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SUMMARY 
 

Gastric cancer (GC) is a major gastrointestinal malignancy for which targeted 

therapies are emerging as treatment options. GC patients with ERBB2-amplified 

tumors can clinically benefit from ERBB2-targeted therapies. Similar to ERBB2, 

several other molecularly-targeted therapies are currently being evaluated in GC. 

Little is known regarding which molecular targets are concurrently expressed in the 

same gastric tumors, or independently in different tumors. We sought to identify the 

most prevalent molecular targets in GC and to elucidate systematic patterns of 

exclusivity and co-occurrence among these targets, through comprehensive genomic 

analysis of a large panel of GCs. 

Using high-resolution single nucleotide polymorphism (SNP) arrays, we profiled 

copy number alterations in a panel of 233 gastric cancers (193 primary tumors, 40 

cell lines) and 98 primary matched gastric non-malignant samples. For selected 

alterations, we evaluated their impact on gene expression and clinical outcome. 

We identified 22 recurrent focal alterations (13 amplifications and 9 deletions). These 

included both known targets (FGFR2, ERBB2), and also novel genes in GC (KLF5, 

GATA6). We found that receptor tyrosine kinase (RTK)/RAS alterations are frequent 

in GC and demonstrate, for the first time, that these alterations occurred in a mutually 

exclusive fashion, with KRAS-gene amplifications highlighting a clinically relevant 

but previously underappreciated GC subgroup. We also showed that FGFR2-

amplified GCs are sensitive to dovitinib, an orally bioavailable FGFR/VEGFR 
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targeting agent, potentially representing a subtype-specific therapy for FGFR2-

amplified GCs. 

Our study demonstrated the existence of five distinct GC patient subgroups, defined 

by the signature genomic alterations FGFR2 (9% of tumors), KRAS (9%), EGFR 

(8%), ERBB2 (7%), and MET (4%). Collectively, these subgroups suggested that at 

least 37% of GC patients may be potentially treatable by RTK/RAS directed 

therapies.  

Overall the copy number landscape can provide a useful resource when integrated 

with other type of data in GC research. We demonstrated in three related studies, the 

advantages of integrating genomics data in the same cohort of GC samples.  The first 

study integrated CNA with exome sequencing to identify additional genomic deletion 

in recurrent mutated genes, highlighted the important role of these genes in GC with 

multiple mechanisms of alterations. The second study utilized copy number landscape 

with a large panel of gene expression profiling to characterize GC subtypes. The last 

study reported associations between genome instability with long range epigenetic 

changes by using both copy number and methylation data. 
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Chapter 1 Introduction 

1.1 Gastric Cancer 

1.1.1 Introduction  
Gastric adenocarcinoma, or gastric cancer (GC) is the fourth common cancer and 

second leading cause of global cancer mortality (Ferlay, Shin et al. 2010). The 

incidence rate of GC varies across different geographical regions, with predominately 

high incidence rate in East Asia (16% of total cancer incidence), followed by Central 

Africa (8%), Central East Europe (7%) ,West Asia (7%), and is less frequently 

observed in the rest of the world (Fig 1-1, (Ferlay, Shin et al. 2010)).  In Singapore, it 

ranked as 4th most common cancer in males and 6th most common cancer in 

females(Lim, Wong et al. 2009).  Like many other solid tumors, the incidence rate of 

gastric cancer is positively associated with age and the cancer is relatively rare in 

patients younger than 45 years. Most patients are between 60 and 80 years old at 

diagnosis. In general, incidence and mortality rates in men are approximately double 

to those in women (Brenner, Rothenbacher et al. 2009).  

Risk factors that can contribute to GC are Helicobactor pylori (H.pylori) infection, 

dietary factors (high intake of salt-preserved food and less intake of fruit and 

vegetables), a family history of GC and smoking(Brenner, Rothenbacher et al. 2009). 

These factors could lead to potential approaches for GC prevention and early 

detection by controlling exposure to risk factors and implementing early screening in 

high risk group. However, classify patients into high or low risk of GC progressing 

remains to be challenging as there are no established criteria or clinical guidelines for 

the disease surveillance  (Gonzalez and Agudo 2012). Patients identified with GC 
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usually has adverse prognosis, with an overall five year survival rate of ~20% 

(Brenner, Rothenbacher et al. 2009; Hartgrink, Jansen et al. 2009). Challenges remain 

for GC prediction and treatment to reduce the burden of the disease. 
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Figure 1-1 
Cancer 
Incidence 
Worldwide 

Most frequent 
cancers by 
regions are 
listed, regions 
with frequent 
Gastric 
Cancer 
Incidence is 
underlined in 
red (updated 
in Feb 2011). 
Taken from 
the Cancer 
Research UK 
website: http:/
/publications.c
ancerresearch
uk.org/downlo
ads/Product/w
orldmap.pdf, 
reproduced 
with 
permission.

http://publications.cancerresearchuk.org/downloads/Product/worldmap.pdf�
http://publications.cancerresearchuk.org/downloads/Product/worldmap.pdf�
http://publications.cancerresearchuk.org/downloads/Product/worldmap.pdf�
http://publications.cancerresearchuk.org/downloads/Product/worldmap.pdf�
http://publications.cancerresearchuk.org/downloads/Product/worldmap.pdf�
http://publications.cancerresearchuk.org/downloads/Product/worldmap.pdf�
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1.1.2 Treatment 
Current strategies for GC treatment are far from optimal, with conventional surgery 

and chemotherapy regimens conferring modest survival benefits. Particularly 

prevalent in many Asian countries (Kamangar, Dores et al. 2006), most GC patients 

present at advanced disease stages are treated by palliative chemotherapy, with 

median survival times of 11-12 months (Bang, Van Cutsem et al. 2010).  

Surgical removal of part or all of the stomach, as well as regional lymph nodes 

remains the most common treatment for GC. A few aspects, including the extent of 

disease, the operative procedure, and patient selection are critical in optimizing 

patient prognosis. Adjuvant therapy (mainly, chemotherapy ± radiotherapy) still 

warrants further evaluation for advanced stage GC patients. Neoadjuvant therapy may 

reduce tumor mass enabling resection with potentially curative intent. For metastatic 

GC, treatment is exclusively palliative or symptomatic (Catalano, Labianca et al. 

2009).  

Since GC often reached an advanced stage by the time symptoms occur, where the 

tumors are unresectable, systematic chemotherapy become the main way of treatment. 

5-flurouracil (5-FU) based chemotherapy have been used most frequently for 

advanced GC treatment after the study of FAM (including 5-flurouracil (5-FU), 

doxorubicin, and mitomycin C), which reported combination regimen of three drugs 

for advance GC can improve overall response rate to 42% with median survival time 

of 5.5 month (MacDonald, Schein et al. 1980). Other chemotherapeutic agents 
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including cisplatin, epirubicin, capecitabine are usually used in combinations, with an 

overall response rate between 20% to 60% (Wohrer, Raderer et al. 2004).  

In addition to standard cytotoxic regimens, targeted therapies, which are small 

molecules or antibodies designed to disrupt the activity of specific oncogenic 

signaling pathways, have recently emerged as a promising therapeutic strategy.  In the 

recent ToGA trial (Bang, Van Cutsem et al. 2010), trastuzumab, an anti-

HER2/ERBB2 targeting antibody, improved the overall survival of patients with 

ERBB2-positive tumors when combined with chemotherapy (Fig 1-2). However, 

because only 7-17% of GC patients are ERBB2-positive (either gene amplification or 

overexpression) and hence suitable candidates for anti-ERBB2 therapy (Tanner, 

Hollmen et al. 2005; Gravalos and Jimeno 2008; Hofmann, Stoss et al. 2008), further 

research is warranted to increase the population of GC patients for which targeted 

treatments are clinical options. 
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Figure 1-2 ToGA Trial: Overall Survival in the primary analysis population 

Median overall survival analysis between trastuzumab treatment (13.8 months) and control 
group (11.1 months). 

Reproduced, with permission from the Lancet, Bang, Van Cutsem et al. 2010 
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1.1.3 Genetic aberrations in Gastric Cancer  
Genetic aberrations are underlying hallmarks of cancer. Like many other cancer types, 

there are multiple mechanisms of genetic aberrations which have been reported in GC, 

including but not limited to somatic mutations, fusion genes and genomic 

amplifications or deletions.  

Previous studies have reported frequent mutation in TP53, with about half of GCs 

carried a TP53 mutation(Tamura, Kihana et al. 1991). The tumor protein 53 gene is 

the most frequently mutated tumor suppressor genes in human cancers and plays 

many roles in carcinogenesis in response to cellular stresses including apoptosis, cell 

cycle arrest, senescence, DNA repair, cell metabolism or autophagy by activating 

specific target genes (Kruse and Gu 2009). With the recent advance in next 

generation technology, a few studies of GC exome sequencing also reported frequent 

mutation in ARID1A and genes involving chromatin remodeling and cell adhesion. 

ARID1A mutation in GC tends to be associated with microsatellite instability status 

and exclusive to TP53 mutation, with an overall percentage of ~20% in all GCs 

(Wang, Kan et al. 2011; Zang, Cutcutache et al. 2012). 

Fusion genes, although a relatively rare kind of genomic rearrangement, can also 

contribute cancer development and have been reported in other types of cancers. 

Recently, studies of genomic rearrangement also reported fusion genes of BRAF with 

different partners and CD44-SLC1A2 fusion in GC, with about 1~5% in all GCs. 

These fusion genes play a role in cancer development and metabolism, and can 

provide as potential therapeutic targets (Palanisamy, Ateeq et al. 2010; Tao, Deng et 

al. 2011). 
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Studies of genomic instabilities in GC have also reported different scales of genomic 

structure changes (i.e. amplifications and deletions). For example, cytogenetic studies 

of karyotypes have identified chromosomal level recurrent genomic amplifications 

(7q, 8p, and 17q), and deletions (5q, 6p, and 18q) (Kimura, Noguchi et al. 2004). 

Regions with recurrent aberrations in GC could suggest important genes that of 

crucial role in gastric carinogenesis, such as CD44 in recurrent amplifications of 

11p13, or ERBB2 and TOP2A in recurrently amplified 17q (Gunther, Schneider-Stock 

et al. 2000). However, identifying driver oncogenes or tumor suppressor genes in the 

regions could be challenging due to the large size of the aberration region, usually 

covering tens to hundreds of genes.  
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1.2 Copy Number Alterations 

1.2.1 Introduction 
Definition of Copy Number Alterations 

Human genomic variation at single nucleotide level has been observed and since 

catalogued after the completion of first draft human genome sequence in 2000. 

Hapmap project, by 2007 has characterized over 3.1 million single nucleotide 

polymorphisms (SNPs) in a population of 270 individuals (Frazer, Ballinger et al. 

2007). Subsequently, numerous genome wide association studies (GWAS) have 

reported novel SNP association with a range of common disease (Hirschhorn and 

Daly 2005; 2007; McCarthy, Abecasis et al. 2008). However, detection of large-scale 

variations and large-scale copy number polymorphisms has shown to some extend 

that not only SNP but also structural variation in human genome is much greater than 

previously expected (Iafrate, Feuk et al. 2004; Sebat, Lakshmi et al. 2004). 

Structural variations caused by a variable number of copies of a particular DNA 

segment are referred to as copy number alterations (CNAs). DNA CNAs can be 

referred to different terms based on their different sizes. CNAs of the entire genetic 

complements are referred to as polyploidies. CNAs of whole chromosome (34~230 

Mbp) are known as aneuploidies. Partial or segmental aneuploidies referred to sub-

chromosomal CNAs. Submicroscopic CNAs that are between 1 kbp and 1 Mbp in 

length are referred to as copy number variations (CNVs). CNAs ranging from 1bp to 

1kbp in size are called deletions or insertions depending on whether sequences are 

deleted or amplified (Feuk, Carson et al. 2006; Lupski 2007; Tang and Amon 2013). 
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Figure 1-3 Defining Copy Number Alterations (Tang and Amon 2013) 

A) DNA copy-number alterations can be categorized into submicroscopic variations, which are smaller 
than 500kbp, and microscopic alterations, which are greater than 500 kbp. DNA copy number changes 
between 1bp and 1kbp in size are called insertions or deletions on whether DNA is gained or lost, 
respectively. Copy number variations (CNVs) vary between 1kbp and 1 Mbp in size. Examples for 
CNVs are shown for duplication. Microscopically visible karyotype changes are called segmental or 
partial aneuploidies, when parts or chromosomes are amplified or deleted. whole-chromsome lossed or 
gains are called aneuploidies. B) CNV distribution on human chromosome 1. Dots show the number of 
individuals with copy gains (blue) or losses (red) among 39 unrelated, healthy control individuals 
(Iafrate, Feuk et al. 2004) 

Reproduced, with permission from Cell, Tang and Amon 2013
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Association of Copy Number Alterations with human disease 

Genomic CNA at different scales have been long known to be associated with human 

disease. Down syndrome, for example, is caused by chromosomal level CNA with an 

extra copy of chromosome 21. Individuals with trisomy 21 exhibit mental retardation 

and a number of developmental disabilities and are associated with congenital 

anomalies of the gastrointestinal tract and an increased risk of leukemia (Korenberg, 

Chen et al. 1994) . Autism spectrum disorder (ASD), which characterized by 

language impairments, social deficits, and repetitive behaviors, has been found to be 

associated with copy number duplications or deletions in regions with size from 

100bp to 10Mb (Sebat, Lakshmi et al. 2007; Pinto, Pagnamenta et al. 2010). Small-

scale CNAs are estimated to be responsible for at least 15% of human 

neurodevelopmental defects and are associated with psychiatric disorders and kidney 

and heart defects (Girirajan, Campbell et al. 2011).  

Specific CNA associated with particular oncogenes or tumor suppressor genes can 

contribute to various types of cancer development, such as duplications of epidermal 

growth factor receptor (EGFR) in non small cell lung cancer (Cappuzzo, Hirsch et al. 

2005) and deletions of phosphatase and tensin homolog (PTEN) in breast cancer 

(Alimonti, Carracedo et al. 2010). With increasing interests of CNA in human 

disease, few large-scale genomic studies recently have identified role of CNA in the 

core pathways of glioblastoma, lung cancer and multiple types of cancers (Weir, Woo 

et al. 2007; Chaudhuri, Handcock et al. 2008; Beroukhim, Mermel et al. 2010).  
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1.2.2 Detection of Copy Number Alterations 
Numerous cytogenetic techniques can help to identify CNA, such as virtual 

karyotyping, fluorescent in situ hybridization (FISH), comparative genomic 

hybridization (CGH), array comparative genomic hybridization (aCGH), and SNP 

arrays, with the resolution of CNA detection from chromosomal level to a few kbs. 

Recent advances in DNA sequencing technology have further enabled identification 

of CNAs to few bases using next-generation sequencing (Korbel, Urban et al. 2007; 

Mills, Walter et al. 2011) (Fig 1-4). 

Fluorescent in situ hybridization (FISH) 

FISH is a cytogenetic technique developed by biomedical researchers in the early 

1980s that is used to detect and localize the presence or absence of specific DNA 

sequences on chromosomes (Langer-Safer, Levine et al. 1982), and now has been 

widely applied to the detection of specific normal and aberrant DNA sequences, as 

well as been successfully applied in a number of diseases diagnosis, such as pediatric 

neoplastic diseases (Raimondi 2000).  

Comparative genomic hybridization (CGH) or array comparative genomic 

hybridization (aCGH) 

CGH is a molecular cytogenetic method for analyzing CNA in the DNA of a test 

sample compared to a reference sample. This technique was originally developed to 

evaluate the changes between the chromosomal complements of solid tumor and 

matched normal tissue (Kallioniemi, Kallioniemi et al. 1992). Together through the 
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use of microarrays in conjunction with CGH techniques, also referred as aCGH, can 

identify CNA at a higher resolution as low as 200bp (Urban, Korbel et al. 2006). 

Single nucleotide polymorphism (SNP) array 

SNP array is a type of DNA microarray which is used to detect polymorphisms within 

a population. It can be used to detect SNPs, loss of heterozygosity, and genomic 

amplification or deletions (LaFramboise 2009). High density SNP array can help to 

identify patterns of allelic imbalance and small scale CNAs, and has been used in 

Hapmap project and a few other large-scale genomic studies (Frazer, Ballinger et al. 

2007; Weir, Woo et al. 2007; 2008; Beroukhim, Mermel et al. 2010).  

Affymetrix SNP 6.0 array 

The Genome-Wide Human SNP Array 6.0 features more than 1.8 million markers of 

genetic variation, including SNPs, as well as probes for the detection of copy number 

variation, with the median inter-marker distance over all 1.8 million SNP and copy 

number markers combined is less than 700 bases (McCarroll, Kuruvilla et al. 2008) 

(Fig 1-5). 
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Figure 1-4 Cytogenetic detection and confirmation of structural variants 

a. Spectral karyotyping is ideal for the identification of rearrangements that involve the exchange of 

DNA between chromosomes. Differentially labelled DNA probes for all chromosomes are used, 

making it possible to identify every chromosome in a single hybridization. The example shows the 

detection of a t(7;13) translocation.b. Three-colour FISH that was carried out using interphase nuclei 

shows that a 700-kb micro-inversion at 7p22 is olymorphic, as indicated by the change in order of 

BAC clones (which are labelled in different colours) between the two copies of the same chromosome 

that are present in the nucleus. c. the green control probe is present in two copies on chromosome 7 

(chr7), whereas the red probe shows a signal on only one of the homologous chromosome 7 copies. d. 

Two-colour FISH reveals a large-scale copy-number variant, in this case a duplication. (Feuk, Carson 

et al. 2006)  

Reproduced, with permission from Nature Reviews Genetics, Fuek, Carson et al 2006 
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Figure 1-5 Overview of the Genome-Wide Human SNP Assay 6.0 

Total genomic DNA (500 ng) is digested with Nsp I and Sty I restriction enzymes and ligated to 

adaptors that recognize the cohesive 4 bp overhangs. All fragments resulting from restriction enzyme 

digestion, regardless of size, are substrates for adaptor ligation. A generic primer that recognizes the 

adaptor sequence is used to amplify adaptor-ligated DNA fragments. PCR conditions have been 

optimized to preferentially amplify fragments in the 200 to 1,100 bp size range. PCR amplification 

products for each restriction enzyme digest are combined and purified using polystyrene beads. The 

amplified DNA is then fragmented, labeled, and hybridized to a SNP Array 6.0. 

(from http://www.affymetrix.com affymetrix snp6.0 datasheet) 

http://www.affymetrix.com/�
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1.2.3 Previous studies of CNA in GC 

Currently there are a few studies on copy number in GC: CD44 has been reported to 

be recurrently amplified in 11p region using CGH in a panel of 25 GC cell 

lines(Fukuda, Kurihara et al. 2000); amplification of 19q12, which covered gene 

CCNE1 was studied in a cohort of 126 gastric primary samples with CGH at a 

~1.5Mb resolution (Leung, Ho et al. 2006); (Kimura, Noguchi et al. 2004) reported a 

study of genetic alterations in 102 Gastric Tumors using chromosomal level CGH, 

and identified recurrent gain of 20q and loss of 18q were associated with tumor 

progression;  (Myllykangas, Junnila et al. 2008; Tsukamoto, Uchida et al. 2008; 

Nakamura, Migita et al. 2009) also profiled genetic copy number using aCGH in 

about 30 ~ 50 gastric tumor samples and reported recurrent amplifications in 17q and 

20q; (Tada, Kanai et al. 2010) applied SNP array with about 50K probes in 30 ~ 40 

cell lines and gastric primary tumors, suggesting a list of candidate genes, including 

MYC and a few other genes.  

In general, these studies have largely suffered from various weaknesses such as 

relatively small patient populations, focus on in vitro cell lines, and use of low-

resolution technologies (e.g. chromosomal CGH) (summary in Table 1.1 and Table 

1.2).  
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Table 1-1 List of previous copy number studies in Gastric Cancer 

Study  Sample Size  platform  
Tada M et al, 2010 34CL + 42T Affymetrix 50k SNP array 
Tsukamoto Y et al, 2008 30T Array CGH 
Nakamura Y et al, 2009 50T Array CGH 
Myllykangas S et al, 2008 38T + 8N Array CGH 
Kimura Y et al, 2004 102T CGH 
 

 

Table 1-2 Identified chromosomal level copy number alterations of Gastric Cancer in literatures 

Amplification Deletion Reference 

7q, 8q, and 20q 3p, 4q, 9p, and 18q Tada M et al, 2010, Cancer Science 

1q, 3q, 5p, 6p, 7p, 8q, 13q, 
17q, 19q, 20q, 20p,  

3p, 4p, 4q, 5q, 9p, 10q, 12q, 
16q, 17p, 18q, 21q 

Tsukamoto Y et al, 2008, J Pathology 

5p, 7q, 8q, 13q, 17q, 20p, 20q 4p, 4q, 5q, 15q, and 17p, 18q, 
19p, 21q 

Kimura Y et al, 2004, Mod Pathology 
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1.3 Rationale of this study 
Reflecting this urgency to identify more therapeutic targets and increase GC 

population which can benefit from targeted treatment, several other targeted therapies 

are currently undergoing preclinical and clinical testing in GC, directed against 

diverse oncogenic proteins including signaling receptors, histone deacetylases and 

cellular proteins (Weichert, Roske et al. 2008; Moser, Lang et al. 2009; Yap, Olmos 

et al. 2011). However, because most of these targeted therapies were originally 

designed against proteins expressed or discovered in other cancers (eg trastuzumab 

for breast cancer), in many cases surprisingly little is actually known either regarding 

the true prevalence of their oncogenic targets in primary GCs, or if expression of 

these oncogenic targets is correlated with key clinico-pathologic parameters such as 

patient outcome. As one example, the FGFR2 receptor tyrosine kinase (RTK) has 

been previously proposed as a potential therapeutic target in GC (Turner and Grose 

2010). However, most FGFR2-related studies in GC have been primarily restricted to 

in vitro cultured cell lines (Takeda, Arao et al. 2007; Kunii, Davis et al. 2008), and 

little data is available regarding the true prevalence of FGFR2 gene amplification in 

primary GCs particularly at the high-resolution genomic level. As such, a 

comprehensive and unbiased survey to identify the most prevalent molecular targets 

in GC could facilitate many aspects of GC translational research, for example in 

focusing clinical trials efforts on those therapies that might benefit the greatest 

numbers of GC patients. 

Besides identifying the most prevalent targets, recent findings have also highlighted 

the importance of determining if certain combinations of targets are expressed either 
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independently from one another (i.e. mutual exclusivity), or co-occurring in the same 

tumor. Knowledge of such “inter-target relationships” (ITRs) can shed critical 

insights into the signaling networks of a cancer cell, case examples being the mutual 

exclusivity of KRAS and BRAF activating mutations in colorectal cancer, and the 

exclusivity of EGFR and KRAS mutations in lung cancer (Rajagopalan, Bardelli et al. 

2002; Ding, Getz et al. 2008). Identifying ITRs may also highlight promising drug 

combinations for combination therapy, and suggest rational molecular criteria for 

patient inclusion and exclusion in clinical trials. Recent studies exemplifying both the 

basic and clinical importance of ITRs include ERBB2 and PIK3CA, where co-

occurring PIK3CA mutations in ERBB2-positive breast cancers can modulate clinical 

responses to trastuzumab (Berns, Horlings et al. 2007), and EGFR and MET, where 

clinical resistance to gefitinib in EGFR-mutated lung cancers can be caused by co-

existing MET gene amplifications (Bean, Brennan et al. 2007). 

In this study, we sought to identify the most prevalent molecular targets in GC and to 

elucidate systematic patterns of exclusivity and co-occurrence among these targets, 

through comprehensive genomic analysis of a large panel of GCs. 
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Chapter 2 Material and Methods 

2.1 Clinical Samples and Cell Lines 
Primary gastric samples were obtained from the Singapore Health Services 

(SingHealth) and the National University Hospital System (NUHS) tissue repositories, 

with signed informed patient consent and approvals from the respective institutional 

Research Ethics Review Committees. "Normal" (i.e. non-malignant) samples used in 

this study refer to samples harvested from the stomach, from sites distant from the 

tumor and exhibiting no visible evidence of tumor or intestinal metaplasia/dysplasia 

upon surgical assessment. Clinical information was collected with Institutional 

Review Board approval. There was no pre-specified sample size calculation since this 

is a hypothesis generating discovery study. Clinicopathological information of these 

patients including age, disease stage, histological subtype, treatment and anatomical 

location, are included in Table 2-1. Only three patients received neo-adjuvant or pre-

operative chemotherapy prior to surgery. GC cell lines were obtained from 

commercial sources (American Type Culture Collection, Japan Health Science 

Research Resource Bank) or from collaborators (Yonsei Cancer Centre, S. Korea).  
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Table 2-1 Clinical Characteristic of the GC Patient Cohort 

This table provides clinical data for 193 patients analyzed by Affymetrix SNP6 
arrays. Stage categories were based on the AJCC 6th edition classification. 3 patients 
received neo-adjuvant therapy, and of 131 patients where subsequent treatment 
information was available, 28 patients received 5-FU chemo-radiation as adjuvant 
therapy.  

  GC Samples (193) 
Age 

Range 23-92 
Mean,S.D 64.2,  12.6 

Gender 
Male 123 

Female 70 
Lauren Classification 

Intestinal 99 
Diffuse 73 

Mixed/Others 21 
Anatomical Location* 
Gastro-oesophageal junction 9 

Cardia 13 
Body 24 

Greater Curve 17 
Lesser Curve 37 

Pylorus 12 
Antrum 22 
Incisura 2 

Grade 
Undifferentiated 2 

Poorly differentiated 117 
Moderately differentiated 67 

Well differentiated 5 
Unknown 2 

Stage 
1 32 
2 26 
3 71 
4 64 

*This is only for 136 patients where location information was reliably recorded. 
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2.2 DNA and RNA Extraction 
Genomic DNA was extracted from flash-frozen tissues and cells using a Qiagen 

genomic DNA extraction kit and profiled on Affymetrix SNP 6.0 arrays according to 

the manufacturer’s specifications. 

Total RNAs was extracted using Trizol (Invitrogen, CA), digested with RNase free 

DNase (RQ1 DNase, Promega), and subsequently purified using an RNeasy Mini kit 

(Qiagen,CA). 

 

2.3 Copy Number Profiling and GISTIC Analysis 
Genomic DNAs from gastric tumors and matched non-malignant gastric tissues 

(normal) were hybridized on Affymetrix SNP6 genotyping arrays and processed as 

follows:  

Step 1) Normalization: Raw SNP6 CEL files were processed using Affymetrix 

Genotyping Console 4.0. A reference file was first created from the SNP6 CEL files 

of normal gastric samples (98 samples). The 193 tumor SNP6 CEL files were then 

normalized against this normal reference file.  
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Figure 2-1 Illustration of Affymetrix GTC working panel for data preprocessing 

Step 2) Segmentation: Copy number segmentation data was produced using the 

Circular Binary Segmentation (CBS) algorithm using the R package DNAcopy 

(Olshen, Venkatraman et al. 2004) for both tumor and normal gastric samples. The p 

value cutoff for detecting a change-point was 0.01, with a permutation number of 

10000.  

A brief description of CBS: 

Suppose c = change point if X1,…Xc has distribution F and Xc+1,…, has distribution 

G, 

Xj is log-ratio intensities, indexed by marker location, 

Si = X1+…+Xi, i= 1,…,n is the partial sum, 

Zi = [1/i+1/(n-i)]-1 [Si/i – (Sn - Si)/(n-i)], 

CBS is based on the likelihood ratio test statistic for: 

H0: no change point vs H1: exactly one change point at an unknown location i 

ZB = max1<=i<n|Zi| 
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Figure 2-2 An example of break points identified by Circular Binary 
Segmentation algorithm. 

Each dot represent a Affymetrix SNP6 probe, x-axis refers to genomic coordinates, y-axis indicates 
log-ratio copy number data. Black horizontal line specify boundary of segmented data, indicating the 
average of log-ratio for probes contained in the segmented region. 

 

3) GISTIC Analysis: The GISTIC algorithm (Beroukhim, Getz et al. 2007) was used 

to identify genomic regions with recurrent copy number alterations. GISITC was 

applied to the CBS-segmented files of tumors, and filtered through a CNV (copy 

number variation) file constructed from the segmented data of normal samples to 

identify somatic tumor-specific CNAs. GISTIC reports regions of interest with an 

associated false discovery q-value, which is obtained after multiple hypotheses 

correction. Genomic regions with q-value<0.25 for broad regions and q-value<0.001 

for focal regions were considered significant. Proportions of CNA for individual 

normal and tumor sample was defined as: size of CBS regions with CNA per sample 

divided by the sum of all autosome lengths. Chromosomal instability values for GCs 

were estimated by the number of cytobands exhibiting CNA for each sample, 

calculated by averaging the CBS segmented value for each cytoband. Tumor-specific 

genomic alterations were identified by normalizing the primary GC profiles against 
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the primary matched gastric normal samples.  

 

Figure 2-3 Overview of GISTIC method 

After identifying the locations and, in the case of copy-number alterations, magnitudes (as log2 signal 

intensity ratios) of chromosomal aberrations in multiple tumors (Left), GISTIC scores each genomic 

marker with a G-score that is proportional to the total magnitude of aberrations at each location (Upper 

Center). In addition, by permuting the locations in each tumor, GISTIC determines the frequency with 

which a given score would be attained if the events were due to chance and therefore randomly 

distributed (Lower Center). A significance threshold (green line) is determined such that significant 

scores are unlikely to occur by chance alone. Alterations are deemed significant if they occur in 

regions that surpass this threshold (Right). Reproduced, with permission from (Beroukhim, Getz et al. 

2007) 

The SNP6 copy number data has been deposited into the National Centre for 

Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO) website, with 

series accession number GSE31168.  

2.4 DRP: Identification of Mutually Exclusive and Co-Altered CNAs 
To identify significant relationships between regions of frequent CNAs, we 

implemented a dimension reduction permutation (DRP) statistical algorithm adapted 

from a previous study analyzing patterns of somatic DNA mutations in tumor (Ding, 

Getz et al. 2008). To determine the significance of any specific mutually exclusive 

(ME) or co-alteration (CA) interaction, we compared the numbers of samples 
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exhibiting a particular ME or CA interaction against a null distribution of interactions 

obtained by randomly permuting the genomic alterations across samples and genes 

(100,000 permutations), while taking into consideration the prevalence of genomic 

alterations. Essentially, for each permutation, we constrained the number of samples 

with genomic alterations and the number of genes exhibiting alterations within each 

sample to be similar to the original data. Empirical p-values of <0.05 were considered 

significant.  An in-depth description of the DRP methodology is presented below, and 

the DRP script is attached in appendix. 

 

Dimension Reduction Permutation (DRP): Identification of Mutually Exclusive and 
Co-Altered CNAs 

Non-random associations between distinct genomic alterations (co-associated or 

mutually exclusive) may suggest synergistic or antagonistic biological event in 

carcinogenesis.  To compute the significance of these associations, a dimension 

reduction permutation (DRP) algorithm was developed.  It was adapted from a 

previous study analyzing patterns of somatic DNA mutations in tumor (Ding, Getz et 

al. 2008).  To determine the significance of any pair of mutually exclusive or co-

altered CNAs, we used permutation testing, taking into consideration the prevalence 

of genomic alterations.  Since we are testing for associations regardless of the level of 

alterations (i.e. focal or broad), we assigned each gene to either an amplification or 

deletion status, based on the mean aggregation of log ratio signals of all probes within 

each gene.  To maintain a similar prevalence of genomic alterations observed in the 

original data, the number of samples with genomic alterations and the number of 
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genes exhibiting the alterations were maintained in the permutations.  Suppose the 

matrix is represented as genes (row) x samples (column). DRP permutes the genomic 

alterations by row or by column progressively, depending on which number of rows 

or columns is smaller. Permutations can start from the top row or the left column of 

the matrix while maintaining the marginal counts for genomic alterations in genes and 

samples to be similar to the original data.  In effect, for each permutation, the 

algorithm traverses iteratively from top left to bottom right of the matrix, each time 

reducing the dimension by multiple numbers of rows and columns – hence the name 

Dimension Reduction Permutation.  For each permutation, the number of samples 

with co-altered (NCA) and mutually exclusive CNA (NME) was then recorded for each 

pair of genes and then compared with original data on co-altered (OCA) and mutually 

exclusive genes (OME) respectively.  Frequencies were summarized for co-altered 

(NCA>=OCA) and mutually exclusive associations (NME>=OME).   Empirical p-values 

were then computed against these frequencies under the null hypothesis.    

 



 

 

28 

 

Figure 2-4 Illustration of Permutations by DRP 

(above) This figure illustrates one situation of CNA events in multiple samples, rows 
indicate samples, columns indicate CNA regions, and presence of a CNA event in a 
particular sample is highlighted in orange. (below) This figure illustrates one example 
of a possible permutation of CNA events by DRP. Note that numbers of CNA events 
by samples or by regions are fixed. 
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2.5 FISH and Immunohistochemical Analysis 
KRAS and FGFR2 FISH was performed using BAC clones obtained from the 

BACPAC resources center (CHORI, Oakland, CA USA). BAC DNA was labeled 

using a Bioprime DNA labeling kit (Invitrogen, Carlsbad, CA, USA). FISH was 

performed on metaphase spreads (cell lines) or on FFPE sections after 

deparaffinization (clinical specimens). Target DNA probes were labeled using 

spectrum green and control probes in spectrum orange (centromeric CEP probes for 

chromosomes 10 and 12) (Abbott Molecular Inc, Des Plaines, IL, USA). Hybridized 

slides were counterstained with DAPI and analyzed using a Olympus BX50 

fluorescence microscope. Nuclei were scored for amplification by comparing signals 

from internal controls (CEP probes) against target gene signals (KRAS, and FGFR2). 

For ERBB2 immunohistochemistry, we analyzed 146 of the 193 tumors, representing 

all cases for which we were able to obtain full sections. The remaining 47 cases were 

not analyzed for a variety of reasons, including failure to retrieve the samples due to 

historical storage arrangements (archival samples are stored off-site at our center) and 

insufficient material due to exhaustion of the FFPE blocks (small tumors). Sections of 

archival formalin-fixed, paraffin-embedded tissue (3 µm) were placed on slides 

coated with poly-L-lysine. After deparaffinisation and blocking of endogenous 

peroxidase, ERBB2 immunostaining was performed using rabbit anti-human c-erbB-2 

oncoprotein as primary antibody (Dako Corp, Carpinteria, CA, USA) at 1/100 

dilution. Binding of the primary antibody was revealed by means of the Dako Quick-

Staining, Labelled Streptavidin–Biotin System (Dako), followed by the addition of 

diaminobenzidine as a chromogen. ERBB2 immunoreactivity was evaluated by an 
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experienced pathologist (LKH) according to the scoring system of (Hofmann, Stoss et 

al. 2008).  CSMD1 immunohistochemistry was performed on full sections as 

described in (Kamal, Shaaban et al. 2010). Tumors were scored by two independent 

observers (HG, SB) and classified as CSMD1 present (> 25% positive positive 

tumour cells) or CSMD1 Absent/Reduced (<= 25% positive tumor cells).  

 

2.6 DNA Sequencing, Mutation Genotyping and Quantitative PCR 
DNA products corresponding to the coding regions of target genes were amplified by 

PCR and were subjected to cycle sequencing using the BigDye Terminator v3.1 

Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) on a 3730xl 

DNA Analyzer (Applied Biosystems, Foster City, CA, USA). KRAS mutation 

genotyping was performed by both Sanger sequencing (139 GCs) and mass-

spectrometry based genotyping (Sequenom MassARRAY) (94 GCs). Reference 

sequences were obtained from the Ensembl Genome Browser database. Quantitative 

real-time PCR was performed on an ABI 7900 HT instrument using FGFR2 intron 2 

primers. Reaction mixes consisted of 5ul SYBR green PCR master mix (ABI), 1ul 

FGFR2/LINE1 primers, 20ng (0.5ul) of genomic DNA template in a final reaction 

volume of 10ul.  All experiments were performed in triplicate. FGFR2 cycle 

thresholds were normalized to the LINE1 repeat element from the same samples, as 

an endogenous control. Normal human genomic DNA was chosen as the calibrator 

and for each analysis a negative control was also prepared using all reagents except 

DNA template.  
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2.7 Gene Expression Analysis 
Of the 193 tumors profiled on Affymetrix SNP6 arrays (Affymetrix, Santa Clara, CA, 

USA), 156 tumors had corresponding gene expression data available along with 100 

normal gastric samples on Affymetrix U133P2 arrays (this cohort is analyzed in 

Figure 3-15). Additional details of the gene expression data set are presented in (Ooi, 

Ivanova et al. 2009) and are publicly available at GEO under accession number 

GSE15460. To analyze FGFR2 mRNA survival associations in Figure 3-19, we 

analyzed a combined GC gene expression data set of 398 tumors. The 156 patients 

analyzed in Figure 3-15 form a subset of the 398 patients. To establish this combined 

data set, we combined gene expression data from GSE15460 and three other GC 

cohorts from Singapore (U133AB), Australia (AU) and the University of Leeds, UK 

(UK). Clinical information for these gene expression data sets is provided in Table 3-

8. Briefly, individual arrays were normalized using the MAS5 algorithm, and batch 

effects removed using the COMBAT algorithm (Johnson, Li et al. 2007). 

 

2.8 Clinico-Pathologic Correlation Analysis 
Survival curves were estimated using the Kaplan-Meier method, with the duration of 

survival measured from the date of surgery to date of death or last follow-up visit. 

Overall survival was used as the outcome metric. Patients who were still alive or lost 

to follow-up at time of analysis were censored at their last date of follow up. 

Univariate and multivariate survival analysis was performed using the Cox 

proportional hazards regression model. Besides genetic factors (e.g. FGFR2, KRAS), 

other clinical factors considered in the multivariate model included grade and stage 
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which were also significant in univariate analysis. Associations with other clinical 

variables were performed using the Fisher Exact Test, at a significance threshold of 

p<0.05.  

 

2.9 Reverse Transcription-PCR (RT-PCR) and Western Blotting Analysis 
For mRNA analysis, equal quantities of RNA were reverse transcribed using 

SuperScript III Reverse Transcriptase enzyme and oligo(dT)20 primers (Invitrogen).  

RT-PCR was performed with forward primers to FGFR2 exon 8 (5’- 

GTGCTTGGCGGGTAATTCTA-3’) and reverse primers to exon 9 (5’-

TACGTTTGGTCAGCTTGTGC -3’). GAPDH was used as a loading control 

(forward primer (5’- GTGCTTGGCGGGTAATTCTA-3’); reverse primer (5’-

TCCACCACCCTGTTGCTGTA-3’). For protein analysis, cells were harvested in 

lysis buffer (0.3M NaCl, 0.05M Tris-HCl pH8, 0.5% NP40, 0.1% SDS, Protease 

Inhibitor (Roche, Mannhein, Germany) and Halt Phosphatase Inhibitor Cocktail 

(Pierce, Rockford, IL, USA)). FGFR2 immunoprecipitation was performed by 

incubating lysates with MAB6841 (R&D Systems, Minneapolis, MN, USA) for 4 hrs 

at room temperature; followed by incubation with protein A/G agarose beads (Pierce, 

Rockford, IL, USA) overnight at 4°C. After washing, 4X SDS loading buffer was 

added and the mixture was boiled at 95°C for 5 minutes.  Antibodies against p-ERK, 

ERK, p-AKT, AKT and Caspase-3(8G10) were obtained from Cell Signaling 

Technology (Cell Signaling Technology, Danvers,. MA, USA). Other antibodies 

include 4G10 phosphotyrosine antibody (Upstate Biotechnology, Lake Placid, NY, 

USA β-actin (Millipore, Billerica, MA, USA) or α-tubulin (Cell Signaling 
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Technologies, Danvers, MA, USA) were used as loading controls. Blots were 

incubated with DyLight Fluorescence secondary antibodies (Thermo Scientific) and 

imaged using LI-COR Odyssey. Experiments were repeated a minimum of three 

independent times. 

 

2.10 Cell Proliferation Assays and Drug Treatments 
Cell proliferation assays were performed using the CellTiter 96® AQueous One 

Solution Assay kit (Promega) and the plates were measured using a PerkinElmer plate 

reader. Each assay was performed in triplicate, and the results were averaged over 

three independent experiments. Dovitinib was provided by Drs. D. Graus-Porta and C. 

Garcia-Echeverria (Novartis Institutes for Biomedical Research, Basel, Switzerland). 

GC cells were seeded in 96-well plates 24 hours prior to Dovitinib treatment. On the 

day of drug treatment, CellTiter reagent was added to one plate of cells to provide a 

measurement of the cell population at the time of drug addiction (Tz). Five serial 10-

fold dilution mixtures of Dovitinib, beginning with a maximum concentration of 10-5 

M, were added to the respective wells. The final DMSO concentration in the wells did 

not exceed 0.1% (v/v). GI50 values for Dovitinib, representing the concentration at 

which 50% cell growth inhibition is achieved for 48 hours of treatment, were 

computed using the GI50 calculation formula 

at http://dtp.nci.nih.gov/branches/btb/ivclsp.html. 

 

http://dtp.nci.nih.gov/branches/btb/ivclsp.html�
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2.11 Cell Death and Colony Formation Assays 
Caspase 3/7 assays were performed using the Caspase-Glo® 3/7 Assay kit (Promega, 

WI, USA) and the plates were measured using a Tecan plate reader. Three 

independent experiments were performed and each assay was performed in triplicate. 

GC cells were seeded in 96-well black plates and treated with Dovitinib using the 

same method as the cell proliferation assays. For colony formation assays, base layers 

of 0.5% Gum Agar in 1x McCoy’s 5A and 10% FBS were poured into 6-well plates 

and allowed to harden at 4°C. After siRNA transfection, overexpression, or drug 

treatment, 50 000 cells/well were seeded in complete media plus agar mixture at 42°C 

and seeded on top of the solidified base layer. Plates were incubated at 37°C in for 3-

4 weeks, during which plates were fed drop-wise with complete media. After 3-4 

weeks, plates were photographed using the Kodak GL 200 System (EpiWhite 

illumination). Each assay was performed in triplicate, and the results were averaged 

over three independent experiments. 

 

2.12 Xenograft assays 
Efficacy of dovitinib was evaluated and compared to the positive control drug 5-FU 

in a primary human gastric cancer xenograft model (n= 10 in each group). This tumor 

model was derived from a primary gastric cancer from Chinese ethnicity and is 

confirmed with FGFR2 gene amplification (26 copies of FGFR2 by SNP6.0 array).  

Tumor fragments from stock mice inoculated with selected primary human gastric 

cancer tissues were harvested and used for inoculation into Balb/c nude mice. Each 

mouse was inoculated subcutaneously at the right flank with primary human gastric 
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tumor fragment (2-3 mm in diameter) for tumor development. Treatments were 

started at day 24 after tumor inoculation when the average tumor size reached about 

150 mm3. 
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Chapter 3 Results 

3.1 Genomic Landscape of CNAs in GC 
We profiled genomic DNA samples from 193 primary GCs, 98 primary matched 

gastric normal samples, and 40 GC cell lines on Affymetrix SNP6 microarrays 

containing ~1.8 million probes with a median inter-probe spacing of 680bp. To 

identify tumor-specific genomic alterations and exclude regions of potential germ line 

copy number variation, we normalized the GC profiles against the matched gastric 

normal samples (Figure 3-1 for representative profiles). On average, we observed 

~150 genomic aberrations per GC, comprising a mixture of broad and focally altered 

regions. Frequently amplified broad chromosomal regions included 1q, 3q, 5p, 6p, 

7pq, 8q, 12pq, 13q, 18pq, 19p, 20pq and 21p (frequencies 9.8% to 33.7%), and 

frequently deleted chromosomal regions included 3p, 4pq, 5q, 6q, 8p, 9p, 9q, 11q, 

12p, 14q, 16q, 17p, 18p, 18q, 19p 21q and 22q (frequencies 7.8% to 13.0%) (Figure 

3-2). These results are highly concordant with previous comparative genomic 

hybridization (CGH/aCGH) studies of GC (Peng, Sugihara et al. 2003; Tay, Leong et 

al. 2003; Kimura, Noguchi et al. 2004; Tsukamoto, Uchida et al. 2008; Tada, Kanai et 

al. 2010; Rossi, Klersy et al. 2011). 
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Three representative paired primary GC tumor/normal samples are shown (IDs 2000068, 57689477 and 980021). The x-axis represents chromosomes 
1 to 22 and chromosomes X and Y, y-axis represents the extent of copy number amplifications/deletions. The proportion of CNAs for each sample are 
indicated respectively as a percentage of the whole genome. 

 

Figure 3-1 Copy Number Profiles of matched gastric tumor and non-malignant samples 
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Figure 3-2 Broad Genomic Alterations in GC 

Large-scale copy number alterations (CNA). The diagram shows a CNA plot where 
chromosomal regions of the 22 autosomes are represented on the y-axis, and GISTIC 
computed FDR q- values are on the x-axis. Chromosomal deletions are on the left 
(blue) and amplifications are on the right (red).  Significantly altered regions of broad 
CNA are highlighted at the sides, as blue and red bars (GISTIC q value<0.25). 
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3.2 Focal Genomic Alterations Highlight 22 Potential Targets in GC 
We identified 22 focal genomic alterations, defined as narrow regions (typically <100 

kb) exhibiting high levels of copy number gain or loss (Table 3-1). Among the 

amplified genes were several oncogenes previously known to be amplified in GC 

including EGFR, ERBB2/HER2 and CCND1 (Figure 3-3) (Hirono, Tsugawa et al. 

1995; Tanner, Hollmen et al. 2005; Bizari, Borim et al. 2006). Among the focally 

deleted genes in GC, we re-identified FHIT, RB1, CDKN2A/B, and WWOX, also 

previously known to be deleted in GC (Schneider, Pulitzer et al. 1995; He, Su et al. 

2001; Lee, Leung et al. 2002; Aqeilan, Kuroki et al. 2004; Xiao, Wu et al. 2006). The 

re-discovery of these classical oncogenes and tumor suppressor genes supports the 

accuracy of the SNP6 array data. To further validate the array data, we performed 

ERBB2 immunohistochemistry (IHC) on 146 of the 193 cases (Figure 3-4), and 

confirmed a significant association between ERBB2 copy number gain and ERBB2 

protein expression (p<0.01, Fisher's exact test, Table 3-2).  

Besides known genes, the analysis also revealed novel genes not previously reported 

in GC. These included genomic amplification of the transcription factors GATA6 and 

KLF5, and somatic deletions in PARK2, PDE4D, CSMD1 and GMDS. Recent data 

suggests that GATA factors in particular may play an oncogenic role in certain 

gastrointestinal cancers, for example GATA6 has been shown to be amplified in 

pancreatic cancer (Kwei, Bashyam et al. 2008). PARK2 and PDE4D deletions have 

also been recently observed in glioblastoma and lung adenocarcinomas (Weir, Woo et 

al. 2007; Chaudhuri, Handcock et al. 2008). Using IHC, we confirmed that one of 

these novel deleted genes, CSMD1, was downregulated or absent in ~40% of primary 
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GCs at the protein level, but highly expressed in normal gastric epithelium (n=42; 

Figure A1). 

 

Figure 3-3 Focal Genomic Alterations in GC 

Focal alterations. Genes localized within the peaks of the focally altered regions are 
specified. Genes in square brackets are genes that lie immediately adjacent to the 
alteration peak (e.g. MYC). Significantly altered focal events (GISTIC q-value 
<0.001) are highlighted at the sides and summarized in Table 3-1.   
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Table 3-1 Focal regions of CNA regions in GC 

Focal recurrent CNAs (amplifications and deletions) identified by GISTIC. Genes previously reported as oncogenes or tumor 
suppressor genes are highlighted in bold. Start and End indicates the boundary of the region identified. Length indicates size of each 
region identified. Q value represents the significance of the recurrent CNA region across all the gastric tumors. Genes in peak - genes 
covered by the corresponding region, a square bracket indicates that the gene lies immediately adjacent to the peak.  

CNAs Chr Start End Length (kb) Cytoband Q value Genes in peak 

Amplification 

1 10 123336181 123337713 1.5 10q26.13 3.9561E-99 FGFR2 

2 8 128628340 128670251 41.9 8q24.21 7.984E-27 [MYC] 

3 19 34982652 35002397 19.7 19q12 3.1439E-23 CCNE1 

4 12 25213920 25336398 122.5 12p12.1 1.5713E-14 KRAS,CASC1,LYRM5 

5 18 17947474 18040783 93.3 18q11.2 1.0616E-13 GATA6 

6 5 21377838 21406308 28.5 5p14.3 9.501E-12 [CDH12] 

7 7 91921079 92111471 190.4 7q21.2 2.0612E-10 CDK6,PEX1,GATAD1,DKFZP564O0523,FAM133B 

8 8 11346688 11659701 313.0 8p23.1 9.0544E-10 BLK,GATA4,C8orf13 

9 7 55237447 55373693 136.2 7p11.2 2.4109E-09 EGFR 

10 17 35102118 35136335 34.2 17q12 3.8268E-09 ERBB2 

11 13 72528937 72770614 241.7 13q22.1 1.4729E-07 KLF5 
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12 11 69161019 69306967 145.9 11q13.2 9.1737E-07 CCND1,FGF4,FGF19,ORAOV1 

13 7 115987034 116178774 191.7 7q31.2 0.00012527 CAV1,MET 

Deletion 

1 3 60447451 60472964 25.5 3p14.2 3.4002E-41 FHIT 

2 8 4182635 4182916 0.3 8p23.2 1.0797E-18 CSMD1 

3 9 21953419 21995192 41.8 9p21.3 1.0299E-17 CDKN2A,CDKN2B 

4 6 2019538 2068880 49.3 6p25.3 1.7756E-14 GMDS 

5 16 77269209 77293232 24.0 16q23.1 5.4871E-12 WWOX 

6 6 162551244 162610874 59.6 6q26 2.1056E-11 PARK2 

7 13 47806677 47809375 2.7 13q14.2 3.3682E-11 RB1 

8 5 58436441 58569237 132.8 5q11.2 1.6661E-10 PDE4D 

9 9 9524063 9675303 151.2 9p23 1.2287E-09 PTPRD 
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Figure 3-4 ERBB2 Copy Number and Protein Expression in GC 

Two primary GCs are shown (IDs 970010 (A,B) and 2000472 (C,D)). (A) Tumor 970010 
is predicted to exhibit ERBB2 copy number amplification. The top graph represents a 
segment of Chromosome 17 where ERBB2 resides. The ERBB2 region is marked by 
yellow boundaries. The y-axis represents the extent of copy number amplification. The 
bottom graph is a close up of the region, where the ERBB2 gene is marked by a red box. 
(B) Immunohistochemical (IHC) analysis of ERBB2 reveals high ERBB2 protein 
expression (IHC 3+) in 970010. (C) Tumor 2000472 is predicted to show normal/neutral 
ERBB2 copy number levels. Boundaries of the yellow and red boxes are the same as in 
(A). (D) IHC analysis of ERBB2 reveals absence of ERBB2 protein expression (IHC 0) 
in 2000472.   

 

A C

B D ID 2000472 (ERBB IHC)

ID 970010 (SNP6) ID 2000472 (SNP6)

ERBB2 ERBB2

ID 970010 (ERBB2 IHC)
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Table 3-2 Concordance Table between ERBB2 SNP6 and ERBB2 IHC 

9 of 132 (6.8%) ERBB2 copy number neutral tumors exhibit ERBB2 protein expression 
(IHC 1-3+), while 8 of 13 (61.5%) tumors with ERBB2 copy number gain also exhibit 
ERBB2 protein expression (p<0.01, Fisher's exact test). 

 

 ERBB2 Immunohistochemistry 

ERBB2 

SNP 6 Copy Number 

Positive 
staining  

0 1+ 2+ 3+ 

Loss 

(logRatio<-0.2) 

0 / 1 

(0 %) 
1 0 0 0 

Neutral 

(-0.2 < logRatio < 0.2) 

9 / 132 

(6.8%) 
123 2 3 4 

Gain 

(logRatio > 0.2) 

8 / 13 

(61.5%) 
5 2 3 3 
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3.3 A Network of Non-Random ITRs Define Relationships between GC Targets 
A major goal of our study was to identify non-coincidental ITRs between the 22 GC 

targets in a systematic, unbiased, and statistically rigorous manner. We developed a 

statistical method called Dimension Reduction Permutation (DRP) for this purpose (see 

Methods section 2.4). Briefly, DRP identifies non-random ITRs between targets by 

comparing the numbers of tumor samples exhibiting a particular ITR (associations 

between distinct alterations) against a null distribution of background ITRs generated 

through random permutation. Compared to other methods such as hierarchical clustering 

and correlation tests, DRP provides additional sensitivity in identifying ITRs, without 

requiring a priori knowledge of specific gene functions (Figure 3-5).  

We uncovered several significant ITRs associated with the 22 GC targets. These target 

pairs were either amplified in a mutually exclusive (ME) manner in different tumors, or 

co-amplified (CA) in the same tumor (Figure 3-3 and Table A1). Functionally, the GC 

ITRs tended to involve two specific target classes– a) genes related to RTK/RAS 

signaling, including KRAS, FGFR2, ERBB2, EGFR, and MET, and b) genes related to 

transcription factor biology (MYC, GATA4, GATA6, and KLF5). For example, tumors 

exhibiting KRAS amplifications were largely distinct from tumors exhibiting ERBB2 or 

FGFR2 amplification (p=0.02 and p=0.005 for KRAS/ERBB2 and KRAS/FGFR2 

respectively), while tumors exhibiting MET amplifications were distinct from tumors 

with FGFR2 amplifications (p=0.03; Figure 3-6 and Table A1).  Likewise, GATA4, 

GATA6 and KLF5 were significantly co-amplified with MYC (KLF5: p=0.0005; GATA4: 

p=0.008; GATA6: p=0.01), while KLF5 and GATA4 amplifications were mutually 

exclusive to one another (p=0.01). 
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Other notable ITRs included a significant coamplification interaction between EGFR and 

MYC (p = 0.002), and between ERBB2 and CCNE1 (p=0.05) (Figure 3-7), a co-

amplification pattern recently linked to trastuzumab resistance in breast cancer (Scaltriti, 

Eichhorn et al. 2011). Taken collectively, these results support the existence of a complex 

functional network of ITRs in GC. They provide evidence that as opposed to each target 

behaving independently from one another, the presence of one target in a GC is likely to 

exert a profound influence on the repertoire of other targets expressed in that same tumor.  



 

 

47 

 

Figure 3-5 Hierarchical clustering of GCs using genes exhibiting recurrent focal 
amplifications 

In the heatmap, each row represents a different focally amplified amplified gene from the 
highest recurrent regions (Table 1 in Main Text). Each column represents an individual 
tumor exhibiting amplifications of these genes (total 113 tumors). The red color gradient 
(top right) highlights the degree of copy number amplification. Hierarchical clustering 
was performed both row and column-wise. The highlighted region identified ERBB2 and 
CCNE1, which exhibit a significant co-amplification pattern as identified by DRP.  
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Figure 3-6 Mutually Exclusive Genomc Alterations 

Focal regions exhibiting mutually exclusive patterns of genome amplification. 
Chromosomal diagrams were created using Circos software (Krzywinski, Schein et al. 
2009). Circular tracks from outside to in: Genomic positions by chromosomes (black 
lines are cytobands, red lines are centromeres); summarized CNA values in gastric 
tumors, summarized CNA values in normal gastric samples. Blue lines indicate pairs of 
focal regions (genes) exhibiting significant patterns of mutually exclusive genomic 
amplification identified by DRP analysis (p<0.05; EGFR/KRAS – p=0.05). Genes 
involved in RTK/RAS signaling are highlighted in red. 

Table A1 provides a complete list of significant mutually exclusive relationships for 
amplifications.   
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Figure 3-7 Co-Amplified Genomic Alterations 

Focal regions exhibiting patterns of genomic co-amplification. Orange lines indicate pairs 
of focal regions (genes) exhibiting significant patterns of genomic co-amplification 
identified by DRP analysis (p<0.05). Genes involved in RTK/RAS signaling are 
highlighted in red.  

Table A1 provides a complete list of significant co-alteration relationships for 
amplifications.   
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3.4 Genomic Alterations in RTK Signaling Genes - Frequent, Mutually Exclusive, 
and Associated with Patient Survival in GC 
Motivated by the clinical success of trastuzumab and the availability of other RTK-

targeting drugs in the GC translational pipeline (Asaoka, Ikenoue et al. 2011), we decided 

to characterize the RTK genomic alterations and their impacts on patient outcome. A 

heat-map representation of the SNP array data confirmed that the four amplified RTKs 

(FGFR2, ERBB2, EGFR and MET) were mutually exclusive to one another (Figure 3-8A). 

In addition, KRAS genomic amplifications were also mutually exclusive to the other 

RTKs (Figure 3-8A), suggesting these five components may activate the same 

downstream pathway in GC (Figure 3-9). The KRAS amplifications are examined in more 

detail in the next section. 

Taken collectively, RTK/RAS genomic amplifications occurred in approximately 37% of 

the entire GC cohort (Figure 3-8B). The most frequently amplified RTK/RAS component 

was FGFR2 (9.3%), followed by KRAS (8.8%), EGFR (7.7%) and ERBB2 (7.2%). Of 72 

tumors exhibiting amplification in at least one RTK/RAS component, 73.6% (53/72) 

exhibited amplification of only one component, and 26.4% (19/72) tumors exhibited high 

level amplification of one component with low level amplification of another. Only two 

tumors exhibited high level amplification of two RTK/RAS components (black arrows in 

Figure 3-8A). Taken collectively, these results suggest that 37% of the GC population is 

thus potentially targetable by a RTK/RAS directed therapy. 

To assess the prognostic impact of RTK amplifications in GC, we performed a survival 

analysis comparing the clinical outcome of patients bearing tumors with RTK 

amplifications compared to patients with tumors lacking RTK amplification. In a 
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univariate analysis, patients with RTK amplified tumors (FGFR2, ERBB2, EGFR, MET) 

experienced poor survival outcome compared to patients with RTK amplification-

negative cancers (p=0.01, Hazard Ratio (HR) 1.636, 95% Confidence Interval (CI) (1.101, 

2.432); Figure 3-10). Moreover, in multivariate Cox regression models including RTK 

amplification status, stage, grade and treatment status (surgery alone or 5-FU adjuvant 

chemoradiation), RTK amplification status was shown to be an independent prognosis 

predictor (p = 0.01, HR 1.966, 95% CI (1.180, 3.279)) (Table 3-3). The adverse 

prognosis of RTK-amplified GCs was also largely independent from chromosomal 

instability (p=0.07), indicating that it is not a mere consequence of increased aneuploidy 

(Table 3-3) (Sanchez-Perez, Garcia Alonso et al. 2009). 

To evaluate individual RTKs, we performed a follow-up univariate Cox model analysis 

considering the four different amplified RTKs (FGFR2, ERBB2, EGFR and MET) as 

independent factors. Patients with ERBB2-amplified tumors and MET-amplified tumors 

were found to exhibit the worst prognosis (ERBB2: p=0.0006, HR 2.824, 95% CI (1.558, 

5.119); MET: p=0.002, HR 2.744, 95% CI (1.190, 6.327)) (Table 3-4). The adverse 

prognostic impact of ERBB2 amplification was also observed in a multivariate Cox 

model with adjustment for tumor stage and grade (Table 3-5) (Tanner, Hollmen et al. 

2005; Gravalos and Jimeno 2008). Thus, among the four different RTKs, ERBB2 

amplifications appear to exert the strongest prognostic impact in GC.  
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Figure 3-8 Genomic Alterations of RTK/RAS Signaling Components in GC 

A) Mutually exclusive amplification patterns of RTK/RAS signaling components. In the 
heatmap, each row represents a different RTK/RAS signaling component. Each column 
represents an individual tumor exhibiting RTK/RAS amplification (72 tumors). The red 
color gradient (top right) highlights the degree of copy number amplification. Black 
arrows highlight two tumors exhibiting high level amplifications in two RTK/RAS 
components.  

B) Overall frequency of RTK/RAS Genomic Alterations in GC. The pie chart displays 
the different GC subgroups exhibiting RTK/RAS amplification. GCs exhibiting at least 
one RTK/RAS amplification event comprise a collective 37% of the GC cohort analyzed.  
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Figure 3-9 Network Diagram Showing Relationship of RTK Signaling to RAS 

FGFR2 ERBB2 EGFR MET

KRAS

Proliferation, 
survival …
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Table 3-3 Multivariate analysis comparing RTK amplification status with tumor 
stage, grade, adjuvant treatment and genome instability 

(Outcome: overall survival, relative to patients lacking RTK amplification).  

Model 1 (Predictors: RTK Amp, Stage ,Grade and 
Adjuvant Treatment) 

Hazard Ratio (95% CI)  P-value 

RTK Amp vs RTK Absent 1.966 (1.180, 3.279) 0.01 

Stage 2 vs Stage 1 2.329 (0.867, 6.254) 0.09 

Stage 3 vs Stage 1 6.522 (2.712, 15.686) 2.8E-05 

Stage 4 vs Stage 1 8.576 (3.280, 22.425) 1.2E-05 

Poorly Differentiated vs Moderately to well 
Differentiated 

1.058 (0.642, 1.741) 0.8 

Surgery alone vs Surgery + 5 FU 0.951 (0.556, 1.628) 0.3 

Model 2 (Predictors: RTK Amp and Genomic 
Instability*) 

Hazard Ratio (95% CI)  P-value 

RTK Amp vs RTK Absent 1.495 (0.970, 2.304) 0.07 

High CNA vs Low CNA 1.228 (0.823, 1.833) 0.3 

Significant p-values are shown in bold type. *Genomic Instability was inferred based on 
the number of copy number altered cytobands for each tumor sample (see Methods 
section 2.3).  
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Table 3-4 Univariate analysis analyzing the prognostic impact of individual RTK 
amplifications 

(Outcome: overall survival, relative to patients lacking RTK amplifications) 

Model 3 (Predictors: RTK Amp vs RTK Absent) Hazard Ratio (95% CI)  P-value 

EGFR Amp vs RTK Absent 1.179 (0.589, 2.360)  0.6  
ERBB2 Amp vs RTK Absent 2.824 (1.558, 5.119)  0.0006  
FGFR2 Amp vs RTK Absent 1.098 (0.549, 2.196)  0.8  
MET Amp vs RTK Absent 2.744 (1.190, 6.327)  0.002  
Significant p-values are shown in bold type. 

 

Table 3-5 Multivariate analysis comparing individual RTK amplification status with 
tumor stage and grade 

(Outcome: overall survival, relative to patients lacking RTK amplifications) 

Model 4 (Predictors: RTK Amp, Stage and 
Grade) Hazard Ratio (95% CI)  P-value 

EGFR Amp vs RTK Absent 1.160 (0.570, 2.360)  0.7  
ERBB2 Amp vs RTK Absent 3.691 (1.985, 6.863)  3.7E-05  
FGFR2 Amp vs RTK Absent 1.227 (0.609, 2.471)  0.6  
MET Amp vs RTK Absent 1.358 (0.564, 3.269)  0.5  
Stage2 vs Stage 1 1.968 (0.816, 4.744)  0.1  
Stage3 vs Stage 1 4.969 (2.325, 10.621)  3.5E-05  
Stage4 vs Stage 1 8.414 (3.887, 18.213)  6.5E-08  
Poorly Differentiated vs Moderately to well 
Differentiated 0.996 (0.665, 1.491)  1.0  
Significant p-values are shown in bold type. 
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3.5 KRAS-genomic Amplifications Highlight a Previously Underappreciated GC 
Subgroup  
KRAS amplifications were frequently observed in our series, occurring in 9% of patients. 

This finding is of interest, since canonical activating mutations in KRAS at codons 12 and 

13 are strikingly infrequent in GC, unlike other GI cancers (e.g. colorectal and pancreatic 

cancer (Lievre, Bachet et al. 2006; Mita, Toyota et al. 2009)). Confirming these earlier 

studies (Mita, Toyota et al. 2009), the KRAS mutation rate in our own series was 

extremely low - among 139 GCs genotyped for KRAS codon 12 and 13 mutations, only 

one tumor exhibited a KRAS mutation (G13D in 069LYK). We thus hypothesized that 

KRAS genome amplification, rather than mutation, may represent a predominant 

mechanism for KRAS activation in GC. 

To obtain additional evidence that KRAS genomic amplifications represent a distinct GC 

molecular subgroup, we performed a Kaplan Meier survival analyses comparing 

outcomes of patients with KRAS amplified samples versus patients with tumors lacking 

RTK or KRAS amplification. Patients with KRAS-amplified tumors exhibited 

significantly poorer prognosis (p=0.01, HR 2.158, 95% CI (1.172, 3.971) (Figure 3-10). 

Supporting the robustness of this survival association, similarly significant associations 

were observed when patients with KRAS-amplified tumors were compared against 

patients lacking KRAS-amplification but irrespective of RTK amplification, or when the 

copy number threshold defining KRAS amplification was relaxed (p=0.06, HR 1.744, 

95% CI (0.973, 3.127); p=0.01, HR 1.665, 95% CI (1.114, 2.488); Figure 3-11).  

To benchmark the prognostic effect of KRAS amplification against other RTKs, we 

applied a univariate Cox regression model consisting of all five genes. Similar to ERBB2 
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and MET amplifications, GC patients with KRAS amplifications also exhibited 

significantly worse prognosis relative to patients with tumors lacking either RTK or 

KRAS amplifications (p=0.02, HR 2.116, 95% CI (1.155, 6.940)) (Table 3-6), however 

this association may be related to tumor stage (p=0.2, HR 1.455, 95% CI (0.790, 2.682)) 

(Table 3-7).  

Finally, to provide functional evidence that KRAS genomic amplification represents an 

important ‘driver’ event in KRAS-amplified GCs, we performed genetic knockdown 

experiments. siRNA-mediated knockdown of KRAS in KRAS amplified and KRAS-

mutated GC cell lines caused significant reductions in proliferation but not in KRAS-wild-

type lines, supporting an earlier report (Mita, Toyota et al. 2009) (Figure A2). These 

results suggest that KRAS amplification in GC likely define a specific subgroup of poor 

prognosis patients for which KRAS signaling in tumors is critical. 
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Figure 3-10 Genomic Alterations of RTK/RAS Signaling Components in GC (cont'd) 

(above) Kaplan-Meier survival analysis comparing outcomes of patients with tumors 
exhibiting RTK amplification (either FGFR2, ERBB2, EGFR, or MET) amplification to 
patients with tumors lacking RTK amplification. Patients with tumors exhibiting focal 
KRAS amplifications were included in analysis, and fall into the RTK low/no CNA 
group. Overall survival was used as the outcome metric.  

(bottom) Kaplan-Meier survival analysis comparing outcomes of patients with tumors 
exhibiting KRAS amplification (15 patients) to patients with non-RTK/KRAS amplified 
tumors. Overall survival was used as the outcome metric. The inset photo displays a 
patient tumor (ID 49375233) with KRAS amplification confirmed by FISH analysis (blue 
– DAPI nuclear stain, green – KRAS FISH probe, red = centromere 12 probe). 

 

FISH experiment was performed by Kakoli Das and was necessarily included to present 
the whole story. 
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Figure 3-11 Kaplan-Meier Survival Analysis based on KRAS Copy Number Status 

A) KM survival graph comparing outcomes of patient with tumors exhibiting KRAS 
amplification against patients with no/low KRAS CNA irrespective of RTK amplification 
status. The 17 KRAS-amplified patients correspond to the same patients identified in the 
Figure 3-8A heat-map presented in the Main Text.  

B) KM survival graph comparing outcomes of patients with tumors exhibiting high 
KRAS copy number, defined as the top 25% of patients exhibiting a high SNP6 logRatio 
(high KRAS LR) vs the remaining 75% of patients (low KRAS LR). 
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Table 3-6 Univariate analysis of prognostic associations for individual RTK/KRAS 
amplifications 

(Outcome: overall survival, relative to patients lacking RTK or KRAS amplifications) 

Model 1 (Predictors: RTK/KRAS Amp vs 
RTK/KRAS Absent) Hazard Ratio (95% CI)  P-value 

EGFR Amp vs RTK/KRAS Absent 1.306 (0.647, 2.638)  0.5  
ERBB2 Amp vs RTK/KRAS Absent 3.141 (1.714, 5.756)  0.0002  
FGFR2 Amp vs RTK/KRAS Absent 1.217 (0.603, 2.453)  0.6  
MET Amp vs RTK/KRAS Absent 2.993 (1.291, 6.940)  0.01  
KRAS Amp vs RTK/KRAS Absent 2.116 (1.155, 3.879)  0.02  

 Significant p-values are highlighted in bold type.  
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Table 3-7 Multivariate analysis comparing KRAS and RTK Amplifications with 
tumor stage and grade 

Model 2 (Predictors: RTK/KRAS Amp, Stage and 
Grade) Hazard Ratio (95% CI)  P-value 

EGFR Amp vs RTK/KRAS Absent 1.231 (0.600, 2.528)  0.6 
ERBB2 Amp vs RTK/KRAS Absent 3.909 (2.082, 7.340)  2.2E-05  
FGFR2 Amp vs RTK/KRAS Absent 1.296 (0.639, 2.631)  0.5  
MET Amp vs RTK/KRAS Absent 1.440 (0.594, 3.493)  0.4  
KRAS Amp vs RTK/KRAS Absent 1.455 (0.790, 2.682)  0.2  
Stage2 vs Stage 1 1.935 (0.802, 4.670)  0.1  
Stage3 vs Stage 1 4.786 (2.230, 10.269)  5.8E-05  
Stage4 vs Stage 1 8.053 (3.702, 17.515)  1.4E-07  
Poorly Differentiated vs Moderately to well 
Differentiated 1.012 (0.675, 1.517)  1.0  
Significant p-values are highlighted in bold type.  

 

 

 

 

 

 

 

 



 

 

65 

3.6 FGFR2 Amplifications in GC: Relationships to Gene Expression, Clinical 
Outcome, and Drug Sensitivity 
 FGFR2 was being amplified in 9-10% of GCs in our series (Table 3-1). Consistent with 

FGFR2 being the main driver of amplification in this locus, intersection of the 

amplification regions across twenty FGFR2-amplified tumors confirmed that FGFR2 was 

the sole gene in this region exhibiting common copy-number gain (Figure 3-12). 

Validating the SNP data, a quantitative PCR (qPCR) analysis using primers directed 

towards FGFR2 confirmed that samples with high FGFR2 qPCR values were associated 

with FGFR2 amplification. (p = 0.0006, Fisher test) (Figure 3-13). FISH analysis using 

BAC probes targeting FGFR2 also confirmed FGFR2 gene amplification in patient 

tumors and cell lines, relative to a centromere 10 probe (Figure 3-14). 

FGFR2 has been previously proposed as a potential therapeutic target in GC (Asaoka, 

Ikenoue et al. 2011), but little is known regarding the impact of FGFR2 amplification on 

gene expression and other clinicopathologic parameters. To investigate relationships 

between FGFR2 gene amplification and FGFR2 gene expression, we analyzed gene 

expression profile data for 156 of the 193 GCs analyzed by SNP arrays in this study, 

which we have described in an earlier report (Ooi, Ivanova et al. 2009). FGFR2-

amplified GCs indeed exhibited significantly increased FGFR2 gene expression levels 

(Figures 3-15 and 3-16), when compared against a reference set of 100 normal gastric 

samples, or to non-FGFR2 amplified tumors (Kruskal-Wallis test :  p=6.7e-9, Wilcoxon 

test : p=1.7e-7 (vs normal) and p=1.9e-5 (vs non-FGFR2 amplified GCs). In comparison, 

ATE1 and BRWD2, two genes located adjacent to FGFR2 exhibited less significant levels 
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of copy number/gene expression correlation (p=0.004-0.3, relative to normals) (Figure 3-

17), further supporting FGFR2 as the major driver gene in this region. 

Examining clinicopathologic variables, FGFR2-amplified GCs did not exhibit any 

significant associations with histology (Lauren’s; p=0.8, Grade; p=0.8; or Tumor Stage; p 

= 0.9) or patient survival (p= 0.8, Table 3-4). However, in an expanded gene expression 

data set of 398 gastric tumors derived from four distinct cohorts of which the previous 

156 GCs form a subset (see Methods section 2.7 and Table 3-8), high FGFR2 expression 

(compared to normals, Figure 3-18) was associated with poor survival outcome in a 

univariate analysis (p=0.01, HR 1.492, 95% CI (1.094, 2.035)) (Figure 3-19). In a 

multivariate Cox regression model, samples with FGFR2 high expression tended to 

exhibit borderline significance after adjusting for stage and grade (p=0.08, HR 1.321, 

95% CI (0.966, 1.807)) (Table 3-9). This result suggests that FGFR2 overexpression in 

GC may be of prognostic relevance.  

Dovitinib (TKI258) is an investigational multi-targeting oral tyrosine kinase inhibitor 

with potent inhibitory activity against bFGF receptors-1,2,3, VEGF receptors-1,2,3, 

PDGFR and c-KIT (Lee, Lopes de Menezes et al. 2005; Trudel, Li et al. 2005). In pre-

clinical models, dovitinib has exhibited anti-tumor activity in FGFR1 amplified breast 

cancer (Dey, Bianchi et al. 2010), and in several phase one clinical trials has shown good 

therapeutic profiles in human patients (Ocio, Mateos et al. 2008; Sarker, Molife et al. 

2008). To test the potential efficacy of dovitinib in FGFR2-amplified GC, we treated 

FGFR2-amplified and non-amplified GC lines (Figure A3-A) with increasing dosages of 

dovitinib, to determine the GI50 concentration (the drug concentration required to cause 
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50% growth inhibition). We observed potent growth inhibitory activity of dovitinib 

specifically in FGFR2 amplified gastric cancer cell lines with GI50 dosages in the sub 

micromolar range (KATO-III : 0.12uM; SNU-16 : 0.17uM, Figure A3-B). Decreased 

phosphorylation of  FGFR2, ERK and AKT was also observed after 1 hour of dovitinib 

treatment (Figure A3-C). Besides inhibiting cell proliferation, dovitinib treatment also 

induced a significant decrease in soft-agar colony formation in FGFR2-amplified lines 

(KATO III: p=0.002; SNU16 : p=0.05; Figure A3-D and Figure A4). In a cell death assay, 

dovitinib treatment induced apoptosis, measured by caspase 3/7 activation, in SNU-16 

cells after 24 hours of treatment, but not in KATO III cells (Figure A3-E). These results 

suggest that dovitinib treatment can inhibit several pro-oncogenic traits in FGFR2-

amplified lines, but additional factors may be required for FGFR2-amplified cells to 

undergo apoptosis upon dovitinib treatment.  

To evaluate the efficacy of dovitinib in an in vivo model, we performed drug treatment 

experiments using an FGFR2-amplified primary human gastric cancer xenograft model, 

comparing dovitinib responses to the positive control drug 5-FU. Mean tumor sizes of 

vehicle treated mice reached 1163 mm3 at day 25 post treatment, while treatment with 5-

FU at 20 mg/kg (Qd x 5/wk x 2 wks, i.p.) produced a reduced mean tumor size of 518 

mm3 (Total Growth Inhibition (TGI) = 63%, p = 0.08) after the same period. Importantly, 

treatment with dovitinib at 30 mg/kg and 50 mg/kg (Qd x 25 days, p.o.) significantly 

inhibited tumor growth compared to vehicle treated tumors (p = 0.006 and 0.002, 

respectively), with final tumor sizes of 194 and 53 mm3, respectively, at day 25 post 

treatment (Figure A3-F). Dovitinib may thus represent a promising subtype-specific 

therapy for FGFR2-amplified GCs. 
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Figure 3-12 FGFR2 Gene Amplification in GC 

Heatmap showing the FGFR2 gene amplification region in individual GC samples (20 
tumors). Each row indicates one GC sample with the amplified region in red. Intensity of 
the red bar indicates the level of copy number amplification. Genes located in this region 
are shown at the bottom. The intersection of these amplified regions covers only the 
FGFR2 gene (red box, gene outlined at bottom). 
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Figure 3-13 qPCR Analysis of FGFR2 Amplification in GC 

Quantitative PCR of genomic DNA from 63 GC primary tumors, performed using 
FGFR2 primers flanking the GISTIC identified amplification peak in intron 2. A) The X-
axis shows samples classified into three categories -  normal (black), tumors without 
FGFR2 amplification (grey), and tumors with FGFR2 amplification (red, including 
samples with high copy number level (Figure 3-8A) and intron 2 copy number). The Y-
axis indicates the qPCR DNA level. The horizontal broken black line indicates the cutoff 
for qPCR amplification. A Fisher exact test shows that samples with high FGFR2 qPCR 
values are associated with FGFR2 amplification (p = 0.0006). Samples were internally 
normalized against a LINE1 control. B) An X-Y scatter plot of FGFR2 qPCR values and 
FGFR2 copy number based on SNP arrays. x-axis indicates qPCR value and y-axis 
represents the copy number logRatio. Red, orange and grey colored samples represent 
high CNA (Figure 3-8A), focal high CNA (intron 2) and no/low CNA samples 
respectively. The Spearman correlation is 0.84, showing a positive correlation between 
FGFR2 copy number and qPCR values (p < 2.2e-16) 
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Figure 3-14 FGFR2 genomic amplification confirmed by FISH. 

The photo displays a patient tumor (ID 21080055) with FGFR2 amplification and two 
FGFR2-amplified cell lines KATO-III and SNU16 confirmed by FISH analysis. Green 
signals indicate the FGFR2 FISH probe, red signals probes to centremore 10.  

FISH experiment was performed by Kakoli Das and was necessarily included to present 
the whole story. 
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Figure 3-15 FGFR2 gene expression in clinical specimens. 

FGFR2 gene expression was compared across three categories, each represented by a 
box-plot: non-malignant gastric tissues (normal) (n = 100), tumors exhibiting no/low 
FGFR2 CNA (n = 139), and tumors exhibiting high FGFR2 CNA (n = 17). mRNA 
comparisons were based on 156 GCs where gene expression data was available, 
representing a subset of the 193 GCs analyzed by SNP arrays. FGFR2 gene expression 
was inferred from Affymetrix microarrays (FGFR2 probe 211401_s_at). FGFR2 mRNA 
levels are significantly higher in samples with FGFR2 high CNAs compared to the other 
two categories (p = 6.7e-9, Kruskal Wallis test). Tumors exhibiting FGFR2 amplification 
exhibit significantly increased FGFR2 gene expression compared to tumors exhibiting 
no/low FGFR2 CNA or non-malignant samples (p = 1.9e-5  and 1.7e-7, Wilcoxon test).  
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Figure 3-16 Scatter plot of gene expression and copy number for FGFR2 

The figure shows an XY scatter plot of FGFR2 gene expression and FGFR2 copy 
number. x-axis - log2 transformed mRNA expression values; y-axis - copy number 
logRatio. Red, grey and blue colored samples represent high CNA, low/no CNA, and 
normal samples respectively.  Spearman correlation value is indicated as R = 0.38, with p 
value = 3.3e-7. 
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Figure 3-17 Relationship between Copy Number and Gene Expression for ATE1 
and BRWD2, Genes Adjacent to FGFR2 

Primary GCs exhibiting genomic amplification of the FGFR2 locus were also assessed for 
relationships between copy number status and gene expression in A,C) ATE1 (upstream of 
FGFR2) and B,D) BRWD2 (downstream of FGFR2). For each gene, mRNA expression was 
compared across three categories, each represented by a box-plot  - non-malignant gastric tissues 
(normal) (n =100 for A,B, n =18 samples with available copy number information for C,D), 
tumors exhibiting no/low FGFR2 gene locus CNA (n = 139), and tumors exhibiting high FGFR2 
gene locus CNA (n = 17).  ATE1 and BRWD2 expression was inferred from Affymetrix 
microarrays (ATE1 234584_s; BRWD2 probe 218090_s_at).  

A) ATE1 expression levels in amplified tumors are observed to be significantly higher than 
normal samples (P=0.004, Wilcoxon test, underlined). However this significance level is weaker 
than that observed for FGFR2 (p=1.7e-7, see Main Text). 

B) BRWD2 expression levels in amplified tumors are not significantly higher than normal 
samples (P=0.3, Wilcoxon test, underlined). 

C) XY scatter plot of ATE1 expression with copy number information. Spearman correlation R is 
0.16 with p value = 0.04. 

D) XY scatter plot of BRWD2 expression with copy number information. Spearman correlation R 
is 0.16 with p value = 0.04. 
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P= 0.01516 P= 0.0001555 P= 2.918e-08 P= 0.001448

P= 0.003591 P= 0.3055 A B
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Table 3-8 Clinical Characteristics of GC Patient Cohorts Used in Gene Expression 
Analysis 

 SG U133A (51) SG U133B (248) AU(70) UK(29) 
Age 

range 38-86 23-92 32-85 53-84 
mean,S.D 64.0,  11.2 65.4,  12.5 65.5,  12.5 71.7,  9.11 

Gender 
Male 33 161 48 16 

Female 18 87 22 13 
Lauren classification 

Intestinal 27 138 34 20 
Diffuse 11 86 30 6 
Mixed 13 24 6 3 

Grade 
Moderate to well 

differentiated 
20 96 24 13 

Poorly differentiated 30 149 46 15 
Unknown 1 3 0 1 

Stage 
1 10 40 13 6 
2 11 43 16 4 
3 15 88 33 15 
4 12 76 8 4 

Unknown 3 1 0 0 
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Figure 3-18  FGFR2 Overexpression in GCs Relative to Normal Gastric Samples 

The graph depicts 236 normal gastric tissues and 399 primary gastric tumors, arranged 
along the x-axis in ascending order of their FGFR2 expression level. FGFR2 gene 
expression levels were inferred using Affymetrix microarrays (FGFR2 probe 
211401_s_at). At the cut-off threshold level of >2x the average level in normal tissues 
(dotted line), approximately 18% of gastric tumors exhibit high FGFR2 levels (marked in 
red).  

 

Primary Normals Primary Tumors

Cutoff: >2 fold mean FGFR2 
expression in normal samples
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Figure 3-19 Kaplan-Meier survival analysis of GC patients by FGFR2 status 

Kaplan-Meier survival analysis comparing patients with tumors exhibiting high FGFR2 
gene expression, defined as 2 fold higher than the average FGFR2 gene expression level 
in normal samples (72 tumors) to patients with tumors exhibiting low FGFR2 gene 
expression (total = 398 patients, the 156 patients analyzed in Figure 3-15 are a subset of 
these 398 patients). Overall survival was used as the outcome metric.  
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Table 3-9 Multivariate analysis comparing high FGFR2 gene expression (>2-fold 
mean level in normal gastric tissues) with tumor stage and grade 

Model 1 (Predictors: FGFR2 Expression, Stage and 
Grade) Hazard Ratio (95% CI)  P-value 

FGFR2 High Expression vs FGFR2 Low 
Expression 1.321 (0.966, 1.807)  0.08  
Stage 2 vs Stage 1 1.643 (0.924, 2.922)  0.09  
Stage 3 vs Stage 1 4.593 (2.807, 7.514)  1.3e-09  
Stage 4 vs Stage 1 8.440 (5.009, 14.221)  1.1e-15  
Poorly Differentiated vs Moderately to well 
Differentiated 0.942 (0.718, 1.235)  0.7  
Significant p-values are highlighted in bold type. 
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3.7 GATA Factors and KLF5 are Candidate Lineage-Specific Oncogenes in GC 
Finally, in addition to classical oncogenes, we analyzed the SNP array data set to identify 

novel genes not previously reported to be amplified in GC. We were particularly 

interested in “lineage-specific” oncogenes, a recently-described class of genes that 

contribute to tumorigenesis in specific developmental lineages, and which tend to be 

transcription factors (Garraway and Sellers 2006). To identify candidate lineage-specific 

factors in GC, we filtered the GC SNP data against lists of genes highlighted as amplified 

in comparable large scale copy number studies from glioblastoma, lung adenocarcinoma 

and a study covering multiple cancer types (Weir, Woo et al. 2007; Chaudhuri, Handcock 

et al. 2008; Beroukhim, Mermel et al. 2010). Our analysis revealed three transcription 

factors, GATA4, GATA6 and KLF5 to be specifically amplified in GC. Interestingly, 

recent data has implicated GATA factors, and particularly GATA6, in gastrointestinal 

cancer. For example, GATA6 has been shown to be amplified in pancreatic cancer, and 

may also exhibit oncogenic properties in oesophageal cancer (Kwei, Bashyam et al. 2008; 

Alvarez, Opalinska et al. 2011).  

KLF5 amplification was observed in 11% of GCs (22 tumors). Intersection of the 

minimal common amplified region in these twenty-two samples highlighted only the 

KLF5 gene (Figure 3-20A), and KLF5 amplifications were confirmed in both cell lines 

and primary tumors (Figure 3-20B). KLF5 amplifications were also significantly 

associated with increased KLF5 gene expression (p=0.00086, Wilcoxon test), consistent 

with KLF5 behaving as the driver gene in this region (Figure 3-21). To define prevalent 

biological themes associated with KLF5 amplification, we generated a KLF5 expression 

signature of 425 genes (175 upregulated, 250 downregulated, FDR<0.001) by comparing 
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the mRNA expression profiles of the top and bottom 10% of KLF5-expressing tumors. 

Gene set enrichment analysis (Mootha, Lindgren et al. 2003; Subramanian, Tamayo et al. 

2005) of genes upregulated in KLF5 expressing tumors revealed significant enrichments 

in genesets related to early cancer (gastric, ovarian), epithelial-mesenchymal transition, 

MYC targets, and  embryonic stem cell networks (p-values ranging from 0 to 2x10-7;). 

These results support a plausible role for KLF5 in GC development and progression.  

To establish a functional role for KLF5 in GC, we performed Western blotting to screen 

KLF5 protein levels in GC cell cells. SNU5 and YCC3 cells, confirmed to exhibit KLF5 

genomic amplifications by both SNP arrays and FISH analysis also exhibited high KLF5 

protein expression (Figure A5-A). Conversely, SNU1, a non-KLF5 amplified line, 

expressed relatively low KLF5 protein levels and normal KLF5 copy number levels. To 

investigate the functional consequences of KLF5 in GC cells, we treated SNU5 and 

YCC3 with KLF5 siRNAs, and confirmed successful KLF5 knockdown at the protein 

level (Figure A5-B, top Western lots). Both SNU5 and YCC3 cells silenced with KLF5 

siRNAs resulted in a significant reduction in cell proliferation capacity compared to cells 

treated with scrambled siRNAs (p = 0.006 and p=0.011 respectively). Similar results 

were observed when these experiments were repeated using multiple independent and 

non-overlapping KLF5 siRNAs, indicating that this growth inhibition is likely not an off-

target effect. Besides growth proliferation, KLF5 siRNA treatment also reduced soft-agar 

colony formation in YCC3 cells (p=0.01, experimental results not shown). Notably, a 

similar experiment could not be performed for SNU5 cells as they do not form colonies 

in soft agar. To address the consequences of KLF5 overexpression, we then ectopically 

expressed KLF5 in SNU1 cells, which normally express low KLF5 levels. Compared to 
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control transfected cells, KLF5 over-expressing SNU1 cells exhibited enhanced cell 

proliferation (p<0.0001) and soft-agar colony formation (p=0.04; experimental results not 

shown). These results suggest that KLF5 may be important for various cancer cell traits 

in GC.  
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Figure 3-20 KLF5 amplifcation in GC 

A) Heatmap showing the KLF5 gene amplification region in 22 GC samples. Each row indicates one GC 

sample with the amplified region in red. Intensity of the red bar indicates the level of copy number 

amplification. Genes located in this region are shown at the bottom. The intersection of these amplified 

regions covers only the KLF5 gene (red box). B) KLF5 FISH analysis. KLF5 gene amplifications were 

confirmed in a primary tumor (ID 98748381) and cell lines (YCC3). Green signals represent the KLF5 

FISH probe. Red signals in the primary tumor represent hybridaztion of a control LSI D13S319 probe, 

which binds close to the Chromosome 13 centromere. Red signals on right represent a Centromere 13/21 

probe, confirming two Chromosome 13s and two Chromosome 21s.  

 

 

FISH experiment was performed by Kakoli Das and was necessarily included to present 
the whole story.
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Figure 3-21 KLF5 Gene Expression is associated with copy number status 

KLF5 gene expression in clinical specimens. KLF5 mRNA expression levels were compared between 

samples with high KLF5 copy number (high CNA) versus samples with normal or low-level amplification 

(no/low CNA). KLF5 gene expression was inferred from Affymetrix microarrays (KLF5 probe 

209212_s_at). P-values (Wilcoxon test) indicate that KLF5 mRNA levels are significantly higher in 

samples with KLF5 copy number gains.  
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Chapter 4 Application of CNA landscape in other associated 
GC genomics studies 
Cancer is a complex disease, multi-level cancer genomics data has to be integrated for a 

better understanding of the cancer development. For this purpose, a few large scale 

projects, such as TCGA studies in various types of cancers (2008; 2011; 2012; 2013; 

Kandoth, Schultz et al. 2013) were designed for integrative genomics analyses involving 

multiple genomics datasets including gene expression, DNA copy number, epigenetics 

and exome or whole genome sequencing. In this study, the genomic DNA copy number 

profiling is by far the largest sample size for Asian cohort using a high resolution SNP 

array, providing a useful resource for integrative studies with other type of data for GC 

research. 

There are many advantages of integrating data from different platforms in cancer research. 

Firstly, cancer driver genes usually undergo various mechanisms of genetic aberrations. 

Oncogene activation can be triggered through mutation, gene amplification or structural 

rearrangement (Tabin, Bradley et al. 1982), while a tumor suppressor gene loss of 

function can be activated through a classic “two-hit” hypothesis, by mutation, LOH, or 

genomic deletion (Lamlum, Ilyas et al. 1999). Combining data from several platforms 

may highlight a larger patient population associated with the driver gene. For example, 

PIK3CA has a 3.6% mutation and about 18% amplification in lung cancer (Okudela, 

Suzuki et al. 2007), these together suggest a higher percentage of lung cancer patients 

who can benefit from PIK3CA targeted treatment. Secondly, using data from more than 

one platform may help to enhance understanding of cancer subtypes. For example, 

integrative study of glioblastoma identified four subtypes, each subtype was 
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characterized by combined gene expression, somatic mutation and DNA CNAs 

information in a number of key genes: EGFR, NF1, and PDGFRA/IDH1 (Verhaak, 

Hoadley et al. 2010). Thirdly, integrative analysis can help to identify novel cancer 

associated genes. For examples, integration of somatic mutation or DNA copy number 

data with mRNA level gene expression may help to identify potential candidate genes 

with DNA associated mRNA level alterations. In this chapter we will demonstrate these 

advantages by applying the landscape of CNAs to integrate with other types of data in 

GC study. 
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4.1 Integration of CNA with Next Generation Sequencing can identify cancer driver 
genes 
Zang, Cutcutache et al. 2012 identified recurrent key genes’ somatic mutations in cell 

adhesion and chromatin remodeling pathway in GC by exome sequencing. One of the cell 

adhesion genes was found to be mutation in about 5% of total GC cases is FAT4. FAT4 

belongs to the E-cadherin family, a gene family that has been implicated in gastric cancer 

(Berx and van Roy 2009) and that may regulate non canonical Wnt/planar cell polarity 

signaling (Wang 2009). FAT4 is widely expressed in many tissue types and may have a 

key role in gastrointestinal tract development (Saburi, Hester et al. 2008; Mao, Mulvaney 

et al. 2011). Mutation pattern of FAT4 suggested it might play a tumor suppressor role in 

GC. In order to identify further evidence, we selected matched tumor normal pairs 

profiled by SNP6 array for copy number analysis. Indeed, we observed about 4% somatic 

deletions in the matched samples (83 pairs) (Fig 4-1).  In addition, with the matched 

mRNA gene expression data is available, we found that samples with FAT4 gene deletion 

are associated with extremely low FAT4 expression (p = 0.012, Fig 4-2). Another critical 

recurrently mutated gene reported in the paper is ARID1A, with ~8% prevalence in 110 

GC samples, which involves chromatin remodeling process. It’s important to study the 

functional effect of ARID1A to better understand its role in GC. However, it’s difficult to 

identify appropriate cell line model with ARID1A mutations. Instead, by using the copy 

number SNP array for GC cell lines, we observed two cell lines model with ARID1A 

deletions (Fig 4-1). Re-expression of ARID1A in these two cell lines repressed cell 

proliferation, suggesting its anti-oncogenic role. FAT4 and ARID1A are just two 

examples to show their genomic abnormality by multiple mechanisms, i.e., somatic 

mutation and genomic CNAs. There may be more genes of interest in GC identified 
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through other mechanisms; the data in this copy number study could serve as a useful 

resource for comprehensive study of genomic alterations at individual gene level 
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Figure 4-1 SNP array identifies FAT4 and ARID1A deletion in GC 

(above)A representative FAT4 genomic deletion (red arrow) in gastric cancer based on Affymetrix SNP 
array. Blue dots represent probes from SNP array, black lines are CBS segmented copy number logratio. 

(bottom) ARID1A genomic deletion (red arrow) in gastric cancer cell lines based on Affymetrix SNP arrays. 
Blue dots represent probes from SNP array, black lines are CBS segmented copy number logratio 
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Figure 4-2 FAT4 deletion in GC is associated with low mRNA expression 

Gastric cancers with FAT4 deletions (red lines) have significantly lower FAT4 expression compared to 
tumors without FAT4 deletions (blue lines). Black lines indicate normal gastric samples. 
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4.2 Integration of Copy Number Landscape with large scale of gene expression data 
can characterize cancer subtypes 
GC, like many other caner types, is a heterogeneous disease. Understanding and 

characterizing subtypes of GC is important for targeted therapy. In some cases, cancer 

subtypes could be characterized by a number of few classic oncogenes, such as RTKs, 

which could be therapeutic targets; in some other cases, cancer subtypes are characterized 

by a group of genes, ranging from tens to hundreds of genes. In GC, a number of studies 

have been performed to investigate molecular subtypes. Based on gene expression in a 

panel of GC cell lines, which mostly consist of cancer cells, GC has been categorized into 

two subtypes (Tan, Ivanova et al. 2011). This study provides clear clinical value as one of 

the two subtypes identified is associated with poor prognosis and more sensitive to 5-FU 

treatment. Recently, another study based on primary gastric samples identified three 

subtypes from consensus clustering of gene expression profiling (Lei, Tan et al. 2013). 

The three subtypes are messenchymal, proliferative, metabolic subtypes, named by their 

representative gene ontologies. In order to understand the genomic different among the 

three subtypes, we took the 138 overlapped samples with SNP array profiling and 

performed clustering using non-negative matrix factorization (Brunet, Tamayo et al. 2004; 

Carrasco, Tonon et al. 2006). Two groups of copy number profiles were identified; with 

one group has more CNAs at cytobands level and with more extreme CNAs (Fig 4-3). 

Enrichment analysis suggested that the proliferative harbored more CNAs compared to 

other two subtypes, while mesenchymal subtype is significant associated with low CNAs 

(Fig 4-4). We are also interested to know how the three subtypes are associated with focal 

CNA regions identified from Table 3-1. Consistent with its high level of CNAs, 

proliferative subtypes is associated with gains of KRAS, ERBB2, MYC and CCNE1, loss 
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of PTPRD and PDE4D. Overall the copy number landscape helped to further characterize 

the GC subtypes, and this may imply specific treatment strategies for patients belong to 

different subtypes. 
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Figure 4-3 Two clusters of copy number profiles 

(A) Consensus matrices of NMF consensus clustering of 138 samples for various numbers of 
clusters, K, from 2 to 5. Dark red indicates a high consensus index while dark blue indicates low 
consensus index. 
(B) The cophenetic correlation coefficients of corresponding matrices (from K = 2 to 5). This 
suggests two subgroups based on copy number profiling. 
(C) Heat map of cytoband copy number. The color in each cell indicates the level of copy number 
gain or loss for one cytoband in one tumor sample. 811 cytobands on chromosomes 1 through 22 
are indicated on the y-axis. On the x-axis are the tumor samples ordered by NMF clustering, with 
a white dashed line separating the CNA low and CNA high groups. 
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Figure 4-4 Genomic difference among three GC subtypes 

(above) The number of cytobands with CNA by subtype (P values by Kruskal–Wallis test).  

(bottom) The number of tumors in each subtype in the low or high CNA group (Bonferroni-adjusted P 
values by hypergeometric tests). 
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4.3 Integration of CNA to identify its association with long range epigenetic 
alterations 
Epigenetic changes have been suggested to play an important role in carcinogenesis. CG 

dinucleotide (CpG) methylation is frequently associated with tumor suppressor gene 

silencing (Feinberg and Vogelstein 1983; Jones and Baylin 2007), and CpG island (CGI) 

hyper- methylation in gene promoters has been associated with transcriptional silencing 

in cancer (Jones and Baylin 2007). By using genome-wide methylation microarray, 

studies in various cancers performed global methylome analysis to investigate epigenetic 

subtypes (Figueroa, Lugthart et al. 2010; Noushmehr, Weisenberger et al. 2010),  

methylation associated “CGI” shores (Irizarry, Ladd-Acosta et al. 2009), or long range 

epigenetic alterations (LRESs) (Coolen, Stirzaker et al. 2010). Our group recently 

initiated the effort to characterize methylome in GC by illumina 27k methylation arrays 

in about 300 gastric cases (Zouridis, Deng et al. 2012). This studies has successfully 

defined two subtype of GC by global CpG island methyaltion status, with one group 

exhibits high level of hypermethylation, named CIMP (CpG Island Methylation 

Phenotype) subtype, and another group with relatively high level of hypomethylation 

(non-CIMP subtype). CIMP subtype was associated with poor survival outcome and 

could be suggested for methylation inhibitor treatment.  

Hypomethylation can induce chromosome breakage events (Cadieux, Ching et al. 2006). 

To explore the potential of long range hypomethylation in tumor, this study applied a 

sliding window method to perform a screen across the whole genome to identify 24 

candidate regions of long range hypomethylation (hypo-LRRs). These regions tend to 

predominantly occurred in non-CIMP tumors. With available high-density copy number 
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data for this same gastric cohort, we are interested to test for any association between the 

hypo-LRRs and genome instability.  Specifically, we tested if tumors exhibiting specific 

hypo-LRRs were also prone to genome instability in those same regions. Strikingly, we 

found that the majority of hypo-LRRs were indeed significantly associated with increased 

genome instability (p=6.0x10-6, Figure 4-5). The association between hypo-LRR presence 

and genome instability was also observed at the level of individual hypo-LRRs (data not 

shown). While it is generally accepted that tumors exhibiting hypomethylation are 

associated with increased genome instability, to our knowledge this is the first time that 

an association between individual regions of hypomethylation and genome instability in 

those same regions has been demonstrated.  
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Figure 4-5 CNAs and hypomethylated long-range regions 

The boxplot presents data summarized from 24 hypo-LRRs, across 190 gastric cancers with 

methylation and copy number information. Hypo-LRRs were identified using an "Activity" score 

similar to that used to define LRESs, but analyzing hypomethylated CpGs rather than 

hypermethylated CpGs. X-axis : Each dot represents one hypo-LRR in one tumor. X-axis : Level 

of hypo-activity from 0  to 1, marking increasing hypomethylation from left to right. Y-axis : 

CNA level, represented by the LRR (log relative ratio). P values were calculated using a 

correlation test of standard deviation between CNA LRR and hypo-LRR activity. 
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Chapter 5  Discussion 

Here, we report a high-resolution genomic analysis of a large cohort of GC primary 

tumors and cell lines delineating the most prevalent molecular targets in this disease. 

While earlier reports analyzing GC copy number alterations have largely analyzed small 

patient populations or used low-resolution technologies (e.g. chromosomal CGH) (Peng, 

Sugihara et al. 2003; Tay, Leong et al. 2003; Kimura, Noguchi et al. 2004; Tsukamoto, 

Uchida et al. 2008; Tada, Kanai et al. 2010), these earlier studies were invaluable in 

benchmarking the reproducibility of our own data. For example, in a recent copy number 

analysis of 49 GCs using Agilent 44k arrays(Rossi, Klersy et al. 2011), concordant 

regions commonly identified in this study and ours include the frequent broad 

amplifications of chromosome 8 and 20,  losses of chromosome 16, and amplified genes 

such as ERBB2, EGFR, GATA4, MYC, KRAS and CCNE1. However, reflecting the 

increased size (193 vs 49) and resolution (44K vs 1.8 million SNP probes) of our study, 

we also detected amplifications of chromosome 18 and deletions of chromosome 6q, 

which were not detected in earlier work (Peng, Sugihara et al. 2003; Tay, Leong et al. 

2003; Kimura, Noguchi et al. 2004; Tsukamoto, Uchida et al. 2008; Tada, Kanai et al. 

2010; Rossi, Klersy et al. 2011). 

Using GISTIC, we identified 22 recurrently altered regions in GC that are likely to 

represent the most prevalent molecular targets. For several of these targets, we further 

confirmed the SNP array results using a variety of orthogonal methodologies, including 

IHC, FISH, and qPCR. A survey of genes in the 22 altered regions revealed that they 

could be broadly partitioned into three major functional categories: a) RTK/RAS 
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signaling (FGFR2, KRAS, ERBB2, EGFR, MET), b) transcriptional regulation (MYC, 

GATA4, GATA6, KLF5), and cell cycle control (CCND1, CCNE1, CDK6, CDKN2A/B, 

RB). As expected, many of these genes were already known to be associated with 

genomic alterations in GC (Hirono, Tsugawa et al. 1995; Tanner, Hollmen et al. 2005; 

Bizari, Borim et al. 2006; Turner and Grose 2010). Critically however, our analysis also 

identified several novel genes not previously known to be amplified or deleted in GC. For 

example, we observed for the first time frequent deletions of PARK2, a E3 ubiquitin 

ligase, in GC (Bedford, Lowe et al. 2011).  Mutations in PARK2 have been associated 

with early-onset Parkinson's disease (Healy, Falchi et al. 2008), and more recently 

PARK2 mutations and deletions have been observed in other cancers (Veeriah, Taylor et 

al. 2010). Another novel altered GC gene was CSMD1, a gene of uncertain function but 

which has been proposed as a tumor suppressor in breast cancer (Kamal, Shaaban et al. 

2010). Using IHC, we confirmed that up to 40% of GCs can exhibit CSMD1 protein loss 

or reduced expression. Addressing the functions of these novel altered genes, given their 

frequency of alteration in GC, will likely be an important goal of future research work. In 

addition, our study also highlights interesting therapeutic opportunities  - for example, the 

cyclin-dependent kinase CDK6 was frequently amplified in our series, and small 

molecule targeted inhibitors of CDKs have been developed (Lapenna and Giordano 

2009).  

A notable finding in this study was that GATA4, GATA6 and KLF5 are frequently 

amplified in GC. Notably, GATA4 amplifications in GC have also been observed by other 

groups (Weiss, Kuipers et al. 2004). Intriguingly, when compared against genes 

identified as amplified in other comparable copy number studies from glioblastoma, lung 
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cancer and multiple cancer types (Weir, Woo et al. 2007; Chaudhuri, Handcock et al. 

2008; Beroukhim, Mermel et al. 2010), it appears that amplification of these three genes 

appears to be restricted to either GC or to other cancers related of gastrointestinal tract 

origin. It is possible that these genes may represent “lineage-specific” oncogenes, a 

recently-described class of cancer genes that enhance oncogenesis by reactivating 

lineage-specific survival mechanisms normally operative only in early embryonic 

development (Garraway and Sellers 2006). Examples of lineage survival oncogenes 

include MITF in melanoma, TITF1/NKX2.1 in lung cancer (Garraway, Widlund et al. 

2005; Kwei, Kim et al. 2008), and SOX2 in esophageal and lung cancers (Bass, Watanabe 

et al. 2009). Indeed, GATA6 has recently been proposed to function as an amplified 

lineage-survival oncogene in pancreatic cancer (Kwei, Bashyam et al. 2008; Alvarez, 

Opalinska et al. 2011), and KLF5 has been shown to be expressed during early 

development in the cardiovascular system and gastrointestinal tract epithelium in the 

proliferating zone of intestinal crypts (Conkright, Wani et al. 1999; Ohnishi, Laub et al. 

2000). These transcription factors may reflect the existence of an underlying 

transcriptional regulatory program important for the maintenance of the GC phenotype. 

Interestingly, a recent genomic study from our group reported the discovery of two GC 

subtypes (G-INT and G-DIF) with distinct gene expression, clinical outcome, and 

chemotherapy response features (Tan, Ivanova et al. 2011). We have since discovered 

that G-DIF GCs appears to be significantly enriched in GATA6 gene amplifications 

(Fisher exact test, p = 0.04), suggesting that GATA6 may be associated with a specific 

molecular subtype of GC. From a therapeutic perspective, transcription factors are 

commonly regarded as "undruggable". It is possible, however, that some of these 
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transcription factors may regulate the expression of key genes that are pharmacologically 

targetable. For example, BCL2 has been described as a target of the MITF transcription 

factor frequently amplified in melanoma (McGill, Horstmann et al. 2002), and BCL2 

inhibitor drugs are available. Such a strategy may represent one method to indirectly 

target amplified transcription factors. 

Of major clinical significance was the observation that genes related to RTK/RAS 

signaling are a) frequently altered, and b) mutually exclusive to one another in GC. First, 

because numerous targeted inhibitors directed against various components of the 

RTK/RAS pathway are already in clinical testing (Bang, Van Cutsem et al. 2010; Yap, 

Olmos et al. 2011), these results raise the possibility that a substantial proportion (37% of 

GCs) may be potentially targetable by a RTK/RAS directed therapy. In essence, this 

finding dramatically increases the population of GC patients for which targeted 

treatments could be considered. Second, the mutually exclusive nature of these 

RTK/RAS alterations strongly suggests that the majority of GCs are likely to have only a 

single RTK/RAS driver oncogene, thereby greatly simplifying the challenge of defining 

which RTK/RAS targeted inhibitor compound to allocate to which patient population. In 

terms of clinical trials, the mutually exclusive nature of the RTK/RAS alterations also 

renders it technically feasible to implement a multi-biomarker based trial (Printz 2010), 

where multiple targeted compounds are tested in different biomarker-defined populations 

within a single trial design, as has been recently described for non-small-cell-lung cancer 

(BATTLE trial, (Kim, Herbst et al. 2011)). Third, these results suggest that a much larger 

proportions of GCs may be reliant on RTK/RAS signaling than previously appreciated, 

particularly if one notes that in this study alternative mechanisms of RTK/RAS activation 
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were not considered, and for certain GCs the presence of non-malignant cells may have 

reduced the sensitivity of RTK/RAS alteration detection.  For example, in a recent 

kinome sequencing study, kinases related to MAPK signaling, a pathway downstream of 

KRAS, were identified as being the most significantly altered in GC (Zang, Ong et al. 

2011). Another alternative mechanism of RTK/RAS activation may also involve gene 

fusions, where we recently described RAF-related gene rearrangements in GC 

(Palanisamy, Ateeq et al. 2010). Taken collectively, we believe that our finding that 37% 

of GCs exhibit a RTK/RAS alteration should best be regarded as a lower limit, and are 

consistent with the notion that RTK/RAS signaling is a dominant oncogenic pathway in 

GC.  

In our series, FGFR2 was amplified at frequencies comparable to ERBB2, providing one 

of the first assessments of FGFR2 gene amplification in primary GCs. Interestingly, the 

smallest common peak of FGFR2 amplification in the GCs appears to center around a 1.5 

kb region in FGFR2 intron 2 which overlaps a SNP locus associated with breast cancer 

susceptibility (Hunter, Kraft et al. 2007). It is intriguing to consider if the process of 

genomic amplification might also bias the expression of FGFR2 gene towards transcript 

isoforms (IIIc) that are pro-oncogenic (Katoh and Katoh 2009). We also found that that in 

preclinical assays, dovitnib, a VEGFR/FGFR2 inhibitor, can potently inhibit the growth 

of FGFR2-amplified GC cell lines and xenografts. In breast cancer, dovitinib has been 

found to exert effects primarily in FGFR1-amplified breast cancers, suggesting the 

importance of FGFR-related genome amplification in predicting dovitinib response 

(Andre, Bachelot et al. 2011). FGFR2 is thus likely to represent an attractive therapeutic 

target in GC. However, one question not addressed by our data is whether GCs which 
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lack FGFR2 amplification, but nevertheless express FGFR2, will also be dovitnib-

responsive, since we also observed that a significant number of FGFR2-copy neutral 

tumors also exhibited elevated FGFR2 expression levels relative to matched normal 

tissues, indicating that other mechanisms besides gene amplification can also cause 

FGFR2 upregulation in tumors. Notably, recent study showed that FGFR2 inhibition can 

potentially reverse chemo-resistance in OCUM-2M GC cells, which are also FGFR2-

copy number amplified (Qiu, Yashiro et al. 2011). We are currently addressing these 

questions by conducting a biopsy-mandated Phase I/II trial at our center, evaluating the 

efficacy of dovitinib in FGFR2-amplified and FGFR2 expressing GC samples. 

Finally, our results highlight KRAS amplification (rather than KRAS mutation) as a 

prevalent event in GC. While KRAS amplifications have been reported in other cancers 

(e.g. lung) (Wagner, Stiedl et al. 2011), these observations have been largely anecdotal, 

with emphasis directed towards more conventional codon 12 and 13 activating mutations. 

Consistent with KRAS activating as an important driver gene in amplified samples, 

patients in our series with KRAS amplified GCs exhibited poor prognosis, and in vitro, 

KRAS amplified GC lines were sensitive to KRAS silencing, similar to KRAS mutated 

lines. The high frequency of KRAS amplifications in GC is likely a major reason as to 

why KRAS activating mutations are strikingly infrequent in GC (Mita, Toyota et al. 2009). 

However, the exact mechanisms underlying this striking tissue-specific preference for 

KRAS amplification remain to be elucidated. Nevertheless, given recent data 

demonstrating that KRAS-mutated colon cancers are resistant to anti-EGFR therapies 

(Van Cutsem, Kohne et al. 2009), and that KRAS-amplified tumors may be resistant to 

MEK1/2 inhibitors (Little, Balmanno et al. 2011), our findings strongly suggest that 
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testing KRAS amplification status in tumors should be fully considered in any trials 

evaluating RTK targeting compounds in GC.  

In conclusion, our results provide for the first time a detailed molecular map of genomic 

alterations in GC, which has revealed several promising targets for subtype-specific 

therapies. Classifying GC patients by these signature genomic alterations may facilitate 

patient allocations to the most appropriate clinical trials, thereby maximizing patient 

participation in combating this lethal disease. 
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Chapter 7 Appendix 

Figure A1: CSMD1 Expression in GC 
Full sections of GCs (n=42) were subjected to CSMD1 immunohistochemistry. (A) 
CSMD1 expression in normal gastric epithelium (black triangle) and loss of expression in 
intestinal metaplasia (blue triangle). (B) Loss of CSMD1 expression in a diffuse-type GC. 
Staining in adjacent normal gastric epithelial (black triangle) cells and within endothelial 
cells within the tumor serves as a positive internal control. (C) Strong membranous 
CSMD1 staining in an intestinal-type GC. Approximately 40% of GCs show absent or 
reduced CSMD1 expression relative to normal gastric epithelium.  
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Figure A2: Phenotypic Effects of KRAS siRNA Knockdown in KRAS-amplified, 
Mutated and Wild-type GC Lines 
KRAS siRNAs or Control Scrambled siRNAs were applied to four GC cell lines – YCC1 
and MKN1 (KRAS-amplified), AGS (KRAS-mutated; G12D), and TMK1 (KRAS non-
amplified and wild-type). For each cell line, KRAS knockdown was confirmed at the 
protein level (Western blots – not treated (--), scrambled siRNA (Ctl), KRAS siRNA 
(KRAS)). Cell proliferation was measured 48-96 h after knockdown, comparing KRAS 
siRNA-treated cells to control siRNA treated cells (Numbers above bars are p-values 
comparing KRAS siRNA vs control siRNA treated cells). Significant reductions in cell 
proliferation are observed in KRAS-amplified and KRAS-mutated lines (P<0.05), but no 
significant effects are seen in wild-type TMK1 cells. Similar effects were observed with 
two non-overlapping KRAS siRNAs. All experiments were repeated a minimum of three 
independent times.  
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Figure A3. Sensitivity of FGFR2-Amplified GC Cell Lines to Dovitinib  
A) (top) FGFR2 RT-PCR analysis of GC cell lines. GAPDH was used as a loading 
control. (bottom) FGFR2 protein expression in lines. β-actin was used as a loading 
control. Cell lines KATOIII and SNU16 are observed to express elevated levels of 
FGFR2 mRNA and protein.  

B) Cell proliferation effects of dovitinib treatment. Dovitinib GI50 values for FGFR2-
amplified and non-amplified cell lines. GI50 – drug concentrated required to cause 50% 
growth inhibition. GI50 values were calculated after 48 hrs dovitinib treatment. * p<0.05 
compared to non-amplified lines. Results are a mean of three independent experiments.  

C) Molecular effects of dovitinib treatment. Cells treated with dovitinib at 50nM, 100nM 
and 500nM contrations for 1 h. Lysates were immunoprecipitated with FGFR2 anitbody 
MAB6841, and probed with 4G10 (phosphotyrosine detection) or MAB6841 for total 
FGFR2. Other antibodies included total and phospho-ERK, and total and phospho-AKT. 
Experiments were repeated a minimum of three independent times.  

D) Dovitinib inhibits soft agar colony formation. FGFR2-amplified cells were treated 
with dovitinib at the GI50 concentration for each cell line (KATO-III: 0.12uM; SNU-16: 
0.17uM) for 48 hrs, and soft-agar colony formation monitored over the subsequent 3-4 
weeks. Data for KATO-III cells are provided, including representative colony plates. 
Similar results were observed for SNU16 (Figure A4).  

E) Dovitinib induces caspase-3 activation. FGFR2-amplified cells were treated with 
increasing dovitinib concentrations, and apoptosis levels measured after 24hr using 
Caspase-Glo 3/7 assays. The y-axis represents % of activation normalized against 
untreated controls. The results are a mean of triplicates + standard deviation. Experiments 
were  repeated three independent times. 

F) Dovitinib inhibits tumor growth in a human primary GC xenograft model bearing 
FGFR2 gene amplification.  The mean tumor size of the vehicle treated mice reached 
1163 mm3 at day 25 post treatment. Treatment with the positive control drug 5-FU at 20 
mg/kg (Qd x 5/wk x 2 wks, i.p.) produced a mean tumor size of 518 mm3 (TGI = 63%, p 
= 0. 08) at the same time. Treatment with dovitinib at 30 mg/kg and 50 mg/kg (Qd x 25 
days, p.o.) significantly inhibited tumor growth compared to vehicle treated animals, with 
a mean tumor size of 194 and 53 mm3, respectively (p = 0.006 and 0.002, respectively at 
day 25 post treatment. 
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Figure A4: Inhibition of Soft Agar Colony Growth by Dovitinib (SNU-16) 
FGFR2-amplified SNU16 cells were treated with dovitinib at the GI50 concentration 
(0.17uM) for 48 hrs, and soft-agar colony formation monitored over the subsequent 3-4 
weeks. Representative plates are shown (Ctl : mock treated, + Dov : Dovitinib treated). 
Bar graphs depict results from a minimum of three independent experiments.  
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Figure A5: Phenotypic assay of KLF5 in GC cell lines 

A) KLF5 protein expression in GC cell lines. Western blotting was performed using an anti-KLF5 antibody. 

 -actin was used as a loading control.SNU5 and YCC3 exhibit high KLF5 protein expression while SNU1 

cells show relatively low KLF5 expression. B) KLF5 silencing and overexpression in SNU5, YCC3 and 

SNU1 GC cells. (Top Western blots) Confirmation of KLF5 silencing and overexpression. Left, KLF5 

silencing by siRNA in SNU5. SNU5 cells silenced with KLF5 siRNAs resulted in a significant reduction in 

cell proliferation capacity compared to cells treated with scrambled siRNAs. (p=0.006). Center, KLF5 

silencing in YCC3. YCC3 cells silenced with KLF5 siRNAs resulted in a significant reduction in cell 

proliferation capacity compared to cells treated with scrambled siRNAs. (p=0.011). Right, Effects of KLF5 

overexpression in SNU1 cells. Compared to cells transfected with vector control, SNU1 cells transfected 

with a KLF5-expressing vector exhibit enhanced cell proliferation (p<0.0001). All experiments were 

performed a minimum of three independent times. 
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Table A1: DRP Analysis of Mutually Exclusive and Co-Amplification Interactions 
 

This table lists all significant mutually exclusive (ME) and co-occurring (CO) interactions for a pair of genes (‘Gene1’ and ‘Gene2’). 
The columns are : ‘#Gene1’ and ‘#Gene2’ are the observed frequency of amplification for each pair of genes. ‘#Both’ indicates the 
observed number of cases of coamplification for this pair of genes, and ‘#OnlyOne’ indicates the observed number of cases for 
amplification in only one of this pair of genes. ‘#BothExp’ and ‘#OnlyOneExp’ are the expected results from the DRP permutation for 
coamplification cases and non-coamplification cases. ‘PvalueME’ and ‘PvalueCO’ are the empirical pvalues for ME and CO 
interactions. ‘QvalueME’ and ‘QvalueCO’ are converted Storey’s qvalue. Gene pairs related to RTK/RAS signaling are highlighted. 
Significant ME interactions are at the top of the list, while significant CO interactions are at the bottom.  

Gene1 Gene2 #Gene1 #Gene2 #Both #OnlyOne #BothExp 
#OnlyOneEx
p PvalueME 

QvalueM
E 

PvalueC
O 

QvalueC
O 

FGFR2 KLF5 22 22 0 44 5.765 32.470 0.001 0.118 0.999 0.999 

GATA4 KLF5 23 22 1 43 5.840 33.320 0.010 0.464 0.990 0.999 

KRAS ERBB2 21 17 1 36 5.191 27.619 0.018 0.464 0.982 0.999 

FGFR2 MET 22 14 1 34 4.681 26.637 0.028 0.464 0.972 0.999 

CCNE1 MET 23 14 1 35 4.692 27.615 0.028 0.464 0.972 0.999 

ERBB2 MET 17 14 1 29 4.558 21.884 0.031 0.464 0.969 0.999 

CCNE1 GATA4 23 23 2 42 5.904 34.193 0.042 0.470 0.958 0.999 

CCNE1 KRAS 23 21 2 40 5.744 32.513 0.048 0.470 0.952 0.999 
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FGFR2 KRAS 22 21 2 39 5.696 31.607 0.049 0.470 0.951 0.999 

KRAS EGFR 21 21 2 38 5.634 30.733 0.052 0.470 0.948 0.999 

GATA4 ERBB2 23 17 2 36 5.248 29.503 0.070 0.578 0.930 0.999 

GATA6 CDH12 25 14 2 35 4.687 29.625 0.105 0.602 0.895 0.999 

CCND1 MET 24 14 2 34 4.692 28.616 0.106 0.602 0.895 0.999 

CDH12 CCND1 14 24 2 34 4.694 28.611 0.106 0.602 0.894 0.999 

GATA4 MET 23 14 2 33 4.685 27.631 0.106 0.602 0.894 0.999 

CCNE1 CDK6 23 26 3 43 6.034 36.933 0.112 0.602 0.888 0.999 

GATA6 KLF5 25 22 3 41 5.917 35.167 0.119 0.602 0.881 0.999 

FGFR2 CCNE1 22 23 3 39 5.826 33.349 0.127 0.602 0.873 0.999 

KRAS CCND1 21 24 3 39 5.791 33.418 0.131 0.602 0.869 0.999 

FGFR2 EGFR 22 21 3 37 5.700 31.599 0.137 0.602 0.863 0.999 

CDH12 MET 14 14 2 24 4.316 19.368 0.139 0.602 0.861 0.999 

CDK6 ERBB2 26 17 3 37 5.282 32.435 0.181 0.741 0.820 0.999 

FGFR2 ERBB2 22 17 3 33 5.232 28.536 0.187 0.741 0.813 0.999 

CCNE1 CCND1 23 24 4 39 5.963 35.074 0.249 0.763 0.751 0.999 
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GATA4 CCND1 23 24 4 39 5.962 35.075 0.250 0.763 0.750 0.999 

FGFR2 CDH12 22 14 3 30 4.690 26.620 0.258 0.763 0.742 0.999 

CDH12 GATA4 14 23 3 31 4.684 27.633 0.260 0.763 0.740 0.999 

GATA6 MET 25 14 3 33 4.684 29.632 0.260 0.763 0.740 0.999 

KRAS CDH12 21 14 3 29 4.670 25.660 0.262 0.763 0.738 0.999 

CDH12 EGFR 14 21 3 29 4.669 25.663 0.263 0.763 0.737 0.999 

KRAS GATA6 21 25 4 38 5.817 34.366 0.268 0.763 0.732 0.999 

EGFR ERBB2 21 17 4 30 5.204 27.592 0.367 0.960 0.633 0.976 

FGFR2 CDK6 22 26 5 38 5.950 36.101 0.431 0.960 0.569 0.909 

KLF5 CCND1 22 24 5 36 5.888 34.224 0.440 0.960 0.561 0.909 

EGFR CCND1 21 24 5 35 5.786 33.427 0.459 0.960 0.541 0.909 

GATA4 EGFR 23 21 5 34 5.750 32.500 0.466 0.960 0.534 0.909 

KRAS GATA4 21 23 5 34 5.735 32.529 0.468 0.960 0.532 0.909 

CDH12 CDK6 14 26 4 32 4.689 30.622 0.472 0.960 0.528 0.909 

KRAS MET 21 14 4 27 4.663 25.674 0.474 0.960 0.526 0.909 

EGFR KLF5 21 22 5 33 5.698 31.604 0.475 0.960 0.525 0.909 
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CDH12 ERBB2 14 17 4 23 4.559 21.882 0.499 0.982 0.501 0.909 

GATA6 ERBB2 25 17 5 32 5.273 31.455 0.561 0.982 0.439 0.897 

ERBB2 CCND1 17 24 5 31 5.259 30.482 0.565 0.982 0.435 0.897 

ERBB2 KLF5 17 22 5 29 5.231 28.539 0.568 0.982 0.432 0.897 

GATA6 CDK6 25 26 6 39 6.201 38.598 0.568 0.982 0.432 0.897 

CDK6 GATA4 26 23 6 37 6.052 36.896 0.596 0.982 0.404 0.897 

FGFR2 MYC 22 46 6 56 6.023 55.955 0.604 0.982 0.397 0.897 

CCNE1 GATA6 23 25 6 36 6.010 35.979 0.604 0.982 0.396 0.897 

GATA6 GATA4 25 23 6 36 6.007 35.985 0.606 0.982 0.394 0.897 

CDK6 KLF5 26 22 6 36 5.951 36.098 0.615 0.982 0.385 0.897 

KRAS CDK6 21 26 6 35 5.839 35.322 0.637 0.999 0.363 0.897 

KRAS KLF5 21 22 6 31 5.694 31.612 0.664 1.000 0.336 0.897 

KLF5 MET 22 14 5 26 4.687 26.626 0.685 1.000 0.315 0.895 

MYC ERBB2 46 17 6 51 5.289 52.423 0.740 1.000 0.260 0.789 

FGFR2 GATA6 22 25 7 33 5.922 35.157 0.780 1.000 0.220 0.714 

GATA6 EGFR 25 21 7 32 5.815 34.370 0.797 1.000 0.203 0.685 
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CCNE1 EGFR 23 21 7 30 5.734 32.533 0.810 1.000 0.190 0.664 

CDH12 KLF5 14 22 6 24 4.677 26.646 0.846 1.000 0.154 0.560 

EGFR MET 21 14 6 23 4.678 25.644 0.847 1.000 0.153 0.560 

CDK6 CCND1 26 24 8 34 6.125 37.751 0.866 1.000 0.134 0.529 

GATA6 CCND1 25 24 8 33 6.065 36.870 0.873 1.000 0.127 0.524 

MYC KRAS 46 21 8 51 5.894 55.211 0.892 1.000 0.108 0.466 

FGFR2 CCND1 22 24 8 30 5.881 34.237 0.895 1.000 0.105 0.466 

FGFR2 GATA4 22 23 8 29 5.847 33.307 0.898 1.000 0.102 0.466 

CCNE1 KLF5 23 22 8 29 5.838 33.324 0.898 1.000 0.102 0.466 

MYC CCND1 46 24 9 52 6.222 57.556 0.932 1.000 0.068 0.365 

MYC MET 46 14 7 46 4.695 50.610 0.938 1.000 0.062 0.351 

CCNE1 ERBB2 23 17 8 24 5.247 29.505 0.950 1.000 0.051 0.306 

CCNE1 CDH12 23 14 8 21 4.676 27.649 0.982 1.000 0.019 0.140 

MYC GATA6 46 25 11 49 6.306 58.388 0.988 1.000 0.012 0.111 

MYC GATA4 46 23 11 47 6.124 56.752 0.991 1.000 0.009 0.090 

MYC CCNE1 46 23 11 47 6.129 56.741 0.991 1.000 0.009 0.090 
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CDK6 EGFR 26 21 11 25 5.849 35.303 0.995 1.000 0.005 0.062 

MYC EGFR 46 21 12 43 5.896 55.209 0.999 1.000 0.001 0.023 

CDK6 MET 26 14 10 20 4.694 30.613 0.999 1.000 0.001 0.015 

MYC CDH12 46 14 10 40 4.698 50.603 0.999 1.000 0.001 0.015 

MYC KLF5 46 22 13 42 6.021 55.959 0.999 1.000 5.00E-04 0.015 

MYC CDK6 46 26 15 42 6.375 59.249 1.000 1.000 1.00E-04 0.005 
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Software: DRP script 
DRP <- function(CNA_file, n, type='csv', write=T){ 

#'CNA_file' is the Copy Number Alterations indicator file;  

#n is the required number of permutations 

#'type' supports two data file types 'txt' for a tab-delimited text file and 'csv' for an Excel .csv file;  

#'write' if 'T' DRP writes permutation results to a file 

#%-------------------------- 

#%Niantao Deng 

#%Duke NUS Graduate Medical School 

#%niantaodeng@gmail.com 

#%-------------------------- 

 cat('Reading CNA Indicator File\n') 

 if(type=='csv'){ 

  topCNA <- read.csv(CNA_file,header=T) 

            rownames(topCNA)<-topCNA[,1];topCNA<-topCNA[,-1] #first colume need to sample ID 

  } 

         else{ 

  topCNA <- read.table(CNA_file,header=T,comment.char='',fill=T,sep='\t') 

            rownames(topCNA)<-topCNA[,1];topCNA<-topCNA[,-1] #first colume need to sample ID 

  } 

 ## Check for missing values 

 NAs = any(is.na(topCNA)) 

 if(NAs){cat(c('Found',sum(is.na(topCNA)),'Missing Data Values\n'),sep=' ')} 

 ## Check format 

      if(is.matrix(topCNA) ==F){topCNA<-as.matrix(topCNA)} 

 

 topCNA<-topCNA[order(rowSums(topCNA),decreasing=T),] # sort by number of events for each sample 

 topCNA<-topCNA[,order(colSums(topCNA),decreasing=T)] # sort by number of events for each gene 

 ##check for at least 1 CNA event for each gene or each sample 

 sum_gene<-colSums(topCNA) 

 sum_sps<-rowSums(topCNA) 

 if(min(sum_gene) == 0){cat(c('Found',sum(sum_gene == 0),'Gene without CNA events\n'),sep=' ')} 

 if(min(sum_sps) == 0){cat(c('Found',sum(sum_sps == 0),'Samples without CNA events\n'),sep=' ')} 
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      cat('Perform permutations\n') 

 

 #define the number of permutations and perform the permutations 

 N<-n 

 result_mat<-matrix(0, nrow=N,ncol=ncol(topCNA)*(ncol(topCNA)+1)/2) #matrix to put in the permutation results 

 Time_start<-Sys.time() 

 for(m in 1:N) 

    { 

    per_mat<-matrix(0, nrow=nrow(topCNA),ncol=ncol(topCNA)) #matrix for each permutation 

    for(r in 1:min(nrow(topCNA),ncol(topCNA))) 

       { 

            if(nrow(topCNA) <= ncol(topCNA)) #permutate by row if nrow is less than ncol 

              { 

              gene_vec<-c(1:ncol(topCNA)) 

              #check for full rank cols, full rank column will be removed for later permutation 

              col_rank<-sum((sum_sps- rowSums(per_mat))[c(r:nrow(topCNA))]>0) 

         full_gene<-which((sum_gene-colSums(per_mat))[gene_vec] >= col_rank) 

         if(length(full_gene)>0 & (sum_sps[r]-sum(per_mat[r,]))> 0) 

                { 

                if(sum_sps[r]-sum(per_mat[r,])>=length(full_gene)) 

                  { 

                  per_mat[r,gene_vec[full_gene]]<-1;gene_vec<-gene_vec[-full_gene] 

                  } 

                else 

                  { 

                  ind_rm<-sample(length(full_gene),sum_sps[r]-sum(per_mat[r,])) 

                  per_mat[r,gene_vec[full_gene[ind_rm]]]<-1;gene_vec<-gene_vec[-full_gene[ind_rm]] 

                  }                  

                } 

              #permutate after removing full rank columns 

              if(length(gene_vec)>0) 

                { 
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                num_gene<-sum_sps[r]-sum(per_mat[r,]) 

                if(col_rank>1) 

             { 

                  ind_gene_pri<-which((sum_gene-colSums(per_mat))[gene_vec] %in% c(2:col_rank)) 

                  ind_gene_sec<-which((sum_gene-colSums(per_mat))[gene_vec] ==1) 

                  if(num_gene <= length(ind_gene_pri)) 

                    { 

                    temp<-sample(length(ind_gene_pri),num_gene) 

               if(length(temp)>0) 

                      { 

                      per_mat[r,gene_vec[ind_gene_pri[temp]]]<-1 

                      } 

                    } 

                  else 

                    { 

                    temp1<-sample(length(ind_gene_sec),num_gene - length(ind_gene_pri)) 

                    temp<-c(ind_gene_sec[temp1],ind_gene_pri) 

               if(length(temp)>0) 

                      { 

                      per_mat[r,gene_vec[ind_gene_pri[temp]]]<-1 

                      }                       

                    } 

                  } 

                else 

                  { 

                  ind_gene<-which((sum_gene-colSums(per_mat))[gene_vec] %in% c(1:col_rank)) 

                  temp<-sample(length(ind_gene),num_gene) 

             if(length(temp)>0) 

                    { 

                    per_mat[r,gene_vec[ind_gene[temp]]]<-1 

                    } 

                  } 

                } 
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              } 

            if(ncol(topCNA) < nrow(topCNA)) #permutate by column if ncol is less than nrow 

              { 

    sps_vec<-c(1:nrow(topCNA)) 

              #check for full rank rows, full rank rows will be removed for later permutation 

              row_rank<-sum((sum_gene- colSums(per_mat))[c(r:ncol(topCNA))]>0) 

         full_sps<-which((sum_sps-rowSums(per_mat))[sps_vec] >= row_rank) 

         if(length(full_sps)>0 & (sum_gene[r]-sum(per_mat[,r]))> 0) 

                { 

                if(sum_gene[r]-sum(per_mat[,r])>=length(full_sps)) 

                  { 

                  per_mat[sps_vec[full_sps],r]<-1;sps_vec<-sps_vec[-full_sps] 

                  } 

                else 

                  { 

                  ind_rm<-sample(length(full_sps),sum_gene[r]-sum(per_mat[,r])) 

                  per_mat[sps_vec[full_sps[ind_rm]],r]<-1;sps_vec<-sps_vec[-full_sps[ind_rm]] 

                  }                  

                }               

              #permutate after removing full rank rows 

              if(length(sps_vec)>0) 

                { 

                num_sps<-sum_gene[r]-sum(per_mat[,r]) 

                if(row_rank>1) 

             { 

                  ind_sps_pri<-which((sum_sps-rowSums(per_mat))[sps_vec] %in% c(2:row_rank)) 

                  ind_sps_sec<-which((sum_sps-rowSums(per_mat))[sps_vec] ==1) 

                  if(num_sps <= length(ind_sps_pri)) 

                    { 

                    temp<-sample(length(ind_sps_pri),num_sps) 

               if(length(temp)>0) 

                      { 

                      per_mat[sps_vec[ind_sps_pri[temp]],r]<-1 
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                      } 

                    } 

                  else 

                    { 

                    temp1<-sample(length(ind_sps_sec),num_sps - length(ind_sps_pri)) 

                    temp<-c(ind_sps_sec[temp1],ind_sps_pri) 

               if(length(temp)>0) 

                      { 

                      per_mat[sps_vec[ind_sps_pri[temp]],r]<-1 

                      }                       

                    } 

                  } 

                else 

                  { 

                  ind_sps<-which((sum_sps-rowSums(per_mat))[sps_vec] %in% c(1:row_rank)) 

             temp<-sample(length(ind_sps),num_sps) 

             if(length(temp)>0) 

                    { 

                    per_mat[sps_vec[ind_sps[temp]],r]<-1 

                    }   

                  } 

                } 

              } 

       } 

    cor_mat<-t(per_mat) %*% per_mat 

    cor_vec<-numeric() 

    for(s in 1:ncol(cor_mat)) 

       { 

       cor_vec<-c(cor_vec,cor_mat[s,c(s:ncol(cor_mat))]) 

       } 

    result_mat[m,]<-cor_vec 

    } 

 Time_end<-Sys.time() 



 

 

129 

 

 #compare with the observation and generate the empirical p vallues 

 original_data<- t(topCNA) %*% topCNA 

 out_mat<-data.frame() 

 ind<-0 

 for(i in 1:ncol(topCNA)) 

    { 

    for(j in i:ncol(topCNA)) 

       { 

       gene1<-colnames(topCNA)[i] 

       gene2<-colnames(topCNA)[j] 

       no1<-original_data[i,i] 

       no2<-original_data[j,j] 

       no3<-original_data[i,j] 

       no4<-no1+no2-2*no3 

       no5<-mean(result_mat[,ind+j-(i-1)]) 

       no6<-no1+no2-2*no5 

       pval<-sum(result_mat[,ind+j-(i-1)]<=no3)/N 

       input<-
data.frame(Gene1=gene1,Gene2=gene2,No_Gene1=no1,No_Gene2=no2,No_Both=no3,No_OnlyOne=no4,No_BothExp=no5,No
_OnlyOneExp=no6,PvalueME=pval,PvalueCO=1-pval) 

       out_mat<-rbind(out_mat,input) 

       } 

    ind<-ind+ncol(topCNA)+1-i 

    } 

     out_mat<-out_mat[order(out_mat$PvalueME),] #sort by PvalueME 

     cat('Output results...\n') 

     cat(c('Permutation time:','\n'),sep=' ') 

     print(Time_end-Time_start) 

     if(write == F){return(out_mat)} 

     else{write.csv(out_mat,file='permutation_results.csv',row.names=F)} 

     } 
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