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Abstract

Non-rigid point set registration plays a key role in many computer

vision, machine learning, medical imaging and pattern recognition

applications. The goal of non-rigid point set registration is to as-

sign correspondences between two point sets and (or) to recover the

transformation that maps one point set to the other. In this thesis, we

mainly focus on the development of a new non-rigid point set registra-

tion method and its applications in the studies of human masticatory

system.

We first present a robust global and local mixture distance (GLMD)

based non-rigid point set registration method which consists of an

alternating two-step: correspondence estimation and transformation

updating. We define two novel distance features for measuring global

and local structural differences between two point sets, respectively.

The two distances are then combined to form a GLMD based cost

matrix which provides a flexible way to estimate correspondences by

minimizing global or local structural differences using a linear assign-

ment solution. To improve the correspondence estimation and en-

hance the interaction between the two-step, a novel annealing scheme

is designed to gradually change the cost minimization from local to



global and the transformation from rigid to non-rigid during registra-

tion. We tested the performance of the proposed method in shape

contour registrations and feature point matchings in sequence images

and real images. We also compared the performance of the proposed

method with six state-of-the-art methods where our method shows

the best alignments in most scenarios.

The proposed GLMD based non-rigid point set registration method is

then applied to exploring two practical problems in human mastica-

tory system: (i) masticatory muscle functional activity investigation,

and (ii) biomechanical relationship between masticatory muscle activ-

ities and mandibular movements. We proposed a new framework to

assess human masticatory muscle deformation using magnetic reso-

nance (MR) images. The framework is mainly based on the proposed

non-rigid point set registration method. Through the assessment of

human masticatory muscle deformation, the framework provides an

effective way to assess and visualize human masticatory muscle func-

tional activity, and explain the biomechanical relationship between

masticatory muscle activities and mandibular movements.
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Chapter 1

Introduction

In this thesis, we are mainly interested in the development of a new non-rigid

point set registration method and its applications to the problems of medical

image registration. Before launching into the details of our proposed method,

we first describe the fundamental concepts in the domain of non-rigid point set

registration, and give a comprehensive review of current non-rigid point set regis-

tration methods. We then introduce some representative applications of non-rigid

point set registration in the assessment of soft tissue deformation. At the end of

this chapter, we briefly discuss the main focus, scope and contributions of this

thesis.

1.1 Non-rigid Point Set Registration: Defini-

tion and Classification

Non-rigid point set registration plays a key role in many computer vision, machine

learning, medical imaging and pattern recognition applications, such as object

1



retrieval, generating cartoon animation, recovering dynamic motions of human

organs and muscles, and template registration for hand-written characters.

A classic non-rigid point set registration problem is defined as: given two sets

of points (the source point set and the target point set which is deformed from

the former), we seek to recover the correspondence between the two point sets,

or (and) build a non-rigid transformation that can best map the source point set

onto the target point set. An example on 2D face registration is shown in Fig. 1.1.

Moreover, the non-rigid point registration problems are often accompanied with

unknown deformation, rotation and the presence of noise, outliers and missing

points. Thus, a good non-rigid point set registration method needs to address all

these issues while it should be able to provide a fast solution.

Figure 1.1: Non-rigid point set registration problem. The target point set (red)
is deformed from the source point set (blue).

There are typically two unknown variables in non-rigid point set registra-

tion problems: the correspondences and the transformation. According to the

methodological differences of current non-rigid point set registration methods,

there are two major types of classification:

2



i. Iterative vs Non-iterative methods.

ii. Learning vs No learning methods.

Since we mainly focus on developing an iterative non-rigid point set registration

method in this work, we introduce and discuss the current methods along the

first classification (i) in the next section.

1.2 Review of Non-rigid Point Set Registration

Methods

In non-iterative methods, correspondences between two point sets are recovered

under a single estimation (i.e., a single iteration) using high level structures such

as lines [2], curves [3], surfaces [4], shape context descriptors [5, 6] and graph

relations [7, 8]. The shape context descriptors [5, 6] and graphs [7, 8] are two of

the most popular features for non-iterative methods. The methods [5, 6, 9, 10,

11, 12] based on such features seek to minimize the point distribution or graph

relation differences between two point sets for finding correspondences. Recently,

learning graph based methods [10, 12] were introduced and the results show that

parameter learning is vital for improving the registration accuracy. However, the

applicabilities of point distribution and graph based methods are limited when

neighboring points are close to each other [13] and have similar edge connections

[14], respectively. Moreover, it is also difficult to achieve a good match under a

single estimation for relatively large nonrigid distortions.

Iterative methods typically comprise an alternating two-step process: corre-

spondence estimation and transformation updating. Compared with non-iterative

3



methods, the key idea of iterative methods is to gradually adjust the initial ge-

ometrical structure and location of the source point set so that it becomes more

similar to the target point set, and then correspondence estimation becomes eas-

ier. The iterative closest point (ICP) method is the most famous and simplest

method in this class. It was first proposed by [15] for solving a rigid point set

matching problem, and then modified by [16] for the non-rigid problems. The

ICP is guaranteed to converge to a local minimum. However, it does not guaran-

tee one-to-one correspondences and its performance is very sensitive to outliers.

The TPS-RPM method [16] is one of the most notable methods in this area. It

employs softassign [17, 18] and deterministic annealing [19, 20] to estimate cor-

respondences and control thin plate spline (TPS) [21] transformation updating,

respectively. Recently Myronenko et al. [22] introduced a coherent points drift

algorithm which is a maximum likelihood estimation with a motion coherence

constraint [23] for preserving the topological structure of the point sets. Later,

Myronenko and Song [24] (CPD) extended the former algorithm for both rigid

and non-rigid registration, and provided a fast registration using a fast Gauss

transform [25] and low-rank matrix approximation [26]. More recently, Jian and

Vemuri [14] (GMMREG) introduced a Gaussian mixture model approach for both

rigid and non-rigid registration. They consider the registration problem as one

of aligning two Gaussian mixture models, and the transformation is updated by

minimizing the L2 distance [27] between the two models.
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1.3 Limitations of Current Methods

The CPD and GMMREG methods are two of the best performing non-rigid point

set registration methods. Both CPD and GMMREG follow the alternating two-

step process as in ICP and TPS-RPM, and further improve the transformation

updating using the motion coherent and L2 distance minimization constraints,

respectively. However, there are three major issues in the current methods as

follows:

∙ The CPD and GMMREG still employ a similar Gaussian probability density

to assign a fuzzy correspondence which leads to a ’fuzzy location updating’

for the warping template. The ’fuzzy location updating’ may cause the

registration process to spend relatively more iterations during registration,

and may not be always valid to update the locations of the warping tem-

plate. That may be a major reason why the CPD and GMMREG focus on

developing the constraints for transformation updating.

∙ Forcing the points to move coherently in CPD may produce a relatively

large error when one point is mismatched, and may also be undesirable

when source points need to be moved in different directions to match their

target points.

∙ The Euclidean distance between two point sets in GMMREG is not always

minimized by minimizing the L2 distance between two Gaussian mixture

models.
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1.4 Applications in Medical Image Registration

Assessing soft tissue deformation is one of the most important applications in

medical image registration. By using non-rigid point set registration techniques,

some recent studies have successfully investigated the human and animal soft

tissue deformations through recovering region correspondences between the soft

tissue before and after deformation. Examples of such studies are human brain

mapping [16, 28], assessing cardiac [29, 30], stomach [31] and lung deformations

[32], and recognizing facial expression [33].

In these studies, the main process of assessing a soft tissue deformation is

to first employ point feature representation (the point cloud) to modeling soft

tissue morphologies before and after deformation, and then recover the region

correspondences between the two point cloud models using non-rigid point set

registration techniques. Finally, the recovered corresponding relations (the paired

corresponding points) is used to represent the deformation field of the target soft

tissue.

Therefore, designing an appropriate protocol to capture soft tissue deforma-

tions by medical imaging and developing (or choosing) an appropriate non-rigid

point set registration method play the key roles in such studies.

1.5 Focus of the Thesis

We mainly focus on developing a new non-rigid point set registration method

which can address the aforementioned three issues in the current methods, and

its applications in two practical problems of studying human masticatory system.

6



More specifically, in this work,

1. We focus on designing novel distance features for non-rigid point set registra-

tion problems.

2. We develop a new method for non-rigid point set registration problem that

addresses several problems in current methods: (a) fuzzy location updating (in

the TPS-RPM, CPD and GMMREG), (b) forcing points to move coherently

(in the CPD), and (c) minimizing Euclidean distance (in the GMMREG).

3. We employ the new method to explore two practical problems in the stud-

ies of human masticatory system: (a) masticatory muscle functional activity

investigation, and (b) biomechanical relationship between masticatory muscle

activities and mandibular movements.

1.6 Scope of the Thesis

The scope of this thesis is as follows:

1. We present a robust global and local mixture distance based non-rigid point

set registration method in Chapter 2.

2. We compare the performance of our method with six state-of-the-art methods

in Chapter 3.

3. We theoretically and empirically discuss the advantages and disadvantages

between our method and the current methods in Chapter 4.
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4. We present a new framework which is mainly based on the proposed non-rigid

point set registration method for the assessment of human masticatory muscle

deformation in Chapter 5.

5. We demonstrate an application I: Masticatory Muscle Functional Activity In-

vestigation in Chapter 6.

6. We demonstrate an application II: Biomechanical Relationship between Muscle

Activities and Mandibular Movements in Chapter 7.

7. We conclude with a discussion on the limitations of our work and future work

in Chapter 8.

1.7 Thesis Contributions

The significant contributions of this thesis include the following:

∙ We propose three novel distance features: global, local and mixture dis-

tances.

∙ We propose a new approach ”Global feature + � × Local feature” that

employs multiple features for estimating correspondence in non-rigid point

set registration problems.

∙ We develop a new non-rigid point set registration method which addresses

the issues in the current methods (see Chapter 3 and 4), and outperforms

state-of-the-art methods.

∙ We investigate the deformations of masticatory muscles during jaw opening

and closing using MR images. The assessed muscle deformations are used
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to explain the muscle functional roles during jaw movements (in Chapter

6).

∙ We explain the biomechanical relationship between the mandibular move-

ment and the functional activities of masticatory muscles under a maximum

intercuspation case by measuring the mandibular movement from MR im-

ages and assessing the deformations of masticatory muscles (in Chapter

7).
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Chapter 2

A Robust Global and Local

Mixture Distance based

Non-rigid Point Set Registration

Method

In this chapter, we present a robust global and local mixture distance (GLMD)

based non-rigid point set registration method which consists of an alternating two-

step: correspondence estimation and transformation updating. We first define a

global distance and a local distance for measuring the global and local differences

between two point sets, respectively. The two distances are then combined to

form a GLMD based cost matrix which provides a flexible way to estimate cor-

respondence between two point sets by minimizing the local or global difference

using a linear assignment solution. To improve the correspondence estimation

using both local and global features and enhance the interaction between the two
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steps, a novel annealing scheme is designed to gradually change the GLMD based

cost matrix minimization from the local to global distance and the non-rigid spa-

tial transformation from a more rigid to a more non-rigid during registration.

Since the proposed method may easily combine the correspondence estimation

with different transformations such as TPS transformation and Gaussian radial

basis function (GRBF), we describe two combinations: GLMD based correspon-

dence estimation + TPS transformation (called ”GLMDTPS”) and GLMD based

correspondence estimation + GRBF transformation (called ”GLMDGRBF”) in

this chapter.

2.1 Global, Local and Mixture Distances

2.1.1 Global Distance

Global distance is used to measure squared Euclidean distances from one point

set to another, and defined as

Gaibi = G(ai,bj) =∥ ai − bj ∥
2 (2.1)

where Gab matrix describes the global structural difference between point set a

and point set b. If we consider Gab as a global cost matrix and minimize it by a

linear assignment solution, we will obtain the corresponding relation between a

and b, which is based on the minimization of global structural difference between

the two point sets.

11



2.1.2 Local Distance

Local distance is designed to measure local differences (or similarities) from one

point sets to another. The basic idea is shown in Fig. 2.1. For example, in

Figure 2.1: Local similarity measurement. Each red point and its closest points
(the five blue points) construct a small segment in the point set, such as A and
A’ shown here.

order to find a corresponding segment A′ for A, we first translate the five closest

points of the center point (the red point in Fig. 2.1) in A to each A′ according

to a displacement vector from the center point in A to the center point in A′.

Then, we sum the distances between the two sets of closest points. Finally,

the corresponding segment of A is determined by a segment having the shortest

summed distance. The local distance is formulated as

Laibj = L(ai,bj) =
K
∑

k=1

∥ T (N(ai)k,bj)−N(bj)k ∥
2 (2.2)

where Lab is a local distance matrix from point set a to point set b , and K

is the number of neighboring points. N(ai)k and N(bj)k are the ktℎ closest point
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for the points ai and bj , respectively. T is the translation function defined by

T (N(ai)k,bj) = N(ai)k + (bj − ai) (2.3)

The local distance L(ai,bj) is mainly determined by the number of neigh-

boring points K which plays an important role in measuring local similarity,

preserving the topological structure of the point sets as well as dealing with

noise, outliers, rotation and missing points. Here, if we consider Lab as a local

cost matrix and minimize it by a linear assignment technique, we will obtain the

corresponding relation between a and b, which is based on the minimization of

local structural differences between the two point sets.

2.1.3 Mixture Distance

The mixture distance consists of the global and local cost matrices (i.e., the global

and local distance matrices). It is defined as

Cab = Gab + � ⋅ Lab (2.4)

where Cab is a GLMD based cost matrix. � is a weighting parameter that

controls the balance between the global and local costs in Cab. For example, when

� is very large, minimizing Cab is equal to minimizing the local distance cost Lab.

The process tends to minimize the global distance cost Gab when � becomes

small. The designed mixture distance Cab provides a flexible way to estimate the

correspondence by minimizing the local or global structural difference between

two point sets.
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2.2 Main Process

Suppose we have two point sets {xi, i = 1, 2, ..., X} and {yi, j = 1, 2, ..., Y } in R2

or in R3 for the source point set x and the target point set y, respectively. The

process of this method is first (i) to use a warping template xw (the initial xw = x)

to estimate corresponding points yc (the points in y) for x at each iteration, and

then (ii) to update the locations of xw using the recovered correspondence between

x and yc. The steps (i) and (ii) are iterated such that the warping template xw

can gradually and continuously approach the target point set y, and finally match

the exact corresponding points in y.

2.2.1 Correspondence Estimation

The list of corresponding points yc at each iteration is estimated by minimizing

the total cost function

Ctotal(M) =
X
∑

i

Y
∑

j

MijCxwyij (2.5)

where the solution M is a binary correspondence matrix (from xw to y) and still

satisfies
∑Y

j Mij = 1 for i ∈ 1, ..., X with Mij ∈ {0, 1}. Cxwy is the GLMD

based cost matrix (described in Section 2.1.3) from xw to y. Cxwy contains the

weighting parameter � that is controlled by a annealing scheme for changing the

minimization from the local distance to the global distance. For each point xw
i

and yi, the sets of neighboring points N(xw
i ) and N(yi) used in the local distance

Lxwy are determined by the Euclidean distance relationships in the source point

set x and the target point set y, respectively. Since a local distance L(xw
i ,yi)

14



is measured from two small segments and the determined neighboring relations

N(xw
i ) and N(yi) are fixed during the warpings of xw, minimizing the local

distance preserves the topological structures of the point set xw.

To find the correspondence matrix M where the total cost Ctotal has the min-

imum value, we solve the total cost function as a linear assignment problem using

the Jonker-Volgenant Algorithm [34] which provides the shortest augmenting path

and has worst-cost time O(N3). The original Jonker-Volgenant algorithm was de-

veloped for integer cost and only works on the square cost. To overcome the two

limitations, the calculated GLMD based cost Cxwy is rounded by ⌊Cxwy × R⌉

where R is a large resolution and set to 106 (since we rescale the coordinates of

all points within (0,1) before registration) in this work. If the size of point set x is

less than point set y (y includes outliers or x misses points), the non-square cost

Cxwy will be converted into a square cost problem by assigning dummy entries

[35] that do not affect the total cost. Cxwy can then be solved in the usual way

and still give the best solution. The solved M guarantees one-to-one correspon-

dence (from xw to y). The new correspondence yc for the x is then updated by

yc = M ⋅ y (2.6)

2.2.2 Transformation Updating

Since the aforementioned correspondence estimation can easily combine with dif-

ferent non-rigid transformations, we present the two implementations of using

TPS and GRBF, respectively, in this section.
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2.2.2.1 Thin Plate Spline

After updated yc, the spatial transformation is refined by the current correspon-

dence yc and the source point set x. In this work, we map x to yc by TPS

transformation

f(x,d,w) = x ⋅ d+ �(x) ⋅w (2.7)

where d is a affine coefficient matrix and w is a non-rigid warping coefficient

matrix. �(x) is the TPS kernel function defined by �(x) = ∥x−xc∥
2 log ∥x−xc∥

and �(x) = ∥x− xc∥ for the 2D and 3D cases, respectively. xc is a set of control

points chosen from x.

To map x to its correspondence yc with the proper d and w, the minimizing

TPS energy is defined as

ETPS(f) =
X
∑

i=1

∥yc − f(x)∥2 + �

∫ ∫

[(
∂2f

∂x2
)2 + 2(

∂2f

∂x∂y
)2 + (

∂2f

∂y2
)2]dxdy (2.8)

By substituting the solution for (2.7) into (2.8), the TPS energy function becomes

ETPS(d,w) = ∥yc − xd−Φw∥2 + �trace(wTΦw) (2.9)

where the regularization parameter � penalizes the non-rigid warping coefficient

w, and is controlled by the same annealing scheme used to the aforementioned

weighting parameter � in (2.4). Φ is the kernel matrix from the kernel function

�(x).

To find the least-squares solutions for the d and w, the QR decomposition
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[36] is used to separate the affine and non-rigid warping space by

x = QR = [Q1∣Q2]

⎛

⎜

⎝

R1

0

⎞

⎟

⎠
(2.10)

where Q1 is an N ×D matrix, Q2 is N × (N −D), R1 is D×D, and Q1and Q2

both have orthogonal columns. Thus (2.9) becomes

ETPS(,d) = ∥QT
2 y

c−QT
2ΦQ2∥

2+∥QT
1 y

c−R1d−QT
1ΦQ2∥

2+�TQT
2ΦQ2

(2.11)

where w = Q2 and  is (N −D − 1)× (D + 1). The least-squares solution for

(2.11) can be first minimized with respect to  and then with respect to d . The

final solutions for w and d are

ŵ = Q2 = Q2(Q
T
2ΦQ2 + �IN−D−1)

−1QT
2 y

c (2.12)

d̂ = R−1(QT
1
yc −Φw) (2.13)

The new location of the warping template xw is updated by

xw = x ⋅ d+Φ ⋅w (2.14)
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2.2.2.2 Gaussian Radial Basis Function

We can also map x to yc by GRBF tranformation

fGRBF(x) =

X
∑

i=1

wi�(∥ x− ci ∥) (2.15)

The Gaussian kernel function is defined by �(r) = exp (−r2/�2) and �(r) = r for

the 2D and 3D case, respectively. w is the warping coefficient matrix. To map

x to its correspondence yc with the proper w, the minimizing GRBF energy is

defined as

EGRBF(w) =∥ yc −Φw ∥2 +� ⋅ trace(wTΦw) (2.16)

where the regularization parameter � controlled by the same annealing scheme

penalizes the warping coefficient w, and Φ is the kernel matrix from the kernel

function �(r). The warping coefficient w is computed by

ŵ = (ΦTΦ + �Φ)−1ΦTyc (2.17)

This new location of xw is then updated by

xw = Φ ⋅w (2.18)

After updated the location of xw, we return to the first step (2.2.1) for con-

tinuing the registration process until the final temperature Tfinal of the annealing

scheme is reached.
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2.2.3 A Novel Annealing Scheme

Deterministic annealing [19] [20] is a useful heuristic for avoiding local minima

for a variety of optimization problems. A annealing scheme starts with a high

temperature Tinit, and ends at a specified Tfinal. The main reasons of using a

annealing scheme in this work are: (i) to reduce the weighting parameter � in

(2.4) to change the cost minimization from local to global, and (ii) to reduce the

regularization parameter � (in 2.12 for TPS or 2.17 for GRBF transformation)

to adjust the spatial transformation from a more rigid to a more non-rigid.

For example, at the start of registration, a large initial � causes the cor-

respondence matrix to focus on searching local similarities between xw and y.

Minimizing the local distance preserves the topological structure of the warp-

ing template xw and deals with noise, outliers, rotation and missing points. It

also improves the correspondence estimation, while the improved recovered corre-

spondence makes the spatial transformation better behaved. Furthermore, with

a large �, the transformation performs a more rigid and also preserves the topo-

logical structure of xw, prevents mismatches and rejects noise and outliers. As

the temperature T decreases, � and � become small. The registration process

tends to minimize the global distance between xw and y, while the transformation

performs a more non-rigid to make xw approach y as close as possible.

To summarize, the annealing scheme improves the flexibility and accuracy

of the correspondence estimation using both local and global distance features

and also enhances the interaction between the correspondence estimation and

transformation updating during the registration.
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2.3 Our Algorithm and Parameter Setting

The pseudo codes of GLMDTPS and GLMDGRBF are shown in Algorithm 1

and 2, respectively.

Algorithm 1 GLMDTPS

Input: Point sets x and y
To initialize parameters Tinit, Tfinal, r, �init and �init

To set K and determine N(xw
i )k and N(yj)k for xw and y

Begin I: Annealing scheme
Step1: Estimating the current correspondences yc by (2.5) and (2.6).
Step2: Updating the TPS transformation by (2.12) and (2.13).
Update the location of xw by (2.14).
Update the parameter � and � by decreasing T.

End I: Until T ≤ Tfinal is reached.
Output: Warped source point set xw

Algorithm 2 GLMDGRBF

Input: Point sets x and y
To initialize parameters Tinit, Tfinal, r, �init �init

To set K and determined N(xw
i )k and N(yj)k for xw and y

Begin I: Annealing scheme
Step1:Estimating the current correspondences yc by (2.5) and (2.6).
Step2:Updating the GRBF transformation by (2.17).
Update the location of xw by (2.18).
Update the parameter � and � by decreasing T.

End I: Until T ≤ Tfinal is reached.
Output: Warped source point set xw

At first, the annealing parameter T is set to start with high temperature Tinial,

and end with a low temperature Tfinal, where T is gradually reduced by a linear

annealing schedule T = T ⋅ r where r is the annealing rate. Meanwhile the pa-

rameter � and � are also reduced by � = �init ⋅ T and � = �init ⋅ T , respectively.

There are four groups of free parameters in GLMDTPS and GLMDGRBF: the

annealing parameters Tinit, Tfinal and r, the weighting parameter �, the regular-
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ization parameter �, and the number of closest points K. Both GLMDTPS and

GLMDGRBF have the same parameter setting as follows

∙ Annealing parameters: Tinit, Tfinal and r are set to ensure there are

sufficient iterations for the registration process. Based on an initial trial-

and-error experiment using a Fish1 point set (see Section 3.1.1), Tinit is set

to 1/10 of the largest squared distance between x and y, Tfinal is chosen

to be equal to 1/8 of the mean squared distance between the neighboring

points in x, and r is usually set to 0.7.

∙ Weighting parameter: The value of �init is large to make the corre-

spondence estimation focus on minimizing local differences at the start of

registration. The initial value of �init is set to the squared number of the

neighboring points K2.

∙ Regularization parameter: The value of �init is large to make the TPS

focus on performing more rigid transformations at the start of registration.

The initial value of �init is set to the length of point set x.

∙ The number of neighboring points: The value of K is based on the

minimum number of points used for distinguishing local structures. For

example, to distinguish between a corner (includes two neighboring points)

and a cross (includes four neighboring points), at least four neighboring

points are required. K is set to 5 for both 2D and 3D as default. It

can also be optimized for a particular case since adjusting the number of

neighboring points can better distinguish local structures for improving the

correspondence estimation and dealing with noise, outliers and rotation (see

Section 3.1.4).
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Chapter 3

Experimental Results

We implemented the main process of our method (both GLMDTPS and GLMD-

GRBF) in Matlab, and the Jonker-Volgenant algorithm in C++ as a Matlab mex

function. Since TPS and GRBF transformations give very similar performances in

2D and 3D cases, we selected GLMDTPS as our representative to mainly test the

performance of the proposed method in the following three series of experiments,

∙ Shape contour registration

∙ Feature point matching in sequence images

∙ Feature point matching in real images

while we compared the performance of GLMDTPS against the following three

types of state-of-the-art methods:

∙ Iterative methods: TPS-RPM [16], CPD [24] and GMMREG [14].

∙ No learning graph based methods: FGM [11].
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∙ Learning graph based methods: Caetano et al. [10] and Leordeanu et al.

[12].

In addition, we also evaluated the computational complexity of our method,

and discussed how the computational cost can be reduced. At the end of this chap-

ter, some registration examples by GLMDGRBF and the conclusion are given.

3.1 Experiments on Shape Contour Registra-

tion

In the first series of experiments, we evaluate the performances of our method

on different shape contour registration problems. Compared with the labeled

feature point sets in sequence images and real images (such as CMU sequence

and Pascal 2007 challenge in section 3.2 and 3.3), shape contour point sets are

typically sampled by a relatively high sampling rate and the registration is more

difficult on distinguishing local similarities since contour points are very close to

each other and have similar local features.

3.1.1 Performance on Four Popular Point Sets

There is no standard shape contour database that has been commonly used for

experimental comparison by the current non-rigid point set registration methods.

We first select the four most popular point sets from the TPS-RPM and CPD

works (as shown in Fig. 3.1).

Experiment design: To generate series of ”moderate” and ”rich” target

point sets from the selected point sets, we design the experiments as follows
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Figure 3.1: TPS-RPM and CPD testing point sets: (a) Fish1 (98 points), (b)
Chinese Character (105 points), (c) Fish2 (91 points) and (d) Face3D (392 points).
(a) and (b) are obtained from Chui and Rangarajan [16]. (c) and (d) are obtained
from Myronekon and Song [24]

Figure 3.2: Deformation experiment design

(a) Deformation: eight control points on the boundary of each source point set

(six control points on the left, right, anterior, posterior, superior and inferior

of the boundary for 3D) are set as shown in Fig. 3.2. Each control point is

set with four free moving directions (nine directions for 3D) and 0.2 moving

distance. The order and the moving directions of control points are randomly

determined. TPS transformation is employed to warp source point sets using

the defined control points, and the order of the warped source points is then

randomly rearranged. The degree of deformation is defined as the number of
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moved control points since the higher level of point perturbations produces

the higher deformation.

(b) Noise: five noise levels are used and defined as Gaussian white noise with a

zero mean and standard deviation from 0.01 to 0.05.

(c) Outlier: five outlier to data ratios are used and defined as the number of

outliers to the original data ratios ranging from 0.2 to 1.

(d) Rotation: we focus on the rotation range from −30∘ to 30∘ with a 15∘ interval

(the target point sets in 3D case are rotated on the vertical axis) since beyond

this range some methods will show an unstable performance. Although the

other three methods have not been evaluated in non-rigid rotation experi-

ments, we consider that evaluating performance under moderate rotations is

essential since the deformation is often accompanied by a rotation.

For (b) (c) and (d), each source point set are also randomly warped by a medium

degree of deformation (the fourth degree for 2D and the third degree for 3D)

before being added noise, outliers or rotations.

Performance assessment: To assess the registration performance, we fol-

lowed the same error measurement and the overall performance assessment in

TPS-RPM [16] and CPD [24]: the mean squared distance between the recovered

corresponding points and the exact corresponding points, and the mean error. For

each point set, one hundred random experiments are repeated for each setting

(i.e., each degree of deformation, noise level, outlier ratio and rotation degree) in

each experiment.

Comparison results: In order to achieve a direct and fair comparison with

the other three methods, we only compared the performance of our method
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Figure 3.3: Comparison of our results (∗) against CPD (▽) , TPS-RPM (□)
and GMMREG (∘) on the four point sets. The error bars indicate the standard
deviations of the mean errors in 100 random experiments. From the top row to
bottom row are: Fish1, Chinese Character, Fish2 and Face3D, respectively.
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against the others under their already tested point sets in this experiment since

they only provided the parameter values (in the published papers [14, 16, 24] and

the source codes [37, 38, 39]) for those point sets. The parameters of our method

are set as described in section 2.3. The comparison results are shown in Fig. 3.3

and discussed as follows:

∙ Fish1: The performance statistics (the mean error and its standard devi-

ation) are shown in the first row of Fig. 3.3. Our method shows accurate

alignments in all experiments, and gives the best performances over all de-

grees of deformation, outlier to data ratios from 0.6 to 1.0, and all degrees

of rotation. In the noise experiment, all the four methods give accurate

alignments while the GMMREG generally performed better. Registration

examples are shown in Fig. 3.4.

∙ Chinese Character: We only present the performances of our method and

TPS-RPM in this experiment (the second row of Fig. 3.3) since Chinese

Character has not been tested in the CPD and GMMREG papers for non-

rigid point set registration (GMMREG only tested it in the rigid registration

experiment). Our method shows accurate alignments and gives the best

performances over all degrees of deformation, all noise levels and all degrees

of rotation. In the outlier experiment, the TPS-RPM performs better. The

reason of why our method performed relatively poorly is that the outliers

spreading out on the Chinese Character shape can easily change the local

structures compared with the other point sets such as Fish1. Registration

examples are shown in Fig. 3.5.

∙ Fish2: The performances of our method and CPD are given in the third row
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Figure 3.4: Registration examples on Fish1. From the top row to bottom row
are examples in the deformation (the 8tℎ degree), noise (0.03), outlier (1.0) and
rotation (−30∘) experiments

of Fig. 3.3. Our method shows accurate alignments in all experiments, and

gives the best performances over all degrees of deformation, all noise levels,

large outlier ratios from 0.8 to 1.0, and all degrees of rotation. Registration

examples are shown in Fig. 3.6.

∙ Face3D: The performances of our method, the CPD and GMMREG are

given in the fourth row of Fig. 3.3. Our method shows accurate alignments

in all experiments, and gives the best performances over deformation degrees

from the second to the eighth degrees, noise levels from 0.01 to 0.04, outlier
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Figure 3.5: Registration examples on Chinese Character. From the top row to
bottom row are examples in the deformation (the 8tℎ degree), noise (0.03), outlier
(1.0) and rotation (30∘) experiments.

ratios from 0.6 to 1.0, and all degrees of rotation. Registration examples

are shown in Fig. 3.7.
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Figure 3.6: Registration examples on Fish2. From the top row to bottom row
are examples in the deformation (the 6tℎ degree), noise (0.03), outlier (1.0) and
rotation (30∘) experiments.

3.1.2 Performance on aWide Range of Geometrical Shapes

In this experiment, we consider that a good non-rigid point set registration

method should be robust to different geometrical shapes and not be sensitive

to its parameter setting since we normally deal with a non-rigid point set regis-

tration as an unknown problem where we may not be allowed to tweak parameter
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Figure 3.7: Registration examples on Face3D. From the top row to bottom row
are examples in the deformation (the 4tℎ degree), noise (0.03), outlier (0.8) and
rotation (30∘) experiments. The green points are the control points for generating
deformations.

values for each case. Thus, we further add another five point sets (shown in Fig.

3.8), and combine them with the Fish1 and Chinese Character to evaluate the

performances of the four methods. The parameter setting of each method follows

the same setting in the Fish1 experiment.

The mean performances (i.e., the mean error) of the four methods on the
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Figure 3.8: Additional point sets. : (a) Line (60 points) [16], (b) Bird1 (146
points), (c) Maple (215 points), (d) Hand (302 points) and (e) Face2D (317
points).

Figure 3.9: Mean performances of the four methods on the seven point sets

seven point sets are shown in Fig. 3.9. Our method shows accurate alignments in

all experiments, and gives the best performances over all degrees of deformation,

noise levels from 0.01 to 0.03, outlier to data ratios from 0.8 to 1.0 and all degrees

of rotation. To quantify the comparison results, we score the performances from

the best to the worst in each setting of each point set (e.g., the first degree

of deformation in the Line point set experiment) using 4,3,2,1 according to the
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calculated errors of the four methods. The summed scores and the mean scores

are shown in Table 3.1.

Table 3.1: Scored non-rigid matching results and mean scores on the seven point
sets

Methods D N
Our Method 28-28-28-28-28-28-28-28(28.0) 25-25-25-21-21(23.4)
CPD 18-19-20-20-20-20-20-20(19.6) 15-14-14-14-14(14.2)
TPS-RPM 15-14-12-10-10-9-10-9(11.1) 11-11-11-10-9(10.4)
GMMREG 9-9-10-12-12-13-12-13(11.3) 19-20-20-25-26(22.0)

Methods O R
Our Method 21-19-22-23-24(21.8) 27-28-28-28-27(27.6)
CPD 26-28-25-23-21(24.6) 11-10-20-11-13(13.0)
TPS-RPM 15-16-16-17-18(16.4) 10-17-12-17-12(13.6)
GMMREG 8-7-7-7-7(7.2) 22-15-10-14-18(15.8)

The D, N, O and R indicate the deformation, noise, outlier and rotation
experiments, respectively. The maximum and minimum of summed scores on
the seven point sets for each setting are 28 and 7, respectively. If two methods
have the same mean error, the two methods will be scored with the same score,
and the next rank will be stripped. From left to right, the scores indicate the

performances from the first to the eighth degree in the deformation
experiments, the performances from 0.01 to 0.05 in the noise experiments, the
performances from 0.2 to 1 in the outlier experiments and the performances

from −30∘ to 30∘ in the rotation experiments.

The results verify that our method is robust to different geometrical shapes

and is stable to the initial parameter values. Furthermore our method gives the

best overall performances in the deformation, noise and rotation experiments,

and the very similar performance to the CPD which performs best in the outlier

experiments. Registration examples are shown in Fig. 3.10.
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Figure 3.10: Registration examples on the seven point sets. All results shown
here are under the settings of the 8tℎ degree of deformation, the 3rd noise level,
the outlier to data ratio as 1 and the 30∘ rotation for the deformation, noise,
outlier and rotation experiments, respectively. For the noise, outlier and rotation
cases, the target point sets were also warped by the 4tℎ degree of deformation.
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3.1.3 Performance on Partial Matching

Figure 3.11: Performances with missing points. The parameter settings of our
method, TPS-RPM and GMMREG were set as in Section 3.2.1. For CPD, we
followed its published setting (� = 2, � = 2 and w = 0.5) for the non-rigid
missing point case in [24].

There are typically two types of partial matching: missing points on one

side and on both sides. Our method is robust to the first case, but may not

be able to cope well with missing points on both sides since it forces one-to-one

correspondence even if corresponding points (in the target point set) do not exist.

The performances of the four methods with missing points on the source point set

are shown in Fig. 3.11. The location of missing part was randomly determined,

while the target point set was also randomly warped by the fourth degree of

deformation. One hundred random experiments were repeated for each missing

point ratio setting. Our method gives the best performances over all the ratios,

and shows very accurate results (Error < 0.0019) when the ratio is below 0.5.
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Registration examples are shown in Fig. 3.12.

Figure 3.12: Matching examples in missing point experiment. Missing points to
data ratio: 0.4. The blue circles in the initial pose indicate the missing parts.

3.1.4 Performance with Variable Numbers of Neighboring

Points

The number of neighboring points K plays an important role in measuring local

similarity, preserving topological structure and dealing with noise, outliers and

rotation during registration. Adjusting the number of neighboring points makes

our method better behaved. In this section, we give several examples in improving

the performance of our method by adjusting the number of neighboring points.

High sampling rate case: Many studies in medical imaging sought to use

more sampling points to align two shape models for observing local differences

such as muscle deformation [40, 41, 42, 43], stomach deformation [31], breathing

motion [32], brain mapping [28] and animal skeleton [44]. In these cases, a small

local segment in a point set is represented by more points. Thus increasing the

number of neighboring points will help to improve the local similarity measure-

ment. A point set (Bird2) with 1715 points, which has the similar geometrical

shape with Bird1 but with more details in its feet and tail, is used in this ex-
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periment. To select a proper K for this point set, we tested the performances

with different numbers of neighboring points on the former seven point sets. Fig.

3.13 shows the mean performances of our method with respect to the different

numbers of neighboring points on the seven point sets. Our method generally

performs well around the additional neighboring points to data ratio with 0.012.

Figure 3.13: Mean performances with respect to the different numbers of neigh-
boring points. x axis indicates the number of additional neighboring points to
data (the number of points in each point set) ratio. We start at two neighbor-
ing points, and then add the additional neighboring points to test the perfor-
mances of our method. The actual used number of neighboring points is equal to
2+data×ratio.

According to this result, we chose 23 (⌊2+0.012∗1715⌉) as a optimized K for

Bird2. The performances of the four methods on this point set are given in Fig.

3.14 top, and the comparison results between K = 5 and K = 23 are shown in

Fig. 3.14 bottom. Registration examples are demonstrated in Fig. 3.15. Based

on these results, our method with the initial K = 5 still gives very accurate

results and the best alignments over all degrees of deformation. Furthermore,

the accuracy and stability of the performance are obviously improved using the
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optimized K = 23.

Figure 3.14: Experimental results on Bird2. Top: the performances of the four
methods. Bottom: the performances of our method using different numbers of
closest points.

Noise, outlier and rotation: Noise is generated by a Gaussian white noise

function from the original points such that the points deviate from their original

locations and the geometrical shape represented by the deviated points become

fuzzy. The registration process in dealing with noise is similar to the fitting of

a set of data points with linear least squares. In our method, minimizing the

global distance may be considered to be a linear least squares solution. There-

38



Figure 3.15: Matching examples in a high sampling rate experiment. The defor-
mation was under the 6tℎ degree. The blue and red shapes indicate the source
and target point set, respectively. The parameter settings of the four methods
were the same as set in the former Fish1 experiment. The mismatches are pointed
out by the black circles.

fore, decreasing the number of neighboring points may reduce the influence of

minimizing local distances and tend to minimize the global distance more quickly

(i.e., minimizing the global distance using more iterations) since the summed

local distance has become smaller before reducing �. Moveover, the outliers in

non-rigid point set registration problems are considered as points that markedly

(or unmarkedly) deviate from the original points. The outliers disrupt the local

structures of the original points. Therefore, using a relatively small number of

neighboring points may help to distinguish such outliers since a outlier combined

with its fewer neighboring points may not construct a meaningful local structure.

In addition, reasonably increasing the number of neighboring points may reduce

the influence of rotation since a point combined with more neighboring points

may construct a bigger local segment.

To demonstrate the performances of our method with optimized K in noise,

outlier and rotation experiments, we chose the Chinese Character (where our

method performed relatively poorly in the noise and outlier experiments) and
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Figure 3.16: Performances with optimized K in the noise, outlier and rotation
experiments.

the Face3D for the noise and outlier experiments, and the Fish1 for the rotation

experiment. The results are shown in Fig. 3.16. All the performances are im-

proved by adjusting the number of neighboring points K. Based on these results,

the number of neighboring points K combines a more flexible control in dealing

with deformation, noise, outliers and rotation with accurate performance.

3.2 Experiments on Sequence Images

In the second series of experiments, we evaluate the performance of our method

in the feature point matchings under sequence images. Compared with the shape

contour point sets, feature point sets in sequence images have relatively fewer
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points that sparsely distribute on images. The CMU house is one of the most

popular point sets and has been commonly used to test the performances of graph

based methods. The house dataset consist of 111 frames and each frame has 30

labeled landmarks. We compared the performance of our method against three

state-of-the-art graph based methods: Caetano et al. [10], Leordeanu et al. [12]

and FGM [11] under all possible image pairs. The results are shown in Table

3.2. Our method gives the perfect matching results in all possible image pairs,

and outperforms the three graph based methods. One representative matching

example is shown in Fig. 3.17.

Table 3.2: Matching rates on the CMU house for all possible image pairs. For
FGM and Caetano et al., we report upper bounds of their published results. For
Leordeanu et al., we report their published results. S and U denote ’supervised’
and ’unsupervised’, respectively. The numbers in S and U denote the number of
training image pairs.

Our method FGM Leordeanu et al. Caetano et al.
K=5 S(5) U(5) S(106)
100% <100% 99.8% 99.8% <96%

3.3 Experiments on Real Images

In the third series of experiments, we test the performances of our method in the

dataset from [12]. This dataset consists of 30 pairs of car images and 20 pairs

of motorbike images selected from Pascal 2007 Challenge. Each pair contains

30 ∼ 60 feature points. We compared the performances of our method against

the FGM [11] and Leordeanu et al. [12]. The results are listed in Table 3.3.

Our matching rate is higher than their published results. Matching examples are
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Figure 3.17: Wide baseline matching example on the CMU House: the 1tℎ image
matching with the 111tℎ image (30/30 correct matches).

shown in Fig. 3.18.

Table 3.3: Matching rates on cars and motorbikes. For the FGM and Leordeanu
et al., we report their published results. L: after learning.

Our method FGM Leordeanu et al.
K=5 L
93% 80% 80%

3.4 Computational Complexity

The computational cost in our method is mainly related to two aspects: (a) the

annealing parameters Tinit, Tfinal and r which determine the convergence range

and (b) the linear assignment solution which determines the worst-cost time of

solving the correspondence matrix.

42



Figure 3.18: Matching examples on cars and motorbikes.

3.4.1 Convergence Range

The convergence range of our method is determined by the deformation degree of

target point set since r is fixed as 0.7, and Tinit and Tfinal are determined by the
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Figure 3.19: Registration performances with different iterations. The target point
sets (from top to bottom) for deformation, noise, outlier and rotation experiments
are set by the 8tℎ degree of deformation, the 3rd noise level, the outlier to data
ratio as 1 and the 30∘ rotation, respectively. For the noise, outlier and rotation,
the target point sets were also warped by the 4tℎ degree of deformation.

squared distance between points (see the annealing parameter setting in section

2.3). In the other three methods, the convergence ranges are determined by the

annealing scheme in the TPS-RPM, and the tolerance stopping criterion and the

maximum iteration in the CPD and GMMREG. We investigate the convergence

ranges of the four methods under the largest deformation of Fish1. The parameter

settings for the three methods follow the values used in the former Fish1 experi-
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ment. On average, CPD required 33 iterations and TPS-RPM 94 iterations while

GMMREG used the maximum iteration (100 iterations) in all experiments since

the L2 distance was difficult to reach at the given tolerance stopping criterion as

10−10. Our method took relatively fewer iterations as 21 on average based on our

original parameter settings (section 2.3). To demonstrate the convergences of our

method in deformation, noise, outlier and rotation experiments, Fig. 3.19 shows

the registration performances with different iterations on the Fish1 point sets.

Figure 3.20: Relationships between performances and different annealing param-
eter settings.

In addition, we also investigated the performances of our method with differ-

ent annealing parameter settings. Fig. 3.20 shows an example on the Fish1 point

set. For each annealing parameter setting, one hundred random experiments

were repeated on each deformation degree. According to the results shown in

Fig. 3.20, the performance with reducing the Tinit was slightly improved and the

registration iterations were reduced about 33% (from 21 iterations on average to
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14 iterations); the performances with increasing the Tfinal were degraded and the

registration iterations were reduced about 33% (from 21 to 14); the performances

with reducing the annealing rate r were slightly degraded and the registration

iterations were reduced about 62% (from 21 to 8). All the experiments still show

very high accuracies (i.e., the errors were less than 0.00023 and the standard devi-

ations were within ±0.00027) even if the annealing parameters were significantly

changed. Based on these results, the computational cost in our method can be

substantially reduced by adjusting the annealing parameter settings while still

maintaining accurate alignment.

3.4.2 Performance of Jonker-Volgenant Algorithm

Table 3.4: Performance of Jonker-Volgenant algorithm. We tested the perfor-
mance of Jonker-Volgenant algorithm in Matlab (using a Mex file) on a PC with
4 GB of RAM and 2.67 GHz Intel(R) Xeon(R) CPU. The cost matrices were
generated by Matlab rand function.

Size 200 500 1000 2000 3000
Time Cost (s) 0.002 0.016 0.100 0.316 0.588

To solve the correspondence matrix using a linear assignment solution, the

Jonker-Volgenant algorithm [34] which has the worst-cost time O(N3) has been

employed in this work. The time costs on the different sizes of cost matrices are

listed in Table 3.4. The Jonker-Volgenant algorithm demonstrates fast solutions

that make our method achieve a fast solution for non-rigid point set registration

problems.
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3.4.3 Total Computational Time

In addition to the convergence range, the total computational time of each method

will also depend on the programming language and program optimization. Fur-

thermore, a tradeoff between the computational time and the registration accu-

racy exists must be adequately considered. Since the CPD and GMMREG meth-

ods are mostly implemented in C++ and the four methods gave different accura-

cies, we do not compare the total computational time of our method against the

other methods. Here, we only give the total computational times of our method

on several examples in Table 3.5. In our method, only the Jonker-Volgenant al-

gorithm is implemented in C++, the other processes are purely implemented in

Matlab.

Table 3.5: Computational times. The total computational times of our method
were tested under the largest degree of deformation in Matlab (on the same
PC used in Table 5). The parameter setting was based on the original setting
described in Section 2.4. Fish1: 98 points; Hand: 302 points; Face3D: 392 points;
Bird2: 1715 points.

Point Set Fish1 Hand Face3D Bird2
Time Cost 0.19s 1.13s 1.70s 77.88s

3.5 Registration Examples by GLMDGRBF

In this section, we present the performances of GLMDGRBF in dealing with

unknown deformation, noise, outliers and rotation on the former Fish1, Chinese

Character, Fish2 and Face3D point sets and also compare against to TPS-RPM

[16], CPD [24] and GMMREG [14]. The experiment designs and the error mea-

surement for the deformation, noise, outliers and rotation experiments are the
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same as described in section 3.1.1.

The performance statistics (the mean error and its standard deviation) on the

four point sets are shown in Fig. 3.21.

Figure 3.21: Comparison of GLMDGRBF (∗) against CPD (▽) , TPS-RPM (□)
and GMMREG (∘) on the four point sets. The error bars indicate the standard
deviations of the mean errors in 100 random experiments. From the top row to
bottom row are: Fish1, Chinese Character, Fish2 and Face3D, respectively.

In the Fish1 experiments (the first row of Fig. 3.21), GLMDGRBF shows

accurate alignments in all experiments, and gives the best performances over

all degrees of deformation, outlier to data ratios from 0.4 to 1.0 and degrees of

rotation from −30∘ to 15∘. In the noise experiment, all the four methods give
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accurate alignments while the GMMREG generally performed better.

In the Chinese Character experiments (the second row of Fig. 3.21), GLMD-

GRBF shows accurate alignments and gives the best performances over all degrees

of deformation, the noise levels from 0.01 to 0.02 and all degrees of rotation. In the

outlier experiment, the TPS-RPM performs better. The reason of why GLMD-

GRBF performed relatively poorly is similar with GLMDTPS as discussed in

section 3.1.1.

In the Fish2 experiments (the third row of Fig. 3.21), GLMDGRBF shows

accurate alignments in all experiments, and gives the best performances over all

degrees of deformation, all noise levels, outlier ratios from 0.4 to 1.0, and all

degrees of rotation.

In the Face3D point set (the fourth row of Fig. 3.21), GLMDGRBF shows

accurate alignments in all experiments, and gives the best performances over

deformation degrees from the second to the eighth degrees, noise levels from 0.01

to 0.02, outlier ratios from 0.8 to 1.0 and all degrees of rotation.

To summarize, GLMDGRBF shows the best alignments in most scenarios,

in particular, it obviously outperforms the other three in the deformation and

rotation experiments.

3.6 Conclusion

We have introduced GLMDTPS and GLMDGRBF that employ a global and local

mixture distance based correspondence estimation with TPS and GRBF trans-

formation, respectively. We first defined a global distance and a local distance for

measuring the global and local differences between two point sets, respectively.

49



We then combined the two distances to be a mixture distance based cost matrix

to estimate correspondences during the matching. A novel annealing scheme was

designed to smoothly control the correspondence estimation and the transforma-

tion updating.

Carefully designed experiments were undertaken to demonstrate the robust-

ness and stability of GLMDTPS and GLMDGRBF. Comparing the performances

of our methods against the current state-of-the-art methods, both GLMDTPS

and GLMDRBF shows the best performances in most scenarios. The significant

contributions of the proposed method include the following:

∙ Minimizing the local distance preserves the topological structure of the

point sets. Moreover, the Euclidean distance between two point sets is

always minimized by the global distance minimization at the end of regis-

tration.

∙ The designed GLMD based cost matrix provides a flexible way to estimate

the correspondences by multiple features.

∙ Unlike the single feature based correspondence estimation in the current

methods, the designed annealing scheme combined with the GLMD based

cost matrix improves the flexibility and accuracy of the correspondence

estimation using both local and global distance features. Moreover, it also

enhances the interaction between the two steps during registration.

∙ The number of neighboring points K combines greater flexibility in dealing

with deformation, noise, outliers and rotation with accurate performance.

In addition, the idea of building the GLMD based cost matrix creates a new
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approach ”Global feature + � × Local feature” which allows to employ multi-

feature for estimating correspondence. This new framework may lead to more

multi-feature based non-rigid point set matching methods in future.
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Chapter 4

Related Work and Comparison

In this chapter, we first theoretically describe the methodological differences be-

tween the two combinations (GLMDTPS and GLMDGRBF) and the related

works, and then empirically discuss the advantages and disadvantages between

our methods and the related methods based on a comprehensive review of the

experimental comparisons demonstrated in the last chapter. At the end of this

chapter, we discuss the differences between the TPS and GRBF transformations,

and compare the performances of GLMDTPS and GLMDGRBF in non-rigid

point set registration problems.

4.1 Related Work

There are three aforementioned methods TPS-RPM [16], CPD [24] and GMM-

REG [14] that are related to GLMDTPS and GLMDGRBF. Table 4.1 lists the

methodological differences between the two combinations and the other three

methods.
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Table 4.1: Methodological differences between our methods and the current meth-
ods

Methods Correspondence Estimation Transformation Update
Using Feature Correspondence Constraint Transformation

GLMDTPS GLMD B TPS Energy1 TPS
GLMDGRBF GLMD B GRBF Energy GRBF
TPS-RPM GPD F TPS Energy2 TPS
CPD GPD F MCC-NLL GRBF
GMMREG GPD F Mini-L2 TPS

GPD: Gaussian probability density; GLMD: global and local mixture distance; B:
binary; F: fuzzy; GRBF: Gaussian radial basis function; TPS: thin plate spline;
MCC-NLL: Motion coherent constraint based negative log-likelihood; Mini-L2:

Minimizing L2 distance. Note that in TPS Energy2 a term �2trace[d− I]T []d− I] is
added to (2.9) to penalize the affine transformation.

∙ Correspondence estimation: Unlike single feature based correspondence

estimations in the current methods, GLMDTPS and GLMDGRBF mini-

mize a multi-feature (i.e., GLMD) based cost matrix by a linear assignment

solution which provides a binary correspondence and guarantees one-to-one

correspondence. Moreover, the correspondence estimations in the other

three methods are determined by a fuzzy correspondence using Gaussian

probability density that is mainly related to ∥ xi
w − yi ∥

2 as our defined

global distance. Compared with the three methods, the defined local dis-

tance feature is more stable and robust (than ∥ xi
w − yi ∥2) for corre-

spondence estimation at the begin of registration, and helps the warping

template more quickly (using fewer iterations) achieve a better posture for

the subsequent more non-rigid registration. To avoid mismatches by neigh-

boring points having similar local structures (such as the aforementioned
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limitations in point distribution and graph based methods), minimizing the

local distance is replaced by minimizing the global structure difference at

the end of registration, which always minimizes the Euclidean distance be-

tween two point sets (i.e., we solves the issue in the GMMREG method).

∙ Transformation updating: GLMDTPS and GLMDGRBF minimize the

standard TPS energy and GRBF energy, respectively. TPS-RPM also em-

ploys TPS energy to update the transformation, but it adds a penalty term

�2trace[d − I]T [d − I] for the affine coefficient d. GLMDTPS only penal-

izes the non-rigid warping coefficient w, and since it returns a relatively

accurate binary correspondence to the transformation at each iteration, a

free affine transformation will be helpful to quickly (using fewer iterations)

achieve a better posture (xw) for the subsequent more non-rigid matching.

In addition, CPD and GMMREG minimize the motion coherent constraint

based negative log-likelihood and the L2 distance, respectively, to update

the transformation.

∙ Fuzzy correspondence Vs. Binary correspondence: The transforma-

tions built by the fuzzy correspondences in the three methods give fuzzy lo-

cation and geometrical structure updating for the warping template. These

may cause the registration process to take relatively more iterations and

not be always effective for the warping template updating. In our method,

the series of binary correspondences estimated by the defined local dis-

tance feature clearly guide the location and geometrical structure updating

with rigid transformations at the begin of registration. Consequently the

achieved better posture makes the subsequent correspondence estimation
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using the global distance feature easier.

∙ Topological structure: Unlike forcing points to move coherently in the

CPD, we fix neighboring relations N(xw
i ) and N(yi) during the warpings of

xw. Thus, minimizing the local distance preserves the topological structure

of the warping template, while also avoids the position deviations issues

such as in the CPD method.

∙ Flexibility: The TPS-RPM and CPD methods consider the outlier re-

jection as an unsupervised clustering problem, and the GMMREG rejects

outliers by its defined Gaussian component which is mainly related to the

Mahalanobis distance [45]. In our method, the local distance determines

the measurements of local similarities between two point sets, and provides

an adjustable parameter K (the number of neighboring points) for flexi-

bly dealing with registrations under different levels of deformation, noise,

outliers, rotation and missing points (see section 3.1.4).

∙ Interaction between two steps: The annealing scheme combined with

the GLMD based cost matrix improves the flexibility and accuracy of the

correspondence estimation using both local and global distance features,

and also enhances the interaction between the two steps during registration.

Based on the above methodological differences as well as the interaction be-

tween correspondence estimation and transformation updating, we consider the

binary correspondence to be more effective than the fuzzy correspondence since a

non-rigid transformation built by a fuzzy correspondence leads to ’fuzzy location

updating’ for the warping template. This may cause the matching process to
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take relatively more iterations and may always not be effective in updating the

locations of the warping template. That may be a major reason of why CPD and

GMMREG focus on developing constraints for their transformation updating.

In addition, the applicability of the above five methods are limited by different

dimensions as listed in Table 4.2. Most current non-rigid point set matching

methods may be well suited for 2D and 3D cases, but their generalizations to

higher dimensions are not always trivial [24], e.g., the TPS parameterization does

not exist when the dimension of points is higher than three. Thus, for dealing with

higher dimension non-rigid point set matching problems, GRBF transformation

is used instead of TPS transformation since it can be easily generalized to N

dimensions.

Table 4.2: Applicability in different dimensional problems

Methods 2D 3D Higher Dimensions (>3)
GLMDTPS ✓ ✓ ×
GLMDGRBF ✓ ✓ ✓

TPS-RPM ✓ ✓ ×
CPD ✓ ✓ ✓

GMMREG ✓ ✓ ×

✓: able to handle. ×: unable to handle.

4.2 Empirical Comparison between GLMD based

Methods and Current Methods

According to the above discussed methodological differences between our methods

and the other three methods, we can now more easily review the experimental
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results (Table 3.1 in section 3.1.1) on the seven point sets.

∙ In the deformation experiments, the best overall performance is obtained

by our method (28.0) followed by the mean score calculated in Table. 3.1.

The reason for CPD performing better than GMMREG and TPS-RPM is

mainly related to the fact that CPD preserves the topological structures

by forcing the points to move coherently during the matchings. However

CPD does not improve the correspondence searching process which still

uses the global distance relationship between two point sets to assign the

corresponding probabilities as in TPS-RPM. In GMMREG, although the

L2 distance between two Gaussian mixture models is minimized (the idea

is similar to the fitting a set of data points with least squares solution),

it does not mean that the Euclidean distance between two point sets is

always minimized. Thus GMMREG only slightly outperforms TPS-RPM

in the deformation experiments. In our method, correspondence estimation

is improved using both local and global distance features, while minimizing

the local distances and the interaction between correspondence estimation

and transformation updating preserve the local structures of the warping

templates. As a consequence, our method outperforms the other three

methods in the deformation experiments.

∙ In the noise experiments, our method (23.4) performs better than GMM-

REG (22.0), CPD (14.2) and TPS-RPM (10.4). In these experiments, the

source point sets were added with Gaussian white noise such that the shapes

of the source templates become fuzzy. Thus the matching processes of the

four methods are similar to the fitting a set of data points with least squares
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solution. In the CPD, forcing the points to move coherently preserves the

topological structure, but may produce a relatively large error when one

point is mismatched and is undesirable when source points need to be moved

in different directions to match their target points. In our method and the

GMMREG, minimizing the global distance and L2 distance, respectively,

can be considered a least squares solution.

∙ In the outlier experiments, CPD (24.6) performs better than our method

(21.8), TPS-RPM (16.4) and GMMREG (7.2). An additional uniform dis-

tribution is added to the Gaussian mixture model to account for outliers

in CPD, and an outlier cluster for each point-set is placed at the center of

mass to take into account outliers in TPS-RPM. In our method, outliers

are rejected by minimizing the local distances (the K is fixed by 5) and the

rigid transformations. However outliers in the Gaussian mixture model of

the target point set are only distinguished by Mahalanobis distances [45] in

GMMREG.

∙ In the rotation experiments, our method (27.6) performs better than GMM-

REG (15.8), TPS-RPM (13.6) and CPD (13.0). Our method gives the best

result since minimizing the local distance is robust to rotations. Moreover,

in GMMREG, matching of geometric shapes is considered as a density based

registration such that GMMREG is also robust to rotations. However there

is no feature that is robust to rotation in both TPS-RPM and CPD, and

thus these two methods give relatively poor performances in the rotation

experiments.
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4.3 TPS vs. GRBF

Both TPS and GRBF are derived from a standard radial basis function

f(x) =

K
∑

i=1

wi�(∥ x− ci ∥) (4.1)

where {wi} is set of mapping coefficients and ∥ ⋅ ∥ denotes the Euclidean norm.

{ci} is a list of control points and � is the kernel function with different forms.

If we select the kernel function to be �(r) = r2 log r, f(x) becomes the TPS

function. Moreover, TPS can always be decomposed into a global affine and a

local non-rigid component [36] (see (2.7)). If we choose �(r) = exp(−r2/�2), it

becomes GRBF where the parameter � controls the width of each kernel function.

Compared to GRBF, TPS has a more global nature: ”a small perturbation of

one of the control points always affects the coefficients to all the other points as

well ” [16].

In addition to the differences in the forms, TPS and GRBF also contain

different smoothness constraints in their minimizing energy functions as described

in (2.8) and (2.16), respectively. The smoothness constraints are used to prevent

arbitrary mappings between two point sets since there is an infinite number of

ways to map one point set to anther in non-rigid matching. Moreover, as discussed

in Table 4.2, TPS parameterization does not exist when the dimension of points

is higher than three, and GRBF may be easily generalized to N dimensions.
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4.4 Experimental Comparison between GLMDTPS

and GLMDGRBF

In order to compare the performances between GLMDTPS and GLMDGRBF,

we selected the former four point sets: Fish1, Chinese Character, Fish2 and

Face3D, and evaluated GLMDTPS and GLMDGRBF in dealing with unknown

deformation, noise, outliers and rotation on the four point sets. The performance

statistics are shown in Fig. 4.1.

Both GLMDTPS and GLMDGRBF show accurate results in all the exper-

iments. In the Fish1 experiments, GLMDTPS generally gives relatively more

stable performances in the four experiments. GLMDGRBF slightly outperforms

GLMDTPS in the outlier experiments, but shows relatively unstable perfor-

mances on the fourth and fifth degrees of deformation, and −30∘ and 30∘ of

rotations. In the Chinese Character experiments, GLMDTPS generally performs

better than GLMDGRBF in all cases. In the Fish2 experiment, GLMDTPS

shows relatively stable performances in the deformation and rotation experi-

ments, and both methods give a very similar results in the noise experiment.

In the outlier experiments, GLMDGRBF performs better than GLMDTPS. In

the Face3D experiments, GLMDTPS shows more accurate and stable alignments

than GLMDGRBF in all the experiments.

To summarize, GLMDTPS and GLMDGRBF show very similar alignments

in both 2D and 3D cases (compared with the alignments given by the other three

methods). GLMDTPS performs relatively better, but it may not be able to deal

with the non-rigid point set matching problems when the point dimension is more

than three.
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Figure 4.1: Comparison between GLMDTPS (∗) and GLMDGRBF (★) on the
four point sets. The error bars indicate the standard deviations of the mean errors
in 100 random experiments. From the top row to bottom row: Fish1, Chinese
Character, Fish2 and Face3D, respectively.
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Chapter 5

A New Framework for Assessing

Human Masticatory Muscle

Deformation

In the Chapter 2, 3 and 4, we have introduced a new non-rigid point set reg-

istration method. For its applications to practical problems, we chose two un-

resolved problems in the studies of human masticatory system: (i) masticatory

muscle functional activity investigation (in Chapter 6), and (ii) biomechanical

relationship between masticatory muscle activities and mandibular movements

(in Chapter 7).

For exploring the above two problems, we propose a new framework to assess

human masticatory muscle deformation in this chapter. The proposed framework

is a useful first-cut approximation approach, and mainly based on the proposed

GLMDTPS method.
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5.1 Human Masticatory Muscle

There are four major groups of muscles in human masticatory system: the mas-

seter muscle, medial pterygoid muscle, lateral pterygoid muscle and temporal

muscle (as shown in Fig. 5.1). These four groups control mandibular movements

for mastication and are also involved in speech and facial expressions. To clar-

ify the muscle functional roles and diagnose masticatory system problems, the

techniques assessing the muscle function activity and explaining the biomechan-

ical relationship between the masticatory muscle activities and the mandibular

movements for specific subjects are very important. However, such techniques

are practically very difficult to achieve.

Figure 5.1: Human masticatory muscles [1]
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5.2 Review of Different Approaches for Study-

ing Human Masticatory Muscle

Generally, there are four different approaches used in previous studies of masti-

catory muscles as follows

i. Anatomical study

ii. EMG activity recording

iii. Measurements of muscle size change

iv. Biomechanical modeling

5.2.1 Anatomical Study

The anatomical study is a fundamental approach to understand human mastica-

tory muscles and is mainly involved in investigating the structural characteristics

of these muscles and the positional relationship between the muscles and other

anatomical organizations.

The anatomical studies of human masticatory muscle started over 150 years

ago [46] and are still ongoing due to the complexities of the muscle structures.

In the early studies, Schumacher [47] found that the masseter muscle consists

of two major compartments (the superficial and deep) with each compartment

having one or more musculoaponeurotic layers. Eisler and Williams et al. [48, 49]

suggested that the lateral pterygoid muscle comprises two separate heads: the

superior and inferior heads. However, the lateral pterygoid muscle is not clearly

separated into two independent muscles based on innervation findings near its
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insertion by [50, 51]. In addition, the various muscle bundles were observed in

the temporal muscles by [52, 53]. Recently, Gauty et al. [54] defined the architec-

tural organizations of the human masseter muscle, temporal muscle and pterygoid

muscles using 169 cadavers, while an combined MRI study confirmed the reality

of the defined architectural arrangements. Foucart et al. [55] reported that the

lateral pterygoid is composed of 5 to 6 independent functional musculoaponeu-

rotic layers based on nerve distribution findings. More recently, the anatomical

studies have been extended to investigate the positional relationship between the

masticatory muscles and craniofacial hard tissues [56, 57] as well as between the

masticatory muscles and their innervating nerves [58].

Such anatomical studies provide the fundamental knowledge for further ex-

ploring the muscle functions and human masticatory system, and also facilitate

the studies in the latter three approaches.

5.2.2 EMG Activity Recording

EMG is a technique for recording and evaluating the electrical activity of skeletal

muscle when the muscle is neurologically activated. The recorded EMG sig-

nals can be analyzed to evaluate the medical abnormalities and activation level

of the muscle. Generally there are two types of EMG: the surface EMG and

the intramuscular (needle) EMG. The latter is commonly used in the studies of

masticatory muscles. To record the functional activities of muscle using the in-

tramuscular EMG, a needle electrode (or multiple needle electrodes) needs to be

inserted through the skin into the target muscle. In many studies of masticatory

muscles, the needle electrode was placed at various locations or multiple needle
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electrodes were simultaneously used to investigate the muscle functional activities

in the different regions.

There is a large amount of published EMG studies on masticatory muscles.

The main focus of these studies was to record EMG activities under a specified

mandibular movement such as jaw opening, closing and chewing, and evaluate the

muscle functions or diagnose the medical abnormalities using the recorded EMG

activities. McDonald and Hannam [59] showed the activities of the masseter

muscle to be sensitive to the location, size, and direction of the contact point

during maximal clenching tasks. Moreover, the EMG activities of the superficial

and deep parts were distinguished in the masseter muscles during maximal-effort

intercuspal, incisal static clenches and open/close excursions by Blanksma et

al. [60]. Gibbs et al [61] and Wood et al [62] revealed that the inferior and

superior heads of lateral pterygoid muscles have different functional roles during

jaw closing and jaw opening. However, Hannam and McMillan [63] and Ruangsri

et al [64] have suggested that the two heads of lateral pterygoid muscle should be

regarded as a single muscle. In addition, Ahlgren [65] found that the posterior

part of the temporal muscle is activated in intercuspal, protruded and retruded

positions of the mandible; there was no significant difference in EMG activity

between the three temporal divisions in the intercuspal position; and the posterior

temporal muscle predominated in retruded biting whereas the temporal muscle

was mainly inactivated in protruded biting.

Based on such EMG studies, muscle functional activities under different mandibu-

lar movements have been validated. Furthermore the validated results were used

to explain the basic functions of masticatory muscles. For example, masseter

muscles, medial pterygoid muscles and temporal muscles have been considered to

66



be the same group to elevate the mandible for jaw closing, and lateral pterygoid

muscles are responsible for depressing the mandible for jaw opening. In addition,

the EMG activity is also considered as a ground truth for evaluating medical

abnormalities in clinical diagnosis.

5.2.3 Measurement of Muscle Size Change

The measurements of muscle size changes mainly focused on investigating the

morphological heterogeneity of masticatory muscles during the mandibular move-

ments using medical imaging, such as CT, MRI and ultrasound imaging. The key

idea of these studies is that the morphological heterogeneity of masticatory muscle

during mandibular movements may reflect their functional roles.

Recently, Goto et al. [66] investigated the length changes of the deep and

superficial compartments of the masseter muscles with various mandibular posi-

tions using MRI. The non-uniform changes in cross-sectional areas were observed

by [67] when the mandible moved from the intercuspal position to the maximum

jaw opened position. The lateral pterygoid muscles significantly decreased their

volumes during the jaw opening, but the masseter muscles and medial pterygoid

muscles only slightly changed the volumes during the jaw closing [68]. The thick-

nesses of the masseter muscles were measured as the medio-lateral distances of

the masseter muscle from ultrasound images by Kubo et al. [69]. The results

showed that the muscle thicknesses increased during the tooth clenching efforts.

These reported changes in the thickness and the cross-sectional areas may be

explained by the contractions of muscle fibers as well as increase in volume of the

circulating blood into the muscle [70, 71].
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To summarize, these studies generally reveal how the anatomical dimensions

of the muscles changed with the various mandibular positions, and relate the

assessed muscle size changes to explain the muscle functional roles.

5.2.4 Biomechanical Modeling

The biomechanical modeling approach has been mainly used to study the biome-

chanical properties of the muscles and the relationship between the muscles and

surrounding hard tissues, such as mandible and condyle. Clarifying the biome-

chanical properties of masticatory muscle is one of the most important research

aims in the studies of masticatory muscle. Unlike the studies in the first three

approaches, the biomechanical properties of masticatory muscle may be directly

used to explain the muscle functions and diagnose the abnormalities in mas-

ticatory system. There is a large body of literature describing the studies of

masticatory muscles, but the studies in biomechanical modeling of human mas-

tication only occupies a small place. One of the reasons for this underexposure

is probably its complexity.

To model the biomechanics of human mastication, over thirty-five mixed non-

linear differential and algebraic equations which describe the masticatory dynam-

ics have been defined and solved with numerical integration by [72]. The relevant

morphologies such as TMJ, muscle attachment sites and the mandible were ob-

tained from biomedical images and digitised dental casts [73]. In many cases, the

inertial properties of the jaw were estimated from simple linear jaw dimensions

alone [74], and the muscles were modeled as Hill-type phenomenological models

which decompose a muscle into length and velocity-dependent active and passive
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force components [75]. A dynamic jaw model incorporating the structural and

functional variables has been performed in customized and generic engineering

software packages by [76].

Such biomechanical models provide an overview for the general masticatory

system, and are expected to be applied in specific clinical scenarios, such as sur-

gical reconstructions, joint replacements and sleep bruxism. Furthermore the

development of subject-specific models would assist treatment planning and per-

haps improve clinical outcomes.

5.3 Limitations of Current Studies

The limitations of existing approaches in studying masticatory muscles are listed

as follows:

i. In the EMG approach, the intramuscular EMG may only partially record

muscle activities since it may not be permissible to insert many electrodes

into a target muscle. However, it is usually required to simultaneously inves-

tigate the functional activities on different locations of a target muscle or on

different muscles. Moreover, it is very difficult to verify whether the EMG

electrode is correctly inserted into a target muscle or a specified region of the

muscle since masticatory muscles have complex anatomical structures and

locations.

ii. Measurement of muscle size change may not be always correctly related to

muscle functional activities. For example, based on the previous EMG stud-

ies, we know that masseter muscles play the most important role in the max-
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imum intercuspation. However, volume and length changes of the masseter

muscles were not found to be significant in maximum intercuspation [66, 68].

Moreover, the changes of cross-sectional area and the thickness of the muscles

are location-dependent features and very sensitive to selected locations. In

addition, the non-uniform changes observed in [67] are not easily explained

by muscle functional roles.

iii. Biomechanical modeling studies provide an overview for general masticatory

system, but are difficulty applied for individual analysis since the parameters

in those biomechanical models could not be accurately set for each subject.

In particular, the muscle property parameters, such as the force-length prop-

erties [77] and tension properties (e.g. contraction direction).

5.4 A New Focus: Muscle Deformation

Muscle is a soft tissue in which the cells contain protein filaments that slide

past one another, producing a contraction that changes the form of the cell,

such as length, volume, cross-sectional area and shape. Muscle tissue may be

classified according to a morphological classification or a functional classification.

Such as the striated and smooth muscles by morphological classification, and

the voluntary and involuntary muscles by functional classification. There are

generally considered to be three types of muscles in human body [78].

∙ Skeletal muscle: It is a striated and voluntary muscle that is anchored by

tendons to bone and is used to effect skeletal movement such as locomotion

and in maintaining posture.
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∙ Cardiac muscle: It is a striated and involuntary muscle that connects at

branching and intercalated discs, and is controlled by nerve impulses.

∙ Smooth muscle: It is non striated and involuntary muscle that is found

within the walls of organs and structures such as esophagus, stomach and

blood vessels. Unlike skeletal muscle, is not under conscious control.

Masticatory muscles belong to the skeletal muscle, and they changes their

morphologies during contracting or being stretched. In the aforementioned cur-

rent studies, the changes in the muscle length, volume and cross-sectional area

have been investigated by Goto et al. [66, 67, 68] and Kubo et al. [69]. However,

these anatomical dimensional parameters such as length, volume, cross-sectional

area and thickness may not always reflect the functional activities of masticatory

muscles well. Moreover, these parameters are the physical quantities (scalars),

and do not indicate the direction of the change which is significantly correlated

with the muscle functional role. Based on these considerations, we focus on a new

feature: 3D muscle deformation that may reflect the muscle functional activities

along the entire body (global) as well as at specific anatomical part (local), and

may also indicate the directions of the muscle morphological changes in global

and local. Such information may be considered to be more helpful to clarify the

functional roles and diagnose the medical abnormalities in human masticatory

system.
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5.5 A New Framework

We reviewed the four major approaches (anatomical study, EMG activity recod-

ing, measurement of muscle size change and biomechanical modeling) for studying

masticatory muscles in section 5.1, and discussed their limitations in section 5.2.

In this section, we introduce a new framework (Fig. 5.2) for assessing hu-

man masticatory muscle deformation, which is a useful first-cut approximation

approach and consists of four step: (i) muscle deformation capture, (ii) muscle

model quantization, (iii) muscle deformation assessment and (iv) muscle deforma-

tion visualization. We first design a protocol for capturing the internal structures

of masticatory muscles during mandibular movements. The target muscle mor-

phologies before and after mandibular position changed are then reconstructed

from the captured structural information and represented by point cloud. Muscle

deformation is assessed by recovering region correspondences between the two

sets of point cloud by the proposed GLMDTPS method. Finally, the muscle

deformation field is visualized by the recovered correspondences.

5.5.1 Muscle Deformation Capture

We used a 1.5 Tesla MR scanner, Signa HDx 1.5T, General Electric, Harvey, IL,

USA (T1 pulse sequence; echo time (TE): 5 ms; repetition time (TR): 11.1 ms;

slice thickness: 0.7 mm; spatial resolution: 0.7 mm, 1 mm, 1 mm) to capture

internal structures of masticatory muscles.

To capture the muscle deformation under a specified mandibular movement,

four anatomical mandibular positions were selected to simulate jaw opening and

clenching cases: (1) mandibular rest position (M0); (2) maximum intercuspation
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Figure 5.2: A new framework for assessing human masticatory muscle deforma-
tion.
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Figure 5.3: Muscle deformation capture (left side masseter muscle). The fixed and
deformed models indicate the muscle morphologies before and after the mandibu-
lar position changed.

position (maximum clenching position) ; (3) medium jaw-opened position (M2)

defined as the mid-position between the M0 and the maximum jaw-opened posi-

tion (M3); and (4) M3 achieved by each subject’s effort as the maximal vertical

mouth opening without pain or discomfort. To ensure a stable posture of the

mandible at M0, M2 and M3 during the MR scans, three acrylic bite props were

customized for each subject. The three acrylic bite props play the role of position

references for making each subject preserve the mandibular positions, but does

not serve to hold the mandible for relaxing the muscles. In addition, the head

position of each subject is also fixed on the scanning bed during MR scans.

After the MR scans, the three sets (M1, M2 and M3) of the whole-head MR

images are registered to the set M0 as a rigid registration using MedINRIA-

ImageFusion software (INRIA, France). The targeting muscles are then carefully
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segmented from the four sets of MR images using a semi-automatical segmenta-

tion technique (ITK-SNAP software). After muscle segmentations, the 3D muscle

models are automatically reconstructed from these segmented MR images using

MATLAB (MathWorks, U.S.A). An example of masseter muscle is shown in Fig.

5.3.

5.5.2 Muscle Model Quantization

In order to numerically describe the 3D morphology of each muscle model and

recover region correspondences between the two 3D muscle models before and

after the change in mandibular position (e.g., the fixed model and the deformed

model as shown in Fig. 5.3 ), the large set of voxels in each model is partitioned

into specified K groups having approximately the same number of voxels nearest

to them. Each group is represented by its centroid point, and these centroid

points are used to represent the 3D morphology of muscle model.

To achieve a uniform and adaptive muscle model quantization, a down-sampling

method is essential. Lloyd algorithm [79] is one of the most popular methods for

grouping data points into a given number of categories, used for k-means cluster-

ing. It starts by partitioning the input points into k initial sets, either at random

or using some heuristic. It then calculates the average point, or centroid, of each

set via some metric (usually averaging dimensions in Euclidean space). It con-

structs a new partition by associating each point with the closest centroid, usually

using the Euclidean distance function. Then the centroids are recalculated for the

new clusters, and algorithm repeated by alternate application of these two steps

until convergence, which is obtained when the points no longer switch clusters
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(or alternatively centroids are no longer changed).

Algorithm 3 Muscle Model Quantization Algorithm

Input: Points Pi = (P1, P2, ..., Pn), Number of cluster: K.
Begin I: Randomly choose the initial clusters CK from Pn

Step1: To assign each point Pi to its corresponding cluster Cj by Lloyd algo-
rithm.
Step2: To calculate the numbers of points in each cluster, and find the Cmax

and Cmin clusters which have the maximum and minimum numbers of points,
respectively.
Step3: Update the locations of clusters Ci where i ∕= max,min by the tradi-
tional Lloyd algorithm.
Step4: Update the locations of clusters Ci where i = max,min by randomly
picking two points within Cmax point group, and assigning to Cmax and Cmin,
respectively. At the last iteration, the locations of Cmax and Cmin are updated
by the classical Lloyd algorithm.
End I: Repeat the four steps until the standard deviation of the numbers of
points belong to the clusters no longer changes.
Output: Clusters CK

However, the algorithm converges slowly (or often does not converge) and

sometimes poor clusterings. To avoid these issues, we proposed an optimized

Lloyd method as described in Algorithm 3 for the muscle model quantization. To

test the performance of our proposed method, we down-sampled eight masseter

muscle models by 2000 points. The mean performances of the proposed method

and the standard Lloyd algorithm are shown in Fig. 5.4. The error denotes the

standard deviation of the numbers of voxels in the voxel groups. Algorithm 3

shows accurate results and provides a uniform quantization (±2.4 voxels in Fig.

5.4) for the muscle models.

After sampling each paired muscle models, two sets of K centroid points are

obtained from the fixed model and the deformed model, respectively, and then

used to recover the region correspondences between the two muscle models in
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Figure 5.4: The experimental comparison between the Lloyd algorithm and Al-
gorithm 3.

the next step. Each set of the points represents the 3D morphology of the entire

muscle body. An example is given in Fig. 5.5.

Figure 5.5: Muscle model quantization (left masseter muscle).
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5.5.3 Muscle Deformation Assessment

The muscle deformation is measured by the Euclidean distances between paired

corresponding points. To estimate correspondences between the two point sets,

there are typically two types (iterative or non-iterative methods described in sec-

tion 1.2) of non-rigid point set registration methods which can be used. Such as

the aforementioned shape context method [5], TPS-RPM [16], CPD [24], GMM-

REG [14] as well as our proposed GLMDTPS and GLMDGRBF methods.

Compared such methods, the shape context method is easily implemented in

different programming languages, and has been applied to brain mapping [28],

recovering breathing motion [32] and stomach deformation [31]. However, it is

relatively difficult to achieve a good match result with a single iteration (discussed

in section 1.2). In practice, the shape context method easily produces cross-

mismatches [13] of neighbors (i.e. it is unable to preserve local structures during

matching) when neighboring points are close to each other, and long geodesic

distance mismatches [13] by minimizing the total cost using a linear assignment

solution. Therefore, an extra correction step [13] is required to remove these

mismatches when it is chosen for muscle deformation assessment. Moreover,

TPS-RPM and GMMREG may take relatively long times to register two point

sets as discussed in Section 3.4.1. In addition, although CPD may employ fast

Gauss transform and low-rank matrix approximation to provide a fast solution, a

tradeoff between the computational time and the matching accuracy exists must

be adequately considered.

Thus, we selected the proposed GLMDTPS, which gives the best performance

in the former experiments, to assess the muscle deformations in the next Chapter

78



6 and 7. The details of the method implementation and the parameter setting

are given in section 2.3.

5.5.4 Muscle Deformation Visualization

After recovered the region correspondences between the fixed and deformed mod-

els, a set of Euclidean vectors denoting the displacements between paired corre-

sponding points is obtained. The directions and magnitudes of the Euclidean

vectors are used to describe the muscle deformation field from the fixed model to

the deformed model, while the resultant direction of the set of Euclidean vectors

could be used to indicate the direction of the muscle contraction (or stretching).

Two examples are shown in Fig. 5.6.
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Figure 5.6: Muscle deformation visualization in a maximum intercuspation case.
The top and bottom indicate the deformation fields of the masseter muscle and
the lateral pterygoid muscle, respectively. The small arrows in each deformation
field indicate the directions of point displacements and their colors from blue to
red represent the magnitudes of point displacements from small to large. The big
red arrows indicate the resultant directions of the muscle deformation fields.
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Chapter 6

Application I: Masticatory

Muscle Functional Activity

Investigation

In this chapter, we seek to assess the deformations of the subject-specific masseter

muscles and lateral pterygoid muscles during jaw opening and closing through the

proposed framework, and relate the assessed muscle deformations to the muscle

functional roles. The muscle deformation captures are acquired from a normal

adult male subject (31 years of age, without any dental problems in clenching

and jaw-opened movements) who underwent MR scans of the whole head with

the mandible at the aforementioned four mandibular positions (M0, M1, M2 and

M3).
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6.1 Masseter Muscle

6.1.1 Research Background

The masseter muscles (MM) are known to elevate the mandible and clench the

teeth. These functions are regulated by the trigeminal motor output, but are also

modified by their anatomic architecture characteristics, i.e. the form. Anatom-

ically, the masseter muscle comprises three compartments (superficial, interme-

diate and deep) with each compartment having one or more musculoaponeurotic

layers [47, 80, 81].

McDonald and Hannam [59] showed the activities of the MM to be sensitive

to the location, size, and direction of the contact point during maximal clenching

tasks by EMG. The EMG activities of the superficial and deep parts were dis-

tinguished in the MM during maximal-effort intercuspal, incisal static clenches

and open/close excursions by Blanksma et al. [60]. In attempts to explain the

functional roles of MM, a series of recent studies employing medical imaging

could only reveal how the anatomic dimensions of the MM changed with various

mandibular positions. Using MRI, Goto et al. [66, 67, 68] observed quantifiable

differences in muscle length change between the deep and superficial parts and the

non-uniform changes in cross-sectional areas (CSAs) when the mandible moved

from the intercuspal position to the maximum jaw-opened position, but found no

substantive changes in muscle volume. The thicknesses of the MM, measured by

the medio-lateral distances of the MM from the ultrasound images, were observed

by Kubo et al. [69] to increase during tooth clenching efforts. These reported

changes in the thickness and the CSAs may be explained by the contractions of

muscle fibers as well as increase in volume of the circulating blood into the muscle
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[70, 71].

However, as explained in section 5.3, EMG can only partially record the muscle

activity and those dimensional parameters may not be able to fully reflect the

functional roles of the MM when the mandible is moved from one position to

another. Hence, the aims of this study are to employ the proposed new framework

(in section 5.5) to assess the deformations of subject-specific MM during simulated

mandibular movements, and relate the muscle deformations to their functional

roles.

6.1.2 3D Reconstruction of Masseter Muscle

A total of the eight 3D muscle models (the left and right muscles at the four

mandibular positions) under the four mandibular positions were reconstructed.

The two muscle models before and after mandibular position changed in each case

were demonstrated in the same coordinate system using different colors as Fig. 6.1

shows. The inter-rater reliability and the intra-rater reliability of the eight muscle

segmentations were assessed by the comparisons of the muscle volumes between

the occasions as well as the raters using the intraclass correlation coefficient (ICC)

[82]. Both intra-rater reliability and inter-rater reliability of the segmentations

were very high, with ICC of 0.992 and 0.987, respectively. The deformations of

the MM accompanied by the changes of mandibular position were clearly seen

from these reconstructed muscle models. Moreover, the differences of muscle

deformations between the left and right muscles were also observed.
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Figure 6.1: 3D reconstruction of masseter muscles. AP: from anterior to posterior;
SI: from superior to inferior; L and R indicate the left and right sides, respectively

6.1.3 Validation of Registration Results

After reconstructed the eight muscle models, each muscle model was sampled

by the three level point sets (800, 1400 and 2000 points) using Algorithm 3,

respectively. The correspondences between the paired point sets (i.e. the fixed

and deformed point sets) in each level from M0 to M1, from M0 to M2 and from

M2 to M3 were then recovered using GLMDTPS.

Validating the recovered correspondences in masticatory muscle deformation

is not straightforward. The lack of a ground truth complicates matters and pre-

vents to directly assess the registration accuracy. Moreover, only few non-rigid

registration validation methods were found in literature review, such as using
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anatomical landmark [83], biomechanical model [84], physical phantom [85] and

quantitative metrics approach [13, 28, 32]. The first three methods would not be

appropriate here as there is no easily identified landmarks, applicable biomechan-

ical modeling and physical phantom for masticatory muscles. The quantitative

metrics approach employs spatial overlap (Dice coefficient [86]) or distance-based

measures (symmetric mean absolute distance (SMAD) [86] and Hausdorff dis-

tance (HD) [86]) to evaluate the similarity between the registered fixed model

(i.e., register whole voxels in the original fixed model onto the deformed model

using a non-rigid transformation built by the recovered spatial correspondences)

and the deformed model since incorrect correspondences may misguide the non-

rigid transformation leading to an unacceptable transformed fixed model.

In quantitative metrics approach, SMAD and HD attempt to estimate non-

rigid registration errors using the mean distance and the maximum distance be-

tween the registered fixed model and the deformed model, respectively. Dice coef-

ficient evaluates registration error using spatial overlap between the two models.

In this study, we follow the same quantitative metrics approach in [13, 28, 32],

where SMAD and HD were used to validate the cortical surface, lung and animal

skeleton registration results.

The validation results in the three mandibular movements (M0 → M1, M0 →

M2 and M2 → M3) are shown in Table 6.1. The SMAD and HD show accurate

registration results under all the three level point sets, while the SMAD and HD

are improved (i.e., the errors are reduced) by increasing the numbers of sample

points from 800 to 2000. The point set registrations between the fixed model and

the deformed model using 2000 points show the best results.

85



Table 6.1: Validation of registration results

Npnts Parameters 1 2 3 4 5 6 Mean(STD)

800
SMAD [mm] 0.43 0.41 0.43 0.42 0.41 0.43 0.42(0.01)
HD [mm] 3.53 3.13 4.77 2.90 2.31 3.04 3.28(0.83)

1400
SMAD [mm] 0.41 0.41 0.41 0.41 0.41 0.42 0.41(0.00)
HD [mm] 3.01 2.24 4.10 2.39 2.05 2.86 2.78(0.74)

2000
SMAD [mm] 0.40 0.39 0.39 0.40 0.40 0.40 0.40(0.00)
HD [mm] 2.73 2.04 3.78 2.16 1.92 2.53 2.53(0.68)

Number of points (Npnts), Symmetric mean absolute distance (SMAD),
Hausdorff distance (HD). Mean (STD) are computed from the six cases of
muscle deformations. 1: the left muscle M0 → M1; 2: the left muscle

M0 → M2; 3: the left muscle M2 → M3; 4: the right muscle M0 → M1; 5: the
right muscle M0 → M2; 6: the right muscle M2 → M3.

6.1.4 Muscle Deformation Fields

According to the validation results shown in Table 6.1, the assessed muscle defor-

mations using 2000 sample points are selected to demonstrate our approach. The

muscle deformation fields under the three mandibular movements are visualized

in the three anatomic planes as Fig. 6.2 shows.

In the first case (M0 → M1): the MM on both sides contracted superiorly

(Fig. 6.2-1,2,3 and 4), but contracted in opposite directions in antero-posterior

axis, i.e., the left muscle contracted posteriorly and the right muscle contracted

anteriorly (Fig. 6.2-1,2,5 and 6). The deep compartment in the left muscle had

the relatively larger deformation (see the color of 3D arrows in Fig. 6.2-1 and 6).

In the second case (M0 → M2): the MM on both sides were stretched to

inferior and anterior (Fig. 6.2-7 and 8). Meanwhile the MM were stretched to left

slightly (Fig. 6.2-9 and 10). The superficial compartment in the left muscle and

the deep compartment in the right muscle had the relatively larger deformations
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Figure 6.2: Muscle deformation fields. The direction of each point displacement
is indicated by a 3D arrow (small) and shown in the three anatomic planes,
respectively. The color of each 3D arrow represents the magnitude of each centroid
point displacement. The 2D arrows (red) indicate the resultant directions of
displacements of all points in the three planes, respectively. L: left side; R:
right side; AP: from anterior to posterior; SI: from superior to inferior. These
results were computed by 2000 centroid points and demonstrated using MATLAB
(MathWorks, U.S.A)

(Fig. 6.2-7,8,11 and 12).

In the third case (M2 → M3): the left muscle was continuously stretched to

inferior and left (Fig. 6.2-13 and 16), but in antero-posterior axis, the left muscle

was starched to posterior (Fig. 6.2-13 and 18). In addition, the right muscle

generated the opposite directions (Fig. 6.2-14,15 and 17) in the three planes
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compared to the second case. The superficial compartments in the left and right

muscles shows the relatively larger deformations (Fig. 6.2-13,14,15,16,17 and 18).

These assessed muscle deformation fields are also consistent with the obser-

vations in Fig. 6.1.

6.1.5 Discussion and Conclusion

Based on the proposed new framework, this study evaluated the functional ac-

tivities of subject-specific MM under the three simulated mandibular movements

through the assessed deformation fields. The significant contributions of this

study include the following:

6.1.5.1 Muscle Architecture

The internal arrangements of muscle fibers have been considered to be the pri-

mary determinant of muscle function. Therefore, clarifying the internal archi-

tecture of the muscle may help to understand its functions. According to the

aforementioned MRI protocol, the three compartments of the MM were distin-

guished in the MR images (Fig. 6.3 and 6.4). These observations are consistent

with the findings by Schumacher [47] and Gaudy et al. [81], who described the

three internal planes. In addition, the differences between the deformations on

the deep and superficial parts of the MM caused by the different arrangements of

the muscle fibers were also observed. Consequently, these assessed deformation

fields effectively reflect the anatomic architectural and functional heterogeneity

of the muscle compartments.
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Figure 6.3: Internal architecture of masseter muscle. The left masseter muscle
of the subject was used to demonstrate the internal architecture of the masseter
muscle. (A) shows the internal architecture of the masseter muscle in the MR
image. (B) shows the generalized model of the muscle internal architecture in the
sagittal plane: the superficial compartment (yellow), the intermediate compart-
ment (red) and the deep compartment (blue).
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Figure 6.4: Internal architecture of masseter compartments. (A) shows the region
of the superficial compartment in the transverse and sagittal view, respectively.
(B) shows the region of the intermediate compartment in the transverse and
sagittal view, respectively. (C) shows the region of the deep compartment in the
transverse, sagittal and coronal view, respectively. The yellow, red and blue ar-
rows in (A), (B) and (C) indicate the major arrangements of musculoaponeurotic
layers, respectively.
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6.1.5.2 Muscle Function

∙ Muscle Functional Activity: This study reveals that the resultant

directions of the muscle deformations in the three planes meaningfully indi-

cated the muscle contractions in the maximum intercuspation. Moreover, it

also assessed and visualized the functional activities along the entire body

and at specific compartments of the MM using the measured deformation

fields. In addition, the functional roles of the muscle compartments may

be evaluated using the assessed deformations. For example, the deep part

of the left muscle showed the large deformation (Fig. 6.2-1), and the resul-

tant direction in antero-posterior axis towards posterior (Fig. 6.2-1 and 6).

Thereby the deep compartment of the subject could be considered to be the

primary determinant of the muscle posterior contraction during the maxi-

mum intercuspation. Our study strongly suggests that the contractions of

the left and right muscles in the opposite directions in antero-posterior axis

(Fig. 6.2-1,2,5 and 6), were a result of differentials in the magnitudes of the

deformations in the superficial and deep compartments of the MM as well

as in the internal muscle fiber arrangements (Fig. 6.3-B). On these bases,

we hypothesized that the superficial and deep compartments may directly

control the movements of mandible in the anterior and posterior directions,

respectively. A simple palpation trial was designed to test, and confirmed

this hypothesis (Fig. 6.5). This confirmation is also corroborated by pre-

vious studies which described the interactions between musculoaponeurotic

layers may affect the contraction direction in the maximum intercuspation

[87, 88].

91



Figure 6.5: A simple palpation test. The palpation test is designed to explain the
different functional roles of deep and superficial compartments. At first, slightly
clench your jaw and gently touch the lower surface region of your face as shown
in A. If you try to move the mandible to anterior slightly, you may detect only
around the touched region bulging out. However, if you try to move the mandible
to posterior slightly, only the upper and posterior region of the masseter muscle
can be detected to bulge out. These palpation trials confirm that the superficial
and deep compartments can directly control the mandibular movement in the
anterior and posterior directions, respectively.
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∙ Muscle Contraction Direction: The muscle components in biomechan-

ical models of the human masticatory system [89, 90] were designed with a

single-line, and positioned according to published attachment coordinates

previously described by Baron and Debussy [91]. These models provide the

insight into physical relationships between the mandible and the muscles.

To apply these biomechanical models to a subject-specific study, the indi-

vidual parameters, which are difficult to be directly measured, such as the

contraction directions of the MM, have to be determined. This study re-

lates the the muscle deformation to the muscle contraction. The direction

of the muscle active contraction (during the maximum intercuspation) can

be considered to be the resultant direction of the muscle deformation field,

and the passive tension (during the simulated jaw-opened movements) can

be indicated by its opposite direction.

This study appropriately and meaningfully describes the functional activi-

ties of the MM using the assessed deformation of the subject-specific MM. The

exact functional roles of the entire muscle and the specific compartments can

also be effectively evaluated by this study. This present study assessed and vi-

sualized the nature and site-specific morphologic changes of the MM at various

mandibular positions, which could not be identified by the techniques described

in previously published works. We believe that future studies with larger samples

would help to further relate muscle deformation to the muscle contraction and the

metabolic activities for evaluating masticatory muscle efficiency before and after

orthodontic treatment, thereby facilitating diagnosis and management of masti-

catory muscle dysfunction. Meanwhile the calculated contraction directions of

the patient-specific MM would assist in making proper diagnoses and treatment
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plans including designing of the appliances to reconstruct the optimum occlusion

of teeth by orthodontic as well as restorative means.

6.2 Lateral Pterygoid Muscle

6.2.1 Research Background

Studies of functional activities of lateral pterygoid muscles (LPM) have an impor-

tant bearing on two clinical situations which are (i) to clarify the functional roles

of LPM in mastication and (ii) to explain the problems associated with temporo-

mandibular joint (TMJ) [92, 93]. The electromyographic approach (EMG) for

the studies of LPM has been widely accepted. For example, Gibbs et al [61] and

Wood et al [62] revealed that the inferior head and superior head of LPM have dif-

ferent functional roles during jaw-closing and jaw-opening. However Hannam and

McMillan [63] and Ruangsri et al [64] have suggested that the two heads of LPM

should be regarded as a single muscle. The major reason for the differing conclu-

sions was the inability of previous studies to verify whether the EMG recording

electrodes were correctly located within the muscle, as suggested by Murray et al

[94]. Moreover, Hiraba et al [95] suggested that the superior head controlled the

angular relationship between the articular disk and the condyle. On the other

hand, a series of recent studies employing medical imaging [67, 68] attempted to

explain the functional roles of the LPM using the dimensional parameters such

as the changes in muscle volume, length and cross-sectional areas (CSAs) when

the mandible is moved from the intercuspal position to the maximum jaw-opened

position. Although the EMG approach promoted a large number of investiga-
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tions in the functional roles of the LPM as used often in mastication and in

TMJ function studies, the normal functional roles of LPM in mastication remain

unclear. Presently, the recorded EMG activities may only be used to partially

describe the relationship between the EMG activities of LPM and the TMJ move-

ments. Studies using the dimensional parameters of muscle may not fully reflect

the functional roles of the LPM. Hence, the aims of this study are to employ

the proposed new framework (in section 5.5) to assess and visualize the deforma-

tions of subject-specific LPM in simulated jaw-opening movements, and to relate

the assessed deformations of the LPM to their functional roles for the studies in

mastication and TMJ function.

6.2.2 3D Reconstruction of Lateral Pterygoid Muscle

A total of six 3D muscle models (the left and right muscles at M0, M2 and M3)

under the three mandibular positions were reconstructed. The two muscle models

before and after mandibular position changed in each case were demonstrated in

the same coordinate system by different colors as Fig. 6.6 shows. The intra-rater

reliability and inter-rater reliability of the segmentations of the six muscles were

very high, with ICC of 0.990 and 0.982, respectively. The deformations of the

LPM accompanied by the changes of mandibular position were clearly seen from

these reconstructed muscle models. Moreover, the differences of the deformations

between the left and right muscles were also observed.
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Figure 6.6: 3D reconstruction of lateral pterygoid muscles. M0: mandibular rest
position; M2: medium jaw-opened position; M3: maximum jaw-opened position;
AP: from anterior to posterior; SI: from superior to inferior; ’L’ and ’R’ indicate
the left and right sides, respectively.

6.2.3 Validation of Registration Results

The same validation approach as used in section 6.1.3 was employed in this

study. The validation results in the two mandibular movements (M0 → M2

and M2 → M3) are shown in Table 6.1. The SMAD and HD show accurate

registration results under all the three level point sets, while the error are re-

duced by increasing the numbers of sample points from 800 to 2000. The point
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set registrations between the fixed model and the deformed model show the best

results in 2000 points.

Table 6.2: Validation of the proposed method

Npnts Parameters 1 2 3 4 Mean(STD)

800
SMAD [mm] 0.42 0.41 0.42 0.39 0.40(0.01)
HD [mm] 1.78 2.30 2.96 2.64 2.27(0.46)

1400
SMAD [mm] 0.41 0.40 0.40 0.37 0.39(0.01)
HD [mm] 1.66 1.61 2.22 1.89 1.79(0.23)

2000
SMAD [mm] 0.39 0.39 0.38 0.36 0.37(0.01)
HD [mm] 1.42 1.49 2.11 1.88 1.76(0.37)

Number of points (Npnts), Hausdorff distance (HD), Symmetric mean absolute
distance (SMAD), Mean (standard deviation) as computed from the six cases of

muscle deformations. 1: the left muscle M0 → M2; 2: the left muscle
M0 → M2; 3: the left muscle M2 → M3; 4: the right muscle M2 → M3.

6.2.4 Muscle Deformation Fields

According to the validation results in Table 6.2, 2000 sample points were employed

to assess the deformations of the LPM in this study. The assessed 3D deformation

fields of the LPM are shown in the three anatomic planes in Fig. 6.7.

In the first case (M0 → M2): the LPM on both sides contracted anteriorly

and superiorly (Fig. 6.7-1 and 2) in the sagittal plane; in the coronal plane, the

LPM on both sides contracted to superior and medial (Fig. 6.7-3 and 4); in the

transverse plane, the LPM on both sides contracted to anterior and medial (Fig.

6.7-5 and 6). Compared with the superior heads and the origin parts, the inferior

heads and the insertion parts on both sides show relatively large deformations.

In the second case (M1 → M2): in the sagittal plane, the LPM kept con-
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tracting anteriorly and superiorly (Fig. 6.7-7 and 8); in the coronal plane, the

LPM kept contracting to superior and medial (Fig. 6.7-9 and 10); in the trans-

verse plane, the LPM kept contracting to anterior and medial (Fig. 6.7-11 and

12). The insertion parts shows relatively large deformations on both sides, and

the right muscle generally shows relatively large deformation than the left mus-

cle. Compared with the deformations of the superior heads in the first case, the

superior heads on both sides in the second case show larger deformations.

Figure 6.7: Muscle deformation fields. The direction of each point displace-
ment is indicated by a 3D arrow (small) and shown in the three anatomic
planes,respectively. The color of each 3D arrow represents the magnitude of
each centroid point displacement. The 2D arrows (red) indicate the resultant
directions of displacements of all points in the three planes, respectively. L: left
side; R: right side; AP: from anterior to posterior; SI: from superior to inferior.
These results were computed by 2000 centroid points and demonstrated using
MATLAB (MathWorks, U.S.A)
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6.2.5 Discussion and Conclusion

Based on our proposed new approach, this study evaluated the functional ac-

tivities of subject-specific LPM under the two simulated mandibular movements

using the assessed deformation fields. The significant contributions of this study

include the following

6.2.5.1 Muscle Functional Activity

This study assessed and visualized the subject-specific muscle activities along

the entire body as well as at specific anatomical compartments (e.g. the small

3D arrows in the superior heads and the inferior heads) of the muscles in the

simulated mandibular movements using the assessed deformation fields of the

LPM. Furthermore, the resultant direction of the deformation field for each mus-

cle may indicate the direction of the muscle active tension that determined the

mandibular movement and the TMJ movement during jaw opening.

6.2.5.2 Functional Roles in Mastication

Most published studies employed EMG activity to identify whether the LPM

functionally work during a specific mandibular movement. The present study at-

tempts to explain how the muscles control the mandibular movements in mastica-

tion by investigating the biomechanical relationship between LPM and mandibu-

lar movements as a clinically relevant approach to understanding the functional

role of specific muscles. According to the assessed deformations of the LPM (Fig.

6.7), it was found that the LPM on both sides contracted anteriorly and supe-

riorly during the jaw opening. In other words, a pair of active muscle tensions
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was produced bilaterally and applied at the insertions of the left and right mus-

cles, respectively, as shown in Fig. 6.7. Moreover, the directions of the muscle

tensions at the insertions may be indicated by the resultant directions of the de-

formation fields. Such as the calculated 167∘ on the left side and the 1∘ on the

right side in the sagittal plane (Fig. 6.7-1 and 2); the 148∘ on the left side and

the 2∘ on the right side in the coronal plane (Fig. 6.7-3 and 4); the 249∘ on the

left side and the 291∘ on the right side in the transverse plane (Fig. 6.7-5 and

6). Consequently, the mandible of the subject was passively depressed by such

biomechanical relationships. In addition, the LPM were observed to change their

contraction directions in the second case (i.e. contracted more superiorly in Fig.

6.7). These changes may reflect the functional role of the LPM in the controlling

of muscle contraction direction for the various mandibular positions.

6.2.5.3 Functional Roles in Temporomandibular Joint Function

Anatomically, the superior head and the inferior head of LPM insert onto the

articular disk and the condylar neck, respectively. Moreover Hiraba et al [95]

found that the superior head functioned to stabilize the condyle against the biting

force that pulls the condyle posteriorly, and controlled the angular relationship

between the articular disk and the condyle. In this study, the insertions of the

LPM may be clearly identified in the MR images as Fig. 6.8 shows, and the

condylar movements and the positional changes of the articular disk may also be

seen in Fig. 6.8. These observations provide the basis of biomechanical analysis

for the subject-specific TMJ movements. Furthermore, the active tensions of the

LPM which were indicated by the assessed deformations of the LPM, can be

used to further explain the condylar movements and the positional change of the
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Figure 6.8: Temporomandibular joint movement. (A) (B) and (C) show the left
temporomandibular joint and the insertion of the left lateral pterygoid muscle
under the mandibular rest position, the medium jaw-opened position and the
maximum jaw-opened position, respectively.)

articular disk.

This study appropriately and meaningfully describes the anatomic architec-

tural and biomechanical characteristics of the subject-specific LPM using the

assessed deformation fields of the subject-specific LPM. We believe that future

studies with larger samples would be helpful to clarify the functional roles of the

superior and inferior heads of LPM, and further explain the functional roles of

LPM in mastication and TMJ functions. Furthermore this study could possibly

be used to identify the aetiology of temporomandibular joint disorder (TMJD)

for different individuals.
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Chapter 7

Application II: Biomechanical

Relationship between Muscle

Activities and Mandibular

Movements

In this chapter, we seek to explain the biomechanical relationship between masti-

catory muscle activities and mandibular movements through assessing the muscle

deformations and measuring the mandibular movements by MR images.

7.1 Research Background

As described in Chapter 5, masticatory muscles are classified into four groups:

masseter muscles (MM), medial pterygoid muscles (MPM), lateral pterygoid mus-

cles (LPM) and temporal muscles (TM). The four muscle groups work together
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to control the elevation and depression of the mandible for our daily mastication,

i.e., the mandibular functions. The electromyographic approach (EMG) [59] and

biomechanical modelling [90] have been used for studying the relationship be-

tween the mandibular functions and the masticatory muscle activities. Muscle

activities during the mandibular movements were recorded to correlate with the

mandibular functions. Although the physiological activities recorded by EMG re-

flect the muscle functional activities, how the muscles work together to achieve the

mandibular functions, i.e. the biomechanical relationship, could not be explained

by the EMG activities. In addition, the biomechanical relationship has been

suggested to be more important for clinical practice, such as the diagnosis and

treatment of masticatory muscle dysfunction and temporomandibular joint dis-

order (TMJD). However, the biomechanical modellings in previous studies have

been difficult to be employed for the subject-specific case due to the problem

of directly measuring parameters, such as muscle tension direction and magni-

tude in vivo. The aims of this study are to assess subject-specific mandibular

movement and muscle deformations in maximum intercuspation, and to explain

the mandibular functions in maximum intercuspation using the assessed muscle

deformations for a subject.

7.2 Image Data Acquisition

The data acquisition technique (described in section 5.5.1) was used to capture the

internal structures of masticatory muscles at the mandibular rest position (M0)

and the maximum intercuspation position (M1) for a normal adult male subject

(31 years of age, without any dental problems in clenching and jaw opening
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movements).

7.3 Estimation of Masticatory Muscle Tensions

Each masticatory muscle tension (active or passive tension), when the mandible

was moved from the M0 to the M1, was estimated as follows

7.3.1 3D Reconstruction of Masticatory Muscles

At first, each muscle of the subject was semi-automatically segmented from the

two sets of the original MR images by ITK-SNAP software [96]. After the seg-

mentations, a radiologist analyzed and adjusted the anatomic boundaries of the

muscle for the anatomic accuracy, and the 3D muscle models of the M0 and M1

positions were reconstructed from these anatomically revised MR images. The

inter-rater reliability and the intra-rater reliability of the sixteen muscle segmen-

tations (the left and right muscles at the two mandibular positions) were assessed

by the comparisons of the muscle volumes between occasions and between raters

using the intraclass correlation coefficient (ICC) as described in [82].

7.3.2 Muscle Model Quantization

To numerically describe the 3D morphology of each muscle model and compute

region correspondences between the two 3D muscle models (i.e., the M0 model

and the M1 model) before and after mandibular position changed, the large set of

voxels in each model was partitioned into specific K groups having approximately

the same number of voxels nearest to them, and each group was represented by

its centroid point using the Algorithm 3 introduced in section 5.5.2.
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7.3.3 Recovering Region Correspondences

The proposed GLMDTPS method was used to estimate the region correspon-

dences between the M0 and M1 models. After finding the correspondences, each

muscle deformation was measured by the directions and magnitudes of the set of

Euclidean vectors, which denote the displacements between pairs of correspond-

ing points.

7.3.4 Muscle Tension Estimation

∙ Direction: In this study, the direction of muscle active tension is esti-

mated as the resultant direction of displacements of all sample points within

each muscle model, and is calculated by
∑K

n=1
d⃗n/∣

∑K

n=1
d⃗n∣ for each mus-

cle. K is the number of sample points and
−→
d n is the displacement of ntℎ

sample point.

∙ Magnitude: The magnitude of each muscle tension may not be able to be

directly measured by current techniques. However, the degree of the muscle

deformation and its elastic properties may be used to estimate the muscle

tension. In this study, the magnitude of each muscle tension is estimated

by

M = ∥
K
∑

n=1

d⃗n∥ × PFI (7.1)

where the term ∥
∑K

n=1
d⃗n∥ is the resultant displacement of all sample points

for each muscle, and it can describe the degree of muscle deformation since

its origin is fixed during mandibular movements. PFI [97] (Priority for

Force Index) is an index expressing the maximal force of muscle per unit
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volume under the same amount of maximal work. It is defined by

PFI = PCS/V
2

3 (7.2)

where PCS is the physiological cross-sectional area which was defined as

V/FL (FL: average fiber bundle length), and V is the muscle volume. The

PFI for human masticatory muscles have been investigated by van Eijden et

al., [98, 99, 100] as Table 7.1 shows. In order to estimate the magnitudes of

Table 7.1: Priority for force index of the jaw-closing and jaw-opening muscles

Point Set MM MPM LPM TM
PFI 1.39 1.53 0.91 1.24

muscle tensions for the four group muscles by (7.1), the sample points in the

four muscle groups (MM, MPM, LPM and TM) in the initial condition M0

were assumed to represent the volumes with approximately the same size.

i.e., when we sampling the muscle models, the number of sample points in

the four group muscles should be based on the following constraint

VMM

KMM

≈
VMPM

KMPM

≈
VLPM

KLPM

≈
VTM

KTM

(7.3)

where V is the muscle volume and K is the number of sample points.
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7.3.5 Measurement of Subject-specific Mandibular Move-

ment

The mental protuberance of the mandible was suggested to be a landmark for

measuring the mandibular movement since it could be clearly identified in the

MR images from the coronal plane as shown in Fig. 7.1 a. Thereby, the mental

protuberance was segmented from the two sets of MR images using the same

approach with the muscle segmentation (Fig. 7.1 b).

Figure 7.1: Measurement of subject-specific mandibular movement

7.4 Experimental Results

7.4.1 3D Reconstruction of masticatory muscles

A total of sixteen 3D muscle models under the two mandibular positions were

reconstructed and shown in Fig. 7.2. The intra-rater reliability and inter-rater

reliability of the segmentations of the sixteen muscles were high, with ICC of

0.980 and 0.960, respectively. For each muscle, the two models before and after
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mandibular position changed were demonstrated in the same coordinate system

by different colors for observing the morphologic changes. The deformations of

the masticatory muscles accompanied by the changes of mandibular position were

clearly seen from these reconstructed muscle models, moreover the differentials of

the morphologic changes between the left and right muscles were also observed.

Figure 7.2: 3D reconstruction of masticatory muscles

7.4.2 Validation of Registration Results

The same quantitative metrics approach used in section 6.1.3 was employed in this

study, while the determined numbers of sample points for the four group muscles

were followed the constraint (7.3). Table 7.2 shows the determined numbers of

sample points under different unit volumes. Table 7.3 shows the validation results

using different numbers of sample points. By reducing the unit volume size for the

four group muscles, the global errors in terms of SMAD and HD were reduced,

respectively. Moreover, the local error between the locations of its recovered

corresponding point and its physically exact corresponding point could also be
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reduced by increasing the numbers of sample points for the four group muscles.

The point set registrations using K3 points show the best results.

Table 7.2: Number of sample points. V: volume. K1 K2 and K3 indicate the
required numbers of sample points for each muscle at M0 under the unit volumes
5 mm3, 4 mm3 and 3 mm3.

Volume (cm3) K1 (5 mm3) K2 (4 mm3) K3 (3 mm3)
L R L R L R L R

MM 53.15 55.24 425 442 830 863 1969 2047
MPM 15.78 15.10 126 121 247 236 584 559
LPM 17.29 15.79 138 126 270 247 640 584
TM 98.09 100.31 785 802 1533 1567 3633 3715

Table 7.3: Validation results under different numbers of sample points.

K1 K2 K3
SMAD HD SMAD HD SMAD HD

MM
L 0.50 3.86 0.43 3.34 0.40 2.54
R 0.49 3.72 0.42 3.21 0.39 2.36

MPM
L 0.55 3.35 0.40 2.68 0.39 2.04
R 0.56 3.34 0.42 2.73 0.41 2.15

LPM
L 0.54 3.36 0.41 2.40 0.39 1.88
R 0.55 3.92 0.41 3.02 0.38 2.05

TM
L 0.64 4.28 0.62 4.03 0.57 3.54
R 0.65 4.32 0.63 4.07 0.58 3.66
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7.4.3 Relationship between Mandibular Movement and

Masticatory Muscle Tensions

The measured mandibular movement and the estimated muscle tensions by K3

(Table 7.3) were decomposed into the three anatomic planes and shown in Fig.

7.3.

Compared with the MPM, the TM and MM generated larger muscle tensions

for clenching the jaw. In Fig. 7.3 a and b, the mandible was moved superiorly and

slightly anteriorly (e.g., Left: D: 94∘, M: 3.30 mm). According to the estimated

values of muscle tensions, this movement was caused by the three closing muscle

groups (MM(L and R), MPM(L and R) and TM(L and R)), which produced

the upward tensions to make the mandible rotate about the horizontal axis as

a hinge movement. The LPM (LPM(L) and LPM(R)) during the maximum

intercuspation were passively stretched by the condyle heads, and hence the LPM

were considered to produce a pair of the passive muscle tensions, which only

played a role in maintaining the mandibular posture.

In Fig. 7.3 c, the mandible was moved superiorly and slightly to the left side

(D: 82∘, M: 3.32 mm). The upward movement of the mandible could be explained

as the aforementioned hinge movement, whereas the slight left movement was

due to the unbalanced forces on the left and right sides of the mandible. i.e., the

horizontal resultant force on the left side mandible was bigger than the horizontal

resultant force on the right side. Moreover, although the muscle tensions on both

sides pulled the mandible superiorly, the vertical resultant force on the right side

was bigger than the vertical resultant force on the left side. Thus, the mandible

was slightly rotated to the left side about the antero-posterior axis.

110



Figure 7.3: Biomechanical relationship between mandibular movement and mas-
ticatory muscle activities. MD: mandible, MM (L or R): the left or right masseter
muscles. MPM (L or R): the left or right medial pterygoid muscle. LPM (L or
R): the left or right lateral pterygoid muscle. TM (L or R): the left or right
temporal muscle. D: the estimated direction of muscle tension (0∘-360∘), M: the
estimated magnitude of muscle tension (×103). For MD, D is the direction of the
displacement (0∘-360∘) and M is the magnitude of the displacement (mm). The
locations of the muscle tensions were anatomically determined by their insertions
from the MR images. In order to clearly see the muscle tensions of the MPM(L)
and MPM(R), the arrows were positioned on the lateral surface of the mandible
in a, b and c (in fact, the MPM were inserted into the medial surface of the
mandible). These results were calculated according to the numbers of sample
points in K3.

In Fig. 7.3 d, the mandible was slightly moved to the anterior and the left

side. The anterior movement was caused by the hinge movement, and the leftward

movement was mainly related to the aforementioned rotation about the antero-

posterior axis.
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7.5 Discussion and Conclusion

The mandibular movement and the masticatory muscles tensions of the subject

were accurately assessed, and the subject-specific biomechanical relationship be-

tween the mandibular movement and the muscle tensions were explained. The

present approach helps to explain the biomechanics of the anatomically and func-

tionally complex masticatory system, and would assist in making proper diagnosis

and treatment for masticatory muscle dysfunction. Furthermore, as the demon-

strated results, the mandibular movement of the subject was not perfect vertical

due to the unbalanced force relations (shown in Fig. 7.3 c and d), thereby such

findings would be helpful to study the mastication efficiency [101], the develop-

ment of the dental occlusion [102] and the reconstruction of the optimum occlusion

of the subject.
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Chapter 8

Conclusion and Future Work

We have introduced a new non-rigid point set registration method and its ap-

plications in the studies of the human masticatory system. In this chapter, we

summarize the proposed non-rigid point set registration methods and its appli-

cations to the human masticatory system, highlight the technical contributions,

discuss the limitations of our work and suggest directions of future work.

8.1 Conclusion

8.1.1 Non-rigid Point Set Registration

We have demonstrated in this thesis that the issues with the current methods are

solved by the proposed GLMDTPS and GLMDGRBF methods. Moreover, our

methods are able to deal with the registration in the presence of noise, outliers,

rotation and missing points. In the experimental comparisons, our methods show

the best alignments in most scenarios and outperform state-of-the-art methods.

Robustness and stability of our methods are achieved through two techniques:

mixture distance feature based correspondence estimation and a novel anneal-
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ing scheme. By minimizing the GLMD based cost matrix, our methods allow

multi-features to be employed to estimate the correspondences during registra-

tion. Moreover, the annealing scheme combined with GLMD based cost matrix

improves the correspondence estimation process compared with the other three

methods as well as enhances the interaction between correspondence estimation

and transformation updating. In addition, the number of closest points, K, com-

bines greater flexibility in dealing with deformation, noise, outliers and rotation

with accurate performance. The above are empirical facts confirmed by the large

number of experiments demonstrated in this thesis.

8.1.2 Applications in Human Masticatory System

Firstly, we have introduced a new framework for assessing human masticatory

muscle deformation, which consists of four steps: (i) muscle deformation capture,

(ii) muscle model quantization, (iii) muscle deformation assessment and (iv) mus-

cle deformation visualization. Unlike the current techniques, the proposed frame-

work allows visualization of muscle functional activities along the entire body as

well as at specific compartments through the assessment of muscle deformation.

Moreover, the important biomechanical characteristic of muscle contraction direc-

tion may also be indicated by the resultant direction of the assessed deformation

field.

Secondly, we sought to investigate the functional activities of masseter mus-

cles and lateral pterygoid muscles by the proposed framework. The nature and

subject-specific deformations of the masseter muscles and the lateral pterygoid

muscles at various mandibular positions were assessed and visualized. These
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could not be identified by current approaches. This study would help to further

relate muscle deformation to muscle contraction and the metabolic activities for

evaluating masticatory muscle efficiency before and after orthodontic treatment,

and facilitate the diagnosis and management of masticatory muscle dysfunction.

Finally, we sought to explain the biomechanical relationship between the

mandibular movement and the muscle functional activates under a maximum

intercuspation case. The mandibular movement and the masticatory muscle ten-

sions of a specific subject are assessed, and the biomechanical relationship between

the mandibular movement and the muscle functional activities are clarified. This

study would be very helpful to explain the biomechanics of the anatomically and

functionally complex masticatory system and assist in making proper diagnosis

and treatment for masticatory muscle dysfunction or temporomandibular joint

disorder.

8.2 Limitations and Future Work

8.2.1 Non-rigid Point Set Registration

At first, we improved the correspondence estimation using a mixture distance

feature (GLMD) and minimizing the GLMD based cost. However, the proposed

methods may not be able to cope well with missing points on both the source

and target point sets since we force one-to-one correspondence using a linear

assignment solution even if corresponding points (in the target point set) do

not exist. In addition, unlike CPD and GMMREG, our methods are currently

unable to deal with rigid point set registration problems. Extending GLMDTPS
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and GLMDGRBF to rigid registration problems would be desirable.

Secondly, although our methods outperform the other methods in most sce-

narios, the mixed local and global distances may not be the best combination

and there is still plenty of scope for further improvement. Since we created a new

approach ”Global feature + � × Local feature” that allows a multi-feature use,

better feature representations on global and local can be explored.

Thirdly, the iterative methods such as our methods, TPS-RPM, CPD and

GMMREG typically contain higher computational cost which limit the applica-

bility on the large dataset non-rigid registration. Therefore, using such matrix

approximation or automatically optimizing the free parameter setting for reduc-

ing the computational time may be considered as a part of future work.

Finally, we list the three directions of future work and possible approaches:

∙ Multi-feature based correspondence estimation

– Global distance + � × Shape Context

– Global distance + � × Graph Relation

– Global distance + � × Shape Histogram

– Global distance + � × Curve Feature

∙ Development of a method for large dataset registration

– Low-rank matrix approximation

– Fast Gauss transform

– Optimizing the annealing parameters (Tinit, Tfinal and r) and the num-

ber of closest points K
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∙ Rigid point set registration

– Changing non-rigid transformation to rigid transformation

8.2.2 Applications in Human Masticatory System

Firstly, although we investigated the muscle functional activities and explained

the biomechanical relationship between the muscles and the mandible using the

proposed framework, there are some limitations which could be the subject of

future work.

i. The four stepwise mandibular positions were used to simulate successive jaw

opening and closing movements. Future work may apply a real time MR

imaging technique, which has been already used experimentally [103], for

capturing the internal structures of masticatory muscles under real successive

mandibular movements.

ii. The proposed framework is a first-cut approximation approach, and not a

real muscle modelling approach since the deformation of muscle layers (or

fibers) was modeled by the TPS transformation which is a physically-based

model for modelling the stretching and bending of thin metal sheet.

iii. The cumulative errors due to the muscle segmentation, quantization and

registration should be reduced in future work. One possible approach is to

first improve the segmentation technique, and then only sampling the source

muscle model into discrete points and map the source points to the point sets

of the whole muscle. This is equivalent to having a target set with infinite
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resolution, which removes quantization error of the target set, thus improving

the registration accuracy.

iv. The PFI [97] (Priority for Force Index) values used in section 7.3.4 for ex-

pressing the elastic characteristics of human masticatory muscles are statis-

tical values, not for specific subjects.

Secondly, the muscle deformations under side-to-side mandibular movements

as well as chewing are still unknown, and the biomechanical relationship in jaw

opening as well as that between condyle movements and lateral pterygoid muscles

may also be investigated in the same way since the condyle movements can be

assessed from MR images using our proposed MRI protocol.

Thirdly, the validation method (in section 6.1.3 and 6.2.3) for the muscle

model registration could be improved by adding additional criteria for assessing

neighboring cross mismatches and long geodesic distance mismatches [13] as well

as motion coherence in muscle layers. In addition, only using a single method

is difficult to provide an optimal result since no method can be guaranteed to

give the best results in any case. Therefore a multi-method based deformation

assessment approach is essential for individual diagnosis.

Finally, we list the discussed future work:

∙ Investigating the deformations of medial pterygoid muscle and temporal

muscle

∙ Investigating the muscle deformations under lateral mandibular movements

∙ Investigating the muscle deformations under chewing
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∙ Biomechanical relationship between masticatory muscle functional activity

and jaw opening

∙ Biomechanical relationship between condyle movement and lateral ptery-

goid muscle functional activity

∙ Improving validation method of muscle deformation assessment

∙ Multi-method based muscle deformation assessment
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Appendix A: Useful Tools

.1 GLMD Demo Package

We provide a Matlab demo package free for academic research. You may see many

matching examples in 2D and 3D, and check the performance of our methods by

this demo application where the deformation, noise, outlier and rotation are fully

randomly set at each program launch. This demo can also be considered as a

good evidence and supporting material for discussing our works. If you need this

demo application, please email me by y.yang.tony@gmail.com.

.2 3D Thin Plate Spline Transformation

%=====================================================
% 3D Thin Plate Sp l ine Warping Function :
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Copyright (C) 2012 Yang Yang ,
%
% Contact In fo rmat ion : y . yang . tony@gmail . com
%
% [ wobject ] = TPS3D( points , c t r l p o i n t s , ob j ec t )
%
% Input :
% po in t s : the o ld p o s i t i o n s o f c on t r o l po in t s
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% c t r l p o i n t s : the new po s i t i o n s o f c on t r o l po in t s
% ob j ec t : the source template
%
% Output :
% wobject : the warped source template
%=====================================================
funct i on [ wobject ] = TPS3D( points , c t r l p o i n t s , ob j ec t )

npnts = s i z e ( po ints , 1 ) ;
K = zero s ( npnts , npnts ) ;
% Ca l cu la t e r
f o r r r = 1 : npnts

f o r cc = 1 : npnts
K( rr , cc ) = sum ( ( po in t s ( rr , : )− po in t s ( cc , : ) ) . ˆ 2 ) ;
K( cc , r r ) = K( rr , cc ) ;

end ;
end ;
% Ca l cu la t e ke rne l matrix
K = max(K, 1 e−320);
%K = K.∗ l o g ( sq r t (K) ) ; % For 2D
K = sqr t (K) ; % For 3D

% Ca lcu la t e P matrix
P = [ ones ( npnts , 1 ) , po in t s ] ;

% Ca l cu l a t e L matrix
L = [ [K,P ] ; [ P’ , z e ro s ( 4 , 4 ) ] ] ;
param = pinv (L ) ∗ [ c t r l p o i n t s ; z e ro s ( 4 , 3 ) ] ;

% Ca l cu l a t e new coo rd ina t e s
pntsNum=s i z e ( object , 1 ) ;
K = zero s (pntsNum , npnts ) ;
gx=ob j ec t ( : , 1 ) ;
gy=ob j ec t ( : , 2 ) ;
gz=ob j ec t ( : , 3 ) ;
f o r nn = 1 : npnts

K( : , nn) = ( gx−po in t s (nn , 1 ) ) . ˆ 2
+ ( gy−po in t s (nn , 2 ) ) . ˆ 2
+ ( gz−po in t s (nn , 3 ) ) . ˆ 2 ;

end ;
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K = max(K, 1 e−320);
K = sq r t (K) ;

P = [ ones (pntsNum , 1 ) , gx , gy , gz ] ;
L = [K, P ] ;
wobject = L ∗ param ;
wobject ( : , 1 )= round ( wobject ( : , 1 )∗10ˆ3)∗10ˆ−3 ;
wobject ( : , 2 )= round ( wobject ( : , 2 )∗10ˆ3)∗10ˆ−3 ;
wobject ( : , 3 )= round ( wobject ( : , 3 )∗10ˆ3)∗10ˆ−3 ;

end

.3 Jonker-Volgenant Algorithm Matlab Code

The Jonker-Volgenant algorithm is much faster than the famous Hungarian algo-

rithm for the Linear Assignment Problem (LAP). This Matlab implementation is

modified from the original C++ code made by Roy Jonker, one of the inventors

of the algorithm. It can solve a 1000 x 1000 problem in about 3 seconds in a

normal Intel Centrino processor. Click here to download Matlab source code, or

refer to the link: http://www.mathworks.com/matlabcentral/fileexchange/

26836-lapjv-jonker-volgenant-algorithm-for-linear-assignment-problem-v2-5

.4 ITK-SNAP

ITK-SNAP is a very useful software used to semi-automatically segment anatomi-

cal structures in 3D medical images. Click here to download ITK-SNAP software,

or refer to the link: http://www.itksnap.org/pmwiki/pmwiki.php for official

website.
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.5 Osirix

Osirix is a free software used to measure anatomical structures such as measuring

volume, length and cross-sectional area. Click here to download Osirix software,

or refer to the link: http://www.osirix-viewer.com/ for official website.

.6 iso2mesh

iso2mesh is a free matlab/octave-based mesh generation and processing toolbox.

It may facilitate the coding on medical image visualization and further processing

on mesh as well as point cloud. Click here to download iso2mesh package, or

refer to the link: http://iso2mesh.sourceforge.net/cgi-bin/index.cgi for

official website.
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