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SUMMARY 

Hemoglobin (Hb) is a redox-active molecule capable of generating toxic 

reactive oxygen species owing to its intrinsic pseudoperoxidase (POX) 

activity. Inside the red blood cells (RBCs), antioxidants exist to protect Hb 

from oxidation. However hemolysis, induced during infection, tissue 

injury/trauma and genetic disorders, releases Hb into the plasma. The 

uncontrolled oxidative reactions of plasma Hb disrupt the redox balance and 

impair the immune-responsive blood cells. Therefore, it is crucial to 

understand how the immune system defends against the cytotoxic Hb. This 

thesis investigates: (i) the role of scavenger receptors and plasma proteins in 

conferring protection against cell-free Hb and (ii) pathophysiological role of 

Hb during hemolytic infections. 

Haptoglobin (Hp) is a prominently studied Hb-binding plasma protein, 

which clears Hb via the monocyte/macrophage scavenger receptor, CD163. 

However, Hb in Hb:Hp complex still remains POX active. Moreover, Hp is 

rapidly saturated during severe hemolysis. Hence we explored alternative Hp-

independent Hb-detoxification mechanisms. We identified a highly efficient 

CD163 mediated two-pass Hb detoxification mechanism independent of Hp. 

Firstly, CD163 directly suppressed the Hb-POX activity in situ on the 

monocyte membrane, and consequently rescued monocytes from Hb-induced 

apoptosis. Simultaneously, the membrane bound CD163 is also shedded as a 

soluble protein, sCD163 into the plasma. sCD163 further bound the residual 

cell-free Hb and the sCD163:Hb complex then interacts with plasma IgG, 

which bridges the sCD163:Hb complex to FcγR on the monocytes. 

Subsequently, the sCD163 from the endocytosed sCD163:Hb:IgG complex 
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undergoes palmitoylation and is recycled via endosomes to the membrane to 

restore the homeostasis of CD163 in an autocrine cycle. The endocytosed Hb 

is catabolized by heme-oxygenase-1. Secondly, the sCD163 elicits a paracrine 

cycle, transactivating the vascular endothelial cells to detoxify Hb.  

The elucidation of the detoxification mechanism involving endocytosis 

of Hb into the monocytes to overcome oxidative damage, prompted us to 

examine the pathophysiological consequence of Hb-priming on the host cell 

viability and intracellular bacterial clearance during a hemolytic infection. 

Under these circumstances, CD163+ macrophages that uptake Hb from the 

plasma are invaded by opportunistic pathogens. Heme-iron is a nutrient for the 

invading pathogens, while the Hb-POX activity generates microbicidal ROS, 

making Hb a double-edged sword. We found that the Hb-primed CD163+ 

macrophages harbored higher intracellular bacterial load compared to 

unprimed control cells. Further investigation revealed that the intracellular 

bacteria elicit a subtle activation of the Hb-POX to evade microbicidal ROS 

and modulated the MAPK-Bax signaling pathway to downregulate apoptosis, 

and upregulate anti-inflammatory cytokine production in host cells. In vivo, 

this mechanism may contribute to persistence of infections by using Hb-

scavenging phagocytes as mobile vehicles for dissemination and escape from 

immune surveillance.  

The findings of this thesis open new research avenues for the 

development of sCD163 as a biomarker in hemolytic patients. Further, our 

identification of Hb-primed CD163+ macrophages as a survival niche for 

intracellular pathogens provides insights into the interrelationship between 

hemolysis and infections. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Hemolysis and cell-free hemoglobin (Hb) 

 

1.1.1 Hb is a pro-oxidant 

Hemoglobin (Hb) is one of the most critical and well-studied proteins in 

human physiology owing to its function in respiration as the oxygen 

transporter. Under normal physiological conditions, Hb is compartmentalized 

within the reducing environment of the red blood cells (RBCs) by efficient 

antioxidants (Buehler & D'Agnillo, 2010). Therefore, in healthy individuals, 

the extracellular concentration of Hb is minimal and tightly controlled. 

However, under pathological conditions such as during infection (Berkowitz, 

1991), trauma (Sadrzadeh et al, 1987), hematological disorders (Olsson et al, 

2012) and blood transfusion (Berseus et al, 2013), high concentrations of 

extracellular Hb accumulate in the plasma (Muller-Eberhard et al, 1968; 

Schaer et al, 2013).  

Extracellular Hb is toxic to several tissues including vascular (Balla et 

al, 1991b; Balla et al, 1993), myocardial (Burhop et al, 2004), renal (Nath et 

al, 2000; Rabiner et al, 1967) and the central nervous system (Regan & Panter, 

1993; Sadrzadeh et al, 1987). The source of Hb mediated toxicity, in vivo and 

in vitro, originates at the heme prosthetic group, which is hydrophobic and 

hence readily permeates the cell membrane (Tracz et al, 2007). The iron centre 

of the heme group is reactive and can interact with numerous ligands leading 

to the formation of ferric (Fe(III)) and ferryl (Fe(IV)) radical species (Alayash, 
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2004). As a result, the oxidative nature of free Hb leads to the production of 

ROS and induces cellular and tissue damage by oxidation of lipids, nucleic 

acids and amino acids (Everse & Hsia, 1997).  

 

1.1.2 Pseudoperoxidase activity of Hb  

Hb is a tetramer consisting of two α and two β polypeptide chains (Figure 

1.1). Each polypeptide chain has an iron-containing heme prosthetic group 

inside the hydrophobic pocket and carries one oxygen atom per heme group. 

The heme iron normally exists in the reduced ferrous (Hb-Fe(II)) state but can 

spontaneously undergo autoxidation, leading to the formation of ferric state 

metHb (Hb-Fe(III)) as well as reactive oxygen species (ROS) like superoxide 

ion (O2
.-). Inside the RBCs, autoxidation of Hb is kept to a minimum by the 

efficient reductase system involving catalase and superoxide dismutase, which 

efficiently neutralize ROS and catalyze the reduction of ferric iron back to the 

ferrous state. The O2
.- undergoes dismutation reaction to produce hydrogen 

peroxide (H202). In the presence of the endogenous and/or exogenous 

hydrogen peroxide, a catalytic cycle between the ferric (Hb-Fe(III)) and ferryl 

(Hb-Fe(IV)) heme is initiated (Figure 1.2), in which hydrogen peroxide is 

eliminated in a peroxidase-like manner (Alayash, 1999). This is known as the 

pseudoperoxidase (POX) cycle of Hb. The ferryl Hb formed is unstable and 

can release free heme and heme degradation products (Nagababu & Rifkind, 

2000). The ROS released during the reactions of metHb with hydrogen 

peroxide causes cellular and tissue damage by oxidation of lipids, proteins and 

nucleic acids (Everse & Hsia, 1997). 
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Figure 1.1: Tetrameric structure of human hemoglobin. The alpha chains 
(α1, α2) are shown in yellow while the beta chains (β1, β2) are in red. The 
four heme groups are shown as spheres. Adapted with modifications from the 
protein data bank, PDB ID code- 1HGA. 

 

                                                                                                                              

 

 

 
 
 
 
 
 
 
 
 
Figure 1.2: Pseudoperoxidase activity of Hb. The catalytic cycling of Hb 
associated heme iron between the ferrous (Hb-Fe(II)), ferric (Hb-Fe(III)) and 
ferryl (Hb-Fe(IV)) oxidation states in the pseudoperoxidase cycle (yellow). 
HOOH: hydrogen peroxide. Figure adapted from (Alayash, 1999) with 
permission from the Nature publishing group. 
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1.1.3 Mechanisms of Hb toxicity 

Several pathophysiological conditions such as sickle cell disease, hemolytic 

infection, paroxysmal nocturnal hemoglobinuria and trauma are characterized 

by extensive hemolysis. Under these circumstances, the excessive level of 

plasma Hb wreaks havoc in the vasculature and triggers an array of toxic 

effects. The principal mechanisms leading to the adverse clinical effects of 

extracellular Hb are: 1) extravascular translocation of Hb; (2) scavenging of 

nitric oxide (NO) and oxidation reactions; (3) release of the iron-containing 

porphyrin group, hemin and (4) molecular signaling effects of hemin. These 

mechanisms are summarized in Figure 1.3.  

Mechanism I: Extravascular translocation of Hb   

Free Hb in the plasma released during hemolysis is unstable and exists in a 

dynamic equilibrium between the tetramer (α2β2) and the heterodimer (αβ) 

states with a predominant shift towards the dimer configuration at low 

concentrations. The relatively smaller molecular size of the αβ dimer (32 kDa) 

allows it to penetrate the endothelial barrier and cause damage to the tissues 

beneath.  

Mechanism II: NO scavenging and oxidation reactions 

In the vasculature, NO is produced in the endothelial cells lining the blood 

vessels by a constitutively expressed synthase enzyme system. NO regulates 

the vascular homeostasis and tone, leukocyte adhesion and platelet 

aggregation along with a host of other biochemical functions (Moncada, 

1992).  
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The interaction of Hb with NO occurs mainly via two reactions:  

 

(1) NO dioxygenation of oxy-Hb 

  

(2) Iron nitrosylation of NO deoxy-Hb   

 

Therefore, as a result of interaction with NO, the plasma Hb has been 

known to induce vasoconstriction and hypertension (Olson et al, 2004). In 

addition to vasoconstriction, another effect of Hb-NO interaction is the 

generation of Hb-(Fe(III)) with the tissue parenchyma. Accumulation of the 

unstable Hb-(Fe(III)) within the tissues could lead to the release and transfer 

of hemin to other proteins/lipids along with toxicity driven by free heme.  

Apart from NO scavenging, the pro-oxidant, Hb has been reported to 

release large amounts of peroxides into the extracellular space during 

inflammation and ischemia-reperfusion (Reeder, 2010). In vitro, the reactions 

of Hb with peroxide leads to the formation of ferric (Hb-Fe(III)), ferryl (Hb-

Fe(IV)) and associated superoxide radicals. The resulting superoxide radicals 

not only cause local amino acid oxidations within Hb but also transfer radicals 

to other lipoproteins (Jia et al, 2007; Miller et al, 1997). The net result of these 

reactions is release of free hemin and globin chain precipitation, which can 

ultimately lead to tissue damage (Vallelian et al, 2008).  
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Mechanism III: Release of free hemin  

The oxidative reactions of Hb leads to the formation of (Hb-Fe(III)), which is 

unstable and releases free hemin. The hydrophobic nature of free hemin 

allows for the transfer of its reactive porphyrin to cell membrane and plasma 

proteins and lipids. One of the most abundant toxic end products of hemin is 

the oxidized low-density lipoprotein (oxLDL) (Balla et al, 1991a). Oxidation 

of LDL and associated inflammatory effects of hemin represents the ability of 

Hb to induce vascular injury (Jeney et al, 2002; Nagy et al, 2010).  

Mechanism IV: Molecular signaling effects of hemin   

The hydrophobic hemin released by Hb can readily permeate the cell 

membrane and bind to several receptors, transcription factors and enzymes 

and alter gene expression and cellular activation. One of the most well defined 

interaction is the binding of hemin to the transcription factor, Bach-1, which 

regulates the expression of heme-oxygenase-1 (HO-1) and other anti-oxidative 

enzymes in response to high intracellular levels of hemin (Ogawa et al, 2001). 

In addition, hemin has also been reported to activate Toll-like receptor (TLR) 

signaling especially TLR-4 in certain animal models (Lin et al, 2012a) and 

bind to the nuclear hormone receptor, REV-ERB, which regulates circadian 

rhythm, metabolism and adipogenesis (Raghuram et al, 2007). Some studies 

have also documented inhibition of the proteasome by intracellular hemin 

although predominantly using in vitro assays (Santoro et al, 2012; Tanaka & 

Ichihara, 1989).   
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Figure 1.3: Principal mechanisms of Hb toxicity. Schematic representation 
of the pathways by which free Hb released during hemolysis induces toxicity. 
Figure adapted from (Schaer et al, 2013) with modifications. 
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1.2 Hb is a DAMP and triggers innate immune response  

During severe hemolysis, free Hb released from the ruptured RBCs can reach 

excessively high concentrations in the plasma (e.g. 0.6 mg/ml in sickle cell 

anaemia (Schaer et al, 2013); 0.27-0.45 mg/ml in malaria (Sharma et al, 2012) 

and 0.5-2 mg/ml in paroxysmal nocturnal hemoglobinuria (Rother et al, 

2005)) and becomes a redox-active damage-associated molecular pattern 

(DAMP). The ROS generated by Hb perturbs the immune cells to maintain 

homeostasis. In this section, we will discuss the role of Hb in the innate 

immune system, focusing on the possible interactions among Hb, pathogens 

and immune cells.      

1.2.1 Overview of the innate immune system 

1.2.1.1 Pathogen recognition receptors recognize microbes and trigger 
immune signaling  

The immune system continually co-evolves with the pathogens to develop a 

variety of defense mechanisms to counter the microbial invaders. The immune 

system in vertebrates consists of two components- the innate, and the adaptive 

immune response. The innate immune system is a rapid and non-clonal 

defense consisting of germline-encoded receptors, while the adaptive 

immunity is more pathogen specific and based on antigen-specific receptors in 

the clonally selected B- and T-lymphocytes (Medzhitov & Janeway, 1997). 

Innate immune recognition is mediated by structurally diverse set of receptors 

called pattern-recognition receptors (PRRs), which recognize pathogen-

associated molecular patterns (PAMPs). Examples of PAMPs include bacterial 

cell wall components (peptidoglycan, lipopolysaccharides (LPS), lipotechoic 
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acid (LTA)), nucleic acids (DNA, RNA) and flagellin. PRRs can be present as 

circulating plasma proteins (e.g. complement proteins, ficolins, C-reactive 

proteins), as receptors on the cell membrane (e.g. Toll like receptors (TLRs), 

scavenger receptors) or in the intracellular compartments (Nod-like receptors 

(NLRs) and some TLRs) (Medzhitov & Janeway, 1997);(Zhang et al, 2010). 

Figure 1.4 represents some examples of PRRs and the PAMPs they recognize. 

   The innate immune recognition of microbes by PRRs relies on three 

key principles. Firstly, PAMPs are chemical signatures unique to the microbes 

and are not present in the host and hence prevent response to self-antigens. 

Secondly, PRRs recognize chemical signatures that are conserved amongst a 

variety of microbes enabling a single receptor to detect variety of pathogens 

(e.g. receptor for LPS can recognize any gram-negative bacterium). Third, the 

PAMPs are essential for the survival of the microbes and are hence retained 

throughout the evolution of the microbe.  

 In mammals, TLRs are the best-characterized examples of PRRs 

(Beutler, 2004). TLRs are either localized at the plasma membrane and 

recognize bacterial and viral surface components or recognize viral and 

bacterial nucleic acids exposed within the endosomal compartments. For 

example, membrane localized TLR-4 and TLR-2 recognize bacterial LPS and 

lipopeptide respectively. On the other hand, endosomal localized TLR- 7 and 

TLR-9 recognize viral single-stranded RNA and CpG DNA motifs 

respectively. Upon binding to the respective ligand, TLRs trigger intracellular 

signaling pathways leading to the production of inflammatory cytokines such 

as TNF-α, IL-6, IL-12, type-I-interferon (IFN) and chemokines (Figure 1.4). 

TLRs contain a cytoplasmic signaling domain called TIR (Toll/interleukin-1 
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receptor) which recruits adaptor molecules such as myeloid differentiation 

primary response protein 88 (MyD88), TIR-domain containing adaptor protein 

(TIRAP)/Mal, Toll-receptor-associated activator of interferon (TRIF) and 

TRIF-related adaptor molecule (TRAM) leading to the nuclear translocation of 

transcription factors such as NF-κB.   

 

 

 

 

 

            

 

 

 

 

 

 

 

 

Figure 1.4: TLR-signaling and activation of inflammatory response. Upon 
recognition of the respective ligand, TLRs initiate signaling via adaptor 
proteins to activate inflammatory cytokine response. Figure adapted from 
(O'Neill et al, 2013) with permission from the Nature publishing group. 
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The cytokines and chemokines elicited by TLR signaling recruit 

effector cells such as neutrophils to the site of infection and activate antigen-

presenting cells such as dendritic cells, which then induce the activation of 

antigen-specific T-lymphocytes. Hence, TLRs link innate and adaptive innate 

immune response.   

   Apart from the PRRs expressed on the cell surface, there is a cytosolic 

detection system for intracellular PAMPs. Among these are retinoic acid-

inducible gene-1 (RIG-1) like receptors (RLRs) and nucleotide binding 

oligomerization domain (NOD) like receptors (NLRs). RLRs specifically 

detect viral RNA in the cytoplasm and induce anti-viral type-1 IFN 

production. NLRs such as NOD-1 and NOD-2 recognize bacterial 

peptidoglycan and induce inflammatory cytokines like IL-1β, IL-18 and IL-33 

through the formation of “inflammasome” which involves activation of 

caspases (Meylan et al, 2006).  

 

1.2.1.2 Apoptosis regulates cell death during infection 

The pro-inflammatory cytokine production elicited by PRR-PAMP signaling 

leads to programmed cell death called apoptosis, during which an infected cell 

commits suicide to prevent the spread of infection to neighboring cells. There 

are two main pathways involved in apoptosis- an extrinsic pathway initiated 

by cell-surface receptors, and an intrinsic pathway that is initiated by the 

mitochondria in response to intracellular stress (Figure 1.5) (Hotchkiss & 

Nicholson, 2006). Cellular proteases, caspase-8 and caspase-9 mediate the 

extrinsic and the intrinsic apoptotic pathways respectively(Roy & Nicholson, 

2000). Both caspase-8 and caspase-9 finally converge at caspase-3, which is 



Introduction 

  12 

the crucial effector caspase involved in the final common pathway of 

apoptosis. 

 Ligands of the death receptors, like TNF-α and CD95L activate 

caspase-8, while intracellular stress such as ROS, chemotherapeutic agents 

and damaged DNA activate caspase-3. Upon engagement of the death 

receptors such as CD95 (FAS) by their ligands, signaling via the adaptor 

protein, FAS-associated via death domain (FADD) triggers the cleavage of the 

inactive, procaspase-8 into active caspase-8. Active caspase-8 cleaves BID 

and the truncated BID (tBID) activates the intrinsic pathway, thereby 

interconnecting the two pathways. Cellular caspase-8 (FLICE)-like inhibitory 

protein (cFLIP) prevents the activation of caspase-8. 

In the intrinsic pathway, pro-apoptotic factors like BCl-2 associated X 

protein (BAX) decrease the mitochondrial membrane potential, leading to the 

release of cytochrome c. Together with apoptotic-protease-activating factor 1 

(APAF-1), cytochrome c activate the pro-caspase-9 into functional caspase-9. 

Second mitochondria-derived activator of caspase (SMAC) is also released 

from the mitochondria and blocks the inhibition of caspase-9 by the inhibitors 

of apoptosis (IAPs). Anti-apoptotic factors like B-cell lymphoma (BCL-2) and 

BCL-XL inhibit the loss of mitochondrial membrane potential and cytochrome 

c release. Hence, the fine balance between the pro- and the anti-apoptotic 

factors regulate cellular apoptosis.    
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Figure 1.5: The extrinsic and intrinsic pathways of apoptosis. Apoptosis 
occurs via two pathways- the extrinsic pathway, which is initiated by death 
receptors, and the intrinsic pathway, which is initiated at the mitochondria. 
Caspase-8 mediates the extrinsic pathway, while caspase-9 mediates the 
intrinsic pathway. Both caspase-8 and caspase-9 finally converge at a common 
effector protease, caspase-3. Figure adapted from (Hotchkiss & Nicholson, 
2006) with permission from the Nature publishing group.  
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1.2.2 Hb is a DAMP and evokes immune response 

Apart from PAMPs, certain endogenous host-derived molecules such as Hb 

also trigger the innate immune system, leading to inflammation (Lee & Ding, 

2013). Intraerythrocytic Hb, which normally transports oxygen, becomes a 

DAMP when released into the extracellular environment during hemolysis. 

The redox-active Hb generates cytotoxic ROS, which perturbs the immune 

cells in the blood. ROS are known to trigger TLR-mediated signaling (Gill et 

al, 2010) and are implicated in several diseases such as acute lung injury, 

chronic granulomatous disease (Hartl et al, 2008; Xiang et al, 2010). Heme, 

the prosthetic group of Hb has been shown to activate TLR-4 and mediate 

inflammation by signaling via the MyD88-TRIF pathway (Lin et al, 2012a). 

Further, Hb synergistically activates inflammation with other PAMPs such as 

LPS and LTA (Bodet et al, 2007; Cox et al, 2007). In the next section, the 

interactions between Hb and PAMPs are further discussed in detail.  

 
 
1.2.3 Interrelationship between Hb, a DAMP and microbial PAMPs – 
implications on innate immunity 

 
During a hemolytic infection, Hb liberated into the plasma is in contact with 

the intruding pathogen and/or it’s associated PAMPs. (Kaca et al, 1994) 

reported that Hb could form a stable complex with LPS and consequently 

activated the redox activity of Hb leading to the production of metHb. Recent 

study in our lab has found that both α and the β subunits of Hb possess high 

affinity LPS-binding sites (Bahl et al, 2011). Hb has also been found to 

augment the host-immune response to LPS (a conserved Gram-negative 

bacterial PAMP) during infections. Free Hb enhanced the production of TNF-
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α induced by LPS in human mononuclear cells (Carrillo et al, 2002) and tissue 

factor production by endothelial cells (Roth, 1994). (Kaca & Roth, 1995) 

found that Hb contaminated with LPS augmented the activation of the 

complement cascade. Furthermore, co-administration of Hb amplifies the 

mortality induced by LPS in animal models (Goff et al, 1999). A potential 

complication associated with the Hb:LPS interaction is the effect of LPS 

contamination of Hb in blood transfusion products (Su et al, 1997), which 

presents a barrier to the use of cell-free Hb in blood substitutes. Apart from 

LPS, Hb has been shown to recognize other TLR ligands (Lin et al, 2010) and 

other DAMPs (Lin et al, 2012b) and generate microbicidal ROS. The 

induction of IL-6 production by LTA, a TLR-2 ligand is significantly 

increased upon incubation with Hb (Cox et al, 2007).  

 

1.2.4 Cells involved in the clearance of plasma Hb 

Monocytes and macrophages are the key cells that are involved in the 

clearance of extracellular Hb within the hemorrhagic plagues (Schaer & 

Buehler, 2013). These are the primary cells in the blood that express the Hb-

scavenger receptor, CD163 and have been implicated in the clearance and 

detoxification of plasma Hb (Kristiansen et al, 2001). In the next section, the 

structure and function of CD163 are discussed in further detail.  

 

1.2.5 Hb and free heme scavenging mechanisms 

A network of plasma proteins, enzymes and scavenger receptors exists to 

promptly clear free Hb from the plasma during mild to moderate hemolysis 

(Figure 1.6). The principal clearance mechanism involves transport to the 
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liver parenchyma whereupon heme oxygenase 1 (HO-1) in the macrophages 

breaks down the porphyrin ring into bilirubin, carbon monoxide and iron.  

The most studied Hb scavenging protein in the plasma is haptoglobin 

(Hp), which binds to free Hb with high affinity (Levy et al, 2010). Binding of 

Hp to Hb sequesters the redox-active Hb in the vasculature and prevents 

translocation across the endothelial barrier and into the kidney. Hp has also 

been shown to alter the redox reactions of Hb by stabilizing the higher 

oxidation states of Hb (Hb-Fe(IV)) and preventing the radical transfer to other 

molecules (Banerjee et al, 2012; Cooper et al, 2013). As a result of this 

protection, oxidation of the globin moiety of Hb is reduced thus preventing its 

degradation. Owing to the protective effect of Hp against cell-free Hb, Hp has 

been clinically used to treat patients with burn injuries, trauma and hemolytic 

anaemia (Schaer et al, 2013).  

Hemopexin (Hpx) is a hemin-binding plasma protein that forms the 

second line of defense against free hemin released from metHb. Although 

several plasma proteins such as albumin and lipoproteins bind to hemin, Hpx 

is the most effective (Kd < 10-13 M) in sequestering hemin in an oxidatively 

inert conformation (Gutteridge & Smith, 1988; Tolosano et al, 2010). In the 

plasma, Hpx binds to free hemin released from metHb and prevents the 

oxidation of lipoproteins and interaction of hemin with cell-surface receptors 

such as TLR-4 (Figueiredo et al, 2007). Endocytic receptors expressed on the 

surface of macrophages and monocytes clear the Hb:Hp and heme:Hpx 

complexes from circulation. In particular, the scavenger receptor, CD163 has 

been shown to recognize Hb:Hp complex from the plasma (Kristiansen et al, 

2001; Schaer et al, 2007). The heme:Hpx complex is cleared by the CD91 
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receptor on hepatocytes (Hvidberg et al, 2005). The above protective 

mechanisms protect against the toxic effects of circulating cell-free Hb. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1.6: Hb and free heme scavenging mechanisms. Free Hb released 
into the plasma during hemolysis and tissue injury. In the extracellular 
compartment, free Hb reacts with peroxides (H202) and undergoes oxidation 
into ferric Hb, which is unstable and releases free heme. In the plasma, Hb is 
sequestered by Hp and the Hb:Hp complex is internalized by scavenger 
receptor, CD163. Within the macrophage, Hb is catabolized by heme-
oxygenase-1 (HO-1) into bilirubin and carbon monoxide (CO). Scavenging 
buffer systems such as hemopexin (Hpx) binds and detoxifies free heme and 
the heme:Hpx complex is recognized by the LDL-receptor related protein 
(LRP-1)/CD91. Figure adapted from (Schaer & Buehler, 2013).  
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1.2.5.1 CD163 as a monocyte/ macrophage scavenger receptor 

Structure and function 
 
CD163 was initially isolated, cloned and sequenced from the splenic 

macrophages of a hairy cell leukemia patient (Law et al, 1993). CD163 is a 

type I transmembrane protein (~130 kDa) and belongs to the scavenger 

receptor cysteine rich (SRCR) superfamily of proteins. It comprises of an 

extracellular domain of ~1003 amino acids, containing 9 SRCR repeats, a 

hydrophobic transmembrane domain of ~24 amino acids and a short 

cytoplasmic domain of ~49 amino acids (Figure 1.7). Depending on the 

length of the cytoplasmic tail, four splice variants were identified in the human 

monocyte cDNA library (Law et al, 1993).  

 

 

 

 

Figure 1.7: Schematic representation of CD163 structure. CD163 contains 
nine scavenger receptor cysteine rich (SRCR) domains towards the N-terminal 
while the C-terminus is intracellular and connected by a short transmembrane 
domain.  
 
 

The two major functions of CD163 reported so far in the literature are: 

a) receptor for Hb:Hp complex and b) regulate the innate immune response 

during infection (Graversen et al, 2002). Membrane bound-CD163 has been 

shown to bind Hb:Hp complex and Hb in the plasma via the third SRCR 

domain in a calcium-dependent manner (Madsen et al, 2004; Schaer et al, 

2006). Upon binding to CD163, the Hb:Hp complex is internalized into the 

macrophages, wherein HO-1 degrades the heme into bilirubin, CO and iron 
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and induces anti-inflammatory cytokines such as IL-10 (Akila et al, 2012). 

Apart from binding to Hb:Hp complex, CD163 has also been shown to bind 

both Gram-negative and Gram-positive bacteria and induce cytokine 

production (Fabriek et al, 2009). However, the exact nature of the bacterial 

ligands and the intracellular signaling pathways remains to be understood. 

CD163 has been implicated in the anti-inflammatory immune 

response. Firstly, macrophages expressing CD163 are predominant during the 

resolution phase of inflammation and are found in wound-healing tissues 

(Zwadlo et al, 1987). Secondly, CD163 expression is strongly upregulated by 

anti-inflammatory mediators such as glucocorticoid and IL-10 (Schaer et al, 

2001) in a macrophage subtype called alternatively activated macrophages. 

The anti-inflammatory IL-10 produced by CD163 expressing macrophages 

has been shown to inhibit T-lymphocyte proliferation (Akila et al, 2012). 

Moreover, the catabolic end products of heme like bilirubin and CO have been 

shown to exert anti-oxidative and anti-inflammatory effects (Otterbein et al, 

2000).  

Expression and regulation 

Expression of CD163 is restricted to cells on the monocyte/macrophage 

lineage (Akila et al, 2012). In particular, CD163 is expressed on peripheral 

blood monocytes and more mature tissue macrophages such as Kupffer cells 

in the liver, red-pulp macrophages in the spleen and cortical macrophages of 

the thymus (Van den Heuvel et al, 1999). CD163-positive macrophages are 

predominantly found in healing wound tissues post-inflammation (Philippidis 

et al, 2004).    
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The expression of CD163 is regulated by several factors such as 

glucocorticoids and cytokines. The promoter region of CD163 has several 

potential glucocorticoid receptor binding sites, which could explain the strong 

induction of CD163 upon glucocorticoid stimulation of monocytes and 

macrophages. Pro-inflammatory stimuli such as cytokines (interferon-γ, tumor 

necrosis factor-α) and LPS have been shown to downregulate CD163 mRNA 

and protein (Ritter et al, 1999). In contrast, anti-inflammatory stimulus like 

IL-10 has been shown to upregulate the expression of CD163. Hence, CD163 

is subjected to regulation by both pro- and anti-inflammatory stimuli, 

suggesting a crucial role of CD163 in regulating immune responses.   

Proteolytic shedding of CD163 

In addition to the membrane-bound form of CD163 (mCD163), a soluble form 

of CD163 exists in the plasma and tissue fluids (Moller et al, 2002). 

Proteolytic cleavage of CD163 by metalloproteinases releases the extracellular 

portion of CD163 containing the 9 SRCR domains and has a molecular mass 

identical to membrane-CD163. To distinguish the two forms of CD163, this 

thesis refers to the soluble form of CD163 released upon proteolytic cleavage 

as sCD163 and the full-length native membrane bound form as mCD163. 

Inflammatory stimuli such as LPS and oxidative stress have been shown to 

induce shedding of CD163 from monocytes (Hintz et al, 2002; Timmermann 

& Hogger, 2005). The concentration of soluble CD163 (sCD163) is 

upregulated in patients with sepsis, myeloid leukemia and Gaucher disease 

(Moller et al, 2004).  
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Clinical Relevance of CD163 

CD163-expressing cells have been associated with many diseases. The 

restricted expression of CD163 on monocytes and macrophages makes it an 

ideal target for the delivery of therapeutics specifically to these cells. CD163-

expressing macrophages in the gut have been identified in patients with the 

inflammatory disease, spondyloarthropathy (Baeten et al, 2002). CD163-

specific antibodies have been used to stain synovial macrophages in 

rheumatoid arthritis patients (Fonseca et al, 2002). CD163 also serves as a 

marker for the macrophages in atherosclerotic lesions (Ratcliffe et al, 2001) 

and has been proposed to play a role in lesion formation (Schaer, 2002). In 

addition, infection by viruses such as human immunodeficiency virus type-1 

(HIV-1) and porcine reproductive and respiratory syndrome virus (PRRSV) 

has been associated with the CD163-high anti-inflammatory macrophages 

(Chihara et al, 2012; Karniychuk et al, 2013). Patients with sepsis and other 

inflammatory diseases have elevated levels of sCD163 in the plasma 

(Matsushita et al, 2002; Moller et al, 2002). Hence, both the membrane-bound 

and soluble forms of CD163 play important roles in infection and 

inflammation.    

 

1.3 Significance of hemolysis and Hb during pathological conditions 

Hemolysis and elevated concentrations of extracellular Hb in the plasma are 

associated with various diseases and genetic abnormalities such as hemolytic 

infections (e.g. malaria, hemorrhagic fevers), hemolytic anaemia (e.g. 

paroxysmal nocturnal hemoglobinuria, autoimmune hemolytic anaemia), and 

tissue injury (e.g. intraventricular brain hemorrhage, chronic leg ulcers). In 
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this section, we will focus on the role of cell-free Hb and heme during 

hemolytic infections.  

 

1.3.1 Hb-iron is a nutrient source for pathogens 

Iron is an important micronutrient for all forms of life. Hb, being the most 

abundant iron source in humans, is an attractive source of iron for the 

intruding pathogens (Pishchany & Skaar, 2012). In view of the importance of 

iron in host-pathogen interactions, both the host and the pathogen have co-

evolved mechanisms to sequester iron. Apart from being a source of the 

nutrient iron, pathogens such as Plasmodium (malarial parasite), utilize Hb as 

a source of amino acids (Francis et al, 1997). Hemoglobin is sequentially 

digested by a series of proteases expressed within the digestive vacuole of the 

parasite (Skinner-Adams et al, 2010).  

 

Iron acquisition by pathogens  

Hemolytic bacteria, such as Staphylococcus aureus are known to express 

hemolysin that ruptures the RBCs and releases free Hb (Vandenesch et al, 

2012). Released Hb and its heme group are captured by receptors that are 

either expressed on the surface of the bacteria or secreted (Hammer & Skaar, 

2011). Siderophores are high affinity iron-binding molecules secreted by the 

bacteria to acquire iron from the iron-sequestering proteins of the host such as 

transferrin and lactoferrin. S. aureus produces two distinct siderophores, 

staphyloferrin A and staphyloferrin B (Figure 1.8). The genes for 

siderophores are controlled by the iron-dependent ferric uptake regulator 

(Fur), and are highly expressed in iron-limiting environments (Friedman et al, 
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2006). Apart from siderophores, S. aureus possesses the iron-regulated surface 

determinant (Isd) system, which mediates the acquisition and transport of 

heme across the bacterial cell wall and plasma membrane. The family of Isd 

receptors includes IsdA, IsdB, IsdC, IsdD, IsdE, IsdG, and IsdI, which are able 

to bind to Hb, Hp:Hb complexes, and heme (Haley & Skaar, 2012). IsdA, 

IsdB, IsdH and IsdC contain the conserved ‘near iron transporter’ (NEAT) 

domains, which mediates heme and hemoprotein binding (Haley & Skaar, 

2012). The IsdB receptor, which functions as the Hb-receptor, has been shown 

to have greater affinity to human Hb compared to other species (Hammer & 

Skaar, 2011). After being transported across the membrane through the Isd 

receptors, heme eventually reaches the cytoplasm where it is degraded to 

release iron, which is eventually incorporated into the bacterial heme 

containing proteins (Hammer & Skaar, 2011). Apart from bacteria, several 

pathogens such as Leishmania and Trypanosoma have also evolved 

mechanisms to acquire iron from Hb (Carvalho et al, 2009; Vanhollebeke et 

al, 2008).  
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Figure 1.8: Mechanisms for iron acquisition by Staphylococcus aureus. (a) 
S. aureus produces two siderophores, staphyloferrin A and staphyloferrin B 
that bind to extracellular iron with high affinity. HtsA lipoprotein and HtsBC 
permease import staphyloferrin A, while the SirA lipoprotein and SirBC 
permease import staphyloferrin B. (b) Heme acquisition by S. aureus through 
the Isd system. IsdH binds to Hb:Hp complexes, while IsdB binds Hb directly. 
Heme is passed through IsdH, IsdB, IsdA, IsdC, IsdE and finally across the 
membrane through either the IsdDF or the HtsBC permeases. Bacterial heme-
oxygenases, IsdG and IsdI then degrade the intracellular heme to release iron. 
(c) The promoter regions of the staphyloferrin genes contain consensus 
binding regions for Fur (orange) which regulates the expression of these genes 
under iron-limiting conditions. Figure adapted from (Hammer & Skaar, 2011).  
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Iron sequestration by the host 
 
Free Hb and heme released during hemolysis have dual roles in innate 

immunity. Firstly, the heme is a source of nutrient iron for pathogens. 

Secondly, the redox-active Hb generates cytotoxic ROS. Hence, the host has 

evolved proteins to sequester Hb and heme/iron from the intruding pathogens, 

as well as to protect from oxidative damage. In the plasma, iron is bound by 

the transport protein, transferrin and transported into the macrophages, where 

in the iron is either stored intracellularly by ferritin (Parrow et al, 2013) or 

incorporated into iron-containing proteins. Lactoferrin, found in the mucosal 

surfaces and plasma, binds to iron with higher affinity than transferrin and 

retains it under acidic conditions (Aisen & Leibman, 1972). Other plasma 

proteins such as Hp and hemopexin (Hpx) bind to plasma Hb and heme 

respectively(Parrow et al, 2013). All these Hb- and iron-chaperone proteins 

are acute phase proteins whose levels are regulated during infection. Due to 

the tight regulation of free iron by the chaperone proteins, under normal 

physiological conditions, free iron in the body fluids is maintained at an 

extremely low concentration of 10-18 M, which cannot sustain bacterial growth 

(Bullen et al, 1978). During infection and inflammation, hepcidin, an iron-

regulated hormone is upregulated and further reduces the free iron 

concentration in the serum. Thus, the host has evolved several iron and Hb-

chaperone proteins in order to deprive the intruding pathogens of the nutrient 

iron.  
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1.3.2 Hb senses pathogen and produces antimicrobial ROS 

Hemolytic pathogens secrete cytolytic toxins to release Hb from the RBCs, 

and subsequently proteolyse the extracellular Hb to release the heme-iron and 

utilize it as a nutrient source. However, the host employs the redox activity of 

Hb as an anti-microbial defense against the invading pathogen. This is 

exemplified by the findings that Hb elicits a broad spectrum of anti-microbial 

defense (Mak et al, 2007; Parish et al, 2001). In particular, Hb has been shown 

to recognize and bind to bacterial PAMPs such as LPS, LTA (Du et al, 2010; 

Jiang et al, 2007). Upon binding to the PAMP, the POX activity of Hb is 

activated leading to the production of microbicidal ROS in the vicinity of the 

bacteria (Du et al, 2010). Apart from PAMPs, proteolysis of Hb by microbial 

proteases such as subtilisin A, type XIV proteases, elastase from bacteria, 

proteinase K from fungi (Jiang et al, 2007) releases POX-active peptides, 

which anchor onto the surface of the microbe and release toxic ROS (Figure 

1.9) (Du et al, 2010). This anti-microbial function of Hb is evolutionarily 

conserved in the hemocyanin (HMC) of the invertebrate, horseshoe crab 

implying the central importance of this mechanism in mediating innate 

immune defense against blood-borne pathogens.  
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Figure 1.9: Hb senses pathogen and releases ROS. Tetrameric or the 
proteolysed forms of Hb and HMC bind to PAMPs on the microbial surface 
and generate ROS to kill the pathogen. Figure adapted from (Du et al, 2010) 
with permission from the Nature publishing group.  
 
 

The tetrameric form of Hb (α2β2), as well as the individual subunits 

(Hb-α and Hb-β) display anti-microbial property. Hemocidins are a class of 

anionic peptides of Hb released during the proteolytic cleavage of Hb and 

exhibit anti-bacterial activity (Sheshadri & Abraham, 2012). In vivo 

degradation of Hb exposes the hydrophobic anti-microbial peptides, which act 

on the negatively charged bacterial membrane (Mak et al, 2000). Examples of 

hemocidins include the residues 1-23, 33-61, 35-56 of Hb-α and 111-146 of 

Hb-β (Fogaca et al, 1999; Froidevaux et al, 2001; Liepke et al, 2003). Hence, 

Hb acts like a PRR to sense blood-borne pathogens and instantly generates 

ROS to subjugate the intruding pathogen. 
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1.3.3 Association between hemolysis and intracellular infections 

Hemolysis is induced during both infectious (malaria, Staphylococcal 

infections) as well as non-infectious diseases (sickle cell disease, paroxysmal 

nocturnal hemoglobinuria, trauma, tissue injury) and is characterized by high 

levels of the cytotoxic Hb in the plasma. In collaboration with plasma proteins 

like Hp, scavenger receptors such as CD163, localized on monocytes and 

macrophages endocytose Hb from the plasma to prevent Hb-induced oxidative 

damage. Opportunistic pathogens such as Staphylococcus aureus are known to 

usurp Hb to utilize the heme-iron for its survival (Skaar et al, 2004). Hence, 

the uptake of Hb by macrophages during episodes of hemolysis, presents an 

opportunity for intracellular pathogens to feed on the intracellular Hb for the 

nutrient iron. Consistently, several epidemiological studies have reported that 

patients with hemolytic disorders are predisposed to infections (Berkley et al, 

2009; Bronzan et al, 2007; Scott et al, 2011) especially by intracellular 

bacteria (Mabey et al, 1987).  

 The mechanism(s) proposed so far, which account for the higher 

susceptibility of hemolytic patients to intracellular infections involve 

monocyte and macrophage dysfunctions. For example, hemolysis may impair 

monocyte and macrophage function by direct adhesion of infected RBCs 

(Urban & Roberts, 2002), through accumulation of hemozoin with the cells 

(Schwarzer et al, 1992) or by impairment of IL-12 production (Roux et al, 

2010). Another study has shown that resistance to intracellular infections is 

impaired due to the free heme liberated during hemolysis (Cunnington et al, 

2012). However, the missing link that associates hemolysis and intracellular 

infections remains to be identified. 
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1.4 Hypothesis and research objectives 

This thesis explores the innate immune response(s) against cell-free Hb. 

Severe hemolysis induced during hemolytic infection, tissue injury/trauma and 

other genetic disorders releases excessive amounts of Hb into the plasma. The 

intrinsic Hb-POX activity generates cytotoxic ROS, which is damaging if not 

rapidly detoxified and cleared from the circulation. The interrelation between 

ROS and the innate immune system in several diseases prompts our systematic 

analysis of the innate immune defense mechanisms against the DAMP, Hb. 

 Although plasma Hp has been reported to bind and mediate 

internalization of Hb via the scavenger receptor, CD163 on the monocytes 

during moderate hemolysis, the redox activity of the heme-iron is not 

completely suppressed and the Hb:Hp complex is still redox active (Azarov et 

al, 2008; Kapralov et al, 2009). Moreover, during severe hemolysis, Hp is 

rapidly bound and exhausted by the excessively high concentrations of free Hb 

in the plasma (0.5-2 mg/ml) (Kormoczi et al, 2006). In addition, Hp knockout 

mice and patients with anhaptoglobinemia do not display complete morbidity 

to hemolysis, suggesting that under conditions of Hp depletion, alternative 

parallel mechanisms operate to detoxify and clear the residual Hb. Thus, 

intriguing questions remain unanswered; for example, a) the functional 

significance of CD163:Hb interaction on the redox activity of Hb and b) the 

fate of the shed sCD163 under severe hemolytic conditions. The intricate 

association between hemolysis and susceptibility to intracellular infection 

prompts the investigation of the pathophysiological role of internalized Hb 

towards the survival and growth of iron-dependent intracellular bacteria.  
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Based on the above observations, we hypothesize that firstly in the 

transient absence of Hp, the host presumably relies on CD163 and other 

plasma proteins to protect from oxidative damage by Hb-POX and secondly, 

opportunistic bacteria may utilize the internalized Hb to silently survive inside 

Hb-loaded macrophages. The major objectives of this thesis are thus to: (i) 

decipher the direct effect of CD163 and plasma proteins on the Hb-POX 

activity and the consequential cell-survival when Hp is depleted; (ii) 

investigate the pathophysiological role of internalized Hb towards the survival 

of intracellular bacteria (Figure 1.10).  

Overall, the findings from this thesis will provide important clues to 

design safer Hb-based blood substitutes and better treatment options for 

opportunistic bacterial infections in hemolytic patients. 
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Figure 1.10: Flowchart showing the specific aims and the experimental 
strategies used to test the hypothesis. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Preparative Methods 

2.1.1 Reagents 

The purified human Hb, subtilisin A, rabbit polyclonal anti-human Hb, rabbit 

anti-human IgG and the protein synthesis inhibitor (cycloheximide, CHX) 

were obtained from Sigma. The endocytosis and recycling inhibitors, 

chlorpromazine and monensin, respectively, were from Calbiochem. 

Palmitoylation and myristoylation inhibitors, 2-bromopalmitate and 2-

hydroxymyristic acid, respectively, were purchased from Sigma. Mouse 

monoclonal anti-human FcγRI (CD64) and goat polyclonal anti-human CD163 

were purchased from R&D Systems. Purified mouse anti-human FcγRIII 

(CD16) and mouse anti-human FcγRII (CD32) were from BD Pharmingen. 

Rabbit anti-heme-oxygenase-1 (HO-1), rabbit anti-pERK, rabbit anti-Bax and 

rabbit anti-p-p38 MAPK were from Cell Signaling Technology. Rabbit anti-

NRAMP-1 (Natural resistance-associated macrophage protein) was purchased 

from Abcam. Mouse monoclonal anti-plasma membrane calcium ATPase 

(PMCA) was from Thermo Scientific. Mouse monoclonal antibodies against 

GAPDH and Bcl2 were from Santa Cruz. Goat anti-rabbit, goat anti-mouse 

and rabbit anti-goat secondary antibodies conjugated to horseradish 

peroxidase (HRP), were from Dako. Supersignal West Pico chemiluminescent 

substrate was from Thermo Scientific (Pierce). Pyrogen-free water was from 

Baxter Healthcare. RPMI-1640 and DMEM were purchased from Gibco, 
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Invitrogen. EndoGRO-LS complete medium for culturing endothelial cells 

were purchased from Millipore. Luria Bertani (LB) broth was from Difco, BD 

Biosciences. High-grade HyClone fetal bovine serum (FBS), with extremely 

low levels of endotoxin (<0.3-0.6 EU/ml) was purchased from Thermo 

Scientific. Bovine-serum albumin (BSA) was from Merck. Prolong Gold 

Antifade Reagent were from Invitrogen. Maxisorp plates for ELISA were 

purchased from NUNC. All the other chemicals used were of molecular 

biology grade from Sigma, unless indicated otherwise.   

2.1.2 Bacterial strains and culture 

The laboratory strains, Staphylococcus aureus PC1839 (extracellular protease, 

V8-active; kanamycin-resistant), Salmonella enterica serovar Typhimurium 

LT2 and Pseudomonas aeruginosa strain PAO1 (extracellular protease, 

elastase-active) were used in this study. The cultures were frozen in LB broth 

containing glycerol (20% v/v) at −80°C. S. typhimurium and P. aeruginosa 

cultures were maintained on LB agar while Kanamycin (50 µg/ml) 

supplemented LB was used as the selective media for S. aureus.  

2.1.3 Depyrogenation of glassware and preparation of pyrogen free 
buffers 

 
To minimize endotoxin contamination, all the glasswares were depyrogenated 

by baking at 200oC for 2 h. All the buffers and media were prepared using 

pyrogen-free water (Baxter Healthcare) and handled under sterile conditions.  
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2.1.4   Cell cultures and human primary monocytes  

Histiocytic lymphoma cells, SU-DHL-1 (obtained from DSMZ, Germany), 

also described as monocytic M5-type cells, the only human cell line which 

expresses high levels of CD163 (Law et al, 1993), THP-1 and U937 cells 

(human leukemic monocyte lymphoma cells) and Jurkat cells (a human T cell 

lymphoblast cell line) were cultured in HEPES-buffered RPMI-1640 

containing 10% FBS at 37oC in an atmosphere of 5% CO2. The U937 cells 

were differentiated into CD163+ macrophages by stimulation with 1x10-8 M 

phorbol myristic acid (PMA) and 2.5x10-7 M dexamethasone (Dex) for 3 days 

in complete medium. The basis of using dex-treated U937 cells was to 

upregulate the expression of the hemoglobin (Hb) receptor, CD163 and 

differentiate them into macrophages which will uptake Hb (Yamazaki et al, 

2007).  

HEK293T and HepG2 cells were cultured in DMEM (Gibco, 

Invitrogen) supplemented with 10% FBS. Human dermal microvascular 

endothelial cells (HMVEC), which expresses FcγRII (CD32) (Groger et al, 

1996) were cultured in EndoGRO-LS complete medium on gelatin coated 

flasks. Cell cultures were maintained at exponential growth rate by replacing 

media every 2 to 3 days and cells were provided fresh media the day before 

they were used for experiments.  

Primary human monocytes were purified from buffy coat by Ficoll-

Paque (GE Healthcare) density gradient centrifugation followed by immuno-

magnetic cell sorting using the Human Monocyte Enrichment Kit (StemCell 

Technologies) according to the manufacturer’s instructions. All experiments 
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involving primary monocytes were performed according to the guidelines on 

ethics and biosafety (Institutional Review Board, reference code 11-095E). 

Prior consent was obtained from all the healthy human donors before 

collection of blood and processing of the buffy coat. 

Monocyte-endothelial co-culture  

To study the potential cross talk between monocytes and endothelial cells 

towards the clearance and detoxification of plasma Hb, CD163+ human 

primary monocytes were co-cultured with HMVEC  cells (CD163-, FcγRII+). 

Briefly, confluent HMVEC cells were washed twice with PBS and incubated 

with freshly isolated CD163+ primary monocytes or CD163- THP-1 cells at a 

ratio of 1:1 in PBS for 45 min with or without Hb, and prepared for 

immunostaining. For cytokine assays, the cells were co-cultured for 24 h in 

serum-free RPMI 1640 in the presence or absence of Hb, and the supernatants 

were collected for ELISA.  

 

2.1.5 Preparation of sCD163 and IgG 

For purification of sCD163 from cell culture supernatant, 50 µg of anti-CD163 

in binding buffer (TBS, pH 7.5) was conjugated to protein A-Sepharose beads 

by overnight incubation with rotation at 4oC. Unbound antibody was washed 

twice with binding buffer and the anti-CD163 bound to the beads was cross-

linked to Sepharose by incubating for 60 min in a cross-linking buffer (50 mM 

dimethyl pimelimidate in 200 mM triethanolamine, pH 8.9). The beads were 

washed twice and incubated with the culture supernatant for 60 min at room 
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temperature. After three washes, bound sCD163 was eluted using 2.5% acetic 

acid into tubes containing neutralization buffer (1 M Tris-HCl, pH 12.0).  

            For purification of IgG from healthy human serum, protein G 

Sepharose (GE Healthcare Life Sciences) was incubated with 5 µl of serum 

(containing ~ 10 mg/ml IgG (Stoop et al, 1969)) diluted to 400 µl in binding 

buffer (20 mM sodium phosphate, pH 7.0). The mixture was rotated on an 

end-to-end rotator overnight at 4oC. The beads were washed twice with 

binding buffer, and the bound IgG was eluted using 0.1 M glycine-HCl, pH 

2.7, into tubes containing neutralization buffer (1 M Tris-HCl, pH 12.0). All 

experiments were validated using IgG purified from at least three different 

healthy donors. 

 

2.1.6 Extraction of native cell-membrane proteins  

The native membrane proteins from 2 x 106 SU-DHL-1 cells or primary 

monocytes were extracted using a native membrane protein extraction kit 

(ProteoExtract; Calbiochem) according to the manufacturer’s instructions. 

Briefly, cells were washed twice with ice cold PBS and incubated for 10 min 

on ice under gentle agitation with 2 ml of ice-cold extraction buffer I 

supplemented with protease inhibitor cocktail. The insoluble material was 

pelleted by centrifugation at 16000xg for 15 min at 4oC and the supernatant 

enriched in cytosolic proteins was frozen at -80oC. The cell pellet was then 

incubated with 1 ml of ice-cold extraction buffer II supplemented with 

protease inhibitor cocktail for 30 min on ice, with gentle agitation. The 

insoluble material was pelleted by centrifugation at 16000xg for 15 min at 4oC 
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and the supernatant enriched in membrane proteins was collected and used 

immediately or frozen at -80oC. 

 

2.1.7 FITC conjugation to Hb 

Hb was conjugated to fluorescein isothiocyanate (FITC) using the FITC 

labeling kit (Thermo Scientific) to visualize and quantitate its endocytosis into 

the monocytes by confocal microscopy and flow cytometry. The labeling 

procedure was carried out in accordance with the manufacturer’s instructions. 

Briefly, 40 µl of borate buffer (0.67 M) was added to 0.5 ml of 2 mg/ml Hb in 

PBS. Next, 0.5 ml of Hb in borate buffer was added to the vial containing 

FITC and mixed thoroughly by pipetting. The labeling reaction mixture was 

incubated for 60 min at room temperature protected from light. Unbound 

FITC was removed by adding 250 µl of the labeling mixture onto spin 

columns containing purification resin, mixed and spun down at 1000xg for 30-

45 s to collect the FITC-conjugated Hb. The labeled protein was aliquoted and 

frozen at -30oC.  

 

2.1.8 Biotinylation of sCD163 

Sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate (Sulfo-NHS-S-

S-biotin; Pierce) was used for biotin labeling of sCD163 to track its 

subcellular localization and distinguish it from mCD163. Briefly, 2 µg/ml of 

sCD163 in PBS was incubated with 20-fold molar excess of Sulfo-NHS-SS-

Biotin at room temperature for 60 min. Excess biotin reagent was removed 
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using ultracentrifugal spin columns (with MWCO at 10 kDa Amicon Ultra-

0.5) and the biotin-conjugated sCD163 was buffer exchanged to PBS (pH 7.4).  

To measure the level of biotin incorporation in sCD163, a mixture of 

4-hydroxyazobenzene-2-carboxylic acid (HABA) and avidin was used. Due to 

its higher affinity for avidin, biotin displaces HABA from its interaction with 

avidin and the absorbance at 500 nm decreases proportionately. 20 µl of 

biotinylated sCD163 was added to 180 µl of the HABA/avidin mixture in a 

96-well plate and absorbance at 500 nm was measured using a microplate 

reader (Biotek). The change in the absorbance of the HABA/avidin mixture 

before and after addition of biotinylated sCD163 (ΔA500) was calculated using 

the equation below. 

 

The concentration of biotin in the reaction mixture was measured as follows: 

 

The level of biotin incorporated into sCD163 was quantified to be 18 biotin 

molecules per sCD163 molecule using the equation below: 
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2.2 Analytical Methods 

2.2.1 Superoxide and ROS detection 

2.2.1.1 Chemiluminescence assay for superoxide detection 

Principle 

The generation of superoxide (O2
.-) by Hb was monitored by the 

chemiluminescence of Cypridina Luciferin analog (CLA), 2-methyl-6-phenyl-

3,7 dihydroimidazo [1,2-a] pyrazin-3(7H)-one. The chemiluminescent dye, 

CLA emits light upon reacting with superoxide ions (Kawano et al, 2002; 

Nakano, 1990). A time course profile of the change in the chemiluminescence 

of CLA indicates that product formation reaches a peak and then declines due 

to substrate consumption. The relative luminescence units per second (RLU/s) 

is proportional to the POX enzyme activity and used here as the parameter of 

analysis of Hb-POX. The CLA dye specifically measures superoxide, enabling 

the detection of the Hb-POX activity in the presence of hydrogen peroxide. 

 

Cell-free superoxide production by Hb 

Native Hb or Hb activated by treatment with subtilisin A (refer section 

3.1.1.1) was incubated with the SU-DHL-1 membrane extract (enriched in 

CD163) with or without pretreatment with 0.1 µg/ml anti-CD163. The 

reaction mixture along with 20 µM CLA and 5 mM H202 in 100 µl PBS was 

subjected to the chemiluminescence assay. The intensity of the CLA 

chemiluminescence was measured for 120 s at a 1 s interval using the Glomax 

20/20 Luminometer (Promega).  
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The slope of the curve was used to calculate the POX activity. CD163- 

HEK293T cell membrane extract served as negative control. 

 

In situ chemiluminescence assay with cells 

CD163+ and CD163- HEK293T cells were incubated with subtilisin A-

activated Hb for up to 10 min, washed twice and then subjected to the CLA 

assay. The reaction mixture has 2x105 cells, 20 µM CLA and 5 mM H202 in 

100 µl PBS.  

 

2.2.1.2 Intracellular ROS detection using CMH2DCFDA dye 

The ROS generated within the monocytes was measured using the cell 

permeant oxidation-dependent fluorogenic dye, CM-H2DCFDA (Invitrogen). 

SU-DHL-1 cells were plated at 2 x 105 cells/well onto 24-well plates in phenol 

red-free RPMI. The cells were washed and resuspended in PBS containing 10 

µM CM-H2DCFDA for 30 min in the dark and stimulated with 1 mg/ml Hb, 

with or without pretreatment with 0.1 µg/ml anti-CD163. The fluorescence of 

the dye at 495 nm was measured using a microplate reader (Biotek).  

 

2.2.1.3 Mitochondrial ROS detection using MitoSOX Red dye 

The ROS generated in the mitochondria of cells was measured using the cell 

permeant mitochondrial specific fluorogenic dye, MitoSOX Red (Invitrogen). 

The cells were washed and resuspended in PBS containing 5 µM MitoSOX 

Red for 10 min at 37°C in the dark. The cells were then washed thrice and 
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resuspended in PBS. The fluorescence of the dye was measured on a CyAn 

ADP flow cytometer (Dako). 

 

2.2.2 Cloning of CD163 and expression in HEK293T cells  

The full length human CD163 was amplified from the human primary 

monocyte cDNA using forward and reverse primers (CD163 FW and CD163 

RW, refer List of primers) with Xho I and Hind III restriction sites and ligated 

into pcDNA3.1A (Invitrogen). The ligation mixture was then transformed into 

the Escherichia coli TOP10 competent cells and the positive colonies were 

screened by colony PCR. The positive clones were verified by DNA 

sequencing. The plasmid was transfected into HEK293T cells, grown 

overnight on 12-well plates (Nunc) at a density of 4x105 cells/well in complete 

DMEM. The cells were transfected using Turbofect (Fermentas) according to 

the manufacturer’s instructions. Briefly, 2 µg of CD163-pcDNA3.1 or empty 

vector was mixed with 4 µl turbofect in 200 µl of serum-free DMEM, 

incubated for 30 min at room temperature and added to the cells. The 

expression of CD163 was verified at the protein level using Western blotting 

24 h post transfection. 

 

2.2.3 Cell viability and apoptosis assays 

2.2.3.1 Cell Titer Blue viability assay 

Cell viability was measured using the CellTiter-Blue viability assay kit 

(Promega) following the manufacturer’s instructions. Briefly, HEK293T and 

HepG2 cells seeded overnight on 96-well plates were stimulated with Hb. Cell 
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Titer-Blue was added to each well, and fluorescence was measured (excitation 

530 nm, emission 590 nm) after 4 h of incubation. The mean fluorescence of 

triplicate wells was calculated and plotted. 

 

2.2.3.2 Annexin-V and propidium iodide assay 

Staining of early apoptotic cells was performed using the Annexin-V-FITC 

Apoptosis Detection kit (eBioscience) and propidium iodide (PI) viability 

staining solutions (eBioscience) according to the manufacturer’s instructions. 

Briefly, primary monocytes were stimulated with 1 mg/ml of native Hb or 

activated Hb with or without pretreatment with 0.1 μg/ml anti-CD163. The 

cells were then washed successively with PBS and 1X binding buffer and 

resuspended in binding buffer at a density of 1 x 106 cells/ml. The cells were 

incubated with FITC conjugated Annexin-V (20:1 (v/v)) for 15 min at room 

temperature and washed. PI was added at a dilution of 1:20 to the cell 

suspension and immediately analyzed on CyAn ADP flow cytometer (Dako). 

Annexin-V stains early apoptotic cells while PI stains late apoptotic and dead 

cells. 

 

2.2.3.3 Mitochondrial membrane potential assay 

The mitochondrial membrane potential in live cells was measured using the 

cell-permeant TMRE dye (Sigma). Briefly, cells were washed once with PBS 

and incubated with 100 nM TMRE in PBS for 20 min at 37oC. The cells were 

then washed once and resuspended in PBS and analyzed immediately on a 

CyAn ADP flow cytometer (Dako). Intact mitochondria would retain the 
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TMRE dye and detected by its fluorescence signal. Cells treated with 10 µM 

Carbonylcyanide m-chlorophenylhydrazone (CCCP, a mitochondrial 

uncoupling agent) and 100 µM hydrogen peroxide (H202) were used as 

positive controls to reduce mitochondrial potential. 

2.2.3.4 Caspase activity assays 

The activities of caspase-3 and -9 were measured by resuspending the cell 

pellets in 30 µl of phiphilux-G2D2 and caspalux 9-M2D2 substrates, 

respectively (OncoImmunin) and incubating for 40 min at 37°C. After 

washing in FACS buffer, the cells were analyzed at λex 552 nm/ λem 580 nm. 

 

2.2.4 Flow Cytometry Analysis 

Surface CD163 expression on monocytes  

2 x 106 SU-DHL-1 cells were washed twice with PBS and fixed in 4% (w/v) 

paraformaldehyde for 15 min. The cells were then blocked with 2% BSA for 

30 min and washed once with PBS (pH 7.4). Subsequently, the cells were 

sequentially stained with primary antibody mixture [goat anti-CD163 (1:100); 

mouse anti-PMCA ATPase (1:200)] and secondary antibody mixture [(Alexa 

488-conjugated donkey anti-goat (1:200); Alexa 546-conjugated donkey anti-

mouse (1:500) (Invitrogen)] with two washes following primary antibody 

incubation. Then the cells were washed thrice with PBS and 10, 000 cells were 

acquired and analyzed on the CyAn ADP flow cytometer (Dako). The 

polyclonal anti-CD163 detects the full-length protein. The fluorescence 

intensity values for CD163 were normalized against the corresponding values 

for the membrane housekeeping control protein, PMCA-ATPase. 
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Assay for Hb endocytosis by CD163+ U937-derived macrophages 

106 U937-derived macrophages were incubated with 0.5 mg/ml Hb for 45 min 

and excess Hb was removed by washing twice with PBS. The cells were fixed 

in 4% paraformaldehyde (PFA) for 15 min and permeabilized using 0.5% 

Tween-20 in PBS for 15 min and then blocked with 3% BSA for 30 min. The 

endocytosed Hb was stained using anti-Hb and Alexa-488-conjugated 

secondary antibody and analyzed on the FITC channel (λex: 490 nm λem: 

525nm) on the Cyan ADP flow cytometer (Dako). 

 

Measurement of knockdown efficiency of FcγRs in primary monocytes 

Human primary monocytes were nucleofected (refer section 2.2.7) with target 

specific siRNA pool for FcγR1 (CD64), FcγRII (CD32) and FcγRIII (CD16) 

(refer section 2.2.7). To measure the knockdown efficiency, 1x106 cells were 

harvested 48 h post-nucleofection, washed twice with PBS and fixed in 4% 

(w/v) paraformaldehyde for 15 min. The cells were then blocked with 2% 

BSA for 30 min and washed once with PBS (pH 7.4). Subsequently, the cells 

were sequentially stained with 1 µg primary mouse anti-human 

CD64/CD32/CD16 antibodies (1:100) and Alexa 488-conjugated donkey anti-

mouse antibody (1:500) (Invitrogen) with two washes following primary 

antibody incubation. Then the cells were washed thrice with PBS, and 10,000 

cells were acquired and analyzed on the CyAn ADP flow cytometer (Dako). 
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Binding of sCD163:FITC-Hb:IgG complex to monocytes 

Wild type, CD64-, CD32- and CD16-knocked down primary human 

monocytes were incubated with sCD163:FITC-Hb:IgG complex (0.5-2 µM) 

for 30 min. The cells were then washed thrice with PBS and endocytosis of the 

complex was quantitated using the CyAn ADP flow cytometer on the FITC 

channel. Data are representative of three independent experiments using 

primary monocytes from a single healthy donor. BSA treated cells served as 

negative control.  

 

Measurement of signaling molecules 

3x106 U937-derived macrophages were washed with PBS and fixed in 4% 

(w/v) paraformaldehyde for 15 min. The cells were then washed and 

permeabilized with 0.5% Tween-20 in PBS (PBST) for 15 min. Subsequently, 

the cells were blocked with 2% BSA for 30 min and washed once with PBS 

(pH 7.4). The cells were sequentially stained with primary rabbit antibody 

(anti-pERK (1:100)/ anti-HO-1 (1:200)/ anti-NRAMP-1 (1:200)/ anti-Bax 

(1:50) and Alexa-488 conjugated secondary antibody (1:400) (chicken anti-

rabbit; Invitrogen) followed by two washes after incubation with the primary 

antibody. The cells were then washed four times with PBS, and 10, 000 cells 

in the gated region were acquired and analyzed on the CyAn ADP flow 

cytometer (Dako). Cells stained with secondary antibody alone served as 

negative control. 

The protein level of HO-1 was measured in HMVEC cells stimulated 

with increasing doses of Hb alone or preformed sCD163:Hb:IgG complex for 

6 h and sequentially stained with rabbit anti-HO-1 (Cell Signaling) and Alexa-
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488 conjugated chicken anti-rabbit (Invitrogen) as described above. 10, 000 

cells in the gated region were acquired and analyzed on the CyAn ADP flow 

cytometer (Dako). Cells treated with hemin, which is the substrate of HO-1, 

served as positive control.  

 

2.2.5 ELISA 

Soluble CD163-specific ELISA 

SU-DHL-1 cells, plated at a density of 2 x 106 cells/well in 24-well plates, 

were stimulated with 1 mg/ml Hb over a time course of up to 60 min. This 

concentration was chosen in view of its pathophysiological relevance 

(Philippidis et al, 2004). The cells were pelleted at 300xg for 15 min at 22oC, 

and the concentration of sCD163 in the cell culture supernatants was measured 

using human CD163 ELISA kit (Quantikine, R&D Systems). 

 

Interaction between sCD163, Hb and IgG 

1 x 108 freshly isolated human primary monocytes were washed twice with 

PBS, pH 7.4 and stimulated with 10-8 M PMA for 2 h at 37oC. sCD163 was 

isolated from the culture supernatants (refer section 2.1.5). The concentration 

of the affinity-purified sCD163 was determined using CD163-specific ELISA. 

sCD163 (0.1 μg/ml) in 100 μl coating buffer (50 mM sodium 

carbonate/bicarbonate, pH 9.6) was immobilized onto 96-well microplates 

(NUNC) by incubating overnight at 4oC. Increasing concentrations of Hb in 

PBS was added and the reaction was incubated for 2 h at 37oC. Following 

three washes, the bound Hb was detected using 1:1000 mouse anti-Hb (Santa 
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Cruz) and 1:2000 goat anti-mouse-HRP (Dako). The optical density (OD) at 

405 nm was read using the microplate reader. 

To test the interaction between sCD163:Hb complex and IgG, anti-IgG 

in the coating buffer was immobilized onto 96-well microplates as described 

above and used to capture IgG from human serum. Increasing concentrations 

of the preformed sCD163:FITC-Hb complex was added and incubated for 2 h 

at room temperature. Following five washes, the FITC fluorescence was read 

using the microplate reader. sCD163:FITC-BSA served as the negative 

control. The readings were subtracted from the values obtained with FITC-Hb 

alone.   

 

Subcellular tracking of biotinylated sCD163 

Primary human monocytes were incubated with either bitoin-sCD163 (refer 

section 2.1.8) alone or as a complex with Hb and IgG over a time course of up 

to 90 min at room temperature. The membrane and cytosolic fractions isolated 

from cells were captured on anti-CD163 coated 96-well microplates for 2 h at 

room temperature. The biotin-labeled protein bound to the plate was detected 

by HRP-Streptavidin Conjugate (ZyMaxTM Grade, Invitrogen). ABTS 

substrate enabled the detection of the HRP conjugate and OD at 450 nm was 

read using the microplate reader. Three washes with PBST were carried out 

between incubations. 
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Quantification of cytokines 

The levels of TNF-α, IL-8 and IL-10 in the culture supernatants were 

measured using commercially available kits (OptEIA Human TNF-α, IL-8 and 

IL-10 ELISA Kits, BD Biosciences), following the manufacturer’s 

instructions. 

 

2.2.6 Fluorescence microscopy 

2.2.6.1 Immunostaining of CD163 on monocytes 

SU-DHL-1 cells or primary monocytes were seeded at a density of 2 x 105 

cells/well onto poly-lysine (Sigma) coated coverslips and cultured overnight. 

The cells were then incubated with 1 mg/ml of native or activated Hb for up to 

60 min. Subsequently, the cells were fixed using 4% (w/v) paraformaldehyde 

for 10 min, blocked with 1% BSA in PBS and incubated with a mixture of 

primary antibodies containing goat polyclonal anti-CD163 (1:200) (R&D 

Systems) for 60 min at room temperature. Following three washes with PBS, 

pH 7.4, the cells were incubated with secondary NL-557 conjugated donkey 

anti-goat antibody (1:200). Following three washes with PBS, the coverslips 

were mounted on a slide along with the ProLong Gold antifade-mounting 

reagent containing DAPI (Invitrogen). Images were acquired using Axio 

Observer Z1 fluorescence microscope (Zeiss) under 32x air objective. 
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2.2.6.2 Subcellular tracking of sCD163 and Hb in monocyte-endothelial 
co-culture 

 
Confluent HMVEC cells grown on coverslips were washed twice with PBS 

and incubated with freshly isolated primary monocytes or THP-1 cells at a 

ratio of 1:1 in PBS with or without Hb treatment for 45 min. Subsequently, the 

cells were fixed using 4% (w/v) paraformaldehyde for 10 min, blocked with 

1% BSA in PBS and incubated with a mixture of primary antibodies 

containing goat polyclonal anti-CD163 (1:200) (R&D Systems) and rabbit 

anti-Hb (1:500) (Sigma), for 60 min at room temperature. Following three 

washes with PBS, pH 7.4, the cells were incubated with secondary antibody 

mixture containing NL-557 conjugated donkey anti-goat (1:200) and Alexa-

488 conjugated chicken anti-rabbit (1:400). The cells were then washed thrice 

with PBS and mounted on a slide along with the ProLong Gold antifade-

mounting reagent containing DAPI (Invitrogen). Confocal imaging of the cells 

was performed on an LSM 510 META microscope (Zeiss) under 100x oil 

immersion objective using the LSM 510 software. 

 

2.2.6.3 Live-imaging of intracellular ROS production in cells 

Real-time imaging of intracellular ROS production by Hb was monitored by 

stimulating CM-H2DCFDA-loaded CD163+ primary monocytes with 0.1 

mg/ml of native or activated Hb with or without pretreatment with 0.1 µg/ml 

anti-CD163 for up to 200 s on the LSM510 META confocal microscope 

(Zeiss). N-acetyl cysteine (NAC), a ROS scavenger and human serum albumin 

(HSA) treated cells served as negative controls. Control CD163- Jurkat cells 

were used to show the specific effect of CD163 on the Hb-ROS production.  
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2.2.6.4 Live-imaging of Hb-induced monocyte-endothelial cell interaction 

To monitor the Hb-induced monocyte-endothelial interactions, human primary 

monocytes and HMVEC cells were co-cultured on sterile coverslip-bottom 

dishes (BD Biosciences). The cells were then washed gently with PBS and 

stimulated with 1 μg Hb in the presence or absence of IgG for up to 20 min 

and images were taken at a 30 s interval on the Axio Observer Z1 fluorescence 

microscope (Zeiss) under 32x air objective under the phase contrast mode.  

 

2.2.6.5 Mitochondrial staining 

Mitotracker Orange (Invitrogen), a cell-permeant mitochondrial labeling dye 

was used to stain mitochondria in U937 derived macrophages. Mitotracker 

Orange was chosen to allow for co-staining of bacteria with FITC and nucleus 

(DAPI). Briefly, treated cells were washed once with PBS. Subsequently, the 

cells were incubated with 20 nM Mitotracker Orange for 30 min at 37oC and 

washed twice in PBS for 5 min. The cells were then fixed and mounted on 

clean slides with ProLong Gold anti-fade mounting medium (Invitrogen) 

containing DAPI. Images were acquired using the LSM 510 META confocal 

microscope (Zeiss) under the 100x oil immersion objective. 

 

2.2.6.6 Staining of intracellular S. aureus and S. typhimurium 

In order to track the entry of S. aureus or S. typhimurium into the 

macrophages, we stained the bacteria with BacLight Red Stain (Molecular 

Probes). The bacteria were cultured for infection using similar methods as 

mentioned previously (refer section 2.1.2) and resuspended at a concentration 
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of 109 cells/ml. The bacteria were then stained for 15 min at room temperature 

using the BacLight Red Stain at a recommended concentration of 0.5 µM. The 

excess stain was then washed away and the bacteria were used for infection 

and processed for viewing under LSM 510 META confocal microscope 

(Zeiss) at 100x oil immersion objective. Z-stack images were acquired at 0.48 

µm interval above and below the focal plane to ensure the intracellular 

localization of the bacteria. 

 

2.2.7 siRNA mediated knockdown of FcγR in primary monocytes 

To validate the role of FcγR in the uptake of sCD163: Hb: IgG complex, we 

silenced the three isotypes of FcγR - FcγR1 (CD64), FcγRII (CD32) and 

FcγRIII (CD16). The CD64 targeting siRNA pool was obtained from 

Dharmacon (Thermo Scientific), while the CD32 and CD16 siRNA duplexes 

were from OriGene Technologies. 2.5 x 106 primary monocytes were 

nucleofected with 2 µg siRNA pool using the Amaxa Nucleofector (human 

monocyte Nucleofector kit, Nucleofector program Y-001). The 

oligonucleotide sequence of the siRNA pool used to knockdown the FcγR 

types in primary monocytes are shown in Table 2.1. Scrambled siRNA pool 

was used as the negative control. Cells were harvested 48 h post-

nucleofection. The efficiency of knockdown was analyzed at the protein level 

by flow cytometry. 
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Table 2.1: siRNA pool used to knockdown human FCGRI, FCGRII and 
FCGRIII 

 

Gene siRNA sequence (5'-3') 
 

FCGR1 

(CD64) 

AAACAAAGUUGCUCUUGCA 
GGAAAUGUCCUUAAGCGCA 
GGAACACAUCCUCUGAAUA 
GAGAAGACUCUGGGUUAUA 

FCGRII 

(CD32) 

rArGrArArCrArArArGrArGrCrCrCrArArUrUrArCrCrArGAA 
rGrArUrGrUrArGrCrArArCrArUrGrArGrArArArCrGrCrUTA 
rGrArArUrUrArGrArGrArGrGrUrGrArGrGrArUrCrUrGrGTA 

FCGRIII 

(CD16) 

rGrCrUrUrCrGrCrUrGrArGrUrUrArArGrUrUrArUrGrArAAC 
rCrGrArUrGrArGrUrCrCrUrCrUrUrArArUrGrCrUrArGrGAG 
rArGrArArArUrArGrCrArGrGrUrArGrUrCrCrArGrGrArUAG 

 

2.2.8 Protein-Protein Interaction Analysis 

2.2.8.1 Surface Plasmon Resonance 

Principle 

Surface plasmon resonance (SPR) was used to determine the real-time binding 

kinetics between IgG, Hb and sCD163 using a BIAcore 2000 instrument 

(BIAcore, Uppsala, Sweden). SPR is a label-free technique and capable of 

measuring real-time quantitative binding affinities using relatively small 

quantities of the analytes. SPR uses an optical method to measure the change 

in refractive index of the medium in close vicinity of a metal surface when 

analyte molecules are flown over receptor molecules immobilized on a sensor 

chip (Besenicar et al, 2006). 
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The surface is typically a thin film of gold on a glass support and 

forms the base of the flow cell through which small volume (~100 nl) of the 

analyte molecule is passed continuously (Patching, 2013). Polarized light from 

a laser source is directed to the bottom surface of the gold-film where surface 

plasmons are generated at the critical angle of the incident light. Interaction 

between the analyte and the immobilized receptor changes the refractive index 

at the surface of gold film and is measured by increase in the response units 

(RU) (1 RU equals shift in critical angle by 10-4 deg). When analyte molecules 

are flown over the receptor immobilized chip surface, interaction leads to an 

initial association phase during which the binding sites become occupied and 

the rate of association (kon) can be measured by this curve (Figure 2.1). When 

steady state is reached, the maximum RU value can be used to estimate the 

binding affinity (KD). During the dissociation phase, receptor binding sites 

become unoccupied and the shape of this curve can be used to calculate the 

dissociation constant (koff). The surface can then be regenerated for a new 

round of analysis.  

Binding models are used to fit the experimental data over a series of 

concentrations. The accuracy of fit between experimental data and binding 

models are judged by the extent of overlap between the experimental and 

fitting curves. The chi-square value represents the sum of squared differences 

between the experimental data and fitted data at each data point.  
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Figure 2.1: Schematic illustration of SPR assay. (A) Analyte molecules are 
flown over the receptor immobilized on the chip surface. Polarized light is 
directed through a prism to the bottom surface of the gold film where surface 
plasmons are generated at the critical angle of incident light. (B) Change in the 
critical angle of the incident light from a to b when the analyte binds to the 
receptor. (C) A typical SPR sensogram featuring the association phase and the 
dissociation phase. Figure adapted from (Patching, 2013) with permission 
from Elsevier publishers.  
 
 
Assay    

The real time biointeraction between IgG, Hb and sCD163 was analyzed by 

surface plasmon resonance using a Biacore 2000 instrument (Biacore 

International AB, Uppsala, Sweden). IgG was immobilized on a CM5 chip by 

amine coupling according to the manufacturer’s instructions. Increasing doses 

of Hb at 13-51 µg/ml, was injected over the IgG-immobilized chip in running 

buffer of 50 mM Tris, 145 mM NaCl with 2 mM calcium, pH 7.4, at a flow 
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rate of 30 µl/min. Anti-Hb at 5-20 nM was injected to verify the specificity of 

interaction between Hb and IgG. sCD163 was buffer-exchanged to the same 

running buffer using Vivaspin columns (Sartorius Stedim Biotech, France) 

and 50 µl sCD163 (2.5-10 ng/ml) was injected over the bound Hb. The 

dissociation phase was carried out for 180 s at the same flow rate. 

Regeneration of the chip surface was performed by injection of 0.1 M NaOH 

until baseline was restored. The binding affinities were calculated using 

BIAevaluation software, version 4.1 applying the drifting baseline model 

assuming 1:1 interaction model. Dashed lines represent the curve fitting. 

Response units were subtracted from BSA-N-acetylglucosamine immobilized 

reference flow cell (negative control). 

 

2.2.8.2 Co-immunoprecipitation (Co-IP) 

To test for interaction between sCD163 and Hb, 10 µg of anti-CD163 (R&D 

Systems) in TBS, pH 7.5 was conjugated to Protein-A Sepharose beads (GE 

Healthcare Life Sciences) overnight at 4oC. Unbound antibody was removed 

by washing twice with TBS and the bound anti-CD163 was cross-linked to 

sepharose by incubating for 60 min in cross-linking buffer containing 50 mM 

dimethyl pimelimidate (Sigma) and 200 mM triethanolamine, pH 8.9. The 

Sepharose beads were blocked using 100 mM ethanolamine, and then 

incubated with 5 µg sCD163 and 5 µg subtilisin-A treated Hb in 500 µl of 

binding buffer (TBS, pH 7.4) for 60 min at room temperature with two washes 

between each binding step. Subsequently, after three washes, the bound 

proteins were eluted with 2.5% acetic acid, into tubes containing 

neutralization buffer of 1 M Tris-HCl, pH 12.0. 
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To test for interaction between IgG, Hb and sCD163, we incubated 

protein A-Sepharose beads with 5 µg IgG (affinity-purified from human 

serum) in 500 µl TBS at room temperature for 60 min. The unbound antibody 

was removed by washing twice in TBS. The beads were incubated with 5 µg 

subtilisin A-treated Hb and 5 µg sCD163 in 500 µl of binding buffer (TBS, pH 

7.4) for 60 min at room temperature with two washes between each binding 

step. Subsequently, after three washes, the bound proteins were eluted using 

2.5% acetic acid into tubes containing 1 M Tris-HCl, pH 12.0. 

 

2.2.8.3 Proximity ligation assay (PLA) 

Principle 

The proximity ligation assay (PLA) is used for specific in situ detection of 

native-protein complexes in cells and subcellular compartments. The PLA 

method depends on the dual proximity binding by a pair of detection reagents 

to generate amplifiable DNA strands, which then serve as surrogate markers 

for the detected proteins (Fredriksson et al, 2002). Briefly, a pair of 

oligonucleotide labeled secondary antibodies (PLA probes-MINUS and 

PLUS) is brought to proximity by the interacting proteins bound to the 

primary antibodies (Figure 2.2). The ligation solution consisting of two short 

oligonucleotides and ligase is added. The oligonucleotides will then ligate to 

the PLA probes and join to form a closed circle, which is amplified by the 

rolling circle amplification using a polymerase (Soderberg et al, 2008). The 

oligonucleotide arm of one PLA probes acts as a primer for the rolling circle 

amplification reaction using the ligated circle as a template and generates a 

concatemeric product. Fluorescently labeled oligonucleotides are then added 
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which hybridize to the amplified product. The signal, which is representative 

of a single pair of interacting proteins, is visible as a distinct fluorescent dot 

and analyzed by fluorescence microscopy.      

 

 

 

 

 

 

 

 

 

 
 
Figure 2.2: Principle of the PLA assay. Dual binding by a pair of PLA 
probes (antibodies with attached oligonucleotides) to a protein complex serves 
as a template for the hybridization of circularization oligonucleotides, which 
are then ligated into a circular DNA molecule. The circular DNA is amplified 
by rolling circle amplification (RCA) primed by a proximity probe and is 
covalently attached to the proximity probe. The RCA product can be detected 
by fluorescently labeled oligonucleotides. Figure adapted from (Soderberg et 
al, 2006) with permission from Nature publishing group. 
 
 
 
Assay 

To visualize specific protein–protein interaction between Hb and CD163 

inside the monocytes in situ, PLA was performed using the Duolink detection 

563 kit (Olink Biosciences, Uppsala, Sweden) following the manufacturer’s 

instructions. Briefly, cells were plated at a density of 2 x 105 cells onto 4-well 

chambered slides (Iwaki, Japan) coated with poly-lysine and left to attach 

      Binding of 
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Circularization and 
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and detection 
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overnight. Cells were fixed in 4% (w/v) paraformaldehyde for 15 min and 

washed once with PBS. Then, the cells were incubated with 1 mg/ml of native 

or activated Hb for 30 min and washed once in PBS. The CD163:Hb complex 

was detected using goat anti-CD163 and rabbit anti-Hb primary antibodies. 

The corresponding probes of anti-rabbit PLUS, anti-goat MINUS were 

purchased from Olink Biosciences. The cells were then mounted with the 

ProLong Gold anti-fade reagent containing DAPI and imaged using the LSM 

510 META confocal microscope (Carl Zeiss) under the 100x oil immersion 

objective. 

 

2.2.9 Biotin switch assay for sCD163 palmitoylation 

1x106 human primary monocytes were incubated with sCD163 alone or 

sCD163:Hb or sCD163:Hb:IgG complex for up to 4 h. To verify the 

involvement of palmitoylation in the recycling of sCD163, the cells were pre-

treated with 100 µM 2-bromopalmitate, a palmitoylation-inhibitor, or with 100 

µM 2-hydroxy myristic acid, a control inhibitor, for 60 min at 370 C. To 

confirm that sCD163 from the endocytosed sCD163:Hb:IgG complex is 

recycled to the membrane, the cells were pre-treated with 50 µM monensin, a 

recycling inhibitor, and 25 µg/ml chlorpromazine, an endocytosis inhibitor, for 

60 min at 370 C.  

The cell pellet was suspended in 50 µl of lysis buffer (1X PBS, pH 7.4, 

1X protease inhibitors, 1mM EDTA, 1% Triton X-100, 25 mM N-ethyl 

maleimide) for 1 h at 40 C on a shaking platform. The lysate was then 

centrifuged at 14000xg for 20 min to remove insoluble material. The 
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supernatant, which contains proteins, was removed and the total protein 

concentration was measured using the protein assay kit (BioRad).  

1 mg of total protein was resuspended in 200 µl of lysis buffer 

containing 0.5 % saponin (blocking agent) overnight at 40 C on a shaking 

platform. The proteins were precipitated using methanol/chloroform method 

(3:1:4 ratio of methanol chloroform and water) and centrifuged at 10000xg for 

30 min. The upper phase was discarded without disturbing the interphase and 

4 volumes of methanol was added and incubated at -200 C for 20 min. It was 

then centrifuged for 20 min at 5000xg at 40 C. The supernatant was discarded 

and the pellet was air-dried for 10 min at room temperature. 

The air-dried pellet was resuspended in 200 µl of resuspension buffer 

(1X PBS, pH 7.4, 8 M urea and 2% SDS) in a sonicator-bath for 10 min and 

gently agitated at 370 C until solubilized. The solution was then divided into 

two equal aliquots, out of which one portion was combined with 80 µl of 1 M 

fresh hydroxylamine, 1 mM EDTA, protease inhibitors and 100 µl fresh 4 mM 

biotin-HPDP (Pierce) and gently mixed for 1 h at room temperature. The 

remaining aliquot was treated identically except that hydroxylamine was 

replaced with 50 mM Tris pH 7.4. The proteins were precipitated using the 

methanol chloroform method as described earlier.  

The pellet was resuspended in 20 µl resuspension buffer and 180 µl 

PBS containing 0.2% Triton X-100. An aliquot of 20 µl was saved to serve as 

loading control while the remaining sample was incubated with 15 µl of high 

capacity neutravidin-agarose beads (Pierce) for 1 h at room temperature on a 

shaking platform. The beads were then washed and the captured proteins were 

eluted in SDS-PAGE loading buffer at 950 C for 5 min. The samples were then 
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analyzed by western blotting and probed for CD163 using goat anti-CD163 

and HRP-conjugated rabbit anti-goat antibodies. 

 

2.2.10 Heme-oxygenase-1 (HO-1) activity assay 

HO-1 activity assay was performed as described earlier (Motterlini et al, 

2000). Briefly, cells were harvested post stimulation with native or activated 

Hb and the cell pellet was suspended in ice–cold 100 mM phosphate buffer 

(pH 7.4) containing 2 mM MgCl2 and cells were disrupted by sonicating on 

ice for 30 s. The suspension was then centrifuged at 18000xg for 10 min at 

4°C and the supernatant was added to 250 μl of a reaction mixture containing 

0.1 mM NADPH, 1 mM NADP, 1 mM glucose-6-phosphate, 5 mU of 

glucose-6-phosphate dehydrogenase, 2 mg protein of rat liver cytosol (source 

of bilirubin reductase, prepared according to (Tenhunen et al, 1970)), 100 mM 

potassium phosphate buffer (pH 7.4) and 1 mg/ml hemin. The reaction was 

performed at 37°C in the dark for 1 h. The reaction was terminated on ice by 

addition of 1 ml chloroform. The extracted bilirubin was calculated by the 

difference in absorbance between 464 and 530 nm (ε = 40 mM−1 cm−1). The 

HO-1 activity was expressed as micromoles of bilirubin/ milligram of protein 

/h. BSA treated cells served as negative control. 

 

2.2.11 Tris-Tricine SDS-PAGE 

Tris-Tricine-SDS-PAGE under reducing conditions was performed to resolve 

the fragments of Hb after its proteolytic cleavage by subtilisin A (Schagger, 
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2006). 5 µg of partially proteolysed Hb was loaded per well. The protein 

bands were detected by staining with Coomassie Blue. 

 

2.2.12 SDS-PAGE and Western blotting 

Cultured cells were harvested, pelleted, and protein extraction was performed 

in ice-cold RIPA lysis buffer (Cell Signaling Technology) containing 1 mM 

PMSF and 1X protease inhibitor cocktail (Sigma). Fifty microgram of total 

proteins was resolved by 10% SDS-PAGE under reducing condition and then 

electrotransferred to polyvinylidene difluoride membrane (BioRad) in Tris-

glycine buffer with 20% methanol at 120 V for 90 min. The membrane was 

then blocked using 5% BSA in TBS (blocking buffer) for 60 min at room 

temperature. Following two washes with TBS, the membrane was probed 

overnight with the primary antibody diluted in blocking buffer. Following two 

washes to remove unbound antibody, the membrane was incubated with 

horseradish peroxidase (HRP)-conjugated secondary antibody diluted in 

blocking buffer for 1 h at room temperature on a shaking platform. Bands 

were visualized with Supersignal West Pico chemiluminescence substrate 

(Pierce). 

 

2.2.13 Infection and infectivity assays 

Infection of macrophages with bacteria 

U937 derived macrophages were pre-treated with 0.5 mg/ml Hb or PBS for 45 

min at 37°C in 5% CO2 to enable endocytosis of Hb. The cells were washed 

once with PBS and then infected at multiplicity of infection (MOI) of 10 in 
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PBS containing 2% FBS for 30 min on a shaking platform. The extracellular 

bacteria were removed by spinning down cells at 140xg for 5 min and washing 

with PBS. The cells were then resuspended in PBS containing 2% FBS and 

maintained up to 4 h at 37°C. The supernatants were collected and stored at -

80oC for cytokine measurements. 

 

Protease activity assay 

S. aureus and S. typhimurium were cultured overnight at 37°C in the protease-

producing buffer. Secondary cultures were grown to exponential phase and the 

activity of the extracellular protease(s) in the culture supernatant was 

determined at 37oC by using 1% azocasein assay (Lee et al, 2005). Briefly, 50 

μl of the culture supernatant was added to 300 μl of 1% (w/v) azocasein 

prepared in 50 mM Tris-HCl, pH 7.0 and incubated for 20 min at 37oC. 

Subsequently, 600 μl of ice-cold 10% (w/v) trichloroacetic acid was added 

with simultaneous vortexing. The samples were placed on ice for 10 min and 

centrifuged at 15000 rpm for 15 min. The quantity of acid-soluble material in 

the supernatant was measured by absorbance at 366 nm. One Unit (U) of 

protease activity was defined as an absorbance of 0.1 at 366 nm. 

 

Colony forming ability of intracellular bacteria 

To distinguish between extracellular and intracellular bacteria, the cells were 

infected with S. aureus or S. typhimuirum for 30 min after which the 

extracellular bacteria were removed by spinning down the infected cells at 

140xg for 5 min and further washing twice with PBS. The number of viable 

intracellular bacteria was quantified by lysis of the infected U937 
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macrophages with 0.2% Triton X-100 for 10 min (Garzoni & Kelley, 2009). 

The cell lysate was plated at serial dilutions in sterile PBS on LB agar plates 

with the appropriate selection medium using the drop method. For each 

dilution, three drops of 10 µl each was applied onto a quadrant of the LB agar 

plate, with 3-30 colony forming unit (CFU) per drop considered as reliable 

(Herigstad et al, 2001). The plates were incubated at 37°C overnight. 

 

2.2.14 PyroGene assay to test for LPS contamination 

Principle 

Endotoxin contamination in samples was measured using the PyroGene assay 

kit (Lonza Biosciences). The assay employs recombinant factor C (rFC), an 

endotoxin sensitive protein from the horseshoe crab (Ding & Ho, 2001). rFC 

is activated upon endotoxin binding, and the activated serine protease domain 

exposed then acts to cleave a synthetic substrate into a fluorogenic compound. 

The fluorescent product formed is detected using the excitation and emission 

wavelengths of 380 nm and 440 nm, respectively. The amount of endotoxin in 

the sample is proportional to the amount of fluorescent product formed and 

quantified from a standard curve. 

   

Quantification of endotoxin contamination in Hb 

The level of endotoxin present in the native Hb and subtilisin A-activated Hb 

was measured using the PyroGene assay. Various dilutions of Hb were 

prepared and PyroGene assay was performed in 96-well plates in 100 µl 

reaction volume according to the manufacturer’s instructions. 

 



Materials and Methods 

  64 

2.3 Statistical analysis 

Data represent means ± standard error of the mean (SEM) of three 

independent experiments conducted in triplicate each. Statistical significance 

was accepted when the p value < 0.05 by paired two-tailed Student’s t test 

when comparing two groups, and ANOVA, when comparing more than two 

groups.  
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CHAPTER 3 

RESULTS AND DISCUSSION 

 
3.1 CD163 and IgG Co-defend against cytotoxic Hb in the absence of Hp 

During severe hemolysis triggered by hemolytic infection and/ or 

inflammation, large amounts of extracellular Hb (0.5-2 mg/ml) released into 

the circulation, generates cytotoxic ROS and hence induces tissue damage. 

Previous studies in our lab have shown that microbial proteases proteolytically 

activate the intrinsic POX activity of Hb, which drives the production of 

damaging superoxide radicals. Hence the key issue is how the host innate 

immune system effectively tackles the cytotoxic effects of this “infection-

activated” Hb. Although plasma Hp has been shown to play the key role in 

binding and reducing the redox reactivity of Hb during moderate hemolysis, 

Hp is quickly saturated and overwhelmed during severe hemolysis. Therefore, 

the residual toxic Hb in the plasma demands a quick and efficient 

detoxification and removal by alternative mechanisms independent of Hp.   

We hypothesized that during severe hemolysis, the host relies on the 

frontline receptor, CD163 and other plasma proteins to protect against Hb-

POX driven oxidative damage. We sought to decipher the direct effect of 

CD163 on the Hb-POX activity and the consequential cell-survival when Hp 

is depleted. Next, we wanted to elucidate the potential role of sCD163 and 

other plasma proteins towards regulating the redox active Hb. Further, the 

potential cross talk between monocytes and endothelial cells towards Hb 

clearance were also examined.   
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3.1.1 Complex formation between CD163 and Hb 

3.1.1.1 In vitro infection model system 

To mimic an infection-mediated proteolysis of Hb, we used an in vitro 

infection model system consisting of the bacterial serine protease, subtilisin A 

and Hb in PBS (pH 7.4), incubated at 370C to study the effects of 

proteolytically activated Hb. We used Tris-Tricine SDS-PAGE to visualize the 

extent of cleavage of Hb with increasing doses of subtilisin A and reaction 

time and concurrently measured the ROS production by both native and 

activated Hb. Figure 3.1 shows that incubation of subtilisin A with Hb 

released POX-active fragments of <10 kDa from Hb (arrows), concomitant 

with increasing POX activity. Prolonged reaction time led to excessive 

proteolysis and loss of the 10-kDa Hb-POX fragments causing a decrease in 

the POX activity. The optimised dosage of subtilisin A (1.5 U) and reaction 

time (15 min) was henceforth used consistently in all future experiments to 

generate proteolytically activated Hb. The effect of activated Hb on 

monocytes was studied and compared with native Hb.  
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Figure 3.1: Proteolytic activation of Hb by subtilisin A. 100 μg Hb was 
incubated with: (A) increasing dosage of subtilisin A (0-9 U) for 15 min at 
37oC and (B) subtilisin A (1.5 U) for a time course (0-60 min). Tris-Tricine 
SDS-PAGE (10%) gel was used to resolve the partially proteolysed Hb and 
the bands were stained with Coomassie blue. Bottom panels - The resulting 
Hb-POX activity was measured by using CLA-CL assay and expressed as 
fold-increase over that of the native Hb. Partial proteolysis of Hb is indicated 
by the appearance of bands below 10 kDa (red arrows), which is coincident 
with the accompanying rise in POX activity (red box). Hb-POX activity upon 
incubating 100 μg Hb with: (C) increasing dosage of subtilisin A (0-1.5 U) for 
15 min at 37oC and (D) subtilisin A (1.5 U) for a time course (0-15 min). 
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3.1.1.2 Hb associates with CD163 on monocytes 

It has been reported that CD163 binds to Hb in the absence of Hp, although 

with lower affinity compared to Hb:Hp complex (Schaer et al, 2006). Here, we 

investigated whether the proteolytically activated Hb, which is generated by 

the action of microbial proteases, could also be recognized by CD163 on the 

monocytes. CD163 and Hb were tracked by immunofluorescence microscopy 

in human primary monocytes. Freshly isolated human primary monocytes 

were stimulated with 1 mg/ml of native or activated Hb for 30 min and dual 

immunofluorescent staining for CD163 and Hb was performed following cell 

permeabilization.  

Figure 3.2A shows that both native and activated Hb were 

endocytosed by CD163, showing colocalization in monocytes. BSA-treated 

cells served as negative control to show the specific recognition of Hb by 

CD163. To further confirm the in situ interaction between CD163 and Hb, we 

performed the PLA assay (refer section 2.2.8.3). The PLA signals (red dots) 

are representative of the paired interactions between CD163 and Hb (Figure 

3.2B), which was in accordance with the immuno-colocalization study. Cells 

in which the primary antibody was excluded for detection showed no positive 

signals for interaction. Cells treated with the control protein, BSA (denoted as 

“Unt”) did not show any red-dots indicating the specificity of interaction 

between CD163 and Hb. Taken together the above results suggest that CD163 

acts as a scavenger receptor for both the native and proteolytically activated 

Hb under severe hemolytic conditions.   
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3.1.2 CD163 directly detoxifies Hb and rescues cells from Hb-induced   
apoptosis 

3.1.2.1 Effect of CD163 expression in HEK293T cells 

To determine whether CD163 affects the Hb-POX activity, we transfected 

CD163 into HEK293T cells (CD163-) and then measured the POX activity of 

Hb upon incubation of the CD163+ HEK293T cells or mock-transfected 

control cells with activated Hb using the CLA assay (refer section 2.2.1.1). 

Figure 3.3 (box) shows that within 10 min, the CD163+ HEK293T cells had 

reduced the POX activity by ~80% whereas the control cells were 

unresponsive, suggesting that the CD163 effectively blocked the Hb from 

producing O2
.-. The inhibition of Hb-POX activity by CD163+ HEK293T was 

also dose-dependent.  
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Figure 3.2: CD163 endocytosed both native and proteolytically activated 
Hb. (A) Co-localization of CD163 and Hb in primary human monocytes. Cells 
were incubated with native or activated Hb (1 mg/ml) for 30 min, fixed and 
stained with primary and secondary antibodies. Images were acquired using 
the LSM510 META confocal microscope. Scale bars, 5 µm. (B) Cells were 
cultured on poly-lysine coated chambered slides and incubated with native or 
activated Hb (1 mg/ml) for 30 min. The interaction between CD163 and Hb in 
the cells was confirmed using the proximity ligation assay (PLA). PLA was 
performed as per the manufacturer’s instructions using anti-goat minus and 
anti-rabbit plus probes. “Unt” refers to cells treated with the control protein, 
BSA. Scale bars, 10 µm.  
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Figure 3.3: CD163 inhibits Hb-POX activity. Top panel- Western blotting 
to confirm the expression of CD163 in CD163-transfected HEK293T cells. 
Bottom panel- Hb-POX activity was measured over time of incubation of 
subtilisin A-activated Hb with 2x105 CD163+ HEK293T cells or empty vector 
(EV) only transfected controls. Progressive decrease in Hb-POX activity was 
observed with time and dose (box). ++ denotes higher dose of CD163+ 
HEK293T cells (1x106 cells). ** represents p<0.005; n.s. denotes not 
significant. 
 
 

3.1.2.2 Effect of monocyte CD163 on Hb-POX activity in situ 

To test whether in situ membrane-associated CD163 (mCD163) directly 

inhibits Hb-POX activity, we added increasing doses of the native SU-DHL-1 

membrane extract from CD163+ SU-DHL-1 cells to Hb. The native membrane 

extract from the SU-DHL-1 cells had CD163, while the control HEK293T 

cells lacked CD163 (Figure 3.4 A, top panel).  We found that the Hb-POX 

activity diminished dose-dependently of the membrane extract, both in the 

presence and absence of Hp. Upon incubation with 50 µg SU-DHL-1 

membrane extract for 15 min, the POX activity of native and activated Hb was 

reduced by 60% and 80% respectively (Figure 3.4 A, B).  
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Figure 3.4: Monocyte CD163 attenuates Hb-POX activity in situ. The 
pseudoperoxidase (POX) activity of: (A) 10 μg native Hb and (B) 10 μg 
activated Hb upon incubation for 15 min with increasing doses of the native 
membrane protein extracts of CD163+ SU-DHL-1 or CD163- HEK293T cells 
with or without pretreatment with anti-CD163. Haptoglobin (Hp1-1 isoform) 
was used as a positive control. Red box indicates progressive decrease in Hb-
POX activity upon addition of increasing doses of the SU-DHL-1 membrane 
extract containing CD163. * represents p<0.05; n.s. denotes not significant. 
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Incubation of native and activated Hb with the membrane extract from 

the control CD163- HEK293T cells did not cause any significant reduction in 

the POX activity, implying the significance of CD163 in dampening Hb-POX 

activity. Addition of Hp, a positive control (Hp1-1 isoform (Sadrzadeh & 

Bozorgmehr, 2004)) further reduced the POX activity dose-dependently of the 

membrane extract. Importantly, when the SU-DHL-1 membrane extract was 

pre-incubated with anti-CD163, the inhibition of the POX activity was 

abrogated dose-dependently of anti-CD163, suggesting that mCD163 directly 

and specifically attenuates Hb-POX activity. 

 

3.1.2.3 CD163 attenuates Hb-induced intracellular ROS production 

Having shown that CD163 directly inhibits Hb-POX activity in vitro, we then 

measured the dynamics of ROS production within the CD163+ SU-DHL-1 

cells when challenged with Hb, with or without pre-incubation with anti-

CD163. Figure 3.5 A, left panel shows that by 300 s, activated Hb induced 

~75% higher ROS production than native Hb. In the presence of functional 

CD163, the Hb-generated intracellular ROS was halved compared to when 

CD163 was pre-blocked using an antibody (Figure 3.5 A, right panel). Ex 

vivo real time quenching activity of Hb-POX by CD163 was also observed in 

human primary monocytes by live-cell imaging (Figure 3.5 B and Videos 1-

7). Cells treated with N-acetyl cysteine (NAC), a ROS scavenger and the 

control protein, human serum albumin (HSA) served as negative control. 

Control cells (Jurkat, HEK293T and HepG2) devoid of CD163, succumbed to 

Hb, showing increased intracellular ROS and concomitant cell death (Figure 

3.5 B, C), supporting the protective role of CD163 against the cytotoxic Hb. 
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Figure 3.5: CD163 protects cells from Hb-induced intracellular ROS. (A) 
Intracellular ROS production in SU-DHL-1 cells incubated with 1 mg/ml of 
native Hb or activated Hb with or without pretreatment with 0.1 µg/ml anti-
CD163. (B) Real-time production of intracellular ROS in human primary 
monocytes treated with 1 mg/ml of native or activated Hb with or without 
pretreatment with 0.1 µg/ml anti-CD163. HSA and NAC-treated cells served 
as negative controls. (C) Intracellular ROS and cell viability of CD163- 
HEK293T and HepG2 cells stimulated with 1 mg/ml of native or activated Hb. 
H2O2, an inducer of ROS was used as positive control. Untreated in panels A, 
B and C represent cells treated with PBS only. ** indicates p<0.005; * 
indicates p< 0.05; n.s. denotes not significant.  
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3.1.2.4 CD163 suppresses Hb-induced apoptosis in monocytes 

To demonstrate the biological significance of CD163-mediated scavenging 

and inhibition of Hb redox-reactivity, we examined the effect of accumulation 

of Hb-generated intracellular ROS on cell survival. In addition, we queried the 

consequence of blocking CD163 when Hb reaches concentrations as high as 

that of severe hemolysis during which Hp is depleted. We measured the 

dynamics of apoptosis when primary monocytes were challenged with Hb 

with or without blocking of CD163 using antibody. Flow cytometric analyses 

using Annexin-V FITC and propidium iodide consistently showed that the 

induction of apoptosis by native and activated Hb was time-dependent and by 

4 h, activated Hb induced ~50% more apoptosis when CD163 was blocked 

(Figure 3.6). Notably, Hb-induced apoptosis was suppressed by the activity of 

fully functional CD163. Taken together, our findings suggest that CD163 

could directly shield monocytes from Hb-POX induced cytotoxicity during a 

severe hemolysis. 

 

 

 

 

 

 

 

Figure 3.6: CD163 protects monocytes from Hb-induced apoptosis. 
Dynamics of apoptosis in primary monocytes stimulated with 1 mg/ml of 
native Hb or activated Hb with or without pretreatment with 0.1 µg/ml anti-
CD163. The cells were stained with Annexin-V FITC and propidium iodide. * 
indicates p< 0.05; ** p< 0.005; n.s. denotes not significant. 
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3.1.3 Hb induces shedding of CD163 from monocyte membrane 

Monocytes exposed to inflammatory stimuli are known to shed CD163 

(Droste et al, 1999). To examine the effects of the highly inflammatory Hb-

POX on mCD163 shedding, we stimulated SU-DHL-1 cells with 1 mg/ml of 

native or proteolytically-activated Hb and measured the density of mCD163 

on the cells by flow cytometry. To quantiate the residential membrane-bound 

CD163 on the monocytes, the cells were not permeabilized during the 

antibody staining. We found that the level of mCD163 on the monocytes 

started to decline within 10 min of stimulation with native Hb, down to ~60 % 

by 1 h but recovered completely within 3-4 h (Figure 3.7 A, B). In contrast, 

activated Hb induced a more dramatic and steeper drop of mCD163 to ~30%, 

and the cells recovered only up to 50% of the mCD163 after 4 h. Control cells 

treated with subtilisin A alone did not shed CD163, implying the specificity of 

Hb-induced CD163 shedding. The Hb-mediated regulation of the level of 

mCD163 was specific since the housekeeping protein, plasma membrane 

calcium ATPase (PMCA ATPase), remained unaffected (Figure 3.7 B). 

 

 

 

 

 

 

Figure 3.7: Hb induced CD163 
shedding from monocytes. (A) 
Flow cytometry and (B) Western 
blot analysis of the resident 
mCD163 levels on SU-DHL-1 
monocytes treated with 1 mg/ml 
of native or activated Hb. 
Subtilisin A alone-treated cells 
served as negative control. 
PMCA-ATPase, a housekeeping 
membrane protein was used as a 
loading control. Untreated refers 
to cells treated with PBS.  
* indicates p< 0.05; ** p< 0.005. 
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 To corroborate the Hb-induced CD163 shedding from monocytes, we 

used immunofluorescence microscopy to analyze the resident level of CD163 

on monocytes treated with native or activated Hb. To stain the membrane-

associated CD163, the cells were not permeabilized during the antibody 

staining procedure. Consistent with flow cytometric analysis (Figure 3.7 A) 

and immunoblotting (Figure 3.7 B), immunofluorescence microscopy showed 

fewer CD163+ cells at 60 min post-stimulation with native Hb (Figure 3.8). 

Activated Hb caused a further reduction in the number of CD163-stained cells. 

Cells treated with the control protein, BSA served as negative control.  

 

  

 

 

 

 

 

 

 

 

Figure 3.8: Immunostaining of CD163 on monocytes. Immunofluorescent 
staining of CD163 (red) in SU-DHL-1 cells treated with 1 mg/ml of native or 
activated Hb for up to 60 min. BSA-treated cells served as negative control. 
Scale bars, 10 µm.  



Results and Discussion 

  78 

Next, we quantified the amount of sCD163 shed into the culture 

supernatants of Hb treated monocytes using CD163-specific sandwich ELISA. 

Reciprocal to mCD163, the level of sCD163 in the culture supernatant 

increased in a time-dependent manner (Figure 3.9). Compared to native Hb, 

the activated Hb induced twice the amount of shedding by 60 min. Our results 

suggest that the monocytes shed mCD163 when they encounter Hb, 

particularly, the redox active Hb-POX. 

 

 

 

 

 

Figure 3.9: Soluble CD163 in culture supernatants. sCD163 in the culture 
supernatants of SU-DHL-1 monocytes treated with 1 mg/ml of native or 
activated Hb over a time course of up to 60 min was measured using a human 
CD163-specific sandwich ELISA. * indicates p< 0.05. 

 

To preclude any possible effect of endotoxin contamination on the Hb-

induced shedding of mCD163, both native and activated Hb were tested and 

found to contain ≤ 0.05 EU/ml (Table 3.1) by the PyroGene assay (refer 

section 2.2.14). In addition, we measured the CD163 shedding in the presence 

of polymyxin B (PMB), an endotoxin-neutralizing peptide (David & Sil, 

2010). PMB at a concentration of 10 µg/ml has been routinely used in 

immunological studies to negate the effect of any endotoxin contamination 

(Brennan et al, 2012; Cardoso et al, 2007). Figure 3.10 shows that treatment 
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with 10 µg/ml PMB (Cardoso et al, 2007) for up to 4 h did not affect the Hb-

induced shedding of CD163 from monocytes. Consistent with our earlier 

observations (see Figure 3.7), Hb induced shedding of CD163 within 1 h, 

which then recovered within 4 h. Cells treated with PMB alone were used as a 

negative control. This result indicates that the Hb-induced shedding of CD163 

is not due to contamination with endotoxin, since PMB would have bound and 

inactivated the endotoxin.    

 

Table 3.1: Endotoxin concentration in native and activated Hb. 

 

 

 

 

 

 

 

 

 

Figure 3.10: Polymyxin B does not affect Hb-induced CD163 shedding 
from monocytes. Flow cytometric analysis of the density of CD163 on SU-
DHL-1 cells treated with either 1 mg/ml of Hb alone or in combination with 
10 µg/ml of polymyxin B (PMB) over 4 h. Cells treated with PMB alone were 
used as a negative control.  

 

 

Sample Endotoxin concentration (EU/ml) 

Native Hb (1 mg/ml)                    0.04 

Activated Hb (1 mg/ml)                    0.05 
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3.1.4 sCD163 binds Hb and inhibits Hb-POX activity 

3.1.4.1 Interaction between sCD163 and Hb 

Since sCD163 has been shown to bind Hb:Hp complex in vitro (Moller et al, 

2010), we queried whether sCD163 could still bind to Hb when Hp is depleted 

under conditions of severe hemolysis. We showed that Hb bound directly and 

dose-dependently to sCD163 in the absence of Hp (Figure 3.11 A), with the 

activated Hb binding more strongly than native Hb. Control protein, BSA did 

not show any binding to sCD163 implying the specific recognition of Hb by 

sCD163. Co-immunoprecipitation studies confirmed the specific interaction 

between sCD163 and Hb (Figure 3.11 B). Taken together, the above results 

suggest that sCD163 might function as an additional Hb scavenger in the 

plasma under conditions of Hp depletion.   

   

     

 

 

 

Figure 3.11: Interaction between sCD163 and Hb. (A) ELISA showing the 
dose-dependent interaction between sCD163 and 0-1 µM (0-64 µg/ml) native 
or activated Hb, when 0.1 µg/ml sCD163 was immobilized onto microplates. 
Untreated refers to the addition of PBS alone. (B) Co-immunoprecipitation 
assay to test for interaction between Hb and sCD163 immobilized on Protein 
A-conjugated sepharose beads. The purified proteins, sCD163 and Hb were 
used as positive controls to verify the molecular mass.   
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3.1.4.2 Effect of sCD163 on Hb-POX activity 

Redox-active extracellular Hb was reported to aggregate and induce 

cytotoxicity (Kapralov et al, 2009), hence necessitating the rapid inhibition of 

Hb-POX even before its uptake into cells. This prompted us to investigate 

whether binding of sCD163 to Hb could affect the Hb-POX activity 

extracellularly. We found that the Hb-POX activity decreased significantly 

and dose-dependently of sCD163, correlating with reaction time (Figure 

3.12). Within 60 min, up to 70% of the POX activity was suppressed in the 

presence of 10 ng/ml sCD163, whereas the control protein, BSA, had no effect 

on the POX activity, confirming the specificity of sCD163 towards Hb. 

Hence, Figures 3.11 and 3.12 suggest that under conditions of Hp depletion, 

sCD163 binds and scavenges Hb-POX to protect the host against the 

damaging ROS.  

 

 

 

 

 

 

Figure 3.12: sCD163 dose-dependently attenuates Hb-POX activity. POX 
activity of 10 µg activated Hb incubated with sCD163 or BSA (0-10 ng/ml) 
over a time course of up to 60 min. Red box indicates progressive decrease in 
Hb-POX activity induced by 10 ng/ml sCD163. * indicates p< 0.05; ** p< 
0.005; n.s. denotes not significant when compared to untreated. Untreated 
refers to cells treated with PBS. 
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3.1.5 Interaction with IgG facilitates endocytosis of sCD163:Hb complex 

3.1.5.1 Effect of sCD163 on Hb-induced CD163 shedding and recovery 

To query whether sCD163 would influence the level of mCD163 when the 

monocytes encounter activated cell-free Hb, we supplemented SU-DHL-1 

cells with 10 ng/ml purified sCD163 followed by stimulation with 0.1 or 1 µM 

activated Hb for up to 3 h. The two concentrations of Hb were used because 

they possessed minimal and maximal binding affinities to sCD163 

respectively (Figure 3.11 A). Flow cytometry results indicated that the 

addition of sCD163 reduced the Hb-triggered shedding of mCD163 (Figure 

3.13 A). Moreover, the reduction in Hb-induced shedding of mCD163 was 

also dose-dependent of sCD163 (Figure 3.13 B). This suggests that sCD163 

exerts a negative feedback on Hb-induced shedding of mCD163, implicating a 

protective role of sCD163 on mCD163, possibly to maintain the level of 

mCD163 on the monocytes while sequestering Hb. 

                 

 

 

 

Figure 3.13: sCD163 promotes mCD163 recovery on monocytes. (A) Flow 
cytometric analysis showing the residential level of mCD163 in SU-DHL-1 
cells treated with 0.1 or 1 µM (6.4 or 64 µg/ml) activated Hb for up to 3 h in 
the presence or absence of 10 ng/ml sCD163. (B) Flow cytometric analysis of 
mCD163 on SU-DHL-1 cells stimulated with 1 μM activated Hb for up to 3 h 
in the presence of 0, 5 or 10 ng/ml of sCD163. All the values were normalized 
against the untreated controls. * indicates p< 0.05 when compared with 0 
ng/ml sCD163 treated cells.  
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3.1.5.2 Endocytosis of sCD163:Hb complex in the presence of serum 

Having shown that sCD163 binds to extracellular Hb and promoted the 

recovery of mCD163 on the Hb-treated monocytes, we then hypothesized that 

the sCD163:Hb complex might be recruited back to the monocyte to sequester 

the Hb-heme iron from the microbial invaders. To test our hypothesis, we first 

depleted mCD163 on monocytes by phorbol 12-myristate 13-acetate (PMA)-

induced shedding and inhibited new synthesis using the protein synthesis 

inhibitor, cycloheximide (CHX) (Figure 3.14 A). Using confocal microscopy, 

we then tracked the fate of the sCD163:FITC-Hb complex by incubating the 

complex of sCD163:FITC-Hb (activated form) with the mCD163-deficient 

monocytes. We found that the complex was recruited to the cell membrane 

within 15 min (Figure 3.14 B) and internalized by 45 min. The control 

protein, BSA did not bind to the monocytes. Also, the sCD163:Hb complex 

did not bind to the control HEK293T cells, which are devoid of CD163, 

implicating the specific recognition of the sCD163:Hb complex by the 

monocytes. Importantly, sCD163 by itself or the sCD163:FITC-Hb complex, 

did not bind to monocytes in the absence of serum (Figure 3.14 C) suggesting 

the potential involvement of serum protein(s) in trafficking the sCD163:Hb 

complex.  
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Figure 3.14: sCD163:Hb complex is endocytosed by monocytes in the 
presence of serum. (A) Immunostaining (top panel) and FACS analysis 
(bottom panel) of CD163 in primary monocytes pre-depleted of CD163 by 
treatment with PMA and CHX for 2h. Untreated refers to cells treated with 
PBS. Scale bars, 5 μm. (B) 0.1 mg/ml of purified sCD163:FITC-activated Hb 
complex (green) was incubated for 15-45 min with primary monocytes pre-
depleted of mCD163 and tracked by confocal microscopy. (C) mCD163-
depleted primary monocytes were incubated for 30 min with either sCD163 
alone or the sCD163:FITC-Hb complex in absence of serum and the cells 
were immunostained for CD163. Scale bars, 5 μm. 
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To examine whether CD163 from the recruited complex of sCD163: 

Hb re-appeared as mCD163 or whether the restored level of mCD163 arose 

from new protein synthesis, we added the protein synthesis inhibitor, CHX 

(Shankar et al, 2008) to the cells prior to treatment with the sCD163:Hb 

complex. Figure 3.15 A and B shows that CHX treatment did not 

compromise the recovery of mCD163, indicating that the mCD163 level was 

not attributable to de novo protein synthesis, but rather, it likely originated 

from the internalized sCD163. Moreover, we found that the complex was 

recruited to the cell membrane within 15 min and internalized by 45 min. The 

internalized sCD163 was co-localized intracellularly with transferrin, a marker 

of early recycling endosomes (Barysch et al, 2009; Hopkins, 1983). By 90 

min, the sCD163 re-appeared on the cell membrane, which is consistent with 

the time at which the Hb-treated monocytes started to recover mCD163 

(Figure 3.7). The above results suggest that the sCD163:Hb complex is 

endocytosed by the monocytes and the endocytosed sCD163 appears to be 

trafficked to the membrane.   
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Figure 3.15: sCD163 from the endocytosed sCD163:Hb complex co-
localizes with recycling endosomes. mCD163 pre-depleted monocytes were 
incubated with 0.1 mg/ml of sCD163: FITC activated Hb complex and 10 
µg/ml of Alexa-647 conjugated transferrin (recycling endosomal marker) over 
a time course of up to 90 min: (A) with or (B) without 5 µg/ml cycloheximide 
(CHX) pre-treatment for 60 min. The localization of sCD163 and Hb was 
tracked by immunostaining. Images were obtained using the LSM 510 META 
confocal microscope under 100x oil objective. Scale bars, 5 µm. Images are 
representative of 3 independent experiments using primary monocytes from a 
single healthy donor. 
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3.1.5.3 Interaction of the sCD163:Hb complex with IgG 

To identify the potential receptor involved in the recruitment of sCD163:Hb 

complex into monocytes, we tested the possible role of FcγR since it is known 

to mediate the uptake of oxidized protein complexes from the plasma (Huang 

et al, 1999). Since FcγR is a known receptor for IgG and IgG-associated 

immune complexes (Rossman et al, 1989), we examined the potential 

interaction of IgG with the sCD163:Hb complex. We found that indeed Hb in 

the sCD163:Hb complex co-immunoprecipitated with IgG from the serum of 

healthy individuals (Figure 3.16 A, left panel). In this experiment, purified 

human IgG was conjugated to beads followed by incubation with Hb. The 

Hb:IgG complex was verified using anti-Hb and anti-IgG. Non-specific 

interaction of Hb with the beads was ruled out by including a control in which 

Hb was incubated with the beads alone. The sCD163:Hb complex co-

immunoprecipitated with IgG conjugated beads (Figure 3.16 A, right panel). 

A negative control was included to show that sCD163 by itself did not interact 

with IgG. The ELISA results corroborated and established a dose-dependent 

interaction between sCD163:FITC-Hb complex and IgG immobilized onto the 

Maxisorp plates (Figure 3.16 B). No binding occurred with FITC-BSA 

control, suggesting that Hb in the sCD163:Hb complex binds to IgG. 

Furthermore, in the absence of sCD163, Hb displayed reduced affinity for 

IgG. 
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Figure 3.16: sCD163:Hb complex interacts with IgG. (A) Left panel- Co-
immunoprecipitation assay to test for interaction between IgG and Hb. 
Negative control included Hb incubated with beads alone without IgG. Right 
panel- Co-immunoprecipitation assay to test for interaction between IgG, Hb 
and sCD163. (B) ELISA to show the dose-dependent binding of 
sCD163:FITC-Hb complex to IgG immobilized on Maxisorp plates. FITC-
BSA was used as negative control in place of FITC-Hb. All the readings were 
subtracted from the values obtained with addition of FITC-Hb alone. * 
indicates p< 0.05.  

 

Since sCD163 binds to Hb (Figure 3.11), we sought to test whether 

purified IgG, Hb and sCD163 would form a complex in vitro. Real time 

biointeraction using surface plasmon resonance analysis showed strong 

binding between IgG:Hb (KD = 1.15x10-7 M) and between IgG:Hb:sCD163 

(KD = 2.25x10-9 M), producing shift and supershift, respectively, in a dose-

dependent manner when the proteins were injected successively onto the IgG-

immobilized CM-5 chip (Figure 3.17 A and B). The specificity of the 

interaction between Hb and IgG was affirmed by the supershift produced by 

anti-Hb (Figure 3.17 C).  
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Figure 3.17: Real-time interaction between Hb, sCD163 and IgG. (A-B) 
Representative sensograms of 3 independent surface plasmon resonance 
experiments showing the dose-dependent binding profiles between 
immobilized IgG to: panel (A) 0.2-0.8 µM (12.8-51.2 µg/ml) Hb and panel (B) 
Hb (0.2 µM) + sCD163 (2.5-10 ng/ml). Response units (RU) for panel (A) 
were dual referenced against BSA-N-acetylglucosamine immobilized 
reference flow cell and 0.2-0.8 µM (13.3-53.2 µg/ml) BSA, while panel (B) 
was referenced against sCD163 only (without Hb) controls. Dashed lines 
represent the curve fitting. (C) A representative sensogram of three 
independent SPR experiments to demonstrate the specificity of interaction 
between immobilized IgG and Hb. 0.2 μM Hb was injected over IgG 
immobilized on a CM-5 chip. Then, increasing doses of anti-Hb (5-20 nM) 
were injected over the bound Hb, where supershifts demonstrated specificity 
of binding of Hb to IgG. Dashed lines represent the curve fitting.  
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3.1.5.4 FcγR facilitates endocytosis of the sCD163:Hb:IgG complex 

To investigate whether the sCD163:Hb:IgG complex was endocytosed via 

interaction with FcγR on the primary monocytes, we performed flow 

cytometry after incubation with increasing doses of purified complex of 

sCD163, FITC-Hb and IgG with wild-type cells and FcγR-knockdown cells.  

The efficiency of knockdown of all three iso-types of FcγRs - FcγRI 

(CD64), FcγRII (CD32) and FcγRIII (CD16) was verified by the loss of 

protein at 48 h post-nucleofection (Figure 3.18 A). The FcγR-knockdown 

cells were stained sequentially using primary antibody against the indicated 

FcγR iso-type and Alexa-488 conjugated secondary antibody. The signal 

intensity was measured using the FITC channel of the flow cytometer. The 

sCD163:Hb:IgG complex was readily endocytosed by wild-type primary 

monocytes in a dose-dependent manner (Figure 3.18 B, top panel). However, 

the cells knocked down of CD64, CD32 or CD16 showed substantially 

reduced endocytosis of the sCD163:Hb:IgG complex (Figure 3.18 B, bottom 

panel). CD64 knockdown, in particular, compromised the binding of the 

sCD163:Hb:IgG complex to the greatest extent when compared to CD32 or 

CD16 knockdown. This could probably be due to the higher affinity of CD64 

towards IgG compared to CD32 or CD16 (Ravetch & Bolland, 2001). Triple 

knockdown of all the FcγR types almost completely abrogated the binding of 

the sCD163:Hb:IgG complex to monocytes. The negative controls, BSA 

(Figure 3.18B, top right panel), sCD163 (Figure 3.14C) and Hb:IgG (Figure 

3.18C) did not bind to the cells indicating that sCD163:Hb complex was 

specifically endocytosed via interaction with IgG, the ligand that bridges the 

sCD163:Hb complex to FcγR on the monocyte. 
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Figure 3.18: Endocytosis of the sCD163:Hb:IgG complex by FcγR on 
monocytes. (A) FACS to analyze the efficiency of CD64, CD32 and CD16 
knockdown in primary monocytes at 48 h post-nucleofection. Scrambled 
siRNA-nucleofected primary monocytes were used as negative control. (B) 
Wild-type (Top panel), CD64-, CD32- and CD16- knocked-down primary 
monocytes (Bottom panel) were incubated with 0.5-2 µM (32-128 µg/ml) 
sCD163:FITC-Hb:IgG complex for 30 min and endocytosis was quantitated 
using the CyAn ADP flow cytometer on the FITC channel. FITC-BSA was 
used as a negative control. Untreated denotes cells treated with PBS only. (C) 
Confocal microscopy to test the binding of the negative control FITC-Hb:IgG 
to wild-type monocytes. Scale bars, 5 μm. Data are representative of 3 
independent experiments using primary monocytes from a single healthy 
donor.  
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3.1.6 Fate of endocytosed CD163 and Hb 

 

3.1.6.1 Endocytosed sCD163 is recycled to membrane 

Next, we quantified and tracked the subcellullar localization of CD163 after 

endocytosis of sCD163:Hb:IgG complex into primary monocytes. The 

monocytes were pre-depleted of mCD163 followed by treatment with CHX to 

block subsequent de novo synthesis of CD163. Results showed that within 15 

min, sCD163 was detected in the membrane fraction, indicative of binding of 

the sCD163:Hb:IgG complex to the membrane (Figure 3.19). Within 30-45 

min, sCD163 was localized in the cytoplasm, corroborating the endocytosis of 

the sCD163:Hb:IgG complex, and this was effectively blocked by pre-

treatment with chlorpromazine, an inhibitor of endocytosis (Mueller et al, 

2002). By 90 min, the internalized CD163 re-appeared on the membrane and 

this was abolished when the cells were pre-treated with monensin, a known 

inhibitor of recycling endosomes (Schaer et al, 2007). When the cells were 

simultaneously pre-treated with both chlorpromazine and monensin, CD163 

was only observed on the cell membrane throughout the 90-min duration, 

indicating that both the endocytosis of the sCD163:Hb:IgG complex and 

subsequent recycling of the endocytosed CD163 were compromised. This 

result is in agreement with our earlier observations showing co-localization of 

the endocytosed sCD163 with recycling endosomes by 45 min and 

reappearance of sCD163 on the cell membrane by 90 min (Figure 3.15). 
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Figure 3.19: Inhibitors of endocytosis and recycling inhibit subcellular 
trafficking of endocytosed sCD163. Primary monocytes pre-depleted of 
mCD163 and treated with 5 µg/ml cycloheximide, were incubated with 0.1 
mg/ml of the sCD163:Hb:IgG complex over a time course of up to 90 min 
with or without pretreatment with 70 µM chlorpromazine (inhibitor of 
endocytosis) and 20 µM monensin (inhibitor of early endosome recycling) for 
60 min. CD163 was quantified in the membrane and cytosol fractions, 
respectively, using sandwich ELISA. ** represents p<0.005.  

 

To validate the recycling of sCD163 into mCD163 after the uptake of 

sCD163:Hb:IgG complex, we incubated primary monocytes with either 

biotinylated-sCD163 alone or as a preformed complex of biotin- 

sCD163:Hb:IgG and tracked the subcellular localization of sCD163 using 

streptavidin conjugated to HRP. The purity of the membrane/cytosol fractions 

was assessed using membrane (CD64) or cytosolic (tubulin) markers (Figure 

3.20, top panel). By 15 min, sCD163 was detected in the membrane fraction 

and it was endocytosed within 30-45 min (Figure 3.20, bottom panel). By 90 

min, sCD163 re-appeared on the membrane, consistent with Figure 3.19, 

validating that sCD163 from the endocytosed sCD163:Hb:IgG complex was 
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recycled to the membrane. Control cells treated with PBS or sCD163 alone or 

the sCD163:Hb complex did not show endocytosis and recycling of sCD163, 

suggesting the specific uptake of the sCD163:Hb:IgG complex by monocytes. 

Thus far, the results corroborate that mCD163 plays a major role in frontline 

defense as it binds Hb to reduce the POX activity, while the shedded sCD163 

further scavenges plasma Hb, re-enters the monocyte and undergoes recycling 

into mCD163, thus completing the autocrine cycle of Hb detoxification and 

CD163 renewal. 

 

 

 

 

 

 

Figure 3.20: Endocytosed sCD163 is recycled into mCD163 on monocytes. 
Top panel- Purity of membrane/cytosol fractions was tested using membrane 
(CD64) or cytosolic (tubulin) markers. Bottom panel- mCD163 depleted 
primary monocytes were incubated with either biotinylated sCD163 alone or 
biotin-sCD163:Hb:IgG complex over a time course of up to 90 min. 
Biotinylated sCD163 was quantified in membrane or cytosolic fractions using 
streptavidin-HRP by ELISA. * represents p<0.05; ** represents p<0.005. 
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3.1.6.2 Bioinformatics prediction of post-translational modifications of 
sCD163 

Next, we considered the potential mechanism by which the endocytosed 

sCD163 was recycled to the membrane to restore mCD163 on the monocytes. 

Towards this goal, we used bioinformatics software(s) to predict the potential 

sites at which sCD163 might be post-translationally modified in order to gain 

membrane anchorage. The four major post-translational modifications, 

involving covalent attachment of lipids to proteins are: 

1. Myristoylation- addition of myristate (C14 saturated acid) 

2. Palmitoylation- addition of palmitate (C16 saturated acid) 

3. Prenylation- addition of isoprenoid group (e.g. farnesol, geranylgeraniol) 

4. Glycosylphosphatidylinositol (GPI) anchor 

sCD163 is a homogenous protein released upon proteolytic cleavage in 

the SRCR domain 9 of the mCD163. The sCD163 spans ~94% of the 

extracellular domain of mCD163 (Figure 3.21). Mass spectrometry revealed 

that the most N-terminal peptide sequence of sCD163 corresponds to amino 

acids (aa) 48-58 of mCD163 in domain 1, while the most C-terminal peptide is 

located in domain 9 and corresponds to amino acids 973-998 of mCD163 

(Moller et al, 2010). Results from the computational predictions indicated that 

there were no potential myristoylation, prenylation or GPI anchorage sites in 

sCD163. However, there were potential palmitoylation sites near the C-

terminal region of sCD163 (Table 3.2). 
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 Palmitoylation is known to enhance the surface hydrophobicity and 

membrane affinity of protein substrates, and play important roles in 

modulating protein trafficking (Draper et al, 2007; Linder & Deschenes, 

2007), stability (Linder & Deschenes, 2007), and sorting (Greaves & 

Chamberlain, 2007).  

 

 

 

 

 

 

Figure 3.21: Proteolytic cleavage of mCD163 into sCD163. sCD163, which 
is produced as a result of proteolytic cleavage of mCD163 by matrix 
metalloproteinases, comprises nearly 94% of the extracellular scavenger 
receptor cysteine rich (SRCR) domains of mCD163. The most N-terminal 
peptide corresponds to amino acids (aa) 48-58 of mCD163 while the most C-
terminal peptide corresponds to amino acids 973-998. * indicates the 
distribution of the predicted palmitoylation sites in sCD163.  

 

CSS-Palm 3.0 (Zhou et al, 2006) was used to predict the potential 

palmitoylation sites in the sCD163 under the medium threshold filter. The C-

terminal most palmitoylation site is Cys998, which is mapped to the 

extracellular domain 9 of mCD163, corresponding to the region at which 

mCD163 is proteolytically cleaved to release the soluble form (refer Figure 

3.21) (Moller et al, 2010). 
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Table 3.2: Predicted palmitoylation sites in sCD163. 

 

 

 

 

 

 

 

CSS-Palm 3.0 was used to predict the potential palmitoylation sites in sCD163 
under the medium threshold filter. Yellow highlight shows that the C-terminal 
most palmitoylation site is Cys 998 (red) and this corresponds to the cleavage 
site from mCD163. 

 

3.1.6.3 Internalized sCD163 is palmitoylated 

Following from the computational analysis, which indicated that the sCD163 

could be potentially palmitoylated at the C-terminus to enable it to anchor to 

the cell membrane upon recycling, experiments were performed to validate the 

palmitoylation of sCD163. We performed the biotin switch assay (refer 

section 2.2.9) in mCD163-depleted primary monocytes, treated with the 

sCD163:Hb:IgG complex for up to 4 h with or without pre-treatment with 

inhibitors of palmitoylation or myristoylation.  

Position from  
N-terminus Peptide Score Cutoff Cluster 

94    VICNQLGCPTAIKAP 0.205 0.196 Cluster A 

398 QRLLGKVCDRGWGLK 0.2 0.196 Cluster A 

442 TWLFLSSCNGNETSL 0.281 0.196 Cluster A 

487 LVGGDIPCSGRVEVK 0.205 0.196 Cluster A 

672 TALGASLCPSEQVAS 0.248 0.196 Cluster A 

682 EQVASVICSGNQSQT 0.248 0.196 Cluster A 

864 ETTVGVVCRQLGCAD 0.357 0.196 Cluster A 

869 VVCRQLGCADKGKIN 0.267 0.196 Cluster A 

998 IWLNEVKCKGNESSL 0.248 0.196 Cluster A 
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Figure 3.22 shows that only when treated with the sCD163:Hb:IgG 

complex, did the palmitoylated CD163 exchange biotin in the presence of the 

cleavage agent, hydroxylamine (HA) and hence was effectively pulled down 

by neutravidin beads. This was abolished when the cells were pre-treated with 

the palmitoylation inhibitor, 2-bromo palmitate (2-BP) but not control 

myristoylation inhibitor, hydroxymyristic acid (2-HM). In addition, cells pre-

treated with chlorpromazine and monensin (inhibitors of endocytosis and 

recycling respectively) did not show any band corresponding to the 

palmitoylated CD163. Moreover, palmitoylated CD163 was not pulled down 

from control cells treated with either sCD163 alone or sCD163:Hb alone, 

suggesting that sCD163 from the endocytosed sCD163:Hb:IgG complex is 

palmitoylated and recycled to the membrane.  
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Figure 3.22: sCD163 from the endocytosed sCD163:Hb:IgG complex is 
palmitoylated and recycled to the membrane. Cell-lysates from primary 
monocytes treated with sCD163 alone or sCD163:Hb or sCD163:Hb:IgG 
complex with or without pre-treatment with the indicated inhibitors were 
subjected to the biotin switch assay using the S-acyl group cleavage reagent, 
hydroxylamine (HA). Proteins that were palmitoylated and hence incorporated 
biotin were pulled down using neutravidin beads and blots were probed for 
CD163. Untreated refers to cells treated with PBS only. Loading control 
shows that equal amounts of total CD163 in the cell-lysate were loaded on to 
the neutravidin beads.    
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3.1.6.4 Endocytosed Hb activates heme-oxygenase-1 (HO-1)  

While the endocytosed sCD163 is palmitoylated and recycled to the cell 

surface via recycling endosomes, we next queried the fate of the internalized 

Hb. Heme-oxygenase-1 (HO-1) is an enzyme responsible for the catabolism of 

the redox-active heme into biliverdin, carbon monoxide and iron (Grochot-

Przeczek et al, 2012). Results showed that stimulation of monocytes with 1 

µM (64 µg/ml) of native Hb induced a 70% increase in the HO-1 activity 

relative to the control protein, BSA (Figure 3.23). Importantly, 1 µM (64 

µg/ml) activated Hb induced 20% higher HO-1 activity compared to native 

Hb. In addition, HO-1 induction by native and activated Hb was dose-

dependent. Cells treated with BSA did not show any activation of HO-1, 

implying the specific activation of HO-1 by endocytosed Hb. Conceivably, 

this timely induction of HO-1 activity catabolizes heme from the internalized 

Hb into biliverdin, which is further converted into harmless bilirubin by 

biliverdin reductase. 

 

 

 

 

Figure 3.23: Endocytosed Hb activates HO-1 in monocytes. Primary 
monocytes were stimulated with 0.1, 1 µM (6.4, 64 µg/ml) of native or 
activated Hb over a time course of up to 180 min and the HO-1 activity 
(µmoles bilirubin/mg protein/h) was measured by spectrometric quantitation 
of bilirubin in the presence of excess substrate. Cells treated with BSA served 
as negative control. 
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3.1.7 Hb induces monocyte-endothelial crosstalk via sCD163 and IgG 

3.1.7.1 sCD163:Hb:IgG complex upregulates HO-1 in endothelial cells 

Next, we queried the cellular physiological significance of the monocyte-

derived sCD163. Since monocytes are in contact with the vascular endothelial 

cells in vivo, it is conceivable that the endothelial cells would encounter 

sCD163 during hemolysis. The sCD163 could potentially act in a paracrine 

fashion to communicate and alert the proximal cells of the imminent presence 

of cytotoxic Hb. To test this hypothesis, we used primary human dermal 

microvascular endothelial cells (HMVEC), which are known to endogenously 

express FcγRII (CD32), (Groger et al, 1996) but lack CD163 (Hiraoka et al, 

2005). We then measured the induction of HO-1 in HMVEC cells incubated 

for 6 h with increasing doses of the sCD163:Hb:IgG complex. Results showed 

that when compared to just Hb alone or other negative controls, the 

sCD163:Hb:IgG complex upregulated HO-1 levels by 3-fold (Figure 3.24). 

The induction of HO-1 was dose-dependent of the sCD163:Hb:IgG complex 

(Figure 3.24, box). Cells treated with hemin, which is the substrate of HO-1, 

were used as positive control. This indicates that sCD163 and IgG mediate the 

Hb-induced transactivation of the endothelial cells. After internalization into 

HMVEC cells, Hb upregulates the heme catabolizing enzyme, HO-1. 
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Figure 3.24: HO-1 upregulation by sCD163:Hb:IgG complex in 
endothelial cells. HMVEC cells were stimulated with increasing doses of Hb 
alone or pre-formed sCD163:Hb:IgG complex for 6 h and flow cytometry was 
used to quantify the protein level of HO-1. Hemin-treated cells were used as 
positive control. Untreated refers to cells treated with PBS alone. **indicates 
p< 0.005. 

 

3.1.7.2 Synergistic cytokine production in CD163+ monocyte-endothelial 
co-culture 

To assess the potential Hb-induced crosstalk between the monocytes and 

endothelial cells, we co-cultured the two cell-types in the presence of Hb, and 

measured the cytokine production by the cells. To confirm the significance of 

CD163 in this process, we employed CD163+ primary monocytes or CD163- 

THP-1 monocytes (control) (Bachli et al, 2006). Figure 3.25 A (box) shows a 

significant increase in the production of TNF-α, IL-8 and IL-10, when the 

HMVEC cells were co-cultured with CD163+ primary monocytes compared to 

THP-1 or when stimulated in isolation. This synergy was lost when the 

monocytes were pre-incubated with anti-CD163, suggesting that the 
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monocyte-derived sCD163 is indispensable for the activation of endothelial 

cells, which lacks endogenous CD163. Furthermore, stimulation of HMVEC 

with the sCD163:Hb:IgG complex elicited higher amounts of TNF-α and IL-8 

compared to cells treated with the individual protein controls, (Figure 3.25 B) 

corroborating our co-culture results (Figure 3.25 A). In particular, we 

observed higher IL-10 production by Hb-treated monocyte-HMVEC co-

culture when compared to isolated HMVEC cells likely due to the activation 

of HO-1, which has been implicated in mediating IL-10 production (Drechsler 

et al, 2006). Thus, the monocyte-derived sCD163 mediates the paracrine 

activation of the proximal endothelial cells to systemically alert the human 

body on the imminent toxicity of plasma Hb. 
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Figure 3.25: Hb-induced synergistic cytokine production in endothelial 
cells co-cultured with CD163+ monocytes. (A) Cytokine production when 
HMVEC cells were co-cultured for 24 h with CD163+ primary monocytes or 
CD163- THP-1 cells in the presence of 0.5 mg/ml Hb. (B) Cytokine 
production by HMVEC cells when stimulated for 24 h with increasing doses 
of Hb alone or pre-formed sCD163:Hb:IgG complex. Untreated refers to cells 
treated with PBS alone. ** indicates p< 0.005; n.s. denotes not significant. 

 

3.1.7.3 Tracking CD163 and Hb in CD163+ monocyte-endothelial co-
culture 

Next, we tracked CD163 and Hb in the HMVEC, which had been co-cultured 

with primary monocytes or THP-1 monocytes for 45 min. Figure 3.26 shows 

that both CD163 and Hb are co-localized in HMVEC only when co-cultured 

with CD163+ primary monocytes but not with CD163- THP-1 cells. 

Consistently, the co-localization of Hb and CD163 within the HMVEC was 

observed only when the two proteins were presented as a complex of 

sCD163:Hb:IgG (Figure 3.27). Importantly, in the absence of IgG, no 
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endocytosis of Hb was detected in HMVEC, even if co-cultured with CD163+ 

monocytes, suggesting that IgG is required to bridge the sCD163:Hb complex 

to FcγR on the HMVEC. In addition, when HMVEC and CD163+ monocytes 

were co-cultured in the absence of Hb, no CD163 entered the HMVEC. By 

live-cell imaging, we have demonstrated the sCD163-mediated interaction 

between monocytes and the proximal endothelial cells in the presence of Hb 

and IgG (Videos 8-11). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26: Co-localization of sCD163 and Hb in endothelial cells co-
cultured with CD163+ monocytes. Immunostaining to track localization of 
sCD163 and Hb in HMVEC cells co-cultured with either CD163+ primary 
monocytes or CD163- THP-1 cells in the presence of Hb for 45 min. Untreated 
refers to cells treated with PBS. The cell-boundary is marked in white. Images 
were obtained using the LSM 510 META confocal microscope under 100x oil 
objective. Scale bars, 10 μm. 
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Figure 3.27: Co-localization of sCD163 and Hb in endothelial cells 
stimulated with sCD163:Hb:IgG complex. Immunostaining to track sCD163 
and Hb in HMVEC cells incubated with pre-formed sCD163:Hb:IgG complex 
for 30 min. Untreated refers to cells treated with PBS. The cell-boundary is 
marked in white. Images were acquired using LSM510 confocal microscope 
under the 100x oil objective. Scale bars, 10 μm. 
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Taken together, in Section 3.1 we have discovered and mapped in detail, a 

novel two-pass mechanism of Hb-detoxification by CD163, independent of 

Hp, which is the primary anti-oxidant of Hb in plasma. Such an alternative 

pathway could become operative when Hp is exhausted during severe 

hemolytic conditions. Firstly, at the outset of the encounter with plasma Hb, 

mCD163 directly inhibits the Hb-POX activity in-situ by binding both the 

native and infection-activated Hb. Consequently, CD163 also rescues 

monocytes from Hb-induced apoptosis.  

Besides suppressing the Hb-POX activity at the monocyte membrane, 

CD163 which is co-translocated into the cells, also downregulates the 

generation of intracellular ROS from the endocytosed Hb. In the absence of 

such a mechanism, as demonstrated here with CD163- cells, the hydrophobic 

nature of the Hb-heme (Vercellotti et al, 1994) could readily permeate the 

cells, inducing free radicals, which would lead to lipid peroxidation and cell 

death. Upon endocytosis, the Hb-heme is quickly degraded by HO-1 into 

biliverdin, carbon monoxide and iron, which is incorporated into iron-

chaperone proteins like transferrin. 

Having established the direct inhibition of the redox activity of Hb by 

mCD163, independent of Hp, we then queried the pathophysiological 

significance of sCD163 under severe hemolytic condition. We found that 

sCD163 binds excess plasma Hb dose-dependently and rapidly downregulates 

the Hb-POX activity. Thus, it is conceivable that during a severe hemolytic 

episode, such a “capture and quench” action by sCD163 would constitute an 

effective host defense strategy to sequester the heme iron and pre-empt its 

redox activity. Of particular importance is that the resulting sCD163:Hb 
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complex, which is still redox-active, must be rapidly and efficiently removed 

from circulation so as to subvert the Hb-iron mediated cytotoxicity. To this 

end, we identified IgG as a novel interaction partner participating with the 

sCD163:Hb complex to enable endocytosis of the sCD163:Hb:IgG complex 

via FcγR into the monocytes.  

Following endocytosis of the sCD163:Hb:IgG complex, the 

internalized sCD163 undergoes palmitoylation and is recycled via early 

endosomes to the cell membrane to restore mCD163. During severe 

hemolysis, such a dynamic and efficient recycling of sCD163 would 

presumably potentiate the recovery of mCD163, which acts to fortify the 

monocytes against the cytotoxic avalanche of free radicals generated by the 

cell-free Hb-POX. Furthermore, using co-culture experiments, we established 

that sCD163 in collaboration with IgG, confers Hb-scavenging ability to the 

proximal endothelial cells (CD163-) and also transactivates them to respond 

against the Hb. Such a crosstalk between monocytes and endothelial cells, 

which is mediated by the sCD163:Hb:IgG complex via FcγR mounts a 

systemic and stronger defense against the toxic Hb.  

Overall, CD163 is dynamically deployed in a two-pass detoxification 

tactic to engage with and suppress the pro-oxidative activity of plasma Hb, 

while its residential level on the monocyte membrane is restored to 

homeostasis in an efficient autocrine cycle. Simultaneously, it also 

transactivates adjacent endothelial cells in a paracrine fashion to metabolize 

the endocytosed Hb, and secrete cytokines to systemically alert the imminent 

presence of a danger molecule, Hb (Figure 3.28).  
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Figure 3.28: A hypothetical model of Hp-independent intravascular 
detoxification and clearance of cell-free Hb by CD163. Hemolysis ruptures 
red blood cells and releases cytotoxic Hb into the plasma. Upon recruiting Hb, 
the mCD163 directly suppresses the pseudoperoxidase activity of Hb in-situ 
on the monocyte membrane. Hb induces shedding of mCD163 into the plasma 
and the resulting sCD163 further “captures and quenches” the residual redox-
reactive Hb. Subsequently, IgG interacts with the sCD163:Hb complex and 
the sCD163:Hb:IgG complex- (i) elicits an autocrine loop of endocytosis via 
FcγR on the monocyte and subsequent recycling of the internalized sCD163 
via endosomes to restore mCD163 homeostasis, while the internalized Hb is 
catabolized by HO-1 and (ii) induces the paracrine transactivation of the 
neighboring endothelial cells (represented by HMVEC cells tested in this 
study) lining the blood vessel causing them to upregulate HO-1 and secrete 
cytokines to mount a systemic defense against Hb.  
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3.2 Hb-loaded macrophages constitute a silent survival niche for 
intracellular pathogens 

Since cell-free Hb is efficiently endocytosed by the macrophages during 

hemolytic episodes, we next wanted to investigate the effect of the Hb-

priming on the host cell viability and intracellular bacterial clearance during a 

hemolytic infection.  

Plasma Hb plays dual roles in innate immunity; the heme-iron is a 

nutrient source for pathogens, (Pishchany & Skaar, 2012) and its inherent 

pseudoperoxidase (POX) activity, which generates ROS, elicits anti-microbial 

defense (Du et al, 2010; Jiang et al, 2007). To clear the pro-oxidative Hb from 

circulation, the phagocytes would endeavor to uptake and hence become 

effectively loaded with Hb. Unfortunately, under these circumstances, 

infection would conceivably allow opportunistic intracellular pathogens and 

the endocytosed Hb to be in functional contact with each other. Opportunistic 

pathogens such as Staphylococcus aureus are known to utilize the heme-iron 

for survival (Skaar et al, 2004). Consistently, patients with hemolytic disorders 

such as malaria and paroxysmal nocturnal hemoglobinuria (Olsson et al, 2012) 

are predisposed to infections (Berkley et al, 2009; Scott et al, 2011) especially 

by intracellular bacteria (Berkley et al, 2009; Bronzan et al, 2007; Mabey et al, 

1987). Other studies in mice have also shown that hemolysis increases 

susceptibility to bacterial infections (Kaye & Hook, 1963a; Kaye & Hook, 

1963b; Kaye et al, 1965). Hence, although there is evidence to suggest that 

hemolysis renders susceptibility to infections, the underlying molecular 

mechanism remains unclear. This prompted us to hypothesize that Hb, 
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liberated during hemolysis, promotes susceptibility of phagocytes to 

intracellular infections.  

 We used Staphylococcus aureus and Salmonella typhimurium as 

representative intracellular bacteria, because they have been reported to 

survive intracellularly in phagocytes during infection (Clement et al, 2005; 

Ibarra & Steele-Mortimer, 2009). As a control, we used Pseudomonas 

aeruginosa, which has been reported to reside extracellularly during infection 

(Yuan et al, 2012). We examined the effect of Hb-priming on the intracellular 

bacterial clearance by CD163+ macrophages during infection by 

Staphylococcus aureus or Salmonella enterica serovar typhimurium. Next, we 

examined the Hb-POX mediated ROS production and downstream signaling 

pathways during infection in Hb-primed macrophages. Furthermore, the 

consequence of infection in Hb-primed macrophages on apoptosis, cytokine 

production and infectivity of neighboring cells was also investigated.      

 

3.2.1 Hb priming enhances survival of intracellular bacteria in 
macrophages 

 

3.2.1.1 Rationale for using U937-derived macrophages 

U937-derived macrophages have been widely used as a reliable model system 

to study the survival and replication of intracellular bacteria (Gao et al, 1998). 

U937-derived macrophages, which endogenously express FcγR(Looney et al, 

1986) and hence efficiently phagocytosed bacteria, were used rather than SU-

DHL-1 cells that lack FcγR (Epstein et al, 1978) for bacterial phagocytosis. In 

addition, it has been reported that intracellular bacteria promptly escape from 
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the phagosome of monocytes and proliferate within the cytoplasm leading to 

cell death (Kubica et al, 2008). Furthermore, macrophages are long-lived in 

comparison to monocytes and are mobile cells that carry phagocytosed 

pathogens to the lymphoid tissues (Bellingan et al, 1996). Hence, to study the 

effect of endocytosed Hb on the growth of intracellular bacteria, we induced 

the differentiation of U937 monocytes into CD163+ macrophage phenotype 

using PMA and dexamethasone and used it as a model cell system.  

Dexamethasone-differentiated monocytes have been reported to serve 

as a model system to study Hb-uptake and it has been found that 

glucocorticoid treatment in vitro and in vivo shifts monocyte differentiation 

towards a phenotype with a high Hb clearance and detoxification capacity 

(Vallelian et al, 2010). To prove that the observed phenotypes were indeed 

due to Hb uptake and not due to dexamethasone treatment, we had included an 

experimental control in which the cells were differentiated but not treated with 

Hb (denoted “unt” for untreated). 

 

3.2.1.2 CD163-upregulation and Hb uptake by macrophages 

Initially, we optimized the time for endocytosis of Hb by U937-derived 

macrophages upon incubating the cells with 0.5 mg/ml Hb over a time course 

of up to 60 min. Figure 3.29 A shows maximal co-localization of CD163 and 

Hb by 45 min. To further confirm this, we performed flow cytometry to verify 

the endocytosis of Hb at 45 min in CD163+ U937-macrophages (Figure 3.29 

B). 
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Figure 3.29: Endocytosis of Hb by CD163+ U937-macrophages. (A) 
Differentiated-U937 macrophages were incubated with 0.5 mg/ml Hb for up to 
60 min and immunostained for CD163 and Hb. Co-localization of CD163 and 
Hb and maximal Hb uptake was observed at 45 min. Images were acquired 
using the LSM510 META confocal microscope under the 100x oil objective. 
Scale bars, 5 µm. (B) Flow cytometric analysis of Hb-uptake by differentiated 
U937 macrophages upon incubation with 0.5 mg/ml Hb for 45 min. Untreated 
refers to cells treated with PBS supplemented with 2% FBS. Cells stained with 
secondary antibody (2o Ab) alone were used as a control to detect non-specific 
staining. 
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3.2.1.3 Infection of Hb-primed macrophages resulted in higher 
intracellular bacterial load  

To study the effect of the exposure of macrophages to Hb on the survival of 

intracellular bacteria, we pre-incubated U937-derived macrophages with 0.5 

mg/ml Hb for 45 min during which we observed maximal Hb endocytosis 

(Figure 3.29). The cells were then infected for 30 min with either 

Staphylococcus aureus (gram-positive) or Salmonella enterica serovar 

typhimurium (gram-negative). Since 30 min is usually employed for 

phagocytosis of S. aureus (Garzoni & Kelley, 2009) and S. typhimurium 

(Forsberg et al, 2003) into human macrophages, we used this time period 

consistently in our experiments. The remaining extracellular bacteria were 

removed by centrifugation and washing (refer section 2.2.13) and the cells 

were cultured for a time course of up to 4 h. At each time point, the cells were 

lysed and the intracellular bacterial load was quantified by colony forming 

unit (CFU) assay of the cell lysate.  

By 4 h post-infection, the Hb-primed macrophages harbored nearly 

twice the number of intracellular bacteria when compared to unprimed control 

macrophages, which were also corticosteroid-differentiated, but treated with 

PBS supplemented with 2% FBS (Figure 3.30). Hence, the time-dependent 

increase in the intracellular bacterial load in Hb-primed macrophages was 

likely due to the internalized Hb rather than immune suppression by 

corticosteroids. In addition, this phenomenon is independent of the gram 

character of the bacteria, because both S. aureus and S. typhimurium showed 

similar level of viability inside the U937 cells. 
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Figure 3.30: Hb-primed macrophages harbor higher intracellular 
bacteria upon infection. U937-dervied macrophages (0.5x106) were either 
left untreated or pre-treated with 0.5 mg/ml Hb for 45 min and then infected 
with S. aureus (S.a) or S. typhimurium (S.t) at multiplicity of infection (MOI) 
of 10. The lysates from cells harvested at the indicated time points were 
serially diluted onto agar plates overnight and the number of colony forming 
units calculated. * indicates p<0.05. 

 

To verify the physiological significance of this phenomenon, we used 

confocal microscopy to monitor and quantify the intracellular S. aureus and S. 

typhimurium in Hb-primed or unprimed primary monocyte-derived 

macrophages. The bacteria were stained using the stain BacLight Red stain 

(refer section 2.2.6.6). In agreement with results shown in Figure 3.30, we 

consistently observed a time-dependent increase in the mean number of S. 

aureus and S. typhimurium per cell after Hb priming (Figure 3.31 A and B). 

Z-stack images were acquired to ensure that only the intracellular bacteria 

were quantified (Figure 3.32). Taken together, our results suggest that the Hb 

endocytosed by the macrophages supports the intracellular growth and 

persistence of bacteria during infection. 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Figure 3.31: Higher intracellular bacteria in Hb-primed macrophages 
upon infection. (A) Confocal microscopy to stain the intracellular S. aureus 
or S. typhimurium (red) in primary monocyte-derived macrophages at the 
indicated time points with or without pre-treatment with 0.5 mg/ml Hb for 45 
min.  Images were acquired using the LSM510 META confocal microscope 
under the 100x oil immersion objective. Scale bars, 5 µm. (B) The mean 
number of intracellular bacteria per infected macrophage at the indicated time 
points was quantified by microscopy. In panel B, the mean number of 
intracellular bacteria was calculated from 3 independent experiments.  
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Figure 3.32: Z-stack images of intracellular S. aureus and S. typhimurium 
in macrophages. Z-stack images, acquired at an interval of 0.48 µm show the 
intracellular localization of S. aureus (S.a) or S. typhimurium (S.t) (red) at 4 h 
post-infection in U937-derived macrophages with or without pre-treatment 
with 0.5 mg/ml Hb for 45 min. Scale bars, 5 µm.  
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3.2.2 Intracellular bacteria manipulate iron-responsive signaling 
molecules in the host 

3.2.2.1 Upregulation of HO-1 in intracellular bacteria-infected Hb-primed 
macrophages 

Our previous results showing enhanced intracellular growth of bacteria in Hb-

primed macrophages (Figures 3.30 and 3.31) prompted us to examine the 

regulation of the critical heme-iron responsive signaling molecules by 

intracellular bacteria. Heme-oxygenase-1 (HO-1) is a heme responsive 

enzyme that breaks down heme into carbon monoxide, biliverdin and free iron 

(Tenhunen et al, 1968). Figure 3.33 shows that Hb treatment upregulates HO-

1 in macrophages. Hb-primed macrophages infected with intracellular bacteria 

(S. aureus/ S. typhimurium) showed higher HO-1 expression when compared 

to unprimed infected control macrophages indicating that the intracellular 

bacteria might upregulate HO-1 in host cells to detoxify the redox active Hb 

and to feed on the heme iron liberated. In contrast, Hb-primed macrophages 

infected with the extracellular bacteria, P. aeruginosa showed a drop in the 

HO-1 expression compared to unprimed infected controls.  
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Figure 3.33: Hb-primed macrophages infected by S. aureus or S. 
typhimurium upregulate HO-1. Flow cytometric analysis showing the peak 
shift in the histograms of HO-1 staining in Hb-only treated and Hb-pretreated 
U937-derived macrophages at 4 h post-infection with S. aureus (S.a) or S. 
typhimurium (S.t) or P. aeruginosa (P.a). Untreated refers to cells treated with 
PBS supplemented with 2% FBS. Bac. denotes bacteria. 

 

3.2.2.2 Downregulation of NRAMP-1 in intracellular bacteria-infected 
Hb-primed macrophages 

NRAMP-1 (Natural resistance associated macrophage protein-1) is a divalent 

metal-ion transporter, which is involved in iron transport out of the 

phagosome and confers resistance to intracellular infections by depriving the 

pathogens of the nutrient iron (Wyllie et al, 2002). Hence, we measured the 

NRAMP-1 expression upon infection by S. aureus and S. typhimurium in Hb-

primed macrophages using flow cytometry. Figure 3.34 shows that while Hb 

treatment upregulated NRAMP-1 expression in macrophages, S. aureus and S. 

typhimurium infected Hb-primed macrophages showed downregulation of 
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NRAMP-1 when compared to control unprimed macrophages, which were 

treated with PBS supplemented with 2% FBS. This suggests that the heme-

iron dependent intracellular bacteria might downregulate NRAMP-1 to inhibit 

iron efflux out of the phagosome and hence retaining the iron for their survival 

inside the macrophages (Figure 3.35). In contrast, P. aeruginosa infected Hb-

primed macrophages did not show a change in NRAMP-1 expression when 

compared to control unprimed infected macrophages. This could be likely 

because P. aeruginosa being an extracellular pathogen survives independently 

of the intracellular source of iron during infection. .  

  

 

 

 

 

 

 

 

 

 

Figure 3.34: Hb-primed macrophages infected by S. aureus or S. 
typhimurium downregulate NRAMP-1. Flow cytometric analysis showing 
the peak shift in the histograms of NRAMP-1 staining in Hb-only treated and 
Hb-pretreated U937-derived macrophages at 4 h post-infection with S. aureus 
(S.a) or S. typhimurium (S.t) or P. aeruginosa (P.a). Untreated refers to cells 
treated with PBS supplemented with 2% FBS. Bac. denotes bacteria. 
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Figure 3.35: Hypothetical model illustrating how intracellular bacteria 
might manipulate iron-responsive molecules to survive inside the Hb-
primed macrophages. During a hemolytic infection, free Hb is released from 
the ruptured RBCs. CD163+ macrophages that uptake extracellular Hb are 
invaded by intracellular bacteria to utilize the Hb in the phagosome. The 
intracellular bacteria upregulate the Hb-catabolizing enzyme, HO-1 in 
macrophages in order to feed on the liberated iron (Fe+2). In addition, the 
bacteria also downregulate NRAMP-1, the iron efflux protein which exports 
free iron out of the phagosome for subsequent incorporation into iron-
chaperone proteins like transferrin and ferritin.    

 

3.2.3 Infection of Hb-primed macrophages resulted in downregulation of 
mitochondrial stress  

 

3.2.3.1 Intracellular infection downregulates Hb-ROS production 

Redox-active Hb has been reported to aggregate and induce cytotoxicity in 

macrophages (Kapralov et al, 2009). Since we have shown that intracellular 

bacteria survived better in Hb-primed macrophages (Figures 3.30 and 3.31), it 

was pertinent to understand how they modulate Hb-toxicity in macrophages in 

order to establish survival within the host cell. We measured the mitochondrial 
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ROS production in Hb-treated macrophages, with or without infection by S. 

aureus and S. typhimurium at 4 h post-infection, during which we observed 

maximal intracellular bacteria (Figure 3.30). Stimulation with Hb alone dose-

dependently increased mitochondrial ROS production in macrophages when 

compared to untreated cells, which were incubated with PBS supplemented 

with 2% FBS (Figure 3.36). However, upon subsequent infection of the Hb-

primed macrophages with S. aureus or S. typhimurium, we found that the Hb-

induced mitochondrial ROS was significantly reduced compared to control 

unprimed infected cells, suggesting that the intracellular-resident bacteria 

actively downregulated or effectively quenched the released ROS.  

 

 

 

 

 

 

Figure 3.36: Attenuation of mitochondrial ROS in intracellular bacteria- 
infected Hb-primed macrophages. 0.5x106 U937-derived macrophages were 
loaded with 5 µM MitoSOX Red and either left untreated or pre-treated with 
0.5 mg/ml Hb for 45 min. The cells were then infected with S. aureus (S.a) or 
S. typhimurium (S.t) at MOI of 10 and the fluorescence intensity of MitoSOX 
Red was quantitated using the CyAn ADP flow cytometer. Untreated refers to 
cells treated with PBS supplemented with 2% FBS. * indicates p<0.05. 
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3.2.3.2 Intracellular bacteria elicit a “controlled and limited” Hb-POX 
activation  

Next, we examined the in vitro activation of the Hb-POX activity by the 

microbial extracellular proteases secreted into the culture supernatants of S. 

aureus and S. typhimurium. In particular, the S. aureus strain, PC1839, used in 

this study expresses the well-characterized extracellular V8 protease (Jiang et 

al, 2007). However, we did not observe a significant activation of the Hb-POX 

activity by S. aureus PC1839 (Figure 3.37), unlike purified proteases like 

Subtilisin A from Bacillus subtilis, which has been reported to significantly 

induce the Hb-POX activity (Subramanian et al, 2013). This is contrary to 

expectation since S. aureus PC1839 produces high levels of V8 protease, 

which would have strongly activated Hb-POX activity. Furthermore, S. 

typhimurium, which is also hemolytic (Oscarsson et al, 2002), showed only a 

weak activation of the Hb-POX activity. In addition, there was no significant 

dose-dependent effect of the proteases from S. aureus or S. typhimurium on 

the Hb-POX activity. Hence, we speculated that both S. aureus and S. 

typhimurium might relegate their proteases in order to utilize the endocytosed 

Hb in a limited and controlled manner, subtle enough to support their survival 

without eliciting a strong Hb-POX cycle, which would have generated 

microbicidal ROS. 
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Figure 3.37: Weak activation of Hb-POX activity by extracellular 
proteases in the culture supernatants of S. aureus or S. typhimurium. 
Relative POX activity of 10 µg Hb, upon incubation with extracellular 
proteases in S. aureus (S.a)/ S. typhimurium (S.t) culture supernatants (Sup) 
equivalent to 1.5 and 3 units (U) of protease activity over a time course of up 
to 45 min at 37oC. n.s. denotes not significant. 

 

3.2.3.3 Intracellular infection partially rescues Hb-induced mitochondrial 
depolarization and clustering 

Next, we examined the effect of Hb-induced ROS production on the 

mitochondrial pore permeability during infection at 4 h post-infection, on the 

basis of the interrelationship between ROS and mitochondrial depolarization 

(Wang et al, 2012). Figure 3.38 shows that when compared to untreated, Hb 

stimulation caused a time-dependent decrease in the TMRE dye retention 

ability, implicating permeabilization of the mitochondria. However, 

subsequent infection with S. aureus or S. typhimurium partially rescued the 

TMRE fluorescence, which is in agreement with the earlier observed reduction 

in ROS production (Figure 3.36). This consistently suggests that the 
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intracellular bacteria suppress Hb-POX activity and hence, a reduction in 

mitochondrial depolarization. 

 

 

 

 

 

Figure 3.38: Lower mitochondrial permeabilization in S. aureus or S. 
typhimurium infected Hb-primed macrophages. TMRE staining to measure 
the mitochondrial pore permeability in U937-macrophages at 4 h post-
infection with either S. aureus (S.a) or S. typhimurium (S.t) at MOI of 10, with 
or without pretreatment with 0.5 mg/ml Hb for 45 min. 10 µM CCCP and 100 
µM H202 treated cells were used as positive controls. Untreated refers to cells 
treated with PBS supplemented with 2% FBS. * indicates p<0.05. 

 

Coherent with higher ROS production and mitochondrial 

permeabilization, which occurs during Hb-priming, we also observed 

mitochondrial clustering in macrophages (Figure 3.39, white arrows). 

Mitochondrial clustering precedes the release of cytochrome c from 

mitochondria during apoptosis (Haga et al, 2003). ROS has been linked to the 

clustering of mitochondria during apoptosis (Al-Mehdi et al, 2012) . The 

clustering phenomenon was abolished when the macrophages were pre-treated 

with the ROS scavenger, N-acetylcysteine (NAC). Again, S. aureus and S. 
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typhimurium infection partially reversed the mitochondrial clustering only in 

Hb-primed macrophages but not in unprimed infected cells. Taken together, 

the above results suggest that intracellular bacteria downregulate the Hb-

induced mitochondrial stress to survive in macrophages. 

 

 

 

 

 

 

 

 

 

 

Figure 3.39: Lesser mitochondrial clustering in Hb-primed macrophages 
upon intracellular infection. Mitochondrial staining (red) in Hb-only treated 
and Hb-pretreated U937-macrophages (Mφ) infected with FITC labeled S. 
aureus (S.a) or S. typhimurium (S.t) (green) using 20 nM Mitotracker Orange. 
White arrows denote mitochondrial clustering. Untreated refers to cells treated 
with PBS supplemented with 2% FBS. Scale bars, 5 µm.   
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3.2.4 Intracellular bacteria manipulate host apoptotic signaling pathways 

3.2.4.1 Downregulation of ERK and p38-induced activation of Bax 

During infection, balance between the pro-apoptotic Bax subfamily and the 

anti-apoptotic Bcl2-like proteins regulates cell survival (Yang et al, 2002). 

Bax is a pro-apoptotic subfamily, which translocates to the mitochondria and 

facilitates the release of cytochrome c, which subsequently induces cell death 

(refer Figure 1.5). On the contrary, the anti-apoptotic Bcl2  inhibits the 

activation of Bax and promtes cell survival. 

In order to understand how S. aureus and S. typhimurium might 

modulate apoptotic signaling in Hb-primed macrophages, we examined the 

protein levels of Bax and Bcl2 at 4 h post-infection. Figure 3.40 A (left panel, 

red box) shows that while Hb stimulation upregulated the expression of Bax, 

infection by S. aureus and S. typhimurium abrogated Bax. In contrast, cells 

infected without prior Hb-priming showed sustained level of Bax, implying 

that Hb-priming, which increased the intracellular bacterial count by 2-fold 

(Figure 3.30), is necessary and sufficient for the infection-induced 

downregulation of Bax. In contrast to Bax, the level of Bcl2 was maintained in 

the infected Hb-primed macrophages (Figure 3.40 A), suggesting that the 

intracellular bacteria might have kept the host cells alive to survive within 

these cells.   

ERK and p38, which belong to the family of mitogen activated protein 

kinases (MAPKs) are activated by phosphorylation in response to both 

mitogenic and stress stimuli (Zhuang & Schnellmann, 2006). Previous studies 

have indicated that signaling via p-ERK and p-p38 mediates apoptosis in 
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response to stimuli like ROS, infection and are essential for the downstream 

activation of Bax (Zhuang & Schnellmann, 2006). Hence, we queried whether 

the intracellular bacteria in Hb-primed macrophages would manipulate the 

MAPK signaling pathway. Figures 3.40 A and B show that while stimulation 

with Hb alone upregulated both p-p38 and p-ERK signaling, infection of Hb-

primed macrophages downregulated both p-p38 and p-ERK. This result is 

consistent with Bax downregulation and maintenance of Bcl2 level upon 

infection of Hb-primed macrophages.  

3.2.4.2 Intracellular infection induces anti-inflammatory cytokine 
response in Hb-primed macrophages 

Since the signaling pathways ultimately culminate in cytokine production, it 

was pertinent to determine the profiles of pro- and anti-inflammatory 

cytokines upon infection of Hb-primed cells. We measured TNF-α (pro-

inflammatory) and IL-10 (anti-inflammatory) at 6 h post-infection of Hb-

primed macrophages. Figure 3.41 shows that stimulation with Hb alone 

significantly upregulated the pro-inflammatory cytokine, TNF-α, compared to 

the anti-inflammatory cytokine, IL-10. However on the contrary, infection of 

the Hb-primed macrophages with S. aureus or S. typhimurium induced higher 

IL-10 production, suggesting that the intracellular bacteria might have skewed 

the cytokine production towards an anti-inflammatory phenotype. 
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Figure 3.40: Hb-primed macrophages infected by S. aureus or S. 
typhimurium show downregulated MAPK-Bax signaling. (A) Western 
blotting analysis of p-p38, p-ERK, Bax and Bcl2 in Hb-only treated and Hb-
pretreated U937-macrophages infected with S. aureus (S.a) or S. typhimurium 
(S.t). Bac. denotes bacteria. Red boxes indicate the downregulation of p-ERK, 
p-p38 and Bax and maintenance of Bcl2 in infected Hb-pretreated 
macrophages. GAPDH was used as loading control. (B) Flow cytometric 
analysis showing the peak shift in the histograms of p-ERK and Bax staining 
in Hb-only treated and Hb-pretreated U937-macrophages infected with S. 
aureus or S. typhimurium. Untreated refers to cells treated with PBS 
supplemented with 2% FBS. 
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Figure 3.41: Higher anti-inflammatory cytokine production in 
intracellular bacteria-infected Hb-primed macrophages. Cytokine 
production (TNF-α and IL-10) in Hb-only treated and Hb-pretreated U937-
macrophages at 6 h post-infection with S. aureus (S.a) or S. typhimurium (S.t). 
* indicates p<0.05; ** indicates p<0.005. 

 

In order to understand how infection by extracellular pathogens 

impacts the host-cell survival with or without Hb-priming, we used P. 

aeruginosa, a gram-negative extracellular bacterium (Yuan et al, 2012) as a 

control to study its effect on MAPK-Bax signaling and cytokine production. 

Contrary to infection by S. aureus and S. typhimurium, which are known to 

invade phagocytes, Hb-primed macrophages infected with P. aeruginosa 

showed upregulation of p-ERK and Bax signaling (Figure 3.42 A) with 

concomitantly higher production of the inflammatory TNF-α (Figure 3.42 B). 

Our results suggest that while opportunistic intracellular bacteria such as S. 

aureus and S. typhimurium thrive intracellularly within Hb-primed 

macrophages and keep the host-cells viable, P. aeruginosa being an 
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extracellular pathogen, survives independently of the intracellular source of 

Hb during infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.42: P. aeruginosa upregulates pro-apoptotic pERK-Bax signaling 
and inflammatory cytokine production in Hb-primed U937-macrophages. 
(A) Left panel- Flow cytometric analysis showing the peak shift in the 
histograms of p-ERK and Bax staining in Hb-only treated and Hb-pretreated 
U937-macrophages at 4 h post-infection with P. aeruginosa (P.a). Right 
panel shows the quantitation of the mean fluorescent intensity of p-ERK and 
Bax staining. Untreated refers to cells treated with PBS supplemented with 2% 
FBS. (B) Cytokine production (TNF-α and IL-10) in Hb-only treated and Hb-
pretreated U937-macrophages at 6 h post-infection with P. aeruginosa. * 
indicates p<0.05; ** indicates p<0.005. 
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3.2.4.3 Supernatant from intracellular bacteria-infected Hb-primed 
macrophages promotes infectivity of neighboring cells 

To determine whether the anti-inflammatory cytokine production by the 

intracellular bacteria-infected Hb-primed macrophages would have an impact 

on the infectivity and viability of ‘neighboring’ cells, we transferred the 

conditioned supernatants from unprimed or Hb-primed cells that had been 

challenged with S. aureus or S. typhimurium onto fresh recipient cells. Before 

transfer, the culture supernatants were centrifuged at 10,000xg for 10 min to 

remove cell debris. To measure the infectivity on the recipient cells, we 

challenged the Hb-primed recipient cells with S. aureus or S. typhimurium. 

Supernatants from Hb-primed cells that had been challenged with S. aureus or 

S. typhimurium, promoted the intracellular bacterial growth (Figure 3.43). In 

contrast, control supernatants (from cells treated with Hb alone or S. aureus/ S. 

typhimurium alone or Hb-primed cells that had been challenged with P. 

aeruginosa), did not support intracellular bacterial growth.  
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Figure 3.43: Higher infectivity of recipient cells upon supplementing with 
supernatants from intracellular bacteria-infected Hb-primed 
macrophages. (A) CFU assay showing the S. aureus (S.a) or S. typhimurium 
(S.t) infectivity of U937-derived macrophages upon supplementing with 
supernatants (Sup) from macrophages stimulated with either Hb alone or S. 
aureus/ S. typhimurium/ P. aeruginosa (P.a) alone or Hb-primed cells infected 
with S. aureus/ S. typhimurium/ P. aeruginosa. (B) Intracellular bacterial load 
with or without supplementing the conditioned supernatants. * indicates 
p<0.05; ** indicates p<0.005. Untreated (Unt) refers to cells treated with PBS 
supplemented with 2% FBS. 

 

In agreement with the above finding, we also recorded significantly 

higher host-cell viability and higher production of anti-inflammatory cytokine, 

IL-10 by recipient cells upon transfer of supernatants from Hb-primed cells 

that had been challenged with S. aureus or S. typhimurium, when compared to 
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all of the control supernatants (Figure 3.44 A and B). Taken together, we 

speculate that the anti-inflammatory cytokine production induced by 

intracellular bacterial infection in Hb-primed macrophages, promotes 

infectivity in ‘neighboring’ cells while maintaining the host-cell viability. 

 

                                                                                                  

 

                      

 

 

              

 

Figure 3.44: Higher cell-viability and anti-inflammatory cytokine 
production by recipient cells upon supplementing with supernatants from 
intracellular bacteria-infected Hb-primed macrophages. (A) Cell viability 
and (B) cytokine production by recipient cells upon transfer of supernatants 
(sup) from Hb alone treated cells or S. aureus (S.a)/ S. typhimurium (S.t)/ P. 
aeruginosa (P.a) infected cells with or without Hb priming. Y-axis in panel A 
indicates the fluorescence (560/590nm) of CellTiter-blue dye. * indicates 
p<0.05; ** indicates p<0.005. Untreated (Unt) refers to cells treated with PBS 
supplemented with 2% FBS. 
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3.2.5 Hb-primed macrophages harboring intracellular bacteria show 
suppressed apoptosis  

3.2.5.1 Intracellular infection partially inhibits apoptosis 

Apoptosis is a mechanism by which an infected-cell commits suicide to 

prevent the spread of infection to neighboring cells (refer Figure 1.5). Hence 

to examine the impact of intracellular infection on the host-cell survival, we 

measured the extent of apoptosis of cells at 4 h post-infection with either 

intracellular (S. aureus/ S. typhimurium) or extracellular (P. aeruginosa) 

bacteria, with or without Hb-priming. Figure 3.45 shows that while treatment 

with Hb alone induced apoptosis in macrophages, infection of Hb-primed 

macrophages with P. aeruginosa further increased the level of apoptosis 

compared to that of infected macrophages that were not primed with Hb. This 

is consistent with our observation of higher activation of the MAPK-Bax 

signaling pathway and consequently, higher TNF-α production (Figures 3.42). 

On the contrary, primed macrophages infected with either S. aureus or S. 

typhimurium showed a significant drop in the level of apoptosis when 

compared to unprimed but infected macrophages. This result is concordant 

with our earlier finding of a drop in the activation of the MAPK-Bax pathway 

and higher IL-10 production as opposed to TNF-α  (Figures 3.40 and 3.41). 
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Figure 3.45: Hb-primed macrophages harboring intracellular bacteria 
show suppressed apoptosis. Apoptosis of Hb-only treated and Hb-pretreated 
U937-macrophages at 4 h post-infection with P. aeruginosa (P.a) or S. aureus 
(S.a) or S. typhimurium (S.t) was quantified by staining with annexin V-FITC 
and 7-AAD. Untreated refers to cells treated with PBS supplemented with 2% 
FBS. * indicates p<0.05. ** indicates p<0.005. 

 

3.2.5.2 Intracellular infection blocks activation of caspases 

Caspases are cellular proteases that are activated in an apoptotic cell and 

orchestrate a catastrophic sequence of events leading to nuclear fragmentation 

and eventually cell-death (refer Figure 1.5). To corroborate that infection by 

intracellular bacteria suppressed MAPK-Bax signaling (Figure 3.40) and 

apoptosis (Figure 3.45) in Hb-primed macrophages, we investigated caspase 

activation. Figure 3.46 A and B shows that treatment with Hb alone induces 

the activation of both the initiator caspase-9 and the executioner caspase-3. 

However, infection of primed macrophages with either S. aureus or S. 

typhimurium reduced the activity of both caspases-9 and -3. 
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In stark contrast to S. aureus and S. typhimurium, the extracellular 

bacterium, P. aeruginosa induced higher caspase-9 and sustained caspase-3 

activation in Hb-primed macrophages when compared to infected but 

unprimed macrophages (Figure 3.47).  This is consistent with  our previous 

results showing higher activation of the ERK-Bax signaling and concomitant 

production of the inflammatory cytokine, TNF-α by P. aeruginosa infected 

macrophages (Figure 3.42). 

                                                                                                                               

 

 

 

 

 

 

 

 

 

Figure 3.46: Hb-primed macrophages harboring intracellular bacteria 
show suppressed caspase activation. (A) Caspase-9 and (B) caspase-3 
activity in Hb-only treated and Hb-pretreated U937-macrophages infected 
with S. aureus (S.a) or S. typhimurium (S.t) was measured by the caspalux and 
phiphilux assay respectively. Untreated refers to cells treated with PBS 
supplemented with 2% FBS. 
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Figure 3.47: P. aeruginosa induces higher caspase activation in Hb-
primed U937-macrophages. Caspase-9 and caspase-3 activity in Hb-only 
treated and Hb-pretreated U937-macrophages infected with P. aeruginosa 
(P.a) was measured by the caspalux and phiphilux assays respectively. 
Untreated refers to cells treated with PBS supplemented with 2% FBS. 

 

Taken together, in Section 3.2 we have proposed a molecular mechanism to 

explain how macrophages, which uptake extracellular Hb during episodes of 

hemolysis may constitute a silent survival niche for intracellular pathogens. 

Our findings demonstrate that opportunistic intracellular bacteria such as 

Staphylococcus aureus and Salmonella typhimurium preferentially colonize 

Hb-primed macrophages and modulate the ERK and p-p38 signaling pathways 

to downregulate apoptosis of the host cells. This has important implications 

during an infection since intracellular bacteria may use these professional 

phagocytes as mobile vehicles for dissemination and escape from immune 

surveillance. This may contribute to the persistence of infections and the 

ability of pathogens to spread quickly from a local infection to a systemic 

infection (Garzoni & Kelley, 2009). 
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           Hb exhibits dual characteristics in innate immunity – on one hand, the 

heme iron is a source of nutrition for the invading microbe and on the other 

hand, Hb-POX generates microbicidal ROS which is also cytotoxic to the host 

itself. This presents an unresolved dichotomy during an intracellular infection. 

It is known that pathogen-mediated proteolysis of host proteins provides a 

source of amino acids critical for the survival of the microbe (Pishchany & 

Skaar, 2012). However, we found that intracellular bacteria limit the activation 

of the Hb-POX activity, to evade the microbicidal ROS production (Figures 

3.36 and 3.37) and simultaneously manipulate the vital iron-responsive 

proteins of the host like HO-1 and NRAMP-1 to detoxify the heme and 

prevent the efflux of iron out of the phagosome (Figures 3.33 and 3.34) .  

          Apart from the classical role in cell-proliferation and differentiation, 

MAPKs (such as p-ERK, p-p38) have also been implicated in the induction of 

apoptosis both in-vitro and in-vivo (Cagnol & Chambard, 2010). In particular, 

p-ERK activation has been associated with cell death induced by ROS 

(Kralova et al, 2008). We found that Hb-generated ROS induced the activation 

of p-p38 and p-ERK and consequently, apoptosis of macrophages. However, 

upon infection of Hb-primed macrophages with intracellular bacteria 

(represented by S. aureus and S. typhimurium in this study), we observed a 

reduction in ERK-induced activation of the pro-apoptotic Bax and 

downstream caspases while the level of the anti-apoptotic Bcl2 was 

maintained (Figure 3.40). In stark contrast, infection by extracellular bacteria 

(P. aeruginosa) predominantly upregulated ERK-mediated activation of the 

pro-apoptotic Bax and caspase-9 (Figures 3.42 and 3.47). Hence, it is possible 
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that Hb-priming might dictate differential effects on the host-cell survival 

depending on the nature of infection (intracellular or extracellular bacteria). 

 Consequent to inhibition of pro-apoptotic signaling, intracellular 

bacteria also skewed the cytokine profile in Hb-primed macrophages towards 

an anti-inflammatory IL-10 phenotype rather than pro-inflammatory TNF-α 

(Figure 3.41), probably to counter apoptosis (Figure 3.45) and promote 

infectivity in neighboring cells (Figure 3.43). Nevertheless, the suppression of 

apoptosis by the intracellular bacteria was only partial, likely due to the 

parallel activation of Toll and Nod-like receptors (Delbridge & O'Riordan, 

2007), implicating the potential homeostatic shift towards death when the 

phagocyte becomes over-burdened with bacteria.  

In summary, our findings reveal that intracellular bacteria exploit the 

Hb-scavenging mechanism to preferentially survive intracellularly within the 

Hb-primed phagocytes, subtly utilizing the heme-iron without eliciting a 

strong POX activity to escape from microbicidal ROS. Such intracellular 

bacteria thrive by downregulating p-ERK- and p-p38-mediated activation of 

Bax and downstream caspases to silently persist in host cells while 

suppressing apoptosis (Figure 3.48). 
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Figure 3.48: A hypothetical model illustrating the effect of Hb-priming on 
the susceptibility of macrophages to intracellular infections.  Infection- or 
injury-mediated hemolysis releases Hb from the ruptured RBCs into the 
plasma bathing the cells in vasculature. Scavenger receptors expressed on the 
macrophages such as CD163, uptake and clear Hb from the plasma, thus 
effectively loading the cells with Hb. Hence, during an infection, it is likely 
that both Hb and bacteria, which are co-internalized into the macrophages, 
remain in functional contact with each other in the endosomes. The 
intracellular bacteria downregulate the redox activity of Hb and at the same 
time, modulate the iron responsive molecules, HO-1 and NRAMP-1 to utilize 
the heme-iron for growth and survival. Subsequently, the bacteria 
downregulate the p-p38 and p-ERK mediated activation of the pro-apoptotic 
Bax and caspases and skew the cytokine production more towards the anti-
inflammatory IL-10 phenotype to silently persist inside the host cells by 
suppressing apoptosis. 
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CHAPTER 4 

GENERAL CONCLUSIONS 

 
In this thesis, we explored the innate immune response(s) against extra-

erythrocytic Hb. During severe hemolysis induced during tissue injury, trauma 

or hemolytic infections, Hb reaches extremely high concentrations in the 

plasma and quickly saturates the major Hb scavenger, Hp. The redox-reactive 

Hb generates cytotoxic ROS and hence survival depends on the rapid 

clearance of Hb from circulation. Our results describe a highly efficient two-

pass detoxification mechanism involving CD163-mediated endocytosis of Hb 

into monocytes and endothelial cells in collaboration with plasma IgG and Fc 

receptors. Such an alternative pathway might become operational when Hp is 

depleted during severe hemolysis.  

Using biochemical, cellular and molecular approaches, we found that 

mCD163 acts as the frontline receptor for both native and proteolytically 

activated Hb and directly suppressed the Hb-POX activity on the monocyte 

membrane. Simultaneously, the mCD163 is proteolytically shed into sCD163, 

which acts as an additional layer of defense against the cytotoxic Hb in 

circulation. sCD163 binds to the residual Hb and quickly dampens the redox-

reactivity of Hb. Further, we identified that IgG purified from the plasma of 

healthy individuals, interacts with the sCD163:Hb complex and bridges the 

sCD163:Hb:IgG complex to FcγR on the monocytes. The internalized Hb is 

catabolized by HO-1, while the sCD163 is palmitoylated and recycled to the 

membrane via recycling endosomes to restore the level of CD163 on the 

monocytes. Interestingly, the sCD163:Hb:IgG complex also transactivated the 
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vascular endothelial cells, when co-cultured with monocytes and resulted in 

synergistic cytokine production in response to Hb.   

During hemolysis, CD163+ macrophages are the major scavenger cells 

that uptake extracellular Hb. We found that intracellular bacteria preferentially 

colonize and silently survive within the Hb-loaded macrophages. Importantly, 

the proteases secreted by the intracellular bacteria elicited a subtle activation 

of the Hb-POX activity, suggesting that the bacteria might have evolved a 

“limited Hb-proteolysis” strategy to escape the microbicidal ROS production. 

In addition, Hb-primed macrophages infected with intracellular bacteria 

showed upregulation of HO-1 and downregulation of NRAMP-1, implying 

that the bacteria manipulate iron-responsive proteins in the host to utilize the 

heme-iron for their survival. Further investigation of the apoptotic signaling 

pathways and cytokine profiles revealed that intracellular infection of Hb-

primed macrophages downregulated the MAPK-Bax signaling pathway, 

caspase -3 and caspase-9 activation while upregulating the production of the 

anti-inflammatory cytokine IL-10. Consistently, these results suggested that 

the intracellular bacteria downregulate pro-apoptotic signaling and 

inflammatory cytokine production in the host, to ensure their survival. 

Overall, we have identified novel Hp-independent mechanism(s) for 

detoxification and clearance of Hb during severe hemolysis. Our identification 

of sCD163 as an important acute phase Hb-responsive protein may be applied 

clinically to subvert Hb-toxicity in patients with acute hemolysis. Moreover, 

our identification of Hb-primed macrophages as silent survival niche for 

intracellular bacteria provides new insights into the interrelationship between 

hemolysis and intracellular bacterial infections.   
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CHAPTER 5 

FUTURE PERSPECTIVES 

 
The findings from this thesis open up several new directions for future 

research. Suitable experiments could be performed to investigate the following 

research avenues: 

I. sCD163 as a potential biomarker and therapeutic in patients with acute 
hemolysis 

In this thesis, we have shown that cell-free Hb triggers the shedding of 

mCD163 from the monocytes to constitute sCD163 in the plasma. Moreover, 

our findings have revealed that sCD163 in turn binds and attenuates the Hb- 

POX activity and is itself recycled to restore mCD163 on the monocytes upon 

endocytosis via the IgG-FcγR pathway. Hence, plasma sCD163 could 

potentially serve as an early biomarker of hemolysis in patients and possibly 

protect against the oxidative damage induced by the redox-active Hb. Future 

experiments could be designed to measure the level of plasma sCD163 using 

CD163-specific sandwich ELISA in rodent models of hemolysis. Correlation 

with other early markers of inflammation and sepsis such as C-reactive protein 

may be examined in patients with hemolytic diseases. This will help to verify 

the ability of sCD163 to serve as a prognostic marker of hemolysis during 

inflammation and sepsis. Further, the therapeutic efficacy of sCD163 could be 

tested in hemolytic models by exogenous administration of sCD163 using 

osmotic pumps. The formation of sCD163-Hb complexes in the plasma could 

be analyzed in vivo and the effects on Hb clearance and tissue damage could 

be studied in histological sections. Together, these studies may help reveal the 
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potential ability of sCD163 to function as a biomarker and therapeutic agent 

for hemolytic patients.  

 

II. sCD163 infusion to attenuate toxicity of Hb-based blood substitutes 

For the past several decades, scientists have been attempting to develop safer 

Hb-based blood substitutes for patients requiring blood transfusion. However, 

the major drawback in the development and administration of safe Hb-derived 

blood substitutes is due to the intrinsic oxidative nature of free Hb, which 

induces cellular and tissue damage (Alayash, 2010). The key requirement for 

Hb to be used in blood substitutes is that it should be able to transport oxygen 

efficiently with minimal redox reactivity. Here, in this thesis, we have 

identified sCD163 to attenuate the Hb-POX activity in vitro. Our work 

suggests that it might be possible to control the toxic oxidative reactions of Hb 

by transfusing sCD163 together or prior to Hb-based blood substitutes. This 

study may be performed in rodents. Experiments could be designed to 

measure the in vivo toxicity of Hb and the production of pro- and anti-

inflammatory cytokines with and without sCD163 infusion. The above studies 

will help in the development of safer Hb-based blood substitutes.  
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III. Verification of the role of CD163+ macrophages as a survival niche for 
intracellular pathogens in vivo 

We have found that opportunistic intracellular bacteria such as Staphylococcus 

aureus and Salmonella typhimurium preferentially colonize Hb-uptaking 

CD163+ macrophages. Although we have elucidated the molecular 

mechanisms involved using in vitro and ex vivo methods, the role of CD163+ 

macrophages in homing intracellular pathogens during hemolytic infections 

needs to be verified in vivo in rodent models.  

Fluorescently labeled bacteria could be employed to track the 

localization of hemolytic bacteria in mouse models of hemolytic infection, 

following which the CD163+ macrophages and monocytes could be isolated 

and analyzed for intracellular bacterial load and cytokine production. 

Furthermore, using other intracellular bacteria, a comparative study could be 

performed to understand whether the mechanism of limited-Hb proteolysis is 

conserved amongst other intracellular pathogens as well. For example, 

Porphyromonas gingivalis has been shown to persist within oral epithelial 

cells in vitro (Madianos et al, 1996) and express surface proteases to degrade 

Hb and release heme group containing iron (NM et al, 2003). Taken together, 

the above studies will help to uncover the relationship between hemolysis and 

infection.  
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CD163 and IgG Codefend against Cytotoxic Hemoglobin via
Autocrine and Paracrine Mechanisms

Karthik Subramanian,* Ruijuan Du,*,† Nguan Soon Tan,‡,x Bow Ho,{ and

Jeak Ling Ding*,‖

Lysis of RBCs during numerous clinical settings such as severe hemolytic anemia, infection, tissue injury, or blood transfusion

releases the endogenous damage-associated molecular pattern, hemoglobin (Hb), into the plasma. The redox-reactive Hb generates

cytotoxic reactive oxygen species, disrupting the redox balance and impairing the immune-responsive blood cells. Therefore, it

is crucial to understand how the immune system defends against the cytotoxic Hb. We identified a shortcut “capture and quench”

mechanism of detoxification of Hb by the monocyte scavenger receptor CD163, independent of the well-known dominant anti-

oxidant, haptoglobin. Our findings support a highly efficient two-pass mechanism of detoxification and clearance of Hb: 1) a direct

suppression of Hb-pseudoperoxidase activity by CD163, involving an autocrine loop of CD163 shedding, sequestration of Hb,

recycling, and homeostasis of CD163 in human monocytes and 2) paracrine transactivation of endothelial cells by the shedded

soluble CD163 (sCD163), which further detoxifies and clears residual Hb. We showed that sCD163 and IgG interact with free Hb

in the plasma and subsequently the sCD163-Hb-IgG complex is endocytosed into monocytes via FcgR. The endocytosed sCD163

is recycled to restore the homeostasis of CD163 on the monocyte membrane in an autocrine cycle, whereas the internalized Hb is

catabolized. Using ex vivo coculture experiments, we demonstrated that the monocyte-derived sCD163 and IgG shuttle residual

plasma Hb into the proximal endothelial cells. These findings suggest that CD163 and IgG collaborate to engage monocytes and

endothelial cells in a two-pass detoxification mechanism to mount a systemic defense against Hb-induced oxidative stress. The

Journal of Immunology, 2013, 190: 5267–5278.

H
emolysis due to tissue injury, trauma (1), or infection by
hemolytic microbes (2) ruptures RBCs and releases
hemoglobin (Hb) into the plasma. The intrinsic cyto-

toxicity of the cell-free Hb is well established (3). This is due to
the pseudoperoxidase (POX) activity of Hb, which catalyzes the
production of free radicals such superoxide anion (O2

.2), ferryl
Hb, and other reactive derivatives such as hydroxyl radical and
hypohalous acid (4).
In an infection, microbial proteases specifically trigger the Hb

POX activity, leading to a localized oxidative shock at the site of
infection (5, 6). The Hb-induced microbicidal reactive oxygen
species (ROS) also damages the host itself when it is not rapidly

detoxified and removed from circulation. The interrelationship
between ROS and the innate immune system in acute lung in-
jury (7), chronic granulomatous disease (8), hemorrhagic shock,
and ischemia (9) has been reported, prompting our systematic
analysis of the host defense mechanism(s) against the danger
molecule, Hb. Although plasma haptoglobin (Hp) has been re-
ported to bind (10, 11) and mediate the internalization of Hb by
monocytes/macrophages via the scavenger receptor membrane-
associated CD163 (mCD163) (12, 13), Hp does not alter the
reactive properties of the Hb heme group (11, 14). Additionally,
neither Hp knockout mice (15, 16) nor humans with anhapto-
globinemia (17) display complete morbidity to hemolysis, suggest-
ing that there are alternative mechanisms of detoxification of Hb.
Contrary to the widely accepted mode of clearance of Hb via Hp,
a recent study has proposed a possible direct interaction between
CD163 and Hb even in the absence of Hp (18). Such Hp-indepen-
dent clearance mechanism of Hb could be especially crucial during
severe hemolysis, when Hp is rapidly bound and exhausted (19).
The residual cell-free redox-reactive Hb would have been life-
threatening, and yet we survive. Therefore it is conceivable that
there are alternative mechanisms of detoxification of Hb even
when Hp, the dominant antioxidant of Hb, is depleted. Intriguing
questions remain unanswered; for example, although Hb has been
shown to be directly recruited by CD163 independent of Hp (18),
the functional significance of the CD163-Hb interaction to the
redox reactivity of Hb is unknown. Furthermore, during inflamma-
tion, mCD163 is proteolytically shed from the monocyte mem-
brane into the plasma, and the soluble CD163 (sCD163) (20–22)
reportedly binds the Hb-Hp complex in vitro (23). However, the
fate of sCD163 under severe hemolytic conditions (when Hp is
depleted) remains unclear. All of these findings prompted us to
systematically investigate the innate immune mechanisms regulat-
ing cell-free Hb, an important danger-associated molecule. Towards
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this goal, we sought to 1) decipher the direct effect of CD163 on
the Hb POX activity and the consequential cell survival when
Hp is depleted; 2) elucidate the fate of sCD163; and 3) explore
the potential crosstalk between monocytes and endothelial cells
under severe hemolytic conditions, which is based on reports that
monocytes and endothelial cells are activated during hemolysis,
rendering the endothelium adhesive to blood cells (24, 25).
Contrary to the current understanding that Hp is the primary

antioxidant of Hb, we show that CD163 confers a two-pass Hb
detoxification effect. First, mCD163 directly suppresses the POX
activity of Hb in situ on the monocytemembrane, independent of Hp.
Consequently, CD163 also rescues monocytes from Hb-induced
apoptosis. The shedded sCD163 further complexes with residual
plasma Hb. The sCD163-Hb complex then interacts with IgG in the
plasma. The IgG bridges the sCD163-Hb complex to the FcgR,
enabling the endocytosis of the sCD163-Hb-IgG complex. Subse-
quently, the endocytosed sCD163 is recycled via endosomes to the
membrane to restore homeostasis of mCD163 in an autocrine
manner, whereas the internalized Hb undergoes detoxification.
Second, the sCD163 elicits a paracrine cycle, transactivating
the proximal endothelial cells to scavenge and detoxify the cell-
free Hb.

Materials and Methods
All experiments were performed according to the guidelines on ethics
and biosafety (Institutional Review Board, reference code NUS-IRB
08-296).

Reagents, human primary monocytes, and cell cultures

Purified human Hb, subtilisin A, rabbit polyclonal anti-human Hb, rabbit
anti-human IgG, and the protein synthesis inhibitor cycloheximide (CHX)
were obtained from Sigma-Aldrich. Mouse monoclonal anti-human
FcgRI (CD64) and goat polyclonal anti-human CD163 were purchased
from R&D Systems. Purified mouse anti-human FcgRIII (CD16) and
mouse anti-human FcgRII (CD32) were from BD Pharmingen. Rab-
bit anti-human heme oxygenase-1 (HO-1) was from Cell Signaling Tech-
nology. Mouse monoclonal anti–plasma membrane calcium (PMCA)
ATPase was from Thermo Scientific. The endocytosis and recycling
inhibitors, chlorpromazine and monensin, respectively, were from
Calbiochem.

Histiocytic lymphoma cell line SU-DHL-1 (DSMZ), also described as
monocytic M5-type cells, the only human cell line that expresses high
levels of CD163 (13), and Jurkat cells, a human T cell lymphoblast cell
line, were cultured in 5% CO2 at 37˚C in HEPES-buffered RPMI 1640
(Invitrogen) containing 100 U/ml penicillin, 100 mg/ml streptomycin,
and 10% FBS at a density of 2 3 106 cells/ml. HEK293T and HepG2
cells were cultured in DMEM (Invitrogen) supplemented with 10% FBS,
100 U/ml penicillin, and 100 mg/ml streptomycin. Human dermal mi-
crovascular endothelial cells (HMVEC), which expresses FcgRII (CD32)
(26), were cultured in EndoGRO-LS complete medium (Millipore) on
gelatin-coated flasks. Primary human monocytes were purified from
buffy coat by Ficoll-Paque (GE Healthcare) density gradient centrifu-
gation (27) followed by immunomagnetic cell sorting using a human mono-
cyte enrichment kit (StemCell Technologies) according to the manufacturers’
instructions.

Coculture experiments

Confluent HMVEC were washed twice with PBS and incubated with
freshly isolated primary monocytes or THP-1 cells at a ratio of 1:1 in PBS
for 45 min with or without Hb and prepared for immunostaining. For
cytokine assays, the cells were cocultured for 24 h in serum-free RPMI
1640 in the presence or absence of Hb, and the supernatants were collected
for ELISA.

Chemiluminescent-based detection of Hb POX activity
and O2

.2 production

The generation of free radicals (O2
.2) by Hb was monitored by the chemilu-

minescence of Cypridina luciferin analog (28, 29) using the GloMax 20/20
luminometer (Promega). The relative luminescence units per second spe-
cifically measures the dynamics of the generation of O2·

2.

Extraction of native membrane proteins and cytosolic proteins

The native membrane and cytosolic proteins from 2 3 106 SU-DHL-1
cells or primary monocytes were extracted using a native membrane
protein extraction kit (ProteoExtract; Calbiochem) according to the
manufacturer’s instructions. Briefly, cells were washed twice with ice-
cold PBS and incubated for 10 min on ice under gentle agitation with
2 ml ice-cold extraction buffer I supplemented with protease inhibitor
mixture. The insoluble material was pelleted by centrifugation at
16,000 3 g for 15 min at 4˚C and the supernatant enriched in soluble
proteins was frozen at 280˚C. The cell pellet was then incubated with
1 ml ice-cold extraction buffer I supplemented with protease inhibitor
mixture for 30 min on ice, with gentle agitation. The insoluble material
was pelleted by centrifugation at 16,000 3 g for 15 min at 4˚C and the
supernatant enriched in membrane proteins was collected and used
immediately or frozen at 280˚C.

Cloning and expression of CD163 in HEK293T cells

The full-length human CD163 was cloned into pcDNA3.1A (Invitrogen)
and expressed in HEK293T cells. HEK293T cells were seeded and grown
overnight on 12-well plates (Nunc) at a density of 4 3 105 cells/well in
DMEM before transfection. The cells were transfected using TurboFect
(Fermentas) according to the manufacturer’s instructions.

Measurement of intracellular ROS using CM-H2DCFDA dye

The ROS generated within the monocytes was measured using the cell
permeant oxidation-dependent fluorogenic dye CM-H2DCFDA (In-
vitrogen). SU-DHL-1 cells were plated at 2 3 105 cells/well onto 24-well
plates in phenol red–free RPMI 1640. The cells were washed and resus-
pended in PBS containing 10 mM CM-H2DCFDA for 30 min in the dark
and stimulated with 15 mM Hb with or without pretreatment with 0.1 mg/
ml anti-CD163. The fluorescence of the dye at 495 nm was measured using
a microplate reader (BioTek).

Measurement of cell viability and apoptosis

Cell viability was measured using a CellTiter-Blue viability assay kit
(Promega) following the manufacturer’s instructions. Briefly, HEK293T
and HepG2 cells seeded overnight on 96-well plates were stimulated with
Hb. CellTiter-Blue was added to each well, and fluorescence was measured
(excitation 530 nm, emission 590 nm) after 4 h incubation. The mean
fluorescence of triplicate wells was calculated and plotted. Staining of
early apoptotic cells was performed using the an annexin V-FITC apoptosis
detection kit (eBioscience) and propidium iodide viability staining solu-
tions (eBioscience) according to the manufacturers’ instructions. Briefly,
primary monocytes were stimulated with 15 mM native Hb or activated Hb
with or without pretreatment with 0.1 mg/ml anti-CD163. The cells were
then washed successively with PBS and 13 binding buffer and resus-
pended in binding buffer at a density of 1 3 106 cells/ml. The cells were
incubated with FITC-conjugated annexin V (20:1, v/v) for 15 min at room
temperature and washed. Propidium iodide was added at a dilution of 1:20
to the cell suspension and immediately analyzed on a CyAn ADP flow
cytometer (Dako).

Flow cytometry

SU-DHL-1 cells (2 3 106) were washed twice with PBS and fixed in 4%
(w/v) paraformaldehyde for 15 min. The cells were then blocked with
2% BSA for 30 min and washed once with PBS (pH 7.4). Subsequently,
the cells were sequentially stained with primary goat anti-CD163 (1:100)
and NL-557–conjugated secondary Ab (1:200) (donkey anti-goat; R&D
Systems). Then the cells were washed three times with PBS, and 104 cells
were acquired and analyzed on the CyAn ADP flow cytometer (Dako).

Preparation of cell lysate and immunoblotting

Cultured cells were harvested, pelleted, and protein extraction was per-
formed in ice-cold RIPA lysis buffer (Cell Signaling Technology) con-
taining 1 mM PMSF and 13 protease inhibitor mixture (Sigma-Aldrich).
Fifty micrograms total proteins was resolved by 10% SDS-PAGE under
nonreducing conditions and then electrotransferred to polyvinylidene
difluoride membrane in Tris-glycine buffer with 20% methanol. Mem-
branes were probed with a goat polyclonal Ab against CD163 (R&D
Systems) followed by rabbit anti-goat HRP-conjugated secondary Ab
(Dako). For loading control, blots were probed with a mouse mAb against
a plasma membrane housekeeping protein, PMCA ATPase (Thermo
Scientific), followed by goat anti-mouse HRP-conjugated secondary
Ab (Dako). Bands were visualized with SuperSignal chemiluminescence
substrate (Pierce).
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Estimation of sCD163 in culture supernatants

SU-DHL-1 cells, plated at a density of 23 106 cells/well in 24-well plates,
were stimulated with 15 mM Hb (Sigma-Aldrich) over a time course. This
concentration was chosen in view of its pathophysiological relevance (30).
The cells were pelleted at 300 3 g for 15 min at 22˚C, and the concen-
tration of sCD163 in the cell culture supernatants was measured using
a human CD163 ELISA kit (Quantikine; R&D Systems).

Immunofluorescence microscopy

SU-DHL-1 cells or primary monocytes were seeded at a density of 23 105

cells/well onto poly-lysine (Sigma-Aldrich)–coated coverslips and cul-
tured overnight. The cells were then incubated with sCD163-Hb or
sCD163-Hb-IgG complex for the indicated time periods. Subsequently,
the cells were fixed using 4% (w/v) paraformaldehyde for 10 min, blocked
with 1% BSA in PBS, and incubated with a mixture of primary Abs
containing goat polyclonal anti-CD163 (1:200) (R&D Systems) and
rabbit anti-Hb (1:500) (Sigma-Aldrich) for 60 min at room temperature.
Following three washes with PBS (pH 7.4), the cells were incubated with
secondary Ab mixture containing NL-557–conjugated donkey anti-goat
(1:200) and Alexa 488–conjugated chicken anti-rabbit (1:400). The cells
were then washed three times with PBS and mounted on a slide along
with the Prolong Gold antifade mounting reagent containing DAPI (In-
vitrogen). Confocal imaging of the cells was performed on an LSM 510
META microscope (Zeiss) under a 3100 oil immersion objective using
the LSM 510 software.

ELISA to test for interaction between sCD163 and Hb

Freshly isolated human primary monocytes at 1 3 108 were washed twice
with PBS (pH 7.4) and stimulated with 1028 M PMA for 2 h at 37˚C.
sCD163 was isolated from the culture supernatants. The concentration of
the affinity-purified sCD163 was determined using a CD163-specific
ELISA. sCD163 (0.1 mg/ml) was immobilized onto microplates (Nunc).
Increasing concentrations of Hb in PBS were added and the reaction was
incubated for 2 h at 37˚C. Bound Hb was detected using 1:1000 mouse
anti-Hb (Santa Cruz Biotechnology) and 1:2000 goat anti-mouse HRP
(Dako Cytomation). The OD at 405 nm was read.

Pulldown of Hb-associated protein complexes

FITC (Thermo Scientific) was conjugated to Hb that had been preactivated
by partial proteolysis with a typical bacterial serine protease, subtilisin A
(1.5 U). For pulldown of the sCD163-Hb complex, 10 mg anti-CD163
(R&D Systems) in TBS (pH 7.5) was conjugated to protein A-Sepharose
(GE Healthcare Life Sciences) overnight at 4˚C. Unbound Ab was re-
moved by washing twice with TBS and the bound anti-CD163 was cross-
linked to Sepharose by incubating for 60 min in cross-linking buffer
containing 50 mM dimethyl pimelimidate (Sigma-Aldrich) and 200 mM
triethanolamine (pH 8.9). The Sepharose beads were blocked using 100
mM ethanolamine and then incubated with sCD163 and activated Hb-FITC
for 60 min at room temperature with two washes between each binding
step. Subsequently, after three washes, the bound proteins were eluted with
2.5% acetic acid into tubes containing neutralization buffer of 1 M Tris-
HCl (pH 12.0).

Upon identification of the interaction between IgG and Hb-sCD163,
we pulled down the sCD163-Hb-IgG complex by incubating protein A-
Sepharose with 5 mg IgG (affinity-purified from human serum) at room
temperature for 60 min. The unbound Ab was removed by washing
twice in TBS. The beads were incubated with 5 mg Hb-FITC and 5 mg
sCD163 for 60 min at room temperature with two washes between each
binding step. Subsequently, after three washes, the complex of sCD163-
Hb-IgG was eluted using 2.5% acetic acid into tubes containing neu-
tralization buffer.

Purification of sCD163 and IgG by affinity chromatography

For purification of sCD163 from cell culture supernatant, 50mg anti-CD163
in binding buffer (TBS, pH 7.5) was conjugated to protein A-Sepharose by
overnight incubation with rotation at 4˚C. Unbound Ab was washed twice
with binding buffer and the bound anti-CD163 was cross-linked to
Sepharose by incubating for 60 min in a cross-linking buffer (50 mM di-
methyl pimelimidate in 200 mM triethanolamine [pH 8.9]). The beads
were washed twice and incubated with the culture supernatant for 60 min
at room temperature. After three washes, bound sCD163 was eluted using
2.5% acetic acid into tubes containing neutralization buffer (1 M Tris-HCl
[pH 12.0]).

For purification of IgG from healthy human serum, protein G-Sepharose
(GE Healthcare Life Sciences) was incubated with 5 ml serum (contains

∼10 mg/ml IgG) (31) diluted to 400 ml in binding buffer (20 mM sodium
phosphate [pH 7.0]) overnight with rotation at 4˚C. The beads were washed
twice with binding buffer, and the bound IgG was eluted using 0.1 M
glycine-HCl [pH 2.7] into tubes containing neutralization buffer (1 M Tris-
HCl [pH 12.0]). All experiments were validated using IgG purified from at
least three different healthy donors.

Surface plasmon resonance

The real-time biointeraction between IgG, Hb, and sCD163 was analyzed by
surface plasmon resonance using a Biacore 2000 instrument (Biacore In-
ternational, Uppsala, Sweden). IgG was immobilized on a CM5 chip by
amine coupling according to the manufacturer’s instructions. Increasing
doses of Hb at 0.2–0.8 mM was injected over the IgG-immobilized chip in
running buffer of 50 mM Tris, 145 mM NaCl with 2 mM calcium [pH 7.4]
at a flow rate of 30 ml/min. Anti-Hb at 5–20 nM was injected to verify the
specificity of interaction between Hb and IgG. sCD163 was buffer-
exchanged to the same running buffer using Vivaspin columns (Sartorius
Stedim Biotech) and 50 ml sCD163 (2.5–10 ng/ml) was injected over the
bound Hb. The dissociation was for 180 s at the same flow rate. Regen-
eration of the chip surface was performed by injection of 0.1 M NaOH
until baseline was restored. The binding affinities were calculated using
BIAevaluation software, version 4.1 applying the drifting baseline model
assuming 1:1 interaction model. Response units were subtracted from
BSA/N-acetylglucosamine–immobilized reference flow cells (negative
control).

Silencing of FcgR in primary monocytes

To validate the role of FcgR in the uptake of IgG-Hb-CD163, we silenced
all three types of FcgR, that is, FcgR1 (CD64), FcgRII (CD32), and
FcgRIII (CD16). The CD64 targeting small interfering RNA (siRNA) pool
was obtained from Dharmacon (Thermo Scientific), and CD32 and CD16
siRNA duplexes were from OriGene Technologies. Primary monocytes
(2.5 3 106) were nucleofected with 2 mg siRNA pool using the Amaxa
Nucleofector (human monocyte Nucleofector kit, Nucleofector program Y-
001). The oligonucleotide sequence of the siRNA pool used to knockdown
the FcgR types in primary monocytes are shown in Table I. Scrambled
siRNA pool was used as the negative control. Cells were harvested 48 h
after nucleofection. The efficiency of knockdown was analyzed by flow
cytometry.

Biotinylation of soluble CD163 and subcellular tracking

Sulfosuccinimidyl-2-(biotinamido)-ethyl-1,39-dithiopropionate (sulfo-NHS-
S-S-biotin; Pierce) was used for biotinylation of sCD163. Briefly, 2 mg/ml
sCD163 was incubated with 20-fold molar excess of sulfo-NHS-SS-biotin
at room temperature for 60 min. Excess biotin reagent was removed using
ultracentrifugal spin columns (10K Amicon Ultra-0.5), and the biotin-
conjugated sCD163 was buffer exchanged to PBS (pH 7.4). The level of
biotin incorporated into sCD163 was quantified to be 18 biotin molecules
per sCD163 molecule. Subsequently, primary monocytes were incubated
with either bitoin-sCD163 alone or as a complex with Hb and IgG for up
to 90 min at room temperature. The membrane and cytosolic fractions
isolated from cells were captured on anti-CD163–coated 96-well micro-
plates for 2 h at room temperature. The biotin-labeled protein bound on
the plate was detected by HRP-streptavidin conjugate (ZyMax Grade;
Invitrogen). ABTS substrate enabled the detection of the HRP conjugate
and OD at 450 nm was read. Three washes with PBST were carried out
between incubations.

Measurement of HO-1 activity

HO-1 activity assay was performed as described earlier (32). Briefly, 50
ml microsomes from cells stimulated with cell-free Hb was added to 250
ml of a reaction mixture containing 0.1 mM NADPH, 1 mM NADP, 1 mM
glucose-6-phosphate, 5 mU glucose-6-phosphate dehydrogenase, 2 mg rat
liver cytosol (as a source of bilirubin reductase; prepared according to
methods in Ref. 33), 100 mM potassium phosphate buffer (pH 7.4), and 1
mg/ml hemin. The reaction was performed at 37˚C in the dark for 1 h. The
samples were left in an ice bath to terminate the reaction, and 1 ml
chloroform was added. The extracted bilirubin was calculated by the dif-
ference in absorbance between 464 and 530 nm (ε = 40 mM21 cm21). The
HO-1 activity was expressed as micromoles of bilirubin per milligram of
protein per hour.

Quantification of cytokines by ELISA

The levels of TNF-a, IL-8, and IL-10 in the culture supernatants were
measured using commercially available kits (OptEIA human TNF-a, IL-8,
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and IL-10 ELISA kits; BD Biosciences) following the manufacturer’s
instructions.

Statistical analysis

Data represent means 6 SEM of three independent experiments conducted
in triplicate each. A p value ,0.05 was considered significant by a paired
two-tailed Student t test.

Results
CD163 directly detoxifies Hb and rescues cells from
Hb-induced apoptosis

Hb was proteolytically activated with a typical bacterial serine
protease, subtilisin A, to mimic an infection-mediated proteolysis
(5), which released POX-active fragments of ,10 kDa (Supple-
mental Fig. 1A, boxed), in a dose-responsive manner to subtilisin
A. Prolonged reaction time led to excessive proteolysis and loss
of the 10-kDa Hb POX fragments. To determine whether CD163
affects the Hb POX activity, we knocked in CD163 into HEK293T
cells and then incubated the CD163+ HEK293T cells or mock-
transfected control cells with activated Hb. The POX activity of the
activated Hb was measured by a chemiluminescence assay. Fig. 1A

(box) shows that within 10 min, the CD163+ HEK293T cells had
reduced the POX activity by ∼80%, whereas the control cells were
unresponsive, suggesting that the CD163 effectively blocked the
Hb from producing O2

.2.
To test whether in situ mCD163 directly inhibits Hb POX,

we added increasing doses of the SU-DHL-1 membrane extract
(enriched in mCD163) to Hb. We found that the Hb POX activity
diminished dose-dependently of the membrane extract, both in
the presence and absence of Hp (Fig. 1B, Supplemental Fig. 1B).
Incubation with 50 mg SU-DHL-1 membrane extract reduced
80% of the POX activity. Addition of Hp (Hp1-1 isoform) (34)
further reduced the POX activity dose-dependently of the mem-
brane extract. Furthermore, when the SU-DHL-1 membrane extract
was preincubated with anti-CD163, the inhibition of the POX ac-
tivity was abrogated dose-dependently of anti-CD163, suggesting
that mCD163 directly and specifically downregulates Hb POX
activity.
Next, we measured the dynamics of ROS production within the

SU-DHL-1 cells when challenged with Hb, with or without pre-
incubation with anti-CD163. Fig. 1C (left panel) shows that ac-
tivated Hb induced ∼75% higher ROS production than did native

FIGURE 1. CD163 directly detoxifies Hb and rescues cells from Hb-induced apoptosis. (A) Top panel, Western blotting to confirm the knock-in of

CD163 into HEK293T cells. Bottom panel, Hb POX activity was measured over time of incubation of subtilisin A–activated Hb with 2 3 105 CD163+

HEK293T cells or empty vector (EV) only transfected controls. Progressive decrease in Hb POX activity is observed with time and dose (box). ++, Higher

dose of CD163+ HEK293T cells (106 cells). (B) Top panel, Western blot of the SU-DHL-1 and HEK293T cell membrane extracts probed for CD163.

Bottom panel, The POX activity of 10 mg activated Hb after incubation for 15 min with increasing doses of the membrane protein extracts of SU-DHL-1 or

HEK293T cells with or without pretreatment with anti-CD163. Haptoglobin, Hp1-1 (Hp), was used as a positive control. Progressive decrease in Hb POX

activity is observed with increasing dose of CD163 (box). (C) Intracellular ROS production in SU-DHL-1 cells incubated with 15 mM native Hb or activated

Hb with or without pretreatment with 0.1 mg/ml anti-CD163. (D) Dynamics of apoptosis in primary monocytes stimulated with 15 mM native Hb or

activated Hb with or without pretreatment with 0.1 mg/ml anti-CD163. The cells were stained with annexin V-FITC and propidium iodide. Data represent

the mean 6 SEM of three independent experiments. *p , 0.05, **p , 0.005.
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Hb. In the presence of functional CD163, the Hb-generated in-
tracellular ROS was halved compared with when CD163 was
preblocked using an Ab (Fig. 1C, right panel). Furthermore,
control cells (HEK293T and HepG2) devoid of CD163 succumbed
to Hb, showing increased intracellular ROS and concomitant cell
death (Supplemental Fig. 1C), supporting the protective role of
CD163 against cytotoxic Hb. Ex vivo real-time quenching activity
of Hb POX by CD163 was also observed in primary monocytes
(Supplemental Videos 1–7, Supplemental Fig. 1D).
To demonstrate the biological significance of CD163-mediated

scavenging and inhibition of Hb redox reactivity, we examined
the status of the cell survival/death when the Hb-generated intra-
cellular ROS were allowed to accumulate. Additionally, we queried
the consequence of blocking CD163 when plasma Hb reaches
concentrations as high as those of severe hemolysis during which
Hp is depleted (35). We measured the dynamics of apoptosis
when primary monocytes were challenged with Hb with or
without blocking of CD163 using Ab. FACS analyses using
annexin V-FITC and propidium iodide consistently showed that
Hb induced ∼50% more apoptosis when CD163 was blocked
(Fig. 1D, Supplemental Fig. 1E). Notably, Hb-induced apoptosis
was suppressed by the activity of fully functional CD163. Taken
together, our findings suggest that CD163 could directly shield
monocytes from Hb POX–induced cytotoxicity during a severe
hemolysis.

Hb induces shedding of CD163 from monocyte membrane

Monocytes exposed to inflammatory stimuli are known to shed
CD163 (20). To examine the effects of the highly inflammatory Hb

POX on mCD163, we stimulated SU-DHL-1 cells with 15 mM
native or proteolytically activated Hb and measured the density
of mCD163 on the cells by FACS. We found that the level of
mCD163 on the monocytes started to decline within 10 min of
stimulation with native Hb, down to ∼60% by 1 h but recovered
completely within 3–4 h (Fig. 2A, 2B). In contrast, activated Hb
induced a more dramatic and steeper drop of mCD163 to ∼30%,
and the cells recovered only up to 50% of the mCD163 after 4 h.
Reciprocal to mCD163, the level of sCD163 in the culture su-
pernatant increased during 60 min (Fig. 2C). Compared to native
Hb, the activated Hb induced twice the amount of shedding by 60
min. The Hb-mediated regulation of the level of mCD163 was
specific because the housekeeping protein PMCA ATPase remained
unaffected (Fig. 2B). To preclude any possible effect of endotoxin
contamination on the Hb-induced shedding, both native and acti-
vated Hb were tested and found to contain #0.05 EU/ml. Consis-
tent with FACS analysis (Fig. 2A) and immunoblotting (Fig. 2B),
immunofluorescence microscopy showed fewer CD163+ cells at 60
min poststimulation (Fig. 2D). Our data suggest that the monocytes
shed mCD163 when they encounter Hb, particularly, the redox
active Hb POX.

sCD163 binds and inhibits Hb POX activity, and the
sCD163-Hb complex is internalized by monocytes

Because sCD163 has been shown to bind Hb-Hp complex in vitro
(23), we queried whether sCD163 could still bind to Hb when Hp
is depleted under conditions of severe hemolysis. We showed that
Hb bound directly and dose-dependently to sCD163 in the ab-
sence of Hp (Fig. 3A), with the activated Hb binding more

FIGURE 2. Hb induces shedding of

CD163 from monocyte membrane. (A)

FACS analysis of mCD163 density on

SU-DHL-1 cells treated with 15 mM

native Hb or activated Hb during 4 h.

Data were normalized against a plasma

membrane–localized housekeeping

protein, PMCA ATPase. BSA (15

mM)-treated cells served as nega-

tive control. *p , 0.05, **p , 0.005

compared with untreated control. (B)

Western blot analysis of mCD163 and

PMCA ATPase (loading control) in

membrane extracts of SU-DHL-1 cells

treated with 15 mM Hb during 4 h. (C)

sCD163 in the culture supernatant was

measured using a human CD163-spe-

cific sandwich ELISA. Data were nor-

malized against untreated cells. *p ,
0.05. (D) Immunofluorescence analysis

of mCD163 on cells treated with 15

mM native Hb or activated Hb for up to

60 min. Scale bars, 10 mm. Images

were acquired using Axio Observer Z1

fluorescence microscope (Zeiss) under

332 air objective and are representative

of three independent experiments.
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strongly than native Hb. Coimmunoprecipitation studies con-
firmed the specific interaction between sCD163 and Hb (Supple-
mental Fig. 2A). Redox-active extracellular Hb was reported to

aggregate and induce cytotoxicity (36), hence necessitating the
rapid inhibition of Hb POX even before its uptake into cells. This
prompted us to investigate whether binding of sCD163 to Hb

FIGURE 3. sCD163 binds and quenches Hb POX, and the sCD163-Hb complex is internalized by monocytes. (A) ELISA shows dose-dependent in-

teraction between sCD163 and native or activated Hb (0–1 mM) when 0.1 mg/ml sCD163 was immobilized onto microplates. (B) POX activity of 10 mg

activated Hb incubated with sCD163 or BSA (0–10 ng/ml) during 60 min. Red box indicates progressive decrease in Hb POX activity induced by 10 ng/ml

sCD163. *p , 0.05, **p , 0.005 compared with untreated control. (C) FACS analysis shows dose-dependent effect of activated Hb on mCD163 over time

in the presence or absence of 10 ng/ml sCD163. *p, 0.05 compared with 0 ng/ml sCD163 controls. (D) Purified sCD163-FITC–activated Hb complex (1.5

mM) (green) was incubated for 15–45 min with primary monocytes predepleted of mCD163 and tracked by confocal microscopy. (E) mCD163 predepleted

monocytes were incubated with 1.5 mM sCD163-FITC–activated Hb complex and 10 mg/ml Alexa 647-transferrin (early and recycling endosomal marker)

for up to 90 min with or without 5 mg/ml CHX pretreatment for 60 min. The localization of sCD163 and Hb was tracked by immunostaining. Images were

obtained using the LSM 510 META confocal microscope under 3100 oil objective. Scale bars in (D) and (E), 5 mm. Images are representative of three

independent experiments using primary monocytes from a single healthy donor.
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could affect the Hb POX activity extracellularly. We found that the
Hb POX activity decreased significantly and dose-dependently of
sCD163, correlating with reaction time (Fig. 3B, box). Within
60 min, up to 70% of the POX activity was suppressed in the
presence of 10 ng/ml sCD163, whereas the control protein, BSA,
had no effect on the POX activity, confirming the specificity of
sCD163 toward Hb.
To query whether sCD163 would influence the level of mCD163

when the monocytes encounter activated cell-free Hb, we sup-
plemented the cells with 0, 5, and 10 ng/ml purified sCD163
followed by stimulation with 0.1 or 1 mM activated Hb. Flow
cytometry results indicated that the presence of sCD163 dose-
dependently reduced the Hb-triggered shedding of mCD163 (Fig.
3C, Supplemental Fig. 2B, 2C). This suggests that sCD163 exerts
a negative feedback on Hb-induced shedding of mCD163, impli-
cating a protective role of sCD163 on mCD163, possibly to main-
tain the level of mCD163 while sequestering Hb.
Pathogens have evolved efficient heme scavenging strategies

to usurp iron from the host hemoproteins (37). Because sCD163
appears to influence the level of mCD163, we hypothesized that
the sCD163-Hb complex might be recruited back to the monocyte
while simultaneously sequestering the heme iron from the mi-
crobial invaders. To test our hypothesis, we studied the fate of
sCD163 by incubating the complex of sCD163-FITC–conjugated
Hb (activated form) with primary monocytes, which had been
depleted of mCD163 (Supplemental Fig. 3A, top panel). The fate
of sCD163-FITC-Hb complex on and/or in the mCD163-deficient
monocytes was tracked by confocal microscopy. We found that the
complex was recruited to the cell membrane within 15 min (Fig.
3D) and internalized by 45 min. However, sCD163 by itself or
sCD163-FITC-Hb complex, in the absence of serum, did not bind
to cells (Supplemental Fig. 3A, bottom panel), suggesting the
potential involvement of serum proteins in trafficking the sCD163-
Hb complex into the monocytes. The internalized sCD163 was
colocalized intracellularly with transferrin, an early recycling
endosome marker (38, 39) (Fig. 3E, left panel). By 90 min, the
sCD163 reappeared on the cell membrane, which is consistent
with the time at which the Hb-treated monocytes started to recover
mCD163 (Fig. 2). To examine whether CD163 from the recruited
complex of sCD163-Hb reappeared as mCD163 or whether the
restored level of mCD163 arose from new protein synthesis, we
applied the protein synthesis inhibitor CHX (40) to the cells prior
to treatment with the sCD163-Hb complex. Fig. 3E (right panel)
shows that CHX treatment did not compromise the recovery of
mCD163, indicating that the mCD163 level was not attributable
to de novo protein synthesis, but rather, it likely originated from
the internalized sCD163.

FcgR facilitates the endocytosis of the sCD163-Hb-IgG
complex into monocytes

To identify the potential receptor involved in the recruitment of
the sCD163-Hb complex into monocytes, we tested the possible
role of FcgR because it mediates uptake of oxidized protein
complexes from the plasma (41). This prompted us to examine
the potential role of IgG, the known ligand of FcgR, which might
participate in the sCD163-Hb interactome. We found that indeed
Hb in the sCD163-Hb complex coimmunoprecipitated with IgG
from the serum of healthy individuals (Supplemental Fig. 3B).
The ELISA results corroborated and established a dose-dependent
interaction between the sCD163-FITC-Hb complex and the
immobilized IgG (Fig. 4A). No binding occurred with FITC-BSA
control, suggesting that Hb but not sCD163 in the Hb-sCD163
complex binds to IgG. Furthermore, in the absence of sCD163,
Hb displayed reduced affinity for IgG. Because sCD163 binds

Hb (Fig. 3), we sought to test whether purified IgG, Hb, and
sCD163 would form a complex in vitro. Real-time biointeraction
using surface plasmon resonance analysis showed strong binding
between IgG and Hb (KD = 1.15 3 1027 M) and between IgG,
Hb, and sCD163 (KD = 2.25 3 1029 M), producing shift and
supershift, respectively, in a dose-dependent manner when the
proteins were injected successively onto the IgG-immobilized
chip (Fig. 4B, 4C). The specificity of the interaction between
Hb and IgG was affirmed by the supershift produced by anti-Hb
(Supplemental Fig. 3C).
To investigate whether the sCD163-Hb-IgG complex was

endocytosed via interaction with FcgR on the primary monocytes,
we performed flow cytometry after incubation with increasing doses
of purified complex of sCD163, FITC-Hb, and IgG with wild-
type cells and FcgR knockdown cells. The efficiency of knock-
down of all three types of FcgRs, that is, FcgRI (CD64), FcgRII
(CD32), and FcgRIII (CD16) by the respective siRNA pool (Table I),
was verified by the loss of protein at 48 h after nucleofection
(Supplemental Fig. 3D). The sCD163-Hb-IgG complex was readily
endocytosed by wild-type primary monocytes in a dose-dependent
manner (Fig. 4D, top panel). However, the cells knocked down of
CD64, CD32, or CD16 showed substantially reduced endocytosis
of the sCD163-Hb-IgG complex (Fig. 4D, bottom panel). CD64
knockdown, in particular, compromised the binding of the sCD163-
Hb-IgG complex to the greatest extent when compared with CD32
or CD16 knockdown. This could probably be due to the higher
affinity of CD64 toward IgG compared with CD32 or CD16 (42).
Triple knockdown of all the FcgR types almost completely abro-
gated the binding of the sCD163-Hb-IgG complex to the cells. The
negative controls, BSA, sCD163, sCD163-IgG, and Hb-IgG did not
bind to the cells, indicating that the sCD163-Hb complex was
specifically endocytosed via interaction with IgG, the ligand that
bridges the sCD163-Hb complex to FcgR on the monocyte.

Endocytosed sCD163 is recycled to mCD163 whereas the
internalized Hb is catabolized

Next, we quantified and tracked the subcellullar localization of
CD163 after endocytosis of the sCD163-Hb-IgG complex into
primary monocytes. The monocytes were predepleted of mCD163
followed by treatment with CHX to block subsequent de novo
synthesis of CD163. Results showed that within 15 min, CD163
was detected in the membrane fraction, indicative of binding of the
sCD163-Hb-IgG complex to the membrane (Fig. 5A). Within 30–
45 min, CD163 was localized in the cytoplasm, corroborating the
endocytosis of the sCD163-Hb-IgG complex, and this was effec-
tively blocked by pretreatment with chlorpromazine, an inhibitor
of endocytosis (43). By 90 min, the internalized CD163 reappeared
on the membrane and this was abolished when the cells were
pretreated with monensin, a known inhibitor of recycling endo-
somes (44). When the cells were simultaneously pretreated with
both chlorpromazine and monensin, CD163 was only observed on
the cell membrane throughout the 90 min duration, indicating that
both the endocytosis of the sCD163-Hb-IgG complex and sub-
sequent recycling of the endocytosed CD163 were compromised.
To validate the recycling of sCD163 into mCD163, we incubated

primary monocytes with either biotinylated sCD163 alone or as
a preformed complex of biotin sCD163-Hb-IgG and tracked the
subcellular localization of sCD163 using streptavidin-HRP. The
purity of the membrane/cytosol fractions was assessed using
membrane (CD64) or cytosolic (tubulin) markers (Fig. 5B, top
panel). By 15 min, sCD163 was detected in the membrane frac-
tion and it was endocytosed within 30–45 min (Fig. 5B, bottom
panel). By 90 min, sCD163 reappeared on the membrane, con-
sistent with Fig. 5A, validating that sCD163 from the endocytosed
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sCD163-Hb-IgG complex was recycled to the membrane. Thus
far, our results corroborate that mCD163 plays a major role in
frontline defense as it binds Hb to reduce the POX activity,
whereas the shedded sCD163 further scavenges plasma Hb, re-
enters the monocyte, and undergoes recycling into mCD163, thus
completing the autocrine cycle of Hb detoxification and CD163
renewal.

Because the endocytosed sCD163 is recycled to the cell
surface, we queried the fate of the internalized Hb. HO-1 is an
enzyme responsible for the catabolism of heme into biliverdin,
carbon monoxide, and iron (45). Results showed that Hb induced
a 70% increase in the HO-1 activity relative to negative control
(Fig. 5C). Importantly, activated Hb induced 30% higher HO-1
activity compared with native Hb. Conceivably, this timely induction

Table I. siRNA pool used to knock-down human FCGRI, FCGRII, and FCGRIII

Gene siRNA Sequence (59–39)

FCGRI (CD64) AAACAAAGUUGCUCUUGCA
GGAAAUGUCCUUAAGCGCA
GGAACACAUCCUCUGAAUA
GAGAAGACUCUGGGUUAUA

FCGRII (CD32) rArGrArArCrArArArGrArGrCrCrCrArArUrUrArCrCrArGAA
rGrArUrGrUrArGrCrArArCrArUrGrArGrArArArCrGrCrUTA
rGrArArUrUrArGrArGrArGrGrUrGrArGrGrArUrCrUrGrGTA

FCGRIII (CD16) rGrCrUrUrCrGrCrUrGrArGrUrUrArArGrUrUrArUrGrArAAC
rCrGrArUrGrArGrUrCrCrUrCrUrUrArArUrGrCrUrArGrGAG
rArGrArArArUrArGrCrArGrGrUrArGrUrCrCrArGrGrArUAG

FIGURE 4. FcgR facilitates the endocytosis of the sCD163-Hb-IgG complex into monocytes. (A) ELISA to show the dose-dependent binding of

sCD163-FITC-Hb complex to IgG immobilized on MaxiSorp plates. FITC-BSA was used as negative control in place of FITC-Hb. All the readings

were subtracted from the values obtained with addition of Hb-FITC alone. *p, 0.05. (B and C) Representative sensograms of three independent surface

plasmon resonance experiments showing the dose-dependent binding profiles between immobilized IgG to (B) Hb (0.2–0.8 mM) and (C) Hb (0.2 mM)

plus sCD163 (2.5–10 ng/ml). Response units (RU) for (B) were dual referenced against BSA-N-acetylglucosamine–immobilized reference flow cell and

BSA (0.2–0.8 mM) whereas (C) was referenced against sCD163 only (without Hb) controls. Dashed lines represent the curve fitting. (D) Wild-type,

CD64-, CD32-, and CD16-silenced primary monocytes were incubated with the sCD163-Hb-IgG complex (0.5–2 mM) for 30 min and endocytosis was

quantitated using the CyAn ADP flow cytometer on the FITC channel. Data are representative of three independent experiments using primary

monocytes from a single healthy donor.
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of HO-1 activity detoxifies the internalized Hb and preempts the
avalanche of superoxide radicals resulting from the endocytosed
redox-active Hb.

Hb induces cell–cell communication between monocytes
and endothelial cells via sCD163 and IgG

Next, we queried the cellular physiological significance of the
monocyte-derived sCD163. Because monocytes are in contact

with endothelial cells in vivo, it is conceivable that sCD163 acts in
a paracrine fashion to communicate /alert the proximal cells of the

imminent presence of cytotoxic Hb. To test this, we used primary

HMVEC, which are known to endogenously express FcgRII
(CD32) (26) but lack CD163 (46). We then measured the in-

duction of HO-1 in HMVEC incubated for 6 h with increasing
doses of the sCD163-Hb-IgG complex. Results showed that

when compared with just Hb alone or other negative controls,

the sCD163-Hb-IgG complex upregulated HO-1 levels by 3-
fold (Fig. 6A). The induction of HO-1 was dose-dependent of

the sCD163-Hb-IgG complex (Fig. 6A, box). This indicates that

sCD163 and IgG mediate the Hb-induced transactivation of the
endothelial cells. After internalization into HMVEC, the Hb is

catabolized by HO-1.
To assess the potential Hb-induced crosstalk between the

monocytes and endothelial cells, we cocultured the two cell types

in the presence of Hb and measured the cytokine production by

the cells. To confirm the significance of CD163 in this process,
we employed CD163+ primary monocytes or CD1632 THP-1

monocytes (control) (47). Fig. 6B (box) shows a synergistic in-

crease in the production of TNF-a, IL-8, and IL-10 when the
HMVEC were cocultured with CD163+ primary monocytes

compared with THP-1 or when stimulated in isolation. This

synergy was lost when the monocytes were preincubated with
anti-CD163, suggesting that the monocyte-derived sCD163 is in-

dispensable for the activation of endothelial cells, which lacks
endogenous CD163. Furthermore, stimulation of HMVEC with

the sCD163-Hb-IgG complex elicited higher amounts of TNF-a

and IL-8 compared with individual protein controls (Supplemental
Fig. 4A), corroborating our coculture results (Fig. 6B). Thus, the

monocyte-derived sCD163 mediates the paracrine activation of

the proximal endothelial cells to systemically alert the human body
on the imminent toxicity of plasma Hb.
Next, we tracked CD163 and Hb in the HMVEC, which had been

cocultured with primary monocytes or THP-1 monocytes for 45

min. Fig. 6C shows that both CD163 and Hb are colocalized in
HMVEC only when cocultured with CD163+ primary monocytes

but not with CD1632 THP-1 cells. Consistently, the colocalization
of Hb and CD163 within the HMVEC was observed only when

the two proteins were presented as a complex of sCD163-Hb-IgG

(Supplemental Fig. 4B). Additionally, in the absence of IgG, no
endocytosis of Hb was detected in HMVEC even when cocultured

with CD163+ monocytes, suggesting that IgG is required to bridge

the sCD163-Hb complex to FcgR on the HMVEC. Also, when
HMVEC and CD163+ monocytes were cocultured in the absence

of Hb, no CD163 entered the HMVEC. By live cell imaging, we
have demonstrated the sCD163-mediated interaction between mono-

cytes and the proximal endothelial cells in the presence of Hb and

IgG (Supplemental Videos 8–11).
Altogether, we have shown that sCD163 is recycled to achieve

homeostasis of mCD163 on the monocytes and, simultaneously, the

sCD163-Hb complex induces the monocytes to collaborate with the

proximal endothelial cells via IgG-FcgR. Whereas the dynamic
importation of plasma Hb-sCD163 shuttles the cytotoxic cargo of

Hb into the monocytes in an autocrine cycle, it also transactivates

the endothelial cells in a paracrine manner to secrete cytokines to
raise a systemic alert on the imminent danger from the redox-active

Hb (Fig. 7). The internalized Hb is catabolized by HO-1 in both
monocytes and endothelial cells.

FIGURE 5. The endocytosed sCD163 is recycled into mCD163 whereas

the internalized Hb is catabolized. (A) Primary monocytes predepleted of

mCD163 and treated with 5 mg/ml CHX were incubated with 1.5 mM

sCD163-Hb-IgG complex for up to 90 min with or without pretreatment with

70 mM chlorpromazine (inhibitor of endocytosis) and 20 mM monensin (in-

hibitor of early endosome recycling) for 60 min. CD163 was quantified in the

membrane and cytosol fractions using sandwich ELISA. (B) Top panel, Purity

of membrane/cytosol fractions was tested using membrane (CD64) or cyto-

solic (tubulin) markers. Bottom panel, mCD163-depleted primary monocytes

were incubated with either biotinylated sCD163 alone or biotin sCD163-Hb-

IgG complex for up to 90 min. Biotinylated sCD163 was quantified in

membrane or cytosolic fractions using streptavidin-HRP by ELISA. (C) Pri-

mary monocytes were stimulated with increasing doses of Hb (0.1, 1 mM) for

up to 180 min, and HO-1 activity (mmoles bilirubin/mg protein/h) was mea-

sured by spectrometric quantitation of bilirubin in the presence of excess

substrate. Data are representative of three independent experiments using

primary monocytes from a single healthy donor. *p , 0.05, **p , 0.005.
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FIGURE 6. Hb induces cell–cell communication between monocytes and endothelial cells via sCD163 and IgG. (A) HMVEC were stimulated with in-

creasing doses of Hb alone or preformed sCD163-Hb-IgG complex for 6 h, and HO-1 protein was quantified by FACS. Hemin was used as positive control. (B)

Cytokine production when HMVEC were cocultured for 24 h with CD163+ primary monocytes or CD1632 THP-1 cells in the presence of 0.5 mg/ml Hb. (C)

Immunostaining to track localization of sCD163 and Hb in HMVEC cocultured with either CD163+ primary monocytes or CD1632 THP-1 cells in the presence

of Hb for 45 min. All images were obtained using the LSM 510 META confocal microscope under 3100 oil objective. Scale bars, 10 mm. Data represent the

means 6 SEM of three independent experiments with primary monocytes from single donor. **p , 0.005.
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Discussion
Redox-active extracellular Hb results in oxidative stress and cy-
totoxicity (36). Hence, it is crucial for our blood cells to counteract
the pro-oxidative Hb at the immediate outset even before its up-
take into the cells. Although, it is known that mCD163 directly
interacts with Hb independent of Hp (18), the functional impact
of this interaction on Hb redox reactivity remains enigmatic. We
have discovered and mapped in detail a novel two-pass detoxifi-
cation mechanism of Hb by CD163, independent of Hp. First, at
the outset of the encounter with plasma Hb, mCD163 directly
inhibits the Hb POX activity in situ and rescues monocytes from
Hb-triggerred apoptosis (Fig. 1, Supplemental Fig. 1). The
mCD163 is also shedded into the plasma (Fig. 2). The resulting
sCD163 scavenges residual free Hb and upon endocytosis of the
sCD163-Hb complex via IgG-FcgR, the sCD163 is recycled to
restore homeostasis of mCD163 in an autocrine cycle, whereas the
internalized Hb is catabolized by HO-1. Second, this novel mech-
anism of clearance of Hb by CD163 transactivates the proximal
endothelial cells in a paracrine fashion, causing these cells to
upregulate HO-1 and inducing secretion of cytokines, thus mounting
a systemic immune defense against Hb.
Besides suppressing Hb POX activity at the monocyte surface,

CD163, which is cotranslocated into the cells, also downregulates the
generation of intracellular ROS from the endocytosed Hb (Fig. 1C,
Supplemental Videos 1–7). In the absence of such a mechanism as
illustrated in this study with CD1632 cells, the hydrophobic nature
of the Hb heme could readily permeate the cells, inducing free
radicals, which would lead to lipid peroxidation and cell death (48,
49). Having established the direct inhibition of the redox activity of
Hb by mCD163 (independent of Hp), we then queried the patho-
physiological significance of sCD163 under severe hemolytic con-
dition. We found that sCD163 binds excess plasma Hb dose-
dependently and rapidly downregulates the Hb POX activity (Fig.
3A, 3B). Thus, it is conceivable that during a severe hemolysis, such
a “capture and quench” action by sCD163 would constitute an ef-

fective host defense strategy to sequester the heme iron and pre-empt
its redox activity. Of particular importance is that the resulting
sCD163-Hb complex, which is still redox-active, must be rapidly
and efficiently removed from circulation so as to subvert the Hb
iron–mediated cytotoxicity. To this end, we identified IgG as a novel
interaction partner participating with the sCD163-Hb complex to
enable endocytosis of the sCD163-Hb-IgG complex via FcgR into
the monocytes (Fig. 4). We found that interaction of the sCD163-Hb
complex with IgG is a critical prerequisite for subsequent endocy-
tosis of the complex into monocytes via FcgR (Supplemental Fig. 3).
Following endocytosis of the sCD163-Hb-IgG complex, the

internalized sCD163 is recycled via early endosomes to the cell
membrane to restore mCD163 (Fig. 5). This is also supported by
reports documenting that many endocytic receptors are recycled
when internalized into the cell (50) and that early endosomes
serve as the focal points of the endocytic pathway, enabling them
to undergo fast recycling to the plasma membrane (51). During
a severe hemolysis, such a dynamic and efficient recycling of
sCD163 would presumably potentiate the recovery of mCD163,
which acts to fortify the monocytes against the cytotoxic ava-
lanche of free radicals generated by the cell-free Hb POX. Fur-
thermore, using coculture experiments, we established that sCD163,
in collaboration with IgG, confers Hb-scavenging ability to the
proximal endothelial cells and also transactivates them to re-
spond against the Hb (Fig. 6, Supplemental Fig. 4). Such a crosstalk
between monocytes and endothelial cells (mediated by sCD163-Hb-
IgG complex via FcgR) mounts a systemic defense against toxic
Hb. Overall, CD163 is dynamically deployed in a two-pass detox-
ification tactic to engage with and suppress the pro-oxidant activity
of plasma Hb, whereas its residential level on the monocyte
membrane is restored to homeostasis in an efficient autocrine cycle.
Simultaneously, it also transactivates adjacent endothelial cells in
a paracrine fashion to metabolize the endocytosed Hb and secrete
cytokines to systemically alert the imminent presence of a danger
molecule, Hb (Fig. 7).

FIGURE 7. A hypothetical model of Hp-independent intravascular detoxification and clearance of cell-free Hb by CD163. Hemolysis ruptures RBCs and

releases cytotoxic Hb into the plasma. Upon recruiting Hb, the mCD163 directly suppresses the POX activity of Hb in situ on the monocyte membrane. Hb

induces shedding of mCD163 into the plasma, and the resulting sCD163 further captures and quenches the residual redox-reactive Hb. Subsequently, IgG

interacts with the sCD163-Hb complex. The sCD163-Hb-IgG complex then 1) elicits an autocrine loop of endocytosis via FcgR on the monocyte and

subsequent recycling of the internalized sCD163 via endosomes to restore mCD163 homeostasis, whereas the internalized Hb is catabolized by HO-1; and

2) induces the paracrine transactivation of the neighboring endothelial cells (represented by HMVEC tested in this study) lining the blood vessel causing

them to upregulate HO-1 and secrete cytokines to mount a systemic defense against Hb.
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High concentrations of extracellular hemoglobin (Hb) accumulate 

intravascularly and in tissues under clinical settings such as injury, 

inflammation, trauma or infection. Cell-free Hb is highly redox-active and 

generates cytotoxic reactive oxygen species, leading to the synergistic 

induction of inflammation along with other damage- and pathogen- associated 

molecular patterns (DAMPs and PAMPs, respectively) during hemolysis and 

sepsis. The large amounts of plasma hemoglobin quickly saturate haptoglobin 

(Hp), the primary anti-oxidant defense in the blood. Hence, survival during 

severe hemolysis depends on rapid clearance of the pro-inflammatory Hb from 

circulation. Here, we identified a novel mechanism by which the monocyte 

scavenger receptor, CD163 and plasma IgG collaboratively induce monocyte-

endothelial crosstalk to detoxify and clear Hb, independent of Hp. Using time 

lapse confocal microscopy and biochemical interaction assays, we showed that 

both membrane bound receptor and soluble forms of CD163, shedded into the 

plasma upon stimulation with Hb dynamically collaborate with each other to 

‘capture and quench’ the redox-active Hb in-situ. Interestingly, we identified 

plasma IgG to be a part of the Hb-CD163 interactome, playing a crucial role in 

trafficking the complex into the monocytes for detoxification and clearance. 

Using ex-vivo co-culture experiments and real-time imaging, we found that 

monocyte-derived soluble CD163 transactivated the proximal endothelial cells 

to secrete cytokines and mount a systemic defense against the inflammatory 

Hb.  

 


