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SUMMARY

Motivated by Singapore Longitudinal Aging Study (SLAS), we propose a Bayesian

approach for the estimation of semiparametric varying-coefficient models for longi-

tudinal normal and cross-sectional binary responses. These models have proved to

be more flexible than simple parametric regression models, and our Bayesian solu-

tion eases the computation complexity of these models. We also consider adapting

all kinds of familiar statistical strategies to address the missing data issue in SLAS.

Our simulation results indicate that Bayesian imputation approach performs better

than complete-case and available-case approaches, especially under small sample

designs, and may provide more useful results in practice. In the real data anal-

ysis for SLAS, the results from Bayesian imputation are similar to available-case

analysis, differing from those with complete-case analysis.
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CHAPTER 1

Introduction

1.1 Review of nonparametric methods & Bayesian

inference

Currently, nonparametric approaches are used more and more besides paramet-

ric approaches in fitting regression model. The most popular parametric methods

of inference, for example estimation, hypotheses testing and confidence interval,

are based on Fisher’s maximum likelihood (e.g. Aldrich (1997)). The maximum
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likelihood estimation usually achieves the optimal efficiency of estimation as de-

scribed by its variance property. However, if the specified parametric model is

wrong or far away from the true model, the results of parametric estimation can

be very misleading. On the other hand, nonparametric models make only basic as-

sumptions, such as independence among the observations and finity of the variance

of the data, or existence of r-th derivative of the density function f(x) of the data,

where r is a positive integer and the form of f(x) is never specifically assumed.

Thus nonparametric approaches achieve more widely applicable and stable results

and the models are robust. From the view point of nonparametric, all parametric

models are too rigid. Besides, there are situations when a workable parametric

model is hard to establish, for instance, in biased sampling.

Nonparametric methods can be classified as classical nonparametric methods

which are based on signs and ranks developed in 1940s ∼ 1970s and modern

nonparametric methods which involve (i) smoothing methods and (ii) the jack-

knife, Bootstrap (e.g. Efron and Gong (1983) & Shao and Tu (1995)) and other

re-sampling methods. These methods are called modern because they were de-

veloped after the wide spread of modern computer power. Smoothing methods

contain kernel smoothing, regression splines, smoothing splines, penalty splines

and others. Regression splines is an important smoothing method which uses basis

technique to approximate the curves or functions to be estimated and the trun-

cated power basis is a commonly used regression spline basis. By using quadratic
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or cubic or even higher order truncated power basis, the nonparametric curves or

functions to be estimated can be approximated by parametric model. Then para-

metric approaches can be employed for the estimation.

Varying-coefficient partial linear model is a mixture of parametric linear model

and nonparametric linear model as part of the coefficients are parametric and part

of the coefficients are nonparametric, say varying-coefficients. Because of this, it is

referred to as semi-parametric linear regression model. These varying-coefficients

can be approximated using regression splines described above and thus the semi-

parametric model is approximated by parametric model.

Over the past 30 years there has been a great deal of interest and activity in the

general area of nonparametric smoothing in statistics. Different kinds of smooth-

ing methods are proposed, such as kernel smoothing which contains Nadaraya

Watson estimator, local linear regression, local polynomial smoothing and oth-

ers, regression splines, e.g. Eubank (1999) & Wu and Zhang (2006), smoothing

splines, e.g. Green et al. (1994) & Wu and Zhang (2006) and penalized splines, e.g.

Eilers and Marx (1996), Hastie (1996), Lang and Brezger (2004) & Wu and Zhang

(2006). This area is developing rapidly, but more future works are still needed be-

cause all the proposals mentioned above have their limitations though they are all

suitable for some particular cases. For example, Hastie (1996) described a method

for constructing a family of low rank penalized scatter-plot smoothers, the so called
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pseudosplines which had a shrinking behavior that was similar to that of smooth-

ing splines; however, if too small a rank was chosen, the family of pseudo-splines

would be limited to fits of total rank which may be insufficient.

As the fast development of nonparametric smoothing, a special form of non-

parametric model is explored. Hastie and Tibshirani (1993) first explored varying-

coefficient models: a class of regression and generalized regression models in which

the coefficients are allowed to vary as smooth functions of other variables. Sub-

sequently, this topic has become more and more popular, e.g. Fan et al. (2003),

Eubank et al. (2004), Wang et al. (2008) & Lu et al. (2009). Besides, the so called

varying-coefficient partial linear model has also been explored since then. This

model is a mixture of parametric linear model and nonparametric linear model

as part of the coefficients are parametric and part of the coefficients are nonpara-

metric, say varying-coefficients. It is referred to as semi-parametric linear regres-

sion model because of this. The estimation of semi-parametric linear regression

models are studied intensively, e.g. Lin and Carroll (2001), Ruppert et al. (2003),

Li and Wong (2009), Li and Palta (2009) & Li et al. (2009).

In parametric inference, parameters can be considered as some fixed unknown

values to be estimated, which are typical frequentist inferences. However, from

the view of Bayesian inference, parameters are random variables which have dis-

tributions. The purpose of inference is to calculate and interpret the conditional
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posterior distributions of the parameters given the observed data. Thus, for in-

ference about the statistical models, statisticians can be divided into two schools:

frequentist and Bayesian. In the following review, we will focus on the Bayesian

inference.

Bayesian inference has developed rapidly and been more and more popular in

recent decades due to the rapid development of modern computer power. It is

competent for many relatively complicated models which are hard to treat from

the view of frequentist inference. An overview of Bayesian inference can be found

in any Bayesian textbook, e.g. Gelman et al. (2004). One of the important compo-

nents of Bayesian simulation is the selection of the prior. If the prior is conjugate,

then the simulation usually will be simplified. For variance parameters, inverse

gamma distribution is commonly chosen as the prior as it is usually conjugate,

e.g. Ruppert et al. (2003). Gelman (2006) constructed a new folded-non-central-t

family of conditionally conjugate priors for hierarchical standard deviation param-

eters and considered non-informative and weakly informative priors in this fam-

ily. His proposal increases the choice of prior selection and overcomes the serious

problems that might occur when the commonly used inverse-gamma prior for vari-

ance parameters is used. Other important concerns about Bayesian inference are

the outcome and convergence of the Monte Carle simulation. The commonly used
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Bayesian simulation algorithms, e.g. the Gibbs sampler, the algorithm of Metropo-

lis and similar iterative simulation methods, are potentially very helpful for sum-

marizing multivariate distributions. Used naively, however, iterative simulation

can give misleading answers. Based on this, Gelman and Rubin (1992) recom-

mended using several independent sequences of interative simulation for Bayesian

posterior distributions, with starting points sampled from an over-dispersed dis-

tribution. Besides, Brooks and Gelman (1998) generalized the method proposed

by Gelman and Rubin (1992) for monitoring the convergence of iterative simula-

tions by comparing between and within variances of multiple chains, in order to

obtain a family of tests for convergence. However, as the authors pointed out,

although multiple-chain-based diagnostics are safer than single-chain-based diag-

nostics, they can still be highly dependent upon the starting points of the simula-

tions. When employing Bayesian method for estimation of generalized regression

model, a problem usually occurs that the posteriors of the concerned parameters

are non-conjugated which makes the Bayesian simulation complicated. The prob-

lem was partially solved when Holmes and Held (2006) proposed using Bayesian

auxiliary variable Models for binary and multinomial regression. Their approaches

were ideally suited to automated Markov chain Monte Carlo simulation as the al-

gorithms they proposed are fully automatic with no-user set parameters and no

necessary Metropolis-Hastings accept/reject steps which might cause the simula-

tion converge slowly when the reject rate is high. However, as the number of
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parameters increases, it may be too time-consuming.

Bayesian treatment of semiparametric and nonparametric regression models has

developed rapidly in recent decades, e.g. Biller and Fahrmeir (2001), Fahrmeir et al.

(2004), Lambert and Eilers (2005), Brezger and Lang (2006), Wang et al. (2013).

Among them, Biller and Fahrmeir (2001) proposed Bayesian varying-coefficient

models using adaptive regression splines. They presented a full Bayesian B-spline

basis function approach with adaptive knot selection, and used reversible jump

Markov chain Monte Carlo sampling to estimate the number and location of knots

and B-spline coefficients for each of the unknown regression functions. However,

as the authors pointed out, they didn’t consider the situation involving random

effects for longitudinal data or missing data.

1.2 Review of longitudinal data & missing data

Longitudinal data study has grown tremendously over the past two decades,

especially in the clinical trials. Varying-coefficient models can be employed to

analyze longitudinal data by adding random effects to the models. The models

are particularly appealing in longitudinal studies as they allow us to inspect the

extent to which covariates affect responses over time, e.g. Hoover et al. (1998)
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& Fan and Zhang (2000). Besides, when carrying out longitudinal analysis where

subjects are repeatedly measured over time, it is highly possible that some of the

measurements are missing. For example, in a clinical trial, the patients are sup-

posed to take several times of scheduled medical tests over a special period of time;

however, some of them may quit in midway after the first several tests, and some of

them may lose contact for some time then appear again, etc. Thus it is necessary

to deal with the missing values, especially when the missing rate is considerable.

Fortunately, the statistical analysis of data with missing values has flourished since

the early 1970s, spurred by advances in computer technology that made previously

laborious numerical calculations a simple matter (Little and Rubin (2002)). Since

then, various methodologies and algorithms were proposed for handling missing

data problems, such as Weighting Procedures, Imputation-Based Procedures etc.

There are several kinds of missing-data patterns. According to Little and Rubin

(2002), there are mainly three types of missing data mechanisms with respect to

how the missing values are related to the observed values: Missing Completely

at Random (MCAR), Missing at Random (MAR) and Non-Missing at Random

(NMAR). If subjects who have missing data are a random subset of the complete

sample of subjects, missing data are called MCAR (Rubin (1976)). Under this

condition, most simple techniques for handling missing data, including complete

case and available case analysis, will give unbiased results (Greenland and Finkle
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(1995)). If the probability that an observation is missing depends on informa-

tion that is not observed, such as the value of the observation itself, missing data

are called NMAR (Rubin (1976)). In this case, valuable information is lost from

the data and there is no universal method of handling the missing data properly,

(e.g. Greenland and Finkle (1995), Little (1992), Rubin (1976) & Rubin (2009)).

Mostly, missing data are neither MCAR nor NMAR (Booth (2000)). Instead, the

probability that an observation is missing commonly depends on information for

that subject that is present, i.e., reason for missingness is based on other observed

variables, in other words, the probability that an individual value is missing de-

pends only on the observed variables but not on the missing ones. This type

of missing data is called MAR, because missing data can indeed be considered

random conditional on these other observed variables that determined their miss-

ingness (Rubin (1976)). Under MAR, a complete case or available case analysis is

no longer based on a random sample from the source population and selection bias

likely occurs. Generally, when missing data are MAR, all simple techniques for

handling missing data, i.e. complete case and available case analysis and overall

mean imputation, give biased results. However, more sophisticated techniques like

single and multiple imputations give unbiased results when missing data are MAR,

(e.g. Greenland and Finkle (1995), Little (1992), Rubin (1976) & Rubin (2009)).

Besides, according to Little and Rubin (2002), methods on the analysis of par-

tially missing data can be grouped into the following four categories, which are
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not mutually exclusive: Procedures Based on Completely Recorded Units, Weight-

ing Procedures, Imputation-Based Procedures and Model-Based Procedures. In our

research, we will focus on Imputation-Based Procedures, which means that the

missing values are filled in and the resultantly completed data are analyzed by

standard methods. For valid inferences to result, modifications to the standard

analyzes are required to allow for the differing status of the real and the imputed

values.

Imputations are means or draws from a predictive distribution of the missing

values which require a method of creating a predictive distribution for the imputa-

tion based on the observed data. There are two generic approaches to generating

this distribution: Explicit modeling and Implicit modeling. In this study, we will

focus on Explicit modeling, that is the predictive distribution is based on a formal

statistical model (e.g. normal), hence the assumptions are explicit. It include mean

imputation, regression imputation, stochastic regression imputation and Bayesian

imputation (Data augmentation, Tanner and Wong (1987)) among others.

Regression imputation replaces missing values by predicted values from a re-

gression of the missing item on items observed for the unit, usually calculated

from units with both observed and missing variables present. Stochastic regression

imputation replaces missing values by values predicted by regression imputation

plus residuals, drawn to reflect uncertainty in the predicted values. With normal

linear regression models, the residual will naturally be normal with zero mean and
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variance equal to the residual variance in the regression. With a binary outcome,

as in logistic regression, the predicted value is a probability of 1 versus 0, thus the

imputed valued is a 1 or 0 drawn with that probability.

To describe Bayesian imputation, we assume Y obs is the vector of observed re-

sponses, Y mis is the vector of missing responses and θ is the vector of parameters

to be estimated; besides, we assume the predictors are all observed. Bayesian im-

putation method treats Y mis as a vector of variables and contains two step: the

imputation step and the proposal step. Roughly speaking, in the imputation step,

we draw a sample of Y mis from the conditional density of Y mis given Y obs and θ;

in the proposal step, we draw a sample of θ from the conditional density of θ given

Y obs and Y mis. The details will be given in the main body of this thesis when we

come to it.

If the estimated distribution results based on the observed subjects in the study

sample would be identical to the ‘true’ underlying distribution in the population,

the single imputation procedure would be equivalent to direct replacement of the

true values of the missing data. However, this will seldom be the case, but the

estimated distribution can certainly be an unbiased estimate of the population

distribution. Therefore, the associations under study estimated after missing data

have been imputed by single imputation are unbiased. Doing so, however, one

analyzes the completed data set as if all data were indeed observed. Because this
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was not the case, the single imputation procedure commonly results in an under-

estimation of the standard errors, i.e. overestimation of the precision of the study

associations, (e.g. Greenland and Finkle (1995), Rubin (2009),& Vach (1994)).

Thus, we should take into account the imprecision caused by the fact that the

distribution of the variables with missing values is estimated to obtain correct es-

timates of the standard errors. According to Rubin (2009) & Schafer (2010), this

can be done by creating not a single imputed data set, but multiple imputed data

sets in which different imputations are based on a random draw from different

estimated underlying distribution, such as Bayesian imputation described above.

1.3 Focus of this thesis

Although frequentist and Baysian estimation procedures for semiparametric

varying-coefficient model have been abundant in the literature, there is a rela-

tive lack of estimation procedures for this type of model involving longitudinal

or missing data. This thesis is to implement a general Bayesian procedure to fit

the semiparametric varying-coefficient model for cross-sectional normal response

variable and binary response variable, and also for missing data which is more and
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more popular and commonly occurs in practice now. Specially the nonparamet-

ric components are approximated with a functional basis expansion and Bayesian

spline techniques are introduced to facilitate the computation (Lang and Brezger

(2004); Nott and Li (2010)). This study will also consider fitting longitudinal

normal data using varying-coefficient mixed model which adds random effect to

varying-coefficient model. The results of this study may provide an alternative

method for fitting varying-coefficient model, especially when the model involves

binary response variable or missing data which is relatively complicated. This

study may also provide an alternative method for fitting varying-coefficient mixed

model using random effect for longitudinal data. For the situation of missing data,

this thesis will only focus on the case when the response variable is longitudinal

normal and simple binary; the case when the response variable is longitudinal

binary will not be considered because it is too time-consuming for estimation. Be-

sides, this thesis will concentrate on the case of MAR which is the most common

case in reality. Moreover, in regression analysis, we assumed the predictors are all

observed while only some of the responses are missing in our study although the

case of missing data in covariates is also encountered often, e.g. White and Carlin

(2010). Also, in the analysis of missing data in this thesis, we will ignore single

imputation methods and implement Bayesian imputation methods and then com-

pare the estimates with those got from complete case or available case analysis.

In Chapter 2, we will describe Bayesian estimation of varying-coefficient model
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for normal response variable, with respect to cross-sectional data, longitudinal data

and longitudinal data involving missing value. In Chapter 3, we will carry on simi-

lar processes for cross-sectional binary response variable and cross-sectional binary

response variable involving missing value. Chapters 2, 3 will both contain the in-

troduction of the model, fitting of the model followed by simulations to assess the

performs of estimations respectively. In Chapter 4, we will apply the methodology

described in previous chapters to analyze the real data from Singapore Longitudi-

nal Aging Study (SLAS). Discussion and Conclusion will be provided in Chapter 5.
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CHAPTER 2

Varying-coefficient model for

normal response

2.1 Varying-coefficient model

2.1.1 Statistical model

Let Y ∈ R be a response variable and {U ∈ R, X ∈ Rp, Z ∈ Rq} be the

covariates. The varying coefficient model assumes the following structure:

Y = αT (U)X + βTZ + ε, (2.1)
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where ε is normal and independent of (U,X,Z) with E(ε) = 0 and V ar(ε) = σ2; β =

[β1, . . . , βq]
T is a vector of q-dimensional fixed coefficient parameters for covariates

Z and α(.) = [α1(.), . . . , αp(.)]
T are unknown varying-coefficients for covariates X.

All varying coefficients are assumed to be smooth functions with continuous second

derivatives.

Suppose we have a random sample of size n, {(Ui, Xi1, . . . , Xip, Zi1, . . . , Ziq, Yi),

i = 1, . . . , n} from model (2.1).

Firstly, to tackle the infinite dimensional functions αk(u), k = 1, . . . , p, we

consider using the cubic truncated power basis

φ(u) = [1, u, u2, u3, (u− τ1)3
+, . . . , (u− τK)3

+]T

for approximation and denote the corresponding coefficient vector to be

γk = [γ0k, γ1k, γ2k, γ3k, γ4k, . . . , γK+3,k]
T , k = 1, . . . , p,

where τl, l = 1, . . . , K are the knots and K is number of knots.

Under the basis expansion, Model (2.1) can be rewritten as

Yi =

p∑
k=1

Xikφ
T (Ui)γk + ZT

i β + εi,

= CT
i γ + ZT

i β + εi, i = 1, . . . , n, (2.2)

where Ci = [Xi1φ
T (Ui), . . . , Xipφ

T (Ui)]
T , γ = [γT1 , . . . , γ

T
p ]T , Zi = [Zi1, . . . , Ziq]

T ;

We may further express the above model in a matrix form as

Y = Cγ + Zβ + ε, (2.3)
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where Y = [Y1, . . . , Yn]T , C = (C1, . . . , Cn)T , Z = (Z1, . . . , Zn)T and ε = (ε1, . . . , εn).

2.1.2 Bayesian inference

2.1.2.1 The prior

We consider a Baysian approach to fit Model (2.3). Thus we need to decide the

distribution of Y given the parameters and specify prior distributions on model

parameters.

Here we assume

Y |γ, β, C, Z ∼MN(Cγ + Zβ, σ2
ε In),

where In is the n-dimensional unit matrix and MN(µ, σ2In) is multi − normal

distribution with mean µ and variance matrix σ2In.

Following the idea of Ruppert et al. (2003), we assume the priors for β, γ, σ2
ε

independently as following which will achieve conditionally-conjugate prior:

let β ∼ MN(0, σ2
βIq) with σ2

β so large that, for all intents and purpose, the

normal distribution is uniform on the range of β.

Let γ ∼MN(0, V ) where V = diag(V1, . . . , Vp) and Vk = diag(σ2
γI4, σ

2
kIK), k =

1, . . . , p. Similarly to σ2
β, σ2

γ are large enough to obtain noninformative prior. For
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simplification, we set σ2
γ = σ2

β = 108 here.

For the purpose of shrinkage, we assume the priors on hyperpriors σ2
k, k =

1, . . . , p are inverse gamma with parameters Aγ and Bγ–denoted IG(Aγ, Bγ) in-

dependently. Thus its density is

π(σ2
k) =

B
Aγ
γ

Γ(Aγ)
(σ2

k)
−(Aγ+1) exp(−Bγ

σ2
γ

), (2.4)

where Γ(·) is the Gamma function. We may write this as σ2
k ∼ IG(Aγ, Bγ).

Further, we assume that the prior σ2
ε ∼ IG(Aε, Bε). Here Aε, Bε, Aγ, Bγ are

hyperparameters that determine the priors and must be chosen by us. These hy-

perparamaters must be strictly positive in order for the prior and hyperpriors to

be proper. If Aε > 1 then the mean of this random variable is finite and equals to

Bε/(Aε−1); if Aε > 2 then its variance is finite and equals to B2
ε /((Aε−1)2(Aε−2)).

If Aε and Bε were zero, then π(σ2
ε ) would be proportional to the improper prior

1/σ2
ε , which is equivalent to log(σε) having an improper uniform prior. Therefore,

choosing Aε and Bε both close to zero (say, both equal to 0.001) gives an essentially

noninformative, but proper prior. The same reasoning applies to Aγ and Bγ.

The model we have constructed is a hierarchical Bayes model, where the ran-

dom variables are arranged in a hierarchy such that distributions at each level are

determined by the random variables in the previous levels. At the bottom of the

hierarchy are the known hyperparameters. At the next level are the fixed effects

parameters and variance components whose distributions are determined by the
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hyperparameters. At the level above this are β, γ and ε, whose distributions are

determined by the variance components. The top level contains the data, Y .

2.1.2.2 The posterior

Denote the parameter space by Θ and parameter in Θ by θ where θ = [γT , βT ,

σ2
1, . . . , σ

2
p, σ

2
ε ]
T . Denote the prior distribution of θ by π(θ) and the conditional

distribution of sample Y by p(Y |θ) where Y = [Y1, . . . , Yn]T . By Bayes Theorem

we get the posterior of θ :

π(θ|Y ) =
p(Y |θ)π(θ)∫

Θ
p(Y |θ)π(θ)dθ

∝ p(Y |θ)π(θ);

that is

π(θ|Y ) ∝ p(Y |θ)π(γ|σ2
1, . . . , σ

2
p)π(σ2

1), . . . , π(σ2
p)π(β)π(σ2

ε )

= (
1√

2πσε
)n exp(−‖Y − Cγ − Zβ‖

2

2σ2
ε

)

× 1

(2π)p(K+4)/2|V |1/2
exp(−1

2
γTV −1γ)

×
p∏

k=1

B
Aγ
γ

Γ(Aγ)
(σ2

k)
−(Aγ+1) exp(−Bγ

σ2
k

)

×(
1√

2πσβ
)q exp(−‖β‖

2

2σ2
β

)

× BAε
ε

Γ(Aε)
(σ2

ε )
−(Aε+1) exp(−Bε

σ2
ε

). (2.5)
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If we isolate the part of (2.5) that depends on (γ, β) then we see that the condi-

tional posterior of (γ, β) given (σ2
1, . . . , σ

2
p, σ

2
ε )–that is, the complete conditional–is

proportional to

exp(−‖Y − Cγ − Zβ‖
2

2σ2
ε

− γTV −1γ

2
− ‖β‖

2

2σ2
β

). (2.6)

The term in parentheses in (2.6) is a nonnegative quadratic function of (γ, β)

and so (2.6) is proportional to a multivariate normal density. By the usual tech-

nique of ”completing the square”, it may be shown that

π(γ, β|σ2
1, . . . , σ

2
p, σ

2
ε , Y ) ∼ MN(µγ,β, Σγ,β). (2.7)

Here µγ,β = 1
σ2
ε
(D

TD
σ2
ε

+ ETE + FTF
σ2
β

)−1DTY , Σγ,β = (D
TD
σ2
ε

+ ETE + FTF
σ2
β

)−1,

D = [C,Z], E = [V −1/2, 0q×q] and F = [0p(K+4)×p(K+4), Iq] where 0q×q is q × q-

dimension zero matrix. The p(K+4)×p(K+4)-dimension zero matrix corresponds

to the p smooth unknown varying-coefficients, the cubic truncated power basis and

the K knots. Thus, as part of the MCMC chain, one generates (γ, β) from the

current values of (σ2
1, . . . , σ

2
p, σ

2
ε ) according to the multivariate normal distribution,

with mean and covariance matrix given by (2.7).

The complete conditional for σ2
k, k = 1, . . . , p is proportional to

(σ2
k)
−(K/2+Aγ+1) exp(− 1

σ2
k

(
1

2
(γ2

4,k + . . .+ γ2
(K+3),k) +Bγ)). (2.8)

Therefore, comparing (2.8) to (2.4) shows that

π(σ2
k|Y, γ, β, σ2

1, . . . , σ
2
k−1, σ

2
k+1, . . . , σ

2
p, σ

2
ε ) ∼ IG(Aγ+

1

2
K, Bγ+

1

2
(γ2

4,k+. . .+γ
2
K+3,k)).
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By the same reasoning,

π(σ2
ε |Y, γ, β, σ2

1, . . . , σ
2
p) ∼ IG(Aε +

1

2
n, Bε +

1

2
‖Y − Cγ − Zβ‖2). (2.9)

2.1.2.3 Simulation algorithm

To sample from the posterior, we iterate S times through the following four

steps.

Step 1 Sample (γ, β) from the multivariate normal distribution: MN(µγ,β, Σγ,β);

Step 2 Sample σ2
k, k = 1, . . . , p from IG(Aγ + 1

2
K, Bγ + 1

2
(γ2

4,k + . . . + γ2
K+3,k))

respectively;

Step 3 Sample σ2
ε from IG(Aε + 1

2
n, Bε + 1

2
‖Y − Cγ − Zβ‖2);

Step 4 Return to Step 1 and iterate until converge.

In Step 1, an alternative method to sampling is considered based on the follow-

ing fact: X1

X2

 ∼ N(

 µ1

µ2

 ,

 Σ11 Σ12

Σ21 Σ22

) ⇒ (X1|X2 = a) ∼ N(µ̄, Σ̄),

where µ̄ = µ1+Σ21Σ−1
22 (a−µ2) and Σ̄ = Σ11−Σ12Σ−1

22 Σ21. Base on this fact, we may

sample each component of (γ, β) from univariate normal distribution conditional
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on all the other components of (γ, β) and on σ2
1, . . . , σ

2
p, σ

2
ε .

In Step 2 and Step 3, notice that, given (γ, β, Y ), it follows that σ2
1, . . . , σ

2
p

and σ2
ε are mutually independent. Therefore, the net effect of Step 2 and Step 3 is

to sample (σ2
1, . . . , σ

2
p, σ

2
ε ) from its conditional distribution given (γ, β, Y ). Also,

because of this independence, interchanging the order of Step 2 and Step 3 and

the order in Step 2 inbetween σ2
1, . . . , σ

2
p has no effect on the algorithm.

2.1.2.4 Convergence of MCMC simulation

Indeed, the above simulation process in Section 2.1.2.3 is a typical Gibbs sam-

pler which is a particular Markov chain algorithm and can be viewed as a special

case of the Metropolis-Hastings (M-H) algorithm.

Metropolis-Hastings algorithm is a MCMC methods based on random walk.

The most important point of the M-H algorithm is the ratio of ratios blew:

r =
p(θ∗|y)/Jt(θ

∗|θt−1)

p(θt−1|y)/Jt(θt−1|θ∗)
, (2.10)

where p(θ|y) is the posterior, Jt(θ
∗|θt−1) is the proposal distribution, θt−1 is the

simulation value of θ at time (step) t − 1 and θ∗ is a proposal from the proposal

distribution at time (step) t. We accept θt = θ∗ with probability min(r, 1) and

θt = θt−1 otherwise.

Gibbs sampling can be viewed as M-H algorithm in the following way. We
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first define iteration t to consist of a series of d steps, with step j of iteration t

corresponding to an update of the subvector θj conditional on all the other elements

of θ, that is θ−j. Then the jumping distribution Jj,t(·|·) at step j of iteration t only

jumps along the jth subvector, and does so with the conditional posterior density

of θj given θt−1
−j :

JGibbsj,t (θ∗|θt−1) =


p(θ∗j |θt−1

−j , y) if θ∗−j = θt−1
−j

0 otherwise.

The only possible jumps are to parameter vectors θ∗ that match θt−1 on all com-

ponents other than the jth. Under this jumping distribution, the ratio at the jth

step of iteration t can be proved to be r=1, thus every jump is accepted.

The proof that the simulation sequence of iterations from M-H algorithm con-

verges to the target distribution contains two steps:

(1) The simulation sequence is Markov chain with a unique stationary distribu-

tion,

(2) The stationary distribution equals this target posterior distribution.

The first step of the proof holds if the Markov Chain is irreducible, aperiodic

and not transient. Except for trivial exceptions, the latter two conditions hold for

a random walk on any proper distribution, and irreducibility holds as long as the

random walk has a positive probability of eventually reaching any state from any

other state; that is, the jumping distribution Jt must eventually be able to jump
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to all states with positive probability, which is satisfied in our simulation.

To see that the target distribution is the stationary distribution of the Markov

chain generated by the M-H algorithm, consider starting the algorithm at time

t− 1 with a draw θt−1 from the target distribution p(θ|y). Now consider any two

such points θa and θb, drawn from p(θ|y) and labeled so that p(θb|y)Jt(θa|θb) ≥

p(θa|y)Jt(θb|θa). The unconditional probability density of a transition from θa to

θb is

p(θt−1 = θa, θ
t = θb) = p(θa|y)Jt(θb|θa),

where the acceptance probability is 1 because of our labeling of a and b, and the

unconditional probability density of a transition from θb to θa is, from (2.10),

p(θt−1 = θb, θ
t = θa) = p(θb|y)Jt(θa|θb)

p(θa|y)/Jt(θa|θb)
p(θb|y)/Jt(θb|θa)

= p(θa|y)Jt(θb|θa),

which is the same as the probability of a transition from θa to θb. Since their joint

distribution is symmetric, θt and θt−1 have the same marginal distributions, and

so p(θ|y) is the stationary distribution of the Markov chain of θ. For more detailed

theoretical concerns, see Gelman et al. (2004).
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2.1.3 Simulation

We conduct a simulation study to assess the performance of varying coefficient

model (2.1). We generate data from the following model:

Yi = α0(Ui) + α1(Ui)X1i + α2(Ui)X2i (2.11)

+β1Z1i + β2Z2i + εi, i = 1, . . . , n,

where U is from a uniform distribution U(0, 1), X1, X2, Z1, Z2 are generated from

the standard normal distribution N(0, 1), and ε is from the normal distribution

N(0, σ2
ε = 0.22). The variables U, X1, X2, Z1, Z2, ε are all mutually independent.

We set sample size n = 200 & 400. The coefficients are α0(u) = 1.5(1+exp(u3))−1,

α1(u) = 2u(1− u), α2(u) = 0.25(sin(πu) + cos(πu)), β1 = 0.2 and β2 = 0.3.

For approximation of the varying coefficient functions α0, α1, α2, we decide the

knots of the cubic truncated power basis by using the (l+1)/(K+2) sample quan-

tiles of the observed predictors U, where l = 1, . . . , K and K = min(n/4, 30)=30

here.

We implement the MCMC simulation using R software. It takes about 50s and

80s to run a MCMC simulation for n = 200 and 400 respectively on a PC with Intel

(R) Core (TM) i7 3.1 GHz processor. We use a burnin of size 2000, followed by 3000

retained iterations. From the graphical results we can conclude the convergence

of the chains. The results after 500 simulations are given in Figure 2.1 (on page
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26), Figure 2.2 (on page 27) and Table 2.1 (on page 28). Figure 2.3 (on page 29)

and Figure 2.4 (on page 30) show the estimations of varying-coefficients arbitrar-

ily from one of 500 simulations using Model (2.11) for n = 200 and 400 respectively.
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Figure 2.1 The pointwise 95% coverage probabilities for α0(u) = 1.5(1 +

exp(u3))−1, α1(u) = 2u(1 − u) and α2(u) = 0.25(sin(πu) + cos(πu)) based on

500 simulations using Model (2.11), n = 200. The horizonal line is y = 0.95.
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Figure 2.2 The pointwise 95% coverage probabilities for α0(u) = 1.5(1 +

exp(u3))−1, α1(u) = 2u(1 − u) and α2(u) = 0.25(sin(πu) + cos(πu)) based on

500 simulations using Model (2.11), n = 400. The horizonal line is y = 0.95.
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n = 200 n = 400

CP LCI MISE CP LCI MISE

α0(·) 0.954 0.123 0.001 0.958 0.085 4.90×10−4

α1(·) 0.960 0.127 0.001 0.955 0.086 4.92×10−4

α2(·) 0.949 0.127 0.001 0.958 0.087 4.97×10−4

β1 0.948 0.058 0.948 0.040

β2 0.950 0.058 0.966 0.040

σε 0.952 0.041 0.952 0.028

Table 2.1 Summary of 500 simulations using Model (2.11) and n = 200 & 400.

CP is the coverage probability of 95% credible intervals, LCI is the mean length of

95% credible intervals, and MISE is the mean integrated squared error.
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Figure 2.3 Estimation of α0(u) = 1.5(1 + exp(u3))−1, α1(u) = 2u(1 − u) and

α2(u) = 0.25(sin(πu)+cos(πu)) arbitrarily from one of 500 simulations using Model

(2.11), n = 200. The solid curves are the true functions while the dash curves

are the estimations. The shaded regions correspond to point-wise 95% credible

intervals.
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Figure 2.4 Estimation of α0(u) = 1.5(1 + exp(u3))−1, α1(u) = 2u(1 − u) and

α2(u) = 0.25(sin(πu)+cos(πu)) arbitrarily from one of 500 simulations using Model

(2.11), n = 400. The solid curves are the true functions while the dash curves

are the estimations. The shaded regions correspond to point-wise 95% credible

intervals.

2.2 Varying-coefficient mixed effects model

2.2.1 Statistical model

In a longitudinal study, individuals are measured repeatedly over time. Suppose

we have a cohort of N subjects. For ith subject, denote the outcome variable by
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Yij and the covariate vector [XT
ij , Z

T
ij ] = [Xij1, . . . , Xijp, Zij1, . . . , Zijq] collected at

time occasion j = 1, . . . , ni, where ni is the total number of observations for ith

subject. Denote the index variable to be Ui for ith subject, i = 1, . . . , N .

We consider a semiparametric varying coefficient mixed model with random

effect which can provide flexible functional coefficient estimates and meaningful

interpretation. The model assumes the following dependence structure:

Yij = XT
ijα(Ui) + ZT

ijβ

+bi + εij i = 1, . . . , N, j = 1, . . . , ni, (2.12)

where εij is normal and independent of [Ui, X
T
ij , Z

T
ij , bi] with E(εij) = 0 and V ar(εij) =

σ2
ε ; bi is the random effect for ith subject which is normal and independent among

subjects with E(bi) = 0 and V ar(bi) = σ2
b ; β = [β1, . . . , βq]

T is a vector of q-

dimensional fixed coefficient parameters for covariates ZT
ij and α(·) = [α1(·), . . . , αp(·)]T

are unknown varying-coefficients for covariates XT
ij . All varying coefficients are as-

sumed to be smooth functions with continuous second derivatives.

Again, to tackle the infinite dimensional functions, we consider using the cubic

truncated power basis

φ(u) = [1, u, u2, u3, (u− τ1)3
+, . . . , (u− τK)3

+]T

for approximation and denote the corresponding coefficient vector to be

γk = [γk0, γk1, γk2, γk3, γk4, . . . , γk,K+3]T , k = 1, . . . , p.
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Under the basis expansion, Model (2.12) can be re-written as

Yij = Xij1φ
T (Ui)γ1 + . . .+Xijpφ

T (Ui)γp

+ZT
ijβ + bi + εij, (2.13)

We may further express the above model in a matrix form as

Y = Cγ + Zβ + Lb+ ε, (2.14)

where Y = [Y T
1 , . . . , Y

T
N ]T , Yi = [Yi1, . . . , Yini ]

T , i = 1, . . . , N ;

C = [CT
1 , . . . , C

T
N ]T , γ = [γT1 , . . . , γ

T
p ]T ; Ci = [CT

i1, . . . , C
T
ini

]T , i = 1, . . . , N ,

Cij = [Xij1φ
T (Ui), . . . , Xijpφ

T (Ui)], i = 1, . . . , N, j = 1, . . . , ni;

Z = [ZT
1 , . . . , Z

T
N ]T , Zi = [Zi1, . . . , Zini ]

T , i = 1, . . . , N ;

L = diag(1n1 , . . . ,1nN ), b = [b1, . . . , bN ]T ;

ε = [εT1 , . . . , ε
T
N ]T , εi = [εi1, . . . , εini ]

T , i = 1, . . . , N ;

where 1ni is a ni dimension column vector with all elements equal to 1 and L is

N × N -dimension block diagonal matrix with N =
∑N

i=1 ni which is the total

number of observations.
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2.2.2 Bayesian inference

2.2.2.1 The prior

According to the model assumption, we have

Y|γ, β,C,Z,L ∼MN(Cγ + Zβ + Lb, σ2
ε IN ),

where IN is N -dimension unit matrix. The random effects b follow normal distri-

bution independently, that is b ∼MN(0, σ2
b IN).

We assume the prior for the parameters similarly to Section 2.1.2.1 as follow:

β ∼ MN(0, σ2
βIq), where Iq is q-dimension identical matrix and σ2

β so large

that, for all intents and purpose, the normal distribution is uniform on the range

of β.

Let γ ∼MN(0, V ) where V = diag(V1, . . . , Vp) and Vk = diag(σ2
γI4, σ

2
kIK),

k = 1, . . . , p. Similarly to σ2
β, σ2

γ are large enough to obtain noninformative prior.

For simplification, we set σ2
γ = σ2

β = 108 here.

For the purpose of shrinkage, we assume the priors on hyperpriors σ2
k, k =

1, . . . , p are inverse gamma with parameters Aγ and Bγ independently, that is σ2
k ∼

IG(Aγ, Bγ), k = 1, . . . , p where Aγ=Bγ=0.001. Further, we assume that the prior

σ2
ε ∼ IG(Aε, Bε) and the hyperprior σ2

b ∼ IG(Ab, Bb), whereAε=Bε=Ab=Bb=0.001.
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2.2.2.2 The posterior

The parameter vector is now θ = [γT , βT , bT , σ2
1, . . . , σ

2
p, σ

2
b , σ

2
ε ]
T , where b =

[b1, . . . , bN ]T . Similarly discussed as Section 2.1.2.2, we may derive the posterior of

θ to be

π(θ|Y) ∝ p(Y|θ)π(γ|σ2
1, . . . , σ

2
p)π(β)π(b|σb)π(σ2

ε )π(σ2
b )

p∏
k=1

π(σ2
k)

= (
1√

2πσε
)N exp(−‖Y − Cγ − Zβ − Lb‖

2

2σ2
ε

)

× 1

(2π)p(K+4)/2|V |1/2
exp(−1

2
γTV −1γ)

×(
1√

2πσβ
)q exp(−‖β‖

2

2σ2
β

)

×(
1√

2πσb
)N exp(−‖b‖

2

2σ2
b

)

×
p∏

k=1

B
Aγ
γ

Γ(Aγ)
(σ2

k)
−(Aγ+1) exp(−Bγ

σ2
k

)

× BAε
ε

Γ(Aε)
(σ2

ε )
−(Aε+1) exp(−Bε

σ2
ε

)

× BAb
b

Γ(Ab)
(σ2

b )
−(Ab+1) exp(−Bb

σ2
b

). (2.15)

If we isolate the part of (2.15) that depends on (γ, β, b), we notice that the

conditional posterior of (γ, β, b) given (σ2
1, . . . , σ

2
p, σ

2
ε , σ

2
b ), that is, the complete

conditional–is proportional to

exp(−‖Y − Cγ − Zβ − Lb‖
2

2σ2
ε

− γTV −1γ

2
− ‖β‖

2

2σ2
β

− ‖b‖
2

2σ2
b

). (2.16)

The term in parentheses in (2.16) is a nonnegative quadratic function of (γ, β, b)
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and so (2.16) is proportional to a multivariate normal density. Using the usual

technique of ”completing the square”, we can shown that

π(γ, β, b|σ2
1, . . . , σ

2
p, σ

2
ε , σ

2
b ,Y) ∼ MN(µγ,β,b, Σγ,β,b). (2.17)

Here µγ,β,b = 1
σ2
ε
Σγ,β,bD

TY, Σγ,β,b = (D
TD
σ2
ε

+ETE+ FTF
σ2
β

+ GTG
σ2
b

)−1, D = [C,Z,L],

E = [V −1/2,0q×q,0N×N ], F = [0p(K+4)×p(K+4), Iq,0N×N ] andG = [0p(K+4)×p(K+4),0q×q, IN ]

where 0q×q is q × q-dimension zero matrix. The p(K + 4) × p(K + 4)-dimension

zero matrix corresponds to the p smooth unknown varying-coefficients, the cubic

truncated power basis and the K knots. The N ×N -dimension zero matrix corre-

sponds to the N random effects. Thus, as part of the MCMC chain, one generates

(γ, β, b) from the current values of (σ2
1, . . . , σ

2
p, σ

2
ε , σ

2
b ) according to the multivari-

ate normal distribution, with mean and covariance matrix given by (2.17).

However, the generation of (γ, β, b) from (2.17) may be too time-consuming

as it involves the calculation of covariance matrix inversion, especially when N

is considerable large. Fortunately, the matrix L is a sparse matrix with a spe-

cial structure such that LTL=diag(n1, . . . , nN). Thus, we can overcome the above

problem by generating (γ, β) and b respectively. Denote η=(γ, β)T , by matrix

algebra, it can be shown that

π(γ, β|b, σ2
1, . . . , σ

2
p, σ

2
ε , σ

2
b ,Y) ∼ MN(µ

(1)
γ,β, Σ

(1)
γ,β), (2.18)

π(b|γ, β, σ2
1, . . . , σ

2
p, σ

2
ε , σ

2
b ,Y) ∼ MN(µ

(1)
b , Σ

(1)
b ).

Here µ
(1)
γ,β = 1

σ2
ε
Σ

(1)
γ,βD

T
(1)(Y−Lb), Σ

(1)
γ,β = (

DT
(1)
D(1)

σ2
ε

+ET(1)E(1) +
FT

(1)
F(1)

σ2
β

)−1, µ
(1)
b =
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1
σ2
ε
Σ

(1)
b L

T (Y − D(1)η), Σ
(1)
b = diag((n1

σ2
ε

+ 1
σ2
b
)−1, . . . , (nN

σ2
ε

+ 1
σ2
b
)−1), D(1) = [C,Z],

E(1) = [V −1/2,0q×q] and F(1) = [0p(K+4)×p(K+4), Iq]. Compared to (2.17), it will be

faster to generate (γ, β) and b by (2.18) as the dimension of Σ
(1)
γ,β will not increase

as the size of the sample increases and Σ
(1)
b is a diagonal matrix.

The complete conditional for σ2
k, k = 1, . . . , p is proportional to

(σ2
k)
−(K/2+Aγ+1) exp(− 1

σ2
k

(
1

2
(γ2

4,k + . . .+ γ2
(K+3),k) +Bγ)); (2.19)

The complete conditional for σ2
ε is proportional to

(σ2
ε )
−(N /2+Aε+1) exp(− 1

σ2
ε

(
1

2
‖Y − Cγ − Zβ − Lb‖2 +Bε)); (2.20)

The complete conditional for σ2
b is proportional to

(σ2
b )
−(N/2+Ab+1) exp(− 1

σ2
b

(
1

2
‖b‖2 +Bb)); (2.21)

which implies that the complete conditional for σ2
k, k = 1, . . . , p, σ2

ε , σ
2
b all follow

the Inverse-Gamma distribution.

2.2.2.3 Simulation algorithm

To sample from the posterior, we iterate S times through the following six

steps.

Step 1 Sample (γ, β) from the multivariate normal distribution: MN(µ
(1)
γ,β, Σ

(1)
γ,β);
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Step 2 Sample b from the multivariate normal distribution: MN(µ
(1)
b , Σ

(1)
b );

Step 3 Sample σ2
k, k = 1, . . . , p from IG(Aγ + 1

2
K, Bγ + 1

2
(γ2

4,k + . . . + γ2
K+3,k))

respectively;

Step 4 Sample σ2
ε from IG(Aε + 1

2
N , Bε + 1

2
‖Y − Cγ − Zβ − Lb‖2);

Step 5 Sample σ2
b from IG(Ab + 1

2
N, Bb + 1

2
‖b‖2);

Step 6 Return to Step 1 and iterate until converge.

The above algorithm is a typical Gibbs Sampler. (γ, β) and b can be sampled

directly from multivariate normal distribution. σ2
k, k = 1, . . . , p, σ2

ε and σ2
b can be

sampled directly from Inverse-Gamma distribution respectively.

2.2.3 Simulation

We conduct simulation study to assess the performance of varying coefficient

mixed model (2.12). We generate data from the following model:

Yij = α0(Ui) + α1(Ui)X1ij + α2(Ui)X2ij

+β1Z1ij + β2Z2ij + bi + εij, i = 1, . . . , N, j = 1, . . . , ni, (2.22)
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where U is from U(0, 1), X1, X2, Z1, Z2 are generated from the standard normal

distribution N(0, 1), b is from N(0, σ2
b = 0.22), and ε is from N(0, σ2

ε = 0.12).

The variables U, X1, X2, Z1, Z2, b, ε are all mutually independent. We set

sample size (subjects) N = 200 & 400, and ni is randomly generated from 4 to 8

for ith subject. The total numbers of measurements are N = 1202 and 2382 for

N = 200 and 400 respectively. The coefficients are α0(u) = 1.5(1 + exp(u3))−1,

α1(u) = 2u(1 − u), α2(u) = 0.25(sin(πu) + cos(πu)), β1=0.2 and β2=0.3. For ap-

proximation of the varying coefficient functions α0, α1, α2, we decide the knots of

the cubic truncated power basis by using the (l + 1)/(K + 2) sample quantiles of

the observed predictors U, where l = 1, . . . , K and K = min(N/4, 30)=30 here.

We implement the MCMC simulation using R software. We use a burnin of size

3000, followed by 3000 retained iterations. It takes about 285s and 1900s to run a

MCMC simulation for N = 200 and 400 respectively on a PC with Intel (R) Core

(TM) i7 3.1 GHz processor. From the graphical results we can conclude that the

convergence is plausible. The results after 500 simulations are given in Figure 2.5

(on page 39), Figure 2.6 (on page 40) and Table 2.2 (on page 41). Figure 2.7 (on

page 42) and Figure 2.8 (on page 43) show the estimations of varying-coefficients

arbitrarily from one of 500 simulations using Model (2.22) for N = 200 and 400

respectively.



2.2 Varying-coefficient mixed effects model 39

0.0 0.2 0.4 0.6 0.8 1.0

0.
94

0.
95

0.
96

0.
97

0.
98

α0 = 1.5(1 + eu3

)−1

U

co
ve

r. 
pr

ob
.

0.0 0.2 0.4 0.6 0.8 1.0

0.
94

0.
95

0.
96

0.
97

0.
98

α1 = 2u(1 − u)

U

co
ve

r. 
pr

ob
.

0.0 0.2 0.4 0.6 0.8 1.0

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

α2 = 0.25(cos(πu) + sin(πu))

U

co
ve

r. 
pr

ob
.

Figure 2.5 The pointwise 95% coverage probabilities for α0(u) = 1.5(1 +

exp(u3))−1, α1(u) = 2u(1 − u) and α2(u) = 0.25(sin(πu) + cos(πu)) based on

500 simulations using Model (2.22), N = 200. The horizonal line is y = 0.95
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Figure 2.6 The pointwise 95% coverage probabilities for α0(u) = 1.5(1 +

exp(u3))−1, α1(u) = 2u(1 − u) and α2(u) = 0.25(sin(πu) + cos(πu)) based on

500 simulations using Model (2.22), N = 400. The horizonal line is y = 0.95
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N = 200 N = 400

CP LCI MISE CP LCI MISE

α0(·) 0.952 0.119 9.89×10−4 0.952 0.084 4.98×10−4

α1(·) 0.958 0.027 4.83×10−5 0.958 0.019 2.41×10−5

α2(·) 0.949 0.028 5.49×10−5 0.944 0.020 3.03×10−5

β1 0.956 0.012 0.952 0.009

β2 0.948 0.012 0.948 0.009

σε 0.956 0.009 0.960 0.006

σb 0.970 0.042 0.954 0.029

Table 2.2 Summary of 500 simulations using Model (2.22) and N = 200 & 400.

CP is the coverage probability of 95% credible intervals, LCI is the mean length of

95% credible intervals, and MISE is the mean integrated squared error.
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Figure 2.7 Estimation of α0(u) = 1.5(1 + exp(u3))−1, α1(u) = 2u(1 − u) and

α2(u) = 0.25(sin(πu)+cos(πu)) arbitrarily from one of 500 simulations using Model

(2.22), N = 200. The solid curves are the true functions while the dash curves

are the estimations. The shaded regions correspond to point-wise 95% credible

intervals.
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Figure 2.8 Estimation of α0(u) = 1.5(1 + exp(u3))−1, α1(u) = 2u(1 − u) and

α2(u) = 0.25(sin(πu)+cos(πu)) arbitrarily from one of 500 simulations using Model

(2.22), N = 400. The solid curves are the true functions while the dash curves

are the estimations. The shaded regions correspond to point-wise 95% credible

intervals.

2.3 Missing data

2.3.1 Statistical model

As mentioned previously, in this study, we only consider the situation of Missing

at Random (MAR). Moreover, we assumed the predictors are all observed while
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only some of the responses are missing. Also, the observed response is denoted as

Y obs and the missing response is denoted as Y mis. More specially, in a longitudinal

data, Y obs
ij means the jth measurement of ith subject and it is observed while

Y mis
ij means the jth measurement of ith subject and it is missing. All the other

denotation is the same to that in Section 2.2.1.

As in Section 2.2.1, we consider using the semiparametric varying coefficient

mixed model with random effect to fit the normal longitudinal data involving

missing observations. We will implement three widely-used approaches to estimate

the model, namely, (i) Complete-Case analysis (CC); (ii) Available-Case analysis

(AC); and (iii) Bayesian imputation (BI) method (or Data augmentation).

Complete-Case analysis confines attention to cases where all the variable are

present. In our context, this means that only those subjects with all the required

measurements observed will be retained. In other words, ith subject will be kept

only if all the ni measurements of responses are observed, i = 1, . . . , N , where N

is the number of subjects and ni is the required measurements for subject i. The

model is quite similar to Model (2.12):

CC: Y obs
ij = XT

ijα(Ui) + ZT
ijβ

+bi + εij i = 1, . . . , NCC , j = 1, . . . , ni, (2.23)

where εij is normal and independent of [Ui, X
T
ij , Z

T
ij , bi] with E(εij) = 0 and V ar(εij) =

σ2
ε ; bi is the random effect for ith subject which is normal and independent among
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subjects with E(bi) = 0 and V ar(bi) = σ2
b ; β = [β1, . . . , βq]

T is a vector of q-

dimensional fixed coefficients and α(·) = [α1(·), . . . , αp(·)]T are varying-coefficients

which are assumed to be smooth with continuous second derivatives. NCC is the

number of subjects with all the required measurements observed and ni is the re-

quired measurements for subject i.

Available-Case analysis includes all the observations (or measurements) where

the variable of interest is present. In our context, Y obs
ij will be included in the

analysis even some of ith subject’s measurements are missing, i = 1, . . . , N . Be-

sides, we assume that all the N subjects have their first measurement of response

observed. This makes sense in real life, e.g. clinical trials. The model is quite

similar to Model (2.23):

AC: Y obs
ij = XT

ijα(Ui) + ZT
ijβ

+bi + εij i = 1, . . . , N, j = 1, . . . , nobsi , (2.24)

where Y obs
ij means the jth measurement of subject i is available, N is the total

number of subjects and nobsi is the set of all the observed measurements of ith

subject. The other denotations are the same to Model (2.23).

Bayesian imputation is a missing value imputation procedure. Our estimation

of the longitudinal regression model involving missing observations by BI mainly

bases on the iterative procedure to be described later and the following formula
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and model:

BI: Ŷ mis
ij = XT

ij α̂(Ui) + ZT
ij β̂

+b̂i + ε̂ij i = 1, . . . , N, j = 1, . . . , nmisi , (2.25)

Yij = XT
ijα(Ui) + ZT

ijβ

+bi + εij i = 1, . . . , N, j = 1, . . . , ni. (2.26)

In Formula (2.25), nmisi is the set of all the missing measurements of ith sub-

ject; ε̂ij is randomly drew from N(0, σ̂2
ε ); α̂(U), β̂, b̂i and σ̂ε are the estimated

varying-coefficients, constant coefficients, random effect and standard deviation of

the random errors from Model (2.26) respectively; Ŷ mis
ij is the imputed missing

measurement. In Model (2.26), Yij could be Y obs
ij if the measurement is observed

or the imputed value Ŷ mis
ij from Formula (2.25) if the original measurement is miss-

ing. ni the set of all the measurements supposed to be recorded for ith subject.

The iterative procedure is summarized as follows: denote θ as the vector of

all the parameters to be estimated, carrying out an AC analysis by fitting Model

(2.24) to obtain the estimates for θ based on Y obs and set these estimates as the

initial draw θ(0). Given a value θ(t) of θ drawn at iteration t:

Step 1 Draw (or impute) Y mis
(t+1) from the distribution p(Y mis|Y obs, θ(t)) with re-

spect to Formula (2.25).
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Step 2 Draw (or propose) θ(t+1) from the distribution p(θ|Y obs, Y mis
(t+1)) with respect

to Model (2.26).

Step 3 The procedure terminates when the estimation of the regression coeffi-

cients converge.

The detail of the simulation algorithm will be given later.

Then for the above three estimation process, we consider using the cubic trun-

cated power basis to approximate the varying-coefficient functions αi(u), i =

1, . . . , p, similarly to that in Section 2.2.1. The detail is almost the same to that

in Section 2.2.1 and is ignored here. To be clear, we rewrite the model after the

process of regression splines approximation for the varying-coefficient functions.

That is

Y = Cγ + Zβ + Lb+ ε, (2.27)

where C, Z, L, γ, β, b, ε is the same to that in Model (2.14), Y represents

Y obs w.r.t. Model (2.23) & Model (2.24), and represents both Y obs and Ŷ mis w.r.t.

Model (2.26).

Besides the BI method described above, there exist many alternative imputation

programs such as mean imputation, last observation carry forward and frequentist

regression imputation. We choose the BI method because it can be easily adapted

to our Bayesian estimation procedure. From our limited numerical studies other
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imputation methods have similar or even inferior performance to BI.

2.3.2 Bayesian inference

2.3.2.1 The prior and the posterior

Similarly to Section 2.2.2.1, we assume

Y|γ, β,C,Z,L ∼MN(Cγ + Zβ + Lb, σ2
ε IN ),

where IN is N -dimension unit matrix. For complete-case method, N is the total

number of observed measurements from all the subjects with all required mea-

surements available; for available-case method, N is the total number of observed

measurements from all the subjects, no matter whether all required measurements

of the subjects is available or not; for Bayesian imputation method, at iteration i,

N is the total number of observed measurements supposed to be observed from

all the subjects.

The assumptions for the priors of γ, β, b and the priors of the hyperpriors

σ2
k, k = 1, . . . , p, σ2

β, σ
2
b , σ

2
ε are the same to that in Section 2.2.2.1 which is ig-

nored here.

To point out, for Bayesian imputation method, we treat the missing measure-

ments from all the subjects as parameters, so it is necessary to specify the priors
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for them: Y mis ∼ MN(Cmisγ + Zmisβ + Lmisb, σ2
ε INmis), where Nmis is the total

number of missing measurements from all the subjects, Cmis, Zmis, Lmis are cor-

responding to Y mis.

The derivation of the posterior is similar to that in Section 2.2.2.2, so we ignore

it and come directly to the simulation algorithm in below.

2.3.2.2 Simulation algorithm

For Complete-Case method and Available-Case method, the simulation algo-

rithm is the same to that in Section 2.2.2.3, so we ignore it here. The only difference

is that, for Complete-Case method, Y and N represent the observed responses Y obs

and the number of observed measurements respectively, given that the observed

responses is from subjects that have all the required measurements available; for

Available-Case method, Y and N represent all the observed responses Y obs and

the total number of all observed measurements respectively.

For Bayesian imputation method, the sampling algorithm of the posterior is as

the following seven steps:

Step 1 Sample (γ, β) from the multivariate normal distribution: MN(µ
(1)
γ,β, Σ

(1)
γ,β);

Step 2 Sample b from the multivariate normal distribution: MN(µ
(1)
b , Σ

(1)
b );
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Step 3 Sample σ2
k, k = 1, . . . , p from IG(Aγ + 1

2
K, Bγ + 1

2
(γ2

4,k + . . . + γ2
K+3,k))

respectively;

Step 4 Sample σ2
ε from IG(Aε + 1

2
N , Bε + 1

2
‖Y − Cγ − Zβ − Lb‖2);

Step 5 Sample σ2
b from IG(Ab + 1

2
N, Bb + 1

2
‖b‖2);

Step 6 Sample Y mis from MN(Cmisγ + Zmisβ + Lmisb, σ2
ε INmis);

Step 7 Return to Step 1 and iterate until converge;

where all the notations from Step 1 to Step 4 are corresponding to the combination

of Y obs and Ŷ mis estimated from Bayes imputation; and Cmis, Zmis, Lmis, Nmis

are corresponding to Y mis.

2.3.3 Simulation

We conduct a simulation study to assess the performances of the three ap-

proaches: (i) Complete-Case (CC), (ii) Available-Case (AC) and Bayesian imputa-

tion (BI) method in fitting varying coefficient mixed models with random effect for

longitudinal data involving missing data with normal response variables mentioned

in Section 2.3.1. We generate data from the following model:

Yij = α0(Ui) + α1(Ui)X1ij + α2(Ui)X2ij + β1Z1ij + β2Z2ij
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+bi + εij, i = 1, . . . , N, j = 1, . . . , ni, (2.28)

where U is from a uniform distribution U(0, 1), X1, X2, Z1, Z2 are generated

from the standard normal distribution N(0, 1), b is from the normal distribution

N(0, σ2
b = 0.22), and ε is fromN(0, σ2

ε = 0.12). The variables U, X1, X2, Z1, Z2, b, ε

are all mutually independent. We set sample size N=200 and ni=n=4 for all

subjects. The coefficients are α0(u) = 1.5(1 + exp(U3))−1, α1(u) = 2u(1 − u),

α2(u) = 0.25(sin(πu) + cos(πu)), β1=0.2 and β2=0.3

Next, for each Yij, j > 1, we generate a missing value indicator Mij = I(pij ≥ c)

where the missing probability pij = {1 + exp(Yi1 − 0.5X1ij − 0.3X2ij − 0.2Z1ij −

0.3Z2ij − 0.3)}−1 and c is a cut-off to control the missing rate. The observed data

set in each simulation only involve Yij where its corresponding Mij = 0. Our sim-

ulation setting thus satisfies the missing at random (MAR) condition but not the

missing completely at random (MCAR) condition.

We implement the MCMC simulations using R software. We use a burnin of

size 2000, followed by 3000 retained iterations. It takes about an average of 13s,

122s and 150s to run a MCMC simulation Using CC, AC and BI methods on a PC

with Intel (R) Core (TM) i7 3.1 GHz processor respectively. From the graphical

results we can conclude the convergence of the chains. Figure 2.9 (on page 52)

shows the trace plots of MCMC chains arbitrarily from one of the simulations by

BI method. The results after 500 simulations are given in Table 2.3 (on page 53).
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Figure 2.9 Trace plot of MCMC chains for the five percentiles (2.5th, 25th, 50th,

75th, and 97.5th) of α0(U), α1(U), α2(U); β1, β2, σε and σb by BI w.r.t. Model

(2.28), N = 200.
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CC AC BI

CP for α0(·) 0.403 0.943 0.952

CP for α1(·) 0.766 0.948 0.959

CP for α2(·) 0.811 0.942 0.949

LCI for α0(·) 0.143 0.138 0.137

LCI for α1(·) 0.070 0.055 0.054

LCI for α2(·) 0.070 0.055 0.055

MISE for α0(·) 1.10×10−2 1.14×10−3 1.12×10−3

MISE for α1(·) 4.07×10−4 1.71×10−4 1.71×10−4

MISE for α2(·) 4.24×10−4 1.87×10−4 1.87×10−4

CP for β1 0.908 0.940 0.952

CP for β2 0.912 0.942 0.950

CP for σε 0.934 0.944 0.954

CP for σb 0.130 0.944 0.948

LCI for β1 0.031 0.023 0.022

LCI for β2 0.031 0.023 0.022

LCI for σε 0.022 0.016 0.016

LCI for σb 0.063 0.045 0.045

Table 2.3 Summary of 500 simulations using three missing value approaches

(CC is complete case analysis, AC is available case analysis and BI is Bayesian

imputation) and N = 200. The average missing rate is 0.3747. CP is the cover-

age probability of 95% credible intervals, LCI is the mean length of 95% credible

intervals, and MISE is the mean integrated squared error.
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The results from CC method is unacceptable with large bias and loss of preci-

sion. The bias can be observed from the low coverage probabilities for the varying

and constant coefficients. Loss of precision is reflected in the relatively wide mean

lengths of the 95% credible intervals for the varying and constant coefficients and

for the variance parameters, and the relatively large MISEs for varying-coefficients.

The results from AC analysis is better than those from CC method by increasing

the coverage probabilities, decreasing the mean lengths of the 95% credible inter-

vals and the MISEs; thus results in less bias estimation and higher precision. In

general, BI method improves the estimation for the model compared to the other

two and is the most recommended approach among the three.

We increase the number of subjects to N=400 and repeat the simulations in

Section 2.3.3.1. It takes about an average of 60s, 650s and 800s to run a MCMC

simulation with a burnin of size 3000 and 3000 retained iterations using CC, AC

and BI methods on a PC with Intel (R) Core (TM) i7 3.1 GHz processor respec-

tively. The convergence is plausible from the graphical results.Figure 2.10 (on page

55) shows the trace plots of MCMC chains arbitrarily from one of the simulations

by BI method. The results after 500 simulations are given in Table 2.4 (on page

56).
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Figure 2.10 Trace plot of MCMC chains for the five percentiles (2.5th, 25th,

50th, 75th, and 97.5th) of α0(U), α1(U), α2(U); β1, β2, σε and σb by BI w.r.t.

Model (2.28), N = 400.
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CC AC BI

CP for α0(·) 0.267 0.942 0.951

CP for α1(·) 0.798 0.949 0.960

CP for α2(·) 0.872 0.939 0.942

LCI for α0(·) 0.096 0.097 0.096

LCI for α1(·) 0.046 0.038 0.036

LCI for α2(·) 0.047 0.038 0.037

MISE for α0(·) 8.21×10−3 5.30×10−4 5.25×10−4

MISE for α1(·) 1.87×10−4 7.89×10−5 7.86×10−5

MISE for α2(·) 1.87×10−4 9.19×10−5 9.19×10−5

CP for β1 0.914 0.944 0.946

CP for β2 0.918 0.940 0.946

CP for σε 0.914 0.938 0.940

CP for σb 0.012 0.938 0.944

LCI for β1 0.021 0.016 0.015

LCI for β2 0.021 0.016 0.015

LCI for σε 0.015 0.011 0.011

LCI for σb 0.044 0.032 0.031

Table 2.4 Summary of 500 simulations using three missing value approaches

(CC is complete case analysis, AC is available case analysis and BI is Bayesian

imputation) and N = 400. The average missing rate is 0.3751. CP is the cover-

age probability of 95% credible intervals, LCI is the mean length of 95% credible

intervals, and MISE is the mean integrated squared error.
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Table 2.4 (on page 56) shows a similar result to that in Table 2.3 (on page 53).

CC and AC both improve as sample size grows. BI analysis still performs the best

among the three methods.
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CHAPTER 3

Varying-coefficient model for

binary response

3.1 Model & estimation

3.1.1 Statistical model

When the response variable is binary, Model (2.1) is unsuitable. We consider a

varying-coefficient model for binary response variable. Perhaps the most well-know
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regression model is the logistic regression which we extend as follows:

Y ∼ Bernoulli(g−1(η))

η = αT (U)X + βTZ, (3.1)

where β and α(·) play the same role as those in Model (2.1) and the link function

g(π)=log π
1−π is considered in the study. Other link functions for binary outcome

can be similarly constructed.

Suppose we have a random sample of size n, {(Ui, Xi1, . . . , Xip, Zi1, . . . , Ziq,

Yi), i = 1, . . . , n} from Model (3.1), where Yk are assumed to be independent of

each other.

As in Model (2.1), to tackle the infinite dimensional functions, we consider

using the cubic truncated power basis

φ(u) = [1, u, u2, u3, (u− τ1)3
+, . . . , (u− τK)3

+]T

for approximation and denote the corresponding coefficient vector to be

γk = [γk0, γk1, γk2, γk3, γk4, . . . , γk,K+3]T , k = 1, . . . , p,

where τl, l = 1, . . . , K are the knots and K is number of knots.

Under the basis expansion, Model (3.1) can be re-written as

ηi =

p∑
k=1

Xikφ
T (Ui)γk + ZT

i β,

= CT
i γ + ZT

i β, i = 1, . . . , n, (3.2)
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where Ci = [Xi1φ
T (Ui), . . . , Xipφ

T (Ui)]
T , γ = [γT1 , . . . , γ

T
p ]T ,

Zi = [Zi1, . . . , Ziq]
T ; The above model in matrix form is

η = Cγ + Zβ,

where η = [η1, . . . , ηn]T , C = (C1, . . . , Cn)T , and Z = (Z1, . . . , Zn)T .

Then, Model (3.1) is rewritten as follows:

Yi ∼ Bernouilli(g−1(ηi))

ηi = CT
i γ + ZT

i β, i = 1, . . . , n. (3.3)

3.1.2 Bayesian inference

3.1.2.1 The prior

According to model assumption, we have

Yi|γ, β, C, Z ∼ Bernouilli(
exp(CT

i γ + ZT
i β)

1 + exp(CT
i γ + ZT

i β)
).

We assume the priors for β, γ similarly to that in Section 2.1.2.1 as follow:

Let β ∼MN(0, σ2
βIq) where Iq is q-dimension identical matrix and σ2

β so large

that, for all intents and purpose, the normal distribution is uniform on the range

of β.

Let γ ∼MN(0, V ) where V = diag(V1, . . . , Vp) and Vk = diag(σ2
γI4, σ

2
kIK), k =
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1, . . . , p. Similarly to σ2
β, σ2

γ are large enough to obtain noninformative prior. For

simplification, we set σ2
γ = σ2

β = 108 here.

For the purpose of shrinkage, we assume the priors on hyperpriors σ2
k, k =

1, . . . , p are inverse gamma with parameters Aγ and Bγ independently, that is

σ2
k ∼ IG(Aγ, Bγ), k = 1, . . . , p where Aγ=Bγ=0.001.

3.1.2.2 The posterior

Denote the parameter space by Θ and parameter in Θ by θ where θ = [γT , βT , σ2
1, . . . , σ

2
p]
T .

Denote the prior distribution of θ by π(θ) and the conditional distribution of sample

Y by p(Y |θ) where Y = [Y1, . . . , Yn]T . Then the posterior of θ:

π(θ|Y ) ∝ p(Y |θ)π(θ).

By independency, p(Y |θ) =
∏n

k=1 p(Yk|θ), where

p(Yi|θ) = πYii (1− πi)(1−Yi) = eYi(C
T
i γ+ZTi β)(1 + eC

T
i γ+ZTi β)−1;

By independency, π(θ) = π(γ)π(β)
∏p

k=1 π(σ2
k), where

π(γ) =
1

(2π)(p+1)(K+4)/2|V |1/2
exp(−1

2
γTV −1γ),

π(β) = (
1√

2πσβ
)q exp(−‖β‖

2

2σ2
β

),
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π(σ2
k) =

B
Aγ
γ

Γ(Aγ)
(σ2

k)
−(Aγ+1) exp(−Bγ

σ2
k

).

Then

π(θ|Y ) ∝ e
∑n
i=1 Yi(C

T
i γ+ZTi β) ×

n∏
i=1

(1 + eC
T
i γ+ZTi β)−1

× 1

|V |1/2
exp(−1

2
γTV −1γ)

× exp(−‖β‖
2

2σ2
β

)

×
p∏

k=1

(σ2
k)
−(Aγ+1) exp(−Bγ

σ2
k

). (3.4)

From (3.4), we can see the conditional posterior of γ given (β, σ2
1, . . . , σ

2
p)–that

is, the complete conditional–is proportional to

e
∑n
i=1 Yi(C

T
i γ+ZTi β)

n∏
i=1

(1 + eC
T
i γ+ZTi β)−1 exp(−1

2
γTV −1γ). (3.5)

The complete conditional for β is proportional to

e
∑n
i=1 Yi(C

T
i γ+ZTi β)

n∏
i=1

(1 + eC
T
i γ+ZTi β)−1 exp(−‖β‖

2

2σ2
β

). (3.6)

The complete conditional for σ2
k, k = 1, . . . , p is proportional to

(σ2
k)
−(K/2+Aγ+1) exp(− 1

σ2
k

(
1

2
(γ2

4,k + . . .+ γ2
(K+3),k) +Bγ)), (3.7)

which implies that the complete conditionals for σ2
k, k = 1, . . . , p follow the Inverse-

Gamma distribution.
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3.1.2.3 Simulation algorithm

To sample from the posterior, we iterate S times through the following four

steps.

Step 1 Sample γ from the multivariate distribution

f(γ) = Rγe
∑n
i=1 Yi(C

T
i γ+ZTi β)

n∏
i=1

(1 + eC
T
i γ+ZTi β)−1 exp(−1

2
γTV −1γ),

where Rγ is the normalizing factor to make the integral of f(γ)=1;

Step 2 Sample β from the multivariate distribution

f(β) = Rβe
∑n
i=1 Yi(C

T
i γ+ZTi β)

n∏
i=1

(1 + eC
T
i γ+ZTi β)−1 exp(−‖β‖

2

2σ2
β

),

where Rβ is the normalizing factor to make the integral of f(β)=1;

Step 3 Sample σ2
k, k = 1, . . . , p from IG(Aγ + 1

2
K,Bγ + 1

2
(γ2

4,k + . . . + γ2
K+3,k))

respectively;

Step 4 Return to Step 1 and iterate until converge.

The above three steps process is a typical Gibbs sampler which is a particular

Markov chain simulation algorithm.

In Step 3 we can sample σ2
k, k = 1, . . . , p directly from Inverse-Gamma distri-

bution. However, Step 1 and Step 2 both involve complicated conditional posterior
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distributions more than 1 dimension.

Conventionally, we adopt multidimensional M-H algorithm in both Step 1 and

Step 2, that is updating γ in block and β in block respectively. However, the M-H

algorithm introduces an accept-reject stage which makes the simulation slow, espe-

cially when the proposal distribution is not suitable. Besides, a potential problem

lurks in that there is strong posterior correlation between γ and β, which is likely

to cause poor mixing and slow convergence in the simulation chain.

In the next section, we propose a new model using auxiliary variables which

overcome the above problems.

3.1.3 Data augmentation

3.1.3.1 Auxiliary variable model

In this section, we propose a new model by adding auxiliary variables which

make the Gibbs sampler computation simple and convergence accelerated because

we can then use conjugate prior for the parameters in the model, thus directly

sampling the parameters from the conditional posterior instead of using M-H al-

gorithm is available according to Holmes and Held (2006). The idea of adding

variables is also called data augmentation. We consider the following hierarchical
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data generation mechanism:

Y = {
1 if ω > 0

0 otherwise

ω = αT (U)X + βTZ + ε

ε ∼ N(0, λ)

λ = (2ψ)2

ψ ∼ KS, (3.8)

where β and α(·) are the same to that in model (3.1). ψ follows the Kolmogorov-

Smirnov (KS) distribution. For more detailed information about KS distribution,

see Devroye (1986).

Similarly to Section 3.1.1, suppose we have a random sample of size n, {(Ui, Xi1, . . . , Xip,

Zi1, . . . , Ziq, Yi), i = 1, . . . , n} from Model (3.8), where Yi are assumed to be inde-

pendent of each other.

By the same procedure in Section 3.1.1 using truncated power basis and matrix

algebra, Model (3.8) is re-written as follows:

Yi = {
1 if ωi > 0

0 otherwise

ωi = CT
i γ + ZT

i β + εi

εi ∼ N(0, λi)

λi = (2ψi)
2
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ψi ∼ KS, i = 1, . . . , n, (3.9)

where γ, Ci and Zi are the same to those in Model (3.2) and ψi, i = 1, . . . , n

are independent random variables following the KS distribution. In this case,

εi has a scale mixture of normal form with a marginal logistic distribution (see

Andrews and Mallows (1974)) so that the marginal likelihood L(γ, β|Y1, . . . , Yn)

for Model (3.9) and Model (3.3) are equivalent.

3.1.3.2 The prior

We use the same prior for β, γ and hyperprior for σ2
k, k = 1, . . . , p to that in

Section 3.1.2.1. That is:

Let β ∼MN(0, σ2
βIq) where σ2

β = 108; γ ∼MN(0, V ) where V = diag(V1, . . . , Vp),

Vk = diag(σ2
γI4, σ

2
kIK), k = 1, . . . , p and σ2

γ = 108 here; for the purpose of shrink-

age, σ2
k ∼ IG(Aγ, Bγ), k = 1, . . . , p where Aγ=Bγ=0.001.

3.1.3.3 The posterior

We denote ω = [ω1, . . . , ωn]T , λ = [λ1, . . . , λn]T , Y = [Y1, . . . , Yn]T , C =

[C1, . . . , Cn]T and Z = [Z1, . . . , Zn]T .
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Under the aforementioned prior and model specification, we can easily derive

posterior full conditionals. Specifically, the full conditional distribution of (γ, β)

given (σ2
1, . . . , σ

2
p, ω, λ) is still normal,

γ, β|σ2
1, . . . , σ

2
p, ω, λ ∼ MN(µγ,β, Σγ,β)

µγ,β = Σγ,βD
TΛ−1ω

Σγ,β = (DTΛ−1D + ETE +
F TF

σ2
β

)−1

Λ = diag(λ1, . . . , λn), (3.10)

where D = [C,Z], E = [V −1/2,0q×q], F = [0p(K+4)×p(K+4), Iq] and 0q×q is q × q-

dimension zero matrix.

The full conditional for σ2
k, k = 1, . . . , p are still inverse gamma,

σ2
k|γk ∼ IG((Aγ +

1

2
K), Bγ +

1

2
(γ2

4,k + . . .+ γ2
(K+3),k)). (3.11)

The full conditional for each element ωi, i = 1, . . . , n is truncated normal,

ωi|γ, β, Yi, λi ∝ {
N(CT

i γ + ZT
i β, λi)I(ωi > 0) if Yi = 1

N(CT
i γ + ZT

i β, λi)I(ωi ≤ 0) otherwise.

(3.12)

The conditional distribution π(λi|ωi, γ, β) does not have a standard form. How-

ever, it can be generated using rejection sampling as outlined in Holmes and Held

(2006).
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3.1.3.4 Simulation algorithm

We can implement automatic sampling from the posterior using iterative up-

dates according to the above specification, that is, (γ, β|σ2
1, . . . , σ

2
p, ω, λ) followed

by (σ2
k|γk), k = 1, . . . , p, followed by (ω|γ, β, Y, λ) and then (λ|ω, γ, β). The sam-

pling scheme will be slower due to the strong posterior correlation between (γ, β)

and ω, as can be seen in Model (3.9).

According to Holmes and Held (2006), there are two options to improve mat-

ters through joint updating. On the one hand, we can propose to update (γ, β)

and ω jointly making use of the factorization,

π(γ, β, ω|Y, λ, σ2
1, . . . , σ

2
p) = π(ω|Y, λ)π(γ, β|ω, λ, σ2

1, . . . , σ
2
p),

followed by an update to λ|ω, γ, β and then σ2
k|γk, k = 1, . . . , p. On the other hand

we can update jointly (ω, λ) given γ, β,

π(ω, λ|γ, β, Y ) = π(ω|γ, β, Y )π(λ|ω, γ, β),

followed by an update to γ, β|ω, λ, σ2
1, . . . , σ

2
p and then σ2

k|γk, k = 1, . . . , p. In

this latter case the marginal densities for the ω′is, i = 1, . . . , n are independent

truncated logistic distributions,

ωi|γ, β, Yi ∝ {
Logistic(CT

i γ + ZT
i β, 1)I(ωi > 0) if Yi = 1

Logistic(CT
i γ + ZT

i β, 1)I(ωi ≤ 0) otherwise,

(3.13)
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where Logistic(a, b) denotes the density function of the logistic distribution with

mean a and scale parameter b (see Devroye (1986)). As showed in Holmes and Held

(2006), this latter approach has an advantage that sampling from the truncated

logistic distribution can be done efficiently by the inversion method, because both

the distribution function and its inverse have simple analytic form. In our simula-

tion, we adopt the latter approach. We outline the algorithm below:

To sample from the posterior, we iterate S times through the following five

steps.

Step 1 Sample (γ, β) from the multivariate normal distribution: MN(µγ,β, Σγ,β);

Step 2 Sample σ2
k, k = 1, . . . , p from IG(Aγ + 1

2
K, Bγ + 1

2
(γ2

4,k + . . . + γ2
K+3,k))

respectively;

Step 3 Sample ωi, i = 1, . . . , n according to (3.13);

Step 4 Sample λi, i = 1, . . . , n using reject sampling outlined in Holmes and Held

(2006);

Step 5 Return to Step 1 and iterate until converge.
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3.1.4 Simulation

We conduct simulation study to assess the performance of binary varying coef-

ficient model (3.9).

Our simulation contain two parts: (i) generate data using Model (3.1); (ii) fit

the data using Model (3.9).

In Part i, we generated data from the following model:

Yi ∼ Bernoulli(g−1(ηi))

ηi = α0(Ui) + α1(Ui)X1i + α2(Ui)X2i + β1Z1i + β2Z2i, i = 1, . . . , n,(3.14)

where U is from U(0, 1), X1, X2, Z1, Z2 are all generated fromN(0, 1). U, X1, X2, Z1, Z2

are all mutually independent. The link function is g(π)=log π
1−π . The sample size is

n = 200 and 400. The coefficients are α0(u) = 1.5(1+exp(u3))−1, α1(u) = 2u(1−u),

α2(u) = 0.25(sin(πu) + cos(πu)), β1 = 0.2 and β2 = 0.3.

In Part ii, we fit the data using Model (3.9). For approximation of the varying

coefficient functions α0, α1, α2, we decide the knots of the cubic truncated power

basis by using the (l + 1)/(K + 2) sample quantiles of the observed predictors U,

where l = 1, . . . , K and K = min(n/4, 30)=30 here.

We implement the MCMC simulation using R software. We use a burnin of size

2000, followed by 3000 retained iterations. It takes about 160s and 355s to run a

MCMC simulation for n = 200 and 400 respectively on a PC with Intel (R) Core
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(TM) i7 3.1 GHz processor. From the graphical results we can conclude that the

convergence is plausible. The results after 500 simulations are given in Figure 3.1

(on page 71), Figure 3.2 (on page 72) and Table 3.1 (on page 72).
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Figure 3.1 The pointwise 95% coverage probabilities for α0(u) = 1.5(1 +

exp(u3))−1, α1(u) = 2u(1 − u) and α2(u) = 0.25(sin(πu) + cos(πu)) based on

500 simulations using Model (3.14), n = 200.
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Figure 3.2 The pointwise 95% coverage probabilities for α0(u) = 1.5(1 +

exp(u3))−1, α1(u) = 2u(1 − u) and α2(u) = 0.25(sin(πu) + cos(πu)) based on

500 simulations using Model (3.14), n = 400.

n = 200 n = 400

CP LCI MISE CP LCI MISE

α0(·) 0.986 1.414 0.125 0.965 0.860 0.126

α1(·) 0.993 1.528 0.107 0.969 0.904 0.044

α2(·) 0.994 1.519 0.100 0.990 0.896 0.033

β1 0.992 0.665 0.974 0.428

β2 0.992 0.670 0.966 0.430

Table 3.1 Summary of the 500 simulations using Model (3.14) and n = 200 &

400. CP is the coverage probability of 95% credible intervals, LCI is the mean

length of 95% credible intervals, and MISE is the mean integrated squared error.
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3.2 Missing data

3.2.1 Statistical model

In this section, we consider the binary varying-coefficient model with respect

to the situation when some of the binary responses are missing at random (MAR).

Similarly to Section 2.3.1, we assumed the predictors are all observed while some

of the responses are missing. The observed response is denoted as Y obs and the

missing response is denoted as Y mis. All the other denotations are the same to

that in Section 3.1.1.

As in Section 3.1.1, we consider fitting the binary semiparametric varying-

coefficient model involving missing responses.

For Complete-Case (CC) method when all the missing data are deleted, the

model is similar to Model (3.1):

CC: Y obs
i ∼ Bernoulli(g−1(ηobsi ))

ηobsi = αT (Ui)Xi + βTZi, i = 1, . . . , nobs, (3.15)

where β and α(·) are the same to those in Model (3.1) and the link function

g(π)=log π
1−π . nobs is the number of observed data.

In the simple regression data context, Available-Case analysis is exactly iden-

tical to Complete-Case analysis which confines attention to cases where all the
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variable are present. We ignore it here.

For Bayesian imputation method (BI), the estimation process is based on Model

(3.1) and an iterative procedure where the missing response Y mis is treated as pa-

rameters, which is quite similar to that in Section 2.3.1. The detail of the simulation

algorithm will be given later.

3.2.2 Data augmentation

For the above two estimation process (CC & BI), we adopt Model (3.8) proposed

in Section 3.1.3.1 to avoid the problem described in Section 3.1.2.3 and make the

Gibbs Sampler simpler and convergence accelerated. We apply regression splines

technique and matrix algebra similar to Section 3.1.3.1 too.

Then for CC method, we propose the following model instead of Model (3.15):

Y obs
i = {

1 if ωi > 0

0 otherwise

ωi = CT
i γ + ZT

i β + εi

εi ∼ N(0, λi)

λi = (2ψi)
2

ψi ∼ KS, i = 1, . . . , nobs, (3.16)
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where all the denotations are the same to that in Model (3.9) and nobs is the num-

ber of observed data.

For BI method, the estimation process is based on Model (3.9) and an iteration

procedure similar to that in Section 2.3.1.

3.2.3 Bayesian inference

3.2.3.1 The prior and the posterior

The assumptions for the priors of γ , β and the hyperpriors σ2
k, k = 1, . . . , p are

the same to that in Section 3.1.3.2 which is ignored here.

The derivation of the posterior for CC method is similar to that in Section

3.1.3.3, so we ignore it here and go directly to the simulation algorithm below.

3.2.3.2 Simulation of the posterior

For CC method, the simulation algorithm is the same to that in Section 3.1.3.4,

so we ignore here.

For BI imputation method, the detailed sampling algorithm involved six steps
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is outlined as below:

Step 1 Sample (γ, β) from the multivariate normal distribution: MN(µγ,β, Σγ,β);

Step 2 Sample σ2
i , i = 1, . . . , p from IG(Aγ + 1

2
K, Bγ + 1

2
(γ2

4,i + . . . + γ2
K+3,i))

respectively;

Step 3 Sample ωi, i = 1, . . . , n according to (3.13);

Step 4 Sample λi, i = 1, . . . , n using reject sampling outlined in Holmes and Held

(2006);

Step 5 calculate ηmis = Cmisγ+Zmisβ and sample Y mis fromBernoulli(g−1(ηmis));

Step 6 Return to Step 1 and iterate until converge;

where all the denotations are similar to Section 3.1.3.4 except ηmis and Y mis. n is

the total size of the sample, including observed and missing. All the random draws

from Step 1 to Step 4 are with respect to the combination of Y obs and Y mis where

Y mis is drew from Step 5. Cmis and Zmis is similar to that in Model (3.3) with

respect to Y mis and g(π)=log π
1−π .
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3.2.4 Simulation

We conduct simulation study to assess the performance of the two method (CC

and BI) in fitting binary varying-coefficient model involving missing data. We

generate data from the following model:

Yi ∼ Bernoulli(g−1(ηi))

ηi = α0(Ui) + α1(Ui)X1i + α2(Ui)X2i + β1Z1i + β2Z2i, i = 1, . . . , n,(3.17)

where U is generated from U(0, 1) and X1, X2, Z1, Z2 are generated from N(0, 1).

U, X1, X2, Z1, Z2 are all mutually independent. The coefficients are set to be

α0(u) = 1.5(1+exp(u3))−1, α1(u) = 2u(1−u), α2(u) = 0.25(sin(πu)+cos(πu)), β1

= 0.2 and β2 = 0.3. The missing value indicator is set to be Mi = I(pi ≥ c), i =

1, . . . , n, where pi is calculated by {1+exp(−[.3+ .5X1i+ .3X2i+ .2Z1i+ .3Z2i])}−1

and c is a preset constant to control the missing rate. The observed data set in each

simulation only involve Yi where its corresponding Mi = 0. Thus our simulation

setting satisfies MAR condition but not MCAR condition. The sample size is n =

200 or 400.

We implement the MCMC simulation using R software. We use a burnin of size

2000 followed by 3000 retained iterations. It takes about an average of 65s & 170s

(n = 200) and 160s & 360s (n = 400) to run a MCMC simulation using CC and

BI methods on a PC with Intel (R) Core (TM) i7 3.1 GHz processor respectively.
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From graphical results we can conclude the convergence of the chains. Figure 3.3

(on page 78) shows the trace plots of MCMC chains arbitrarily from one of the

simulations by BI method with n = 400. The results after 500 simulations for both

n = 200 & 400 are given in Table 3.2 (on page 79).
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Figure 3.3 Trace plot of MCMC chains for the five percentiles (2.5th, 25th, 50th,

75th, and 97.5th) of α0(U), α1(U), α2(U); β1 and β2 by BI w.r.t. Model (3.17), n

= 400.
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CC BI CC BI

Sample Size n=200 n=200 n=400 n=400

CP for α0(·) 0.963 0.983 0.971 0.992

CP for α1(·) 0.962 0.991 0.980 0.998

CP for α2(·) 0.966 0.991 0.985 0.998

LCI for α0(·) 4.474 2.907 2.081 2.040

LCI for α1(·) 4.516 2.270 2.028 1.495

LCI for α2(·) 4.236 1.986 1.896 1.255

MISE for α0(·) 5.580 0.349 0.267 0.189

MISE for α1(·) 4.235 0.179 0.218 0.062

MISE for α2(·) 4.404 0.149 0.203 0.034

CP for β1 0.973 0.990 0.988 0.998

CP for β2 0.980 0.990 0.990 0.998

LCI for β1 1.394 1.079 0.799 0.766

LCI for β2 1.581 1.381 0.906 0.898

Table 3.2 Summary of 500 simulations using two missing value approaches (CC

is complete case analysis and BI is Bayesian imputation). The average missing

rate is 0.5068. CP is the coverage probability of 95% credible intervals, LCI is the

mean length of 95% credible intervals, and MISE is the mean integrated squared

error.



3.2 Missing data 80

From Table 3.2 (on page 79), we can observe that BI method outperforms CC

method overall. Both methods get unbiased estimations while BI analysis gets

higher coverage probabilities for the parameters. However, compared to CC anal-

ysis, BI analysis improves the precision of the estimation by reducing the mean

lengths of the 95% credible intervals and the MISEs a lot, especially when sample

size is small.
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CHAPTER 4

Real data analysis

4.1 Background of the data

Dementia will be a major global public health issue in the coming decades, es-

pecially in Chinese aging populations. Previous studies have consistently reported

sharply increased prevalence and incidence rate of dementia with increasing age in

the Chinese elderly, (e.g. Sahadevan et al. (1997), Zhang et al. (2005), Feng et al.

(2012)). Singapore Longitudinal Aging Study (SLAS) is a recent prospective study

in Singapore which enrolled 2501 Chinese elder adults aged ≥ 55 from September

2003 to December 2005, two rounds of follow-up assessments were conducted from
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March 2005 to September 2007 and from August 2007 to December 2008 corre-

spondingly. This observational study attempts to investigate various epidemiology

questions for dementia patients.

The primary outcome variable is the Mini-Mental State Examination (MMSE),

which measures global cognitive functioning in domains of memory, attention, lan-

guage, praxis, and visuospatial ability. The MMSE score ranged from 0 to 30 with

higher values indicating better cognitive functioning. Cognitive impairment may

be defined by an MMSE score ≤ 23. Participants in this study were examined and

their MMSE values were recorded at the baseline and two follow-up visits. The

longitudinal observations of MMSE may be used to cast insights on the natural

disease progression for aging adults.

A secondary outcome variable in this study is the Clinical Dementia Rating

(CDR) score. CDR is a numeric scale used to quantify the severity of dementia

symptoms. A CDR global score of 0 indicates no dementia, whereas CDR global

score of 0.5, 1, 2 or 3 indicate very mild, mild, moderate or severe dementia respec-

tively. The CDR was administered by trained researchers with necessary medical

background in SLAS. In this study, we used CDR = 0.5 to define early cognitive

impairment. Therefore, CDR could be treated as a binary cross-sectional variable

with two categories, CDR ≥ 0.5 and CDR < 0.5, which was computed at baseline

and used to assess the prevalence of dementia in the study sample.

In addition, information on age, gender, education level, alcohol consumption,
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cigarette consumption, amount of social and physical activities were collected by

research nurses through face-to-face interview, and data on the possible related

diseases such as hypertension, heart attack and diabetes etc. were collected from

the patients’ records.

4.2 Pretreatment of the data

As mentioned before, there are 2501 participants in total involved in the study.

However, there are missing values for almost all the variables, especially for the

responses. For baseline MMSE, there is no missing value; for 1st-MMSE, the miss-

ing rate is 840/2501=33.6%; for 2nd-MMSE, the missing rate is 1315/2501=52.6%.

The reasons of missing contain: some people quit after the baseline MMSE or 1st-

MMSE, some people couldn’t be connected after baseline MMSE or 1st-MMSE,

etc. For CDR, the missing rate reaches 2030/2501=81.2%. The high missing rate

of CDR may partially due to the fact that most of the participants need not to be

administered CDR. The missing cases are relatively much fewer in the predictors,

the sum of missing cases throughout all the predictors are 343, so the missing rate

for predictors is 343/2501=13.7%.

Here our objectives are:
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(1) to impute the large amount of missing values for 1st-MMSE, 2nd-MMSE

respectively with Bayesian imputation method, treat baseline MMSE, 1st-

MMSE and 2nd-MMSE as longitudinal data and assess the varying-coefficient

mixed effects model in fitting longitudinal data involving missing data;

(2) to impute the large amount of missing value CDR and assess the varying-

coefficient model in fitting binary data involving missing data.

For these reasons, before the estimation, we delete the cases where predictors are

missing which results in a renewed data as following :
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categorical variable category meaning dummy variable percentage

Apolipoprotein E carrier 0 no 82.8%

1 yes apoe 17.2%

sex 1 male sex 36.2%

2 female 73.8%

education level 0 7+ 48.1%

1 0-6 yr edu 51.9%

hypertension history 0 no 46.0%

1 yes hpt 54.0%

diabetes history 0 no 83.5%

1 yes dia 16.5%

stroke history 0 no, or not sure 96.3%

1 yes str 3.7%

heart failure 0 no 94.7%

or attack history 1 yes heart 5.3%

social activities score 1 1-5 soc1 31.7%

2 6-8 soc2 37.1%

3 9 or more 31.2%

physical activities score 1 0-1 phy1 30.9%

2 2-3 phy2 32.1%

3 3 or more 37.0%

continuous variable mean s.d. range

age (years) 65.75 7.64 (52.83, 97.57)

1st follow-up time

(years from baseline ) (0.57, 3.96)

2nd follow-up time

(years from baseline ) (2.54, 5.31)

Table 4.1 A summary of the predictors after pretreatment of the real data.
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The pretreatment and results for fitting MMSEs and CDR will be a little dif-

ferent which will be specified in the corresponding sections below.

After the pretreatment, we provide a general Bayesian procedure to fit semi-

parametric varying-coefficient regression model for longitudinal normal (MMSEs)

and cross-sectional binary (CDR) response. Specifically, the nonparametric compo-

nents are approximated with a cubic truncated power basis expansion and Bayesian

spline technique described in previous reports are used in the estimation.

4.3 Varying-coefficient mixed effects model for

MMSEs

The baseline MMSE, 1st-MMSE and 2nd-MMSE are measured for each subject

during the period of the study as well as the times when measured. Thus the can

be treated as longitudinal data. For simplification, we denote baseline MMSE, 1st-

MMSE and 2nd-MMSE as Y0, Y1 and Y2 respectively. We assume that the responses

follow the normal distribution and there is a random effect b for each subject among

the three measurements Y0, Y1 and Y2. The predictors are all measured one time

when Y0 was measured except the measured times which are recorded when MMSEs

were measured. We are particularly interested in the effects of Apolipoprotein E
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carrier (apoe) and model its coefficient using a varying-coefficient function of age.

Besides, we also assume age has a varying effect on the responses. The other

predictors variables are adjusted in the model with constant coefficients. For those

constant coefficient predictors with k categories, we create dummy variables for

their first k − 1 categories respectively.

Then we propose the model as below:

Yij = α0(Ui) + α1(Ui)Xi +
10∑
k=1

βkZik + β11tij

+bi + εij, i = 1, . . . , N, j = 1, . . . , 3, (4.1)

where Yij is the 3 MMSEs; U is age; X is apoe; α0(U) and α1(U) are smoothing

functions with continuous second derivatives; βk, k = 1, . . . , 11 are constants; t

is the time distance between a pre-set time point and the baseline MMSE time

or 1st-MMSE time or 2nd-MMSE time, where the pre-set time point is set as the

baseline MMSE time for each subject, thus ti1=0 for all the subjects. t is mea-

sured in years; bi is the random effect within each subject and follows a normal

distribution with zero mean and variance σ2
b ; εij is the random error following a

normal distribution with mean 0 and variance σ2
ε and Z is a 10-dimension-vector

which contains constant-coefficient continuous predictors and dummy variables for

categorical predictors. Because each subject has 3 measurements of MMSEEs, j

takes the values of 1, 2 or 3.

One of our objectives in fitting this model is to impute the large amount of
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missing values for 1st-MMSE, 2nd-MMSE respectively with Bayesian imputation

method then fit the varying-coefficient mixed model for longitudinal data with re-

spect to the cases where all predictors are observed.

Then one problem occurs in Model (4.1): among all the predictors, only the 3

MMSEs measured times can reflect the difference among the 3 MMSEs for each

subject as they are recorded synchronously when baseline MMSE, 1st-MMSE or

2nd-MMSE are observed; however, when the respective 1st-MMSE or 2nd-MMSE

is not observed, the measured time will not be recorded too. This problem prevents

us from implementing the missing MMSEs and fit the model to satisfy our goal.

To overcome this problem, we propose the following treatment: impute the

missing 1st-MMSE measured times and 2nd-MMSE measured times using the re-

spect medians of all the observed 1st-MMSE measured times and 2nd-MMSE mea-

sured times.

Then we carry on the pretreatment mentioned in Section 4.2. Thus after delet-

ing the data where any predictor is missing, the number of subjects under analysis

is N=2256 with some of them have all the 3 measurements observed and some of

them have 1st or 2nd-MMSE missing.

Then we use complete-case analysis (CC), available-case analysis (AC) and

Bayes imputation method (BI) to fit the data using Model (4.1) by implementing

the cubic truncated power basis expansion and Bayesian procedure described in

Chapter 2. Then we compare their estimation results. For CC analysis, the number
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of subjects is NCC=891 and the total number of measurements is N CC=2673; for

AC analysis, the corresponding numbers are NAC=2256 and N AC=4842 respec-

tively; for BI analysis, the corresponding numbers are NBI=2256 and N BI=6768

respectively.

We implement the MCMC simulation using R software. We use a burnin of

size 3000, followed by 3000 retained iterations. They take us about 1081s, 26.6h

and 27.1h to run the MCMC simulation on a PC with Intel (R) Core (TM) i7 3.1

GHz processor respectively. The convergence of the simulations is plausible after

we check the MCMC chains. Figure 4.1 (on page 90) and Figure 4.2 (on page 91)

show some of the trace plots of MCMC chains by BI analysis. The nonparametric

and parametric estimation results are given in Figure 4.3 (on page 92) and Ta-

ble 4.2 (on page 93) respectively.
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Figure 4.1 Trace plot of MCMC chains for the five percentiles (2.5th, 25th, 50th,

75th and 97.5th) of α0(U) and α1(U) by BI analysis w.r.t Model (4.1); The upper

five plots are respective to α0(U) and the lower five plots are respective to α1(U).
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Figure 4.2 Trace plot of MCMC chains for the constant coefficients and variance

parameters by BI analysis w.r.t Model (4.1).
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Figure 4.3 Comparison of the estimations of varying-coefficient functions for

MMSEs using Model (4.1) by CC, AC and BI.

The results from available-case analysis and Bayesian imputation method are

rather similar, differing from those under complete-case analysis. The intercept is

a decreasing function of age, indicating older subjects tend to have lower MMSE.

The regression coefficients of Apolipoprotein E are also decreasing with age, in-

dicating that the carrier of this gene trait tend to have a lower MMSE and older

carriers tend to decrease their MMSE more than younger carriers.



4.3 Varying-coefficient mixed effects model for MMSEs 93

Variable CC AC BI

time 0.21 (0.17, 0.25) 0.24 (0.21, 0.28) 0.25 (0.21, 0.28)

sex 0.44 (0.14, 0.72) 0.51 (0.29, 0.75) 0.53 (0.30, 0.78)

edu -1.64 (-1.92, -1.36) -2.09 (-2.32, -1.87) -2.09 (-2.31, -1.85)

hpt -0.09 (-0.34, 0.20) -0.11 (-0.32, 0.10) -0.11 (-0.30, 0.10)

dia -0.18 (-0.55, 0.17) -0.01 (-0.31, 0.28) -0.03 (-0.29, 0.24)

str -0.52 (-1.21, 0.17) -1.42 (-1.93, -0.86) -1.42 (-1.95, -0.88)

heart 0.02 (-0.56, 0.57) 0.10 (-0.36, 0.56) 0.12 (-0.36, 0.63)

soc1 -0.48 (-0.83, -0.14) -0.53 (-0.81, -0.24) -0.51 (-0.77, -0.24)

soc2 -0.36 (-0.66, -0.06) -0.45 (-0.71, -0.21) -0.45 (-0.72, -0.19)

phy1 -0.24 (-0.56, 0.08) -0.36 (-0.61, -0.11) -0.35 (-0.60, -0.09)

phy2 0.19 (-0.08, 0.48) 0.02 (-0.21, 0.26) 0.02 (-0.23, 0.27)

σε 1.63 (1.58, 1.69) 1.73 (1.68, 1.77) 1.73 (1.68, 1.78)

σb 1.60 (1.51, 1.71) 2.15 (2.05, 2.25) 2.15 (2.06, 2.24)

Table 4.2 Comparison of the estimated posterior means and 95% credible in-

tervals of constant-coefficients and variance parameters for MMSE response using

Model (4.1) by CC, AC and BI.

Table 4.2 (on page 93) shows that the results by AC and BI analysis are quite

similar which are a little different from that by CC analysis. From CC, AC and
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BI analysis, we all conclude that time, sex, education level and the two level of

social activities scores are significant. However, the coefficient for stroke produces

a credible interval (-1.21, 0.17) under complete-case analysis, indicating stroke is

not significantly associated with MMSE; the results under available case analysis

and Bayesian imputation method both claim a significant negative effects of stroke

with credible intervals excluding zero. The first level of physical activities score is

also estimated non-significant under complete case analysis and significant under

available case and Bayesian imputation.

4.4 Varying-coefficient model for CDR

As mentioned in Section 4.1, a Clinical Dementia Rating (CDR) global score

of 0 indicates no dementia, whereas CDR global score of 0.5, 1, 2 or indicate very

mild, moderate or severe dementia respectively. As the number of CDR ≥ 1 (1,

2 and 3) cases are too few, in this section we combine them with CDR = 0.5

group, thus CDR could be treated as binary variable with two categories, CDR

< 0.5 and CDR ≥ 0.5. We denote the response CDR as Y and assume that Y

follows the Bernoulli distribution. Similarly to Section 4.3, we model the coeffi-

cient of apoe using a varying-coefficient function of age. age also has a varying



4.4 Varying-coefficient model for CDR 95

effect on CDR. The other predictors have constant coefficients. For those constant

coefficient predictors with k categories, we create dummy variables for their first

k−1 categories respectively. Among these constant predictors, we should point out

that MMSEs have strong effect on CDR according to dementia experts (e.g. Morris

(1993), Feng et al. (2012)); so beside those constant predictors in Model (4.1) (ex-

cluding MMSEs measured times t), we add the mean of the 3 MMSEs scores,

the difference between 1st-MMSE and baseline MMSE, and the difference between

2nd-MMSE and 1st-MMSE.

Then we propose the following model:

Yi ∼ Bernoulli(g−1(ηi))

ηi = α0(Ui) + α1(Ui)Xi +
13∑
k=1

βkZik i = 1, . . . , n, (4.2)

where Yi is CDR; U is age; X is apoe; Z is a 13-dimension-vector which contains

constant-coefficient continuous predictors and dummy variables for categorical pre-

dictors and the link function g(η) = log η
1−η .

Before we fit the model, we carry on the pretreatment mentioned in Section

4.2. Thus after deleting the data where any predictor is missing, n=264 for CC

estimation and n=891 for BI estimation. As mentioned before, the highly missing

measurements of CDR is partially due to the fact that most of the participants

need not to be administered CDR.
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Then we use CC and BI methods to fit the data using Model (4.2) by imple-

menting the cubic truncated power basis expansion, Bayesian procedure and data

augmentation described in Chapter 3.

We implement the MCMC simulation using R software. We use a burnin of

size 3000, followed by 3000 retained iterations. They take us about 262s and 1262s

to run the MCMC simulation on a PC with Intel (R) Core (TM) i7 3.1 GHz pro-

cessor respectively. The convergence of the simulation is plausible after we check

the MCMC chains. Figure 4.4 (on page 97) and Figure 4.5 (on page 98) show

some of the trace plots of MCMC chains by BI analysis. The nonparametric and

parametric estimation results are given in Figure 4.6 (on page 99) and Table 4.3

(on page 100) respectively.
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Figure 4.4 Trace plot of MCMC chains for the five percentiles (2.5th, 25th, 50th,

75th and 97.5th) of α0(U) and α1(U) by BI analysis w.r.t Model (4.2); The upper

five plots are respective to α0(U) and the lower five plots are respective to α1(U).
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Figure 4.5 Trace plot of MCMC chains for the constant coefficients by BI anal-

ysis w.r.t Model (4.2).
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Figure 4.6 Comparion of the estimations of varying-coefficient functions α0(U)

and α1(U) for CDR using Model (4.2) by CC and BI, while CDR scores are divided

into two subsets: CDR = 0 and ≥ 0.5.

The estimation results from Bayesian imputation method differs from those

with only complete cases. The estimated intercept function indicates that the

log-odds of dementia remains constant before age 80 and then rapidly climbs up.

The estimated coefficient function for Apolipoprotein E also remains roughly zero

before age 78 and then rapidly climbs up, indicating a stronger and stronger posi-

tive effect for older subjects. In this case, complete-case analysis produces a much

higher log-odds as patients become older than Bayesian imputation method.
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Variable CC BI

mW -0.15 (-0.30, -0.02) -0.03 (-0.20, 0.14)

dW10 0.02 (-0.09, 0.13) 0.03 (-0.06, 0.12)

dW21 -0.03 (-0.13, 0.08) -0.02 (-0.09, 0.06)

sex 0.05 (-0.60, 0.68) -0.01 (-0.33, 0.31)

edu -0.22 (-0.96, 0.51) -0.05 (-0.39, 0.29)

hpt 0.31 (-0.26, 0.87) 0.07 (-0.21, 0.39)

dia -0.10 (-0.85, 0.65) -0.05 (-0.48, 0.34)

str 0.13 (-1.06, 1.41) 0.01 (-0.76, 0.77)

heart 0.23 (-0.90, 1.41) 0.06 (-0.64, 0.78)

soc1 0.09 (-0.69, 0.83) 0.06 (-0.33, 0.48)

soc2 0.14 (-0.50, 0.82) 0.04 (-0.31, 0.39)

phy1 0.09 (-0.57, 0.73) 0.02 (-0.33, 0.40)

phy2 -0.18 (-0.85, 0.44) -0.07 (-0.40, 0.28)

Table 4.3 Comparison of the estimated posterior means and 95% credible inter-

vals of constant-coefficients for CDR using Model (4.2) by CC and BI, while CDR

scores are divided into two subsets: CDR=0 and ≥ 0.5.

In the above table, mW, dW10 and dW21 are the estimated coefficients of the

mean of the 3 MMSEs scores, the difference between the 1st-MMSE and baseline
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MMSE and the difference between the 2nd-MMSE and 1st-MMSE respectively.

From the above table, we conclude that only the mean of the 3 MMSEs scores

(mW) is significant (-0.15 (-0.29, -0.02)) by complete-case analysis, while none of

constant coefficient predictors is significant by Bayesian imputation method.
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CHAPTER 5

Conclusion

In Chapter 2, we have proposed fitting the varying-coefficient model for cross-

sectional normal response variables by using splines and Bayesian techniques. For

normal longitudinal data, we have proposed fitting the varying-coefficient mixed

model which adds random effects to the varying-coefficient model. We achieved in

fitting both models, which could be seen from our simulation studies by checking

the results, especially from the coverage probabilities. We have demonstrated that

the model successfully explains the random error within each subject among the

multiple measures by adding a random effect and that the model is quite easy to

estimate under Bayesian context. For longitudinal normal response data, we have
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also considered the situation when missing responses are involved. We have com-

pared the estimation results when adapting different approaches to fit the model

under Bayesian context.

In Chapter 3, we have proposed fitting the varying-coefficient model by splines

and Bayesian methods for cross-sectional binary response variables. The fitting

of the model was executed using data augmentation approach by adding auxiliary

variables, and turned out to be good when checked by simulations. We have shown

that the method of using data augmentation approach leads to direct sampling from

the conditional distribution and avoids the Metropolis-Hastings accept/reject steps

which are commonly encountered under Bayesian binary regression, thus making

Bayesian estimation process easy to implement. For cross-sectional binary response

data involving missing value, we have also compared the estimation results when

using different approaches to fit the model under Bayesian context.

In Chapter 4, we have analyzed the real data by implementing the methodology

described in Chapter 2 and 3. The result is reasonable from the medical experts’

view, e.g. Feng et al. (2012).

The proposal of this study has provided an alternative method for fitting

varying-coefficient model, especially when the model involves binary response vari-

able or missing data which is relatively complicated and provided an alternative

method for fitting varying-coefficient mixed effects model for longitudinal data.

This study did not consider the situation when binary longitudinal response
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variables are involved. This is because the estimation processes are too time-

consuming in both cases under our proposed model.

For future works, one could consider fitting the varying-coefficient mixed effects

model for binary longitudinal data which is a direct extension of our works. One

could also extend the work to more general area which contains generalized regres-

sion model. One could also consider fitting the varying-coefficient model involving

miss data under NMAR pattern.
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