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Abstract

In this text we focus on the problem of eyewitness face sketch recognition, in

which we found particular interest due to the presence of a human provider of

the information (the eyewitness) and a machine processor of the information

(face sketch recognition algorithm). Reviewing the literature of over 30 years

of psychological studies, we showed that currently used eyewitness testimony

procedures (ETPs) are inaccurate and highly unreliable. We showed that due

to these problems, current ETPs not only produce unreliable results (forensic

sketches), but also cause distortions to the eyewitness' mental image of the

target face. The crucial problems in these vital procedures have drastic con-

sequences, and can sometimes cause death for an innocent human. On the

other hand, automatic face sketch recognition methods (FSRs) have been only

designed to recognize face sketches which are drawn with a signi�cant similar-

ity to their photo counterparts, and therefore they these automatic methods

cannot be applied for recognizing forensic sketches.

Our approach to tackle the eyewitness face sketch recognition problem is to

�rst understand the psychological challenges of the problem, and then based on

this understanding, try to avoid sources of unreliability in the ETPs. Based

on this strategy we proposed to use non-artistic sketches directly drawn by

the eyewitness (Main Sketches), as the medium to retrieve eyewitness' mental

image of the target face. Using the directly drawn sketches avoids added dis-

tortions of issues such as verbal overshadowing (distortion of a visual memory,

due to verbal description of it), piecewise face reconstruction (reconstructing a

face, using selecting from di�erent types and shapes of facial components), and

implanted ideas. On the other hand, these drawings are also distorted by the

eyewitness' mental face perception bias, and face drawing bias, that together

we refer to as sketching bias. In our FSR, we therefore proposed to estimate
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the sketching bias for each eyewitness and debias the Main Sketch, to reach an

estimation of what the eyewitness meant by drawing the Main Sketch. Finally,

for matching this estimation to the photo database, we proposed a weighted

dynamic point correspondence, which is inspired by psychological suggestions

for face perception in humans.

To test our propose method we collected 3 datasets of sketch-photo pairs,

including a total of 860 sketches, drawn by 86 human participants. In our

tests, we compare our method with the most important previous methods,

both on the sketches from our datasets and other publicly available sketch

datasets, and we showed the improvements of our method over the others, in

terms of accuracy and gallery size. We also provided an important comparison

in our tests (not found in previous literature) which is the e�ect of number

of training samples on the accuracy of the algorithm. The importance of this

test is rooted in the time consuming procedure of producing sketches by the

eyewitness, which eventually results in having only a few sketch samples from

each eyewitness to be used for perception bias estimation.

Our reviews in both psychology and computer vision in eyewitness sketch

recognition, accompanied with our proposed method and experimental results,

suggest a new perspective to develop better eyewitness testimony procedures as

well as automatic face sketch recognition methods, which can even shed light on

other related computer vision problems. For example, we here present results of

applying our proposed concepts on the ear image identi�cation application and

showed that with minor problem-related changes, we could surpass previous

ear recognition methods.

Finally, in the �nal chapter of this text we suggest method of combining

our approach with traditional eyewitness testimony procedures (to cover cases

of poor memory of the target face), possibilities for future works, and �nal con-
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clusions, with the hope that our work can improve computer vision algorithms

and more importantly, improving human lives.
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Chapter 1

Introduction

Unlike the common belief of the accuracy of eyewitness testimony procedures,

studies show that these procedures are not only highly error prone and un-

reliable, but also the major cause of wrongful convictions. A recent survey

by Morgan et al. showed than more than 75% of the convictions overturned

through DNA testing since the 1990s were based on eyewitness testimony [Mor-

gan et al., 2007]. The DNA exoneration, as well as a number of other archival

analyzes, have led many to the conclusion that false eyewitness identi�cation

is the primary cause of wrongful convictions in the United States [Hu� et al.,

1996, Wells et al., 1998, Scheck et al., 2000, Gross et al., 2005]. Despite these

tragic reports, the use of eyewitness testimony for forensic applications is still

a common practice, with roots that go back to the beginning of the century

[Yarmey, 1997]. The use of these eyewitness testimony procedures (ETPs) is

not because of the police ignorance, but because of having no other option

than using traditional ETPs in many criminal cases. When an eyewitness has

seen the face of a person of interest (also known as the target face), the eye-

witness usually attends a police station, in where he/she will be subjected to

ETPs. Police artists are trained to draw the target faces based on the verbal
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description of the eyewitness, and police o�cers are trained in e�ective use

of face composite software to reconstruct the face piece by piece (piecewise

face reconstruction). These e�orts are required because in many situations,

the only image of the target face is a mental image in the eyewitness' mind.

Eyewitness testimony procedures are therefore supposedly designed to use the

eyewitness' memory of the target face to �nd the target identity, either di-

rectly (using photographs or lineups) or indirectly (reconstruct the target face

through a police artist or a photo-composite software). This reconstructed face

(drawn by a police artist, or produced by photo-composite software), known

as forensic sketch or eyewitness face sketch, should then be matched against

the police database of faces or distributed in the public.

More than 30 years of psychological studies show that forensic sketches are

di�erent from normal exact sketches (artistic sketches drawn from a person or

a photo), in terms of accuracy in representing facial features and appearance

details (compare forensic sketches in �gures 1.1 and 2.8, with exact sketches

in �gures 2.1 to 2.7). These studies indicate that current eyewitness testimony

procedures (ETPs) are highly susceptible to error and should be reformed

[Munsterberg, 1927, Morgan et al., 2007, Carlson et al., 2008]. Based on evi-

dence shown in the literature, the �aws in traditional ETPs not only a�ect the

�nal sketch, but also distort the mental image of the face in the eyewitness's

brain, without the eyewitness himself sensing this change [Yarmey, 1997, Mor-

gan et al., 2007]. The extents of these disturbances are so critical that some

researchers have suggested entirely avoiding the use of these testimonies in

courts [Yarmey, 1997]. As an example of these distortions, the eyewitness can

be easily confused by misleading information [Zhu et al., 2010] such as viewing

similar faces or subjective questions. Moreover, the piecewise reconstruction

of the face in current ETPs causes additional distortions, because it is in-
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Figure 1.1: Some examples of unreliable artistic sketches (two left columns
from HTTP://depletedcranium.com) and composite sketches (two right
columns [Sinha et al., 2006b]).

compatible with the holistic analysis of the human visual system on the faces

[Sinha et al., 2006a, Zhang et al., 2010], and as a result, the �nal reconstructed

face signi�cantly deviates from the presumed target face [Sinha et al., 2006a].

Therefore, at the end of these procedures, the sole image from the target face

is unrecoverable (as several famous criminal cases also show) [Chabris et al.,

2010]. The problems in current ETPs are basically because human memory is

fragile, malleable, and susceptible to suggestion [Bernstein and Loftus, 2009],

which in turn render results of eyewitness testimonies unreliable.

Regardless of the reliability of the �nal forensic sketch, police should search

for the identity of this reconstructed face. There are several methods pro-

posed for automatic recognition of face sketches (i.e. face sketch recognizers,

FSRs). But all of these methods are designed and �ne-tuned to recognize exact

sketches, drawn by artists, directly from the photographs of faces (similar to

portrait sketches). Several proposed FSRs have considered that the amount of
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information in face photos is larger than in face sketches, and therefore tried

to transform photos to sketch-like images, to prevent information loss. Among

the �rsts is the work by [Tang and Wang, 2004] in which an eigenface transfor-

mation is proposed to project a face photo to the face sketch space, resulting

in a sketch-like image. This work reported recognition accuracy of 89%, tested

on CUHK face sketch dataset [Wang and Tang, 2009]. This work was followed

by [hui Li et al., 2006] in which a sketch-photo pair image is concatenated

into a single vector to learn the PCA classi�er with correlation to both the

sketch and the real face. A non-linear transformation was also presented in

[Liu et al., 2005] to replace photo patches with the most similar patch from

the sketch gallery (using a PCA-based scoring). The result of this patch re-

placement classi�ed by non-linear discriminant analysis reported of recognition

accuracy of 92% on the CUHK dataset. This method was further improved

using multi-scale Markov random �eld [Wang and Tang, 2009], to synthesize

a smooth sketch that marginally improved the accuracy. Xiao et al. [Xiao

et al., 2009] proposed a sketch-to-photo transformation in order to transform

the problem into a photo-to-photo matching problem. They used an embedded

hidden Markov model for patch replacement to synthesize a photo-like image,

and then classi�cation using PCA. The experimental results on CUHK dataset

reported to have up to 89.1% accuracy in recognition. More recently, FSR

methods have been proposed based on Partial Least Squares (PLS) [Sharma

and Jacobs, 2011], random forests [Zhang et al., 2011b], support vector regres-

sors [Zhang et al., 2011a], combination of local binary pattern and histogram

of Gabors [Galoogahi and Sim, 2012a], and combination of multi-scale LBP

and SIFT features [Klare et al., 2011].

Regardless of reported accuracy of the above algorithms, these methods are

proposed to address the forensic sketch recognition problem, but all of them
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have been tested on exact sketches (compare �gures 2.1 to 2.7 with �gures 1.1

and 2.8), that have signi�cant similarities to their target faces (including ex-

actly similar facial component shape, illumination and shading, skin texture,

and even hairstyle). A recent study [Choi et al., 2012] showed an astonishing

recognition rate of 85.22% only using hair regions, as well as that the accuracy

of an o�-the-shelf face photo matcher (merely using shape and edges), even

without training, can outperform the currently proposed FSRs [Choi et al.,

2012]. In contrast, a real forensic sketch is very likely to be signi�cantly dif-

ferent from its respective target face [Sinha et al., 2006a, Zhang et al., 2010,

Klare et al., 2011, Nejati et al., 2011, Choi et al., 2012]. Thus, we argue that al-

though the test results of the previous FSRs show almost perfect performances

for exact sketches, these FSRs cannot be used for recognizing forensic sketches

(detailed discussion in Chapter 2). We can therefore conclude two main gaps

from the literature. First that current eyewitness testimony procedures are

unreliable (based on psychological studies); second that current FSRs cannot

reliably recognize forensic sketches (based on several tests by [Klare et al.,

2011, Choi et al., 2012]).

The motivation for this work is therefore addressing the literally life threat-

ening problems in the eyewitness testimony procedures by (1) designing a new

eyewitness testimony procedure for faces that avoids psychological pitfalls; and

(2) introducing a robust and practical face sketch recognition based on this new

ETPs design. From another perspective, in traditional ETPs the eyewitness

contribution is passive (providing verbal description and con�rmation), while

the artist has the main active contribution that produces the �nal sketch. In

contrast, our approach is to remove the artist from the procedure and transfer

the active contribution to the eyewitness, and therefore avoid several impor-

tant psychological problems of traditional ETPs. In this perspective, when the
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tradition ETP is at extreme minimum of eyewitness contribution, our method

is at the extreme maximum eyewitness contribution, providing new options for

ETPs and FSRs.

We also noted that the process of producing an eyewitness face sketch

involves the mental recollections of a human from a target face (eyewitness'

mental face image), a method of transferring this mental image (tradition-

ally verbal description), and an artist or machine (traditionally face compos-

ite software) which compiles the transferred information into a face sketch.

In our proposed methods, we therefore incorporate �ndings from the human

visual system, while particularly focusing on the automatic eyewitness face

sketch recognition (FSR) application. We �rst review currently proposed au-

tomatic methods for FSR, their achievements, and their problems that together

show the current gaps in addressing eyewitness face sketch recognition problem

(Chapter 2). In order to obtain a clear understanding of the face sketch recog-

nition (FSR) problem, we then review the psychological challenges related to

the eyewitness testimony procedures (ETPs) to expose the extent of unreliabil-

ity of these procedures and therefore their results, forensic sketches (Chapter

3). Based on these reviews we then propose a novel eyewitness testimony pro-

cedure (ETP), accompanied by a compatible face sketch recognition (FSR),

to both avoid psychological pitfalls and implementing a robust and practical

automatic face recognition method (Chapter 4). To show the e�ectiveness of

our proposed method, we compare the performances of our methods with the

most important previous FSRs on our collected dataset of 860 face sketches as

well as on the publicly available CUHK face sketch dataset [Wang and Tang,

2009] with 188 sketches. We analyzed di�erent properties of our method in-

cluding average accuracy, e�ect of gallery size, e�ect of piecewise vs. holistic

matching, and the e�ect of the number of training samples of �nal performance
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(Chapter 5). We also tested the emerged psychologically-inspired framework

on another human identi�cation problem, identi�cation between twin siblings

based on their ear image, which indicates the capability of application of this

framework for a wider range of application with some problem-speci�c mod-

i�cations (Chapter 4.4). We �nally summarize our works, draw conclusions,

and discuss future works in the �nal chapter, Chapter 6. In the conclusion, we

discuss the possibility of incorporating some of the parts of traditional ETPs

to our proposed method, to cover fall-back options for our system, particularly

for the cases that the eyewitness requires memory triggers to recall the target

face structure.

We now continue this chapter with describing our contributions.

1.1 Thesis Contributions

In this text we present our contributions in eyewitness face sketch recognition

as follows:

1. A novel, non-verbal eyewitness testimony procedure (ETP), designed

based on psychological �ndings, to deliver non-artistic face sketches,

while avoiding many psychological pitfalls of the current procedures. Our

ETP provides another option for conducting a more reliable ETP.

2. A accompanying new automatic face sketch recognition method (FSR),

designed based psychological �ndings, to robustly match the non-artistic

sketches to the photo database, based on the human's memory properties.

3. The largest face sketch database to date, with non-artistic sketches and

new features such as including information about drawers, and sketches

from time-delayed face image exposures.
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In both parts of our system, ETP and FSR, we combine psychological �ndings,

with image processing techniques to create a unique combination, required to

address the eyewitness face sketch recognition problem. This combination of

psychology and engineering, not found in previous approaches to this problem,

gives our approach the ability to both cope with the special behavior of hu-

man's memory of the face, and automation of recognizing the generated face

sketch based on mug-shot photos.

Our proposed eyewitness testimony procedure (ETP) is a non-verbal method

of retrieving the eyewitness' memory of a face. The basis of our proposed ETP

is on non-artistic sketches, drawn directly by the eyewitness. Being the �rst

non-verbal ETP, we prevent adding several types of distortions to the �nal

sketch, by removing the artist from the ETP, avoiding piecewise reconstruc-

tion of the face, biased instruction, post-event information, etc. But more

importantly, we prevent distorting the mental image of the face in the eyewit-

ness' mind, by avoiding verbal overshadowing distortion of a visual memory,

due to verbal description of it), and exposure of the eyewitness to similar faces.

While these problematic procedures are regularly practiced in current ETPs,

in chapters 3 and 4 we describe the details of how our ETP have a better

chance of faithfully retrieving the memory of the face, without distorting this

memory in the eyewitness' mind. In terms of eyewitness participation, we also

provide another option in which eyewitness has the main contribution to the

sketch (by drawing it by him/herself), which is clearly contrasted with current

ETPs in which eyewitness has a passive contribution and the police artist has

the responsibility of producing the sketch from the verbal description.

In our accompanying eyewitness face sketch recognition (FSR), we partic-

ularly focus on the perceptual and sketch drawing biases of each eyewitness,

and based on the eyewitness' information from the ETP stage, we try to esti-
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mate �what the eyewitness mean� based on �what the eyewitness draws�. We

�rst estimate and remove introduced biases to the non-artistic sketch, based

on a set of training sample sketch-photo pairs. Then we weight this debiased

sketch based on a psychologically-inspired weighting scheme to predict the vi-

sually important parts of the sketch. We �nally match this weighted sketch to

the photo database by imposing a temporal order to the sketch. In chapters

4 and 5 we show that to faithfully recover the target face appearance from

the eyewitness' memory recalls, one should account for the processes of face

perception and face drawing for each eyewitness.

In order to test our methods, we collected the largest dataset of sketch-

photo pairs with unique properties. The interesting properties of our sketch

dataset include the use of non-artist sketch drawers, recording of additional

information such as race, skin color, and hair color from the perspective of the

eyewitness, recording of eyewitness' con�dence map, and involving time delay

between photo exposure and sketch drawing.
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Chapter 2

Automatic Face Sketch

Recognition Related Works

Once a face is reconstructed based an eyewitness testimony, it can be matched

against the police database of faces. In this stage, automatic face sketch recog-

nition methods (FSRs) are introduced to perform automatic matching between

the forensic sketches and the database of mugshots. Several works have been

proposed on automatic face sketch recognition (FSR), treating the forensic

sketch recognition as yet another face recognition problem, but in a slightly

di�erent representation: the sketch sub-space. This is because these methods

assume that the forensic sketches are (1) high quality and error prone recon-

structions of the target faces, and (2) similar to the target face appearance

even in small details. However, as discussed in the Chapters 1 and 3, the �rst

assumption on forensic sketch reliability is falsi�ed by psychological research

[Munsterberg, 1927, Morgan et al., 2007, Carlson et al., 2008]. The second as-

sumption is also false as forensic sketches are produces based on eyewitness's

verbal description, and in presence of several sources of distortions. Therefore

forensic sketches cannot reconstruct details such as hair style or exact shading
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of the target face in the mugshot photo [Zhang et al., 2010] (compare �gures

2.1 to 2.7 with Figure 2.8). Therefore, while previous FSRs reported accuracy

rates as high as 92% [Liu et al., 2005], the applicability of these methods in

recognizing forensic sketches is strongly questioned.

We continue this chapter by the review of the current automatic face sketch

recognition methods, their assumptions, methods, and problems.

2.1 Automatic Eyewitness Face Sketch Recogni-

tion

Regardless of the reliability of a forensic sketch (resulting sketch of an ETP),

this sketch, is regarded as a representation of the target face which should be

matched against the police face database of criminals. Several di�erent face

sketch recognition algorithms (FSRs) are proposed in the literature for recog-

nizing exact face sketches. These exact sketches are drawn by artists while

looking at a face photo, and therefore are signi�cantly similar to their face

photo counterparts (unlike forensic sketches that are drawn based on verbal

description and are highly unreliable). In general, these FSRs can be cat-

egorized into the methods that try synthesizing sketch-like images from face

photos, and the methods that try performing the opposite, synthesizing photo-

like images from face sketches, but de�nitely not forensic sketch recognition

methods.

2.1.1 Matching Exact Sketches

Face sketch recognition methods are ultimately designed to be used for match-

ing forensic sketches, which are drawn based on eyewitness' verbal description

(see Section 2), and if they bear similarities to the target face, they surely have
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Figure 2.1: An example of photo to sketch eigen transformation proposed in
[Tang and Wang, 2004]. From left to right: original photo, eigenface recon-
struction of photo, eigen transform reconstruction of sketch, original sketch.

signi�cant distortions from the target face, even in a perfect eyewitness testi-

mony procedure. On the other hand, almost all of FSRs in the literature are

designed and tested based on exact sketches. Exact sketches are drawn by an

artist while looking at the face photo and as shown in �gures 2.1 to 2.6. These

sketches have signi�cant similarities to their target faces (including exactly

similar facial component shape, illumination and shading, skin texture, and

even hairstyle), far from the forensic sketches. All of the methods we review in

this section have used the exact sketches for their tests (and most likely their

designs).

Even when using exact sketches, face sketches and photos are from di�erent

modalities and this brings more di�culties for to match a photo and sketch

than normal photo to photo matching. One approach to solve the modality

di�erence between sketches and photos is to use a photo-to-sketch transfor-

mation, before performing the matching. Among the �rst to propose an FSR

algorithm were Tang et al. [Tang and Wang, 2004] who proposed an eigen

transformation to transfer gallery face photos to pseudo-sketch images. This

transformation is very similar to eigenface transformation, except that in the

reconstruction stage, the projected photo into the eigen space, the weight vec-
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Figure 2.2: An example of non-linear photo to sketch transformation proposed
in [Liu et al., 2005]. From left to right: photo image, sketch drawn by artist,
pseudo-sketch with non-linear method, pseudo-sketch with the eigen transform
method [Tang and Wang, 2004].

tor bp is reconstructed not from the photo training set, but from sketch training

set. This transformation decreases the di�erence between the faces and the

sketches, and results in better performance in the next step, matching. In

the matching step, these pseudo-sketches were then matched against a gallery

of artistic sketch, using a PCA-based algorithm, with a reported recognition

accuracy of 89%. An example of the sketch-photo pairs used in this work is

presented in �gure 2.1.

Liu et al. [Liu et al., 2005] further improved the photo-to-sketch transfor-

mation using a non-linear transformation. In this method photos and sketches

are �rst divided into patches and then, each patch in a photo is replaced by

the most similar patch from the patches in the sketch gallery. Finding the

most similar patch is based on the similarity of the eigenvalues of the photo

and sketch patches, based on similar technique introduced in [Tang and Wang,

2004]. The result of the patch replacement (i.e. the pseudo-sketch) is then

matched against an artistic sketch gallery, using non-linear discriminant anal-

ysis (NLDA) with a reported accuracy of 92%. An example of the sketch-photo

pairs used in this work is shown in �gure 2.2.

A more recent photo-to-sketch transformation method is proposed by Li et
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Figure 2.3: An example of photo-sketch pair used in [hui Li et al., 2006]. The
�sketches� used in this work were merely transformed images of the photos,
and not real hand-drawn sketches.

al. [hui Li et al., 2006] in which eigenface transformation is similarly employed.

In this method, instead of using sketch-only or photo-only vectors, a sketch-

photo pair image is concatenated into a single vector to calculate the eigen-

vectors, and therefore, the calculated eigen space bears a correlation to both

the sketch and the photo spaces. Although this method may have advantages

over previous methods like [Tang andWang, 2004, Liu et al., 2005], this method

is only tested on synthetic images, transformed pseudo-sketches from the face

photos, and not real sketches drawn by a human, therefore their reported

results cannot be compared with other methods. An example of the images

pair used in this work is illustrated in �gure 2.3.

Wang and Tang introduced another improvement to patch based the photo-

to-sketch transformation [Wang and Tang, 2009] in which after the similar

patch replacement using eigen-value scoring (similar to [Liu, 2006]), a trained

multi-scale Markov random �eld stitches and warps the patches into a �nal

sketch which results in a smoother �nal pseudo sketch. This �nal stitched

sketch is then used for sketch-to-sketch matching to �nd the target face, based

on pre-calculated eigen-vectors from the sketch feature space. Authors have

reported accuracy of 96% on sketch-photo pairs such as the pairs illustrated

in �gure 2.4.

While most of the previous works have focused on photo-to-sketch trans-
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Figure 2.4: Examples of sketch-photo pairs used in [Wang and Tang, 2009].
From left to right: photo, artist sketch, and estimated sketch.

formation, Xiao et al. [Gao et al., 2008b,a, Xiao et al., 2009] proposed an ap-

proach which exploits the opposite direction, sketch-to-photo transformation,

and tried to change the problem into a photo-to-photo matching problem. In

this work, photos and sketches are �rst divided into patches and then given a

sketch a pseudo-photo is generated by replacing the sketch patches with most

similar photo patches. In order to �nd the most similar patches, embedded

hidden Markov model (E-HMM) is used to extract the main two-dimensional

features in a sketch patch with a moderate computational complexity. The

resulting pseudo-photo image is then classi�ed using PCA, with a reporting

accuracy of 98%. An example of sketch-photo pairs used in this method is

illustrated in �gure 2.5.

Authors of [Zhang et al., 2011b] introduced another sketch-to-photo trans-

formation and matching method very similar to [Xiao et al., 2009] by adding

support vector regressors to the E-HMM technique, tested on similar sketch-

photo pairs with minor improvements in the accuracy.
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Figure 2.5: An example of sketch-photo pairs used in [Zhong et al., 2007, Xiao
et al., 2009]. From left to right: photo, artist sketch, synthesized photo using
method in [Xiao et al., 2009], and synthesized sketch using method in [Zhong
et al., 2007]

Other than transforming one of the sketch or photo to the other one's space,

some approaches have chosen features with capability of direct comparison

between sketch and photos. [Pramanik and Bhattacharjee, 2012] used only a

set of geometric face features like eyes, nose, eyebrows, lips, etc. and their

length, width and area ratio as the feature vector for matching sketch-photo

pairs. Then given a face sketch probe, a KNN classi�er was used to �nd the

closet matching face photo, with a reported accuracy rate of 80%. Examples

of sketch-photo pairs used in this work is presented in �gure 2.6.

Bhatt et al. presented a direct sketch-to-photo matching algorithm [Bhatt

et al., 2010] in which discriminating information present in local facial regions

are retrieved at di�erent levels of granularity. Both sketches and digital images

are decomposed into multi-resolution pyramid to conserve di�erent frequencies

of information which forms the discriminating facial patterns. Authors used

extended uniform circular local binary pattern descriptors on these patterns

to form a unique signature of the face image. In the next step for matching,

a genetic optimization algorithm �nds the optimum weights corresponding to

each facial region. The information obtained from di�erent levels of Laplacian

pyramids are combined to improve the identi�cation accuracy. The reported

accuracy of this algorithm on artistic sketches such as the ones illustrated in
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Figure 2.6: Examples of sketch-photo used in [Pramanik and Bhattacharjee,
2012]

�gure 2.7 is 88%.

Galoogahi and Sim presented new face descriptor which is relatively invari-

ant to the sketch/photo modality di�erences [Galoogahi and Sim, 2012b]. This

descriptor called Local Radon Binary Pattern (LRBP) captures face shape

characteristics in both the sketch and photo modality, by transforming face

image (or sketch image) into Radon space and in this space uses Local Binary

Pattern (LBP) to encode local features of the face shape. Then the concate-

nating histogram of local LBPs (called LRBP) is used for classi�cation. Their

experiments on exact sketches of CUHK [Wang and Tang, 2009] and CUFSF

[Zhang et al., 2011a] datasets were with 99.51% and 91.12% accuracy, respec-

tively.

Galoogahi and Sim also proposed a more recent FSR based on histogram

of averaged oriented gradients (HAOG) to again provide a modality invariant

descriptor for face sketch recognition [Galoogahi and Sim, 2012a]. The use of

HAOG is motivated by the fact that orientations of stronger gradients, such
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Figure 2.7: Examples of sketch-photo pairs used in [Bhatt et al., 2010].

as prominent gradients of facial components, are more modality invariant than

weaker gradients, such as �ne textures, shadows and wrinkles. Authors showed

that using this descriptor on patches with di�erent resolutions, they can reach

up to 100% accuracy on CUHK [Wang and Tang, 2009] and AR [Martinez and

Benavente, 1998] datasets.

A comparative study is also recently presented by Zhang et al. [Zhang

et al., 2010] in which artistic sketch recognition accuracy in humans and PCA-

based classi�cation are assessed. In this study, �ve di�erent artists produce

sketches for each face and then humans and algorithms are used to recognize

these sketches. The recognition rates of human observers and a PCA-based al-

gorithm showed that the artist styles have signi�cant e�ect on recognition rates

of both humans and PCA classi�er. Furthermore, averaging several sketches

of a target face results in improvements in recognition rates of both parties;

and �nally, humans are reported to e�ectively use tonalities and features such

as hair style, and when these features are removed (or unavailable) their per-

formance is signi�cantly a�ected.
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Figure 2.8: Examples of forensic sketch-photo pairs used in [Klare et al., 2011]
which is the only work that has tested on forensic sketches, instead of exact
sketches. (Two left columns) Two pairs of good quality forensic sketches and
the corresponding photographs, and (two right columns) two pairs of poor
quality forensic sketches and the corresponding photographs.

2.1.2 Matching Forensic Sketches

Although the above algorithms are proposed to address the forensic sketch

recognition problem, all of them have been tested on exact sketches (mainly

from CUHK [Wang and Tang, 2009] and IIIT-D [Bhatt et al., 2010] databases,

examples in �gures 2.1,2.2, 2.3, 2.4, 2.5, 2.6, and 2.7) with signi�cant similar-

ities to their target faces (including exactly similar facial component shape,

illumination and shading, skin texture, and even hairstyle). A recent study

[Choi et al., 2012] showed an astonishing recognition rate of 85.22% only using

the hair regions of the sketches and photos. This test reveals that these sketch

databases cannot represent real forensic sketches, and therefore their reported

accuracies and applicability are questionable. An additional test in Choi et al.

[2012] reported that an o�-the-shelf face photo matcher that uses merely shape

and edges can outperform most of the currently proposed FSRs, even without

training [Choi et al., 2012].

In contrast, as �gure 2.8 illustrates, a real forensic sketch from current eye-
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witness testimonies is very likely to be signi�cantly di�erent, due to problems

such as verbal over-shadowing, perception biases, piecewise reconstruction, etc.

Note that in exact sketches, the artists tries to produce a sketch as close as

possible to a given target face and therefore these sketches contain consider-

able point-to-point matching geometry, shading, hair style, and small facial

details which increases the recognition rates for both human and algorithms.

On the other hand, in creating forensic sketches, an eyewitness cannot mem-

orize a target face with detailed information, and moreover, the memorized

information cannot be fully delivered to the police by current approaches (i.e.

verbal description, or composite face development). This argument is tested in

[Klare et al., 2011], in which authors have employed a fusion of SIFT features

and multi-scale local binary patterns to recognize exact sketches as well as

some forensic sketches (shown in �gure 2.8). In the testing phase, in addition

to exact sketches, 159 forensic sketches were used with their corresponding

photograph of the subject who was later identi�ed by the law enforcement

agencies. All of these sketches were drawn by forensic sketch artists working

with the eyewitnesses who provided verbal descriptions of the culprit. The

interesting result of this work is that this algorithm reported to have 99.47%

accuracy in matching exact sketches (the highest accuracy on exact sketches),

but when tested on forensic sketches, its accuracy dramatically decreased to

16.33% (rank-1) and remained less than 33% even in rank-50. This work also

tested a recent face recognition algorithm1 (as a representative for state-of-art

face recognition algorithms) on matching forensic sketches, with its accuracy

reported to be as low as 2.04% and 8.16% in rank-1 and rank-50 respectively.

Results of these two tests in [Choi et al., 2012] and [Klare et al., 2011] con-

�rm our argument for dramatic di�erences between exact sketches and forensic

1FaceVACS Software Developer Kit, Cognitec Systems GmbH, http://www.cognitec-
systems.de
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sketches, and that even if an algorithm can accurately recognize exact sketches,

it does not necessarily provide reliable results in recognizing forensic sketches.

We can therefore conclude that current FSRs cannot reliably recognize

forensic sketches, and there is a need for realistic automatic face sketch recog-

nition.

2.2 Chapter Summary

Based on our literature review on the automatic face sketch recognition meth-

ods (FSRs) in this chapter, we showed that FSRs require exact sketches (i.e.

having precise sketch to photo similarity) as their input, and cannot be used

for recognizing forensic sketches. We showed that exact sketches that are

used for performance measurement in FSRs are not proper estimations of real

forensic sketches. Therefore, although previous FSRs have reported high ac-

curacy rates on recognizing exact sketches, they are unreliable in recognizing

real eyewitness sketches. Moreover, due to modality di�erence between foren-

sic sketches and face photos, conventional face recognition methods cannot be

applied to match forensic sketches. Table 2.1 summarizes our literature review

on previously proposed FSRs. As this table also shows how all but one work

have focused on recognizing exact sketches, and even the only work on rec-

ognizing forensic sketches [Klare et al., 2011] has failed to account for several

biases that are added to forensic sketches. In our proposed FSR we not only

assume a realistic similarity between the sketch and the target face (unlike in

recognizing exact sketches), but also try to model the biases and debias the

sketch before matching it to the photo database.

In the next chapter we discuss the psychological problems of currently

used eyewitness testimony procedures. We show that regardless of the current
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Exact Sketches Forensic Sketches

Photo-to-Sketch

Transformation

Pixel-Based [Martinez and Benavente,
1998][Tang and Wang,

2003][Tang and Wang, 2004]

[hui Li et al., 2006]

-

Patch-Based [Liu et al., 2005][Wang and

Tang, 2009]

-

Sketch-to-Photo

Transformation

Pixel-Based [Gao and Leung, 2002][Gao

et al., 2008b]

-

Patch-Based [Zhong et al., 2007][Xiao et al.,

2009][Gao et al., 2008a]

-

Modality

Invariant

Outline

Matching

[Pramanik and Bhattacharjee,

2012]

-

Local Binary

Pattern

[Galoogahi and Sim,

2012a][Galoogahi and Sim,

2012b]

[Klare et al., 2011][Klare

and Jain, 2010]

Multi-

Resolution

[Bhatt et al., 2010] -

Bias Estimation - -

Table 2.1: Summary of previously proposed face sketch recognition methods
(input vs. method).

FSR problems, as these FSRs are ultimately supposed to recognize results

from eyewitness testimony procedures (ETPs), they are doomed to inherit the

unreliability of ETPs.
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Chapter 3

Psychological Challenges of

Eyewitness Testimony Procedures

Psychological research, going back at least 100 years with Munsterberg's sem-

inal book On the Witness Stand [Munsterberg, 1927], up to more recent works

such as [Loftus, 1979, Loftus et al., 1978, Loftus, 2005], [Cutler and Penrod,

1995], [Wells, 1993, Wells et al., 1998, 2006], and [Clark and Godfrey, 2009],

have demonstrated the frailties of memory and the in�uence of suggestion,

leaving no doubt that eyewitness testimony procedures (ETPs) are signi�-

cantly �awed and unreliable, and therefore any automatic face sketch recog-

nition methods (FSRs) that use their results. In this section we discuss the

psychological challenges to conduct an unbiased and non-harmful eyewitness

testimony that produces reliable results. Here we list the studied psychological

challenges with a brief summary of supporting works, with the main purpose

of showing that the human memory (unlike common beliefs) neither stores

memories like a tape recorder (i.e. with full and real details), nor retains and

retrieves these memories like a tape (i.e. almost completely unchanged). These

are the challenges that each ETP and FSR should address for being reliable.
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3.1 General Memory Limitations

General memory limitations refer to nonspeci�c failures to store or retain in-

formation. For example, stress, exposure duration, and retention interval can

signi�cantly a�ect the amount of details stored in the memory and the recogni-

tion ability of an eyewitness [Clark and Godfrey, 2009]. It may seem intuitive

that eyewitnesses should be less accurate when they have shorter time to ob-

serve the perpetrator, make their observations under stressful conditions, or

make identi�cations after long delays, but these predictions have, in some

cases, met with counter-intuitive data and controversy [Read, 1995, Clark and

Godfrey, 2009] (which we do not presume to resolve here). The important

consideration about the general memory limitations is that (1) while they can

strongly a�ect the details remembered by the eyewitness, these limitations are

rooted in (both) the innate nature of the human memory and the observation

conditions and therefore cannot be controlled or alleviated; and (2) on the

other hand regarding these limitations as parts of the eyewitness sketch recog-

nition problem is vital for a proper solution, (which are in many cases ignored

as we review the automatic sketch recognition literature).

3.2 Biased Instructions

In many (but not all) jurisdictions, police present eyewitnesses with very stan-

dard instructions prior to a show-up or lineup. The instructions often have two

key components: (1) that the perpetrator may or may not be in the lineup,

and (2) that the eyewitness is not obligated to pick anyone. Such instructions

are considered to be unbiased with respect to the perpetrator's presence in the

lineup and the responses that eyewitnesses may give. By contrast, the instruc-

tions are considered to be biased if they state or imply that the perpetrator is

39



in the lineup or fail to acknowledge that none of the above is an appropriate

response. Such biased instructions presumably increase the eyewitness's will-

ingness to make identi�cation, due either to a lowering of the decision criterion

or to a change from a more stringent to a more lenient decision strategy. These

shifts should, and do, lead to increases in correct, as well as false identi�ca-

tions [Clark and Davey, 2005]. Moreover, instructions can also implant ideas

in the eyewitness' mind that can signi�cantly distort their memory of the face

or event [Loftus, 2005, Bernstein and Loftus, 2009]. Although the literature

suggested testing several criteria by a psychologist to distinguish between true

memories and implanted memories, it should be noted that in most of the

cases, the eyewitness cannot distinguish between these two types of memories

by himself, and these testing criteria can rarely be applied for face memories.

3.3 Piecewise Reconstruction

It seems that the human brain has a holistic (mainly con�gural) approach

for facial information gathering and encoding, and therefore, the human per-

formance in recognizing faces strongly depends on the con�gural information

of the face, rather than the piecemeal information [Young et al., 1987, Sinha

and Poggio, 2002, Jarudi and Sinha, 2003, Jacques and Rossion, 2009, Jones

and Bartlett, 2009]. On the contrary, current methods of target face recon-

struction, particularly composite sketches, are performed piecewise, and this

divergence from con�gural to piecemeal can result in divergence of the �nal

reconstructed face from the target face [Sinha et al., 2006a, Frowd et al., 2008].

An example of human poor performance in face recognition using a piecemeal

approach can be observed in facial composite generation task which includes

choosing the best matching facial features from a large collection of images of
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Figure 3.1: Four facial composites generated by an skilled IdentiKit operator.
The individuals depicted are all famous celebrities. Degradation of recognition
here highlights the problems of using a piecemeal approach in constructing and
recognizing faces (from [Sinha et al., 2006b]).

disembodied features and then assemble them to reach a reasonable likeliness

to a target face. The mismatch between this piecemeal strategy and the more

holistic facial encoding scheme that may actually be used by the brain can

lead to problems in the quality of reconstructions as shown in �gure 3.1.

3.4 Memory Alteration: Post-event Information

Works by Loftus and her colleagues [Loftus et al., 1978, Loftus, 1979, 2005]

have shown that the memory for a given event can be in�uenced or distorted

by exposure to post event information. In eyewitness identi�cation, the most

straightforward example of the post event information is the exposure of the

eyewitness to the suspect after the staged crime and before the lineup. For

example, eyewitnesses may be presented with intervening lineups or mugshots

prior to the critical lineup identi�cation task. Several experiments have shown

that if the post event information is correct, the eyewitness's accuracy in re-

sponse to subsequent questions will increase, but if the post event information
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is incorrect, the eyewitness's accuracy will decrease [Loftus et al., 1978, Def-

fenbacher et al., 2006, Clark and Godfrey, 2009].

3.5 Memory Alteration: Viewing Similar Faces

Although the encoded memory of the faces are usually thought to be relatively

stable, a recent studies such as Carbon et al. [Carbon et al., 2007] showed that

the memory of a face (both con�gural and local information of the face) can be

easily distorted using similar faces. Interestingly, this distortion is even visible

for familiar faces which are seen many more times than unfamiliar faces, their

encoded memory is di�erent from unfamiliar faces [Megreya and Burton, 2006],

and were thought to be more stable [Burton et al., 2005].

We can divide similarity into two categories, namely, similarity of the sus-

pect and the perpetrator, and similarity of the lineup foils to the perpetrator.

The �rst category, suspect and perpetrator similarity is the similarity of the

perpetrator as he appeared at the time of the crime to the guilty suspect (i.e.

perpetrator) as he appears at the time of the identi�cation; and the similarity

of the innocent suspect to the perpetrator. In both cases, results are rather

straightforward: If the perpetrator changes his appearance, the correct identi�-

cation rate decreases and the risk of the wrongful identi�cation of the innocent

suspect (a.k.a. innocence risk) increases [Read, 1995, Pozzulo and Marciniak,

2006]. In addition, the more the innocent suspect is similar to the perpetra-

tor, the higher the false identi�cation and the innocence risks are [Clark and

Tunnicli�, 2001].

The second similarity category is based on the intuition that if foils can be

easily ruled out, the increase in the likelihood of the correct identi�cation of the

suspect is the result of the lineup composition, rather than of the eyewitness's
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memory. Foil similarity manipulations is instantiated in a variety of ways,

but primarily by including foils who mismatch one or several elements of the

perpetrator's description (e.g. based on a mugshot match prior to the lineup,

or verbal description). In studies where less similar foils were included in

the lineup, both correct and false identi�cation rates have increased, with the

increase in false identi�cation rates was larger than the increase in correct

identi�cation rates [Clark and Godfrey, 2009]. On the other hand, in studies

where foils were similarity to the suspect, the risk of incorrect identi�cation

increased too. The increase is mainly because when the foils are similar to the

suspect, they will be similar to the guilty suspect in both target-present and

target-absent lineups (also known as the back�re e�ect) [Clark and Tunnicli�,

2001].

3.6 Memory Alteration: Verbal Overshadowing

As mentioned, the very �rst step of all of the current eyewitness testimony pro-

cedures is the eyewitness's verbal description about the appearance of the tar-

get face. In addition to all memory alteration problems, the verbal description

itself degrades the eyewitness' visual memory as well as the �recognizability� of

the target face for the eyewitness [Schooler and Engstler-Schooler, 1990, Dod-

son et al., 1997]. This phenomenon, known as verbal overshadowing, occurs

primarily when a principally non-verbal process is disrupted by a task which

involves verbalization [Melcher and Schooler, 1996, Dodson et al., 1997], and

can reduce the face recognition accuracy down by 50% [Schooler and Engstler-

Schooler, 1990, Dodson et al., 1997]. Adding the verbal overshadowing e�ect

to the rest of the memory alteration e�ects can clearly show the unreliability

of current eyewitness testimony procedures.
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3.7 Memory Alteration: Mental Norm Biases

In all current eyewitness testimony procedures, in the very �rst step, the eye-

witness provides a verbal description of the appearance of the target face (as

we here focus on faces). However, this description is not based on the real ap-

pearance of the face, but on the eyewitness' own mental norm, face perception

bias, and personal interpretation of the information [Bartlett, 1932, Treadway

and McCloskey, 1987]. The theory of reconstructive memory suggests that

people store information in the way that is consistent with their norms and

previous learning. In other words, humans store a memory by trying to �t

the information into a known schema. These schemata can distort a memory

so that it �ts in the person's existing knowledge and norms, and therefore

the memory becomes a personal interpretation, rather than the true informa-

tion. The e�ect of personal information can render the eyewitness testimony

unreliable [Bartlett, 1932, Treadway and McCloskey, 1987].

For the faces, it is suggested that a face model based on the normal distri-

bution of previously viewed faces (normal face) are used as a basis for mem-

orizing (and then recognizing) faces. Each face is compared with this normal

face, and stored based on its di�erences from the normal distribution [Un-

nikrishnan, 2009]. When di�erences of a group of faces are too similar, they

are regarded as belonging to the same identity. A well-known example of this

norm based perception, motorization and recognition is known as the Other

Race E�ect, in which a person perceives faces from a di�erent race, as all very

similar, and hard to memorize and recognize [Lindsay et al., 1991, O'Toole

et al., 1991, Valentine, 1991, Levin, 2000, Furl et al., 2002, Jia et al., 2004,

McKone et al., 2007, Ren et al., 2009].

Another less attended alteration due to the mental norms happens when

the eyewitness is verbally describing his/her mental image of the target face.
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Figure 3.2: The location in the brain that is responsive to faces in typical
individuals. This region, called the "Fusiform Face Area" (FFA) is located in
a particular location in the temporal lobe called fusiform gyrus and is shown in
this functional activation map. Although both sides of the brain are commonly
active in response to faces, it is the right side that is usually more active in
response to faces (note radiological convention where left and right are reversed
in the image). The image on the right of the picture is of the human brain,
post mortem, where the fusiform face area is colored in pink. (Image from
[Pierce et al., 2001])

It should be noted that this description is based on the eyewitness's norms,

but the audiences (police o�cers or artists) perceive the description based on

their own norms and because of this di�erence in the norms, perceptions would

be di�erent.

3.8 Choosing a Psychological Framework

A well-designed face sketch recognition method requires proper understand-

ing of the face perception, remembering, and recognition processes in humans.

There are works such as [Sinha et al., 2006a] that present a discreet set of

properties of face recognition in humans, but what is required here is a frame-

work that can be used as a basis for our computational models. Therefore, in

this section we brie�y review the related psychological frameworks.

Human long-term memory holds information about objects, events, and
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a�ective evaluations [Bower et al., 1994] and this encoded representation of

objects facilitate their recognition and is a prerequisite for selecting adequate

actions [Baddeley, 1990]. The "Fusiform Face Area" (FFA) region, located in

fusiform gyrus (Figure 3.2) is a special part of the brain that is believed to han-

dle face perception [Diamond and Carey, 1986, Manjunath et al., 1992, Lades

et al., 1993, Wiskott and von der Malsburg, 1996, L. Wiskott and von der

Malsburg, 1997, Gauthier et al., 1999, McCandliss et al., 2003, Sinha et al.,

2006a, Starrfelt and Gerlach, 2007, Hansen and Atkinson, 2010]. Studies have

suggested the use of some sort of face representations in the FFA region that

is to some extent illumination [Braje et al., 1998] and view angle [Wallis and

Bultho�, 2001] invariant. But the face representation in the brain should be

even more robust as the same face may also appear di�erently because of

changes in expression, hairstyle, age, and speech accompanying movements

[Bruce and Langton, 1994, Leder, 2005]. Another interesting aspect of face

perception is the speed of face detection and recognition in humans that in-

dicates an abstract and e�cient representation of faces in the human visual

system [Thorpe et al., 1996]. The representation of the faces is also seem to be

di�erent for unfamiliar and familiar faces which makes the recognition of famil-

iar faces signi�cantly more robust than unfamiliar faces [Brooks and Kemp,

2007]. The e�ect of piecemeal versus holistic images of the faces also have

shown that face processing in humans is dominantly holistic, with causes low

accuracies and identity hallucinations when face components are concatenated

in a piecemeal manner [Young et al., 1985, 1987, Fraser et al., 1990, Sadr, 2002,

Sadr et al., 2003]. Several frameworks have been proposed in the literature for

face processing in the human visual system to explain the above �ndings and

other properties of face processing. We review these most important suggested

frameworks in this section to select the best framework and to use it as the
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basis of our computational methods.

There are several frameworks suggested for the underlying mechanisms for

the face processing tasks in the human visual system, and here we try to choose

the best one to be the basis of our computational algorithms. We search for

the most holistic framework in terms of ability to explain more aspects of

the human visual system, and the one also backed by better experiments and

evidence.

3.8.1 Norm-Based vs. Exemplar-Based Models

Two predominant frameworks suggested for face recognition are �norm-based�

and �exemplar-based�, both assuming that faces are encoded as vectors in a

multi-dimensional �face-space�, with the prototypical face located at the center

of the face space [Valentine, 1991, Unnikrishnan, 2012]. Each unique measure-

ment which contributes to the construction of a realistic and recognizable face

is de�ned as a separate dimension in the face space. Based on this de�nition

of the space, for example, inter-pupillary distance can be plotted on a two-

dimensional graph against nose length, and by adding mouth width a third di-

mension is created, and so on. Then each face is de�ned as multi-dimensional

point in the face space. Most computer based methods require 250 points or

more to construct a good quality line drawing of a recognizable face [Perrett

et al., 1994], so their `face-space' has at least 250 dimensions, each of which has

to be precisely measured to correctly place a given face in this multidimen-

sional volume. However, the speed of face recognition [Benson and Perrett,

1991, Bruce and Langton, 1994, Barraclough and Perrett, 2011, Fraser et al.,

1990], and the required neural processes [Haxby, 2000, Grill-Spector et al.,

2004, Sinha et al., 2006a, Gillam et al., 2009, Jacques and Rossion, 2009], as

well as experiments on familiar face recognition in humans [Ellis et al., 1979,
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Carbon and Leder, 2005, Carbon et al., 2007, Gillam et al., 2009, Jones and

Bartlett, 2009, Schmalzl et al., 2008] argue for a mental representation with

lower dimension and more invariance.

The norm-based framework compares individual faces with a prototypical

norm, abstracted from all or at least a subset of the faces in the face space;

whereas the exemplar-based framework assumes that a norm is not abstracted,

but all speci�c faces are stored and remembered only in relation to their nearest

neighbors in the multidimensional face-space [Valentine, 1991, Leopold et al.,

2001, 2005, 2006].

Palmer [Palmer, 1975] de�ned faces in the memory as instances of a per-

ceptual category that abstract information about the prototypical values (or

central tendency) of the relevant facial dimensions. Such information would be

speci�c to face processing. Fodor [Fodor, 1983] proposes a similar view of face

processing in his suggestion, except that not all seen faces are stored in the

memory, but only �favorite candidates�, for an eccentric stimulus domain-that

is, a domain �whose perceptual analysis requires information that is highly

speci�c to the domain in question.� (Fodor [1983], pp. 51-52).

On the other hand, Bruce [Bruce and Langton, 1994] assumed that invari-

ant structural information is abstracted from faces, allowing for their recogni-

tion despite many changes. These representations are thought to be based on

the component features of the face, as well as on their con�guration [Carbon

and Leder, 2005, Leder, 2005, Carbon et al., 2007].

From the norm-based point of viewer, a number of theories suggest that face

recognition in humans occurs by reference to a prototype [Benson and Perrett,

1991]. For example, some authors [Goldstein and Chance, 1980, Bruce, 1986,

Bruce and Young, 1986, Valentine, 1991] have suggested that faces may be en-

coded by reference to a schematic representation, which emerges as a result of
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a person's experience with faces over a lifetime [Schwaninger et al., 2003]. All

the works from the norm-based framework (which are more recent) provide ex-

perimental results and/or justi�cation against the exemplar-based framework.

Therefore, based on our survey in the psychological literature, we reject the

exemplar-based frameworks and focus on the norm-based frameworks.

3.8.2 Average Face Model

Among the suggested frameworks in the norm-based category, Average Face

Model is one the well-known models. Burton et al. [Burton et al., 2005]

presented three experiments in which they compare performances of human

observers as well as Principal Component Analysis (PCA) algorithm on rec-

ognizing original images of celebrities (i.e. familiar faces), versus an averaged

image of each of these identities. Their results show signi�cant improvements

in performances of both humans and the PCA algorithm, in recognition of the

average face. The average face in their study is the average of all face images

from an identity I, when each image is morphed to the average face shape of I

(i.e. averaging both shape and texture of the face images of I, illustrated in �g-

ure 3.3). These experiments also showed robust recognition over some extents

of illumination and pose variations. The Average Face model is able to explain

some extent of the rapid face processing, and the e�ect of face familiarity in

improving face recognition performance.

The Average Face Model has also been used on several face related auto-

matic methods addressing face detection (e.g. [Iwata et al., 2002, Chen et al.,

2009]), gender detection (e.g. [Guo et al., 2010]), 2D face recognition (e.g.

[Chandrasiri et al., 2007]), and 3D face recognition (e.g. [Alyuz et al., 2007]),

with reporting improvements over previous methods, particularly PCA-based

algorithms. Based on these works, the main advantage of Average Face Model
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Figure 3.3: The two averaging steps in the Average Face Model over ten images
of Tony Blair [Burton et al., 2005]. (A) Shows original images. (B) Shows
results of morphing each of these images to a standard shape. (C) Shows the
image-average of these shape-standardized images
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Figure 3.4: The range of con�gural manipulations in the experiments in Car-
bon et al. [2007], illustrated by the face of Princess Diana. The scale ranges
from -5, up to +5 with zero indicating the original (veridical) version. Subjects
selected the faces biased toward the +5 or -5 as the veridical face, after being
exposed to +5 or -5 face images respectively. This biased selection indicates
a change in the face representation for familiar faces which short exposure to
biased stimuli.

for the machine algorithms seems to be the simplicity of the process (simply

averaging shape and then texture) and representation of each identity with a

single average image.

3.8.3 Exception Report Model

Despite the support of several experimental results, the Average Face Model

is recently questioned by several authors (see [Deng et al., 2008, Carbon and

Leder, 2005, Carbon et al., 2007, Unnikrishnan, 2009]). One of the important

result is presented in [Carbon et al., 2007] which cast doubt upon the belief

about central representation of faces. Many psychological frameworks includ-

ing the Average Face Model assumed that the underlying representation of a

face is unlikely to be modi�ed in the course of single incidents [Bruce et al.,

1991]. Specially, in recognizing a familiar face, it is a common assumption that

incoming perceptual information must be matched against representations of

faces stored in memory, which are accumulated over time [Bruce and Young,

1998]. Theories of memory, and particularly Average Face Model, often im-

plicitly claim that these stored representations are both stable and accurate,

containing the essential information in a face that allows for its robust recogni-

tion (see, e.g., [Bruce and Langton, 1994]). Nevertheless, such a representation
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has to be �exible enough to integrate new information that might help one to

recognize the most recent appearance of the face. For example, recognizing

familiar faces in spite of short-term or long-term changes is probably most

e�ciently done by integrating these changes into the representation of that

person's face. Such an integrating mechanism should also apply to ongoing

long-term changes of a face during a human's life span, especially the shifting of

the facial con�guration from a baby face to a matured appearance. This mech-

anism should also be capable of integrating short-term changes. For example,

the current mental and physical status may alter the facial appearance as much

as would hairstyles and make-up. Without a rather �exible mechanism that

integrates these types of changes, perceiver's recognition performances would

be suboptimal. From an evolutionary point of view, this would be a func-

tional disadvantage due to lacking adaptation. On the other hand, it is also

important that (face) representations are su�ciently stable and rigid to allow

for reliable recognition. If representations are adapting too rigorously toward

recently perceived information, such an over-adaptive mechanism could also

be disastrous for a recognition system. Thus, there must be a clever balance

between both poles of stability and �exibility, rather than just averaging the

faces [Carbon et al., 2007]. Supporting this idea, recent experimental results

show that human subjects' judgments on the veridicality of highly familiar

faces were strongly in�uenced by recent visual inputs (i.e. face images) [Leder,

2005, Carbon and Leder, 2005, Carbon et al., 2007]. While the representations

for familiar faces are thought to be highly reliable (e.g. in Average Face Model

[Bruce et al., 1999, Burton et al., 2005]), experiments in Carbon et al. [2007]

showed that after participants were exposed to con�gurally manipulated ver-

sions of familiar faces (see Figure 3.4), they chose a wrong image as the original

(veridical) image of the familiar face, and their bias was toward the direction of
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manipulated stimuli. This adaptation e�ect (face identity aftere�ect [Leopold

et al., 2005]) was demonstrated even 24 hours after exposure to the stimuli.

These experiments suggest that the underlying representation for faces could

not be based on simple pictorial grounds, an episodic memory e�ect, or a

simple averaging mechanism [Carbon et al., 2007].

In addition to Carbon's experiments, both exemplar-based and norm-based

frameworks are uneconomical because they suggest neural processes that have

to execute 250 feature-by-feature comparisons of the index face with a standard

(either the prototypical norm, or a face that serves as the standard in a certain

region of face-space to which the index face seems to belong) [Unnikrishnan,

2012]. To address this shortcoming, a modi�ed norm-based framework, the

Exception Report Model (ERM) is recently suggested by Unnikrishnan [Un-

nikrishnan, 2009, 2012] for face recognition in humans, in which attention is

focused exclusively on features that di�er signi�cantly from the central repre-

sentation of all faces, named as the Modal Face. The Modal Face is a normal

representation that represents the distribution of values in each of the dimen-

sions in the face space, with the norm de�ned as all values between the 5th

and 95th percentile, regardless of the distribution of the metric (i.e. Gaus-

sian or not). The unusual (exceptional, or deviations from norm) features are

then the small number of features which fall into the 10% out of the norm

region percentile and the human brain can rapidly and e�ortlessly recognize

the target face by focusing on the exceptional features present in the face.

While previous frameworks of face recognition require as many as 200 to 250

features to characterize a face, ERM focuses attention exclusively on features

that are signi�cantly di�erent from the average or Modal Face. Thus, only a

few (<10) unusual features are required to characterize the individuality of a

given face. ERM can be quicker and require less mental e�ort, because the
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neural processes employed by this framework are more economical than those

employed by previous frameworks of face recognition, which require exhaustive

and highly accurate multiple feature-by-feature comparisons between di�erent

faces. ERM is probably the underlying mechanism that plays a role in per-

ceiving, remembering and recognizing faces [Unnikrishnan, 2012] as it explains

the agility of humans in face recognition tasks (even in crowds), the Other-

race e�ect (for the Other-race e�ect see [Furl et al., 2002]), and even the mate

selection preference in humans [Unnikrishnan, 2012].

In addition to the ability of ERM in explaining face-related behavior in

humans, several automatic face recognition methods inspired by the ERM

[Hansen and Atkinson, 2010, Nejati and Sim, 2011, Nejati et al., 2011, 2012]

have shown the e�ectiveness of this framework to be used for machines. We

therefore choose the ERM over other frameworks to be used as the basis of

our understanding of how humans perform face perception, memorization, and

recognition.

In addition to employing ERM concepts for eyewitness face sketch recog-

nition, the ability of ERM in explaining the human visual system for face

recognition also motivated us to test the applicability of ERM concepts to

other visual recognition tasks, such as ear image recognition. Therefore, in

addition to our proposal for ETP and FSR, we provide separate sections to

propose and test an adapted version of ERM concept for ear image recognition

(see Sections 4.4 and 5.4 respectively).

3.9 Chapter Summary

Many challenges in eyewitness sketch recognition lies in the eyewitness testi-

mony procedures. In this chapter we reviewed psychological problems studied
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in the literature. Based on our reviews in this section we conclude that human

memory is fragile, malleable, and susceptible to suggestion, and current eyewit-

ness testimony procedures, unwittingly, change the memory of the target face

in the eyewitness' mind, resulting in production of unreliable reconstructions

of the target face. An important e�ect of the unreliability of these procedures

is that any method that uses results of these procedures inherits this unre-

liability. Despite this, these eyewitness testimony procedures are still being

widely used by police departments all over the world (mainly due to the lack

of viable alternative methods).

In addition, to acquire a proper understanding of how the human visual

system works, we searched through the psychological frameworks suggested

for the human perception, and chose the Exception Report Model (ERM) that

seemed the best, based on supporting psychological �ndings. We use this

framework as the basis of our automatic models in next chapters.

Based on our literature review in the previous two chapters, we conclude

these main points:

1. Based on our reviews on previously proposed face sketch recognition

methods (FSRs), we conclude that exact sketches are not a proper es-

timation of forensic sketches, and performance results on exact sketches

cannot provide enough information about performance on forensic sketches.

2. As a result, although previous FSRs have reported high accuracy rates

on recognizing exact sketches, as tests show, they are unreliable in rec-

ognizing real eyewitness sketches.

3. Based on our previous reviews on psychological challenges in eyewitness

testimony procedures, forensic sketches are not also good representations

of target faces.
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4. Based on our reviews on psychological frameworks proposed for face pro-

cessing in the human visual system, we selected the Exception Report

Model (ERM) as the basis for our computational models.

(a) ERM suggests that humans use a norm-based face perception pro-

cess that focuses on the facial features which are deviated from

norm, for face perception, memorization, and recognition.

(b) In our computational methods we only analyze the deviations in

face shape, for the sake of simplicity.

Based on the above points, we conclude that more realistic designs are re-

quired for automatic face sketch recognition to meet the real case needs. In

the next chapter we present our new perspective on the eyewitness testimony

procedure and face sketch recognition to address both psychological challenges

and automatic matching challenges.
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Chapter 4

Reshaping Eyewitness Face Sketch

Recognition: The Use of

Non-artistic Sketches

Law enforcement agencies seems to have no choice to continue using the �awed

ETPs, as there is no proper alternatives to be used when an eyewitness is

the only clue to solve a case. On the other hand, the existing challenges

facing the eyewitness testimony procedures (ETPs) are so extensive that have

made some psychologists argue against any use of ETPs in the courts [Yarmey,

1997]. For example, how can any ETP be used while at the very �rst step,

verbal description of the target face, causes verbal overshadowing and reduce

the recognition ability down to 50%? In this chapter we try to answer to

this question, as well as the need for an FSR that can robustly recognize the

resulting sketch. Our goal is to more faithfully reproduce the mental image in

the eyewitness's mind, something which existing methods cannot do.

We discussed the problems of both eyewitness testimony procedures and

automatic face sketch recognition methods in the previous chapter and pre-
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sented the current gaps in both ETPs and FSRs:

1. Current eyewitness testimony procedures (ETPs) are unreliable. This

unreliability also propagates to any process which uses the outcome of

these ETPs (i.e. forensic sketches) including face sketch recognition al-

gorithms (FSRs), and law enforcing procedures (Chapter 3).

2. Current automatic face sketch recognition methods (FSRs) are designed

to recognize exact sketches, and cannot handle forensic sketches (Chapter

2).

One should note that the problem of face sketch recognition has two main parts:

(1) The eyewitness testimony procedure (ETP) in which a sketch is created,

(2) the FSR to recognize the resulting sketch from the ETP. Without a reliable

ETP like the ones that are currently used in the �rst part, the second part

also provides unreliable results. In this chapter we therefore propose a coupled

ETP-FSR to address the problem of face sketch recognition, by considering

both of the above gaps together:

1. ETP Part: We propose to employ a modi�ed ETP procedure based on

the concepts of ERM model (our preferred psychological model from

Section 3.8), using non-artistic sketches as the medium to avoid the dis-

advantages of current ETPs.

2. FSR Part: We propose an accompanying FSR for recognizing non-artistic

sketches by accounting for individual di�erences among eyewitnesses, and

relying on more realistic assumptions of sketch-target face similarity.
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4.1 Proposed Eyewitness Testimony Procedure

Now consider the case of an eyewitness who has seen a target face regarding

a criminal case. In our ETP, instead of asking the eyewitness to verbally

describe the appearance of the target face, we ask him/her to draw a sketch of

his memory of the target face, with whatever drawing skills he/she has, that

includes the facial component outlines and facial marks (e.g. wrinkles, moles,

and scars). Using this �non-artistic� eyewitness sketch that we name the Main

Sketch, we avoid verbal overshadowing, memory degradation due to questions,

illusive post-event information, viewing other faces, etc., and also piecewise

reconstruction:

Verbal Overshadowing: We do not ask the eyewitness for a verbal descrip-

tion.

Biased Questions: We do not ask any question except for drawing the sketch

Implanted Ideas: As we avoid verbal contact and using another person to

draw the sketch (police artist), we avoided probable implanted ideas and

introducing a third parties mental biases

Post-event Information: We do not expose the eyewitness to mug-shots or

other causes post-event information problem

Viewing Similar Faces: We do not expose the eyewitness to any faces dur-

ing creation of the sketch. When acquiring the drawing pro�le, we assure

the eyewitness that the exposed faces do not have any relation with the

target face.

Piecewise Reconstruction: We avoid reconstructing the mental image based

on showing separate or accumulating facial components
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Figure 4.1: Example of non-artistic sketches and their related target face

Therefore the Main Sketch is more likely to be drawn based on genuine memory

of the target face, in contrast with traditional forensic sketches which are drawn

based on eyewitness' verbal description.

However, as �gure 4.1 illustrates, the result of this ETP is a non-artistic face

sketch, which is a crude, noisy, and biased representation of the target face, and

cannot be used directly for photo matching. We should therefore process this

crude representation of the target face to �nd the identity-speci�c features, be-

fore we can match it against the database of photos. So although using directly

developed non-artistic sketches we avoid many psychology-related problems of

the ETP, we have also signi�cantly increased the di�erence between the sketch

and photo modalities, in comparison to exact sketches. To help decrease this

modality gap between non-artistic sketches and photos, we also ask the eye-
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witness to provide two more types of information. First we ask for additional

information about the target face including skin color, iris color, hair color,

estimated age, race, and gender (also practiced in real scenarios) which we

call Ancillary Information, and for each category of the Ancillary Information,

we provide a set of prede�ned values from which the eyewitness can choose:

we ask the eyewitness to choose the skin color from Fitzpatrick Scale color

pallet (very fair, white, beige, beige with a brown tint, dark brown, black)

[Fitzpatrick, 1975], the iris color from Martin�Schultz scale color pallet (gray,

blue, green, brown, dark brown, black, red) [Piquet-Thepot, 1968], and the

hair color from Fischer�Saller scale color pallet (brown, black, blond, auburn,

red, gray/white) [Daniel, 1978]. For estimated age, we group ages in groups of

5 years (e.g. 1-5, 6-10, 11-15...). For the race, we group races into Caucasian,

American Indian, Latino, African, Middle Eastern, Indian, and East Asian,

and �nally for the gender we have male and female.

In addition to the Ancillary Information, we obtain a drawing pro�le for

each eyewitness by asking him/her to sketch a set of known face photos. This

drawing pro�le is a vital key for processing the Main Sketch, and matching this

non-artistic sketch to the database of photos as this drawing pro�le contains the

samples of eyewitness' face perception and face drawing biases, which together

we call them the sketching bias. Based on these samples from the sketching

bias we can estimate the sketching bias and remove it from the Main Sketch,

to reach a purer representation of the target face, for a more reliable match to

the photo database.

The drawing pro�le is a set of samples from the eyewitness' sketching bias,

and based on these samples we try to estimate the sketching bias. Thus the

higher the number of these samples are, the more accurate our estimation

would be. However, as factors such as anxiety and fatigue disturb the qual-
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ity of drawings for the drawing pro�le, we have to �nd a minimum required

number of sketches for the drawing pro�le. In addition, as drawing faces is a

process related to face perception, it is likely to be a�ected by factors such as

gender and race of both the eyewitness and the target face. It is show that

men are more accurate in recognizing female faces Barrett and O'Toole [2009],

Bindemann et al. [2009], and the other-race e�ect O'Toole et al. [1991], Furl

et al. [2002], Jia et al. [2004] is a well-known e�ect in humans' ability in face

recognition. Therefore, these parameters should be assessed in search for an

ideal number of faces in the drawing pro�le, as well as the types of faces chosen

to be drawn by the eyewitness. In out experiments, presented in Chapter 5 we

show that at least 7 to 9 face sketches are required in the drawing pro�le, for an

accurate enough estimation of the sketching bias. A protocol is also required

to reach an optimum selection for the faces to be drawn by the eyewitness.

However, designing such a protocol requires several psychological experiments

which are out of the scope of this thesis.

Thus at the end of our ETP we have three outputs, namely, the Main

Sketch (crudely representing the target face), the Ancillary Information (cate-

gorical description of the target face), and the drawing pro�le (describing the

eyewitness' sketching bias). Using these three types of information about the

target face we try to close the gap between the sketch and photo modalities

and match the Main Sketch against our database of face photos.

We continue this chapter by describing our proposed FSR that focuses on

the use of these non-artistic sketches to �nd the target face.
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4.2 Proposed Face Sketch Recognition

Finding the correct match of the Main Sketch in the photo database requires

a �di�erence function� that can handle the modality di�erence between the

non-artistic sketches and the face images. We de�ne our di�erence function

based on the Main Sketch and the Ancillary Information. However, the Main

Sketch is a crude representation of the target face and even not all parts of this

crude representation contains the same amount of information about the target

face. There are parts a�ected by noise, perceptual bias, or ignorant drawing

(result of low importance associated with a component) among the parts that

represent the actual appearance of the target face. Therefore, we should �rst

(1) estimate the sketching bias, (2) weight each part of the debiased sketch

based on the amount of information it bears; and �nally, (3) de�ne proper

point correspondence to be able to compare a sketch outline and a photo

outline. We describe these three requirements for a proper matching between

non-artistic sketches and face photos in sections 4.2.1,4.2.2, and 4.2.3.

4.2.1 Sketching Bias Estimation and Removal

In the FSR part, we should �rst remove the sketching bias from the Main

Sketch, to reach a debiased sketch that represents �what the eyewitness meant�

by the Main Sketch. We de�ne the sketching bias, as two types of distortions

in the non-artistic sketches: First, the distortions from noisy drawing (e.g.

shaky hand due to lack of drawing skills) and face completion (i.e. the lines

which are only to complete the shape of the face in the sketch, not related to

the target face appearance) and second the distortions from mental bias and

drawing bias. By mental bias we refer to a function of complex processes such

as memory, perceptual bias, and feature representation style that adds biases
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Figure 4.2: Pictorial representation of the process of creating the biased Main
Sketch, divided into two steps: �rst the eyewitness should detect the outlines of
the memory of the target face (process g), and then draw the non-artistic sketch
based on these outlines (process h). While the mental bias would be added
during g and the drawing bias would be added during h, for easier estimation
of the sketching bias (combination of mental and drawing biases), we can
safely assume a perfect (unbiased) g, and a biased h, where the sketching bias
is entirely added during h. Using this assumption we propose our debiasing
method in Section 4.2.1.
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to the process of creating a non-artistic face sketch from a viewed face. The

�rst type of distortion can be di�erent from one part of the sketch to another,

and also can be di�erent from one face to another, based on how the eyewitness

remembers the face and the how well s/he can draw (drawing bias). But the

second type follows an individual pattern. Based on psychological studies and

particularly Exception Report Model [Unnikrishnan, 2009, 2012] the mental

face perception, memorization, and recognition biases are formed by a norm-

based process in the human visual system, based on the faces seen during

the life experiences. As the life experiences of each individual are unique,

the mental bias of each individual is also unique. However, as we take an

engineering approach to this problem, we try to model the eyewitness' mental

bias, and then remove it from the Main Sketch, to reach a relatively unbiased

representation of the target face. As mentioned in previous chapter, we are

only using face shape as our feature here.

We de�ne the sketching bias as a point-to-point transformation function f ,

mapping the facial component outlines in a photo, φ, to the facial component

outlines in it respective sketch, ϕ. Based on psychological studies we can safely

assume that f is (at least) a function of drawing bias, face perception strategy,

face memorization, face recognition ability, facial feature visual importance,

living environment, gender, and race. But the function f can also be decom-

posed into two steps, namely, facial component outline detection in the photo

(g), and drawing the detected photo outline using a pen to create the sketch

(h), illustrated in Figure 4.2:

f = h ◦ g

The two components of the sketching, mental and drawing biases, take

place at g (when analyzing the facial features) and h (when drawing the facial

features) respectively. But in an engineering point of view, we can easily
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Figure 4.3: Pictorial representation of using the eyewitness drawing pro�le to
debias the Main Sketch. By assuming unbiased g, we estimate g using a facial
component detection algorithm (ĝ), and then learn ĥ−1, using drawing pro�le
as training samples. We then use ĥ−1 to debias the Main Sketch. Note that
ĥ(s, p) is an estimation of original h(s, p,m, r, t, ...), when only face perception
(p) and drawing bias (s) are considered (for the sake of simplicity).
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assume that the entire sketching bias (mental and drawing) take place at h,

leaving the g bias free1. Using this view, we need to estimate h−1 to debias

the Main Sketch.

In order to estimate h−1, we use the eyewitness' drawing pro�le as a set

of samples of h, to learn h−1. But we should mention that in this estimation

approach, we have assumed that the process of drawing pro�le ĥ (sketches

drawn while looking at the photo) is a good estimation of the process of drawing

the Main Sketch h (sketches drawn from memory) - Thus we are estimating

ĥ−1 :

f̂ = ĥ ◦ ĝ

ĥ(φ) = s(p(φ)) + e

where p indicates face perception, s drawing bias, and e is the noise. Although

our assumption of h ≈ ĥ is not true in cases involving memory impairments,

this is reasonable assumption for simpli�cation of the problem at this stage.

In order to estimate ĥ−1, we use the drawing pro�le as a set of samples of

photo outlines φ, and sketch outlinesϕ = ĥ(φ). Figure 4.3 illustrates the use

of eyewitness' drawing pro�le, to estimate and remove the sketching bias using

ĥ−1 .

It should be noted that based on psychological studies (e.g. [Unnikrishnan,

2012]), the mental bias does not a�ect all of the facial components in the

same way. In addition, the eyewitness' drawing bias for each part of the face

may be di�erent. We therefore estimate ĥ−1 in a piecewise manner. To be

able to learn the transformation function ĥ−1 between sketch-photo pairs, we

1See appendix for justi�cations.
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represent each photo, based on the outlines of its facial components (simulating

mental function g). Using a simple Active Shape Model (ASM) to provide the

data points of the facial component outlines, we �t 16 piecewise cubic Hermite

splines [Fritsch and Carlson, 1980] to the outlines of 7 facial components,

namely, the eyes, the eyebrows, the nose, the mouth, and the jaw-line (2

splines to each eye, 2 to each eyebrow, 2 to the mouth, 3 to the nose, and

3 to the jaw-line). Monotone interpolation can be accomplished using Cubic

Hermite spline with the tangents mi modi�ed to ensure the monotonicity of

the resulting Hermite spline. We select the interpolating tangents for each data

point of the ASM, based on the Fritsch�Carlson method [Fritsch and Carlson,

1980]. Let the data points be (xk, yk) for k = 1, ..., n

1. Compute the slopes of the secant lines between successive points:

∆k =
yk+1 − yk
xk+1 − xk

for k = 1, ..., n− 1

2. Initialize the tangents at every data point as the average of the secants,

mk =
∆k−1 + ∆k

2

for k = 2, ..., n− 1. For the endpoints use one-sided di�erences:

m1 = ∆1 &mn = ∆n−1

3. For k = 1, ..., n − 1, if ∆k = 0 (if two successive yk = yk + 1 are equal),

then set mk = mk+1 = 0 (as the spline connecting these points must be

�at to preserve monotonicity) and ignore steps 4 and 5 for those k.
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4. Let αk = mk/∆k and βk = mk+1/∆k. If α or β are computed to be

less than zero, then the input data points are not strictly monotone. In

that case, piecewise monotone curves can still be generated by choosing

mk = mk+1 = 0, although global strict monotonicity is not possible.

5. To prevent overshoot and ensure monotonicity, the function

φ(α, β) = α− (2α + β − 3)2

3(α + β − 2)

must have a value greater than (or equal to, if monotonicity need to be

strict) zero. One simple way to satisfy this constraint is to restrict the

magnitude of vector (αk, βk) to a circle of radius 3. That is if α
2
k+β2

k > 9,

then set mk = τkαk∆k and mk+1 = τkβk∆k where τk = 3√
α2
k+β

2
k

Note that only one pass of the algorithm is required. After this pre-processing

we have to evaluate the interpolated spline to read cubic Hermite spline, using

the data xk, yk, and mk for k = 1, ..., n.

To evaluate at x, �nd the smallest value larger than x, xupper, and the

largest value smaller than x, xlower, among xk such that xlower ≤ x ≤ xupper.

Calculate

h = xupper − xlower & t =
x− xlower

h

then the interpolant is

finterpolated(x) = ylowerh00(t) + hmlowerh10(t) + hmupperh11(t)

where hii are the basis functions for the cubic Hermite spline.

We then divide each of these 16 splines into four parts (quarter splines), and

re-sample each of the parts with 25 equally distributed data points. Finally, we

scale and rotate all sketches to the same size and angle based on the position of
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eye centers. Note that di�erent splines require di�erent normalizations, based

on their sizes, because points do not cover the same amount of area from one

spline to another. For example, the eyes are much smaller than the jaw-line,

and as they are both sampled with the same number of points, the average

data point in the jaw-line spline represents a larger area than the average data

point in the eye spline. Therefore, we have to also normalize each spline si

based on its axis lengths diami:

s̄i =
sj

diami
)

We perform the same point representation and normalization on the sketches.

Finally, we can pair the data points from a sketch, to the data points from its

related photo outline, as the sampling points to learn ĥ−1. We use Support

Vector Machine Regressors (SVRs) with Radial Basis Function (RBF) kernel,

to �t the ĥ−1function in a piecewise manner. We use a separate SVR for each

of the quarter splines (i.e. 4 mapping function for each spline, 64 mapping

function for the entire sketch).

4.2.2 Weighting Sketch Outlines

At this step, we have a debiased sketch ϕ, an estimation of photo φ outlines

from the Main Sketch outlines, and this debiased sketch should be used to

�nd the target face. However, not all parts of the debiased sketch ϕ contains

the same amount of information about the face photo φ. There are parts

a�ected by noise or ignorant drawing (result of low importance associated with

a component) and there are parts representing the actual outlines of the face φ.

Therefore, the estimated target face outlines are also associated with di�erent

reliability, which requires a notion of reliability (or importance) weight for each

part of the sketch. We de�ne this weight based on the estimated amount of
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information that a particular part bears.

In order to estimate the level of information embedded in each part of the

sketch, we here use the concepts introduced in Exception Report Model (ERM)

[Unnikrishnan, 2009]. The ERM is the psychological framework for face pro-

cessing in the human visual system which we chose based on our literature

survey on psychological frameworks for face processing in humans (Section

3.8). The ERM represents our base understanding of how the human visual

system perceives, memorizes, and recognizes faces. ERM suggests that the hu-

man brain employs a modi�ed norm based model in which attention is focused

exclusively on the deviations from norm (exceptionality) of each features, for

rapid and e�ortless recognition of the target face. The exceptionality of a fea-

ture is determined by comparison to the norm representation of that feature

in the distribution of di�erent values of that feature. All of the norm represen-

tations of all facial features form a Modal Face in the mind of a person, and

this Modal Face is the center of face space in the person's mind. However, it

is very important to remember that the distributions of the Modal Face, and

therefore, the perception of normal and exceptional can be di�erent from one

person to another. This is because the Modal Face is formed based on seen

faces, and two individuals have been exposed to di�erent faces throughout

their life experiences [Unnikrishnan, 2012]. This di�erence in Modal Face ex-

plains the other-race e�ect, in which individuals from one race have di�culty

recognizing people from another race [Furl et al., 2002]. Based on the ERM

framework, when a person perceived a face from another (rarely seen) race, an

unusually many number of facial features of other race faces are perceived as

exceptional, and therefore, the faces from that race are all perceived equally ex-

ceptional. Similar phenomena has also been veri�ed in the information theory

[Shannon and Weaver, 1962] in which more common verbs carry less infor-
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mation, while more information is encoded in less common verbs. Note that

in the information theory, the notion of commonality can be de�ned by the

normal distribution and therefore, a less common verb is more exceptional.

Similarly in our application for the eyewitness face sketch recognition, we

conclude that two di�erent eyewitnesses may draw the same face di�erently,

not only due to their di�erent drawing bias, but also due to di�erences in

their Modal Faces, that make them perceive di�erent features as normal or

exceptional. We should therefore weight each part of the debiased sketch, based

on the deviations from the norm in that part, assuming that this deviation

represents the level of attention the eyewitness has had on that part and thus

an estimation of the level of information the sketch part bears.

We de�ne the level of exceptionality of a feature value as the distance of that

feature value to the mean value of that feature, normalized by the standard

deviation of that feature. Based on this weighting strategy we weight each

point in the sketch or photo:

1. We estimate a normal probability density function (PDF) for each of the

5 points in the �tted splines (described in Section 4.2.1), based on the

distribution of their values in the entire Multi-PIE dataset [Gross et al.,

2008]. Note that the values are normalized before calculating the PDF.

2. Now we de�ne the weight (exceptionality) of point k of debiased sketch

ϕi, as the distance of that point from the mean of its corresponding PDF,

normalized by the standard deviation of that PDF:

wk =

√
(
xk − µx,k
σx,k

)2 + (
yk − µy,k
σy,k

)2

S = W Tϕ
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Figure 4.4: Weighting and matching the debiased sketch: di�erent parts of
the debiased sketch and photo are weighted based on their deviations from
database norm (exceptionality). These points are then normalized and con-
catenated with their normalized Ancillary Information. Final di�erence score
is calculated based on minimized squared errors to �nd the closest photo to
the sketch.

where wk, xk, and yk are the weight, X andY coordinates of point k; and

(µx,k, σx,k), (µy,k, σy,k) are mean and sigma values of the corresponding X

coordinate, Y coordinate PDFs; Wi is the vector of all weights associated

with all points of sketch ϕ and �nally, S is the weighted sketch. Similar

weighting is applied to photo points to reach weighted photo P .

4.2.3 Recognizing the Debiased Sketch

We now have a weighted debiased sketch which is our estimation of the target

shape and the Ancillary Information that is the categorical information of the

target face. We also use the relative distance between facial components as

the third piece of information to �nd the target face. We calculate the relative

distances between the facial components as the distance between their centers
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from the center of each of the eyes (as we scale and rotate each sketch based

on eye positions).

Because these three pieces of information are from di�erent natures and

may di�erently contribute to the matching process, we should use a proper

di�erence measurement for each feature to be able to combine them into a

single di�erence score. The di�erence measurement for each of the skin color,

iris color, hair color, race, and gender features between a sketch and a photo is

assigned heuristically based on common understanding of these features. The

di�erence measurement for each of these features is represented by an n × n

matrix, where n is the number of possible values for that feature. Each cell Cij

of this matrix indicates the di�erence between ith and jth values of that feature,

in terms of integers in range [0, n]. The di�erence measurement of facial marks

is indicated by minimum squared error (MSE) between facial mark pixels and

edge pixels in the same photo region. We de�ne the same photo region as

the same-sized rectangle as the bounding box of the facial mark, centered at

the same distance from the nearest facial component (see �gure 4.5). To avoid

noise, we re-size each photo to 128×128 pixels, apply Sobel edge detection, and

re-size back the resulting edge image to its normalized size, and then calculate

MSE of the facial mark pixels and the edge pixels. Finally, we measure the

di�erence between the sketch and photo points based on Euclidean distance.
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Figure 4.5: Comparing sketch facial marks and image edge pixels, in the same
region (i.e. a same size rectangle as the bounding box of the sketch facial mark,
centered at the same distance from the nearest facial component).

After calculating all feature di�erences:

∆point = (
16∑
i=1

4∑
j=1

25∑
k=1

Euc(sk, pk)) (4.1)

∆mark =
∑

diffmark(Si, Pj) (4.2)

∆skin = Cij,skin (4.3)

...

∆gender = Cij,gender (4.4)

∆(S, P ) = {∆point,∆mark,∆skin, ...,∆gender} (4.5)

where ∆i is di�erence between sketch and photo regarding feature i, Euc is

the Euclidean distance,diff is the feature-related di�erence function Finally,

∆(S, P ) is the set of all feature di�erences between sketch S and photo P . We

can now optimally combine all features by calculating the coe�cient matrix A

that minimizes the sum of squared error E, given a training set of sketch-photo

pairs (Si, Pi):

E =
n∑
i=1

‖ A(∆(Si, Pi) ‖2

Υ = ‖ A∆(S, P ) ‖
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where Υ is the �nal di�erence score between Main Sketch ϕ and database photo

φ (after sketching bias removal and normalization). Figure 4.4 illustrates the

procedure of weighting and matching in our proposed FSR.

Given the di�erence score Υ, one should be able to measure the con�dence

of the matches to the photo database. We propose con�dence measure C

as measurement of the matching con�dence, based on the distribution of all

sketch-photo di�erence scores in the database:

C =
σ2

|µ|+ ε
(4.6)

the higher C value indicates the higher con�dence of the �nal matchings. The

intuition behind this con�dence measurement is that when most of the match-

ing score values are distributed compactly with either a large positive or a

large negative mean (small σ, large µ), this indicates that the top-n faces are

selected almost randomly. In this case the value of C is small. In contrast,

when the di�erence scores show a distribution with a large variance, with some

of the faces having small di�erence scores (large σ, small µ), this indicates that

faces are ordered with a reasonable di�erence from each other, and therefore

the matching is more reliable. In this case the value of C is large.

Using the �nal score as a con�dence measure is not the only possible

method. For example, one can use the accuracy of bias estimation in ĥ−1as

another con�dence measure. This accuracy can be an indication of how con-

sistent is the eyewitness' drawing pattern, in his/her drawing pro�le.

4.3 Improving Non-Artistic Sketch Recognition

We have described the details of our two-pronged proposal for a new ETP and

an accompanying FSR. In this section we additional methods to improve our
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original method. In the Experiments Section (5) we separately present results

for the original concept and the improvement techniques to show their e�ects.

Dynamic Point Correspondence: One of the issues that can be improved

in our FSR is regarding the sketch to photo point correspondence. In

the previous sections, we used a hard point correspondence, based on the

spline sampling index. Obviously in a crude sketch like the Main Sketch,

the point correspondence is also not accurate, and therefore assuming a

hard, index-based correspondence negatively a�ects the general accuracy.

Therefore, we here propose to impose a temporal order to the sketch and

use a weighted dynamic time warping algorithm to �nd the best point

correspondence between the sketch and photo splines. We use a dynamic

programming that maximizes the match between sketch points and photo

points, constrained by temporal order of the points.

Multi-Distribution Weighting: Imposing temporal order provides a dy-

namic point correspondence that decreases the errors caused by local

displacement of points, but imposing temporal order also brings forth

another problem in the weighting step. Using this dynamic point match-

ing, a point from a sketch spline, σ, can be matched to virtually any

point ς in the respective photo spline; thus, the de�nition of �deviation

from norm� becomes ambiguous in the weighting step, because the norm

should be referenced to a distribution, and the distribution of the sketch

point, gσ, can be di�erent from the distribution of photo point, gς . In

order to alleviate this ambiguity, we have to account for di�erences in

distributions using an updated weighting scheme, based on distribution

comparison.

General-Speci�c Modeling: One of the most important steps in our FSR is
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the estimation of sketching bias. Although given enough samples (sketch-

photo pairs in drawing pro�le) we can robustly estimate the sketching

bias, but in reality, to avoid factors such as fatigue and visual distrac-

tion, we can only acquire a few training sketch-photo pairs in the draw-

ing pro�le of each eyewitness. To address the problem of having few

samples, we use a general-speci�c estimation scheme in which we �rst

learn the general sketch-to-photo transformation embedded in the en-

tire sketch database, and then �ne tune this transformation to a speci�c

transformation, based on the sketch-photo pairs drawn by a particular

eyewitness.

We start with the new weighting scheme, followed by dynamic point matching

and then general-speci�c modeling.

4.3.1 Multi-Distribution Weighting

Based on the ERM concept, we assign higher weights to sketch parts with larger

deviations from norm, assuming these parts bear more information from the

target face and are memorized better than normal parts (see Section 4.2.2). In

our framework, weight of a vector σ ∈ ϕ is de�ned as the normalized distance

of σ from its respective mean (calculated based on the database distribution),

which is the inverse of the probability of σ:

ω(σ) = 1− P (σ|g)

where g is the associated distribution of σ.

When matching two points, σ from sketch ϕ (σ ∈ ϕ), and ς from photo φ

(ς ∈ φ), with possibly having di�erent distributions (while we assume normal

distributions for all points), we should also account for distribution di�erences.
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Therefore, instead of individually weighting each point (as in Section 4.2.2),

we de�ne a matching weight of the two points σ and ς as follows:

W (σ, ς) =
ω(σ)ω(ς)

D2
RAD(gσ, gς)E2(σ, ς) + ε

(4.7)

where E is the Euclidean distance; gσ, and gς are the corresponding distri-

butions of σ and ς respectively; and DRAD is the Resistor-Average Distance

(RAD) between the two distributions. Note that in scoring the match between

two points, we account for their individual weights (inverse probability), trans-

lational distance, and distributional distance.

The Resistor-Average Distance (RAD) is originally derived from the Kullback-

Leibler Divergence (KL) [Cover and Thomas, 1991] which is well-known to

measure the distance between probability density functions (PDFs) and de-

�ned as:

DKL(p ‖ q) .
=

ˆ
p(x)log2(

p(x)

q(x)
)dx (4.8)

This formula follows an information theory approach to quantify how well

a particular PDF q(x) describes samples from another PDF p(x). KL is non-

negative and equal to zero i� p(x) ≡ q(x), but KL is asymmetric. The asym-

metrical property of KL makes it hard to use this measurement in our frame-

works. Therefore, we use an symmetrical extension of KL, known as Resistor-

Average Distance (RAD) [Arandjelovic and Cipolla, 2006] as a measure of

dissimilarity between two probability densities, de�nes as:

DRAD(p, q) = [DKL(p ‖ q)−1 +DKL(p ‖ q)−1]−1 (4.9)

Similar to KL, RAD is non-negative and equal to zero i� p(x) ≡ q(x), but

it is symmetric. It is also notable that when classes Cp and Cq are distributed
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according to p(x) and q(x), respectively, DRAD(p, q) re�ects the error rate of

the Bayes-optimal classi�er between Cp and Cq.

4.3.2 Imposing Temporal Order

Based on our newly de�ned point matching weight, W (σ, ς), we proceed to

the details of �nding point correspondence. We use weighted Dynamic Time

Warping (DTW), with the weights of each point σ being ω(σ) to �nd the best

match between the sketch and photo points. Given two outlines from sketch

ϕ and photo φ, with points σi ∈ ϕ and ςj ∈ φ to be matched, we �nd the

corresponding points in the two outlines with the temporal order constraint,

formulated as maximizing of the total matching score, Υ(ϕ, φ) with constraint

Eq. 4.10:

Υ(ϕ, φ) = {σi1 : ςj1, σi2 : ςj2, ...σik : ςjk}

s.t. ∀ σi, σs ∈ ϕ , ςj, ςt ∈ φ (4.10)

if σi : ςj , σs : ςt

then i < s⇔ j < t

where i, j, s and t are the point indices and σi : ςj represents matching of σi

to ςj. The constraint in Eq. 4.10 forces a temporal order for matching points,

that given four points which are matched as σi : ςj and σs : ςt (with σ ∈ ϕ and

ς ∈ φ), if the index of σi is smaller than the index of σs (σi is located before σs

in the temporal order of spline sampling), then the index of ςj should be also

smaller than ςt (ςj should be also located before ςt in the temporal order of

spline sampling). The weighted DTW with the above constraint is presented

in Algorithm 4.1, to calculate the match that maximizes the matching score

80



Υ(ϕ, φ) between the given sketch and photo outlines, ϕ and φ.

Algorithm 4.1 is to �nd the best match for point σi ∈ ϕ in sketch outline to

one of the points ςj in sketch outline φ, given that matches for previous points,

σ1 · · ·σi−1, are optimal. We use a dynamic programming approach based on

Dynamic Time Warping, using Table γ(ϕ, φ) to store the best matches up

to the current point. The best match for current point ςi is selected based on

three rules. Rule 1 is the initialization rule for the �rst element (point) in table

γ, giving zero weight to the �rst point . Rule 2 is the single point matching:

if there is only one point to match (i.e. either |ϕ| = 1 or |φ| = 1), then the

matching weight would be W (σi, ςj) (based on Eq. 4.7). And Rule 3 is to

use divide and conquer method to recursively divide the sequence of points

down to reach a single point to match (based on Rule 2), and then propagate

the best matches upwards, until all the sequence is matched. At each step of

propagation, if the match σi to ςj is the best option until current point, the new

match score, W (σi, ςj), is stored in Table γ. Otherwise, the point ςj is ignored

and the algorithm tries to match σi to one of the points ςj+1 to ςn. Then, based

on the propagation rule, Rule 3, the next row of the γ will be updated for the

next point, σi+1. The Table γ is used to backtrack all possible combinations of

points, in order of O(n×m). The last row in this table, γm,j(ϕ, φ) contains the

accumulated match scores related to all possible matches of the last point σm,

and therefore Υ(φ, ϕ) = max
j

(γm,j(φ, ϕ)) represents the best point matching

of the sketch points ϕ and the photo points φ.

Given two outlines ϕ, φ, our feature vector is the maximum similarity scores

for the outlines of 7 facial components (eyes, nose, mouth, eyebrows, and

jawline) and the similarity scores of the relative locations of these 7 compo-

nents, to the center of the eyes. Based on this feature vector, given a new

pair of sketch-photo (drawn by the same person), we can label this pair as
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Algorithm 4.1 Dynamic programming script to calculate the maximum
matching score between feature sequencesϕ and φ.

%Υ(φ, ϕ) : Table γ(ϕ, φ) is an m× n table where |ϕ| = m and |φ| = n.
%i and j are row index and column index of table γ
i = 0
Loop i

if i <= 0 then (% Rule 1, initialization %)
γi,j(ϕ, φ) = 0

else if i == 1 then (% Rule 2, single point match%)
γi,1...j(ϕ, φ) = maxW (σi, ςj)

else if i <= m (% Rule 3, divide and conquer%)
Loop j
γi,j(ϕ, φ) = max(W (σi, ςj), max(γi−1,j(ϕ, φ) + W (σi, ςj))), j

′ ∈ [j +
1, n]

γi+1,j(ϕ, φ) = γi+1,j(ϕ, φ) + γi,j(ϕ, φ)
Until j == n

Until i == m
Υ(ϕ, φ) = max

j
(γm,j(ϕ, φ))

matching/non-matching, by minimizing the estimation error E:

E =
∑

σ∈ϕ, ς∈φ

‖ W (f ′(σi), ςi) ‖2

4.3.3 General-Speci�c Modeling

We proposed to use eyewitness' drawing pro�le to estimate the sketching bias.

The estimation is therefore performed based on a few number of sketch-photo

samples in the drawing pro�le. Here we propose an improvement technique

for the cases that a large dataset of drawing pro�les (from other eyewitnesses)

is available. We propose to improve the transformation estimation by dividing

the estimation into two steps of General and Speci�c modeling: using the

entire dataset for learning the General model and using the drawing pro�les

to �ne-tune the General model into each eyewitness' Speci�c model. Using

this two-step modeling, instead of estimating a direct transformation from

the sketch space to photo space based on a few samples, we �rst estimate an
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intermediate-transform from the sketch to the intermediate space, a space more

similar to the photo space (than the original sketch space) using a large number

of samples, and then estimate another transformation from this intermediate

space to the photo space using the individual eyewitness samples.

The General model accounts for general sketch to photo transformation

(general di�erences between sketch and photo modalities, discusses in several

previous works e.g. [Tang and Wang, 2004, Klare et al., 2011, Kiani and Sim,

2012a,b]), assuming all eyewitnesses are the same (i.e. what is assumed by

all previous works). In other words, in the General modeling we assume that

there is a General transformation used by almost all eyewitnesses in the pro-

cess of creating a sketch from a face photo. The Speci�c model then accounts

for individual di�erences in sketching style and mental bias (described in Sec-

tion 4.2.1) which is ignored by previous works. We can formulate these two

transformations as:

ϕ̄i = τGi (ϕi, {χ̄i, Āi}) (4.11)

φ̄i = τSi (ϕ̄i,Ai) (4.12)

where ϕ̄i and φ̄i represent the estimation of the photo outlines based on the

General model and the combination of General-Speci�c models, respectively;

τGi is the General transformation; τSi is the Speci�c transformation for the

ith eyewitness; χ̄i and Āi are all training sketch-photo pairs which exclude

samples from the ith eyewitness; χi and Ai are then the training sketch-photo

pairs drawn by the ith eyewitness (i.e. the drawing pro�le);Ψ is the Main

sketch.

We use a separate set of RBF kernel SVRs for learning the General and

General-Speci�c transformations. We �rst train the �rst set of SVRs (Gen-

83



eral SVRs) on a training set sampled from the entire dataset, excluding the

eyewitness' drawing pro�le, and use these trained General SVRs to estimate

the intermediate state of the eyewitness' drawing pro�le. Then we train the

second set of SVRs (Speci�c SVRs) to learn the Speci�c transformation from

the intermediate state drawing pro�le, to the respective photo outlines. These

Speci�c SVRs are then used to debias the Main Sketch which is then fed to

the weighting and matching steps, to calculate the di�erence score.

4.4 Extended Application: Wonder Ears, Iden-

ti�cation of Identical Twins from Ear Images

In this section we extend our framework, introduced in previous chapters for

eyewitness face sketch recognition, to another application, identi�cation based

on ear images. In this application we used the same weighting scheme (based

on deviation from norm), but now on the ear appearance and ear shape, to

�nd the best matches using feature exceptionality levels.

While identical twins identi�cation is a well-known challenge in face recog-

nition, it seems that no work has explored automatic ear recognition for iden-

tical twin identi�cation. Ear image recognition has been studied for years, but

Iannarelli [1989] appears to be the only work mentioning the twin identi�ca-

tion, which was performed manually. We here explore the possibility of twin

identi�cation from their ear images using a novel algorithm which focuses on

exceptionalities in the ear shapes and appearances. Our algorithm is based on

a recently proposed psychological model for face recognition in humans, known

as Exception Report Model (ERM), which has been applied in automatic face

recognition methods. We test our new approach on 39 pairs of identical twins

(78 subjects), with several levels of resolution, occlusion and noise, left ear
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vs. right ear training sets, and feature optimization. Our results verify the

robustness and optimality of the introduced features for twin identi�cation,

and indicate the applicability of ERM to a wider range of tasks in computer

vision, than only faces.

Identi�cation based on ear images has been studied for more than two

decades. Although other features such as face are more commonly used as

a biometric, ear images have several advantages over such features. The ear

shape does not change signi�cantly after adulthood, its surface has a rela-

tively uniform color distribution, it is invariant to expression, and ear images

are more robust to illumination and head pose changes than features like faces

[Burge and Burger, 2000]. The early studies mostly addressed the question

of uniqueness of ears, although not always in a forensic context. The most

well-known pioneer seems to be Iannarelli [Iannarelli, 1989], in which he per-

formed manual identi�cation over 10,000 ears and found no indistinguishable

ears. Iannarelli's studies showed that, given correct point-to-point comparison,

ear shape can be considered a biometric identi�er as well as more established

biometrics like face or voice. Imhofer [Imhofer, 1906] has also found 4 charac-

teristics to uniquely distinguish a set of 500 ears, indicating that the variability

between ears is large enough to assume ears as unique identi�cation features

Meijerman [2006].

On the basis of the above studies, automatic ear recognition techniques have

been introduced, mostly employing methods used in other biometric �elds.

Eigen-ears [Saleh et al., 2007] could provide high accuracy in recognition in

closely controlled conditions, otherwise, having dramatic performance reduc-

tion even with slight amounts of rotation. In order to handle rotation in ear

images, Abate et al. [Abate et al., 2006] introduced a method based on Generic

Fourier Descriptors which is robust to ear rotation and illumination changes.
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Yan also presented a complete system [Yan and Bowyer, 2007] including auto-

mated segmentation of the ear in a pro�le view image and 3D shape matching

for recognition under constrained conditions with specialized cameras. Ali et

al. [Ali et al., 2007] presented another ear recognition method based on manu-

ally cropped 2D ear images of pro�le faces and performed a wavelet transform

for feature extraction. Their �nal labels are then calculated based on Euclidean

distance, with a performance similar to [Yan and Bowyer, 2007]. Bustard

and Nixon [Bustard and Nixon, 2010] recently proposed an ear registration

method that utilized SIFT features followed by a homography transformation,

to cope with the occlusion and pose changes. The transformed images are then

masked and matched using Euclidean distance. Although this work reported

an impressive performance and robustness to occlusion and noise, their semi-

automatic ear masking procedure occasionally fails to match correctly to the

ear area. Other important approaches for automatic ear recognition are force

�eld transformation [Hurley et al., 2005], local surface patch comparisons using

range data [Chen and Bhanu, 2007], Voronoi diagram matching, neural net-

works, genetic algorithm [Pun and Moon, 2004], geometric feature extraction

[Choras, 2004] and ICP, for 3D data [Yan and Bowyer, 2005].

Although several aspects of ear recognition have been explored, there seems

to be no work on twins identi�cation using ear images, except Iannarelli

[Iannarelli, 1989] who merely performed manual matching of ear images. There-

fore, we here present an approach for automatic ear recognition for identi�ca-

tion between twin siblings. We propose our approach based on a psychological

model, originally suggested for face perception in humans, known as Exception

Report Model (ERM) [Unnikrishnan, 2009, 2012], described in Section 4.2.2.

The concepts of our proposed ear recognition is similar to our face sketch

recognition, but here applied to shape and appearance of the ears, in order to
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show the extensibility of our introduced method.

Our proposed system consists of two parts, namely, ear image normaliza-

tion, and feature weighting and veri�cation. In the �rst part, ear normaliza-

tion, we normalize ear images and obtain their shape and appearance informa-

tion. In order to achieve the ear shape, we use SIFTFlow algorithm [Liu et al.,

2008] to calculate a dense correspondence between the gallery ear image and a

pre-de�ned reference ear image. Using this correspondence, we normalize the

scale, rotation and illumination of the gallery image. We also use this dense

correspondence as the (relative) ear shape. In addition to this relative shape

information, we use the normalized ear pixel intensities as the ear appearance.

In the second part, feature weighting and classi�cation, we �rst weight points

in the ear shape and appearance based on their level of exceptionality. Then

based on the weighted feature vectors, we train a Support Vector Machine

(SVM) classi�er to verify whether two given ears belong to the same subject.

We evaluate our system on a dataset of 39 pairs of identical twins (78

subjects), testing ERM possibility and its robustness against �ve resolution

levels, four occlusions levels, and four noise levels, as well as left ear versus

right ear training-testing sets. We also test the ERM optimality in automatic

ear recognition for both left and right ear images. These results showing high

accuracy and robustness, suggest the applicability of ERM to a wider range of

automated visual tasks than only faces.

In summary we introduce the following contributions in this chapter:

• We are the �rst to use ear biometric to identify identical twins (using

the largest available twins dataset).

• We preserve and use both ear shape and appearance in our system.

• Motivated by the ERM, we introduce shape and appearance exceptional-
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Figure 4.6: The �rst part of our proposed algorithm, ear normalization: We
use SIFTFlow dense matching to acquire the ear �ow �eld (relative ear shape)
and then warp the gallery ear image, based on this �ow �eld (ear appearance).
Then we mask both shape and appearance and normalize the illumination of
the ear appearance.

ity as a new and robust feature for ear recognition, showing the possibility

and the optimality of this model.

4.4.1 Ear Recognition Method

In this section we describe the two parts of our twin ear recognition method:

(1) ear normalization and (2) weighting and veri�cation (see Fig. 4.6 and 4.7),

with a brief comparison with previous methods.

4.4.2 Ear Image Normalization

The �rst part, ear normalization (see Fig. 4.6), is to crop the ear out of the

pro�le view, and then normalize the rotation, scale, and illumination of this

gallery ear image (GEar), based on a reference ear image (REar). It seems that

all of the previous works normalized the ear image by selecting two or more

�ducial points on the ear area. In previous works, sparse point registration has

been performed both manually [Iannarelli, 1989, Faez et al., 2008] and auto-
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Figure 4.7: The second part of our proposed algorithm, weighting and veri-
�cation: we weight the shape and appearance points based on their level of
exceptionality (α), which is de�ned by their location in the related PDFs. We
then concatenate weighted shape and appearance points into a feature vector
and using SVM, we verify whether the identities of two the feature vectors are
the same (match) or not (no match).

matically, using methods such as SIFT feature matching [Bustard and Nixon,

2010] and graph matching [Burge and Burger, 2000]. These points are then

used to normalize the GEar based on REar coordinates. However, as the trans-

formation function is not stored, when all ears are transformed into a single

reference image coordinates, the 3D structure of the ear (i.e. ear shape) would

be lost and merely the intensity values (i.e. ear appearance) would remain.

In order to avoid losing the ear shape information, we calculate and store the

dense correspondence between each GEar and the REar using SIFTFlow. We

not only use this dense �ow for the scale and rotation normalization, but also

treat the �ow itself as the relative shape information of each GEar. In addition

to representing the shape information, a dense correspondence is particularly

required in the ERM as it requires checking all points to measure the level of

exceptionality. In the ERM, we weight each point based on its level of excep-

tionality. The level of exceptionality of a point is not known beforehand, the
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only way is to measure the value of each point with respect to its related PDF.

Therefore, we need to know the correspondence of each point on the ear to the

REar, i.e. dense correspondence (discussed more in Section 4.4.3).

We normalize the GEar images in the following steps:

1. We loosely crop a window of 300 × 300 pixels out of the pro�le view

(originally 1728 × 1152 pixels), around the ear-hole which is located by

a simple image correlation with very rough precision (Fig. 4.6, crop

symbol). The cropping is to reduce the search window of the SIFTFlow

algorithm in the next step

2. We apply the SIFTFlow to calculate the dense �ow �eld between the

cropped window and the REar (Fig. 4.6, �ow �eld). Although the crop-

ping around the ear-hole is inaccurate, the SIFTFlow can compensate

for these errors, thus our �nal dense point registration is accurate.

3. Based on the calculated �ow �eld, we warp the GEar image to the REar

image coordinates, thus normalizing its scale and rotation (Fig. 4.6,

warping).

4. As we are only interested in the pixels corresponding to the ear in each

image, we mask out the non-ear pixels in both the �ow �eld and the

warped ear (Fig. 4.6, masking). The mask is a single pre-de�ned binary

image, manually de�ned for the REar image. We can use this single

mask for all GEar images because the �ow �eld is calculated based on

the REar, and the GEar image is then warped to the REar coordinates.

5. The �nal task is then to normalize the illumination of warped image (Fig.

4.6, illumination). We use Contrast-limited adaptive histogram equal-

ization (CLAHE) [Reza, 2004] for illumination normalization. CLAHE
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operates on small regions in the image, enhancing the contrast in each re-

gion so that the histogram of the output region approximately matches a

speci�ed histogram distribution (here, the REar histogram). The neigh-

boring regions are then combined using bilinear interpolation to elimi-

nate arti�cially induced boundaries. CLAHE showed better results than

global histogram equalization in our experiments.

At the end of this part, we have normalized ear shape (i.e. the masked �ow

�eld) and ear appearance (i.e. the masked, illumination normalized warped

image), shown in Fig. 4.6, as the �nal shape and appearance.

4.4.3 Feature Weighting and Veri�cation

The second part, feature weighting and veri�cation, is to apply the Excep-

tion Report Model (ERM) concept to our ear recognition method. The ERM

suggest that the importance of a feature has a direct relationship with the

exceptionality of that feature. As we know, the more a feature is exceptional,

the further the location of its value is from the mean value in the related prob-

ability density function (PDF). Therefore, the normalized distance of a feature

value to the mean value can provide a reasonable measurement for the level of

exceptionality of that feature.

Based on the above argument, we weight each point in the ear shape and

ear appearance based on its distance to the mean value of the related PDF, in

these three steps:

1. We estimate a normal probability density function (PDF) for each shape

and appearance point, based on the distribution of their values in our

dataset. For a shape point, we estimate a PDF based on the �ow vectors

of the corresponding points in all �ow �elds of all GEar images. For an
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appearance point, we estimate a PDF based on the intensity values of

the corresponding points in all ear appearances.

2. Now we de�ne the level of exceptionality (weight) of point k, as the

distance of that point from the mean, normalized by the sigma, in the

corresponding PDFs:

wshape,k =

√
(
xk − µx,k
σx,k

)2 + (
yk − µy,k
σy,k

)2

wapp,k =

√
(
intk − µi,k

σi,k
)2

where wshape,k is the shape weight; wapp,k is the appearance weight; xk

and yk are the X andY coordinates; intk is intensity value of point k;

and (µx,k, σx,k), (µy,k, σy,k), and (µi,k, σi,k) are mean and sigma values of

the corresponding X coordinate, Y coordinate, and intensity PDFs.

3. The �nal feature vector is formed by concatenating weighted shape and

appearance points, to represent a GEar image (see Fig. 4.7):

Γi = W T
shapeS||W T

appI

Wshape =



wshape,1

wshape,2
...

wshape,n


, Wapp =



wapp,1

wapp,2
...

wapp,n


where Γi is the concatenated vectors representing GEar image i; S is the ear

shape values and I is the ear intensity values.

Given a pair of weighted feature vectors, we now can train an SVM classi�er

to verify whether the vectors representing the two ears, belong to the same

subject.
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In the experiments chapter we test the robustness of our ear recognition

approach under di�erent resolution, noise, occlusion, training set, and dimen-

sionality reduction.

4.5 Chapter Summary

In this section we presented our eyewitness testimony procedure (ETP) and

its accompanied face sketch recognition method (FSR) based on non-artistic

sketches, to address the gaps in previously proposed eyewitness testimony

procedures and automatic face sketch recognition methods. We showed that

based on non-artistic sketches drawn by the eyewitness in our ETP, we can

avoid several psychological problems including verbal overshadowing, biased

questions, implanted ideas, post-event information, viewing similar faces, and

piecewise reconstruction. These problems were among the most important

problems of currently used eyewitness testimonies that render the resulting

forensic sketches unreliable. We therefore kept the mental image of the target

unchanged, and our resulting non-sketch is more reliable, but includes the eye-

witness' sketching bias (including drawing bias and face perception bias). In

the FSR part we presented our method to debias the non-artistic sketch using

eyewitness' drawing pro�le, and weight this debiased sketch for being matched

the photo database. Unlike previous FSRs, we accounted for individual di�er-

ences between eyewitness, based on a drawing pro�le of each eyewitness, and

our weighting strategy is also based on psychological suggestions for the at-

tention on facial features in humans. Finally we matched the weighted sketch

against the photo database based on a weighted combination of facial compo-

nent outlines, facial marks, skin color, race, etc.

In addition to the original framework, we proposed improvements to our
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method to achieve better point correspondence by imposing temporal order,

better point weighting by accounting for di�erences in probability distribu-

tions, and better sketching bias estimation by General-Speci�c modeling that

uses the general sketching bias in the entire database.

It is important to note that we used drawing pro�le, a set of sketches drawn

while looking at photos (copy-sketching), to estimate the process of drawing

the Main Sketch from the memory (memory-sketching). In the next section,

Experiments, we show that how closely copy-sketching and memory-sketching

behave, based on our database of sketches.

Other than theoretical discussions that are presented in this chapter, we

here brie�y discuss possible practical problems in implementing this proposed

ETP and FSR, to either substitute or modify current ETP practices.

In our proposed protocol we �rst ask the eyewitness to draw the target face

and provide its Ancillary information, and then asked him/her to provide the

drawing pro�le. In this protocol, drawing the main sketch should be strictly

before other inputs, to avoid addition of biases to the eyewitness' memory.

The selection of faces to be drawn in the drawing pro�le is also an important

issue. These faces should be selected randomly to avoid distortion due to

viewing similar faces, and an ideal set of faces for the drawing pro�le covers a

large spectrum of facial features. Finally, it is important that the eyewitness

is properly informed that the drawing pro�le faces are randomly selected and

are not related to the target face. Drawing pro�le may also cause fatigue

which may in turn reduce the �delity of the sketches. The eyewitness should

therefore be granted breaks between drawings that based on common practices

can be done in several stages and span even over days (practiced currently

by the police departments). There is also possibility of performance anxiety

for the eyewitness as this practice is a new approach and the situation of
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ETP may also cause anxiety by itself. Performance anxiety can be reduced

using warm up stages both in drawing the main sketch and drawing pro�le.

Sketches from warm up stages should be then either discarded or used with

a low con�dence level. Finally, in real cases the eyewitness may be willing to

produce more sketches for the drawing pro�le (possibly over di�erent days),

due to the importance of the task.

In this chapter we also extended the ERM concept to propose the �rst

reliable ear recognition method for automatic twin ear veri�cation. Although

veri�ed manually before [Iannarelli, 1989], none of the previous works have

addressed this problem. We introduced our ear recognition algorithm, using

both shape and appearance of ears, and motivated by Exception Report Model

(ERM), a psychological framework for the perception of faces by the brain [Un-

nikrishnan, 2009, 2012], which has shown good results in face recognition before

(see e.g. [M. F. Hansen and Smith, 2010, Nejati and Sim, 2011, Nejati et al.,

2011]). We showed that, similar to face recognition, by focusing on deviations

from norm (exceptional features) in both the ear shape and appearance, we can

accurately identify twins (up to 92%). In our experiments on 39 pairs of twins

with di�erent age, gender, and race, we showed the robustness of our algorithm

against several variations resolution, noise, and occlusion. However, these ex-

periments also showed the shape and appearance exceptionality features are

not the same in the right and left ears. We also performed a dimensionality

reduction to show that with only the top 5% features (further than 1.7σ in the

PDF curve), we can achieve a fast and accurate recognition.

In conclusion, our results suggest that ears can be considered not only a

powerful identi�cation feature among regular subjects, but also among identi-

cal twins, in which many other approaches such as face recognition have a poor

performance [Phillips et al., 2011]. In addition to addressing the twin iden-
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ti�cation from ear images, our work here suggests that the ERM, although

originally suggested for face recognition in humans, may be applicable to a

wider range object recognition problems, which may also help simulating new

frameworks in human visual system studies.

In the next chapter we present our experimental results on non-artistic as

well as artistic sketches, and based on these result we present improvements

to our algorithms. The experiments on the application of ERM concept on ear

recognition problem is also described in the next chapter.
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Chapter 5

Experiments

In this chapter we test the performance of our proposed face sketch recognition

method (FSR) and compare our method with previously proposed FSRs. For a

fair comparison, we need to compare the recognition accuracies of the methods

on non-artistic as well as artistic sketches. For the non-artistic sketches, we

gathered a total of 860 sketches, and for the artistic sketches we used the

CUHK artistic sketch database Wang and Tang [2009]. Additional experiments

to show the e�ectiveness of improvement techniques are also presented in this

chapter.

5.1 Data Collection

In order to test our proposed ETP-FSR solution, we have collected three

datasets of non-artistic sketches, drawn based on face photos, as the test bed

for our algorithm. In all datasets we asked non-artist participants to draw

sketches of face photos. The face photos are selected from male individuals,

without glasses or facial hair, from Multi-PIE database of faces [Gross et al.,

2008]. In collection of each dataset, we instructed the participants to view

the target faces on a 14� LCD display, and provide a face sketch that includes
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Figure 5.1: Examples of non-artistic sketches and their respective face images
from our second dataset.

facial component outlines and main facial marks (wrinkles, moles, etc.), on

A4 pages using pen/pencil. The participants were sit behind a desk with the

display on it, with their own preference of distance from the display (within

a normal range of using desktop computers) and all participants had normal

or corrected to normal vision, and could take a break between each sketch

drawing to avoid fatigue.

Our �rst dataset consists of 50 sketches from a set of 25 male target faces

from the Multi-PIE face dataset [Gross et al., 2008] (all in frontal pose and

normal illumination). We asked 5 non-artist participants to provide in total

of 25 sketches of the target faces. Each of the participants provided 5 sketches

from 5 faces, while he/she could look at the face images, having unlimited

time to deliver (similar to all previous works). We scanned and retouched

these 50 sketches to enhance their contrasts and component connectivity. We
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used these 50 sketches as the sketch gallery and all 249 faces in the Multi-PIE

dataset (all in frontal pose and normal illumination) as the face gallery.

Our second sketch dataset is similar to the �rst sketch dataset, but consist-

ing of 100 non-artistic sketches of random male target faces (without glasses

or facial hair, in normal illumination) from the Multi-PIE dataset, drawn by

10 participants, while looking at the face photos, with unlimited time to de-

liver (similar to the �rst dataset). Examples of these sketches are illustrated

in �gure 5.1.

Our third dataset is signi�cantly larger than the previous two datasets,

consisting of 710 non-artistic sketches, drawn by 71 non-artistic participants.

In addition, in this dataset we selected 30 male target faces (without glasses or

facial hair) from speci�cally three di�erent races, 10 target faces selected from

Caucasian race, 10 from Indian race, and 10 from East Asian race. Then we

asked each of the participants to draw the 10 sketches, randomly chosen from

only one of these three races. We also included exposure time variation in this

dataset, by asking participants to deliver the �rst 5 sketches with no time limit

(while they could look at the target faces). We name these �rst 5 sketches,

copy-sketches. For the next 3 sketches, we asked participants to �rst view the

target faces for 10 seconds, then to solve a visual memory puzzle for 1 minute

(for the purpose of visual distraction), and after this delay, they could start

to sketch. We name these 3 sketches as 10-sec memory-sketches. For the �nal

2 sketches, we applied the same protocol as for the 10-sec memory sketches,

but only allow the participants to view the target faces for 2 seconds and thus

naming the 2 later sketches, 2-sec memory-sketches. For the memory-sketches,

we also instructed participants to mark the regions that they completely re-

member, partially remember, and completely unable to remember. Figure 5.2

illustrates an example for copy-sketches, 10-sec memory-sketches, and 2-sec
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Figure 5.2: Examples of non-artistic sketches and their respective face images
from the same drawer, in our third dataset. From left to right: an example
of Immediate Sketch, Long Exposure Sketch, and Short Exposure Sketch from
the same participant.

memory-sketches. The motivation behind the limited viewing time was to

reveal the facial components which are more important for each participant.

Knowing that the face recognition is a signi�cantly fast process in humans

[Sinha et al., 2006a], we can assume that as we reduce the viewing time, only

the facial components would be stored in the memory that are more important

for recognition, and this set of important components can be di�erent from one

participant to another.

For our third dataset of sketches, stored additional information about the

participant including age, gender, race, and drawing skill level. The partic-

ipants in this dataset were aged between 19 and 41 (mean 26.98, standard

deviation 3.95), both male and female, and from Caucasian, East Asian, In-

dian, and Middle Eastern races. Some examples of original scan copies of the

10 drawings from a single participant is illustrated in Figure 5.3.

For all of our three datasets, in addition to sketches, we asked each par-

ticipant to provide Ancillary Information about the target face including skin
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Figure 5.3: Examples of original scanned documents from one non-artistic
drawer in our third dataset, drawing East Asian race. From top left to bottom
right, stages 1 to 10 (�rst 5 sketches while looking at the image, 6 to 8 sketches
of images viewed for 10 seconds and drawn after 1 minute delay, and 9 and 10
are sketches of images viewed for 2 second after 1 minute delay).
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Dataset No.
Sketches

No.
Face
Images

No.
Drawers

Images of
Di�erent
Races

Limited
Expo-
sure

Time
Delay

Ancillary
Info

#1 50 25 5 No No No Yes

#2 100 30 10 Yes No No Yes

#3 710 30 71 Yes Yes Yes Yes

Table 5.1: Summary of our three face sketch datasets.

color, iris color, hair color, estimated age, race, and gender. For each cate-

gory of the Ancillary Information, we provided a set of prede�ned classes from

which the participant can choose:

• Skin color from Fitzpatrick Scale color pallet (very fair, white, beige,

beige with a brown tint, dark brown, black) [Fitzpatrick, 1975],

• Iris color fromMartin�Schultz scale color pallet (gray, blue, green, brown,

dark brown, black, red) [Piquet-Thepot, 1968]

• Hair color from Fischer�Saller scale color pallet (brown, black, blond,

auburn, red, gray/white) [Daniel, 1978].

• Estimated age from ages in 5 year bins (e.g. 1-5, 6-10, 11-15...);

• Race from Caucasian, American Indian, Latino, African, Middle Eastern,

Indian, and East Asian

• Gender from male and female.

Table 5.1 illustrates the summarize information about our three datasets.

Based on these three datasets, we tested the performance of our algorithms,

and compared them to previous works on face sketch recognition. Next in this

chapter we discuss details and results of these experiments.
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Figure 5.4: CMC curves for PCA on Main Sketches, PCA on debiased sketches,
[Tang and Wang, 2004], [Klare et al., 2011], and our FSR, tested on matching
non-artistic sketches.

5.2 Experimental Results

In this section we present the experimental results of testing our proposed FSR.

We here compare the performance of our FSR on both non-artistic sketches and

exact sketches. We compare our results with the performance of PCA, the FSR

presented in [Tang and Wang, 2004], and the SIFT-LBP-based FSR presented

in [Klare et al., 2011] (reporting the best performance on exact sketches to date)

on the combination of our �rst and second sketch datasets (summing up to 150

non-artistic sketch-photo pairs). We also compare the performance our FSR

with these previous methods on matching artistic sketches from CUHK sketch

database [Wang and Tang, 2009], used as a test bed in almost all previous

works.

Almost all previous methods have used a PCA-based algorithm as their
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core (see section 2.1) and therefore, we can safely consider PCA performance

as a baseline measurement of accuracy. The FSR introduced in [Tang and

Wang, 2004] is reported to have 71% rank-1 (and 96% rank-10) accuracy in

recognizing exact sketches and the FSR introduced in [Klare et al., 2011] has

reported the highest accuracy on exact sketches from their SIFT-based method

to have 97% accuracy for rank-1 exact sketches and 16.33% for rank-1 forensic

sketches.

In our experiment for performance comparison on recognizing non-artistic

sketches, we used the 249 face photos of the �rst session of the Multi-PIE

face dataset [Gross et al., 2008], as the photo gallery, having a mixture of

gender, age, and race. Then each face photo is analyzed by STASM [Milborrow

and Nicolls, 2008] to detect facial component outlines and then its Ancillary

Information is manually assigned. The non-artistic sketch gallery was the

combination of our �rst and second sketch dataset, consisting of 150 non-

artistic sketches.

We performed the sketching bias removal, weighting, and normalization,

sketches and photos based on the details in Section 4.2, treating one sketch as

the Main Sketch and the rest of the sketch-photo pairs from the same partic-

ipant as the drawing pro�le. Figure 5.5 shows examples of debiased sketches

and their Main Sketch and face photo counterparts. We used the same sketches

to be classi�ed using PCA, and FSRs proposed in [Tang and Wang, 2004] and

[Klare et al., 2011], to compare their results in Figure 5.4 and table 5.2. In

addition, we also tested the PCA on the debiased sketch to test the bias re-

moval step. The CMC curves in this �gure show the accuracies up to rank-10

which is similar to top-10 selection of the faces in terms of similarity to the

Main Sketch. Based on these results, PCA performed poorly in recognizing

both the Main Sketches and debiased sketches, with its rank-50 accuracy re-
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Figure 5.5: Examples of debiased sketches and their original Main Sketch
counterparts: Red points represent the Main Sketch outlines, green points
represent the photo outlines, and the blue points represent the debiased sketch
outlines.
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Rank-1 Rank-10 Rank 50
PCA Main 0 0 5

PCA Debiased 0 4 17
Tang et al. 1 6 28

SIFT 1 9 19
Our FSR 12 60 93

Table 5.2: Comparison between accuracy of non-artistic sketch recognition
(the �rst, tenth, and �ftieth ranks), between methods PCA on Main Sketches,
PCA on debiased sketches, Tang et al. [Tang and Wang, 2004], SIFT-LBP
[Klare et al., 2011], and our proposed FSR.

mained below 10% and 20% respectively. Similarly, Tang et al. and SIFT

classi�cations had poor recognition accuracies, close to PCA performance on

debiased sketch. In contrast, the recognition performance of our FSR started

with about 12% in rank-1 with a rapid growth as rank increased to about 60%

in rank-10. These results therefore indicate the e�ectiveness of our sketch-

ing bias removal, weighting, and matching steps, to transform the crude Main

Sketch, into a more reliable and recognizable representation of the target face.

Scalability is another important factor for face sketch recognition methods,

as the real database of faces can be in the order of millions. Therefore, in our

next experiment we tested the performance of our FSR versus previous method

for the e�ect of photo gallery size. Figure 5.6 demonstrates how the rank-1

recognition accuracies of our FSR, Tang et al., and Klare et al. decreases as

the gallery size increases. This �gure indicates that although the scalability of

our method is better than previous FSRs, its performance sharply drop with

the increase in the database size, making it not reliable enough for real cases

with large photo databases.

Our next experiment is to compare performances on recognizing exact

sketches. In this experiment we used the 188 sketch-photo pairs in the CUHK

dataset [Wang and Tang, 2009]. As there was no information about the drawer

of these sketches comparable to the drawing pro�le, we completely omit the
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Figure 5.6: Drop in Rank-1 accuracy of our FSR, [Tang and Wang, 2004], and
Klare et al. [2011] on the non-artistic sketch recognition, as the photo gallery
size increases.

sketching bias removal step for these sketches for our FSR, and we only weight

and match the outlines of the sketches and photos. We did not alter the pre-

vious methods. Figure 5.7 compares results of our method, PCA, Tang et

al.[Tang and Wang, 2004], and SIFT-LBP matching [Klare et al., 2011] on

matching exact sketches (see Section 2.1). Results of this second experiment

show that, although our method delivers better results than PCA (as the base-

line), it is signi�cantly less accurate than the other two FSRs. This is obviously

due to the di�erences in the modalities of artistic and non-artistic sketches,

with artistic sketches include a rich combination of accurate facial details, and

shading, while non-artistic sketches are merely simple line drawings to repre-

sent the essence of the target face appearance (compare �gures 2.4 and 5.1).

In order to show the sensitivity of previous FSRs to changes small details of

exact sketches, we performed our next experiment.
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Figure 5.7: CMC curves for PCA, Tang et al. [Tang and Wang, 2004], SIFT
(used in [Klare et al., 2011]), and our method for matching artistic sketches
from the public dataset of CUHK sketches [Wang and Tang, 2009]

In our next experiment we tested the FSR by Klare et al. [2011] and our

method on recognizing reduced exact sketch: tightly cropped exact sketches

with their facial shadings removed (See Figure 5.8). In addition to showing

the sensitivity of previous FSRs to minute details of exact sketches (such as

hair style or shadings), we showed a performance trend for our approach and

the FSR by Klare et al. [2011], based on the similarity of sketch to the target

face.. Based on the crude sampling illustrated in Figure 5.8, previous face

sketch recognition methods are highly sensitive to variation of details such as

shading and hair style, and in contrast, our method performs more robustly

given stronger variations even in outlines of the face.

In our ETP, we use drawing pro�le, a set of sketches drawn by the eyewit-

ness while looking at the face photos (copy-sketching), to estimate the process

of drawing the Main Sketch, from the memory (memory-sketching). Our �nal
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Figure 5.8: Accuracy trend for our approach and the work by Klare et al.
Klare et al. [2011] based on the similarity of sketch to the target face

experiment is then to show how closely can copy-sketching f̂ estimate memory

sketching f . In this experiment we check whether for each face x we have:

f(x) ≈ f̂(x)∀x

or equivalently:

x− f(x) ≈ x− f̂(x)∀x

However, if the face x is seen for the �rst type of sketching (copy-/memory-

sketching), then seeing x again a�ects results of the next of sketching (memory-

/copy-sketching). We therefore check this estimation for facial components,

instead of the entire face, with the assumption that facial components from

the same gender, age group, and race are almost the same. We therefore check

whether for facial components xi and x
′
i we have:

xi − f(xi) ≈ x′i − f̂(x′i)∀xi ≈ x′i
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Figure 5.9: Average photo and sketch outline di�erences based on facial compo-
nents, in copy-sketching, 10-second memory sketching, and 2-second memory
sketching.

In our third dataset of sketches, we have collected two types of memory

sketches, 10-sec memory-sketches, and 2-sec memory-sketches. The di�erence

between the photo outlines and the produced sketch outlines is presented in

Figure 5.9. It can be seen from this �gure that copy-sketching shows a similar

pattern to both 10-second and 2-second memory sketches, while, as expected,

the reduction of exposure time increases the di�erence between the photo and

sketch outlines.

5.3 Improving Overall Performance

We here used the methods described in Section 4.3 to conduct several experi-

ments, showing the improvements in our FSR. For these experiments we used

our third dataset of sketches, that is consisted of 710 sketches, drawn from 249

face images (from Multi-PIE database [Gross et al., 2008]), by 71 subjects,
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with di�erent genders (24 female), ages (mean 27.4, standard deviation 3.9),

and races (Caucasian, Indian, East Asian, and Middle Eastern) (see Section

5.1).

We tested our face sketch recognition algorithm in veri�cation mode, based

on a sample set of all correct sketch-photo pairs (710 pairs) and 10000 incorrect

sketch-photo pairs, randomly selected from all possible combinations of sketch-

photo pairs (7%-93% correct-incorrect ratio). Based on this pool of sketch-

photo pairs, we trained and tested an RBF kernel SVM to label sketch-photo

pairs, using cross validation with strati�ed sampling.

Our �rst comparison is between the performances based on Speci�c mod-

eling (i.e. our FSR before improvement, Section 4.2), General modeling, and

General-Speci�c modeling (i.e. improved FSR, Section 4.3.3). We compared

the ROC curves for veri�cation performances of these modeling strategies in

Figure 5.10. The original FSR (Speci�c modeling) shows to have a poor per-

formance when the database size increases (from 150 in previous experiments

in Section 5, to 710 in this experiment), but using the combination of Gen-

eral and Speci�c modeling, we can e�ectively decrease the modality gap and

therefore increase the performance.

We also analyzed the e�ect of number of sketch-photo training pairs per

participant on the general-speci�c model, shown in Figure 5.11, illustrating

the ROC curves for sketch veri�cation based on 1 to 9 training sketch-photo

pairs (10th sketch is regarded as the Main Sketch). Based on this �gure, it

seems that the General-Speci�c model started to perform reasonably well,

having 6 or more training pairs per person, but in situations that we have

less than 6 training pairs, the performance was not reliable enough to remove

the sketching bias and recognize the target face. Nonetheless, acquiring 10

sketches as the drawing pro�le is not time consuming or labor intensive (in
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Figure 5.10: ROC curves of original sketches v.s. general, speci�c, and general
speci�c models, for face sketch veri�cation task.

contrast with traditional ETPs which are stressful and may last up to two

days), and therefore, 10 training samples can be set as a baseline for the

number of sketch-photo pairs the system requires for a proper recognition.

5.4 Application to Twin Ear Recognition

In this section we evaluate the performance of our algorithm in veri�cation

of ear images from 39 pairs of twins (78 subjects). Our ear image dataset is

obtained during the Sixth Mojiang International Twins Festival, China, 2010,

containing Chinese, Canadian and Russian subjects, each having 2 to 4 real and

20 synthesized images, all in 1728×1152 pixels. Real images are captured from

pro�le view, containing the entire head and shoulder, with some translation

and rotation (in-plane and o�-plane). Fig. 5.13 displays some of these images

(cropped for better illustration). Synthesized images are obtained from real

images by adding random amounts of noise, translation, o� plane rotation,
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Figure 5.11: Improvement in the performance of General-Speci�c modeling,
with the increase in the number of training sketch-photo pairs per eyewitness.

and realistic motion blur, acquired from [Xu and Jia, 2010]. We used 10

motion kernels from [Xu and Jia, 2010] to synthesize realistic motion blur in

ear images, illustrated in �gure 5.12 with examples of blurred ear images.

5.4.1 Experimental results

We test our algorithm performance on the Twins dataset with a veri�cation

scenario: given a pair of ear images, we verify whether both ears belong to

the same subject or not. Under this scenario, we assess the robustness of our

algorithm in �ve experiments:

1. Five di�erent resolutions: We down-sample each GEar image to 300 ×

300, 150 × 150, 75 × 75, 37 × 37, and 18 × 18 pixels and up-sample it

again to 300× 300 pixels (Fig. 5.14, top row).

2. Four di�erent noise levels: We add white (Gaussian) noise with µ = 0

and σ =0, 0.1, 0.3, and 0.5 to the GEar images (Fig. 5.14, middle row).
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Figure 5.12: Examples of realistic motion blur in synthesized ear images. The
motion kernel is from [Xu and Jia, 2010].

Figure 5.13: Some examples of ear images in our dataset (cropped for better
illustration).
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3. Four di�erent occlusion levels: We simulate 0%, 10%, 30%, and 50%,

occlusion levels in right-to-left and top-to-bottom directions (Fig. 5.14,

bottom row).

4. Di�erent right ear vs. left ear training-testing sets: We test the perfor-

mance di�erences between training and testing on di�erent ear sides. We

evaluate two cases of training and testing on the same side (right or left),

and two cases of training and testing on di�erent sides.

5. Dimensionality reduction: Motivated by the optimality claim of the Ex-

ception Report Model, we test accuracy of our algorithm by applying

dimensionality reduction on the level of exceptionality of points. In this

test we evaluate how our algorithm performs when we only use points

with a minimum level of exceptionality. For example, for the appearance

weights we have:

Wapp(dist) =



wapp,1(dist)

wapp,2(dist)

...

wapp,n(dist)



wapp,k(dist) =


wapp,k if wapp,k > dist

0 o.w.

where Wapp(dist) indicates the new intensity weights, based on dist, the

minimum required level of exceptionality. We apply the same weighting

strategy for shape weights.

We also compare the performance of our method with a recent work by

Bustard and Nixon [Bustard and Nixon, 2010] (B&N). For B&N algorithm,
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Figure 5.14: An example of resolution (left to right: 300 × 300, 150 × 150,
75 × 75, 37 × 37, and 18 × 18 pixels), noise (left to right: standard deviation
0.0, 0.1, 0.3, and 0.5), and occlusion (left to right: 0%, 10%, 30%, and 50%)
of ear images.

we corrected the small error in the formula (see Appendix). We also ignore

comparisons in which B&N fails to �nd four corresponding points for calculat-

ing the homography transformation.

Accuracy results of ours and B&N algorithms are illustrated in Fig. 5.15

to 5.18, and Table 5.3. Based on our results, our algorithm could perform up

to 92% on the Twins dataset, constantly better than B&N. Results also show

robustness of our algorithm to resolution, noise, and occlusion.

Regarding resolution variations, results in Fig. 5.15 show that our algo-

rithm is constantly performing better than B&N. However, as resolution de-

creases, our algorithm's accuracy drops sharper than B&N's. This suggests

that the B&N algorithm although low in accuracy, may perform better than

our algorithm in very low resolutions (less than 18× 18 pixels).
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Figure 5.15: Left: Results of veri�cation between sibling across di�erent reso-
lutions.

The noise variation results in Fig. 5.16 indicate that our algorithm is

highly robust to noise variations, and even with noiseσ = 0.5, its accuracy is

almost the same as the B&N without noise. One reason may be because of the

performance of the SIFTFlow dense point registration, which can tolerate noisy

data. But it also indicates that the exceptional features are robust against the

introduced noise.

Comparing occlusion variation accuracy results in Fig. 5.17 with other

tests, it seems that our algorithm is robust towards resolution and noise than

the occlusion. This can be because of the loss of strong features (trained

in the non-occluded images) in the occlusion variations, while these features,

although weakened, are still present in the resolution and noise. In addition,

as the accuracy drops more rapidly in the top-to-bottom occlusion curve, it

seems that strong features are located more at the top of the ears in our

dataset, rather than right of the ears.

Results of training and testing on same or di�erent side ears, presented in

Table 5.3, show that the left and right ears in our subjects do not share much
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Figure 5.16: Results of veri�cation between sibling with di�erent noise levels

Figure 5.17: Results of veri�cation between sibling with di�erent occlusion
levels

Training Left Right Left Right
Testing Left Right Right Left

Accuracy % 92.77 92.76 54.78 53.40

Table 5.3: Results of training and testing with left and right ears.
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Figure 5.18: Results of dimensionality reduction: Accuracy trends of recogni-
tion of the right and left ear, based of the level of exceptionality of the feature
(i.e. the normalized distance from the respective mean value). X marks show
the largest distance from µ with accuracy higher than 90%.

of their exceptional features. This means that one cannot train only on one

side ears and hope to accurately recognize ears from both sides.

Finally, the dimensionality reduction results are presented in Fig. 5.18.

These results seem con�rm the optimality claim of the Exception Report Model

(ERM) that with only about 10% of the features (only exceptional features,

with distance more than 1σ from the µ), the brain can accurately and rapidly

recognize faces. Similarly, Fig. 5.18 shows that even using only features with

distance more than 1.7σ from the µ, we can still achieve more than 90% ac-

curacy in ear recognition. Given a perfect Gaussian distribution of features

(assumed in the real world), it means that only using about top 5% of the

features, fast and accurate recognition can be performed.

5.5 Chapter Summary

In this section we presented the result of our experiments on our proposed

coupled ETP-FSR, and our comparisons with previously proposed methods,
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among them the method by Klare et al. with the best reported performance on

exact sketches to date. In our experiments we tested our method on both exact

and non-artistic sketches from CUHK sketch database and our collected sketch

database respectively. We showed that as previous methods are designed to use

exact shading cues of artistic sketches, and our method is designed to use the

crude outlines in non-artistic sketches, results of our experiments on artistic

and non-artistic sketches are almost opposite.

We then showed results of our proposed improvements by imposing tempo-

ral order, using generalized point weighting, and using General-Speci�c model-

ing of the sketching bias. We showed various results including ranked accumu-

lated accuracy, ROC curves, and number of training samples, and comparing

performances with previous methods.

We therefore conclude that our method �rstly provides a new perspective

on the eyewitness face sketch recognition problem and secondly shows to be

reliable in recognizing non-artistic sketches without causing distortions to the

eyewitness' mental image of the target face.

Our method however, has a speci�c assumption to be able to work e�-

ciently. For our algorithm to provide reliable results, the eyewitness should

have a certain level of drawing skills. An eyewitness with a poor drawing

skills either cannot produce a sketch, or produces a signi�cantly crude sketch

that would not bear enough identity-speci�c information for our algorithm to

process. Thus, there should be certain protocols to deal with these cases, by

providing drawing aids to the eyewitness, so that a �nal representation is pro-

duced, even with the cost of additional (and perhaps irreversible) biases. In

these cases we practically step back towards traditional eyewitness testimony

procedures. Our experimental results in Figure 5.8 has another indication here

that how our algorithm would behave in cases of higher quality sketches pro-
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duced using drawing aids (here with the assumption of no additional biases).

One possible solution for drawing aids can be providing an initial very sim-

ple sketch for the eyewitness to start with and manipulate. This initial sketch

can be calculated from an average face based on the Ancillary information

from the eyewitness, such as gender, age, and race. The eyewitness can then

manipulate this sketch by changing the relative location, size, shape, and color

of each facial component until a he/she is satis�ed with the resulting sketch.

However this process can add biases to both mental image of the face and the

�nal results, due to viewing similar faces (as the face becomes more similar to

the target face as the manipulation progresses).

As a �nal note, the core of our proposed methods is trying to understand

present biases in an ETP, and �nd possible ways to remove these biases. This

core concept applies in any possible evolutions of our proposed method, either

when moving backwards to the traditional ETPs, or moving forwards by intro-

ducing new medium of transferring identity-speci�c information. One should

therefore analyze and reduce these biases as much as possible, in any stage of

this procedure.

In the next chapter we summarize this entire text, and draw the broader

conclusions and consider possibilities for future works.
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Chapter 6

Summary and Conclusion

At the �nal chapter of this text, we summarize our works and achievements,

discuss possible fall-back strategies to make our system more robust in cases

of poor eyewitness memory, and �nally draw conclusions and discuss possible

future directions.

Face perception is a complicated process in human's visual system which

is learned based on life experiences, and becomes a very personal subconscious

process, that cannot be imitated. Humans rapidly and accurately perform

face recognition, without intensive calculations, and this swiftness in face per-

ception has helped the human have a vast and diverse social behavior. Thus,

many researchers in the automatic human identi�cation �eld have set the per-

formance of humans as their goal, and developed several biologically inspired

methods. In this text we focused on the eyewitness face sketch recognition

problem, which includes an interesting mixture of both human's behavioral

and perceptual factors (in the eyewitness testimony procedures, ETPs), as

well as requirement for machine algorithms (in the face sketch recognition

methods, FSRs).

We �rst reviewed the automatic face sketch recognition methods (FSRs)
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in Chapter 2, where we showed that FSRs have unrealistic assumptions for

the similarity of forensic sketches to their target faces. We showed that exact

sketches that are used for performance measurement in FSRs are not proper

estimations of real forensic sketches. Therefore, although previous FSRs have

reported high accuracy rates on recognizing exact sketches, they are unreliable

in recognizing real eyewitness sketches. Moreover, due to modality di�erence

between forensic sketches and face photos, conventional face recognition meth-

ods cannot be applied to match forensic sketches.

We then reviewed the psychologically challenges in currently performed

eyewitness testimony procedures (ETPs) in Chapter 3. In this chapter we

reviewed the main problems of current ETPs such as general memory lim-

itations, biased instructions, piecewise face reconstruction, post-event infor-

mation, viewing similar faces, verbal overshadowing, and last but not least,

mental norm biases. As we discussed in this chapter, these problems make

results of the ETPs (forensic sketches) unreliable. We showed that the stud-

ies clearly show that human memory is fragile, malleable, and susceptible to

suggestion, and current eyewitness testimony procedures, unwittingly, change

the memory of the target face in the eyewitness' mind, resulting in production

of unreliable reconstructions of the target face. An important e�ect of the

unreliability of these procedures is that any method that uses results of these

procedures inherits this unreliability.

In addition, we also reviewed suggested psychological frameworks for face

processes in the human visual system. Based on this review we tried to select

the best psychological framework, in terms of explaining the human's visual

system behavior. Among all proposed frameworks, we could narrow down our

search to the Exception Report Model (ERM), which could explain many of

the reported phenomena in human face perception (e.g. the rapid and accurate
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processing, other-race e�ect, mate selection, etc.), and was supported by other

works both in psychology and computer vision. Therefore we selected the

ERM as our understanding basis for how humans perform face perception,

memorization, and recognition.

The importance of the eyewitness face sketch recognition problem, and the

presence of these gaps in the ETP and FSR parts shaped our motivation to

design a better solution, based on our knowledge of human face perception.

In Chapter 4 we then proposed a new perspective on the eyewitness face

sketch recognition problem, by taking into account the individual biases which

are involved in perceiving and drawing a face. We proposed a more reliable

ETP and an accompanying FSR (coupled ETP-FSR) based on non-artistic

sketches directly drawn by the eyewitnesses. This framework is built on more

realistic assumptions on the eyewitness' abilities, and testimony results. Our

solution to the ETP problems was to ask the eyewitness to draw a non-artistic

sketch of the target face (Main Sketch) by him/herself, to avoid any disturbance

to the mental image of the target face caused by verbal description, police

artist, face composite software, etc. In addition, we not only assess the face

sketch, but also focusing on how the sketch is created in the ETP. Creation of

a face sketch is a complicated process which involves how a person perceives,

remembers, and recognizes faces, which are biases that are evolved based on

personal life experiences. Therefore a face sketch not only has information

about the face it is representing, but also includes mental biases and individual

face perception styles of the drawer. We also asked the eyewitness to provide

categorical information about the target face, such as race, skin color, and

gender. Finally, in order to estimate the eyewitness' face perception bias and

face drawing bias (together as sketching bias) in the Main Sketch, we also

acquired a drawing pro�le of the eyewitness by asking him/her to provide
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additional sketches from a set of known face photos. In our FSR solution,

we �rst used the drawing pro�le as training samples to estimate and remove

the sketching bias from the Main Sketch. Then we weighted each part of this

debiased sketch, based on deviations from norm, motivated by how humans

remember and recognize faces, suggested in ERM. Finally we matched this

weighted sketch against the photo database based on a weighted combination

of facial component outlines, facial marks, skin color, race, etc.

In our experiments in Chapter 5, we tested our proposed FSR on a datasets

of 150 sketches, illustrating performance reliability, comparison with previous

FSRs (including Klare et al. [2011] reporting the best performance on exact

sketches), e�ect of the photo gallery size, and on both artistic and non-artistic

sketches. Based on these primary results, we proposed three improvements to

the sketching bias estimation, weighting, and matching steps, to increase the

accuracy and robustness of our FSR. We then tested the performance of our

improved method again on a larger dataset of 710 sketches that we have col-

lected from 71 non-artist drawers. We showed that our improved method can

reliably recognize the non-artistic sketches using only 6 to 9 sketching samples

for each eyewitness. Results of these experiments show that our coupled ETP-

FSR can retrieve the mental image of the target face, and recognize it in a

database of photo, while avoiding many known psychological problems in cur-

rent ETPs, and having realistic assumptions of the problem (unlike previous

FSRs).

Finally, in Chapter 4.4 we extended our introduced framework for face

sketch recognition, to another visual identi�cation application, identi�cation

based on ear images. In this application we showed that using the same prin-

ciples as in our FSR, and with small problem-speci�c modi�cations, we can

use our framework to identify between twin siblings, based on their ear im-
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ages. Similar to Chapter 4, we weighted and matched ear appearance and

ear structure based on deviations from norm, and showed that only based on

the top 5% deviated features, we can reach 90% accuracy in this application.

Our selected psychological framework, ERM, also suggests the use of only a

few features that are the most deviated, by the human visual system in face

recognition.

Despite our achievements using this new ETP-FSR, there is a human bot-

tleneck in our proposed system. This system starts by the eyewitness providing

the crude representation of the target face in terms of the Main Sketch, and

the system uses di�erent methods to �nd the debias this representation into

a stage that it is recognizable. However, in cases that the eyewitness cannot

create a face out of his memory, the system stops at its very �rst step. The

traditional ETPs use mug shots, or pieces of facial components (as a memory

trigger) to help the eyewitness recall the target face, with each of these memory

triggers adds a type of bias to the system. However, one can accept a certain

amount of bias to achieve at least a biased reconstruction, instead of to abso-

lutely no reconstruction (as our system relies solely on the eyewitness' ability

to remember the target face). We therefore here suggest a hybrid approach to

use traditional methods, with addition of as little bias as possible.

Looking at our ETP and traditional ETP as the extreme options in terms

of in terms of involvement of the eyewitness in producing the �nal sketch,

these two extreme points also can represent the two extremes of added bias

to the system, with our ETP having the least amount of bias (only Sketching

Bias), and the traditional ETP having the maximum amount of bias (verbal

overshadowing, piecewise reconstruction, exposure to similar faces, etc). But

having these two extremes, we can also have a hybrid approach that exploits the

gray space in between. The more this hybrid approach uses memory triggers,
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Figure 6.1: Line drawing samples of isolated facial components, to be used
separately to assist the eyewitness in remembering the target face structure.

suggestions, and third party assistance to the eyewitness, the closer it would

be to the traditional ETP (minimum eyewitness involvement, maximum bias),

and the more the hybrid approach relies on the ability of the eyewitness to

remember and draw the sketch, the closer it would be to our proposed ETP

(maximum eyewitness involvement, minimum bias). Here we brie�y discuss

two possibilities to assist the eyewitness, using the schemes from traditional

ETPs.

One of the least biased methods to trigger eyewitness' memory can be let-

ting the eyewitness choose isolated facial components that s/he is not sure

about, without showing the complete (or composite) face. After deciding

on each facial component, the eyewitness can proceed to sketch drawing by

him/herself. Using this method the bias is only added to the viewed facial

components and not others. The presentation of facial components can be

also in a symbolic or line-only manner to reduce the added bias. Figure 6.1

illustrates examples of isolated facial features in line-drawing style, that can

be used for this purpose.

Another method of helping the eyewitness in remembering the face struc-

ture can be using a generic face (normal face) based on the given Ancillary

information (e.g. race, gender, age, skin color, etc.), as a starting point from

which the eyewitness can manipulate the image to reach his/her desired face
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shape. This method of course would be possible in cases that the Ancillary

information is available (i.e. the eyewitness has a vague memory of the target

face). The possible bias added to the eyewitness' memory is from the e�ect

of norm face, which is known to create a false familiarity e�ect Unnikrishnan

[2012]. It means the eyewitness may feel that s/he knows (and have seen) this

face before, and therefore automatically links this normal face to the target

face memory, resulting in memory distortions. The false familiarity e�ect is

stronger when the eyewitness is from the same race as the presented normal

face.

The main point in using any method for memory trigger or assisted sketch-

ing is to remember that, any of these methods would add a speci�c type of

bias to the system, based on the amount of suggestions that they introduce to

the system. Therefore there should be a balance between the amount of infor-

mation the eyewitness remembers, and the amount of assistant s/he receives

from the system.

Based on our reviews, computational model, and experimental results, we

conclude that at least in applications where both human and machine are

involved (e.g. eyewitness face sketch recognition), and particularly for face

processing related applications, there should be a careful accounting for hu-

man's mental biases. Currently all of these applications are regarding the same

properties for all human entities, and therefore, the di�erences between each

individual are not considered. Thus not only outcome of these applications

may become unreliable (due to over simpli�cation of the problem), but also

there can be distortions to mental processes of the humans users of these appli-

cations. Examples of these distortions are the mental distortions in the current

ETPs that cause changes in the eyewitness' mental image of a face. On the

other hand, for a reliable design regarding human mental biases, there should

128



be a reliable framework to guide the design with a big picture of how the hu-

man visual system works. In our exploration we selected the ERM as our basis

psychological framework, but as our understanding of the human brain evolves,

new frameworks can emerge to replace ERM. In addition to the psychological

framework, when the application requires information regarding brain stages

or memories (e.g. the mental image of a face in the eyewitness' mind), the

application design should be in the way to remove distortions as much as pos-

sible (e.g. using self-drawn face sketches, instead of verbal description of the

faces), and the remaining distortions should be estimated and removed when

possible (e.g. sketching bias estimation). We therefore can present this text as

a sample of our perspective on designing computational models for analyzing

human inputs, particularly inputs directly relating to the brain signals.

6.1 Future Work

Our proposed combination of ETP-FSR can be used in real situations as it

requires no trained users, and delivers more reliable results in a shorter time

than currently used ETPs. In addition, the same framework introduced here

for face sketch recognition, can be applied to other human visual identi�ca-

tion tasks such as identi�cation based on ear images [Nejati et al., 2012], and

identi�cation based on uncontrolled head and face movements [Zhang et al.,

2013].

Nonetheless, our proposed method here can be improved in various ways,

as future works on this topic. First of all, it should also be noted that under-

standing strategies used by the human visual system still has many gaps to be

�lled, therefore, one can improve our framework by using models better than

ERM, or a combination of several psychological frameworks that may together
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represent a more complete picture of the human visual system. Similarly, the

estimation of mental bias can be extended to a bigger picture, as recent psycho-

logical studies revealed the e�ects of addition (non-visual) information, such

as names, in perceiving faces [Hilliar and Kemp, 2008]. Therefore, the bias

estimation can be also applied on the categorical information provided by the

eyewitness to further assess the eyewitness' perception of race, skin color, or

age.

In addition, as discussed in Section 5.5, our method has the assumption of

a minimum level of drawing skills for the eyewitness, without which the �nal

results would be unreliable. Therefore, hybrid methods to combine traditional

techniques and our method should be developed to handle these cases. The

important issue about a hybrid method is the di�culty assessing added biases

to the eyewitness' memory and the �nal sketch, as using drawing aids can add

non-measurable biases to the entire protocol.

An important issue in bias estimation that would a�ect this entire sys-

tem is the e�ect of time on the memory of the face. Our third dataset of

sketches includes long-exposure sketches (from faces viewed for 10 seconds)

and short-exposure sketches (from faces viewed for 2 seconds) with 1 minute

delay between the viewing time and the sketching time. Thus an interesting

future work would be the analysis of time e�ect and methods to overcome the

added bias.

Time delay has a signi�cant e�ect on the memory of the eyewitness. As

we showed in our experiments (Section 5.2), sketching error increases with

reduction of exposure time. In most of the cases, increase of time delay also

increases the error. The question of amount of the time delay e�ect was out

of the scope of this thesis, as it is more a psychological question. The analysis

of time delay e�ect on the system may also bring forth situations that the
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eyewitness requires some memory triggers to remember the facial structure.

Similar to poor drawing skills cases, in these cases we can incorporate fractions

of traditional ETPs into our system. The extent of this incorporation and the

e�ects of it (due to addition of biases) on the �nal sketch as well as on the

memory of the face should be closely assessed.

Finally, a complete and practical ETP-FSR system should be able to pro-

duce a photo-like reconstruction of the target face to be distributed in public

if necessary. This process is possible by adding machine learning components

to our proposed system to estimate the facial shading, color, etc.

The aspect of mental bias is also interesting by itself, as it includes identity

related information of sketch drawer, shaped throughout the life experiences.

Due to di�erences in individual experiences in life (exposure to di�erent faces),

the face perception bias seems to be almost unique for each individual. There-

fore, estimating the mental bias (either based on face drawing pro�le, or brain

signals) may lead to new methods of human identi�cation that can not only

provides information about the drawer's identity, but also about the race, gen-

der, and even possibly the living environment of the drawer.

Finally, it is important to remind that the main motivation for this work

was to create the missing link between psychological �ndings, automatic face

sketch recognition, and real world applications such as eyewitness face sketch

recognition, and therefore reduce the chance of wrongful convictions of inno-

cents. We hope that our work stimulate new generations of works based on

more realistic assumptions on how humans and machines can operate together,

and serves as a step towards methods bene�ting human lives.
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Appendix

Justi�cation of Bias Estimation Method

We de�ned the sketching bias as the combination of mental and drawing biases.

We now choose an engineering approach to estimate and remove the sketching

bias. We should �rst indicate that while the real process of face perception

is not fully understand, the most likely suggestions are from the Exception

Report Model (ERM) [Unnikrishnan, 2009, 2012]. The ERM suggests that

face perception, memorization, and recognition is performed based on a norm-

based model, that focuses on the facial features that are deviated from norm.

Based on this model, when the eyewitness views a face, s/he compares this

face to his/her individual mental norm, and detects the facial features that are

deviated from norm. These deviated features are then used for memorization

and future recognition. Therefore, the mental bias (the �rst component of the

sketching bias) is added when the target face is viewed, and is incorporated into

the memory of the face. This memory is then used to draw the Main Sketch,

and this is where the drawing bias (the second component of the sketching

bias) is added. Figure 6.2 illustrate this model in a pictorial representation.

Instead of estimating the mental and drawing bias separately, we can as-

sume that the eyewitness memorized the face perfectly as it is, but when wants

to draw it s/he adds both mental and drawing biases at the same time. By this
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Figure 6.2: The pictorial representation of mental and drawing biases added to
the memory and �nally the Main Sketch (concluded by the concepts of ERM).
The mental bias is added during face perception, base on the mental norm,
resulting in a biased memory. Then this memory is used using biased drawing
skills to draw the Main Sketch.

assumption, we can divide the process of creating the sketch into two steps of:

1. An unbiased process of face perception and outline detection, g

2. A biases drawing process which adds both mental and drawing biases, h.

We can now easily replicate g using a facial component detection algorithm,

and try to estimate h−1 as the function to remove sketching bias (including

both mental and drawing biases). Figure 6.3 illustrates this approach in a

pictorial representation.
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Figure 6.3: The pictorial representation of our perspective change to the pro-
cess of creating the Main Sketch. We shift all the biases to the �nal step,
while drawing from the memory. Thus we assume an unbiased memory, and
addition of both mental bias and drawing bias during drawing from memory.
Using this approach, while the �nal result (the Main Sketch) is not changed,
we can easily estimate the sketching bias using the drawing pro�les.
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