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Summary

We are interested in providing privacy protection for applications that in-

volve sensitive personal data. In particular, we focus on controlling infor-

mation leakages in two scenarios: data publishing and biometric authenti-

cation. In both scenarios, we seek privacy protection techniques that are

based on information theoretic analysis, which provide unconditional guar-

antee on the amount of information leakage. The amount of leakage can be

quantified by the increment in the probability that an adversary correctly

determines the data.

We first look at scenarios where we want to publish datasets that

contain useful but sensitive statistical information for public usage. To

publish such information while preserving the privacy of individual contrib-

utors is technically challenging. The notion of differential privacy provides

a privacy assurance regardless of the background information held by the

adversaries. Many existing algorithms publish aggregated information of

the dataset, which requires the publisher to have a-prior knowledge on the

usage of the data. We propose a method that directly publish (a noisy

version of) the whole dataset, to cater for the scenarios where the data

can be used for different purposes. We show that the proposed method
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can achieve high accuracy w.r.t. some common aggregate algorithms un-

der their corresponding measurements, for example range query and order

statistics.

To further improve the accuracy, several relaxations have been pro-

posed to relax the definition on how the privacy assurance should be mea-

sured. We propose an alternative direction of relaxation, where we attempt

to stay within the original measurement framework, but with a narrowed

definition of datasets-neighbourhood. We consider two types of datasets:

spatial datasets where the restriction is based on spatial distance among

the contributors, and dynamically changing datasets, where the restriction

is based on the duration an entity has contributed to the dataset. We pro-

posed a few constructions that exploit the relaxed notion, and show that

the utility can be significantly improved.

Different from data publishing, the challenge of privacy protection

in biometric authentication scenario arises from the fuzziness of the bio-

metric secrets, in the sense that there will be inevitable noises present in

biometric samples. To handle such noises, a well-known framework secure

sketch (DRS04) was proposed by Dodis et al. Secure sketch can restore

the enrolled biometric sample, from a “close” sample and some additional

helper information computed from the enrolled sample. The framework

also provides tools to quantify the information leakage of the biometric se-

cret from the helper information. However, the original notion of secure

sketch may not be directly applicable in practise. Our goal is to extend

and improve the constructions under various scenarios motivated by real-

vi



life applications.

We consider an asymmetric setting, whereby multiple biometric sam-

ples are acquired during enrollment phase, but only a single sample is

required during verification. From the multiple samples, auxiliary informa-

tion such as variances or weights of features can be extracted to improve

accuracy. However, the secure sketch framework assumes a symmetric set-

ting and thus does not provide protection to the identity dependent auxil-

iary information. We show that, a straightforward extension of the existing

framework will lead to privacy leakage. Instead, we give two schemes that

“mix” the auxiliary information with the secure sketch, and show that by

doing so, the schemes offer better privacy protection.

We also consider a multi-factor authentication setting, whereby where

multiple secrets with different roles, importance and limitations are used

together. We propose a mixing approach of combining the multiple secrets

instead of simply handling the secrets independently. We show that, by

appropriate mixing, entropy loss on more important secrets (e.g., biomet-

rics) can be “diverted” to less important ones (e.g., password or PIN), thus

providing more protection to the former.
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Chapter 1

Introduction

This work focuses on controlling privacy leakage in applications that in-

volve sensitive personal information. In particular, we study two types of

applications, namely data publishing and robust authentication.

We first look at publishing applications which aim to release datasets

that contain useful statistical information. To publish such information

while preserving the privacy of individual contributors is technically chal-

lenging. Earlier approaches such as k-anonymity (Swe02), `-diversity (MKGV07),

achieve indistinguishability of individuals by generalizing similar entities in

the dataset. However, there are concerns of attacks that identify individ-

uals by inferring useful information from the published data together with

background knowledge that the publishers might be unaware of. In con-

trast, the notion of differential privacy (Dwo06) provides a strong form of

assurance that takes into accounts of such inference attacks.

Most studies on differential privacy focus on publishing statistical

values, for instance, k-means (BDMN05), private coreset (FFKN09), and
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median of the database (NRS07). Publishing specific statistics or data-

mining results is meaningful if the publisher knows what the public specif-

ically wants. However, there are situations where the publishers want to

give the public greater flexibility in analyzing and exploring the data, for

example, using different visualization techniques. In such scenarios, it is

desired to “publish data, not the data mining result” (FWCY10).

We propose a method that, instead of publishing the aggregate in-

formation, directly publishes the noisy data. The main observation of our

approach is that sorting, as a function that takes in a set of real numbers

from the unit interval and outputs the sorted sequence, interestingly has

sensitivity one (Theorem 1), which is independent of the number of points

to be output. Hence, the mechanism that first sorts, and then adds inde-

pendent Laplace noise can have high accuracy while preserving differential

privacy. From the published data, one can use isotonic regression to signifi-

cantly reduce the noise. To further reduce noise, before adding the Laplace

noise, consecutive elements in the sorted data can be grouped and each

point is replaced by the average of its group.

There are scenarios where publishing specific statistics are required.

In some of the applications, the assurance provided by differential privacy

comes with a cost of high noise, which leads to low utility of the published

data. To address this limitation, several relaxations have been proposed.

Many relaxations capture alternative notions of “indistinguishability”, in

particular, on how the probabilities on the two neighbouring datasets are

compared. For example, (ε, δ)-differential privacy (DKM+06) relaxes the

2



bound with an additive factor δ, and (ε, τ)-probabilistic differential priva-

cy (MKA+08) allows the bound to be violated with a probability τ .

We propose an alternative direction of relaxing the privacy require-

ment, which attempt to stay within the original framework while adopt-

ing a narrowed definition of neighbourhood, so that known results and

properties still applied. The proposed relaxation takes into account of the

underlying distance of the entities, and “redistributes” the indistinguisha-

bility assurance with emphasis on individuals that are close to each other.

Such redistribution is similar to the original framework, which stresses on

datasets that are closer-by under set-difference.

Although the idea is simple, for some applications, the challenge lies

on how to exploit the relaxation to achieve higher utility. We consider two

types of datasets, spatial datasets and dynamic datasets, and show that

the noise level can be further reduced by constructions that exploit the

δ-neighbourhood, and the utility can be significantly improved.

In the second part of the thesis, we look into protections on bio-

metric data. Biometric data are potentially useful in building secure and

easy-to-use security systems. A biometric authentication system enrolls

users by scanning their biometric data (e.g. fingerprints). To authenticate

a user, the system compares his newly scanned biometric data with the

enrolled data. Since the biometric data are tightly bound to identities,

they cannot be easily forgotten or lost. However, these features can also

make user credentials based on biometric measures hard to revoke, since

once the biometric data of a user is compromised, it would be very difficult

3



to replace it, if possible at all. As such, protecting the enrolled biometric

data is extremely important to guarantee the privacy of the users, and it

is important that the biometric data is not stored in the system.

A key challenge in protecting biometric data as user credentials is

that they are fuzzy, in the sense that it is not possible to obtain exactly the

same data in two measurements. This renders traditional cryptographic

techniques used to protect passwords and keys inapplicable: these tech-

niques give completely different outputs even when there is only a small

difference in the inputs. Thus, the problem of interest here is how can

we allow the authentication process to be carried out without storing the

enrolled biometric data in the system.

Secure sketches (DRS04) are proposed, in conjunction with other

cryptographic techniques, to extend classical cryptographic techniques to

fuzzy secrets, including biometric data. The key idea is that, given a secret

d, we can compute some auxiliary data S, which is called a sketch. The

sketch S will be able to correct errors from d′, a noisy version of d, and

recover the original data d that was enrolled. From there, typical crypto-

graphic schemes such as one-way hash functions can then be applied on

d.

However, the secure sketch construction is designed for symmetric

setting: only one sample is acquired during both enrollment and verifica-

tion. To improve the performance, many applications (JRP04; UPPJ04;

KGK+07) adopt an asymmetric setting: during enrollment phase, multiple

samples are obtained, whereby an average sample and auxiliary informa-

4



tion such as variances or weights of features are derived; whereas during

verification, only one sample is acquired. The auxiliary information is

identity-dependent but it is not protected in the symmetric secure sketch

scheme. Li et al. (LGC08) observed that by using the auxiliary information

in the asymmetric setting, the “key strength” could be enhanced, but there

could be higher leakage on privacy.

We propose and formulate asymmetric secure sketch, whereby we

give constructions that can protect such auxiliary information by “mixing”

it into the sketch. We extend the notation of entropy loss (DRS04) and

give a formulation on information loss for secure sketch under asymmetric

setting. Our analysis shows that while our schemes maintain similar bounds

of information loss compared to straightforward extensions, but they offer

better privacy protection by limiting the leakage on auxiliary information.

In addition, biometric data are often employed together with other

types of secrets as in a multi-factor setting, or in a multimodal setting

where there are multiple sources of biometric data, partly due to the fact

that human biometrics is usually of limited entropy. A straightforward

method of combining the secrets independently treats each secret equally,

thus may not be able to address the different roles and importance of the

secrets.

We propose and analyze a cascaded mixing approach, which uses the

less important secret to protect the sketch of the more important secret.

We show that, under certain conditions, cascaded mixing can “divert” the

information leakage of the latter towards the less important secrets. We

5



also provide counter-examples to demonstrate that, when the conditions

are not met, there are scenarios where mixing function is unable to further

protect the more important secret and in some cases it will leak more

information overall. We give an intuitive explanation on the examples and

based on our analysis, we provide guidelines in constructing sketches for

multiple secrets.

Thesis Organization and Contributions

1. Chapter 1 is the introductory chapter.

2. Chapter 3 gives a brief survey on the related works.

3. Chapter 2 provides the background materials.

4. In Chapter 4, we propose a low-dimensional pointset publishing method

that, instead of answering one particular task, can be exploited to an-

swer different queries. Our experiments show that it can achieve high

accuracy w.r.t. to some other measurements, for example range query

and order statistics.

5. In Chapter 5, we propose further improve the accuracy by adopting a

narrowed definition of neighbourhood which takes into account of the

underlying distance of the entities. We consider two types of datasets,

spatial datasets and dynamic datasets, and show that the noise level

can be further reduced by constructions that exploit the narrowed

neighbourhood. We give a few scenarios where δ-neighbourhood

would be more appropriate, and we believe the notion provides a

6



good trade-off for better utility.

6. In Chapter 6, we consider biometric authentication with asymmet-

ric setting, where in the enrollment phase, multiple biometric samples

are obtained, whereas in verification, only one sample is acquired. We

pointed out that, sketches that reveal auxiliary information could leak

important information leading to sketch distinguishability. We pro-

pose two schemes to reduce the linkages among sketches, which offer

better privacy protection by limiting the linkages among sketches.

7. In Chapter 7 we consider biometric authentication under multiple

secrets setting, where the secrets differ in importance. We propose

“mixing” the secrets and we show that by appropriate mixing, entropy

loss on more important secrets (e.g., biometrics) can be “diverted”

to less important ones (e.g., password or PIN), thus providing more

protection to the former.

7



Chapter 2

Background

This chapter gives the background materials. We first look at the data

publishing, where we want to publish information on a collection of sen-

sitive data. We then describe biometric authentication, where we want

to authenticate a user from his sensitive biometric data. We give a brief

remark on the relations of both scenarios.

2.1 Data Publishing and Differential Priva-

cy

We consider a data curator, who has a dataset D = {d1, . . . , dn} of private

information collected from a group of data owners, wants to publish some

information of D using a mechanism. Let us denote the mechanism as

P and the published data as S = P(D). An analyst, from the published

data and some background knowledge, attempts to infer some information

pertaining to the “privacy” of a data owner.

8



2.1.1 Differential Privacy

As described, we consider mechanisms that provide differential privacy to

the data owners. We treat a dataset D as a multi-set (i.e. a set with

possibly repeating elements) of elements in D. A probabilistic publishing

mechanism P is differentially private if the published data is sufficiently

noisy, so that it is difficult to distinguish the membership of an entity in a

group. More specifically, a mechanism P on D is ε-differentially private if

the following bound holds for any R ⊆ range(P):

Pr(P(D1) ∈ R) ≤ exp(ε) · Pr(P(D2) ∈ R), (2.1)

for any two neighbouring datasets D1 and D2, i.e. datasets that differ on

at most one entry.

There are two interpretations of the term “differ on at most one en-

try”. One interpretation is that D1 = D2−{x}, or D2 = D1−{x}, for some

x in the data space D. This is known as unbounded neighbourhood (Dwo06).

Another interpretation of this is that D2 can be obtained from D1 by re-

placing one element, i.e. D1 = {x}∪D2\{y} for some x, y ∈ D. Differential

privacy with this definition of neighborhood is known as the bounded dif-

ferential privacy (DMNS06; KM11). We focus on the second definition

but we show that some of the result can be easily extend under the first

definition.

9



2.1.2 Sensitivity and Laplace Mechanism

It is shown (DMNS06) that given a function f : D → Rk for some k ≥ 1,

the probabilistic mechanism A that outputs:

f(D) + (Lap(4f/ε))
k,

achieves ε-differential privacy, where (Lap(4f/ε))
k is a vector of k inde-

pendently and randomly chosen values from the Laplace distribution, and

4f is the sensitivity of the function f . The sensitivity of f is defined as

the least upper bound on the `1 difference of all possible neighbours:

4f := sup‖f(D1)− f(D2)‖1,

where the supremum is taken over pairs of neighbours D1 and D2. Here,

Lap(b) denotes the zero mean distribution with variance 2b2, and a proba-

bility density function:

`(x) =
1

2b
e−|x|/b.

2.2 Biometric Authentication and Secure S-

ketch

Similar to the data publishing process, in biometric authentication appli-

cations, we consider a user who wants to get authenticated from a system.

In enrollment phase, the user presents his biometric data d to the system,

and in the verification phase, the user can get authenticated if he can pro-

vide d′, a biometric data that is “close” to d. To facilitate the closeness

comparison between d and d′, the system need to store some information
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S on d. The privacy requirement is that such stored helper information

cannot leak much information about d.

2.2.1 Min-Entropy and Entropy Loss

Before we introduce secure sketch, let us first give the formulation for in-

formation leakage. One measurement of the information is the entropy of

the secret d. That is, from the adversary point of view, before obtaining S,

the value of d might follow some distribution. With S, the analyst might

improve his knowledge over d, and thus obtain a new distribution for d.

From the distribution, we can compute the uncertainty as the entropy of

d. Thus, the notion of entropy loss, i.e. the difference between the entropy

after obtaining S and the entropy before, can be used to measure the pro-

tection. There are a few types of entropy, each relates to a different model

of attacker. The most commonly used Shannon entropy (Sha01) provides

an absolute limit of the average length on the best possible lossless en-

coding (or compression) of a sequence of i.i.d. random variables. That is,

it captures the expected number of predicate queries an analyst needs, in

order to get the value of di.

Another popular notion of entropy is the min-entropy, defined as the

logarithm of the probability of the most likely value of di. The min-entropy

captures the probability of the best guess of the analyst of the value of di,

which is guessing the value with the highest probability. Thus it describes

the maximum likelihood of correctly guessing the secret without additional

information, thus it gives a bound on the security of the system.
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Formally, the min-entropy H∞(A) of a discrete random variable A

is H∞(A) = − log(maxa Pr[A = a]). For two discrete random variables A

and B, the average min-entropy of A given B is defined as H̃∞(A|B) =

− log(Eb←B[2−H∞(A|B=b)])

The entropy loss of A given B is defined as the difference between

the min-entropy of A and the average min-entropy of A given B. In other

words, the entropy loss L(A,B) = H∞(A)− H̃∞(A|B). Note that for any

n-bit string B, it holds that H̃∞(A|B) ≥ H∞(A)−n, which means we can

bound L(A,B) from above by n regardless of the distributions of A and B.

2.2.2 Secure Sketch

Our constructions are based on the secure sketch scheme proposed by Dodis

et al. (DRS04). A secure sketch scheme should consist of two algorithms:

An encoder Enc : M → {0, 1}∗, which computes a sketch S on a given

fuzzy secret d ∈M, and a decoder Dec :M×{0, 1}∗ →M, which outputs

a point in M given S and d′, where M is the space of the biometric. The

correctness of secure sketch scheme will require Dec(S, d′) = d if the dis-

tance of d and d′ is less than some threshold t, with respect to an underlying

distance function.

Let R be the randomness invested by the encoder Enc during the

computation of the sketch S, it is shown (DRS04) that when R is recover-

able from d and S and LS is the size of the sketch, then we have

H∞(d)− H̃∞(d|S) ≤ LS −H∞(R) (2.2)

In other words, the amount of information leaked from the sketch is bound-

12



ed from above, by the size of the sketch subtracted by the entropy of re-

coverable randomness invested during sketch construction, H∞(R), which

is just the length of R if it is uniform. Furthermore, this upper bound is

independent of d, hence this is a worst case bound and it holds for any

distribution of d.

The inequality (2.2) is useful in deriving a bound on the entropy loss,

since typically the size of S and H∞(R) can be easily obtained regardless

of the distribution of d. This approach is useful in many scenarios where it

is difficult to model the distribution of d, for example, when d represents

the features of a fingerprint.

2.3 Remarks

Interestingly, the frameworks of both scenarios are similar, in the sense that

we want to reveal some information of a sensitive data from users for the

utility of applications, but we also want to control the leakage of sensitive

information. In both scenarios, we aim to provide unconditional privacy

guarantee by information theoretic techniques. Such guarantees are as-

sured by bounding the increment in the probability of the adversary’s best

guess. In data publishing, we try to maximize the utility of the published

data, while meeting a privacy requirement; whereas in the biometric au-

thentication, we need to support the operations while try to minimize the

information leakage.
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Chapter 3

Related Works

3.1 Data Publishing

We first consider the data publishing setting: each data owner provide

his private information di to the data curator. The data curator wants to

publish information on D = {d1 . . . dn}, without compromising the privacy

of individual data owner. There are extensive works on privacy-preserving

data publishing. We refer the readers to the surveys by Fung et al. (FW-

CY10) and Rathgeb et al. (RU11) for a comprehensive overview on various

notions, for example, k-anonymity (Swe02), `-diversity (MKGV07), and

differential privacy (Dwo06). Let us briefly describe some of the most rel-

evant works here.

3.1.1 k-Anonymity

When the data di contains list of attributes, one privacy concern is that

individuals might be recognized from some of the attributes, and thus
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information about the data owner might be leaked. The notion of k-

anonymity (Swe02) addresses such linkage by forcing indistinguishability

of every individual, by the attributes that might be in D̃, from at least

k − 1 other individuals. The strength of the protection is thus measured

by the parameter k. However, in addition to the parameter k, Machanava-

jjhala et al. (MKGV07) show that the analyst might still learn information

about the data owner, if the k individuals also sharing the same sensitive

information. Therefore, they pose another requirement, that the sensitive

information of the individuals sharing the same linkable information has

to be `-diverse: every group of individuals sharing the same linkable at-

tributes, should have at least ` different unlinkable attributes. Addressing

the same problem, Li et al. (LLV07) proposed a notion of t-closeness, which

requires that the distribution of the linkable attributes in every group to

be close to the distribution of the linkable attributes in the overall dataset

with a threshold t.

The notion of k-anonymity and its variants are widely involved in the

context of protecting location privacy(BWJ05; GL04), preserving privacy

in communication protocol(XY04; YF04) data mining techniques(Agg05;

FWY05) and many others.

3.1.2 Differential Privacy

There is another line of privacy protection is known as differential priva-

cy. Its goal is to ensure that that distributions of any output released

about the dataset are close, whether or not any particular individual di
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is included. As outlined in the surveys (FWCY10), there are many suc-

cessful constructions on a wide range of data analysis tasks including k-

means (BDMN05), private coreset (FFKN09), order statistics (NRS07)

and histograms (LHR+10; BCD+07; XWG10; HRMS10).

Among which, the histogram of a dataset contains rich information

that can be harvested by subsequent analysis of multiple purposes. Ex-

ploiting the parallel composition property of differential privacy, we can

treat non-overlapping bins independently and thus achieving high accu-

racy. There are a number of research efforts (LHR+10; BCD+07) inves-

tigating the dependencies of frequencies counts of fixed overlapping bins,

where parallel composition cannot be directly applied. Such overlapping

bins are interesting as different domain partition could lead to different ac-

curacy and utility. For instance, Xiao et al. (XWG10) proposes publishing

wavelet coefficients of an equi-width histogram, which can be viewed as

publishing a series of equi-width histograms with different bin-widths, and

is able to provide higher accuracy in answering range queries compare to a

single equi-width histogram.

Hay et al. (HRMS10) proposed a method that employs isotonic re-

gression to boost accuracy, but in a way different from our mechanism.

They consider publishing unattributed histogram, which is the (unordered)

multi-set of the frequencies of a histogram. As the frequencies are u-

nattributed (i.e. order of appearance is irrelevant), they proposed pub-

lishing the sorted frequencies and later employing isotonic regression to

improve accuracy.
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Machanavajjhala et al. (MKA+08) proposed a 2D dataset publishing

method that can handle the sparse data in 2D equi-width histogram. To

mitigate the sparse data, their method shrinks the sparse blocks by exam-

ining publicly available data such as a previously release of similar data.

They demonstrate this idea on the commuting patterns of the population

of the United States, which is a real-life sparse 2D map in large domain.

3.2 Biometric Authentication

We now briefly describe the existing works on secure sketch, a tool intro-

duced to handle the fuzziness in biometric secrets in authentication process.

3.2.1 Secure Sketches

The fuzzy commitment (JW99) and the fuzzy vault (JS06) schemes are

among the first error-tolerant cryptographic techniques. The fuzzy com-

mitment employs the error correcting codes to handle errors in Hamming

distance: it randomly picks a codeword in the set of codes and subtract

it from a biometric sample that can be represented as bit string of same

length. During verification, the newly obtained biometric sample is then

added back to it and thus the error can be corrected by mapping to the

nearest codeword. The fuzzy vault scheme handles fuzzy data represented

as set of elements by encoding the elements as points on a randomly gener-

ated polynomial of lower degree with random points not on the polynomial.

During verification, given a set of small enough set difference, we can locate

enough points on the polynomial and thus reconstruct it.
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The security of the schemes rely on the number of codewords or

possible polynomials, and they do not give a guarantee on how much infor-

mation is revealed by the sketches, especially when the distribution of the

biometric samples is unknown. More recently, Dodis et al. (DRS04) give

a general framework of secure sketches, where the security is measured by

the entropy loss of the secret given the sketch in min-entropy. The frame-

work provides a bound on the entropy loss, and the bound applies to any

distribution of biometric samples with high enough entropy. They also give

specific schemes that meet theoretical bounds for Hamming distance, set

difference and edit distance respectively.

Another distance measure, point-set difference, motivated from a

popular representation for fingerprint features, is investigated in a number

of studies (CKL03; CL06; CST06). Different approaches (LT03; TG04;

TAK+05) focus on information leakage defined using Shannon entropy on

continuous data with known distributions.

There are also a number of investigations on the limitations of se-

cure sketches under different security models. Boyen (Boy04) studies the

vulnerability that when the adversary obtains enough sketches constructed

from the same secret, he could infer the secret by solving linear system.

This concern is more severe when the error correcting code involved is bi-

ased: the value 0 is more likely to appear than the value 1. Boyen et

al. (BDK+05) further study the security of secure sketch schemes under

more general attacker models, and techniques to achieve mutual authenti-

cation are proposed.
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This security model is further extended and studied by Simoens et

al. (STP09), which focuses more on privacy issues. Kholmatov et al.

(KY08) and Hong et al. (HJK+08) demonstrate such limitations by giving

correlation attacks on known schemes.

3.2.2 Multiple Secrets with Biometrics

The idea of using a secret to protect other secrets is not new. Souter et

al. (SRS+99) propose integrating biometric patterns and encryption keys

by hiding the cryptographic keys in the enrollment template via a secret

bit-replacement algorithm. Some other methods use password protected s-

martcards to store user templates (Ada00; SR01). Ho et al. (HA03) propose

a dual-factor scheme where a user needs to read out a one-time password

generated from a token, and both the password and the voice features are

used for authentication. Sutcu et al. (SLM07) study secure sketch for face

features and give an example of how the sketch scheme can be used together

with a smartcard to achieve better security.

Using only passwords as an additional factor is more challenging

than using smartcards, since the entropy of typical user chosen passwords

is relatively low (MT79; FH07; Kle90). Monrose (MRW99) presents an

authentication system based on Shamir’s secret sharing scheme to harden

keystroke patterns with passwords. Nandakuma et al. (NNJ07) propose a

scheme for hardening a fingerprint minutiae-based fuzzy vault using pass-

words, so as to prevent cross-matching attacks.
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3.2.3 Asymmetric Biometric Authentication

To improve the performance in terms of relative operating characteristic

(ROC), many applications (JRP04; UPPJ04; KGK+07) adopt an asym-

metric setting. During enrollment phase, multiple samples are obtained,

whereby an average sample and auxiliary information such as variances or

weights of features are derived. During verification, only one sample is

acquired. The derived auxiliary information can be helpful in improving

ROC. For example, it could indicate that a particular feature point is rel-

atively inconsistent and should not be considered, and thus reducing the

false reject rate. Note that the auxiliary information is identity-dependent

in the sense that different identity would have different auxiliary informa-

tion. Li et al. (LGC08) observed that by using the auxiliary information in

the asymmetric setting, the “key strength” could be enhanced due to the

improvement of ROC, but there could be higher leakage on privacy.

Current known works, for example, the schemes given by Li et al. (L-

GC08) and by Kelkboom (KGK+07), store the auxiliary information in

clear. Li et al. (LGC08) employ a scheme that carefully groups the feature

points to minimize the differences of variance among the groups. The de-

rived grouping is treated as auxiliary information and is published in clear.

The scheme proposed by Kelkboom et al. (KGK+07) computes the means

and variances of the features from the multiple enrolled face images, and

selects the k features with least variances. The selection indices are also

published in clear. The revealed auxiliary information could potential-

ly leak important identity information as an adversary could distinguish
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whether a few sketches are of from the same identity by comparing the

auxiliary information. Such leakage is similar to the sketch distinguisha-

bility in the typical symmetric setting (STP09). Therefore, it is desired to

have a sketch construction that can protect the auxiliary information as

well.
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Chapter 4

Pointsets Publishing with

Differential Privacy

In this chapter and Chapter 5, we consider the data publishing problem

with differential privacy.

In this chapter, we consider D as low-dimensional pointset, and pro-

pose a data publishing algorithm that, instead of publishing aggregated

values such as k-means (BDMN05), private coreset (FFKN09), or median

of the database (NRS07), it publishes the pointset data itself. Such data

publishing can be later exploited in different scenarios where the data serve

multiple purposes, in which cases it is more desired to “publish data, not

the data mining result” (FWCY10).

4.1 Pointset Publishing Setting

We treat the data D as a multi-set (i.e. a set with possibly repeating

elements) of low-dimensional points in a normalized domain. That is, we
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consider D = {d1 . . . , dn}, where di ∈ [0, 1]k for some small k. We want to

publish statistical information on D for queries with different purposes.

One way to retain rich information that can be harvested by subse-

quent analysis is to publish a histogram of the dataset D. In the context

of differential privacy, parallel composition can be exploited to treat non-

overlapping bins independently and thus achieving high accuracy. There

are a number of research efforts (LHR+10; BCD+07) investigating the de-

pendencies of frequencies counts of fixed overlapping bins, where parallel

composition cannot be directly applied. Such overlapping bins are inter-

esting as different domain partition could lead to different accuracy and

utility. For instance, Xiao et al. (XWG10) proposed publishing wavelet

coefficients of an equi-width histogram, which can be viewed as publishing

a series of equi-width histograms with different bin-widths, and is able to

provide higher accuracy in answering range queries compare to a single

equi-width histogram.

It is generally well accepted that equi-depth histogram and V-optimal

histogram provide more useful statistical information compare to equi-

width histogram (PSC84; PHIS96), especially for multidimensional data.

These histograms are adaptive in the sense that the domain partitions

are derived from the data such that denser regions will have smaller bin-

widths and the sparser regions will have larger bin-widths, as illustrated

in Fig. 4.7(b). Since the bin-widths are derived from the dataset, they

leak information about the original dataset. There are relatively few work-

s that consider adaptive histogram in the context of differential privacy.
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(a) Sorted 1D points.
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added. To avoid clogging, only 10% of the
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(c) Reconstructed with isotonic regres-
sion.
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Figure 4.1: Illustration of pointset publishing.

One exception is the work by Xiao et al. (XXY10). Their method consists

of two steps where firstly synthetic data are generated from the differen-

tially private equi-width histogram. After that, a k-d tree (which can be

viewed as an adaptive histogram) is generated from the synthetic data, and

the noisy counts are then released with the partition. Machanavajjhala et

al. (MKA+08) proposed a mechanism that publishes 2D histograms with

varying bin-widths, where the bin-widths are determined from a previously

released similar data. The histograms generated are not adaptive in the

sense that the partitions do not depend on the data to be published.

In this chapter, instead of publishing the noisy frequency counts in

equi-width bins, we propose a method that directly publishes the noisy da-
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ta, which in turn leads to an adaptive histogram. To illustrate, let us first

consider a dataset consisting of a set of real numbers from the unit inter-

val, for example, the normalized distance of Twitter users’ locations (web)

to New York City (Fig. 4.1(a)). We observe that sorting, as a function

that takes in a set of real numbers from the unit interval and outputs the

sorted sequence, interestingly has sensitivity one (Theorem 1). Hence, the

mechanism that first sorts, and then adds independent Laplace noise of

LAP(1/ε) to each element achieves ε-differential privacy. Fig. 4.1(b) shows

the noisy output data after the Laplace noise has been added to the sorted

sequence. Although seemingly noisy, there are dependencies to be exploit-

ed because the original sequence is sorted. By using isotonic regression, the

noise can be significantly reduced (Fig. 4.1(c)). To further reduce noise,

before adding the Laplace noise, consecutive elements in the sorted data

can be grouped and each point is replaced by the average of its group. Fig.

4.1(d) shows the difference of the original and the reconstructed points with

and without grouping.

To extend the proposed method to higher dimension data, for exam-

ple, location data of 183,072 Twitter users in North America as shown in

Fig. 4.2(a), we employ locality-preserving mapping to map the multidimen-

sional data to one-dimension (Fig. 4.2(b)), such that any two close points

in the one-dimension domain are mapped from two close multidimensional

points. After that, the publisher can apply the proposed method on the

1D points, and publish the reverse mapped multidimensional points.

One desired feature of our scheme is its simplicity: there is only one
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parameter, the group size, to be determined. The group size affects the

accuracy in three ways: (1) its effect on the generalization error, which is

introduced due to averaging; (2) its effect on the level of Laplace noise to

be added by the differentially private mechanism; and (3) its effect on the

number of constraints in the isotonic regression. Based on our error model,

the optimal parameter can be estimated without knowledge of the dataset

distribution. In contrast, many existing methods have many parameters

whose optimal values are difficult to be determined differentially privately.

For instance, although the equi-width histogram has only one parameter,

i.e. the bin-width, its value significantly affects the accuracy, and it is not

clear how to differentially privately obtain a good choice of the bin width.

As mentioned, we measure the utility of the published spatial dataset

with Earth mover’s distance(EMD). We show that publishing pointset un-

der this measurement may still attain high accuracy w.r.t. other measure-

ments. We conduct empirical studies to compare against a few related

known methods: equi-width histogram, wavelet-based method (XWG10)

and smooth sensitivity based median-finding (NRS07). The experiment

results show that our method outperforms the wavelet-based method w.r.t.

accuracy of range-query, even for ranges with large sizes. It is also compa-

rable to the smooth sensitivity based method in publishing median.
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(b) Sorted 1D images of the data.

Figure 4.2: Twitter location data and their 1D images of a locality-
preserving mapping.

4.2 Background

4.2.1 Isotonic Regression

Given a sequence of n real numbers a1, . . . , an, the problem of finding the

least-square fit x1, . . . , xn subjected to the constraints xi ≤ xj for all i <

j ≤ n is known as the isotonic regression. Formally, we want to find the

x1, . . . , xn that minimizes

n∑
i=1

(xi − ai)2, subjected to xi ≤ xj for all 1 ≤ i < j ≤ n.

The unique solution can be efficiently found using pool-adjacent-violators

algorithms in O(n) time (GW84). When minimizing w.r.t. `-1 norm, there

is also an efficient O(n log n) algorithm (Sto00). There are many variants

of isotonic regression, for example, variants with a smoothness component

in the objective function (WL08; Mey08).

Isotonic regression has been used to improve a differentially private

query result. Hay et al. (HRMS10) proposed a method that employs iso-

tonic regression to boost accuracy, but in a way different from our mech-
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anism. They consider publishing unattributed histogram, which is the (un-

ordered) multi-set of the frequencies of a histogram. As the frequencies

are unattributed (i.e. order of appearance is irrelevant), they proposed

publishing the sorted frequencies and later employing isotonic regression

to improve accuracy.

4.2.2 Locality-Preserving Mapping

A locality-preserving mapping T : [0, 1]d → [0, 1] maps d-dimensional

points to the unit interval, while preserving locality. For the proposed

method, we seek a mapping that, if the mapped points T (x), T (y) are

“close”, then x and y are “close” in the d-dimensional space. More specifi-

cally, there is some constant c s.t. for any x, y in the domain of the mapping

T ,

‖x− y‖2 ≤ c · (‖T (x)− T (y)‖)1/d. (4.1)

The well-known Hilbert curve (GL96) is a locality-preserving map-

ping. It is shown that for any 2D points x, y in the domain of T , ‖x−y‖2 ≤

3
√
|T (x)− T (y)|. Niedermeier et al. (NRS97) showed that with careful

construction, the bound can be improved to 2
√
|T (x)− T (y)| for 2D points

and 3.25 3
√
‖T (x)− T (y)‖ for 3D points. In our construction, for simplicity,

we use Hilbert curve in our experiments.

Note that it is challenging in preserving locality “in the other di-

rection”, that is, any two “close” points in the d-dimensional domain are

mapped to “close” points in the one-dimensional range (MD86). Fortu-

nately, in our problem, such property is not required.
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4.2.3 Datasets

We conduct experiments on two datasets: locations of Twitter users (web)

(herein called the Twitter location dataset) and the dataset collected by

Kaluža et al. (KMD+10) (herein called Kaluža’s dataset). The Twitter

location dataset contains over 1 million Twitter users’ data from the peri-

od of March 2006 to March 2010, among which around 200,000 tuples are

labeled with location (represented in latitude and longitude) and most of

the tuples are in the North American continent, concentrating in regions

around the state of New York and California. Fig. 4.2(a) shows the cropped

region covering most of the North American continent. The cropped re-

gion contains 183,072 tuples. The Kaluža’s dataset contains 164,860 tuples

collected from tags that continuously record the location information of 5

individuals. While some of the tuples consist of many attributes, in our

experiments, only the 2D location data are being used.

4.3 Proposed Approach

Before receiving the data, the publisher has to make a few design choices.

The publisher needs to decide on a locality-preserving mapping T , and the

strategy (which is represented as a lookup table) of determining the group

size from the privacy requirement ε and the size of dataset n. Now, given

the dataset D of size n, and the privacy requirement ε, the publisher carries

out the following:

A1. The publisher maps each point in D to a real number in the unit
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interval [0, 1] using T , and lookups the group size based on n and ε.

Let T (D) be the set of transformed points. For clarity in exposition,

let us assume that k divides n.

A2. The publisher sorts the mapped points, divides the sorted sequence

into groups of k consecutive elements, and then for each group, de-

termines its average over the k elements. Let the averages be S =

〈s1, . . . , sn/k〉.

A3. The publisher releases S̃ = S + (Lap(ε−1)/k)(n/k) and the group size

k.

A public user may extract information from the published data as

follow:

B1. The user performs isotonic regression on S̃ and obtains IR(S̃), and

then replaces each element s̃i in IR(S̃) with k points of value s̃i. Let

P be the set of resulting points.

B2. The user maps the data point back to the original domain, that is,

computes D̃ = T−1(P ). Let us call D̃ the reconstructed data.

Note that the public user is not confined to performing step B1 and

B2. The user may, for example, incorporates some background knowledge

to enhance accuracy. To relieve the public from computing step B1 and B2,

the regression and the inverse mapping can be carried out by the publisher

on behalf of the users. Nevertheless, the raw data S̃ should be (although

it is not necessary) published alongside the reconstructed data for further

statistical analysis.
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4.4 Security Analysis

In this section, we show that the proposed mechanism (Step A1 to A3)

achieves differential privacy. The following theorem shows that sorting,

as a function, interestingly has sensitivity 1. Note that a straightforward

analysis that treats each element independently could lead to a bound of

n, which is too large to be useful.

Theorem 1 Let Sn(D) be a function that on input D, which is a multi-set

containing n real numbers from the unit interval [0, p], outputs the sort-

ed sequence of elements in D. The sensitivity of Sn w.r.t. the bounded

differential privacy is p.

Proof LetD1 andD2 be any two neighboring datasets. Let 〈x1, x2 . . . xi . . . xn〉

be Sn(D1), i.e. the sorted sequence of D1. WLOG, let us assume that an

element xi is replaced by a larger value A to give D2, for some 1 ≤ i ≤ n−1

and xi < A. Let j to be largest index s.t. xj < A ≤ p. Hence, the sorted

sequence of D2 is:

x1, x2, . . . , xi−1, xi+1, . . . , xj, A, xj+1, . . . , xn.

The L1 difference due to the replacement is,

‖Sn(D1)− Sn(D2)‖1

= |xi+1 − xi|+ |xi+2 − xi+1|+ . . .+ |xj − xj−1|+ |A− xj|

= (xi+1 − xi) + (xi+2 − xi+1) + . . .+ (xj − xj−1) + (A− xj)

= A− xi ≤ p.
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We can easily find an instance of D1 and D2 where the difference A−xi = p.

Hence, the sensitivity is p.

Thus, when the points are mapped to [0, 1], the sensitivity Sn is 1.

Therefore, the mechanism Sn(D) + Lap(1/ε)n enjoys ε-differential privacy.

Also note that the value of n is fixed. Hence, the size of D is not a secret

and is made known to the public.

The following corollary shows that grouping (in Step A2) has no

effect on the sensitivity.

Corollary 2 Consider a partition H = {h1, h2 . . . hm} of the indices {1, 2, . . . , n}.

Let SH(D) be the function that, on input D, which is a multi-set contain-

ing n real numbers from the unit interval [0, p], outputs a sequence of m

numbers:

yi =
∑
j∈hi

xj,

for 1 ≤ i ≤ m where 〈x1, x2, . . . , xn〉 is the sorted sequence of D. The

sensitivity of SH is p.

Proof Again LetD1 andD2 be any two neighboring datasets. Let 〈x1, x2 . . . xi . . . xn〉

be Sn(D1), i.e. the sorted sequence of D1, and 〈y1, . . . , ym〉 be SH(D1).

WLOG, Consider when an element xi is replaced by a larger value A to

give D2 and let j to be largest index s.t. xj < A. Hence, the sorted

sequence of D2 is:

x1, x2, . . . , xi−1, xi+1, . . . , xj, A, xj+1, . . . , xn.
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Let 〈y′1, . . . , y′m〉 be SH(D2). Thus, we have y′i ≥ yi for all i, and the

L1 difference due to the replacement is,

‖SH(D1)− SH(D2)‖1

= (y′1 − y1) + (y′2 − y2) . . .+ (y′m − ym)

= (xi+1 − xi) + (xi+2 − xi+1) + . . .+ (xj − xj−1) + (A− xj)

= A− xi ≤ p.

Again, we can easily find an instance of D1 and D2 where the difference

A− xi = p. Hence, the sensitivity is p.

Note that the grouping in step A2 is a special partition with equal-

sized hi’s, whereas Corollary 2 gives a more general result where H can

be any partition. From Corollary 2, the proposed mechanism achieves ε-

differential privacy.

4.5 Analysis and Parameter Determination

The main goal of this section is to analyze the effect of the privacy require-

ment ε, dataset size n and the group size k on the error in the reconstructed

data, which in turn provides a strategy in choosing the parameter k given

n and ε.

Intuitively, when n and ε are fixed, the choice of parameter k affects

the accuracy in following three ways: (1) a larger k decreases the number

of constraints in isotonic regression, which leads to lower noise reduction;

(2) a larger k reduces the effect of the Laplace noise; and (3) a larger k

introduces higher generalization error due to averaging.
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Our analysis consists of the following parts: We first describe our

utility function in Section 4.5.1. In Section 4.5.2, we consider the case

where k = 1 and empirically show that the expected error of a typical

dataset can be well approximated by the expected error on a synthetic

equally-spaced dataset. Let us call this error Errn,ε. Next in Section 4.5.3,

we investigate and estimate the generalization error due to the averaging

and show that with a reasonable assumption on the dataset distribution,

the expected error can be approximated by k
4n

. Let us call this error Genn,k.

Finally, in Section 4.5.4, we consider the general case of k ≥ 1 and give an

approximation of the expected error in terms of Errn,ε and Genn,k.

4.5.1 Earth Mover’s Distance

To measure the utility of a published spatial dataset, one commonly com-

pares the distance of the published data S to the original sensitive data D.

Some existing works measure the accuracy of a histogram by its distance,

such as L2 distance or KL divergence, to a reference equi-width histogram.

One limitation of this measurement is that the reference histogram can be

arbitrary and thus arguably ill-defined. If the reference bin-width is too

small, each bin will contain either one or no point, which leads to signifi-

cantly large distance from a seemingly accurate histogram. On the other

hand, if its bin-width is too large, the reference histogram would be over

generalized. We choose to measure the utility of the published dataset by

the earth mover’s distance (EMD) (RGT97), which measures the distance

of the published data and original points, where the “reference” is the orig-
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inal points and thus well-defined. The EMD between two pointsets of equal

size is defined to be the minimum cost of bipartite matching between the

two sets, where the cost of an edge linking two points is the cost of moving

one point to the other. Hence, EMD can be viewed as the minimum cost

of transforming one pointset to the other. Different variants of EMD differ

on how the cost is defined. In this thesis, we adopt the typical definition

that defines the cost as the Euclidean distance between the two points.

In one-dimensional space, the EMD between two sets D and D̃ is

simply the L1 norm of the differences between the two respective sorted

sequences, i.e. ‖Sn(D)−Sn(D̃)‖1, which can be efficiently computed. Recall

that Sn(D) outputs the sorted sequence of elements in D. In other words,

EMD(D, D̃) =
n∑
i=1

|pi − p̃i|, (4.2)

where pi’s and p̃i’s are the sorted sequence of D and D̃ respectively. Note

that this definition assumes D and D̃ have the same number of points.

Given a dataset D and the published dataset D̃ of a mechanismM

where |D| = |D̃| = n, let us define the normalized error as 1
n
EMD(D, D̃)

and denote ErrM,D the expected normalized error,

ErrM,D = Exp

[
1

n
EMD(D, D̃)

]
, (4.3)

where the expectation is taken over the randomness in the mechanism.

Our mechanism publishes D̃ based on two parameters: the privacy

requirement ε and the group size k. Therefore, let us write Errε,k,D for the

expected normalized error of the dataset published in Step B2.
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4.5.2 Effects on Isotonic Regression

Let us consider the expected normalized error when k = 1, in other words,

we first consider the mechanism without grouping. In such case, the recon-

structed dataset is IR(Sn(D) + Lap(ε−1)n). Thus, the expected normalized

error is

Errε,1,D = Exp

[
1

n
EMD(D, IR(Sn(D) + Lap(ε−1))n)

]
.

To estimate the above expected error, we compute the expected

normalized error on a few datasets of varying size n: (1) Multi-sets con-

taining elements with the same value 0.5 (herein called repeating single-

value dataset), (2) sets containing equally-spaced numbers (i/(n − 1)) for

i = 0, . . . , n − 1 (herein call equally-spaced dataset), (3) sets containing

n randomly chosen elements from the Twitter location data (web), and

(4) sets containing n randomly chosen elements from the Kaluža’s da-

ta (KMD+10).

Fig. 4.4(a) shows the expected error Err1,1,D for the four datasets

with different n. Each sample in the graph is the average over 500 runs.

Observe that the error on equally-spaced data well approximates the errors

on the two real-life dataset (Twitter location dataset and Kaluža’s dataset).

Hence, we take the error on the equally-spaced dataset as an approximation

of the errors on other datasets. For abbreviation, let Errε,n denote the

expected error Errε,1,D where D is the equally-spaced dataset with n points.

Based on experiences on other datasets, we suspect that the expected error

depends on the difference of the minimum and the maximum element in

D, and the repeating single-value dataset is the extreme case whose error
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could be served as a lower bound as shown in Fig. 4.4(a).

Fig. 4.3(a) shows the expected error Errε,1,D for dataset on equally-

spaced points for different ε and n, and Fig. 4.3(b) shows the ratios of error

for different ε to Err1,n. The results agree with the intuition that when ε

is increased by a factor of c, the error would approximately decrease by

factor of c, that is,

Errε,1,D ≈
1

c
Errcε,1,D. (4.4)
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Figure 4.3: The normalized error for different security parameter.
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4.5.3 Effect on Generalization Noise

When k > 1, the grouping introduces a generalization error, which is in-

curred when all elements in a group are represented by their mean. Before

giving formal description of generalization error, let us introduce some no-

tations.

Given a sequence D = 〈x1, . . . , xn〉 of n numbers, and a parameter

k, where k divides n, let us call the following function downsampling:

↓k (D) = 〈s1, . . . , s(n/k)〉,

where each si is the average of xk(i−1)+1, . . . , xik. Given a sequence D′ =

〈s′1, . . . , s′m〉 and k, let us call the following function upsampling,

↑k (D′) = 〈x′1, . . . , x′mk〉,

where x′i = s′b(i−1)/kc+1 for each i.

The normalized generalization error is defined as,

GenD,k =
1

n
‖D− ↑k (↓k (D))‖1.

It is easy to see that, for any k and D of size n, the normalized

generalization error is at most k/(2n). However, this bound is often an

overestimate. Fig. 4.4(b) shows the generalization error of different group

size a dataset containing 10, 000 equally-spaced values, a dataset containing

10, 000 numbers randomly drawn from the transformed Kaluža’s dataset,

and a dataset of 10, 000 numbers randomly drawn from the transformed

Twitter location data.

Observe that, empirically, the generalization error can be well ap-

proximated by k
4n

. To see that such approximation holds for a typical
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dataset, consider the following partition of the unit interval: 0 = p0 <

p1 < p2, . . . , p(n/k)−1 < pn/k = 1. Let us consider a sorted sequence S of

elements in dataset D, where the jk + 1, jk + 2, . . . (j + 1)k-th elements in

S are uniformly independent and identically distributed over [pj, pj+1) for

j = 0, 1, . . . , (n/k)−1. We can verify that the expected generalization error

GenD,k ≈ k
4n

with simulations. Hence, we approximate the generalization

error by k
4n

and denote it as Genn,k.

4.5.4 Determining the group size k

Now, let us combine the components and build an error model of how k

affects the accuracy. First, grouping reduces the number of constraints by

a factor of k. As suggested by Fig. 4.4(a), when the number of constraints

decreases, the error reduction from isotonic regression decreases. On the

other hand, recall that the regression is performed on the published val-

ues divided by k (see the role of k in Step A3). This essentially reduces

the level of Laplace noise by a factor of k. Hence, the accuracy attained

by grouping k elements is “equivalent” to the accuracy attained without

grouping but with the privacy parameter ε increased by a factor of k. These

two components can be estimated in terms of Errε,n as follow:

Errε,k,D ≈
1

k
Errε,n/k.

For general k, the reconstructed dataset is

D̃ =↑k (IR(S̃)),
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where S̃ is an instance of ↓k (Sn(D)) + Lap(1)n/k. Now, we have,

EMD (D, D̃) = ‖Sn(D)− ↑k (IR(S̃))‖1

= ‖Sn(D)− ↑k (↓k (Sn(D))+ ↑k (↓ (Sn(D)))− ↑k (IR(S̃))‖1

≤ n ·GenD,k + ‖ ↑k (↓k (Sn(D)))− ↑k (IR(S̃))‖1

= n ·GenD,k + k · ‖ ↓k (Sn(D))− IR(S̃)‖1

= n ·GenD,k + k · EMD(↓k (Sn(D)), IR(S̃)). (4.5)

Note that the first term n ·GenD,k is a constant independent of the random

choices made by the mechanism. Also note that the second term is the EMD

between the down-sampled dataset and its reconstructed copy obtained

using group size 1. Thus, by taking expectation over randomness of the

mechanism, we have

Errε,k,D ≤ GenD,k +
1

k
Errε,1,↓k(D). (4.6)

In other words, the expected normalized error is bounded by the sum of

normalized generalization error, and the normalized error incurred by the

Laplace noise. Fig. 4.5(a) shows the three values versus different group

size k for equally-spaced data of size 10,000. The minimum of the expected

normalized error suggests the optimal group size k.

Fig. 4.5(b) illustrates the expected errors for different k on the

Twitter location data with 10,000 points. The red dotted line is Errε,k,D

whereas the blue solid line is the sum in the right-hand-side of the inequality

(4.6). Note that the differences between the two graphs are small. We

have conducted experiments on other datasets and observed similar small

differences. Hence, we take the sum as an approximation to the expected
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normalized error,

Errε,k,D ≈ Genn,k +
1

k
Errε,n/k. (4.7)
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Figure 4.5: The expected error and comparison with actual error.

Now, we are ready to find the optimal k given ε and n. From Fig.

4.4(a) and Fig. 4.4(b) and the approximation given in equation (4.7), we

can determine the best group size k when given the size of the database n

and the security requirement ε. From the parameter ε, we can obtain the

value 1
k
Errn/k,e for different k. From the database’s size n, we can determine

Genn,k which is k
4n

. Thus, we can approximate the normalized error Errk,D

with equation (4.7) as illustrated in Fig. 4.5(a). Using the same approach,

the best group size given different n and ε can be calculated and is presented

in table 4.1.

4.6 Comparisons

In this section, we compare the performance of the proposed mechanism

with three known mechanisms w.r.t. different utility functions. We first
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Table 4.1: The best group size k given n and ε
ε = 0.5 ε = 1 ε = 2 ε = 3

n= 2,000 44 29 20 12
n= 5,000 59 37 27 18
n= 10,000 79 51 36 27
n= 20,000 121 83 61 41
n= 100,000 234 150 98 73
n= 180,000 300 177 110 94

compare the mechanism that outputs equi-width histograms. Next, we in-

vestigate the wavelet-based mechanism proposed by Xiao et al. (XWG10)

and measure accuracy of range queries. Lastly, we consider the problem of

estimating median, and compare with a mechanism based on smooth sensi-

tivity proposed by Nissim et al. (NRS07). We do not conduct experiments

to compare with the k-d tree method (XXY10) because it is designed for

high dimensional data and it is not clear how to apply it to low dimen-

sion effectively. For comparison purposes, we empirically choose the best

parameters for the known mechanisms, although this apriori information

is not available to the publisher. We remark that the parameter k of our

proposed mechanism is chosen from Table 4.1.

4.6.1 Equi-width Histogram

We want to compare the performance of our method with the equi-width

histogram method. Fig. 4.6(a) shows a differentially private equi-width

histogram. To visualize the reconstructed points of our method as a his-

togram, we construct the bins in the following way: let B be the set of

distinct-points in D, and we construct the Voronoi diagram of B. The cells

in the Voronoi diagram are taken to be the bins of a histogram as depicted
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Figure 4.6: Visualization of the density functions.

in Fig. 4.6(b).

To facilitate comparison, we treat the histograms as estimations of

the underlying probability density function f , and use the statistical dis-

tance between density functions as a measure of utility. The value of f(x)

can be estimated by the ratio of the number of samples, over the width of

the bin where x belongs to, with some normalizing constant factor.

In this section, we qualify the mechanism’s utility by the distance

between the two density functions: one that is derived from the original

dataset, and the other that is derived from the mechanism’s output.

Fig. 4.6(a) and 4.6(b) show the estimated density function from the

Twitter’s location dataset, by equi-width histogram mechanism and by our

mechanism. For comparisons, 1% of the original points are plotted on top

of the two reconstructed density functions. Fig. 4.7(a) and 4.7(b) show

the zoom-in view of the dense region around New York City. Observe that

the density function produced by our mechanism has “variable-sized” cells

and thus is able to adaptively capture the fine details.

The statistical difference, measured with `1-norm and `2-norm, be-
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Figure 4.7: A more detailed view of the density functions.

tween the two estimated density functions derived from the original and the

mechanism’s output are shown in Table 2. We remark that it is not easy

to determine the optimal bin-width for the equi-width histogram prior to

publishing. Fig. 4.8 shows that the optimal bin-width differs significant-

ly for three different datasets. For comparison purposes, we empirically

choose the best parameters to the advantage of the compared algorithms,

although such parameters could be dependent on the dataset.

4.6.2 Range Query

We consider the scenario where a dataset is to be published, and subse-

quently used to answer a series of range queries, where each range query

asks for the total number of points within a query range. Publishing an

equi-width histogram would not attain high accuracy if the size of the query

ranges varies drastically. Intuitively, wavelet-based techniques (XWG10)

are natural solutions to address such multi-scales queries. However, there

are many parameters, including the bin-widths at various scales and the

amounts of privacy budget they consume, to be determined prior to pub-
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lishing.

To apply the proposed method in this scenario, given a query, we

obtain the number of points within the range from the estimated density

function (as described in Section 4.6.1) by accumulating the probability

over the query region and then multiplying by the total number of points.

We compare the range query results of the wavelet-based mechanis-

m, the equi-width histogram mechanism and our mechanism on the 1D

Twitter data, and on the 2D Twitter location dataset. To incorporate the

knowledge of the database’s size n, the total number of points is adjusted

to n for the histogram mechanism and the DC component of the wavelet

transform is set to be exactly n for the wavelet mechanism. For each range

query, the absolute difference between the true answer and the answer de-

rived from the mechanism’s output is taken as the error. We compare

the results over different query range sizes and for each query range. For

each range size s, 1,000 randomly chosen queries of size s are asked, and

the corresponding errors are recorded. More precisely, the center of a 1D

query range of size s is chosen uniformly at random in the continuous in-

terval [ s
2
, 1− s

2
], whereas the center of a 2D query range of size s is chosen

uniformly at random in the region [ s
2
, 1− s

2
]× [ s

2
, 1− s

2
].

equi-width proposed method
`1-norm 1.23 1.13
`2-norm 0.25 0.20

Table 4.2: Statistical differences of the two methods.

To determine the parameters for the two compared mechanisms, we

conduct experiments on a few selected values and choose the values to the
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Figure 4.8: Optimal bin-width.

advantage of the compared mechanisms. For the equi-width histogram,

the only parameter is the number of bins (n1). For the wavelet-based

mechanism, the parameter we considered is the number of bins (n2) of

the histogram whereby wavelet transformation is performed on, that is,

the number of bins in the “finest” histogram. From our experiments, we

choose n1 = 1000 and n2 = 1024 for the 1D data, and n1 = 40 × 40 and

n2 = 512 × 512 for the 2D data. The parameter k for our mechanism is

looked up from Table 4.1. The choice of group size k according to Table

4.1 is 177 (n = 180, 000, ε = 1). The average errors of the range query is

shown in Fig. 4.9(a) and 4.9(b).

Observe that our proposed method is less sensitive to the query

range in the 1D case as expected because the accuracy of our range query

results depend only on the boundary points, as opposed to the equi-width

histogram method where errors are induced by each bins within the range.

The wavelet-based mechanism outperforms the equi-width histogram mech-

anism in larger size range queries, but performs badly for small range due
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Figure 4.9: Comparison of range query performance.

to the accumulation of noise.

4.6.3 Median

The median is an important statistic, and a differentially private median

finding process can be useful in many constructions, such as in pointset

spatial decomposition (CPS+12). However, finding the median accurately

in a differentially private manner is challenging due to the high “global

sensitivity”: there are two datasets that differ by one element but having a

completely different median. Nevertheless, for many instances, their “local

sensitivity” are small. Nissim et al. (NRS07) showed that in general, by

adding noise proportional to the “smooth sensitivity” of the database in-

stance, instead of the global sensitivity, can also ensure differential privacy.

They also gave an Θ(n2) algorithm that find the smooth sensitivity w.r.t.

median.

Our mechanism outputs the sorted sequence differentially privately,

and thus naturally gives the median. Compare to the smooth sensitivity-

based mechanism, our mechanism provides more information in the sense
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that it outputs the whole sorted sequence. Furthermore, our mechanism

can be efficiently carried out in O(n log n) time.

We conduct experiments on synthetic datasets of size 129 to compare

the accuracy of both mechanisms. The experiments are conducted for

different local sensitivity and different ε values. To construct a dataset

with a particular local sensitivity, 66 random numbers are generated with

the exponential distribution and then scaled to the unit interval. The

dataset contains the 66 random numbers and 63 ones. Fig. 4.10(a) and

4.10(b) shows the noise level with different ε on datasets that has a local

sensitivity of 0.1 and 0.3.

When the local sensitivity of the median is high, our mechanism

tends to provide a better result. In addition, our mechanism performs well

under higher requirement of security: when the ε is smaller, the accuracy of

our mechanism decreases slower than the smooth sensitivity-based method.
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Figure 4.10: The error of median versus different ε from two datasets.
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4.7 Summary

In this chapter, we propose a mechanism that is very simple from the pub-

lisher’s point of view. The publisher just has to sort the points, group

consecutive values, add Laplace noise and publish the noisy data. There

is also minimal tuning to be carried out by the publisher. The main de-

sign decision is the choice of the group size k, which can be determined

using our proposed noise models, and the locality-preserving mapping for

which the classic Hilbert curve suffices to attain high accuracy. Through

empirical studies, we have shown that the published raw data contain rich

information for the public to harvest, and provide high accuracy even for

usages like median-finding and range-searching that our mechanism is not

initially designed for.
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Chapter 5

Data Publishing with Relaxed

Neighbourhood

In this chapter, we will consider data publishing with relaxed differen-

tial privacy. The assurance provided by differential privacy comes with a

cost of high noise, which leads to low utility of the published data. To

address this limitation, several relaxations have been proposed. Many re-

laxations (DKM+06; MKA+08) capture alternative notions of “indistin-

guishability”, i.e. how the probabilities on the two neighbouring datasets

are compared by the utility function U . We attempt to stay within the

original framework while relaxing the privacy requirement by adopting a

narrowed definition of neighbourhood, so that known results and properties

still applied. That is, we consider a narrowed D̃.
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5.1 Relaxed Neighbourhood Setting

Under the original neighbourhood (Dwo06; DMNS06) (let us call it the

standard neighbourhood), two neighbouring datasets D1 and D2 differ by

one entity, in that sense that D1 = D2−{d1}, or D1 = D2−{d1}+{d′1} for

some d1, d
′
1, in other words, D2 differs from D1 by either adding a new en-

tity d1 or replacing an entity d2 by d3. We propose considering a narrowed

form of neighbourhood: instead of having arbitrary entity x and z, they

have to meet some conditions. The new x must near to some “sources” and

the replacement z must near to y within a threshold δ. Such neighbourhood

naturally arise from spatial datasets, for example locations of Twister user-

s (web) where the distance between two entities is the geographical distance

between them. We called this narrowed variant δ-neighbourhood, where δ

is the threshold.

There are a few ways to view the assurance provided by the pro-

posed neighbourhood. First, note that if the domain (where the entities

of the datasets are drawn from) is connected and bounded under the un-

derlying metric, then a mechanism that is differentially private under δ-

neighbourhood is also differentially private under the standard neighbour-

hood. However, the guaranteed bound (as in inequality (2.1)) is weaker

when the entities are farther apart. Hence, the δ-neighbourhood essentially

“redistributes” the indistinguishability assurance with emphasis on individ-

uals that are close to each other, in a way similar to the original framework

which stresses on datasets that are closer-by under set-difference.

Viewing from another perspective, one can treat this relaxation as
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an added constraint on the datasets, so that not all datasets are valid.

For example, locations of government service vehicles that are restricted

in their bounded regions. When there is such an implicit constraint on

the dataset, the two notions of neighbourhood are equivalent. Illustrating

examples will be discussed in Section 5.3 and 5.5.

The δ-neighbourhood can also be adopted for dynamic datasets

where entities are added and removed over time. One example is the sce-

nario considered by Dwork et al. (DNPR10), where aggregated information

on users’ health conditions in a region or building (say airport) are to be

monitored over time. Under the standard neighbourhood, due to the fixed

budget, it is impossible to publish the dataset repeatedly with high utili-

ty. However, there are scenarios where entities do not stay in the dataset

for long and thus, intuitively, the effect of information published earlier

would diminish over time, and hence we should be able to continuously

publish with high utility. We can define a δ-neighbourhood that captures

the observation, so as to achieve sustainable privacy on dynamic datasets.

Existing differential private mechanisms designed for the standard

neighbourhood naturally are also differentially private under the δ-neighbourhood.

Some mechanisms, for example, smooth sensitivity based median publish-

ing (NRS07), can be easily modified to achieve higher utility. For some

applications, it is not clear how to exploit the relaxation to achieve high-

er utility. For publishing of histogram on spatial dataset, we propose a

few constructions and show that the utility can be significantly improved.

Whereas for dynamic dataset, we investigate how the budget is to be allo-
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cated in an offline and online setting.

5.2 Formulations

5.2.1 δ-Neighbourhood

We assume that there is a distance function d :M×M→ R on the domain

that captures the distance between a pair of entities. We also assume that

there is a set of sources S ⊆ M. With this distance function and sources,

for a threshold δ, we say that two datasets D1, D2 are δ-neighbours if, and

only if the following holds:

1. there exists x1 and x2 ∈M, such that d(x1, x2) ≤ δ, and D1−{x1} =

D2 − {x2}, or

2. there exists a x3 and s ∈ S s.t. d(x3, s) ≤ δ and D1 − {x3} = D2.

In other words, either D1 can be obtained from D2 by replacing an entity

x2 with a nearby entity x1, or by adding a new entity x3 emerged near a

source s. Note that if S is empty, then the size of the size of D1 and D2

must be the same.

Given two datasetsD1, D2 ∈ D, we say thatD1 andD2 are connected

if there exists a finite sequence of E0, E1, E2, . . . , Em with E0 = D1 and

Em = D2 s.t. for any i, the consecutive Ei and Ei+1 are δ-neighbours,

and call the smallest such m the distant between D1 and D2. If any two

datasets in D are connected, we say that D is connected, and called the

least upper bound on the distance, if it exists, the diameter of D.
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5.2.2 Differential Privacy under δ-Neighbourhood

Now, we say that a mechanismA is ε-differential privacy under δ-neighbourhood

if for all R ⊆ range(A) and any pair of δ-neighbours (D1, D2), we have:

Pr(A(D1) ∈ R) ≤ exp(ε) · Pr(A(D2) ∈ R). (5.1)

Similar to the definitions with standard neighbourhood, we can

define the sensitivity of a function f : D → R with respect to the δ-

neighbourhood, which is

sup‖f(D1)− f(D2)‖1,

where the supremum is taken over all pairs (D1, D2) of δ-neighbours.

5.2.3 Properties

Since δ-neighbours are also neighbours under the standard neighbourhood,

thus a ε-differentially private mechanism under standard neighbourhood is

also ε-differential private mechanism under δ-neighbourhood. The converse

also holds but with a weaker bound, as stated in the following lemma:

Lemma 3 If a mechanism A is ε-differential private under the δ-neighbourhood

and the diameter of D is d, then it is (dε)-differential private under the s-

tandard neighbourhood.

Proof If a mechanism A is ε-differential private under δ-neighbourhood,

then for any pair of neighbouring datasets D1, D2 ∈ D under standard

neighbourhood, we can find a sequence E0 = D1, E2, . . . , Em = D2 s.t. Ei
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and Ei+1 are δ-neighbours for i = 0 . . .m − 1 for some m ≤ d. Therefore,

for any R ⊆ Range(A), we have:

Pr(A(Ei−1) ∈ R) ≤ exp(ε) · Pr(A(Ei) ∈ R), for i = 1 . . .m.

Combining the inequalities, we have:

Pr(A(E0) ∈ R) ≤ exp(mε) · Pr(A(Em) ∈ R).

Since E0 = D1 and Em = D2, therefore the mechanism A is (dε)-

differential private.

Sequential composition: The composition of two differentially private

mechanisms is also differentially private. It is easy to show that this prop-

erty also holds under δ-neighbourhood: given a sequence of k mechanisms,

A1,A2, . . .Ak, where Ai is εi differentially private under δ-neighbourhood,

then the mechanism

A∗(D) = A1(D,A2(D, . . .))

is (
∑k

i=1 εi)-differentially private under δ-neighbourhood.

5.3 Construction for Spatial Datasets

The δ-neighbourhood can be naturally defined on spatial points, sayM =

[0, 1]k for some k ≥ 1. We are only interested in low dimensions, for

example k = 1 or 2, since it is generally very difficult to achieve high

utility for high dimensional data. The underlying distance function d(·, ·)

can be the Euclidean distances and the sources can be the boundary ofM,
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which implies that entities enter through the boundary, or simply none,

corresponding to the bounded differential privacy. Let us investigate a few

scenarios where the proposed notion is meaningful.

5.3.1 Example 1

Consider a situation where the dataset is constrained, in the sense that

not all multisets of entities from M is in D (recall that D is the set of

all possible datasets). Let us call the multisets that are not in D invalid

datasets. If those invalid datasets are captured by the restriction on δ-

neighbourhood, then essentially the two assurances, either under standard

neighbourhood or δ-neighbourhood, are equivalent. For example, consider

a D containing the locations of a cab sampled at periodic intervals, say

at time 1, 2, . . . , n, and is represented as a set of tuples where each tuple

(t, x) indicates that the cab is at location x on time t. Suppose D is to

be published by a mechanism A that is ε-differentially private under the

standard neighbourhood, then for any possible output r, any D, (t, x) and

(t, y), we have

Pr(A(D + {(t, x)}) = r) ≤ exp(ε)Pr(A(D + {(t, y)}) = r).

Recall that the above bound is required to hold only for datasets D1 =

D + {(t, x)} and D2 = D + {(t, y)} in D. Since each t is associated with

a unique tuple, we only need to consider replacing (t, x) in D1 by another

tuple with the same time (t, y).

We can take a step further. Due to speed limit of the cabs (which

is public knowledge), some datasets are invalid. For example, if D1 is a
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valid dataset, a location y that is far from x will lead to an invalid dataset.

Since the bound is not required to hold for the invalid datasets, thus, with

an appropriate metric and a sufficiently large δ, the assurance provided

under δ-neighbourhood is equivalent to the assurance provided under the

standard neighbourhood.

5.3.2 Example 2

Consider a dataset D that contains locations of entities belonging to a

particular group G, and is published ε-differential privately under the s-

tandard neighbourhood. An analyst wants to combine some background

information with the published data to infer whether a particular entity,

say Bob, is in that group G. From the background information, the analyst

obtained a set K of possible entities in the group and their corresponding

locations, and Bob’s information is also in the list K. If D is published

in clear, Alice could check where Bob’s location is in D and inferred with

high confidence of Bob’s membership in G. However, D is published with

differential privacy under standard neighbourhood. Hence, the published

data does not distinguish Bob’s location with any other entity’s in K, and

thus from Bob’s perspective, his privacy is preserved.

Now, Bob might be contended with a weaker assurance that, the

published data does not distinguish him from any entity in K who are

located 50 km near him. This is reasonable as Bob is quite sure that there

are entities similar to him w.r.t the background knowledge within 50 km

(that is, there exists an entity in the set K who is within 50 km). This
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assurance is captured by the δ-neighbourhood with δ = 50 km.

Consider another more resourceful analyst who has more accurate

background information on region near Bob. With respect to this back-

ground information, the nearest entities similar to Bob is 100 km away.

In this case, even if D is published by a ε-differential private mechanis-

m under 50 km-neighbourhood, Bob’s privacy is still protected but with

a weaker assurance similar to a 2ε-differential privacy under the standard

neighbourhood.

5.3.3 Example 3

Let us revisit the scenario in Example 2 and consider another data contrib-

utor Alice. Alice is an outlier in her region, and the background information

leads to a set of possible entities who are located far, say at 500 km, from

Alice. Although the data are published under 50 km-neighbourhood, there

is still protection on Alice’s privacy, but with a weaker (e.g. equivalent to

10ε differentially private) assurance.

Hence, we can also view the δ-neighbourhood as a redistribution of

“protection” that provides more protection to entities who are “typical”

in their proximity, but lesser protection to entities who are outlier in their

proximity.

5.4 Publishing Spatial Dataset: Range Query

In this section, we consider publishing the histogram of a spatial dataset

differential privately, so that subsequent range queries can be accurately
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answered. Although there are many known methods on publishing his-

tograms, it is not clear how the restriction imposed by δ-neighbourhood

can be exploited. We consider approaches that publish a linearly trans-

formed histogram. The sensitivity incurred by transformations under δ-

neighbourhood contains an interesting combinatoric structure that is not

present in the standard neighbourhood, which can be exploited to improve

accuracy. We also extend Theorem 1 of the pointset publishing method

described above in Chapter 4 to capitalize the bounded neighbourhood.

We show that the extension achieves high utility but it is not clear how to

generalize the method to 2 and higher dimensions.

5.4.1 Illustrating Example

Let us demonstrate how to capitalize the notion of δ-neighbourhood with

the following simple example in 1D. Consider a dataset containing (possibly

with repetitions) 4 possible values: {1
4
, 2
4
, 3
4
, 1}. Let ci be the number of

points with value i/4. Table 5.1 gives an 1-differentially private mechanism

under the standard neighbourhood that publishes the counts (c1, c2, c3, c4).

This mechanism is also 1-differentially private under 0.25-neighbourhood.

Now let us publish the counts as shown in Table 5.2, where a linear

transformation is applied before adding noise. Our main observation is

that, the sensitivity of publishing the values (a1, a2, a3, a4) is 1 with respect

to the 0.25-neighbourhood: a change of a single entity by a distance of 0.25

affects only ai for some i. Hence, a Laplace noise of Lap(1) is sufficient

to guarantee 1-differential privacy under 0.25-neighbourhood. However,
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under the standard neighbourhood, an entity changing from value 1
4

to 1

will decrease each a1, a2, a3 by 1, leading to a sensitivity of 3.

By publishing the a′i’s in Table 5.2, we can answer range queries

with higher accuracy through linear combination of the ai’s. For example,

when a query asks for the frequency counts in the range [0.4, 0.6], reporting

the value c′2 leads to an unbiased estimator with variance 8, which is the

variance of Lap(2). On the other hand, from Table 5.2, it can be estimated

by a′2−a′1 giving an unbiased estimator with a smaller variance of 4, which is

the variance of the sum of two independent Laplace noises, Lap(1)+Lap(1).

Such difference is more significant for larger query range. The comparisons

are shown in Table 5.3: row i of the table shows the noise variances when

the query range covers exactly i number of the counts ci’s.

Table 5.1: Publishing ci’s directly.

Actual Values Published values

c1 c′1 = c1 + Lap(2)

c2 c′2 = c2 + Lap(2)

c3 c′3 = c3 + Lap(2)

c4 c′4 = c4 + Lap(2)

Table 5.2: Publishing a linearly transformed histogram.

Actual values Published values

a1 = c1 a′1 = a1 + Lap(1)

a2 = c1 + c2 a′2 = a2 + Lap(1)

a3 = c1 + c2 + c3 a′3 = a3 + Lap(1)

a4 = c1 + c2 + c3 + c4 a′4 = a4 + Lap(1)

By exhaustive checking, it can be verified that, in terms of minimiz-

ing the total variance of all possible range queries, i.e. the weighted sum
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Table 5.3: Variance of the estimator for different range size.

Number of Number of possible Derived from Derived from

ci’s covered range queries Table 5.1 Table 5.2

1 4 8 4

2 3 16 4

3 2 24 4

4 1 32 2

of the variance in the rightmost column with the weights in the second

column in Table 5.3, the construction in Table 5.2 is optimal among all

linear combinations of c1, c2, c3 and c4 where the coefficients are binary, i.e.

either 0 or 1.

However, note that the above methods estimate the query results

using linear combinations of the published values. One could enforce the

constraints that all ci’s are non-negative, leading to a non-linear estimator.

Although this may create bias, it could lower the variance of the estimation.

5.4.2 Generalization of Illustrating Example

The method shown in Table 5.1 corresponds to the direct method of adding

noise to the frequency counts of an equi-width histogram, whereas Table

5.2 corresponds to a method that applies a linear transformation before

adding noise. Li et al. (LHR+10) studied such general form of publishing

under the standard neighbourhood. In this section, we extend it to δ-

neighbourhood. As illustrated in the example, the key difference of our

method is the lower sensitivity incurred under δ-neighbourhood.

Formally, a histogram HB(D) for a partition of the domain B =

{b1, . . . , bk} on D gives a column vector of frequency counts c = (c1, . . . , ck)
t
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where ci = |D∩bi|. We call each set in the partition B a bin. In particular,

an equi-width histogram corresponds to a partition whose bins are of the

same size. Since all the bins do not overlap, the effect of replacing an

entity in D affects frequency counts in at most two bins, and thus the

sensitivity of HB(·) is 2 under the standard neighbourhood. Hence the

mechanism of publishing c + Lap(2/ε)k is ε-differential private under the

standard neighbourhood.

We consider queries whose answers are linear combination of counts

in c, and can be expressed as qc where q is a row vector. For example, a

range query can be a summation of counts in selected bins. For a sequence

of m queries, let us express it as an m by k matrix Q and hence the answer

to the queries are the coefficients in Qc. As proposed by Li et al., to answer

the query Q, one may employ a strategy A, which is represented as a k by

n matrix, and publish

c̃ = Ac + Lap(4A/ε)
n,

where 4A is the sensitivity of the function that on input D, returns Ac.

From the published c̃, we want to estimate the query results. It can be

shown (Sil75) that the following estimate is unbiased:

A+c̃,

where A+ = (AtA)−1At is the pseudo-inverse of A, and the variance of

the estimator is

(4A)2trace(Q(AtA)−1Qt). (5.2)

Now, given Q, we want to find the A s.t. the variance is minimized. In the
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illustrating example, Q is a 10 by 4 matrix where each row corresponds to

a range queries, and

A =



1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1


(5.3)

As discussed by Li et al. (LHR+10), solving the optimization prob-

lem in general is difficult for standard neighbourhood, partly due to the fact

that the sensitivity 4A as a function of A, is non-differentiable. Likewise

it is difficult for δ-neighbourhood. Nevertheless, the formulation provide a

guideline in determining a good strategy.

5.4.3 Sensitivity of A

The sensitivity of A under δ-neighbourhood leads to an interesting combi-

natoric structure that is not present in the standard neighbourhood. Under

the standard neighbourhood, the sensitivity of A is

max
i,j∈Zn

{ ‖ai − aj‖1 }, (5.4)

where each ai’s is a column vector in A, that is, A = [a1, a2, . . . , an].

To understand the above expression, note that ‖ai − aj‖1 is the sum of

L1 difference when an entity change between bin i and bin j. Since the

sensitivity is the least upper bound on all possible pairs of neighbouring

datasets, we have the above expression.
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Under the δ-neighbourhood, the sensitivity of A is

max
(i,j)∈N

{ ‖ai − aj‖1 },

where N is a set induced from the requirement on δ-neighbourhood,

N = {(i, j) | ∃ x ∈ bi, y ∈ bj, s.t. d(x, y) ≤ δ}.

Compare to the expression in (5.4), the maximum is taken over a smaller

set N and thus could be smaller.

For the matrix A in the illustrating example, we haveN = {(1, 2), (2, 3), (3, 4)}

under 0.25-neighbourhood, and thus the sensitivity of A is 1; whereas the

sensitivity under the standard neighbourhood is 3, as ‖a1 − a4‖1 = 3.

Graphical representation: We can capture the relationship between the

sensitivity of A and N using a graph when the entries in A are binary, i.e.

either 0 or 1. Let us treat each bin as a vertex in the graph. Hence there

are k vertices v1, v2, . . . , vk. There is an edge between two vertices vi and

vj iff (i, j) ∈ N .

For a matrix A, since the entries are binary, each row correspond-

s to a subset of bins. Hence, A can be viewed as a collection of sets

{a1, a2, . . . , am} where each set in A is a set of bins. For an edge (vi, vj),

we say it is being cut by a set a iff

(vi ∈ a ∧ vi 6∈ a) ∨ (vi 6∈ a ∧ vi ∈ a).

For each edge e, let us call the number of sets in A that cut the edge e

the number of cuts on e, denoted as C(e). Now, the sensitivity of A is the

maximum number of cuts over all edges, i.e. maxeC(e).
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Note that given a particular A of sensitivity 1, it may be possible

to insert a set into A without increasing its sensitivity. That is, it may

be possible to find a subset that only cuts edges that have not been cut

by subsets in A. Since sensitivity is not increased, it would not hurt to

add this set into A which in turn publishes this extra information1. This

observation leads to a simple greedy algorithm that improves a strategy:

simply add rows to A until it is not possible to do so without increasing

the sensitivity.

For instance, consider a 2D histogram with bins {bi,j | i, j ∈ Zn},

with neighbourhood N = {((i, j), (i′, j′)) | |i − i′| + |j − j′| ≤ 1} as

shown in Figure 5.1 where each bin is a bullet(blue), and the neighbours

are connected by a dotted(red) line. Consider the set A that contain-

s ai,j = {b2i−1,2j−1, b2i−1,2j, b2i,2j−1, b2i,2j}, for i, j = 1, 2, . . . n
2
, that is,

each ai,j is a dash(black) square that contains four blue vertices. Note

that the dash(black) squares do not “cut” all the neighbouring edges, and

therefore, if we adds a′i,j = {b2i,2j, b2i,2j+1, b2i+1,2j, b2i+1,2j+1} to A, for

i, j = 1, 2, . . . n
2
− 1, (i.e. the solid(blue) squares containing 4 vertices

each), the sensitivity remains the same.

5.4.4 Evaluation

1D range query

The earlier example described in Section 5.4.1 can be generalized to publish

linear transformation of histograms with n bins. The transformation A is a

1One may see this from expression (5.2), where adding a row to A without increasing
4A will not increase the variance.
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Figure 5.1: Demonstration of adding a′ to A without increasing sensitivity.

lower triangular matrix of size n×n and the entries on and below diagonal

are 1. Essentially, row i of A cumulates the counts for bin 1 to bin i. Let

us call this strategy Cn. The answer to a range query that covers bin i to

j can be obtained by subtracting the j-th row and (i− 1)-th row. We are

interested in how accurate Cn performs in answering 1D range queries, i.e.

in answering the set of all range queries, Q.

Li et al. (LHR+10) consider the maximum error and total error of

three strategies: Hn which queries a series of equi-width histograms (HRM-

S10), Yn which is a Haar wavelet transformation matrix (XWG10) and the

identity matrix In. Figure 5.2 shows H4, Y4 I4 and C4. The maximum er-

rors refers to the maximum variance among all row vectors of Q, and total

errors refers to the sum of the variance. The errors of Hn, Yn and In are

as shown in Table 5.4. The constructions do not exploit δ-neighbourhood,

and the errors of Hn, Yn and In are the same under either standard neigh-
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bourhood or δ-neighbourhood.



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 0 1 1
1 1 1 1




0 0 1 -1
1 -1 0 0
1 1 -1 -1
1 1 1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1



H4 Y4 I4 C4

Figure 5.2: Strategy H4, Y4, I4 and C4.

Cn benefits from δ-neighbourhood, in the sense that the sensitivity

4Cn is lower for smaller δ. The corresponding maximum error and total

error of Cn,δ is also shown in Table 5.4. When δ = n, it performs similar to

identity matrix, but when δ is small, we can reduce the errors by exploiting

the δ-neighbours.

Table 5.4: Max and total errors.

Hn Yn In Cn,δ

max error Θ( log
3n
ε2

) Θ( log
3n
ε2

) Θ( n
ε2

) Θ( δ
ε2

)

total error Θ(n
2log3n
ε2

) Θ(n
2log3n
ε2

) Θ(n
3

ε2
) Θ(n

2δ
ε2

)

2D range query

We consider mechanisms that answer 2D range queries with fixed range size

on a datasets D where the domain is [0, 1)2. A 2D range query of size s

asks for the number of points in the region [x− s
2
, x+ s

2
)× [y− s

2
, y+ s

2
). We

derive an algorithm as described in Section 5.4.3, we compare our algorithm

with the equi-width histogram.

An equi-width histogram in 2D correspond to the partition B =
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Figure 5.3: The 2D location datasets.
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Figure 5.4: The mean square error of range queries in linear-logarithmic
scale.

{b1,1, b1,2, . . . , bk,k}, where each bin bi,j is a square region [ i−1
k
, i
k
)× [ j−1

k
, j
k
).

Let c̃x be the published frequency counts in bin bx.

Given a range query q, we estimate the answer to q as:

∑
bx∈B

(
|bx ∩ q|
|bx|

cx

)
. (5.5)

where |bx| is the area of bx. Note that if the query partially intersect with

a bin, that bin contributes proportionally to the answer.

Our strategy is constructed as illustrated by Figure 5.1, where a

series of equi-width histograms is to be published. Each histogram is shifted

by an offset δ from the previous histogram in the series. Specifically, let

B0, B1 . . . Bm−1 be the partitions correspond to the histograms, where m =

d 1
kδ
e and Bx is a partition {bx1,1, bx1,2, . . . , bxk+1,k+1} with each bxi,j is a square
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region [ i−2
k

+ xδ, i−1
k

+ xδ)× [ j−2
k

+ δ, y + j−1
k

+ xδ).

To answer a range query q, the estimation in equation (5.5) is used.

Note that a Laplace noise of Lap(4) is sufficient to guarantee ε-differential

privacy under δ-neighbourhood.

We conduct experiments on two 2D datasets. Dataset 1 contains

the locations of Twitter users in the world (web) The dataset contains

over 193,841 Twitter users’ data from the period of March 2006 to March

2010. Dataset 1 (KMD+10) contains 164,860 tuples collected from tags

that continuously record the location information of 5 individuals. We

normalize the data points to the space M = [0, 1]2, and Figure 5.3(a) and

Figure 5.3(b) shows 5% of the points randomly selected from the respective

datasets.

We consider two cases where δ = 0.001 and δ = 0.0001, which

translate to a bound of 40 and 4 kilometers for dataset 1 respectively.

For comparison purpose, we empirically choose the optimal bin width

for each query range, as shown in Table 5.5. Figure 5.4 shows the details

of the experiment result.

Table 5.5: Query range and corresponding best bin-width for the Dataset
1.

Query range Best k Mean Square Error

Q1 0.001 0.001 1.6991

Q2 0.01 0.01 39.146

Q3 0.1 0.025 2411.7

Q3 0.2 0.025 14434

Q4 0.4 0.025 716068
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5.5 Construction for Dynamic Datasets

We now investigate publishing of dynamic datasets. We consider situations

where information on entities are collected periodically over time, say at

discrete time 1, 2 . . . Occasionally, statistics are to be published. Intuitive-

ly, with limited budget, it is impossible to continuously publish meaningful

information indefinitely, in fact, Dwork et al. (DNPR10) shown a negative

result under a setting that captures this intuition. However, in some sce-

narios, the entities are not required to contribute at all collection times,

and is likely to leave within a short period. With such restriction, it should

be now possible to continuously publish with low noise indefinitely, as effect

of information contributed earlier would diminish in time.

5.5.1 Publishing Dynamic Datasets

Formally, let a sequence x1, x2, . . . be the data contributed by an entity,

where each xi ∈ U + {⊥} is the data contributed at time i, with U be-

ing the domain of the contributed data, and ⊥ being a special symbol

indicating that the entity is not contributing at that time. Let us call a

sequence containing only the symbol ⊥ a null sequence. A dataset D is

a set of the aforementioned sequences. We assume that every entity in D

has contributed a data in U at some time, and thus D does not contain

null sequence. The prefix of a sequence x contains data contributed by the

entity up to time n, denoted x[1..n], where n is the length of the prefix. Let

us denote D[1..n] the set of such prefixes in D that are not null sequence.

In addition, denote Dn the set of all n-th elements of the sequences in D
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that is not ⊥, that is, Dn contains all data contributed at time n.

At certain time, say time t, some information on Dt is to be pub-

lished. WLOG, we assume that information is published at every time, and

let Ai be the publishing mechanism employed at time i. Hence, the data

published are A1(D1),A2(D2), . . .. Combining all the data published on

and before time n, we can treat the whole process of applying mechanisms

A1,A2, . . . ,An as a single mechanism A∗n that operates on D[1..n].

5.5.2 δ-Neighbour on Dynamic Dataset

Given two datasets, D and D′, under the standard neighbourhood, they

are neighbours if, and only if they differ by one entity. That is, there is

a sequence x and y s.t. D + {x} = D′, or D + {x} = D′ + {y}. This is

essentially the same notion of neighbourhood for user-level privacy studied

by Dwork et al. (DNP+10; DNPR10).

For two sequences x = 〈x1, x2, . . .〉 and y = 〈y1, y2, . . .〉, let us define

d(x,y) to be the value is − it where is is the smallest index s.t. xis 6= yis

and it is the largest index s.t. xit 6= yit . That is, it is the length of the

smallest consecutive subsequence that contains all the differences. We take

the null sequence as the source. Hence, D and D′ are δ-neighbourhood

if, and only if D + {x} = D′, or D + {y} = D′ + {z}, for some y, z s.t.

d(y, z) ≤ δ, or some x s.t. d(x, ⊥̂) where ⊥̂ denotes the null sequence.
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5.5.3 Example 1

One situation where publishing dynamic dataset can benefit from δ-neighbourhood

is when dataset is constrained, in the sense that the sensitive information

of entities only last for a short period. Consider a regional flu response

organization may want to continuously collect daily information on the

health conditions of visitors, and release the information occasionally. Al-

ice, wants to infer whether Bob has been to the region based on the released

information. If the publishing mechanism A is ε-differential privacy, then

Alice’s inference is bounded by:

Pr(A(D0 + {x}) ∈ R) ≤ exp(2ε)Pr(A(D0) ∈ R),

where x is the health information of Bob. If all visitors must leave within

14 days, then x must near the source, i.e. d(x,⊥) < 14 days, otherwise the

dataset is invalid. Hence, under this constraint on the datasets, the guar-

antee under the stand neighbourhood and δ-neighbourhood are equivalent.

5.5.4 Example 2

Let us revisit Example 1. Suppose the authority allows some visitors to stay

for a longer period, say 28 days, even if the dataset is published under 14-

neighbourhood, there is still protection. If Bob indeed stayed for 28 days,

the bound is relaxed to exp(2ε). Hence, similar to the spatial datasets,

the protection is being redistributed with more protection to entities with

shorter stay.

72



5.6 Sustainable Differential Privacy

If each mechanism Ai is ε-differentially private under either notions of

neighbourhood, then the mechanism A∗n is (nε)-differentially private under

the respective neighbourhood. However, for δ-neighbourhood, we should

able to “reuse” the budget spent on much earlier published data. This

observation is formulated in the following theorem:

Theorem 4 Let D be a dynamic dataset with the mechanism A∗n, A1,

A2, . . .An as defined above in Section 5.5. If the mechanism Ai is εi-

differentially private under the standard neighbourhood for each i ∈ {1, . . . , n},

and

δ∑
i=1

εk+i ≤ ε, for k ∈ {0, 1, . . . , (n− δ)},

then A∗n is ε-differentially private under δ-neighbourhood.

Proof Consider two datasets D and D′, where D′ + {y} = D + {x} and

d(x,y) ≤ δ. Let is be the smallest index at which x and y differ. Consider

an output a = 〈a1, a2 . . . an〉 of A∗n(D), we have the probability that A∗n

gives the same output on dataset D′ as:

Pr(A∗n(D′) = r) =
n∏
i=1

Pr(Ai(D′i) = ai)

≤

(
is+δ−1∏
i=is

exp(εi)

)
·

(
n∏
i=1

Pr(Ai(Di) = ai)

)

= exp

(
is+δ−1∑
i=is

εi

)
· Pr(A∗n(D) = r)

≤ exp(ε)Pr(A∗n(D) = r)
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Similarly argument holds for any pair D and D′ where D′ = D + {x}

and x is near the source. Therefore, A∗n is ε-differentially private under

δ-neighbourhood.

5.6.1 Allocation of Budget

The privacy requirement ε is also called privacy budget as it can be divid-

ed and allocated to a few mechanisms, and yet the composition of these

mechanisms still meet the ε requirements. With respect to a mechanism,

different budget leads to different level of error introduced by the mech-

anisms. We assume that there is real valued function Err(·) associated

with a mechanism, that gives the error of the mechanism in term of the

budget. For instance, the error of the Laplace mechanism is often taken as

the expected mean square error, that is, 1
ε−2 .

Theorem 4 states the condition on εi’s for A∗n to be differentially

private. Note that there are many ways to allocate the εi’s and yet the

condition is meet, and different allocations give different total error. In this

section, we focus on finding a good budget allocations with an objective of

minimizing the total error subjected to the condition in given by Theorem

4.

Let Erri(·) to be error function of the mechanism Ai. In particular,

we are interested in error function of the form: Erri(ε) = wiε
−2 where

wi is some non-negative weight indicating the level of significance of the

published data.

We study two settings: the offline setting where all wi’s are known,
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and online setting where the value of wi is only known at time i and the

budget εi has to be committed before time i+ 1.

5.6.2 Offline Allocation

The offline allocation problem is as follow:

Problem 1 Offline Budget Allocation

Given: δ ∈ Zn,w = 〈w1 . . . wn〉 ∈ Rn
≥0

Find: 〈ε1, ε2, . . . , εn〉

Minimize:
n∑
i=1

Erri(εi) =
n∑
i=1

wiε
−2
i

Subject to:
δ∑
i=1

εk+i ≤ ε, for k = 1, 2, . . . , (n− δ).
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Figure 5.5: Improvement of offline version for δ = 4.

Note that we allow wi = 0 for some i, which indicates that no data

are published at time i.

The above is a convex optimization problem whose solution can be

found using existing optimization solvers, for example, a SDPT3 solver (TT-

T99; TTT03). The allocation eI = 〈 ε
δ
, . . . , ε

δ
〉 is in the feasible region of the
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problem, and will be a good initial solution for the solvers. Let us denote

the solution of Problem 1 eO.

Figure 5.5 shows the comparison of errors between eI and the opti-

mal budget allocation eO, where w is a binary vector and each wi ∈ {0, 1}

is independently randomly chosen to be 1 with probability p = 0.5 and

p = 0.75, respectively.

5.6.3 Online Allocation

In the online allocation problem, only w1 . . . wi is available at time i. We

consider the scenarios where W as a random variable that follows some

distribution known to the analyst. We give an online algorithm as follows:

given the committed budget allocation ε1 . . . εi−1 and the observed weight

vector w1 . . . wi at time i, the analyst find the εi that minimizes the expected

total error w.r.t. the distribution of W. That is, consider Problem 2 as

follow:

Problem 2 Constrained Offline Allocation

Given: δ ∈ Zn, e′ = 〈ε′1, ε′2, . . . , ε′m〉 ∈ Rm
≥0,

w = 〈w1 . . . wn〉 ∈ Rn
≥0

Find: 〈ε1, ε2, . . . , εn〉

Minimize:
n∑
i=1

Erri(εi) =
n∑
i=1

wiε
−2
i

Subject to:
δ∑
i=1

εk+i ≤ ε, for k = 1, 2, . . . , (n− δ);

εk = ε′k, for k = 1, 2, . . . ,m.

Let E(e′,w) be the sum of error
∑n

i=1 Erri(εi) of the solution of
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Problem 2, then the goal of the analyst is to find εi that minimizes:

∑
w

(Pr(W = w)E(ε1 . . . εi−1, εi,w). (5.6)

The online allocator repeat the step at each time i, and let us denote

the output solution as eX .

5.6.4 Evaluations

We evaluate the performance of the online algorithm, comparing to the

offline optimal solution and eI . We consider ε = 1, and δ = 4 or 7. For each

setting, we repeat the experiment for 1,000 times and record the average

error of the three solutions.

We consider the following approximation of the online allocator: at

time i, 1,000 w with prefix w1 . . . , wi are sampled from the distribution of

W, and Equation (5.6) is computed for εi = 0.01 . . . 1 on the 1,000 sampled

w. Then the εi with the smallest error is taken as the allocated εi.

We consider a w where each wi ∈ {0, 1} is taken to be 1 with prob-

ability p = 0.5. Figure 5.6 shows the errors of eO, eX and eI for δ = 4, and

Figure 5.7 shows errors when δ = 7.

Figure 5.8 consider a w where each wi ∈ {0, 1} is taken to be 1 with

probability p = 0.75, and Figure 5.9 consider a w where each wi ∈ {0, 1, 2}

is taken to be 0, 1 and 2 with equal probability.
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Figure 5.6: Comparison of offline and online algorithms for δ = 4, p = 0.5.

10 12 14 16 18 20 22 24 26 28 30
0

100

200

300

400

500

600

700

800

Length of dataset: n

S
um

 o
f S

qu
ar

e 
E

rr
or

 

 

eO

eI

eX

Figure 5.7: Comparison of offline and online algorithms for δ = 7, p = 0.5.

5.7 Other Publishing Mechanisms

For some mechanisms, it is easier to apply the notion of δ-neighbourhood.

In this Section we analyze their performance under δ-neighbourhood.

5.7.1 Publishing Sorted 1D Points

In Chapter 4 we proposed a method of publishing low-dimensional sorted

points. We show that, the sensitivity of publishing n points in the domain
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Figure 5.8: Comparison of offline and online algorithms for δ = 4, p = 0.75.

of [0,m] is m, independent to the value of n. Now let us consider the

sensitivity of the method under δ-neighbourhood.

Recall that in Theorem 1, we show that the sensitivity of the pub-

lished pointset is bounded by A− xi, where A is the value of the replaced

point. Under δ-neighbourhood, the value ofA − xi is reduced to δm and

therefore the Laplace noise required to achieve ε-differential privacy is re-

duced from Lap(m/ε) to Lap(mδ/ε). Thus, there is significant improve-

ment when applying the publishing method as it is. Figure 5.10 shows the

improvement for expected mean square error for range query with different

size.

Although the error is significantly decreased, it is not clear how

to generalize the construction to higher dimensions. The method of using

locality preserving transformation would not help since here we are required

to preserve locality in the “difficult” direction.
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Figure 5.9: Comparison of offline and online algorithms for δ = 4, and wi
is uniformly randomly taken to be 0, 1 or 2.
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Figure 5.10: The comparison of range query error over 10,000 runs.

5.7.2 Publishing Median

Sometimes only aggregate information of a dataset, e.g. the median of the

pointset, is required. To publish the median of a set of 1D points in [0,m],

a noise of Lap(m/ε) is required, although for most database instances,

the “local sensitivity” is low, i.e. changing any element in that particular

database instance will not significantly change the value of the median.

Nissim et al. (NRS07) proposed a method that adds noise proportional

to the “smooth sensitivity” (a smooth bound of the local sensitivity) of

a database instance. He showed that this mechanism has high accuracy

when the smooth sensitivity is low.
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Figure 5.11: Noise required to publish the median with different neighbour-
hood.

The δ-neighbourhood can further reduce the noise requirement when

“local sensitivity” can be still large. With δ-neighbourhood, we can reduce

the global sensitivity, and thus bound the smooth sensitivity for some worst

case scenarios. Figure 5.11 shows the experiment result on a synthesized

dataset with random numbers generated under the exponential distribution

and then scaled to [0, 1]. For each size of the dataset, we repeat the process

300 times and the average smooth sensitivity is recorded under different

neighbourhood definitions.

5.8 Summary

In this chapter, we proposed to relax differential privacy by adopting a

narrowed definition of neighbourhood which takes into account of the un-

derlying distance of the entities. Although the idea is simple, for some

applications, it is not clear how to exploit the relaxation to achieve higher

utility. We consider two types of datasets, spatial datasets and dynamic

datasets, and show that the noise level can be further reduced by construc-

tions that exploits the δ-neighbourhood. We give a few scenarios where

δ-neighbourhood would be more appropriate, and we believe the notion
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provides a good trade-off for better utility.
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Chapter 6

Secure Sketches with

Asymmetric Setting

In this chapter and Chapter 7, we consider the biometric authentication

problem.

In this chapter, we extend the secure sketch constructions to han-

dle the asymmetric setting: in the enrollment phase, multiple biometric

samples are obtained, whereas in verification, only one sample is acquired.

This is a commonly deployed setting that can improve the authentication

accuracy without increasing the process time in the verification phase. In

this setting, d contains more information than d′. Therefore, the formu-

lation of secure sketch under the asymmetric setting is different from the

symmetric setting. Let us first define the formulation, then analyze the

security and privacy impacts of different constructions with two biometric

representations.
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6.1 Asymmetric Setting

We consider the biometric data d submitted by a user consists of two com-

ponent b, v, where b ∈M is information of the biometric data, and v is the

auxiliary information, which assists in improving the authentication accu-

racy. For example, b is the average value of the features, and v indicates

the indices of the “consistent” features, similar to the version considered

by Park et al. (PPJ08) and Moon et al. (MYCC04).

6.1.1 Extension of Secure Sketch

In the asymmetric secure sketch, the biometric data d submitted for enroll-

ment is different from d′ (recall that d′ is the data submitted for verification,

as described in Chapter 2). Let D be the space of d, and M be the space

of d′, and we can extend the definition of secure sketch as follow:

Asymmetric secure sketch. An asymmetric secure sketch scheme con-

tains two algorithm Enc,Dec, where Enc : D → {0, 1}∗ is an encoder and

Dec : M× {0, 1}∗ → D is a decoder such that Dec(d′,Enc(d)) = d if the

distance of d and d′ is less than some threshold t w.r.t. an underlying

distance function.

In this case, d can be reconstructed during verification and thus can

be used as the consistent secret.
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6.1.2 Entropy Loss from Sketches

The security of a sketch scheme relies on how much useful information is

leaked from the sketch. Recall the entropy bound for sketch in symmetric

setting given by equation (2.2).

In the asymmetric setting, we take the following as the information

leakage,

H∞(d)− H̃∞(d|S) (6.1)

It can be shown that a bound similar to (2.2) holds:

H∞(d)− H̃∞(d|S) ≤ LS −H∞(R) (6.2)

where S = Enc(D) is the asymmetric sketch and R is the recoverable

randomness invested in asymmetric sketch construction.

To further illustrate how this bound is different from the secure

sketch under the symmetric setting, let us first describe the constructions

for a concrete underlying matrix for the utility measurement.

6.2 Construction for Euclidean Distance

In this section, we give a construction for Euclidean distance. We first con-

sider one-dimensional data where during enrollment of d, multiple integer

samples in [0, n) are acquired. Two integers (b, v) are then extracted from

the multiple scans, where the average sample b ∈ [0, n) is the mean of the
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multiple samples and the auxiliary information v ∈ [1, q] is a threshold.

During the verification, a sample d′ in [0, n) is acquired. d′ is consider to

be from same identity who enrolls d if |d′ − b| < v, i.e. the close relation

C = {(d, d′) | |d′ − b| < v}. The choice on the value of v decides the

performance: a larger v gives lower false reject rate but lowers the key

strength.

(a) Sketch with same length ` = 2v − 1

(b) Sketch with different lengths

Figure 6.1: Two sketch schemes over a simple 1D case.

Let us first describe a straightforward scheme s1 as follow: (1) Enc1

on input d = (b, v) outputs the set S = {c | c ∈ [0, n) and c ≡ b( mod 2v−

1)}; (2) Dec1 on d′ finds the point b in S that is closest to d′, and outputs

(b, v). It is easy to verify that for all d, d′ ∈ C, Dec1(d
′,Enc1(d)) = d.

Essentially, scheme s1 divides [0, n) into intervals of length ` = 2v − 1

where b is at the center of one of the intervals as shown in Figure 6.1(a).

Since the length is given in clear, the auxiliary information v is revealed.

Now, we describe our proposed scheme s2. The main idea of our

construction is to partition the domain [0, n) into non-uniform intervals,

in which (b − v, b + v) is one of the intervals, as shown in Figure 6.1(b).

Given d = (b, v) , the encoder Enc2 of our proposed scheme s2 constructs
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the sketch S in following steps:

1. Let G be the set {b− v, b+ v};

2. While min(G) > 0 add min(G)−2r into S, where r is randomly draw

from [1, q];

3. While max(G) < n add max(G) + 2r into S, where r is randomly

draw from [1, q];

4. Sort G in ascending order and let the sorted list be 〈g1, . . . , gk〉, note

that g1 is negative and gk > n;

5. return S = 〈g1, g2 − g1, g3 − g2, . . . , gk − gk−1〉.

The Dec2 algorithm on d′ and S, reconstructs the setG = 〈g1, g2, . . . , gk〉,

and finds the first i such that gi > d′ (note that i > 1 since g1 < 0), then

returns ((gi−1 + gi)/2, (gi − gi−1)/2).

The correctness (i.e. Dec2(d
′,Enc2(d)) = d) of the scheme can be

verified as follow: if d′ and d are from the same identity, i.e. (d, d′) is in

C, then b − v < d′ < b + v and since there is no element in G falls in the

interval (b − v, b + v). Thus, for Dec2, we have gi = b + v, gi−1 = b − v,

which will give us Dec2(d
′,Enc2(d)) = d as required.

6.2.1 Analysis of Entropy Loss

The following analysis gives a bound on the entropy loss and comparison

on privacy for scheme s1 and s2. Recall that such bound holds for any

distribution of X.
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Lemma 5 The entropy loss of the sketch produced by s2 is at most 1 +

2 log q.

Proof Let k be the number of elements in G, thus, the sketch contains k

elements. Each of the gi+1−gi is an even number in [2, 2q] and thus can be

describe with log q bits, and g1 is in (−2q, 0] and thus can be described with

log 2q bits. While Dec2 reconstructing G from d′ and S, the randomness

used in generating the k− 2 intervals can be recovered. By equation (6.2),

the entropy loss is at most log 2q+ (k− 1) log q− (k− 2) log q = 1 + 2 log q.

For the scheme s1, since the number of bits required to describe

the sketch is |v| + |b mod 2v|, and there is no randomness involved, the

entropy loss is bounded by |v|+ |b mod 2v|. Note that v is in range [1, q],

|v| ≤ log q, and |b mod 2v| ≤ log 2q, thus, the entropy loss of scheme s1 is

bounded by 1 + 2 log q.

While the entropy loss over the secret d are the same for schemes

s1 and s2, scheme s1 reveals the auxiliary information v in clear, whereas

scheme s2 hides the auxiliary information by mixing it with other secrets in

the template. In this section we will analyze the impact of such difference.

Let us assume that there are a threshold t and a small number ε such that

for two biometric data d1 = (b1, v1) and d2 = (b2, v2) obtained from the

same identity but during two enrollments, we will have Pr(|v1−v2| > t) < ε,

and for two biometric data d1 = (b1, v1) and d2 = (b2, v2) obtained from

two different identities, Pr(|v1 − v3| < t) < ε.

Consider an adversary who wants to determine whether two sketch-

es were generated using the same biometric (but with different noise), as
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considered by Simoens et al.(STP09).

For scheme s1, there is an effective adversaryAs1 in guessing whether

d1 and d2 are from the same identity: it outputs “yes” if and only if |v0 −

v1| < t. In this case, the probability Pr(a′ = a | a = 0) ≥ 1 − ε and

Pr(a′ = a | a = 1) ≥ 1− 2t−1
q
− ε.

For scheme s2, One possible strategy of As2 is to count the number

of “similar intervals” between S1 and S2, and output “yes” if the count is

larger than some threshold, otherwise outputs “no”. Two intervals (c0, c1),

(c′0, c
′
1) are similar if |(c1−c0)−(c′1−c′0)| < 2t and |(c1+c0)/2−(c′1+c′0)/2| <

t, i.e. the lengths and centers of the two intervals are within the threshold

t.

The intuition of the above strategy is that, when a = 0, the count is

expected to be larger. However, when n is large and q is small, the domain

[0, n) is divided into many intervals and this will reduce the effectiveness

of the strategy of As2 . Thus, the attack will depends not only on the

parameter q, t but also on n.

Figure 6.2 shows our experiment on how the parameters will affect

the privacy protection: we implement the scheme s2 and for different values

of n and q with t = 1 and ε = 0.001, we randomly generated 106 biometrics

d1, construct Enc(D ∪ d1), Enc(D ∪ d2) with different randomness then

count the number of similar intervals, where d2 is a noisy version of d1 as

described above. The histogram of the counts is shown by the red dotted

line in the figure. We then randomly generated 106 pairs of d1, d2, construct

S1 and S2 and count the number of similar intervals, where d1 and d2 are
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two different biometric templates as described above. The histogram of the

counts is shown by the blue solid line in the figure.

(a) n = 100, q = 10 (b) n = 1000, q = 10

(c) n = 1000, q = 5 (d) n = 10000, q = 5

Figure 6.2: The histogram of number of intervals for different n and q.

For example, when n = 1000, q = 5 as shown in Figure 6.2(d), the

best guess without additional information for As2 is to output “no” when

there are no more than 21 similar intervals. In that case, approximately he

can guess with probability ps2 < (0.52 + 0.58)/2 = 0.55, whereas As1 can

guess with ps1 > 0.9. When n gets larger and q gets smaller, the ps2 will

get closer to 1
2
.
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6.3 Construction for Set Difference

Another commonly used distance metric is the set difference, and we will

give a construction under the asymmetric setting of fuzzy vault scheme

(JW99)1 to handle the set difference, where a biometric sample can be

represented as a set of elements in a space Zp. Under asymmetric set-

ting, multiple sets are enrolled and two sets can be extracted: a set d =

{x0, x1, . . . , xm−1} where xi ∈ Zp of the elements appeared, and a set V

denoting the importance, derived by the consistency, of each element.

Let us first describe the fuzzy vault scheme(JW99):

1. Randomly pick a polynomial F of degree m− 2t− 1 in field Zp;

2. Construct a set (1, y1), (2, y2), . . . , (p, yp) in this way:. For each i, if

i ∈ d, then yi is chosen to be F (i), otherwise, randomly picks an

element from Zp − {F (i)} to be yi.

3. output S = {(1, y1), (2, y2), . . . , (p, yp)}.

Given a d′, the reconstruction process attempts to find the polyno-

mial F using the sampled points {(i, yi)|i ∈ d′}, and then reconstruct d.

When there is enough common points in d and d′, the polynomial F can

be reconstructed. Information on d are hidden as an adversary does not

know which samples in the sketch S are from d. The samples in S are call

the “chaff points”.

This scheme can be considered as a special case where all the ele-

ments are equally important. The main idea of our construction is to extend

1There are many enhanced scheme over the fuzzy vault scheme by Juels et al., our
technique can also be applied to the enhanced schemes in similar way.
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the above scheme by mapping the more consistent elements to more points

on the polynomial F so that they will contribute more roots in verification.

6.3.1 The Asymmetric Setting

In the asymmetric setting, we consider biometric representation which t-

wo pieces of information d = (b, v) are extracted during enrollment, where

d = {x0, x1, . . . , xm−1} is a vector of m elements with xi ∈ Zp, and v =

{(x0, v0), (x1, v1), . . . , (xm−1, vm−1)} is the corresponding weight of each el-

ements, with each vi ∈ Zq. A biometric template d′ = {x′0, x′1, . . . , x′k−1} is

close to d if the sum of the weights of the common elements is larger than

a threshold t, i.e.
∑

v∈W v > t where W = {v|∃x, (x, v) ∈ V, x ∈ (d ∩ d′)}.

The main idea of our construction is to extend the above scheme by

associating the more important elements to more points to the polynomial

F so that they will contribute more roots in verification. Let H(x, y) =

(x + qy) be a function on Zq × Zp → Zpq. Given xi with weight vi, we

will first compute the set Si = {H(0, xi), H(1, xi), . . . , H(q − 1, xi)}. From

Si, we randomly pick vi elements without replacement and let S ′i be the

set of the vi elements picked. Instead of adding (xi, F (xi)) to S, we add

(H(j, xi), F (H(j, xi))) to R for H(j, xi) ∈ Si, we add (H(j, xi), yj,i) to R for

H(j, xi) ∈ (Si−S ′i) where ym,i is randomly chosen from Zp−{F (H(j, xi))}.

To prevent adversary from finding out the X from the chaff points, we

need to create chaff points associate with the q values in the similar way.

Specifically, the construction procedure of fuzzy vault in asymmetric setting

is as follow:
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1. Randomly pick a polynomial F of degree g−2t′−1 in field Zpq, where

g =
∑

v∈V (v) and t′ = (g − t);

2. Starts with a set G = X and an empty set S;

3. For i = 0 tom−1, compute Si = {H(0, xi), H(1, xi), . . . , H(q−1, xi)},

and uniformly randomly pick S ′i from set {X|X ∈ P(Si), |X| = vi},

where P(Si) is the powerset of Si and |X| is the size of set X. Add

(H(j, xi), F (H(j, xi))) to S for H(j, xi) ∈ Si and add (H(j, xi), yj,xi)

to S for H(j, xi) ∈ (Si − S ′i) where yj,xi is randomly chosen from

Zp − {F (H(j, xi))}.

4. For i = m to r, randomly pick xi /∈ G, add xi to G, compute

Si = {H(0, xi), H(1, xi), . . . , H(q − 1, xi)} and add (xi, yi) to S,

(H(j, xi), yj,xi) to S for H(j, xi) ∈ (Si) where yj,xi is randomly chosen

from Zp − {F (H(j, xi))}.

5. Output S.

During verification, given a d′ = {x′0, x′1, . . . , x′k−1}, Dec first com-

putes the set S ′ of {H(j, x′i)|x′i ∈ d′, j ∈ [0, q − 1], then attempts to find

the polynomial F of degree g − 2t′ − 1 with points in the set. If such F is

found, the original d can be reconstructed.

6.3.2 Security Analysis

Now let us bound the entropy loss of sketch constructed by the above

scheme. The recoverable randomness involved is the coefficients of the

polynomial F , as well as the generated yj,i. Thus the amount of randomness
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is (g− 2t′− 1) · log p+ (qp− g) · log(p− 1). By setting the parameter r = p,

we can omit the H(j, xi) and have a compact description of the sketch.

Hence, the size of sketch is pq · log p and the entropy loss can be bounded

as follow:

H∞(d)− H̃∞(d|S)

= pq log p− (g − 2t′ − 1) log p− (qp− g) log(p− 1)

= pq log
p

p− 1
+ g log

p

p− 1
+ (2t′ + 1) log p

≤ q log e+ g log
p

p− 1
+ (2t′ + 1) log p

When q is small, and p is large, the bound is similar to symmetric

case. However, when q is large, i.e. when the auxiliary information has

high entropy, and the amount of information leak can be high.

In the work by Juels et al. (JW99), the security strength is given

by the number of spurious polynomials, i.e. polynomials that have degree

m−2t−1 and m roots in the sketches. For the symmetric scheme described

above, with probability 1− µ, there exists at least µ
3
p(m−2t−1)−m( r

m
)m spu-

rious polynomials.

Similarly, in the asymmetric scheme, with probability 1−µ, there will

be at least µ
3
p(g−2t

′−1)−g( qr
g−2t′−1)g−2t

′−1 polynomials with degree g− 2t′− 1

and g roots. Let us call these polynomials in asymmetric setting the spu-

rious polynomials. However, the analysis of the spurious polynomials is

not sufficient for asymmetric setting as the likelihood of a spurious poly-

nomial to be F depends on the distribution of the roots. Let us call a

spurious polynomial a candidate polynomial if the number of distinct Ci’s

that contains the roots of the polynomial is less than a threshold a.
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The probability that a random spurious polynomial is a candidate

polynomial can be view as a variance of the birthday attack analysis. For

example, the probability of the case when q = 2 (i.e. the consistent elements

are twice important as the inconsistent) is as follow:

1(
2r
g

) g/2∑
x=g−a

(
2g−x ·

(
r

g − x

)(
g − x
x

))
.

For r = p = 104, t = 2,m = 22 there is 9.7629 × 1033 spurious

polynomials with probability 1− 1/104 in symmetric setting; and with g =

35 and a = 32, (i.e. the sum of weights is 35, and polynomials with weight

higher than 32 are candidate polynomials). There is in total 2.6996× 1047

spurious polynomials with probability 1−1/104. Note that the reason it has

more spurious polynomials than symmetric setting is because each element

contributes two (chaff) points. Therefore, approximately 2.4113× 10−5 of

the spurious polynomials are candidate polynomials, which is 6.5095×1046.

6.4 Summary

In this chapter, we demonstrate sketches constructions that reveal auxiliary

information will leak important information which can be utilized in distin-

guishing sketches from different identities. To reduce the linkages among

sketches, we proposed two schemes. The first scheme handles Euclidean

distance and it outputs sketches with non-uniform sized intervals, while

the second scheme handles set-differences whereby the more consistent el-

ements are assigned with more points in the underlying polynomial. Our

schemes and analysis demonstrate that, by mixing the auxiliary informa-
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tion within the biometric data appropriately, although there is no reduction

in overall identity information lost (measured by entropy loss), the linkage

of sketches can be reduced.
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Chapter 7

Secure Sketches with

Additional Secrets

In this chapter, we will consider extension of secure sketches under the

multiple secrets setting, where the secrets differ in role and importance. In

particular, we consider cases when the data d consists of a secret k that is

less important, together with a secret b, that is fuzzy and important to the

authentication system.

One may simply generate a sketch for each secret independently and

concatenate them, but this does not address the fact that the secrets are

of different importance. we propose a mixing approach, that in the multi-

secret setting can ‘divert” the information loss of more important secrets

to less important ones , and thus providing more protection to the former.
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7.1 Multi-Factor Setting

We consider the private data d submitted by the data owner consists of two

component b, k, and the biometric secret b is fuzzy and important (e.g. the

iris data or fingerprint data), whereas the secret k is less important, but

could be either fuzzy (e.g. soft biometrics such as keystrokes) or consistent

(e.g. password). We study the secure sketch schemes under this setting.

A straightforward extension of sketch construction to two secrets is

to simply apply two sketch schemes, for the two secrets b and k indepen-

dently. For example, when k is a fuzzy secret, we can have the final sketch

for the two secrets is the concatenation of the sketches S1 = Enc1(b) and

S2 = Enc2(k).That is, the sketch S = S1 | S2, where | represents concatena-

tion. Furthermore, the final key K = K1 | K2 can be the concatenation of

the keys, where K1 and K2 are the keys extracted from b and k respectively.

The key K can thus be used in standard cryptographic applications as a

credential to authenticate the data owner. Similarly, the straightforward

extension simply omit S2 when k is a consistent secret.

Suppose the entropy loss of the first secret given the sketch is at

most L1, and that of the second secret is at most L2, then it is clear that

the overall entropy loss is at most L = L1 + L2, since the secrets are

independent.

As we have mentioned, this straightforward approach is not able to

differentiate secrets with different characteristics, and give equal protection

to both secrets.
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Figure 7.1: Construction of cascaded mixing approach.

7.1.1 Extension: A Cascaded Mixing Approach

Instead of treating the two secrets independently, it may be desirable to

combine different types of secrets to achieve additional security goals. Here

we give an alternative sketch construction. Figure 7.1 illustrates our pro-

posed method.

To provide protection to the data d = (b, k), we first compute s-

ketches S1 and S2 as in the concatenating approach, and extract keys K1

and K2 respectively. After that, we encrypt S1 using K2 as the key, that is,

we compute Q = f(S1, K2, Rf ), where f is a deterministic function and Rf

is an auxiliary random string. The final sketch S output by the cascaded

mixing approach is Q | S2.

Let us call f the mixing function which serves as an encryption with

K2 as the key. As the leftover entropy of K2 given S2 could be low, we

should not rely on the computational difficulty in inverting f to protect

S1. Thus, it is important to analyze how much information about the two

secrets X1 and X2 is revealed.

Let us consider the mixing function f :MS1 ×MK2 ×MRf
→MQ

and random variables Q, S1, K2 and Rf such that Q = f(S1, K2, Rf ). We
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require f to have certain properties. First, as an encryption function, f

must be invertible.

Invertibility We say that a mixing function f is invertible if there is

a function g such that for all S1 ∈ MS1 , K2 ∈ MK2 and Rf ∈ MRf
,

g(f(S1, K2, Rf ), K2) = S1.

In addition, in our analysis we consider mixing functions with the

following properties on recoverability of the randomness invested.

Recoverable Randomness For a mixing function f , the randomness Rf

is called recoverable if S1 ∈ MS1 , K2 ∈ MK2 and Rf , R
′
f ∈ MRf

, we have

f(S1, K2, Rf ) = f(S1, K2, R
′
f ) implies Rf = R′f .

β-Recoverable Key For a mixing function f , the key K2 is called β-

recoverable if for any Q ∈ MQ, the size of support for K2 given Q is at

most 2β, i.e., we should have the following inequality:

|{K2 ∈MK2 | ∃S1 ∈MS1 , K2 ∈MK2 , Rf ∈MRf
, s.t.f(S,K,Rf ) = Q}| ≤ 2β

It is easy to construct mixing function achieving both invertability

and recoverability. For example, we can obtain one from a block cipher

f(S1, K2, Rf ) = Rf | EK2(S1 | Rf ). Note that the recoverability properties

are not necessary for the recovery of the secrets, but will become handy in

the security analysis.

When a user presents b′ and k′ that are close to b and k respectively,

k is first reconstructed using k′ and S2, and a key K2 is extracted from

k, which in turn is used to retrieve S1 if f is invertible. After that, b is
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Figure 7.2: Process of Enc: computation of mixed sketch.

reconstructed using b′ and S1. An extractor can be further applied on b | k

to extract a key.

Intuitively, compared to the approach that treats the two secrets

independently, this alternative approach gives more protection to the first

secret b, since it would require the attacker to guess k using S2 first, only

when the attacker is successful can the attacker gain information on b from

S1 by computing S1 from Q and k. However, it may leak more information

on k as the attacker may exploit his knowledge on b to guess k.

7.2 Analysis

We now study the case of two secrets and a scheme that follows the cascaded

sketch construction (Section 7.1.1). Let b ∈ Mb be a fuzzy secret (say, a

fingerprint), and let k ∈ Mk be an independent secret key that is not

fuzzy. Consider a sketch scheme with encoder Enc1, and let the sketch

S1 = Enc1(b, R) with randomness R. Figure 7.2 illustrates the process.

It is clear that when the key k is uniform and no shorter than the

sketch, we can easily hide the sketch S1 completely (e.g., by using the

key as a one-time pad), and as such, the analyst cannot get any further

information on S1 from the final output S (note that it is not necessary

101



to store helper data for the consistent secret k, therefore we have S = Q).

However, in practical scenarios (e.g., user chosen PIN/password as the

key), k can be shorter than S1, and the analysis of security may become

challenging. In fact, we will show that, for shorter k, mixing is not always

a better strategy than the straightforward method of treating the secrets

independently. We will also show the conditions under which mixing is

desirable.

7.2.1 Security of the Cascaded Mixing Approach

Analysis of overall remaining entropy H̃∞(b, k | S).

First, let us investigate the remaining entropy when we treat (b, k) as a

single secret, i.e. the remaining entropy H̃∞(b, k | S).

Lemma 6 Given random variables b, k, R, S and mixing function f as

described above, We have

H̃∞(b, k|S) ≥ H∞(b) + H∞(k) + H∞(R)− LS.

Proof Since R is recoverable, we can consider Enc1 and f together as

the encoding algorithm for the final sketch S, R and Rf together as the

recoverable randomness, and the inequality (2.2) in Chapter 2 applies. Note

that |S| = |S1|+ |Rf |, and we have

H̃∞(b, k | S) ≥ H∞(b, k) + H∞(R) + H∞(Rf )− LS

= H∞(b) + H∞(k) + H∞(R)− LS.

Hence the lemma holds as claimed.
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Lemma 6 gives a lower bound of the remaining entropy of b and k. In

general, if both secrets are fuzzy, we can similar obtain the bound:

H̃∞(b, k | S) ≥ H∞(b) + H∞(k) + H∞(R1) + H∞(R2)− LS1 − LS2 .

where R1, R2, are the randomness invested in constructing the sketch S1,

S2 for the two respective secrets. Note that this bound is the same when

we use the straightforward concatenation approach.

Analysis of individual secret H̃∞(x | S) and H̃∞(k | S).

Now, let us look at the remaining entropy of individual secret, i.e. H̃∞(x | S)

and H̃∞(k | S).

If the sketch is not uniformly distributed, then given the mixed s,

it is possible that (k | S = s) is not uniform. That is, S will leak some

information about k. Indeed, an adversary, given s, may enumerate all

possible k’s and the correspond sketch S to determine the most likely k.

Nevertheless, leakage of k is acceptable as long as it can provide more

protection to b. Next theorem gives a lower bound on the remaining entropy

of b given the mixed sketch S.

Theorem 7 Given three independent random variables b, k and R dis-

tributed over Mb, Mk and MLR
respectively and a sketch scheme with

encoder Enc1, Let S1 be the sketch of b, i.e., S1 = Enc1(b, R), where R is

recoverable, and let f : MS1 ×Mk ×MRf
→ MS be an mixing function

and S = f(S1, k, Rf ), where Rf is a LRf
bits of recoverable randomness. If
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f is invertible and the key k is LRf
-recoverable. Then

H̃∞(b | S) ≥ H∞(b) + H∞(k)− LS. (7.1)

Proof First, let Kb,S ⊂ {0, 1}Lk be the set of secret k with which there

exist R and Rf such that S can be computed from b, R, k and Rf . That

is,

Kb,S = {k ∈Mk | ∃R,Rf , f(Enc(b, R), k, Rf ) = S}.

Since the key of the mixing function f is LRf
-recoverable, it is clear that the

cardinality |Kb,S| is no more than the number of all possible R’s multiplied

by 2LRf . note that LRf
= LS − LS1 . That is, |Kb,S| ≤ 2LR+LRf for any b

and S. Now, consider

A = 2−H̃∞(b | S)−LR−LRf

=
∑
s

Pr[S = s] max
x

Pr[b = x | S = s]2−LR−LRf

=
∑
s

max
x

Pr[b = x, S = s]2−LR−LRf .

On the other hand, we have

B = 2−H̃∞(b,k | S) =
∑
s

max
x,y

Pr[b = x, k = y | S = s].

For any s0 ∈MS, let us consider

max
x

Pr[b = x, S = s0]2
−LR−LRf

= max
x

∑
y

Pr[b = x, S = s0, k = y]2−LR−LRf

≤ max
x

(
max
y

Pr[b = x, S = s0, K = y]2LR+LRf

)
2−LR−LRf

= max
x,y

Pr[b = x, S = s0, k = y]
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The inequality holds because for any x, there will be at most |Kx,s0| ≤

2LR+LRf non-zero terms in the summation, hence the sum will be at most

2LR+LRf times the largest term in the summation. As a result, we have

A ≤
∑
s

max
x,y

Pr[b = x, S = s, k = y] = B.

This is equivalent to

H̃∞(b | S) + LR + LRf
≥ H̃∞(b, k | S).

By applying the bound on overall entropy loss (Lemma 6), and considering

that the recoverable randomness includes the LR bit R and LRf
bit Rf , we

have

H̃∞(b | S) ≥ H̃∞(b, k | S)− LR − LRf
≥ H∞(b) + H∞(k)− LS

Therefore the theorem holds as claimed.

The theorem holds for any distributions of X and K, and for uni-

formly distributed K, the theorem implies that H̃∞(b | S) ≥ H∞(b)+Lk−

LS. Let us compare the remaining entropy if we use the simple concatena-

tion method, which is as follows,

H̃∞(b | S) ≥ H∞(b) + LR − LS (7.2)

Now, coming back to the question that whether it is beneficial

to use a cascading function when the secret k is short compared with

S1. Clearly, from Theorem 7 and inequality (7.2), we can see that when

H∞(k)−LS ≥ LR−LS1 , or equivalently, H∞(K) ≥ LR+LRf
, the R.H.S in
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(7.1) is larger then the R.H.S in (7.2), i.e. the entropy bound when using

a mixing function is no worse than not using it. In particular, consider

a deterministic sketch scheme (i.e. LR = 0), and a “length preserving”

mixing function (thus LS1 = LS), the difference in the right hand side of

the inequality (7.1) and (7.2) is H∞(K). In other words, the bound on

entropy loss of b given S can be reduced by H∞(k). Viewing from another

direction, information loss on b is “diverted” to k.

Now, we consider only the non-fuzzy secret k and analyze the entropy

loss.

Theorem 8 Given a sketch scheme with encoder Enc that use randomness

R, and a mixing function f using randomness Rf , and let b, k, R, S1, S,

f , Rf be as defined in Theorem 7, we have

H̃∞(k | S) ≥ H∞(k) + H∞(R)− LS1 . (7.3)

Proof Since S = f(S1, k, Rf ), we can regard S as a sketch of k where the

cascading function f is an encoder, and S1 = Enc(b, R) and Rf are the

“randomness” invested in computing Q, which are recoverable. Since R is

recoverable, we have

H∞(b) + H∞(S1) ≥ H̃∞(b, S1) ≥ H∞(b) + H∞(R)

which means that H∞(S1) ≥ H∞(R). and then we can apply the general

bound (2.2) on k and S, and hence the inequality holds as desired.

It is worth to note that the bound in Theorem 8 is tight in the

sense that there exists random variables and functions such that the equal-

ity in (7.3) holds. We will see an example of such case in Section 7.3.2.
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Therefore, if LS1 is large but the min-entropy H∞(S1) is low, the quantity

H∞(k) + H∞(R) − LS1 may be reduced to 0, in which case S may reveal

all information about k.

7.3 Examples of Improper Mixing

In this section we give examples to illustrate the scenarios where mixing

function may not be beneficial: (1) in scenarios where the sketch con-

struction employs randomness, mixing function may not always provide

protection on X. (2) when the sketch contains high redundancy from the

adversary point of view, mixing function may reveal information of k.

7.3.1 Randomness Invested in Sketch

This section gives a simple example to illustrate the idea that mixing func-

tion may not always provide protection on b, if the sketch construction

contains randomness. Hence, as a general guideline, when choosing a s-

ketch scheme to be used in the cascaded mixing framework, it is better to

select one that requires no randomness.

Consider a non-fuzzy k in {0, 1}Lk , and a fuzzy b in {1 . . . 2Lb}, where

b1 is close to b2 if they differ only at the last bit. That is, b1 and b2 are

close if b1− (b1 mod 2) = b2− (b2 mod 2). Hence, a noisy copy of b could

be either b or b with the last bit flipped.

Consider the following two sketch constructions: a deterministic con-

struction Enc1(b) = b mod 2, and a probabilistic construction Enc2(b, R) =

b+R mod 2Lb , whereR is a uniform random even number in {2, 4, . . . , 2Lb}.
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Without mixing, sketches output from both constructions reveal at most

one bit of b.

Given a one bit secret k, let the mixing function f(S1, k, Rf ) be as

following: it first generates with seed Rf a set R = 〈r1, r2〉 of random

strings of length Lb, then it output S1 + rk mod 2Lb .

Consider the case when Enc1 is used, the mixing function is one-

time pad encryption, by Theorem 7, there will be no entropy loss on b

i.e. H∞(b) − H̃∞(b | S) = 0. However, when Enc2 is used, there could be

cases where ri has same parity, for example, R = 〈0, 2〉. In that case, the

information of the sketch is not protected and H∞(b)− H̃∞(b | S) = 1 and

there is no gain nor loss in mixing the secrets compare to the straightfor-

ward method. In other words, the secret k is unable to provide additional

protection as desired.

Note that, by Lemma 6, the overall entropies H̃∞(b, k | S) are the

same in the aforementioned two cases, as well as in the straightforward

method of not mixing the secrets. Note that in the second case, the adver-

sary is unable to infer any information on k, where as in the first case he

know that whether k and b has the same parity from the published data S.

Hence, when given two choices of sketch constructions where one

is deterministic and the other is probabilistic, it is advisable to employ

the deterministic method to achieve the protection provided by mixing

function.
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7.3.2 Redundancy in Sketch

When the sketch has redundancy, that is, the entropy of the sketch is small-

er than the length of the sketch, information on k will be leaked from the

mixed sketch. There are a few known sketch constructions where the “sup-

port” of the sketch (i.e. the number of sketches which non-zero probability

of occurrences) is significantly smaller than the description size 2LS1 and

thus their sketches contain redundancy. One example is the chaff-based

method (CKL03) proposed to protect the biometric fingerprint. Here, a

fingerprint is the secret b and can be represented as a set of 2D points. The

chaff-based method gives its sketch which is the original x union with a set

of random 2D points, constrained by the requirement that no two points

are close to each other (w.r.t Euclidean distance). It is not easy to derive

a compact description of the sketch that has size close to MS1 . Now, sup-

pose that the sketch is mixed with a short k. Given a mixed sketch S, it

could be highly likely that among all possible k’s in inverting S, only one

give a point set that satisfies the constrain. Thus, immediately, the secret

k and the sketch is revealed, and the remaining entropy of the combined

H̃∞(b, k | S) = H̃∞(b | S1). Hence, by mixing, not only there is no further

protection of x, the k is revealed.

We also conducted experiment to illustrate that, even when the de-

scription of sketch is compact in 1D pointset, i.e. the description size

equals the support MS1 , the chaff-based sketch still contains significant

redundancy that leads to lost of information on k.

Consider the chaff-based method for 1D points, which is easy to
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derive a compact description. We simulated the chaff-based method in

Z24 with a minimum distance 3. There are in total 605 possible sketches,

and we randomly generated 105 sketches. Figure 7.3 shows the numbers

of occurrences for all 605 sketches with x-axis descendingly sorted by the

number of occurrence (and we call the position of a sketch in this descending

list the rank of it).
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Figure 7.3: Histogram of sketch occurrences.

Suppose the sketch is then protected by a 5 bits key k, and a mixing

function f such that the inverts are always valid sketches. We then simulate

an adversary who try to guess k when given S = f(S1, k, Rf ), where k and

Rf are randomly chosen from their domain and S1 is chosen according to

the distribution approximated by Figure 7.3. We simulated 105 guesses

and the adversary can succeed with probability slightly more than 0.052,

instead of 1/(25) = 0.03125 as in random guessing.
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7.4 Extensions

7.4.1 The Case of Two Fuzzy Secrets

When both secrets are fuzzy and may not be uniform, we show that the

bounds of Lemma 6, Theorem 7 and 8 can be obtained with slight modifi-

cations.

Suppose there are two independent secrets b1 ∈Mb1 and b2 ∈Mb2 ,

and two sketch construction schemes with encoder Enc1 and Enc2 respec-

tively. We assume that the first secret b1 is more important than b2. In

this case, we can use the following steps to construct the sketch for the two

secrets.

1. Compute S1 = Enc1(b1, R1) and S2 = Enc2(b2, R2).

2. Extract a key k2 from b2 using an extractor Ext.

3. Compute Q = f(S1, k2, Rf ) using a mixing function f .

4. Output the final sketch S = Q‖S2.

It is possible to design Ext such that K2 and S2 are independent,

and H∞(K2) is only slightly smaller than H̃∞(b2|S2) (DRS04). Let δ be a

small extractor-dependent value such that H∞(K2) ≥ H̃∞(b2|S2)− δ.

The bound in Theorem 7 still applies on b1 and K2. Consider random

variables b1 and b2, corresponding sketches S1 and S2, mixed sketch Q,

andfinal sketch S, it’s not difficult to show that

H̃∞(b1|S) ≥ H∞(b1) + H∞(b2) + H∞(R2)− LS2 − δ − |S|,
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where R2 is the recoverable randomness used in computing S2. In this case,

the small δ can be considered as the overhead of using the extractor Ext.

As a comparison, if we treat the two secrets independently, and

consider S = S1‖S2, we have H̃∞(b1|S) = H̃∞(b1|S1) ≥ H∞(b1)+H∞(R1)−

LS1 .

Similar to the example, we can conclude that if H∞(K2) ≥ LR1 +

LRf
, we can obtain a better bound on the entropies when we choose to mix

b2 with b1. Otherwise, doing so may reveal more information about b2.

The entropy loss on the second secret b2 can be obtained using the

bound in Theorem 8:

H̃∞(b2|S) ≥ H∞(b2) + H∞(R2) + H∞(R1)− LS1 − LS2 − δ

The overall entropy loss in Lemma 6 applies to the general case.

That is,

H̃∞(b1, b2|S) ≥ H∞(b1) + H∞(b2) + H∞(R1) + H∞(R2)− LS1 − LS2 .

7.4.2 Cascaded Structure for Multiple Secrets

In some systems, it may be desirable to use more than two secrets. For

example, in a multi-factor system, a user credential may include a finger-

print, a smartcard and a PIN, or two fingerprints and a password. Unlike

the two secret case, there are many different cascaded strategies to mix the

secrets.

Given secrets b1, b2, . . . , bs and the corresponding sketches S1, S2, · · · , Ss,

the following are the main strategies to mix them, assuming we have mixing

functions f1, · · · , fs−1.
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1. (Fanning) Apply mixing functions fi on K1 and Si+1 for all 1 ≤ 1 ≤

s− 1.

2. (Chaining) Apply mixing function fi on Ki and Si+1 for all 1 ≤ 1 ≤

s− 1.

3. (Hybrid) Use a combination of fanning, chaining and independent

encoding. For example, we can mix K1 with S2 and S3, and further

mix K2 with S4, but b5 is encoded independently, and so on.

With the fanning approach, the entropy loss would be mostly di-

verted to the first secret, which may be the most easily revocable and

replaceable secret. However, this approach requires that the first secret

has sufficiently high entropy, since otherwise it may be relatively easy to

obtain the first secret from the mixed sketch. In practice, this approach

can be used when a long revocable key is available, such as key stored in a

smartcard.

On the other hand, using the chaining approach only requires that

the entropy of the i-th secret is sufficient to mix with the (i+ 1)-th sketch.

In this case, the secrets should be mixed in the order of their “importance”,

which could be, for example, the ease of revocation and replacement, or the

likelihood of being lost or stolen. Note that in this approach, it is crucial

to determine the exact order of importance of the secrets.

If no single secret is of sufficient entropy, and the order of importance

among secrets is not always clear, a hybrid approach may become more

appropriate. As a special case, when all secrets are short and no secret is
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more important than others, it would not be advisable to use the mixing

approach and a straightforward method can be better.

7.5 Summary and Guidelines

In this chapter, we describe and compare different approaches to han-

dle multiple secrets in biometric authentication application. Our analysis

shows that with proper construction, the information leakage of the more

important secret can be “diverted” to the less important ones. We give

some guidelines for the application of cascaded mixing functions to two

secrets. The same principles apply to multiple secrets.

1. If the importance of the secrets cannot be determined or is the

same for both secrets, mixing is not recommended.

2. For the more important secret, if there are two secure sketch

schemes that differ only in the amount of randomness used in the construc-

tion; choose the one that uses less randomness.

3. If the randomness invested cannot be decoupled from the sketch,

cascaded mixing is not advisable unless the length of consistent key is longer

than the length of the sketch.
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Chapter 8

Conclusion

In this dissertation, we studied the problem of privacy protection of sensi-

tive personal data. We focus on information theoretic secure mechanisms

that provide unconditional security on controlling information leakages in

two scenarios: data publishing and biometric authentication. In both s-

cenarios, we seek to extend the existing privacy protection techniques to

cater for some commonly deployed setting. In the enhanced construction,

we show that we can achieve a better privacy-utility tradeoff.

We extend biometric protection mechanisms to cater for asymmetric

setting and multi-factor setting. The extensions provide better privacy

protections with respect to the remaining entropy of the biometric secret.

We also give a differentially private mechanism for publishing pointset data.

We proposed a notion of δ-neighbourhood that can be more appropriate

under certain scenarios, and we give constructions for spatial dataset and

temporal dataset which the notion can provide a good tradeoff for better

utility. It is interesting to study whether our proposed notions can be
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applied in other domains to provide stronger privacy protection.
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An agent-based approach to care in independent living. Ambient

Intelligence, pages 177–186, 2010.

[KY08] A. Kholmatov and B. Yanikoglu. Realization of correlation attack

120



against the fuzzy vault scheme. Security, Forensics, Steganography,

and Watermarking of Multimedia Contents X, 2008.

[LGC08] Q. Li, M. Guo, and E.C. Chang. Fuzzy extractors for asymmetric

biometric representations. In Computer Vision and Pattern Recog-

nition Workshops, pages 1–6, 2008.

[LHR+10] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Opti-

mizing linear counting queries under differential privacy. symposium

on Principles of database systems of data, pages 123–134, 2010.

[LLV07] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy

beyond k-anonymity and l-diversity. In Data Engineering, 2007.

ICDE 2007. IEEE 23rd International Conference on, pages 106–115,

2007.

[LT03] J.P. Linnartz and P. Tuyls. New shielding functions to enhance

privacy and prevent misuse of biometric templates. In Audio-and

Video-Based Biometric Person Authentication, pages 1059–1059,

2003.

[MD86] G. Mitchison and R. Durbin. Optimal numberings of an n x n array.

Algebraic Discrete Methods., pages 571–582, 1986.

[Mey08] M. C. Meyer. Inference using shape-restricted regression splines.

Annals of Applied Statistics, pages 1013–1033, 2008.

[MKA+08] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vil-

huber. Privacy: Theory meets practice on the map. International

Conference on Data Engineering, pages 277–286, 2008.

[MKGV07] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasub-

121



ramaniam. `-diversity: Privacy beyond k-anonymity. ACM Trans-

actions on Knowledge Discovery from Data (TKDD), pages 3–15,

2007.

[MRW99] F. Monrose, M. Reiter, and S. Wetzel. Password hardening based

on keystroke dynamics. In Proceedings ACM Conf. Computer and

Communications Security, pages 73–82, 1999.

[MT79] R. Morris and K. Thompson. Password security: A case history.

Communications of the ACM, pages 594–597, 1979.

[MYCC04] YS. Moon, HW. Yeung, KC. Chan, and SO. Chan. Template

synthesis and image mosaicking for fingerprint registration: An ex-

perimental study. In Acoustics, Speech, and Signal Processing, pages

405–409, 2004.

[NNJ07] K. Nandakumar, A. Nagar, and A.K. Jain. Hardening fingerprint

fuzzy vault using password. In Advances in Biometrics International

Conference, pages 927–937, 2007.

[NRS97] R. Niedermeier, K. Reinhardt, and P. Sanders. Towards optimal

locality in mesh-indexings. Fundamentals of Computation Theory,

pages 364–375, 1997.

[NRS07] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity

and sampling in private data analysis. ACM Symposium on Theory

of Computing, pages 75–84, 2007.

[PHIS96] V. Poosala, P.J. Haas, Y.E. Ioannidis, and E.J. Shekita. Improved

histograms for selectivity estimation of range predicates. ACM SIG-

MOD Record, pages 294–305, 1996.

122



[PPJ08] Unsang Park, Sharath Pankanti, and AK Jain. Fingerprint verifi-

cation using sift features. In SPIE Defense and Security Symposium,

Biometric Technology for Human Identification, pages 1–9, 2008.

[PSC84] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the

number of tuples satisfying a condition. ACM SIGMOD, pages 256–

276, 1984.

[RGT97] Y. Rubner, L.J. Guibas, and C. Tomasi. The earth movers dis-

tance, multi-dimensional scaling, and color-based image retrieval.

ARPA Image Understanding Workshop, pages 661–668, 1997.

[RU11] C. Rathgeb and A. Uhl. A survey on biometric cryptosystems and

cancelable biometrics. EURASIP Journal on Information Security,

pages 1–25, 2011.

[Sha01] C.E. Shannon. A mathematical theory of communication. Mobile

Computing and Communications Review, 5(1):3–55, 2001.

[Sil75] S.D. Silvey. Statistical inference, volume 7. Chapman & Hall/CRC,

1975.

[SLM07] Y. Sutcu, Q. Li, and N. Memon. Protecting biometric templates

with sketch: Theory and practice. Transactions on Information

Forensics and Security, pages 503–512, 2007.

[SR01] R. Sanchez-Reillo. Including biometric authentication in a smart

card operating system. In Audio and Video Based Biometric Person

Authentication, pages 342–347, 2001.

[SRS+99] C. Soutar, D. Roberge, A. Stoianov, R. Gilroy, and B.V.K.V.

123



Kumar. Biometric encryption. ICSA Guide to Cryptography, pages

649–675, 1999.

[Sto00] Q. F. Stout. Optimal algorithms for unimodal regression. Computer

Science and Statistics, pages 109–122, 2000.

[STP09] K. Simoens, P. Tuyls, and B. Preneel. Privacy weaknesses in bio-

metric sketches. In Symposium on Security and Privacy, pages 188–

203, 2009.

[Swe02] L. Sweeney. k-anonymity: A model for protecting privacy. In-

ternational Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 10(05):557–570, 2002.

[TAK+05] P. Tuyls, A. Akkermans, T. Kevenaar, G.J. Schrijen, A. Bazen,

and R. Veldhuis. Practical biometric authentication with template

protection. In Audio-and Video-Based Biometric Person Authenti-

cation, pages 436–446, 2005.

[TG04] P. Tuyls and J. Goseling. Capacity and examples of template-

protecting biometric authentication systems. Biometric Authenti-

cation, pages 158–170, 2004.

[TTT99] K.C. Toh, M.J. Todd, and R.H. Tütüncü. Sdpt3–a matlab soft-
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