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Abstract

Nonlocality is one of the most fascinating aspects of quantum theory. It

is a concept that refers to stronger-than-classical correlations between the

components of space-like separated systems, and a clear manifestation of

entanglement, although these two concepts are not trivially related. With

the recent advent of quantum information theory, nonlocality has gained

the status of resource: it can be used to securely evaluate particular tasks

without relying on assumptions about the devices that are supposed to

implement such protocols - a device-independent assessment.

The thesis is focused on the study of nonlocality theory and its appli-

cations to device-independent assessment of quantum phenomena. Special

emphasis is given to a protocol for device-independent assessment of mea-

surement devices and to a device-independent formulation of Hardy’s test

of nonlocality. Also, on more fundamental grounds, recent developments on

the relation between entanglement and nonlocality are presented, regard-

ing, specially, the idea of activation of nonlocality on multipartite quantum

networks.
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1

Introduction

About ninety years have passed since the birth of quantum mechanics, on

the beginning of the twentieth century. Throughout this period, quantum

theory has developed and become a powerful and successful scientific theory,

able to describe with high precision a wide variety of physical phenomena.

On the other hand, despite the great experimental and theoretical advances

achieved, little is known about the foundations of quantum theory. There

is no consensus regarding the interpretation of its formalism, and it is not

known if there are physical principles that would, on a fundamental level,

lead to the observed quantum phenomena.

Among the many non-intuitive aspects of quantum mechanics, one, in

particular, has troubled physicists and philosophers since its early days: its

probabilistic character. Quantum mechanics can be understood as a set

of rules for the computation of probabilities of the outcomes of measure-

ments performed on prepared systems. On the level of a single run of the

experiment, it is, in general, not possible to predict which outcome will be

obtained.

The search for hidden variables

The probabilistic nature of quantum mechanics has led many scientists,

including some of its founding fathers, to question the completeness of the

theory. The most prominent example is, probably, Albert Einstein, who,

together with Boris Podolsky and Nathan Rosen, published a seminal paper

on 1935 [1], arguing about the completeness of quantum theory, a result that
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became known as EPR paradox. Defining physical reality, and properties

of its elements, they conclude that quantum mechanics, in particular, the

wave function, could not describe it properly. A complete theory should

be able to predict deterministically the elements of reality, and the key to

this theory could be hidden variables, properties which, for fundamental or

technological reasons, are not yet accessible or observable. It started, thus,

a search for hidden variable theories that could reintroduce determinism in

this new physics, while reproducing the predictions of quantum mechanics

on a statistical level.

The best known example of hidden variable theory is due to David

Bohm, who rediscovered the pilot wave theory of Louis deBroglie [2]. As

desired, this theory is successful in reproducing the predictions of quan-

tum mechanics, adding to that determinism on a single measurement level.

However, the hidden variable - the pilot wave - is nonlocal, meaning, in

this context, that some of its properties, in a specific point of space, may

depend on di↵erent regions of space, at the same instant of time, implying

that some action at distance is necessary.

Another important result regarding hidden variable theories is presented

in the seminal paper of Simon Kochen and Ernst Specker [3], published

on 1967. The authors show that, due to the structure and properties of

quantum measurements, any hidden variable theory that reproduces the

predictions of quantum mechanics must present an interesting non-intuitive

feature: contextuality. Contextuality is the assumption that the outcomes

of a measurement performed on a physical system - regarded as properties

of the system in question - can depend on other compatible measurements

that are performed on the system. The statement that no noncontextual

theories can reproduce the predictions of quantum mechanics is known as

Kochen-Specker theorem.

The nonlocal hidden variable theory of Bohm was not yet satisfactory

due to the action at distance necessary, a property that became undesired

in any theory after the development of the theory of relativity. On 1964,

John Bell revisited the seminal paper of EPR and introduced an elegant

formalism that encompassed all local hidden variable theories [4], regard-
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less of particular properties each one could have. Surprisingly, Bell showed

that it was hopeless to consider such class of theories, since none of them

could reproduce certain correlations between outcomes of measurements

performed on two physical systems as predicted by quantum mechanics.

This result became known as Bell’s theorem, and is one of the most impor-

tant results within the foundations of quantum mechanics. The property

of such strong correlations, non-reproducible by any local theories, is now

known as nonlocality.

An important highlight of Bell’s seminal work is that, by means of an

inequality introduced by him, it became possible to test experimentally his

results and check if Nature would behave as predicted by quantum me-

chanics or would allow a classical, local theory as a model. In fact, the one

introduced by Bell himself was the first of several Bell inequalities, impor-

tant tools that bound the correlations of any local hidden variable theory.

A Bell inequality more suitable for experimental verification of nonlocal-

ity was introduced by John Clauser, Michael Horne, Abner Shimony and

Richard Holt, and is known as the CHSH inequality [5].

Several experiments have been performed to test Bell inequalities, im-

plemented in various di↵erent physical systems. Although all of them agree

with the quantum predictions to a high degree of precision, they are open to

certain loopholes that, in principle, allow local theories to simulate nonlocal

correlations, and it remains a challenge to perform a loophole-free Bell test.

Quantum nonlocality and entanglement

Behind the nonlocality of quantum correlations is an interesting property of

composite quantum systems known as entanglement. The name is derived

from the german word verschränkung, used by Erwin Schrödinger to de-

scribe strongly correlated states allowed by the quantum theory [6]. Since

then, this concept has been used as a synonym of quantum correlations,

with little or no distinction with the idea of nonlocality already present in

the papers of EPR [1] and Bell [4], in particular because entanglement is a

crucial ingredient in both results.
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On 1989, Reinhardt Werner presented, on a seminal paper [7], the for-

malization of the concept of entanglement. Remarkably, he also showed

that there are entangled states that do not display any nonlocality, thus

showing that these two concepts, although closely related, are not equiva-

lent. Interestingly, though, some form of equivalence holds for pure states:

every entangled pure state violates some Bell inequality, adding more to this

interesting relation. This result is due to Nicolas Gisin [8], later extended

to multipartite systems by Sandu Popescu and Daniel Rohrlich [9], and is

known as Gisin’s theorem.

Inspired by the weak equivalence introduced by Gisin’s theorem, and the

conjecture that entangled states should display some form of nonlocality,

more complex scenarios were introduced. On 1995, Sandu Popescu consid-

ered the possibility of processing the quantum system prior to measurements

associated to the CHSH inequality, with the possibility of selecting partic-

ular outcomes of the processing procedure, which became known as local

filtering [10]. By applying this method, Popescu showed that the states

considered by Werner, proved to be local, in the sense that they cannot dis-

play any nonlocality in standard measurement scenarios, could display their

“hidden” nonlocality after the suitable filtering procedure. The approach of

Popescu was then extended by Asher Peres, who considered the case where

the filtering can be applied not only to a single copy but to several copies

of the quantum system, achieving results similar to those of Popescu [11].

Recently, a new approach has been introduced by Daniel Cavalcanti,

Mafalda Almeida, Valerio Scarani and Antonio Aćın [12]. With the same

motivation of exploring the relations between entanglement and nonlocal-

ity, they show that, even though there are entangled states that are local

on the single copy level, several copies of the same states can be displayed

in multipartite network configurations where their nonlocality can be “acti-

vated”. Some examples of such states and activation schemes are presented

in this thesis.
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The road to device-independence

On the end of the decade of 1980, and the beginning of the decade of 1990,

a new field of research emerged based on the idea that quantum systems

could be used to perform computational tasks more e�ciently than classical

ones: quantum information and computation theory.

The beginning of this theory can be traced back to three seminal pa-

pers. The first, published on 1984 and authored by Charles Bennett and

Gilles Brassard, presents the first quantum cryptography protocol, known as

BB84 [13]. The third, in chronological order, was published on 1993, also by

Bennett and Brassard, together with co-authors Claude Crápeau, Richard

Jozsa, Asher Peres and William Wooters. They showed that entangled

states could be used as channels to teleport quantum information, thus pre-

senting the notorious quantum teleportation protocol [14]. Finally, the sec-

ond paper, published on 1991 by Artur Ekert, introduced an entanglement-

based quantum cryptography protocol in which security was based on the

quantum nonlocality discovered by Bell [15]. From this point on, nonlo-

cality was no more a concept exclusive of the foundations of physics and

gained the status of a practical resource for quantum information.

The following decades have seen great development of quantum infor-

mation theory, both from the theoretical and experimental points of view.

However, as quantum technologies became more developed and closer to in-

dustrialization and commercialization, it became clear that the advantages

provided by quantum devices relied on assumptions that could not always

be checked. This led to the development of device-independent formalism,

an approach that, instead of relying on specific quantum systems, dynam-

ics and measurements - that is, on the inner mechanics of the devices - ,

provided ways of certifying the proper function of the devices based mostly

on observable classical data.

Nowadays, the device-independent formalism has evolved and several

information processing protocols have been developed, of which important

examples are quantum key distribution [16] and randomness generation [17].

In fact, some of its basic ideas have grown outside its applied scope, and sim-
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ilar methods have been developed to assess fundamental properties quan-

tum systems, such as its dimension [18], or, as presented in this thesis, the

entanglement-related properties of measurement devices [19] and bounds

for a particular test of nonlocality [20].

Objectives

The main objective of this thesis is to present the original results co-

authored by the candidate in a coherent, consistent manner, contextual-

izing the work within the fields of foundations of quantum mechanics and

the new device-independent approach to quantum theory.

Structure of the thesis

The thesis is intended to provide as much background information as pos-

sible in order to support the main results. It is structured as follows.

Chapter 2 presents a brief introduction to some of the very basic con-

cepts of quantum theory. Preliminary, it provides some background both

in the mathematics and the notation used throughout the thesis.

Chapter 3 presents the main ideas behind the theory of nonlocality. It

introduces the device-independent formulation of Bell tests, and the sets

of correlations that emerge in such scenarios: the local, quantum and no-

signalling correlations. Bell’s theorem is proved, and it is shown how entan-

glement is necessary for nonlocal correlations to be achieved with quantum

systems. The Bell inequalities appear naturally in this formalism, and some

examples of such important tools are given.

Chapter 4 is devoted to the intricate relations between entanglement

and quantum nonlocality. It starts with a brief review of some concepts

from the theory of entanglement, such as characterization criteria and en-

tanglement quantifiers. It proceeds by presenting some examples of local

entangled states, that is, entangled states that can only lead to local cor-

relations in standard Bell scenarios. Then, two more general scenarios are

presented where the “hidden” nonlocality of such states can be revealed or
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activated. The first of such scenarios is the one where local filtering opera-

tions are allowed prior to the Bell tests. The second is the new multipartite

network approach, where examples of schemes of activation of nonlocality

are presented.

Chapter 5 presents a brief review of the device-independent paradigm:

a collection of protocols and tools that allow for the certification of informa-

tion processing tasks or of properties of unknown physical system by making

as few assumptions as possible about the systems and devices. The proto-

cols cover quantum key distribution, randomness amplification, state and

entanglement estimation and dimension witnesses. Two important tools

are also presented: the self-testing methodology, and the NPA hierarchy.

Chapter 6 presents an original device-independent protocol for the as-

sessment of measurement devices. Given that some conditions are met, it

is possible, by means of the protocol, to certify that a measurement de-

vice is entangled, that is, it has eigenvectors that are not separable. By

considering a particular case where the systems are assumed to be known,

quantitative bounds on how entangled is the device are derived.

Chapter 7 presents a second original device-independent result. The

seminal Hardy’s test of nonlocality is considered, and new device-independent

bounds for this test are derived. It is shown that the simplest systems al-

ready lead to maximal nonlocality, and that only a very specific family of

states can lead to such result, regardless of the dimension of the system.

Finally, in the Conclusions, the main results are reviewed and further

directions of work are presented. They are followed by an appendix, where

some of the lemmas stated throughout the thesis are proved.
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2

Quantum theory

This preliminary chapter, based on the first chapter of [21], is intended

to serve as a brief introduction to the basic concepts of quantum theory

referred throughout this thesis. It is not intended to be a complete survey

of quantum mechanics; for this purpose, the excellent books of Peres [22],

Feynman [23], Cohen-Tannoudji [24], von Neumann [25], and Nielsen and

Chuang [26] are suggested.

2.1 Systems and states

What is the scope of quantum theory? Historically, quantum mechanics was

developed from the study of atoms and atomic particles, later expanding

its domains to subatomic particles, on one hand, and to systems of more

than one atom and molecules, on the other. One could then say that the

quantum theory is the theory of tiny little things, the physics of the very

small scale. This definition could not be considered far from precise for

most of the time since the early days of the theory, but, nowadays, it is

possible to create and control macroscopic objects that display quantum

phenomena1.

What, then, is a quantum system? Not afraid to be redundant, Asher

Peres answers this question [22]:

1An example of such object is a Bose-Einstein condensate - roughly, a relatively
dense cloud of atoms cooled down to very low temperatures.
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A quantum system is whatever admits a closed dynamical de-

scription within quantum theory.

This definition reflects an interesting fact about quantum theory: almost a

century after its foundation, the theory is little more than the description

of its mathematical formalism.

The mathematics behind quantum theory is governed by linear algebra.

To every quantum system is associated a complex Hilbert space, denoted

H - a special case of vector space with a defined inner product. In this

thesis only systems associated with Hilbert spaces of finite dimension will

be considered; if the dimension d of H is particularly important in some

context, the Hilbert space will be denoted Hd.

An arbitrary vector of H will be written, using of the convenient Dirac

notation, as | i, read as ket psi. The inner product between two vectors

| i and |�i will be denoted h | �i. By means of the inner product, a

linear functional h�| - read as bra chi - is defined for every vector |�i; the
inner product, thus, forms a bracket. The norm of a vector is defined as

|| i| ⌘ ph |  i.
It is possible, with this notation, to define an outer product, | i h�|.

This, contrary to the inner product, represents a linear operator 2, and not a

scalar. Important examples are the identity operator, denoted 1 and defined

by the equation 1 | i ⌘ | i, for all | i 2 H, and the projector, denoted,

in general, ⇧, which projects a vector into a subspace of the Hilbert space.

Unidimensional projectors are particularly important; the unidimensional

projector into the subspace spanned by | i is written as ⇧ = | i h |.
The mathematical object used to describe a physical system in an instant

of time is named state. In quantum mechanics, the state is an operator

⇢ that acts on the Hilbert space associated with the physical system it

describes. The density operator ⇢ is defined by means of the following

conditions:

2A linear operator between spacesHd1 andHd2 is a function A : Hd1 ! Hd2 . Defined
bases for these spaces, an operator can be identified with a matrix d2⇥d1. Usually A | i
is used to denote A (| i).
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• ⇢ is positive semi-definite, ⇢ � 0, i.e., for all | i 2 H, h | ⇢ | i � 0;

• ⇢ is normalized, Tr (⇢) = 1, where Tr (·) denotes the trace of the

matrix that represents the operator.

Every density operator can be written as the convex combination of

unidimensional projectors,

⇢ =
X

i

qi | ii h i| ;
X

i

qi = 1, qi � 0, (2.1)

given that || ii| = 1 for all i. This decomposition is, in general, not

unique. Counter-examples are states given by single unidimensional projec-

tors, ⇢ = | i h |. Such states are called pure states ; by definition, they are

the extremal points of the convex set of quantum states of a given system

and, with no ambiguity, can be described by the normalized vector | i.
States that are not pure are called mixed states.

The simplest, non-trivial quantum systems are the ones associated with

Hilbert spaces of dimension two, H = C2. They became notorious, specially

in quantum information theory, as the quantum analogues of the classical

bits. This analogy comes from the fact that - for reasons that will become

clear further in this chapter - an usual measurement on a qubit has two

possible outcomes, and, due to it, these systems are usually called quan-

tum bits, or qubits. Examples of qubits are spin-1/2 particles (electrons,

positrons, and any other fundamental fermions), two-level atoms, SQUIDS

- superconducting quantum interference devices - , and the polarization

degree of freedom of photons.

A general qubit state can be written as

⇢ =
1

2
(1+ ~a · ~�) , (2.2)

where |~a|  1 and ~� is a vector whose components are the Pauli matrices

�1 =

 
0 1

1 0

!
, �2 =

 
0 �i

i 0

!
, �3 =

 
1 0

0 �1

!
. (2.3)
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There is a one-to-one correspondence between the states ⇢ and the vectors

~a. Hence, the state space of a qubit system can be identified with the unit

ball embedded in R3, known, in this context, as the Bloch ball. It is easy to

note that this correspondence respects convex combinations, and, thus, the

pure states are identified as the points of the two-dimensional Bloch sphere.

2.2 Composite systems and entanglement

The Hilbert space associated with a quantum composite system is given by

the tensor product of the spaces associated with the subsystems; a bipartite

system, for instance, whose constituent subsystems are associated with the

Hilbert spaces HA and HB, is associated with the Hilbert space HAB =

HA ⌦HB.

Let {|⇠ii} e {|'ji} be orthonormal bases of HA and HB, respectively.

Any pure state of HAB can be written as

| i =
dAX

i=1

dBX

j=1

cij |⇠ii ⌦ |'ji ,
X

ij

|cij|2 = 1, (2.4)

where dA and dB are the dimensions of HA and HB. There is an important

theorem, known as Schmidt decomposition, that is stated as follows: for all

| i 2 HAB, there are orthonormal bases {|⇠0ii} of HA and
���'0

j

↵ 
of HB,

and non-negative real numbers ci such that

| i =
dAX

i=1

ci |⇠0ii ⌦ |'0
ii ,

X

i

c2i = 1. (2.5)

The sum has only one index, and is assumed that dA  dB. There are

infinite orthonormal bases in which a bipartite pure state can be decom-

posed in a Schmidt form; the coe�cients ci, however, are unique. It is

worth mentioning that there are extensions of the Schmidt decomposition

for multipartite systems, but they are not trivial extensions of the form

presented above.
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Suppose, now, that a bipartite quantum system is in a pure state | i of
which two or more of its Schmidt coe�cients ci are non-zero. It is, then,

not possible to write the state | i as the tensor product of the states of

the subsystems, | i 6= |⇠i ⌦ |'i. States with this characteristic present an

important property called entanglement.

The term entanglement - based in the german word verschränkung, -

was created by Erwin Schrödinger on 1935 [6] to describe those strongly

correlated quantum states. A formal definition, though, came much later,

and is due to Reinhardt Werner, on 1989 [7].

Consider a bipartite quantum system, whose Hilbert space is HAB =

HA ⌦HB. A product state of this system is a state that can be written in

the form ⇢AB = ⇢A ⌦ ⇢B, where ⇢A and ⇢B are the states of subsystems A

and B, respectively. A product state can be easily prepared by two devices

that work independently and prepare the states ⇢A and ⇢B. Now, suppose

that each of the preparing devices is capable of preparing n di↵erent states;

by choosing a number r 2 {1, 2, ..., n}, the devices prepare subsystems A

in the state ⇢rA and subsystem B in the state ⇢rB. If a random number

generator that generates numbers r 2 {1, 2, ..., n} with probability q(r)

works together with the preparation devices, it is possible to correlate the

preparations and obtain states of the form

⇢ =
nX

r=1

q(r)⇢rA ⌦ ⇢rB, q(r) � 0,
nX

r=1

q(r) = 1. (2.6)

Such states are said separable. States that cannot be prepared by means of

classically correlated local preparations are said entangled.

In many situations, one has exclusive interest in only one part of a com-

posite system. The partial trace is the operation that represents the discard

of subsystems, and is used to obtain the reduced state of the remaining sys-

tem.

Consider a bipartite quantum system in the state ⇢, such that, defined

bases {|⇠ii} of HA and {|'µi} of HB - latin indices are associated with
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subsystem A and greek indices with subsystem B - , can be written as

⇢ =
X

i,µ,j,⌫

⇢iµ,j⌫ |⇠i 'µi h⇠j '⌫ | . (2.7)

where |⇠ 'i = |⇠i⌦ |'i. The reduced state ⇢A of subsystem A, in this basis,

can be represented by

⇢A = TrB (⇢) =
X

i,j

X

µ

⇢iµ,jµ |⇠ii h⇠j| . (2.8)

Analogously, the reduced state ⇢B of subsystem B is

⇢B = TrA (⇢) =
X

µ,⌫

X

i

⇢iµ,i⌫ |'µi h'⌫ | . (2.9)

In general, the state of the composite system is not the tensor product of

the reduced states. This is only true for product states since, with the

partial trace, all correlations are ignored.

2.3 Measurements

What sort of information about the system a quantum state carries? The

answer to this question is related to one of the most intriguing aspects of

quantum theory: its probabilistic nature. In the words of Ashes Peres [22]:

In a strict sense, quantum theory is a set of rules allowing the

computation of probabilities for the outcomes of tests which

follow specified preparations.

It is not possible, according to the traditional quantum formalism, to pre-

dict deterministically the result of all the measurements that can possibly

be performed on the quantum system, even if one has the best possible

knowledge about the system3.

3In quantum theory, the best possible description of a system is given by a pure state.
This is due to the fact that, for pure states, there is at least one complete measurement
for which the result can be deterministically predicted.
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A quantum measurement is described by a set of measurement operators

that act on the Hilbert space of the system. Each operator is associated with

a possible result of the measurement, and its mathematical nature varies

according to the class of measurements considered. Here, two of the most

important classes of quantum measurements will be presented: the projec-

tive measurements and the measurements by positive operators(POVMs)4.

In a projective measurement x, performed on a quantum system whose

Hilbert space is Hd, each result a is associated with a projector ⇧a|x, such

that di↵erent results are associated with projectors onto orthogonal sub-

spaces, i.e., Tr
�
⇧a|x⇧a0|x

�
= �a,a0 , and

Pd0�1
a=0 ⇧a|x = 1. The results are

labelled a 2 {0, ..., d0 � 1}, where d0  d is the number of possible results of

the measurement. The projective measurement is said complete if d0 = d;

in such case, all projectors correspond to unidimensional subspaces of Hd.

Given that measurement x is performed on a system whose state is ⇢,

the probability that the result a is obtained is given by

p(a|x) = Tr
�
⇢⇧a|x

�
. (2.10)

An important property of projective measurements is repeatability : in

case the same projective measurement is performed more than once, in a

consecutive manner, the result which was obtained in the first realization

is re-obtained on the following with probability 1, whatever it is. This

property is reflected in the formalism by means of the state of the system

after the measurement. Suppose that measurement x is performed and

result a is obtained. The system is then described by the state

⇢0 =
⇧a|x ⇢⇧a|x

Tr
�
⇢⇧a|x

� . (2.11)

Another important concept related to projective measurements is that of

observable. An observable is an hermitian operator that acts on the Hilbert

space of the system, associated with a projective measurement. The idea is

to link the results of the measurement with real numbers oa that represent

4The acronym POVM stands for positive operator-valued measure.
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the values of the measured property. The observable O is associated with

the measurement x by means of the spectral decomposition

Ox ⌘
d0�1X

a=0

oa⇧a|x. (2.12)

This way, the mean value of the observable is given by

hOxi⇢ =
d0�1X

a=0

oa pa|x = Tr (⇢O) . (2.13)

Suppose that the measurement of the observable O1 is performed on a

quantum system, followed by the measurement of observable O2. Suppose,

also, that a second measurement of O1 is performed after the measurement

of O2 and it reproduces the outcome of the first. If this holds for every

outcome of O1 and O2, than these observables are said compatible. Com-

patibility between two observables allows the results of both measurements

to be simultaneously determined, since they do not depend on the order

these measurements are performed. Two observables are compatible if, and

only if, they commute, i.e., [O1, O2] ⌘ O1O2 �O2O1 = 0.

POVMs form a class of measurements more general than projective ones.

On the other hand, they lack, in general, the property of repeatability and,

in most cases, the concept of after-measurement state.

In a POVM x, performed on a system whose Hilbert space is Hd, the

possible results a are associated with operators Ea|x called e↵ects. They

must satisfy the following properties:

• Ea|x � 0;

• P
a=0 Ea|x = 1.

The probability that result a is obtained when POVM x is performed on a

system whose state is ⇢ is given by

pa|x = Tr
�
⇢Ea|x

�
. (2.14)
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Contrary to what happens in projective measurements, the number of

e↵ects, and, consequently, the number of possible results, is not limited by

the dimension of the Hilbert space of the system. In general, POVMs are

not repeatable, and it is not possible to determine the state of the system

after the measurement. A special case is that in which all the e↵ects are

of the form Ea|x = M †
a|xMa|x, for a set of operators

�
Ma|x

 
. Then, if these

operators are known, the state after the measurement can be written as

⇢0 =
Ma|x ⇢M

†
a|x

Tr
�
⇢Ea|x

� . (2.15)

In particular, the operators Ma|x can be projectors, a case in which the

POVM is reduced to a projective measurement. In this sense, the class

of POVMs is more general than the class of projective measurements. On

the other hand, all the probabilities that can be obtained by means of a

POVM performed on a system associated with a Hilbert space Hd can be

reproduced on a projective measurement performed on a system of space

Hd0 , where d0 � d. This is, roughly, the statement of a result known as

theorem of Neumark [22].
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3

Nonlocality

One of the most intriguing aspects of quantum mechanics is its nonlocal-

ity. Nonlocality, here, refers to stronger-than-classical correlations between

the outcomes of measurements performed on space-like separated systems,

correlations such that cannot be reproduced by any local realistic theory.

The discovery that quantum correlations may be nonlocal is due to John

Bell [4]. Since Bell’s theorem, as it became known, the theory of nonlocality

has evolved and developed, and the rich mathematical structures derived

from Bell’s pioneer ideas have been explored, culminating with a new device-

independent formalism that relies on Bell inequalities and observable data

to assess and certify properties of unknown systems and devices.

This chapter presents some of the basic results related to the theory

of nonlocality and the device-independent formalism. Bell scenarios are

introduced, and special sets of correlations that arise in such scenarios are

presented. Bell inequalities are defined, and the notorious Bell’s theorem is

stated. To conclude, some of the most important experiments concerning

violations of Bell inequalities are reviewed.

The contents of this chapter are partially based on the references [21]

and [27]. For a recent review of the theory of nonlocality, please refer to

[28].

3.1 Bell scenarios

Consider a pair of particles A and B created at a common source and

sent to the laboratories of two experimentalists, Alice and Bob, respec-
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Figure 3.1: A bipartite Bell test. Pairs of particles A and B are produced
at a source F , and submitted to measurements x and y, respectively. The
outcomes obtained are a and b.

tively. Alice performs, on its particle, a measurement x, of a set X =

{0, . . . ,mA � 1} of possible measurements, and obtains an outcome a, of

a set Ax = {0, . . . , rAx�1} of possible outcomes. Similarly, Bob performs

measurement y, of a set Y = {0, . . . ,mB � 1} of possible measurements,

and obtains outcome b of By =
�
0, . . . , rBy � 1

 
. It is assumed that the

numbers of possible measurements mA and mB and the possible outcomes

of each measurement, rAx and rBy , are finite. This idealized experiment

will be referred as a Bell test (fig. 3.1).

If no further details are provided regarding the nature of the particles

and the measurements performed, the best description of these experiments

is given by the joint, conditional probabilities

p (a, b|x, y) 8 a, b, x, y. (3.1)

Locally, though, Alice and Bob can describe their experiments by means of

the marginal probabilities

pA(a|x, y) =
X

b

p(a, b|x, y), (3.2)

pB(b|x, y) =
X

a

p(a, b|x, y). (3.3)

Now, define a measurement event as the space-time region that com-

prises the volume in space where the measurement is performed and the

interval of time between the choice of measurement and the obtention of

20



Time

Space

L

MA MB

F

Figure 3.2: Space-like separated measurement events MA and MB.

the outcome. Suppose the measurement events are space-like separated, i.e.,

the laboratories are su�ciently distant from each other and the measure-

ment processes are brief enough so that the measurement events are outside

each other’s light cone in any inertial reference frame (fig. 3.2). Taking into

account the relativistic principle that no signal can travel faster than light,

this assumption implies the following no-signalling conditions :

pA(a|x) =
X

b

p(a, b|x, y) 8 a, x, y (3.4)

pB(b|y) =
X

a

p(a, b|x, y) 8 b, x, y. (3.5)

In words, the no-signalling conditions state that the marginal probabilities

of Alice cannot depend on the choice of the measurement performed by Bob,

and, analogously, that the marginal probabilities of Bob cannot depend on

the choice of measurement performed by Alice. If these conditions do not

hold, the dependence of the marginals on the choice of measurements by

the other party could be used for faster-than-light communication.

The numbers mA, mB, rAx and rBy , together with the assumption that

measurement events are space-like separated, define a bipartite Bell sce-

nario. Multipartite extensions are straightforwardly defined and must in-
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clude the number of parties. More general Bell scenarios can be character-

ized by means of the notation

�
rA

1

, . . . , rAmA�1

; rB
1

, . . . , rBmB�1

; . . . ; rN
1

, . . . , rNmN�1

�
, (3.6)

where the semicolon separate the parties and the commas separate the mea-

surements, indicated by the number of possible outcomes. In commonly

considered scenarios, the number of outcomes will be the same for all the

measurements of a given party, and the number of measurements will be

the same for all the parties. In this case, a scenario with n parties, m mea-

surements per party and r outcomes per measurement can be characterized

by means of the simpler notation (n,m, r).

3.2 Device independence

Although it may be convenient to think of Bell scenarios in terms of mea-

surements performed on physical systems, it can also be viewed, more ab-

stractly, as a collection of black boxes that, each, admits an input, from a

set of possible inputs, and returns an output, from a set of possible out-

puts. The inner mechanics of these boxes are usually not accessible, and

the best way to describe their behavior is by means of the joint probabilities

of their outputs, conditioned on the inputs. It is usual, in this context, to

refer to the whole collection of boxes as a single one, composed of space-like

separated “sub-boxes”.

This example highlights one of the main properties of Bell scenarios:

its formalism is independent of the nature and of the mechanics of the de-

vices. The outputs may be generated by means of measurements performed

on physical systems or may follow some predetermined rule given by some

unknown theory. This device-independent formalism is the key to a new

paradigm in quantum information theory, of which some protocols are pre-

sented in this thesis. Throughout the text, the “measurement” language

and the “black box” language will be used interchangeably, without explicit

notice.
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The joint probabilities p(a, b|x, y) that describe the Bell experiment can

be conveniently represented as components of a vector p 2 Rt,

p =

0

BB@

...

pa,b|x,y
...

1

CCA , (3.7)

where t =
PmA�1

x=0

PmB�1
y=0 rxry. Clearly, not all points of Rt are valid prob-

ability distributions. They must satisfy non-negativity conditions,

p(a, b|x, y) � 0, 8 a, b, x, y; (3.8)

and normalization conditions,

X

a

X

b

p(a, b|x, y) = 1, 8 x, y. (3.9)

The set of all points p that satisfy the above conditions will be denoted V .

3.3 Sets of correlations

In general, the measurement events at the distinct laboratories are not inde-

pendent, despite the non-signalling conditions. That implies that the joint

probabilities are not, necessarily, the product of the marginal probabilities

of Alice and Bob, i.e.,

p (a, b|x, y) 6= pA (a|x) pB (b|y) . (3.10)

This equation implies the existence of correlations between the two mea-

surement events.

Correlations can usually be established in two ways: the first is by means

of a direct causal relation between the events, that is, one event is the direct

cause of the other; the second is by means of a common cause that corre-

lates both events. Either way, an idea of locality is implicit, which means
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that the information that establishes the causal relation must be carried

by signal propagating no faster than the speed of light, forbidding, thus,

instantaneous influences. This idea is known as Reichenbach’s principle.

In Bell scenarios, where measurement events are, by definition, space-

like separated, not even signals propagating at the speed of light can estab-

lish a direct causal relation between the events. Nothing, though, prevents

the correlations arising from common local causes. The set of such “classi-

cal” correlations is named set of local correlations, denoted L.
The local correlations are not, however, the most general correlations

that can arise in a Bell scenario. These are given by the all the probability

distributions that satisfy the no-signalling conditions. Thus, this set is

named set of no-signalling correlations, denoted P .

In between those sets is a very special one: the set of correlations that

can be obtained in quantum Bell scenarios, where the measurements are

performed on quantum systems; this is the set of quantum correlations,

denoted Q.

3.4 Local correlations

Consider a bipartite Bell scenario, and assume the locality condition holds:

all the correlations are product of common local causes. Let � 2 ⇤ represent

the variables in the common causal past of the measurement events. Then,

if the value of � is known, there are, by definition, no other factors that

could correlate the events, which, thus, become independent,

p(a, b|x, y,�) = pA(a|x,�)pB(b|y,�). (3.11)
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The correlations arise from the fact that � is, in general, not known1, and

this lack of knowledge is reflected by an average over such variables,

p(a, b|x, y) =

Z

⇤

pA(a|x,�)pB(b|y,�)q(�)d�, (3.12)

where q(�) is a measure on the set ⇤. Joint probability distributions that

can be written in the above form are called local realistic, or simply local.

The points p 2 V for which there is a set ⇤, a measure q(�) and proba-

bilities pA(a|x,�) and pB(b|y,�) such that the (3.12) holds compose the set

of local correlations L.

3.4.1 Bell inequalities

It is easy to note that every local correlation satisfies the no-signalling

conditions. The reciprocal, though, is not true; there are points in P that

are not in L, thus, L ⇢ P .

By definition, the set L is convex. Its extremal points are the elements

of the set of local deterministic points, denoted D, and defined as the set of

uncorrelated probabilities pd such that

pd(a, b|x, y) = pA(a|x)pB(b|y), and pA(a|x), pB(b|y) 2 {0, 1} . (3.13)

The definition of Bell scenarios demands that the number of possible mea-

surements and outcomes be finite, and this implies that D has a finite

number of elements. This means that, for every point p 2 L, there is a

set ⇤, of variables � that label the points pd(�) 2 D, and a probability

distribution q(�) such that

p(a, b|x, y) =
X

�2⇤

q(�)pd(a, b|x, y,�). (3.14)

1Due to the hidden character of � and to the locality assumption, this variable has
been known, in this context, as local hidden variable. In di↵erent contexts, � can be seem
as a random variable shared between Alice and Bob, usually as a resource to perform
some task that involves the establishment of correlations. Then, in this context, it has
been known as shared randomness.
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The above property implies that L is a polytope. There is a basic result

in convex geometry known as the theorem of Minkowski that states that a

polytope can be represented in two equivalent forms:

• as the convex hull of a finite set of points,

L =

(
p 2 Rt |p =

X

�

q(�)pd(�), q(�) � 0,
X

�

q(�) = 1

)
; (3.15)

• as the intersection of a finite number of semi-spaces,

L =
�
p 2 Rt |bi.p  ci, 8 i 2 I

 
, (3.16)

where {(bi, ci) , i 2 I} denotes a finite set of inequalities.

Each of the sets {p 2 Rt |bi.p = ci} defines a hyperplane in Rt, and is a

face of the polytope. Let d denote the dimension of the polytope, embedded

in Rt. The faces of dimension zero are called vertices, and the one of highest

dimension, that is, those with dimension (d� 1), are called facets. The

inequalities associated to the facets of the polytope are su�cient to fully

characterize it. Thus, to satisfy all of them is a necessary and su�cient

condition for a correlation to be local. These inequalities are known as Bell

inequalities2.

3.4.2 The CHSH inequality

The simplest, nontrivial Bell scenario is denoted as (2, 2, 2); it is composed

of two parties, where each party is allowed to perform two measurements,

each of which has two distinct results. In this scenario, there is only one

2A weaker definition says that a Bell inequality is an inequality that separates the
local polytope from any point outside it. The inequalities that touch the polytope are
said tight Bell inequalities.
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nontrivial3 Bell inequality, the CHSH inequality [5]

p(a = b|0, 0)� p(a 6= b|0, 0) + p(a = b|0, 1)� p(a 6= b|0, 1)+
p(a = b|1, 0)� p(a 6= b|1, 0)� p(a = b|1, 1) + p(a 6= b|1, 1)  2, (3.17)

where

p(a = b|x, y) = p(0, 0|x, y) + p(1, 1|x, y), (3.18)

p(a 6= b|x, y) = p(0, 1|x, y) + p(1, 0|x, y). (3.19)

This inequality, named after John Clauser, Michael Horne, Abner Shimony

and Richard Holt, is unique up to local relabeling of measurements and

outcomes. If one defines the correlators

Exy = p(a = b|x, y)� p(a 6= b|x, y), (3.20)

the CHSH inequality can be written in the more elegant form

E00 + E01 + E10 � E11  2. (3.21)

There are, however, many constraints imposed by the normalization

and no-signalling conditions that have not been explored. Together, they

impose 8 linearly independent constraints, implying that the no-signalling

polytope and, also, the local polytope, are 8-dimensional bodies, embedded

in R16.

It may be convenient, then, to choose an 8-dimensional representation

to describe the probability distributions, one where all the elements are

independent probabilities. A possible choice is given by the four joint prob-

abilities of obtaining outcomes a = b = 0, for all x and y, plus the four

marginals of obtaining outcomes a = 0, for all x, and b = 0, for all y. With

these eight probabilities and the normalization and no-signalling conditions

it is possible to reconstruct the whole table of 16 joint probabilities. In

3The non-negativity conditions (3.8) and the normalization conditions (3.9) are faces
of the local polytope and may be regarded as trivial Bell inequalities.
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this representation, the CHSH inequality can be rewritten in the following

form, without redundancies, known as CH inequality [29], named after John

Clauser and Michael Horne,

pA(0|0) + pB(0|0)� p(0, 0|0, 0)� p(0, 0|0, 1)�
p(0, 0|1, 0) + p(0, 0|1, 1)  0. (3.22)

3.4.3 Other Bell inequalities

Bell inequalities are, probably, the most significant tools within the device-

independent formalism. It is, thus, important to list such inequalities for

di↵erent Bell scenarios. The task of finding the facets of a polytope, given

its vertices - the set of deterministic local points, in the context of the

local polytope - , is a problem known as facet enumeration or convex hull

problem.

In exceptionally simple cases, it is possible to obtain all the facets of a

polytope by means of computational methods and specialized software, like

PORTA [30]. However, the computational resources required grow fast with

the number of parties, measurements and results, and this strategy soon

becomes impractical. Due to this, few Bell scenarios have been completely

solved. Below, some of the known Bell inequalities are presented. It is,

however, important to remark that the positivity conditions are all trivial

facets of the local polytope. Also, di↵erent inequalities can be obtained from

existing ones by relabeling the parties, measurements and outcomes. Thus,

it is su�cient to present one representative of each class of inequalities.

• (2, 2, 2): The simplest nontrivial Bell scenario. The only inequality is

CHSH [31].

• (2, 2; 2, . . . , 2): The only inequality of this scenario is CHSH, indepen-

dent of how many measurements are performed by Bob [32, 33].

• (rx=0, rx=1; ry=0, ry=1): Di↵erent scenarios, with rx and ry less than

4 have been investigated, and the only nontrivial inequalities found
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were CHSH and CGLMP, introduced bellow [33].

• (2, 3, 2): This scenario presents two nontrivial inequalities: the CHSH

inequality, and the one known as I3322 [34, 33]:

PA(0|0) + pB(0|0)� p(0, 0|0, 0)� p(0, 0|0, 1)�
p(0, 0|0, 2)� p(0, 0|1, 0)� p(0, 0|2, 0)�

p(0, 0|1, 1) + p(0, 0|1, 2) + p(0, 0|2, 1) � �1. (3.23)

• (3, 2, 2): This scenario has been completely solved [32], and it presents

are 46 nonequivalent inequalities. Interestingly, all the extremal points

of the no-signalling polytope have been listed recently [35], and they

can be classified, also, in 46 nonequivalent classes.

• The scenarios (2, 2, r) have not been completely solved, but it is known

that the CGLMP inequalities [36] are facets of the local polytope.

They are,

br/2c�1X

k

✓
1� 2k

r � 1

◆
[p(a = b+ k|0, 0) + p(b = a+ k + 1|0, 1)+

+p(a = b+ k|1, 1) + p(b = a+ k|1, 0)�
p(a = b� k � 1|0, 0)� p(b = a� k|0, 1)�

p(a = b� k � 1|1, 1)� p(b = a� k � 1|1, 0)]  2, (3.24)

where br/2c denotes the integer part of r/2 and

p(a = b+ k|x, y) =
r�1X

b=0

p(b� k, b|x, y), (3.25)

where � denotes addition modulo r.
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3.5 No-signalling correlations

The set of no-signalling correlations, P , is defined as the set of points p 2 V
for which the no-signalling conditions hold. It is easy to note that this set

is convex, and that the no-signalling conditions, being linear functions of

the probabilities, define hyperplanes in Rt; the set P is defined as the inter-

section of finitely many half-spaces and is, like the set of local correlations

L, a polytope embedded in Rt.

The extremal points of P can be divided in two classes. The local ones

are the deterministic local points, D, extremal points of the local polytope

L. The nonlocal ones are not so easily characterized, and few examples, in

the simplest Bell scenarios, are known [35].

Consider, for instance, the (2, 2, 2) scenario. The 16 local extremal

points of the no-signalling polytope can be expressed as

p(a, b|x, y) =

8
><

>:

1 : a = ↵x� �

b = �y � �;

0 : otherwise,

(3.26)

where ↵, �, �, � 2 {0, 1}, and � denotes addition modulo 2. The 8 nonlocal

extremal points can be expressed as [37]

p(a, b|x, y) =
(

1/2 : a� b = xy � ↵x� �y � �

0 : otherwise.
(3.27)

Each of these points violate a suitable CHSH inequality up to its algebraic

maximum 4, and, thus, do not possess a local decomposition (3.12) and,

hence, are nonlocal. All local and nonlocal extremal points can be obtained

from any single one by means of local relabeling of measurements and out-

comes. The nonlocal extremal point for which ↵ = � = � = 0 is known as

PR-box, named after Sandu Popescu and Daniel Rohrlich [38].
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3.6 Quantum correlations

A particular Bell scenario is one where the physical systems shared by the

parties are quantum systems. In this quantum Bell scenario, the parties

perform POVMs on their subsystems, and, in general, the results obtained

will be correlated. The correlations observed on a quantum Bell scenario

will be called quantum correlations.

Consider a bipartite quantum Bell scenario. The set Q of quantum

correlations is defined as the set of points p 2 V for which there exist:

• a quantum state ⇢, acting on an arbitrary Hilbert spaceH = HA⌦HB;

• for every measurement x of party A, a POVM
�
Ea|x

 
, where each

e↵ect is associated with an outcome a;

• for every measurement y of party B, a POVM
�
Fb|y

 
, where each

e↵ect is associated with an outcome b;

such that the components of p are

p(a, b|x, y) = Tr
�
⇢
�
Ea|x ⌦ Fb|y

��
. (3.28)

The set of quantum correlations Q has several interesting properties.

First, Q is strictly contained in the set of no-signalling correlations, Q ⇢ P .

It is easy to note that all quantum correlations respect the no-signalling con-

ditions. The fact that there are points in P that are not in Q is not trivial,

and becomes clear once the Tsirelson bound is introduced. Also, it is a

convex set, but, contrary to L, it has infinitely many extremal points, even

in the simplest Bell scenarios, and is not a polytope. Another interesting

property is that the set of local correlations is contained in the set of quan-

tum correlations. A very important fact is that the L is strictly contained

in Q. This result is known as Bell’s theorem, of which a proof (an example

of quantum nonlocal correlation) is given below.
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3.6.1 Bell’s theorem

Consider the Bell scenario (2, 2, 2). Suppose Alice and Bob share a quantum

system in state ⇢, acting on Hilbert space HA ⌦HB, and perform projec-

tive measurements associated to dichotomic observables - observables whose

spectrum is {±1} - A0 and A1, acting on HA, corresponding to the mea-

surements of Alice, and B0 and B1, acting on HB, corresponding to the

measurements of Bob. Associating the outcomes 0 and 1 with the eigenval-

ues �1 and 1, respectively, of the observables of both Alice and Bob, one

can define the CHSH operator B as

B = A0 ⌦ (B0 +B1) + A1 ⌦ (B0 � B1) , (3.29)

such that, given a state ⇢ acting on HA ⌦HB, the CHSH inequality can be

conveniently written as

S = hBi⇢  2. (3.30)

Now, let Alice and Bob share a two-qubit system in the pure state

| i =
|01i � |10ip

2
, (3.31)

let the observables of Alice be

A0 = �1, A1 = �3; (3.32)

and the observables of Bob be

B0 = � 1p
2
(�1 + �3) , B1 =

1p
2
(�1 � �3) . (3.33)

Then, evaluating the mean value of the CHSH operator one obtains

S =
⌦
 ���B �� �↵ = 2

p
2, (3.34)

thus violating the CHSH inequality, implying that the correlations associ-
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ated to this quantum experiment are not local.

The violation of 2
p
2 obtained in the above example, with a two-qubit

system, is, in fact, the maximum quantum violation of the CHSH inequality

that can be obtained by performing measurements on any quantum system,

of any dimensionality. This statement, and this value, in particular, is

known as Tsirelson’s bound, named after Boris Tsirelson [39]. The proof

that follows is due to [40].

Lemma 1. The CHSH value achieved by quantum correlations is bounded

by SQ  2
p
2.

Proof. Consider the CHSH operator,

B = A0 ⌦ (B0 +B1) + A1 ⌦ (B0 � B1) , (3.35)

where A0, A1, B0 and B1 are dichotomic observables, acting on the local

Hilbert spaces of the bipartite system. The square of this operator can be

written as

B2 = 41+ [A0, A1] [B0, B1] , (3.36)

where [C,D] denotes the commutator of operators C and D. The maximum

norm of the operator, defined as its largest eigenvalue, is bounded, via the

Cauchy-Schwartz inequality, by

��B2
��  4 + |[A0, A1]|⌦ |[B0, B1]| . (3.37)

The maximum quantum violation of the CHSH inequality is given by the

largest eigenvalue of the CHSH operator, which, in its turn, is given by the

square root of the above expression,

|B| 
p

4 + |[A0, A1]| |[B0, B1]|. (3.38)

Since the observables are dichotomic, the norm of the commutator reaches

the maximum value of 2 if, and only if, the observables anti-commute, that
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is, [C,D] = 2CD. It follows, then, Tsirelson’s bound,

SQ  2
p
2. (3.39)

Recall that the PR-box is a no-signalling correlation that violates the

CHSH inequality up to its algebraic limit, 4. This fact, associated to the

Tsirelson’s bound, proves that there are points in P that are not in Q.

An interesting corollary that follows from the proof above is that non-

commutativity of the local observables, in both parties, is a necessary con-

dition for the violation of the CHSH inequality. If any of the doubles com-

mute, the largest eigenvalue of the CHSH operator is upper bounded by

2. Another necessary condition for the violation of the CHSH inequality -

in fact, of any Bell inequality - is entanglement. If the quantum state is

separable, then any correlation obtained by performing measurements on it

will give rise to local correlations.

Consider, for instance, a bipartite separable state ⇢, written as

⇢ =
X

r

q(r)⇢rA ⌦ ⇢rB, (3.40)

where q(r) � 0, for all r,
P

r q(r) = 1, and ⇢rA and ⇢rB are density operators

of subsystems A and B. Let Ea|x and Fb|y be POVM e↵ects associated to

outcomes a, of measurement x, and outcome y, of measurement y, respec-

tively. The joint probabilities of observing such results is given by

p(a, b|x, y) = Tr
�
⇢
�
Ea|x ⌦ Fb|y

��
(3.41a)

= Tr

 
X

r

q(r)⇢rA ⌦ ⇢rB
�
Ea|x ⌦ Fb|y

�
!

(3.41b)

=
X

r

q(r)Tr
�
⇢rAEa|x

�
Tr

�
⇢rB⇧b|y

�
(3.41c)

=
X

r

q(r)pA(a|x)pB(b|y), (3.41d)
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Figure 3.3: Representation of the space of no-signalling correlations. The
local extremal points are denoted L, and the nonlocal one are denoted NL.
The Bell inequalities are facets denoted by dashed lines.

a local probability distribution. This proof can trivially be extended to

multipartite separable states. By inverting the proof above one can easily

build separable states and local measurements that will give a quantum

realization for any local probability distribution, thus proving that the the

set L is indeed contained in Q (fig. 3.3).

3.6.2 Experimental tests of nonlocality

Since the seminal work of Bell, many experiments have been implemented

to demonstrate quantum nonlocality. On the vast majority of these ex-

periments, the predictions of quantum theory were confirmed with great

precision, however, it was not possible, in any of them, to conclude that

the observed correlations are, in fact, nonlocal. The reason lies in the so-

called loopholes, that, in principle, allow for local models to mimic nonlocal

correlations.

There are two main loopholes: the locality loophole and the detection

loophole. The locality loophole is related to the assumption that the mea-

surement events are space-like separated. If this assumption is not satisfied,

it is possible that the parts exchange information during the measurement,

and this is su�cient for nonlocal correlations to be established. There is
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also a free will condition linked to that, since, from definition, the measure-

ment events start with the choice of measurement. So, the measurements

have to be randomly and independently chosen by the parties, otherwise,

if the choices are deterministic, in some sense, this information could be

available, a priori, to the other party, which, in principle, is su�cient to

reproduce nonlocal correlations.

The detection loophole is particularly important in experiments that

involve photon counting. Optical systems are good sources of entangled

states, and for this reason most of the performed experiments are subject

to this loophole. It is based on the assumption that the low e�ciency

of the detectors comes from the fact that the detections are governed by

the hidden variables �. This way, even though the system is classical and

there is a local model for the set of probability distributions that govern

the experiment, only the convenient detections are kept, and this subset

of events may lead to an erroneous estimation of a nonlocal probability

distribution.

The critical detection e�ciency from which it is possible to close the

detection loophole depends on the Bell inequality considered. For the CHSH

inequality, assuming that Alice and Bob perform measurements with the

same detection e�ciency, it is known that the critical value of such is ⌘ �
2/3 [41]. An strategy to overcome such loophole in photonic experiments

is to consider homodyne measurements, which are measurements on the

quadrature variables of the photons that are highly e�cient. Recently,

several experimental proposals have been made, along these lines, with the

goal of closing the detection loophole, even considering hybrid homodyne-

photon counting experiments [42, 43, 44, 45, 46]

The first experimental test of nonlocality was performed by Freedman

and Clauser, on 1972 [47]. Pairs of photons entangled in polarization were

created from cascade electronic transitions in atoms of calcium and sent to

detection. With the obtained data and the computed statistics, a violation

of the CHSH inequality was observed. However, since the choice of mea-

surements was static and the detectors were ine�cient, this experiment was

open to both loopholes.
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Ten years later, Aspect, Dalibard and Roger performed the first exper-

iment where the choice of measurements varied in time, on a try to close

the locality loophole [48]. Opto-acoustical mechanisms simulated random

choices of measurements, performed on photons produced on a calcium

atoms source similar to the one used by Freedman and Clauser. Although

this is considered a seminal experiment, once more reproducing the predic-

tions of quantum mechanics, it is open to both the locality and detection

loopholes, the first due to the quasi-deterministic behavior of the opto-

acoustical mechanisms.

Since 1988, calcium atoms sources were replaced by nonlinear crystals

that, by means of spontaneous parametric down conversion, are able to

produce entangled photons more e�ciently. The first experiments of non-

locality with these sources were performed by Ou and Mandel [49], and,

independently, by Alley and Shih [50], both open to the loopholes of local-

ity and detection.

It is accepted that the locality loophole was closed on 1998, in an ex-

periment performed by Weihs and co-authors [51]. In this experiment, the

measurements were chosen by mechanisms that implemented random and

independent choices. The detection loophole, however, remained a open.

Although a serious problem in photonic experiments, the detection loop-

hole can be easily closed in experiments performed with trapped ions, since

the detection e�ciency of such systems is close to 100%. The experiment

performed by Rowe and co-authors [52], on 2001, closed this loophole. How-

ever, since the ions were separated by few micrometers, the locality loophole

remained open.

Recently, with great technological development of detectors, reports of

photonic experiments claiming to have closed the detection loophole have

appeared [53, 54].
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4

Entanglement and quantum nonlocality

For many decades, since the early years of quantum mechanics, entangle-

ment and nonlocality, even though not formally defined, have been thought

to be similar manifestations of the same quantum phenomenon. However,

on 1989, Reinhardt Werner published a seminal paper [7] where he not only

formalizes the concept of entanglement but also shows that there are en-

tangled states that cannot display nonlocality. This was the first evidence

that these closely related concepts are not equivalent, thus revealing an

interesting relation between them.

This chapter is devoted to the study of the relations between entan-

glement and nonlocality of bipartite quantum states. First, some basic

properties of entanglement are presented. Then, the relation between en-

tanglement and nonlocality is explored three di↵erent scenarios. The first

is the standard Bell scenario, where measurements are performed on single

copies of quantum systems. Some examples of entangled states that can

only display local correlations on such scenarios are presented. The second

scenario is more general than the first, since processing is allowed on mul-

tiple copies of the state before the Bell test is performed. In this scenario,

it is possible to reveal the “hidden” nonlocality of states that are local in

standard Bell scenarios. The third and final scenario allows for multiple

copies of the entangled states to be distributed in multipartite quantum

networks. In this novel scenario, a state that is local on a single copy level

can lead to nonlocal correlations when multiple copies are considered, thus

showing activation of nonlocality.

This chapter is partially based on the results of [55].
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4.1 Entanglement revisited

Entanglement is a concept that is in the core of quantum theory. The non-

classical properties related to this quantum phenomenon have intrigued and

surprised physicists and philosophers since the seminal work of Schrödinger

[6] and the classic Einstein-Podolski-Rosen paper [1]. Despite its fundamen-

tal character, and the deep relation between entanglement and quantum

nonlocality, with the recent advent of quantum information theory entan-

glement became particularly important as a resource for quantum infor-

mation processing tasks, such as quantum teleportation [14] and quantum

key distribution [15]. In this context, it became important to characterize

and quantify this resource e�ciently. In this section, some basic character-

ization criteria and quantification notions will be briefly presented. For a

complete review of the theory of entanglement, refer to [56].

4.1.1 Characterization

A bipartite entangled state is a state of a composite quantum system, acting

on HA ⌦HB, that cannot be written as [7]

⇢ =
X

r

q(r)⇢rA ⌦ ⇢rB, q(r) � 0,
X

r

q(r) = 1, (4.1)

where ⇢rA are states that act on HA and ⇢rB are states that act on HB. This

definition, however, is of little help if one needs to determine if a given state

is entangled or not.

There are, however, several methods that can be applied to this problem

and are computable, for su�ciently simple systems. These are known as

separability criteria.

Entanglement witnesses

The entanglement witnesses [57] constitute an important separability cri-

terion. The key idea behind this criterion follows from a basic property of

the set of separable states: it is convex and closed. The Hahn-Banach theo-
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rem, an important result in convex analysis in finite dimension, guarantees

that, given a closed convex set and a point outside the set, there exists a

functional that separates the point from the set. Applied to the separability

context, this result leads to the following definition of entanglement: a state

⇢ is entangled if, and only if, there is an operator W , acting on the Hilbert

space of the system, such that

Tr (⇢W ) < 0, Tr (�W ) � 0, 8 � 2 S, (4.2)

where S denotes the set of separable states. The operator W is known as

an entanglement witness.

An interesting observation is that Bell inequality operators are examples

of entanglement witnesses [58]. Usually, such witnesses are not optimal [59],

but have the advantage of being device-independent, holding for Hilbert

spaces of any dimension.

The Peres-Horodecki criterion

Now, let ⇢ be the density operator of a quantum system and {|�ii} be an

orthonormal basis of the Hilbert space H. In this base, ⇢ can be written as

⇢ =
X

i,j

⇢i,j |�ii h�j| . (4.3)

The transpose of ⇢, in this basis, is defined as

⇢T =
X

i,j

⇢i,j |�ji h�i| . (4.4)

The transposition of a density operator preserves both of its defining prop-

erties: positivity and normalization. The transpose of a density operator is

a density operator, and, hence, a valid state of the system.

Now, let ⇢ be the state of a bipartite quantum system, associated with

the Hilbert space H = HA ⌦HB. It is possible to define the transposition

operation on a single subsystem; the resulting operators are called partial
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transposes, and are denoted ⇢TA and ⇢TB , respectively, for the subsystems

A and B. Let {|⇠ii} be a basis of HA and {|'µi} be a basis of HB such

that the state ⇢ is written as

⇢ =
X

i,µ,j,⌫

⇢iµ,j⌫ |⇠i 'µi h⇠j '⌫ | ; (4.5)

the latin indices refer to subsystem A and the greek indices to subsystem B.

The partially transposed states of the subsystems are given, in the defined

bases, by

⇢TA =
X

i,µ,j,⌫

⇢iµ,j⌫ |⇠j 'µi h⇠i '⌫ | , (4.6)

⇢TB =
X

i,µ,j,⌫

⇢iµ,j⌫ |⇠i '⌫i h⇠j 'µ| . (4.7)

Although the partial transposition preserves the normalization of the

state, it may not preserve its positivity. However, it is easy to see that

partial transposition preserves the positivity of a whole class of density

operators: the separable states. This is the essence of the Peres criterion

[60]: if the state ⇢ has a negative partial transpose (NPT), i.e., at least one

negative eigenvalue, then it is necessarily entangled.

For systems whose dimension of the Hilbert space is less or equal than

6, the Peres criterion is necessary and su�cient to certify entanglement; in

such systems, only separable states have positive partial transposes (PPT)

[57]. This stronger version of the Peres criterion has been known as the

Peres-Horodecki criterion. For systems whose dimension of the Hilbert

space is greater than 6, there are entangled states whose partial transposes

are positive. These are known as PPT entangled states.

k-extensibility criterion

Separable states have other interesting properties that can be explored as

separability criteria. A particularly important one is that this class of states

admits arbitrary symmetric extensions. Let ⇢AB be the state of a bipartite
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quantum system, associated with Hilbert space HA ⌦ HB. The state ⇢AB

has a (kA, kB) symmetric extension if there is a state ⇢A
1

,...,AkA
;B

1

,...,BkB
,

PPT over every bipartition A ⇥ B - that is, over all bipartitions with iA

subsystems of A and iB subsystems of B, where iA ranges from 1 to kA and

iB from 1 to kB - , and acting on a Hilbert space HA
1

⌦ · · ·⌦HAkA
⌦HB

1

⌦
· · ·⌦HBkB

, such that

⇢AiBj
= TrĀiB̄j

⇣
⇢A

1

,...,AkA
;B

1

,...,BkB

⌘
= ⇢AB, 8 i  kA, j  kB, (4.8)

where Āi denotes the list of all Ak such that k 6= i, and B̄j is similarly

defined.

Let ⇢AB be a bipartite separable state, written as

⇢AB =
X

r

q(r)⇢rA ⌦ ⇢rB, (4.9)

for density operators ⇢rA of subsystem A and ⇢rB of subsystem B. A

(kA, kB) symmetric extension of ⇢AB is trivially given by

⇢A
1

,...,AkA
;B

1

,...,BkB
=
X

r

q(r) (⇢rA)
⌦kA ⌦ (⇢rB)

⌦kB . (4.10)

This construction holds for all kA and kB, and can easily be extended to

multipartite systems. Having a symmetric extension is, thus, a necessary

condition for a state to be separable. It follows that the set of separable

states is contained in all the sets of symmetric extendible states, each of

which defined for particular values of kA and kB. If SkA,kB denotes the set of

(kA, kB) symmetrically extendible states, it holds that SkA,kB � SkA+1,kB+1

for all kA and kB. Thus, each double kA, kB defines a step in a hierarchy

of necessary conditions for separability. In the limit where kB tends to

infinity, it has been proven that the set S1,kB already converges to the set

of separable states [61], and, thus, the condition of having a (1, k ! 1)-

symmetric extension becomes necessary and su�cient for separability.

The task of finding a symmetric extension for a given state ⇢AB and

fixed (kA, kB) is, contrary to the general separability problem, e�ciently
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computable. The reason is it can be formulated as a semidefinite program, a

class of convex optimization problems for which there are powerful methods

and techniques available [62].

4.1.2 Quantification

Entangled states are defined as the states that cannot be prepared by means

of local preparations, even with the aid of classical communication that

could possibly correlate the states of the parts. In this sense, entangle-

ment can be seen as genuine quantum correlations between the systems,

apart from the classical correlations that can be created by means of this

mechanism. In general, it is understood that entanglement cannot be cre-

ated, or increased, by means of local operations and classical communica-

tion (LOCC). These operations include correlated local unitaries, addition

of ancillary systems and discard of subsystems. The entanglement of a state

can be quantified via functions known as entanglement monotones [63, 64].

An entanglement monotone is a function E (⇢) that does not increase, on

average, under LOCC.

A maximally entangled state is a bipartite pure state | di 2 Hd ⌦ Hd

defined via its Schmidt decomposition,

| di ⌘ 1p
d

d�1X

i=0

|iii . (4.11)

This definition encompasses the fact that entanglement does not change

under local unitary operations; thus, every state of the form

| i = (UA ⌦ UB) | di (4.12)

is maximally entangled.

The singlet fraction, or singlet fidelity, of a state, denoted f (⇢), is defined

as the maximum projection probability of the state ⇢ over all maximally
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entangled states of the Hilbert space where ⇢ acts,

f (⇢) = max| i2{| di}Tr (⇢ | i h |) , (4.13)

where {| di} is the set of maximally entangled states in Hd ⌦ Hd. This

quantity is important in many applications inside the quantum information

theory, in particular it bounds the fidelity of teleportation if the state ⇢ is

used as a quantum channel [65].

LOCC cannot increase, on average, the entanglement of a given state,

but can be used to dilute the entanglement of a quantum state into several

copies of a second state, less entangled. Conversely, this class of operations

can be used to concentrate the entanglement of several copies of a given

state into copies of second state, more entangled.

Related to the first process is a quantifier known as cost of entanglement

[66]. If there is a LOCC process ⇤LOCC that transforms m copies of a

two-qubit maximally entangled state1 into n copies of a state ⇢, the ratio

m/n, in the limit where n ! 1, gives an upper bound on the investment

necessary, in terms of entanglement, to create the n copies of ⇢. The cost of

entanglement EC is defined as the infimum of this quantify over all possible

LOCC protocols,

EC (⇢) = inf⇤LOCC
limn!1

m

n
. (4.14)

The distillable entanglement [64, 67], on the other hand, is related to

the number of copies m of two-qubit maximally entangled states that can

be obtained, by means of LOCC, from n copies of the given quantum state

⇢, in the limit where m ! 1. It is defined as

ED (⇢) = sup⇤LOCC
limm!1sup

n

m
. (4.15)

In general, these two quantities are not equivalent, and EC � ED. The

reason is that there are entangled states that cannot be distilled by means

of LOCC, a property known as bound entanglement. It is known that this

1Maximally entangled states of systems composed of two-qubits are usually regarded
as units of entanglement, known as e-bits.
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is the case of all PPT entangled states [68], but it is still an open question

if there are NPT states with this property.

The singlet fidelity, defined above, gives a su�cient criterion for distil-

lability. Every state ⇢, acting on Hd ⌦ Hd, for which f (⇢) > 1/d can be

distilled [65].

4.2 Standard Bell scenarios

In this section the focus is turned into the relation between entanglement

and quantum nonlocal correlations. First, standard Bell scenarios are con-

sidered. In such scenarios, measurements are performed on single copies of

the states, and no processing of the systems is allowed before the measure-

ments are performed.

It is remarkable that, in standard Bell scenarios, even though every

entangled pure state display some nonlocality, this equivalence does not

hold for more general, mixed states. The first result is referred to as Gisin’s

theorem. The statement and proof of this important result is presented

below, followed by examples of entangled states that can only lead to local

correlations. These states are said local states. Entangled states that can

display nonlocal correlations in standard Bell scenarios are said nonlocal

states.

4.2.1 Gisin’s theorem

Theorem 1. Every entangled pure state is nonlocal.

Proof. The proof of the theorem can be divided in two parts: the first, valid

for bipartite systems, is due to Nicholas Gisin [8]; the second, the extension

to multipartite systems, is due to Sandu Popescu and Daniel Rohrlich [9].

First, consider bipartite systems, and let | i be a pure state in Hd⌦Hd.

Due to the Schmidt decomposition, there are local orthonormal bases in HA
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and HB such that | i can be written as

| i =
d�1X

i=0

�i |iii , � � 0,
X

i

�2i = 1. (4.16)

If | i is entangled, then at least two coe�cients are nonzero. Assume that

�0,�1 6= 0. Then, the state | i can be written as

| i =
q
�20 + �21 | 0i+

q
1� �20 � �21 | 0

?i , (4.17)

with

| 0i = �0 |00i+ �1 |11ip
�20 + �21

, | 0
?i =

Pd�1
i=2 |iiip

1� �20 � �21
, (4.18)

where | 0i is a two-qubit state.

Now, let Alice and Bob perform measurements of the form Ai = A0
i � 1

and B0
j = Bj � 1, for i, j 2 {0, 1}, where � denotes direct sum, A0

i and

B0
j are dichotomic observables acting on the subspace spanned by the vec-

tors {|0i , |1i}, and 1 is the identity operator on the subspace spanned by

{|2i , . . . , |d� 1i}. By optimizing over the observables A0
i, B

0
j, the state

| 0i violates the CHSH inequality up to the value 2
p
1 + sin2 (2'), where

tan (�) = �0/�1 (see appendix for details). Because of the trivial measure-

ments performed on its subspace, the state | 0
?i does not violate the CHSH

inequality, but returns the limiting local value of 2. At the end, the CHSH

value of the state | i is given by the convex combination

S = q

✓
2
q

1 + sin2 (')

◆
+ 2 (1� q) ; (4.19)

this value is always greater than 2, thus proving that every pure bipartite

entangled state | i is nonlocal.
The proof for multipartite systems is slightly more intricate. The results

that lead to the desired proof can be summarized in the following two

lemmas (proved in the appendix):
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Lemma 2 (Popescu-Rohrlich 1 [69]). For every entangled state | i of an

n-partite quantum system, associated with H = ⌦n
i=1Hi, and for any two

parties there exists a projection onto a direct product state of the remaining

(n� 2)-parties such that the resulting bipartite state is entangled.

Lemma 3 (Popescu-Rohrlich 2 [69]). Let ⇢ be a n-partite quantum state. If

there are measurements on k parties such that, for a particular collection of

outcomes, the resulting (n� k)-partite state is nonlocal, then ⇢ is nonlocal.

Thus, according to the first lemma, given any pure n-partite entangled

state | i, it is possible to obtain, by means of local projections on (n� 2)

parties, a bipartite pure entangled state, say |�i. By the bipartite version

of Gisin’s theorem, |�i is nonlocal, which, according to the second lemma,

is a su�cient condition for | i to be nonlocal. This proves that any pure

entangled state is nonlocal.

4.2.2 Local entangled states

Werner states

Werner states, denoted ⇢W , are states of bipartite systems, associated to

Hilbert spaces Hd
A ⌦Hd

B, that are invariant under all unitary operations of

the form U ⌦ U ,

⇢W = (U ⌦ U) ⇢W
�
U † ⌦ U †� . (4.20)

They can be written as a convex combination of the (properly normalized)

projectors over the symmetric and antisymmetric subspaces of the Hilbert

space, ⇧s and ⇧a, respectively,

⇢W = ps
2⇧s

d2 + d
+ (1� ps)

2⇧a

d2 � d
, (4.21)

where ps is the only parameter that defines a state in this family. Werner

states are entangled if, and only if, ps < 1/2 [7].
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Particularly important are the two-qubit Werner states. They can be

written as

⇢w = w
�� �↵ ⌦ ���+ (1� w)

1

4
, (4.22)

where | �i is the singlet state,

�� �↵ = 1p
2
(|01i � |10i) . (4.23)

The parameter w is related to ps by

w = 1� 4

3
ps, (4.24)

which implies �1/3  w  1. For w � 0, the Werner state is a convex

combination of the singlet state and the maximally mixed state; throughout

the text, the focus will be on this special region. Also, the term Werner

states will refer to two-qubit Werner states, unless otherwise stated.

From the original proof of Werner - and from the Peres-Horodecki cri-

terion -, Werner states are entangled if, and only if, w > 1/3. Also, these

states violate the CHSH inequality if, and only if, w > 1/
p
2 (details in the

appendix), which gives an upper bound on the parameter region for which

⇢w is nonlocal2.

Interestingly, there are Werner states that, despite being entangled, give

rise to local correlations in any Bell scenario where projective measurements

are performed. The local model of Werner [7] holds for every Werner state

for which ps � (d+ 1) /2d2, and was the first evidence that entanglement

and nonlocality are not equivalent concepts. A simple local model for two-

qubit Werner states is presented below. Werner’s local model, in such

systems, holds for every state for which w  1/2.

First, note that it su�ces to construct a local model for w = 1/2,

since, due to convexity, the local models for w  1/2 can be obtained from

2To be precise, this upper bound has been slightly lowered in [70], where it has been
shown that there is a Bell inequality, in a scenario where each party performs hundreds
of measurements, that is violated for w & 0.705.
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the model for w = 1/2 by mixing the probabilities obtained with uniform

probabilities. Suppose Alice and Bob perform projective measurements as-

sociated with dichotomic observables Ax = ~x ·~� and By = ~y ·~�, respectively,
where ~x and ~y are unit vectors in R3 and ~� is a vector of Pauli matrices.

The probabilities of obtaining outcomes a and b are given by

p(a, b|x, y) =
1

4
(1� w a b ~x · ~y) , (4.25)

where it is assumed that a, b 2 {±1}. Assume that, in each run, Alice

and Bob have access to a pre-shared local variable ~�, a unit vector drawn

uniformly from the unit sphere. The output of Alice’s measurement x is

randomly returned with probability

pA(a|x,~�) =
1

2

⇣
1 + a~x · ~�

⌘
. (4.26)

The output of Bob’s measurement y, in its turn, is fixed and given by

b = �sign
⇣
~y · ~�

⌘
, (4.27)

where

sign (z) =

(
�1 if z  0

1 if z > 0
(4.28)

The joint probability distribution of outcomes a and b = 1 is given by

p(a, 1|x, y) =

Z

S2

q(~�)pA(a|x,~�)�(~y·~�)0d
~� (4.29a)

=
1

4
+

a

2

Z

(~y·~�)0

q(~�)~x · ~�d~� (4.29b)

=
1

4

✓
1� a ~x · ~y

2

◆
. (4.29c)

An analogous calculation gives the joint probability distribution of outcomes
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a and b = �1:

p(a,�1|x, y) =
1

4

✓
1 +

a ~x · ~y
2

◆
, (4.30)

thus reproducing the predictions of quantum mechanics for all possible ob-

servables A~x and B~y.

It is worth mentioning that, on 2002, Jonathan Barrett developed a

local model for Werner states that is valid for the more general POVM

measurements [71]. Barrett’s model holds for w  5/12, for Werner states

of any local dimension. On the same paper, a second very interesting result

is proved, stated here without proof: if a state ⇢0 can be deterministically

obtained from ⇢ by means of local operations without classical communica-

tion, then any local model for the correlations of ⇢ implies the existence of

a local model for the correlations of ⇢0.

Isotropic states

Isotropic states, denoted ⇢iso, are states of bipartite systems, associated

with Hilbert spaces Hd ⌦ Hd, which are invariant under unitaries of the

form U ⌦ U⇤. Similarly to Werner states, they constitute a one-parameter

family of states that can be written as

⇢iso = q | di h d|+ (1� q)
1

d2
, (4.31)

where �1/ (d2 � 1)  q  1 and | di is the maximally entangled state.

As for the case of Werner states, the region where q � 0 will be specially

considered.

Isotropic states are separable if, and only if, q  1/ (1 + d) [65]. For q >

1/ (1 + d), the isotropic states are not only entangled but also distillable,

since the singlet fidelity, in this region, is greater than 1/d. Regarding

their locality properties, the isotropic states are known to be nonlocal, via

violation of the CGLMP inequality, for q & 0.69 for d = 3, and q & 0.67

in the limit d ! 1; the critical values of q decrease as the d increases, so

these values are upper and lower bounds for all dimensions [36].
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Again, due to their similarity with Werner states, the family of isotropic

states is one of the few examples of entangled states for which there are

known local models. The local model for isotropic states presented in [72]

is similar to the one presented by Werner [7], and holds for all projective

measurements. The values of the relative weight q for which the the local

model is valid are

q  1

d� 1

 
�1 +

dX

k=1

1

k

!
. (4.32)

In the limit when d ! 1, the critical value tends to log (d) /d, which is

asymptotically log (d) larger than the separability critical value, 1/ (1 + d).

States with a symmetric quasiextension

There is a very interesting result stating that any state that has a symmetric

extension is local in a wide range of Bell scenarios. It can formally stated

as the following theorem [73]:

Theorem 2. Let ⇢AB be a bipartite quantum state that admits a (1, k)-

symmetric extension. Then, there are local models for the correlations ob-

tained from ⇢AB for all Bell scenarios where Bob has, at most, k mea-

surement settings. In any of these scenarios, the number of measurement

settings of Alice is arbitrary.

Proof. The proof makes use of the following result, referred here as Fine’s

lemma (details in the appendix).

Lemma 4 (Fine [31]). Consider a bipartite Bell scenario where Alice and

Bob can perform mA and mB measurements, respectively, and let xi denote

the i-th measurement of Alice, x = i, and ai denote its outcome. Similarly,

let yj denote the j-th measurement of Bob, y = j, and bj denote its out-

come. Also, let ~am denote the string a0, . . . , am�1, and similarly for b, x

and y. A probability distribution p(a, b|x, y) is local if, and only if, there

is a joint probability distribution for the outcomes of all measurements of
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Alice and Bob, p(~amA
;~bmB

|~xmA
; ~ymB

), whose marginals are consistent with

the distribution p(a, b|x, y).
Let ⇢AB have a (1, k)-symmetric extension, and consider a scenario

where Alice can perform m measurements on her subsystem and Bob can

perform k measurements on his subsystem. Define

p(a,~bk|x, ~yk) = Tr
��
⇧a|x ⌦ ⇧b

0

|y
0

⌦ · · ·⌦ ⇧bk�1

|yk�1

�
⇢A;B

0

,...Bk�1

�
. (4.33)

It follows that there is a well defined joint probability distribution for the

measurements in subsystem B, given by

p(~bk|~yk) = Tr
��
⇧b

0

|y
0

⌦ · · ·⌦ ⇧bk�1

|yk�1

�
⇢B

0

,...Bk�1

�
, (4.34)

where ⇢B
0

,...Bk�1

= TrA
�
⇢A;B

0

,...Bk�1

�
. It is possible, then, to define a joint

probability distribution for all the measurements of the experiment,

p(~am;~bk|~xm; ~yk) =
p(a1;~bk|x1; ~yk) . . . p(am;~bk|xm, ~yk)h

p(~bk|~yk)
im

� 1
. (4.35)

The above distribution returns the correct marginals for the bipartite prob-

abilities, and, from Fine’s lemma, ⇢AB is local for any scenario where Bob

performs at most k measurements.

One example of a k-symmetrically extendible state is the erased state,

⇢era =
1

k
| 2i h 2|+

✓
1� 1

k

◆
1

2
⌦ |2i h2| , (4.36)

where | 2i is the two-qubit maximally entangled state, and |2i is a state

orthogonal to | i. This can be viewed as a state of a qubit-qutrit3, system,

the result from sending one part of a maximally entangled state through

an erasure channel, that, with probability 1/k, leaves the state untouched

but, with the complementary probability, ‘erases’ the information of the

3A qutrit is a quantum system associated to the Hilbert space H3 = C3.
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respective subsystem, creating the ‘flag’ state |2i to indicate erasure has

taken place [74].

4.3 Sequential measurements scenarios

In this section, a scenario more general than the standard Bell scenario is

introduced. In this new scenario, measurements on multiple copies of the

state are allowed, and the system may undergo local processing prior to the

measurement. This pre-processing can be composed of LOCC followed by

a preliminary measurement, of which the performance of the following Bell

test can conditioned on the results obtained. In this sense, these operations

are usually referred as local filtering.

The advantage of considering these sequential measurement scenarios is

that states that are local in standard Bell scenarios may display some non-

locality after undergoing local filtering, thus revealing the “hidden” nonlo-

cality in the state.

4.3.1 Hidden nonlocality of Werner states

The first protocol to reveal hidden nonlocality of a state is due to Popescu

[10], and holds for Werner states of local dimension d � 5. First, note

that the Werner state with ps = (d+ 1) /2d2, for which the local model of

Werner applies, can be written as

⇢W =
1

d2

0

@2
d�1X

i,j=0|i<j

�� �
ij

↵ ⌦
 �
ij

��+ 1

d

1

A , (4.37)

where
�� �

ij

↵
= (|iji � |jii) /p2. The protocol works as follows. In the

first step, Alice and Bob perform projective measurements ⇧a|0 and ⇧b|0,

respectively, where

⇧0|0 = |0i h0|+ |1i h1| , ⇧1|0 = 1� ⇧0|0. (4.38)

54



If they obtain outcomes a = 0 and b = 0, the post-measurement state is

given by

⇢0 =
2d

2d+ 4

✓�� �
01

↵ ⌦
 �
01

��+ 1

2d

◆
. (4.39)

The parties, then, proceed to perform suitable measurements on this state

and evaluate the CHSH inequality. The optimal value is

S =
2d

2d+ 4
2
p
2, (4.40)

which is greater than 2 - thus, violating the CHSH inequality - for d � 5.

The filtering, that is, the first measurement performed by the parties,

divides the collected data into four distinct sub-ensemble, denoted (a, b).

According to the protocol, nonlocal correlations are observed in the sub-

ensemble (0, 0), but it could be the case, however, that the probability

distributions of the remaining sub-ensemble are local, in a way that the

probability distribution of the whole ensemble is also local. The assump-

tion made by Popescu is that this cannot be the case; if the probability

distribution of the whole experiment is local, then the probabilities of all

its sub-ensemble, defined by the local filtering, are necessarily local. This

is indeed the case, as has been proven in [75].

A second protocol that reveals nonlocality of Werner states is due to

Peres [11]. Instead of considering local filtering in single copies of Werner

states, many copies of two-qubit Werner states were considered, and it

was shown that, by applying suitable filtering operations, it is possible to

observe a violation of the CHSH inequality already for 5 copies of the local

w = 1/2 Werner states.

4.3.2 Assisted revelation of nonlocality

The most general preprocessing procedure consists of stochastic local op-

erations and classical communication (SLOCC), that is, LOCC protocols

that fail with some probability. In the first of a series of very interesting
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papers, Lluis Masanes showed that, in what regards nonlocality and hidden

nonlocality, stochastic local operations without communication (SLO) and

deterministic LOCC are fully general, assuming that the processing is per-

formed before the measurement events take place, that is, before the parties

choose which measurements to perform. The main result of the first work

[76], however, is the following theorem, that links distillability with hidden

nonlocality in the (2, 2, 2) Bell scenario:

Theorem 3. A bipartite state ⇢ is distillable if, and only if, there exists a

positive integer m and a SLO map ⇤ such that ⇤ (⇢⌦m) violates the CHSH

inequality.

The papers that followed [77, 78], presented, first, the bipartite, and,

then, the multipartite results that show that, in some sense, all entangled

states present some hidden nonlocality. This hidden nonlocality, however,

require some assistance to be revealed. Define CCHSH
12 as the set of n-partite

states that do not violate the CHSH inequality between parties 1 and 2 even

after n-partite stochastic local operations without communication. The

main result can be summarized in the following theorem:

Theorem 4. A state ⇢ is entangled if, and only if, there exists a state

� 2 CCHSH
12 such that ⇢⌦ � is not in CCHSH

12 .

4.4 Multipartite network scenarios

This section presents a novel approach for the study of the nonlocal prop-

erties of entangled states. Contrary to the previously presented scenarios,

here the measurements can be performed on several copies of the states dis-

tributed in multipartite settings. Once again, the main advantage is that

entangled states that can only lead to local correlations in standard Bell

scenarios can display nonlocality in these network scenarios.
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4.4.1 Nonlocal resources

A state ⇢ is defined as a nonlocal resource if there exists a positive number

m and a Bell scenario where ⇢⌦m is nonlocal. If, in a given scenario, a local

state ⇢ is proven to be a nonlocal resource, it said that the nonlocality of

the state has been activated.

The main tool used to reveal nonlocal resources is a previously stated

lemma, by Popescu. It states that, given a n-partite state ⇢, if there are

measurements on k parties such that, for a particular collection of outcomes,

the resulting (n� k)-partite state is nonlocal, then ⇢ is nonlocal. If this

condition holds, then ⇢ is a nonlocal resource.

In the following section, some examples of nonlocal resources are pre-

sented. They are collected from the papers [12, 79], and [55], co-authored

by the author of this thesis.

4.4.2 Revealing nonlocal resources

One-way distillable states

As observed by Daniel Cavalcanti and co-authors [12], every one-way dis-

tillable state is a nonlocal resource. One-way distillable states are bipartite

entangled states whose entanglement can be distilled by protocols where

one-way classical communication is su�cient. Such protocols can be for-

mulated as follows: Alice performs a joint measurement on her subsystems

and communicates the obtained outcome to Bob, who, thus, performs suit-

able operations on his subsystems and, then, performs a joint measurement.

In the limit of infinitely many copies, the parties end up sharing a maximally

entangled state. In general, there is one outcome of Alice’s measurement

for which Bob does not have to apply any correcting operation on his sub-

systems, and this is a crucial property of this class of protocols for the

approach here presented.

Let ⇢ be a one-way distillable state. To show that it is a nonlocal re-

source, consider a tripartite scenario, where Charlie, in the center, shares

m copies of ⇢ with Alice, ⇢⌦m
AC , and m other copies with Bob, ⇢⌦m

BC . Since
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⇢ is one-way distillable, there are outcomes of measurements performed by

Charlie on his two collections of subsystems such that he ends up sharing

states arbitrarily close to maximally entangled states with both Alice and

Bob. Charlie, then, projects his subsystems onto a maximally entangled

state, an operation which, if successful, results on Alice and Bob sharing a

maximally entangled state. Note that the whole procedure applied by Char-

lie can be seen as a single measurement, for which there exists an outcome

such that the remaining state of Alice and Bob is maximally entangled,

thus, nonlocal. It follows from the lemma that ⇢ is a nonlocal resource.

There is a condition known as hashing inequality that is su�cient to

certify one-way distillable entanglement [80]. The inequality reads:

max [S (⇢A) , S (⇢B)] > S (⇢AB) , (4.41)

where S (⇢) = �Tr (⇢log (⇢)) is the von Neumann entropy of ⇢. In words, if

the von Neumann entropy of any of the reduced states of ⇢ is greater than

the entropy of ⇢ itself, than ⇢ is one-way distillable.

Isotropic states

The isotropic states configure one of the most interesting cases of activation

of nonlocality. In what follows, two schemes that show the nonlocal resource

character of isotropic states are presented: the first, weaker, was introduced

in [55]; the second, more general, was presented in [79], and proves that ev-

ery entangled isotropic state is a nonlocal resource, thus showing activation

of nonlocality for such states.

The first scheme relies on the fact that there exist Bell inequalities and

bipartite states |�i in Hd ⌦ Hd that give rise to probability distributions

p|�i that achieve unbounded violations of such inequalities, with respect to

d [81, 82]. The maximum violation of a probability distribution p, in this

context, is quantified by the following quantity,

⌫ (p) = supB
|SB (p)|

suppL2L |SB (pL)|
, (4.42)
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where SB (p) denotes the value of Bell inequality B achieved by the proba-

bility distribution p, L denotes the set of local correlations and the suprema

are taken over all Bell inequalities of the given Bell scenario.

The unbounded character of the violation implies that probability dis-

tributions of the form

p = qp|�i + (1� q)pL (4.43)

are nonlocal for q > qc, where qc is a critical weight that tends to zero, with

increasing d, at the same asymptotic rate as ⌫
�
p|�i

�
tends to infinity.

Consider a tripartite scenario, where Charlie, in the center, shares a

copy of an isotropic state with Alice and a copy of a second isotropic state

with Bob. He then performs a generalized measurement on his subsystems

that consists of preparing state |�i and teleporting its components to Alice

and Bob, using the isotropic states as channels. According to the telepor-

tation protocol, there is one outcome of Charlie’s measurement for which

the resulting state of Alice and Bob will be

⇢ = q2 |�i h�|+ q (1� q) �A ⌦ 1

d
+

q (1� q)
1

d
⌦ �B + (1� q)2

1⌦ 1

d2
, (4.44)

where �A and �B are the reduced states of |�i. Then, by performing ap-

propriate measurements, related to the inequality B that is unboundedly

violated, Alice and Bob obtain a joint probability distribution of the form

p = q2p|�i +
�
1� q2

�
pL. (4.45)

This probability distribution is nonlocal for q2 > qc; the critical value qc, in

the limit d ! 1, scales as [82]

qc = O

✓
log (d)p

d

◆
. (4.46)
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Thus, isotropic states are nonlocal resources for

q > O

 p
log (d)

d1/4

!
, (4.47)

tending to zero as d tends to infinity. In fact, the above bound holds not

only for isotropic states but for all states of the form

⇢ = q | di h d|+ (1� q) �L, (4.48)

where �L is a bipartite local state.

The second scheme, like the first, makes use of unbounded violations of

Bell inequalities. In this case, however, the protocol relies on the more re-

cent results presented in [83], where is shown that the maximally entangled

state | dimay lead to unbounded violations of the Khot-Visnoi inequalities.

The violations are of order

⌫
�
p| di

�
< d

(log (d))2
, (4.49)

where < denotes inequality up to a constant that does not depend on d.

The scenario is the following. Suppose Alice and Bob share k copies of an

isotropic state, ⇢⌦k
iso , which can be written as

⇢⌦k
iso = fk | di h d|⌦k + · · ·+ (1� f)k

(1� | di h d|)⌦k

(d2 � 1)k
, (4.50)

where, for convenience, the isotropic states are parametrized by their sin-

glet fidelity f . Note that many copies of a maximally entangled state are

equivalent to a maximally entangled state of higher local dimension, that

is, | di⌦k = | dki. Then, the state can be re-written as

⇢⌦k
iso = fk | dki h dk |+ · · ·+ (1� f)k

1� | di h d|⌦k

(d2 � 1)k
. (4.51)

By performing suitable measurements and evaluating the Khot-Visnoi in-
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equality, the parties obtain, at least, a value of order

⌫
⇣
p⇢⌦k

iso

⌘
< fk dk

(klog (d))2
, (4.52)

since only the contribution of the maximally entangled term is considered.

Thus, if f > 1/d, there will be a number k0 for which ⌫
⇣
p
⇢⌦k0
iso

⌘
> 1,

thus implying that ⇢iso is a nonlocal resource. Since f = 1/d is exactly the

separability bound of isotropic states, the conclusion is that every entangled

isotropic state is a nonlocal resource.

States useful for teleportation

It is a well known result in quantum information theory that having a singlet

fidelity f > 1/d is a necessary and su�cient condition for a state ⇢, acting

on Hd ⌦Hd, to provide a quantum gain in the teleportation protocol [65].

It turns out that every state that is useful for teleportation is a nonlocal

resource [79].

The demonstration follows directly from the fact that every entangled

isotropic state is a nonlocal resource. The reason being that any quantum

state ⇢ can be transformed into an isotropic state by LOCC, given by the

twirling procedure:

⇢iso =

Z
(U ⌦ U⇤) ⇢ (U ⌦ U⇤)† dU, (4.53)

where dU denotes the Haar measure. By noting that the twirling does not

change the singlet fidelity of the state, and that the unitaries can be ab-

sorbed in the local measurements performed by the parties, this procedure

implies that any state ⇢ violates the Khot-Visnoi inequality by the same

amount as the isotropic state of same singlet fidelity.

Erased states

Other interesting examples of nonlocal resources are erased states, since

they are local in a wide range of Bell scenarios and activation of nonlocality
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Figure 4.1: Measurement schemes of activation of nonlocality. a) One-way
entanglement distillable states. First, Charlie performs one-way distillation
on his subsystems, and ends up sharing maximally entangled states with
Alice and Bob. Charlie, then, swaps the entanglement of his systems, thus
resulting in Alice and Bob sharing a maximally entangled state. b) Isotropic
states. Charlie sends the the “unbounded violation” state |�i to Alice
and Bob, using the isotropic states as channels. Alice and Bob end up
sharing a noisy version of |�i, which is a function of the isotropic states,
and is nonlocal for parameter regions where the isotropic states are local. c)
“Erased” states. Charlie projects his subsystems into suitable subspaces. If
he succeeds, he ends up sharing maximally entangled states with Alice and
Bob. He then performs an entanglement swap and Alice and Bob end up
sharing a maximally entangled state. In all the protocol the measurement
procedures can be seen as a single measurement.
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can be showed. The protocol that reveals the nonlocality of erased states

is given in [55] and works as the following. Consider a tripartite scenario,

where Charlie, at the center, shares a copy of an erased state with Alice

and a second copy with Bob, and assume that he holds the qutrit sub-

systems. Charlie, then, performs a generalized measurement, consisting,

first, of projective measurements that indicate if the flag states |2i were

created. If negative results are obtained, both erased states are projected

into maximally entangled states, and Charlie performs, on his subsystems,

a projection in to a maximally entangled state, an operation which, if suc-

cessful, results on Alice and Bob sharing a maximally entangled state. It is

worth reiterating that the whole procedure applied by Charlie can be seen

as a single measurement for which there is an outcome that projects the

state of Alice and Bob in to a maximally entangled state. The protocol is

valid for all k, implying that all erased states are nonlocal resources, whose

nonlocality can be activated in a very simple two-copy, tripartite scenario.

Two-qubit states

A result presented in [12] reveals, by means of numerical tools, that there

are two-qubit states that do not violate the CHSH inequality but are nonlo-

cal resources, nonetheless. The algorithm works as follows. First, a random

two-qubit density matrix is drawn according to the Hilbert-Schmidt mea-

sure [84]. Then, the necessary and su�cient criterion for violation of the

CHSH inequality, proposed in [57], is checked. If the state does not vio-

late the CHSH inequality, the su�cient criterion for one-way distillability

is checked: if it is satisfied, the state is indeed a nonlocal resource, even

though it does not violate the CHSH inequality. Of 106 random states,

about 99.1% happened not to violate the CHSH inequality. Among these,

0.08% are one-way entanglement distillable, and, thus, nonlocal resources.
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5

Device-independent protocols

With the development of quantum information theory, the formalism of

nonlocality theory has been identified as an important tool, capable of cer-

tifying security and privacy of quantum cryptographic protocols, even in

the most paranoid scenarios, due to its device-independent properties.

This formalism was soon extended to encompass di↵erent applied pro-

tocols, like randomness amplification, and adapted to more fundamental

tasks, like state and entanglement estimation, and assessment of the di-

mension of physical systems. The ideas of device-independence became,

themselves, independent of the nonlocality-based formalism, and di↵erent

approaches were developed, like the self-testing methodology.

This chapter superficially presents some of the main device-independent

protocols and tools used within the device-independent formalism.

5.1 Cryptography

Cryptography is the science and practice of hiding, transmitting and re-

trieving information privately and securely. On its grounds, lies the most

studied and developed application of quantum information theory: quan-

tum cryptography.

The main task of quantum cryptography is quantum key distribution

(QKD). In an important class of cryptographic protocols, two parties in-

terested in stablishing a secure communication channel must share cryp-

tographic keys - collections of correlated random bits. One of the parties,

say, Alice, uses its key to code the message she wants to transmit, in a way
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that only Bob, who holds a corresponding key, can decode it. The coded

message can, then, be sent through a public channel, since any third party,

usually referred as Eve, possibly malevolent, will not be able to retrieve

any information from the intercepted message. The only di�culty in such

private key protocols is the first stage: key distribution. Eve focuses her

e↵orts on this stage, with the hope of retrieving information about the keys.

The main advantage of using quantum systems for key distribution is

that, in general, interventions of Eve during the key distribution process

may damage the key, and, this way, may be detected by Alice and Bob a

posteriori. This property allows them to distinguish between secure and

nonsecure keys, and use only those that are provably trustable.

The first QKD protocol was created by Charles Bennett and Giles Bras-

sard, in 1984, and became known as BB84 [13]. This protocol works as

follows. In each round, Alice prepares a qubit system in one of the states�� a|x
↵

�� 0|0
↵
= |0i , �� 0|1

↵
=

1p
2
(|0i+ |1i) , (5.1)

�� 1|0
↵
= |1i , �� 1|1

↵
=

1p
2
(|0i � |1i) , (5.2)

where a represents the state of basis x that Alice is preparing. She sends

it to Bob, who, then, performs a randomly chosen projective measurement

y on the system, each of which has outcomes b associated to the projectors

⇧b|y =
�� b|y

↵ ⌦
 b|y

��. At the end of N iterations, Alice has two lists of bits,

{ai}Ni=1 and {xi}Ni=1, while Bob has the lists {bi}Ni=1 and {yi}Ni=1. Now, Alice

and Bob broadcast their lists of basis choices, x and y. For the entries i such

that xi = yi, the values of a and b are supposed to be correlated, ai = bi,

so, they keep those entries as the raw key and discard the remaining ones,

for which the probability of correlation is 1/2.

The security of this protocol relies on the fact that Eve cannot intercept

the qubits, copy their information and resend them to Bob, due to the

no-cloning theorem [26]. Eve, however, could intercept and measure the

qubits, preparing di↵erent systems to send to Bob. This intervention would
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destroy the perfect correlation between the bit strings of Alice and Bob,

though, and by sacrificing a small sample of the key they could estimate

how much of this correlation was destroyed and detect the eavesdropper on

the line.

In fact, the strict security of this protocol relies on a few more as-

sumptions, that may seen natural to assume, in principle, but are crucially

delicate in real-world implementations. The first is freedom of choice and

secrecy of the measurement settings x and y. The second, more obvious, is

privacy of the outcomes a and b. So, there can be no leakage of informa-

tion from any of the legit parties. There is, however, a third assumption,

namely, that Alice and Bob have full control over their systems and the

devices used to prepare and measure them.

In real-world implementations of cryptography, the devices are usually

not developed by the end-users, but bought from a third party. The inner

mechanics of such devices are, in general, not accessible, so the end-user

does not have control over the systems or the measurements that are being

implemented. If, for instance, the provider of the devices is Eve, she can

easily obtain full information about the key while reproducing the perfect

correlations expected by Alice and Bob [16].

This simple example highlights the importance of the device-independent

approach in quantum cryptography. The first ideas of what would become

device-independent QKD can be traced back to Artur Ekert’s seminal pa-

per [15], where an entanglement based QKD protocol makes use of Bell

inequality violations to certify that the key could not be determined prior

to measurement. Later, a similar, however more general and formal ar-

guments were used by Barrett, Hardy and Kent [85] to prove security of

QKD based on the observation of nonlocal correlations by the legit par-

ties. Although the protocol is secure against the most general attacks, it

holds only for an ideal noiseless scenario. The BHK protocol was, then,

considered under more realistic scenarios, and security proofs against more

restricted eavesdroppers were developed [86, 87, 16]. Later, other protocols

were shown to be unconditionally secure [88, 89, 90, 91].
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5.2 Randomness expansion and

amplification

An interesting feature of nonlocality is the intrinsic randomness of the out-

comes obtained in a Bell experiment. In fact, there are local correlations

that appear locally random, but this can be seen as the result of lack of

knowledge about the system; since the correlations are local, at least in

principle it could be possible to predict the outcomes of the measurements

if the hidden variables are known.

However, if a violation of a Bell inequality is observed, then the correla-

tions are necessarily nonlocal and the observed randomness of the outcomes

must be intrinsic, and not due to any lack of knowledge. This observation

led to an interesting application of the device-independent formalism: ran-

domness expansion. In this class of protocols, a Bell test is performed and

the local outcomes can be certified to be random if a violation of the inequal-

ity is observed. Because this process already requires some randomness a

priori, in the form of the choices of measurements performed by Alice and

Bob, that must be already random, this protocol does not create better ran-

dom bits, but more random bits - in fact, there is up to an exponential gain

- , with the advantage inherited from QKD protocols that the new random

bits are also private.

An example of randomness expansion protocol is presented by Stefano

Pironio et al., in [17]. The authors consider a Bell experiment where the

CHSH inequality is evaluated, and compute the minimum amount of ran-

domness - quantified by the largest min-entropy1 among those evaluated for

all the marginal probability distributions - over all joint probability distri-

butions that could lead to a violation greater than or equal to the observed

one. This gives a lower bound on the randomness of the marginal probabil-

ity distributions compatible with the observed nonlocal correlations, and,

in this sense, the violation of the CHSH inequality can be used to certify

1The min-entropy Hmin is defined as the information of the maximum probabil-
ity of a given distribution, that is, given a probability distribution p(i), Hmin(p) =
�log (maxip(i)).
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such randomness. Ideally, this optimization should be performed over the

set Q of quantum correlations. However, this set is complex and has not

been fully characterized, even in the simplest Bell scenarios. To overcome

this problem, the commonly used approach is to approximate the set of

quantum correlations with the NPA hierarchy of sets of correlations that

approximate the quantum set (vide section 5.6). With this approach, there

is an e�cient implementation of the problem by means of semi-definite

programming.

In the particular Bell scenario considered in [17], the problem can be

solved analytically, using some convenient properties of the CHSH operator

- of which some are given on chapter 6. The optimal probability p⇤ leading

to the minimum amount of local randomness is given, in terms of the CHSH

parameter S, by

p⇤ =
1

2

2

41 +

s

2�
✓
S

2

◆2
3

5 . (5.3)

From this one can see that a maximal quantum violation of the CHSH

inequality certifies perfect randomness, while the observed value S = 2,

attainable with local correlations, does not certify any randomness.

A second class of protocols explores the device-independent formalism

to certify randomness amplification. In this class of protocols, Bell tests are

used to create better random bits, in the sense that they are more random

than the bits associated to the choices of measurements, as quantified, once

more, by the min-entropy of the correspondent probability distributions.

The first device-independent randomness amplification protocol was pre-

sented by Colbeck and Renner [92]. By using a family of inequalities known

as chained Bell inequalities, they authors prove that the outcomes obtained

are slightly more random than the choice of measurements must be. The

main drawback of this result, however, is the quality of the initial random-

ness, that must be, already, very high. This obstacle has been recently

overtaken by Gallego et al., [93]. In this new result, the authors consider a

five-partite Bell scenario where device-independent randomness amplifica-
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tion can be obtained even for sources that present a behaviour arbitrarily

close to deterministic, that is, sources that return a certain outcome with

probability arbitrarily close to one; however, as expected, the probability

cannot be identically one.

5.3 Dimension witnessing

Another remarkable application of the device-independent approach is on

estimating the dimension of a physical system.

Two distinct approaches have been developed to witness the dimension

of physical systems. The first relies on nonlocality and Bell inequalities, in

particular the CGLMP inequalities [36], presented in chapter 3. Some of

these inequalities, defined in the (2, 2, r) Bell scenario, have the interesting

property that the maximum quantum violation possible with a given system

depends on the dimension of the Hilbert space associated to such system

[94]. This way, each of these maxima, together with the inequality, defines a

dimension witness of the respective dimension d, and if a violation of such is

observed, one can conclude that the system is at least (d+ 1)-dimensional.

In fact, this approach is general and applies to any Bell inequality for which

quantum violation bounds depending on the dimension can be obtained

[95, 96].

The second approach does not rely on nonlocality, but on measurements

on a single system. The scenario is the following. Assume there is a prepar-

ing device, that admits an input x, of a set of possible inputs X, and

prepares a system in state ⇢x. The system is, then, sent to a measuring

device, that admits an input y, of a set of possible inputs Y , and returns

an output b, of a set of possible outputs B. By repeating the experiment

several times, it is possible to estimate the probabilities p(b|x, y), for all b, x
and y. These probability distributions have to obey several constraints that

depend on the dimension of the system. In fact, like the local correlations,

they are structured in convex sets with a finite number of extremal points,

that is, in polytopes. By checking a collection of inequalities, it is possi-
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ble, then, to estimate the classical and quantum dimensions of the system

[18, 97, 98].

5.4 State and entanglement estimation

An essential task that must be carried out at some point in basically every

experiment dealing with quantum systems is an estimation of the state of

the system. This is usually accomplished by a procedure known as quantum

tomography [99]. Like its classical counterpart, quantum tomography relies

on performing several measurements on the system, and, by gathering all

the collected partial information, obtain complete information about such

system.

An e�cient tomographic protocol is one where the least necessary num-

ber of measurements is performed to determine the complete state of the

system. This procedure, however, relies heavily on the assumption that

the dimension of the system is known, and that the measurement devices

behave exactly as expected.

In order to overcome some of these assumptions and still be able to

assess some properties of the state, a device-independent protocol for state

estimation has been proposed [100]. The protocol is nonlocality-based, and

uses several interesting properties of the CHSH operator2 to assess quanti-

tatively the entanglement of bipartite pure states.

Since entanglement is necessary for Bell inequality violation, Bell in-

equalities can be seem as device-independent entanglement witnesses [58].

Multipartite entanglement is known to have a complex structure, with many

nonequivalent types of entanglement. Surprisingly, there are Bell inequali-

ties that can be used to witness di↵erent types of entanglement in a device-

independent manner [101].

2Many of the these properties are listed in chapter 6 and proved in the appendix.
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5.5 Self-testing of quantum states and gates

Another instance of tasks that fit into the device-independent approach is

the class of self-testing protocols. In fact, self-testing and device-independent

may be, simply, di↵erent names for the same property, namely, the possi-

bility of assessing some properties of given devices based solely on classical

variables and on the statistics of such quantities.

The first self-testing protocol is due to Mayers and Yao [102, 103]. The

key idea behind it is that there are specific measurements over two-qubit

maximally entangled states that lead to probabilities that can only be

achieved from that state and those measurements, up to local isometries3.

If the observed statistics p(a, b|x, y) are the only available data, the state

of the system and the measurements that originate such probabilities can be

characterized, at most, up to local isometries. If there are no assumptions

about the dimension of the Hilbert space associated to the system, then,

one can see that

p(a, b|x, y) = Tr
�
⇢Ea|x ⌦ Fb|y

�
= Tr

�
⇢̄Ēa|x ⌦ F̄b|y

�
, (5.4)

where, for instance, ⇢̄ = ⇢⌦ �, Ēa|x = Ea|x ⌦ 1 and F̄b|y = Fb|y ⌦ 1. As an

example, consider the following pure state of a bipartite system, associated

to the Hilbert space Hd ⌦Hd, where d is assumed to be even,

| iAB =
d/2�1X

i=0

ci
|2i, 2ii+ |2i+ 1, 2i+ 1ip

2
. (5.5)

Assume that, at each party, are appended the subsystems of an ancillary

two-qubit system in the state |00iA0B0 , and local isometries �AA0 and �BB0

3An isometry is a distance-preserving map between metric spaces. In the context
of self-testing, it is local in the sense that it respects the di↵erent partitions of a given
scenario, even though it could act globally on all systems of a given party
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are applied, where �CC0 is defined by

�CC0 |2i, 0iCC0 = |2i, 0iCC0 ; (5.6)

�CC0 |2i+ 1, 0iCC0 = |2i, 1iCC0 , (5.7)

for C denotes either system A or B. Then, it follows that

(�AA0 ⌦ �BB0) | iAB |00iA0B0 = |�i | 2iA0B0 , (5.8)

where |�i = Pd/2�1
i=0 ci |2i, 2iiAB | 2i is the two-qubit maximally entangled

state. Thus, it follows that the state | i is equivalent to the two-qubit

maximally entangled state, up to local isometries4.

The argument of Mayers and Yao was later made robust against noise

[104], and, recently, a di↵erent approach to self-testing, that links its ideas

to nonlocality and Bell scenarios, has been introduced [105], where a robust

self-testing of the singlet state is presented. In chapter 7, based on the

results of [20], the first self-testing of a non-maximally entangled state is

presented. Now, a wide class of non-maximally entangled states can be

self-tested by means of the methods presented in [106].

5.6 The NPA hierarchy

The device-independent characterization of the set of quantum correlations

Q of a given Bell scenario is known to be a hard problem, and even in the

simplest scenarios little is known. This is due, partially, to the fact that this

set, although convex, has infinitely many extremal points, and, contrary to

the sets L and P , is not a polytope.

However, it is possible to numerically approximate the set Q by a hier-

archy of sets of correlations that can be e�ciently implemented by means of

semi-definite programs. This has been known as the NPA hierarchy, named

after Miguel Navascués, Stefano Pironio and Antonio Aćın [107].

4Strictly speaking, the state | i ⌦ |00i is equivalent to the state |�i ⌦ | 2i by local
isometries
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Consider, first, the following lemma:

Lemma 5. Let G = {G1, . . . , Gn} be a collection of operators acting on H.

The matrix

[M ]ij = Tr
⇣
⇢G†

iGj

⌘
, (5.9)

is positive semi-definite for all density operators ⇢ acting on H.

Proof. For any vector | i 2 Cn, it holds

h |M | i = Tr

 
⇢

 
X

i

 iG
†
i

! 
X

j

 jGj

!!
� 0; (5.10)

because both ⇢ and any operator of the form G†G are positive.

Q

Q3

Q2

Q1

Figure 5.1: Representation of the sets Qi of the NPA hierarchy. The set Q
represents the set of quantum correlations.

Now, assume, for simplicity, the bipartite scenario (2, 2, 2). Let H =

HA ⌦HB and G1 = 1 [ Ea|x⌦ 1 : a, x 2 0, 1 [ 1⌦ Fb|y : b, y 2 0, 1, where

Ea|x are arbitrary POVM e↵ects acting on HA and Fb|y are arbitrary POVM

e↵ects acting on HB, for a, b, x, y 2 {0, 1}. If a probability distribution
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p(a, b|x, y) is quantum, p 2 Q, there exist a state ⇢ and POVM e↵ects Ea|x

and Fb|y such that

p(a, b|x, y) = Tr
�
⇢
�
Ea|x ⌦ Fb|y

��
, (5.11)

and the above joint probabilities can be assigned as entries of the matrix M .

There are, however, some entries that cannot be observed experimentally:

they are joint probabilities of the outcomes of non-compatible measure-

ments, pA(a, a0|x, x0) and pB(b, b0|y, y0) for x 6= x0 and y 6= y0. According to

the lemma, if p(a, b|x, y) is quantum these probabilities can be assigned val-

ues qA(a, a0|x, x0) and qB(b, b0|y, y0), for x 6= x0 and y 6= y0, for all a, a0, b, b0,

such that the matrix

M1 =

0

BBBBBB@

1 pA(0|0) pA(1|0) pA(0|1) pA(1|1) pB(0|0) pB(1|0) pB(0|1) pB(1|1)
pA(0|0) 0 qA(0,0|0,1) qA(0,1|0,1) p(0,0|0,0) p(0,1|0,0) p(0,0|0,1) p(0,1|0,1)

pA(1|0) qA(1,0|0,1) qA(1,1|0,1) p(1,0|0,0) p(1,1|0,0) p(1,0|0,1) p(1,1|0,1)
pA(0|1) 0 p(0,0|1,0) p(0,1|1,0) p(0,0|1,1) p(0,1|1,1)

pA(1|1) p(1,0|1,0) p(1,1|1,0) p(1,0|1,1) p(1,1|1,1)
pB(0|0) 0 qB(0,0|0,1) qB(0,1|0,1)

pB(1|0) qB(1,0|0,1) qB(1,1|0,1)
pB(0|1) 0

pB(1|1)

1

CCCCCCA

is positive semi-definite, where pA(a|x) and pB(b|y) are the marginal prob-

abilities of p(a, b|x, y) and the symmetric entries are omitted. The set of all

the probability distributions p(a, b|x, y) for which M1 � 0 is strictly greater

than the quantum set, and is denoted Q1. This is the first step of the NPA

hierarchy, and any optimization over the set Q1, like, for instance, the max-

imization of the value of a given Bell inequality, can be easily and e�ciently

implemented as a semi-definite program.

The next sets of the hierarchy, Qi, are the sets of probability distribu-

tions p(a, b|x, y) for which Mi � 0. The matrix Mi is based on new sets of

operators Gi, defined recursively as the sets whose elements are products of

two elements of the previous set, Gi = {J1J2|J1, J2 2 Gi�1}. From the above

definition, it becomes clear that Q1 ⇢ Q2 ⇢ . . . , and, indeed, these sets are

hierarchically organized. Finally, it has been proven that this hierarchy of

sets converge to the set of quantum correlations, limi!1Qi = Q [107, 108].

It is worth stressing that, even though the above example is for the scenario
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(2, 2, 2), these techniques can be applied to any Bell scenario.
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6

Device-independent certification of
entangled measurements

This chapter presents the results in [19], where a device-independent pro-

tocol is presented to assess if a given measurement device is entangled, i.e.,

at least one of its eigenvectors is not separable, or, in the case of POVMs,

at least one of the e↵ects do not factor in the subsystems.

To show that a given measurement is entangled, it is first shown that

such measurement is entangling in an entanglement swapping [109] scenario,

where, at first, a system A is entangled with a system C 0, and a system

B is entangled with a system C 00, but neither A and B nor C 0 and C 00

are entangled among themselves; then, a measurement in systems C 0C 00 is

entangling if there is an outcome such that the state after measurement of

systems A and B are entangled.

All the tests are performed in a device-independent manner according

to this novel protocol, and nothing is assumed despite the fact that the

quantum formalism is correct and that two clearly defined systems may be

assigned to Charlie. The particular case of two-qubit systems is studied in

detail, where it is possible to extend the analysis to a quantitative one and

estimate, based on the protocol, how entangled the measurement is.

6.1 The CHSH operator revisited

Let B be a CHSH operator, acting on HA ⌦HB, given by

B = A0 ⌦ (B0 +B1) + A1 ⌦ (B0 � B1) , (6.1)
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where Ax and By are dichotomic observables, acting on HA and HB, re-

spectively. This important object has been widely studied, and plenty of

interesting properties have been listed. Some of these properties are pre-

sented below as lemmas.

The following two lemmas apply for CHSH operators acting on bipartite

Hilbert spaces of any dimension.

Lemma 6 (Landau [40]). The maximum CHSH value achievable in an

quantum Bell test with given observables A0, A1, B0 and B1 is given by the

largest eigenvalue of the respective CHSH operator B. This can be denoted

by the maximum norm of B, and is given by

|B| 
p

4 + |[A0, A1]| |[B0, B1]|. (6.2)

Since this bound is tight, it follows that, for maximal violation of the CHSH

inequality to be achieved, it is necessary that the local observables anti-

commute, [A0, A1] = 2A0A1, [B0, B1] = 2B0B1.

The above lemma is proved in chapter 3, section 3.6.1.

Lemma 7 (Corollary of Masanes’ lemma (appendix)). There are subspaces

HAi of HA and HBj of HB such that the CHSH operator can be written as

B =
L

i,j Bij, where Bij is a CHSH operator acting on HAi ⌦HBj, and the

dimensions of HAi and HBj are, at most, 2.

The above lemma is a direct corollary of Masanes’ lemma [76], proved in

the appendix. It states that the CHSH operator can always be decomposed

as a direct sum of two-qubit CHSH operators, acting on H2 ⌦H2, and, if

necessary, of CHSH operators acting on lower-dimensional spaces.

So, there are properties of B that follow directly from the properties

of the two-qubit CHSH operator. The following lemmas apply for CHSH

operators acting on H2 ⌦H2.

Lemma 8 (Horodecki et al., [110]). Given a two-qubit state ⇢, the maximum

CHSH value achievable in a Bell test where projective measurements are
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performed on such state is given by

S = 2
p
u0 + u1, (6.3)

where u0 and u1 are the largest eigenvalues of the matrix U = T TT , and

the matrix T is defined as Tmn = Tr (⇢ (�m ⌦ �n)), where �i are the Pauli

matrices.

This lemma is proved in the appendix.

Lemma 9 (Scarani et al., [111]). The spectral decomposition of the CHSH

operator is, up to local unitaries,

B =
4X

i=1

↵i | ii h i| , (6.4)

where the coe�cients ↵i are functions of the local observables obeying ↵1 =

�↵3, ↵2 = �↵4; and ↵2
1 + ↵2

2 = 8, and the states | ii are the Bell states

| 1i = 1p
2
(|00i+ |11i) , | 2i = 1p

2
(|00i � |11i) , (6.5)

| 3i = 1p
2
(|01i+ |10i) , | 4i = 1p

2
(|01i � |10i) . (6.6)

This lemma is one of the main results of [111], where it is stated, in a

more general form, and proved. It follows that the maximal violation of the

CHSH inequality can be achieved if, and only if, the state of the system

is maximally entangled, if the system is a two-qubit one. In fact, it has

been proven, with di↵erent techniques, that, in arbitrary Hilbert spaces,

maximal violation can be achieved if, and only if, the state of the system is

maximally entangled, up to local isometries [105].

The last lemma here stated is a curious result, as it bounds an unconven-

tional quantity: the maximal CHSH value achievable over separable states.

Interestingly, for certain local observables, the local bound of the CHSH

inequality cannot be achieved with separable states. The lemma holds for
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CHSH operators acting on arbitrary Hilbert spaces, and is proved in the

appendix.

Lemma 10 (Rabelo et al., [19]). For given local observables A0, A1, B0

and B1, the maximum CHSH value achievable on a quantum Bell test with

separable states is

SSep =
�+

p
8� �2

2
, (6.7)

where � is the smallest eigenvalue of B such that � > 2.

6.2 The protocol

Consider a tripartite Bell scenario, where Alice and Bob can perform two

possible measurements, denoted x 2 {0, 1} and y 2 {0, 1}, each of which

with two possible outcomes, a 2 {0, 1} and b 2 {0, 1}, respectively. Charlie,
however, can perform three possible measurements, denoted z 2 {0, 1, 2},
with four possible outcomes each, c 2 {0, 1, 2, 3}. It constitutes, thus, the

(2, 2; 2, 2; 4, 4, 4) Bell scenario. It is assumed that, in each run, all three

parties choose randomly which measurement to perform. The goal is to

guarantee in a device-independent fashion, that is, without making assump-

tions on the dimension and state of the system and on the measurements

performed, that z = 2 is an entangled measurement (fig. 6.1).

After the experiment has been performed for a large number of times,

and the joint probabilities of the outcomes, conditioned on the measure-

ments performed, p(a, b, c|x, y, z) has been estimated, the following tests

are, then, performed, based on the measurement performed by Charlie:

• If Charlie has measured z = 0 or z = 1, the marginals pAC(a, c0|x, z)
and pBC(b, c00|y, z) are used to test the CHSH inequalities of Charlie

with Alice (SAC) and of Charlie’s with Bob (SBC). For this, Charlie

has to define a classical processing that transforms his four outcomes

into two bits, c0 and c00, to be correlated with Alice’s outcome and

with Bob’s outcome, respectively.
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Figure 6.1: DI certification of entangled measurements protocol scenario.
The scenario consists of three space-like separated parties. If Charlie per-
forms measurement z = 2, then the CHSH inequality is evaluated for Alice
and Bob’s measured data. Otherwise, the CHSH inequality is evaluated
both for Alice and Charlie and for Bob and Charlie.

• If Charlie has measured z = 2, the marginal pAB(a, b|x, y, c) is used

to check the CHSH inequality between Alice and Bob. The form of

the inequality, however, can depend on the outcome of Charlie, and

the four CHSH values SAB|c are defined as

SAB|0 = E00|0 + E01|0 + E10|0 � E11|0, (6.8)

SAB|1 = E00|1 + E01|1 � E10|1 + E11|1, (6.9)

SAB|2 = �E00|2 � E01|2 + E10|2 � E11|2, (6.10)

SAB|3 = �E00|3 � E01|3 � E10|3 + E11|3 (6.11)

where Exy|c = p(a = b|x, y, c) � p(a 6= b|x, y, c). Note that Alice

and Bob do not need to know c in each run, since their measurement

settings are always the same; the above statistics can be evaluated at

the end of the whole experiment.

The first step of the analysis is to certify, in a device-independent way,

that the measurements of Charlie are performed on two systems that are

not entangled a priori. This can be certified by SAC and SBC : if both SAC

and SBC are equal to 2
p
2, then:
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• Charlie holds a bipartite system;

• the states ⇢AB of the systems of Alice and Bob and ⇢C0C00 of the

systems of Charlie are both product states.

If SAC = 2
p
2 and SBC = 2

p
2, then the state of the tripartite system is,

up to local isometries, | AC0i ⌦ | BC00i, where | i denotes the maximally

entangled state in the Hilbert spaces of the respective systems [112, 9, 105].

It follows from monogamy of entanglement [113] that, if two systems are in

a maximally entangled state, then none of them can be correlated with any

other system. Then, if Charlie holds a system C 0 that is maximally entan-

gled to A, there must be a second system C 00 that is maximally entangled

with B, and the bipartite system C 0C 00 cannot be entangled, as well as the

system AB cannot be entangled.

In fact, with a similar argument it is possible to show that both prop-

erties hold if either SAB or SBC is equal to 2
p
2, provided that the other

is greater than 2. It is easy to note that, if this condition holds, then

SAB|c > 2 implies that measurement z = 2 is entangled. The condition that

both values are equal to the maximal violation, however, returns several

useful properties, and a violation of the CHSH inequality by parties A and

B is not even necessary, as stated in the following theorem.

6.3 Main theorem

Theorem 5. If SAC = SBC = 2
p
2, and z = 2 is a separable measurement -

i.e., all the eigenvectors of the associated observable are separable, or, in the

case of POVMs, all the e↵ects factor in the subsystems - , then SAB|c 
p
2.

Proof. As previously stated, if SAC = SBC = 2
p
2, then the states of bipar-

tite systems AC 0 and BC 0 are, up to local isometries, maximally entangled

and are completely uncorrelated from any other system. Thus, any state

steered by measurement z = 2 - assuming it is separable - to parties AB

will be separable, and will have support on at most in the same subspaces of

HA and HB where the initial states have support on. Let BAC0 =
L

i,j Bi,j
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and BBC00 =
L

k,l Bk,l be the CHSH operators acting on he Hilbert spaces

of systems AC 0 and BC 00, respectively, decomposed according to Masanes’

lemma. From the spectral decomposition of the two-qubit CHSH operator,

SAC = SBC = 2
p
2 implies that the CHSH operators Bi,j and Bk,l have

maximal eigenvalues ↵i,j = ↵k,l = 2
p
2. This immediately implies that, for

the same subspaces, the CHSH operators in parties AB, �i,k, will also have

maximal eigenvalues ↵i,k = 2
p
2; this follows from lemma 6.

Thus, it is possible to conclude that, for all subspaces HAi⌦HBk where

the final steered separable state of AB, ⇢AB, has support on, the two-qubit

CHSH operators has eigenvalues ±2
p
2. Now, according to lemma 10, the

maximum value of the CHSH operator achievable with a separable state is

SSep =
�+

p
8� �2

2
, (6.12)

where � is the smallest eigenvalue of B such that � > 2. Since �, in this

case, is equal to 2
p
2, it follows that

SAB|c 
p
2. (6.13)

The presented results rely on at least one between SAC and SBC being

exactly 2
p
2. Relaxing this constraint leads to one main di�culty: even

for the smallest deviation from the ideal values, ⇢AB cannot be guaranteed

to be separable anymore. Similarly, one cannot guarantee, in a device-

independent way, that Charlie has two subsystems. This assumption may,

however, be very natural in some implementations, in which Charlie receives

one quantum signal from Alice and one from Bob.

6.4 Characterizing a specific measurement

An interesting particular case of the protocol is the extremal one, where

SAC = SBC = SAB|c = 2
p
2. (6.14)
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This can be achieved in quantum theory, and, in fact, with qubits, by means

of the entanglement swapping protocol [14]. If Charlie shares maximally en-

tangled states of two-qubit systems with both Alice and Bob, and if z = 2

is a Bell-state measurement, that is, a projective measurement where the

projectors are associated to the Bell states (6.5). Assume that the mea-

surements of Alice are given by the dichotomic observables A0 = �3 and

A1 = �1, the measurements of Bob are given by B0 = (�3 + �1) /
p
2, the

measurements of Charlie are C0 = (�1 + �3) /
p
2, and C1 = (�3 � �1) /

p
2.

Finally, assume that projectors ⇧c|2, associated to the outcomes c of mea-

surement z = 2 are given by the Bell states, ⇧c|2 = | ci h c|. Then,

SAC = SBC = SAB|c = 2
p
2 is obtained; the values of SAB|c are evaluated

according to (6.8).

The protocol presented is valid under very specific conditions, but could,

in principle, lead to a much finer statement. For instance, if one is close

to satisfying (6.14), then measurement z = 2 should be close to an ideal

Bell-state measurement. It should, therefore, be possible to bound the

distance t between the actual and the ideal measurement as a function of

the observed violations. The derivation of this bound, in a full device-

independent scenario, t  fDI(S), hits several di�culties, but it is possible,

under additional assumptions, to obtain a bound t  f(S). Clearly, f(S) 
fDI(S), and one can conclude that a device-independent estimate of t will

be at least as bad as f(S).

The scenario considered is a four-qubit scenario, similar to the one de-

fined above. The states of the systems and measurements are defined to be

exactly the same, except for measurement z = 2: it is no longer a perfect

Bell-state measurement, but is still assumed to be projective, with projec-

tors ⇧c|2 associated to the results c. It is not clear, a priori, which Bell

state to associate with each result c; however, once the measured data have

been sorted out according to c, one can check the inequalities (6.8), observe

those with higher values, and relabel the outcomes such that projector ⇧c|2

is associated to the closest | ci h c|, for each c 2 {1, 2, 3, 4}.
An operational measure of the distance between measurement z = 2
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Figure 6.2: Bounds on the trace distance as functions of the observed CHSH
inequality violation in the four-qubit scenario.

and an ideal Bell-state measurement is the trace distance

t = max
c

q
1� Tr

�
⇧c|2 | ci h c|

�
. (6.15)

Now, because of the choice of the local measurements of Alice and Bob,

the Bell operators corresponding to the four definitions (??) read BAB|c =

2
p
2 (| ci h c|� | 5�ci h 5�c|). Therefore,

SAB|c = 2
p
2
�
Tr

�
⇧c|2 | ci h c|

�� Tr
�
⇧c|2 | 5�ci h 5�c|

��
, (6.16)

and the two bounds 0  Tr
�
⇧c|2 | 5�ci h 5�c|

�  1�Tr
�
⇧c|2 | ci h c|

�
lead

finally to

s
1

2

✓
1�max

c

SAB|c

2
p
2

◆
 t 

s

1�min
c

SAB|c

2
p
2
. (6.17)

In particular, the upper bound is the expression for f(S), and it indicates

how stringent are the requirements for device-independent assessment of
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a measurement. Recall that the trace distance is closely related to the

probability of distinguishing the real case from the ideal one. Requesting

that this probability is 5% looks like a pretty loose requirement; but, in

order to confirm this assessment in a device independent way, one will have

observe at least minc SAB|c & 2.8214 (fig. 6.2). This number is within 0.5%

of the maximal value: no experiment has reached such a high violation and

precision.
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7

Device-independent bounds for Hardy’s
test of nonlocality

Introduced in 1991, Hardy’s test of nonlocality [114, 115], or Hardy’s para-

dox, is a proof of the nonlocality of quantum correlations that does not

rely on Bell inequalities, but on a direct contradiction between the predic-

tions of local theories and those of quantum mechanics, in the lines of the

GHZ paradox [116]. Roughly, the test can be summarized as: under the

assumption of local realism, a particular pair of outcomes in an experiment

where two quantum systems are individually measured can never be jointly

observed, given that some conditions are met. But, as any local theory pre-

dicts the probability of this event to be equal to zero, quantum mechanics

predicts a nonzero probability, thus contradicting local realism.

Stated originally in terms of a thought experiment, where both the state

of the system and the measurements are fixed, Hardy’s test was soon ex-

tended to more general scenarios, at first to include di↵erent states and

measurements, and then extended and formulated for higher-dimensional

bipartite systems and multipartite systems [117, 118, 119, 120, 121, 122,

123, 124, 125]. Many experiments were performed [126, 127, 128, 129, 130],

confirming, once more, the right predictions of quantum mechanics and the

nonlocality of its correlations. Interestingly, though, no upper bound on the

nonlocality of the quantum correlations involved, in the lines of Tsirelson’s

bound, was ever studied, except for very specific systems, and it has not

been clear if higher-dimensional Hilbert spaces could lead to any advantages

in such tests.
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This chapter presents a review of the results in [20], where, for the

first time, device-independent bounds were presented for Hardy’s test of

nonlocality. First, Hardy’s original experiment is presented, followed by a

straightforward device-independent reformulation of the test. The relations

with the Bell scenario (2, 2, 2) are highlighted, and the optimal solutions

for two-qubit systems are presented. Finally, the main result is stated and

proven: the optimal solutions for two-qubit systems are optimal for systems

of any dimension, both in an ideal and in more realistic scenarios, where

the assumed conditions are not necessarily satisfied. In the ideal case the

proof is algebraic and, surprisingly, implies self-testing of a family of non-

maximally entangled states, the first of the genre. In the non-ideal case, a

numerical proof is presented.

7.1 Hardy’s experiment

Consider an experimental setup consisting of two overlapping Mach-Zehnder

interferometers, one for electrons and one for positrons, composed of 50 : 50

beam splitters and detectors placed at the end of each output path. Alice

and Bob, each one controlling one interferometer, for each interferometer,

can freely chose to insert or remove the second beam splitter during each

run of the experiment. Let the choice of removing or inserting the beam

splitter be denoted x = {0, 1}, respectively, for Alice, and y = {0, 1}, re-
spectively, for Bob; let, also, the detectors of Alice be denoted a = {0, 1},
and, the ones of Bob, b = {0, 1} (fig. 7.1). The figures of merit are the

joint probabilities p(a, b|x, y) of obtaining outcomes a and b, given that the

choices x and y were made1.

The key idea behind this setup is that, if the electron and the positron

both take the overlapping paths, they will annihilate each other and, thus,

no detection will be observed. If both beam splitters are removed, x = 0,

y = 0, the annihilation implies that outcomes a = 0 and b = 0 will never

1It is implicitly assumed that the measurement events are space-like separated
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Figure 7.1: Hardy’s experiment. Two Mach-Zehnder interferometers, one of
electrons and the other for positrons, are arranged so that the central paths
overlap. Each party has the option to include the second beam splitter,
denoted by x and y. The particles are then detected in the detectors labelled
by a and b.

be jointly observed, and, thus,

p(0, 0|0, 0) = 0. (7.1)

Now, assume that each interferometer is perfectly balanced, in a way that, if

each interferometer is individually considered - that is, if there is no overlap

between the two of them - , detectors a = 1 and b = 1 will fire with certainty

if the second beam splitters are in place, x = 1 and y = 1. Consider, then,

the case where x = 0 and a = 1 is observed; the electron has certainly

taken the upper path, and there is no influence of one interferometer with

the other. Due to the balance of Bob’s interferometer, if y = 1, outcome
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b = 1 will fire with certainty, implying that joint observation of a = 1 and

b = 0 when x = 0 and y = 1 is impossible,

p(1, 0|0, 1) = 0. (7.2)

The same reasoning can be applied if y = 0 and b = 1 is observed: a = 1

fires with certainty if x = 1, and thus

p(0, 1|1, 0) = 0. (7.3)

Now, assume that local realism holds, and each particle carries a set of

instructions � on which detector to trigger, depending on the presence of

the second beam splitter. All correlations arise from the fact that these

instructions are unknown, and must be averaged over,

p(a, b|x, y) =
Z

⇤

pA(a|x,�)pB(b|y,�)q(�)d�, (7.4)

where ⇤ is a set of variables � and q(�) is a measure on this set. Under this

assumption, (7.1) implies that either pA(0|0,�) = 0, for all �, or pB(0|0,�) =
0, for all �, or both.

• If pA(0|0,�) = 0, for all �: pA(1|0,�) = 1, for all �. It follows from

(7.2) that pB(0|1,�) = 0, for all �. This implies that p(0, 0|1, 1) = 0.

• If pB(0|0,�) = 0, for all �: pB(1|0,� = 1), for all �. It follows from

(7.3) that pA(0|1,�) = 0, for all �. This implies that p(0, 0|1, 1) = 0.

Then, it follows from (7.1), (7.2), (7.3), and the assumption of local realism,

that

p(0, 0|1, 1) = 0. (7.5)

The probability p(0, 0|1, 1) will be referred, from now on, as Hardy’s prob-

ability.
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According to quantum theory, though, Hardy’s probability, in this ex-

periment, in equal to p(0, 0|1, 1) = 1/16. The calculation is very simple,

and details are given in [114]. To briefly summarize it, let |ai 2 H2
A and

|bi 2 H2
B denote the states of systems A and B on the paths immediately

before detectors a and b, and |�i denote the state of the system - or the

radiation it becomes - after annihilation. The global state of the system,

| xyi 2 H2
A ⌦H2

B, immediately before the detectors, depends on x and y -

the presence of second beam splitters. They are:

| 00i =
1

2
(� |�i+ i |01i+ i |10i+ |11i) , (7.6)

| 01i =
1

2
p
2

⇣
�
p
2 |�i+ i |00i � |01i+ 2i |11i

⌘
, (7.7)

| 10i =
1

2
p
2

⇣
�
p
2 |�i+ i |00i � |10i+ 2i |11i

⌘
; (7.8)

which correctly return probabilities (7.1), (7.2) and (7.3), and

| 11i = 1

4
(�2 |�i � |00i+ i |10i+ i |01i � 3 |11i) , (7.9)

which gives

p(0, 0|1, 1) =
1

16
. (7.10)

7.2 Device-independent formulation

Consider the Bell scenario (2, 2, 2), where Alice and Bob can perform two

measurements, each, on their respective subsystems, and each measurement

has two possible outcomes (fig. 7.2). Without making any assumption

on the nature of the physical systems or on the measurements performed,
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Figure 7.2: DI formulation of Hardy’s test. Pairs of particles A and B are
submitted to measurements x and y, respectively. The outcomes obtained
are a and b.

assume that Hardy’s constraint probabilities hold,

p(0, 0|0, 0) = 0, (7.11)

p(1, 0|0, 1) = 0, (7.12)

p(0, 1|1, 0) = 0; (7.13)

and the respective events are never observed. If the joint probability distri-

butions that describe the Bell experiment are local, then Hardy’s probability

is, necessarily,

p(0, 0|1, 1) = 0. (7.14)

Even though inspired by Hardy’s experiment, the proof presented in the

previous section does not assume any properties of the systems and mea-

surements, and, thus, is device-independent. Thus, any probability distri-

bution p(a, b|x, y) for which (7.11) hold, and p(0, 0|1, 1) > 0 is nonlocal.

In the considered scenario, a probability distribution is nonlocal if, and

only if, it violates the CHSH inequality. Hence, there must be a relation

between this inequality and Hardy’s test. This relation becomes clear if one

considers the CH inequality, written as:

pA(0|1) + pB(0|1)� p(0, 0|0, 0)� p(0, 0|0, 1)�
p(0, 0|1, 0) + p(0, 0|1, 1)  0. (7.15)
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From the definition of marginal probabilities, one has

pA(0|1) = p(0, 0|1, 0) + p(0, 1|1, 0), (7.16)

pB(0|1) = p(0, 0|0, 1) + p(1, 0|0, 1); (7.17)

substituting this into the CH inequality, the following inequality is obtained:

p(0, 0|1, 1)  p(0, 0|0, 0) + p(0, 1|1, 0) + p(1, 0|0, 1). (7.18)

If the constraint probabilities hold, the right-hand side of the inequality is

null, implying that Hardy’s probability must be equal to zero. The above

inequality, however, is valid also in nonideal scenarios, giving local bounds

for Hardy’s probability in terms of the arbitrary values the constraint proba-

bilities may have. The relation between Hardy’s test and the CH inequality

has been studied to a deeper extend on [131].

7.2.1 Optimal bounds for two-qubit systems

If one assumes a two-qubit system, it is possible to show that, by optimizing

over all possible states and measurements, the maximum value of Hardy’s

probability is given by

p(0, 0|1, 1) =

�
5
p
5� 11

�

2
. (7.19)

It can be assumed that:

1. The state of the system is pure. For every mixed state ⇢, if there

are POVMs such that (7.11) hold, then (7.11) must hold for all pure

states in the spectral decomposition of ⇢, for the same POVMs. By

convexity, the value of Hardy’s probability obtained for ⇢ is upper

bounded by the value obtained for one of the pure states in its spectral

decomposition.

2. The measurements are projective. If the measurements are POVMs,

each and every e↵ect has to be rank 1, due to the constraint probabil-
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ities; otherwise, the state is forced to be separable. Rank 1 e↵ects, on

their turn, must be proportional to rank 1 projectors, and, and the

proportionality constant cannot be greater than 1. This implies that

Hardy’s probability will achieve higher values over such projectors

than over the respective e↵ects.

Note that these assumptions are only valid for the ideal case, where (7.11)

hold.

Now, following [132], let the projectors associated with the results a =

0 and b = 0 of the measurements x = 0 and y = 0 of Alice and Bob,

respectively, be ⇧A
0|0 = |0i h0| and ⇧B

0|0 = |0i h0|. Then, the most general

two-qubit pure state that obeys constraint p(0, 0|0, 0) = 0 can be written

as

| i = a |01i+ b |10i+ cei' |11i , (7.20)

where a, b, c and ' are real numbers such that a2 + b2 + c2 = 1 and

0  ' < 2⇡. Now, from p(0, 1|1, 0) = 0, the fact that Bob’s measurement

y = 0 returned outcome b = 1 implies that Alice’s projector associated to

outcome a = 0 of measurement x = 1 has to be orthogonal to her resulting

state after Bob’s measurement, ⇧A
0|1 = |�Ai h�A|, where

|�Ai =
c |0i � aei' |1ip

a2 + c2
. (7.21)

Analogously, from p(1, 0|0, 1) = 0, it can be inferred that Bob’s projector

associated to outcome b = 0 of measurement y = 1 is ⇧B
0|1 = |�Bi h�B|,

where

|�Bi =
c |0i � bei' |1ip

b2 + c2
. (7.22)

It follows, then, that Hardy’s probability is equal to

p(0, 0|1, 1) =
a2b2c2

(a2 + c2) (b2 + c2)
. (7.23)
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This function can be easily optimized, and it has only one maximum, in the

region of interest of the variables. This maximum is equal to
�
5
p
5� 11

�
/2,

achieved for

a = b =

s
3�p

5

2
. (7.24)

This implies that, up to the phase ' and local choices of basis, there is

only one two-qubit state, and a well defined set of measurements, that can

achieve maximum Hardy’s probability on the ideal Hardy’s test.

7.3 Device-independent bounds for Hardy’s

test

Theorem 6. Let p(a, b|x, y), where a, b, x, y 2 {0, 1}, be a probability dis-

tribution for which (7.11) hold. Then, the maximum value of Hardy’s prob-

ability for quantum systems of arbitrary finite dimension is p(0, 0|1, 1) =
�
5
p
5� 11

�
/2, just as for qubits.

Proof. Once more, it can be assumed that:

1. The state of the system is pure. The same argument used to justify

this claim in the two-qubit case can be applied here.

2. The measurements are projective. According to Neumark’s theo-

rem, all probability distributions of the outcomes of POVMs can be

obtained from projective measurements on systems associated with

Hilbert spaces of higher dimension. Since the system, in this scenario,

is arbitrary, this assumption can be applied.

Let ⇢ be the state of the system, acting on an arbitrary Hilbert space

HA ⌦HB, and ⇧a|x, acting on HA, be the projectors associated with out-

comes a of measurement x, of Alice, and �b|y, acting on HB, be the projec-

tors associated with the outcomes b of measurement y, of Bob. The core
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of the proof exploits the following lemma, by Masanes [76], proved in the

appendix:

Lemma 11 (Masanes [76]). Let ⇧0|0,⇧1|0,⇧0|1,⇧1|1 be four projectors act-

ing on a Hilbert space H such that ⇧0|0 + ⇧1|0 = 1 and ⇧0|1 + ⇧1|1 = 1.

There exists an orthonormal basis in H where the four projectors are si-

multaneously block diagonal, where the subspace Hi of H corresponding to

block i is, at most, bidimensional, dim (Hi)  2, for all i.

The lemma states that there is a basis of HA where the projectors ⇧a|x

can be written as ⇧a|x =
L

i⇧
i
a|x, where each ⇧

i
a|x acts on Hi, for all a and

x; denote, also, ⇧i = ⇧i
+1|x +⇧

i
�1|x the projector on Hi

A. The same applies

to projectors �b|y; they can be written as �b|y = �j�
j
b|y, where each �

j
b|y acts

on Hj
B, for all y and b. Then, the joint probabilities can be written as

p(a, b|x, y) =
X

i,j

qijTr
⇣
⇢ij⇧

i
a|x ⌦ �j

b|y

⌘
(7.25a)

=
X

i,j

qijpij(a, b|x, y), (7.25b)

where qij = Tr (⇢⇧i ⌦ �j) and ⇢ij = (⇧i ⌦ �j⇢⇧i ⌦ �j) /qij is, at most, a

two-qubit state; P i and �j denote projectors onto theHi
A andHj

B subspaces,

respectively. Since qij � 0 for all i, j and
P

i,j qij = 1, the constraint

probabilities are satisfied for p if and only if they are satisfied for each of

the pij. But, then,

p(0, 0|1, 1) =
X

i,j

qijpij(0, 0|1, 1), (7.26)

is a convex sum of Hardy’s probabilities in each two-qubit subspace 2. As a

convex sum, it is upper bounded by the largest element in the combination,

whose maximum value is known to be given by (7.19). This concludes the

proof.

2Note that for the maximum value of (7.26) to be reached it is necessary that, for all
i, j such that qij 6= 0, the dimension of both Hi and Hj be equal to 2. This implies that
the e↵ective dimension d of the local Hilbert spaces HA and HB of the system is even.
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An alternative, simpler proof of the above theorem consists, basically,

in noticing that any probability distribution that maximizes Hardy’s prob-

ability is an extremal point of the set of quantum probability distribu-

tions. According to [76], every extremal point, in this scenario, can be

obtained from projective measurements on two-qubit systems, thus prov-

ing the stated result. The reason for presenting the extensive proof is that

it leads to interesting insights about the states that lead to such maximal

violation, as discussed below. Both proofs cannot be trivially extended to

the nonideal scenario later considered.

7.4 Self-testing of entangled states

It follows from the above proof that Hardy’s probability p(0, 0|1, 1) reaches
its maximal value if and only if pij(0, 0|1, 1) is maximal for every ij such

that qij 6= 0. From the results presented in section 7.2.1, it follows that

only a very specific class of two-qubit states and measurements can lead to

this maximal value. Let ⇧0|0 = �0|0 = |0i h0|, ⇧1|0 = �1|0 = |1i h1|; then,
this class of two-qubit states is given by

|�i = a (|01i+ |10i) + ei✓
p
1� 2a2 |11i , (7.27)

where a =
q�

3�p
5
�
/2 and ✓ is arbitrary, and the remaining measure-

ment projectors are ⇧0|1 = �0|1 = |+i h+|, and ⇧1|1 = �1|1 = |�i h�|, with
|+i = 1p

1�a2

�p
1� 2a2 |0i � ei✓a |1i�.

In view of this, one can conjecture that, if the maximal value of Hardy’s

probability p(0, 0|1, 1) is observed, the state must somehow be a direct sum

of copies of |�i. This is indeed the case, as stated in the following theorem:

Theorem 7. If p(0, 0|1, 1) = �
5
p
5� 11

�
/2 is observed in an ideal Hardy’s

test - i.e., together with (7.11) - , then the state of the system is equivalent,

up to local isometries, to |�iAB ⌦ |�iA0B0, where |�i is given in (7.27) and

|�i is some bipartite state. In other words, the ideal Hardy’s test constitutes

a self-testing of |�i.
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Proof. Without loss of generality, let⇧i
0|0 = |2ii h2i|, ⇧i

1|0 = |2i+ 1i h2i+ 1|,
�j
0|0 = |2ji h2j|, �j

1|0 = |2j + 1i h2j + 1|. Then,

pij(0, 0|1, 1) = Tr
⇣
⇢ij⇧

i
0|1 ⌦ �j

0|1

⌘
=

5
p
5� 11

2
(7.28)

if, and only if, ⇢ij = |�iji h�ij|, where

|�iji = a (|2i, 2j + 1i+ |2i+ 1, 2ji)+
ei✓

p
1� 2a2 |2i+ 1, 2j + 1i , (7.29)

and a =
q�

3�p
5
�
/2 and arbitrary ✓. This way, a state | i can lead to

a maximal value of Hardy’s probability if, and only if, it is given by

| i =
M

i,j

p
qij |�iji . (7.30)

The coe�cients qij are arbitrary probabilities that, by definition, are of the

form qij = risj, where ri, sj � 0,
P

i ri =
P

j sj = 1. The angle ✓ cannot

depend on the indices i, j, because ⇧i
0|1 is uniquely defined by ✓, and, by

definition, is independent of j; the same reasoning can be applied to �j
0|1,

uniquely defined by ✓, and independent of i. Now, following the self-testing

methods of [105], local ancilla qubits, prepared in the state |00iA0B0 , are

appended to the system, and are applied local isometries �A and �B, such

that

(�A ⌦ �B) | iAB |00iA0B0 = |�iAB |�iA0B0 , (7.31)

where |�i is a bipartite ‘junk’ state. This can indeed be achieved for �A =

�B = �, defined by the map

� |2k, 0iCC0 7! |2k, 0iCC0 , (7.32a)

� |2k + 1, 0iCC0 7! |2k, 1iCC0 , (7.32b)

for both C = A,B.
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This is the first result of self-testing of non-maximally entangled states.

More recently, Yang and Navascus have introduced new methods that im-

plement self-testing of a wide class of bipartite pure states [106].

7.5 Hardy’s test with realistic constraints

Suppose now that the constraint probabilities in Hardy’s experiment are not

exactly equal to zero. In this case, the local bound on Hardy’s probability

is no longer zero, either, and is given by inequality (7.18). Let, then, the

constraint probabilities be

p(0, 0|0, 0)  ✏, (7.33a)

p(0, 1|1, 0)  ✏, (7.33b)

p(1, 0|0, 1)  ✏, (7.33c)

for some ✏ � 0. Notice that, if no-signaling holds, then p(0, 0|0, 0) = ✏

implies pA(0|0) � ✏, and p(1, 0|0, 1) = ✏ implies pA(1|0) � ✏. Therefore

✏  1
2
. The region of interest is, in fact, ✏  1

3
, because the local bound on

Hardy’s probability becomes

p(0, 0|1, 1)  3✏. (7.34)

For ✏ � 1
3
, the bound is trivial and quantum physics certainly cannot violate

it; while for 0  ✏ < 1
3
, quantum physics may lead to a violation of the local

bound. As before, the goal is to assess the maximal quantum violation

in a device-independent scenario, i.e., without making any assumption on

the Hilbert space dimension. The previously stated theorem cannot be

extended, so a di↵erent approach is taken: first, semi-definite programs are

applied to obtain an upper bound on Hardy’s probability, using the NPA

hierarchy; second, by optimizing over the states and measurements of two-

qubit systems, it is possible to obtain a value that is certainly achievable

with quantum systems, thus, a lower bound. If the values obtained coincide,

it is possible to conclude that they are, indeed, the optimal value for Hardy’s
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Figure 7.3: Upper and lower bounds on maximum Hardy’s probability pHardy

in terms of the bound ✏ on the constraint probabilities. The solid (blue)
line is the upper bound, computed from the set Q3; the dotted (red) line
is the lower bound, computed from two-qubit systems; the dashed (black)
line is the local bound.

probability, and that this value can be achieved with two-qubit systems.

For several values of ✏ in the interval 0  ✏  1/3, Hardy’s probability

is optimized over the set Q3, enforcing the constraints (7.33). The imple-

mentation was carried out in MATLAB using semi-definite programming

[133, 134]. The results form the solid line in fig. 7.3. For the lower bound,

the most general mixed states of two qubits and POVM elements acting on

those were considered, and the maximal value of the Hardy’s probability

was estimated using constrained nonlinear optimization methods in MAT-

LAB. These methods are not guaranteed to converge to global maxima,

though, and are in fact rather sensitive to seed conditions; each point on

the dotted line in fig. 7.3 is the maximum obtained over 104 runs, with

random initial seeds.

The computed lower and upper bounds for Hardy’s probability di↵er,

at most, by values of order 10�2; in the region ✏ . 0.2 (where any ex-

periment that aims at implementing Hardy’s test will have to be), this

di↵erence is of order 10�6. This proves that there is no advantage in using
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higher-dimensional systems, as compared to two-qubit systems, even in the

presence of imperfections.
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8

Conclusions

One of the most intriguing facts in the field of foundations of quantum the-

ory is the non-equivalence between entanglement and nonlocality. Although

there are entangled states that can only lead to local correlations in stan-

dard Bell scenarios, there are more general scenarios where the “hidden”

nonlocality of such states could be revealed. The first attempt to explore

such scenarios considered local preprocessing of one or many copies of the

state, an operation known as local filtering. This line of research has led to

many interesting results, of which one of the most interesting states that

every entangled state displays some hidden nonlocality that can be revealed

if assisted by a suitable local state.

Along with the above scenario, this thesis presented a novel approach

that shed new light on the complex relations between entanglement and

nonlocality. By considering multipartite quantum networks composed of

multiple copies of local quantum states, it is possible to show that nonlocal

correlations can be retrieved, and, thus, that such states may be useful

resources for applications of nonlocality.

Several examples of activation of nonlocality on quantum networks were

presented. Among them, the proofs that every one-way entanglement dis-

tillable state, every “erased” state and that every state that is useful for

teleportation are nonlocal resources. This last result implies the very in-

teresting fact that every entangled isotropic state displays nonlocality in

at least one scenario, thus proving a special equivalence between entangle-

ment and nonlocality for this family of states. The main future directions

in this line are to extend this special equivalence to all bipartite entangled
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states, and, possibly, to all entangled states. A relation that remains unex-

plored is the one between the multipartite quantum network scenario and

the filtering scenario previously presented.

Recently, a novel device-independent paradigm has been gaining strength

within quantum information theory. The possibility of assessing quantum

properties making very few assumptions on the systems and devices un-

der consideration is noteworthy, and the possibilities opened by such ap-

proach are innumerous. On the applied side, device-independent protocols

for quantum distribution of cryptographic keys and randomness expansion

and amplification allow for the possibility of implementing such tasks se-

curely and privately even under the most paranoic scenarios, for instance,

those in which a malevolent party is the provider of the devices in use.

On the fundamental side, di↵erent methods allow for device-independent

assessment of the dimension of an unknown system, of how entangled it

is, and if the entanglement is genuinely multipartite, or even allow for the

assessment of the state of the systems, on self-testing protocols that, also,

can be used to assess specific operations applied to the systems.

This thesis presented two novel results that contribute to the expanding

field of device-independent assessment of properties. The first is a device-

independent protocol for certification of entangling measurement devices,

that is, measurement devices that are able to project the systems being

measured onto entangled states. Such devices are crucial in many quantum

information and computation tasks, including the seminal teleportation pro-

tocol. Thus, device-independent certification of the entangling character of

a given device may be a very important issue for the implementation of

quantum networks.

The protocol presented, although being an important proof of principle,

is not robust, and the demanding conditions on which it is valid make an

experimental implementation impossible, at this stage. However, it may be

the first step for a robust, fully implementable protocol. Other possibili-

ties that arise from it are extending the ideas to the multipartite domain.

With the interesting structures presented by entanglement, in multipartite

systems, it may be possible to certify, device-independently, not only that
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the measurement devices are entangling but also the type of entanglement

they present.

The second result gives novel device-independent bounds for the sem-

inal Hardy’s experiment, or Hardy’s paradox. Hardy’s experiment is the

first bipartite example of a quantum nonlocality test that does not rely on

inequalities, also known as an all-versus-nothing test. One of its curious

properties is that it holds for all two-qubit states, except the maximally

entangled one.

Since it was first introduced, many generalizations of Hardy’s experi-

ment followed, from higher-dimensional systems to multipartite ones, and

several experiments have been performed. One question that remained

unanswered is if higher-dimensional systems could lead to any advantage,

either on ideal theoretical tests or on imperfect practical implementations.

The bounds presented cover both situations, and it is proven that two-qubit

systems are su�cient to reach maximal nonlocality in both cases. Another

interesting result is that the ideal scenario where maximal nonlocality is

observed is very special, and only a very specific class of states can achieve

such correlations. This observation led to the first example of self-testing

of non-maximally entangled states.
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A

Proofs of some lemmas

Fine’s lemma

The following lemma, due to Artur Fine [31], is formulated for Bell scenarios

where two parties perform dichotomic measurements, but can be extended

to more general scenarios.

Lemma (Fine [31]). A probability distribution p(a, b|x, y) is local if, and

only if, there is a joint probability distribution p(a, a0, b, b0) whose marginals

are consistent with p(a, b|x, y), where a and b denote the outcomes of mea-

surements x = 0 and b = 1 and a0 and b0 denote the outcomes of measure-

ments x = 1 and y = 1, respectively.

Proof. Every local probability distribution can be written as

p(a, b|x, y) =
X

�

q(�)dA(a|x,�)dB(b|y,�), (A.1)

where dA(a|x,�) and dB(b|y,�) are deterministic local probabilities. To

prove that a joint probability distribution for all outcomes can be obtained

from any local probability distribution, it su�ces to define

p(a, a0, b, b0) =
X

�

q(�)dA(a|0,�)dA(a0|1,�)dB(b|0,�)dB(b0|1,�). (A.2)

It follows, then, that the marginal distributions are equal to the initial
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distribution,

p(a, b|x, y) =
X

a0,b0

p(a, a0, b, b0). (A.3)

Now, to prove the converse, suppose there is a joint probability distri-

bution p(a, a0, b, b0). Let �i = (ai, a0i, bi, b
0
i), and

pA(a|0,�i) = �a,ai , pA(a
0|1,�i) = �a0,a0i , (A.4)

pB(b|0,�i) = �b,bi , pB(b
0|1,�i) = �b0,b0i . (A.5)

If q(�i) = p(a, a0, b, b0), then, the local probability distribution p(a, b|x, y)
can be retrieved by

p(a, b|x, y) =
X

i

q(�i)pA(a|x,�i)pB(b|y,�i). (A.6)

Masanes’ lemma

Also referred to as Jordan’s lemma [111]. The statement and proof that

follows is adapted from [76].

Lemma (Masanes [76]). Let ⇧0|0,⇧1|0,⇧0|1,⇧1|1 be four projectors acting on

a Hilbert space H such that ⇧0|0+⇧1|0 = 1 and ⇧0|1+⇧1|1 = 1. There exists

an orthonormal basis in H where the four projectors are simultaneously block

diagonal, where the subspace Hi of H corresponding to block i is, at most,

bidimensional, dim (Hi)  28i.

Proof. Take the three positive operators ⇧0|1, �0|0 =
�
⇧0|1⇧0|0⇧0|1

�
and

�1|0
�
⇧0|1⇧1|0⇧0|1

�
. Their ranges are contained in the subspace where ⇧0|1

acts like the identity, and �0|0 + �1|0 = ⇧0|1. Thus, they can be simulta-

neously diagonalized. Let |vi be one of the simultaneous eigenvectors that

satisfies ⇧1|1 |vi = 0. Because ⇧0|0 + ⇧1|0 = 1, it cannot be that both

⇧0|0 |vi = 0 and ⇧1|0 |vi = 0 hold. Assume, first, that ⇧0|0 |vi = 0. Then
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⇧1|0 |vi = |vi and the span of |vi, denoted Hv, corresponds to a 1 ⇥ 1

diagonal block where ⇧0|0,⇧1|0,⇧0|1,⇧1|1 have eigenvalues 0, 1, 1, 0, respec-

tively. The case ⇧1|0 |vi = 0 is similar. Assume, then, that ⇧0|0 |vi 6= 0

and ⇧1|0 |vi 6= 0. Let
�� 0|0

↵
= ⇧0|0 |vi and

�� 1|0
↵
= ⇧1|0 |vi be orthogonal

vectors in Hv, defined now as Hv =
�
↵1

�� 0|0
↵
+ ↵2

�� 1|0
↵
: 8↵1,↵2 2 C

 
.

Clearly, |vi 2 Hv, since |vi =
�� 0|0

↵
+
�� 1|0

↵
. Because ⇧0|1

�� 0|0
↵ / |vi

and ⇧0|1
�� 1|0

↵ / |vi, there exists a |wi in Hv such that ⇧0|1 |wi = 0 and

⇧1|1 |wi = |wi. So,
�� 0|0

↵
,
�� 1|0

↵ 2 Hv are simultaneous eigenvectors of

⇧0|0,⇧1|0, and |vi , |wi 2 Hv are simultaneous eigenvectors of ⇧0|1,⇧1|1.

Therefore, the subspace Hv corresponds to a bidimensional subspace of H
where ⇧0|0,⇧1|0,⇧0|1,⇧1|1 are simultaneously block diagonal. The same con-

struction can be made for all the simultaneous eigenvectors |vi, and for the

simultaneous eigenvectors of ⇧1|1,
�
⇧1|1⇧0|0⇧1|1

�
and

�
⇧1|1⇧1|0⇧1|1

�
. At the

end, the Hilbert space H can be decomposed as a direct sum of subspaces

Hi of dimension less or equal than 2 that contains two eigenvectors of each

operator ⇧0|0,⇧1|0,⇧0|1,⇧1|1.

The following very useful corollaries follow directly from the lemma.

Corollary 1. Let OA = ⇧0|0�⇧1|0 and OB = ⇧0|1�⇧1|1 be two observables

acting on H. Then, according to the lemma, there are subspaces Hi of

H such that O1 and O2 are simultaneously block diagonalized, that is, the

observables can be written as O1 =
L

i O
i
1 and O2 =

L
i O

i
2, where both Oi

1

and Oi
2 act on Hi, for every i, and each block is of size 1⇥ 1 or 2⇥ 2.

Corollary 2. Let B = A0⌦(B0 +B1)+A1⌦(B0 � B1) be a CHSH operator

acting on HA ⌦ HB, where Ax and By are dichotomic observables. Then,

there are subspaces HAi of HA and HBj of HB such that the CHSH operator

can be written as B =
L

i,j Bij, where Bij is a CHSH operator acting on

HAi ⌦HBj.
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Popescu-Rohrlich lemmas

Lemma (Popescu-Rohrlich 1 [9]). For every entangled state | i of an n-

partite quantum system, associated with H = ⌦n
i=1Hi, for any two parties

there exists a projection onto a direct product state of the remaining (n� 2)-

parties such that the resulting bipartite state is entangled.

Proof. Let {|⇠kii} be an arbitrary orthonormal basis ofHi, for all i. Suppose

that the false conclusion of the lemma holds, that the projection onto all

elements of (n� 2) of these bases result on a product state of the remaining

2 parties. Let

|�1i |�2i = [h⇠k
3

| . . . h⇠kn |] | i . (A.7)

The states |�1i and |�2i can be functions of the elements of the bases, that

is |�1i = |�1 (k3, . . . , kn)i, |�2i = |�2 (k3, . . . , kn)i. However, in order for the

resulting state to remain separable when projection onto di↵erent elements

of the (n� 2) bases are taken, it is necessary that the states |�1i and |�2i are
functions of disjoint sets of indices, as, for instance, |�1i = |�1 (k3, . . . , kl)i,
|�2i = |�2 (kl+1, . . . , kn)i, for some l. Otherwise, by taking a projection

onto a superposition of two or more elements of a basis, one could end up

with an entangled state on the remaining parties. It follows that the state

 can be written as

| i =
X

k
3

,...,kl

|�1 (k3 . . . kl)i |ek
3

. . . ekli ⌦
X

kl+1

,...,kn

|�2 (kl+1 . . . kn)i
��ekl+1

. . . ekn
↵
.(A.8)

Repeating the argument for all pairs of parties, one ends up with similar

representations over all possible bipartitions of the Hilbert space. It follows

that the state | i has, necessarily, to be fully separable, | i = | 1i ⌦ · · ·⌦
| ni, which contradicts the assumption of the lemma.

Lemma (Popescu-Rohrlich 2 [9]). Consider an n-partite Bell scenario. If

the joint probability distribution admits a local model, then the probability
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distribution of the outcomes of k parties, conditioned on the outcomes of

the remaining (n� k) parties, admits a local model.

Proof. This proof is valid for a 3-partite scenario, but can be easily ex-

tended to scenarios with more parties. Let the probability distribution of

the outcomes be local, written as

p(a, b, c|x, y, z) =

Z

⇤

pA(a|x,�)pB(b|y,�)pC(c|z,�)q(�)d�. (A.9)

Now consider the probability distribution of the outcomes of parties A and

B, conditioned on a particular outcome c of measurement z,

p(a, b|c, x, y, z) =
p(a, b, c|x, y, z)

p(c|z) , (A.10)

where pC(c|z) =
P

a,b p(a, b, c|x, y, z). Since the probability distribution

p(a, b, c|x, y, z) is local, one has

p(a, b|c, x, y, z) =

R
⇤
pA(a|x,�)pB(b|y,�)pC(c|x,�)q(�)d�

pC(c|z) (A.11)

=

Z

⇤

pA(a|x,�)pB(b|y,�)q0(�)d� (A.12)

where q0(�) = q(�)pC(c|z,�)/pC(c|z); that is, the probability distribution

p(a, b|c, x, y, z) is necessarily local. Thus, if p(a, b|c, x, y, z) is nonlocal, then
p(a, b, c|x, y, z) must be nonlocal as well.

Maximum violation of the CHSH inequality

of a given two-qubit state

Lemma (Horodecki et al., [57]). Given a two-qubit state ⇢, the maximum

CHSH value achievable in a Bell test where projective measurements are

performed on such state is given by

S = 2
p
u0 + u1, (A.13)
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where u0 and u1 are the largest eigenvalues of the matrix U = T TT , and

the matrix T is defined as Tmn = Tr (⇢ (�m ⌦ �n)), where �i are the Pauli

matrices.

Proof. Every two-qubit state, acting on H2 ⌦H2 can be written as

⇢ =
1

4

 
1⌦ 1+ ~r · ~� ⌦ 1+ 1⌦ ~s · ~� +

3X

m,n=1

Tmn�m ⌦ �n

!
, (A.14)

where ~r,~s 2 R3, such that |~r|  1, |~s|  1, and Tmn = Tr (⇢ (�m ⌦ �n)). Let

Ax = ~ax.~� and By = ~by ·~� be the observables of Alice and Bob, respectively.

The mean value of the CHSH operator, on the state ⇢, is

S⇢ = ~a0.
⇣
T
⇣
~b0 +~b1

⌘⌘
+ ~a1 ·

⇣
T
⇣
~b0 �~b1

⌘⌘
. (A.15)

The vectors ~b0 and ~b1 can be decomposed on an orthogonal basis {~c0,~c1},

~b0 +~b1 = 2cos (✓)~c0, ~b0 �~b1 = 2sin (✓)~c1, (A.16)

where ✓ 2 [0, ⇡/2]. So, S⇢ is maximized over ✓ and vectors ~a0,~a1,~c0,~c1:

maxS⇢ = max(✓,~a
0

,~a
1

,~c
0

,~c
1

)2 [~a0 · (T~c0) cos (✓) + ~a1 · (T~c1) sin (✓)]
= max(✓,~c

0

,~c
1

)2 [|T~c0| cos (✓) + |T~c1| sin (✓)]
= max(~c

0

,~c
1

)2
q

|T~c0|2 + |T~c1|2. (A.17)

Define the matrix U = T TT , and let u0 and u1 be its largest eigenvalues.

The evaluation of the last maximum results in

maxS⇢ = 2
p
u0 + u1. (A.18)

Pure states, written in their Schmidt decomposition | i = cos (') |00i+
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sin (') |11i can lead to a maximum violation of

maxS| i = 2
q

1 + sin2 (2'). (A.19)

Maximum mean value of a given CHSH

operator over separable states

Lemma (Rabelo et al., [20]). For given local observables A0, A1, B0 and B1,

the maximum CHSH value achievable on a quantum Bell test with separable

states is

SSep =
�+

p
8� �2

2
, (A.20)

where � is the smallest eigenvalue of B such that � > 2.

Proof. To evaluate SSep = max⇢2STr (⇢B), where S is the set of separable

states, first note that, since the trace is linear and S is a convex set, it

su�ces to consider the set of pure product states P . Now, using the second

corollary of Masanes’ lemma, it follows that

SSep = max{|�i2P} h�| B |�i
= max{|�i2P} h�|�i,j Bi,j |�i
= max{|�i,ji2P}

X

i,j

pi,j h�i,j| Bi,j |�i,ji , (A.21)

where |�i,ji = (⇧i ⌦ ⇧j) |�i/ppi,j and pi,j = h�| (⇧i ⌦ ⇧j) |�i. By convex-

ity, the above expression is upper bounded by the largest mean value among

the two-qubit Bell operators Bi,j attained by two-qubit pure product states:

SSep = max{|�i,ji2P}
X

i,j

pi,j h�i,j| Bi,j |�i,ji


X

i,j

pi,j max{|�i,ji2P} h�i,j| Bi,j |�i,ji

 max{|�i2P,(i,j)} h�| Bi,j |�i . (A.22)
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According to [111], the spectral decomposition of any two-qubit CHSH op-

erator is, up to local unitaries, B =
P4

i=1 ↵i | ii h i|, where the eigenvectors
| ii are Bell states and the eigenvalues are functions of the local observ-

ables, with ↵1 = �↵3, ↵2 = �↵4, ↵2
1 + ↵2

2 = 8. Let ↵i,j be the largest

eigenvalue of Bi,j. Thus,

SSep = max{|�i2P,(i,j)} h�| Bi,j |�i
= max{|�i2P,(i,j)} ↵i,j[|h� |  1i|2 � |h� |  3i|2]
+

q
8� ↵2

i,j[|h� |  2i|2 � |h� |  4i|2]. (A.23)

Without loss of generality, the local unitaries in the spectral decomposition

of B are disconsidered, since they can be absorbed into the states |�i. The
largest overlap between a pure product state and a Bell state is 1/2; thus,

SSep = max{(i,j)}(↵i,j +
q

8� ↵2
i,j)/2.

Note that ↵i,j � 2 for all (i, j). This is because the largest eigenvalue

↵ of B is given by the positive square root of the largest eigenvalue of B2,

which is lower bounded by 2 [40]. Observe that the above function decreases

as ↵ increases. This way, the maximum is attained for the subspace (i, j)

such that ↵i,j is minimum. Then, defining � as the smallest eigenvalue of

B such that � � 2, it follows that

SSep =
�+

p
8� �2

2
. (A.24)

This generalizes to all dimensions the results of [135].
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