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Summary

Model predictive control has come out of its main field - chem-
ical process control in terms of successful industrial applica-
tions and as a focus of academic research. More and more
components have been designed as add-ins of this well-known
framework. Coming along with its new form is a long stand-
ing feature of offset-free control through disturbance model
estimation and compensation. This feature produced con-
trollers that perform very well for certain processes, but not
adequately address others such as robust control and fast im-
plementation. It stresses disturbance rejection workload to
the system state estimator, thus prevents robust control to
integrate. These limitations have become apparent when a
wider range of applications for model predictive control is
under consideration.

In this thesis, it is shown that by reformulating the encoun-
tered problems into solvable forms, model predictive control
can actually solve much more practical problems than it is
expected.

This study first presents a new framework of tracking model
predictive control that resolves these issues. By exploiting the
control philosophy of the propositional-integral-differential
(PID) controller, offset-free features and robust designs for
MPC can be integrated in a seamless manner. A design of
offset-free MPC is presented, amenable to readily accept ro-
bust feedback control as an integral core. Through PID-state
augmentation, a PID mapping from outputs to optimal in-
puts is constructed. Parametric programming further pro-
vides a fast implementation of these distributed PIDs through
gain scheduling design. These techniques provide increased
flexibility in the design of model predictive control for indus-
trial applications.



Further exploration on PID control optimization in some real-
world problems is examined by applying the above frame-
work. As the first example, control on the movement of a
high precision ultrasonic motor is used. By separating the
usual linear motion model and the nonlinear effects of fric-
tion, the framework has been applied to robustly compensate
the friction uncertainties which could not be modeled easily
through experiment data. The second example shows the
competitive strength of this MPC method when integrated
with advanced techniques such as sliding mode observer. It
provides an elegant solution to temperature optimization in
in-vitro fertilization process. The last example demonstrates
that for process systems such as chemical reaction, control of
blending ratio can also benefit from flexible problem analyz-
ing and reformulating. Such applications prove the effective-
ness of the proposed method, and at the same time promote
it to a larger scale of applications.

The result of this thesis is the creation of a framework for
the development of an industrially implementable controller
that improves the current technology. Furthermore, its per-
formance in several applications is rigorously analyzed by
appropriate formulation of the problems. This framework
provides a flexible basis that retains and enhances the nec-
essary features to handle industrial control applications.
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Chapter 1

Introduction

Originating from linear quadratic regulator (LQR) theory, the original
model predictive control (MPC) has speedily reached out to process in-
dustries and become a platform of its own. First, it picks up the internal
model control structure, as shown in Fig. 1.1. This leads to two facts: 1)
The performance of unconstrained MPC is not inherently better than that
of classic control, 2) From an optimal control point of view, optimizing
the MPC controller for a certain performance criteria is affine, much
simpler than a nonlinear function of the traditional feedback controllers
(such as PID) [Garcia et al., 1989]. The former fact is easy to understand,
since without constraints a MPC only results in a linear feedback gain
that can be tuned using other methods. However, the latter demon-
strates that optimal control, especially with constraints involved, is more
advantageous for MPC. Hence, when mathematical tools such as lin-
ear/quadratic programming comes in the field, MPC advances along
this direction. This new approach, as practical as PID, was adopted
widely for multivariable systems in the industry.

MPC has accounted for a vast spectrum of applications, and there
are reasons for its versatility. First, MPC is based on modeling and opti-
mization, the two factors that help engineers to understand an arbitrary
system and manipulate it to follow certain criteria. Secondly, it is the
ability to handle constraints which brings MPC, but not LQR, a big step
closer to real-world optimization. Chemical process plants have actua-
tor constraints; facility layout and location design are subject to space
and time limitation; even designs in transformation optics, the study of
bending light by material transformations, must satisfy a predetermined
refractive index range for the sake of feasible choice of materials. One
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1. INTRODUCTION

can say MPC is a representation of direct optimization in the control
area, beside other hysteretic methods like genetic algorithm or neural
network.

MPC, certainly, has its unique features to stand out from the big
optimization world. Often applied on large dynamical systems with
constraints, MPC optimizing over a finite-time horizon is less expensive
and more suitable for control purposes. Using the current dynamic state
of a system, MPC calculates a sequence of future optimal inputs to op-
erate it. At this point, only the first input is sent to the system. The
idea is that disturbance sources (model uncertainties, disrupting noises)
may render other future inputs useless. In the next sampling time, the
optimization window moves one step forward, and the procedure is
repeated. In other words, MPC operates on a feedback manner instead of
one-time optimal design. This feature is named receding horizon control.
This finite-time optimal control does not guarantee the overall system
stability, so other features of MPC have been added: terminal cost and
terminal region [Mayne et al., 2000] for classical convergence analysis.
In summary, MPC is customized for system control.

1.1 Motivation

In this part the origination of interest that brought up this research work
is presented. It starts from the current practice of MPC in the indus-
try, describes the two big issues of control problems and how people
addressed them separately in MPC, and finally shows a framework to
unify these solutions - the goal to be achieved.

1.1.1 Industrial Model Predictive Control

As mentioned, MPC is referred as a general framework in the industry
rather than a specific control technique, due to much interest arising to
develop it. The first description of MPC, IDCOM, was developed in
industry and reported in Richalet et al. [1978]. The impulse response
model is used to describe the system response, so it is only applicable to
linear stable plants. The report points out significant benefits of a multi-
level control structure: MPC, with better dynamic control quality, drives
the optimal setpoint nearer to the constraints to minimize costs (Fig. 1.2).

2



1. INTRODUCTION

𝑃 Optimizer 

Filter 

- 

𝑦�𝑘 

𝑟 

Predictor 

𝑃� - 

State observer 

𝑦𝑘 

(a)

𝑃 MPC - 

𝑦�𝑘 

𝑟 

𝑃� - 

𝑦𝑘 

(b)

Figure 1.1: MPC structure under internal model view.

This structure is now followed by many practitioners and researchers
[Froisy, 2006; Maeder and Morari, 2010; Pannocchia et al., 2007]. Later
progress expands the flexibility of MPC framework. Not until in Cutler
et al. [1983]; Garcia and Morshedi [1986] that quadratic programming is
systematically introduced to solve the constrained optimization. Efforts
by engineers at Shell Research [Marquis and Broustail, 1998; Yousfi and
Tournier, 1991] combine MPC with state space system description and
Kalman filter, which are used in most of the current research literatures.
Other practical solutions to system identification, control block, removal
of ill-conditioning, constraint violation recovery are also mounted on
this framework, creating different MPC strategies for both linear and
nonlinear plants [Qin and Badgwell, 2003]. A recent generation of MPC
(DMCplus, RMPCT) offers multi-objective optimization, direction con-
sideration of model uncertainty.

Among the practical extensions of MPC, the two properties, offset-free

3
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(every second)

FC PC TC LC FC PC TC LC

Plant-Wide Optimization

Unit 1 Local Optimizer Unit 2 Local Optimizer

High/Low Select Logic

PID L/L PID

SUM SUM

Unit 1 - Conventional

Control Structure

Unit 2 - Model Predictive

Control Structure
Global Economic

Optimization

Local Economic

Optimization

(every hour)

(every minute)

Control

Constraint

Dynamic

        (MPC)

Model Predictive Control

Unit 1 DCS- PID Controls Unit 2 DCS-PID Controls Control

Basic Dynamic

(every day)

Figure 1.2: Comparison of traditional control structure and MPC
structure [Qin and Badgwell, 2003]

.

tracking and robust control, are the most critical features that concern MPC
implementation, whether it is in the original process industry, economics
(slow process) or new areas such as automotive (fast process). They are
essentially related to the types of disturbances/uncertainties contained
inside the controlled systems: modeling mismatch, input and output dis-
turbances, etc. In the next subsections, a review of techniques developed
to deal with these problems is discussed.

1.1.2 Offset Free Tracking

Offset-free tracking in MPC refers to an essential group of techniques
which estimate the disturbance infiltrating the model by measuring the
outputs and compensating the offset due to the disturbance via the ad-
justment of the MPC target generation. This approach has been pre-
dominantly used since the first generation DMC, IDCOM-M (dealing
with constant step disturbances) and now in the modern MPC solutions
SMOC, RMPCT and DMCplus (dealing with integrating output distur-
bances).

Much research effort has embraced this disturbance estimation and

4



1. INTRODUCTION

compensation method. In the first class of disturbance models, step dis-
turbance, a constant disturbance vector is assumed to enter input/output
channels. The authors in Muske and Badgwell [2002]; Muske and Rawl-
ings [1993] suggested to integrate this information into the observer model
and exploit Kalman filter to estimate the disturbance. The estimated con-
stant disturbances are reflected back to the target design, which proves
to be quite effective and sets an example for industrial MPCs at that time.
As disturbance models evolve to be more complex, sufficient conditions
for offset-free tracking were first presented in Pannocchia and Rawl-
ings [2003]. Minimal presentation of disturbance models was discussed
in Maeder et al. [2009]. A recent research work departed from linear
model and proved the results for nonlinear cases [Morari and Maeder,
2012]. On the application sides, this method was used in a project to
enhance MPC-based softwares, developed by AspenTech [Froisy, 2006].
Performance improvement was reported in applications for wind tur-
bines [Dang et al., 2012], vapor compression cycle [Wallace et al., 2012]
and wastewater treatment process [Martin et al., 2012].

On the other hand, the disturbance estimation and compensation
approach needs more breakthroughs on several aspects. The feasibility
conditions depends of the detectability of the overall system, and the
control performance depends on the disturbance model. Hence, the se-
lection of disturbance model becomes critical [Froisy, 2006]. It is pointed
out that disturbance model combined with a Kalman filter has several
performance limitations [Bageshwar and Borrelli, 2009].

1.1.3 Robust Formulation

A natural question about MPC is its robustness to model uncertainty
and noise. The original open-loop model predictive control is about de-
termining the current control action by solving an optimal problem with
only the information of current state. This method cannot restrain the
spread of predicted trajectories resulting from disturbances, so feedback
policies including disturbances along the controlled horizon have been
researched [Magni et al., 2003; Scokaert and Mayne, 1998]. It implies that
for a specified range of model variations/ noises, the system stability is
maintained and the performance specifications are met. To design MPC
with this consideration in mind, there is a trade-off between the accuracy

5



1. INTRODUCTION

of the uncertainty description and the computational complexity of the
controller synthesis. There are two popular ways to model the uncer-
tainty: stochastic model and bounded model.

As mentioned, a common formulation for robust model predictive
control is based on the assumption that model uncertainty (whether mul-
tiplicative or additive) can be described in terms of bounded compact
sets. In most of these cases, the asymptotic stability of the origin cannot
be established, but only of a set in its neighborhood. A Lyapunov func-
tion must be zero within this set and non-zero otherwise [Kerrigan and
Maciejowski, 2003; Scokaert and Mayne, 1998]. An improved approach
is proposed in Mayne et al. [2005], following Lee II and Kouvaritakis
[2000] to construct a stage cost related to the suboptimal control, but
the nominal initial state is additionally taken as decision variable. The
minimal robust positively invariant set required for these approaches
can be obtained efficiently in Rakovic et al. [2005]. Another name for
this framework is tubed MPC [Langson et al., 2004].

With the assumption that stochastic model gives a more informative
description on disturbances, advocating researchers think it is less con-
servative than the “worst-case” control. Indeed, this plays a key role
in soft constraints of a probabilistic nature. Recent results in Nagy and
Braatz [2003]; van Hessem and Bosgra [2002] deal with purely stochastic
noise and Mark et al. [2011]; Primbs and Sung [2009] deal with stochastic
tubes.

1.1.4 Research Goals

The goal of this thesis is to establish a link between the offset-free MPC
and the robust formulation. Replacing the disturbance model by the in-
tegrating augmentation, a new framework is created to guarantee offset-
free tracking and facilitate the robust control techniques to be integrated.
The following points will be shown:

• The advantages of using integrating state over the dynamic distur-
bance compensation.

• The seamless integration of robust control into the new frame-
work.

• Applications of the new framework.

6



1. INTRODUCTION

1.2 Organization and Highlights

This dissertation is organized as follows. Chapter 2 and 3 establish the
new framework for robust tracking model predictive control. Chapter 4,
5 and 6 practice the framework in different scenarios of real applications.

Chapter 2: Offset-free and Robustness in Model Predictive Control -
A New Bridge

This chapter builds a unified framework for the design of an offset-free
model predictive control (MPC) which facilitates a robust control design
to be incorporated at the core. Integral and differential state variables
are introduced to the original state space representation as a natural
extension to derive a tracking MPC without the need for disturbance
compensation via target adaptation. The simple augmentation enables
a MPC controller to steer, under input and state constraints, the system
states towards a terminal set containing the origin. Therein the terminal
set, the control gains can be flexibly designed using any robust control
synthesis which has a mature literature. Thus, a bridge is inherently
built into the framework to allow robust feedback control designs to be
incorporated under an offset-free MPC formulation. This bridge fills a
long standing gap separating MPC and robust control, allowing them
to be designed as modular yet seamlessly linked and be complementary
components under the framework. From a theoretical perspective, the
framework allows a clean and seamless analysis of the MPC and robust
control in unison. From an application perspective, the framework en-
ables a clear and systematic design flow which incorporates both the
control components under one unified setting.

Chapter 3: Adaptive PID Network Using Local Robust Optimization

In chemical process applications, model predictive control (MPC) effec-
tively deals with input and state constraints during transient operations.
However, industrial PID controllers directly manipulates the actuators,
so they play the key role in small perturbation robustness. This chapter
considers the problem of augmenting the commonplace PID with the
constraint handling and optimization functionalities of MPC. First, we
review the MPC framework, which employs a linear feedback gain in
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its unconstrained region. This linear gain can be any preexisting multi-
loop PID design, or based on the two stabilizing PI/PID designs for
multivariable systems proposed in the chapter. The resulting controller
is a feedforward PID mapping, a straightforward form without the need
of tuning PID to fit an optimal input. The parametrized solution of
MPC under constraints further leverages a familiar PID gain scheduling
structure. Steady state robustness is achieved along with the PID design
so that additional robustness analysis is avoided.

Chapter 4: Robust Control of an Linear Ultrasonic Drive with Large
Friction

Ultrasonic motors used in high-precision mechatronics are character-
ized by strong frictional effects, which are among the main problems in
precision motion control. The traditional methods apply model-based
nonlinear feedforward to compensate the friction, thus requiring closed-
loop stability and safety constraint considerations. This chapter intro-
duces a systematic approach using piecewise affine models to emulate
the friction effect of the motor motion. The established model predic-
tive control framework can be employed to deal with piecewise affine
models. The increased complexity of the model offers a higher tracking
precision through a gain-scheduling optimal input.

Chapter 5: Intelligent Control of In-vitro Fertilization Medical Sys-
tems

In-vitro fertilization (IVF) and related technologies are arguably the most
challenging of all cell culture applications. This chapter introduces an
integrated mechatronic solution for oocyte retrieval procedure before the
oocytes are further put into laboratory processing during IVF treatment.
It facilitates the surgery operation and addresses the temperature inac-
curacy of follicular fluid during the transfer to the patients body. The
mechanical design is implemented into a medical-standard conforming
platform. An accurate temperature estimation and optimization scheme
are proposed. Comparison before and after the introduction of the new
prototype under various operating conditions reveals a significant im-
provement in performance. This yields a potential application for the
medical/healthcare industry.
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Chapter 6: Ratio Control in Interacting Processes

Ratio control for two interacting processes is proposed with a PID feed-
forward design based on model predictive control scheme. At each sam-
pling instant, the MPC control action minimizes a state-dependent per-
formance index associated with a PID-type state vector, thus yielding
a PID-type control structure. Compared to the standard MPC formu-
lations with separated single-variable control, such a control action al-
lows one to take into account the non-uniformity of the two process
outputs. After reformulating the MPC control law as a PID control law,
we provide conditions for prediction horizon and weighting matrices
so that the closed-loop control is asymptotically stable, and show the
effectiveness of the approach with simulation and experiment results.

Chapter 7: Concluding Remarks

This chapter summarizes the contributions made by this thesis and out-
lines directions for future research.

9





Chapter 2

An Unified Framework for
Robust and Offset-free Model
Predictive Control

2.1 Introduction

Offset-free model predictive control (MPC) refers to an essential group
of techniques which estimate the disturbance infiltrating the model by
measuring the outputs and compensating the disturbance via the adjust-
ment of the MPC target tracking formulation. This approach has been
predominantly used since the first generation of MPC: DMC, IDCOMM
(dealing with constant step disturbances) and now in the modern MPC
solutions SMOC, RMPCT and DMC-plus (dealing with integrating out-
put disturbances) [Qin and Badgwell, 2003]. The disturbance compen-
sation approach is commonly adopted in the industry with the advan-
tages it offers. Disturbance sources are observed from the process data
and the disturbance model is determined. With the model, the distur-
bance rejection workload is mainly entrusted to a state estimator which
leverages on Kalman filters to derive smooth and optimal estimation of
the disturbances. The state and input target (xs, us) are updated based
on the estimated bias so that MPC regulation subject to constraints can
be realized without increased complexity. This has remained for long
as the basic framework to achieve target tracking MPC. Over the last
two decades, efforts were devoted to refine and expand the validity of
the disturbance model for MPC. In process control, the hallmark pa-
per Muske and Rawlings [1993] provided an analytical base for MPC
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with different disturbance models: zero-mean, output and input step
disturbances. The authors in Muske and Badgwell [2002]; Pannocchia
and Rawlings [2003] independently introduced a dynamical disturbance
model which can be rendered into a state-space representation. They
discussed crucial conditions under which offset-free control can be guar-
anteed. These conditions require that the augmented system model is
detectable and the number of unmeasured disturbances is equal to the
number of measured outputs (see a proof in Rawlings and Mayne [2009],
Chapter 1). The second requirement was subsequently relaxed to be
less than or equal [Maeder et al., 2009]. The disturbance estimation ap-
proach has been extended to deal with servo disturbance [Maeder and
Morari, 2010] and it is recently explored on nonlinear systems [Morari
and Maeder, 2012].

However, there are clear and outstanding constraints associated with
this conventional framework. First, from an application and industrial
perspective, the improved margin of performance from disturbance es-
timation is achieved by passing on the complexities of configuring and
tuning an accurate dynamical disturbance model to the control engi-
neers. Inaccuracy in the modeling effort will directly incur inadequate
cancellation and offsets. Thus, these complex yet crucial responsibilities
are not readily assimilated by practitioners, and therefore the frame-
work cannot be effectively rooted into place in the industry. Secondly,
a general, systematic and practically amenable way to yield an accu-
rate disturbance estimation without undue burden on the practitioners
has not appeared to-date, largely due to the non-general restrictions to
be overcome. These restrictions include conditions of the augmented
model (plant + disturbance) on detectability and conditions on the rank
of the state-to-output matrix [Froisy, 2006] which have remained a tall
order to generalize in a straightforward manner. For theorists, the co-
existence of the disturbance compensation scheme and the MPC con-
troller in the augmented system have long impeded closed-loop analysis
to be done in the same rigorous and comprehensive manner when they
are separated. The specific choice of a disturbance model has direct
implications on the performance of the MPC. Besides, a class of sys-
tems will always incur performance limitation, as proven in Bageshwar
and Borrelli [2009]. Thirdly, established robust control techniques which
are mature in their own rights, have been unable to flourish under this
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framework of tracking MPC mainly due to the target adjustment mode.
To-date, there have not been many results on offset-free robust predictive
control. Attempts to impose robust control with an output disturbance
model [Lovaas et al., 2010] or to extend the control to a nonlinear system
with a dynamical disturbance model [Morari and Maeder, 2012] have
faced challenging implementation issues. The disturbance estimation
framework has long remained as the springboard for tracking MPC de-
signs, but equally long and persistent have been the constraints inherited
under the framework.

This chapter thus seeks to present a new and unified framework for
the design of offset-free MPC which is amenable to readily accept ro-
bust feedback control as an integral core. Departing from the distur-
bance compensation framework, it preserves the offset-free property us-
ing simply the integration of the output error, tantamount to the integral
control action of the PID controller. This approach is adopted as it is
arguably the easiest-to-understand method in offset-free control and one
which can be more readily accepted by practitioners. State integration
is commonplace in robust tracking control of linear systems [Zhou and
Doyle, 1998] (Sec. 14.8), [Zhang et al., 2004] and nonlinear systems [Fu-
jioka et al., 2009; Jiang and Marcels, 2001; Seshagiri and Khalil, 2005] and
they are not sensitive to modeling errors. However, this simple concept
has not found its way to tracking MPC, though integrated states have
been mentioned, not in depth, in various MPC contexts [Angeli et al.,
2000; Grancharova et al., 2004; Sakizlis et al., 2004; Tan et al., 2000]. To
the best of our knowledge, the augmentation of PID states to facilitate a
unified framework to allow tracking MPC and robust feedback control to
co-exist in a natural and complementary manner has not been proposed
or observed before.

Under this framework, an opening is created and launched for a clean
and straightforward flow of robust control into the core of the offset-
free MPC. Disturbances which render active constraints at steady state
and drive offset-free MPC tracking infeasible [Pannocchia and Rawlings,
2003; Rawlings and Mayne, 2009] are now a done deal using established
robust control (H∞). Inaccuracy in the disturbance model used in the
robust control is in turn mitigated by the offset-free property of the track-
ing MPC. Extensions to nonlinear systems is more easily facilitated too,
since a disturbance model is no longer necessary and the system state
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can be predicted through an augmented model [Raffo et al., 2010], al-
though no constraint was considered in that work. This PID-augmented
model is the simple yet crucial key under the proposed framework to
bridge offset-free MPC to robust and nonlinear system research/application
fields.

The chapter is limited in discussions to linear constrained systems,
and it will aim to highlight the potential to exploit the framework based
on a PID-state augmentation to open up new and exciting possibilities
in MPC both in theory and in applications. We will show a design
flow instance that can apply robust control on offset-free MPC for linear
systems. The result is a flexibly configurable and unified MPC design
framework which can accommodate existing MPC implementations (online-
or offline-optimization) and robust feedback designs for linear systems
(e.g. H2/H∞). The problem of output overshooting in integral MPC is
addressed. It accordingly ignites exciting possibilities in performance
enhancement and scope of applications of the control under the new
framework. The inherent bridge between two large research areas: ro-
bust control and offset-free MPC will be detailed. Some of the discussion
points can be extended to nonlinear systems. Future possible work un-
der this framework will be discussed.

2.2 Robust Offset-free Linear Feedback for Un-

constrained Systems

In this section, a robust linear feedback is designed by using the PID
structure. This gain will be used to design the core components of model
predictive control presented in Section 2.3.

2.2.1 Building PID Model

Suppose the discrete system to be controlled has the state-space formula-
tion in Eq. (2.2) where x ∈ Rn is the vector of state, u ∈ Rm is the inputs,
y ∈ Rp is the measured outputs and v ∈ Rq is the controlled outputs.

xk+1 = f (xk, uk)

yk = Cyxk

vk = Cvyk, (2.1)
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subject to the linear set of constraints

Exk + Fuk ≤ G (2.2)

in which E, F, G define the input and output constraints. Assume that a
full-state estimation from the measured outputs y is available. The main
objective here is to calculate the optimal system input uk so that vk tracks
a piecewise constant reference vs.

By linearizing the system around the required operating point, the
system in Eq. (2.1) becomes

xk+1 = Axk + Buk + Ewk

vk = Cxk. (2.3)

with C = CvCy. Calculation of steady-state target (xs, us) from the track-
ing reference (not dependent on disturbance) was provided in Muske
and Rawlings [1993]. Denote the deviations x̃k = xk − xs, ũk = uk − us

and the tracking error ṽk = Cx̃k, the deviation model from the steady-
state target is exactly similar to Eq. (2.3).

The deviation model can be augmented with integral and differential
terms of the tracking error to ensure tracking performance on vk. x̃k+1

∑ ṽk+1

∆ṽk+1

 =

 A 0 0
C Iq 0

C(A− In) 0 0


 x̃k

∑ ṽk

∆ṽk

 +

B
0
B

 ũk +

W
0
0

wk (2.4)

Because vk is a measurable vector from yk, the observability of the
system in Eq. (2.4) is implied from the observability of the original
system in Eq. (2.1). Following a Hautus test, the integral term is con-
trollable, while the differential term is only stabilizable (it can not be
controlled to any arbitrary value but 0 when x̃(k) is regulated to 0).

2.2.2 Robust Offset-free Feedback with PID

It is recommended in [Shinskey, 1994] that PID controllers can be tuned
to reject disturbances more effectively than MPC that uses bias updates.
In fact, when a sudden change in disturbance occurs, the observer takes
time to correctly estimate the new disturbance before effectively adjust-
ing the setpoint. Having said that, PID also requires good tuning to
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gain a better performance than bias updates. Hence, robust control ap-
proaches are suggested to be the best way to tune PID gain here. It is also
interesting that the differential term D, with the benefit of disturbance
rejection in PID, can implement the purpose of robust control designs.

Using this philosophy, established H2/H∞ robust control methods
can be designed for the following system

zk+1 = Āzk + B̄ũk + W̄w

νk = C̄zk + D̄ũk. (2.5)

where z, ν denote the complete state and output error of system (2.4);
Ā, B̄, C̄, D̄ are the system matrices accordingly. The disturbance model
W information is needed to design a state feedback u = Kz negating the
disturbance effect. However, note that an inaccurate choice of W here
will not affect the tracking performance as severely as in the bias update
case where it easily results in biased setpoint adjustment.

Robust control ensures the norm of the transfer function Twν from the
disturbance w to the interested variables ν minimized so that

‖Twν(s)‖2/∞ =
∥∥(C̄ + D̄K)(sI − A− BK)W

∥∥
2/∞ ≤ γ, (2.6)

where γ is a measure of robustness. As in [Chen, 2000; Doyle et al.,
1989], solution to a regular H2/H∞ problem has been well established in
the literature.

The resulting robust control gain is actually a tuning for PID control.
This is resulted from the PID-state formulation in (2.4).

Theorem 1 A control law ũ(k) = Kz̃(k) implements PID control on the system
state x(k) which ensures robust tracking for v(k).

Proof 1 Because z̃ is the augmented state error, the control law is written as

ũ(k) = Kz̃(k)

= K1x̃(k) + K2 ∑ ṽ(k) + K3∆ṽ(k)

= K1x̃(k) + K2Cv ∑ x̃(k) + K3Cv∆x̃(k). (2.7)

Since rank(Cv) = q ≤ n, there are m× (n− q) P controllers and m× q PID
controllers. In particular, PID control is applied to the state variables which
influence the tracked output v(k), so they are robust against disturbances.
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2.3 MPC Solution for Constrained Systems

2.3.1 Design of integral MPC components

Having designed a robust linear state feedback as the terminal gain for
MPC, we are now ready to derive a complete MPC formulation. This re-
ceding horizon regulator is based on minimizing a finite horizon quadratic
objective function at each time k.

Vo
N(zk) = min.

uN

1
2

zT
k+NPzk+N +

N−1

∑
j=0

(zk+j
TCT

0 QC0zk+j + ũT
k+jRũk+j)(2.8)

subj. to Ēzk+j + F̄uk+j ≤ Ḡ. ∀j ∈ 0, ..., N − 1

zk+N ∈ X f (2.9)

where uN = {ũ0, ..., ũN−1} and only ũ0 is applied to the plant due to the
receding horizon policy. Q, R are symmetric positive definite penalty
matrices on state and inputs (Q can be semidefinite). P ≥ 0 is the
terminal penalty matrix, which is also positive definite. Ē, F̄, Ḡ represent
the constraints translated from Eq. (2.2). X f is the terminal constraint.

As observed in Eq. (2.4), the future ∆v(k + j) is not dependent on the
current ∆v(k) but on the prediction x(k + j), thus a differential weighting
on the diagonals of Q does not lead to a non-zero gain K3 for ∆v(k).
The differential gain only appears implicitly through the state feedback
robust gain K designed for the terminal region. In other words, it is
robust control designs that bring the differential term into the PI control
in MPC. This feature differentiates this work with other MPC-related
works in the literature [Raffo et al., 2010; Sakizlis et al., 2004].

There are a few options to choose which state variables are penal-
ized by adopting different structures for C0. In this note, we use C0 =[

C̄ Iq Iq

]
because penalizing ∑ ṽ ensures offset-free results and regu-

lating ∆ṽ improves stability.
The problem in Eq. (2.8)-(2.9) is solvable by quadratic programming

techniques, or more advanced methods with dynamic programming [Saffer-
II and Doyle-III, 2004]. Here MPC component design is a more inter-
esting problem. Two important properties: feasibility and stability are
discussed to give a tuning guide for MPC parameters.
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Feasibility Assume the feasibility of the optimization problem is given
at k = 0. Persistent feasibility of the receding horizon control is guaran-
teed if X f is control invariant.

Stability Complied to the MPC stability criteria in Mayne et al. [2000],
the value function Vo

N(z) should approach the infinite horizon uncon-
strained optimal value Vuc

∞ (z). The following sufficient conditions are
useful to obtain K, X f and P.

1. The terminal gain K is a stabilizing gain so that the closed loop
matrix AK = Ā + B̄K is stable.

2. The terminal constraint set X f is the constraint invariant admissi-
ble polyhedron of the system zk+1 = AKzk with respect to the state
and input constraint Ēzk + F̄uk ≤ Ḡ.

3. Vf (z) = 1
2 zTPz is a Lyapunov control function inside X f , e.g.

Vf (zk+1, Kzk)−Vf (zk)= zT
k AT

KPAKzk − zT
k Pzk

≤−zT
k C0QC0zk − zT

k KTRKzk, ∀zk ∈ X f ,

(2.10)

Hence K can be computed as the robust gain from Section 2.2. X f can
be calculated analytically using the methods detailed in Alessio et al.
[2006]; Blanchini [1999]; Gilbert and Tan [1991]. P can simply be cho-
sen as the solution of the equality in (2.10), the unique positive-definite
solution of a discrete Lyapunov equation

AT
KPAK − P = −(C0QC0 + KTRK) (2.11)

once K is known [Grieder et al., 2005]. When the state reaches the termi-
nal region, the input gain is switched to the local robust gain K.

Remark 1 For linear stable systems, the constraint zk+N ∈ X f in Eq. (2.9)
could be omitted. For linear unstable or nonlinear systems, it must be added as
a relaxation of the terminal equality constraint in Muske and Rawlings [1993].
In this case, N should be chosen large enough so that zk can be steered to the
terminal constraint set X f within N steps (0 ∈ X f ); an alternative solution for
small N with cheaper computation is proposed in Rawlings et al. [2008].
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Figure 2.1: (a) The output overshoot caused by s = 0; (b) A simple
solution to update the integrating reference at setpoint change events.

2.3.2 Overshoot Problem in Integral MPC

Integrating state of output errors in MPC induces large overshoots for
output tracking, repeatedly reported in Maeder and Morari [2010]; Muske
and Badgwell [2002]. This problem is particularly of interest to MPC
controllers. It raises an interesting question to discuss about this phe-
nomenon.

To address this question, one first needs to differentiate the two causes
of output overshoot: the windup problem resulted from active input
constraints, and the penalization of integrating state variables in the
performance cost. Often, the input constraints are active during first
stage of MPC, but the windup problem will not happen. It is worth
mentioning that in MPC the model 2.4 is used only in the time window
from the current point to N future steps, so the integrating state variables
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Figure 2.2: Design flow for the robust tracking MPC.

are reset to 0 at every sampling time. The second problem, however, is
usually encountered. By minimizing the sum of square (∑ ṽk+1)2 + ... +
(∑ ṽk+N)2 in the performance cost, the integrating state is regulated to 0,
which causes a overshoot to make up for the initial transient stage (Fig.
2.1a).

In standard MPC controllers, the overshoot phenomenon has been
addressed with a reference trajectory in most of the commercial prod-
ucts [Qin and Badgwell, 2003]. This reference trajectory is often a first-
or second-order trajectory with user-defined time constants. Based on
this technique, a non-zero constant reference s for the integrating state
can be proposed in Fig. 2.1b. This proposed approach can determined
efficiently in the computation of steady-state target (xs, us).

2.4 Bridging Robust Linear Feedback and Inte-

gral Model Predictive Control

The design of the robust control at the core of the framework can lever-
age on a whole variety of well known robust control designs such as
H∞, feedback Lyapunov function or min-max minimization [Bara and
Boutayeb, 2005; Bemporad et al., 2003; Garcia et al., 2003] to derive the
terminal gain of MPC as in Section 2.2.2. The terminal cost and termi-
nal region are formed subsequently. The MPC synthesis under this ap-
proach will thus possess a robust stability property i.e., the convergence
to the origin under the presence of a disturbance is guaranteed when the
state reaches the terminal region.

Robust performance along the nominal trajectory, which is a stronger
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Figure 2.3: Addictive disturbance happening at (a) Active-constraint
region, thus offset-free property is required to drive x to X f ; (b)
Neighborhood of the setpoint, thus robust control helps to maintain x
within X f so that offset-free control is ensured.

property, will require more analysis on the disturbance structure. For
this problem, techniques such as tube-based MPCs [Mark et al., 2011] can
be applied directly on the PID-augmented state. The inherent PID form
in Eq. (2.5) still ensures the offset-free property. Hence, compared to the
disturbance estimation and compensation approach, this framework can
incorporate robust control directly. At the same time, it enables direct
analysis of robustness and closed loop performance.

By itself, robust control aims at reducing but not removing the effect
of possible sources disturbances. The tracking MPC steps in to fill this
gap. In most cases, offset-free control helps to negate the persistent
disturbances and drives the state to the unconstrained region so that a
robust input gain can be employed (provided that the target is inside
this region). Hence, offset-free control reinforces robust stability when
disturbance seeps in from outside the terminal region, as illustrated in
Fig. 2.3a.

Robust control also helps to realize a steady-state assumption which
offset-free MPC hinges on. According to Rawlings and Mayne [2009],
in constrained systems, offset-free tracking under disturbance can be
categorized into three outcome cases: there is zero steady state offset;
the system trajectory is unbounded; the system constraints are active at
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steady states. An important assumption to ensure offset-free control is
that the steady-state is contained in the unconstrained region. However,
a large disturbance may change the outcome from the first case to the
last case and render offset-free tracking infeasible [Muske and Badgwell,
2002; Pannocchia and Rawlings, 2003]. Under this situation when track-
ing MPC fails, robust control methods, in particular H∞, can minimize
such effects and guarantee zero tracking error in the steady state as in
Eq. (2.6) (Fig. 2.3b). This connection can be used in further analysis on
robust sensitivity inside the terminal region.

2.5 Example

This example shows that the approach can actively seek a steady state
solution that is output offset-free, provided that a feasible steady state
conforming to the system constraints. Furthermore, steady state PI gains
that follows some robust specification of H2/H∞ can be derived in the
terminal set.

Consider the following coupled tank system

xk+1 = Axk + Buk + dk

vk = Cxk, (2.12)

in which

A =

[
0.9034 0.0140
0.0461 0.9674

]
, B =

[
0.2087 −0.0239
−0.0215 0.3428

]
, C =

[
1 0

]
.(2.13)

The system state is augmented as z =
[

x̃ ∑ x̃1

]
so that

zk+1 =

[
A 0
C Iq

]
zk +

[
B
0

]
ũk. (2.14)

LQR is first used to design the terminal gain, and that is compared
with other H∞ solutions which minimizes the disturbance effect on νk =
Q1[x̃1 ∑ x̃1 ∆x̃1 ũ1 ũ2]T with Q1 = diag(qp, qi, qd, q1, q2). Following the
terminal gain design, the terminal weighting matrix P and the terminal
set X f are constructed as in Section 2.3.

The offset-free properties of the proposed MPC approach with the
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Figure 2.4: Tracking ability of MPC robust integral control under
disturbance effect. (a) Disturbance (b) Output response.

different terminal gain designs are analyzed in Fig. 2.4. Under persistent
disturbance (e.g. model uncertainty, step disturbance), all the designs
meet the target tracking requirement, although restricting the distur-
bance effect on the integrating output error improves the disturbance
rejection. The benefit of H∞ tuning is further shown through a ramp
disturbance, where a higher integral term yields a much smaller output
offset. Thus MPC with H∞ is very effective in disturbance rejection.

As seen in Fig. 2.5, the disturbance rejection is translated between
the input channels. Evident in the system model, the input channel
u1 is mainly responsible for disturbance rejection on x1. Thus the per-
formance would be clearly affected, for example, if there was an input
constraint u1 ≥ −0.2. In the case of H∞ design, this can be mitigated
by translating the load from u1 to u2 (certainly in the case the lower
constraint of u2 is not active). At the same time, by minimizing the
output error, the proposed approach can further reduce its upper bound.
In conclusion, the robust control design at the equilibrium will be greatly
beneficial if operating near the constraint is required.
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The problem with this approach is that the robust design uses a high
gain, thus corresponding to a small terminal region X f for MPC. With
a small disturbance, the state is inside the positively invariant set X f

of the closed-loop system zk+1 = Azk + Bũ(k), and the constraints are
kept. However, if the disturbance is large enough to drive the states
outside of X f (since X f small), the state reaches its steady value without
the help of the KH∞ gain, but the gain of the offset-free MPC in the
unconstrained region. Thus though the perfomance is still offset-free,
the desired characteristics of H∞ is not fully imposed.

2.6 Conclusion

Robust and offset-free control are two important and desirable proper-
ties to be implanted in an industrial controller such as MPC. This chapter
elaborated a unified MPC framework under which these characteris-
tics can be efficiently delivered in the control performance. The key
to the union of these two mature fields is the use of a PID-augmented
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model which removes the need for a disturbance estimation approach
and facilitates the role of established robust control in the core terminal
region of the MPC. The framework opens the access of offset-free MPC
to robust and nonlinear control, and contributes to both analysis and
applications of MPC. A systematic design flow for practical application
of the proposed methodology has been formulated, and potential areas
which can benefit from the framework are discussed in the chapter.
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Chapter 3

Gain-scheduling PID Network
Using Model Predictive Control

In chemical process applications, model predictive control (MPC) effec-
tively deals with input and state constraints during transient operations.
However, industrial PID controllers directly manipulates the actuators,
so they play the key role in small perturbation robustness. This chapter
considers the problem of augmenting the commonplace PID with the
constraint handling and optimization functionalities of MPC. First, we
review the MPC framework, which employs a linear feedback gain in
its unconstrained region. This linear gain can be any preexisting multi-
loop PID design, or based on the two stabilizing PI/PID designs for
multivariable systems proposed in the chapter. The resulting controller
is a feedforward PID mapping, a straightforward form without the need
of tuning PID to fit an optimal input. The parametrized solution of
MPC under constraints further leverages a familiar PID gain scheduling
structure. Steady state robustness is achieved along with the PID design
so that additional robustness analysis is avoided.

3.1 Introduction

Multilevel control attracts intensive research as a systematic tool for con-
trol of real plants with respect to high-level target while adhering to the
local constraints [Tatjewski, 2008]. The upper levels are usually con-
cerned with plant-wide steady state objectives with slow sampling rate.
The lower levels address fast dynamic control. There is a mature trend of
applying advanced optimization packages to fill the gap between these
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two layers. Well-known industrial examples such as AspenOne and
RHMPC use MPC as the core optimizer to deal with constraints [Froisy,
2006; Qin and Badgwell, 2003]. MPC is a constraint-handling optimiza-
tion method where the core idea is based on the receding horizon con-
trol. At each sampling time, the current plant output/state is measured,
and an optimal input is derived to minimize a performance index sub-
ject to state and input constraints. This desired input is sent to PID
controllers to directly manipulate the actuators. These PIDs must be
tuned to minimize the mismatch with the updated optimal input at each
sampling step. The first objective of the chapter aims to bypass this
two-phase complication through direct optimization of the PID gains.

Currently, there are two approaches of MPC, using either online im-
plementation [Mayne et al., 2000] for slow processes or offline implemen-
tation [Bemporad et al., 2002] for fast processes. The former control
approach solves in real-time an optimization problem, thus it is more
flexible to system design changes. The latter approach solves the same
problem offline for all feasible states, and obtains the optimal control
law in real-time by searching the current state over feasible regions. This
scheme, named parametric MPC, can effectively facilitate a PID gain
scheduling implementation. The resulting PID controller will deal with
constraints by changing gains upon the transition of active constraint
regions, not at each time step. This is the second and main objective:
to develop a practical implementation of parametric MPC in process
control.

The PID realization of MPC can be achieved with its robustness prop-
erty intact. In fact, a great number of research methods have carefully
addressed the robustness of MPC for perturbations both along the tra-
jectory (robust performance) and at steady state (robust stability). Poly-
topic uncertainty model is discussed in Grieder and Morari [2003] with
LMI and in Bemporad et al. [2003]; Nagy and Braatz [2004] where min-
max solutions are formed; bounded disturbances addressed by tube-
based MPC is proposed in Alvarado et al. [2008]; Mark et al. [2011]. The
tradeoff lies in the complexity of the solutions. In this note, we are keen
on observing the robust stability provided by the simple PID form of the
proposed solution.

In the literature, many finite-horizon optimal PID designs for con-
strained multivariable systems have been attempted to deliver a system-
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atic PID tuning. In Moradi [2003], the velocity form of PID prohibited
the variable gain structure, thus a fixed PID gain must be used across
the prediction horizon. In Arousi et al. [2008]; Camacho et al. [2003];
Sato [2012] the GPC-based PID design approximated the plants by a first
or second order model, thus limiting their applications to multivariable
plants. The solution in Di Cairano and Bemporad [2010] partially solved
the problem, but the two controllers MPC and PID must operate in par-
allel. Hence a flexible framework for optimal PIDs is still under on-going
research.

Collectively through the two mentioned objectives, this chapter seeks
to improve the MPC-based PID scheme to further close the gap between
MPC optimization and PID controllers. In Section 3.2, we formulate the
tracking problem and analyze the controllability and observability of the
augmented system. In Section 3.3, we describe the MPC formula and
show that either a new or existing multi-loop unconstrained PID designs
can be adopted into the framework. For convenience, two methods
are provided to calculate the PI/PID gains at the operating point so
that the closed loop system is stable. The first method applies LQR
on the PI state while the latter leads to linear matrix inequalities (LMI)
with the size proportional to the number of tracked outputs. Section
3.4 applies this PID design on the piecewise affine (PWA) solution of
MPC, which suggests a distributed PID gain scheduling framework to
deal with constraints.

Notation

The operators ∑, ∆ are the integral and differential terms. The notation
Q � 0 denotes positive definiteness. x, x̂ and x̃ denote the state, esti-
mated state and state error; u and ũ denote the input for tracking and
regulating problems, respectively. Subscript i indicates matrix/vector
component and k is the prediction step; superscript i is the critical region
index. Im is an identity matrix of order m.

3.2 Preliminaries

To obtain a linear feedback involving proportional-integral-differential
gains, it is necessary to form a system state that contains the correspond-
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Figure 3.1: Optimization control with multi-layers.

ing variables. Provided that is the case, an optimal linear feedback gain
is also an optimal PID gain. This section introduces the augmented
PI/PID-state systems and covers the analysis of their controllability and
observability.

3.2.1 Plant Model

Consider a linear time-invariant system

x(k + 1) = Ax(k) + Bu(k)

v(k) = Cvx(k)

y(k) = Cx(k). (3.1)

subject to the constraint

Ex(k) + Fu(k) ≤ G. (3.2)

In (3.1), x(k) ∈ Rn, u(k) ∈ Rm, v(k) ∈ Rq (q ≤ n), and y(k) ∈ Rp are
the state, input, tracked output and measured output. Assume (A, B) is
controllable and (A, C) is observable; C, Cv having full row rank; E, F, G
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are appropriate matrices defining the state and input constraints.
The plant model (3.1) is augmented with an integral of the tracked

output ∑ v(k) to ensure zero offset during the steady state. The following
PI-state model is used[

x(k + 1)

∑ v(k + 1)

]
=

[
A 0
Cv Iq

] [
x(k)

∑ v(k)

]
+

[
B
0

]
u(k)

y(k) = Cx(k). (3.3)

In special cases, Cv = I requires a full-state tracking while Cv = C expects
only output tracking.

Proposition 2 The PI-augmented system (3.3) is detectable. Furthermore, it
is controllable if and only if (A,B) is controllable and

rank

[
A− In B

Cv 0

]
= n + q (3.4)

Proof 2 The Hautus condition for observability is

rank

[
AT − λIn CT

v CT

0 Iq − λIq 0

]
= n + q for all λ ∈ C. (3.5)

The condition (3.5) holds everywhere except at λ = (1, 0), but the unobserv-
able integrating state can be controlled to decay to a constant so the system is
detectable.

Similarly, (3.4) follows directly from Hautus controllability where only the
case of λ = (1, 0) is to be checked.

By addition of the differential term, the PID-state system presents as x(k + 1)

∑ v(k + 1)
∆v(k + 1)

 =

 A 0 0
Cv Iq 0

Cv(A− In) 0 0


 x(k)

∑ v(k)
∆v(k)

 +

 B
0

CvB

 u(k)

y(k) = Cx(k). (3.6)

This PID-augmented system is detectable and stabilizable. The proof is
similar to Proposition 3.4.

Remark 2 The number of tracked variables is presumed less than or equal to
the number of manipulated variables (q ≤ m for PI case and q ≤ m/2 for PID
case); the other case was well treated in Maeder et al. [2009].
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The objective is to design a finite-horizon optimal control based on
the augmented system (3.3) or (3.6) so that v(k) tracks a piece-wise con-
stant reference.

3.2.2 Observer Design

From the system detectability, an observer can make use of the system
(3.1) to estimate the current state, and simply calculate the integral and
differential state through a sum of the estimated v̂(k) = Cv x̂(k) and its
difference.

Since (A, C) is observable, the observer is designed as

x̂(k) = Ax̂(k− 1) + Bu(k− 1)

+Lx[−y(k− 1) + Cx̂(k− 1)]

∑ v̂(k) = ∑ v̂(k− 1) + Cv x̂(k− 1)

+CvLx[−y(k− 1) + Cx̂(k− 1)]

∆v̂(k) = Cv(x̂(k)− x̂(k− 1)) (3.7)

It is only necessary to design the observer gain Lx as eig(A + LxC) < 1 so
that x̂(k)− x(k)→ 0. This automatically leads to ∆v̂(k) being stable. The
integral estimation error is not required to decay to zero, but a steady
state because ∑ v̂(k)−∑ v(k)→ const means v̂(k)− v(k)→ 0.

3.3 Controller Design

3.3.1 MPC Tracking

This section will outline the general MPC controller design for a state
space model that results in PI/PID control implementation fulfilling the
constraints.

Consider the linear system with constraints z(k + 1) = Amz(k) + Bmu(k).
Define the operating points (zs, us) and the deviation variables

z̃(k) = zs − z(k)

ũ(k) = us − u(k), (3.8)
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then z̃(k + 1) = Amz̃(k) + Bmũ(k)

ỹ(k) = Cmz̃(k). (3.9)

The finite-horizon quadratic optimal control problem is posed as

Vo
N(z̃0, Ũ) = min.

Ũ
z̃T

NPz̃N +
N−1

∑
k=0

(z̃T
k CT

mQCmz̃k + ũT
k Rũk) (3.10)

subj. to z̃k ∈ X, ũk ∈ U ∀k ∈ 0, ..., N − 1,

z̃0 ∈ X0, z̃N ∈ X f ,

z̃k+1 = Amz̃k + Bmũk,

where Ũ = {ũ0, ..., ũN−1}. Here Q ≥ 0, R � 0 are the weighting matrices,
(Q1/2, Am) is detectable; P ≥ 0 is the terminal penalty matrix. X0, X f are
the initial feasible set and the terminal constraint set. Note that X, U are
translated constraints from (3.2) through the transformation in (3.8). By
the receding horizon policy, only ũ0 is applied to the plant.

Assumption 1 The state and input constraints are not active for k ≥ N. Also,
X f contains the origin.

The optimizer Ũ stabilizes (3.9) if the value function Vo
N(z̃) corre-

sponds to a local Lyapunov function Vf within the terminal set X f . In
addition, the decay rate of that Lyapunov function must be larger than
the stage cost [Mayne et al., 2000]. Under this setup, any admissible
z̃0 is steered to a level set of Vf (and so X f ) within N steps, after which
convergence and stability of the origin follow. In other words, zk is stable
at zs for k ≥ N.

Therefore, given the state and input weighting matrices Q, R, one
would want to first compute an unconstrained stabilizing feedback ũ =
Kz̃ and its Lyapunov function V(z̃) that satisfy

Vf (z̃) = z̃TPz̃ ≥ 0,

∆Vf (z̃) = z̃T AT
KPAK z̃− z̃TPz̃

≤ −z̃TQz̃− z̃TKTRKz̃, ∀z̃ ∈ X f , (3.11)

where AK = Am + BmK. The other ingredients of MPC formula are then
determined as follows.

• X f is the maximal positively invariant polyhedron of z̃k+1 = Amz̃k +
Bũk with respect to z̃k ∈ X, ũk ∈ U. As commented in Rawlings
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and Mayne [2009], if X f is ellipsoidal, the problem is no longer a
quadratic program but a convex program but can be solved with
available softwares.

• X0 is the N-step stabilizable set of the system (3.10) with respect to
X f . N is a trade-off value between the complexity of MPC problem
and a larger set X0 (i.e. larger initial error z̃0).

• P is chosen as the solution of the equality in (3.11), the unique
positive-definite solution of a discrete Lyapunov equation once K
is known [Grieder et al., 2005].

X0, X f can be calculated analytically using the method detailed in Alessio
et al. [2006]; Blanchini [1999].

A popular choice for K is obtained from the LQR gain with weighting
matrices Q, R [Chmielewski and Manousiouthakis, 1996; Scokaert and
Rawlings, 1998]. However, in this note, it is left as a general stabilizing
gain K that will be computed in the next section.

3.3.2 Computation of Stabilizing PI/PID

This session describes a method to compute an unconstrained feedback
gain K that is used to reconstruct the MPC formula (3.10). It is because
this gain would result in PI/PID controllers, as shown in the following

theorem. For the general case, let z =
[

xT ∑ vT ∆vT
]T

.
Let (Ā, B̄, x̄) be the augmented model and state of (3.3). We show how

to obtain the gain K as either PI or PID gains.

PI Controller (K3 = 0)

For this case, it is essential to obtain the feedback gain for z = x̄ =[
xT ∑ vT

]T
. The PI control can be formulated by applying LQR to the

error model of (3.3) to produce a PI control law u(k) = KPIz(k). From here
simply take (Am, Bm, Cm) = (Ā, B̄, C̄), K = KPI and use (3.11) to apply the
MPC formula.

PID Controller (K3 6= 0)

To get a non-trivial differential gain K3, one can treat the differential term
as an output feedback of the system (3.3) [Zheng et al., 2002]. Define

φ =
[

xT ∑ vT φT
3

]T
where φ3 = ∆v−CvBu = Cv(Ax + Bu− x)−CvBu =
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Cv(A− In)x. Then

x̄(k + 1) = Āx̄(k) + B̄u(k)

φ(k) = C̄x̄(k) =

 In 0
0 Iq

Cv(A− In) 0

 x̄(k). (3.12)

Design of static output feedback (SOF) u(k) = Fφ(k) for the discrete
time system above has been investigated in Bara and Boutayeb [2005];
Dong and Yang [2007]; Garcia et al. [2003]; He et al. [2008] which use
LMI conditions. There exists more outputs than inputs in this case, so
we present a simple solution to determine F in Theorem 3 [Bara and
Boutayeb, 2005]. In that work, the solution can be extended to the H∞

design, but the details are omitted here for simplicity (refer to Remark
4).

Theorem 3 System (3.12) is stabilizable by a static output feedback if there
exist a symmetric positive definite matrix P0 ∈ R(n+q)×(n+q) and a positive
scalar σ ∈ R such that

ĀTP0Ā− P0 + σB̄B̄T ≺ 0 (3.13)

is satisfied. Furthermore, the SOF gain F can be obtained by solving

(Ā + B̄F)TP0(Ā + B̄F)− P0 ≺ 0. (3.14)

Conditions (3.13), (3.14) can be solved as two LMI problems. Once
we have found a stabilizing output feedback u(k) = Fφ(k) or equivalently
ũ(k) = Fφ̃(k), it can be rewritten in the PID form as

ũ(k) = F1x̃T + F2 ∑ ṽT + F3∆ṽ + F3CvBũ(k) (3.15)

so ũ(k) = (In + F3CvB)−1[F1x̃(k)T + F2 ∑ ṽ(k) + F3∆ṽ(k)]

= KPID z̃(k), (3.16)

where z̃ =
[
x̃T ∑ ṽT ∆ṽT]T. The invertibility of matrix (In + F3CvB) is a

necessary condition to render KPID.
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The MPC formula takes z̃(k + 1) = Amz̃(k) + Bmũ(k),

Am =

 A 0 0
Cv In 0

Cv(A− In) 0 0

 , Bm =

 B
0

CvB

 u(k) (3.17)

and K = KPID to apply into (3.11).

Remark 3 Applying LQR directly to PID state for system (3.17) will not re-
sult in a PID controller. In fact, since Am is no longer full rank, the optimal
input ũ(k) = (R + BT

mQBm)−1BT
mQAmz̃(k) depends only on the first two com-

ponents of z̃(k), so it is not a full PID but a PI gain. However, we realize that
increasing the weight on ∆v of Q does reduce the overshoot and enhance the
disturbance response of v(k).

Remark 4 The PID design for multivariable systems used in this chapter is
not unique. It is possible to use other techniques such as Dickinson and Shenton
[2009]; Soylemez et al. [2003]; Toscano and Lyonnet [2009] to derive a robust
PID gain before applying it into MPC.

3.4 From Parametric MPC to PID Gain Schedul-

ing

The result from Section 3.3 holds when it is applied to either an online or
offline MPC formulation. In this section, we particularly use parametric
MPC (offline) to demonstrate the PID gain scheduling realization.

3.4.1 Parametric MPC

Observe that the problem (3.10) minimizes a convex value function sub-
ject to a convex constraint set. We have the following definition

Definition 1 (Critical Region) A critical region is defined as the set of pa-
rameters z̃ for which the same set of constraints is active at the optimum (z̃, Ū0(z̃)).

In other words, if the constraints in (3.10) are presented as GŪ ≤
Sz̃ + W and A is an associated set of row index,

CRA = {z̃ ∈ X0 |GiŪ0 = Si z̃ + Wi for all i ∈ A} (3.18)
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Figure 3.2: Feasibility check of new setpoint zs2.

In Baotic [2002]; Tondel et al. [2003], it is shown that these critical
regions are a finite number of closed, non-overlapped polyhedra and
they cover completely X0. Since Ũ = {ũ0, ..., ũN−1}, the same properties
apply for ũ0

0. Theorem 4 states the key result (see Bemporad et al. [2002]).

Theorem 4 (Parametric solution of MPC) The optimal control law ũ0
0 =

f (z̃0), f : X0 7→ U, obtained as a solution of (3.10) is continuous and piecewise
affine on the polyhedra

f (z̃) = Fi z̃ + gi i f z̃ ∈ CRi, i = 1, ..., Nr, (3.19)

where the polyhedral sets CRi , {Hi z̃ ≤ ki}, i = 1, ..., Nr are a partition of the
feasible set X0.

Tracking for piecewise constant setpoint

Recall the admissible set X0 the MPC controller can stabilize depends
on the linearized model x(k + 1) = f (x(t))|x=xs and control horizon N.
Tracking of a new setpoint can be done by increasing N2 based on the
new model so that a jump in reference zs1 → zs2 is feasible within N2

steps.
In the case of fixed N, Corollary 5 states the necessary and sufficient

condition for a new feasible setpoint.
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Figure 3.3: Proposed PID gain scheduling structure.

Corollary 5 With a fixed-horizon proposed controller, a change in setpoint
zs1 → zs2 is feasible if and only if zs1 − zs2 ∈ X0(zs2).

Proof 3 The proof can be inferred from Fig 3.2. If zs1 is out of the maximal
admissible region X0(zs2) constructed around zs2, it is impossible to drive the
current error z̃ = zs1 − zs2 to zero with the existing controller.

Corollary 5 suggests a way to detect if a new setpoint is feasible so
that the local optimization for steady state target can recalculate zs early
before the infeasibility happens. One can use a single model and treat
the model mismatch at a different operating point as disturbance, but
generally X0 still needs to be rebuilt through (3.8) because the constraints
change with setpoint relocation.

3.4.2 PID Gain Scheduling Design

The optimal input of MPC is applied for regions outside X f . When
z̃(k) reaches X f , the system will be stabilized by the pure gain F0 =
K. Therefore, one practical way to design PID for constrained systems
is designing a PID gain for its unconstrained region, which has been
accomplished in Section 3.3, and applying these settings on the MPC
formulation (3.10).

Fig. 3.3 shows a series of PIDs plus a single feedforward vector where
the controller gains are determined from (3.19). Each of the PIDs is fully
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Figure 3.4: Two coupled tanks for chemical processing

flexible (might contain only P or PI components) and has its own gain-
scheduling table for different partition indexes. At each time step, the
proposed scheme would look for the region in which the augmented
error z̃(k) lies in. This search engine would broadcast the region index
i to the PID network. The feedforward term associated with region i is
added to compensate the active constraints. Non-zero tracking accounts
for the addition of steady state input and recovers the input delivered to
the plant.

Remark 5 As seen from Fig. 3.3, the PID network consists of one-to-one
mappings between each state variable error of the original state x and an input.
This fact results from equation (2.7).

3.5 Example

The proposed control design is illustrated in the following example, gen-
eralized from Bemporad et al. [2002] with two inputs. Consider a con-
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tinuous stirred-tank reactor model in Fig. 3.4

A =

[
0.7326 −0.0861
0.1722 0.9909

]
, B =

[
0.0609 0

0 0.0064

]
,

C =

[
1 0
0 1

]
, X =

{
x ∈ R2|

[
−0.5
−0.5

]
≤ x ≤

[
1.5
2.5

]}
,

U =

{
u ∈ R|

[
−2
−2

]
≤ u ≤

[
2
2

]}
. (3.20)

The task is to track the level 1 x1 with the reference x1s = 1. To observe
the robustness of tested controllers, the disturbances d1 = [1;−0.5] (im-
pulse), d′1 = [0.01;−0.01] (additive) within an active constrained region
at k = 3 and d2 = [−0.15; 0] (additive) at steady state k = 100 are intro-
duced.

The three following controllers are compared: simple parametric MPC
(I), the whole state tracking with full PI (II) and x1-tracking with partial
PID (III). The prediction horizon (also control horizon in this case) is
chosen as N = 2.

Tuning weighting matrices for PID control had been discussed in
Nguyen et al. [2011]. For PI, z =

[
xT

1 xT
2 ∑ xT

1 ∑ xT
2
]T and Q = diag(1, 1, 0.001, 0.001),

R = 0.01I2; for PID z =
[
xT

1 xT
2 ∑ xT

1 ∆xT
1
]T, Q = diag(1, 1, 0.001, 0.1),

R = 0.01I2. MATLAB LMI solver is used to obtain the unconstrained
PID gain for case III, and Multiparametric toolbox [Kvasnica et al., 2004]
is applied to obtain the gains under critical regions.

The unconstrained gain K in the three cases are

KI =

[
4.501 3.792
0.711 2.160

]
,

KI I =

[
5.792 6.353 0.289 0.469
1.103 7.094 −0.579 0.326

]
,

KI I I =

[
0.493 1.399 0.139 −0.392
3.014 18.545 1.765 −0.766

]
, (3.21)

and they resulted in control laws with 8, 14, 12 critical regions, respec-
tively.

From the state response in Fig. 3.5, it is observed that the scheme
I can not negate the additive disturbance happened either at an active
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constraint region or at steady state. It results in offset x̃ =
[
0.06 −0.06

]T

and x̃ =
[
−0.05 −0.45

]T
, respectively. The scheme II can track both the

state variables but with significant overshoot due to the regulation of

∑ ṽ back to 0. That effect can be removed by tracking it to a constant
(as a tuning parameter), but ignored in this example for simplicity. The
scheme III tracks x1 as required, and successfully forces the disturbance
effect into x2. The tracking under setpoint change and disturbance rejec-
tion also happens faster than scheme II. It should be emphasized that all
the three schemes are able to deal with the state and input constraints
x1 ≤ 1.5, u ≤ 3 during transient stage because of the feedforward term
gi in the parametric MPC law.

Fig. 3.6 gave another perspective of the result. Provided that the
impulse disturbance did not excite the current state out of the feasible
region X0, it is feasible to find an optimal input for all the three schemes.
Secondly, scheme II hit on the outer constraint x̃1 = −0.5 (x1 = 1.5) and
took a long time to recover. Indeed, an integral windup happened at this
upper output bound. The scheme III showed the full PID potential. It
is known that the proportional-integral deals with the present and past
behavior of the plant. The differential term predicts the plant behavior
and can be used to stabilize the plant faster. This is in line with Remark
3. The trajectory quickly returned to the origin in both cases of setpoint
change and additive disturbance. Lastly, while scheme II regulated the
state error back to the origin, scheme III only drove it to the axis x̃1 = 0
as expected. It meant only m× q PIDs and m× (n− q) Ps are needed to
track q outputs.

In conclusion, it is observed that as long as the disturbance does not
drive the equilibrium outside of the unconstrained region, output track-
ing using the integral state variables remains feasible. The robust stabil-
ity during transient stage is inherent through the PID form. The robust
stability around setpoint only concerns the PID control design described
in Section 3.3.2, which can be improved further by H∞ approaches as
stated in Remark 4. Overall, extension to integral and differential terms
is the natural to perform tracking control.
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3.6 Conclusion and Future Work

As it was never emphasized enough, the link between MPC and a robust
linear controller at equilibrium is revisited in this chapter. We modify
the linear controller to be capable of offset-free tracking. The resultant
control architecture is a PID gain scheduling network with a feedforward
part to deal with state and input constraints. A simple test for setpoint
tracking feasibility is also discussed. Finally, the example results show
that the robustness stability of the proposed method is inherent within
the PI/PID structure when disturbances arrives.

Future works will involve designing the unconstrained PID gain which
enlarges the terminal region of MPC. In addition, the overall PID state
space can be decoupled into smaller subspaces so that the partition search-
ing operation is more efficient. Distributed MPC has the potential to
apply this technique, where similarities in gain scheduling control can
be found at Blanchini [2000]; Blanchini and Pellegrino [2007].
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Figure 3.5: State responses and control inputs under disturbances at
transient and steady-state.
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Figure 3.6: Controller partitions projected on subspace [x̃1, x̃2] and the
state trajectory with (a) Scheme I, (b) Scheme II (cut at ∑ x̃1 = ∑ x̃2 = 0)
and (c) Scheme III (cut at ∑ x̃1 = ∆x̃1 = 0).
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Chapter 4

Robust Control of a Linear
Ultrasonic Drive

Ultrasonic actuators used in high-precision mechatronics are character-
ized by strong frictional affects, which are among the main problems in
precision motion control. The traditional methods apply model-based
nonlinear feedforward to compensate the friction, thus requiring closed
loop stability and safety constraint considerations. In this chapter model-
based parametric controllers are derived to obtain an optimal position-
ing control for these motors. A systematic approach which uses piece-
wise affine models greatly simplifies the friction model choice in the
traditional methods. Issues about the nonlinear affects of the friction
are addressed by designing a robust control law near zero speed. These
developments result in a gain-scheduling optimal input, which is sim-
ple to carry out in real-time applications. The controller is expected to
improve the constraint safety and the tracking performance for actuator
operation.

4.1 Introduction

The ultrasonic motor (USM) is a type of piezoelectric actuators which use
some form of piezoelectric material and rely on the piezoelectric effect.
The USM offers advantages of high resolution and speed to ensure the
precision and repeatability, so it is widely used in precision engineering,
robots and medical and surgical instruments where high accuracy is
required. While a typical piezoelectric actuator (PA) is driven directly by
the deformation of the piezoelectric material, the USM provides motions
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by the friction between the piezoelectric material on the stator and the
rotor. Thus, the USM offers another advantage of theoretically unlimited
travel distance in comparison with the typical piezoelectric actuators.

This chapter examines the USM M-663 made by Physik Instrumente
(PI) as a testbed. Fig. 4.1 shows its internal structure and working
principle. The rotor motion is based on a alumina tip attached to the
piezo-ceramic plate (the stator). This plate is segmented on one side
by two electrodes. Depending on the desired direction of motion, ei-
ther the left or right electrode of the piezo-ceramic plate is excited with
a standing wave to produce high-frequency vibration. Because of the
asymmetric characteristic of the standing wave, the tip moves along an
inclined linear path with respect to the friction bar surface and drives
the rotor forward or backward. Each oscillatory cycle of the tip can
transfer a 0.3 µm linear movement to the friction bar. With the high-
frequency oscillation, it will result in a smooth and continuous rotor
motion. An external drive is used to convert analog input signals into
the required high-frequency drive signals. The motor is employed in
a semi-automated device for medical operation on human ear mem-
brane. The operating conditions defined by the manufacturer are: travel
range ±9.5 mm, maximum speed 400 mm/s and input voltage ±10 V.
Because of the strict constraints in medical operation, additional control
constraints arise: tracking overshoot less than 5 %, settling time within
0.1 s, maximum steady state error 0.02 mm. Controlling the actuator
under such constraints and performance requirements requires specific
consideration.

For control applications involving small displacement and veloci-
ties, friction modeling and compensation can be very important, espe-
cially around velocity reversal. Because the friction presents a nonlinear
switch which is dependent on the motion direction, using a single linear
model to design a linear controller results in inaccuracy especially at
low-speed control Armstrong and Amin [1996]. Additionally, a practical
controller should respect the physical limitation of the motor input and
safety constraints on the system variables (e.g., position range, speed).

To overcome friction, the traditional control algorithms reported in
the literature decouples the friction model from the linear motion sys-
tem and mitigates it separately. Beside a linear regulator such as PID,
the input contains a nonlinear feedforward component. These meth-
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ods differ from one another in the nonlinear friction models as well
as the techniques to compensate for it. Along this perspective, much
research efforts have been focusing on building accurate friction models
Dupont et al. [2002]; Hayward et al. [2009]; Parlitz et al. [2004]. The com-
pensation, usually of bang-bang type in practice, resolves the friction
problem and leaves PID with other unmeasured disturbances including
the friction model mismatch. The approaches are simple to implement
and if properly tuned, they provide fast transient response, good static
accuracy and robustness to the motor parameter variations Peng and Lin
[2007]. However, the nonlinear compensation is contingent on asymp-
totic stability, which relies on the specified friction model. The frictional
affects can also depend on rotor position and system degeneration, so
a fixed friction model may require more computing time to compute.
Finally, such control tactics do not deal systematically with constraints
on the control input and variables, so manual safety considerations have
to be taken care.

To address the mentioned limits, the hybrid model predictive control
(MPC) approach which is easy to implement and has all the advantages
of model-based control has been proposed. The flexibility of MPC frame-
work is that it can use mathematical programming to solve systemati-
cally constrained optimization. A recent rising approach to deal with
friction in electrical drive is based on piecewise affine (PWA) modeling
of the nonlinear frictional affects. Theoretically, the idea of MPC for PWA
systems was developed nicely by Lazar et al. [2006]. In the context of
Herceg et al. [2009]; Vasak et al. [2007], the authors applied this method
to design time-optimal control strategies for industrial actuators. Al-
though the method still depends on the choice of friction models and
considers no robustness, the tracking performance is promising.

In this chapter, a robust optimal design is adapted via the familiar
quadratic programming for a tractable solution. The commonly used
friction models are approximated by several linear segments so MPC
is aware of this impeding force at low speed. A constrained optimal
control problem for PWA systems is then formulated to provide stability-
guaranteed input. Specially, an integral MPC design imposes the ro-
bustness on model-plant mismatch near zero-speed. Implementation of
the real-time control is handled by a gain-scheduling table so that the
complexity is comparable to the traditional feedforward PID. Section 4.2
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Friction bar 

 

  
 

Figure 4.1: Linear ultrasonic motor structure and motion description.

describes how the piecewise affine model can fit in the shape of friction
forces. Section 4.3 describes model predictive control concepts in the
motion tracking context. Integral MPC with robustness design is also
presented. In Section 4.4 simulation studies are described before final
implementation on the experiment setup is reported. The chapter is
concluded in Section 4.5.

Notations

y, v denote position and velocity of the motor. F, f are the general friction
and its components. A, B, C, D are matrices of a state space dynamics.
The indices i, j are for different system dynamics and gain-scheduling
regions, respectively. All sets mentioned in this context are polyhedral
sets.

4.2 Piecewise Affine Model of Motion

Consider a classical linear motion model which takes the form[
ẏ
v̇

]
=

[
0 1
a b

] [
y
v

]
+

[
0
c

]
(u− F(v)) (4.1)

where y, v is the rotor position and velocity; F(v), the friction as shown
in Fig. 4.3, consists of the constant Coulomb friction fc, viscous friction
Fl = kv and Stribeck effect Fnl which shows the friction continuously
decreases when the motor starts accelerating Hayward et al. [2009].

From there, the motion system of ultrasonic motor can be represented
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(c) (d) 

Friction force 

Friction force 

Friction force 

Friction force 

velocity velocity 

velocity velocity 

Figure 4.2: Various friction models. (a) Coulomb. (b) Coulomb + viscous.
(c) negative viscous + Coulomb + viscous: Form A. (d) negative viscous
+ Coulomb + viscous: Form B.

in four regions A-D, as in Fig. 4.3. Because the viscosity is linear in v,
models in regions A and D can be represented by (4.1). In regions B and
C, the same structure can be employed to approximate the system, but
with different linear dynamics; the complexity in the pre-sliding regime
will be addressed by the robust design in Section 3.3.

Firstly, the asymmetric static friction values at which the motor starts
moving, determined by injecting a sine wave function with low fre-
quency and amplitude 3 V, are fcp = 2.5V, fcn = −2.9 V as seen from
Fig. 4.4.

Secondly, the effective relationship from input to rotor position is
identified at two operating ranges: very low speed and normal speed.
Test inputs with bi-frequency square waves and magnitude u = ±5 V
and u = ±3 V (prior to adding the mean fcn+ fcp

2 ) are used to stimulate the
position response. The defining planes between the regions A and B, C
and D are taken at the velocity vn, vp obtained by applying u = ±3 V so
the regions B and C encompasses the nonlinear friction Fnl. The correla-
tion between the effective inputs, which are obtained by modulating the
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Figure 4.3: Motion friction (solid) described by linear segments (dashed)
over four regions A - D. The outer regions A, D are depicted by the
linear model {A1, B1} while the inner regions B, C are characterized by
{A2, B2}.

test inputs with the static friction forces as

u =

{
u− fcp if u > 0

u− fcn if u < 0, (4.2)

and the output are examined. The dynamic models {A1, B1}, {A2, B2}
for the two velocity ragnes are obtained from MATLAB System Identifi-
cation toolbox (subspace method) and validated in Fig. 4.5.

Denote the state x =
[
y v

]T
. The piecewise affine model, after being

transformed to discrete time, can be formally defined in the four convex
subspaces

xk+1 =


A1xk + B1(uk − fcp) if v ≥ vp (Ω1)

A1xk + B1(uk − fcn) if v ≤ vn (Ω2)

A2xk + B2(uk − fcp) if 0 ≤ v ≤ vp (Ω3) (4.3)

A2xk + B2(uk − fcn) if vn ≤ v ≤ 0 (Ω4)

Let fc = fcp or fcn. Because regions A, D and B, C share the same linear
dynamics, the control design only needs to consider two cases {Ai, Bi}
for i = 1, 2. We have the following compact system depending on the
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Figure 4.4: Measurement of static friction using sine wave input.

sign and magnitude of the velocity v

xk+1 = Aixk + Bi(uk − fc) for i = 1, 2. (4.4)

Remark 6 The choice of u = 3 V is just large enough to bypass fc so that it
can stimulate the motion at a very low speed. This choice results in the velocity
range [vn, vp] = [−9, 9] mm/s which safely contains the nonlinear part of the
friction.

Fig. 4.5(b) shows that a linear model could not fit well on the inner
region which contains a nonlinear part of the friction. In Section 4.3, this
model mismatch will be addressed by implanting robust control within
the MPC terminal set.

4.3 Model Predictive Control for PWA Model

This section presents the integral model predictive design, including of
state augmentation, MPC tracking formulation and robust design.

Since the position tracking is emphasized, the new augmented inte-
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gral system (x̄k, ūk, ȳk) isxk+1

rk+1

θk+1

 =

Ai Bi 0
0 1 0
Ci −1 1


xk

rk

θk

 +

Bi

1
0

 ūk

h̄k =

[
C −1 0
0 0 1

]
x̄k, i = 1, 2, (4.5)

where r is the reference position and ūk = uk − fc. For convenience,
denote the system matrices for these augmented systems as (Āi, B̄i, C̄i)
and (i = 1, 2). Due to the motion system characteristics, this model
description already contains an integrator and it is not necessary to use
∆u-tracking formula here. Instead, the integrating state θk guarantees
tracking property.

A MPC optimal control scheme uses the system (4.5) to predict the
output error ahead in time and uses current feedback errors to compen-
sate any disturbance. The particular form of MPC is stated as follows

Vo
N(x̄0, Ū) = min.

Ū
x̄T

NPx̄N +
N−1

∑
k=0

(x̄T
k C̄TQC̄x̄k + ūT

k Rūk) (4.6)

subj. to x̄N ∈ X f , ūN = Kx̄k,

x̄k ∈ X, ūk ∈ U k = 0, ..., N − 1, (4.7)

where different prediction models (i = 1, 2) in (4.5) are used for respec-
tive regions. X, U are the state and input constraint set.

In the MPC literature, the terminal cost P, the terminal set X f and the
terminal gain K are key components Rawlings [2000]. After at most N
control steps, the MPC scheme expects the state x̄k to reside inside the
terminal set X f , which is a control invariant set maintained by a linear
state feedback ū = Ki x̄. This goal is enforced by the decreasing Lyapunov
function V0

N(xk) = xT
k Pxk within X f . Here, it is essential to consider the

design of components for all dynamics within the PWA systems.
Stability analysis for piecewise-affine systems using MPC has been

analyzed before in Cuzzola and Morari [2002]; Lazar et al. [2006] with
the design of the pair P, K and associated X f . We are more focusing
on the robustness aspect in this chapter. Equivalently, it is desirable to
keep the system state to stay within a terminal constraint invariant set
inside the regions B and C (near the switching surface of the friction) by
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Figure 4.5: Model validation at two input ranges (a) around u1 = 5 and
(b) u2 = 3.

a robust gain K, even with modeling errors. Such a gain can be designed
specifically for the dynamic {A2, B2} with robust control techniques.
The rest of Section 4.3 describes a method to design of MPC components
based on this goal.

Terminal gain

Consider again the augmented dynamics from (4.4). Given Q, R as
desirable weighting matrices, design the feedback input ū f b = Kx̄ such
that the system

x̄k+1 = Ā2x̄k + B̄2(ū f b
k + wk)

ȳk = x̄k

h̄k = C̄2x̄k (4.8)

is robust against the friction model mismatch wk ∈ R (|wk|≤ w∗). This
design can use one of many existing techniques in the literature to deal
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with input disturbance. For this application, the rotor position and speed
are measured directly, so full information on x̄k of (4.5) is available, ex-
cept the disturbance wk. H∞ design for regular, state feedback systems
Oliveira et al. [2002], [Chen, 2000, Ch. 11] can be applied to solve the re-
lated discrete-time Riccati equations. The robust gain K must guarantee

∥∥Twy
∥∥

∞ < γ (4.9)

where Twh is the transfer function from wk to hk and γ is the infima of the
H2/H∞ design.

Terminal cost

To guarantee the monotonous decreasing of the cost function Vo
N inside

the terminal set, the terminal cost P should satisfy

(Ā2 + B̄2K)TP(Ā2 + B̄2K)− P≤ −Q− KTRK (4.10)

A feasible pair (K, P) must satisfy H∞ condition (4.9) and Lyapunov
condition (4.10) together. These conditions can be addressed in Lemma
6.

Lemma 6 Let Z = P−1 and transform Y = KG where G is invertible and
denote Ψ = Ā2G + B̄2Y. The conditions (4.9), (4.10) can be satisfied simulta-
neously if there exists a solution (Z, Y, G) to the following LMI

Z Ψ B̄2 0
ΨT G + GT − Z 0 GTC̄T

2

B̄T
2 0 I 0

0 C̄2G 0 γI

 > 0, (4.11)


G + GT − Z GT YT ΨT

G Q−1 0 0
Y 0 R−1 0
Ψ 0 0 Z

 > 0. (4.12)

After solving this LMI, the terminal weight P and the feedback K are simply
recovered as P = Z−1 and K = YG−1.

Proof 4 Assume (4.11) feasible, we have G + GT > Z > 0 and G non-singular.
Since Z is positive definite, (Z − G)TZ−1(Z − G) ≥ 0, so GTZ−1G ≥ G +
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GT − Z. From here we can replace G + GT − Z by GTZ−1G and Ψ = Ā2G +
B̄2Y in (4.11). Pre- and post- multiply the inequality with T := diag [I, G−1Z, I, I]
and TT we recover

Z (Ā2 + B̄2K)Z B̄2 0
Z(Ā2 + B̄2K)T Z 0 ZC̄T

2

B̄T
2 0 I 0

0 C̄2Z 0 γI

 > 0, (4.13)

which is a standard LMI condition for
∥∥Twy

∥∥
∞ < γ of the system (4.8) (see

Oliveira et al. [2002]).
Similarly, the matrix inequality GTZ−1G ≥ G + GT − Z can be used in

(4.12). After applying Schur complement, the inequality (4.10) is retained.

Terminal set

The terminal set X f for the MPC problems in (4.6) is the maximal pos-
itively invariant set inside regions XΩ3 ∪ XΩ4 (x̄-space of regions B and
C in Fig. 4.3). It can be computed based on the invariant control set
definition of the closed loop model x̄k+1 = (Ā2 + B̄2K)x̄k + B̄2w and the
system constraints.

For an arbitrary set Z, define the operator Φ(Z) = {x̄| (Ā2 + B̄2K2)x̄ +
B̄2w ∈ Z}. Let X0 be a reasonably large compact polyhedron and the
sequence {Xi} constructed such that

X0 ∈ {x̄| (x̄, ū) ∈ X×U} ∩ (XΩ3 ∪ XΩ4), (4.14)

Xi = Φ(Xi−1)∩ Xi−1, i = 1, 2, ..., (4.15)

As proved in Lazar et al. [2006], this iterative procedure can be con-
verged in a finite number of steps and the resulted maximum robust
positive invariant set is X f = limi→∞ Xi. A method to efficiently com-
pute this set has been formulated in Rakovic et al. [2005].

Observe that the problem (4.6) minimizes a convex value function
subject to a convex constraint set. The current state x̄0 can be considered
as a parameter for this problem. Interestingly, the state feedback gain
for x̄0 corresponds to velocity v(k), position x(k) and position integrating
θ(k), which is similar to a PID structure (except the feedforward part
because of the varying position reference and active constraints). Hence,
this is similar to a gain-scheduling feedforward PID where the decision
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(a) Experiment setup of USM M-663 with DS1104.
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(b) Proposed PID gain scheduling structure implemented inside dSPACE.

Figure 4.6: Realtime control for a linear ultrasonic motor.

variable is the current state x̄0. Therefore, one practical way to design
PID for constrained systems is designing a robust gain for its uncon-
strained region and applying these settings on the MPC formulation
(4.6). Note that when x̄(k) reaches X f , the system will be stabilized by
the pure gain K2.

4.4 Simulation Study and Experiment Results

The overall MPC controller design is simulated using multiparametric
toolbox (MPT) Kvasnica et al. [2004] in MATLAB, which resulted in a
simple gain-scheduling solution. Fig. 4.6 shows the controller structure.
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Figure 4.7: dSPACE ControlDesk Interface.

This control scheme is implemented in SIMULINK and then uploaded
to dSPACE DS1104 Controller Board. The dSPACE control development
and rapid prototyping system, in particular, the DS1104 board, is used,
which integrates the development cycle into a single environment.

4.4.1 Simulation Studies

In this section, the previous theoretical development is applied to simu-
lation examples. The purpose is to obtain a set of parameters to apply in
the real experiment.

Firstly, MPC parameters are determined based on the nominal linear
model {A1, B1}without friction. The control horizon is chosen as N = 10
to cover the output transient response. Weighting matrices Q, R is tuned
by the guideline in Nguyen et al. [2011] as Q = diag{104, 0.5, 0, 104}, R =
0.001. This choice gives a relative good performance for large changes
of set point (Fig. 4.8). Notice that X f falls inside the range [vn, vp] =
[−9, 9] mm/s due to the imposed conditions (4.14).

Parametric programming is used to solve the MPC problem for PWA
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models to obtain a varible state-feedback gain over 23 subspace regions

ūk = Kj x̄k + gj if x̄k ∈ CRj j = 1, ..., 23

with Kj =
[
Kpj Kdj Krj Kij

]
, (4.16)

a gain-scheduling form for feedforward PID. The output response is fast
since u(k) = umax = 10 V only powers up the actuator to a velocity v(k) =
180 mm/s, smaller than vmax = 400 mm/s.

In another study, the robust effective of the prosed control strategy is
tested. To simulate a friction uncertainty, we assume that the ultrasonic
motor has a similar linear model as the models identified from exper-
iment data in Section 4.2, but a different friction form. The identified
parameters are fcp = 2.5V, fcn = −2.9 V and

A1 =

[
0.9968 6.289× 10−4

−5.544 0.3623

]
, B1 =

[
4.616× 10−3

3.493

]

A2 =

[
0.9990 6.312× 10−4

−1.658 0.3662

]
, B2 =

[
2.033× 10−3

1.636

]
(4.17)

while the assumed real parameters are fcp = 2.4V, fcn = −2.9 V, A1, B1

unchanged and

A2 =

[
0.9990 6.312× 10−4

−1.658 0.4000

]
, B2 =

[
2.033× 10−3

1.636

]
(4.18)

An increase in A2(2, 2) represents a steeper negative slope of Fnl (Fig.
4.3).

Two MPC schemes are compared: LQR MPC and the proposed con-
troller with the additional robust design. Both MPCs are designed with
the tuned parameters above. Fig. 4.9 shows the tracking errors, veloc-
ities and inputs after a step change in the reference. It can be seen that
when friction mismatch presents, the output error with normal MPC
strategy shows an oscillation around the set point. Through the H∞ de-
sign, the oscillation magnitude is substantially reduced from 0.03 mm to
0.014 mm for the region near the setpoint (y, v) = (0, 0). Hence, the effect
of mitigating the friction model error is demonstrated by the proposed
method.
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4.4.2 Experiment

In this section, real-time experiments are carried out on an ultrasonic
drive system to compare the performance of relay-PID and the suggested
controller. The setup uses the PI M-663 with velocity limit 400 mm/s and
travel range 19 mm. The sampling period for this test is chosen as 1 ms.

The commonly used relay-PID tuning is chosen to compare with the
proposed method. In this experiment, the system model at u = 3 V is
used for relay tuning to obtain a static PID gain

Kpid =
[
34.96 0.09674 1545.5

]
. (4.19)

While it may not offer the best PID tuning in all situations, relay-PID ex-
hibits a large integrating factor to overcome the friction, thus achieving
a fast rising time and zero-offset. These characteristics can be used to
evaluate the performance of the MPC method Chen et al. [2009].

The gain-scheduling table from the simulation study is implemented
intro dSPACE under a lookup table form with 23 regions where only
matrix multiplication and comparison. This feasible form is computa-
tionally efficient for real-time implementation when compared to the
traditional PID plus nonlinear feedforward. Additionally, in order to
remove the error oscillation observed in the simulation studies, a dead
band for the static friction force is imposed

fc =

{
0 if |e| ≤ ε1, |v| ≤ ε2

fcn or fcp otherwise. (4.20)

The deadband could be implemented as a pre-condition prior to evalu-
ating uk = ūk + fc.

Tracking response of the two controllers for a square wave trajectory
f = 1 Hz, A = 1 mm is shown in Fig. 4.10. Fig. 4.10(a) shows that
relay-PID creates an overshoot created about 0.5 mm while the proposed
controller produces no overshoot and achieves a settling time as short as
the large-integrator PID. In Fig. 4.10(b) the actuator inputs are compared
for the two cases. Relay-PID provides an excessive input higher than the
actuator input threshold [−9, 9], while the new method has the input
properly constrained. Next, we compare the low-speed compensation
time in order to show the efficiency of adding modeling details of regions
B and C. Both schemes depend on the PID setup to regulate the position
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error at low speed. In the first controller, the input needs to overcome
the unknown increasing friction force at low speed, so it takes some time
to build up through the integral part. The fading-off signalizes the end
of the compensation. In the opposite, the integrating part of the sec-
ond controller only compensates for the small friction model mismatch,
so it takes smaller time to overcome the friction with a pre-designed
gain. Once u → 0 ( fc = 0), the system state is in the deadband re-
gion which implies that the friction uncertainty around the stationary
point has been compensated. This performance satisfies performance
specification mentioned earlier in the Section 4.1. Finally, the saving on

control effort per cycle is measured as E2
E1

= u2
MPC

u2
PID

= 77.12%. Note that
this measurement is only calculated from the setpoint change time to the
end of low speed compensation. This is to ensure a fair comparison in
case a deadband for PID input is also implemented.

4.5 Conclusion

This chapter has suggested a simplified scheme to deal with friction non-
linearity. A dual-stage linear model identification was used to describe
the friction, thus easing the effort to choose which friction model to be
applied. A robust MPC method was developed for compensation of
friction, mitigating the model mismatch near zero speed. Simulation
and experimental results have shown that the proposed compensation
technique can overcome the limitations of the relay-PID tuning and keep
the system under constraints, while attaining a simple real-time imple-
mentation.
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Figure 4.8: Tuning MPC weighting matrices by Nguyen et al. [2011] on
the outer model {A1, B1}. Trajectory is projected on (y, v) space.
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Figure 4.9: Simulated output errors with friction model mismatch for (a)
LQR MPC design and (b) proposed robust MPC.
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Chapter 5

Intelligent Control of In-vitro
Fertilization Medical Systems

In-vitro fertilization (IVF) and related technologies are arguably the most
challenging of all cell culture applications. This chapter introduces an
integrated mechatronic solution for oocyte retrieval procedure before the
oocytes are further put into laboratory processing during IVF treatment.
It facilitates the surgery operation and addresses the temperature inac-
curacy of follicular fluid during the transfer to the patients body. The
mechanical design is implemented into a medical-standard conforming
platform. An accurate temperature estimation and optimization scheme
are proposed. Comparison before and after the introduction of the new
prototype under various operating conditions reveals a significant im-
provement in performance. This yields a potential application for the
medical/healthcare industry.

5.1 Introduction

In Vitro Fertilization (IVF) has gained much attention in the medical/healthcare
industry as a major treatment for infertility in which one aims to produce
an embryo capable of establishing a pregnancy eventually leading to a
live birth. To obtain the initial oocytes from female bodies, doctors often
flush follicular media before aspirating follicles, especially in the case
of minimal stimulation IVF where the number of follicles is few [Hill
and Levens, 2010; Lozano et al., 2008]. The retrieved oocytes are trans-
ferred to laboratories for fertilization and vitro culture. Surgery opera-
tion and laboratory processing during IVF treatment requires open ma-
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nipulations of oocytes and embryos, which typically involves exposure
to ambient conditions. While these cells can survive minor variations
in culture conditions, they are very sensitive to changes in temperature.
Protection from ambient conditions can reduce stress-induced cellular
responses, thus promotes the success rate of IVF procedure [Sherbahn,
2010; Xie et al., 2008].

For laboratory cell processing, researchers has devised integrated,
enclosed platforms to minimize the environment effect. A microrobotic
cell convoying device was presented [Boukallel et al., 2007] to transfer
cells between biomedical components. A method for controlling the
culture environment of individual cells without is introduced [Kimura
et al., 2009]. Recently, an isolator-based system for human embryos is
reported in Hyslop et al. [2012] to increase a quarter the chance of IVF
success.

For surgery operation i.e. the oocyte retrieval procedure, several
commercial solutions are reported in Levens et al. [2009], Steiner [2011]
to improve the viability of these essential cells. In Levens et al. [2009], the
design is made by Cook Medical; they invent an oocyte retrieval system
with on/off temperature control module. Another design is proposed
in Steiner [2011] whereby the author suggested to use a syringe warmer,
named the Steiner device, to maintain a constant desirable medium tem-
perature. These existing designs feature unmodeled interactions between
the heating bar, the medium and the environment, thus may reduce the
overall egg retrieval success rate.

In this chapter, we propose the first integrated prototype for IVF egg
retrieval systems. The control of IVF flushing and aspiration units are
combined and consisted of two parts: the supervisory controller and
the temperature optimizer. The supervisory controller directs the pro-
gram flow with programmable logic control (PLC) to avoid undesirable
human mistakes, and records flushing and aspiration rates. The temper-
ature optimizer manipulates a heater to warm up the syringe during
flushing process. This combined design provides a more convenient
operation.

Solving the problem of medium temperature inaccuracy, caused by
the unmodeled process and the operation in various conditions, is the
second contribution. The thermal dynamics among the flushing fluid,
the heating bar and air temperature is modeled, and an observer is built
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Figure 5.1: A former version of flushing and aspiration units.

to estimate the fluid temperature inside the syringe. Temperature drop
along the transfer tube is also estimated based on various operating con-
ditions (environment temperature and flushing speed) to compensate in
the optimizer. From the control aspect, model predictive control (MPC)
is suggested to replace the current on/off method. MPC is an advance
process control widely accepted in the academia and implemented in
many industrial areas [Froisy, 2006; Li et al., 2012; Qin and Badgwell,
2003]. Besides, robust predictive control has been proposed in supervi-
sory control frameworks [Wang, 2011; Zheng et al., 2011]. It provides a
more precise control of the medium temperature.

The following sections describe in greater details the design and test-
ing procedure. The existing problems of the current design are described
in section 5.2. The system architecture and thermal modeling for this
specific problem is then presented. Design of state estimation and the
MPC algorithm used in the temperature optimizer are introduced in Sec-
tion 5.4. Section V provides testing results where the new performance
is compared with that of an old design.

5.2 Problem Statements

The traditional design involves more human action during the IVF pro-
cess. By using two separate devices (Fig. 5.1), it gives unnecessary
inconvenience and prolongs the operation time on patients. Therefore
a compact, uniformed design is preferred to automate the IVF sequence.
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This design must allow the control of procedure flow and avoid unde-
sirable system states that are possibly caused by human errors.

Another pitfall of the current design is the inaccurate estimation and
control of flushing fluid temperature. The flushing procedure contains
two steps: heating and transferring. For that reason, the temperature of
fluid inside the syringe must be heated to above 37 ◦C to account for the
temperature drop along the transfer path. However, this temperature
drop is dependent on the operating conditions: the air temperature and
the transfer speed. By intuitively setting the heating bar temperature
(e.g. 38 ◦C) without the real-time information of fluid temperature, the
fluid temperature error coming out from the needle can deviate 1 to 2 ◦C
below the setpoint 37 ◦C.

The uncertainty in operating conditions is the first cause of the above
error. It is assumed that the fluid temperature has a similar dynamic with
the metallic heating bar temperature, so only the holder temperature is
measured and controlled with simple methods (on/off). This assump-
tion has to be made because direct installation of a temperature sensor
inside the syringe is impracticable. In reality, the syringe design exposes
itself to the air and the dynamic of fluid temperature model is much
slower than the metallic bar. In addition, the temperature drop along the
transfer tube is also dependent on the air temperature. It relies on user
experience to compensate for this offset, usually through adjusting the
heating bar temperature in advance. Hence, thermal modeling involved
key factors such as transfer speed and air temperature is required.

On another aspect, due to the on/off feature with modeled delay, the
existing controller has two disadvantages. It trades off the accuracy with
the settling time, causing ripples in the temperature output. The heater
wear problem also persists from on/off constant cycling.

5.3 System Construction and Modeling

5.3.1 System Construction

The constructed IVF platform consists of five parts labeled with A, B,
C, D and E shown in Fig. 5.2. The interface A displays the operating
parameters specified by users and the system state. The stepper motor B,
which has position and forward speed tracked by pulse signals, pushes
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Figure 5.2: IVF integrated platform.

the syringe C and drives the medium into the flushing line and to the
patient’s body through a double-lumen needle. A heater pad is adhered
on the syringe holder to control the temperature of flushing medium
while feedback data is obtained by RTD PT100 sensors which meet in-
dustrial standards [Tan et al., 2008]. The aspiration pump D can work on
variable speeds for egg retrieval and transfer eggs to test tubes E, which
are maintained at 37 ◦C. The user controls the start/stop of the flushing
and aspiration by the two foot pedals F.

The flushing part is detailed in Fig. 5.3. Because the stepper motor
is quite accurate, open-loop control is used to control the transfer speed.
On the other hand, temperature control is done through the attached
heater mat and feedback signals from PT100s. Since RTD-type PT100s
output a nonlinear function

RT = R0(1 + aT + bT2 + c(T − 100)T3), (5.1)

the analog conversion circuit in Fig. 5.3b is designed to linearize the
output. The other I/O devices can directly interface with PLC through
D/A channels.

Architecture of the integrated control design is shown in Fig. 5.4. A
programmable logic controller (PLC) works in a low-level layer, direct-
ing the IVF oocyte retrieval procedure and automatically closing simple
control loops (flushing rate, aspiration rate). It acquires system data and
sends these information to a supervisory program. This program also
receives inputs from users, and monitors the current system status. A
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(a) (b)

Figure 5.3: Mechatronic design. (a) The syringe holder design and (b)
PT100 linearization circuit.

temperature control module collects the operating data from the super-
visory system and uses MPC to provide an optimal input for the heater.

5.3.2 Temperature Modeling

In this section, fluid thermal model is studied from first-principles and
the parameters are then derived from collected data. This model is de-
pendent on ambient temperature and flushing velocity, thus information
about these variables is important. In Fig. 5.5, the system is divided into
heating segment and transfer segment. Temperature sensors I, II, III and
IV are set up at the heating bar, inside syringe, in open air and at the end
of the transfer tube, respectively.

Assumptions about the targeted thermal systems are made to sim-
plify differential heat equations [Boglietti et al., 2008; Veluvolu and Soh,
2009]. Based on this assumption, lumped analysis on the thermal dy-
namic of individual objects can follow.

Assumption 2 The temperature along the heating bar, the transfer tube and
within fluid body inside the syringe are uniformly distributed.

The heating system dynamics, analyzed at each time instant, can be
captured as

dT1

dt
=

T1 − T2

R1
+

T1 − Ta

R1a
+ bu(t− d)

dT2

dt
=

T2 − T1

R2
+

T2 − Ta

R2a
, (5.2)
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Figure 5.4: System control design.

where T1, T2, Ta are the heater, fluid and surrounding temperatures; R1, R2, R1a, R2a

are thermal resistances between objects, u (0 ≤ u ≤ 1) represents the
heater input with limited power (25W), d is the input delay.

For the transfer part, consider a small fluid portion f running through
the tube of length L starting from t0 = 0, such that Tf (0) = T2, Tf (L) =
Tend. The heat loss from internal energy of this portion at time t is

mcp
dTf

dt
=

Tf − Ta

Re
,∫ Tend−Ta

T2−Ta

d(Tf − Ta)
Tf − Ta

=
tL

mcpRe
,

Tend − Ta

T2 − Ta
= e−

L
vmcpRe = η. (5.3)

Here, the temperature loss rate η < 1 is a constant for any fixed transfer
velocity v and constant environment temperature Ta.

Define the object temperatures above ambient air as state variables i.e.
xmi = Ti − Ta (i = 1, 2), ym = Tend − Ta. A second-order state space model
from equation (5.2),(5.3) is formed

xm(k + 1) = Amxm(k) + Bmu(k− d)

ym(k) = Cmxm(k)

zm(k) =
[
1 0

]
xm(k), (5.4)

where ym is the controlled fluid temperature at the end of the transfer
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Figure 5.5: Flushing modeling.

tube, zm is the heating bar temperature, Am, Bm presents the transfer
function from input to state, Cm = [0 η] shows the temperature drop
ratio through the transfer tube (η = ym

xm2
). From the heat flow equality,

the system is thermally stable.
Parameters in model (5.4) are identified as time-invariant to avoid the

nonlinear dependence of (5.2) on the syringe position. Two identification
steps are performed for heating and transferring parts. In the former
part, prediction error method (PEM) [Ljung, 2002], surveyed in Mercere
and Bako [2011]; Reinelt et al. [2002], is used since it will give a good
state prediction for MPC. The model is represented as a linear predictor
of future output of the system ŷ(k) = θT ϕ(k) (θ: parameters, ϕ: past
data). The data is collected from sensors I, II and III. The parameter θ is
chosen such that the prediction error has as small variance as possible.
In the latter part, temperature drop ratio is recorded by sensors II and
IV, measured under different conditions (Table 5.1).

Remark 7 Sensors II and IV are installed for modeling purpose. In real appli-
cation, only sensors I and III are employed.

The thermal models built here is to facilitate the temperature estima-
tion and control in the next section.

5.4 Estimation and Control for Fluid Tempera-

ture

As mentioned in the introduction, aside from an innovative design for
the IVF devices, this chapter seeks to accurately estimate and control
the temperature of flushing medium. The main purpose is to ensure
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the follicular fluid, after going through the transfer tube, emerges with a
temperature of 37◦ C before it enters a human body. This is to avoid any
temperature shock harmful to the follicles.

5.4.1 Temperature Estimation

Compared to the common used Kalman filter, sliding mode observers
has the advantages of being insensitivity to external noise and having ro-
bustness to parameter uncertainty. It is also much simpler to implement
and no knowledge of the noise statistics is required (room temperature,
time-variant model).

A sliding mode observer (SMO) is used to estimate the state at the
present time k from which the future state is subsequently predicted.
These observers have attractive measurement noise resilience that is sim-
ilar to a Kalman filter [Sabanovic, 2011; Veluvolu and Soh, 2009]. The
goal is to design a high-gain state observer that estimates the state vector
xm using only information from the measurement zm = xm1 of sensor I.

Choose the switching function σ = x̂m1 − xm1. The sliding observer

with a gain L =
[
−l1 l2

]T
is formulated as

x̂m(k + 1) = Am x̂m(k) + Bmu(k− d) + Lsgn[x̂m1(k)− xm1(k)], (5.5)

then
em(k + 1) = Amem(k) + Lsgn σ(k). (5.6)

where em = x̂m − xm is the estimation error.
Reaching toward σ = 0 is assured in finite time since sgn σ(k) is a

discrete step. For the sliding along the surface, it requires to have

0 > σ(k + 1)σ(k)

= [a11em1(k) + a12em2(k)− l1sgn σ(k)] σ(k). (5.7)

where aij are components of Am. Assume the estimation error is bounded.
Choose

l1 > ‖a11em1(k) + a12em2(k)‖∞ , (5.8)

so that the condition (5.7) satisfies.
Next, the asymptotic stability of em2 must also be guaranteed. Note
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that the sliding along σ = 0 means{
em1(k) = 0,

em1(k + 1) = 0
(5.6)⇒ l1sgn σ(k)

eqv
= a12em2(k). (5.9)

Now, from (5.6)

em2(k + 1) = a22em2(k) + l2sgn σ(k)
eqv
= (a22 + (l2/l1)a12)em2(k) (5.10)

Hence, l2 must be chosen such that |a22 + (l2/l1)a12| < 1.
In summary, the gain L is designed such that its amplitude encom-

passes the noise and model uncertainty, as well as ensure the convergence
of (5.5) to the real state. An additional low pass filter (e.g. x̂r = 1

2 x̂m(k +
1) + 1

2 x̂m(k)) can be implemented to avoid the chattering effect.

5.4.2 Stabilizing MPC

The specific methodology described in this chapter was inspired by Rawl-
ings and Muske [1993]. It is shown that the infinite-horizon constrained
optimal problem can be transformed to a finite-horizon receding control
problem with a suitable terminal cost. Stability property is thus retained
from the linear quadratic regulator (LQR) method.

Augment (5.4) under the velocity form [Ling et al., 2011] to include
the integral of xm2

x(k + 1) = Ax(k) + B∆u(k− d)

y(k) = Cx(k), (5.11)

where A =

[
Am 0

[0 1]Am 1

]
, B =

[
Bm

[0 1]Bm

]
, C =

[
0 0 1

]
.

Assumption 3 The control movements outside the control horizon is zero i.e.
∆u(k + i) = 0 f or i ≥ N.

For this application, the open-loop optimal problem that solves con-
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Figure 5.6: The algorithm of the temperature optimizer.

trol sequence ∆uN = {∆u(k + i)}N−1
i=0 at every time step k is to minimize

J(∆uN) =
∞

∑
i=0

[
Qe(k + d + i)2

]
+

N−1

∑
i=0

[
R∆u(k + i)2

]
subj. to (5.11) holds

M∆uN ≤ γ, (5.12)

with P0 the positive definite solution of the Riccati equation P0 = Q +
AT[P0 − P0B(BTP0B + R)−1BTP0]A and the output error e = r − y. The
first-order reference trajectory r = {ri}∞

i=k is defined by

r(i) =


y(k), for i = k

αr0 + (1− α)r(i− 1), for k < i < k + N

r(i− 1), for i ≥ k + N.

(5.13)

Remark 8 The reference must be feasible within N steps with the presence of
input constraint. Firstly, N = No is fixed to restrict calculation complexity. αo
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is then chosen to satisfy Assumption 3 and maximize output response rate at all
steps k.

The optimal control sequence ∆uo
N for problem (5.12) can be calcu-

lated in two steps, the unconstrained optimal control plus an active con-
straint adjustment [Wang, 2009]

∆uo
N = ∆uu

N + ∆ua
N . (5.14)

Unconstrained solution

Since A is stable, define K = ∑∞
j=0 AT jCTQCAj and feedforward terms

βi =
i

∑
j=1

AT j−1
CTQ(r(k + N)− r(k + j))

f or i = 1, . . . , N − 1 (5.15)

β = r(k + N)
∞

∑
j=0

AT j
CTQ. (5.16)

Proposition 7 The cost function J can be rewritten under a standard quadratic
form as

J(∆uN) = ∆uT
NEN∆uN + ∆uT

N FN (5.17)

in which

EN =


BTKB + R . . . BT AT N−1KB

BTKAB . . . BT AT N−2KB
... . . . ...

BTKAN−1B . . . BTKB + R

 , FN = BT
N(GN Ax(k + d)− Rs)

where

BN =


B . . . 0
... . . . ...
0 . . . B

 , GN =


K
...

KAN−1

 , Rs =
[

β− βN−1 . . . β
]T

.

Proof 5 Denoting the stacked output and input vectors Y, ∆uN for equation
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(5.11) over the prediction horizon Np (Np → ∞), we have

Y =


CA

...
CANp

x(k + d)+


CB . . . 0

... . . . ...
CANp B . . . CANp−NB

∆uN

= M1x(k) + M2∆uN . (5.18)

With QNp = diag(Q, ..., Q), RN = diag(R, ..., R), the cost function J in
(5.12) becomes

J = (Y− r)TQN(Y− r) + ∆uT
NRN∆uN

= ∆uT
N

(
MT

2 QN M2 + RN

)
∆uN

+ ∆uT
N MT

2 QN(M1x(k)− r) (5.19)

As defined in Proposition 7, EN could be simplified by

EN = MT
2 QN M2 + RN

=


BTKB + R . . .BT AT N−1KB

... . . . ...
BTKAN−1B. . . BTKB + R

 . (5.20)

Similarly,

FN = MT
2 QN(M1x(k)− r)

=


BTCT . . . BT(AT)Np CT

... . . . ...
0 . . .BT(AT)Np−NCT

 .


Q

.. .

Q

 .




CA
...

CANp

−


r(k + 1)
...

r(k + Np)




= BT
N




KA
...

KAN

−


∞

∑
j=0

AT j
CTQr(k + j + 1)

...
∞

∑
j=0

AT j
CTQr(k + j + N)





= BT
N




K
...

KAN−1

 A−


β− βN−1

...
β




= BT
N (GN A− Rs) . (5.21)
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The results in Proposition 7 follows from (5.20) and (5.21).

The solution to the quadratic problem without constraints is easily
determined by

∆uu
N = −EN

−1FN . (5.22)

Constraint handling

Suppose the knowledge of active constraints in ∆uu
N is unavailable. A

simple way to impose the constraint (5.17) on ∆uu
N is given below.

Lemma 8 (Hildreth QP procedure) For the QP problem (5.12), the optimal
Lagrange multiplier vector λ∗ would converge through an iterative update in a
single component basis (i = 1, . . . , dim(γ))

γm+1
i = max(0, ωm+1

i )

ωm+1
i = − 1

hii

[
ki +

i−1

∑
j=1

hijγ
m+1
j +

i−1

∑
j=i+1

hijγ
m
j

]
, (5.23)

where H = ME−1
N MT , K = γ + ME−1

N FN. The constrained complement for the
optimal solution would be

∆ua
N = −E−1

N MTλ∗. (5.24)

Therefore the algorithm calculates ∆uu
N and verifies the constraints in

(5.12). If necessary the Hildreth’s algorithm can follow up to provide the
constrained solution ∆uo

N.
Lastly, the receding horizon policy applies only the first input com-

mand from the optimal solution ∆uo
N, so ∆uo(k) = [1 0 . . . 0]︸ ︷︷ ︸

N

∆uo
N .

The overall MPC control scheme is summarized in the block diagram
of Fig. 5.6. To facilitate the implementation, the feedforward gain in
(5.15) and the MPC gains in (5.22) are all determined off-line.

5.5 Experiments

The efficient design in Section 5.3-A is implemented in Fig. 5.7. The
mechanical design of both flushing and aspirating operations are inte-
grated into the prototype. The supervisory control and the temperature
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Figure 5.7: The proposed prototype.
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Figure 5.8: State estimation error of the SMO (a) em1 and (b) em2.

optimizer are implemented on LABVIEW in a 3.4 GHz computer, which
interfaces with the PLC controller of the prototype through a NI DAQ

77



5. INTELLIGENT CONTROL OF IN-VITRO FERTILIZATION MEDICAL
SYSTEMS

Table 5.1: Temperature drop ratio under different operating conditions

Temperature drop rate η Transfer velocity (mL/s)
0.1 0.2 0.3 0.4 0.5

22 0.7952 0.8600 0.8920 0.9148 0.9308
Air temperature (◦C) 24 0.8400 0.9028 0.9296 0.9540 0.9656

26 0.8560 0.9172 0.9552 0.9696 0.9788

card.
The discrete model of fluid temperature is based on the PEM iden-

tification method described in Ljung [2007]. High precision RTD PT100
(class A) sensors with accuracy ±0.2◦ C are used at the locations I, II, IV,
while an ±0.5◦ C thermocouple sensor III measures the air temperature.
From the collected data, the nominal parameters are identified as

Am =

[
0.9981 0.00112

0.001148 0.99881

]
, Bm =

[
0.049205

0

]
, Cm =

[
0 η
]

,

with the temperature loss rate η recorded in Table 5.1 and the input delay
d = 12s. The input constraint is 0 ≤ u ≤ 1. A sampling time ts = 1s is
chosen.

The estimation gain and the controller parameters follows from the
analysis in Section 5.4. The sliding mode observer is designed with a
gain L = [−1 0.2]T. The MPC controller has a control horizon N = 10,
reference factor α = 0.995, weighting matrices Q = I2×2, R = 0.015.
By using LABVIEW to check the real-time execution of the proposed
controller, texe ≈ 0.012s satisfies the time constraints ts.

Three experiments are carried out to test the performance of the pro-
posed design.

In the first experiment, the accuracy of temperature estimation is
examined, since it causes inaccurate temperature control. Within the
heating dynamics, the only uncertainty affects the thermal model is the
air temperature Ta. Hence, under different cases Ta = 22, 24, 26◦ C the
estimation accuracy is shown in Fig. 5.8. From the figure, it can be
inferred that the estimation slides along the surface em1 = 0 at all time
(em1 stays inside the tube), and the error em2 converges asymptotically to
zero once the sliding surface is reached.

The second experiment studies the performance of the following three
designs under nominal condition: the commercial design with on/off
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Figure 5.9: Comparison on state response and control input of the three
designs.
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control, the proposed prototype with PID control and with a MPC con-
troller. The objective is to prove that MPC performance is the right choice
to replace on/off control. The fluid temperature inside syringe is shown
in Fig. 5.9. For the commercial design, xm1 is maintained and xm2 con-
verges to its setpoint (37/η)◦C in a very slow process because it targets
the heating bar temperature. A PID controller with Smith predictor can
be tuned in various ways. In order to give an effective comparison, a
high gain tuning which produces a comparable response time to MPC
is chosen. Due to the input constraint u ≥ 0, the heater temperature
at t = 320s can not be decreased faster than a certain rate, resulting in
a large overshoot for fluid temperature inside syringe. Compared with
PID, MPC gives an early-stop input because of the first-order reference.
Less oscillation and overshoot are observed. The settling time for fluid
temperature of MPC is within 500s, shorter than that of PID. Note that
a low gain PID tuning could give a more accurate output, but it would
give a slower settling time compared to MPC.

The third experiment shows that the proposed design can overcome
the uncertainties in operating conditions. It tests the performance of
on/off, PID and MPC controllers across various operating conditions
which causes temperature inaccuracy in the commercial design.

Under the same environment temperature Ta = 22 ◦C, common set-
tings of transfer speed are chosen v = 0.1, 0.2, 0.3, 0.4, 0.5 (mL/s). It is
shown in Fig. 5.11a that when the exposure time of the fluid to the exter-
nal environment becomes shorter, the accuracy is improved for on/off
and MPC methods because there is less uncertainty. On the other hand,
shorter exposure time reduces the cooling effect on the overshoot of PID
tuning and results in poor performance.

To observe the effect of environment temperature, we carried out
Ta = 22, 24, 26 ◦C on the three compared control methods with a fixed
transfer velocity v = 0.3 mL/s. In this case, the air temperature affects
not only the fluid transfer from syringe to the body, but also the heating
model and consequently the observer. From Fig. 5.11b, on/off control
is obviously most affected, since the response of xm2 would be slower if
the air temperature is low. For PID control, the accuracy is better than
on/off control, although its overshoot response is still affected by high
air temperature. With MPC scheme, the performance is more robust and
its accuracy is only limited by the lower bound of PT100 sensor accuracy.
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Figure 5.10: Fluid temperature output at the end of transfer tube,
assuming that the transfer starts when the syringe is installed.
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5.6 Conclusion

The chapter introduces a new control design for an IVF egg retrieval
system. It integrates both the flushing and aspiration units, and provides
a solution for the follicular medium temperature control. The objective
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is to avoid any significant temperature shock in the female’s ovary that
can affect the viability of the collected oocytes. The design not only
overcomes the temperature drop issue along the transfer tube, but also
enhances the response time. The proposed design was tested with other
options such as on/off and PID control under several operating condi-
tions to show its effectiveness. This result can be beneficial to medical
product manufacturing.
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Chapter 6

Predictive Ratio Control in
Interacting Processes

Ratio control for two interacting processes is proposed with a PID feed-
forward design based on model predictive control (MPC) scheme. At
each sampling instant, the MPC control action minimizes a state-dependent
performance index associated with a PID-type state vector, thus yield-
ing a PID-type control structure. Compared to the standard MPC for-
mulations with separated single-variable control, such a control action
allows one to take into account the non-uniformity of the two process
outputs. After reformulating the MPC control law as a PID control law,
we provide conditions for prediction horizon and weighting matrices
so that the closed-loop control is asymptotically stable, and show the
effectiveness of the approach with simulation and experiment results.

6.1 Introduction

Ratio control has become a demanding task in industrial processes in-
volving combustion systems or blending operations. Ratio control meth-
ods are used to maintain the flow rate of one stream in the process at a
specified proportion relative to that of another (the wild flow). Besides
the traditional series and parallel control, an alternative architecture,
called Blend station [Hagglund, 2001], was proposed as auto-tuning and
later improved in Visioli [2005] for the choice of setpoint weighting.
While ratio control of decoupled processes is well established, the prob-
lems become significantly complex for interacting processes. In this con-
text, model predictive controllers (MPCs) have been recently applied to
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deal with ratio control, such as engine airfuel and fuelgas ratio control
[Giorgetti et al., 2006; Muske et al., 2008; Suzuki et al., 2009].

Among the various classes of MPCs, Generalized predictive control
(GPC) is a potential method which overcome many pitfalls of other schemes
when dealing with open loop unstable, nonminimum phase, or delayed
systems [Clarke and Mohtadi, 1989; Normey-Rico and Camacho, 2007].
Moreover, GPC can be used with multivariable systems by an model-
augmented modification, even when constraints are considered. These
advantages have been reviewed in Bemporad et al. [2002]; Lee and Lee
[2000]. Despite its efficiency, the computing burden discourages the
widespread use of GPC compared to PID regulators in process industry.
Compared with a true GPC method, PID control uses present and past
data but not future information; moreover, its coefficients are limited to
lower order polynomials than those of GPC law. To address GPC compu-
tational issues, several PID tuning procedures incorporating GPC were
proposed so that they could achieve model-based control performance
with a simpler structure. The idea of matching the GPC and PID control
law structure was presented in Camacho et al. [2003]; Neshasteriz et al.
[2010]; Sato [2010]. These chapters showed that, by using a first/second-
order system model, it is possible to simplify the GPC law as PID control
law. A PID predictive controller was proposed in Moradi [2003] where
the author, rather than looking for the match of GPC and PID laws,
considered a number of parallel PID controllers corresponding to the
prediction horizon of GPC. In another context, the work in Tan et al.
[2000] developed a GPC-based PID controller by bringing PID error state
into GPC performance index.

To bring these predictive PID design closer to the original ratio con-
trol problem, a previous work from Tan et al. [2009] achieved composi-
tion control by changing setpoint when the output ratio is out of a pre-
determined threshold, without considering time delays. However, this
setpoint variation method modifies control input through feedforward
term outside MPC, so it easily upsets the input constraint. In addition,
when the dead-time factor is included, especially different dead-times
for individual processes, the information of future output ratio is de-
manded and the solution becomes more complicated. Thus the question
is how to deal with a normal delayed process, as in Hagglund [2001];
Visioli [2005].
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In this chapter, a PID feed-forward design based on predictive control
concept is presented. It can be used for ratio control of two-input two-
output (TITO) with inconsistent input delays. The solution for the delay
case is solved by using equivalent control in MPC formula. Moreover,
it incorporates ratio control into the performance index of GPC, so that
no setpoint variation is required. The control law is still obtained as a
feed-forward PID structure, with time-varying gains during the initial
time-delay period and with constant gains thereafter. Proportion control
is also taken care by a structural tuning. As a consequence, a feasible
approach for proportion control is delivered.

The chapter is presented as follows. First, the state-space approach
for TITO systems with dead-time is presented so that it includes the PID
state vector (Section 6.2). Second, the GPC control law is formulated
in the given context, which allows us to recast GPC into feed-forward
PID structure and criteria for choosing weighting matrices for the de-
rived method are given so that the closed-loop system is asymptotically
stable (Sections 6.3). In Section 6.4, the enhancement for ratio control
through modification of the performance index is presented. Section
6.5 delivers simulation studies for the wafer thermal uniformity control
example. Finally, experiment results are shown in Section 6.6 and the
main principles of this chapter is concluded in Section 6.7.

Notation

For the examined system, h denotes the input delay. The subscript i (i =
1, 2) is to address the two channels of TITO systems. Besides, r is the out-
put setpoint, while r̃ is auxiliary reference and R̃ is the future auxiliary
reference across prediction horizon. We also denote the system state as
X and PID state as X̃ in which θ is the integral term over output error e.
Open-loop and closed-loop gains are indicated by F and F̄. The notation
Q > 0 (Q ≥ 0) denotes positive (semi) definiteness.
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6.2 State-space Representation of TITO System

Consider the problem of regulating a process modeled by the typical
FOPDT transfer functions:

y1(z) =
b11z−h1

z + a11
u1(z) +

b12z−h2

z + a12
u2(z)

y2(z) =
b21z−h1

z + a21
u1(z) +

b22z−h2

z + a22
u2(z) (6.1)

where h1 ≤ h2 (h1, h2 ∈ R+) are input delays of the system. The output
ratio between y1 and y2 is to be maintained at the desired value of α = r2

r1

(r1, r2 are the output setpoints).
In order to deal with inconsistent input delays, we define the equiv-

alent control as

U(k− h) =
[
u1(k− h1) u2(k− h2)

]T
, (6.2)

used as a convenient notation for the derivation of MPC control law in
Section 6.3.

Rearrange (6.1) intro the difference equation and define special state
definition X(k) for TITO system (refer to Tan et al. [2009] for details). By

describing the PID state vector as X̃k =
[
e1(k) e1(k− 1) θ1(k) e2(k) e2(k− 1) θ2(k)

]T
,

we have a complete state space equation

X(k + 1) = FX(k) + GU(k− h) + Er̃(k), (6.3)

with
X(k) = MX̃(k) + NU(k− 1− h). (6.4)
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These system matrices F, G, E, M, N are given as

F =



−a11 + a12 1 0 0 0 0
−a11a12 0 0 0 0 0

1 0 1 0 0 0
0 0 0 −a21 + a22 1 0
0 0 0 −a21a22 0 0
0 0 0 1 0 1


, G =



−b11 −b12

−b11a12 −b12a11

0 0
−b21 −b22

−b21a22 −b22a21

0 0


,

E =



1 0
0 0
0 0
0 1
0 0
0 0


, F =



1 0 0 0 0 0
0 −a11a12 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −a21a22 0
0 0 0 0 0 1


, N =



0 0
−b11a12 −b12a11

0 0
0 0

−b21a22 −b22a21

0 0


.

6.3 Predictive PID controller

6.3.1 GPC Control Law

The system model is written as

X(k + 1) = FX(k) + GU(k− h) + Er̃(k) (6.5)

where X ∈ Rn, U ∈ Rm (n = 6, m = 2). With this model, the following
problem is posed: given the current state X(k), find the equivalent N-
step control sequence Ū = {U(k− h), U(k− h + 1), ..., U(k− h + N − 1)}
that minimizes the performance index:

J =
k+N−1

∑
j=k

[X(j + 1)TQjX(j + 1) + U(j− h + 1)TRjU(j− h + 1)]. (6.6)

In (6.6), N is the prediction horizon; Qj ≥ 0, Rj > 0 are the state and
control weighting matrices.

Now define stacked vectors X̄ =
[

X(k + 1) ... X(k + N)
]T

, R̃(k) =

[r̃(k) . . . r̃(k + N − 1)]T. Then (6.5) can be written as

X̄ = HFX(k) + PŪ + ĒR̃(k), (6.7)
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where

H =


I
F
...

Fl−1

 , P =


G 0 ... 0

FG G ... 0
... ... ... ...

Fl−1G Fl−2G ... G

 , Ē =


E 0 ... 0

FE E ... 0
... ... ... ...

Fl−1E Fl−2E ... E

 .

The performance index (6.6) can be expressed as

J = X̄TQX̄ + ŪTRŪ. (6.8)

The corresponding optimal control law is determined by taking the gra-
dient ∂J/∂Ū to be zero, so that

Ū = −(PTQP + R)−1PTQ(HFX(k) + ĒR̃(k)). (6.9)

Apply the receding horizon control concept, the first-step input is

U(k− h) = −D(PTQP + R)−1PTQ(HFX(k) + ĒR̃(k)) (6.10)

= KGPCX(k) + Kre f R̃(k), (6.11)

where D =
[
1 0 ... 0

]
, KGPC = −D(PTQP + R)−1PTQHF =

[
K1GPC K2GPC

]T

and Kre f = D(PTQP + R)−1PTQĒ =
[
K1re f K2re f

]T
. The second term in

(6.11) can be considered as a feed-forward part of the controller design,
assuming that the future setpoint sequence is known. It follows from the
equivalent control definition in (6.2) that

u1(k) = K1GPCX(k + h1) + K1re f R̃(k + h1)

u2(k) = K2GPCX(k + h2) + K2re f R̃(k + h2). (6.12)

6.3.2 Future State Prediction

From (6.12), it can be seen that in order to minimize J, the control at the
current instant depends on the fixed gains KGPC and a future state at
time k + h1 and k + h2.

For k > h2 :
Let F̄ = F + GKGPC. In order to predict the future states, a closed-loop
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equation is formed by combining (6.3) and (6.11):

X(k + 1) = F̄X(k) + GKre f R̃(k) + Er̃(k). (6.13)

From the one-step prediction above, the future states X(k + h1), X(k + h2)
are determined iteratively by

X(k + h1) = F̄h1 X(k) + F̄h1−1[GKre f R̃(k) + Er̃(k)] + ...

+ [GKre f R̃(k + h1 − 1) + Er̃(k + h1 − 1)], (6.14)

X(k + h2) = F̄h2 X(k) + F̄h2−1[GKre f R̃(k) + Er̃(k)] + ...

+ [GKre f R̃(k + h2 − 1) + Er̃(k + h2 − 1)]. (6.15)

As seen from (6.14), (6.15), the coefficient of X(k) in these formula is
independent of time k for k > h2. In the next case, we will see that the
state prediction during time-delay period has the k-dependent gains.

For 1 ≤ k ≤ h2 :

Denote F̄1 = F + G
[
K1GPC 0

]T
, K1

re f =
[
K1re f 0

]T
, with the super-

script (.)1 indicating the region min{h1, h2} < k < max{h1, h2}. Depend-
ing on the existence of the optimal input in (6.11), the system in (6.5) can
become

X(l + 1) =

{
F̄1X(l) + K1

re f R̃(k) + Er̃(k) if h1 ≤ l ≤ h2

F̄X(l) + GKre f R̃(k) + Er̃(k) if l ≥ h2. (6.16)

Now l can be substituted by k + h1 or k + h2 to get the future states.

6.3.3 Predictive PID Control Law

Substituting the predicted states obtained in (6.14), (6.15) into the control
law (6.12)

u1(k) = K1GPC F̄1X(k) + S1(k)

u2(k) = K2GPC F̄2X(k) + S2(k), (6.17)

where F̄1, F̄2 are the coefficients associated with X(k) and S1(k), S2(k) are
the terms that involve future reference. S1(k), S2(k) can be updated at
every step, as in the Algorithm 1 below.
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The control law in (6.17) can be incorporated within the PID structure
by using (6.4):

u1(k) = K1PIDX̃(k) + K1uU(k− 1− h) + S1(k)

u2(k) = K2PIDX̃(k) + K2uU(k− 1− h) + S2(k), (6.18)

where K1PID = K1GPC F̄1M, K2PID = K2GPC F̄2M and K1u = K1GPC F̄1N,
K2u = K2GPC F̄2N.

Remark 9 In Eq. (6.18) each of the control inputs is navigated by the outputs
of two PIDs (as X̃ ∈ R6) and a feed-forward term that consists of the rest of the
formula.

As one observes, the MPC law based on future output prediction in
(6.12), which is open-loop in nature, has been reformed to a closed-loop
control law as in (6.18). The closed-loop stability would be guaranteed
later on Section 6.3.4. It is also worth mentioning that because of the
future state prediction during time-delay period max{h1, h2} = h2, this
PID formulation has time-varying gains during initial stage . Beyond
this period, the PID controller resumes constant gains. In general, the
state feedback control law (6.18) refers to the optimal lookup table for
the PID gains, and a closed-form solution is created.

The predictive PID algorithm can be summarized in the following:

6.3.4 Stability

As the system has time delays incorporated in its transfer functions,
the stability criterion becomes more complex than the one suggested
in the work of Tan et al. [2009]. The closed-loop stability created by
the proposed feedback is analyzed in long-term situation where the PID
controllers have already passed the initial stage of delay and converged
to the fixed gain region (k > h2). Without loss of generality, all reference
values are assumed to be zero, and the dead-time h2 ≥ h1. From (6.17),

U(k− h) =

[
u1(k− h1)
u2(k− h2)

]
=

[
K1GPC F̄h1 X(k− h1)
K2GPC F̄h2 X(k− h2)

]

=

[
K1GPC

0

]
F̄h1 X(k− h1) +

[
0

K2GPC

]
F̄h2 X(k− h2)

= K1
GPC F̄h1 X(k− h1) + K2

GPC F̄h2 X(k− h2), (6.19)
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Algorithm 1: Computation of predictive PID gains.
Data: k, r̃, X
Result: K1PID, K2PID, K1u, K2u
initialize R̃(k), R̃(k + h1), R̃(k + h2) by definition in (6.7). Determine
KGPC and Kre f offline from (6.11). if k ≤ h2 then

S← 0, Fb ← I, R̃← R̃(k);
for i← k + h2 − 1 do

update R̃ by removing r̃(i) and adding r̃(i + N) to the queue;
r̃ ← r̃(i + 1);
Assign

S← FS + Er̃, Fb ← FFb if i ≤ h1;
S← F̄1S + GK1

re f R̃ + Er̃, Fb ← F̄1Fb if h1 ≤ i ≤ h2

S← F̄S + GKre f R̃ + Er̃, Fb ← F̄Fb if i ≥ h2;
if i == k + h1 − 1 then

S1 ← K1GPCS + K1re f R̃(k + h1);
F̄1 ← Fb;

end
end
S2 ← K2GPCS + K2re f R̃(k + h2);
F̄2 ← Fb;
evaluate the gains K1PID, K2PID, K1u, K2u from (6.18);

else
Fix K1PID, K2PID, K1u, K2u from here on;

end

where K1
GPC =

[
K1GPC 0

]T
, K2

GPC =
[
0 K2GPC

]T
. Substituting (6.19)

into (6.3), we obtain

X(k + 1) = FX(k) + GK1
GPC F̄h1 X(k− h1) + GK2

GPC F̄h2 X(k− h2). (6.20)

Now, the stability condition of the closed-loop system (6.20) is pre-
sented through Theorem 1.

Theorem 9 The system (6.20) will be stable if and only if all the roots λ of the
following determinant equation

det[λh2+1 I − Fλh2 − GK1
GPC F̄h1λh2−h1 − GK2

GPC F̄h2] = 0, (6.21)

satisfy |λ| < 1, assuming that h2 ≥ h1.
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Proof 6 From (6.20), a new state space equation is constructed as


X(k− h2 + 1)

...
X(k)

X(k + 1)

 =



0 I . . . 0
. . .

...
... I

...
. . .

0 0 · · · I
GK2

GPC F̄h2 0 . . . GK1
GPC F̄h1 . . . F


.


X(k− h2)

...
X(k− 1)

X(k)


(6.22)

This is the canonical controllable block form, in which the characteristic equa-
tion is obtained easily. The proof is directly followed by a block elimination
which leads to lower triangular block form, as in the singular form. Thus the
above system has eigenvalues which are obtained by solving the equation

det[λh2+1 I − Fλh2 − GK1
GPC F̄h1λh2−h1 − GK2

GPC F̄h2] = 0.

Therefore, this system will be asymptotically stable if all the eigenvalues are
within the unit circle, or the condition of (6.21) to be satisfied. Note that the
size of the matrix [λh2+1 I − Fλh2 − GK1

GPC F̄h1λh2−h1 − GK2
GPC F̄h2] is equal

to 6 × 6. Interested readers are referred to Sain [1966] for further detail on
determinant equation which helps to reduce the size of the matrix when larger
systems are concerned.

Corollary 10 The condition in (6.21) implies a necessary condition that all
eigenvalues of the matrix F̄ = F + GKGPC is within the unit circle.

Proof 7 Indeed, note that K1
GPC + K2

GPC = KGPC and F̄ = F + GKGPC, so

λh2+1 I − Fλh2 − GK1
GPC F̄λh1λh2−h1 − GK2

GPC F̄h2

= λh2+1 I − [F̄− G(K1 + K2)]λh2 − GK1
GPC F̄h1λh2−h1 − GK2

GPC F̄h2

= (λh2+1 I − F̄λh2) + GK1
GPCλh2−h1(λh1 I − F̄h1) + GK2

GPC(λh2 I − F̄h2)

= [λh2 + GKGPC1(λh2−1 I + F̄λh2−2 + . . . + F̄h1−1λh2−h1)

+GKGPC2(λh2−1 I + F̄λh2−2 + . . . + F̄h2−1)](λI − F̄). (6.23)

Thus, the eigenvalues of F̄ must be within unit circle in order to satisfy (6.21).
A typical eigenvalue map for the system (6.20) is presented in Fig. 6.1.
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Figure 6.1: A typical eigenvalue map of the closed-loop system using the
proposed method.

6.4 Tightening ratio control

6.4.1 Ratio control design

Ratio control, traditionally, is implemented either via a series config-
uration with r2 = αy1 or a parallel one with r2 = αr1. The parallel
configuration proves to be better than series configuration in removing
or reducing lag phenomenon of slave variable. However, it incurs a
different disadvantage, an open-loop design, in which a significant upset
to the ratio of the variables can follow when a large or fast load distur-
bance occurs, which cannot be tolerated in certain applications such as
the wafer temperature uniformity control. Hence, the setpoint variation
scheme was proposed in Hagglund [2001]. The dynamic information of
ratio error was reflected in setpoint and it adjusts the optimal control law
in (6.18) through feed-forward calculation. This can only be applied for
systems with no delay, since threshold decision and ratio error in future
time after the delay may be difficult to predict.

A new ratio control scheme is proposed, which can also improve
the transient performance and disturbance rejection. The first advan-
tage over setpoint variation is that the prediction of future ratio error
is avoided. Moreover, this scheme is imposed directly into the perfor-
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mance index, thus achieving optimal control through PID gains instead
of feedforward control. This is implemented by introducing the error
ratio into the performance index J.

Let us fraction Q into Q1 + βQ2 + γQ3 (β, γ ∈ R+) where β, γ are
weighting factors. For simplicity, define Q1 as an identity matrix; this
matrix would be used as a normal gain for output tracking. Besides,
define Q2 = MT

2 M2 and Q3 = MT
3 M3 such that

M2 =
[
1 0 0− 1

α 0 0
]

M3 =
[
0 0 1 0 0 − 1

α

]
(6.24)

With the definition of the system state X(k) in Section 6.2, it follows
that

‖X(k)‖2
Q2

= [M2X(k)]T .[M2X(k)] = (e1(k)− 1
α

e2(k))2,

‖X(k)‖2
Q3

= [M3X(k)]T .[M3X(k)] = (θ1(k)− 1
α

θ2(k))2, (6.25)

and these two terms could be used to optimize the output ratio effec-
tively.

The role of Q2 is to control the output errors e1 = r1 − y1, e2 = r2 − y2

to follow the desired output ratio α. Normally, the term Q1 commands
the two processes outputs y1(k) and y2(k) to the setpoints r1, r2 without
taking care of the ratio y2/y1 during the transient stage. Since one knows
the information r2/r1 = α, controlling the error ratio e2/e1 towards α can
be an advantage in assuring the desired output ratio. The attractive point
is that this feature still works when the initial output ratio is different
from the desired output ratio, or, the ratio setpoint α is varying.

If one considers Q2 as the proportional gain for ratio error, then Q3

plays the role of integral gain. It helps to shape the response rates of the
two processes to be closer to each other, instead of force the faster flow
to following the slower one. In other words, the output ratio returns to
the desired value faster and is prevented from possible offset. This can
be illustrated in Fig. 6.2.

As a whole, the new performance index would be changed to

J =
t+N

∑
k=t+i

(‖X(k)‖2
Q1+βQ2+γQ3

+ ‖U(k− h)‖2
R), (6.26)
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Figure 6.2: Tuning for weighting parameters β and γ.

dependent on the balance of Q1 (output error), Q2 (ratio error) and Q3

(ratio error integrator). A tuning method for β, γ will be discussed more
in the next section.

Again, since the ratio dynamic information is used as feedback within
the performance index, disadvantages such as lag phenomenon and open-
loop problem, caused by the traditional designs, could be reduced for the
most part.

Remark 10 This systematic tuning for Q in (6.19) is more adequate than the
arbitrary tuning in (6.6). As this algorithm focuses on reduces the ratio error
while driving outputs to the setpoints, weighting factors are put among Q1

(output error), Q2 (ratio error) and Q3 (ratio error integrator) to balance the
priority of these goals. It is also easier for practical users to decide the positive
real values of β and γ rather than the original matrix Q, which is usually chosen
in diagonal form.

6.4.2 Tuning weighting matrices

A formal tuning procedure for the new ratio controller proposed in Sec-
tion 6.4.1 must satisfy the stability condition in Section 6.3.4. In this part,
an simple, practical tuning method is presented.

Firstly, define the weighting matrices Q1, R1 as

Q1 = diag(P1, 0, I1, P2, 0, I2), R1 = εI (6.27)

where I is an identity matrix. The ultimate gains and periods for the
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two processes have to be identified as Ku1, Tu1 and Ku2, Tu2. Let I1 =
I2 = 0, fix the proportional gains P1, P2 in the Q1 form above and de-
crease the value of ε until one achieves ε = min{ε ∈ R+ : u1, u2 ∈
U, no overshoot}, where P1/P2 = (Ku1/Ku2)2 and U is the input con-
straint set. This is also to ensure that one achieve the stability at low
gain.

Increase I1, I2 for faster output response and desirable overshoot de-
gree, while maintaining the ratio I1/I2 = ( Ku1

Tu1
. Tu2
Ku2

)2. By doing this, one
actually tunes Q1, R1 according to Ziegler-Nichols formula, but with
different coefficients.

In order to tune ratio weighting parameters β, γ, it depends on the
emphasis of either maximum ratio error, or fast convergence of ratio
error. In general, one would increase β to correct the response rates of
the two processes, then increase γ to possibly eliminate the remaining
ratio error. This is illustrated in Fig. 6.2.

6.5 Simulation Studies

6.5.1 Example 1

To demonstrate the principles of the GPC-based PID scheme discussed
on the previous sections, the controller is applied to maintain a ratio
between two bake plate temperatures y1(t), y2(t) of the thermal system
as in [15] with input delays, represented by the process:

Y1(s) =
2.67e−60s

323.58s + 1
U1(s) +

1.039e−80s

759.2s + 1
U2(s)

Y2(s) =
1.039e−60s

759.2s + 1
U1(s) +

1.5595e−80s

524.5s + 1
U2(s), (6.28)

where u1(t), u2(t) are the control inputs with delay h1 = 60s, h2 = 80s.
In this example, a sampling time t = 1s is used. Two zone temperature
changes y1, y2 have zero initial values, and the setpoints are 10.00◦ C.
The ratio between two process variables y1(t) and y2(t) is kept at a tight
ratio α = y2/y1 = 1.000.

The GPC control law is designed using prediction horizon N = 10.
Three different methods aiding ratio control to GPC-based PID are com-
pared. The first method is the normal predictive ratio control where
r2 = αr1, without any ratio-tightening scheme. The second method is
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Figure 6.3: Comparison of (a) output response, (b) control effort and
(c) temperature non-uniformity between Run I (normal predictive ratio
control), Run II (setpoint variation) and Run III (ratio error cost) in the
presence of a set-point change at t = 150s.
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Figure 6.4: IVF integrated platform.

set-point variation scheme proposed in [15] with threshold αb = 0.001
and the gain K = 120. The proposed method, on the other hand, con-
siders error-ratio cost residing in performance index. The weighting
parameters are chosen by the tuning procedure in Section 6.4.1. Here
we have Q = diag(10, 0, 0.007, 50, 0, 0.1), R = 0.6I and β = 10, γ = 0.1.
The prediction horizon N is rather dependent on the calculation power,
so it is chosen as N = 5 here.

Define the output non-uniformity as em = αy1− y2. Fig. 6.3 shows the
performance of three mentioned methods. From the output responses,
one can notice that the control inputs actually react in advance to the
future error which only incurs at t = 150s. It has been also observed that
the normal predictive ratio control (Run I) yields unsatisfactory results
with the maximum non-uniformity of 4.81◦ C, as expected. The same
method with setpoint variation approach (Run II) gives a relative good
performance, as the uniformity is below 2.05◦ C. However, this improve-
ment requires a very high input effort to achieve due to the different
amount of process delays. For the proposed ratio error cost (Run III), the
uniformity performance is better above all, and smaller control inputs
are required.

In order to illustrate clearly the effect of the new ratio error mini-
mization method, the actual ratio between two process variables y2/y1
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in Example 1 is shown in Fig. 6.4. The ratio produced by the proposed
method has the small deviation from the desired ratio and fast response.

6.5.2 Example 2

In real situations, it is very difficult to identify a plant model with ac-
curate parameters, not mentioning that the plant model may be a time-
varying or non-linear system. Hence, in order to demonstrate the robust-
ness of the suggested control scheme, parametric errors are introduced
so that the real model of (6.29) is given by

Y1(s) =
2.67xe−60s

323.58xs + 1
U1(s) +

(1.039/x)e−80s

(759.2/x)s + 1
U2(s)

Y2(s) =
(1.039/x)e−60s

(759.2/x)s + 1
U1(s) +

1.5595xe−80s

524.5xs + 1
U2(s), (6.29)

with x = 1.4 (model error up to 40%).
According to the adaptive Blend station procedure, the setpoint weight-

ing is chosen as γ′ = 0.32 through a series of setpoint change tests,
and PI controllers are tuned by Ziegler-Nichols formula as (kp1, ki1) =
(1.514, 0.016), (kp2, ki2) = (3.205, 0.026). Meanwhile, the proposed con-
troller is the same as in Example 1.

Fig. 6.5a and 6.5b shows the output responses of the Blend station
architecture in Hagglund [2001] and proposed method under model er-
rors. Fig. 6.5c illustrates the degree of robustness of these two schemes.
The former configuration without predictive control is not able to resolve
the model error and results in long recovery of ratio control. Meanwhile,
the latter method recovers output non-uniformity to 0 after enduring the
model mismatch. In fact, the integral cost of error ratio control suggested
enables this flexibility as it is merged into the performance index. This
may not be a proof for robust stability of the system, but it ensures
that with significant model error, the proposed method still maintains
its good performance.

6.6 Experimental Results

Fig. 6.6 presents the setup of a desktop thermal chamber, mounted on
a National Instrument (NI) SC-2345 platform with configurable connec-
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Figure 6.5: System response for a model perturbation in case of: (a)
blend station configuration, (b) proposed method and (c) comparison
in temperature non-uniformity.
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Figure 6.6: Setup of the thermal chamber system with (1, 2) J-Type
thermocouples, (3,4) halogen lights and (5) cooling fan.

tors. In this real-time experiment, the air temperature can be controlled
by adjusting the power of the lights and the fan. The variables of interest
are the air temperatures y1, y2 sensed by SCC-TC02 J-type thermocou-
ples at two different height locations. These outputs are manipulated
through the upper and lower halogen bulbs in an interactive process.
Different delays h1, h2 are contained in the two input channels. Besides,
the cooling fan fulfills the role of disturbance source. NI LABVIEW is
used to develop a controller for this system.

One can reasonably assume the above system as a nonlinear process,
due to the advection of air. In this experiment, simple system identifica-
tion through step responses is exploited in a particular operating point
to estimate and formulate a first-order system with delays, as follows:

Y1(s) =
35e−2s

51s + 1
U1(s) +

25.5e−6s

99s + 1
U2(s)

Y2(s) =
19e−2s

108s + 1
U1(s) +

31.5e−6s

68s + 1
U2(s), (6.30)

Initial values of the two outputs are y1o = y2o = 26◦ C. A setpoint change
of 5o C is given for the first output y1, and the ratio alpha = y2/y1 = 1.000
is to be maintained during the process. In addition, notice that the input
constraint is present here, whereby 0 ≤ u1, u2 ≤ 1. The sampling rate is
0.1s.

The objective of this experiment is to show how the MPC imple-
mentation with ratio control can cope with this interactive system when
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Table 6.1: Non-uniformity statistics for output ratio control in the
thermal interaction experiment.

Controller Abs. Peak Mean RMS
Parallel PID 1.1918 0.0764 0.549
Predictive PID 0.2693 0.0065 0.102

compared with a fixed PID regulator. In this experiment, besides the po-
tential model error, there is also a disturbance to test the performance of
these two methods. Again the fixed PID regulator was chosen as Blend
station design tuned to provide good ratio control of the given process
with fast response and no excessive overshoot: γ′ = 0.75 and (kp1, ki1) =
(0.31, 0.045), (kp2, ki2) = (0.07, 0.0036). The parameters of predictive PID
ratio control were adjusted through the tuning procedure provided. The
prediction horizon is given as N = 5. Q = diag(1, 0, 0.001, 1, 0, 0.001), R =
5I and β = 5, α = 0.15.

Fig. 6.7a shows the behavior of a fixed PID regulator, giving a reason-
able but rather non-uniform control and so, a poor ratio performance.
Due to the interacting feature in the processes, the response rates are
different. The control inputs u1, u2 only respond to the output errors
individually. The same situation happens in the event of an unpredicted
step disturbance d = 1.

The simulation results using the proposed MPC ratio control with
variable PID gains are shown in Fig. 6.7b. The rates, as well as the
shapes, of output response are closely followed. Moreover, recovery
after disturbance is also faster, along with the uniformity of the outputs.
This can be attributed to the corporation between the control inputs dur-
ing the course of transient response. Performance statistics are shown in
Table 6.1, with the absolute peak, mean and root-mean-square of the ra-
tio non-uniformity are considered. The proposed method helps improve
the performance from five to ten times, according to the data.

6.7 Conclusion

This chapter presents a predictive feed-forward and PID control scheme
based on MPC that copes with ratio control for interacting delayed pro-
cesses. Compared to the standard parallel configuration, the proposed
method allows one to take into account the ratio error cost, thus tight-

103



6. PREDICTIVE RATIO CONTROL IN INTERACTING PROCESSES

0 500 1000 1500 2000 2500 3000

26

28

30

32

O
ut

pu
ts

 

 

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

In
pu

ts

 

 

0 500 1000 1500 2000 2500 3000
−2

−1

0

1

2

Time (s)

N
on

−
un

ifo
rm

ity

y1
y2

u1
u2

(a)

0 500 1000 1500 2000 2500 3000
24

26

28

30

32

O
ut

pu
ts

 

 

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

In
pu

ts

 

 

0 500 1000 1500 2000 2500 3000
−2

−1

0

1

2

Time (s)

N
on

−
un

ifo
rm

ity

y1
y2

u1
u2

(b)

Figure 6.7: Performance of (a) the Blend station PID and (b) the
predictive PID controller.

104



6. PREDICTIVE RATIO CONTROL IN INTERACTING PROCESSES

ening the output ratio towards desired value. In addition, this method
is more efficient than the mentioned approaches as the dynamic ratio
error information improves the optimal control input through PID gains
instead of feed-forward calculation. With the new ratio control scheme,
a better performance in output ratio control is achieved with smaller
control effort.
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Chapter 7

Conclusions

This thesis presents a framework for the future development and im-
provement of linear model predictive control technology for control ap-
plications. In the domain of theory contribution, it builds a bridge be-
tween the design of an offset-free model predictive control and a robust
control design to be incorporated at the core of MPC. From the imple-
mentation perspective, it transforms high-level optimization into PID
control design, thus closing the gap between these two control layers.
By bringing together concepts and results from control and optimization
theory, this document serves as another deep thought on the formulation
of model-based control optimization towards real-world applications.

Robust and offset-free control are two important and desirable prop-
erties to be implanted in an industrial controller such as MPC. Chapter
2 elaborated a unified MPC framework under which these character-
istics can be efficiently delivered in the control performance. The key
to the union of these two mature fields is the use of a PID-augmented
model which removes the need for a disturbance estimation approach
and facilitates the role of established robust control in the core terminal
region of the MPC. The framework opens the access of offset-free MPC
to robust and nonlinear control, and contributes to both analysis and
applications of MPC. A systematic design flow for practical application
of the proposed methodology has been formulated, and potential areas
which can benefit from the framework were discussed in the chapter.

Chapter 3 further developed the ideas proposed in Chapter 2 into
practical designs for MPC - PID. The linear controller is modified for
offset-free tracking. The resultant control architecture is a PID gain schedul-
ing network with a feedforward part to deal with state and input con-
straints. A simple test for setpoint tracking feasibility is also discussed.
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Finally, the example results show that robustness stability against distur-
bances of the proposed method is inherent within the PI/PID structure.

Chapter 4 is the first example in this thesis to formulate an optimiza-
tion problem in a real problem-solving case. A robust MPC method has
been developed for compensation of friction arising in linear ultrasonic
motors. The objective of the control scheme is to achieve good static
tracking performance in the presence of the uncertain friction model-
ing. This is obtained by incorporating linear friction inside the hybrid
plant model and designing a robust terminal gain for MPC. Simulation
and experimental results have shown that the proposed compensation
technique can overcome the limitations of the relay-PID tuning while
attaining a simple real-time implementation.

Chapter 5, again using the developed framework in Chapter 2 and
3, introduces a new control design for an IVF egg retrieval system -
a mechatronics system. It integrates both the flushing and aspiration
units, and provides a solution for the follicular medium temperature
control. The objective is to avoid any significant temperature shock in
the female’s ovary that can affect the viability of the collected oocytes.
The design not only overcomes the temperature drop issue along the
transfer tube, but also enhances the response time. The proposed design
was tested with other options such as on/off and PID control under
several operating conditions to show its effectiveness. This result can
be beneficial to medical product manufacturing.

Chapter 6 presents a predictive feed-forward and PID control scheme
based on MPC that copes with ratio control for interacting delayed pro-
cesses. Compared to the standard parallel configuration, the proposed
method allows one to take into account the ratio error cost, thus tight-
ening the output ratio towards desired value. In addition, this method
is more efficient than the mentioned approaches as the dynamic ratio
error information improves the optimal control input through PID gains
instead of feed-forward calculation. With the new ratio control scheme,
a better performance in output ratio control is achieved with smaller
control effort.

All these chapters have formed a broad look on control optimization.
It is not simply using the mathematical tools to solve problems, but
instead formulating the problems to be solved efficiently with available
tools. Model predictive control acts as an anchor throughout the context.
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7. CONCLUSIONS

Future works include investigating distributed MPC to separate the
region searching of parametric solution into manageable subspaces. This
will speed up the critical region searching of parametric MPC and allow
scalable implementation of this method.

Another outlook for this thesis is imposing a pure optimal PID con-
trol by relatively optimal control: a PID gain network control without
feedforward part.
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