complexes are composed of a variety of 

proteins and adapt different specificity. This figure is adapted from (Lejon et al., 2011). 
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One of the fundamental epigenetical controls involves chromatin 

remodelling brought about by chemical modifications to histones. In eukaryotes, 

histones are proteins found in eukaryotic cell nuclei that packs and orders the 

DNA into the basic subunit of the chromatin called nucleosome (Luger et al., 

1997). Nucleosomes are packaged into successively higher order structures, 

allowing for the compaction and storage of genetic material. Without histones, the 

unwound DNA in chromosomes would be very long (about 1.8 meters), in 

contrast to the 90 micrometres of chromatin found in cell nuclei (Figure 5). 

The key component of the eukaryotic nucleosome is a histone octamer 

consisting of a tetramer derived from two sets of H3/H4 heterodimer bound to 

two H2A/H2B dimers (Luger et al., 1997) around which 146 base pairs of DNA 

are wrapped, forming the nucleosome . Long N-terminal tails projects out of the 

hydrophobic histone core would be subjected to extensive covalent modifications 

at multiple sites and although the histone core could also be modified, the 

modifications are not as extensive (Strahl and Allis, 2000).  
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Figure 5. Organisation of histones subunits. Histones organise themselves from 

individual monomers into a functional octamer of 8 histone protein cores and packs the 

DNA to form nucleosomes. 
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Common post-translational modifications on the histone tail include 

methylation, acetylation, phosphorylation, ubiquitination and SUMOylation 

which would alter the interaction of the histone with the DNA and other nuclear 

proteins. Such modifications alters chromatin structure and affects the access of 

transcription factors and other nuclear proteins to DNA and allowed processes 

such as gene regulation, DNA repair and chromosome condensation to take place. 

As summarised in Table 1, the general effects of mono-methylation and 

acetylation leads to gene activation while di- and tri-methylation leads to either 

gene activation or repression, depending on the specific histone as well as the 

specific residue on the histone tail where the modification took place (Barski et al., 

2007; Benevolenskaya, 2007; Koch et al., 2007; Steger et al., 2008; He, 2009; 

Rosenfeld et al., 2009). 
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Table 1. Some common histone modifications and their effects on the gene loci. The list 

is non-exhaustive and describes the most expected outcome and is not definitive. 

Type of 

modification 

Histone 

H3K4 H3K9 H3K14 H3K27 H3K79 H4K20 H2BK5 

mono-

methylation 
activation activation 

 
activation activation activation activation 

di-

methylation  
repression 

 
repression activation 

  

tri-

methylation 
activation repression 

 
repression 

activation 

repression  
repression 

acetylation 
 

activation activation 
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Epigenetic regulation processes of at DNA and histone levels are closely 

related (Chen and Pikaard, 1997; Li et al., 2002). DNA methylation can directly 

or indirectly trigger repressive histone modification at the target loci via histone 

deacetylation of H3K9 and H3K14, H3K9 dimethylation (H3K9me2) and H3K27 

monomethylation (H3K27me1) (Zilberman et al., 2003; Wierzbicki et al., 2009). 

Synergistically, the H3K9 methyltransferase that catalyses dimethylation of H3K9 

is recognized and bound by Chromomethylase 3(CMT3) which helps to maintain 

CHG (where H = A, T or C) methylation (Ebbs and Bender, 2006; Law and 

Jacobsen, 2010).This coupled action of DNA methylation together with repressive 

histone modifications helps establish a silenced heterochromatin, a critical gene 

regulatory process in development. 

1.6 Gene regulation by histone deacetylation 

There are three distinct families of HDACs in mammals, comprising a 

group of about 20 proteins (Taunton et al., 1996). The Arabidopsis HDA6 belongs 

to the Class I HDACs which bears the greatest similarities in amino acid sequence 

to the yeast Reduced Potassium Dependency (Rpd3) protein. The Class II HDACs, 

despite sharing sequence similarities to the Class I proteins, are grouped together 

based on their homology to the yeast Histone deacetylase 1 (Hda1) protein. The 

Class III HDACs are distinctly different in sequence and function to the HDACs 

in classes I and II, as they require the cofactor nicotinamide-adenine dinucleotide 

(NAD) for enzymatic activity and are insensitive to the chemical inhibitors such 

as butyrate, trichostatin and trapoxin. HDAC proteins are not restricted to the 

nuclear compartment, and indeed several non-histone substrates have been 
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identified for both NAD-dependent and independent enzymes (North et al., 2003; 

Zhang et al., 2003). 

 HDA6 is the Arabidopsis thaliana homolog of the human HDAC2 and 

plays an important role in the transcriptional repression of the target gene when 

tethered to the target promoter. On top of deacetylation of lysines of H3 and H4, it 

is also required for cytosine methylation in transgenes and silenced ribosomal 

RNA (rRNA) genes, since histone deacetylation in the region takes place prior to 

DNA methylation (Aufsatz et al., 2002; He et al., 2009; Earley et al., 2010). 

Histone acetylation takes place when the epsilon amino group of lysine 

residues of the histone tail is modified by the addition of an acetyl group by 

histone acetyltransferases (HAT) and reciprocally, the removal of the acetyl group 

by HDACs (Figure 6). Acetylation and transcription activation are closely 

coupled since the identification of HAT enzymes that function in concert with 

protein complexes to activate transcription (Roth et al., 2001; Carrozza et al., 

2003). Conversely, the repression of transcription involves the recruitment of 

HDAC enzymes to specific genes (Urnov et al., 2001). Acetylation of the histone 

loosens histone-DNA contacts enabling gene transcription factors and other DNA 

modifying enzymes access to the DNA strands for transcription and other 

enzymic activities (Lee et al., 1993). In addition, the acetylated histones helps to 

recruit transcriptional activators containing an acetyl-lysine binding module called 

the bromodomain (Jacobson et al., 2000) among other protein complexes involved 

in transcription regulation. 
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Figure 6.  Schematic for the equilibrium of acetyl modification on histones. The 

opposing enzymic activity by of histone acetyltransferases (HAT) and deacetylases 

(HDAC) maintains equilibrium of the histone acetylation state of the acetyl groups on 

Lysine of histones. 
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Mutations of HDA6 caused defects in transgene silencing as well as 

inability of the cell to maintain repression of silenced genes in Arabidopsis 

(Aufsatz et al., 2002; Probst et al., 2004). Furthermore, loss of function of HDA6 

leads to histone hyperacetylation in the nucleolus organizer regions containing the 

rDNA repeats and reduced CG and CHG methylation at target gene promoters 

(Wu et al., 2008; Earley et al., 2010). However, loss of HDA6 functions under 

normal growth conditions does not greatly affect the development of the plant 

except for a slight delay in flowering, suggesting that HDA6 regulation of the 

chromatin may be very specific (Probst et al., 2004). 

Besides its role in histone deacetylation, HDA6 is also a key component of 

the RNA-directed DNA Methylation pathway (RdDM) in Arabidopsis. Briefly, 

RdDM utilises small double stranded RNA(dsRNA) generated from viral 

replication, products of RNA-dependent RNA polymerase (RdRP) protein such as 

RDR2 and transcribed inverted repeats which would be processed by Dicer-like 

3(DCL-3) then incorporated into Agonaute4 (AGO4) to serve as sequence-

specific guides during RdDM by pairing with complementary DNA targets or 

nascent scaffold RNAs from the DNA targets (Zilberman et al., 2003; Xie et al., 

2004). This guiding complex would then recruit Domains Rearranged 

Methyltransferase (DRM2), the plant homolog of the mammalian DNA 

methyltransferase (DNMT3), and other methyltransferases to catalyse de novo 

DNA methylation (Aufsatz et al., 2002; Lippman and Martienssen, 2004; 

Kanellopoulou et al., 2005; Matzke and Birchler, 2005; Zhang and Zhu, 2011). 

This guidance by small interfering RNA (siRNA) in RdDM will result in a 
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reversible yet inheritable transcriptional repression of the target gene locus by 

ensuring preservation of specific CHH methylation patterns in daughter cells 

(Zhang and Zhu, 2011). HDA6 is also essential for maintenance of silenced state 

as reactivation of RdDM-silenced promoters are observed in hda6 mutants despite 

the continuous presence of the RNA-silencing signal (Aufsatz et al., 2007). It has 

also been suggested that HDA6 recognize the partial methylation at most cytosine 

residues resulting from the de novo step of RdDM where it then recruits DNA 

Methyltransferase 1(MET1) and CMT3 for the traditional CG and CNG (where N 

is any base) maintenance activities to reinforce preferentially C(N)G methylation 

(Bartee et al., 2001; Kishimoto et al., 2001; Lindroth et al., 2001; Papa et al., 

2001). 

HDA6 also plays a role in RNA-mediated heterochromatin formation, 

mainly at repeats near the centromeres, transposons and intergenic regions 

(Lippman and Martienssen, 2004). The hda6 mutants have reduced H3K9me2 

marks suggesting that HDA6 is essential for siRNA-dependent heterochromatin 

formation as well as silencing of heterochromatic transposons. This deacetylation 

is also needed for subsequent methylation by HMTs (Lippman et al., 2003). 

Conversely, HDA6 catalysed histone deacetylation is also important for cytosine 

methylation in transgenes and endogenous rRNA genes (Aufsatz et al., 2002). For 

efficient gene silencing, DNA methylation alone would not suffice. As such, the 

recruitment of HDA6 in the form of a HDAC complex for histone deacetylation 

to bring about efficient gene repression via chromatin modification is critical 

(Aufsatz et al., 2007). 
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Heterochromatin constitutes the transcriptionally inactive state of the 

genome and in eukaryotes and is generally characterized by epigenetic marks 

such as DNA methylation and histone modifications like H3K9 methylation. 

DNA methylation and H3K9me2 in the chromatin are usually closely linked 

spatially and together, they create a mutually self-reinforcing and stable state of 

chromatin. However, H3K9me2 modifications can also be established without the 

presence of DNA methylation (Caro et al., 2012) . One such example is the 

Suppressor of variegation 3-9-related protein 5(SUVR5), which has three C2H2 

zinc fingers that binds specifically to DNA sequences that map to gene promoters. 

Its Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain also confers SUVR5 

methyltransferase activity needed for the dimethylation of histones. Indeed, the 

non-functional mutant of SUVR5 displays reduced dimethylation of H3K9 and 

H3K27 and hyperacetylation of histone H4 within the FLC locus and shows a 

moderate delayed flowering, of which these are known targets of the HDAC 

complex(Schmitges et al., 2011; Caro et al., 2012). The recruitment of HDAC 

complex to establish a gene-silencing state without DNA methylation can be 

achieved via SUVR5 and its interactions with co-factors within the HDAC 

complex. 

 FWA is a homeodomain-containing transcription factor that delays floral 

transition and in wild-type Arabidopsis. It is only expressed in the female gametes 

and extra-embryonic endosperm tissue from the maternal mRNA and is silenced 

in the sporophyte (Soppe et al., 2000; Kinoshita et al., 2004). The ectopic 

expression of FWA in the sporophyte would cause a late-flowering phenotype by 
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repressing FT activity. In wild-type Arabidopsis, FWA expression is repressed by 

repressive histone modifications and cytosine methylation in its 5‟ region (Soppe 

et al., 2000; Kinoshita et al., 2004; Lippman et al., 2004). As such, if there are 

defects or mutations in the repressive histone modifications and cytosine 

methylation pathways such as histone deacetylation, FWA silencing cannot take 

place and can be ectopically expressed. This would give rise to epi-alleles of fwa 

where FWA is expressed even though there are no mutations in the FWA gene 

itself. 

 The nature of FWA silencing and the late flowering phenotype observed 

during FWA upregulation made it a very useful tool for the investigation into 

abrogation of epigenetical gene silencing such as defects in de novo DNA 

methylation and maintenance of histone deacetylation. 

1.7 Orthologs of Nurf55 and RBBP4 in Arabidopsis are MSI 

proteins 

Nurf55 (p55) of Drosophila is homologous to RbAp48/46 in human and 

the MSI family of proteins in Arabidopsis. The Drosophila PRC2, which consist 

of four subunits consists of the four subunits E(z) , Su(z)12 (Suppressor of zeste 

12), Esc (Extra sex combs), and Nurf55, forms the functional core of the 

Polycomb group repression machinery. Correspondingly, the Arabidopsis PRC2 

complex consist of MEDEA (MEA), FIE, FERTILIZATION INDEPENDENT 

SEED (FIS) 2 and MSI1 (Kohler et al., 2003; Wang et al., 2006). 
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Nurf55 is key and non-catalytic subunit of PRC2 and other chromatin-

modifying complexes such as HAT1 and CAF-1. Importantly, Nurf55 forms 

complexes with histones H3 and H4 to act as a recruiting factor of their 

complexes so that the complex is able to tether to their substrate nucleosomes. 

This affinity of Nurf55 to histones can also allow it to act as a histone chaperone 

that deposit H3/H4 heterodimers during replication-dependent and replication-

independent nucleosome assembly (Tagami et al., 2004; Furuyama et al., 2006).  

Crucially, the binding sites for the histone H4 are overlapping with that of 

Su(z)12, demonstrating the versatility of Nurf55 in its multiple roles as 

components in a range of complexes as well as the variety of substrates it can 

bind with (Nowak et al., 2011). Su(z)12 is a key component of the PRC2 complex 

and is required  during the first 6 hours of embryogenesis to establish the 

repressed state of homeotic genes throughout development. While the specific 

function of Su(z)12 is not well-documented yet, it is strongly conserved across 

many species and its zinc-finger domain at the C-terminal may be involved with 

chromatin silencing in conjunction with noncoding RNAs, using its zinc-finger 

domain to bind the RNA molecule (Rinn et al., 2007). 

Both RBBP4 (RbAp48) and RBBP7 (RbAp46) are key components 

NURF, HDAC co-repressor complexes and are found in two distinct EZH2/EED 

complexes. RBBP4 and RBBP7 also promote transcriptional repression as an 

integral subunit of PRC2-like complexes that catalyse H3K27me3 through the 

histone methyltransferase activity is associated with the SET domain of 

E(z).Although the human RBBP4 and RBBP7 are closely related and can be 
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found in the same complex, RBBP4 and RBBP7 are found exclusively in CAF-1 

and HAT1 respectively. The MSI family of proteins are homologous to RBBP; 

with MSI1sharing more sequence similarity to RBBP4 and that FVE is more 

similar to RBBP7.  

MSI1 is a component of the CAF-1 complex (with FAS1 and FAS2) and 

the FIS complex (with MEA, FIE, MIS1 and possibly FIS2). MSI1 plays a role in 

the recruitment of chromosomal DNA into heterochromatic chromocenters and 

binds directly to helix 1 of histone H4 and also interacts with EMF1 and VRN2. 

FVE has been known to interact with the plant Rb homolog and FVE 

mutations lead to reduced PRC2 catalysed H3K27me3 repression on FLC locus. 

FVE forms a complex with HDA6 to form a HDAC complex that mediated 

histone deacetylation and cytosine methylation. 

1.8 MSI family of genes are important histone chaperones 

Critical to chromatin modifying protein complexes are histone chaperones 

that aid the assembly of nucleosomes during replication and the recruitment of 

histone-modifying enzymes. These histone chaperones are also critical 

components of many chromatin-associated complexes, where they often act as 

key co-factors by repositioning nucleosome cores, effectively remodelling the 

chromatin structure.  

The histone-binding proteins Retinoblastoma Associated proteins found in 

humans are highly homologous WD40-repeat proteins and were first identified in 

mammalian cells as the tumour-suppressor Rb-binding proteins (Loyola and 
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Almouzni, 2004).The human RETINOBLASTOMA ASSOCIATED PROTEIN 

48 (RbAp48), also known as RBBP4 is closely related to RbAp46 (RBBP7) with 

up to 90% residue identity and these two proteins are key components of many 

protein complexes and could sometimes be found together in the same complex). 

However RBBP4 is found exclusively in the evolutionarily conserved CAF-1 

complex while RBBP7 is found exclusively in HAT complex with Histone 

acetyltransferase type B catalytic subunit (HAT1) (Parthun et al., 1996; Verreault 

et al., 1998). Since the human RbAp46/48 is an integral subunit of Class I HDAC 

co-repressor complexes (Zhang et al., 1999; Fleischer et al., 2003; Murzina et al., 

2008), it is likely that Arabidopsis HDA6 also forms a HDAC complex with other 

WD40-repeat proteins such as FVE (MSI4) and MSI5 similar to that of human 

RbAp46/48 in a Class I HDAC co-repressor complex (Gu et al., 2011). 

The WD40 domain can be found in a number of eukaryotic proteins as 

adaptor/regulatory modules covering a wide variety of functions including signal 

transduction, transcription regulation, cell cycle control, autophagy, apoptosis, 

pre-mRNA processing and cytoskeleton assembly (Smith et al., 1999; Li and 

Roberts, 2001). These repeats are 40 residues long and usually contain the G-H 

dipeptide 11-24 residues from its N-terminus and end the W-D dipeptide at its C-

terminus. Between GH and WD lies a conserved core serving as a stable 

propeller-like platform stably or reversibly protein interaction.  

As visualized in Figure 7, several of these domains would combine to 

form a circularised beta-propeller structure with usually 6 to 8 blades where each 

blade is composed of a four-stranded anti-parallel b-sheet (Murzin, 1992). Each 
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WD40 sequence repeat forms the first three strands of one blade and the last 

strand in the next blade where the last C-terminal WD40 repeat completes the 

blade structure of the first WD40 repeat to create the closed ring propeller-

structure. Residues on the top and bottom surface of the propeller are proposed to 

act as a site for protein-protein interaction, and proteins containing WD40 repeats 

are known to serve as platforms for the assembly of protein complexes or 

mediators of transient interplay among other proteins (Li and Roberts, 2001). The 

specificity of the interactions is determined by the sequences outside the repeats 

themselves. 
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Figure 7. A typical circularised beta-propeller structure of a WD40 motif. The RbAp46 

protein is in yellow while the histone H4 is in blue. Image is based on structure 3CFS 

(Murzina et al., 2008). 
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Importantly, both RBBP4 and RBBP7 are key components of HDAC co-

repressor complexes which would typically cause transcriptional repression of 

target genes via deacetylation of core histones (Zhang et al., 1999; Nicolas et al., 

2000; Korenjak et al., 2004). Both RBBP4 and RBBP7 are found in two distinct 

Enhancer of Zeste Homolog 2 and Embryonic Ectoderm Development 

(EZH2/EED) complexes responsible for the methylation of either histone H3K27 

or H1K26 to which also represses the target regulatory genes epigenetically 

(Kuzmichev et al., 2004). Additionally, both RBBP4 and RBBP7 are components 

of the ATP-dependent Nucleosome Remodelling Factor (NURF), also involved in 

transcriptional regulation (Martinez-Balbas et al., 1998; Barak et al., 2003). 

RbAp46/48 also promotes transcriptional repression as an integral subunit of the 

evolutionarily conserved PRC2-like complexes that catalyse H3K27 

trimethylation (He et al., 2003; Ausin et al., 2004; Doyle and Amasino, 2009). 

The solved crystal structure RbAp46 bound to histone H4 suggest that the 

RbAp46/48-containing complexes interact with histone substrates via either 

RbAp46 or RbAp48 interface (Murzina et al., 2008).  

MSI1 is a core histone-binding subunit of several HDAC and CAF 

complexes and is involved in chromatin modifications for DNA replications and 

transcription repressions. It is found in complexes with histone deacetylases, 

histone acetyl transferases, the nucleosome remodelling factor NURF and HMTs 

(Hennig et al., 2003). MSI1 is not functionally redundant with the other MSI 

proteins and functions in multiple chromatin modifying complexes. 



34 

 

It is a component of the CAF-1 complex and the FIS complex , a 

polycomb group protein complex which is required to maintain the 

transcriptionally repressive state of homeotic genes that includes floral homeotic 

genes (Kaya et al., 2001; Hennig et al., 2003; Kohler et al., 2003; Guitton et al., 

2004). MSI1 plays a role in the recruitment of chromosomal DNA into 

heterochromatic chromocenters and binds directly to helix 1 of histone H4, a 

region that is not accessible when H4 is in chromatin suggesting that 

conformational change must take place prior to binding. 

The key player the flowering regulatory network is FLC, of which its 

importance results in it being a target and targeting other floral promoters or 

repressors. FLC expression suppresses the expression of FT and SUPPRESSOR 

OF OVEREXPRESSION OF CONSTANS 1 (SOC1). The integration of signals 

from these 3 genes would eventual activate genes like LEAFY and APETALA 

1(AP1) that promotes vegetative meristems into floral meristems (Kardailsky et 

al., 1999; Abe et al., 2005; Searle et al., 2006; Turck et al., 2008) 

Involved in vernalization, MSI1 is part of the plant homeodomain / 

polycomb repressive complex 2 (PHD-PRC2) complexes with Polycomb group 

protein VERNALIZATION 2(VRN2), EZA1 and FIE which mediates H3K27 

trimethylation (Kaya et al., 2001; Kohler et al., 2003). Playing an important role 

in meristem identity and maintenance through the regulation of gene expression 

of floral homeotic genes, MSI1 also interacts with CLF and EMF1, both of which 

are also subunits of the PRC2 complex (Hennig et al., 2003; Calonje et al., 2008). 

However, MSI1 does not repress the expression of FLC (Bouveret et al., 2006). 
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In contrast, FVE is directly involved in FLC repression to promote 

flowering (Ausin et al., 2004). FLC, a MADS-domain transcription factor and 

potent floral repressor, acts to repress the developmental transition to flowering in 

Arabidopsis. FVE and MSI5 are two of the five Arabidopsis thaliana MSI genes, 

orthologs of the human Retinoblastoma Binding Protein 4 (RBBP4).  These are 

important histone chaperones with key roles in protein complexes responsible for 

chromatin structure modifications especially those that are involved in 

methylation, acetylation or deacetylation the H4 histone tail (Murzina et al., 2008).  

FVE has been known to interact with the plant Rb homolog but the 

biological significance of this interaction remains largely unknown (Ausin et al., 

2004). FVE is known to control flowering by repressing the expression of  FLC, 

the central floral repressor for which FVE loss-of-function would result in a late 

flowering phenotype (Ausin et al., 2004). Increased histone acetylation at the FLC 

locus is also observed in fve mutants, indicating that FVE represses FLC 

expression via chromatin deacetylation (He et al., 2003; Ausin et al., 2004). 

Furthermore, FVE mutations lead to reduced PRC2 catalysed H3K27me3 

repression on FLC locus (Doyle and Amasino, 2009).  

In contrast, the biological functions and interactions of MSI5 are much 

more elusive until recently when it has been demonstrated that MSI5 acts in 

partial redundancy with FVE in FLC chromatin repression (Gu et al., 2011). 

Together with HDA6 deacetylase, FVE and MSI5 form a HDAC complex that 

cause deacetylation of the target histone and the subsequent transcriptional 

silencing at the target loci. As such, FVE and MSI5 are speculated to play 
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important roles in the RNA-directed chromatin silencing of various gene loci in 

plants. 

Both FVE and MSI5 are important for CHH methylation and maintenance 

of symmetric cytosine methylation of endogenous RdDM target loci as well as the 

establishment of cytosine methylation of the previously unmethylated sequences. 

Observations in fve and msi5 mutants include histone hyperacetylation, loss of 

cytosine methylation and transcriptional reactivation at the RdDM target. This 

suggests that MSI5/FVE-HDA6 HDAC complex-mediated histone deacetylation 

creates a repressive chromatin environment that promotes DRM2 catalysed 

cytosine methylation at previously unmethylated sequences (Gu et al., 2011). 

MSI5 acts redundantly with FVE in RNA-directed gene silencing as key 

components of a HDAC complex comprising of various enzymes including 

HDA6 on targets such as development genes as well as transposable and 

repetitive elements (Gu et al., 2011). 

1.9 Objectives of this study 

 The first objective of this study is to investigate the structural and 

functional features of HDA6 by comparing its model as predicted using Robetta 

with that of the human HDAC2, its homolog which structure has been solved with 

X-ray crystallography. 

 Secondly, we sought to identify and further characterize HDA6 partners to 

understand how HDA6 mediates gene silencing in Arabidopsis. 
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Chapter 2 Materials and Methods 

2.1 Structural Modelling and PyMOL visualization 

2.1.1 PyMOL 

 PyMOL (Schrodinger, 2010) is a powerful and comprehensive molecular 

visualization product for rendering and animating 3D molecular structures. It 

requires the input of atomic coordinates to a PDB file that can be downloaded 

from the PDB database or generated from various structure modeling softwares. 

Educational-Use-Only PyMOL is available for download at 

http://pymol.org/educational/ 

2.1.2 Robetta 

 The Robetta Full-chain Protein Structure Prediction Server is hosted by 

the Bakerlab of Molecular Engineering and Sciences at University of Washington. 

Robetta uses the Rosetta software package and is accessed at 

http://robetta.bakerlab.org/ 

2.1.3 Pro-sp3-TASSER 

 The Pro-sp3-TASSER Protein Structure Prediction tool is hosted by the 

Skolnick Research Group of Center for the Study of Systems Biology at Georgia 

Tech. It is freely available to academic users and not-for-profit institutions and 

can be found accessed at http://cssb.biology.gatech.edu/skolnick/webservice/pro-

sp3-TASSER/index.html 

http://pymol.org/educational/
http://robetta.bakerlab.org/
http://cssb.biology.gatech.edu/skolnick/webservice/pro-sp3-TASSER/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/pro-sp3-TASSER/index.html


38 

 

2.1.4 Phyre2 

 Phyre2 (Protein Homology/analogY Recognition Engine V2.0) is hosted 

by the Structural Bioinformatics Group, Imperial College, London. It can be 

accessed at http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index 

2.2 Sequence alignment with Clustal Omega 

 Clustal Omega is a multiple sequence alignment program for proteins that 

uses seeded guide trees and HMM profile-profile techniques to generate 

alignments (Goujon et al., 2010; Sievers et al., 2011). It is hosted by European 

Molecular Biology Laboratory- European Bioinformatics Institute (EMBL-EBI) 

and it is freely available for use at http://www.ebi.ac.uk/Tools/msa/clustalo/ 

2.3 ImageJ 

 The ImageJ program is a Java-based open source image enumeration 

software (Schneider et al., 2012) that can calculate area and pixel value statistics 

of user-defined selections and create density histograms and line profile plots. It 

can run as an online applet and can be freely downloaded at 

http://rsb.info.nih.gov/ij/download.html.The DNA gel photos are captured in 

grayscale for processing by ImageJ. 

2.4 Plant Materials and Growth Conditions 

Arabidopsis thaliana hda6/axe1-5 (Wu et al., 2008), pTEK::TEK-YFP(Xu 

et al., 2013b) were described previously. SUPPRESSOR OF VARIEGATION 3-

9-RELATED 5 (suvr5) is a T-DNA insertion line obtained from the SALK 

Institute Genomic Analysis Laboratory (SALK_026224).  

http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://rsb.info.nih.gov/ij/download.html
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Columbia wild-type and transgenic Arabidopsis were grown on soil at 

22°C under long days (16 h light/8 h dark) or short days (16 h dark/8 h light). 

Seeds were sterilized by washing with 70% ethanol then rinsed with 90% ethanol 

and left to dry on filter papers before they were sequentially sowed in Petri dishes 

containing autoclaved Murashige and Skoog (MS) agar medium, which was 

adjusted to pH 5.8. The plates were maintained in a tissue culture room under LDs 

(16 h light/ 8 h dark). Basta selection was conducted twice within 10-20 days after 

seed germination to screen transgenic plants. Seeds were stratified on soil at 4°C 

for 4-5 days before being transferred to a growth room in order to ensure 

synchronized germination.  

To measure flowering time, seeds were kept for 2 to 3 days at 4°C and 

then moved to growth chambers under LD (16 h light/8 h dark) at 22°C. This time 

was defined as day 0. Plants were grown on plates for 1 week in LD and then 

transferred to soil. To determine flowering time, the number of rosette and cauline 

leaves was counted at bolting. 

2.5 Plant transformation 

Transgenic plants were generated by the floral dip method for 

Agrobacterium-mediated infiltration.(Clough and Bent, 1998). Agrobacteria was 

cultured in LB media at 28°C overnight and then spun down at 3500rpm for 

15min to collect the cell pellets. The collected cells were then resuspended in 5% 

sucrose with 0.015% Silwet L-77 and 0.05% MES at pH5.7. Arabidopsis flower 

buds were dipped in this Agrobacteria preparation for around 1 minute then 
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placed in the dark for 24hours. Following this, the plants are grown under normal 

growth conditions until the seeds are harvested. 

2.6 Plasmid construction 

For pSUVR5::SUVR5-FLAG construction, the full length SUVR5 

genomic fragment which sequence at 5‟ included its promoter then downstream to 

its genomic coding region at 3‟ excluding its STOP codon. The 3‟ end was fused 

in frame with three copies of the FLAG tag for gateway cloning.  

2.7 RNA isolation 

Total RNAs were extracted from aerial parts of 9 to 10-day-old seedlings 

grown in soils or half-MS media under LDs using Qiagen RNAeasy plus mini kit 

according to the manufacturer‟s instructions. 

2.8 Analysis of FWA Transcripts by RT-PCR 

Total RNAs were used as templates to synthesize cDNAs by the M-MLV 

reverse transcriptase (Promega) Tubulin 2 (TUB2) was used as a loading control. 

cDNAs of FWA were amplified in a 20-μL volume with 33 and 37 cycles of 94°C 

(30 s), 60°C (30 s), and 72°C (30 s). cDNAs of Tubulin2 were amplified in a 20-

μL volume with 24 cycles of 94°C (30 s), 60°C (30 s), and 72°C (30 s). 

Primers for FWA and TUB2 are as below: 

FWA Forward: AGGCAATACTGGTGGAGGATGTCTACTG 

FWA Reverse: GACAATAGTATGAGCCATGAGTGTCTCGAC 

TUB2 Forward: ATCCGTGAAGAGTACCCAGAT 

TUB2 Reverse: AAGAACCATGCACTCATCAGC 
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2.9 Yeast two-hybrid screening 

HDA6 was used to screen the Arabidopsis cDNA library via the yeast two-

hybrid system. Yeast transformation and library screening were performed 

following the procedures described in the user manuals (Yeastmaker™ Yeast 

Transformation System 2 and Matchmaker™ Gold Yeast Two-hybrid System, 

Clontech).  

The full-length coding sequence of HDA6 was cloned into the pGBKT7 

vector (Clontech) while full length MYB5, NYE1 and RAD51C1 were cloned into 

the pGADT7 vector (Clonetech). Plasmids were introduced into the yeast strain 

AH109 and yeast cells were spotted on the SD media without leucine, tryptophan, 

histidine and adenine according to the manufacturer‟s instructions (Clontech). 
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Chapter 3 Results 

3.1 Structural Modelling of HDA6 using Robetta 

The Ginzu domain prediction used by Robetta for HDA6 modelling uses 

the structure „3MAX‟ as the reference parent. This file deposited in the PDB is 

the result of the solved crystal co-complex of HDAC2 and N-(4-aminobiphenyl-3-

yl) benzamide (Bressi et al., 2010) expressed using a Baculovirus system. The 

primary sequence of human HDAC2 is the closest match to that of HDA6 among 

solved structures in the PDB database. 

 Human HDAC2 is a homolog of Arabidopsis HDA6 and its active site 

consists of, a lipophilic „tube‟ which leads from the surface to the catalytic site, 

and a „foot pocket‟ immediately adjacent to this catalytic machinery (Figure 10 

and Figure 11). Alignment of the protein sequence using Clustal Omega for 

HDAC2 and HDA6 revealed that the residues providing the catalytic surfaces are 

invariantly conserved (Figure 9).  

A total of five models were predicted and model 1 was chosen since it has 

the lowest energy. The model with the lowest energy is the modelled structure 

with the most stable configuration within the calculated force field. 
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Figure 8. Crystal structure of HDAC2 on the left and the structure of HDA6 predicted by Robetta on the 

right. View from a 90° clockwise rotation along X-axis on the bottom. While there are differences between 

the two structures, the key helices, sheets and folds of the core are conserved. 
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gi|293336691|ref|NP_001518.3|      ---------MAYSQGGGKKKVCYYYDGDIGNYYYGQGHPMKPHRIRMTHNLLLNYGLYRK 

gi|15242626|ref|NP_201116.1|       MEADESGISLPSGPDGRKRRVSYFYEPTIGDYYYGQGHPMKPHRIRMAHSLIIHYHLHRR 

                                            :  .  * *::*.*:*:  **:****************:*.*::.* *:*: 

 

gi|293336691|ref|NP_001518.3|      MEIYRPHKATAEEMTKYHSDEYIKFLRSIRPDNMSEY--SKQMQRFNVGEDCPVFDGLFE 

gi|15242626|ref|NP_201116.1|       LEISRPSLADASDIGRFHSPEYVDFLASVSPESMGDPSAARNLRRFNVGEDCPVFDGLFD 

                                   :** **  * *.:: ::** **:.** *: *:.*.:   :::::***************: 

 

gi|293336691|ref|NP_001518.3|      FCQLSTGGSVAGAVKLNRQQTDMAVNWAGGLHHAKKSEASGFCYVNDIVLAILELLKYHQ 

gi|15242626|ref|NP_201116.1|       FCRASAGGSIGAAVKLNRQDADIAINWGGGLHHAKKSEASGFCYVNDIVLGILELLKMFK 

                                   **: *:***:..*******::*:*:**.**********************.****** .: 

 

gi|293336691|ref|NP_001518.3|      RVLYIDIDIHHGDGVEEAFYTTDRVMTVSFHKYGEYFPGTGDLRDIGAGKGKYYAVNFPM 

gi|15242626|ref|NP_201116.1|       RVLYIDIDVHHGDGVEEAFYTTDRVMTVSFHKFGDFFPGTGHIRDVGAEKGKYYALNVPL 

                                   ********:***********************:*::*****.:**:** ******:*.*: 

 

gi|293336691|ref|NP_001518.3|      RDGIDDESYGQIFKPIISKVMEMYQPSAVVLQCGADSLSGDRLGCFNLTVKGHAKCVEVV 

gi|15242626|ref|NP_201116.1|       NDGMDDESFRSLFRPLIQKVMEVYQPEAVVLQCGADSLSGDRLGCFNLSVKGHADCLRFL 

                                   .**:****: .:*:*:*.****:***.*********************:*****.*:..: 

 

gi|293336691|ref|NP_001518.3|      KTFNLPLLMLGGGGYTIRNVARCWTYETAVALDCEIPNELPYNDYFEYFGPDFKLHISPS 

gi|15242626|ref|NP_201116.1|       RSYNVPLMVLGGGGYTIRNVARCWCYETAVAVGVEPDNKLPYNEYFEYFGPDYTLHVDPS 

                                   :::*:**::*************** ******:  *  *:****:********:.**:.** 

 

gi|293336691|ref|NP_001518.3|      NMTNQNTPEYMEKIKQRLFENLRMLPHAPGVQMQAIPEDAVHEDSGDE-DGEDPDKRISI 

gi|15242626|ref|NP_201116.1|       PMENLNTPKDMERIRNTLLEQLSGLIHAPSVQFQHTPPVNRVLDEPEDDMETRPKPRIWS 

                                    * * ***: **:*:: *:*:*  * ***.**:*  *      *. ::     *. **   

 

gi|293336691|ref|NP_001518.3|      RASDKRIACDEEFSDSEDEGEGGRRNVADHKKGAKKARIE--EDKKETEDKKTDVKEEDK 

gi|15242626|ref|NP_201116.1|       GTAT--YESD---SDDDDKPLHGY----SCRGGATTDRDSTGEDEMDDDNPEPDVNPPSS 

                                    ::     .*   **.:*:   *     . : **.. * .  **: : :: : **:  .. 

 

gi|293336691|ref|NP_001518.3|      SKDNSGEKTDTKGTKSEQLSNP 

gi|15242626|ref|NP_201116.1|       ---------------------- 

 

Figure 9. Alignment of protein sequences for HDA6 (gi|15242626|ref|NP_201116.1) 

against HDAC2 (gi|293336691|ref|NP_001518.3|). The specific residues involved in the 

formation of the active site critical to the catalytic activities of HDAC2 are highlighted in 

yellow and are all invariantly conserved in HDA6. 
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Table 2. Residues contributing to surface of active sites identified in the crystal structure 

of HDAC2 are invariantly conserved in HDA6. 

 HDAC2 HDA6 

lipophilic 

„tube‟ 

Gly154, Phe155, His183, Phe210, 

Leu276 

Gly161, Phe162, His190, Phe216,  

Leu283 

„foot 

pocket‟ 
Tyr29, Met35, Phe114, Leu144 Tyr34, Met40, Phe121, Leu151 
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Figure 10. Electrostatic map on the lipophilic „tube‟ of HDAC2 and HDA6. The 

lipophilic „tube‟ entrance into the active site of HDAC2 (left) and HDA6 (right) are 

circled in black. The electrostatics colour code corresponds to positive charges (blue), 

negative charges (red) and hydrophobic residues (white). In both HDAC2 and HDA6, the 

interaction surface of the lipophilic „tube‟ is largely hydrophobic and negatively charged 

and would bind strongly to the positively charged N-terminal tail of the Histone H3. 
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Figure 11.  View of the lipophilic „tube‟ of HDAC2 (left) and HDA6 (right) with the 

electrostatic charge of the protein surface removed. The residues involved in the 

formation of the surface of the lipophilic „tube‟ are labelled and represented as sticks. 
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Figure 12. View of the lipophilic „tube‟ rotated 90° clockwise along the X-axis from 

Figure 11 for HDAC2 (left) and HDA6 (right). The electrostatic charge surface is 

removed to allow unobstructed view of the lipophilic „tube‟. 
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Figure 13. View of the lipophilic „tube‟ rotated 90° anti-clockwise along the X-axis from 

Figure 11 for HDAC2 (left) and HDA6 (right). The electrostatic charge surface is 

removed to allow unobstructed view of the lipophilic „tube‟. 
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Figure 14. View of the lipophilic „tube‟ rotated 180° along the X-axis from Figure 11 

for HDAC2 (left) and HDA6 (right). The electrostatic charge surface is removed to allow 

unobstructed view of the lipophilic „tube‟. 
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The catalytic site for the deacetylase activity is a lipophilic „tube‟ which 

leads from the surface into a „foot pocket‟ nestled deep within the protein. Both 

active sites are very similar electrostatically, where they are negatively charged at 

the „entrance‟ of the entrance, hydrophobic in the middle and positively charged 

at the „end‟ of the pocket (Figure 10). This negatively charged lipophilic „tube‟ 

binds strongly to the positively charged N-terminal tail of the Histone H3 in place 

to allow the deacetylation of the acetylated lysine residues. 

Corresponding residues mapped onto HDA6 that provided the surface for 

the lipophilic „tube‟ and „foot pocket‟ for HDAC2 occupied very similar positions 

spatially in the protein (Figure 11 to Figure 14). The shape and size of the 

lipophilic „tube‟ and „foot pocket‟ created by key catalytic residues for both 

HDAC2 and HDA6 are also very similar which is critical to allow the binding of 

the N-terminal tail of the Histone H3. 

3.2 Sequence alignment of Nurf55, RBBP4 and MSI proteins 

Using Clustal Omega, we aligned the primary sequence of Drosophila 

melanogaster Nurf55 (a subunit of CAF-1) (sp|Q24572|CAF1_DROME) and 

Homo sapiens RBBP4 (sp|Q09028|RBBP4_HUMAN) against the Arabidopsis 

thaliana MSI1 (gi|15237140|ref|NP_200631.1|), MSI2 

(gi|15227294|ref|NP_179269.1|), MSI3 (gi|15236251|ref|NP_195231.1|), MSI4 

(gi|30680701|ref|NP_565456.2|) and MSI5 (gi|79490015|ref|NP_194702.2|) 

(Figure 15).  
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Drawing information from six publications, we identified specific residues 

in Nurf55 and RbAp46/48 that directly interacted with their ligands and they were 

highlighted in different colours and numbered accordingly, as represented in 

Table 3. Based on the alignment data, these highlighted residues are juxtaposed 

against the Arabidopsis MSI family of proteins.  

The alignments revealed that there is close homology between Nurf55 and 

RBBP4 with MSI1/2/3 in contrast to FVE and MSI5. This difference can be 

accentuated by highlighting the residues conserved in MSI1/2/3 but not in 

FVE/MSI5 in grey and highlighting residues conserved in all five MSI proteins in 

brown. 

Residues highlighted under the numbers 1 to 4 are involved in a key 

interaction surface of Nurf55 and RbAp46/48 that interacts with both histone H4 

and Su(z)12. In contrast, residues highlighted under the numbers 5 and 6 are 

involved in another interaction surface of Nurf55 and RbAp46/48 that interacts 

with both Histone H3 and FOG-1.  
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sp|Q24572|CAF1_DROME              ---------------------------------------------MVDRSDNAAESFDDA   15 

sp|Q09028|RBBP4_HUMAN             -------------------------------------------------MADKEAAFDDA   11 

gi|15237140|ref|NP_200631.1|      -------------------------------------------------MGKDEEEMRGE   11 

gi|15227294|ref|NP_179269.1|      ----------------------------------------------MADEG------KEE   8 

gi|15236251|ref|NP_195231.1|      ---------------------------------------------MAAEEG------KDE   9 

gi|30680701|ref|NP_565456.2|      MESDEAAAVSPQA--TTPSGGTGASGPKKRGRKPKTKEDSQTPSSQQQSDVKMKESGKKT   58 

gi|79490015|ref|NP_194702.2|      MESEAAATVQATRPRRAPRTPVTAILTDKRRRKPKSNNESQLPFLLQ------------Q   48 

 

sp|Q24572|CAF1_DROME              VINEEYKIWKKNTPFLYDLVMTHALEWPSLTAQWLPDVTKQDGK--DYSVHRLILGTHTS   77 

sp|Q09028|RBBP4_HUMAN             VINEEYKIWKKNTPFLYDLVMTHALEWPSLTAQWLPDVTRPEGK--DFSIHRLVLGTHTS   73 

gi|15237140|ref|NP_200631.1|      LINEEYKIWKKNTPFLYDLVITHALEWPSLTVEWLPDREEPSGK--DYSVQKMILGTHTS   73 

gi|15227294|ref|NP_179269.1|      QVEEDFSVWKKNTPFLYDLLISHPLEWPSLTVHWVPSTPNPYVADSYFGVHKLILGTHTS   72 

gi|15236251|ref|NP_195231.1|      QVEEEFSIWKRNTPFLYDLMISHPLEWPSLTLHWVPSTPIPYSKDPYFAVHKLILGTHTS   73 

gi|30680701|ref|NP_565456.2|      SVDEKYSQWKGLVPILYDWLANHNLVWPSLSCRWGPQLEQATYK----NRQRLYLSEQTD   118 

gi|79490015|ref|NP_194702.2|      TVDDTYSQWKTLLPILYDSFVNHTLVWPSLSCRWGPQLEQAGSK-----TQRLYLSEQTN   107 

                                       ::: :. **   *:*** . .* * ****: .* *.             :: :*. 

                                 1    E   W  N  FL          

                                 2       I   N  FL 

                                 3              FL 

                                 4               LY 

                                 5                         E 

                                 6                         EW                              HT 

                                       82 127       136 182   187 231 

sp|Q24572|CAF1_DROME              DE-QNH___NHEGEVNRARY___KEG-YGL___TAVVEDVAWHLLHESLFGSVADDQKLM   257  

sp|Q09028|RBBP4_HUMAN             DE-QNH___NHEGEVNRARY___KEG-YGL___TAVVEDVSWHLLHESLFGSVADDQKLM   253 

gi|15237140|ref|NP_200631.1|      ESEPNY___NHDGEVNRARY___SEG-YGL___EGVVEDVAWHLRHEYLFGSVGDDQYLL   253 

gi|15227294|ref|NP_179269.1|      GSAQDF___RVDGEVNRARC___KEG-YGL___ESAIADVSWHMKNENLFGSAGEDGRLV   240 

gi|15236251|ref|NP_195231.1|      GGAQDF___RVDGEVNRARC___QEG-YGL___QSIIEDVAWHMKNENIFGSAGDDCQLV   241 

gi|30680701|ref|NP_565456.2|      GSVPNT___IHPGEVNRIRE___DNAEFAL___EDTVEDVAFSPTSAQEFCSVGDDSCLI   317 

gi|79490015|ref|NP_194702.2|      GSVPNT___IHPGEVNRIRE___DDAEFAL___KDTVEDVAFCPSSAQEFCSVGDDSCLM   297 

                                      :   *   ***** * 

                                 5             E N        E  Y         E              

                                 6             E N        E  Y         E                D 

                                                           284 313 

sp|Q24572|CAF1_DROME              IWDTRNNNTSKPSHTVDAHTAEVNCLS___---KLHSFESHKDEIFQVQWSPHNETILAS   339 

sp|Q09028|RBBP4_HUMAN             IWDTRSNNTSKPSHSVDAHTAEVNCLS___---KLHSFESHKDEIFQVQWSPHNETILAS   335 

gi|15237140|ref|NP_200631.1|      IWDLRSPSASKPVQSVVAHSMEVNCLA___---ALHTFDSHKEEVFQVGWNPKNETILAS   335 

gi|15227294|ref|NP_179269.1|      IWDTRTNQM---QHQVKVHEREVNYLS___---PLHVMSSHEGEVFQVEWDPNHETVLAS   322 

gi|15236251|ref|NP_195231.1|      IWDLRTNQM---QHQVKVHEREINYLS___---PLHVLSKHEGEVFQVEWDPNHETVLAS   323 

gi|30680701|ref|NP_565456.2|      LWDARTGTN-PVTKVEKAHDADLHCVD___VGSPIYKFEGHKAAVLCVQWSPDKSSVFGS   404 

gi|79490015|ref|NP_194702.2|      LWDARTGTS-PAMKVEKAHDADLHCVD___VGSPVYKFEGHRAAVLCVQWSPDKSSVFGS   384 

                                  :** *.       :   .*  ::. :        :: :. *.  :: * *.*...:::.* 

                                 5                       N                   E F 

                                 6                       N                   E F 

sp|Q24572|CAF1_DROME              SGTDRRLHVWDLSKIGEEQST--EDAEDGPPELLFIHGGHTAKISDFSWNPNEPWIICSV   397 

sp|Q09028|RBBP4_HUMAN             SGTDRRLNVWDLSKIGEEQSP--EDAEDGPPELLFIHGGHTAKISDFSWNPNEPWVICSV   393 

gi|15237140|ref|NP_200631.1|      CCLGRRLMVWDLSRIDEEQTV--EDAEDGPPELLFIHGGHTSKISDFSWNPCEDWVISSV   393 

gi|15227294|ref|NP_179269.1|      SGEDRRLMVWDLNRVGEEQLEIELDAEDGPPELLFSHGGHKAKISDFAWNKNEPWVIASV   382 

gi|15236251|ref|NP_195231.1|      SGEDRRLMVWDINRVGDEQLEIELDAEDGPPELLFSHGGHKAKISDFAWNKDEPWVISSV   383 

gi|30680701|ref|NP_565456.2|      SAEDGLLNIWDYDRVSKKS----DRAAKSPAGLFFQHAGHRDKVVDFHWNASDPWTIVSV   460 

gi|79490015|ref|NP_194702.2|      SAEDGLLNIWDCDRVGKKS----ERATKTPDGLFFQHAGHRDKVVDFHWSLLNPWTIVSV   440 

                                  .     * :** .:: .:.      * . *  *:* *.**  *: ** *.  : * * ** 

                                 1   D R                  D  DGP  L FI G  

                                 2     R            Q     D  DGP  LLFI 

                                 3                       ED  DGP  L FI 

                                 4     R            Q    ED  D         G  

sp|Q24572|CAF1_DROME              SED-------NIMQVWQMAENVYNDEEPEIPASELETNTA--------   430 

sp|Q09028|RBBP4_HUMAN             SED-------NIMQVWQMAENIYNDEDPEGSVDPEGQGS---------   425 

gi|15237140|ref|NP_200631.1|      AED-------NILQIWQMAENIYHDEDDAPGEEPSKAS----------   424 

gi|15227294|ref|NP_179269.1|      AED-------NSLQVWQMAESIYRDEEDAEDIKEDITQQS--------   415 

gi|15236251|ref|NP_195231.1|      AED-------NSLQVWQMAESIYREDDEDEDDDDEGNQNAQHSNENQK   424 

gi|30680701|ref|NP_565456.2|      SDDCETTGGGGTLQIWRMSDLIYRPEEEVVAELEKFKSHVMTCASKP-   507 

gi|79490015|ref|NP_194702.2|      SDNCESIGGGGTLQIWRMSDLIYRPEDEVLTELEKFKSHVFTCTSKS-   487 

                                  :::         :*:*:*:: :*. ::                      

                                 1                    N 

                                 2                    NV    

                                 4                     V  

                                 5 E        N            

                                 6          N                           

Figure 15.  Sequence alignment of Drosophila melanogaster Nurf55 and Homo sapiens 

RBBP4 against Arabidopsis thaliana MSI family of proteins. The highlighted residues 

correspond to the specific residues of Nurf55 and RbAp46/48 that interacted directly with 

its ligands. Colour and number coding representing the different publications are found in 

Table 3. Drosophila melanogaster Nurf55 (a subunit of CAF-1) 

(sp|Q24572|CAF1_DROME) and Homo sapiens RBBP4 (sp|Q09028|RBBP4_HUMAN) 

against the Arabidopsis thaliana MSI1 (gi|15237140|ref|NP_200631.1|), MSI2 

(gi|15227294|ref|NP_179269.1|), MSI3 (gi|15236251|ref|NP_195231.1|), MSI4 

(gi|30680701|ref|NP_565456.2|) and MSI5 (gi|79490015|ref|NP_194702.2|). 
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Table 3. References from where amino acid residues were identified from and 

highlighted in Figure 15. 

Number Colour PDB id PDB Title Ligand Reference 

1 Pink 2YB8 CRYSTAL STRUCTURE OF NURF55 

IN COMPLEX WITH SU(Z)12 

Su(z)12 (Schmitges 

et al., 2011) 

2 Red 2XYI CRYSTAL STRUCTURE OF NURF55 

IN COMPLEX WITH A H4 PEPTIDE 

Histone H4 (Nowak et 

al., 2011) 

3 Green 3CFS Structural basis of the interaction of 

RbAp46/RbAp48 with histone H4 

Histone H4 (Murzina et 

al., 2008) 

4 Blue 3C9C Structural Basis of Histone H4 

Recognition by p55 

Histone H4 (Song et al., 

2008) 

5 Yellow 2XU7 STRUCTURAL BASIS FOR RBAP48 

BINDING TO FOG-1 

FOG-1 (Lejon et 

al., 2011) 

6 Teal 2YB8 CRYSTAL STRUCTURE OF NURF55 

IN COMPLEX WITH SU(Z)12 

Histone H3 (Schmitges 

et al., 2011) 
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3.3 Structural Modelling of MSI1 and FVE using Phyre2 and Pro-

sp3-TASSER 

The solved crystal structure of NURF55 complexed with Histone H4 

(PDB id: 2XYI) (Nowak et al., 2011) was analysed using PyMOL (Schrodinger, 

2010) to visualize the histone H4 binding groove of Nurf55. These residues that 

formed the interaction surfaces in this histone H4 groove is highlighted in red and 

denoted “2” in Figure 15 and Table 3 

To map the residues of Nurf55 directly interacting with the H4 ligand onto 

MSI1 and FVE, we first aligned the corresponding sequences as detailed in 

Figure 15.  Next, structural modelling for MSI1 and FVE was performed in order 

to visualize the two proteins in 3D. To do so, we used Phyre2 and Pro-sp3-

TASSER, two web-based services for protein structure prediction that are free for 

non-commercial use.  
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Figure 16. Comparison of electrostatic surface of the histone H4 groove of Nurf55 with 

models of MSI1 and FVE. Electrostatic surface is based on the residues of Nurf55 

directly interacting with the ligand histone H4. (A) The solved crystal structure of Nurf55 

complexed with Histone H4 (PDB id: 2XYI). (B) and (C) are predicted models of MSI1 

by Phyre2 and Pro-sp3-TASSER respectively while (D) and (E) are predicted models of 

FVE by Phyre2 and Pro-sp3-TASSER respectively. 
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Figure 17 Comparison of cartoon representation of Nurf55 with models of MSI1 and 

FVE. Represented in green are the residues of Nurf55 that interact directly with the helix 

1 of H4 ligand (orange helix). (A) The solved crystal structure of Nurf55 complexed with 

Histone H4 (PDB id: 2XYI) (B) and (C) are predicted models of MSI1 by Phyre2 and 

Pro-sp3-TASSER respectively while (D) and (E) are predicted models of FVE by Phyre2 

and Pro-sp3-TASSER respectively. Residues highlighted in green for MSI1 and FVE 

models are based on alignment of residues of Nurf55 that interact directly with the helix 

1 of H4 ligand. 
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Figure 18. View of the electrostatic surface of the histone H4 groove of Nurf55 with 

models of MSI1 and FVE as shown in Figure 16, rotated 90° clockwise about the X-axis. 

Molecular and electrostatic surface representation follows that of Figure 16. (A) The 

solved crystal structure of Nurf55 complexed with Histone H4 (PDB id: 2XYI). (B) and 

(C) are predicted models of MSI1 by Phyre2 and Pro-sp3-TASSER respectively while (D) 

and (E) are predicted models of FVE by Phyre2 and Pro-sp3-TASSER respectively. 
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Figure 19 View of the cartoon representation of the histone H4 groove of Nurf55 with 

models of MSI1 and FVE as shown in Figure 17, rotated 90° clockwise about the X-axis. 

Represented in green are the residues of Nurf55 that interact directly with the helix 1 of 

H4 ligand (orange helix). (A) The solved crystal structure of Nurf55 complexed with 

Histone H4 (PDB id: 2XYI) (B) and (C) are predicted models of MSI1 by Phyre2 and 

Pro-sp3-TASSER respectively while (D) and (E) are predicted models of FVE by Phyre2 

and Pro-sp3-TASSER respectively. Residues highlighted in green for MSI1 and FVE 

models are based on alignment of residues of Nurf55 that interact directly with the helix 

1 of H4 ligand. 
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The top model from Phyre2 modelling for both MSI1 and FVE used the 

histone-binding protein rbbp7 (3CFV) as its highest scoring template since it gave 

the highest sequence coverage and are modelled with 100% confidence. 

Pro-sp3-TASSER modelling for MSI1 and FVE returned with five models 

each and the first model labelled number “1” (lowest energy) was chosen. The 

model with the lowest energy is the model with the most stable spatial 

arrangement of the protein within the designated parameters. 

These predicted 3D models of MSI1 and FVE were visualized alongside 

the crystal structure of NURF55 complexed with Histone H4 (PDB id: 2XYI) 

(Nowak et al., 2011) for analysis of the 3D structure of the binding grooves and 

the spatial arrangement of the residues that interact with helix 1 of histone H4. 

3.4 Screening the interacting protein of HDA6 from the 

Arabidopsis cDNA library 

To find potential binding partners of HDA6, we conducted Y2H screens of 

HDA6 against a cDNA library of Arabidopsis. Full length HDA6 was used to 

construct the bait plasmid pGBKT7-HDA6 (BD plasmid) and transformed into 

AH109 yeast cells. We tested for the toxicity and auto-activation of HDA6 as bait 

in this Y2H system by comparing its growth against positive controls and 

negative controls (empty pGBKT7 vs. pGBKT7-HDA6), observing no significant 

difference colonies growth.  

The pGBKT7-HDA6 AH109 cells were then mixed with a cDNA library 

of Arabidopsis in Y187 yeasts in a 2L flask and incubated at 30°C for 20–24 
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hours, slowly shaking at 50 rpm to allow mating. After a visual check for zygotes 

under the microscope as an indication for successful mating, the cells are 

collected in a pellet and subsequently plated in double dropout (SD /−Leu/−Trp) 

plates for incubation at 30°C for 5 days.  

A total of 114 colonies were selected from the double dropout plates and 

they were inoculated overnight 2ml of double dropout media, each tube carefully 

numbered. 1µl of the overnight culture is dripped on the triple dropout 

(SD/−His/−Leu/−Trp) plate in their correspondingly numbered grid. Similarly, 

another 1µl from the same overnight culture is then dripped onto the exact 

corresponding numbered grid on the quadruple dropout 

(SD/−Ade/−His/−Leu/−Trp) plate (Figure 20).  

The 15 colonies that grew in the both the triple and quadruple dropout 

plates as identified with their numbered grid were selected for plasmid isolation. 

The rescued plasmids were subsequently cloned into E. coli Top10 cells to be 

multiplied so that the plasmids can be sequenced to identify the gene encoding the 

interactive protein (AD plasmid). 
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Figure 20. Y2H screening on triple and quadruple dropout plates. 1µl of the overnight 

culture is dripped on the triple dropout plate in the corresponding numbered grid. Another 

1µl from the same overnight culture is then dripped onto the exact corresponding 

numbered grid on the quadruple dropout plates. The 15 colonies that grew in the both the 

triple and quadruple dropout plates were identified with their numbered grid. Numbers on 

the grids were removed before the pictures were taken in order to visualize colony growth. 
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Figure 21. Confirmation of positive interactions to eliminate false positives of MYB5, 

NYE1 and RAD51C1with HDA6. Full-length HDA6 protein fused to the GAL4 DNA-

Binding Domain (BD) was co-expressed with MYB5, NYE1 and RAD51C1 fused to the 

GAL4 Activation Domain (AD) in Y2HGold and plated on quadruple dropout plates. 

Absence of colony growth for Y2HGold cells with either empty BD and/or empty AD 

indicates genuine positives. 
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Among the 15 plasmids sequenced, MYB5, NYE1 and RAD51C1were 

selected for further investigation. To eliminate false positive interaction of MYB5, 

NYE1 and RAD51C1with HDA6, full-length HDA6 protein fused to the GAL4 

DNA-Binding Domain (BD) was co-expressed with MYB5, NYE1 and 

RAD51C1 fused to the GAL4 Activation Domain (AD) in Y2HGold and plated 

on quadruple dropout plates. Absence of colony growth for Y2HGold cells with 

either empty BD and/or empty AD indicates genuine positives (Figure 21).  

The transcription repressor MYB5 (Gene ID: 820556) is a 249 residues 

protein that belongs to the MYB family of transcription regulators. It is expressed 

in trichomes and seeds, including the seed coat and acts as a negative regulator of 

trichome branching and plays a role in the correct formation of the seed coat and 

possibly the formation the underlying endosperm layers. It is also involved in 

seed coat and trichome development (Li et al., 2009).  

Non-yellowing protein 1(NYE1) (Gene ID: 828391 )is a 268 residues 

protein that is closely related to the stay-green protein and is upregulated during 

maximal senescence in Arabidopsis especially in leaves, suggesting that it plays a 

role in chlorophyll catabolism(Ren et al., 2007). 

RAD51C DNA repair protein RAD51 homolog 3(Gene ID: 819136) is a 

363 residues protein that encodes a protein involved in double stranded break 

repair via homologous recombination. It is a homodimer that interacts with 

XRCC3 (Osakabe et al., 2002) and is highly expressed in young flower buds and 

its expression is induced by genotoxic stress and DNA damage. 
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3.5 TEK forms a complex with SUVR5 in Arabidopsis  

SUVR5 is able to recruit various histone-modifying to establish a state of 

gene repression without DNA methylation, a function that is common among 

repressive chromatin modifiers of large multi-protein complexes (Caro et al., 

2012). A feature of these proteins is in their ability to bind to class I histone 

deacetylase enzymes such as HDAC1-3 (Fog et al., 2012). 

Previous studies have established the interaction between TEK with 

HDA6 in the Class I HDAC complex, as well as that of FVE/MSI5 with HDA6 

(Gu et al., 2011; Xu et al., 2013b), suggesting cooperative action of DNA 

methylation, histone deacetylation, and TEK gene silencing.  

To investigate this link on the possible recruitment of the HDAC complex 

by SUVR5, we performed co-immunoprecipitation (co-IP) experiments to 

determine if TEK and SUVR5 interact in vivo. The SUVR5-FLAG-expressing 

plants were crossed to the TEK-YFP line and from the resulting F1 seedlings, 

total proteins were extracted for co-IP analysis. 

Total protein extracts from seedlings of the TEK-YFP line (a negative 

control) and F1 of the doubly hemizygous SUVR5-FLAG and TEK-YFP were 

immunoprecipitated with anti-FLAG agarose. Subsequently, the precipitates were 

analysed by western blotting with anti-FLAG (recognizing SUVR5-FLAG) and 

anti-YFP (recognizing TEK-YFP). The input was the protein extract of doubly 

hemizygous SUVR5-FLAG and TEK-YFP (Figure 22). From this result, we infer 

that TEK is in a complex with SUVR5 in Arabidopsis.  
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Figure 22. Co-immunoprecipitation of SUVR5 with TEK in seedlings. Total protein 

extracts from seedlings of the TEK-YFP line (a negative control) and F1 of the doubly 

hemizygous SUVR5-FLAG and TEK-YFP were immunoprecipitated with anti-FLAG 

agarose. The input was the protein extract of doubly hemizygous SUVR5-FLAG and 

TEK-YFP. 
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3.6 Genetic interaction of HDA6 and SUVR5 

The FWA gene locus is a known target of the histone deacetylase complex 

and is usually repressed by histone deacetylation to prevent its expression. De-

repression of FWA can take place when the histone deacetylation pathway is 

affected and result in a late flowering phenotype. Total RNA were extracted for 

generating cDNA using RT-PCR. Using the cDNA as template, two rounds PCR 

with 33 and 37 cycles on FWA was performed (Figure 23).  

By using the ImageJ software, we can compare the intensity of the DNA 

band from the FWA product semi-quantitatively (Figure 24). This method 

allowed the comparison of the intensity of the DNA bands with reference to the 

band with the highest intensity as 100%.  

FWA mRNA levels from suvr5 is about 30-20% (33 cycles and 37 cycles 

respectively) of the hda6 mutants while the expression level of FWA mRNA is 

very similar for hda6 and hda6/suvr5 at 95%-90% (33 cycles and 37 cycles 

respectively).  

Consistent with the non-additive effect of HDA6 and SUVR5 on FWA 

silencing, we found that the hda6/suvr5 double mutants are phenotypically similar 

to the hda6 mutant (Figure 25 and Figure 26) while the late flowering effect is 

less pronounced in the suvr5 mutant. 
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Figure 23. PCR on cDNA generated from total RNA extracted from Col wild type, hda6, 

suvr5 and hda6 suvr5 double mutants. TUB2 products are the loading controls while PCR 

for FWA is performed for 33 and 37 cycles. 
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Figure 24. Intensity of DNA bands are compared using ImageJ. Reference to the band 

with the highest intensity is at 100%. TUB2 is used as a loading control and two rounds 

of FWA with 33 and 37 cycles. 
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Figure 25. Late flowering phenotypes from hda6 and suvr5 mutants. Clock-wise from 

top-left: Col-WT, hda6, hda6/suvr5 double mutant, suvr5. The hda6/suvr5 double 

mutants are phenotypically similar to the hda6 mutant while the late flowering effect is 

less pronounced in the suvr5 mutant. 
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Figure 26. Total number of leaves counted at the first appearance of the floral meristems. 

Col WT = 14 (sd = 1.65145) ; hda6 = 24.04 (sd = 2.13073) ; suvr5 = 15.833 (sd = 

1.6967) ; hda6/suvr5 = 26.3846 (sd = 1.50214). 
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Chapter 4 Discussion 

Juxtaposition of the modelled structure for HDA6 with the solved X-ray 

crystal structure of HDAC2 revealed much congruence, most strikingly that of the 

histone binding lipophilic „tube‟ which leads from the surface to the catalytic site 

and the „foot pocket‟ immediately adjacent to this catalytic machinery(Bressi et 

al., 2010) . The folds, sheets and helices are largely conserved and so are the key 

residues that interact directly with the ligand at the catalytic sites. Taken together, 

these characteristics suggest that Arabidopsis HDA6 is a histone deacetylase, with 

functional and structural similarities to its human homolog HDAC2. HDA6 is the 

key catalytic component of the Arabidopsis HDAC complex which is made up of 

other subunits in order to carry out its histone deacetylation activities (Probst et al., 

2004; Aufsatz et al., 2007; Gu et al., 2011). The structural similarity of HDA6 and 

HDAC2 suggests that HDA6 would interact with Arabidopsis homologs of human 

RBBP4 and RBBP7 in the human HDAC complex. Investigations into HDA6 

interaction with Arabidopsis MSI1 and FVE respectively would begin by making 

direct comparisons with that the spatial arrangement of human HDAC2 complex 

interacting with the chromatin via the histones H3/H4 heterodimers. 

The Drosophila Nurf55 WD40 repeat protein is an integral subunit of the 

CAF-1 complex. WD repeat proteins related to Nurf55 are associated with histone 

deacetylase and histone acetyltransferases, leading to suggestions that Nurf55 and 

its homologs may function as a common platform for the assembly of protein 

complexes involved in chromatin metabolism (Martinez-Balbas et al., 1998). 

Nurf55 has two independent binding sites for interactions with the H3 tail and H4 
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helix 1 when bound to the H3/H4 heterodimer (Nowak et al., 2011; Schmitges et 

al., 2011).  

Strikingly, although these two interaction surfaces are distinctly different 

spatially occupying different regions of the protein and that they interact with 

different sets of ligands, both sites are conserved in MSI1/2/3 but not FVE and 

MSI5 (Figure 15). This strongly suggested that MSI1/2/3 is able to interact with 

both histone H4 and Su(z)12 non-simultaneously at one distinct site and 

interacting with Histone H3 and FOG-1 non-simultaneously at another site. 

This feature is reminiscence of Arabidopsis MSI1, a core histone-binding 

subunit of PRC2 complexes that binds directly to helix 1 of histone H4. In 

addition, EMF2 and VRN2, both homologs of Su(z)12, interact with MSI1 but not 

with FVE, an curious feature as FVE is key component of HDAC complexes. 

Indeed, the human RBBP4 (homologous to MSI1) and RBBP7 (homologous to 

FVE) are distinguished from each other whereby RBBP4 is a component of the 

CAF-1complex while RBBP7 is found exclusively with HAT1 (Parthun et al., 

1996; Verreault et al., 1998; Gu et al., 2011). 

From Figure 15, it is observed that the residues responsible for binding to 

histone H4 and Su(z)12 overlaps, and that the binding site of histone H3 overlaps 

with FRIEND OF GATA protein 1 (FOG-1), in agreement with what was 

previously reported (Nowak et al., 2011). The identity of the residues interacting 

with FOG-1 and their spatial conformation are conserved in both RBBP4 and 
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RBBP7 supporting studies that shown FOG-1 interacts with both RBBP4 and 

RBBP7 in vitro (Hong et al., 2005; Lejon et al., 2011).  

Notably, the binding site for H3/FOG-1 is very distinct from that of 

H4/Su(z)12. Indeed, the electrostatic regions in Figure 16 and Figure 18 and the 

cartoon illustration in Figure 17 and Figure 19 that represented the spatial 

arrangement of the residues that produced the histone H4 binding groove of 

Nurf55 is more similar to that of the model of MSI1 than FVE. Despite the high 

sequence homology, the structural and functional similarity to that of Nurf55 

strongly favoured MSI1 over FVE.  

WD40 proteins such as Nurf55 are largely non-catalytic and serve 

important structural functions by providing interaction surfaces in the formation 

of complexes (Martinez-Balbas et al., 1998; Li and Roberts, 2001). Their shape 

and size strongly suggested multiple interaction surfaces, tolerating interaction 

with a range of proteins and with multiple proteins simultaneously. As 

demonstrated by Nurf55, residues that interacts with histone H3 is positioned at 

the top of the β-propeller while histone H4 helix 1 and Su(z)12 binds to Nurf55 at 

the edge of the β-propeller(Lejon et al., 2011). In the PRC2 complex, both Nurf55 

and Su(z)12 are required to tether the complex to nucleosomes and the absence of 

either component would abolish this binding (Nekrasov et al., 2005).  

The histone H4 binding groove, which is structurally very similar in both 

Nurf55 and MSI1, also serves also as the binding site for Su(z)12. Through this 

interaction with Su(z)12, MSI1 becomes a component of the PRC2 complex. The 
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distinct difference of the histone H4 groove between MSI1 and FVE suggests that 

FVE is unable to interact directly with Su(z)12, illustrating why FVE is not part  

of the PRC2 complex (Figure 16 to Figure 19). As yet, it is unknown if Nurf55, 

or MSI1 of the PRC2 complex binds only Su(z)12 or both Su(z)12 and histone H4 

at different stages of the catalytic process(Nowak et al., 2011). However, it is 

clear that MSI1 would play a crucial role in the recruitment of the H3/H4 

heterodimers for the PRC2 and FIS complexes. 

Nurf55binds directly to helix 1 of the histone fold of histone H4, a region 

that is not accessible when H4 is in chromatin (Nowak et al., 2011). The amino 

acid residues that formed the interaction surface of the histone H4 groove are 

found in the positions of 20 – 32, 343 – 378 and 418 – 419. From Figure 15, we 

can see that these residues are conserved in Nurf55, RBBP4, MSI1, MSI2 and 

MSI3 but not in FVE and MSI5. The non-conservation of these crucial residues 

concurs with the distinct difference in the shape and structure of this histone H4 

groove.   

The three novel partners of HDA6 identified via the Y2H assays MYB5, 

NYE1 and RAD51C will need to be investigated further to elucidate their 

functions and interactions with HDA6 and their possible roles in HDAC activities. 

MYB5 is a transcription regulator that can potentially form a complex with HDA6 

which would carry out chromatin modifications via histone deacetylation. 

RAD51C protein is involved in the homologous recombination repair (HRR) 

pathway of double-stranded DNA breaks and could possibly work together with 

HDA6 to modify the chromatin to adopt a more open configuration in order for 
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DNA repair to take place. NYE1 is a poorly studied that is upregulated during 

maximal senescence in the Arabidopsis life cycle and is speculated to be involved 

in chlorophyll catabolic process. Intriguingly, this process does not seem to have 

much relation with HDA6 function such as chromatin modification and a more 

detailed study need to be performed in order to elucidate their potential 

interactions. 

TEK is a nuclear matrix protein with AT-hook DNA binding motifs 

(Reeves and Nissen, 1990; Yasui et al., 2002; Cai et al., 2003) that represses the 

expression of various Transposable Elements (TE), the TE-like repeat-containing 

floral repressor gene FLC and FWA (Soppe et al., 2000; Gazzani et al., 2003; Liu 

et al., 2004). This repression of FLC and FWA by TEK to regulate floral transition 

is mediated via various chromatin structure modifications such as histone 

deacetylation and it binds to an FLC-repressive regulatory region and the 

silencing repeats of FWA through the association with FVE and MSI5, both of 

which are components of HDACs (Ausin et al., 2004; Gu et al., 2011; Xu et al., 

2013b). 

The histone-lysine N-methyltransferase SUVR5 is a plant Su(var)3–9 

homolog with a SET histone methyltransferase domain, mediates H3K9me2 

deposition and regulates gene expression in a DNA methylation–independent 

manner (Caro et al., 2012). Together with its binding partner LDL1/SWP1, it acts 

as a floral transition regulator via repression of FLC through H3K9me2 

deposition in a DNA methylation–independent manner (Krichevsky et al., 2007). 
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The direct interaction between SUVR5 and TEK (Figure 22) led us to 

propose a model for the HDAC complex comprising of four proteins: HDA6, 

FVE/MSI5, TEK and SUVR5. This complex would regulate downstream genes 

by silencing via histone deacetylation and histone H3K9 methylation, of which 

would be important floral transition targets such as FLC and FWA.  

Consistent with our model that HDA6 and SUVR5 act in the same 

complex, suvr5 is non-additive with hda6 on FWA mRNA levels (Figure 23 and 

Figure 24). De-repression from suvr5 is about 70-80% of the hda6 mutants while 

the expression level of FWA mRNA is very similar (less than 10% difference) for 

hda6 and hda6/suvr5. This is further supported by the measure of flowering time 

(Figure 26) where the double mutant of hda6/suvr5 is only slightly stronger than 

that of the hda6 mutant. In short, SUVR5 works together with HDA6 to silence 

FWA expression in Arabidopsis. 

HDA6 is responsible for the deacetylation of lysine residues on the N-

terminal of the core histones, playing a key role in epigenetic repression and 

transcriptional regulation. However, its histone deacetylase activities manifests 

only via large multiprotein complexes, for which we propose that one of these 

complexes would comprise of HDA6, FVE/MSI5, TEK and SUVR5. This 

complex would be critical in the epigenetical control of floral transition in 

Arabidopsis via transcriptional regulation of key floral genes such as FWA.  
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