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SUMMARY

Many of today’s applications, such as scientific, financial and social networking ap-

plications, are generating and collecting data at an alarming rate. As the size of data

grows, it becomes increasingly challenging to analyze these datasets. The high compu-

tation and I/O cost of processing large amount of data make it difficult for these applica-

tions to meet the performance demands of end-users.

Meanwhile, the MapReduce framework has emerged as a powerful parallel com-

putation paradigm for data processing on large-scale clusters. As such, there has been

much effort in developing MapReduce-based algorithms to improve performance. How-

ever, there remain many challenges in exploiting MapReduce for efficient data analysis.

Thus, designing new scalable, efficient and practical parallel data processing algorithms,

frameworks and systems for computation intensive analysis and data intensive analysis

is the research problem of this thesis.

In this thesis, we explore two extremely important and challenging analyses: Com-

binatorial Statistical Analysis (CSA, as an representative example of computation inten-

sive analysis to finding the significant objects correlations that is measured by statistical

methods) and Online Analytical Processing (OLAP) cubes analysis (as an representative



x

example of data intensive analysis to materialize the data in support of efficient query

response and decision making in data warehousing).

First, we adopt the MapReduce computation paradigm to develop a highly scalable

and generic framework with two alternative computation schemes (exhaustive testing

and semi-exhaustive testing) for the CSA problem. It is able to distribute the compu-

tation task to each processing unit for the analysis with any number of objects with a

good load balancing. We also propose new techniques to speed up the statistical testing

among different combinations of objects. By incorporating these techniques, our frame-

work obtains great efficiency and scalability towards a large number of objects that none

of the existing frameworks are able to achieve. Second, we develop a distributed system,

HaCube which is an extension of MapReduce, designed for efficient parallel data cubes

analysis for large-scale multidimensional data in traditional OLAP and data warehous-

ing scenario. We propose a generic parallel cubing algorithm to materialize the cube

efficiently. We also investigate the view update problem and provide the techniques to

update the view when new data is inserted. This, to the best of our knowledge, is the

first work to study view maintenance in MapReduce-like environment. Third, we extend

the data cubes analysis to a more complex data structure, attributed graphs where both

vertex and edge are associated with attributes. Specifically, we propose a new conceptual

graph cube model, Hyper Graph Cube, based on the attributed graphs, since the tradi-

tional data cubes are no longer applicable in graphs. This is also the first work to develop

a MapReduce-based distributed and parallel graph cube materialization solution towards

the graph OLAP on large-scale graphs.

We have implemented the above techniques and conducted extensive experimental

studies. The experimental results demonstrated the efficiency, effectiveness and scala-

bility of our approaches. We believe that our research in this thesis brings us one step

closer towards developing scalable and efficient big data analysis systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The amount of data in our world has been exploding, such as scientific data, industry

sales data, finance data, social network data etc. These data resources contain a wealth of

information that is of benefit to different communities. A better understanding of these

data may help us have a better insight of the world, better target marketing campaigns

and perform a better decision making support in industries etc. Analyzing large data

sets has become one of the main challenges in various enterprises. Thus, the design

of efficient methods for big data analysis has drawn a tremendous attention from both

industries and academia recently.

Due to the increasing size of data, analyzing these data becomes quite difficult. The

difficulty of analyzing these large-scale data arises because of either the high computa-

tion overhead or the high I/O overhead incurred in big data processing. In such a data

explosion era, existing techniques developed on a single server or a small number of

1
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machines are unable to provide acceptable performance. Therefore, many studies have

endeavored to overcome the limitations of existing techniques to face the challenges

arisen by data.

My research aims at developing new techniques towards an efficient and effective

large-scale data processing and analysis. Given that the applications could be either

computation intensive or data intensive, this thesis studies both of these two categories

of applications. Specifically, this thesis explores two extremely important but challeng-

ing analyses, combinatorial statistical analysis (CSA) and Online Analytical Processing

(OLAP) cubes analysis. The former is a representative example of computation-intensive

applications, while the latter represents data-intensive applications.

1.2 Research Problems and Challenges

In this thesis, we propose to exploit parallelism to speed up the data analysis in

computation and data intensive applications. Today, we are facing good opportunities

to develop scalable data analysis systems. On the one hand, the large amount of com-

putation resources become available to each user, especially benefited from the emer-

gence of cloud computing. Cloud computing has emerged as a successful and ubiqui-

tous paradigm for service oriented computing. The major advantages that make cloud

computing attractive are: pay-as-you-use pricing resulting in low time to market and

low upfront investment for trying out novel application ideas; elasticity, i.e., the ability

to scale the computation resources and capacity as you need. This provides us power-

ful computation resources to all users to deploy a real scalable and elastic data analysis

system in a large infrastructure.

On the other hand, MapReduce (MR) has emerged as a powerful parallel computation

paradigm for data processing on large-scale clusters. It becomes a very popular and
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attractive platform due to its high scalability (scale to thousands of machines), good fault

tolerance (automatic failure recovery), and ease-of-programming (simple programming

logic). More importantly, the MR framework has been integrated with the cloud so that

each user can easily deploy their MR-based algorithms to the cloud with low expense.

Based on this, we are able to develop real scalable data analysis systems by adopting

MR as the data processing engine over the large-scale cluster. However, it is non-trivial

to develop such MR-based data analysis operators. A naive data processing solution

over MR may be very costly. Thus, the research problem, in this thesis, is to explore

the efficient big data analysis techniques over the MR computation paradigm. Since the

analysis could be either computation intensive or data intensive, we tackle the problems

for both of these categories of analyses in this thesis.

1.2.1 Computation Intensive Analysis

Computation intensive analysis involves high computation overhead where paral-

lelizing these computation tasks will reduce the total data processing time. In this thesis,

we take the combinatorial statistical analysis as an example to explore a practical parallel

solution for computation intensive applications.

Combinatorial Statistical Analysis (CSA) plays an important role in finding the sig-

nificant correlations that are typically measured by statistical methods among different

objects. Finding such correlations between multiple objects may help us better under-

stand their relationships. Intuitively, CSA evaluates the significance of the associations

between a combination of objects by adopting the statistical methods, such as χ2 test.

Due to the power of the statistical methods, CSA has been widely used in many dif-

ferent applications to find the associations between objects, especially in scientific data

analysis.

As an example, CSA is used in epistasis discovery to determine the association
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among a combination of Single Nucleotide Polymorphisms (SNPs) that cause complex

diseases(e.g. breast cancer, diabetes and heart attacks)[47][74][90][80][81].

From a computational point of view, finding significant associations is very challeng-

ing. On the one hand, scientists typically do not want to miss any answers. As such, the

widely adopted solution is to exhaustively enumerate all possible combinations of a cer-

tain size, say k, in order to find all statistically significant associations of k objects [51].

Given n objects, there are C(n, k) = n!
(k!(n−k)!)

combinations to evaluate.

On the other hand, the cost for computing statistical test to evaluate the association

significance of one combination is high. As such, for a large number of combinations, it

will take a very long time to complete the processing.

Thus, the research problem we have here is how to build a scalable, practical, efficient

and effective parallel cloud-based CSA computation framework on MR. In particular, an

efficient and effective scheme must address two challenges:

1. Given the large number of combinations, they must be distributed evenly across

the processing units; otherwise, the unit with a significantly bigger load will become a

bottleneck. Therefore, a distribution scheme that balances the load should be developed.

Meanwhile, the solution should be able to scale well towards a large-scale data analysis.

2. At a particular unit, we also have a large number of combinations being allocated,

each of which requires an expensive statistical test. The naive strategy of processing

these tests independently is inefficient. Instead, a scheme that can minimize the compu-

tation for efficient statistics testing should be designed.

1.2.2 Data Intensive Analysis

Besides the computation intensive analysis, we also want to study the processing of

data-intensive applications. In such applications, the computation difficulty is not the

main bottleneck but high I/O overhead incurred by the large volume of data. Decision
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support systems that run aggregation queries over data warehouse is an example.

OLAP data cubes [31] are one such critical technology that has been used in data

warehousing and OLAP to support decision making. Given n dimensions, data cubes

normally precompute a total of 2n cuboids or group-bys, where each cuboid or group-by

captures the aggregated data over one combination of dimensions. Each of such cuboid

can be stored into a database as a view to speed up query processing.

There are two key operations in data cube analysis. The first is data cube ma-

terialization where the various cuboids are computed and stored as views for further

observation and query support. The second is data cube view maintenance where

the materialized views are updated when new data is inserted. Both these operations

are computationally expensive, and have received considerable attention in the literature

[7][95][96][44] .

Therefore, in this thesis, our research problem is to deploy an efficient and scalable

data cube analysis system targeting on a large amount of data over the MR-like com-

putation paradigm. To design such a distributed system, the main challenges can be

summarized as follows:

1. Given n dimensions in a relation, there are 2n cuboids to be computed to mate-

rialize the cube. An efficient parallel algorithm to materialize the cube faces two sub-

challenges: (a) Given that some of the cuboids share common dimensions, is it possible

to batch these cuboids to exploit some common processing? (b) Assuming we are able

to create batches of cuboids, how can we allocate these batches or resources so that the

load across the processing nodes is balanced?

2. View maintenance in a distributed environment introduces significant overheads,

as large amounts of data (either the materialized data or the base data) need to be read,

shuffled and written among the processing nodes and distributed file system (DFS).

Moreover, for non-distributive measures, recomputation is necessary to update the views.
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It is thus critical to develop efficient view maintenance methods for a wide variety of fre-

quently used measures.

Furthermore, we extend the OLAP cubes analysis to a more complex structured data,

attributed graphs where both the vertex and the edge are associated with attributes. The

attributed graph has been widely used to model the information networks. Attributed

graphs become quite ubiquitous due to the astounding growth of different information

networks such as the Web and various of social networks(e.g. Facebook, LinkedIn,

RenRen).

Obviously, these attributed graphs contain a wealth of information. Analyzing such

information may provide us an accurate and implicit insight of the real world. For in-

stance, analyzing the relationship (edge) information in a social network may help us to

better understand how users interact with each other among different communities.

However, the traditional OLAP cubes are no longer applicable to graphs, since the

edges(relationship information) have to be considered in graph warehousing. The tra-

ditional data cubes only aggregate the numeric value based on the group-bys and are

unable to capture the structural information.

In order to conduct graph OLAP, a new conceptual graph cube model has to be de-

signed on a graph context further. And then, to support large graphs, there is a need to

develop a parallel graph cube computation algorithm such that it is practical and scalable

enough in processing the large graphs we are facing today.

1.3 Contributions of This Thesis
To solve the research problems aforementioned, we propose several new algorithms,

frameworks and systems in this thesis. Our main contributions are summarized here.

In the first part of this thesis, we propose a MR-based framework, COSAC -COmbina-

torial Statistical Analysis on Cloud platforms for the CSA problem. Our contributions
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are:

• We propose an efficient and flexible object combination enumeration framework

with good load balancing and scalability for large scale of datasets using the MR

paradigm. The enumeration of combinatorial objects takes an important role in

computer science and engineering [64]. We develop schemes for enumerating the

entire set of objects (Exhausitive Testing) as well as a subset of the set (Semi-

exhaustive Testing). Our framework is useful beyond scientific data processing; it

is suited for any applications that need to enumerate the objects set.

• We propose a technique for efficient statistics analysis using IRBI (Integer Repre-

sentation and Bitmap Indexing) which is both CPU efficient with regard to statis-

tics testing, and storage and memory efficient. Statistics methods have been widely

used as powerful tools in many different applications, e.g. data mining, machine

learning. The approach we adopted in our thesis can be a promising solution to

speed up the statistical testing.

• We propose an optimization technique based on the sharing of computation to

salvage computations that can be reused during statistical testing with significant

performance savings, instead of conducting the testing for each combination inde-

pendently.

• We implement the framework and conduct extensive experimental evaluation. The

results indicate that our framework is able to conduct analysis in hours where the

task normally took weeks, if not months. To the best of our knowledge, non of the

existing framework has such a computation capability.

In the second part of this thesis, to develop a scalable parallel data cube analysis

platform on big data, we develop a distributed system, HaCube, integrating a new data
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cubing algorithm and an efficient view maintenance scheme. Our main contributions in

this work are as follows:

• We present a distributed system, HaCube, an extension of MR, for data cube

analysis on large-scale data. HaCube modifies the Hadoop MR framework while

retaining good features like ease of programming, scalability and fault tolerance.

It also builds a layer with user-friendly interfaces for data cube analysis. We note

that HaCube retains the conventional Hadoop APIs and, thus, is compatible with

MR jobs.

• We show how batching cuboids for processing can minimize the read/shuffle over-

head to salvage partial work done for efficient data cube materialization.

• We propose a general and effective load balancing scheme LBCCC (short for Load

Balancing via Computation Complexity Comparison) to ensure that resources are

well allocated to each batch. LBCCC can be used under both HaCube and MR

frameworks.

• We adopt a new computation paradigm, MMRR (MAP-MERGE-REDUCE-REFRESH

), with a local store under HaCube. HaCube supports efficient view updates for

different measures, both distributive such as SUM, COUNT and non-distributive

such as MEDIAN, CORRELATION. Thus, this is able to support more applica-

tions with data cube analysis in a data center environment. To the best of our

knowledge, this is the first work to address data cube view maintenance in MR-

like systems.

• We evaluate HaCube based on the TPC-D benchmark with more than one billion

tuples. The experimental results show that HaCube has significant performance

improvement over Hadoop.
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In the third part of this thesis, we further tackle the graph OLAP problem where

a new graph OLAP model and a parallel solution over the attributed graphs have been

proposed. Our main contributions in this work are in the following aspects:

• We propose a new conceptual graph cube model, Hyper Graph Cube, to extend

decision making services on attributed graphs. Hyper Graph Cube is able to cap-

ture queries in different categories into one model. Moreover, the model supports

a new set of OLAP Roll-Up/Drill-Down operations on attributed graphs.

• We propose several optimization techniques to tackle the problem of performing

an efficient graph cube computation under the MR framework. First, our self-

contained join strategy can reduce I/O cost. It is a general join strategy applicable

to various applications which need to pass a large amount of intermediate joined

data between multiple MR jobs. Second, we combine cuboids to be processed as

a batch so that the intermediate data and computation can be shared. Third, a cost-

based optimization scheme is used to further group batches into bags (each bag is

a subset of batches) so that each bag can be processed efficiently using a single

MR job. Fourth, a MR-based scheme is designed to process a bag.

• We introduce a cube materialization approach, MRGraph-Cubing, that employs

these techniques to process large scale attributed graphs. To the best of our knowl-

edge, this is the first parallel graph cubing solution over large-scale attributed

graphs under the MR-like framework.

• We conduct extensive experimental evaluations based on both real and synthetic

data. The experimental results demonstrate that our parallel Hyper Graph Cube

solution is effective, efficient and scalable.

The works in this thesis have resulted in a number of publications, more specifically,

[80], [81] and [77], [79] and [78].
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1.4 Thesis Outline
The thesis is organized as follows. In Chapter 2, we first provide the preliminaries on

MapReduce and then review the related works. For the CSA problem, we focus on work

related to epistasis discovery. We also review the existing data cubes analysis techniques

including three classic cubing approaches and parallel computation solutions, and the

graph OLAP works.

We then present our proposed COSAC framework for combinatorial statistical anal-

ysis in Chapter 3. In this chapter, we demonstrate how to use MR to develop a highly

scalable and efficient framework that parallelizes the computation tasks in the computa-

tion intensive analysis.

Chapter 4 introduces a distributed system, HaCube, designed for an efficient parallel

data cube analysis on the traditional relational data. This chapter shows how MR can be

extended to support traditional data cubes analysis. We will also introduce the system

architecture of HaCube, a new cubing algorithm for cube materialization as well as the

new view maintenance strategies in HaCube.

In Chapter 5, we present our proposed Hyper Graph Cube model and a MR-based

cube computation framework. We also introduce other graph OLAP operations and chal-

lenges in graph OLAP.

Finally, we conclude this thesis and discuss some future research work in Chapter

6.



CHAPTER 2

RELATED WORK

In this chapter, we first introduce the preliminaries of MapReduce. Then, we focus

on some related works. More specifically, we first present some related work on the

Combinatorial Statistical Analysis-CSA problem. In particular, we focus on existing

works on epistasis discovery. Then, we review the most closely related works on existing

data cube processing and graph OLAP analytics.

2.1 Preliminaries on MapReduce

MapReduce (MR), which was first proposed in [22], has emerged as a powerful par-

allel computation paradigm. MR has several advantages which make it attractive, such

as its high scalability (scalability of thousands of machines), good fault tolerance (auto-

matic failure recovery by the framework), ease-of-programming (simple programming

logic) and high integration with cloud(availability to every user and low expense with a

pay-as-you-go model). It has been widely used by various applications such as scientific

11
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Figure 2.1: The MapReduce computation paradigm

data processing, media data processing, data mining and machine learning etc.

Under the MR framework, the system architecture of a cluster consists of two kinds

of nodes, namely, the NameNode and DataNodes. The NameNode works as a master of

the file system and is responsible for splitting data into blocks and distributing the blocks

to the data nodes (DataNodes) with replication for fault tolerance. A JobTracker running

on the NameNode keeps track of the job information, job execution and fault tolerance

of jobs executing in the cluster. A job may be split into multiple tasks, each of which is

assigned to be processed at a DataNode.

The DataNode is responsible for storing the data blocks assigned by the NameN-

ode. A TaskTracker running on the DataNode is responsible for the task execution and

communicating with the JobTracker.

The computation of MR follows a fixed model with a map phase and followed by

a reduce phase [22]. Figure 2.1 provides the MR computation paradigm. The MR

library is responsible for splitting the data into chunks and distributing each chunk to the

processing units (called mappers) on different nodes. The mappers process the data

read from the file system and produce a set of intermediate results which are shuffled to

the other processing units (called reducers) for further processing. Users can set their
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application logic by writing the map and reduce functions in their applications.

Map Phase: The map function is used to process (key, value) pairs (k1, v1) which

are read from data chunks. Through the map function, the input set of (k1, v1) pairs are

transformed into a new set of intermediate (k2, v2) pairs. The MR library will sort and

partition all the intermediate pairs and pass them to the reducers.

A partitioning function is responsible to partition the pairs emitted from the map

phase into M partitions on the local disks, where M is the total number of reducers.

The partitions are then shuffled to the corresponding reducers by the MR library.

Users can specify their own partitioning function or use the default one provided by the

MR framework.

Reduce phase: At the reducer, the intermediate (k2, v2) pairs with the same key

that are shuffled from different mappers are sorted and merged together to form a

values list. The key and the values list are fed to the user-written reduce function

iteratively. The reduce function makes a further computation to the key and values

and produces new (k3, v3) pairs. The output (k3, v3) pairs are written back to the file

system.

2.2 Combinatorial Statistical Analysis

Combinatorial statistical analysis (CSA) plays an important role in many scientific

applications to find significant object associations. In this thesis, we focus on epistasis

discovery as one representative application, which has widely adopted CSA. Hence, in

this section, we provide the related works for CSA in epistasis discovery.

In epistasis discovery, scientists aim to discover the correlation between a combina-

tion of Single Nucleotide Polymorphisms (SNPs) and the diseases such as heart attack

and cancer. Traditionally, many researchers focused on the association of individual
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SNPs with the phenotypes (such as the diseases). However, these methods can only

find weak associations as they ignore the joint genetic effects, which is called Epista-

sis, across the whole genome [50]. Recently, there has been a shift away from the one-

SNP-at-a-time approach towards a more holistic and significant approach that detects the

association between a combination of multiple SNPs with the phenotypes [49]. In the

meanwhile, the number of discovered SNPs is becoming larger and larger. For example,

the Hapmap project provides the dataset containing 3.1 million SNPs [24]. Determining

the interactions of SNPs has become a very time-consuming job from a computational

perspective.

To discover such a significant association, statistical modeling techniques have been

proposed [59][83][82]. However, these statistical modeling methods, which work well

for a small number of SNPs, are not able to provide acceptable performance and become

impractical when the number of SNPs increases enlarging the search space. To prune

the search space, the heuristics techniques are proposed to speedup statistical modeling

approach [93][92][91]. In particular, a filtering step is added to select a fixed number

candidate SNPs. Then the selected candidate SNPs are exhaustively evaluated. On the

other hand, many researchers still focus on the exhaustive enumerating approach to test

all the possible pairs of SNPs [74][60]. Exhaustive enumerating guarantees that all the

combinations of SNPs are tested, thus none of the significant associations will be missed.

However, all the aforementioned related works are designed on a single server ma-

chine, which has become no longer practical to provide acceptable computation perfor-

mance, as the size of dataset and analysis order increases. Thus, due to such a computa-

tional difficulty, researchers have made great effort to exploit parallel processing to the

computational challenge in epistasis discovering.

Ma at el. [47] proposed a parallel computation tool designed for two-locus analysis

(checking the pair association) specially targeting on a supercomputer platform. Given
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N SNPs, there are total C(N, 2) pairs to evaluate. In order to distribute and enumerate

the C(N, 2) pairs into different processor cores, the N SNPs are first evenly divided into

m subsets. Then each combination of the m subsets is sent to one processor core. There-

fore, the total number of processor cores (p) needed is p = m(m+1)/2. For illustration,

we define n = N/m. Among the p cores, there are m cores only receiving one subset

to make a self-subset pairing operations to pair the SNPs among one subset. In these

processors, each of them computes n(n + 1)/2 pairs. For the rest p −m cores, each of

them receives two different subsets and conducts a cross-subset pairing operations where

the SNPs from one subset are paired with the ones in another subset. In these cores, it

is easy to see that n ∗ n pairs are evaluated in each core. Through their experimental

results, they predict the time for pairwise epistasis testing among 1,000,000 SNPs using

2048 cores would require about 20 hours to complete [47].

However, first, N/m may not be always an integer in practice, while they assume

that N/m is an integer in their paper. Second, based on the computation task assigned

to each core, we can see that the load is not well balanced between the m cores (the

ones conduct self-subset pairing) and the rest p−m cores (the ones conduct cross-subset

pairing). Third, they only introduce how to conduct the pairwise analysis. It is unclear

and more challenging to make a high order analysis. The last but not the least, the tool

is specially designed for a supercomputer system which is not easy for others to obtain

and thus, not easy to have the proposed solution works on other computation resources

such as a shared-nothing cluster.

Thong at el. [37][38] adopted the graphical processing units (GPUs) to exhaustively

test all the SNPs pairs. However, the authors did not provide the implementation details

on GPUs. Indeed, the GPU is more powerful than a single PC, since it has more comput-

ing units and large memory. However, it requires the researchers to fully understand the

GPU architecture to optimize the parallel computation. It is still unclear how to develop
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an optimized multi-threads program to process the pairs evaluation in parallel. Thong at

el. design the analysis on single GPU. However, we argue that this is still not scalable

since a single GPU may only have limited computing resources. A scalable technique

may need to be able to perform on multiple machines.

In our works [80][81], we have provided the solution to solve the pairwise epistasis

testing in genome-wide association study. However, it is more challenging to conduct a

high order analysis for any generic CSA analysis. In thesis, we mainly focus our work

where a flexible and general framework, COSAC, for any order of analysis are proposed

[77]. COSAC is a more general framework which is computationally practical, efficient,

scalable for CSA systems, and flexible to support any level of analysis with different

optimization techniques. In particular, COSAC incorporated numerous extensions: (a)

a general and flexible framework to support any level of analysis in CSA applications.

It is non-trivial to perform the combinatorial statistical analysis when analysis level in-

creases. The load balancing becomes more tricky in such a high order analysis scenario.

(b) a new practical scheme to support partial enumeration when a scientist has already

identified a set of key objects that (s)he would like to investigate further. (c) a novel

sharing optimization to speed up the analysis when the analysis level is bigger than 2.

(d) a new approach to reduce the memory utility in CSA applications.

2.3 Data Cube Analysis

Data Cubes play an important role in data warehousing and OLAP to precompute

the aggregate values for different dimensions. Given n dimensions, there are total 2n

different combinations of dimensions, which is called cuboids. Efficient computation of

data cubes has attracted a lot of research interests in the last two decades. For instance,

given four dimensions A, B, C and D, all the 16 cuboids can be represented as a cube
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Figure 2.2: A cube lattice with 4 dimensions A, B, C and D

lattice as shown in Figure 2.2. All the research works can be classified into the following

categories: (1) efficient computation of full or iceberg cubes: the computation of the

full cube needs to compute the aggregate of each group in a complete cube, while the

computation of iceberg cubes only needs to process the group which meet a certain

condition or threshold[7] [11] [63] [33] [95]. (2) selective view materialization: these

batch of researches aims to materialize only partial of the cubes instead of a complete

cube [58][32] [35] [70]. (3) computation of special data cubes: these researches include

computing condensed, quotient or dwarf cubes or compressed cubes by approximation

such as wavelet cubes, quasi-cubes etc [75] [72] [69][42] [41].

The first one, efficient computation of full or iceberg, is of great importance among

the aforementioned categories as it is the fundamental problem, and the new techniques

for this category may have a strong influence to all the other categories [85]. Therefore,

in this thesis, we focus on introducing the different computation approaches for materi-

alizing a full or iceberg cube in the literature. We classify the existing approaches into

three categories on efficient cube computations, bottom-up, top-down and hybrid cube

computations, each of which is introduced in the following sections.
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2.3.1 Top-down Cube Computation

Zhao et al. [95] proposed a top-down computation approach (we refer this approach

as MultiWay approach) which overlaps the computation of different group-bys based

on a Multi-Way Array. The approach includes three-step procedure. First, it scans the

table and loads it into an array. Second, it computes the cube on the resulting array.

Third, it dumps the resulting cubed array into the tables. The array is used as an internal

in-memory data structure to load the base cuboid and compute the cube. For a more

memory efficient processing, the array may be partitioned into different chunks, each of

which can be fit into memory.

all
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CD AD

ABC CDABCD DAB

BD

Figure 2.3: Top-Down Computation

To illustrate how this top-down approach computation works, we take the example

in Figure 2.3 as a running example. Given four dimensions A, B, C and D, ABCD is

considered to be the base cuboid. As shown in Figure 2.3, the results of computing

cuboid ABC can be used to process AB and similarly the results of AB can be used

to process A. This shared computation makes MultiWay approach efficient and allows

different cuboids to be computed simultaneously. Figure 2.3 shows the entire execution

plan based on the MultiWay approach. The advantages of this approach is that it uses

the array indexing to avoid tuple comparison and the array structure offers compression
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as well as indexing.

The MultiWay approach is not effective or feasible when the dimensionality is high

and the data is too sparse, since the array and the intermediate results will be too big

to fit into memory. Meanwhile, MultiWay cannot take advantage of the Apriori pruning

[8] during the iceberg cubing. For instance, if one cell A1B1C1 in ABC does not satisfy

the condition such as count(A1B1C1) > t, there is no guarantee that count(A1B1) < t,

since a cell A1B1 in AB is likely to contain more tuples than in the cell A1B1C1 in

ABC.

2.3.2 Bottom-up Cube Computation

Beyer et al. [11] proposed another bottom-up cube computation approach which

is referred as BUC computation. The idea of BUC is to combine the I/O efficiency

of processing multiple cuboids, but to take advantage of minimum support pruning like

Apriori. To achieve pruning, BUC processes the lattice from the bottom, the apex cuboid

and moving upward to the larger, less aggregated group-bys, as shown in Figure 2.4. For

instance, if the cell A1 does not satisfy the condition of count(A1) > t, we are sure

that the cell A1B1C1 does not satisfy the condition count(A1B1C1) > t either, since it

is likely that A1B1C1 contains less value than the cell A1. Therefore, the computation of

the up-level cuboids can be pruned by the low-level cuboid.

The majority of the run time in BUC is spent on partitioning the data. To facili-

tate efficient partitioning, the linear sorting method, CountingSort[67] is adopted. The

CountingSort, is fast in BUC, since it does not perform any key comparisons to find

boundaries and the counts computed during the sort can be reused to compute the group-

bys. However, partitioning and sorting incur the most costs in BUC’s cube computation.

This is because the recursive partitioning does not reduce the input size which incurs

high overhead for both partition and aggregation. Furthermore, BUC is sensitive in data
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Figure 2.4: Bottom-Up Computation

skew where the performance degrades as skew increases.

2.3.3 Hybrid Cube Computation

Dong at el. [85][84] proposed a Star-Cubing method, which is a hybrid cube compu-

tation to integrate the strengths of both bottom-up and top-down cube computations and

explores both multidimensional aggregation and a priori pruning. Star-cubing organizes

input tuples in a hyper-tree structure, called Star-Tree. The Star-Tree is an extension of

a H-Tree [33]. In H-Tree structure, each level is one dimension in the base cuboids. A

d-dimension tuple forms one path of d nodes from the root and the leaves with the same

value in the same level are linked together by a side-link. A head table is associated with

each H-Tree to keep track of each distinct value in all dimensions and the link to the first

node with that value in H-Tree.

While Star-Tree is used to represent individual cuboids in Star-Cubing, each level

represents a dimension and each node represents an attribute. In steading of maintain-

ing a side link and a head table, each node in the Star-tree has four fields including

the attribute value, aggregate value, pointer(s) to possible descendant(s), and pointer to

possible sibling. If the single dimensional aggregate on an attribute value p does not
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satisfy the iceberg condition, the node p is replaced by ∗ so that the tree can be further

compressed, since there is no need to distinguish such nodes for a Iceberg computation.
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Figure 2.5: Star-Cubing Computation

The Star-Cubing algorithm explores both the top-down and bottom-up models. On

the global computation order, it is similar to the top-down order as shown in Figure 2.3.

However, it adopts the bottom-up model for each sub-partition tree by the shared dimen-

sions. Note that the shared dimensions are defined according to the common dimensions

shared in those particular sub-trees. For instance, all the cuboids in the leftmost sub-tree

of the root include dimensions ABC, all those in the second sub-tree include dimensions

BC and so on. Figure 2.5 shows the extended lattice with the spanning tree marked with

the shared dimensions. For instance, BCD/D means cuboid BCD has shared dimension

D, CDA/DA means cuboid CDA has shared dimensions DA, and so on. Since the shared

dimensions are identified early in the tree expansion, the shared dimension can be com-

puted early to share the computation. Therefore, for instance, AD extending from CDA

can be pruned since AD has already been computed in CDA/AD. Given the shared di-

mensions, it is easy to see that, if the measure of an iceberg cube is anti-monotonic and

also the aggregate value of the shared dimensions does not satisfy the condition, all the

cells extended from these shared dimensions cannot satisfy the iceberg condition either.
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The Star-Cubing has been evaluated to be more efficient than MultiWay and BUC.

However, all the aforementioned cubing methods are designed for a centralized system,

thus are not feasible for a parallel processing.

As the data size increases, a significant amount of parallel data cube research has

been performed. In the following section, we review several important methods in the

literature.

2.3.4 Parallel Array-based Data Cube Computation

Goil and Choudhary proposed one approach to parallelize the data cube computation

in the MOLAP (Multidimensional OLAP) environment, based on the data organized

in array-based structures [26] [27] [28]. In their approach, a data partitioning model

was chosen to parallelize the data cube workload. Intuitively, they distribute each view

to multiple processing units so that every processing unit computes a portion of every

group-by, since it is easy to partition the array-based structures across nodes.

Specifically, in [26] [27] [28], the data is globally sorted and partitioned based on a

given dimension A such that the data set is split into r partitions, P1, P2... Pr each of

which is for one processing unit. Meanwhile, the partitioning guarantees that the value

of A in any tuple of Pi is locally sorted and smaller or equal to the one in any tuple of

partition Pj where 16i6j6r. Note that a single value of A may straddle partitions Pi

and Pi+1. The partial results are obtained on distributed views and may eventually be

merged with the partial results on other nodes. For instance, when data is partitioned on

the dimension A, then all the cuboids with A as their first dimension can be processed

almost independently. This is because there is almost one set of contiguous tuples with

the same value of A which can be found on different processors. For the cuboids not

containing A, there is a need to merge the partial results in each node. This can be done

for example through resorting and partitioning the data according to another dimension
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say B, where all those remaining cuboids with B as the first dimension can be processed

independently. The process is repeated d times for each distinct dimension.

This technique can reduce the re-partitioning cost. However, the total amount of data

redistribution network traffic can still be quite large. Furthermore, for large data, the

main memory may not be large enough to concurrently house all of the necessary arrays.

Thus, arrays must be carefully partitioned and controlled. Given the complexity of this

approach and the overhead incurred, it is unclear how effective this method is likely to

be in terms of parallel speedup.

2.3.5 Parallel Hash-based Data Cube Computation

Lu at el. [46] present a parallel data cube implementation for the high-end multi-

computer, Fujitsu AP3000. This work uses hashing for aggregation of common records,

rather than the aforementioned sorting model. Here, the dimensions of each record are

concatenated to form a hash key which is used to identify a unique aggregation bucket. In

each aggregation bucket, the dimensions with the same value are added together. Mean-

while, if collisions occur such as two or more hash keys pointing to the same bucket,

collision resolution must be employed. Hashing for data cube computation was first

proposed in conjunction with the PipeHash [66]. This technique is attractive since it is

not only relatively simple to implement but also bounded by O(n) which outperforms

the sort-based methods that typically rely on θ(nlogn) sorting algorithms. Counter-

intuitively, in [66], the experimental results demonstrate that PipeSort has superiority

than the PipeHash. The reason of this is because that hashing costs cannot be shared

amongst child group-bys since the dimension combinations for different views are com-

pletely unique. Moreover, it is significant to choose the “constants” of the hashing with

such a large number of keys. As a consequence, these two factors make the hash-based

cubing algorithm slower than expected computation time.
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Under this scheme, the algorithm parallelizes the computation by either (1) produc-

ing individual and partitioned hash tables by multiple processors or (2) computing groups

of hash tables on individual nodes. To optimize the computation, a single common par-

ent is used to produce all hash tables during a given iteration which means a computation

round limited by the available main memory, where the group of available cuboids was

chosen from a view list sorted in terms of the estimated size. The experimental results

demonstrate some performance improvement on one to five processors, but no advan-

tage beyond this point. The potential of this approach is limited by the failure to exploit

smaller intermediate group-bys and the overhead of independently hashing each cuboid.

Muto and Kitsuregawa propose another more efficient parallelization technique that

used a minimum cost spanning tree for hash-based cube computation [53]. In particular,

their technique is to partition the individual views on a given dimension (similar to Goil

and Choudhary) and then independently compute child view partitions using hash tables

constructed from the smallest available parent cuboid. They also proposed the approach

to balance the work load through dynamically migrating partitions from busy processors

to idle ones. However, there is no physical implementation done by the authors where

only simulated results are given. Furthermore, they assume that all the communication

would be free since it could be completely overlapped with computation is unlikely to

be borne out in practice due to the interdependencies between cuboids.

2.3.6 Parallel Top-down and Bottom-up Cube Computation

Ng at el. provide four separate algorithms designed for fully distributed PC-based

clusters and large, sparse data cubes [57]. Specifically, the first two techniques are pro-

posed based upon the bottom-up design and another two are based on the top-down

design. Brief reviews are provided as follows:

• RP (Replicated Parallel BUC): The first technique constructs the cube from the
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coarse granularity cuboids to fine granularity cuboids. It takes the lattice and

carves it into d sub-trees where each sub-tree contains a set of cuboids contain-

ing the same attribute. For instance, some views contain attribute A, some contain

attributed B and so on. The algorithm distributes the unevenly sized sub-trees

across the network in a round robin fashion. Of course, if more than d processes

exist, the extras remain idle during the computation. Not surprisingly, this leads

very poor performance because of the coarseness of the partitioning.

• BPP (Breadth First Writing, Partitioned Parallel BUC): BPP is to partition the

data across all processors. In order to avoid the excessive communication cost,

the entire fact table is replicated into d distributed copies each of which is for

one dimension. Unfortunately, the performance and load balancing results are

only marginally better than RP. The main reason is because the costs associated

with computing partitions of equivalent size vary widely due to the data skew and

clustering patterns in the data set.

• ASL (Affinity SkipList): ASL is designed to decompose the lattice into its 2d

individual components and distribute them one by one to the best processors. Here,

the best processor is the one associated with the cuboids which has been processed

with the common attributes. Note that for this technique and the one below, a

dynamic scheduler is adopted where a master scheduler dictates which individual

view or a set of views are assigned to given processors at runtime.

• PT (Partitioned Tree): PT recursively divides the lattice into subtrees which is

partitioned based on a particular attribute. And then each sub-tree is assigned to an

available node where the BUC algorithm is actually computed further. Similarly,

to exploit computation sharing, the scheduler tries to reuse the data which has

already processed on the node with some common attributes. The experimental
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results demonstrate that the finer granularity scheduling of the ASL and PT pro-

vides a better load balancing and further gains a better overall performance. When

the cluster has less than eight processors, the techniques gain a good speedup.

However, the performance declines quickly after this point. This is because the

scheduling used by these algorithms cannot capture the global cost information

of the complete lattice. As a consequence, the cost reductions reduces when the

workload is highly distributed since the computation of the localized view subsets

is poorly coordinated.

However, all of these cubing algorithms are only developed for a cluster with a small

number of machines, thus are no longer applicable under the MR framework because

they are not able to leverage the full parallel power provided by MR [54].

2.3.7 Cube Computation under MapReduce

Several research works have been conducted on performing the cube computation

using the MR framework. Sergey et al. [68] and You et al. [88] provided a parallel al-

gorithm for calculating the cell closure in a closed cube computation which requires the

measures to be algebraic using the MR framework. Nandi et al. [54] [55] developed a

scheme to handle special holistic measures, when one reducer gets the “hot spot” group

with a large number of tuples during the cube computation. In addition, Abello et al. [6]

studied three different approaches to retrieve data cubes(full source scan, indexed ran-

dom access and index filtered scan) from BigTable by means of MR and the definition

of criteria to choose among them. However, it is still unclear how to efficiently materi-

alize the views with a generic algorithm which can balance the load well and optimize

the computation for different measures. Furthermore, none of existing works provided

any solution for view maintenance when new data is inserted to update the views under

the MR framework. A naive solution for view maintenance mechanism can result in
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significant overhead.

Even though there are some research efforts on incremental computation in MR,

none of them provided explicit support and techniques for data cube analysis under the

OLAP and data warehousing semantics. For instance, existing works [12][36][43] have

studied some techniques for incremental computations for single operators in the MR

framework. HaLoop [14] is designed to support iterative operations through a similar

caching mechanism. Restore [23] is developed to keep the intermediate results (either

the output of one MR job or the data operated within one job) to the DFS in a work flow

and reuse them in the future. However, none of these techniques can be directly used in

data cube analysis for efficient view maintenance.

Therefore, this calls for a new generic cubing approach and efficient cube main-

tenance techniques towards a large amount of data which can incorporate the unique

feature of the MR framework.

2.4 Graph Cube Analysis

2.4.1 Graph Summarization

In graph OLAP, the aggregate graph can be considered as a summarization of the

underlying graph in terms of a particular perspective and granularity. From this sense,

the graph OLAP shares the similar terminology as providing a generation of summarizes

of the graph as much research has devoted to. These techniques include the graph sim-

plification, compression and summarization. For instance, [9] [56] study the problem

of simplifying the graph by preserving its skeleton according to topological features.

However, in these works, the attributes on vertices and edges become unimportant. In

its abstract form, they are mainly working on the graph where the vertex and edge do

not contain any attributes. [62] [13] aim to compress the large graphs, especially Web
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graphs. However, these works only focus on how the Web information can be stored and

thus facilitate an efficient computation such as pageRank, which do not give any insight

of into the graph structures.

Tian et al. and Zhang et al. proposed approaches to summarize the large graphs

[73][89]. Two operations are provided including the SNAP (Summarization by Group-

ing Nodes on Attributes and Pairwise Relationships) operation and a less restrictive k-

SNAP operation. In many applications, graphs are so large that it is almost impossible

to understand the information encoded in them by mere visual inspection. Therefore,

graph summarization becomes an effective way to help users extract and understand the

underlying information.

The SNAP operation is to summarize the input graph by grouping nodes based on

user-selected node attributes and relationships which, as the author mentioned, is similar

to OLAP-style aggregations [73][89]. The k-SNAP operation allows users to provide

the k value to cluster the graph into k subgraphs [73][89]. It achieves the drill-gown or

roll-up operation by increasing and decreasing k. However, the graph OLAP performs

the aggregation and OLAP along the dimensions defined upon the graphs.

2.4.2 Graph OLAP

Much research work [17][18][61] has been devoted to put graphs in a multi-dimensio-

nal and multi-level OLAP framework. In [17][18], graph OLAP is classified into two sub

cases: informational OLAP and topological OLAP , where the informational OLAP has

been mainly discussed. Intuitively, the informational OLAP works on a set of snapshot

graphs. For instance, in academia, the publications in each year can be considered as

a snapshot graph which consists of authors and papers and their relationships etc. The

informational OLAP is to aggregate the publication networks in each year into an ag-

gregate network. Note that the aggregate network contains the same number of objects
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as in each snapshot. In other words, it is like overlaying multiple pieces of information,

remaining the objects whose interactions are being looked at.

In contrast to informational OLAP, the topological OLAP operates on nodes and

edges within an individual graph [61]. It groups the objects into a super object based on

specific dimensions. For instance, in the publication network, the authors from the same

institution may be grouped together to generalized the network. Therefore, the aggregate

network contains less number of objects. The authors have introduced the concepts of

conducting the OLAP operations like roll-up, drill-down and slice/dice based on different

graph OLAP sub cases.

The existing works provided a high level discussion of building a graph OLAP frame-

work and graph OLAP operations on graphs. However, no specific graph cube models

and cube materialization algorithms are provided.

2.4.3 Graph Cube on Multidimensional Networks

Subsequently, Zhao et al. proposed a Graph Cube model for multidimensional net-

works [94]. The Graph Cube model is designed on the networks where each vertex con-

tains a set of multidimensional attributes but the edges are identical without attaching

any attributes.

Given n attributes attached with each vertex, graph cube generates 2n cuboids each of

which is an aggregate graph based on specific dimensional attributes. Besides the cuboid

query, the authors also provide a new set of queries which are defined as crossboid query

which crosses multiple multidimensional spaces of the network.

However, the graph cube model is highly restricted to the multidimensional networks

where the edge does not contain any attributes. In the real world, a lot of information

networks are attributed graphs where both the vertex and edge contain attributes. Build-

ing a data warehousing model based on the attributed graphs are more challenging and
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important.

On the other hand, normally, the information network are large where the algorithm

designed on the single machine is not able to provide acceptable performance. However,

non of the existing works have provided any parallel and distributed solutions on graph

OLAP.

Therefore, we are motivated to design a new and more general graph cube model

based on the attributed graphs, and develop scalable, effective and efficient parallel

and distributed graph OLAP techniques in order to meet the requirements of large-scale

graphs in real applications.



CHAPTER 3

COMBINATORIAL STATISTICAL

ANALYSIS

3.1 Overview

In this chapter, we address the problem of building parallel solutions for one compu-

tation extensive analysis, combinatorial statistical analysis (CSA). CSA has been widely

used to find the significant correlations that are typically measured by statistical methods

among different objects. Intuitively, CSA evaluates the significance of the associations

between a combination of objects by adopting the statistical methods, such as χ2 test.

For illustration, we address the problem by taking the epistasis discovery as an example,

where the CSA has been widely adopted. Although we have chosen epistasis discov-

ery for demonstration, our solution is not specific to just this domain, and should apply

broadly to all the CSA applications.

In this work, we propose a framework for efficient COmbinatorial Statistical Analy-

31
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sis systems MapReduce(MR)-based Cloud platforms (COSAC). COSAC addresses the

CSA problem in two phases: 1) Distribution Phase: We develop and compare different

task distribution schemes to enumerate the large number of combinations to the process-

ing units in terms of balancing the load. Given a total number of n objects, in order

to find the associations among any m objects, there are total C(n,m) combinations to

evaluate. The scheme partitions the enumerated combinations into n-m+1 sets, each

with a different number of combinations. These sets of tasks are then distributed to the

processing units to balance the number of combinations across the units. 2) Statistical

Analysis Phase: Each node has to evaluate the statistical significance of the combina-

tions allocated to it. We develop an optimization to salvage the common computations

between the various combinations and provide a technique called Integer Representation

and Bitmap Indexing (IRBI) to speed up the statistical testing. Such two phases have

solved the two key challenges in CSA including balancing the load to each processing

units in a distributed environment and conducting an efficient statistics testing.

The COSAC framework includes three layers. The first layer is the index builder

layer which is used to preprocess the raw data to facilitate efficient data processing.

The second one is the analysis layers for parallel combination enumeration and sta-

tistical analysis. Two analysis schemes have been proposed, Exhaustive Testing and

Semi-Exhaustive Testing. The Exhaustive Testing supports exhaustive evaluation of the

statistics significance of all the combinations without losing any significant result. The

Semi-Exhaustive can be used to analyze part of the combinations to prune the compu-

tation spaces. The third layer is the top-k retrieval layer that is designed to help users

to further retrieve the top-k most significant results from the large volume of analysis

results data.

Based on COSAC, we have designed and compared various flexible object combina-

tion enumeration schemes with regard to load balancing and scalability for large scale
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of datasets using the MR paradigm. The enumeration of combinatorial objects takes an

important role in computer science and engineering. We also propose the techniques to

use the integers to represent the long string raw data and adopt Bitmap index to index

each object on the samples. Thus, we can conduct the analysis only based on the rep-

resentation data and index data. Both of these two optimizations are memory-efficient,

CPU-efficient and contribute the efficient statistical testing. Furthermore, we study how

to salvage the computation for a sharing optimization with significant performance sav-

ings, instead of conducting the testing for each combination independently. Extensive

experimental evaluations have been conducted and the results indicate that our frame-

work is computationally scalable, efficient and practical.

The rest of this chapter is organized as follows. In the next section, we provide some

preliminaries about epistasis discovery. In section 3.3, we provide the main architecture

of our proposed framework. Section 3.4 introduces our approach for preprocessing the

raw data and how to make efficient statistical testings using our transformed data within

one combination. Section 3.5 presents the task distribution models. In Section 3.6, we

describe the strategy of combination enumeration with sharing optimization for the given

task in each processing unit. Section 3.7 reports the experimental results. Finally, we

summarize this work in Section 3.8.

3.2 Preliminaries

In this section, we first review some preliminaries on epistasis discovery.

In genome-wide association study (GWAS), there are two types of data - genotype

data that codes the genetic information of each individual like SNPs and phenotype data

that measures the quantitative traits for an individual such as diseases. Epistasis dis-

covery aims at discovering significant correlation between the SNPs and phenotypes
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(diseases) and is becoming increasingly important and challenging in GWAS. It plays

an important role in addressing the complexity of many common human diseases (e.g.,

heart attack, breast cancer and diabetes). Thus, finding these interactions is a first step

towards understanding the cause of these diseases.

Figure 3.1 shows an example of the kind of raw dataset that we are dealing with

in epistasis discovering. Each row contains the individual sample information with the

sample id, the genotypes of multiple objects (SNPs) and phenotype (disease type). The

first and last columns are the sample id and phenotype. The rest of the columns are the

genotypes of each object. In this example, we have 6 objects (SNPs) and 8 individual

samples. The data are the genome information from two kinds of patients, each of which

has either breast cancer or heart attack. Each object is marked as a bi-allelic value (i.e.

a locus has allele A and T) and has three genotype candidates, AA, AT and TT. Thus,

given n objects and L individual samples, the data can be considered as a table with n+2

columns and L rows.

The goal of epistasis discovery research is to identify a set of most significant epistatic

interactions (i.e., combinations of multiple objects (SNPs)) that correlate to the pheno-

types. This means enumerating all combinations of a particular analysis level, and then

identifying those that are significant. Statistics methods have been used as powerful mea-

sure tools for evaluating the significance of their correlation. Most of the widely used

Figure 3.1: An example of the raw data with 8 samples and 6 objects.
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Table 3.1: Contingency Table
0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2

Heart Attack # # # # # # # # #
Breast Cancer # # # # # # # # #

statistical methods measure the significance of the interrelation based on the contingency

table, e.g. χ2-test, Likelihood Ratio, Normalized Mutual Information, Uncertainty co-

efficient, Odds Ratio and Armitage Trend Test [30]. The contingency table is used to

record and analyze the relation between two or more categorical variables and display

the frequency distribution of the variables.

In this work, we adopt the χ2-test[10], which is widely used, to illustrate how the

significance of the correlation of a combination of SNPs can be computed from the

information stored in the contingency table.

Take 2-level epistatic interactions as an example. Let n0(j,k) denote the number of

samples in the “Heart Attack” group whose first locus’s genotype code is ‘j’ and second

locus’s genotype code is ‘k’, where j and k take on values 0, 1 or 2 ( corresponding to

AT, AT or TT in the raw data). Likewise, we can denote n1(j,k) for the “Breast Cancer”

group. For 2-level epistasis discovery, with these two groups of information, we can

derive a 2×9 contingency table - as each object (categorical variable) has 3 possible

candidate values, the contingency table has 9 (3*3) columns; furthermore, as there are

two groups of patients, the contingency table has 2 rows as shown in table 3.1. We can

calculate the χ2-test value of this epistatic interaction from this contingency table using

the following formula:

χ2 =
1∑

i=0

2∑
j=0

2∑
k=0

(ni(j,k) − nin(j,k)/n)
2

nin(j,k)/n

where n =
∑1

i=0

∑2
j=0

∑2
k=0 ni(j,k), ni =

∑2
j=0

∑2
k=0 ni(j,k), and nj,k =

∑1
i=0 ni(j,k).

The null hypothesis behind the χ2-test is that there is no association between two-
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Figure 3.2: COSAC framework architecture

locus epistatic interaction and phenotype. As the χ2-test statistics follows the χ2 distri-

bution, thus the corresponding significance level can be obtained after Bonferroni correc-

tion. The lower the value is, the more confident we are to reject the null hypothesis. The

resultant p-value for the 2-level epistatic interaction can be obtained as P (x>C) where C

is the χ2-test value, and P(x) is the probability at value x under the χ2 distribution. The

smaller the p-value is, the more significant the combinations is. The above expressions

can be easily generalized for any k-level interaction. We shall omit this discussion here.

It suffices to mention that, in general, for a k-level epistatic discovery, we will have a

2× 3k contingency table.

3.3 The COSAC Framework

Figure 3.2 shows the architecture of our proposed COSAC framework. It has an index

builder (the bottom part), a parallel enumeration and analysis component (the middle

part) and a top K most significant result retrieval component (the top part).

Index Builder: The Index Builder is used to preprocess the raw data to facilitate

efficient data processing. On the one hand, we propose a technique to use simple integers

to represent the long data values (e.g. strings) to reduce the data size. On the other hand,

we build the Bitmap index [15] for each object to speed up the statistical testing which
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is similar to the mechanisms we adopted in [81] where bit strings are used. The resultant

data representation can both speed up statistics testings and minimize the data size and

memory utilization.

Parallel Enumeration and Analysis: The COSAC framework supports parallel com-

bination enumeration and statistics analysis on the MR framework. As we shall see in

our experiments, COSAC is scalable, flexible and efficient. Moreover, it inherits the fault

tolerance feature of MR infrastructure. COSAC consists of two key components: a global

load distribution scheme that distributes combination enumeration tasks across the pro-

cessing nodes, and a local processing scheme that optimizes the statistical analysis of

the combinations assigned at each node. COSAC supports both exhaustive and semi-

exhaustive enumeration. The Exhaustive Testing can be used to exhaustively analyze the

statistics significance of all the combinations of objects without losing any significant

result. The Semi-Exhaustive Testing supports users to analyze part of the combinations

to prune the computation spaces. For example, it is not uncommon for scientists to pre-

determine a subset of SNPs that they are interested in, and then focus their study on these

subsets alone or against a superset of SNPs. In this case, there is no need to analyze the

significance of all the combinations.

Top-k Retrieval: In our system, users can choose to output all the analysis results or

the ones above some threshold set by users. As the computation is expensive in these

systems, users may want to do one time computation and multiple observations on it. We

provide an efficient top-k retrieval technique to help users to further retrieve the top-k

most significant results from the large volume of analysis result data.
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Figure 3.3: Data reformation and contingency table construction

3.4 Efficient Statistical Testing

To enumerate the combination of multiple objects, we should collect the information

for single object first. A naive approach, as used in [80], is to preprocess the raw data

to each object according to the genotype and phenotype with a sample id list. Figure

3.3 (a1) displays the data format after preprocessing. The data in the first column is

the object id. The second and the third columns are the phenotype and genotype in this

object. The last list is used to store the sample ids whose related object has the same

phenotype and genotype as shown in the second and third columns. Therefore, all the

rows with the same object id in Figure 3.3 (a1) belong to a single object.

However, the above preprocessing technique is not only inefficient with regard to

statistical testing, it is also not memory efficient. Therefore, we propose a new technique,

called IRBI (Integer Representation and Bitmap Indexing), which is both CPU-efficient

with regard to statistical testing, and storage and memory efficient.

Instead of operating on the original raw data, the IRBI method uses simple integers
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to represent the long string data values in the raw data. Furthermore, IRBI builds the

Bitmap index for each object to facilitate CPU-efficient statistical testing. Considering

the example in Figure 3.1, we use 0 to represent the phenotype value “Heart Attacks” and

1 to “Breast Cancer”. For the genotype data, AA, AT and TT are represented as 0, 1 and

2 respectively. It is important to note that the number of objects is large in these systems

and a lot of terms use long string values, such as “Pineoblastoma and supratentorial

primitive neuroectodermal tumors”. Our adopted IRBI method can largely reduce the

data size.

To collect single object information, we build a Bitmap index for each object (each

column on the table) based on the phenotype and genotype. Each bit in the Bitmap index

corresponds to a sample id. For one given phenotype and genotype, the corresponding

positions in the Bitmap index are set to 1 if the samples have the same phenotype and

genotype as the given ones. Otherwise, they are set to 0. Figure 3.3 (b1) shows the

index data format under IRBI. For example, the first five rows are the index data for the

first object. As the phenotype and genotype of the sample ids 2, 6 and 8 are 0 and 0,

the index data is “10100010” as shown in the first row in the new formatted data. The

corresponding positions for 2, 6 and 8 are therefore 1 in the index data “10100010”.

Thus, the IRBI approach reduces the data sizes and memory utility.

Now, recall that in the statistical analysis, the contingency table has to be collected

for each combination.

To construct the contingency table, the first step is to calculate the ni(j,k) for each grid

in the table. If we want to calculate the ni(j,k) for the pair of object x and object y, we need

the information from ⟨x, i, j, list1(sampleID)⟩ in object x and ⟨y, i, k, list2(sampleID)⟩

in object y. We can derive ni(j,k) from the intersection between the two sample id lists.

Under the naive scheme (without Bitmaps) as shown in Figure 3.3 (a2), this can be easily

done using a hashing method - first, we build a hash table for the sample ids in the first
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list; second, we use the sample ids in the second list to probe the hash table for matching

sample ids. For example, to get n0(1,0) for the pair of object 0 and object 1, we inter-

sect the two sample lists as shown in Figure 3.3 (a2). However, our preliminary study

suggests that using such an approach to collect the contingency table is computationally

expensive.

In our COSAC framework, our solution employs the Bitmap index. As mentioned

above, instead of storing the sample ids in the list, we build the Bitmap index for each

object. Figure 3.3 (b1) is the Bitmap index data for the raw data in Figure 3.1. In our

framework, all the operations are based on the index data. With the index data, if we

want to calculate the ni(j,k) for the pair of object x and object y, we need the information

from ⟨x, i, j, index⟩ in object x and ⟨y, i, k, index⟩ in object y. We can conduct an AND

operation on the two index data to find the intersection between them more efficiently.

We can easily get the number of intersection samples from counting the 1’s bits from

the AND result. Figure 3.3 (b2) depicts how n0(1,0) for the pair of object 0 and object

1 can be calculated using the Bitmap index. Thus, the IRBI approach is much more

CPU-efficient than the naive scheme to collect the data (known as contingency table)

during statistical testing. When we collect the contingency table for more than 2 objects,

similar operations can be conducted. For example, to combine 3 objects, we can combine

2 objects first and then combine the result with the third object.

Now, we introduce how to efficiently build the Bitmap index under MR framework.

In our COSAC framework, the index building is conducted in one MR job where the

map phase parses the objects from each sample and the reduce phase builds the index

for each object. Take the data in Figure 3.1 as an example, the map phase reads the raw

data line by line, each of which is an individual sample data. The map function parses

the different objects in each line and emits (key,value) pairs (each for one object) which

includes all other necessary information for each object like sample id and phenotype
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data. Our own partitioning function partitions the pairs based on the object and the MR

library shuffles all the (key,value) pairs belonging to the same object into a designated

reducer. Once the reduce function gets all the information for one object, it builds

the index based on the sample ids related to this object, and then writes the index data

into the HDFS.

One optimization we have adopted is to combine the small index data into a big

file. From our observation, if we store the index data for each object in a file, there

are too many small files. During further processing, the MR library assigns each small

file to one Mapper which brings too much overhead for launching a large number of

mappers. Thus, we provide one optimization technique to combine all the index data

emitted from one reducer into one big file. This will highly reduce the overhead

for further processing on the index data. Note that the integer representation is also

conducted in the map phase to build a one to one mapping between the raw data to the

integer values.

For CSA applications, the Bitmap index is an effective structure. First, the operations

are typically read-mostly. There are very few update operations. So there is no need to

change the Bitmap index frequently. Second, each object has few candidates. In other

words, each column has a small domain (i.e., there are few distinct values). Thus, the

Bitmap index will not be too sparse. Last, the number of samples (rows) is small which

guarantees that the Bitmap index is not large. We note that index building is an efficient,

cheap and one-time fixed pre-processing step in our framework.

Discussion: In a broader context, our proposed technique above can be widely used

in many different applications besides the CSA applications . On one hand, the integer

representation approach can be used in many computation intensive analysis applica-

tions to reduce the data size and results in a more memory efficient computation. On

the other hand, the proposed Bitmap index approach can be used in the systems which
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Table 3.2: Frequently Used Notations in COSAC
Symbol Description

n the number of total objects
s the number of seed objects

n-s the number of non-seed objects
m the analysis level
r the number of reducers(processing units)

use statistics methods as the evaluation tool. It is expensive to conduct a large number

of statistical testings, while the technique we adopted can be a promising solution for

efficient statistical testings.

3.5 Parallel Distribution Models

In this section, we introduce how our framework can enumerate the combinations

precisely and balance the load well based on the MR framework for large scale of ob-

jects. We propose promising parallel distribution models for both Exhaustive Testing and

Semi-Exhaustive Testing with good load balancing. All the frequently used notations are

provided in table 3.1.

3.5.1 Exhaustive Testing

Exhaustive testing scheme is used to exhaustively enumerate all the combinations of

objects and analyze the statistical significance of each combination. The formal defini-

tion of Exhaustive Testing is given as follows.

Definition 3.1. (Exhaustive Testing) Given n objects for m-level analysis, exhaustive

testing enumerates and evaluates the significance of all the combinations of size m.

Therefore, the total number of combinations that should be enumerated and evaluated is

C(n,m) = n!
m!(n−m)!

.
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Now we are ready to introduce how the COSAC framework supports the Exhaustive

Testing scheme well. Numbering the n objects from 1 to n, the total C(n,m) combina-

tions can be divided into n-m+1 sets each of which involves all the combinations starting

with a fixed object i. For instance, the combinations of C(5,3) are: {123, 124, 125, 134,

135, 145, 234, 235, 245, 345}. These combinations can be divided into three sets: Set1

starts with fixed object 1 {123, 124, 125, 134, 135, 145}, Set2 starts with fixed object 2

{234, 235, 245} and Set3 starts with fixed object 3 {345}.

To enumerate these n-m+1 sets of combinations correctly, our proposed schemes

try to distribute the tasks among multiple processing units with a good load balancing.

Note that the number of combinations in Seti is C(n-i, m-1). Therefore, the number of

combinations from Set1 to Setn−m+1 decreases.

To distribute the n-m+1 sets into r processing units, a very naive approach is to

simply distribute approximately equal number of rows to each reducer. The middle

of Figure 3.4 depicts all the n-m+1 sets of tasks where the amount of computation tasks

increase as the set number decreases. In particular, the first n−m+1
r

sets are assigned to

the first reducer, the next n−m+1
r

sets are assigned to the second reducer and so

on. However, such a naive solution will result in load-imbalance as some reducers

are more heavily loaded than others, e.g., the reducer assigned the first n−m+1
r

rows

is likely to be a bottleneck. Hence, in this work, we study three alternative different

distribution models including the Greedy, Bestfit and Round Robin. We introduce the

distribution strategy of each model as follows:

Greedy Model. Ideally, each reducer should process C(n,m)
r

computations. There-

fore, starting from the first row, we seek to allocate consecutive sets to a reducer such

that the total number of computation tasks for these rows is closest to C(n,m)
r

. The RHS

of Figure 3.4 show that, under the greedy scheme, each reducer may be assigned

different number of sets to process. For instance, Set1 and Set2 are assigned to the
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Figure 3.4: COSAC: Parallel distribution models for Exhaustive Testing

first reducer, while Set3 Set3 and Set5 are assigned to the second reducer and so on.

However, since the ith set has a large number of computation tasks when i is small, our

experimental results indicate that this strategy may get a better balanced load when m is

small, say 2. However, when m increases, it is hard to balance the load.

Bestfit Model: In Bestfit model, the sets are assigned to each processing unit from

the first to the last set. Instead of assigning consecutive sets to a unit, we seek to allocate

the next available set to the unit which has the smallest amount of task. For instance, as

shown on the RHS of Figure 3.4 the first 3 sets (from Set1 to Set3) are allocated to each

of the 3 reducers one by one. And Set4 will be assigned to one of the 3 reducers which

has the smallest number of enumerating combinations (the 3rd unit in this example),

Set5 will be assigned to node 2, and so on. Note that the number of combinations in the

assigning sets is in a decreasing order which means the task set is becoming smaller and

smaller. This guarantees that it is easier to achieve the ideal load balancing. From our

experimental results, we will see that the Bestfit model has excellent load balancing and

outperforms the Greedy model in deeper analysis cases.

In this distribution model, it not only provides a precise enumeration mechanism but
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also balances the load well across the nodes in a parallel environment. It is also worthy to

note that the number of objects we are facing is always large, mostly tens of thousands,

even millions. Using a very large number of machines to process a very small number of

objects is a very rare case in reality. This further provides the guarantee of our proposed

Bestfit model to achieve good load balancing in practice.

Round Robin Model: Round Robin model is another seemingly better load balanc-

ing model which assigns the combinations in a round robin fashion to each reducer.

Recall the example in the Figure 3.4, given C(n,m) combinations and r processing re-

ducers, there are two variants of round robin implementations. The first one assigns the

next available combination to the reducer with the smallest assigned load. We refer to

this implementation as RR I . The second one assigns the first ⌊C(n,m)
r

⌋ combinations to

the first reducer, the second ⌊C(n,m)
r

⌋ combinations to the second reducer and so forth.

And the unassigned C(n,m)%r combinations are assigned to any C(n,m)%r reducers.

We refer to this implementation as RR II .

In this distribution model, the load is better balanced because the difference between

each reducer is at most one combination. However, we do not think this will improve

the whole performance much as it needs to maintain much more meta information which

brings a lot of other overheads in the reducer. One of the main overheads is the

searching overhead at the reducer which has to store the meta information to identify

which objects should be combined together. More importantly, under the Bestfit scheme,

there are more opportunities to share results of partial computation, which we will further

elaborate in section 3.6. The small benefit of round robin via load balancing is less

than what we can benefit from the Bestfit model. More discussion and experimental

evaluation for Round Robin can be found in section 3.7.

Now we are ready to see how to perform this under the MR model where the pseudo

code is listed in Algorithm 3.1.
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Algorithm 3.1: Performing CSA in MR
Map Phase:1

Map Function: Input: < ∅, o Tuple >2

# o Tuple: partial information of one object, like each row in Fig. 3 (b1)3

o ID ⇐ getObjectID(o Tuple);4

v ⇐ getRestInfor(o Tuple);5

for each reducer i ID that needs the object under the distribution model do6

k ⇐ o ID.r ID;7

emit < k, v > ;8

Shuffle Phase:9

Partitioning Function: Input: < k, v, r >10

Return getReducerID(k);11

Reduce Phase:12

Reduce Function: Input < k, (v1, v2, ..., vm) >13

obj ⇐ Assemble the value into one complete object;14

Put obj into a list;15

Close Function:16

Call task distributor and start enumeration; # See Algorithm 3.417

Map Phase: Each mapper reads a chunk of input data (the index and representation

data) by lines. Note that each line is the partial information for one object as shown in

Figure 3.3 (b1). For each line, it then determines the reducers which this partial

object information should be shuffled to according to the distribution model. Note that

each object may be shuffled to multiple reducers and each reducer only needs one

copy of the objects that it needs to process. However, MR only supports shuffling one

output (key,value) emitted from one mapper to one reducer.

We resolve this problem by replicating and emitting as many copies of an object

as required (Lines 6-8). For instance, if an object needs to be shuffled to r reducers,

we output r (key,value) pairs in the mapper. In addition, each such pair is “tagged”

with the corresponding reducer identifier, r ID to distinguish the reducer that the

pair should be shuffled to. Specifically, for each reducer which an object should be

shuffled to, we generate and emit a (key, value) pair where the key is set as “o ID.r ID”

where o ID is the object ID. The result of the information will be stored into the value
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(Line 4,5).

Shuffle Phase: We implement our own partitioning function to partition the inter-

mediate results ((key, value) pairs) according to the r ID in the key (Lines 10-11).

Reduce Phase: The MR library sorts and merges the intermediate results based on

the key. All the (key, value) pairs with the same key will be grouped together. Therefore,

all the tuples from the same object will be grouped together and passed to the reduce

function in one iteration (Line 13). The reduce function can get one complete object

information in each iteration (Line 14). In addition, because the (key, value) pairs in

each reducer have the same r ID, all the pairs are sorted by the object id. The objects are

supplied to the reduce function one by one in order and stored in a list (Line 15). Note

that the list is also in a sorted order with regard to the object id. In the reduce function,

all the objects are received and stored in a list. The Close function is called after the

reduce function. In the Close function, we develop a task distributor which is

used to to get the computation tasks that it needs to process under different distribution

models. For instance, the reducer will get all the set ids which it needs to execute. After

getting the task, the reducers can do the enumeration and analysis in parallel (line

17). In section 3.6, we will introduce how COSAC can efficiently do the enumeration

and statistical testing.

3.5.2 Semi-Exhaustive Testing

While facing a large number of objects, users may want to reduce the computation

space to speed up the testing. For instance, users may only be interested in several

objects, which we shall refer to as seed objects in this thesis, and whether they have any

significant correlation with the other non-seed objects.

Now we formalize the pruning search requirement in data analysis systems.

Definition 3.2. (Semi-Exhaustive Testing) There are two kinds of objects including seed
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Figure 3.5: Combinations enumeration in Semi-Exhaustive Testing.

objects (the user interested objects) and non-seed objects (the rest objects). From the

seed and non-seed objects, we only enumerate and evaluate the significance of the com-

binations involving at least one seed object.

Under Semi-Exhaustive Testing scheme, all the combinations should be enumerated

are the ones including i seed objects and m-i non-seed objects where i is from 1 to m.

Therefore, the total number of combinations we should test is as follows:

C(s,1)*C(n-s,m-1)+C(s, 2)∗C(n−s,m−2)+......+C(s, i)∗C(n−s,m−i)+...+C(s,m−

1) ∗ C(n− s, 1)+C(s,m) ∗ C(n− s, 0)

where C(s,i) means the number of combinations of selecting i seed objects and C(n-

s,m-i) is the number of combinations of selecting m-i non-seed objects.

The enumeration task can be divided into m steps of enumerations where the ith

step enumerates all the combinations with i seed and m-i non-seed objects respectively.

For instance, assume that are 3 seed objects (1, 3, 4) and 4 non-seed objects (2, 5, 6,

7). Figure 3.5 lists all the computation task of enumerating the combinations in 3-level

analysis. In each step, the enumeration task can be conducted in two phases as follows.

• Phase 1: Get all the combinations with i objects from the seed objects. We refer

to these seed combinations as seed combs.
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• Phase 2: Use the seed combs to further combine with the non-seed objects.

In Figure 3.5, the left part under seed objects lists all the seed combs in each step

as mentioned in the first phase. The right part under the non-seed objects lists all the

non-seed combinations that the seed combs should further combined with as required in

the second phase. For demonstration, the enumeration task in each line is referred to as

one set and numbered from top to bottom as shown in the RHS of Figure 3.5.

Thus, there are
m∑
i=1

C(s, i) sets of tasks (7 in the example). In each step, we assign

a group id for each line according to an increasing numeric order for the seed combs.

For instance, in step 2, the group id of 13 is marked as 1, 14 and 34 are marked as 2 and

3. This generates a mapping between each group id and seed comb.

To distribute these tasks to multiple processing units, we propose a distribution model,

BestfitPru, which is in the same spirit of Bestfit model. In BestfitPru model, the
m∑
i=1

C(s, i) sets are assigned to different processing units based on the size of the set

in a decreasing order. The next available set is assigned to the processing unit which has

the smallest processing task. Note that when the set id increases, the number of combina-

tions in the set decreases. In other words, the BestfitPru model distributes the tasks from

the sets with a larger number of tasks to the ones with a smaller number of tasks. The

methodology after this distribution strategy is to achieve a better load balancing.From

the experimental results, we have observed that BestfitPru has balanced the load well.

Now we introduce how the BestfitPru model can be performed under the MR frame-

work. Since the pseudo code is similar to Algorithm 3.1, we shall omit it here.

Map Phase: For each object information, the emitter determines its object class

(seed or non-seed). Here, we shuffle each object information to all reducers. There-

fore, for each object, r (key,value) pairs are emitted and each of the pairs will be shuffled

to one reducer. Each pair is also “tagged” with the corresponding reducer identifier

to distinguish the reducer that the pair should be shuffled to. The key format is set as
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Algorithm 3.2: Semi-Exhaustive Testing task distributor
Input: Id of current reducer: curR ,
Number of seed objects: s,
Number of non seed objects: n-s,
Number of objects in each combination: m
for step id i:1 → m do1

numOfSets ⇐ C(s,i);2

for group gID:1 → numOfSets do3

minR ⇐ getMinRed(arrSummary);4

arrSummary[minR] ⇐ arrSummary[minR] + getComNum(m-i, n-s);5

if minR == curR then6

Get seed combination in terms of i and gID # See Algorithm 3.37

Start enumerating and evaluating the significance # See Algorithm 3.48

“r ID|o Class|o ID” where r ID is the identifier of which reducer this pair should be

shuffled to, o Class is the object class identifier and o ID is the object id. In our system,

we use 0 as the class identifier for the non-seed object and 1 for the seed object. And the

rest of the object information is stored in the value. We note that there are many ways

of setting the format of key and value. The reason using this format is because, under

this case, all the (key,value) pairs shuffled to the same reducer have the same r ID.

After sorting, all the non-seed objects will be supplied to the reduce function earlier than

the seed objects, as the o Class 0 for non-seed objects is smaller than 1 for seed objects.

Therefore, it is easy to parse and separate seed and non-seed objects in the reduce phase.

Shuffle Phase: Our own partitioning function partitions the intermediate (key, value)

pairs based on the r ID in the key.

Reduce Phase: In the reduce function, it gets all the each reducer can get all the

seed and non-seed objects. The objects are stored into two different lists each of which

for one object class. It is important to note that each reducer maintains these two

exactly same lists as well as their storage order in the list. In the Close function, each

reducer gets its own enumeration and analysis task from the task distributor.

Algorithm 3.2 outlines the main steps of how task distributor distributing the
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Figure 3.6: Converting the group id to the position combination

task to each reducer according to the BestfitPru model. The task distributor

sends out the enumeration task from step 1 to m. In the ith step, Algorithm 3.4 first

calculates the number of groups in this step, which is C(s,i). During task assignment,

the next unassigned group will be assigned to the reducer which currently has been

assigned the smallest number of computation task. Here, a data structure like an array

is chosen to store the tasks assigned to each reducer. The task group is added to the

reducer having the smallest computation task (Line 5). Meanwhile, if the smallest

reducer is the current reducer, the task distributor invokes the enumeration and

analysis task execution by passing the group id gID and step id i.

The reducer starts to enumerate and analyze the objects based on the given gID

and i. Recall that the enumeration task can be conducted in two phases where the first

one finds the seed comb corresponding to gID in step i and the second one uses this

seed comb to combine with the non-seed objects. In the latter of this section, we describe

the approach to get the seed comb through gID and i for the first phase. The second phase

will be introduced in section 3.6.
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Finding the seed comb is the same as finding the position of each seed object in the

seed comb in the list. The seed object position combination is referred as p comb. Since

the group id is assigned to seed combs according to the numeric order of seed and the

seeds are also sorted in the list, the relationship between group IDs and p comb remains

the same feature as the seed combs. When the p comb value increases, the group id

becomes larger.

Let us still take the data mentioned in Figure 3.5 as an example. The three seed

objects 1, 3 and 4 are stored in a list where their positions are 1, 2 and 3. For instance, in

step 2, there are three seed combs each of which is corresponding to one group id. Figure

3.6 shows an example of converting the group id 2 into the position combination where

gID , seed comb and p comb indicate the group ID, seed object combination and the

seed object position combination in the list respectively. Figure 3.6 (a) and (b) present

the mappings between gIDs and seed combs and p combs respectively. Figure 3.6 (c-f)

depict the procedure of converting group id 2 into the the position combination <1,3>

by two recursions of Algorithm 3.3.

Algorithm 3.3 outlines a recursive algorithm to address how to get the p comb for

a given gID and i. In each recursion, Algorithm 3.3 calculates one object position in

p combs. There are four input parameters. The first parameter, sOP , records the seed

position starting to search. The second parameter i indicates the step level. gID and s

are the group id and the number of seed objects.

Given i and s, there are C(s,i) seed combinations corresponding to C(s,i) p combs.

Intuitively, these p combs can be divided into s-i+1 sets each of which includes C(s-

setNo, i-1) combinations with the same prefix where the setNo is the set number. For

instance, all the three p combs in step 2 in the example can be divided into two sets as

shown in Figure 3.6 (d). Set 1 includes all the combinations with 1 and set 2 with 2.

Under this, it is easy to see that the setNo which the gID falls into is the seed position.
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Algorithm 3.3: Convert from group id to combinations
Input: Start position: sOP ; Step ID: i;
Group id: gID; Number of seeds: s
sum ⇐ 0;1

for setNo: 1 → s-i+1 do2

setSize ⇐ C(s-setNo, i-1);3

if gID <= total+setSize then4

newOP ⇐ sOP+setNo;5

# Emit the new position newOP6

if i > 1 then7

s ⇐ s-setNo;8

gID ⇐ gID - SUM;9

Converter(newOP, i− 1, gID, s);10

else11

sum ⇐ sum+setSize ;12

Therefore, Algorithm 3.3 first determines which set the gID allocates (Line 4). After

getting the setNo, the seed object position newOP can be simply obtained by sOP+setNo

(Lines 7-8). If the step id is bigger than 1, the algorithm goes to next recursion with new

input parameters, where sOP, i, gID and s are changed as newOP, i-1, gID-sum (the

position where the old gID is allocated in the set setNo) and s-setNo. Otherwise, the

algorithm stops recursion as it derives.

In the aforementioned example, to convert group id 2 in Figure 3.6 (c) into the

p comb < 1, 3 > in Figure 3.6 (d), Algorithm 3.3 is first called with four input param-

eters (0, 2, 2 and 3). Since gID 2 falls to the set 1, the first object position 1 is derived

by 0+1. And then, Algorithm 3.6 enters the second recursion with new parameters (1,

1, 2 and 2). As shown in the Figure 3.6 (e) and (f), the gID 2 falls to set 2, thus another

new position, 3 is derived from 1+2. In the second recursion, step id i equals to 1 and

Algorithm 3.3 stops recursion. Thus, in two recursion, Algorithm 3.3 is able to convert

group id 2 into the p comb < 1, 3 > and further obtain its seed comb < 1, 4 >.
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3.6 Processing of Allocated Combinations

In section 3.5, we have introduced how tasks are distributed to each reducer. In this

section, we shall look at how each reducer processes the tasks that have been allocated

to it. Clearly, a naive strategy is to process the allocated tasks one at a time. For epis-

tasis discovery applications, each task is the statistical test of a combination of objects

computed based on the method described in section 3.4. However, we can optimize the

performance by salvaging partial work done by one task for another task when they share

some common computation. We refer to this as the sharing optimization.

For the purpose of our discussion, we shall illustrate the sharing optimization under

the Exhaustive Testing scenario. As mentioned in section 3.5.1, the task distributor

assigns the tasks to each reducer based on sets. Each reducer receives a set of set

ids which it should conduct.

Sharing Optimization: Our COSAC framework minimizes the cost of processing

a set of tasks and the contingency tables collection by salvaging common operations

during the processing of combinations.

Let us assume that there are 5 objects and we need to perform 3-level analysis. Take

the first set {123, 124, 125, 134, 135, 145} as an example, we illustrate how the sharing

optimization is performed while enumerating and analyzing this set of combinations.

Given the first set, it is easy to see that {12} exists in all the three combinations

{123, 124, 125} and {13} is shared between {134} and {135}. The methodology of our

sharing optimization is that we only combine the parts that are common among multiple

combinations once. And then the common part is used to combine with the other objects

further. For instance, we calculate the results of the combinations {12} once, and use

{12} to combine with 3, 4 and 5 further. In this case, we omit computing the sharing

parts multiple times (as would have been done under the naive strategy) to reduce the

computation overhead. Meanwhile, the the data (contingency tables) also do not need to
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Algorithm 3.4: Enumeration
Input: Fixed combination Object: comObj,
Start object position: sOP,
Combination forward depth: cFD,
analysis level: m
end=List.size()- m + cFD-1 ;1

for i: sOP → end do2

newComObj=Combine(comObj,List.get(i));3

if cFD == m then4

MakeStatisticTest(newComObj);5

else6

Enumeration(newComObj,i+1,cFD+1,m);7

be collected multiple times.

Algorithm 3.4 outlines the main steps of performing this sharing optimization which

is able to support any deep level analysis flexibly. Algorithm 3.4 has four input parame-

ters. First, it is the comObj which is used to store either the start object or the common

combined objects. Second, it is the next object position (sOP) which comObj needs to

combine with. Third, the cFD indicates the forward analysis depth. In other words,

it records the number of objects in the combination after adding another objects to the

comObj. Lastly, m is the analysis level which is set by users.

We take enumerating the first set aforementioned as a running example to illustrate

how the algorithm works. Initially, the comObj is the object 1 and the next position of the

object in the list to combine is 2. As combining another object with object 2, there will be

2 objects in the combination. Thus, the cFD is 2. And the analysis level m is a constant

value once it is set by the users (3 in this example). The algorithm first calculates all the

possible positions for the objects which need to combine with comObj (Lines 1, 2). In

the above example, 2, 3 and 4 are the object positions which 1 needs to combine with.

For all these possible positions, the algorithm then gets the corresponding objects from

the list to combine with comObj one by one while the result is stored into a new object

(newComObj) (Lines 2, 3). Meanwhile, the algorithm checks whether the depth is the
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same as the analysis level m. If it is, it has enumerated one complete combination as

required. And then it conducts a statistical testing on this combination and continues to

combine with other possible objects (Lines 4, 5). Otherwise, the algorithm enters the

next level to combine more objects with the new inputs (newComObj, i+1, cFD+1, m)

(Lines 6, 7). For instance, in the example, since 2 is not equal to the analysis level 3,

when 1 and 2 are combined, the algorithm enters into the next level to add another new

object.

In the next level, the algorithm runs the same steps until it has combined with all the

objects it needs. In the next level, {12} is further combined with 3, 4 and 5. And then

the algorithm returns to the upper level to combine 1 and 3 and so forth, until all the

enumeration has been done.

In this way, the proposed algorithm does not only achieves the sharing optimization

for efficient enumeration but also is flexible to support any analysis level. In the section

3.7, our experimental results have shown that the sharing optimization has significantly

minimized the cost.

Semi-Exhaustive Testing: Under the Semi-Exhaustive Testing scheme, the task each

reducer facing is to combine seed comb with other non-seed objects as described in

section 3.5.2. Algorithm 3.4 can also be used here. For a given analysis level m, if

the number of objects in the seed comb is i, the enumeration can be performed through

calling the algorithm with input parameters: seed comb, 0 (combine with the first object

in the non-seed list), i+1 (combination forward deep) and m (analysis level).

3.7 Experiment

We develop our COSAC framework based on the Apache Hadoop [2] which is an

open source equivalent implementation of the MR framework, running on HDFS (Hadoop
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Distributed File System). We conduct a series of experiments on our local cluster with

over 40 nodes. For our local cluster, each node consists of a aX3430 4(4) @ 2.4GHZ

CPU running Centos 5.4 with 8GB memory and 2x 500G SATA disks. Moreover, since

our tasks at hand are computationally intensive, we set the number of reducers per

node to be equal to the number of cores at the node, which is 4 in our local cluster . This

guarantees that each reducer can get one core. Therefore, there are a total of 4*N

reducers which can be run simultaneously on a N-node local cluster. In each analysis

job, we set the number of reducers to 4*N to make full use of the resources in the

cluster.

To evaluate COSAC on a large dataset, we generate the synthetic example dataset,

which is in the same format as shown in Figure 3.1. Each dataset has 2000 samples which

is considered large in GWAS. Each sample is generated with n+2 columns including one

sample id, n objects and one disease status. As used in GWAS, each object has three

possible candidate values (AA, AT or TT) and the disease status consists of one of two

possible candidates (Breast Cancer or Heart Attacks). We note that the computation

overhead is related to the data size, and is independent of the types of data. This is

because we adopt the IRBI techniques to transfer the data and index the data. Thus, the

results on the synthetic datasets we used would correspond to that for real datasets of the

same sizes.
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Figure 3.7: Execution time ratio for Round Robin/Bestfit
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3.7.1 Performance Comparison among different Models

Bestfit and Round Robin: In this experiment, we study the performance compar-

ison between Bestfit and Round Robin models. As aforementioned in section 3.5.1,

Round Robin can be implemented in two different manners, RR I and RR II . Com-

paring these two implementations, from our knowledge RR II is better than RR I , as

it provides more opportunities of sharing optimization than the first one. It is easy to

see that the first one divides the tasks in each set (like each line in the Figure 3.4) into

all the reducers, which reduces the number of tasks where sharing optimization can be

exploited (as shown in section 3.6). Therefore, in our work, we only evaluate the more

efficient round robin implementation, the second one, for performance comparison with

the Bestfit model. Based on our intuition, Round Robin is inferior, because of different

overheads (like maintaining much more meta information) and skewed sharing compu-

tation percentage in each reducer. To verify our address, we implement two programs,

each of which simulate the slowest reducer under these two models, to conduct the per-

formance comparison. Recall that in a MR job, the slowest reducer is the bottleneck of

the whole job. In other words, comparing the slowest reducers is equal to comparing the

whole job processing time.

For simplicity, each of our developed programs executes the same tasks for the slow-

est reducer in these two models on one single machine. In the Bestfit model, the slowest

reducer is the one which gets the most computation tasks. The sharing percentage in

each reducer is almost the same. In the Round Robin model, the slowest reducer

is the one with the lowest sharing percentage, like the reducer which gets more small

sets (like the last C(n,m)
r

tasks).

Figure 3.7 shows the execution time ratio of the slowest reducers between Round

Robin and Bestfit for processing 500 objects in 10 reducers with different analysis lev-

els. From the experimental results, when there is no sharing computation in 2-level
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analysis, we can see that the Bestfit model is almost the same as the Round Robin

model. This further confirms that Bestfit is able to balance the load well, since these

are no sharing opportunity of these two models in 2-level analysis. The same execution

time represents that these two models obtain almost the same number of combinations to

processing. When the analysis level increases, Bestfit is always better than the Round

Robin model. The reason is, with the sharing optimization for high level analysis, Best-

fit model can balance the gain of sharing optimization among the reducers. However,

in Round Robin model, this gain is skewed among different reducers. We note that

this experimental evaluation is already biased against the Bestfit model in real systems.

Because the Round Robin needs to maintain much more meta information to tell each

reducer the assigned tasks which brings a lot of other overhead. But in our evaluation,

we omit these overheads for Round Robin model. Therefore, the small benefit of load

balancing for Round Robin is less than what we can benefit from the Bestfit model.
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Figure 3.8: Execution time ratio for Greedy/Bestfit

Bestfit and Greedy: In this experiment, we study the performance comparison for

the Exhaustive Testing between Bestfit and Greedy which is proposed in [81] when we

vary the analysis level. This experiment is conducted with 500 objects on a 41-node

cluster including 1 master node and 40 slave nodes. Figure 3.8 shows the execution

time for both of the two models when we exhaustively analyze the correlation effects
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for different analysis levels. We observe that the Bestfit model always outperforms the

Greedy model especially when the analysis level is large. There are two reasons for this.

First, the Bestfit model is able to provide better load balancing across the system nodes.

Second, Bestfit benefits more from the sharing optimization. Recall that opportunities

for sharing is bigger for larger sets. While Bestfit spreads the load of large sets across

different nodes, Greedy allocates large sets to only a few nodes. As such, nodes with

large sets complete much faster than those with smaller sets (even if the load is almost

the same across all reducers). As discussed above, we observe that the last reducer

is always the bottleneck of the whole processing job for large analysis level under the

Greedy model.

Based on all these results, for the subsequent experiments, we only evaluate the Best-

fit model in our COSAC framework.
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Figure 3.9: Execution time ratio for CSA without/with sharing optimization

3.7.2 Sharing Optimization

In this experiment, we study how much the sharing optimization can benefit com-

pared with the one without sharing optimization during combination enumeration and

contingency table collection. For providing a fair and pure comparison, we implement

two programs and evaluate the performance using a single CPU-core on a single ma-
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chine. One of the programs enumerates all the combinations and collect the contin-

gency table without sharing any common parts between different combinations. Another

program is implemented according to our proposed sharing optimization strategy as de-

scribed in section 3.6. Figure 3.9 shows the results for the execution time ratio between

the scheme without sharing optimization and with optimization under different analy-

sis level. The data set used in this experiment contains 500 objects. From the result,

we can see that as the analysis level increases, the sharing optimization benefits more.

This is reasonable as higher analysis level means more sharing opportunity during the

combination numeration and contingency table collection.
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Figure 3.10: COSAC Scalability Evaluation
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3.7.3 Scalability

In this set of experiments, we study the scalability of the COSAC framework for

both Exhaustive Testing and Semi-Exhaustive Testing schemes as the system resources

increase. These experiments are conducted with 3000 objects and the analysis level is 3.

Figure 3.10 (a) shows the execution time for Exhaustive Testing on the clusters with 5,

10, 20 and 40 nodes. The result shows a linear speedup in performance that the execution

time reduces by half as we double the resources.

Figure 3.10 (b) reports the execution time for Semi-Exhaustive Testing with 160 seed

objects on the clusters with 5, 10, 20 and 40 nodes. Similarly, we observe not only

almost a linear speedup but also a big reduction in the execution time compared to Ex-

haustive Testing. Both the results confirm that our framework has a good scalability with

increasing system resources and can achieve good load balancing.

In this experiment, we report the scalability of Semi-Exhaustive Testing while we

vary the number of seed objects. Figure 3.10 (c) reports the experiment conducted with

5000 objects with 160, 320, 480 and 640 seed objects for 3-level analysis on the same

41-node cluster. From the result, we can see that the execution time increases while

increasing the number of seed objects. In fact, we observe that the execution time almost

doubles when we double the number of seed objects. This further confirms that our

framework can balance the load well.

3.7.4 Performance

This set of experiments study the performance of the COSAC framework when we

vary the number of objects for 2-level analysis on a 41-node cluster. Figure 3.11 (a)

shows the execution time for exhaustively computing all the significant interactions for

pairwise analysis with 50 000, 100 000, 200 000 and 500 000 objects without outputting

any result. The result shows that our COSAC framework offers a feasible and practical
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Figure 3.11: COSAC Performance Evaluation

solution to perform pairwise epistasis for a large number of objects. The PLINK [60],

which is considered as the most computationally feasible method in the review [20],

process the 2-level analysis for 89,294 objects in 14 days. According to [47], it would

require 1.2 years to do the 2-level analysis of 500 000 objects using the serial program

on a 2.66GHz single processor without parallel processing. Our previous work [80]

estimates that processing 500 000 objects using Naive approach instead of IRBI tech-

nique needs roughly 25 days for 2-level analysis on a 43-node cluster. But our COSAC

framework can finish this task around 9 hours on a 41-node cluster via our optimization

techniques. We expect our framework to be able to process 1 million objects around

8 hours on a 200-node cluster. This further confirms the efficiency of our framework.

Furthermore, MR/Hadoop framework has been shown to scale to thousands of machines

well with good fault tolerancess. Therefore, we believe that COSAC will be able to pro-

vide powerful computation capacity to discover more interesting results from large-scale

datasets.

Figure 3.11 (b) depicts the processing time for Semi-Exhaustive Testing for 2-level

analysis with 160 seed objects with 50 000, 100 000, 200 000 and 500 000 objects

without outputting any result also. The results show that the Semi-Exhaustive Testing

can reduce the computation time a lot. It can efficiently process the 500 000 objects in



64

about 12 minutes. This experiment highlights the efficiency gains by pruning technique

supported by our framework and confirms the practice and utility of our framework for

large scale data analysis.
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Figure 3.12: Execution time for different k values

3.7.5 Top-k Retrieval

Another important component that we can further provide is to allow users to retrieve

only the top-k most significant results with the lowest p-values for observation. In our

framework, we store the analysis result in HDFS to allow users to do further analysis.

We have also developed such a capability under the MR framework. The basic idea is

to split the output of the analysis result into chunks. Each chunk is then assigned to one

mapper. Next, each mapper will select the top-k most significant results and shuffled

these results to one reducer. Finally, the reducer can determine the global top-k

answers based on all local top-k ones it receives. Our top-k scheme is very efficient

gaining from avoiding shuffling a large volume of data from map phase to reduce phase.

This set of experiments is conducted on 15 machines each of which consists of 2 Intel

Nehalem quad-core processors (8 cores) and 48GB memory in TACC (Texas Advanced

Computing Center). Figure 3.12 shows the execution time while retrieving top-k most

significant tuples from 80GB result dataset for 3-level analysis when we vary k from 5 to

500. As expected, the execution time does not change much on different k values. This
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is because the main overhead of top-k retrieval is the scanning overhead to find the local

top-k tuples in the mappers. For different k values, this scanning overhead is almost the

same once the base data is the same.

Figure 3.13 depicts the execution time for retrieving the top 50 tuples on different

size of 3-level analysis result datasets from 10GB to 80GB. It is not surprising that the

execution time increases when the dataset becomes larger. Another observation is that

when the dataset is small, even though the dataset is reduced to half, the execution time

may not reduce too much. This is reasonable, since the setup and runtime overheads

of the MR framework reduces the benefits of reducing dataset. As shown in the result,

when the dataset size increases, the affect of these overheads becomes smaller.

3.8 Summary

This work aims to provide practical and efficient techniques for combinatorial sta-

tistical analysis systems using existing cloud computing techniques. We proposed a

practical, efficient, scalable and flexible framework based on the MapReduce paradigm

which is well supported in cloud by cloud providers. The elasticity and pay-as-you-use

features have made large-scale data analysis in scientific data processing available for

all end users. Our work has demonstrated how MapReduce can be used in computation-
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intensive systems. In this work, we have provided a flexible parallel object enumeration

scheme with good load balancing for large-scale data in the MapReduce framework. Fur-

thermore, we proposed the technique called Integer Representation and Bitmap Indexing

for efficient statistics analysis and the sharing optimization by salvaging computations in

each processing unit. We have also discussed how these techniques can be generally used

in many other different applications besides combinatorial statistics analysis systems.



CHAPTER 4

DATA CUBE ANALYSIS

4.1 Overview

In Chapter 3, we have studied how to build a scalable framework for a computa-

tion intensive analysis, the combinatorial statistical analysis, based on the MapReduce

paradigm. There are different challenges and difficulties to develop scalable parallel data

processing techniques for data intensive applications such as the data cubes analysis.

For instance, an efficient solution of data intensive applications has to guarantee that

the data shuffling and data read/write overheads among the cluster are minimized. Oth-

erwise, the high overheads incurred during these analyses may significantly affect the

performance. Furthermore, it is more challenging (compared to computation intensive

analysis) to develop an effective load-balancing strategy - besides having to consider

the computation overhead in each reducer. In addition, there is also a need to factor

in the data I/O and shuffling overhead. Data cube analysis is such a very typical and

popular representative data intensive analysis. In this Chapter, we tackle the problem of

67
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developing an effective, scalable and practical parallel system for data cube analysis.

In many industries, such as sales, manufacturing, transportation and finance, there is

a need to make decisions based on aggregation of data over multiple dimensions. Data

cubes [31] are one such critical technology that has been used in data warehousing and

On-Line Analytical Processing (OLAP) for data analysis in support of decision making.

Much research has been devoted to the data cubes analysis in the literature [7][95][96]

[44]. However, existing techniques can no longer meet the demands of today’s work-

loads. On the one hand, the amount of data is increasing at a rate that existing techniques

(developed for a single machine or a small number of machines) are unable to offer

acceptable performance. On the other hand, more complex aggregate functions (like

complex statistical operations) are required to support complex data mining and statis-

tical analysis tasks. Thus, new mechanisms are needed to efficiently support data cube

analysis on more complex aggregate functions over a large amount of data.

Therefore, in this thesis, we are motivated to develop a scalable parallel data cube

analysis platform for large-scale data. While we provide a new cubing algorithm, our key

contributions lie in the design of techniques to extend the MR framework for efficient

data cube analysis to broaden the application of data cubes primarily for append-only

environments [79].

Our main contributions are as follows. First, we present a distributed system, HaCube,

an extension of MR, for data cube analysis on large-scale data. HaCube modifies the

Hadoop MR framework while retaining good features like ease of programming, scal-

ability and fault tolerance. It also builds a layer with user-friendly interfaces for data

cube analysis. We note that HaCube retains the conventional Hadoop APIs and thus

is compatible with MR jobs. Second, we show how batching cuboids for processing

can minimize the read/shuffle overhead to salvage partial work done for efficient data

cube materialization. Third, we propose a general and effective load balancing scheme
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LBCCC (short for Load Balancing via Computation Complexity Comparison) to ensure

that resources are well allocated to each batch. LBCCC can be used under both HaCube

and MR frameworks. Fourth, we adopt a new computation paradigm, MMRR (MAP-

MERGE-REDUCE-REFRESH), with a local store under HaCube. HaCube supports ef-

ficient view updates for different measures, both distributive such as SUM, COUNT and

non-distributive such as MEDIAN, CORRELATION, and thus is able to support more

applications with data cube analysis in a data center environment. To the best of our

knowledge, this is the first work to address data cube view maintenance in MR-like sys-

tems. Finally, We evaluate HaCube based on the TPC-D benchmark with more than 3

billions tuples. The experimental results show that HaCube has significant performance

improvement over Hadoop.

The rest of this chapter is organized as follows. Section 4.2 reviews some background

material. In Section 4.3, we provide an overview of the HaCube architecture and com-

putation paradigm. Sections 4.4 and 4.5 present our proposed data cube materialization

and view maintenance approaches. In Section 4.6, we discuss some issues including the

fault tolerance strategy and storage cost. We report our experimental results in Section

4.7 and summarize this work in Section 4.8.

4.2 Preliminaries

In this section, we introduce the notations and background of data cube materializa-

tion and view maintenance.

4.2.1 Data Cube Materialization

In OLAP, the attributes are classified into dimension attributes (the grouping at-

tributes) and measure attributes (the attributes which are aggregated) [31]. Each GROUP
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BY in a CUBE computation is defined as a cuboid which captures the aggregate data. To

speed up query processing, these cuboids are typically stored into a database as views.

The problem of data cube materialization is to efficiently compute all the views. If

the cube is being built for the first time, we refer to its materialization as initial cube

materialization. Figure 4.1 shows all the cuboids represented as a cube lattice with 4

dimensions A, B, C and D.

all

A

AB BC CD

ABCD

CB D

DA AC BD

ABC CDABCD DAB

Figure 4.1: A cube lattice with 4 dimensions A, B, C and D

4.2.2 Data Cube View Maintenance

The goal of cube view maintenance is to get the latest view when new data are

produced and added. We refer to this newly produced data as delta data ∆D, the data

used for the previous view materialization as base data D and the previously materialized

cube as base view V . In terms of view update requirements, the measure functions can

be classified into two categories: non-distributive and distributive measures [31].

Non-distributive measures are those whose updated views can only be reconstructed

by recomputation based on the entire base data D and ∆D. In append-only appli-

cations, these functions include STDDEV, MEDIAN, CORRELATION, and REGRES-

SION functions.
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Distributive measures are the ones whose views can be either updated by recompu-

tation (as in non-distributive functions) or incrementally computed which is referred to

as incremental computation. Incremental computation updates a view based on V and

∆D in two steps [52]: (a) In the propagate step, a delta view ∆V is calculated based

on the ∆D. (b) In the refresh step, the updated view is obtained by merging V and

∆V . In append-only applications, functions that can be computed incrementally include

SUM, COUNT, MIN, MAX and AVG. Note that we have classified algebraic functions,

like AVG, as distributive measures. To avoid recomputation, views of algebraic func-

tions can be updated by keeping some extra information. For instance, for computing

AVG, we can record both the sum and count in the views.
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Figure 4.2: HaCube Architecture

4.3 HaCube: The Big Picture

To support efficient data cube analysis, we develop a new system, HaCube, which is

an extension of MR based on Hadoop [2]. HaCube integrates another layer for fast data
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cube analysis development and adopts a new computation paradigm to support data cube

operations. We now present the HaCube architecture and its computation paradigm.

4.3.1 Architecture

Figure 4.2 gives an overview of the basic architecture of HaCube. Similar to MR, all

the nodes in the cluster are divided into two different types of function nodes, including

the master and processing nodes. The master node is the controller of the whole system

and the processing nodes are used for storage as well as computation.

Master Node: The master node consists of two functional layers:

1. The cube converting layer is used to receive the user cube analysis re-

quest (either initial cube materialization request or view update request) and to convert

the cube analysis request into an execution job which can be either an initial cube ma-

terialization job or a view update job. The cube converting layer contains two main

components: Cube Analyzer and Cube Planner.

The cube analyzer is designed to analyze the cube, such as figuring out the cube id

(the identifier of the cube analysis application), analysis model (a new initial cube mate-

rialization request or a view update request), measure operators (data cube aggregation

function), and input and output paths.

The cube planner is developed to transfer the cube analysis request into either a

cube materialization or view update job. The execution job is divided into multiple

tasks each of which handles part of the cuboid calculation. The cube planner consists

of several functional components such as the execution plan generator (combine the

cuboids into batches to reduce the overhead), and load balancer (assign the right number

of computation resources for each batch).

2. The execution layer is responsible for managing the execution of jobs

passed from the cube converting layer. It has three main components: job scheduler,
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task scheduler and task scheduling factory.

We use the same job scheduler as in Hadoop which is used to schedule different jobs

from different users. In addition, we add a task scheduling factory which is used to record

the task scheduling information of a job which can be reused in other jobs. Furthermore,

we develop a new task scheduler to schedule the tasks in terms of the scheduling history

stored in the task scheduling factory.

Processing Node: A processing node is responsible for the task execution assigned

from the master node. Similar to the MR framework, each processing node contains one

or more processing units each of which can either be a mapper or a reducer. Each

processing node has a TaskTracker which is in charge of communicating with the

master node through heartbeats, reporting its status, receiving the task, reporting the task

execution progress and so on. Unlike the MR framework, there is a Local Store

built at each processing node running reducers. The local store is developed to cache

the useful data in the local file system on the reducer node from a job. It is a persistent

storage in the local file system and will not be deleted after a job execution. In this way,

tasks (possibly from other jobs) assigned to the same reducer node are able to access the

local storage directly from the local file system.

4.3.2 Computation Paradigm

HaCube inherits some features from the MR framework, such as data read/process/

write format of (key, value) pairs, sorting all the intermediate data and so on. However, it

further enhances MR to support a new computational paradigm. HaCube adds two op-

tional phases - a Merge phase and a Refresh phase before and after the reduce phase

- to support the MAP-MERGE-REDUCE-REFRESH (MMRR) paradigm as shown in

Figure 4.2.

The Merge phase has two functionalities. First, it is used to cache the data from the
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reduce input to the local store. Second, it is developed to sort and merge the partitions

from mappers with the cached data in the local store. The Refresh phase is developed

to perform further computations based on the reduce output data. Its functionalities

include caching the reduce output data to the local store and refreshing the reduce output

data with the cached data in the local store. These two additional phases are intended to

fit different application requirements for efficient execution support.

As mentioned, these two phases are optional for the jobs. Users can choose to use the

original MR computation or MMRR computation. More details can be found in Section

4.5 about how MMRR benefits the data cube view maintenance.

4.4 Initial Cube Materialization

In this section, we describe our proposed parallel algorithm, CubeGen, for efficient

cube materialization which is suitable for both the HaCube and the MR frameworks.

There are two alternative implementation of cube materialization: full materialization

(compute all the cuboids) and partial materialization(compute selective cuboids). Since

full materialization is the fundamental problem where the techniques on it may have a

strong influence to all other techniques [85], we focus on fully materializing the graph

cube in this thesis.

We first present some principles of sharing computation through cuboid batching,

followed by a batch generator. Then we provide our proposed load balancer which guar-

antees that the resources to each batch are well allocated. Finally, we introduce the

implementation details of CubeGen. Recall that for n dimension attributes, there are

2n cuboids that need to be computed. To simplify our presentation, we omit the cuboid

“all”. This special cuboid can be easily handled through an independent processing unit.
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4.4.1 Cuboid Computation Sharing

Given 2n cuboids, the naive solution of processing each cuboid in one MR job incurs

significant overheads, such as data read overhead (completing one cube needs multiple

base data traversal), sort overhead (sorting each cuboid data independently is costly)

and shuffle overhead (shuffling each cuboid data from the Mapper to the Reducer

independently is expensive). Thus, finding the right way to batch and combine the com-

putation becomes important for efficient materialization.

We provide the following lemma as a formal basis for combining and batching the

cuboids computation under MR-like frameworks.

Lemma 4.1. Let A and B be a set of dimension attributes such that A
∩
B = ∅. In MR-

like systems, given cuboid A and AB, A can be combined and processed together with

AB, once the MR job sets AB as the key, sorts the key based on AB and partitions the

key based on A. A is referred to as a Sub-Cuboid of AB (denoted as A ⊆ AB). Note

that the notion of sub-cuboid requires the dimensions of the sub-cuboid to be a prefix of

the dimensions of the cuboid.

Proof. Without loss of generality, we assume A = d1, ..., dx and B = dy, ..., dy+z where

di is a dimension attribute. For processing the cuboid AB, when the mapper emits the

(key, value) pairs where the key is set as d1, ..., dx, dy, ..., dy+z and is sorted, d1, ..., dx

is in sorted order also. Partitioning AB based on A guarantees that all the output (key,

value) pairs with the same d1, ..., dx are shuffled to the same reducer. As all the same

values of A are shuffled to the same reducer and A is sorted, we can calculate A at the

same time as we process AB. Thus, the data read/sort/shuffle overheads of processing

the cuboid A can be removed though sharing the computation.

The above results can be generalized using transitivity: Since we can combine the

processing of the pair of cuboids {A,AB} and the pair {AB,ABC}, we can also com-
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bine the processing of the three cuboids {A, AB, ABC}. Thus, given one cuboid, all

its sub-cuboids can be calculated together as a batch. For instance, for the cube lattice

in Figure 4.1, as A ⊆ ABCD, AB ⊆ ABCD and ABC ⊆ ABCD, the cuboids A,

AB, ABC can be processed with ABCD. We note that BC cannot be processed with

ABCD because BC * ABCD. Given a batch, the principle to calculate this batch is to

set the sort attributes as the key and partition the (key, value) pairs based on the partition

attributes in the key in the MR job. We formally define these two attribute classes below.

Definition 4.1. Partition Attributes: The dimension attributes in cuboid A are called the

partition attributes if A is the sub-cuboid of all other cuboids in one batch.

Definition 4.2. Sort Attributes: The dimension attri- butes in cuboid A are called the

sort attributes if all the other cuboids are sub-cuboids of A.

For instance, given the batch {A,AB,ABC,ABCD}, ABCD and A can be set as

the sort attributes and partition attributes respectively.

Based on the aforementioned principles, CubeGen combines and batches all the

cuboids that share the same prefix (e.g. AB and ABC) to share the data read/ sort/shuffle

computation. In this way, we can remove the unnecessary overheads as much as possible.

One advantage of choosing such a prefix-based and sort-based computation sharing is

that the HaCube and the MR frameworks sort all the intermediate data. Thus, a prefix-

based and sort-based algorithm can exploit the sorting for free.

To achieve good performance, we need to address two issues. First, how can we find

the minimum number of batches from the 2n cuboids? As more cuboids are combined

together, the shuffling overhead incurred for data shuffling will be reduced. Second, how

can we balance the load to assign the right number of computation resources to each

batch? As different batches may have different computation complexity and data size, it

is not optimal to evenly assign the computation resources to each batch. Before providing
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the detailed algorithm for CubeGen, we first introduce how it solves the aforementioned

challenges by developing a plan generator and a load balancer.

4.4.2 Plan Generator

The goal of the plan generator is to generate the minimum number of batches among

the 2n-1 cuboids, excluding “all′′. The plan generator first divides the 2n-1 cuboids into

n groups each of which consists of the cuboids with i dimension attributes. For instance,

given the cube lattice with 4 dimension attributes in Figure 4.1, it can be divided into 4

groups (from the bottom of the lattice to the top) as follows: G1 = {A,B,C,D}, G2 =

{AB,BC,CD,DA,AC,BD}, G3 = {ABC,BCD,CDA, DAB}, G4 = {ABCD}.

Recall that one cuboid can be batched with all its sub-cuboids. Thus, we adopt a

greedy approach to combine one cuboid with as many of its sub-cuboids as possible.

Initially, all the cuboids in each group are marked as available. Each construction of

a batch starts with one available cuboid, α, from the non-empty group with the maxi-

mum number of dimensions. It then searches all the available sub-cuboids of α from

other groups that can be batched together. For instance, the first batch construction starts

with ABCD in the example above (Since ABCD has 4 dimensions, it is the one with

maximum number of dimensions). Note that since cuboid α has different permutations

(e.g. ABCD can also be permuted as ABDC, ACBD, BCDA, CDAB, DABC etc.),

the algorithm enumerates all permutations and the one with the maximum number of

available sub-cuboids will be chosen. Once one batch is constructed, all the cuboids in

this batch are deleted from the search space and become unavailable. Similarly, the next

batch construction is conducted among the remaining available cuboids. The construc-

tion finishes when there are no available cuboids left.

The approach we adopt to generate the batches is similar to the one proposed in [44].

Lee et al. provide an extensive proof that the algorithm is able to generate C
⌈n
2
⌉

n batches
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Figure 4.3: A directed graph of expressing 4 dimensions A, B, C and D

which is the minimum number. Recall that there are C
⌈n
2
⌉

n cuboids in group G⌈n
2
⌉ and

that none of them can be combined with each other. So there are at least C
⌈n
2
⌉

n batches.

Interested readers are referred to [44] for more details.

To improve the efficiency of batch construction, two optimizations are adopted to

reduce the search space.

• First, recall that for a set of dimensions, we need to compute a batch for each

permutation. This, however, may not be necessary. In fact, when all the sub-

cuboids of a particular permutation are available, we know that we have found a

permutation with the maximum number of sub-cuboids. Therefore, as soon as we

encounter such a permutation, we do not need to continue the search for this set of

dimensions.

• Second, we organize all the dimensions as one directed graph such that one di-

mension points to another and we refer to the distance between two adjacent di-

mensions as one hop. For instance, given 4 dimensions A, B, C and D, they can

be expressed as a directed graph such that A, B, C and D point to B, C, D and A

respectively as shown in Figure 4.3. During permutation enumeration, changing

from A to B or C is referred as moving one hop or two hops from A.

To find the permutation of a cuboid α with the maximum number of sub cuboids,

the enumeration starts from the permutation that is obtained by moving the equiv-
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alent number of hops for each dimension of the unavailable cuboid in the same

group. This is to guarantee that, most likely, the first search permutation is the one

we need to reduce the search space. For instance, assume that the first batch is gen-

erated as ABCD, ABC, AB and A. Then the next initial permutation for a new

batch is BCD which is computed through moving one hop for each dimension in

the unavailable cuboid ABC. It is clear that the new batch can be generated with

BCD (since all its sub cuboids are available) and there is no need to search other

permutation of BCD.

In the same way, the batches of CDA and DAB will be generated. These two

optimizations speed up the batch construction.

Figure 4.4 shows an example of the generated batches using the dotted lines. Dif-

ferent to the three classic cube computation approach, MultiWay, BUC or Star-Cubing

mentioned in Section 4.2.2, CubeGen generates the batches that are highly restricted

to the prefix rule towards a parallel computation. This new batching method is able to

facilitate the sorting feature of the MR-like systems such that there is no need to perform

any extra sorting during the cube computation towards an efficient cube materialization.

The existing cubing approaches that are designed for a centralized machine or a small

cluster are neither efficient nor applicable for the MR-like systems. One of the main

reasons is that they may generate batch with the non sub-cuboids that is against Lemma

1. For instance, in existing methods, both AB and BC may be processed together with

ABC.

4.4.3 Load Balancer

Given a set of batches from the plan generator, the load balancer is used to assign the

right number of computation resources to each batch to balance the load.
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11:ABC 13:CDA12:BCD 14:DAB

Figure 4.4: The numbered cube lattice with execution batches

We argue that existing works (like [57]) that balance the batches by evenly assigning

the computation resources may not always be a good choice.

• First, it requires users to provide very specific information about the application

data to be able to estimate a model to find the balanced batches.

• Second, the cuboids may not be combined into balanced batches.

• Third, in a MR-like system, it is hard to make a precise cost estimate of each batch.

For instance, the total cost of each batch includes the following main parts: the

data shuffling cost (shuffling the intermediate data from mappers to reducers), the

sorting cost (all the intermediate data are sorted), data processing cost (applying

the measure function to each cuboid in a batch) and data writing cost (writing the

views to the file system). It is hard to estimate each of these component costs and

even harder to evaluate the total cost of each batch (as this requires setting the

appropriate weights when combining these components).

Therefore, the load balancing among different batches becomes a very tricky and

challenging problem in MR-like systems.

In the thesis, we propose a novel load balancing scheme LBCCC (short for Load Bal-

ancing via Computation Complexity Comparison) to assign the right number of com-
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putation resources to each batch. Intuitively, LBCCC adopts a profiling based approach

where a learning job (we refer as CCC - Computation Complexity Comparison job )

is first conducted on a small test dataset to evaluate the computation overhead relation-

ship between each batch and then generate the number of reducers for each batch that

are proportional to computation overhead for the actual CubeGen jobs. The computa-

tion cost relationship is estimated through the execution comparisons when each batch

is provided the same number of computation resources. The execution time relation-

ship over the same computation resource indicates the entire batch processing overhead

relationship, thus helps to make an accurate load balancing decision.

In particular, LBCCC first conducts the CCC job, a cube materialization learning

job, on a small test dataset where each batch is assigned to one reducer. It then records

and utilizes the execution time of each batch to estimate the computation overhead rela-

tionship among different batches.

The test data can be obtained either by sampling or produced within a time window

provided by users. Note that the sampling can be accomplished during the CCC job, since

the MR framework provides APIs for sampling data directly. Therefore, by default, we

use the sampling approach provided by the Hadoop API where one tuple is sampled

from every s records. Users can also plug in their own sampling algorithm easily. The

sampling algorithms have been widely studied in the literature. Since it is not our focus

on studying how to choose or design a good sampling algorithm, we shall not discuss it

here and more sampling algorithms can be found in [25].

In the CCC job, given a set of base data, the mapper conducts sampling on it. For

each sampling tuple, the mapper emits multiple (key,value) pairs each of which is for

one batch. Then the CCC job shuffles the pairs that belong to the same batch to one

particular reducer. Given b batches, the CCC job uses b reducers each of which is in

charge of processing one batch. The implementation of the CCC algorithm is similar to
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the CubeGen algorithm provided in Algorithm 4.1 except for the number of reducers

assigned to each batch. The algorithm detail can be found in section 4.4.4.

The CCC learning job records the execution time Ti for processing batch Bi. Based

on the execution time recorded, the load balancer generates the resources assignment

plan for each batch. Given r reducers, the right number of reducers, Ri for batch Bi can

be calculated as follows:

Ri =
Ti∗r∑b−1
j=0 Tj

The load balancer integrates this plan into the CubeGen algorithm to balance the

load. The experimental results show that LBCCC is able to balance the load very well.

We note that this evaluation only needs to be done once before the initial cube materi-

alization and is used for subsequent jobs in the same application. Furthermore, perform-

ing the CCC job is cheap as only b reducers are needed. Note that the load balancer can

support different kinds of batching approaches. Therefore, the LBCCC load balancing

scheme is general and effective for different cubing algorithms.

4.4.4 Implementation of CubeGen

Assume that the batch plan B with b batches (B0, B1, ..., Bb−1), and load balancing

plan R with b resource assignments (R0, R1, ..., Rb−1) have been generated by the plan

generator and load balancer. The proposed CubeGen algorithm can conduct the cube

materialization in one job and its pseudo-code is provided in Algorithm 4.1.

Map phase: The base data is split into different chunks each of which is processed

by one mapper. CubeGen parses each tuple and emits multiple (key, value) pairs each of

which is for one batch thus removing the multiple data reading overheads (Lines 5-10).

The sort attributes in the batch are set as the key and the measure attribute is set as the

value.
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Algorithm 4.1: CubeGen Algorithm
Function: Map(t)1

# t is the tuple value from the raw data2

Let B be the batch set includes B0, B1, ..., Bb−13

Let Ii be the identifier of batch Bi4

for each Bi in B do5

k ⇐ get sort attributes in Bi from t6

v ⇐ get measure attribute m from t7

# If there are multiple measure attributes e.g. m1,m2, they can be put to v8

together such as v ⇐ (m1,m2)
v.append(Ii)9

emit(k,v)10

Function: Partitioning(k, v)11

Let Ri be the number of reducers assigned for Bi12

Let Si be
∑i−1

j=0Rj13

Let attr be the partition attributes in Bi14

return Si + hash(attr, Ri)15

Function: Reduce/Combine (k, {v1, v2, ..., vm})16

#M is the measure function17

Let C be the cuboid set in the batch identifier18

for Ci in C do19

if Ci is ready then20

k ⇐ get dimension attributes in Ci21

v ⇐M(v1, ..., vm, v
′
1, ..., v

′

k, ...)22

# If users need multiple measure functions e.g. (M1,M2), they can all be23

applied in the same job, such as v1 ⇐ M1(v1, ..., vm, v
′
1, ..., v

′

k, ...) and v2
⇐M2(v1, ..., vm, v

′
1, ..., v

′

k, ...)
emit(k,v)24

else25

Cache {v1, v2, ..., vm}26
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To distinguish which (key, value) pair is for which batch with which cuboids, we add

a batch identifier appended after the value.

The identifier is developed as one Bitmap with 2n bits where n is the number of

dimension attributes and each bit corresponds to one cuboid. First, we number all the 2n

cuboids from 0 to 2n−1. Second, if the cuboid is included in one batch, its corresponding

bit is set as 1, otherwise 0. For instance, Figure 4.4 depicts an example of a numbered

cube lattice. Assume that B0 consists of cuboids {A,AB,ABC and ABCD}. The

identifier for B0 is set as ‘10001000 00100010′.

The partitioning function partitions the pairs to the appropriate partition based on

the identifier and the load balancing plan R. CubeGen first schedules the data into the

right range of reducers. Recall that the batch Bi is assigned Ri reducers. Therefore,

the assigned reducers for batch Bi are from
∑j−1

j=0Rj to
∑j−1

j=0Rj + Ri − 1. Then the

(key, value) pairs are hash partitioned among these Ri reducers according to the partition

attributes in the key (Lines 12-15).

Reduce Phase: In the Reduce phase, each reducer obtains its computation tasks

(the cuboids in the batch) by parsing the batch identifier in the value. The library sorts

all the (key, value) pairs based on the key and passes them to the reduce function. The

reduce function decomposes the tuple to process multiple cuboids in the batch. Each

cuboid maintains a container to store the data received within one group. Once it gets all

the data in one group, it materializes this group using the measure function. Or else, it

caches the data in the container until it obtains all the data for one group (Lines 18-26).

We develop multiple file emitters to write different views to different destinations.

Analysis: The total overhead of data reading and shuffling is as follows:

∑b−1
i=0 Bi = Read(D) +

∑b−1
i=0 Shuffle(Bi)

We only list the cost for data reading and shuffling as these costs can potentially

be reduced. There are other overheads like writing overhead (write the view to DFS or
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databases) which are not reducible. Thus, these overheads are omitted above.

Compared to the naive solution, CubeGen only incurs one data reading. The shuffle

cost of batch Bi equals to the shuffle cost of the cuboid with the maximum number of

dimensions in the batch plus the cost of adding one identifier in the intermediate result.

Since we use a Bitmap for the identifier, this additional data size is relatively small.

Therefore, the shuffling cost remains as only a part of the cost in the naive solution.

Handling Multiple Measure Attributes: We note that if there are more than one

measure attributes (e.g. m1, m2, ..., mn) that users want to aggregate, the multiple mea-

sure attributes can be processed in the same job. In particular, in the CubeGen algo-

rithm, the multiple measure attributes can be put into the value together in the map phase

as shown in Line 8 in Algorithm 4.1, instead of emitting n different (key, value) pairs.

For instance, given n measure attributes, the value would be (m1, m2, ..., mn). This

guarantees that the multiple measure attributes can share the dimension attributes in the

intermediate data. Thus, it minimizes the intermediate data size and removes significant

data sorting and shuffling overheads compared to emitting multiple independent (key,

value) pairs each of which is for one measure attribute.

The aggregation on each measure attribute can be conducted in the reducer by parsing

and aggregating the different measures attributes from the value.

Handling Multiple Aggregation Functions: In many situations, users may want

to materialize the data by applying multiple measure aggregation functions such as M1,

M2, .., Mm. We note that this materialization can also be conducted in the same job,

instead of m jobs. Specifically, the multiple aggregation functions can be applied to the

data in the reduce phase simply, as shown in Line 23 in Algorithm 4.1. This guarantees

that all the operations before the reduce function can be shared among different measure

functions.
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Algorithm 4.2: A Refresh Job in MR
Function: Map(t)1

# t is the tuple value from either V or ∆V2

k ⇐ get dimension attributes from t3

v ⇐ get aggregate value from t4

emit(k,v)5

Function: Reduce(k, {v1, v2})6

emit(k,m(v1, v2))7

4.5 View Maintenance

4.5.1 Supporting View Maintenance in MR

For non-distributive measures like MEDIAN, views can only be updated by recon-

structing the cube from the entire dataset, i.e., D ∪ ∆D. Under the MR framework, the

updated view can be obtained by issuing one MR job using our CubeGen algorithm to

recalculate the cube over D ∪∆D.

The key problem with such a MR-based recomputation view updates is that recon-

struction from scratch in MR is expensive because the base data (which is large and

increases in size at each update) has to be reloaded to the mappers from the DFS and

shuffled to the reducers for each view update.

For distributive measures like SUM, view updates can also be done by recomputation

as is done in the non-distributive measures, and so we will not discuss this further. An

alternative mechanism is to incrementally update the view through incremental compu-

tation with a propagate step (get ∆V from ∆D) and a refresh step (merge V and ∆V).

Specifically, incremental view updates can be conducted using two MR jobs. The

first propagate job generates ∆V from ∆D using our proposed CubeGen algorithm.

The second refresh job merges V and ∆V.

The algorithmic description of the refresh job is given in Algorithm 4.2. Intuitively,

the entire views can be partitioned to the mappers. Each mapper parses the dimension
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attributes and the aggregate value from each tuple in the view and emits one (key, value)

pair where the key is the dimension attributes and the value is the aggregate value (Lines

1-5). Then the (key, value) pairs with the same key are shuffled to the same reducer to

conduct the merge operation (Lines 6-7). Note that the merge function can use the same

reduce function as adopted in the cube construction.

The key problem with such a MR-based incremental computation view updates is the

significant overheads incurred because the data has to be read/written/shuffled around

the cluster multiple times. For instance, the materialized ∆V from the propagate job

has to be written back to the DFS, reloaded from the DFS and shuffled from mappers to

reducers in the refresh job. Likewise, V has to be reloaded and shuffled around in the

refresh job. These overheads make incremental computation expensive in the basic MR

framework.

4.5.2 HaCube Design Principles

HaCube avoids the aforementioned overheads through storing and reusing the data

between different jobs. We extend the MR framework to add a local store in the reducer

node which is intended to store useful data in the local file system in a job. Thus, the

task shuffled to the same reducer is able to reuse the data already stored there. In this

way, the data is read directly from the local store (and thus significantly reducing the

overhead that would have been incurred to read the data from the DFS and shuffle them

from mappers).

We further extend the MR framework to develop a new task scheduler to guarantee

that the same task is assigned to the same reducer node and thus the cached data can

be reused among different jobs. Specifically, the task scheduler records the scheduling

information by storing a mapping between the data partition number (corresponds to

the task) and the TaskTracker (corresponds to the reducer node) and puts it to the task
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scheduling factory from one job. When a new job is triggered to use the scheduling

history from previous jobs, the task scheduler fetches and adopts the scheduling infor-

mation from the factory to distribute the tasks. The scheduler automatically checks the

situation of the over-loaded nodes and moves the task to other nodes.

In addition, two computation phases (Merge and Refresh) are added to support

efficient view updates by conducting more computation with the cached data locally. The

Merge phase is added to either cache the intermediate reduce input data in one job or

preprocess the data between the newly arriving data and cached data before the Reduce

phase. The Refresh phase is added to either cache the reduce output data in one job or

postprocess the reduce result with the cached data after the Reduce phase.

4.5.3 Supporting View Maintenance in HaCube

We are now ready to present how HaCube supports view maintenance.

Non-distributive Measures

HaCube performs a Map-Merge-Reduce (MMR) computation for the recomputa-

tion of view updates for non-distributive measures. In the initial cube materialization

job, HaCube is triggered to cache the intermediate reduce input data to the local store.

Specifically, the CubeGen algorithm partitions the cuboids computation task to each

reducer.

For instance, Figure 4.5(a) shows an example of calculating the cuboid a for the

MEDIAN measure. We assume that reducer 0 is assigned to process cuboid A. Thus,

each mapper emits one sorted partition for reducer 0, such as P0 0, P0 1 and P0 2. Here,

each partition is a sequence of (dimension-value, measure-value) pairs, e.g., (a1, 3), (a2,

4) in Figure 4.5(a). When the partitions are shuffled to reducer 0, it performs a merge-

sort (the same as MR does) to sort all the partitions based on the key in the Merge phase.



89

a1,3

a2,4

a1,9

a2,5

a1,5

a2,7

Merge

Reduce:Median

a1,3

a1,5

a1,9

a2,4

...

C
ac
he

Local Store

o
u
tp
u
t

a1,5

a2,5

P0_0 P0_1 P0_2

Reducer 0

(a) Cube materialization in a
Map-Merge-Reduce computation

paradigm

a1,2

a2,1

a1,4

a2,3

Merge

Reduce:Median

a1,3

a1,5

a1,9

...

Local Store

o
u
tp
u
t

a1,4

a2,4

Merge

Up
da
te

a1,2

a1,3

a1,4

a1,5

a1,9
...

P0_0 P0_1

Reducer 0

(b) View maintenance in a
Map-Merge-Reduce computation

paradigm

Figure 4.5: Recomputation for MEDIAN in HaCube

Note that the global sorted data is stored in the local disk. Then, the data are supplied to

the reduce function to get the view V (< a1, 5 > and < a2, 5 >) for MEDIAN which is

emitted and written to the DFS.

Since recomputation needs to use all the base data for view updates, the intermediate

sorted reduce input data in the Merge phase, which is deleted in MR, will be cached in

the local store for subsequent reuse when the Reduce phase finishes in HaCube. This

guarantees the atomicity of the operation - if the reduce task fails, the data will not be

written to the local store. Meanwhile, the scheduling information is recorded.

A view maintenance job is launched when ∆D is added for view updates. Intuitively,

this view update job conducts a cube materialization job using the CubeGen algorithm

based on ∆D. It differs from the initial materialization job (on D) in the scheduling

and the Merge phase. For task scheduling, instead of randomly distributing the tasks

to reducer nodes, it distributes the tasks according to the scheduling information stored

from the initial cube materialization job to guarantee that the same tasks are processed

at the same reducer.
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For instance, the emitted partitions for cuboid A (∆P0 0 and ∆P0 1) from mappers

are scheduled to the same node running reducer 0 as shown in Figure 4.5(b). In the

Merge phase, since the base data is already cached in the local store, HaCube merges

the delta partitions with the base data by directly reading from the local store in the

Merge phase. Recall that the cached data is the sorted reduce input data from the pre-

vious job, and so it has the same format as the delta partition. Thus, it can be treated

as a local partition and a global merge-sort can be conducted. Then the merged base

and delta data will be supplied to the reduce function for a view update in the Reduce

phase. When the Reduce phase finishes, the local store is updated with both the base

and delta data (becoming an updated base dataset) for further view update use.

In HaCube, view updates via recomputation do not need the base data to be reloaded

from the DFS and shuffled from mappers to reducers. Thus, the overhead is reduced and

view updates are performed more efficiently. Recall that in the CubeGen algorithm,

cuboids are batched together. Each reducer executes part of the tasks for computing

multiple cuboids. HaCube caches intermediate (key, value) pairs for the batch instead

of caching the data for each cuboid.

To cache the intermediate sorted reduce input data, one naive way is to push them

to the local store. However, this incurs much overhead, since moving a large amount

of data is expensive. In our case, since the intermediate sorted data are maintained in a

temporary file in the local disk, instead of moving the data, we simply register the file to

the local store. The local store only needs to maintain the cached data location for further

usage. When a job finishes, the HaCube framework will not delete the temporary files

which have been registered for caching in local store. We note that these temporary

files are deleted in the traditional MR framework. With this optimization, HaCube does

not incur any extra data movement or writing, and thus incurs negligible overhead. As

we shall see, the experimental study shows that there is almost no overhead added for
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caching the data compared to the traditional MR framework that does not cache the data.
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Figure 4.6: Incremental computation for SUM in HaCube

Distributive Measures

HaCube performs a Map-Reduce-Refresh (MRR) computation for the incre-

mental computation view updates for distributive measures. The initial cube material-

ization job is triggered to cache the reduce output V to the local store after the Reduce

phase. Intuitively, HaCube conducts the materialization job using our CubeGen algo-

rithm. However, after the Reduce phase, a Refresh phase is triggered and used to

cache the reducer output data, the view V to the local store.

For instance, Figure 4.6 (a) shows an example of initial cube materialization in-

dicating a partial computation for the cuboid A for a SUM measure. In this job, V

(< a1, 17 > and < a2, 16 >) is cached to the local store in the node running reducer 0 in

the Refresh phase. The scheduling information is also recorded so that it can be used

during view updates.

When ∆D is added, HaCube can conduct both the propagate and refresh steps in
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one view update job. Since V is already cached in the reducer node, this job executes

in a MRR computation paradigm where MR (Map-Reduce) phases obtain ∆V based on

∆D (propagate step) and the Refresh phase merges ∆V with V locally (refresh step).

Specifically, it runs the CubeGen algorithm on ∆D using the same scheduling plan as

the initial job.

For instance, the data partitions ∆P0 0 and ∆P0 1 are shuffled to the same processing

node with reducer 0 as shown in Figure 4.6 (b). The ∆V is obtained via the Reduce

phase.

Following the Reduce phase, a Refresh phase is invoked to refresh the view by

merging V and ∆V locally. Since the intermediate data is sorted, the cached V is also

in sorted order. Likewise, the ∆V tuples are also output in sorted order, thus can be

efficiently merged with the cached V to update the view. V is read sequentially chunk-

by-chunk into the memory for the merging process. Thus, once the HaCube collector

receives one ∆V tuple d, d searches for the right position to insert (if d does not exist in

V) into or merge (if d already exists in V) with V. We note that normally the merging

operation can be done using the same measure operator. Once a chunk of V is searched

to the end, the next chunk of V will be read into memory until the whole V has been

merged. Meanwhile, the cached view in the local store will be updated with the updated

one.

For instance, in Figure 4.6 (b), the Reduce phase calculates the ∆V (< a1, 2 > and

< a2, 4 >) according to the ∆D. In the Refresh phase, the updated view (< a1, 23 >

and < a2, 20 >) is obtained by merging the old view V (< a1, 17 > and < a2, 16 >)

cached in the local store and the ∆V, and is then updated to local store as well.

In this mechanism, the entire refresh step only needs to locally read the old view V

once instead of being reloaded from the DFS and shuffled to reducers. Thus, HaCube

significantly reduces the view maintenance overhead for distributive measures.
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4.6 Other Issues

4.6.1 Fault Tolerance

Since HaCube is built on the MR framework, it preserves the fault-tolerance mech-

anisms of the MR framework. For instance, the data is replicated in DFS and thus is safe

when nodes fail. When a map task fails, the framework schedules the task on another

free mapper in the system instead of restarting the whole job.

In addition, we provide an additional fault tolerance strategy to guarantee data avail-

ability in the reducer nodes in HaCube. The caching mechanism plays an important role

in improving the efficiency of data cube analysis. It is important to make sure that the

cached data in the reducer node is accessible when a subsequent job arrives. We handle

two kinds of failures in the reducer nodes, including the recoverable and the unrecover-

able reducer failures.

Recoverable Failures: Recoverable reducer failures include the task failure and re-

ducer node failure. These failures can be recovered once the corresponding failed task

or node is restarted. When the task fails in the reducer node, the scheduler kills the task

and reschedules it. If the job does not need to use the data in the local store, it will be

scheduled to any reducer node. Otherwise, it is scheduled to the same node for data

locality. The local store is in a persistent local file system on the reducer node. Thus,

after restarting this task, the data is still readable. Similar to the reduce task failure, if

the reducer node fails, the data is still accessible after the node is restarted.

Unrecoverable Failures: Unrecoverable reducer node failures happen when the re-

ducer node is totally corrupted and not usable at all. In this case, the data in the local

store will be lost. To handle this failure, alternative recovery strategies can be adopted

for incremental computation and recomputation.

For incremental computation, recovery is straightforward. This is because the views
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from previous jobs cached at the local store are also stored in the DFS. Thus, when the

reducer node is corrupted, the views can be easily recovered from the DFS.

Under recomputation, the local store caches the sorted intermediate reduce input data

from the merge phase. To handle node failures, HaCube adopts a lazy checkpointing

strategy - a snapshot of the local store is stored to the DFS periodically. For cube anal-

ysis, if we make a snapshot of the cached data after each view update, it provides the

fastest recovery. This is to ensure that data can be directly recovered from the previous

view update stage. However, it is costly to perform checkpointing for each update.

On the other hand, if no snapshots are taken, once a node fails, we have to recompute

it from scratch which is also computationally expensive. Instead, we advocate an inter-

mediate solution that takes a snapshot after every s view updates where s can be set by

the users according to the view update and computer failure frequencies in their cluster.

With such a lazy checkpointing scheme, if a failure happens, the system can recover by

using the most recent snapshot and the new delta data added after the last checkpointing.

Thus, HaCube only needs to store the latest snapshot and the data after the snapshot

instead of storing all the base data from the beginning.

4.6.2 Storage Cost Discussion

We argue that HaCube’s storage costs are acceptable.

• First, we can also reduce the number of replicas stored in the DFS accordingly. The

data cached in the local store can essentially be viewed as one replicated dataset.

• Second, HaCube only needs to cache one copy of the dataset for different mea-

sures in each computation model. Recall that all the measures can be processed

together. Thus, for all measures issuing recomputation, the cached sorted raw data

is able to serve all of them. For all measures issuing incremental computation, the
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cached view data can be stored together to reduce storage overhead. For instance,

assume that both SUM and MAX need to be calculated, we can store these two

views together in the format of <dimension attributes, SUM, MAX> instead of

maintaining them independently.

4.7 Performance Evaluation

Algorithm 4.3: A Naive Algorithm
Function: Map(t)1

# t is the tuple value from the raw data2

# Ci is the cuboid in the cube lattice3

k ⇐ get dimension attributes in Ci from t4

v ⇐ get measure attribute from t5

emit(k,v)6

Function: Reduce(k, {v1, v2, ..., vm})7

# m is the measure function8

emit(k,m(v1, v2, ..., vm))9

We implement HaCube by modifying Hadoop. We evaluate HaCube on the Longhorn

Hadoop cluster with 40 nodes in TACC (Texas Advanced Computing Center) [4]. Each

node consists of 2 Intel Nehalem quad-core processors (8 cores) and 48GB memory.

We perform our studies on the classical dataset generated by TPC-D benchmark gen-

erators [5]. The TPC-D benchmark offers a rich environment representative of many

decision support systems. We study the cube views on the fact table, lineitem, in

the TPC-D benchmark. We use the attributes l partkey, l orderkey, l s uppkey and

l shipdate as the dimension attributes and the l quantity as the measure attribute. We

choose MEDIAN and SUM as the representative functions for non-distributive and dis-

tributive measures respectively. We report the result based on the average execution time

of three runs in each experiment.
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4.7.1 Cube Materialization Evaluation

Baseline Algorithms

As argued in [54], existing parallel algorithms (like BPP and PT [57]) for cube com-

putation are designed for small PC clusters and are unable to take advantage of the MR

infrastructure. Therefore, we will not consider these algorithms here. Instead, we choose

two alternative algorithms which are widely used in MR as the baseline algorithms to

evaluate data reading and shuffling gains in our CubeGen algorithm.

A Naive Algorithm: As mentioned in Section 4.4, the most straightforward way to

materialize all cuboids, denoted as MulR MulS (short for multiple read and multiple

shuffle) is to compute one cuboid in a MR job at a time.

Algorithm 4.3 shows the pseudo code of MulR MulS. Given base data D and cuboid

Ci, assume that the intermediate data emitted from the Map phase is Di including the

projected dimension attributes and measure attribute in Ci. The read and shuffle overhead

in Ci is Read(D)+Shuffle(Di). Thus, the total read and shuffle overhead of processing

the entire cube is as follows:

∑2n

i=1Cost(Ci) = 2n ∗Read(D) +
∑2n

i=1 Shuffle(Di).

This baseline algorithm is chosen to study the benefit of removing multiple data read

overheads by performing the materialization in one MR job.

A Non-batching Algorithm: We also develop another possible materialization so-

lution, SingR MulS ( short for single read and multiple shuffle). SingR MulS dif-

fers CubeGen by not batching the cuboids. In other words, the mapper emits each

(key,value) pair for one cuboid and each cuboid is shuffled and processed independently.

Note that we adapt our proposed load balancing approach to this algorithm as well to

improve its performance.

Algorithm 4.4 provides the pseudo code of SingR MulS. The total read and shuffle
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Algorithm 4.4: A Non-batching Algorithm
Function: Map(t)1

# t is the tuple value from the raw data2

for Each cuboid Ci in the cube lattice do3

ki ⇐ get dimension attributes in Ci from t4

vi ⇐ get measure attribute from t5

emit(ki, vi)6

Function: Partitioning(ki, vi)7

Let Ri be the number of reducers assigned for Ci8

Let Si be
∑i−1

j=0Rj9

Let attr be the partition attributes in Ci10

return Si + hash(attr, Ri)11

Function: Reduce(k, {v1, v2, ..., vm})12

# m is the measure function13

emit(k,m(v1, v2, ..., vm))14

overhead of completing the entire cube is as follows:

Read(D) +
∑2n

i=1 Shuffle(Di).

The purpose of this baseline algorithm is to study the benefit of sharing the shuffle

and computation through batching cuboids.

4.7.2 Cube Materialization Evaluation

The following set of experiments are conducted on a 35-node cluster. We vary the

data size from 600M (Million) to 2.4B (Billion) tuples.

Efficiency Evaluation

We first evaluate the performance improvement of the CubeGen algorithm over the

two baseline algorithms for initial cube materialization. We study two versions of the

CubeGen algorithm where CubeGen Cache caches the data and CubeGen NoCache

does not. This provides insights into the overhead of caching the data at the local store.
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Figure 4.7: CubeGen Performance Evaluation for Cube Materialization

Figures 4.7 (a) and (b) show the execution time of all four algorithms for ME-

DIAN and SUM operations respectively. As expected, for both MEDIAN and SUM,

our CubeGen-based algorithms outperform SingR MulS and MulR MulS by a big

margin. MulR MulS performs worse than SingR MulS since it needs to read the base

data multiple times and process each cuboid independently in multiple jobs.

The results show that CubeGen NoCache outperforms SingR MulS by almost

50%. We observe that SingR MulS incurs high shuffling cost and processing time in

the map phase. This is because it generates a much larger number of intermediate data

than CubeGen which incurs significant overhead of sorting as well as shuffling. The

results show that our proposed CubeGen-based schemes are much more efficient as

they read the data once and optimize the processing of cuboids by batching them.

Impact of Caching Data

Figure 4.7 (a) and (b) also depict the impact of caching data. For MEDIAN, CubeGen

Cache caches the reduce input data at the local store. From the result, we can see that

the execution time of CubeGen Cache is almost the same as CubeGen NoCache as

shown in Figure 4.7 (a). This confirms that our optimization to cache the data through

file registration instead of actual data movement does not cause much overhead.
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For SUM, we observe that CubeGen Cache performs worse than CubeGen No-

Cache. This is not surprising as the former needs to write an extra view to the local file

system. However, even though CubeGen Cache incurs around 16% overhead to cache

the view, as we will see in Section 4.7.3, it is superior to CubeGen NoCache when it

comes to view updates.
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Figure 4.8: The load balancing on 280 reducers

Load Balancing

We next show how the LBCCC load balancing scheme works. The CCC learning

job is conducted using 2 machines and 1GB testing data generated by the benchmark

generator. Then each reducer execution time is recorded to generate a load balancing

plan for the Cube-Gen algorithm.

We observe that the LBCCC scheme is able to balance the load very well in CubeGen.

Figure 4.8 shows the load situation at each reducer when CubeGen NoCache processes

1.2B tuples. We record the Reduce phase execution time of each reducer among all the

280 reducers. We find that 95% of the reducers complete their processing within a 10-

second difference in execution time.

For the remaining 5% of the reducers, as shown in the tail part of the execution

time line in Figure 4.8, they take 35 seconds more or less than the others. This may be
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caused by the dimension data hash code skew. We find out that reducers 211 to 280 are

assigned to process the same batch. Recall that within these 69 reducers, the data is hash

partitioned to each reducer. Thus, if the hash codes of partition attributes are skewed,

some reducers will get more data than others. However, we can see that the average

execution time of these 69 reducers is almost the same as the others which confirms that

our LBCCC does provide each batch the right number of computation resources. One

possible solution to handle this skew challenge is to adopt the partitioning mechanisms

such as range partitioning to better allocate the data evenly.

Impact of Number of Dimensions

We further analyze the impact for cube materialization while varying the number of

dimensions from 3 to 5. Our current dataset has 4 dimensions: l partkey, l orderkey,

l s uppkey and l shipdate. To generate a 3-dimension dataset, we generate the data by

removing the l shipdate from current dataset. While for the 5-dimension dataset, we

generate the data by adding another dimension, l receiptdate to current dataset.

Figure 4.9 shows the execution time of SingR MulS and CubeGen NoCache

for SUM on 1.2B tuples. Not surprisingly, increasing the number of dimensions in-

creases the cube building time. The results show that CubeGen NoCache outperforms
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SingR MulS in all these three cases.
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Figure 4.10: HaCube View Maintenance Efficiency Evaluation

4.7.3 View Maintenance Evaluation

Efficiency Evaluation

We next study the efficiency of performing the view maintenance in HaCube com-

pared with the Hadoop MR framework. We fix D with 2.4B tuples in the initial cube

materialization and vary the size of ∆D from 5% to 100% of D for view updates on a

35-node cluster.

Figure 4.10 (a) shows the execution time for both the initial cube materialization

(Ini Cube) and the view updates (View Update) time for MEDIAN. In this set of

experiments, we adopt recomputation for view updates of MEDIAN under MR (Re MR)

and HaCube (Re HC). From the results, it is clear that HaCube is superior over MR in

terms of view updates. When ∆D is 5%, Re HC takes 45% execution time of Re MR.

Even when ∆D is 100%, Re HC is 37% faster than Re MR. The gains come from avoid-

ing reloading and reshuffling D among the cluster. Thus, the larger D is, the bigger the

benefit will be.
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Figure 4.10 (b) depicts the results for SUM. Since view maintenance for distributive

measures can either be done by incremental computation or recomputation, we adopt

both approaches to update the view. The following notations are used to denote the

respective schemes: In MR and Re MR are MR-based methods using incremental com-

putation and recomputation respectively, and In HC and Re HC are the corresponding

schemes under HaCube.

In MR and Re MR are implemented in the way described in Section 4.5.1. In In MR,

Delta Cube (in the figure) corresponds to the propagate job to generate the delta view

and View Update (in the figure) is the refresh job. We observe that for both incremen-

tal computation and recomputation, HaCube outperforms MR. The result shows that,

for view maintenance cost, In HC achieves 65% and 55% execution time savings for

∆D size in 5% and 100% compared to In MR. Re HC outperforms Re MR in a simi-

lar level as the recomputation for MEDIAN. We observe that incremental computation

performs worse than recomputation in both MR and HaCube. While this seems counter-

intuitive, our investigation reveals that DFS does not provide indexing support; as such,

in incremental computation, the entire view which is much larger than the base data (in

our experiments) has to be accessed.

As future work, we will integrate indexing techniques into HaCube so that view

update only needs to visit the tuples which are changed to improve the performance

further for incremental computation. The results also demonstrate that the smaller the

∆D is, the more effective is the HaCube paradigm.

Impact of Parallelism

We further analyze the impact of parallelism on HaCube for both cube materializa-

tion and view update while varying the number of computation resources from 10 nodes

to 40 nodes. The experiments are conducted on a D with 1.8M tuples and a ∆D which
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Figure 4.11: Impact of Parallelism for View Maintenance

is 20% of D.

Figures 4.11 (a) and (b) report the execution time for MEDIAN and SUM. In this

experiment, incremental computation is used for view updates of SUM. We observe that

for both recomputation and incremental computation, HaCube scales linearly on the

testing data set from 10 to 20 nodes, where the execution time almost reduces to half

when the resources are doubled. Beyond 30 nodes, the benefit of parallelism decreases a

little bit. This is reasonable, since the entire overheads include two parts, the overheads

of the setup and runtime the framework and the overheads of the cube computation, the

first one may reduce the benefits of increasing the computation resources while the latter

one is not big enough.

4.8 Summary

In this chapter, we have investigated the problem of designing a scalable, efficient

and practical data cube analysis system in a distributed environment. We made one step

towards building such a system by extending the MapReduce framework. We have de-

signed and implemented HaCube, an extension of MapReduce, to support data cube

analysis on large-scale data. We showed how to conduct the cube computation by fa-



104

cilitating the sorting feature under MapReduce-like frameworks and how to batch and

minimize the overhead to salvage partial work done for efficient cube materialization.

We also proposed a general and effective load balancing scheme which is able to balance

the load well. We further developed a new computation paradigm in HaCube through

caching/reusing intermediate data for an efficient view maintenance. Experimental re-

sults have demonstrated that HaCube has significant performance improvement over

Hadoop.



CHAPTER 5

GRAPH CUBE ANALYSIS

5.1 Overview

In the previous chapter, we mainly focus on developing techniques for data cube

analysis based on the relational data in the traditional OLAP and data warehousing. In

this chapter, we extend the OLAP cube techniques to a more complicated structured data,

attributed graphs where both vertex and edge are associated with attributes.

The expressive power of attributed graphs makes them attractive in modeling a vari-

ety of information networks, such as the Web, blogs and social networks (e.g. Facebook,

LinkedIn, Twitter) [65]. Attributed graphs model these information networks as follows:

each individual object with its associated information is represented as a vertex with ver-

tex attributes, and the relationships between two objects are captured as edges between

two vertices with associated edge attributes. By analyzing the attributed graph of an in-

formation network, we may acquire accurate and more explicit insight of the real world

and make better decisions.

105
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Example 5.1. Consider a social network which typically contains a wealth of individual

user information (like profile information) and relationship information (like the connec-

tion information between different users). Fig. 5.1 provides a simple attributed graph

that is used to model the information extracted from a social network. Fig. 5.1 (a)

presents the underlying graph structure involving 9 vertices each of which represents

one individual user with a user ID, and 17 edges each of which indicates one relation-

ship between two users. Fig. 5.1 (b) shows a vertex attribute table describing each

individual’s profile information including Gender, Nation and Profession. Fig. 5.1 (c)

shows an edge attribute table describing the relationship information between differ-

ent individuals including the date they connected, their relationship types and strength,

where sV and tV are the two vertex IDs of each edge.

1

2 3 7 8

4 6 9

5

ID Gender Nation Profession

tV Date Type StrengthsV

Figure 5.1: A running example of an attributed graph

The aforementioned information-enhanced attributed graph is a valuable information

resource for information discovery and decision making. We identify several categories

of queries that users may be interested in:

Category 1: Discovering knowledge over the vertex or edge attributes. This cate-

gory involves queries that can be answered from either the vertex attributes or the edge
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attributes. Referring to our running example in Fig. 5.1, sample queries are “What is

the percentage of users among different professions in this network?” and “How many

relationships appeared in 2012?”

Category 2: Integrating knowledge over both the vertex and edge attributes. Queries

in this category require integrating information from both the vertex and edge attributes.

An example query is “What is the trend of the number of relationships appearing between

USA and SG (Singapore) in the last 3 years?”

Category 3: Investigating an aggregated or summarized graph from different gran-

ularities. This category requires to see a coarse-grained graphs based on different di-

mensional spaces. For instance, users may want to see how people connect with each

other from different communities, such as gender group. Such queries are useful when

the base (original source) graphs are too massive for the underlying relationships to be

observed. Instead, the aggregated graphs offer greater ease in discovering the underlying

information.

Now, for large attributed graphs, it is computationally expensive to evaluate these

queries from the base graphs. As such, it is critical to develop better query and decision

making support over attributed graphs. In this work, we adopt a two-pronged approach

to address this challenge. First, we observe that traditional data cubes have been suc-

cessfully deployed to speed up OLAP query processing in RDBMS [31]. However,

traditional data cube model is not applicable to graphs as it does not capture the graph

structures. Thus, we need to design a conceptual graph cube model that supports the

queries in all the three categories. Second, for large attributed graphs, parallelism is an

effective and promising approach to ensure acceptable response time. As such, we seek

to develop parallel algorithms for evaluating queries represented under our graph cube

model.

Recently, numerous distributed graph processing systems have been proposed, such
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as Pregel [48], GraphLab [1], PowerGraph [29]. These systems are vertex-centric and

follow a bulk synchronous parallel model (where vertices send messages to each other

through their connections) tailored for graph processing operators that require iterative

graph traversal, such as page rank, shortest path, bipartite matching, semi-clustering and

so on [48]. As such, they are not suited for our graph query types that aggregate data

over the vertices and edges attributes rather than graph traversal. In fact, adopting these

systems for aggregation operations will incur high overhead for message (carrying the

attributes values) passing across the graph to find the vertices/edges with the same at-

tribute values. As OLAP cube constructions are not iterative operations, the MapReduce

(MR) computation paradigm, which has been successfully demonstrated to be effective

for large graph mining [19][39], turns out to be a better fit [22].

We are thus motivated to develop a new graph OLAP and warehousing model over

attributed graphs as well as to develop an efficient MR-based parallel computation algo-

rithm for the graph cube computation.

Our major contributions are summarized as follows. First, we propose a new con-

ceptual graph cube model, Hyper Graph Cube, to extend decision making services on

attributed graphs. Hyper Graph Cube is able to capture queries of all the aforementioned

three categories into one model. Moreover, the model supports a new set of OLAP Roll-

Up/Drill-Down operations on attributed graphs. Second, we propose several optimiza-

tion techniques to tackle the problem of performing an efficient graph cube computation

under the MR framework. a), our self-contained join strategy can reduce I/O cost. It

is a general join strategy applicable to various applications which need to pass a large

amount of intermediate joined data between multiple MR jobs. b), we combine cuboids

to be processed as a batch so that the intermediate data and computation can be shared.

c), a cost-based optimization scheme is used to further group batches into bags (each

bag is a subset of batches) so that each bag can be processed efficiently using a single
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MR job. d), a MR-based scheme is designed to process a bag. Third, we introduce a

cube materialization approach, MRGraph-Cubing, that employs these techniques to pro-

cess large scale attributed graphs. To the best of our knowledge, this is the first parallel

graph cubing solution over large-scale attributed graphs under the MR-like framework.

Finally, we conduct extensive experimental evaluations based on both real and synthetic

data. The experimental results demonstrate that our parallel Hyper Graph Cube solution

is effective, efficient and scalable.

The rest of this chapter is organized as follows: Section 5.2 presents our Hyper Graph

Cube Model, followed by discussions on the query support and OLAP operations. In

Section 5.3, we introduce a naive MR-based graph cube computation scheme. Section

5.4 provides our proposed scheme. In Section 5.5, we report the experimental results.

Finally, Section 5.6 summarizes this chapter.

5.2 Hyper Graph Cube Model

An attributed graph is able to model various information networks by adding at-

tributes to each vertex and edge. We first provide a formal definition of an attributed

graph.

Definition 5.1. Attributed Graph: An attributed graph, G, is a graph denoted as G=(V,

E, Av, Ae), where V is a set of vertices, E ⊆ V × V is a set of edges, and Av = (Av1, Av2,

..., Avn) is a set of n vertex-specific attributes, i.e. ∀u ∈ V , there is a multidimensional

tuple Av(u) denoted as Av(u) = (Av1(u), Av2(u), ..., Avn(u)), and Ae=(Ae1, Ae2, ..., Aem)

is a set of m edge-specific attributes, i.e. ∀e ∈ E, there is a multidimensional tuple Ae(e)

denoted as Ae(e)= (Ae1(e), Ae2(e), ..., Aem(e)).

To develop graph OLAP and warehousing, we formally define two types of dimen-

sions in attributed graphs as follows:
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Definition 5.2. Vertex Dimensions: With regard to the attributed graph defined in Def-

inition 5.1, the set of n vertex-specific attributes (Av1, Av2, ..., Avn) are called the vertex

dimensions, or V-Dims for short.

Definition 5.3. Edge Dimensions: With regard to the attributed graph defined in Def-

inition 5.1, the set of m edge-specific attributes (Ae1, Ae2, ..., Aem) are called the edge

dimensions, or E-Dims for short.

Take Fig. 5.1 as an example. Fig. 5.1 indicates an attributed graph modeling the user

information in the social network. In this example, each vertex is associated with three

V-Dims (Gender, Nation, Profession) and each edge is associated with three E-Dims

(Date, Type, Strength).

In a graph warehousing context, the graph structure-related characteristics can also be

extracted as the dimensions for analysis. For instance, the vertex degree is an important

graph structure characteristic that indicates the number of friends one individual has

in a social network. Therefore, the vertex degree can be considered as one V-Dim for

materialization which may extend the utility of the graph warehousing to support more

queries.

To support queries in category 1, the data can be aggregated along the V-Dims or

the E-Dims alone while omitting the graph structure. Similar to the philosophy of the

traditional data cubes, a measure can be calculated by aggregating all the data tuples

from the vertex or edge attribute table whose dimensions are of the same values. In

other words, a measure can be calculated as Γv(Gv(v
′)) or Γe(Ge(e

′)), where Gv(v
′) and

Ge(e
′) are the group of vertex or edge tuples with the same dimension values v′ on V-

Dims or e′ on E-Dims, and Γv(·) and Γe(·) are the measures, such as vertex count, edge

count, centrality, degree, diameter etc.

Basically, this is to construct two small cubes along either the V-Dims or the E-Dims.

We refer to the aggregation based on V-Dims or E-Dims as V-Agg or E-Agg respectively.
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For instance, all the V-Aggs and E-Aggs of the given vertex and edge attribute tables in

Fig. 5.1 can be represented as two lattices as shown in the LHS and RHS of Fig. 5.2.

However, to support those queries in categories 2 and 3, the graph can be aggregated

from two aspects: aggregating the vertices along the V-Dims and aggregating the edges

along the E-Dims while maintaining the graph structure. In so doing, the aggregation of

graphs will be an aggregate graph which can be formally defined as follows.

Definition 5.4. Aggregate Graph: Given an attributed graph G=(V, E, Av, Ae) and

a possible vertex aggregation A
′
v=(A

′
v1, A

′
v2, ..., A

′
vn) and a possible edge aggregation

A
′
e=(A

′
e1, A

′
e2, ..., A

′
em) where A

′
vi equals to Avi or * and A

′
ei equals to Aei or *, the

aggregate graph w.r.t. A
′
v and A

′
e is a weighted graph G

′
=(V

′
, E

′
, Wv′ , We′ ) where

• V
′

is a set of condensed vertices each of which is associated with a group of

vertices Gv(v
′
) such that ∀v ∈ V , there exists one and only one v

′ ∈ V
′

such that

A
′
v(v)=A

′
v(v

′
) and v ∈ Gv(v

′
). The weight of v

′
, w(v

′
) = Γv(Gv(v

′
)), where Γv(·)

is an aggregate function based on a group of vertices.

• E
′

is a set of condensed edges each of which is associated with a group of edges

Ge(e
′
) such that ∀e = (u, v) ∈ E, there exists one and only one e

′
= (u

′
, v

′
) ∈ E

′

such that u ∈ Gv(u
′
), v ∈ Gv(v

′
), A

′
e(e) = A

′
e(e

′
) and e ∈ Ge(e

′
). The weight
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Figure 5.3: Aggregate Graphs

of e
′
, w(e

′
)=Γe(Ge(e

′
)), where Γe(·) is an edge aggregate function on a group of

edges.

Note that in this definition, in A
′
v1, A

′
v2, ..., A

′
vn, at least one of the dimensions is not *.

Similarly, at least one of the dimensions in A
′
e is not *.

We refer to such an aggregation based on both vertex and edge dimensions as VE-

Agg. According to Definition 5.4, we also refer to A
′
v and A

′
e as the vertex group-by

dimensions(denoted as VD) and the edge group-by dimensions (denoted as ED) respec-

tively. With regard to our running example in Fig. 5.1, Fig. 5.3 (a) and (b) illustrate two

examples of the aggregate graph based on < {Gender,*,*}, {*,Type,*}> (for simplicity,

we omit * in the rest of this chapter) and <Nation, Date> respectively. In these exam-

ples, COUNT(.) is the measure for both vertex and edge dimensions. In a graph OLAP,

these measures can also be Average Degree, Diameter, Min/Max Degree, Max/Min Cen-

trality, the Most Central Vertex, Containment and so on, besides the traditional measures

like SUM, AVG etc. Note that the measures for vertex and edge can be different.

Figure 5.3 (a) provides a high level aggregate graph which corresponds to the answer

to the example query in category 3. There are two condensed vertices including male and

female in the aggregate graph. The vertices for male and female are weighted as 5 and 4,
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Figure 5.4: The Hyper Graph Cube lattice

since there are 5 males and 4 females in the original graph. The weighted edges indicate

the number of relationships in the original graph. For instance, “Family:3” between male

and female indicates that there are 3 family edges where one vertex is male and another

vertex is female. Fig. 5.3 (b) provides another aggregate graph which can be used to

answer the query mentioned in category 2. The weighted edges between USA and SG

show the trend of the number of relationships between USA and SG from 2010 to 2012.

Now we provide the formal definition of the Hyper Graph Cube.

Definition 5.5. Hyper Graph Cube: Given an attributed graph G=(V, E, Av, Ae) with

n V-Dims and m E-Dims, Hyper Graph Cube constructs 2n+m cuboids to aggregate the

graph based on all possible V-Dims and E-Dims. It consists of three different types of

aggregations: V-Agg represented as < VD, *>, E-Agg represented as <*,ED > and VE-

Agg represented as <VD, ED>. There are 2n-1 V-Agg cuboids and 2m-1 E-Agg cuboids

which are obtained by performing aggregation along either V-Dims or E-Dims. There

are 2n+m -2n-2m+1 VE-Agg cuboids which are obtained by aggregating the graph based

on both V-Dims and E-Dims, each of which is an aggregate graph defined in Definition

5.4. Note that we reserve the cuboid <*,*> as a special cuboid.
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Intuitively, all the cuboids in Hyper Graph Cube can be represented as the Cartesian

product of the V-Agg lattice and the E-Agg lattice. For instance, the hyper cube lattice of

the example graph in Fig. 5.1 includes 64 cuboids represented as the Cartesian product

between V-Agg and E-Agg as shown in Fig. 5.2. Fig. 5.4 shows the expanded lattice

from Fig. 5.2. Considering two cuboids C1=< VD1, ED1 > and C2=< VD2, ED2 >, C1

is an ancestor of C2 (denoted as C1 ≺ C2), if VD1 ⊆ VD2

∧
ED1 ⊆ ED2. Meanwhile,

C2 is the descendant of C1 (denoted as C2 ≻ C1). For instance, <Gender, Type> ≺

<{Gender, Nation}, Type>.

Query Support: Based on the Hyper Graph Cube, queries can be easily supported by

using their corresponding cuboids. For category 1, the queries can be directly answered

by the cuboids in V-Agg or E-Agg. For instance, the query “How many relationships

appeared in 2012?” can be answered by the cuboid <*, Date>. For category 2, the

queries can be answered by the cuboids in VE-Agg. Furthermore, the cuboid <Nation,

Date> in Fig. 5.3 (b) can be used to answer the query mentioned in category 2. In

addition, each complete aggregate graph in VE-Agg captures concisely the answer of

the request in category 3. For instance, Fig. 5.3 (a) provides the high level aggregate

network on <Gender, Type> which is much easier to observe and understand than the

massive original graph, where this relationship is hidden.

Roll-Up/Drill-Down OLAP Operations: Roll-Up/Drill-Down are two of the most

important OLAP operations to generate views in different levels and granularities. In

graph OLAP, each V-Dim or E-Dim may be a dimension associated with a conceptual

hierarchy where the Roll-Up/Drill-Down operation can be performed as well. For in-

stance, the dimensions Birth Place and Time may be associated with a geographic or

time hierarchies respectively as follows:

• Birth Place: City → State → Country→ all

• Time: Month → Year → Decade → all
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The Roll-Up/Drill-Down operations along V-Agg or E-Agg are quite similar to the

traditional OLAP in the literature [16]. We will not discuss them here. We mainly focus

on OLAP operations on the VE-Agg cuboids. Due to the unique feature of VE-Agg,

we introduce four different types of Roll-Up/Drill-Down operations in graph OLAP as

follows:

Vertex-Up: For Vertex-Up, we fix the edge dimension while we roll up along the ver-

tex dimension to aggregate the graph into a more summarized level, such as navigating

the aggregate graph from <City, Year> to <State, Year>.

Edge-Up: For Edge-Up, we fix the vertex dimension while we roll up along the edge

dimension to aggregate the graph into a more summarized level, such as navigating the

aggregate graph from <City, Year> to <City, Decade>.

Vertex-Up-Edge-Up: For Vertex-Up-Edge-Up, we roll up along both the vertex and

edge dimensions to aggregate the graph into a more summarized level, such as navigating

the aggregate graph from <City, Year> to <State, Decade>.

Vertex-Up-Edge-Down: For Vertex-Up-Edge-Down, we roll up along the vertex

dimension and drill down along the edge dimension to aggregate the graph, such as

navigating the aggregate graph from <City, Year> to <State, Month>.

Similarly, we have four corresponding operators - Vertex-Down, Edge-Down, Vertex-

Down-Edge-Down and Vertex-Down-Edge-Up - that operate in the opposite direction.

We note that we can speed up OLAP operations for distributive and algebraic measures

in two ways. First, the Roll-Up/Drill-Down can be conducted based on the intermediate

aggregate graph instead of the base graph. Second, the Roll-Up/Drill-Down operations

based on the closest aggregate graph is more efficient than others. For instance, to get

an aggregate graph based on <Country, Decade>, Roll-Up operation is more efficiently

conducted using the aggregate graph based on <State, Year> than <City, Month>.
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5.3 A Naive MR-based Scheme

We first briefly introduce the computation paradigm of the MR framework. The

computation of MR follows a fixed model with a map phase, followed by a reduce phase.

The map function running on a mapper is used to process (key, value) pairs (k1,v1) of

one input data chunk read from the distributed file system (DFS). After applying the

map function, it then emits a new set of intermediate (k2,v2) pairs. The MR library sorts

and partitions all the intermediate (k,v) pairs based on k. In the reduce phase, the library

merge-sorts all the (k,v) pairs and supplies the globally sorted data to the reduce function

running on a reducer. After the reduce process, the reducer emits new (k3,v3) pairs to

DFS.

Algorithm 5.1: The Naive Cubing MR Job

Function Map()1

# t is a tuple in the data2

If t is a vertex (or an edge or a joined edge) then3

foreach cuboid Ci ∈ V-Agg (or E-Agg or VE-Agg)4

Project Ci’s group-by attributes from t ⇒ k5

Other information ⇒ v;6

emit(k,v);7

Function Reduce( k, v0, v1, ..., vk)8

let M be the measure function9

emit(k, M(v0, v1, ..., vk));10

Under the MR computation model, a naive algorithm may conduct the graph cubing

in two steps. Recall that the vertex and edge attributes are typically stored in two separate

tables in the original data format as shown in Fig. 5.1. Therefore, in the first step, we join

the two tables to obtain a flat table that contains all the dimensions. This join operation

can be performed using one MR job (referred as a Join-Job), and the joined output is

written back to DFS.

The second step conducts the cube computation. One approach is to compute all

the cuboids in one MR job, referred as a Cubing job, where each cuboid is processed
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independently. Obviously, calculating the cuboids in V-Agg and E-Agg based on the

original vertex and edge attribute tables is more suitable than based on the joined data.

Thus, this cubing job can take both original tables and joined data as input. Recall

that each cuboid in the VE-Agg is an aggregate graph as defined in Definition 5.4. To

construct such an aggregate graph, each condensed vertex actually can be calculated

while processing the cuboids in V-Agg since they would group the vertices in the same

way. Thus, we only need to calculate the weighted edges between two condensed vertices

in the aggregate graph based on the joined data. The algorithm is provided in Alg. 5.1.

This naive algorithm extracts, shuffles and processes each cuboid’s group-by attributes

independently.

However, for large attributed graph, such a naive algorithm is expected to perform

poorly for two reasons:

Size of joined data: As one vertex may be associated with multiple edges, the join

output size in the Join-Job can be very large. Assume that the average degree of each

vertex, the size of vertex attribute table and the size of the edge attribute table are d,

|V | and |E| respectively. The size of the output join data from the Join-Job is almost

d ∗ |V |+ |E|.

The large amount of intermediate data: Processing each cuboid independently

may also generate a large amount of intermediate data, since each cuboid needs to extract

its own (k,v) pairs which will incur high overhead.

5.4 MR-based Hyper Graph Cube Computation

In this section, we introduce a scalable MR-based Hyper Graph Cube computation

approach, MRGraph-Cubing to handle the large attributed graphs. We first introduce the

overall process of MRGraph-Cubing: 1) It joins the vertex and attribute tables. For this,
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V_Num E_Num E_StartPos

V1 Attr1 Attr2 Attrn

V2 Attr1 Attr2 Attrn

V1 V2 Attr1 Attr2 Attrm

V1 V3 Attr1 Attr2 Attrm

Header Segment

Node Segment

Edge Segment

Figure 5.5: The self-contained file format

we propose a self-contained join to avoid writing and reloading the joined data to/from

DFS (section 5.4.1); 2) It groups cuboids into batches so that the intermediate data and

computation can be shared. Our cuboids batching scheme identifies the cuboids that

can be batched (section 5.4.2); 3) It further bundles batches into bags so that we can

process each bag in a single MR job (section 5.4.3); 4) To ensure optimal bundling of

batches into bags in (3), we further develop a cost-based execution plan optimizer that

can generate an execution plan to minimize the cube computation time (section 5.4.4).

5.4.1 Self-Contained Join

To reduce the high overhead incurred by the large size of joined data in the first

Join-Job, we propose a self-contained join technique to postpone the join operation to

the map side of the second cubing MR job. In so doing, after the join, the data will

be directly used for graph cube computation and do not need to be written/reloaded via

DFS. However, a self-contained join requires the data in each mapper to contain the

edges and its corresponding vertex information. Thus, instead of running a Join-Job, we

first issue a Blk-Gen MR job to reorganize the original data into a series of self-contained

data files.

In particular, the Blk-Gen job reads both the vertex and edge attribute tables in the

map phase. Then it partitions the edges to different reducers according to its two vertex

IDs. Meanwhile, it also partitions the vertex information to the corresponding reducers
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whose edges contain the same vertex IDs. Note that each vertex is shuffled to multiple

reducers as needed. In the reduce phase, the Blk-Gen job generates a series of self-

contained data blocks and outputs each block as one file whose format is described in

Fig. 5.5. Under this scheme, in each file, the vertex can be shared by multiple edges

instead of being replicated multiple times.

Since MR does not further partition the input file if the file is not bigger than one

block, each self-contained file will be supplied to one mapper directly to perform a join

in the second cubing join.

5.4.2 Cuboids Batching

To build a graph cube, computing each cuboid independently is clearly inefficient. A

more efficient solution, which we advocate, is to combine cuboids into batches so that

intermediate data and computation can be shared and salvaged.

For the scheme to be effective, we first identify the cuboids that can be combined

and batched together. In this work, we assume that we are materializing the complete

cube. Our scheme can be easily generalized to materialize a partial cube (compute only

selected cuboids).

Recall that there are three different types of cuboids: V-Agg, E-Agg and VE-Agg.

For processing the cuboids in either V-Agg or E-Agg, we can adopt the algorithm which

is proposed in chapter 4. As such, we shall give an overview here as our focus in this

work is on the VE-Agg. The collection V-Agg/E-Agg cuboids can be batched together

under the MR framework if they satisfy the following combine criterion:

Criterion 5.1. Among the multiple V-Agg or E-Agg cuboids, any two of them have the

ancestor/descendant relationship and share the same prefix.

For instance, given three V-Agg C1, C2 and C3, if the vertex group-by dimensions of

them are VD1=A, VD2=AB and VD3=ABC respectively, then C1 ≺ C2 ≺ C3 and they
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share the same prefix with each other. In this given example, these three cuboids can

be combined and processed together to facilitate the MR sorting feature (the framework

sorts all the intermediate (k,v) pairs according to the key) using the approach we pro-

posed as follows: When the mapper reads each tuple, it emits one (k,v) pair to serve

C1,C2 and C3 where VD3 is set as the key and VD1 is used to partition the intermediate

pairs, instead of the emitting three pairs. This would guarantee that the tuples with the

same group-by values of C1, C2 and C3 are shuffled to the same reducer, and thus can be

processed together. More correctness proof and details can be found in chapter 4.

The benefits of this approach are: 1) In the reduce phase, the group-by dimensions are

all in sorted order for every cuboid in the batch, since the framework would sort the data

before supplying to the reduce function. This is an efficient way of cube computation

since it obtains sorting for “free” and no other extra sorting is needed before aggregation.

2) All the ancestor cuboids do not need to shuffle their own intermediate data but use

their descendant’s. This would significantly reduce the intermediate data size, and thus

remove a lot of data sorting/partitioning/shuffling overheads.

Now, combining cuboids in VE-Agg is much more challenging. This is because each

cuboid in VE-Agg is an aggregate graph. The aggregation is performed from both the

V-Dims and E-Dims. We claim that the cuboids in VE-Agg can be batched together

under the MR framework if they satisfy the following combine criterion:

Criterion 5.2. Among the multiple VE-Agg cuboids, any two of them have the ances-

tor/descendant relationship. In addition, the V-Dims between any two of the cuboids

share the same prefix, as well as their E-Dims.

Intuitively, to obtain the aggregate graph of each VE-Agg cuboid, the procedure can

be divided into two parts: 1) In part 1, the vertices with the same V-Dims are grouped

into condensed vertices and each condensed vertex’s weight is computed using the vertex

aggregate measure. 2) In part 2, the edges with the same V-Dims of the two vertices and
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the same E-Dims are grouped into condensed edges weighted using the edge aggregate

measure. As we have mentioned before, the first part can be conducted with the V-Agg

cuboids since they share the same vertex grouping condition. Note that if the measure of

V-Agg is the same as the vertex aggregate measure in the VE-Agg, the result of V-Agg

can be directly used for constructing the VE-Agg. Thus, we focus on introducing the

approach of calculating the weighted edges here.

As an example, suppose we are given three VE-Agg cuboids C1, C2 and C3, where

their vertex group-by dimensions are VD1=A, VD2=AB and VD3=ABC and the edge

group-by dimensions are ED1=E, ED2=EF and ED3=EF respectively, then C1 ≺ C2 ≺

C3 and the V-Dims (as well as the E-Dims) share the same prefix order. In this example,

C1 and C2 can be processed and combined together with C3 into one batch. Note that

calculating the weighted edges is based on the joined edges. Each joined edge e is

a triple-tuple: V-Dims of sV (VD(sV)),the V-Dims of tV (VD(tV)) and E-Dims of e

(ED(e)).

Under the MR framework, C1, C2 and C3 can be processed in one batch as follows:

When one mapper parses one joined edge e, it emits one (k,v) pair to serve C1, C2 and

C3 where the concatenation of VD3(sV), VD3(tV) and ED3(e) (which is ABCABCEF)

as the key. And the concatenation of VD1(sV), VD1(tV) and ED1(e) (which is AAE) is

used to partition the (k,v) pairs. This guarantees that all the edges with the same group-

by values of C1, C2 and C3 are shuffled to the same reducer, thus they can be processed

together.

Now, we formally define two special cuboids within one batch.

Definition 5.6. Descendant Cuboid: Given one batch, if all other cuboids are the ances-

tor cuboids of cuboid A, A is defined as the Descendant Cuboid, denoted as Des Cubd

in one batch. During the cube computation, the aggregation dimensions of A can be

projected as the key to serve all other cuboids within the batch under the MR framework.
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Figure 5.6: The generated batches

Definition 5.7. Partition Cuboid: Given one batch, if cuboid A is the ancestor cuboid

of all others, A is defined as the Partition Cuboid, denoted as Par Cubd in one batch.

During the cube computation, the aggregation dimensions of the A are the ones used to

partition intermediate (k,v) pairs under the MR framework.

For instance, given one batch with three V-Agg cuboids {<A,*>, <AB,*>, <ABC,*>

}, <ABC,*> and <A,*> are called the Des Cubd and Par Cubd respectively. Like-

wise, given one batch with three VE-Agg cuboids {<A,E>, <AB,EF>, <ABC,EF>},

<ABC,EF> and <A,E> are called the Des Cubd and Par Cubd respectively.

Basically, the more cuboids we combine into one batch, the less intermediate data

will be generated and the more computation sharing we can get. Based on the aforemen-

tioned principles, one cuboid can be batched with all its descendant cuboids satisfying

criterion 5.1 or criterion 5.2. Therefore, to generate batches, we first search the cuboids

in V-Agg and E-Agg and generate the batches within V-Agg and E-Agg according to

criterion 5.1. For instance, given the lattice in Fig. 5.2, it generates three batches within

V-Agg and E-Agg as shown in Fig. 5.6 using the dotted lines.

For VE-Agg, the batch plan can be generated by combining the V-Agg batches with

the E-Agg batches. Intuitively, a cartesian product is conducted between the V-Agg

batches and E-Agg batches. Let us still take Fig. 5.2 as an example. The final execution

plan will generate 9 batches whose Des Cubds are <ABC,EFG>, <ABC,FG>, <ABC,



123

GE>, <BC,EFG>, <BC,FG>, <BC, GE>, <CA,EFG>, <CA,FG> and <CA, GE>.

Each batch consists of multiple cuboids. For instance, the batch <ABC, EFG> in-

cludes the 9 cuboids <A,E>, <A,EF>, <A,EFG>, <AB,E>, <AB,EF>, <AB,EFG>,

<ABC,E>, <ABC, EF> and <ABC,EFG>.

5.4.3 Batch Processing

Since processing V-Agg, E-Agg and VE-Agg are all based on different input data,

we propose to process the batches in these three different types separately. The MR-

based algorithm of processing V-Agg and E-Agg is similar to the cube computation in

relational database like what has been proposed in chapter 4. Thus, we omit it here.

As mentioned in section 5.4.2, calculating the condensed vertices can be integrated with

V-Agg. Therefore, in this section, we mainly focus on how the batches in VE-Agg can

be processed to get all the condensed and weighted edges.

Given a computing cluster and a set of batches, there are multiple plans to process

all the batches.

Definition 5.8. Execution Plan: Given a set of batches B={B1, B2, ..., Bx} , the execu-

tion plan is a set of MR jobs p={j0, j1, ..., jk} where ji is in charge of processing one

bag. Each bag consists of one or more batches. The batches processed by ji is denoted as

bag(ji). And p satisfies the following condition: bag(j0)
∩

bag(j1)
∩
....

∩
bag(jk) = ϕ

and bag(j0)
∪

bag(j1)
∪

....
∪
bag(jk) = B.

For instance, two straightforward execution plans are: 1) put each batch into one

independent bag and process each bag using one MR job; 2) put all the batches into one

bag and process this bag using one MR job. The advantage of the second plan is that the

original data only need to be read once. However, each mapper has to replicate and emit

all the intermediate data for all batches which incur high overhead to collect, partition
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and sort them. In contrast, under the first plan, the MR job only needs to emit the data

for one batch resulting in more efficient data collection, partitioning and sorting in the

map phase. However, each job needs to read the original data once, which can be very

costly when the number of jobs is large.

Clearly, there are many other possible plans. We defer the discussion on finding

an optimal execution plan to the next subsection. Here, we shall focus on how a bag

(containing a set of batches) can be processed using a single MR job.

Consider one bag B consisting of x VE-Agg batches {B1, B2, ..., Bx}. Suppose the

number of reducers needed for each batch is R={R1, ..., Rx}, where Ri is the number

of reducers assigned for batch Bi. Alg. 5.2 lists how our proposed MR-based scheme

works.

Map Phase: The input data are the self-contained files output from the first Blk-Gen

job and each file is supplied for one mapper. In the map phase, the mapper first conducts

a join. Basically, it caches the vertex information in memory, as the vertices are supplied

to mappers earlier than the edges (lines 3-4). Note that caching the vertex information

consumes very little memory, since cached information is always smaller than one block

(input file) size. When an edge arrives, it performs a join with the vertex data. Whenever

a joined tuple is produced, it constructs and emits x (k, v) pairs for the x batches in bag

B (lines 5-8). For each batch Bi, the key is set according to its Des Cubd as described

in Section 5.4.2. Assume the Des Cubd in Bi is <VD, ED>, for each joined tuple

e, VD(sV), VD(tV) and ED(e) are extracted and concatenated as the key. Meanwhile,

other measure information can be put to the value. For instance, if the aggregate function

is COUNT(), then 1 can be put into the value.

In order to distinguish which (k,v) pair is for which batch, we append one bitmap to

the value. The size of the bitmap corresponds to the number of batches where the kth bit

is set to 1 if this pair belongs to batch Bk+1.
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Algorithm 5.2: The MRGraph-Cubing Algorithm

Function Map()1

Let t be an input tuple2

If t is a vertex then3

Cache t in memory;4

ElseIf t is an edge then5

t joins vertex ⇒ e6

foreach Bi ∈ B7

extracts k and v from e for Bi and emit(k,v) ;8

Function Partition(k,v)9

b ⇐ get batch number from v;10

Par Cubd ⇐ get partition value from k;11

return
b−1∑
i=1

R(i) + Par Cubd%Rb;12

Function Reduce(k, v0, v1, ..., vk)13

# M ⇐ The measure function14

Bi ⇐ Get batch from the batch identifier15

Ci ⇐ The cuboid in Bi16

For Ci in Bi17

If the group-by cell in Ci receives all tuples it needs18

v ⇐ M(v1, ..., vm, v
′
1, ..., v

′
k, ...)19

emit(k,v);20

Else21

buffer the measure for aggregation22

Function Combine(k, v0, v1, ..., vk)23

# M ⇐ The measure function24

id ⇐ Get batch from identifier25

v ⇐ M(v1, ..., vm, v
′
1, ..., v

′
k, ...)26

v ⇐ v.append(id);27

emit(k,v);28

The partitioning function partitions the intermediate (k,v) pairs to their corresponding

reducers according to the Par Cubd and reducer allocation plan R (lines 9-12).

Reduce Phase: In the reduce phase, all the (k,v) pairs are sorted and grouped based

on the key together. Each reducer obtains its computation tasks (the cuboids in the batch)

by parsing the identifier in the value. For each input tuple, the reduce function extracts

the measure and projects the group-by dimensions for each cuboid in the batch. For the

Des Cubd, the aggregation can be conducted based on each input tuple, since each input

tuple is one complete group-by cell. This case is captured in line 18. For other cuboids,
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the measures of the group-by cell are buffered until the cell receives all the measures

it needs for aggregation (lines 13-22). The aggregation results for different cuboids are

written into different destinations in DFS.

Note that if the (k,v) pairs can be pre-aggregated in the map phase, users can write a

combiner which will reduce the shuffle data size. The combine function is listed in lines

23-28.

Using the Alg. 5.2, multiple batches in one bag can be processed in one MR job.

In next section, we introduce our proposed batch execution optimization technique to

generate the optimal execution bags.

5.4.4 Cost-based Execution Plan Optimization

Definition 5.9. Batch Execution Plan Optimization: Given a computing cluster and x

batches, the batch execution plan optimization problem is to find the best way to bag

the batches such that the generated execution plan (as defined in Definition 5.8) has the

smallest cube materialization time.

Intuitively, the optimizer consists of two key components: a) Plan refinement searches

different execution plans; b) Plan execution time estimation estimates each plan’s exe-

cution time so that the plan with the smallest execution time can be chosen.

Plan Refinement: Given x batches, B : {B1, B2, ..., Bx}, enumerating all the pos-

sible plans is equivalent to computing all partitions from B which has been well studied

in [21]. The total number of partitions is Θ(( x
ln(x)

)x) [21]. Therefore, when x is large, an

exhaustive enumeration is no longer applicable. As such, some heuristic algorithms can

be used to find a suboptimal execution plan.

In this work, we adopt a greedy algorithm that is iterative in nature and follows the

classical local search pattern. Let Pi denote the input execution plan for iteration i.

Initially, P0 corresponds to the case where there are x jobs (i.e., each bag has only one
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Table 5.1: Variables Used in Cost Model
Notations Description

SF Sort factor configured in MR cluster
Sspill Spill size configured in MR cluster
IOlr I/O cost for reading from local disk per MB
IOlw I/O cost for writing from local disk per MB
NW cost for network transfer per MB
IOhr I/O cost for reading from DFS per MB
IOhw I/O cost for writing to DFS per MB

batch). Intuitively, the algorithm works as follows: In (i+1)th iteration, it evaluates all the

plans obtained by bundling any two jobs in Pi together and finds the best plan as Pi+1. If

Pi+1 is better than Pi (based on a cost model to be discussed shortly), Pi+1 is passed on to

the next search iteration. If Pi+1 is worse than Pi or Pi contains one job with all batches,

the algorithm terminates. And Pi is chosen as the final execution plan. In the worst case,

this algorithm needs to enumerate (x2)+(
x−1
2 )...+(22) possible plans, which is bounded in

O(x3) time, where (i2) is the number of plans to evaluate in the (x− i+ 1)th iteration.

In practice, this plan enumeration time is acceptable during the cube computation.

Plan Execution Time Estimation: Before introducing how to evaluate each plan’s

execution time, we first provide a cost model which is used to estimate the execution time

of each mapper and reducer in one job. The cost model is aware of the cluster hardware,

MR configurations, input file and the batches it needs to process. For simplicity, we

assume no compression is adopted during the processing. In addition, considering that

the I/O cost dominates performance, for simplicity, we omit the CPU cost in the model.

Table 5.1 lists the variables related to the MR cluster.

Assume one MR job needs to process one bag with y batches {B1, B2, ..., By} and

m input files. The set of reducers to process Bi is Ri. In addition, We refer to Si as the

input file size for mapper Mi, Cij as the jth cuboid in batch Bi, CRi as the combine ratio

of batch Bi in the map phase, CRij as the combine ratio for Cij in the reduce phase, Pi

as the project ratio for Bi and Pij as the project ratio for Cij . Here, the combine (resp.
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project) ratio indicates the percentage of data that remains after combine/aggregate (resp.

project) operations. If no combiner is used, then the batch combine ratio CRi equals to

1.

For the map phase, we refer to Mc =
∑i=y

i=1(Si · Pi) as the size of (k,v) pairs for

all batches after projection, Ns = ⌈ Mc

Sspill
⌉ as the number of spills created in spill phase,

Nm = ⌈logSFNs⌉ as the number of merge passes, Mo =
∑i=y

i=1(Si · Pi · CRi) as the

intermediate map output data after combining.

The total cost of mapper Mi is calculated as follows:

Si · IOhr +Mo ·Nm(IOlr + IOlw) (5.1)

where Si · IOhr is the cost for reading the input file from DFS; Mo · Nm(IOlr + IOlw)

is the local I/O cost for sorting and partitioning the intermediate data.

For the reduce phase, we refer to Rij as the jth reducer processing Bi, Rnp =

⌈logSFm⌉ as the number of merge passes on Rij , Rin=
∑k=m

k=1 (Sk·Pi·CRi)

|Ri| as the input size

for Rij and Sf=
∑

Cij∈Bi
(Rin · CRij · Pij) as the final output view size in Rij .

The total cost of the reducer Rij is calculated as follows:

Rin ·NW +Rin ·Rnp · (IOlr + IOlw) + Sf · IOhw (5.2)

where Rin·NW is the cost for shuffling data from mappers to Rij; Rin·Rnp·(IOlr+IOlw)

is the cost for the merge sort, and Sf · IOhw is the cost for writing the aggregate results

to DFS.

Given a cluster, all the variables in Table I can be predetermined. Meanwhile, each

input file size for each mapper can be easily obtained from DFS. The only parameters

that we need to dynamically collect w.r.t. different datasets for the model are the combine

ratio and project ratio for each batch and cuboid. To collect this information, a “mini”
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cubing is performed based on a small set of sampling data in memory in each reducer

during the Blk-Gen job. The project ratio is related to the dimension size, thus it is

easy to obtain. The batch combine ratio CRi (resp. cuboid combine ratio CRij) can

be obtained by recording the percentage of data in Bi (resp. Cij) that remains after

applying the combine (resp. aggregate) function. Since the data is already in memory,

this graph information collection is, as we shall see in our experimental results in section

5.5, efficient. The average value among these reducers can be input to the model for

planning. We note that this cost model may not provide an accurate estimation. Instead,

this is an approximate approach to evaluate the relative cost. The intuition is to avoid

bad plans. We emphasize that our scheme is not restricted to this specific model; instead,

other cost models can also be used.

Given one execution plan p={j0, j1, ..., jk}, assume that the execution time of each

mapper and reducer has been obtained by the cost model for each job ji. Estimating

the execution time of multiple jobs is still non-trivial under the MR framework. A very

straightforward approach is to estimate p’s execution time T(p) simply as the sum of

each job ji’s execution time T(ji) as follows: T (p) =
k∑

i=1

T (ji).

However, we claim that this naive approach is not accurate, since it omits the context

of cluster resource and MR scheduling strategy. For instance, assume the number of

mappers and reducers one cluster can run simultaneously is larger than the total number

of mappers and reducers that j1 and j2 need, the execution time of running j1 and j2 will

be MAX(T (j1), T (j2)) instead of T (j1) + T (j2).

In this work, we propose a worker fitting model to precisely estimate multiple jobs

execution time which tightly simulates the scheduling mechanism in the MR framework.

We choose the FIFO scheduler as our illustration example in this section. According to

the MR framework, when multiple MR jobs are submitted, it maintains a map task and

a reduce task queues separately. The map and reduce tasks of the first received job are
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Figure 5.7: The worker fitting model for multiple jobs execution

maintained in the head of the queues. When the cluster has any free slot (mappers or

reducers), it schedules the next unprocessed task in the corresponding queue for pro-

cessing.

Based on this fact, the work fitting model simulates the MR scheduling process as

follows: We illustrate it through an example as shown in Fig. 5.7. Intuitively, the map-

pers and reducers that the cluster supports are considered as map workers and reduce

workers which are used to consume the map and reduce tasks. As in Fig. 5.7, there are

w map workers and w reduce workers. For a given plan p, k MR jobs are submitted to

the cluster.

In Fig. 5.7, the example contains m mappers (as there are m input files) and r reduc-

ers. Using the cost model, the optimizer estimates the execution time of each mapper and

reducer. For instance, in job j1, T11 is the time needed to process the first input file and

T ′
11 is the time needed to process a reduce task. The model captures the slowest reducer

finishing time as the plan’s execution time.

With a FIFO scheduler, the map tasks in j1 are assigned to the map workers first,
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then the ones in j2, j3 and so on. The strategy of task fitting is to assign the map task to

the worker with the “cheapest” map tasks. Here, by “cheapest”, it means a smaller SUM

value of each map’s execution time one worker gets. For instance, as in Fig. 5.7, T1w+1

is assigned to MWw since MWw gets the smallest task from the first round.

On the other hand, the reduce tasks can only be scheduled to shuffle data when some

of the mappers in the same MR job have finished. For simplicity, we assume the reduce

task in one job starts when all map tasks finish. The optimizer starts to fit the reduce

task to the reduce workers using the same task fitting strategy at the time point when

the slowest map task finishes and there are “free” reduce workers. Here, free reduce

workers means they have finished processing the last assigned reduce task. Otherwise,

the reduce task has to wait to be scheduled. For instance, in Fig. 5.7, the slowest map

task in j1 finishes at time point T1. Then the reduce tasks in j1 start to be fitted to the

reduce workers. At time point T2, all the map tasks in jk are finished, and then the reduce

tasks in jk can be scheduled. At time point T3, all the jobs finish.

We emphasize that this technique is applicable to different schedulers, such as the fair

scheduler or the capacity scheduler. With different schedulers, the task queue may be in

a different order but still under the same methodology. With this cost-based multiple

jobs execution estimation, the optimizer is able to identify the best plan to conduct the

graph cube computation.

5.5 Experiment

We conduct the experimental evaluation on our local cluster with 128 nodes. Each

node consists of a X3430 4(4) @ 2.4GHZ CPU running Centos 5.4 with 8GB memory

and 2X 500GB SATA disks. Our evaluation is based on Hadoop [2], an open source

equivalent implementation of MR. The detail configuration of the cluster is provided in
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Table 5.2: Cluster configuration
Parameter Value

Hadoop Version Hadoop-1.1.1
Mappers per Node 2
Reducers per Node 2
Replication Factor 3

io.sort.fact 20
JVM Size per Task 2GB
Size of Data Chunk 256MB

Default Node Number 64

Table 5.2.

We perform our experimental studies on two kinds of datasets including one real

Facebook dataset and a set of synthetic datasets.

Facebook Dataset. This dataset contains a sampled Facebook data collected in April-

May 2009 [40]. In the dataset, each vertex is one Facebook user and each edge indicates

the relationship between two users. We further extract four dimensions for each vertex:

TotalFriends, School, Region and Affiliation. And we extract one dimension for each

edge: Type with three different values (Schoolmates, Colleagues and Friends). This

dataset includes 957,359 vertices and 4.5 million edges.

Synthetic Dataset. For synthetic data, we use SNAP to generate the underlying graph

structure without dimensions [3]. Since SNAP is slow in generating large attributed

graphs, we develop a MR-based parallel synthetic attributed graph generator to add di-

mensions to each vertex and edge in parallel to the graph structure generated by SNAP.

5.5.1 Effectiveness

We first show the effectiveness of Hyper Graph Cube as a powerful decision making

tool over the Facebook data. We present some interesting findings by issuing OLAP

queries.

First, we want to identify the communities of active users in Facebook. Note that
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Figure 5.8: OLAP query on V-Agg Cuboids

we classify the number of total friends into three categories: small (the number of

friends is less than 150 friends), middle (between 150 to 800) and large (larger than

800). Then based on the V-Agg cuboid < {Region,TotalFriends}, ∗ >, < {School,

TotalFriends}, ∗ > and < {Affiliation, TotalFriends}, ∗ >, we can easily obtain the top

5 communities which has the largest number of people in each category as shown in Fig.

5.8. We can see that “Teach for America”, “Texas A&M University” and “New York,

NY” have the largest number of people with more than 800 friends on Facebook. The

result also indicates that “New York” belongs to the top 5 in each category which shows

that people living in New York are very active in Facebook.

Next, we investigate how people are connected with each other between the cities in

California: LA (Los Angles), OC (Orange City), SFO (San Francisco) and SV (Silicon

Valley). We perform such a query based on the VE-Agg cuboid <Region, Type>. Fig.

5.9 provides an aggregate graph which gives us a much simpler and clearer picture of the

original Fackbook data. We observe that there are only 4 cross-city colleague relation-
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Figure 5.9: OLAP query on VE-Agg cuboid <Region, Type>

ships (denoted as C:4 in the figure) between SV and SFO. Such a relationship suggests

that some companies may be operating in these two cities. By drilling down, we dis-

cover that three of the relationships were built among the people working in Tellme Inc.

which is a big company operating in both cities. Another observation is that cross-city

schoolmate relationships (denoted as S:21) appear the most between LA and OC. Our

drill-down operation allows us to figure out that these belong to the Universities in Cali-

fornia like UCLA. From the results, it is clear that our Hyper Graph Cube model offers

an effective mechanism to study and explore the characteristics of large graphs.
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Figure 5.10: Evaluation for self-contained join

For the following experiments, we use the synthetic dataset. Each graph contains 3

V-Dims and 3 E-Dims. By default, the average size of each V-Dim or E-Dim is 7 bytes.

Meanwhile, we choose COUNT(· ) as the measure function for both the vertex and edge
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aggregation. Note that if a graph contains N edges with degree K, there will be N*2/K

vertices in the graph.

5.5.2 Self-Contained Join Optimization

In this experiment, we compare the proposed self-contained join optimization with

the naive approach. For our proposed self-contained join optimization, we have two

MR jobs: blk-gen job which reads the vertex and edge attribute tables and generates

a series of self-contained files, and map-join job which reads the self-contained files,

conducts the map side join and ends after the join operation in the map phase. For the

naive approach, we also have two MR jobs: VE-join job which joins the vertex with edge

attribute tables, and VE-parse job which reads the joined data and ends when it finishes

parsing each joined data in the map phase.

Figure 5.10 (a) shows the performance comparison on datasets with 200 Million(M)

vertices when we vary the graph degree from 10 to 100. From the results, we can see

that our optimization performs, on average, 30% faster than the naive scheme.

Figure 5.10 (b) provides the comparison results by using the graphs with 200M ver-

tices and with degree 40 when we vary the average size of each V-Dim from 10 bytes to

50 bytes. The results indicate that our scheme has an average performance improvement

of 21% over the naive scheme as well.

The insights we gain are: 1) The self-contained join is superior over the naive join

strategy over all the evaluated datasets; 2) The performance gain is more significant when

the graph degree is high and the vertex attribute is large.

5.5.3 Cuboids Batching Optimization

Next, we study the benefit of our proposed cuboid batching optimization. We im-

plement four algorithms. The first two are the baselines without batching the cuboids:
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Figure 5.11: Evaluation for batch processing

single-C-per-job (computes each cuboid independently in one MR job) and all-Cs-one-

job (computes all cuboids in one MR job). The next two are with our batching opti-

mization: 1) single-B-per-job (compute each batch in one MR job) and all-Bs-one-job

(compute all batches in one MR job).

Figure 5.11 (a) provides the comparison results based on the datasets with 600M

edges and with degree 60 when we vary the average combine ratio of the graph. The

results indicate that the algorithms with batching optimization are 2.5X and 4X faster

than single-C-per-job and all-Cs-one-job respectively. Meanwhile, we observe that the

larger the intermediate data (with a bigger combine ratio) are, the higher the performance

gain by the batching optimization.

5.5.4 Batch Execution Plan Optimization

We next evaluate the proposed batch execution plan optimizer. We compare the

performance between the plan (optimized plan) generated by the optimizer with two

basic plans: single-B-per-job and all-Bs-one-job. Fig. 5.11 (b) shows the results on the

datasets with 600M edges with degree 60 while varying the combine ratio from 0.01 to

0.87. The execution time is the complete graph materialization time including the first

Blk-Gen job. For the optimized plan approach, the graph information is collected by

sampling 1% tuples in the memory in the Blk-Gen job.
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The results show that the execution time of the optimized plan and all-Bs-one-job is

much shorter than single-B-per-job when the combine ratio is low. When the combine

ratio equals to 0.01, the optimized plan is the same as the all-Bs-one-job. This is rea-

sonable, since when the map output size is small, combining all batches in one job is

less costly. It also shows that the optimizer can generate much better plan than the two

basic ones when combine ratio increases. From this experiment, we gather the following

insights: 1) The in-memory graph information collection for cost model incurs very low

overhead; 2) The optimizer is able to find reasonable execution plan in all cases even

with a simple sampling approach.
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Figure 5.12: Evaluation of the plan optimizer and scalability

5.5.5 Scalability

Finally, we evaluate the scalability of our MRGraph-Cubing approach from two dif-

ferent angles. The first set of experiments studies the scalability of the scheme with

respect to the size of the datasets. Fig. 5.12 (a) shows the execution time of cube com-

putation on the datasets with degree 60 when we vary the number of edges from 120M

to 750M. We observe that when the dataset is 1.5X bigger, the execution time becomes

almost 1.5X slower. This indicates the algorithm scales well in terms of dataset size.

The second set of experiments aims at studying the impact of parallelism. Fig. 5.12

(b) provides the execution times of cube materialization on a dataset with 750M vertices
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with degree 60 when we vary the cluster size from 16 to 128 nodes. The results indicate

that when the computation power is doubled, the execution time almost reduces to half

from 16 to 64 nodes. This confirms that the algorithm scales linearly up to 64 nodes.

Beyond 64 nodes, the benefit of parallelism decreases a little. This is reasonable since

the MR framework setup time may reduce the benefits of increasing the computation

resources when the cube computation time is not long enough.

5.6 Summary

In this work, we extended the OLAP techniques to attributed graphs towards a better

query and decision making support. To support graph OLAP, we proposed a new con-

ceptual graph cube model-Hyper Graph Cube. It is an effective approach to aggregate

the graphs for users to better understand the characteristics of the underlying massive

graphs from different granularities and levels. In addition, we also provided, to the best

of our knowledge, the first parallel MapReduce-based graph cube computation solution

over large-scale attributed graphs with various optimization techniques. Experimental

results showed that the optimizations perform at least 2.5X to 4X faster than the naive

approach.



CHAPTER 6

CONCLUSION AND FUTURE WORK

Analyzing large-scale data has become one of the main challenges in various enter-

prises. The size of data in many of today’s applications has been dramatically increasing,

such as scientific data, financial data and social network data etc. These data resources

contain a wealth of information that is of benefit to different communities. A better

understanding of them may help us have a better insight of the world, better target mar-

keting campaigns and provide a better decision making support in industries. However,

due to the increasing size of data, analyzing these data becomes quite difficult as well.

In this thesis, we have categorized the big data analysis into two types (computation

intensive and data intensive) and proposed new scalable, efficient and practical parallel

data processing algorithms, frameworks and systems based on the MapReduce com-

putation paradigm. We tackled the problem by studying two types of data analyses:

Combinatorial Statistical Analysis (CSA, as an representative example of computation

intensive analysis to finding the significant associations that is measured by statistical

methods) and OLAP cubes analysis (as an representative example of data intensive anal-

139
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ysis to materialize the data in support of decision making in traditional data warehousing

over relational data and graph warehousing over attributed graphs).

6.1 Thesis Contributions

Our first contribution is to introduce a generic MapReduce-based CSA framework:

COSAC-COmbinatorial Statistical Analysis on Cloud platforms. In particular, we pro-

posed an efficient and flexible object combination enumeration framework with good

load balancing and scalability for large scale of datasets using the MapReduce paradigm.

Two schemes are developed in the framework: Exhaustive Testing- enumerating the en-

tire set of objects and Semi-Exhaustive testing- enumerating a subset of objects. Our

framework is suited for any application that needs to enumerate the object combinations.

We also proposed a technique for efficient statistical analysis using IRBI (Integer Rep-

resentation and Bitmap Indexing) which is both CPU efficient with regard to statistics

testing, and storage and memory efficient. The approach we adopted can be a promis-

ing solution to speed up the statistical testing in many other applications where statistics

methods have been used, e.g. data mining, machine learning. We further proposed an

optimization technique of computation sharing to salvage the computation among the

combinations during statistical testing with significant performance savings, instead of

conducting the testing for each combination independently. Our experimental results

demonstrated that our framework is able to conduct analysis in hours where the task nor-

mally takes weeks before, if not months [60]. To the best of our knowledge, none of the

existing framework has such a computation capability.

Our second contribution is to introduce a scalable parallel data cube analysis sys-

tem, HaCube on big data, integrating a new data cubing algorithm and an efficient view

maintenance scheme for traditional OLAP and data warehousing. HaCube, an exten-
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sion of MapReduce, modifies the Hadoop MapReduce framework while retaining good

features like ease of programming, scalability and fault tolerance. It also has a user-

friendly interface layer for effective data cube analysis. We also proposed a new cubing

algorithm which is able to incorporate sort feature of MapReduce to batch the cuboids

processing to salvage partial work done. In the cubing algorithm, we designed a general

and effective load balancing scheme LBCCC (short for Load Balancing via Computa-

tion Complexity Comparison) to ensure that resources are well allocated to each batch.

We further adopted a new computation paradigm, MMRR(MAP-MERGE-REDUCE-

REFRESH), to support efficient view updates for both distributive measures such as

SUM, COUNT and non-distributive measures such as MEDIAN, CORRELATION. In

so doing, HaCube is able to support more applications with data cube analysis in a data

center environment. To the best of our knowledge, this is the first work to address data

cube view maintenance in MapReduce-like systems. The experimental results showed

that HaCube has significant performance improvement over Hadoop.

Our third contribution is to introduce a new graph OLAP model and the first dis-

tributed graph cube materialization scheme. We first proposed a new graph cube model,

Hyper Graph Cube over the attributed graphs for graph OLAP and graph warehousing.

On the basis of Hyper Graph Cube, we further illustrated how it supports different cate-

gories of queries and supports a new set of OLAP Roll-Up/Drill-Down operations. We

then proposed several optimization techniques to tackle the problem of performing an

efficient graph cube computation under the MR framework: a), our self-contained join

strategy can reduce I/O cost. It is a general join strategy applicable to various appli-

cations which need to pass a large amount of intermediate joined data between multiple

MR jobs. b), we combine cuboids to be processed as a batch so that the intermediate data

and computation can be shared. c), a cost-based optimization scheme is used to further

group batches into bags (each bag is a subset of batches) so that each bag can be pro-



142

cessed efficiently using a single MR job. d), a MR-based scheme is designed to process

a bag. Furthermore, we proposed a cube materialization approach, MRGraph-Cubing,

that employs the aforementioned techniques to process large scale attributed graphs. To

the best of our knowledge, this is the first parallel graph cubing solution over large-scale

attributed graphs under the MR-like framework. Finally, we conducted extensive ex-

perimental evaluations based on both real and synthetic data. The experimental results

showed that our parallel Hyper Graph Cube solution is effective, efficient and scalable.

6.2 Future Research Directions

The continued growth of data sizes and advent of novel applications ensures that the

area of big data analysis has many interesting research challenges. We discuss some of

these interesting directions.

Graph OLAP on High Dimensional Attributed Graphs. Hyper Graph Cube faces

the similar challenge as traditional data warehousing and OLAP does while handling the

high dimensional datasets. For graph cube materialization, our current schemes mainly

focus on the full cube materialization to precompute all the views in advance. Full ma-

terialization provides the best query response, but takes a large amount of storage space.

Therefore, due to the storage limitation in different systems, the existing solutions for

traditional high-dimensional OLAP (e.g. partial cube materialization [94][71][32][34],

shell-fragment [45]) can be extended to tackle the challenge here. However, given the

unique feature of the graph OLAP, there remain a lot of challenges of extending these

techniques to support graph OLAP on high dimensional attributed graphs which will be

an interesting future work.

View Allocation. As the size of data increases, the size of the materialized views in-

creases as well, especially for graph data warehousing. We have not designed a technique
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to specially allocate the views properly in a distributed data warehousing environment.

Given a distributed system, the views should be partitioned and allocated to different

machines in a manner such that user’s queries can be efficiently supported. For instance,

if all the hot views are allocated to the same machine, these machines will be frequently

visited and the performance may be significantly reduced. Therefore, an efficient and

effective view allocation strategy is needed to balance the query load across the system

nodes. Meanwhile, the view allocation may also effect the view update performance.

Thus, the view allocation scheme should also ensure view update efficiency.

Indexing on Attributed Graphs. Due to the astounding growth of property graphs,

it is very costly to answer the query by scanning. Our current graph OLAP solution does

not explicitly take into consideration of indexes. The indexing techniques can be further

integrated into our solution to highly improve the graph retrieval efficiency. There are

a lot of existing works focusing on graph indices [86][87][76]. However, most of the

existing works focus on indexing on non-attributed graphs where graph has no attributes

with the vertices and edges. Very few techniques are for attributed graphs. Indexing

attributed graphs is challenging, especially considering to building index with regard to

both graph structure and attributes. Therefore, designing effective indexing techniques

on attributed graphs could be an interesting future work.
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