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SUMMARY

This research presents an integration of a target-oriented approach to de-

cision making. This is depicted in problem applications falling within the

contexts of production and logistics decisions in manufacturing and supply

systems. The presence of uncertainties in these systems can cause undesir-

able behavior. Failure to account for these in the design phase can further

impair the capability of systems to respond to changes effectively. Prob-

lem applications include the analysis of dynamic systems involving dynamic

workforce-inventory control and power supply problems. The general objec-

tive for these is to develop planning rules to achieve important requirements

related to dynamic transient behavior when system parameters are imprecisely

known. The application of the target-oriented approach in these settings com-

bines the strengths of recent developments in robust optimization technology

and small signal stability analysis of dynamic systems. Numerical case studies

of the problem demonstrate significant improvements of the proposed solution

in controlling fluctuations and high variability found in both of the systems’

state variables.

An offshore gas field development problem has also been considered. This

problem seeks to identify the installation and operation plan to achieve a target

ix



profit at the end of the planning horizon. The problem is severely plagued by

endogenous uncertainty that is primarily found in the efficacy of well reserves

within the field. Similarly, target achievement is integrated into a robust op-

timization model that maximizes the robustness against uncertainty so that

the net present value of the development project could meet or exceed the

prescribed performance target. The characteristics of the problem lead to the

identification of an equivalent deterministic mixed integer programming model

of polynomial size. This enables one to obtain solutions to realistic sized prob-

lems. The computational tests show that the proposed model significantly

improves target attainment and performs favorably in different problem in-

stances.

The third problem application involves a supply network design problem

with performance requirements on CO2 emissions. The integration of CO2

emissions in the problem is in response to the increasing emphasis to integrate

environmental thinking in supply network design. The decision problem is to

select the facilities to install and their respective assignments in order to serve

consumer demands and meet cost budget requirements as well as possible un-

der uncertainty. The resulting optimization model using the target-oriented

approach is found to be computationally tractable and can be solved efficiently

using standard mixed integer programming solvers. Numerical studies using

a power system network are performed, which demonstrate that the proposed

x



model performed favorably compared to other optimization models across dif-

ferent performance measures.
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ūp buffer capacity for production platform p ∈ P
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1. INTRODUCTION

1.1 Research Background

It is well-acknowledged in decision theory that real world agents rarely

optimize their decisions. Doing so implies a need for a perfect model of a sys-

tem from which the future behavior of variables may be deduced

(Sterman, 2000). However, this can never be the case since reality by no

means produces the exact conditions as initially planned. Thus, arriving at

an optimal decision is virtually impossible even when faced with simple prob-

lems. Senge (1990) mentions that the complexities involved in decision making

render organizations to fail to perform optimally even if they try to. These

complexities lead them to ignore important aspects of a situation and under-

estimate the consequences of their decisions.

Simon (1959) postulates that the need to achieve real, rather than ideal,

representations of systems has imbued an attitude of satisficing in decision

makers. They are often led to choose the first available actions which ensure

that certain desired targets will be achieved. For instance, he illustrates that if

business behavior is to be viewed in terms of this approach, it is to be expected

that the firm’s target would involve the attainment of a certain level of profit
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or holding a certain share of the market, as oppose to the maximization of

profit.

According to Forrester (1969), decisions primarily involve three aspects.

The first is the creation of a concept of a desired state of affairs. The second

involves the apparent state of actual conditions. And the third is the genera-

tion of the kinds of actions that will be taken in accordance with the apparent

and the desired conditions. These processes describe the attitude of satisficing

and show how intrinsic it is in the decision making process. The evaluation of

the actual versus the desired state of a system initiates the creation of actions

that would lessen this gap and eventually lead the system to reach its desired

state. This behavior consequently accounts for one of the most fundamental

dynamics of systems. As targets change and evolve, a system will continuously

strive to reach its desired state.

Research efforts have continuously considered the optimization of target

achievement probabilities in place of utility functions. Brown and Sim (2010)

mention that this is because targets are often more natural for decision makers

to specify, whereas traditional approaches based on utility functions depend

critically on tolerance parameters which are often difficult for decision mak-

ers to intuitively grasp and even harder to appropriately assess. Lanzillotti

(1958) concludes in his interviews of senior executives from large companies,

that managers are primarily concerned about target returns on investment.

Payne et al. (1980a) and Payne et al. (1980b) likewise illustrate that man-
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agers consequently tend to disregard investment possibilities that are likely

to under perform against their target. Furthermore, in an empirical study by

Mao (1970), managers have been found to consider risk as the prospect of not

meeting some target rate of return.

Abbas et al. (2009) state that while targets provide the aforementioned

advantages in decision making, the use of which can still be aligned with the

expected utility-maximizing decisions. This observation has led researchers

to prove the equivalence of the use of utility functions and targets in deci-

sion making. The earliest work could be attributed to Borch (1968) who uses

the concept of ruin probabilities. He shows that the maximization of the ex-

pected utility is equivalent to choosing the smallest probability of ruin. Indeed,

from the normative perspective, Charnes and Cooper (1963) define a ‘satis-

ficing solution’ as one that maximizes success probability. They demonstrate

how optimization problems could have a set of objectives dependent upon the

achievement of target levels. Simon and Kadane (1975) likewise show how

traditional optimization algorithms could be translated to evaluate satisficing

objectives.

More recently, Castagnoli and LiCalzi (1996) and Bordley and LiCalzi

(2000) show that maximizing expected utility is mathematically equivalent

to maximizing the probability that the uncertain consequences of a decision

are preferable to an uncertain benchmark (i.e., a firm outperforming the un-

certain future performance of a major competitor). Meanwhile, Bordley and
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Kirkwood (2004) and Tsetlin and Winkler (2007) extend such equivalence for

the case of multiple targets.

However, Brown and Sim (2010) argue that maximizing success probabil-

ities alone has the underlying assumption that the modeller is indifferent to

the level of losses and gains. This fails to account for the magnitude of losses

when extreme scenarios (i.e., tail-end probabilities) occur. In addition, the

consideration of such measures also proves to be an intractable problem when

coupled with exponential or even an infinite set of alternatives. Brown and

Sim (2010) and Brown et al. (2012) address these limitations by proposing a

new set of decision criteria known as satisficing and aspiration measures that

are inspired by behavior preference for diversification. More importantly, these

criteria may be incorporated in optimization problems without degrading their

tractability.

This research proposes a target-oriented approach that is inspired by the

decision analytic criterion of Brown and Sim (2010) and Brown et al. (2012).

This approach is to be applied to production and logistics planning systems,

which involve both investment and operational decision problems. These deci-

sions are to be evaluated based on management goals such as the achievement

of target investment returns or institutional regulations imposed on the orga-

nization.

A challenging issue in production and logistics planning decisions involves

the presence of uncertainty. For example, because of the long implementa-
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tion lead times of design decisions such as infrastructure development, many

important system parameters may not be accurately known or projected be-

fore implementation of the decision. Hence, planning without explicitly ac-

counting for these uncertainties can yield inferior performance in reality. In

addition, data used in the evaluation and analysis of these systems inevitably

contain errors and approximations. Results or actions obtained from these

would therefore be subjected to uncertainties in the real system as well.

Ben-Tal and Nemirovski (1999) state that even a small degree of uncer-

tainty can make the usual optimal solution completely meaningless. The real-

ity of which creates the need to identify solutions that would be robust to the

presence of uncertainty. Bertsimas and Sim (2004) equate this robustness to

a solution’s immunity to data uncertainty. Such that even if the underlying

information deviate from their nominal values, the solution would still be able

to achieve the targets of the system across all planning stages.

The motivation of this research is then based on addressing the research

challenge of developing a target-oriented optimization approach that leads to

the generation of robust solutions. The target-oriented approach preserves

computational tractability and also allows for ambiguity in uncertainty in-

formation. Moreover, this research aims to show how traditional modeling

paradigms can benefit from the use of a target-oriented optimization approach

for applications in production and logistics planning problems.
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1.2 Production and Logistics Planning Problems

The problem applications involve two-stage and multi-stage decisions found

in dynamic system planning and network design planning. The succeeding

discussion provides a background on the aforementioned problem applications.

It also gives an overview on the type of problems that would be evaluated and

the nature of the uncertainties that decision makers need to contend with in

these systems.

1.2.1 Dynamic Systems

Dynamic systems are comprised of multiple components and characterized

by time-evolutionary processes of change. These types of systems also oper-

ate in a constantly changing environment which inevitably contains inherent

uncertainties. The presence of uncertainties consequently brings about contin-

uous variations in the outputs and key operating parameters of these systems

(Kundur, 2006).

One of the dynamic problems considered in this research involves workforce-

inventory control in a manufacturing firm. In the problem, managers seek to

meet customer orders through its finished goods inventory. Finished goods are

replenished by production, and production releases in turn are determined by

the level of manufacturing workforce available. The firm adjusts its workforce

through hiring processes by creating job vacancies. It is also desired that the

6



level of workforce and finished goods inventory be as close to specified lev-

els as possible. Consequently, this requires establishing a workforce-inventory

feedback control rule that is able to adapt to changing customer orders and

requirements dynamically. The other dynamic problem involves a power sup-

ply system. The objective of the problem is to control the oscillations in the

critical variables of the system such as the voltages and torque to prevent dis-

ruption of supply. These oscillations occur when there are disturbances in the

system such as mechanical load changes and system faults.

Focus is placed on how the workforce-inventory and power supply sys-

tems respond to changes during operation. This refers to the specification of

dynamic performance such as stability and transient response requirements

for the system under operation. In the workforce-inventory system, these

specifications would mean preventing undesirable transient response such as

overshoots and large swings in critical variables to occur. Specification of dy-

namic performance is an important consideration in manufacturing firms and

large scale supply systems since they can directly affect a system’s capabil-

ity to respond to changes effectively. Poorly managed dynamic performance

can cause instability and hence high variability in the resources such as inven-

tories, work-in-processes and workforce levels. Subsequently, high variability

has direct implications in increased operating costs such as the need for higher

safety stock coverage, larger hiring and firing overheads and longer quoted lead

times. Meanwhile, in power supply systems, instability can lead to cascading
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outages and shutdowns due to progressive increases in angular separation of

generator rotors or progressive decreases in bus voltages.

In view of this, the proposed robust target-oriented approach seeks to eval-

uate the largest uncertainty space possible such that the required dynamic per-

formance specifications of the dynamic systems are guaranteed to be achieved.

It follows that the resulting optimization model will be able to identify the ap-

propriate calibration of controllable system parameters that would meet the

dynamic performance specifications as well as possible under uncertainty.

1.2.2 Supply Network Design Planning

Supply network design is a strategic issue of primary importance (Chopra

and Meindl 2009, Dekker et al. 2004), involving many expensive decisions

such as facility location, inter-connectivity and capacity allocation. Firms are

also eventually relegated to making operational decisions involving production

quantities, service levels and allocation of supply to demand (Baron et al.,

2010).

Gas Field Development Planning

This research looks into a network planning problem that concerns offshore

gas field development. Offshore production of oil and gas accounts for approx-

imately 30% of total U.S. production (Humphries et al., 2010). This makes
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it an extremely important source of supply for petroleum products, in which

the Energy Information Administration (EIA) estimates that U.S. consump-

tion has averaged around 20 million barrels per day over the last five years

(EIA, 2010). Gas field development projects entail huge investments in ex-

cess of $10 billion and span across 10-30 years (Goel and Grossmann, 2004).

Consequently, these are among the most important and challenging strategic

problems in the petroleum industry.

Gas field development projects involve both investment and operation deci-

sions, including gas field infrastructure installation, gas extraction and produc-

tion planning. High quality estimation of gas reserves is of central importance

in order to ensure judicious decision-making. On the other hand, reservoirs of

gas are highly complex entities with significant inherent uncertainties. Even

with the support of sophisticated seismic surveys and exploration tests, re-

serves can remain largely uncertain until after significant capital outlays have

been made (Goel et al., 2006).

A challenging characteristic of gas field development problems concerns

the presence of the so-called ‘endogenous uncertainty’ in the decision-making

process. Essentially, this means that the resolution of the uncertainties de-

pends on the decisions made. This is prevalent for instance in project activity

scheduling where activity durations are uncertain in advance of execution, and

the uncertainties that are resolved depend on the choice of activities under-

taken. In gas field development planning, knowledge about the subsurface is
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refined only after a well is drilled and production begins. This means that un-

certainty in a particular gas reserve is resolved only if an investment decision

is made to produce from the reserve. Unfortunately, this renders modeling

using standard stochastic programming formats extremely unwieldy. Further-

more, the problem size suffers from the ‘curse of dimensionality’, such that the

resulting models for realistic problems are too large and very difficult to solve

using commercial solvers directly.

The gas field development problem of interest in this research is based on

a similar setting as that considered by Goel and Grossmann (2004). In the

aforementioned, the authors assume a small set of scenarios with associated

probabilities to model the outcomes of the gas reservoir’s uncertainties. The

uncertainties are defined to arise from the size and initial deliverability of the

reservoirs. The point of departure is in the treatment of these uncertainties.

Specifically, probabilities are not assigned to the outcome space of the uncer-

tain reserve estimates.

Classical stochastic optimization requires the assumption of repeatability

in the problem such that policies can be performed for an indefinite number of

time within the planning horizon. However, as described, this is not a valid as-

sumption in the development of offshore fields since once installation decisions

have been executed, they would have to remain fixed for the entire duration

of the planning and production horizon. The use of the proposed approach

addresses these issues as it does not rely on distributional assumptions of the
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uncertain parameters. Furthermore, the application of the approach reveals

unique characteristics on the uncertainties of well reserves. The way these

uncertainties relate to the decisions subsequently allows the identification of

an equivalent mixed integer programming formulation that is computationally

tractable.

Integration of Environmental Consideration

Aside from gas field development planning, the research also looks into the

integration of environmental considerations to general supply network design

models. Global concerns regarding diminishing natural resources, overflowing

waste sites and escalating levels of pollution have motivated various environ-

mental legislations around the world. For example, participants of the United

Nations Framework Convention on Climate Change (UNFCCC) have pledged

to reduce total greenhouse gases emissions by at least five percent within 2008

to 2012 (Viguier et al., 2003). As a consequence, supply network operators

and partners are increasingly benchmarked by their ability to manage the

environmental impacts of their products and services. A study from the Con-

federation of British Industry estimates that environmental legislative actions

have already cost companies four billion pounds a year (Willis, 2005). This

highlights the important need for effective green supply chain management

to achieve an acceptable balance of environmental considerations with other

supply chain performance requirements.
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In the context of green supply chain management, an important consider-

ation is the accounting of greenhouse gas or CO2 equivalent discharges from

supply network activities. Generally, there can be significant levels of uncer-

tainties associated with such accounting due to a host of factors such as incom-

plete data, lack of consensus on accounting techniques, and natural variability

of processes (Schoepp et al. (2005), Ritter and Lev-On (2010)). Finally, there

can also be uncertainty due to inaccurate projections on future greenhouse gas

emission policies such as penalty charges.

On the topic of target-setting, instead of network cost minimization(profit

maximization), the use of the approach in these network design problems en-

ables the the decision makers to specify a cost budget target (profit target)

and the aim is to find a solution that would best attain the respective tar-

gets. For instance, in the case of the gas field development problem, the net

present value (NPV) may be a key performance metric whose target value is

often specified as part of the project deliverables. A development plan is then

developed in order to achieve this NPV target.

1.3 Research Problem

Organizations are continuously required to make strategic and operational

decisions that achieve management goals. Many of these decisions are diffi-

cult to reverse, can have long term ramifications, and are often made with a

great degree of uncertainty. The use of quantitative models has been acknowl-
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edged as a powerful tool to support such business analytics in decision making.

However, de facto standard modeling approaches either assume very simpli-

fied settings to accurately depict real world scenarios or resort to optimization

models that require strong assumptions on the nature of uncertainties. Conse-

quently, the validity of the analysis is compromised and questionable if these

assumptions are not well satisfied.

For instance, the paradigm of classical stochastic optimization in which ex-

pected profit is maximized tacitly assumes that the problem can be repeated

a large number of times so that variations in profits are eliminated. However,

the assumption of repeatability may not always be applicable in strategic prob-

lems such as those that involve investment decisions in gas field development

planning. Hence, the profit variations from the expectation cannot be ignored.

These models are also generally highly intractable, which has led to the reliance

on approximation techniques to reduce solution complexity. These approxima-

tions typically require the assumption of having a discrete sample space or at

least some form of discretization of the uncertain parameters. While this may

be reasonable for smaller problems, the combinatorial state explosion associ-

ated with medium and large sized problems limits the scalability and practical

use of such approximations.

Therefore, there is a need to develop a modeling approach for production

and logistics planning problems, which not only ensures that management

goals are achieved despite the presence of uncertainties but also preserves com-
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putational tractability. The proposed robust target-oriented approach does

not require specific assumptions on the probability distributions modeling. In

addition, the resulting optimization models only require the resolution of a

small set of mixed integer linear programming problems, which can be solved

efficiently using commercial linear programming solvers.

1.4 Research Objectives

To develop a robust target-oriented optimization approach for

production and logistics planning problems that allows the achieve-

ment of system targets robustly under any realization within the

supports of parameter variation ranges.

The objective centers on the development of an optimization framework

that synthesizes recent developments in robust optimization technology and

target-oriented decision making under uncertainty. The research likewise con-

siders problem applications involving two-stage and multi-stage problems in

production and logistics such as those seen in gas field development planning

and production-inventory systems. These problem applications underscore de-

cisions that are structured along the strategic and functional dimensions. The

latter dimension can be further distinguished between areas of distribution

management, inventory control and production planning. In line with this,

the specific research objectives are enumerated as in the following:
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1. Demonstrate the effects of uncertainty and the importance of accounting

for it in decision making for production and logistics planning systems.

2. Introduce a target oriented robust optimization framework that enables

flexibility in specifying target performance objectives.

3. Develop a modeling approach that does not require specific assumptions

on the probability distributions of uncertain parameters.

4. Establish the applicability of the robust target-oriented optimization ap-

proach as a policy design tool for the achievement of transient perfor-

mance requirements and stability analysis in dynamic problems.

5. Illustrate that the robust target-oriented optimization approach can be

used by decision makers as a tool for fast turnaround planning and deci-

sion support through efficient implementation using commercially avail-

able solvers.

6. Show that under the target-oriented robust optimization approach, it

is sufficient to consider fixed policies to obtain an optimal solution to

network design problems.

7. Reduce dynamic planning problems under endogenous uncertainty into

a mixed integer programming problem that assumes a single outcome of

the uncertain parameters.
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1.5 Scope, Limitations and Delimitations

1.5.1 Scope

1. The scope of the research includes the consideration of uncertain pa-

rameters with known supports on their nominal values and maximum

possible deviations with respect to these nominal values.

2. The scope of the research includes the application of the robust target-

oriented approach to production and logistics planning problems.

3. The workforce-inventory planning system to be analyzed is based on the

stock management model defined by Saleh et al. (2010). The problem ap-

plication focuses on the behavior of the system’s resource variables, which

are namely the finished goods inventory, work-in-process inventory, la-

bor and vacancy. The corresponding targets involve the achievement of

stability and transient behavior requirements for these variables.

4. The power supply system is adapted from the one machine infinite bus

(OMIB) system defined by Yu and Siggers (1971). The problem appli-

cation focuses on the stability of the system.

5. The research considers the topology of a gas field development network

discussed by Goel and Grossmann (2004). Investments and operations

performed within the network incur costs while revenue is obtained from

the production of gas. Consequently, the net present value in the devel-
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opment of the gas field network represents the target of the development

problem.

6. The network design planning problem integrated with environmental

considerations is illustrated through a power system generation example

obtained from Panida and Singh (2008). The total network cost brought

about by investment and operational decisions must remain within a

specified cost budget. The emission of greenhouse gases accounts as the

environmental component in this network design problem.

1.5.2 Limitations

1. The sources of uncertainties to be considered in the dynamic systems are

limited to the system’s endogenous parametric uncertainties such as time

and oscillation constants for the workforce-inventory and power supply

systems, respectively.

2. For the gas field development planning problem, only the endogenous

uncertainties found in the initial deliverability and size of gas reservoirs

are considered. The efficacy of the gas reservoirs is also characterized by

their initial deliverability and size. Furthermore, only a linear reservoir

behavior model is considered as a model for the gas reservoirs.

3. The type of greenhouse gases to be considered is limited to carbon diox-

ide (CO2). The sources of uncertainties for the problem application
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involving network design integrated with environmental considerations

are limited to the amount of emissions in facilities and demand from

consumers.

1.5.3 Delimitations

1. The research shall not consider the exogenous variables in the dynamic

systems. This implies that the exogenous variables are assigned to be

zero or constant.

2. The research shall not consider gas price uncertainties for the gas field

development planning problem.

3. The research shall not consider capacity expansion for the problem ap-

plication involving the integration of environmental consideration in net-

work design. In addition, it shall not consider the uncertainties found in

area generation, transmission lines, and area loads in the power system

network.

1.6 Overview of the Dissertation

The remaining chapters of the dissertation is organized as follows.

Chapter 2 presents a review of the relevant literature. A discussion is pro-

vided concerning uncertainties in decision making. This is followed by a dis-

cussion of the robust optimization framework, which is also accompanied by
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a comparison between stochastic optimization and robust optimization. This

literature review ends with a discussion on target achievement approach to

decision making.

Chapter 3 discusses the uncertainty model used in the research. The mea-

sure defined to evaluate the ability of solutions to achieve their respective

targets are also presented. This is followed by a discussion on the relation-

ship of these performance measures with success probabilities from a decision-

theoretic perspective based on the satisficing behavior.

Chapter 4 introduces the main technical components of the proposed robust

target-oriented optimization approach for dynamic systems. These consist of

the construction of state-space models, analysis through eigenvalue sensitivity

and the development of dynamic performance requirements in the form of lin-

ear constraints. The workforce-inventory and power supply dynamic system

models are then presented and state-space dynamic formulations of the mod-

els are provided. The chapter concludes with computational studies on the

application of the proposed approach to shape the dynamic response of both

systems.

Chapter 5 begins with the introduction of the various components of an

offshore gas field development problem, the decisions involved in this problem,

and also the linear model of gas reservoirs assumed. This is followed by the

presentation of the gas field development problem as a multi-period decision-

making process under uncertainty. The results that allow the achievement
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of a tractable formulation for the problem are likewise shown. The resulting

model formulation is then tested in the computational studies that compare

the performance of the proposed model with other stochastic optimization

models.

Chapter 6 presents the supply network design problem problem integrated

with requirements on CO2 emissions. It is shown that the resulting optimiza-

tion model is not directly amenable to computation using standard robust

optimization methods due to non-linear effects in the uncertain parameters.

Consequently, some results based on the problem structure are analyzed and

subsequently used to motivate an alternate formulation that can be solved

directly using standard mixed integer programming solvers. Computational

studies are likewise performed using the proposed model on a power system

network design problem. The performance of the model is also compared to a

stochastic optimization model based on sample average approximations.

Chapter 7 summarizes the conclusions made from the research. It discusses

the main contributions of the research and also possible extensions for future

work.
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2. REVIEW OF RELATED LITERATURE

2.1 Decision Making Under Uncertainty

The classical paradigm in mathematical programming is to develop a model

that assumes that the input data are precisely known and equal to some nom-

inal values (Bertsimas and Sim, 2004). However, real world decision problems

are replete with challenges where errors and inaccuracies can seep in. Uncer-

tainties can have corrupting influences on the behavior of systems and failure to

account for these in design, model building and analysis can have undesirable

and unforeseen consequences. According to Listes (2010), data uncertainty

can come from the following:

1. Estimation errors- part of the data is measured or estimated,

2. Prediction errors- part of the data does not exist when problem is solved,

3. Implementation errors- some components of a solution cannot be imple-

mented exactly as computed, which in many models can be mimicked

by appropriate data uncertainty.

For instance, estimation errors are prevalent in science and engineering

problems while prediction errors can occur since the future demand or prices
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of commodities are rarely available and are at best, approximations. Finally,

even if uncertainties in the model data can be ignored, there can still be imple-

mentation errors since solutions cannot be implemented to infinite precision,

as assumed in continuous optimization (Bertsimas et al., 2010a).

Ben-Tal and Nemirovski (2000) showed that solutions to optimization prob-

lems can exhibit remarkable sensitivity to perturbations in the parameters of

the problem. Specifically, they identified that even a 0.1% perturbation in the

data coefficients can lead to a constraint violation of up to 125%. Hence, this

is indicative of how a computed solution can be potentially rendered as either

highly infeasible or suboptimal, or even both. In other words, this can become

potentially worthless to a decision maker.

Sensitivity analysis has been widely used to study the influence of uncer-

tainties or data perturbations to optimal solutions. However, while sensitivity

analysis offers valuable information with respect to the system under perturba-

tions, it is primarily a post-mortem tool of analysis, rather than a prescriptive

and pro-active approach in guiding improvement and decision making under

uncertainties. At best, it can quantify locally the stability of a nominal solution

with respect to infinitesimal data perturbations, but it does not say exactly

how to improve this stability, when necessary (Ben-Tal and Nemirovski, 2000).

Furthermore, it is impractical to perform joint sensitivity analysis in models

with large number of uncertain parameters (Sim, 2004).
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In contrast, approaches that are able to generate solutions that integrate

data perturbations in decision problems can be broadly categorized into stochas-

tic optimization and robust optimization approaches. Stochastic optimization

has been the de facto standard approach used to handle optimization under

uncertainty. It typically requires full specifications of the probability distri-

butions of the uncertain variates. According to Bertsimas et al. (2010a), the

probability distribution of the uncertainties can be estimated and incorporated

into the model using:

1. Chance constraints (i.e. a constraint which is violated less than p% of

the time),

2. Risk measures such as standard deviations, value-at-risk and conditional

value-at-risk, or

3. A large number of scenarios emulating the distribution.

Even with these methods, the actual distribution remains to be largely un-

certain. Consequently, the need for strong distributional assumptions can be a

major drawback of stochastic optimization. For one, this information is rarely

available in practice or is difficult to establish. As mentioned, this is especially

true in the case of the gas development problem. This is also evident in network

problems integrated with environmental consideration, where prior knowledge

of new environmental parameters being considered and historical data may

be lacking. Furthermore, even if exact probability distributional assumptions
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can be made, stochastic optimization approaches often yield models that are

computationally hard and very expensive to solve. This is for instance seen

with chance constraints, which can destroy convexity properties and elevate

significantly the complexity of the original problem (Sim, 2004).

In contrast, the key advantages of the robust optimization approach are

the following. First, very few assumptions are required to model the uncer-

tain parameters. These typically involve the moments: supports, means or

variances. Such information is also easier to elicit and collect from industrial

practitioners. Second, if the original deterministic problem is tractable, then

the robust optimization approach often yields counterpart problems that are

computationally tractable, such as linear programming (LP) or second-order

cone programming problems.

In addition, Ben-Tal and Nemirovski (1999) states that although it is not

stated explicitly, stochastic programming approaches mainly consider soft con-

straints. Specifically, the approach allows constraints to be violated, with cer-

tain penalties as seen with stochastic programming problems with recourse,

scenario optimization, or with certain probability (chance constraints). The

authors further add that in the dominating penalty approach, even when the

random variables are degenerate (deterministic), the corresponding stochastic

programming model does not recover necessarily the original LP constraints,

but only a relaxation of these constraints.
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Robust optimization, on the other hand, considers hard constraints. As

mentioned, the common goal of developing robustness in design and decision-

making is to immunize decision models against data uncertainty. That is, the

computed solution must satisfy all the constraints regardless of the realization

of the data parameters prescribed within an uncertainty set. This is a similar

approach used by robust control methods found in Control Theory (further

discussion on Control Theory will be provided in Chapter 4), which proposes

solutions that are guaranteed to be stable even in the most severe scenarios.

This is suitable for systems where deviations from expected scenarios can

have serious safety implications. For instance, in civil engineering structures,

external forces such as earthquakes or heavy loads acting upon the structure

may significantly degrade stability and performance. In many other contexts,

such robust solutions however may seem overly conservative, difficult to justify

economically and might just not be available even if desired.

2.2 Robust Optimization

In the operations research literature of robust optimization models, Soyster

(1973) considered these hard constraints by defining a feasible region via set
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containment, so as to guarantee the feasibility of the design under all uncer-

tainties arising from a convex set. Consider the following LP problem:

min c′x

s.t. Ax ≥ b

x ∈ X (2.1)

Since one is dealing with hard constraints, it must be guaranteed that every

constraint is satisfied for any possible value of A in a given convex uncertainty

set K such that,

min c′x

s.t. a′
ix ≥ bi ∀i, ∀ ai ∈ K

x ∈ X (2.2)

where the uncertainty is assumed to only affect the coefficients ai. This is

then equivalent to:

min c′x

s.t. minai∈K a′
ix ≥ bi ∀i

x ∈ X (2.3)
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Bertsimas and Thiele (2006b) state that the key insight that preserves the

computational tractability of the robust counterpart approach is that Problem

(2.3) can be reformulated as a single convex programming problem for any

convex uncertainty set.

Some examples of studies that made use of this approach include, Pishvaee

et al. (2011) who consider a closed loop supply chain problem that deals with

product recovery and redistribution. The problem has the objective of identi-

fying the flows in the network that minimizes the total cost of the closed loop

supply chain under uncertain demands, product returns and transportation

costs. Consequently, the robust optimal solution is one that best satisfies all

realizations of the constraints arising from a bounded uncertainty set. Simi-

larly, Blanchini et al. (2000) defined the uncertainties for a general dynamic

production distribution system as unknown but bounded quantities. The ro-

bust framework was applied to this design problem in order to ensure that

inventory levels are kept inside prescribed bounds for all possible realizations

of customer demands.

While the above approach guarantees feasibility, it may also be consid-

ered too pessimistic as the resulting model can generate solutions that give

up too much optimality in order to ensure robustness. This has been subse-

quently addressed in the works of El-Ghaoui and Lebret (1997), El-Ghaoui et

al. (1998) and Ben-Tal and Nemirovski (1999) by proposing less conservative

models through the use of ellipsoidal uncertainty sets. This specifically in-
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volves solving the robust counterparts of the nominal problem in the form of

conic quadratic problems. Bertsimas and Sim (2003) state that with properly

chosen ellipsoids, such a formulation can be used as a reasonable approxima-

tion to more complicated uncertainty sets. However, the authors also point

out that a practical drawback of such an approach is that it leads to non-

linear, although convex, models, which are more demanding computationally

than the earlier linear models by Soyster (1973).

Bertsimas and Sim (2003) alternatively proposed an “uncertainty budget”

parameter that controls the degree of robustness to be assumed, so that a

designer can choose a priori the size of the uncertainty set that he wished to

hedge the solution against. Hence, the solution is guaranteed to be feasible if

the uncertain parameters change by less than this uncertainty budget. Their

proposed approach is found to be at least as flexible as the one proposed

by El-Ghaoui and Lebret (1997), El-Ghaoui et al. (1998) and Ben-Tal and

Nemirovski (1999). Furthermore, the generated robust counterparts are found

to be linear optimization problems, allowing the approach to readily generalize

to discrete optimization problems.

The same approach has been used by Bertsimas and Thiele (2006a) to

address the optimization of a supply chain when demand is uncertain. The

model seeks to determine the optimal ordering policy for a single type of

product over a finite discrete time horizon such that the total cost is minimized.

The model does not assume any specific distributions and also allows the level
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of robustness to be adjusted in order to trade off performance and protection

against uncertainty.

A practical issue of the above approach however is that the decision-maker

might not know how to choose the uncertainty budget parameter in advance.

This research instead proposes to search for a solution that maximizes the

size of an uncertainty budget, and identify this as the robustness index. This

index accounts for the largest degree of uncertainty that can be tolerated by a

solution before the solution becomes infeasible. For example, in the workforce-

inventory problem, when a solution becomes infeasible, this could imply certain

important dynamic performance criteria, such as stability conditions, that can

become violated. In this sense, the proposed index is precisely a measure of a

system’s capability to withstand uncertainties and recover to normal operating

conditions in the event of disturbances.

Robust optimization has also been extended to two-stage and more general

multi-stage settings. As stated by Ben-Tal et al. (2004), the classical robust

optimization approach corresponds to the case when all the variables represent

decisions that must be made before the actual realization of the uncertain data

becomes known. However, in the modeling of real-world problems, it might be

permissible for a subset of the decisions to be made after the realization of all

or part of the underlying uncertainties (Goh and Sim, 2010). Consequently,

Ben-Tal et al. (2004) partitioned the variables into two sets: adjustable and

non-adjustable. The former represents variables whose values can still change
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depending on the realized uncertainties. For instance, operational decisions

and investment decisions can be considered as adjustable and non-adjustable

variables, respectively.

Using this partitioning, an approximation was proposed in the form of

affinely-adjustable robust counterpart, where the adjustable decisions are con-

strained to be an affine function of the uncertain data. Ben-Tal et al. (2005)

subsequently applied affine decision rules to flexible supplier-retailer adjustable

contracts. Chen et al. (2007, 2008) considered piecewise-linear decision rules

which are found to improve upon the original linear decision rules. Meanwhile,

Goh and Sim (2010) extended the affine decision rules to deflected decision

rules and segregated decision rules in order to improve on the solution quality

in multi-stage problems.

2.3 Target-Achievement Approach in Decision Making

The proposed approach in this research involves the integration of the ro-

bust optimization framework and target-achievement decision making. Target-

achievement or satisficing differs from utility-based decision making. The set of

axioms initially introduced by von Neumann and Morgenstern (1944) showed

that cardinal utilities could be assigned to uncertain outcomes. If one behaves

according to a manner in line with these axioms, that person would act so as

to maximize the expected value (which is the average, weighted by the prob-

abilities of the alternative outcomes of a choice) of his utility (Simon, 1959).
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Simon adds that the theory could be tested empirically only on the assumption

that the probabilities assigned to the alternatives by the subject are identical

with the objective probabilities of these events as known to the experimenter.

However, the objective probabilities of these uncertain alternatives are

rarely known in real world problems, which leads one to actually view un-

certainty as ambiguous. Ambiguity implies that there is very little informa-

tion that could be used in the decision-making process. In the seminal work

of Knight (1921), a distinction has been created between risk and ambigu-

ity (uncertainty). Risk refers to situations in which the decision maker has

the ability to assign probabilities to the possible outcomes of events. Runde

(1998) adds that this assignment is usually based on the knowledge of a pri-

ori or empirical information. Meanwhile, ambiguity involves situations that

prevent decision makers to assign such probabilities primarily because of their

lack of knowledge about these events. As a result, they tend to rely largely on

estimates. As mentioned, the use of the robust optimization approach allows

one to avoid the use of these subjective probabilities.

Lack of knowledge does not however imply the absence of it. Ellsberg

(1961) postulates that even in situations of ambiguity, people tend to behave

as though they assign “degrees of belief” to the events impinging on their

actions. This is the main reason why the literature has been rife with the

usage of subjective probabilities. Ellsberg also shows convincingly by means
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of paradoxes that ambiguity preference cannot be reconciled with classical

expected utility theory (Lam et al., 2012).

In response to these observations, Simon (1959) introduced the concept of

bounded rationality to explain the behavior of decision makers. This refers

to the limited ability of human agents in formulating and solving complex

decision problems in the real world. The theme of bounded rationality in deci-

sion behavior plays a very fundamental and intrinsic role in the elucidation of

complex systems behavior. Bounded rationality has been able to infer insights

in organizational thinking about why, even with the best of intentions, deci-

sion policies can result in unintended consequences and organizational failures.

Very often, the cause of unintended consequences stem from the bounded ra-

tionality of decision makers, such as the failure to use information properly,

overlooking systemic influences and underestimating consequences of actions.

Bounded rationality can be regarded as a cardinal principle in the modelling

of decision behavior. It is important for modelers to account for the bounded

rationality of the decision agents in the modelling process in order to achieve

real, rather than ideal system representations.

A classical model for boundedly rational agents in behavorial economics,

due to Simon (1959), is that of a satisficer as opposed to a fully rational

optimizer. Both of which account for two broad approaches to rational be-

havior in situations where complexity and uncertainty make global rationality

impossible. Simon (1972) states that optimization has become the tool for
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approximation, as it describes the real-world situation radically simplified and

reduced in degree of complexity as to make it easier for the decision maker to

handle. The author adds that satisficing approaches meanwhile simplify to-

wards another direction, retaining more of the detail of the real-world situation

but settling for a satisfactory (instead of the approximate best) decision. That

is, when faced with a decision problem, rather than processing and computing

the expected utility of every alternative action, a satisficer simply chooses the

first available course of action that satisfies his desired targets. Hence, decision

makers can satisfice either by finding optimum solutions for a simplified world,

or by finding satisfactory solutions for a more realistic world (Simon, 1959).

A satisficing approach to decision making has been integrated to tradi-

tional optimization models as seen from the works of Borch (1968), Charnes

and Cooper (1963), Castagnoli and LiCalzi (1996), Bordley and LiCalzi (2000)

and Bordley and Kirkwood (2004). As discussed in Chapter 1, these works

consider the maximization of success probabilities in place of utility func-

tions. However, aside from issues concerning intractability and the inability

to account for the magnitude of shortfall, another widely-acknowledged draw-

back of using success probability is that it does not guarantee diversification

preferences. Diversification is a widely accepted axiomatic rule of behavior

(Markowitz, 1952) in investment and portfolio choice. Decisions that do not

lead to diversified positions are generally viewed as undesirable and inconsis-
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tent with risk-aversion because of their tendency to expose investors to large

positions (Ng et al., 2012).

These issues are addressed by Chen and Sim (2009), which propose the

shortfall aspiration level as a tractable alternative to probability measure. The

shortfall aspiration level encompasses the probability of success in achieving

the target and an expected level of under-performance or shortfall. As cited by

Ng et al. (2012), the authors showed that solving the associated optimization

problem, to maximize the shortfall aspiration level, can be reduced to solving

a small collection of stochastic optimization problems. The objectives of which

are evaluated under the Conditional-Value-at-Risk measure (Rockafellar and

Uryasev, 2000), which is known to be computationally tractable. Brown and

Sim (2010), Brown et al. (2012) and Lam et al. (2012) further developed

these dual relationships between aspiration level measures and risk measures

in greater generality. As mentioned, a target-oriented approach inspired by

the aforementioned measures is considered in this research. A more in depth

discussion of this is provided in the next chapter.
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3. ROBUST TARGET-ORIENTED OPTIMIZATION

APPROACH

This chapter presents the development of the robust target-oriented optimiza-

tion approach that will allow planning systems to achieve targets derived under

uncertainty. Essentially, the objective is to identify the appropriate settings for

the decision variables so that system constraints are feasible for as large a range

of uncertain parameters as possible. The decision variables and uncertain pa-

rameters are denoted as the vectors y = (y1, · · · , yL) and z̃ = (z̃1, · · · , z̃K),

respectively. Note that the tilde sign is used to denote uncertainty in the

parameters.

3.1 Uncertainty Models

Let z̃ be a vector of uncertain parameters in the system model defined as

follows:

z̃ = z + z (3.1)
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where z denotes the nominal values of the parameters and the perturbations

z are such that

{
z ∈ ℜK | 0 ≤ zk ≤ z̄k(γ), ∀ k = 1, ..., K

}
(3.2)

where the largest perturbations would take on the values zk = z̄k, for all

k = 1, ..., K. (3.2) assumes that in the most optimistic case, z̃ would take on

the lowest values (i.e., z̃ = z). For instance, z̃ may be an uncertain cost, to

which z̃ = z results to the lowest cost achievable.

It can be seen that these perturbations are parameterized by the robust-

ness index, γ ∈ [0, 1] where z̄k : [0, 1] → ℜ+, k = 1, ..., K are nondecreasing

functions. Note that the use of z̄k(γ) also allows asymmetry in the defini-

tion of the uncertain parameters. Because higher values of γ imply that the

uncertainty set includes larger perturbations for the uncertain parameters, a

decision maker with a higher robustness index describes a more uncertainty

averse attitude that would rather err on the side of caution.

In many practical problems, there are also additional information about

the relationships between the uncertain parameters. Such information can

help to reduce the uncertain outcome space significantly and hence should be
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incorporated when available. The below set of linear constraints is used as

first-order approximations of such relationships,

Rz ≤ e (3.3)

where theW×K matrix R and the vector e = (e1, · · · , eW ) are estimated coef-

ficients of the W relationships shared by the uncertain parameters. Combining

the above, for a given γ, the uncertainty set Zγ is defined as:

Zγ =
{
z ∈ ℜK | 0 ≤ zk ≤ z̄k(γ), Rz ≤ e, ∀ k = 1, ..., K

}
(3.4)

The uncertainty set and the robustness index γ described above lead one

to think about decisions that can remain feasible in the entire set of outcomes

for the perturbations considered, for as large a set of outcomes as possible.

Intuitively, this makes sense for decision makers who desire plans that can

achieve performance requirements as far as possible under uncertainty.

It is clear that Zγ′ ⊆ Zγ whenever γ ≥ γ′. This formulation provides deci-

sion makers with a functional means to evaluate the robustness of a solution

with regards to uncertainty. In particular, it can be said that a candidate

solution has a robustness index γ if the resulting system is able to meet all the

requirements for any z̃ ∈ Zγ.
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3.2 Robust Optimization Model

In view of the preceding discussion, a general optimization model is for-

mulated. This model seeks to maximize the robustness index γ through the

decision variables y, so that targets are always achieved for any realizations of

the uncertain parameters arising from the set Zγ (for the largest possible value

of γ). The model is then stated mathematically in the following formulation.

Problem R

max
y∈Y

γ

A · y +B · z̃ ≤ τ ∀ z ∈ Zγ (3.5)

where the feasible space of y is modelled as the polyhedron Y , so that

y ∈ Y in any feasible solution. System targets are defined by (3.5), where there

are N number of targets τ ∈ ℜN . Meanwhile, A ∈ ℜN×L and

B ∈ ℜN×K are coefficient matrices of the decision variables and uncertain

parameters, respectively.

The targets as specified in (3.5) may imply resource budgets or limits that

the system cannot exceed. Targets can also be in the form of performance

metrics, which the system must adhere to. Note that the constraints (3.5)

are required to hold for all uncertain parameter outcomes z̃ ∈ Zγ. Since

Zγ′ ⊆ Zγ whenever γ
′ ≤ γ, maximizing γ can be interpreted as maximizing the

38



robustness of the system to uncertainty with regards to meeting the specified

performance requirements.

Solving the robust problem as it is formulated in (3.5) would require evalu-

ating an infinitely large number of constraints (one constraint for each possible

realization of z̃). In effect, this would make the robust formulation consider-

ably more difficult to solve than its nominal counterpart, a linear programming

problem (Bertsimas and Thiele, 2006b). However, a more compact formula-

tion could be arrived at due to the convex and polyhedral properties of the

uncertainty set Zγ . In Proposition 1, an equivalent formulation of Problem R

is developed to enable application of linear programming methods for solution

iteratively.

Proposition 1 Define P ∈ ℜN×K and Q ∈ ℜN×W as matrices of variables.

Problem R is then equivalent to the following:

Problem C

max
y∈Y

γ

s. t.

A · y +B · z + P · γz +Q · e ≤ τ (3.6)

|B| − P −Q ·R ≤ 0 (3.7)

P,Q ≥ 0 (3.8)
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Proof : First, formulation C can be constructed by considering the constraints

in (3.5). In particular, it suffices that:

A · y +B · z +max
z∈Zγ

{|B| · z} ≤ τ (3.9)

Since the coefficients of z̃ may be negative, the absolute value is maximized

to account for perturbations in both the negative and positive directions. The

maximization in the left-hand side can be written explicitly as follows.

max |B| · z s.t. 0 ≤ z ≤ γz̄, , Rz ≤ e (3.10)

where the constraints imposed on the perturbations z are obtained from the

uncertainty set Zγ and the function z̄k(γ) is defined as γz̄. (3.10) is then a

linear optimization problem and the dual formulation can be written as:

minP · γz̄ +Q · e (3.11)

s.t. P +Q ·R ≥ |B| , P,Q ≥ 0 (3.12)

where P ∈ ℜN×K and Q ∈ ℜN×W denote the variables in the dual formulation.

The formulation C is then derived by replacing the maximization term in (3.9)

with the objective function value in (3.11), thus obtaining (3.6). Finally, (3.7)

and (3.8) are obtained by augmenting (3.12) into R. Since both formulations
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are identical in the objective functions, it suffices to show that for any given

γ, the feasible space of y in each of the formulations are the same.

Let YR denote the feasible space of y in Problem R,

i.e., YR = {y ∈ Y , s.t. (3.5)}. Let SC denote the feasible solution space of

Problem C, i.e.,

SC = {(y, P,Q) s.t. (3.6)− (3.8)}

The feasible space (or projection) of y in C, is then defined as

YC =
{
y ∈ Y | ∃ (P,Q), s.t (y, P,Q) ∈ SC

}

The following then completes the equivalence of the two formulations.

1. If y is feasible in YR, then it is also feasible in YC: Suppose y ∈ YR.

Since (3.10) is both feasible and bounded in the objective, its dual (3.11)

and (3.12) are also feasible and bounded. Then by the strong duality

of linear programming, there must exist P ∗ and Q∗ from the dual space

(3.12) so that P ∗ · γz̄ +Q∗ · e = maxz∈Zγ {|B| · z} ≤ τ − A · y − B · z.

Hence, y ∈ YC.

2. If y is feasible in YC, then it is also feasible in YR: Suppose y ∈ YC. By

weak duality, maxz∈Zγ |B| · z ≤ P · γz̄ + Q · e ≤ τ − A · y − B · z for

any P and Q from (3.12). Consequently, y ∈ YR. �
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For a fixed value of γ′, the constraints (3.6)–(3.8) are linear in the decision

variables. Model C can thus be solved for the maximum γ∗ by performing

a line search in γ ∈ [0, 1]. That is, an ascent direction can be identified to

improve the value of γ. For a given γ′, feasibility in (3.6) – (3.8) can be

checked efficiently by solving a Phase 1 linear programming problem. If a

feasible solution exists, then γ∗ ≥ γ′. Otherwise γ∗ < γ′. The line search

can then proceed by applying a bisection search procedure. The local search

procedure is formalized in Chapter 4 of this thesis.

3.3 Relationship of the Robustness Index γ to Success Probability

The use of γ accounts as a measure of the system’s ability to achieve per-

formance requirements under uncertainties. In a broader sense, it can also

be demonstrated that the proposed measure shares some interesting connec-

tions with the probability of success through an axiomatic argument. This

section provides further justification for the choice of maximizing the γ− level

robustness of the system by showing its connection with success probability

optimization.

These insights are based on recent developments in the field of risk an-

alytics, in particular, optimization under risk and the concept of satisficing

measures (Brown and Sim, 2010). Let ã denote the uncertain level of achieve-

ment above the target, or position, and where inequality relations ã ≥ 0 are

applied in the state-wise sense. In this case, the target can be in the form
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of profits, market share, etc. Brown and Sim (2010) proposed the following

axiomatic definition of satisficing measures ρ, where 1 ≥ ρ ≥ 0, that operate

on ã:

Definition 1 (from Brown and Sim (2010)): A given function ρ (ã) is a valid

satisficing measure if all the below are true:

1. Attainment content: If ã ≥ 0, then ρ(ã) = 1.

2. Non-attainment apathy: If ã < 0, then ρ(ã) = 0.

3. Monotonicity: If ã ≥ ã′, then ρ(ã) ≥ ρ(ã′).

4. Gain continuity: limα↓0 ρ(ã+ α) = ρ(ã).

Attainment content implies that if the target is always achieved, then the

satisficing level ρ attains its maximum (i.e. ρ = 1). On the other hand,

Non-attainment apathy indicates that if the current position never achieves

the target (i.e. under any realization), then it is always least preferable (i.e.

ρ = 0). Monotonicity states that if a position ã (state-wise) dominates position

ã′, then the former is no less preferable ρ(ã) ≥ ρ(ã′). Finally, Gain continuity

is a technical requirement meaning that if an infinitesimally small increment

is made to the current position, the satisficing level would not change. The

opposite however is not necessarily true. The reader can readily verify that

the success probability P (ã ≥ 0) is indeed a satisficing measure in accordance

to Definition 1.
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Now for a given y, denote ã as

ã = min
i=1,··· ,N

−Aiy −Biz̃ + τi (3.13)

where, ã is the extreme-value uncertain variable whose outcome is the worst

achievement among the i = 1, · · · , N design requirements. Next, Zγ(ã) for ã

is defined as follows:

Zγ(ã) =


sup

{
γ ∈ (0, 1) : mini minz̃∈Zγ

{−Aiy −Biz̃ + τi} ≥ 0
}

if feasible,

0 otherwise.

(3.14)

The largest γ achievable by a solution y is given by Zγ(ã). The following

result shows that the proposed index is in fact coherent with the framework

prescribed by Brown and Sim (2010) for satisficing measures.

Proposition 2 The robustness index Zγ(ã) is a satisficing measure in accor-

dance to the decision criteria of attainment content, non-attainment apathy,

monotonicity and gain continuity on the uncertain variable ã.

Proof : Zγ(ã) defined in (3.14), where the random variable

ã = min
i=1,··· ,N

−Aiy −Biz̃ + τi,

satisfies each axiom.

44



1. Attainment content.

Given : ã ≥ 0

⇒ mini=1,···N {−Aiy −Biz̃}+ τi ≥ 0 ∀z̃ ∈ Zγ(γ = 1)

⇒ minz̃∈Zγ
mini=1,···N {−Aiy −Biz̃}+ τi ≥ 0 ∀γ ∈ [0, 1]

⇒ γ(ã) = 1

where the last inequality follows from noting that Z ′
γ ⊆ Zγ whenever

γ′ ≤ γ.

2. Non-attainment apathy.

Given : ã < 0

⇒ mini=1,···N {−Aiy −Biz̃}+ τi < 0 ∀z̃ ∈ Zγ,∀γ ∈ [0, 1]

⇒ γ(ã) = 0 (by definition in (3.14)).

3. Monotonicity. Given y and y′, and where

ã′ = min
i=1,···N

{−Aiy
′ −Biz̃}+ τi,

we have that:

ã ≥ ã′
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⇒ ∀z̃ ∈ Zγ (γ = 1) ,

min
i=1,···N

{−Aiy −Biz̃}+ τi ≥ min
i=1,···N

{−Aiy
′ −Biz̃}+ τi

⇒ ∀z̃ ∈ Zγ (γ = γ(ã′)) ,

min
i=1,···N

{−Aiy −Biz̃}+ τi ≥ min
i=1,···N

{−Aiy
′ −Biz̃}+ τi ≥ 0

⇒ γ(ã) ≥ γ(ã′)

4. Right continuity. It is to be shown that the below must hold simultane-

ously:

lim
α↓0

Zγ(ã+ α) ≤ Zγ(ã) (3.15)

lim
α↓0

Zγ(ã+ α) ≥ Zγ(ã) (3.16)

(3.15) is shown by contradiction. Suppose limα↓0 Zγ(ã+ α) = Zγ(ã) + ϵ

for some ϵ > 0. Then we have that:

min
z̃∈Zγ((ã)+ϵ)

min
i=1,···N

{−Aiy −Biz̃}+ τi + α ≥ 0 ∀α > 0 (3.17)

Furthermore, by definition of Zγ(ã) we must have:

min
z̃∈Zγ((ã)+ϵ)

min
i=1,···N

{−Aiy −Biz̃}+ τi < 0
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Clearly, by choosing any ∆ > 0 and such that

∆ < − min
z̃∈Zγ((ã)+ϵ)

min
i=1,···N

{−Aiy −Biz̃} − τi,

we can have

α = − min
z̃∈Zγ((ã)+ϵ)

min
i=1,···N

{−Aiy −Biz̃} − τi −∆ > 0

which provides the required contradiction in (3.17).

Finally, (3.16) is straightforward to show by applying monotonicity of γ.

That is, Zγ(ã+ α) ≥ Zγ(ã) for all α > 0. �
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4. DESIGN AND PLANNING OF DYNAMIC

PERFORMANCE UNDER UNCERTAINTY

In this chapter, we focus on the issues of dynamic performance under un-

certainty. Yourdon (2004) noted that many systems that are designed to be

efficient under normal operating assumptions can be extremely vulnerable and

fragile when faced with unanticipated disruptions. Shock events not only im-

pair day-to-day operations but possibly also long term performance (Mitroff

and Alpaslan, 2003).

We address these issues through the integration of the robust target-achievement

approach and control theory based methods. Control theory is defined as the

fully developed branch of engineering that applies differential equations to an-

alyze the time response of physical systems (Ortega and Lin, 2004). Simon

(1952) adds that such equations (by means of state space representations) de-

scribe, at least approximately, many of the systems with which electrical and

mechanical engineering deal with.

These types of systems operate in a constantly changing environment,

which inevitably contains inherent uncertainties. In many practical situations,

physical systems also require the specification of parameters that may not be

accurately known at the time when planning and design decisions need to be
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made. For instance, analyzing a power supply system involves the identifica-

tion of a number of parameters that influence its dynamic behavior. However,

these parameters can only be roughly specified during the input modeling

phase since it is very difficult to measure their exact values. The presence

of uncertainty not only impacts the system but also prevents decision makers

from coming up with an accurate analysis. This is because the analysis of

dynamic performance depends upon the accuracy of the model used (Dong

et al., 2005). Control rules that are designed based on a single estimate of

these parameters may then perform poorly if the actual parameter values de-

viate from the assumed values. This therefore underscores the significance of

integrating uncertainty in the analysis.

A common approach in practice is to use stochastic simulation to per-

form the analysis of such models. This unfortunately requires the accurate

estimation of the input random variables modeling the uncertain parameters.

Furthermore, simulation approaches can be very computationally expensive

and impractical since it often requires a large number of repetitions in order

to achieve accurate statistical estimates of the performance. Another approach

is through robust stability analysis, which involves evaluating whether every

element in the system is stable, for a given range of values of the uncertain

parameters. However, as shown by Nemirovski (1993) and Vidyasagar and

Blondel (2001), this is likewise a NP-hard problem.
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Within the field of control theory, robust control (Rollins (1999), Mejia

(2003)) accounts for a branch of study which addresses the issue of system

stability design under uncertainty. Specifically, the general objective of robust

control methods involves the integration of robustness such that a system is

able to recover and reorganize from stress or shock events. However, as raised

in Chapter 2, robust control can lead to solutions that can be considered as

too conservative. This pitfall is avoided in this work by using the robustness

index in the optimization models.

It is also well acknowledged in the literature that one of the primary steps to

analyze physical systems using these methods is by modeling them through a

set of differential equations. System requirements related to dynamic behavior

and stability can then be described using a set of linearized constraints based

on the differential equations of the systems. Consequently, the use of the robust

optimization approach lets us avoid the need for distributional assumptions of

the uncertainties, while control theory based methods allow us to build simple

approximations of a system’s dynamics. Furthermore, the resulting model only

requires the resolution of a small set of linear programming problems, each

of which can be solved using commercial linear programming solvers. The

resulting model could then identify a solution that can achieve all dynamic

performance requirements as well as possible under uncertainty.

The next section shows how the techniques and tools developed within

the control theory framework have extended beyond traditional engineering
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systems. These have also been used as a valid alternative to study the dy-

namic characteristics of production and inventory systems (Ortega and Lin,

2004). The chapter then proceeds by introducing the application of the robust

target-achievement approach to dynamic systems and discussing how dynamic

performance could be shaped and controlled. This is facilitated by demonstrat-

ing its application to a workforce-inventory model. This is then followed by

another application of the approach to a power supply system.

4.1 Control Theory in Production - Inventory Control

Control theory based methods traditionally used for engineering systems

(such as the power supply system) have consequently been shown to contribute

to the study of production and inventory system dynamics. As an illustration,

Axslater (1985) models a single-stage system by defining the inventory at time

t to be dependent upon the production and demand at time t:

∂I(t)

∂t
− P (t− to)−D(t) (4.1)

where to denotes the production lead time. The time development of the inven-

tory I(t) is then obtained as the difference between the production P (t − to)

and the demand rate D(t). Ortega and Lin (2004) further note that P (t)

is usually chosen to minimize costs when the inventory level deviates from a

desired inventory level Io and when the production rate changes. The produc-
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tion rate P (t) can be obtained by applying a suitable linear operator to the

inventory deviation I(t)− Io.

Simon (1952) likewise proposes the application of control theory to study

dynamic production and inventory systems. A salient common characteristic

in general engineering systems and production inventory systems is the feed-

back mechanism that refers to the information related to the gap between the

actual (output) and reference (input) levels of a system variable. This infor-

mation is used to alter the gap through implementing certain decision rules

and actions. For instance, the production rate is continuously updated based

on discrepancies between actual and desired levels of inventory. Vassian (1955)

extends the study to enable analysis in discrete time domain, since data on

inventories, production rates and orders are often available as series of obser-

vations made at different points in time, rather than as continuous functions

in time.

Since then, more rigorous approaches have been used. Towill (1982) applies

transfer function models to study an inventory control system, and proposes

guidelines for tuning control parameters such as inventory adjustments and

demand averaging time. Edgehill et al. (1988) study the sensitivity of an

inventory system to parameter variations, and provide insights on how stocking

policies affect the behavior of the inventory system. Ozveren and Sterman

(1989) propose the use of linear controller design to synthesize policies for a

problem of business cycles in economics that serve as guidelines to think about
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actual policies that are generally more complicated. Christensen and Brogan

(1971) and Porter and Bradshaw (1974) apply a similar approach to use linear

systems models to study specific production-inventory systems. Ortega and

Lin (2004) and Sarimveisa et al. (2008) provide more recent and comprehensive

reviews of applications of various control methods, such as block diagram

algebra, Masons gain formula, Bode plots, Laplace transform, Z transform

and optimal control for different production and inventory dynamic control

problems.

Alternatively, a methodology termed as System Dynamics, originally pub-

lished by Forrester (1961) as Industrial Dynamics, aims to increase the under-

standing of oscillatory behaviors in production-distribution systems. System

Dynamics uses control-theory based models and computer simulation to study

the behavior of complex dynamic systems (Sarimveisa et al., 2008). System

Dynamics (SD) seeks to understand how and why the dynamics of concern

are generated and then eventually searches for policies to further improve

the system performance (Vlachos et al., 2007). Saleh et al. (2010) used the

SD methodology to model the production-inventory system considered in this

research. A more in depth discussion of this methodology is provided in Ap-

pendix A.
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4.2 A Workforce-Inventory Control Application

4.2.1 Workforce-Inventory System Model

The workforce-inventory system model under study is illustrated in Figure

4.1. This model depicts a simple structure of how inventories in a manu-

facturing firm can be influenced dynamically by the workforce levels. In the

following, the structure of the model is described, in which the production

is triggered by the Prod Start Rate that releases new work orders into the

process.

Fig. 4.1. Workforce-inventory planning system from Saleh et al. (2010)

Increasing the Prod Start Rate likewise increases the level of work-in-

process (WIP) inventory. The WIP inventory is transformed into finished

goods inventory (INV) at the production rate Prod Rate. Finished goods in-
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ventory is depleted by the Shipment Rate which is equivalent to the Customer

Order Rate. The Prod Start Rate increases with the level of Labor, which mod-

els the level of manufacturing workforce resource in the firm. The Labor is

increased through Hiring Rate and decreased by natural attrition through the

Quit Rate. The Hiring Rate of labor in turn, increases when the level of job

Vacancies increases. The job positions are depleted when hirings take place.

In this model, the rate creation of jobs Vac Creation Rate is a feedback control

policy that is determined based on current statuses of Vacancies, Labor, INV

and WIP. More detailed formulation of the control rule will be presented in

the next section.

The workforce-inventory model is also populated with many time constant

parameters such as the Manufacturing Cycle Time, Adjustment Times for Va-

cancies, WIP Adjustment Time, Average Duration of Employment and Time

to Fill Vacancies. Locally, these time constants determine the speed of re-

sponse and flow rates of resources. For instance, a large Manufacturing Cycle

Time implies a lower Production Rate, and a longer Inv Adjust Time implies

a slower action to cover the gap between the Desired Inv and the actual fin-

ished goods inventory INV. Globally, these parameters together determine the

dynamic (transient) behavior of the system. Given the values of these model

parameters, it is possible to analyze and even design the dynamic behavior of

the system accurately according to desired specifications.
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However, many of these parameters might not be confidently estimated

during input modeling. For instance, a highly variable manufacturing cycle

time is typical of most realistic manufacturing environments, and similarly

for parameters such as duration of employment in human resource processes.

Hence, a workforce-inventory control rule that is good in a specific setting of

the model parameters might not achieve desired performance (even worse, the

dynamic system may become unstable) if the actual parameter values differ

from the nominal assumed values. Therefore, the objective is to achieve a

workforce-inventory control that is able to shape the dynamic response of the

system satisfactorily under these parameter uncertainties. In the following, the

state-space formulation of the workforce-inventory system described above is

first presented. The results from eigenvalue sensitivity analysis are then used

to develop the dynamic response requirements as linear constraints in the

model parameters.

4.2.2 State Space Model of Workforce-Inventory Dynamic System

The mathematical model of the dynamic system depicted in Figure 4.1 is

developed in this section. The following set of notations is defined for the key

model parameters. Other notations will be introduced during the discussion

as and when appropriate.

Linear and time-invariant state-space representations of dynamic systems

are widely accepted as useful means of studying perturbations of the system
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INV : Inventory WIP : Work-in-process
LAB: Labor V AC: Vacancy
COR: Customer Order ATF : Ave. time to fill vacancy
PDY : Productivity DHR: Desired hiring rate
SWW : Standard work week AFV : Adjustment for vacancy
ADE: Ave. duration of employment MCT : Manufacturing cycle time
IAT : Inventory Adjustment Time WAT : WIP Adjustment Time
V AT : Vacancy Adjustment Time LAT : Labour Adjustment Time

state variable from the nominal values (Pagola et al., 1989). As a result, the

workforce-inventory dynamic system model in Figure 4.1 can be written as the

following set of ordinary differential equations that describe the net flow rates

for each of the critical resources Inventory, WIP , Labor and V acancy:

˙INV =
WIP

MCT
− COR (4.2)

˙WIP = LAB·PDY ·SWW − WIP

MCT
(4.3)

˙LAB =
V AC

ATF
− LAB

ADE
(4.4)

˙V AC = AFV +DHR− V AC

ATF
(4.5)

In the rate of change equation for job vacancies V AC, the inflow rate

Vac Creation Rate is defined by the sum of the Desired Hiring Rate DHR

and Adjustment for Vacancies AFV , where DHR and AFV are defined as

follows:

DHR = Adjust for Labor +Quit Rate (4.6)

AFV = (Desired Vac − Vacancies)/V AT (4.7)
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The desired level of job vacancies is defined as Desired Vac = DHR · ATF .

The above formulation is based on Little’s Law equation, which says that

at steady state, the achieved level of vacancies should be the product of the

desired outflow rate at DHR and the cycle time ATF . In line with this, the

creation of new job positions is based on two agenda. The first is to close

the discrepancy between the desired and actual levels of job vacancies. The

second is to create new jobs to support the planned hiring rate DHR, which

in turn is driven by Adjust for Labor and for replacements to match the Quit

Rate. The Adjust for Labor variable is formulated as:

Adjust for Labor = (Desired Labor − Labor) /LAT (4.8)

Desired Labor = Desired Prod Start Rate · Productivity · Standard WorkWeek

(4.9)

That is, the Adjust for Labor accounts for the change in hiring rate required

due to any gap between the desired labor level and the current labor level. A

smaller Labor Adjustment Time LAT implies a faster adjustment to close this

gap. Meanwhile, the Desired Labor is determined by the required production

start rate. This is simply a conversion of the Desired Prod Start Rate into

labor requirements based on productivity and work week considerations.

In the following equations, the Desired Prod Start Rate is determined by

two requirements: Adjustment WIP and Desired Prod. It can be seen that the
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first requirement Adjustment WIP is driven by the discrepancy between the

Desired WIP and actual WIP level. Here, WAT is defined as the WIP Adjust-

ment Time, which controls the speed of closing the discrepancies. The Desired

WIP is determined using Little’s Law equation for steady state conditions on

the stock of WIP, assuming that the outflow rate of WIP is at Desired Prod.

Desired Prod Start Rate = Adjustment WIP +Desired Prod (4.10)

Adjustment WIP = (Desired WIP −WIP) /WAT (4.11)

Desired WIP = Desired Prod ·MCT (4.12)

The second requirement Desired Prod, is derived from considering the fin-

ished goods inventory and customer order fulfillments via the following:

Desired Prod = Prod Adjust from Inv + Customer Order Rate (4.13)

where

Prod Adjust from Inv = (Desired Inv − INV ) /IAT (4.14)

Prod Adjust from Inv is the adjustments to the required production rate due

to discrepancies between the Desired Inv and actual INV level. IAT is the

Inventory Adjustment Time, which controls the rate which the discrepancies

59



are closed, and the Desired Inv level is exogenously determined by safety stock

coverage considerations.

4.2.3 Dynamics of Linear Systems under Parameter Variations

The above defines the structure of the control rule used in the model to

adjust Vac Creation Rate, and hence Hiring Rate and Prod Start Rate based

on current statuses of the Vacancies, Labor, WIP and Inv. The control rule

is linear in these system states (the four critical resources), and after further

manipulation, the system of equations can be written in the state matrix form

of:

ẋ = Dx

where x refer to the vector of resource variables Inventory, Labor, V acancy

and WIP , and the state matrix D is given by:

In linear dynamic systems, the stability and transient behavior of the sys-

tem is fully characterized by the eigenvalues of the state matrix D. An eigen-

value is written in the complex number format: µ+iω, where µ and ω refer to

the real and imaginary parts of the eigenvalue respectively. The magnitude of
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µ dictates the rate of decay of the transients in the system, and ω determines

the frequency of oscillations in the system. A system is stable if the the mag-

nitude of the system variables does not grow indefinitely large when inputs or

disturbances are not indefinitely large. In order for a system to be stable, it

is necessary and sufficient that the real part of all the eigenvalues be negative

(i.e. µ < 0).

In classical control engineering, pole placement techniques are applied to

design linear controllers to achieve desired system performance, based on

choosing the desired eigenvalue positions of the system. On the other hand,

if the elements of D contains functions of uncertain variables, the resulting

eigenvalues can also become uncertain. Hence, a system originally designed

based on a single nominal estimate of D may be unable to achieve desired

performance when implemented, or may even become unstable (i.e., when real

components of the eigenvalues become positive). The technique discussed by

Dong et al. (2005) is applied to analyze the changes in system eigenvalues due

to variations in the model parameters. First, the ith left and right eigenvectors

wi and vi of state matrix D are defined as follows:

Dvi = λivi, (4.15)

wT
i D = λiw

T
i . (4.16)
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Let z be a parameter in the system, of which the state matrix D is a

function of. The eigenvalue sensitivity ∂λi

∂z
(Dong et al., 2005) is then the

information on the influence of z on the ith eigenvalue defined as:

∂λi

∂z
=

wT
i

∂D
∂z
vi

wT
i · vi

(4.17)

Recall from Chapter 3 that the system parameters can be partitioned into a

set of controllable parameters (decision variables) y and uncontrollable param-

eters (uncertain paramters) z̃. Define S
y
µ and S

y
ω as the N × L (N=number

of eigenvalues) matrix such that the ilth element of S
y
µ (S

y
ω ) is the sensitivity

of the real (imaginary) components of eigenvalue i with respect to yl. Sim-

ilarly, define Sz̃µ and Sz̃ω as the N × K (N=number of eigenvalues) matrix

such that the ikth element of Sz̃µ (Sz̃ω ) is the sensitivity of the real (imaginary)

components of eigenvalue i with respect to z̃k.

In the succeeding discussions, y and z are defined to be changes of the

decision and uncertain parameters with respect to their original values, respec-

tively. Hence, for a given operating point where the eigenvalues are denoted

as µ̄ and ω̄, and given some small parameter changes y and z, the updated

eigenvalues (real and imaginary components) are respectively estimated to be

µ (y,z) = µ̄+ Syµ · y + Sz̃µ · z (4.18)
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and

ω (y,z) = ω̄ + Syω · y + Sz̃ω · z. (4.19)

4.2.4 Specification of Dynamic Requirements

Stability requirements

In considering dynamic requirements, the key objective is to design a sys-

tem that has acceptable transient performance. What is ‘acceptable’ may

be rather subjective, but a fundamental requirement is that the system must

be stable in the event of disturbances. That is, a system that faces distur-

bances should be able to return to its normal operating conditions after a

finite amount of time. In the workforce-inventory management system, stabil-

ity is an overriding consideration since it has direct implications on the ability

of the management to control and mitigate large changes in the inventory and

workforce levels in the event of disruptions and to return to normal operating

conditions. These issues are of critical importance to stake holders since they

have direct impact on the costs associated with inventory and workforce.

In the presence of uncertainty, it needs to be ensured that the real com-

ponents µ of the eigenvalues will remain non-negative to ensure that the sys-

tem remains stable. The system stability requirements can be characterized

through the eigenvalue positions while the influence of changes in parameters

can be estimated through the eigenvalue sensitivity matrices. For instance,
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for a given vector of parameter changes y and z about the nominal values,

the real parts of the eigenvalues (µ) must be less than zero to ensure stability.

This requirement is simply stated as:

µ (y,z) ≤ 0 (4.20)

where µ (y, z) is as defined in (4.18).

Transient Response Requirements

Aside from stability, there are often other performance requirements that

describe how the dynamic system variables respond to changes during opera-

tion. For instance, when there is a sudden supply loss in the finished goods

inventory, a stable system will adjust production starts, and hence workforce

hiring as a response to restore the system to its normal operation, so that

the finished goods inventory eventually again achieves its desired level. A fast

reaction to the supply loss, while desirable, can cause an unnecessarily large

surge in the workforce, large oscillatory swings in the inventory levels due to

over-compensation and under-compensation, and a significantly long time be-

fore the desired levels are reasonably restored. Too slow reactions on the other

hand can be sluggish and unresponsive to required changes in desired inven-

tory levels or customer orders. The design of transient responses is to achieve

a good compromise between some of these characteristics qualitatively.
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Because it is impractical to predict accurately all types of changes that will

occur in the system in advance, the common approach in control engineering

is to shape the transient responses based on standard reference input changes,

such as a unit step input change to the system. Figure 4.2 illustrates the

response of a system output when a unit step input occurs.

 

 

Fig. 4.2. Dynamic responses of a system output with respect
to a unit step increase Kuo et al. (2009)

The system output attempts to follow the reference input and achieves the

steady-state after a certain time. In the illustration, ϕ denotes the maximum

overshoot of the output above the desired level, and the time at which this

occurs is termed as the peak time tp. The settling time (ts) refers to the time
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taken for the system output to remain bounded within a specified tolerance

(tol), which is usually 2% - 5% of the final value of the output.

For second-order systems, simple relationships between the eigenvalues and

the dynamic performance measures are well-established. In particular, the

peak time tp =
π
ω
, and the overshoot ratio ϕ = e

µπ
ω for a second-order system. A

common ‘rule-of-thumb’ formula for settling time is ts =
∆
−µ

, where ∆ = ln(tol)

and is some pre-specified scalar (e.g., ∆ = −4 for a 2% tolerance). For defining

the dynamic specifications, the system could then be required to have a peak

time no greater than tp, formulated as:

ω (y, z) ≥ π

tp
(4.21)

The peak time is a surrogate for the speed of response of the system. A

short peak time indicates that the system is agile in responding to changes

in customer order rates or desired workforce levels. On the other hand, the

response frequency ω is related to the bandwidth of the system and should

not be too large, otherwise high frequency noise can easily corrupt the system

behavior. This can be enforced simply as follows, where ω̂ refers to some upper

bound on the frequency allowed in the response:

ω (y, z) ≤ ω̂ (4.22)
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Similarly, the requirement that settling time should be no greater than ts is

stated by (4.23) while the overshoot requirement is stated by (4.24):

µ (y, z) ≤ −∆

τts
(4.23)

µ (y,z) ≤ ln(ϕ)

π
· ω (y, z) (4.24)

In order to use the above formulations for a general high-order system, a

common practice in control engineering design is to position all the eigenvalues

other than the dominant eigenvalues to be reasonably far away from the imag-

inary axis in the complex number plane. This effectively means that all the

transients associated with these eigenvalues decay away much faster compared

to the dominant eigenvalues and hence can be neglected in the consideration

of transient behavior. A simple way to achieve this is to require the magnitude

of the real parts of the non-dominant eigenvalues to be at least five times as

large as the dominant eigenvalues. This is enforced as a design requirement:

|µi′ (y, z) | ≥ 5 · |µi (y,z) | ∀i′ ̸= i (4.25)

where i is the designated dominant eigenvalue, which can be identified based

on the (pair) of eigenvalues nearest to the imaginary axis in the initial system

setting.
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Summarizing, since the above dynamic performance constraints (4.21),

(4.22), (4.23), (4.24) and (4.25) are all linear (or can be cast as linear) in

the parameters y and z, they can be combined and cast compactly in the

form:

A · y +B · z ≤ τ (4.26)

where A ∈ ℜN×L, and B ∈ ℜN×K are coefficient matrices, τ ∈ ℜN , and

N is the total number of constraints generated from the specified dynamic

performance requirements.

4.2.5 Optimization Approach for Workforce-Inventory Dynamics

In this section, the optimization model is developed to obtain a workforce-

inventory control that is able to achieve the dynamic performance specifica-

tions derived under uncertainty. As mentioned, the goal is to obtain a setting

of the controllable parameters y so that the dynamic performance constraints

modelled in (4.26) are feasible for as large a range of uncontrollable parameters

z as possible. In the workforce-inventory model, the controllable parameters

are assumed to be the Inventory Adjustment Time IAT and Labor Adjust-

ment Time LAT . Since these are time constant parameters associated with

the workforce-inventory feedback control rule, different values of IAT and

LAT results in different choices of feedback control implemented.
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On the other hand, the uncontrollable parameters z are assumed to be

the Average Time to Fill Vacancy ATF , Average Duration of Employment

ADE, Manufacturing Cycle Times MCT , WIP Adjustment Time WAT , and

Vacancy Adjustment Time V AT . These parameters can be thought of as

variables that cannot be easily or economically manipulated in the practical

environment. In practice, the discernment of controllable and uncontrollable

parameters in a workforce-inventory system may require the inputs of policy-

makers and various management. In this work it is assumed that such decisions

have already been made.

It is clear that the system requirements as defined in the constraints (4.26),

lead to the same problem structure shown for model R. In this regard, the

optimization model can be adapted to the workforce-inventory problem. Fur-

thermore, the results of Proposition 1 can likewise be used to obtain an equiv-

alent formulation of Problem R, which can be solved iteratively by linear

programming methods.

The search procedure for general design problems involving dynamic con-

straints is formalized through a local search framework. The framework, as

described in Figure 4.3, shows how the maximum robustness level γ∗ could be

obtained by iteratively solving the proposed linear programming model.

1. Define a step size ∆ and identify initial operating points ȳ, z̄ and ini-

tialize the best-so-far robustness level γ∗ to 0.
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2. Formulate Problem R and transform into Problem C.

3. From Problem C, solve for y.

4. Check to see if there is a feasible solution and an improvement in γ∗.

5. If there is, then γ∗ = γ∗ + ∆ and ȳ = ȳ + y. Continue the search for

improvement by going back to Step 2.

6. Otherwise, the optimal design is reached and the search process termi-

nates.

7. The design is then equivalent to ȳ + y and γ∗.

4. Is there a feasible

solution and an

improvement in γ*?

6. Set design

to  ͞y+y and γ*=γ

5. Move to ͞y= ͞y+y

and γ*=γ
YES

NO

3. Solve for y that

maximizes γ

2. Formulate

robust design

model

1. Initial points

 ͞y, ͞z, γ*

7. Robust

design

Fig. 4.3. Local search process for solving robust optimization model

In the algorithm, the initial operating points are defined by the nominal

values of the control and uncertain parameters. These values can be obtained

from the current design of the system. Formulating Problem R (and C) re-

quires that the local information matricesA andB to be identified and updated
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in each iteration. These are based on the linearized approximations or sensi-

tivity information around the improved operating point. The step size used

in the local search method may account for an additional constraint on the

adjustable space of y. These considerations can be captured by the feasible set

Y in the formulation R. Such approaches are also similar to design methods

such as response surface methods in robust experimental design.

4.2.6 Computational Studies

The computational studies of the workforce-inventory planning system are

presented in this section. The first objective of the computational studies

is to demonstrate the improvement of dynamic performance of the system

under uncertainties using the proposed robust target-oriented optimization

approach. Another objective is to compare the performance of the solution to

other design alternatives. In line with this, the controllable parameters y are

assigned to be the inventory and labor adjustment time parameters IAT and

LAT . The uncertain parameters z are: ATF , ADE, WAT , V AT and MCT .

The nominal (and initial) values for the parameters are obtained from Saleh

et al. (2010). Furthermore, the assumed bounds (changes about the respective

nominal values) are shown in Table 4.1 for these parameters.

For the model parameter setting based on Saleh et al. (2010), where IAT =

12 and LAT = 19, the four eigenvalues are:
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Table 4.1
Controllable and uncertain parameters for inventory-workforce system

Controllable Bounds Uncertain Feasible range
IAT 5 to 35 weeks ATF -1.80 - 1.80 weeks
LAT 5 to 35 weeks ADE -22.60 - 22.60 weeks

WAT -1.40 - 1.40 weeks
V AT -0.90 - 0.90 weeks
MCT -1.80 - 1.80 weeks

λ1 = −0.3531 λ2 = −0.0095 + 0.0988ii λ3 = −0.0095− 0.0988ii λ4 = −0.1380

The complex conjugate pairs λ2 and λ3 are regarded as the dominant eigen-

values because they have the largest real parts amongst the group. Since the

real parts of the dominant eigenvalues are non-negative, the system is currently

stable. However, because these values are very close to zero, the dampening of

such oscillations would be very weak and it can take an extremely long time for

the system to achieve stability. Furthermore, when uncertainties are present,

the near-zero values of µ2 and µ3 can become problematic if an uncertain pa-

rameter value alters the eigenvalues to cross the imaginary number axis into

the right-hand side of the complex number plane. For instance, it was ob-

served that when the parameters take on the following values: MCT = 10.5,

V AT = 7, WAT = 8, ADE = 100 and ATFV = 8, λ2 and λ3 become

0.0002 + 0.0901ii and 0.0002 − 0.0901ii, respectively. This indicates the case

of dynamic instability.
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Dynamic performance specifications

In the following, appropriate dynamic requirements are specified to move

the workforce-inventory system away from such undesirable situations to im-

prove its robustness to uncertainties. These requirements are specified by:

• Stability (constraint (4.20)).

• Rise time (constraint (4.21)): tp is set at 50 weeks.

• Settling time (constraint (4.23)): ts is set at 190 weeks, with tolerance

∆ = 4; that is 2% of the final steady-state values.

• Overshoot limit (constraint (4.24)): ϕ is set at 100% of the nominal

value.

• Eigenvalue dominance rule (constraint (4.25)): λ2 and λ3 are designated

as the dominant eigenvalues.

The formulation of the above dynamic performance constraints for the

workforce-inventory system requires the evaluation of the eigenvalue sensitivity

matrices. Detailed workings of these can be found in Appendix C.

Results and discussion

The performance of three different solutions of the workforce-inventory

control using simulation are compared against each other. The first, denoted
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as y(I) corresponds to the initial settings based on Saleh et al. (2010), i.e.,

with IAT = 12, LAT = 19. The second design, denoted as y(II), attempts to

improve on the first by moving IAT = 18 and LAT = 35, so that the maximum

overshoot constraint (4.24) and settling time constraint (4.23) are satisfied

exactly with the uncertain parameters at the nominal values, i.e. assume that

z = 0. It can be verified that the rest of the dynamic requirement constraints

are also satisfied. Finally, y(III) denotes the solution obtained using the robust

target-oriented optimization approach.

To apply the approach, the optimization model C in Chapter 3 is formu-

lated and solved iteratively using the search procedure. The computations were

performed in MATLAB, with the application of the modeling toolbox ROME

version 1.0.8 (Goh and Sim, 2011), designed for robust optimization problems

in the MATLAB environment. In addition, the solver engine MOSEK ver-

sion 6 was called to solve the underlying linear optimization problems. The

computations were performed using a 2.50 GHz Intel Core i5-3210M proces-

sor, which resulted to an average computer solution time of 10.4 seconds for

the algorithm. The optimization procedure was initialized with y set at y(I).

The final solution obtained was: IAT = 20 weeks and LAT = 32 weeks re-

spectively, yielding a robustness index γ = 62.09%. Under this design, the

workforce-inventory system will be able to achieve the dynamic requirements

as long as the uncertain parameters vary by no larger than 62.09% from their

nominal values.
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In the simulation, 200 realizations of the uncertain parameters were gener-

ated by assuming a uniform probability distribution with supports as in Table

4.1. Table 4.2 shows the 95% intervals of the eigenvalues evaluated under the

three solution alternatives.

Table 4.2
95% Intervals for simulated eigenvalues

Solution Re(λ2, λ3) Imag(λ2, λ3) λ1 λ4

y(I) [−0.0092,−0.0086] [0.0980, 0.1036] [−0.3634,−0.3572] [−0.1396,−0.1362]
y(II) [−0.0135,−0.0134] [0.0650, 0.0679] [−0.3803,−0.3749] [−0.1118,−0.1084]
y(III) [−0.0176,−0.0170] [0.0660, 0.0692] [−0.3777,−0.3723] [−0.1071,−0.1032]

Under y(I), the real parts of λ2 and λ3 can become very close to zero (i.e.,

-0.0086). This implies further perturbations in the parameters may potentially

de-stabilize the system. The stability is improved with y(II), since the dominant

eigenvalues are more negative than in the previous case. Finally, for y(III), it

can be noted that the upper confidence limit for the eigenvalues of λ2 and λ3 is

-0.0170, which is more negative than the lower confidence limit for y(II). This

indicates an even further improvement in the stability of the solution under

uncertainty. Qualitatively, this also implies a more effective tracking ability

of the workforce-inventory system, since transients such as oscillations decay

faster with smaller dominant eigenvalues.

Table 4.3 shows the dynamic performance in the overshoot, peak time

and settling time behaviors from the simulation. The confidence intervals for

each of the attributes are evaluated with the transient response constraints,
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using the 200 simulated realizations of the dominant eigenvalues (µ2 and ω2).

All three solutions had comparable performance in terms of the maximum

overshoot ratio ϕ. Meanwhile, the range for the peak time tp of y(I) is lower

than both y(II) and y(III). This just reflects a larger frequency ω in the solution’s

dominant eigenvalues. More importantly, it can be observed that y(III) had the

best performance in the settling time compared to the rest of the two solutions.

y(I) produced the worst (largest) settling times. Even though y(II) was designed

based on achieving settling time specification under the nominal conditions,

there is a significant likelihood that it exceeds the specification of 190 weeks

when uncertainties are present. In contrast, only y(III) achieved the settling

time specification with high confidence. This highlights the importance of pro-

actively designing the workforce-inventory control parameters to counter the

effects of uncertainties.

Table 4.3
Transient performance 95% intervals based on eigenvalue simulation

Maximum Overshoot ϕ Peak Time tp Settling Time ts
Specification 100% 50 weeks 190 weeks

y(I) 99.96%-99.97% 30.60-31.65 357.91-419.05
y(II) 99.96%-99.97% 47.72-49.48 187.06-218.99
y(III) 99.95%-99.96% 47.11-49.03 175.04-181.71

The above analysis focuses on the dynamic behavior of the workforce-

inventory system under a unit-step reference input. Next, the workforce-

inventory system is simulated under more general operational conditions. In
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particular, the resource variables are initialized at non-steady state conditions.

As an example, the work-in-process has a desired level equivalent to 80,000

units but this has been initialized at 60,000 units. This for instance describes

a scenario where there is a sudden supply loss in the production work; due

to quality reasons or accidents. A stable system then reacts to the disruption

by adjusting production and hiring rates and eventually restoring the system

states to its steady operating levels. The transients observed in the process of

recovery are of interest here.

Figures 4.4 to 4.7 show the behaviors under the control variable solutions of

y(I), y(II) and y(III) for the four resource variables: inventory, labor, WIP inven-

tory and vacancy, respectively. Overall, the responses of all resource variables

under the three different solutions display decaying oscillations before achiev-

ing steady-state levels, which is consistent with the results of the eigenvalue

simulations in Table 4.2. To further compare the results, refer to the behavior

of the inventory variable in Figure 4.4. The behaviors from y(I) show that the

fluctuations in the inventory levels are significantly larger than those from y(II)

and y(III). These fluctuations hardly cease by the end of the simulation period,

which indicate very weak dampening capability of the system. In contrast,

the results for y(II) and y(III) indicate much improved damping, such that most

of the transient movements in the stocks are eliminated by the end of the

simulation period.
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Fig. 4.4. Inventory dynamics under the three control variable solutions.

Furthermore, it can also be seen that the system under the y(II) and y(III)

settings are less sensitive to the uncertain parameters. In particular, the

trajectory-to-trajectory differences due to variation of the uncertain param-

eter values are much smaller compared to those from y(I). Under y(I), the

inventory levels varied by as much as 14,000 units at the end of the simulation

period. Meanwhile, a variation of 2000 and 500 units have been recorded for

y(II) and y(III), respectively. From a management and planning point of view,

this implies the ability to generate more precise forecasts of the resource sta-

tuses in the dynamic business environment. The same observations extend to

the other resource variables in Figures 4.5 to 4.7.
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Fig. 4.5. Labor dynamics under the three control variable solutions.

An explanation for such behavior is as follows. In the case of y(I), because

of the smaller IAT and LAT values, any discrepancies between the desired

and actual levels of the resource variables tend to trigger large compensating

actions in the system. For instance, smaller IAT warrants a large Prod Adjust

from Inv due to discrepancies between the Desired Inv and Inv levels. A large

change in Prod Adjust from Inv results in large changes in Desired Prod Start

Rate and Desired Labor, and consequently large adjustments in Hiring Rate

and Vacancies Creation Rate. Due to the time delays in creating job positions

(V AT ), hiring (Avg Time to Fill Vac), and manufacturing (MCT ), the fin-

ished goods inventory level does not respond immediately to the adjustment
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Fig. 4.6. WIP inventory dynamics under the three control
variable solutions.

actions, and hence the discrepancy from the Desired Inv level is still observed.

This causes further large adjustments in the Desired Prod.

Eventually, when the finished goods arrive from the manufacturing process,

the Inv level overshoots the Desired Inv significantly, and the compensating

action in the opposite direction takes place. These over-compensating and

under-compensating actions cause the level of all the four resources to swing

back and forth about their steady-state levels. As shown by Figure 4.7, the

fluctuations are particularly severe for the Vacancies since the control rule for

adjusting vacancies implicitly consider all the adjustments required from the

other three resources. Obviously, these large fluctuations in organizations are
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Fig. 4.7. Vacancy dynamics under the three control variable solutions.

undesirable and are viewed as inability of the management to cope and control

organizational resources and processes effectively.

Longer adjustment times can help to desensitize such nervousness and po-

tentially smooth out the fluctuations in the inventories and labor. On the

other hand inventory and hiring adjustments that are too slow can also cause

the firm to become very sluggish in responding to the volatile customer de-

mands, and this can result in loss of revenue and even reputation in the long

run. Improvements to the behavior produced by y(I) are achieved in y(II) and

y(III) by appropriately increasing the IAT and LAT . There is a significant

reduction in the fluctuations of vacancy creation and closure rates, which lead

to lowered changes in the workforce levels of the system. The decreased vari-
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ability of the WIP and finished goods inventory implies smoother production

releases labor force and hence a more stable level of labor.

Tables 4.4 – 4.7 summarize the performance of the three solutions in the

settling time, maximum overshoot and peak time behaviors for the four re-

sources. The tabulated results are obtained from the same output values in

the Figures 4.4 – 4.7 (note that these are different from the results in Table

4.3, which were obtained using eigenvalue simulations).

Table 4.4
Transient performance for Labor

Settling Time Maximum % Overshoot Peak Time
y(I) 241.4- 242.1 7.8-9.0 15.1-16.1
y(II) 233.4- 234.2 6.0-6.6 16.9- 17.9
y(III) 207.2-212.0 6.2-6.8 16.1-16.9

Table 4.5
Transient performance for Vacancy

Settling Time Maximum % Overshoot Peak Time
y(I) 219.9-229.9 103.3-132.1 12.9-20.1
y(II) 169.9-182.3 92.3-93.7 1.20-1.28
y(III) 142.3-153.7 90.3-91.2 1.4-1.6

For the maximum overshoot, it can be observed that both y(II) and y(III)

outperform the results achieved by y(I) significantly. In particular, all the

overshoot upper confidence limits of y(II) and y(III) are no greater than the

lower confidence limits of the maximum overshoot produced by y(I). Similar

82



Table 4.6
Transient performance for Inventory

Settling Time Maximum % Overshoot Peak Time
y(I) 213.1- 224.9 28.7-33.3 11.5-16.5
y(II) 216.8-223.2 23.9-24.1 5.8-10.2
y(III) 196-197 23.9-24.1 2.5-5.5

Table 4.7
Transient performance for WIP Inventory

Settling Time Maximum % Overshoot Peak Time
y(I) 187.8-202.2 5.5-6.5 31.1-34.9
y(II) 141.6-148.4 3.8-4.2 29.1-30.1
y(III) 102.1-107.9 3.8-4.2 27.6-28.4

results are also observed for the settling time performance. Finally, the results

suggest that the performance of y(II) and y(III) are marginally close for the

maximum overshoot behavior, with no more than 2% difference in the results.

On the other hand, it can be observed that y(III) achieves significantly shorter

settling times than y(II) for all four resources. This is consistent with the results

in Table 4.3.

An explanation for the behavior is attributed to longer inventory adjust-

ment time IAT , and shorter labor adjustment time LAT in the case of y(III)

compared to y(II). Since in the workforce-inventory control rule, adjustments

in finished goods inventory are added towards the adjustments in desired pro-

duction release rates and consequently desired labor force and hiring rates, a

longer IAT tends to decrease the sizes of the adjustment signals that propa-
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gate upwards into the labor planning. This serves to reduce the nervousness

effects in the system. On the other hand, a shorter LAT increases the labor

hiring rate and hence reduce the pipeline delay effects observed downstream

at the finished goods inventory. This reduces the tendency for over-ordering to

take place at the finished goods inventory. The combined result is an improved

damping of the system transients.

4.3 Power Supply System Stability

The one machine infinite bus (OMIB) power supply system in this study is

adapted from Yu and Siggers (1971). It involves a 1190 MVA unit connected

to an infinite bus through a 575 mile transmission line illustrated in Figure

4.8. Table 4.8 presents the notations used in the model.
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Fig. 4.8. Oscillation model of the OMIB power system (Yu
and Siggers (1971))
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Table 4.8
Nomenclature used in the OMIB system model

Notation System Parameter Notation State Variables
M Inertia coefficient TM Mechanical input
Da Damping coefficient ω Angular velocity
s Laplace operator vt Terminal voltage
TA Excited amplifier time constant vF Equivalent excitation voltage
KA Excited amplifier gain Te Energy conversion torque

K1 · · ·K6 Small oscillation constants δ Torque angle
Tdo′ D-axis transient Eq′ Q-axis component of voltage

open circuit time constant behind transient reactance

Oscillations occur when there are disturbances in the system such as me-

chanical load changes and system faults. In such oscillations, ∆δ, ∆ω and

s∆ω may be considered as phasors where s∆ω leads ∆ω by 90o and ∆ω leads

∆δ again by 90o (Yu and Siggers, 1971). The disturbances influence the levels

of critical variables such as angular velocity, terminal voltage, equivalent ex-

citation voltage and energy torque. These variables are consequently defined

as the state variables for the stability analysis in this study.

In practice, the oscillation constants used in the OMIB may drift through-

out a range of operating conditions (Yu and Siggers, 1971). Thus, these pa-
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rameters have associated uncertainties that need to be accounted for in system

stability analysis. The state equations ẋ = Dx are:

D =



0 0 0 −1/M

377 ·K5 − λ1λ2 ·Da −λ2(λ1·K2+1)
K6

λ2K3 λ1λ2

0 −KA/TA −1/TA 0

377 ·K1 − λ1λ3 ·Da −λ3(λ1·K2+1)
K6

K2/Tdo λ1λ3 −Da/M



x =

[
∆ω ∆vt ∆vF ∆Te

]

As observed, the OMIB system has been directly translated into its state

space representation. Hence, the same method used in formulating Problem C

as discussed in the workforce-inventory system problem extends to the OMIB

system. In line with this, the original values of the system parameters (from

Yu and Siggers (1971)) and the corresponding system eigenvalues are shown in

Tables 4.9 and 4.10, respectively. The system exhibits the dynamics of growing

oscillations, which indicates instability. In this example, the control variables

are the exciter amplifier gain KA, the exciter amplifier time constant TA and

the dampening coefficient Da. The uncertain variables are the oscillation con-

stants K1, · · · , K6. Table 4.11 presents the uncertainty set assumed for these

oscillation constants. The respective ranges indicate the values K1, · · · , K6

may take on in the OMIB system.

86



Table 4.9
Initial parameter values for OMIB system

System Parameter Initial Value System Parameter Initial Value
M 9.26 K1 0.55
Da 0 K2 1.16
Tdo′ 7.76 K3 0.66
TA 0.05 K4 0.67
KA 130 K5 -0.09

K6 0.82

Table 4.10
Initial system eigenvalues of OMIB system

λ1 λ2 λ3 λ4

0.1856+5.1846i 0.1856-5.1846i -10.2833+13.3465i -10.2833-13.3465i

Table 4.11
Uncertainty set for OMIB system parameters

Uncertain Variables Uncertainty set Uncertain Variables Uncertainty set
K1 [-0.0272, 0.0272] K4 [-0.0332, 0.0332]
K2 [-0.0574, 0.0574] K5 [-0.0045, 0.0045]
K3 [-0.0327, 0.0327] K6 [-0.4059, 0.4059]

Aside from stability targets, there are also prescribed bounds on the control

and state variables. In setting the upper and lower bounds of the control

variables, Machowski et al. (1997) state that typical values for KA and TA

are: 20-400 and 0.05-0.20, respectively. A limit of 10 is also assigned for the

damping coefficient in line with Yu and Siggers (1971). Note that there are

no transient requirements assigned for the power supply OMIB system.
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4.3.1 Computational Results

With the defined system requirements, the robust design model C was for-

mulated and solved iteratively using the search procedure. The model returned

a γ of 0.8080, which implies that the system maintains stability even when the

uncertain parameters vary up to 80.80% of the size of the uncertainty sets in

Table 4.11.

A sampling-based approach is used to test the system performance under

the proposed design. 100 realizations of the uncertain parameters were ran-

domly generated by assuming a uniform probability distribution (using MAT-

LAB’s random number generator) with supports as in Table 4.11. We observe

how the proposed design compares with the performance of the original design

of the OMIB system. Figures 4.9 and 4.10 show the behavior of the four state

variables under the original settings and the proposed settings, respectively.

Table 4.12 shows the 95% confidence interval for the eigenvalues under the

proposed design. These were generated with Matlab’s edcf routine using 100

simulated samples of the random parameters.

The instability in the behavior of all four state variables is apparent from

the results in Figure 4.9. The oscillatory amplitudes grew rapidly, in contrast

to the generated behaviors under the proposed settings in Figure 4.10. The

proposed settings eliminated the growing oscillations and maintained system

stability even in the noisy environment. This thus verifies the improved ro-
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bustness of the new system design. The observations from the two sets of

settings are also consistent with the obtained confidence intervals of Table

4.12. For instance, the real components of λ1 and λ2 now range in the stable

region of [−0.4616,−0.4356], in contrast to the initial value of 0.1856. Like-

wise, all other eigenvalues now have confidence bands of real components in

the negative region, which indicates the stability of the system.
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Fig. 4.9. OMIB system behavior under original design

Table 4.12
95% confidence interval for new eigenvalues

Re(λ1, λ2) Imag(λ1, λ2) Re(λ3, λ4) Imag(λ3, λ4)

C. I. -0.4616 - -0.4356 4.4567 - 4.9369 -4.0062 - -3.8787 1.9166 - 2.3230
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Fig. 4.10. OMIB system behavior under proposed design
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5. OFFSHORE GAS FIELD DEVELOPMENT

Gas field development problems contain inherent uncertainties. These un-

certainties can be classified according to two categories: exogenous and en-

dogenous. These categories refer to information whose “time of revelation”

is independent and dependent of the decisions, respectively (Vayanos et al.,

2011). For instance, price and demand for gas are considered to be exogenous

uncertainties since they are revealed in due course of time and are not affected

by any of the decisions. Meanwhile, endogenous uncertainties are those that

get revealed only after a particular decision has been made. This is the case

with the gas reservoirs, wherein the actual quality remains largely uncertain

until after exploration or capital investments had been undertaken (Goel et

al., 2006).

From a modeling perspective, problems involving only exogenous uncer-

tainties are easier to solve than those having endogenous uncertainties. In

the case of the former, a solution that is feasible for one scenario remains to

be feasible for the other scenarios (Jonsbraten, 1998). In contrast, the pres-

ence of endogenous uncertainties creates decision dependencies, which render

standard stochastic programming models to be intractable.
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Goel and Grossmann (2004) present a review of works that deals with un-

certainty in offshore oil and gas exploration problems. Computational difficul-

ties have led most of these works however to focus on exogenous uncertainties

or assume very simplified settings. For instance, Jornsten (1992) only consid-

ers uncertainty on future demand and assumes that either the investment or

operation decisions have already been fixed. Jonsbraten (1998) also restricts

the discussion to uncertainty on future oil prices. On the other hand, Haugen

(1996) defines a single parameter to represent the uncertainty in the quality

of gas reservoirs but narrows down the discussion to scheduling decisions for

the gas fields.

To address this gap, Goel and Grossmann (2004) and Goel et al. (2006)

consider a gas field development problem where both facility investment and

production decisions need to be made in a multi-period setting with gas reser-

voirs uncertainties. In the aforementioned, the authors assume a small set

of scenarios with associated probabilities to model the outcomes of the gas

reservoirs’ uncertainties. The uncertainties were defined to arise from two

parameters involving the size and deliverability of the reserves.

Problems on offshore gas field development are often modelled as stochastic

multi-stage mixed-integer programs. However, it is often difficult to obtain

exact solutions for these types of problems. This is specially the case for

large-scale real-world settings. Tomasgard et al. (2007) analyze a production

and distribution network through a two stage stochastic model, representing
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the uncertainties as scenario trees. The authors had to either decrease the

scale of the model or limit the number of scenarios considered in order to

come up with an acceptable solution that is not even necessarily optimal. As

mentioned, the pervading issue of computational intractability has led the

literature on offshore field development to rely on the use of approximation

techniques to reduce complexity. Some examples of these techniques include

decomposition (Goel and Grossmann, 2004) and branch and bound (Goel et

al., 2006) algorithms.

Vayanos et al. (2011) also adapt the problem setting considered by Goel and

Grossmann (2004). The authors introduce an approximation scheme based on

a set of decision rules, which are commonly used in adjustable robust optimiza-

tion. Decision rule techniques have often been used to overcome intractability

for problems involving exogenous uncertainty. In order to integrate the endoge-

nous uncertainties in gas field development planning, they define the binary

and continuous components of the problem to be representable by piecewise

constant and linear functions of the uncertain parameters, respectively. The

resulting approximate problems were found to be equivalent to mixed-binary

linear programs, which can be solved using standard optimization software.

In comparison, through the robust target-oriented approach, this research

seeks to solve the gas field development problem under endogenous uncer-

tainties exactly. As mentioned, there is also no explicit use of probability

distributions for the uncertain parameters. This is achieved through the use
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of a fixed policy that is mapped to only a single value of the uncertain ini-

tial deliverability and size. Subsequently, the problem is shown to be solved

exactly through a deterministic mixed integer linear optimization model.

5.1 The Business of Offshore Gas Field Development

There are three main types of physical infrastructure in an offshore gas

field: well platforms, production platforms, and pipeline connections that link

these platforms. A schematic of these infrastructure is given in Figure 5.1.

Fig. 5.1. Infrastructure in offshore gas field development (Goel et al., 2006)

An offshore gas field has multiple gas reservoirs or reserves. For each

reserve, a dedicated well platform can be installed for gas extraction. The rate

of gas extraction is determined by the production capacity of the well platform,

as well as the efficacy of the reserve. It is assumed that the capacities of well
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platforms are fixed on installation, and no expansion can be performed later

on.

Gas extracted from well platforms must reach a production platform to

undergo further processing and eventually be transported to shore. When

production platforms are installed, decision makers determine an initial pro-

duction capacity, as well as some buffer capacity with relatively low cost,

which can later be used for expansion. With this flexibility, decision makers

can choose to build smaller production platforms in the early stages of devel-

opment as a gauge of the gas reserve efficacy, and expand the platforms in the

event of better-than-expected quantities of gas extracted with some incremental

cost.

The transfer of gas from well to production platforms is facilitated through

the pipelines connections. However, it is possible that some of the well plat-

forms do not have a direct link to a production platform (see Figure 5.1 for

instance) for economic reasons such as the distance from the well to the pro-

duction platform. Hence, gas obtained from the well platforms may need to

be routed to other well platforms before being brought to the production plat-

forms. In practice, each well platform will have one outgoing pipeline that is

connected to either another well platform or to a production platform. Since

extracted gas needs to reach the production platform, it is clear that at least

one well platform must be connected to each of the production platforms in

the field.
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5.1.1 Gas field development project: installation and operations

An offshore gas field development project consists of many installation

and operational decisions to be implemented dynamically across the span of

the planning horizon. The following describes the dynamics involved in the

development of an offshore field and how these impact the overall profitability

of the project.

The system understudy considers a gas field with W wells and P pro-

duction platforms. Let W = {1, . . . ,W} and P = {1, . . . , P} represent

the sets of indices corresponding to the well and production platforms, re-

spectively. The set of all well-well pipeline connections is denoted by A ⊆

{(w1, w2) : w1, w2 ∈ W , w1 ̸= w2}. Similarly, the set of all well-production

platform pipeline connections is denoted by B ⊆ {(w, p) : w ∈ W , p ∈ P}.

The length of the planning horizon is T and is divided into time periods in-

dexed by t ∈ T = {1, ..., T}.

The major installation decisions of the development project is to choose

which infrastructure to build (well platforms, production platforms and

pipeline connections), in which period to build them, and their respective

capacities. Every well platform, production platform, well-well pipelines and

well-production pipelines have specified maximum installable capacities de-

noted by hW
w , hP

p , h
A
a , h

B
b for w ∈ W , p ∈ P , a ∈ A and b ∈ B, respectively. In

the rest of the development, it is assumed that the capacities of all installed
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pipeline connections are always chosen at their maximum values hA
a and hB

b .

The installation of these structures have the following fixed costs: fW
w , fP

p ,

fA
a , f

B
b , and variable costs: vWw , vPp , v

A
a , v

B
b . For the platforms, the variable

costs are associated with the size and throughput capabilities of extraction

and production.

The option on whether a production platform should be equipped with

future expansion capability is chosen during the installation phase of the plat-

form. If a platform has expansion capability, then a buffer capacity ūp, p ∈ P

for future expansion also needs to be catered for. This incurs an initial capital

investment during the installation phase. Furthermore, if decisions are made

to actually use the buffer capacity for expansion some time in the future, an-

other set of fixed and variable costs are incurred, where the variable costs are

related to the size of the expansion implemented.

The operations of platforms are assumed to be instantaneous upon instal-

lation. Operations in the field begin with the extraction of gas in the well

platforms, the amount of which will be less than both the capacity of the plat-

forms and the deliverability of the reserves. The latter depends on the initial

deliverability dw and size sw of the reserve w (to be discussed in more detail in

the next section). As mentioned, the extracted gas is transferred in pipelines

that can connect to other well platforms and finally reaching the production

platforms. The pipelines connecting the installed platforms are uni-directional

in flow (i.e., gas flows can only be from either one well platform to another
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well platform or to a production platform, and not vice versa). The total

gas production quantity is then the sum of all flows from the well platforms

connected to it.

The revenue rt, t ∈ T , is directly derived from the total production of gas

in each period. In addition, there are also operational costs gWw for w ∈ W

and gPp for p ∈ P that arise from the extraction and production activities in

the field, respectively.

5.1.2 A model for well reserves

Reserves are estimated quantities of oil, natural gas and related substances

to be recovered from known accumulations. These estimations are based on the

analysis of drilling, geological, geophysical and engineering data. The methods

of reserves estimation fall into three broad categories of volumetric methods,

material balance and production decline methods. Material balance methods

involve the analysis of pressure behavior as reservoir fluids are withdrawn.

Pressure declines as gas is being extracted, and maximum gas extraction is

reached when the well declines to its abandonment pressure (Hyne, 2001).

This work adopts the well reserve model used by Goel and Grossmann

(2004) and Goel et al. (2006), where the efficacy of the reserves is charac-

terized by the two important metrics known as the initial deliverability and

size of the reserve. The initial deliverability is defined as the maximum rate

of gas extraction achievable when the reserve becomes developed, while size
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is the maximum actual amount of gas recoverable. Figure 5.2 illustrates an

approximate behavior of the well deliverability as a linear (decreasing) func-

tion of the accumulated extraction of gas. Note that the initial deliverability

and well size uniquely define the linear reservoir behavior model of Figure

5.2. While more accurate reservoir behavior can be modelled using complex

systems of partial differential equations in the literature, simplified algebraic

models usually suffice for use in high-level planning problems (Kosmidis et al.,

2004). Furthermore, Figure 5.2 is a widely-acknowledged approximation for

gas reserves (see Hyne, 2001).
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Fig. 5.2. Linear model of gas reserve efficacy

Addressing uncertainties in reserve estimates is an issue of central impor-

tance in development projects. Goel and Grossmann (2004) and Goel et al.

(2006) use two stochastic parameters, namely initial deliverability and size,

to model the uncertainty, and assign to each parameter a discrete probability

distribution. However, in reality, the information of subsurface uncertainty is
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very limited before actual production, and hence it is hard to obtain a good

estimation of the probability distribution. As defined in Chapter 3, this work

avoids the assignment of probabilities to these estimates. Instead, it only spec-

ifies a range for the initial deliverability and size, which is relatively easier to

obtain. Secondly, the resulting decision model of Goel and Grossmann (2004)

and Goel et al. (2006)’s is highly intractable from an optimization perspec-

tive. To illustrate, the uncertainty model leads to a stochastic programming

modeling approach, which by design is ill-equipped to handle the endogenous

uncertainties in the problem.

The authors formulate the decision problem as a multi-stage stochastic

programming model incorporating decision-dependence on the scenario tree

of the problem. Assuming a small set of scenarios modeling the outcomes

of uncertain parameters, the model is reformulated as a deterministic mixed

binary programming problem. The resulting problem size is however extremely

formidable due to the presence of the non-anticipativity requirements (Vayanos

et al., 2011). While in theory, the problem can be formulated and solved in a

stochastic dynamic programming framework, this does not resolve the issues

arising from the curse of dimensionality associated with the problem size.

Let the initial deliverabilities and sizes for the W wells in the field be de-

noted as vectors of uncertain parameters d̃ = (d̃1, ..., d̃W ) and s̃ = (s̃1, ..., s̃W ),

respectively. In the scope of this problem, having larger initial deliverabilities

and sizes account to a larger extraction yield from the well platforms. Thus,
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in the most optimistic case, the deliverabilities and sizes of the wells would

take on the maximum values, i.e., d̃w = d̄w, s̃w = s̄w for all w ∈ W , which

consequently result in the highest profit achievable. However, in practice, such

optimistic assumptions may lead to planning solutions that perform badly in

practice due to the effects of uncertainties. Similarly, a robust optimization

approach in which the uncertain parameters belong to an adjustable uncer-

tainty set Zγ parameterized by the robustness index γ ∈ [0, 1] is defined as

follows:

Zγ =
{
(d, s) ∈ ℜW ×ℜW | d̄w(γ) ≤ dw ≤ d̄w(0), s̄w(γ) ≤ sw ≤ s̄w(0), dw ≤ sw, ∀ w ∈ W

}

where d̄w : [0, 1] → ℜ+ and s̄w : [0, 1] → ℜ+, w ∈ W are nonincreasing

functions. d̄w(γ) can be interpreted as the deliverability level in which the

probability (or subjective probability) of exceeding the level is γ. The same

interpretation applies to s̄w(γ). Higher values of γ implies that the uncertainty

set Zγ includes more pessimistic (lower) values of the deliverabilities and sizes

of the reserves. Note that the deliverability of a well being less than its size is

implied in the definition of Zγ. It is also assumed that 0 < d̄w(γ) ≤ s̄w(γ) for

all γ ∈ [0, 1], w ∈ W .
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5.2 The Dynamics of Offshore Gas Field Development

5.2.1 Gas field development decisions

The decision variables for the gas field development model are discussed in

the following. Define binary decision variables xw,t ∈ {0, 1} for all t ∈ T and

w ∈ W so that xw,t = 1 if installation of well platform on w is performed in

period t, and xw,t = 0 otherwise. In the similar sense define the installation

decisions yPp,t ∈ {0, 1} for production platform p ∈ P , yAa,t ∈ {0, 1} for well-

well pipeline connection a ∈ A and yBb,t ∈ {0, 1} for well-production platform

pipeline connection b ∈ B. Define binary decisions bp,t ∈ {0, 1} so that bp,t = 1

if buffer capacity is invested at platform installation in period t, and bp,t = 0

otherwise.

The capacity on installation of a well platform w ∈ W and production

platform p ∈ P in period t ∈ T is defined as cWw,t ≥ 0 and cPp,t ≥ 0 respectively.

Denote up,t ≥ 0 as the capacity expansion level of production platform p ∈ P

in period t ∈ T . Finally, define qWw,t ≥ 0, qPp,t ≥ 0, qAa,t and qBb,t ≥ 0 as

the extraction quantities from platform w ∈ W , production quantities from

platform p ∈ P , pipeline flows from connection a ∈ A and b ∈ B in period

t ∈ T , respectively.

It is assumed that none of the structures have been installed when the

planning horizon begins, which also implies that all the wells are undeveloped

before the project commences. In the following, denote Wt, Pt, At and Bt as
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the set of well platforms, production platforms and pipelines installed by the

end of period t, respectively. The sequence of decisions in the development

project is then as follows:

1. The planning horizon begins at t = 1. Initialize the sets W0 = P0 =

A0 = B0 = ∅.

2. At the beginning of period t, identify the well platforms

{w ∈ W | xw,t = 1}, production platforms {p ∈ P | yPp,t = 1} and

pipeline connections {a ∈ A | yAa,t = 1} and {b ∈ B | yBb,t = 1} to install.

3. For the well and production platforms installed in the current period

(i.e., {w ∈ W | xw,t = 1} and {p ∈ P | yPp,t = 1}), the capacities are set

to cWw,t and cPp,t, respectively. Furthermore, buffer capacity investments

bp,t are determined for all production platforms {p ∈ P | yPp,t = 1}.

4. The actual initial deliverability dw and size sw of the gas reserve of each

newly installed well platform {w ∈ W | xw,t = 1} is observed.

5. Update Wt = Wt−1∪{w ∈ W | xw,t = 1}, Pt = Pt−1∪{p ∈ P | yPp,t = 1},

At = At−1 ∪ {a ∈ A | yAa,t = 1}, and Bt = Bt−1 ∪ {b ∈ B | yBb,t = 1}.

6. Before the period ends, determine the expansion quantity up,t for all

platforms with buffer capacity installed, i.e., p ∈ Pt with bp,t′ = 1 for

some t′ ≤ t. Additionally, determine production plan which includes well
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extraction qWw,t, w ∈ Wt, platform production qPp,t, p ∈ Pt and all pipeline

connection flows qAa,t, a ∈ At and qBb,t, b ∈ Bt.

5.2.2 Non-anticipative decision dependencies

This section shows the development of the formulation to model non-

anticipative requirements in the dynamic decision-making process with endoge-

nous uncertainties. Let the installation policy of the well w ∈ W in the first pe-

riod t = 1 be defined by the function xw,1(d, s) where

xw,1 : Zγ → {0, 1}. Note that since none of the wells have been developed

at the beginning of the planning horizon, the function should be independent

of its inputs d and s. Let the set of wells installed by the end of t = 1 be given

by the function W1 : Zγ → 2W , where:

W1(d, s) = {w ∈ W | xw,1(d, s) = 1} ∀(d, s) ∈ Zγ.

More generally, given a function W̄ : Zγ → 2W associated with the set of

installed wells, we define the following family of measurable functions, which

are functions that could be described and whose structure do not change:

F(W̄) ,

f : Zγ → ℜ
∣∣ f(d, s) = f(δ,σ) ∀ (d, s), (δ,σ) ∈ Zγ :

(δw, σw) = (dw, sw) ∀w ∈ W̄(d, s)
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The above is useful for defining the set of admissible policies that are indistin-

guishable in actions given identical observations of well parameter outcomes.

For instance, suppose W = {1, 2, 3, 4} and W1 = {1, 4}. A policy f ∈ F(W̄)

can then be written as f((d1, d̄2, d̄3, d4), (s1, s̄2, s̄3, s4)) ∀ (d, s) ∈ Zγ, where the

values (d̄2, d̄3, s̄2, s̄3) are arbitrarily chosen, since f is indifferent to these inputs

by definition of F(W̄). Clearly, any function, x : Zγ → ℜ that is mapped to

a constant value also satisfies x ∈ F(W̄).

The well installation policy over time is defined as a set of functions, xw,t ∈

F(Wt−1), xw,t(d, s) ∈ {0, 1}, for all (d, s) ∈ Zγ, t ∈ T . It then follows that

Wt : Zγ → 2W can be defined recursively as follows:

Wt(d, s) = Wt−1(d, s) ∪ {w ∈ W | xw,t(d, s) = 1} ∀(d, s) ∈ Zγ.

In summary, the decision policy considered in the model satisfies the following

non-anticipativity requirements:

xw,t, c
W
w,t ∈ F(Wt−1), qWw,t ∈ F(Wt) w ∈ W

yPp,t, bp,t, c
P
p,t ∈ F(Wt−1), q

P
p,t, up,t ∈ F(Wt) p ∈ P

yAa,t ∈ F(Wt−1), q
A
a,t ∈ F(Wt) a ∈ A

yBb,t ∈ F(Wt−1), q
B
b,t ∈ F(Wt) b ∈ B,

for all t ∈ T .
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Note that in the above, the non-anticipativity conditions for the installation

decisions xw,t, c
W
w,t, y

P
p,t, c

P
p,t, bp,t, y

A
a,t and yBb,t are defined over Wt−1, i.e. the set

of wells developed by the end of period t−1. On the other hand, the decisions

qWw,t, q
P
p,t, up,t, q

A
a,t, q

B
b,t are performed after observing the deliverabilities and

sizes of all developed wells w ∈ Wt. Some of these decision policies are mapped

to binary values, while others are assigned to nonnegative values as follows:

x̃w,t, b̃p, ỹ
P
p,t, ỹ

A
a,t, ỹ

B
b,t ∈ {0, 1} w ∈ W , p ∈ P , a ∈ A, b ∈ B

c̃Ww,t, q̃
W
w,t, c̃

P
p,t, ũp,t, q̃

A
a,t, q̃

B
b,t ∈ ℜ+ w ∈ W , p ∈ P , a ∈ A, b ∈ B,

where the tilde accent˜is used as a shorthand, say x̃ ∈ X ⊆ ℜ to mean x(d, s) ∈

X for all (d, s) ∈ Zγ for some set X . In particular, constraints involving deci-

sion functions such as x(d, s) ≥ t and y(d, s) = t for all

(d, s) ∈ Zγ are represented using x̃ ≥ t and ỹ = t respectively.

5.2.3 Gas production requirements

Any feasible development plan must respect physical and logical require-

ments such as capacity and flow balance constraints. It is emphasized that

feasibility is only required to be satisfied if the uncertainty occurs within Zγ,

and that depends on the level of robustness that a decision maker would like

to achieve.
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The following constraints refer to the installation of structures in the field.

c̃Ww,t ≤ hW
w x̃w,t ∀ w ∈ W, t ∈ T (5.1)

c̃Pp,t ≤ hP
p ỹ

P
p,t ∀ p ∈ P, t ∈ T (5.2)

ỹAw,w′,t ≤ x̃w′,t ∀ (w,w′) ∈ A, w′ ∈ W, t ∈ T (5.3)

ỹBw,p,t ≤ ỹPp,t ∀ (w, p) ∈ B, p ∈ P, t ∈ T (5.4)

x̃w,t =
∑

{w′|(w,w′)∈A}

ỹAw,w′,t +
∑

{p|(w,p)∈B}

ỹBw,p,t ∀ w ∈ W, t ∈ T (5.5)

∑
t∈T

x̃w,t ≤ 1 ∀ w ∈ W (5.6)∑
t∈T

ỹPp,t ≤ 1 ∀ p ∈ P (5.7)∑
t∈T

ỹAa,t ≤ 1 ∀ a ∈ A (5.8)∑
t∈T

ỹBb,t ≤ 1 ∀ b ∈ B (5.9)

In (5.1) and (5.2), the capacities on installation for the well w ∈ W and pro-

duction platforms p ∈ P are limited by upper bounds hW
w and hP

p , respectively.

(5.3) and (5.4) require that a well can only be connected to another platform

that is already installed. (5.5) states that there can only be one outgoing

pipeline connection from a well platform, which can either be to another well

platform or to a production platform. (5.6)-(5.9) ensure that well, produc-

tion platforms and pipeline connections are installed at most once during the

planning horizon.
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ũp,t ≤ (hP
p + ūp)b̃p,t ∀ p ∈ P , t ∈ T (5.10)∑

t∈T

(c̃Pp,t + ũp,t) ≤ hP
p + ūp ∀ p ∈ P (5.11)

b̃p,t ≤ ỹPp,t ∀ p ∈ P , t ∈ T (5.12)

The capacities of the production platforms can be increased through ex-

pansion as shown in (5.10) and (5.11). Expansion quantity, as well as the

total capacity of a production platform, must be within the sum of the maxi-

mum initial capacity hP
p and the maximum buffer capacity ūp for p ∈ P . (5.12)

states that the decision to expand a production platform should be made upon

its installation since the platform needs to be fitted with dedicated expansion

capability.

Next, the gas extraction levels, production levels and pipeline flow levels

are constrained by the capacities of the relevant structures. These are depicted

in (5.13)-(5.16) below:

q̃Ww,t ≤
t∑

t′=1

c̃Ww,t′ ∀ w ∈ W , t ∈ T (5.13)

q̃Pp,t ≤
t∑

t′=1

(
c̃Pp,t′ + ũp,t′

)
∀ p ∈ P , t ∈ T (5.14)

q̃Aw,w′,t ≤ hA
w,w′

t∑
t′=1

ỹAw,w′,t′ ∀ (w,w′) ∈ A, t ∈ T (5.15)

q̃Bw,p,t ≤ hB
w,p

t∑
t′=1

ỹBw,p,t′ ∀ (w, p) ∈ B, t ∈ T (5.16)
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Mass balance equations for a feasible production plan are as follows:

q̃Ww,t +
∑

{w′|(w′,w)∈A}

q̃Aw′,w,t =
∑

{w′|(w′,w)∈A}

q̃Aw,w′,t +
∑

{p|(w,p)∈B}

q̃Bw,p,t ∀ w ∈ W

t ∈ T (5.17)

q̃Pp,t =
∑

{w|(w,p)∈B}

q̃Bw,p,t ∀ p ∈ P , t ∈ T (5.18)

qWw,t(d, s) ≤ dw

(
1− 1

sw

t−1∑
t′=1

qWw,t′(d, s)

)
∀ (d, s) ∈ Zγ,

w ∈ W , t ∈ T (5.19)

Constraints (5.17) and (5.18) are the mass balance of gas flows for well

platforms and production platforms respectively. Finally, (5.19) requires that

for each well platform, the gas extraction rate cannot be greater than the

deliverability of a reserve in the well platforms.

Note that in order to ensure feasibility in the well extraction constraints,

the accumulated extraction at any time period t ∈ T should never exceed the

size of a well platform. Observe that at t = T ,

qWw,T (d, s) ≤ dw

(
1− 1

sw

T−1∑
t′=1

qWw,t′(d, s)

)
∀ (d, s) ∈ Zγ .

Since sw ≥ dw > 0, this implies that

∑
t∈T

qWw,t(d, s) ≤
T−1∑
t=1

qWw,t(d, s) +
sw
dw

qWw,T (d, s) ≤ sw ∀(d, s) ∈ Zγ.
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Hence, the constraints in (5.19) imply that the total quantity extracted from

each well is bounded above by its size.

5.2.4 Project net present value

The installation decisions are capital investments that result in cash out-

flows in the offshore field problem defined as follows:

C̃O
t =

∑
w∈W

(
fW
w x̃w,t + vWw c̃Ww,t

)
︸ ︷︷ ︸

Installation cost for well platforms

+
∑

(w,w′)∈A

fA
w,w′ ỹAw,w′,t︸ ︷︷ ︸

Installation cost for well-well pipelines

+
∑
p∈P

(
fP
p ỹ

P
p,t + fB

p b̃p,t + vPp

(
c̃Pp,t + ũp,t + ūpb̃p

))
︸ ︷︷ ︸

Installation cost for production platforms

+
∑

(w,p)∈B

fB
w,pỹ

B
w,p,t︸ ︷︷ ︸

Installation cost for well-production pipelines

∀ t ∈ T (5.20)

Note that each infrastructure installation incurs both fixed and variable

costs. Furthermore, the installation cost for the production platform has ad-

ditional fixed and variable components related to expansion capability.

The annual cash inflow obtained from total gas production is defined by

(5.21). For all t ∈ T , this is made up of the revenue from the production of

gas (at price rt per unit) and the operating cost from the extraction (at gWw
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per unit) and production (at gPp per unit) of gas in the platforms w ∈ W and

p ∈ P , respectively. Hence,

C̃I
t = rt

∑
p∈P

q̃Pp,t −
∑
w∈W

gWw q̃Ww,t −
∑
p∈P

gPp q̃
P
p,t ∀ t ∈ T (5.21)

Finally, the net present value (NPV) of the gas field development is deter-

mined as follows:

R̃ =
∑
t∈T

β−t
(
C̃I

t − C̃O
t

)
where β−t is a time-discount factor for t ∈ T .

5.3 Target oriented robust optimization

In the development planning problem, the NPV is a key performance metric

whose target value is often specified as part of the project deliverables. A

development plan is then developed to achieve the NPV target. However, in

the presence of uncertainty, the actual NPV is also subject to uncertainty. The

proposed target oriented robust optimization approach searches for a planning

solution that can achieve the target NPV over as large an uncertainty space as

possible. The notations are first simplified to present the target oriented robust

optimization model. In the following exposition, the uncertain parameters

(d, s) are denoted by z and the decision policy π : Zγ → ℜD is denoted

as a vector of functions of appropriate dimensions. F is used to denote the
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family of admissible policies that captures the non-anticipativity requirements

of π while V to denote the range in which π is mapped into. Note that

each dimension of V is restricted to either binary values or to nonnegative

reals. Finally, the linear constraints (5.1)-(5.19) over the decision policy are

presented by

A(z)π(z) ≤ b(z) ∀z ∈ Zγ,

whereA(z) and b(z) are respectively the matrix and vector that are influenced

by z. The model can be extended to consider uncertain coefficients in eval-

uating the net present value such as to encompass uncertainty in gas prices,

production costs among others. Therefore, in general, r(z)′π(z) is used to

represent the net present value of the gas field development planning problem

in which the uncertainty associated with the coefficients r(z) extends beyond

the status of the explored wells.
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The target oriented robust optimization problem (TRO) is as follows:

γ∗ = max γ

s.t. r(z)′π(z) ≥ τ ∀z ∈ Zγ

A(z)π(z) ≤ b(z) ∀z ∈ Zγ

π(z) ∈ V ∀z ∈ Zγ

π ∈ F

γ ∈ [0, 1].

(5.22)

The TRO is related to the linear adjustable robust optimization frame-

work introduced in Ben-Tal et al. (2004), with the additional complications

of having non affine disturbance in A(z) and r(z), decision policy being in

a non convex set V and endogenously dependent non-anticipative restrictions

in F . Therefore, linear decision rules (a.k.a adjustable robust counterpart),

which have been shown to be effective in robust and stochastic optimization

problems (see Ben-Tal et al. 2005; Bertsimas et al. 2010b; Chen et al. 2008;

Goh and Sim 2011), cannot be used to approximate the decision polices.

5.3.1 Fixed policy and its optimality

One way to address the computation of the target oriented robust opti-

mization problem is to impose restriction to fixed policy π, which is a function

that is mapped to a single value and hence, not affected by the information

z ∈ Zγ.
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Definition 2 A fixed decision policy π : Zγ → V is one that satisfies

π(z) = v ∀z ∈ Zγ,

for some v ∈ V.

It is easy to examine that any fixed policy, π, will automatically satisfy the

non-anticipativity requirement, i.e., π ∈ F . With a fixed policy, TRO model

can be simplified as follows:

γ† = max γ

s.t. r(z)′v ≥ τ ∀z ∈ Zγ

A(z)v ≤ b(z) ∀z ∈ Zγ

v ∈ V

γ ∈ [0, 1].

(5.23)

Clearly, since a fixed decision policy is not necessarily optimal, one can say

that γ† ≤ γ∗. Nevertheless, a fixed policy has immense computation advantage

to address this seemingly intractable problem. Moreover, it is possible to show

an important condition in which a fixed decision policy can also be optimal in

the TRO problem.
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Definition 3 The TRO model (5.22) has a solution-independent worst case

scenario, ẑγ ∈ Zγ if for all v ∈ V satisfying

r(ẑγ)
′v ≥ τ

A(ẑγ)v ≤ b(ẑγ)

then v is also feasible in

r(z)′v ≥ τ ∀z ∈ Zγ

A(z)v ≤ b(z) ∀z ∈ Zγ.

Intuitively, this implies that if one is able to identify a solution in an

optimization problem using the worst case scenario, ẑγ ∈ Zγ, then this solution

will also be feasible for any realization of the uncertain parameters z ∈ Zγ.

Theorem 5.3.1 Suppose the TRO model (5.22) has a solution-independent

worst case scenario, given by ẑγ ∈ Zγ, then there exist a fixed policy that is
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optimal. Moreover, the fixed policy π(z) = v for all z ∈ Zγ can be obtained

by solving the following deterministic optimization problem:

γ‡ = max γ

s.t. r(ẑγ)
′v ≥ τ

A(ẑγ)v ≤ b(ẑγ)

v ∈ V ,

γ ∈ [0, 1].

(5.24)

Hence, γ† = γ∗ = γ‡.

Proof : Clearly, γ† ≤ γ∗. However, it can be observed that

γ† = max{γ ∈ [0, 1] : r(z)′v ≥ τ, A(z)v ≤ b(z), ∀z ∈ Zγ, v ∈ V}

≥ max{γ ∈ [0, 1] : r(ẑγ)
′v ≥ τ,A(ẑγ)v ≤ b(ẑγ), v ∈ V}

= γ‡

= max{γ ∈ [0, 1] : r(ẑγ)
′π(ẑγ) ≥ τ,A(ẑγ)π(ẑγ) ≤ b(ẑγ), π(ẑγ) ∈ V ,π : Zγ → ℜD}

≥ max{γ ∈ [0, 1] : r(ẑγ)
′π(ẑγ) ≥ τ,A(ẑγ)π(ẑγ) ≤ b(ẑγ), π(ẑγ) ∈ V ,π ∈ F}

≥ max{γ ∈ [0, 1] : r(z)′π(z) ≥ τ,A(z)π(z) ≤ b(z), π(z) ∈ V , ∀z ∈ Zγ,π ∈ F}

= γ∗,

where the first inequality is the result of ẑγ being the solution-independent

worst case scenario and the last inequality is due to the fact that ẑγ ∈ Zγ.
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The TRO model (5.24) can be solved by decomposing it in a sequence of

mixed integer optimization problems

ρ(γ) = max r(ẑγ)
′v

s.t. A(ẑγ)v ≤ b(ẑγ)

v ∈ V ,

(5.25)

and performing binary search on γ ∈ [0, 1] so that ρ(γ∗) = τ .

Theorem 5.3.2 In regard to the offshore gas field development problem, the

solution-independent worst case deliverabilites and sizes are

d̄w(γ), s̄w(γ)

for all w ∈ W. Therefore, the corresponding problem to (5.25) is as follows:
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ρ(γ) = max
∑

t∈T β−t
(
CI

t − CO
t

)
s.t. CO

t =
∑
w∈W

(
fW
w xw,t + vWw cWw,t

)
+

∑
(w,w′)∈A fA

w,w′yAw,w′,t +
∑

(w,p)∈B fB
w,py

B
w,p,t+∑

p∈P
(
fP
p

(
yPp,t + bp

)
+ vPp

(
cPp,t + up,t + ūpbp

))
∀t ∈ T

CI
t = rt

∑
p∈P qPp,t −

∑
w∈W gWw qWw,t −

∑
p∈P gPp q

P

p,t
∀ t ∈ T

cWw,t ≤ hW
w xw,t ∀ w ∈ W, t ∈ T

cPp,t ≤ hP
p y

P
p,t ∀ p ∈ P, t ∈ T

yAw,w′,t ≤ xw′,t ∀ (w,w′) ∈ A, w′ ∈ W, t ∈ T

yBw,p,t ≤ yPp,t ∀ (w, p) ∈ B, p ∈ P, t ∈ T

xw,t =
∑

{w′|(w,w′)∈A} y
A
w,w′,t +

∑
{p|(w,p)∈B} y

B
w,p,t ∀ w ∈ W, t ∈ T∑

t∈T xw,t ≤ 1 ∀ w ∈ W∑
t∈T yPp,t ≤ 1 ∀ p ∈ P∑
t∈T yAa,t ≤ 1 ∀ a ∈ A∑
t∈T yBb,t ≤ 1 ∀ b ∈ B

up,t ≤ (hP
p + ūp)bp ∀ p ∈ P, t ∈ T∑

t∈T (c
P
p,t + up,t) ≤ hP

p + ūp ∀ p ∈ P

bp,t ≤ yPp,t ∀ p ∈ P, t ∈ T

qWw,t ≤
∑t

t′=1 c
W
w,t′ ∀ w ∈ W, t ∈ T

qPp,t ≤
∑t

t′=1

(
cPp,t′ + up,t′

)
∀ p ∈ P, t ∈ T

qAw,w′,t ≤ hA
w,w′

∑t
t′=1 y

A
w,w′,t′ ∀ (w,w′) ∈ A, t ∈ T

qBw,p,t ≤ hB
w,p

∑t
t′=1 y

B
w,p,t′ ∀ (w, p) ∈ B, t ∈ T

qWw,t +
∑

{w′|(w′,w)∈A}
qAw′,w,t =∑

{w′|(w,w′)∈A}
qAw,w′,t +

∑
{p|(w,p)∈B}

qBw,p,t ∀ w ∈ W, t ∈ T

...
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qPp,t =
∑

{w|(w,p)∈B} q
B
w,p,t ∀ p ∈ P, t ∈ T

qWw,t ≤ d̄w(γ)
(
1− 1

s̄w(γ)

∑t−1
t′=1 q

W
w,t′

)
∀ w ∈ W, t ∈ T

xw,t, bp,t, y
P
p,t, y

A
a,t, y

B
b,t ∈ {0, 1} ∀w ∈ W, p ∈ P, a ∈ A, b ∈ B

cWw,t, q
W
w,t, c

P
p,t, up,t, q

A
a,t, q

B
b,t ∈ ℜ+ ∀w ∈ W, p ∈ P, a ∈ A, b ∈ B

CI
t , C

O
t ∈ ℜ ∀t ∈ T .

Proof : To show that d̄w(γ), s̄w(γ) correspond to the solution-independent

worst case scenario, it only needs to be shown that any solution feasible in these

values is also always feasible in the well reserve constraints (5.19). Suppose

qWw,t ≥ 0, satisfy

qWw,t ≤ d̄w(γ)

(
1− 1

s̄w(γ)

t−1∑
t′=1

qWw,t′

)

for all w ∈ W , t ∈ T , then, since 0 < d̄w(γ) ≤ dw and 0 < s̄w(γ) ≤ sw for all

(d, s) ∈ Zγ it is straightforward to see that the following

qWw,t ≤ dw

(
1− 1

sw

t−1∑
t′=1

qWw,t′

)
∀(d, s) ∈ Zγ

are also satisfied. The resulting formulation in the statement of the theorem

then follows.

Remark : The fact that the TRO problem can be solved exactly as a

deterministic optimization is a critical insight for addressing this difficult mul-

tistage optimization problem under uncertainty. The result holds because

of two important conditions. First, the target oriented robust optimization
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framework requires the objective function to be evaluated at its worst value.

Other decision criteria such as expected utility and risk measure would not

necessarily work. Second, the existence of the solution independent worst case

scenario depends on the structure of the problem and also the geometry of

the uncertainty set, Zγ. Uncertainty sets such ellipsoids may render the worst

case scenario to be dependent on the solution.

5.3.2 Target setting and folding horizon implementation

In target setting, the decision maker has to bear the risk of shortfalls when

setting a high target. On the other hand, if the target is set too low, one

may be criticized for being over conservative. Hence, it is essential to know

the reasonable range in which an appropriate target might be set. Observe

that ρ(0) corresponds to the highest possible profit attainable under the most

optimistic conditions and ρ(1) corresponds to the lowest profit attainable in

the worst case. Therefore, it is reasonable to set the target τ within [ρ(1), ρ(0)].

The aggressiveness index of a target, τ is defined as follows:

α , τ − ρ(1)

ρ(0)− ρ(1)
.

Hence, a target with an aggressiveness index of one corresponds to extreme

risk seeking or optimistic behavior, while an aggressiveness index of zero cor-

responds to extreme risk aversion or pessimistic behavior. In practice, the
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aggressiveness index can be incorporated in decision making to calibrate ex-

pectation for target setting. In implementing the TRO in practice, we pro-

pose the folding horizon approach, where at any stage, only the here-and-now

decisions are implemented. Proceeding to the next stage, new information

concerning the status of the installed wells becomes available and it is likely

that the NPV target may be reassessed accordingly. This strategy is similar

to the model predictive control approach, which is immensely practical and

widely used in control engineering practice.

5.4 Computational Experiments

To evaluate the performance of the proposed TRO model, it should ideally

be compared to the traditional optimum policy in which expected return is

optimized. However, one is unable to do so due to the dire computational

intractability of obtaining the optimal risk neutral policy. A common way to

simplify the computation is by grossly reducing the number of scenarios such

as having small number of wells whose reserves are uncertain and assuming

that reserve distributions are limited to three-point estimates (low, best, high

estimates) instead of being continuously distributed. See for instance, Goel

and Grossmann (2004) and Goel et al. (2006). These approaches are not

scalable enough to tackle the actual problem of interest.

For the purpose of obtaining a meaningful computational study, evaluation

is limited to a single period and solutions are benchmarked against stochastic
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programming solutions obtained via sample average approximations (SAA). A

triangular distribution is used to generate the deliverabilities and sizes for the

reserves. The goal is to show that the solutions obtained via the proposed TRO

model perform reasonably well despite the fact that probability distributions

are not being used explicitly in the model. Moreover, quite apart from the

stochastic programming approach, the model allows decision makers to obtain

meaningful solutions as they vary the desired target accordingly.

In the following computational set up, the number of wells (WP) and pro-

duction platforms (PP) that could be installed have been set to 15 and 5,

respectively. Similarly, the first stage decisions refer to installation activities

while the second stage decisions are the flows between platforms and expan-

sion capacities. The model parameter values used in the study are presented

in Table 5.1. The initial deliverabilities and sizes of the reserves (in Billion

Standard Cubic Feet) refer to the optimistic estimates, i.e. d̄w(0) and s̄w(0),

for all w ∈ W).

In the specification of the probability distributions, the supports for the de-

liverabilities and sizes are defined as dw ∈ [d̄w(1), d̄w(0)] and sw ∈ [s̄w(1), s̄w(0)],

respectively for all w ∈ W . d̄w(0) and s̄w(0) are the values stated in Table

5.1, while d̄(1) and s̄(1) are set at 0.60 ∗ d̄w(0) and 0.60 ∗ s̄w(0) for all w ∈ W .

Furthermore, the most likely values of these parameters are assumed to be at

the midpoint of the support intervals.
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Table 5.1
Model parameters for well platforms (WP) and production platforms (PP)

WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8

Initial Deliverability (BSCF) 130 150 100 100 130 130 150 120
Size (BSCF) 400 350 350 200 290 300 330 400

Maximum initial capacity 130 140 100 120 100 100 130 140
Fix. cost- WP to WP pipelines 110 110 110 110 110 110 110 110
Fix. cost- PP to WP pipelines 234 219 214 199 229 229 234 219
Fix. cost- installation/expansion 1500 1500 1500 1500 1500 1500 1500 1500
Var. cost- installation/expansion 140 140 140 140 140 140 140 140

WP9 WP10 WP11 WP12 WP13 WP14 WP15 PP1 − PP5

Initial Deliverability (BSCF) 150 130 150 180 200 130 200 -
Size (BSCF) 400 180 250 390 410 470 390 -

Maximum initial capacity 100 120 100 110 130 140 100 200
Allowable expansion - - - - - - - 150

Fix. cost- WP to WP pipelines 110 110 110 110 110 110 110 -
Fix. cost- PP to WP pipelines 214 199 229 229 234 219 214 -
Fix. cost- installation/expansion 1500 1500 1500 1500 1500 1500 1500 1000
Var. cost-installation/expansion 140 140 140 140 140 140 140 140

For the TRO model, NPV target is set with respect to the aggressiveness

index α, from zero to one at increments of 0.1. In each case, a binary search

on γ is performed to identify γ∗. Consequently, γ∗ reflects the degree of con-

servativeness used in deriving a development plan since setting a higher target

would require considering a lower robustness index (i.e., higher estimates of

the uncertain deliverabilities and sizes).

The TRO model shows an average solution time of 24.8 seconds. Out-of-

sample testing has been performed using 5000 realizations of the deliverabilities

and sizes simulated using the triangular distributions described above. This

leads to the largest sampling error of 0.02 with respect to the coefficient of

variation of the results. Tables 5.2 and 5.3 present the performance of the

TRO model in terms of mean NPV, standard deviation of the NPV and target
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achievement probability. The values for the mean and standard deviations

have been rounded off to the nearest hundred.

The computational studies strongly suggest that the probability of target

attainment is significantly improved by TRO. It can be observed that the

expected NPV increases until the target level reaches an α of 0.7 and then

declines when α (and τ) increases further. Furthermore, it is interesting to

note that the expected profit at the highest level of α = 1.0 is worse than the

expected profit obtained from using the lowest possible target level. Moreover,

the standard deviation of the realized NPV can be observed to be increasing

with higher targets. These observations are consistent with the fact that higher

targets can only be achieved at the expense of greater risks.

Table 5.2
Performance of TRO model solution based on triangular distributions

Target τ0 = 29, 336 τ1 = 29, 929 τ2 = 30, 522 τ3 = 31, 115 τ4 = 31, 708
α 0 0.1 0.2 0.3 0.4
γ∗ 1.0 0.9619 0.9248 0.8857 0.8486

Mean NPV 29,336 29,930 30,495 31,057 31,554
Std. Dev. NPV 0 63 233 523 900
P(NP ≥ τ0) 1.00 0.9980 0.9930 0.9840 0.9730
P(NP ≥ τ1) 0 0.9975 0.9920 0.9810 0.9695
P(NP ≥ τ2) 0 0 0.9900 0.9770 0.9685
P(NP ≥ τ3) 0 0 0 0.9755 0.9630
P(NP ≥ τ4) 0 0 0 0 0.9590
P(NP ≥ τ5) 0 0 0 0 0
P(NP ≥ τ6) 0 0 0 0 0
P(NP ≥ τ7) 0 0 0 0 0
P(NP ≥ τ8) 0 0 0 0 0
P(NP ≥ τ9) 0 0 0 0 0
P(NP ≥ τ10) 0 0 0 0 0

What follows is the comparison between the performance of the TROmodel

solution with those obtained from SAA optimization models. Two sample

sizes (i.e., 50 and 100) have been used in the optimization of the expected
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Table 5.3
Performance of TRO model based on triangular distributions (continued)

Target τ5 = 32, 302 τ6 = 32, 895 τ7 = 33, 488 τ8 = 34, 081 τ9 = 34, 674 τ10 = 35, 267
α 0.5 0.6 0.7 0.8 0.9 1.0
γ∗ 0.7979 0.7373 0.6768 0.6162 0.5557 0.1924

Mean NPV 31,995 32,324 32,501 32,470 32,179 20,129
Std. Dev. NPV 1,372 1,965 2,683 3,502 4,391 11,860
P(NP ≥ τ0) 0.9610 0.9405 0.9035 0.8640 0.8075 0.2485
P(NP ≥ τ1) 0.9570 0.9290 0.8885 0.8500 0.7910 0.2220
P(NP ≥ τ2) 0.9530 0.9210 0.8805 0.8305 0.7715 0.2055
P(NP ≥ τ3) 0.9435 0.9095 0.8690 0.8145 0.7480 0.1830
P(NP ≥ τ4) 0.9310 0.8955 0.8565 0.7995 0.7265 0.1615
P(NP ≥ τ5) 0.9260 0.8835 0.8380 0.7810 0.7065 0.1455
P(NP ≥ τ6) 0 0.8755 0.8210 0.7575 0.6820 0.1285
P(NP ≥ τ7) 0 0 0.8075 0.7355 0.6565 0.1110
P(NP ≥ τ8) 0 0 0 0.7145 0.6360 0.0950
P(NP ≥ τ9) 0 0 0 0 0.6115 0.0775
P(NP ≥ τ10) 0 0 0 0 0 0.0680

NPV from the SAA model. Under each sample size, three sets of samples are

used to solve the SAA model, generating three different planning solutions.

The performance of these solutions are tabulated in Table 5.4. The average

computer solution times for the SAA model are 84.6 and 320.2 seconds for

sample sizes of 50 and 100, respectively.

With the exception of SAA50
2 , the performance measures do not signifi-

cantly deviate from each other and are comparable to the results obtained

under α ∈ [0.8, 0.9]. Hence, the TRO model is generally on par with the re-

sults obtained from the SAA model. While the expected NPV from α ∈ [0, 0.5]

may be lower for the TRO model, their respective standard deviations are sig-

nificantly lower than the SAA’s. More importantly, for the targets that are

achieved under this range of α, the achievement probabilities are also consis-

tently higher.
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Table 5.4
Out-of-sample performance evaluation of SAA model based on
triangular distributions

SAA50
1 SAA50

2 SAA50
3 SAA100

1 SAA100
2 SAA100

3

Mean NPV 32,395 30,124 32,331 32,333 32,377 32,396
Std. Dev. NPV 3,640 4,408 3,997 3,768 3,537 3,443
P(NP ≥ τ0) 0.8560 0.7240 0.8330 0.8440 0.8555 0.8605
P(NP ≥ τ1) 0.8365 0.7045 0.8165 0.8235 0.8425 0.8495
P(NP ≥ τ2) 0.8200 0.6815 0.8010 0.8100 0.8220 0.8300
P(NP ≥ τ3) 0.8055 0.6565 0.7805 0.7905 0.8080 0.8135
P(NP ≥ τ4) 0.7885 0.6100 0.7590 0.7725 0.7880 0.7950
P(NP ≥ τ5) 0.7655 0.5585 0.7355 0.7540 0.7710 0.7760
P(NP ≥ τ6) 0.7440 0 0.7165 0.7355 0.7520 0.7580
P(NP ≥ τ7) 0.7070 0 0.6960 0.7185 0.7330 0.7385
P(NP ≥ τ8) 0.6575 0 0.6695 0.6700 0 0
P(NP ≥ τ9) 0 0 0 0 0 0
P(NP ≥ τ10) 0 0 0 0 0 0

There can be cases when the decision maker does not have a specific NPV

target in mind. As shown in this section, it may be essential to determine

a range of targets that would be appropriate for the problem. It is to be

noted that even if this will result to solving the model repeatedly (for each

target level), the solution time from doing so would still be less then solving

an appropriately-sized SAA model.

Figure 5.3 plots the expected profit versus standard deviation performance

of both the TRO and SAA solutions. The plot indicates that the TRO so-

lutions (with the exception of α = 1) are nondominated (best possible com-

binations of risk and expected profit) and describes an efficient frontier of

solutions. On the other hand a SAA solution using 50 samples is clearly dom-

inated. An interesting implication of the efficient frontier description is that it
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can be generated by simply scanning through the levels of α in the TRO model.

Knowledge of the efficient frontier is valuable to decision-makers looking for a

suitable trade-off between risk and the expected NPV.
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Fig. 5.3. Solution performance comparison plot based on tri-
angular distribution.

5.4.1 Multi-stage Development Planning Case Study

In this section, computational studies are performed for a multi-stage gas

field development problem using the TRO model. In the problem, there is a

choice of six well platforms and one production platform (using data of WP1-

WP6, and PP1 in Table 5.1) to be developed over a planning horizon of ten

years (stages). A discount rate β of 12% is assumed and the constraint that no
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more than four well platforms can be installed on the first year of the project

is imposed.

The folding horizon approach is adopted for the multi-stage planning, so

that at each stage, only the here-and-now decisions are implemented. As

before, NPV target levels are set based on varying the aggressiveness index

α ∈ [0, 1] in steps of 0.1. At each of the subsequent stages, the targets are

then allowed to change accordingly so that the aggressiveness index remains

fixed. To evaluate the performance of the TRO solution, 200 realizations of

the deliverabilities and sizes are generated using a uniform distribution. The

average solution time for one replication of the rolling horizon implementation

is 37 seconds. Table 5.5 displays the evaluated performance at each target

level. The values for the mean and standard deviations have been rounded off

to the nearest hundred.

Table 5.5
Mean and Standard deviation for targets

α 0 0.1 0.2 0.3 0.4 0.5

Mean NPV 308,900 309,350 309,320 310,790 308,890 308,670
Std. dev 40,664 40,699 40,639 41,489 45,841 46,027

α 0.6 0.7 0.8 0.9 1.0

Mean NPV 308,160 307,530 307,140 306,170 306,040
Std. dev 46,645 47,764 48,158 48,846 48,719

The above results are generally qualitatively consistent with the observa-

tions from the computational study in the previous subsection. There is a

general trend that as α increases, the standard deviation of NPV increases
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and the expected NPV increases up to a certain level before declining again.

It can be noted that in order to achieve the most aggressive target (for α = 1),

the resulting development plan has to suffer in its robustness to uncertainties.

The results in Table 5.5 show that this position leads to the worst performance

of expected NPV and standard deviation.

For a more detailed analysis, observe the well platform installation solutions

under the extreme cases of α = 0 and α = 1. These are shown in Tables 5.6

and 5.7, respectively.

Table 5.6
Well platform installation schedule for target α = 0.

Well \ Year 1 2 3 4 5 6 7 8 9 10 Capacity

W1 1.00 - - - - - - - - - 58.91
W2 1.00 - - - - - - - - - 39.40
W3 1.00 - - - - - - - - - 57.26
W4 - 0.45 0.26 0.25 0.04 - - - - - 29.08
W5 - 0.82 0.18 - - - - - - - 35.71
W6 1.00 - - - - - - - - - 44.47
P1 1.00 - - - - - - - - - 200.00

Table 5.7
Well platform installation schedule for target α = 1.0.

Well \ Year 1 2 3 4 5 6 7 8 9 10 Capacity

W1 1.00 - - - - - - - - - 65.82
W2 - 1.00 - - - - - - - - 80.77
W3 1.00 - - - - - - - - - 53.85
W4 1.00 - - - - - - - - - 33.33
W5 1.00 - - - - - - - - - 47.00
W6 - 1.00 - - - - - - - - 69.47
P1 1.00 - - - - - - - - - 200.00 (+ 134.93 in year 2)
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The values tabulated under columns of the first to tenth year are the prob-

abilities of developing a particular well in a particular year, evaluated over

the 200 replications. First, under the least aggressiveness level α = 0, well

installations are observed to take place up to the fifth year. Under the most

aggressiveness level α = 1, all wells are installed by the end of the second

year. A likely explanation for this is that in the aggressive target setting, the

projected well parameter values (and hence their associated profitabilities) are

more optimistic (larger). On the other hand, in the conservative target setting,

the well parameter estimates (in particular for W4 and W5) are too low and

unattractive in returns (compared to the other, larger wells) for development

in the first year. These are only developed in the later years to leverage on the

investment in production capacity when the deliverabilities of the other wells

have diminished to comparable levels.

It can also be observed that with α = 0, the first set of explored wells tend

to be the largest amongst the group (in the size parameter). For α = 1, the

installation of some of the larger wells are delayed until the second year. In this

case, the higher estimated values of the well deliverabilities lead to a higher

projected consumption of production capacity. This limited the development

of some of the large wells in the first year. In the second year, when the realized

deliverabilities and sizes turn out to be less than expected, the remaining wells

are developed, and production capacity is also expanded.
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At lower aggressiveness levels, the corresponding projections for the well

parameters are also considerably lower. Specifically, having α = 0 would refer

to generating a plan under the worst possible values for the deliverabilities

and sizes. This results in lower capacity levels assigned to the well platforms.

Furthermore, under these conservative projections, there is also little incentive

of expansion for the production platform. Thus, when the observed well de-

liverabilities and sizes are larger than expected, there would still be sufficient

reserves to produce up to capacity in the succeeding year without exploring

all of the remaining wells immediately.

When the highest aggressiveness index is employed, i.e. α = 1, the pro-

jections for the deliverabilities and sizes are at their most optimistic (highest)

levels. This leads to the belief that the expansion of the production platform

would be most profitable. Therefore, when the actual deliverabilities and sizes

are found to be smaller than expected, the production and well platforms be-

come under-utilized. In effect, larger-than-necessary capital expenditures are

made in this plan.

Finally, Table 5.8 shows the well installation schedule when the target is

set with aggressiveness α = 0.3 (which from Table 5.5 yielded highest expected

NPV with comparably low standard deviation). It can be observed that the

solution in this case generally resembles that with aggressiveness α = 0, the

main difference being in the higher assigned capacities of the well platforms.

Also, well platform installations take place only up to the third year, instead
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of the fourth and production platform will be expanded in year 2. More

specifically, the probability that well W4 is developed in the second year is

significantly higher than the case with α = 0. As before, this is due to the

relatively higher projections used for the deliverability of W4, which justifies

its development by the second year.

Table 5.8
Well platform installation schedule for fixed target α = 0.3.

Well \ Year 1 2 3 4 5 6 7 8 9 10 Capacity

W1 1.00 - - - - - - - - - 53.62
W2 1.00 - - - - - - - - - 39.91
W3 1.00 - - - - - - - - - 56.18
W4 - 0.83 0.17 - - - - - - - 32.03
W5 - 1.00 - - - - - - - - 44.06
W6 1.00 - - - - - - - - - 50.29
P1 1.00 - - - - - - - - - 200.00(+ 49.64 in year 2)
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6. SUPPLY NETWORK DESIGN

Stochastic and robust optimization approaches have been extensively applied

to supply network design problems. Most stochastic models seek to optimize

the expected costs or profits of the problem of concern. Balachandran and Jain

(1976), LeBlanc (1977), Franca and Luna (1982) considered joint capacitated

facility location, production, and distribution problems facing continuous ran-

dom demands. The objective is to minimize the expected cost of location,

production, transportation, and underage and overage. Similarly, Gregg et

al. (1988) minimize a weighted sum of the production cost (a one-time cost

for establishing capacity), the transportation cost, and expected overage and

underage costs. The authors applied the model to a case study involving the

Queens borough public library system in New York City. Daskin et al. (2002)

developed a joint location-inventory model that minimizes the expected cost

of facilities location, transportation, and holding inventory under stochastic

demands.

Snyder (2006) broadly classifies the robust optimization literature as min-

imax cost and minimax regret approaches. A minimax cost solution is one

that minimizes the maximum cost across all scenarios. The other robustness

measure is the regret of a solution, that is the difference between the cost of
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a solution in a given scenario and the cost of the optimal solution for that

scenario. Models that seek to minimize the maximum (absolute or relative)

regret across all scenarios are called minimax (absolute or relative) regret mod-

els. Averbakh and Berman (1997) uses a minimax-regret formulation of the

weighted p-center problem on a network where the uncertain weights are rep-

resented by interval. They showed that the problem can be solved through

n+1 deterministic p-center problems. Subsequently, they have also developed

a polynomial-time algorithm for the general problem (Averbakh and Berman,

2000).

Unfortunately, with the exception of very specially structured problems

(e.g. Chen and Lin (1998), Averbakh and Berman (1997)), minimax regret

models are extremely difficult to solve, even if the deterministic problem was

easy. On more general networks, heuristic approaches are used to solve the

problems. Serra et al. (1996) solve the maximum capture problem (to locate

a given number of facilities in order to capture the maximum market share,

given that the firm’s competitors have already located their facilities) under

scenario-based demand uncertainty. Killmer et al. (2001) considered a stochas-

tic network design problem, with the objective of minimizing the expected cost

plus penalties for regret, demand shortfalls, and capacity surpluses. The ex-

pected cost and regret penalty are the solution robustness terms (encouraging

solutions to be close to optimal), while the demand and capacity variation

penalties are model robustness terms (encouraging solutions to be close to
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feasible). The non-linear programming model is applied to a small case study

involving the location of hazardous waste treatment facilities in Albany, NY

and is solved using MINOS.

6.1 Network Design and the Environment

A substantial body of literature exists on the integration of environmental

considerations into network design problems. Beamon and Fernandes (2004)

consider a firm that manufactures new products and remanufactures used

products. Products at the end of their useful life are recovered, processed

and eventually reintroduced to the market. These recovery activities require

additional decisions such as identifying which warehouses and collection cen-

ters to open and the amount of material to transport between each pair of

sites. They model the problem as a mixed integer linear program that iden-

tified the types of facilities to be installed and the respective capacities to be

allocated.

Jayaraman et al. (2003) consider a recovery network for products that have

either been returned, recalled or disposed of. These products are assumed to

originate from customer collection points or retailers, which are then brought

to collection facilities and eventually to the recovery facilities for processing.

Similar to Beamon and Fernandes (2004), a mixed integer programming model

was developed to minimize the transfer costs from customer collection to re-

covery and the fixed charge in opening these facilities. Sahyouni et al. (2007)
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extend the problem by considering bidirectional distribution facilities in the

network alongside dedicated facilities for forward and reverse flows. That is,

these facilities handle the flows for both new (forward) and used (reverse)

products.

Wang et al. (2011) likewise consider a network design problem. But rather

than dealing with it from a product recovery perspective (i.e., creating a net-

work to support recovery activities such as collection, remanufacture and dis-

posal), decisions have instead been made for the “forward” or downstream

flows in the supply chain. Their work includes decisions on environmental

investments to facility location and capacity allocation. Furthermore, it also

determines an initial investment on environmental protection equipment and

techniques for the flow of materials and products between facilities.

There are relatively fewer published works in network planning with consid-

eration of greenhouse gas emissions. Diabat and Simchi-Levi (2009) consider

a design problem of a green supply chain network consisting of facility loca-

tion and distribution decisions in the presence of a carbon cap requirement.

Carbon emissions can come from facilities and distribution activities. A mixed

integer programming model is developed to maximize the supply chain profits

while meeting the carbon emission constraint. Wang et al. (2011) considers

a similar problem, integrating the environmental component by designing a

network that curtailed the adverse environmental impacts brought about by

CO2 emissions. However, they model the network problem as a bi-objective
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optimization model that seeks to minimize costs and CO2 emissions in the

supply chain. They obtain a Pareto Frontier by using an aggregate objective

function on these two objectives.

In the area of reverse logistics, Listes and Dekker (2005) consider the pres-

ence of uncertainty for a network problem based on a case of sand collection,

recycling, and reuse from demolition sites in the Netherlands. The authors

propose a three-stage stochastic mixed integer programming model for choos-

ing facility locations and product flow decisions. Lieckens and Vandaele (2007)

consider the stochasticity of lead times, quantity and quality of products flow-

ing back to the supply chain. They combine a mixed integer programming and

a queuing model to identify which facilities to open that minimize the invest-

ment, operation and penalty costs of the network subject to the uncertainties.

Finally, Pishvaee et al. (2011) use the minimax cost approach in designing a

supply chain that accommodates the recovery and re-introduction of products

to and from the consumers. They consider uncertainties in product demand,

returns and transportation costs.

6.2 Supply Network Design

In this chapter, a mixed integer programming model is developed for the

design of general supply networks under uncertainty, including the considera-

tion of curbing harmful emissions such as greenhouse gases related to produc-

tion and distribution activities. Examples of relevant supply networks include
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electricity generation and distribution, oil and gas, and semiconductor supply

chains, which are among the largest contributors of harmful emissions in the

industry. In the models, uncertainties are assumed to arise as a consequence

of inaccurate projections of demand (consumption) levels and emission-related

cost parameters. The supply network design problem of concern is framed as

a two-stage planning problem. The first stage involves the determination of

production facilities installation, the related production capacities, and also

supporting infrastructure that connect supply and demand nodes. These de-

cisions are made before the uncertainties are completely resolved. The second

stage decisions involve formulating a feasible distribution plan for supply to

meet demands when the uncertainties are observed. The robust optimization

approach is adopted to mitigate the effects of parametric uncertainties in net-

work design planning. The need for relatively few assumptions to model the

uncertain parameters, as compared to stochastic optimization approaches, is

viewed as particularly relevant for green supply chain management. This is

because it may be difficult and subjective to assign probabilities confidently

to uncertain outcomes associated factors such as new emission control tech-

nologies, the effects of emerging contaminants, and also future environmental

policy outlooks.

Baron et al. (2010) considered a supply network design problem under un-

certainty using the robust optimization approach. As in most of the literature

in supply network design under uncertainties, the authors consider uncertain-
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ties arising from consumer demands. All other planning data are assumed

to be precisely known. This assumption is relaxed in this work to allow also

uncertainties in model data coefficients motivated by emission calculations.

Another key difference of this work from Baron et al. (2010) is that, instead

of fixing the uncertainty set and optimizing the worst-case cost, the goal of

the proposed robust design model is to achieve a solution that maximizes the

size of the uncertainty set with respect to cost budget requirements. Finally,

the model proposed in Baron et al. (2010) assumes that all capacity and dis-

tribution decisions are made robustly before the uncertainty unfolds. This

work instead allows distribution decisions to be adjustable in the uncertain

parameters using affine decision rules models. That is, the distribution of the

supply to the consumers is assumed to be performed after learning the con-

sumer demands and emission penalty rates. This can exploit the flexibility of

the supply network to improve planning.

6.3 A Basic Model for Supply Network Design

This section first describes the basic supply network design problem with

the assumption that all planning data are accurately known a priori (i.e.,

assume no uncertainties). Define the set of nodes I := {1, · · · , I, s, t}, where

nodes i = 1, · · · , I can represent either production or demand points, or both,

and where s and t are respectively defined as ‘dummy’ source and sink nodes.

An example of such a set up is found in multi-area power system networks
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(depicted in Figure 6.1 from Panida and Singh (2008)), where nodes are used

to model a given region or area that can facilitate both power generation

(production) and load (demand) activities (the source and sink nodes are not

included in Figure 6.1 to simplify the presentation).

Fig. 6.1. 12-area test system

The transfer of supply between any two nodes is enabled through an in-

stalled arc connecting the pair of nodes. Generally, nodes in the network

can behave as transit nodes, that is, unconsumed supply that arrives at a

node can be directed to another node. Flow through the connected nodes

may also be bi-directional. For example, bi-directional flows are common in

closed loop supply chains where distribution centers partake in both forward

and reverse logistics. In energy supply networks, each area may both trans-

mit or receive energy from other areas depending on load situations. Define

the arc (i, j) as the connection between nodes i and j, where i, j ∈ I, and
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A ⊆ {(i, j) : i, j ∈ I, i ̸= j} as the set of feasible arc connections. Note

that we do not distinguish between (i, j) and (j, i) so that if (i, j) ∈ A then

(j, i) /∈ A. The capacity of an arc (i, j) ∀(i, j) ∈ A, i, j ̸= s models the

transfer capacity of supply between production or demand nodes i and j,

where i, j = 1, · · · , I, i ̸= j. On the other hand, the capacity of an arc (s, i)

∀(s, i) ∈ A models the production or supply capacity of the node i.

The supply network design problem addresses the following issues: (a)

the configuration (interconnectivity of the nodes) of the supply network, (b)

the capacity of the interconnections, and (c) distribution of supply via the

interconnections to satisfy demands. Denote hi,j as the maximum installable

capacity of arc (i, j) ∈ A. The installation of these structures has fixed cost

fi,j and capacity cost rate ui,j. Define also di as the demand in node i, and ei as

the penalty cost per unit of unfulfilled demand. Demand shortages are allowed

since the presence of uncertainties is of interest in the subsequent sections.

Operational cost rates ci,j are associated with the costs of production and

distribution activities on (i, j). In particular, these include CO2 (equivalent)

emission tax penalties for activities on (i, j). For instance, the emissions from

the shipment of supplies from node i to j should be appropriately accounted for

in the computation of ci,j. For arcs (s, j), the cost cs,i models the production

cost rate at node i, including emission costs of the production. For instance,

the CO2 emissions from a coal-fired power generation plant stationed in node

i should be appropriately accounted for in the computation of cs,i.
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Define binary decision variables yi,j ∈ {0, 1} so that yi,j = 1 if the arc

(i, j) ∈ A is installed, and yi,j = 0 otherwise. Define also the capacity of the

arc pi,j ≥ 0, which is determined upon its installation. Finally, let xi,j ≥ 0 be

the flow of supply on the arc (i, j) ∈ A. Note that for the arc (s, i) originating

from the source node s, the flow xs,i models the supply level produced or

generated at node i. For the arc (i, t) connecting the sink node t, the flow xi,t

represents the level of supply consumed at node i. The supply network design

network requirements are then stated as follows:

pi,j ≤ hi,jyi,j ∀ {(i, j) ∈ A| j ̸= t} (6.1)

xs,i ≤ ps,i ∀ s, i ∈ I (6.2)

|xi,j − xj,i| ≤ pi,j ∀ {(i, j) ∈ A| i, j ̸= s, t} (6.3)∑
{j|(j,i)∈A}

xj,i −
∑

{j|(i,j)∈A}

xi,j = 0 ∀ {i ∈ I| i ̸= s, t} (6.4)

xi,t ≤ di ∀ i, t ∈ I (6.5)∑
i∈I

eidi +
∑

(i,j)∈A

(fi,jyi,j + ui,jpi,j + ci,jxi,j) ≤ τ (6.6)

yi,j ∈ {0, 1} , pi,j , xi,j ∈ ℜ+ ∀ (i, j) ∈ A (6.7)

Constraint (6.1) limits the installed capacity pi,j on (i, j) to the maximum

of hi,j, and (6.2) and (6.3) restrict flows on (i, j) to pi,j. (6.4) are mass-balance

equations on the nodes, and (6.5) are requirements of flows to the sink node

t modeling resource consumptions at each node i, so that di − xi,t ≥ 0 are
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the unfilled demands or shortages. The cost budget constraint (6.6) requires

that the total cost of the designed supply network should be no greater than

τ , where τ is a specified budget level. The total costs include fixed costs and

variable costs of capacity installation, operational costs and demand shortage

costs. Note that the operational cost rate associated with xi,t is defined as

ci,t = −ei, so that the left hand side in (6.6) correctly accounts for the demand

shortage cost, ei (di − xi,t). That is:

∑
i∈I

eidi +
∑

(i,j)∈A

(fi,jyi,j + ui,jpi,j + ci,jxi,j)

=
∑
i∈I

ei (di − xi,t) +
∑

(i,j)∈A\(i,t)

(fi,jyi,j + ui,jpi,j + ci,jxi,j)

Finally, (6.7) specifies the domains of the decision variables in the model. In

the deterministic problem, any supply network design that satisfies (6.1)–(6.7)

is an acceptable design.

6.4 Supply Network Design Under Uncertainty: A Robust Design

Approach

6.4.1 Modelling the Uncertainties

In the supply network design problem of interest in this work, the demand

di, i ∈ I and the operational cost rates ci,j, (i, j) ∈ A are assumed to be

uncertain, or imprecisely known before implementing the design solution. The
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uncertainty in the operational costs cij in this work is motivated primarily by

the uncertain outlook of the severity and degree of emission taxation imposed

on the production and distribution activities. The computation of accountable

emissions can be in itself rather complex, coupled with issues such as insuffi-

cient or inappropriate data, or lack of consensus on accounting techniques.

Let ṽ ∈ ℜK = [ṽ1, · · · , ṽK ] denote a K-vector of uncertain factors or

primitive uncertainties. It is assumed that ṽk, ∀ k = 1, · · · , K can take

realizations contained in a discrete sample space ṽk ∈
{
v1k, · · · , vMk

}
where

−1 ≤ vmk ≤ 1, ∀ m = 1, · · · ,M, k = 1, ..., K. Define the following outcome

space parameterized by the scalar γ ∈ [0, 1]:

Zk
γ =

{
ṽk ∈

{
v1k, · · · , ṽMk

}
| |ṽk| ≤ γ

}
∀ k = 1, ..., K (6.8)

For a given γ, define an uncertainty set Zγ containing a subset of ṽ using the

concatenation Zγ = Z1
γ × · · · × ZK

γ .

The factor model approach is adopted for the demand and cost uncer-

tainties, which is a widely-used modeling assumption in robust optimization

literature; see for instance, Ben-Tal et al. (2004) Chen et al. (2008); See and

Sim (2010). A factor model of uncertainty formulates each uncertain parame-

ter as an affine function of a set of uncertain factors. The uncertain parameters

are then defined as affine functions of ṽ using a set of factor coefficients. Simi-

larly, it is assumed that the factor coefficients have been estimated (i.e., using
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past data studies, or experiments) a priori. The factor model can thus be re-

garded as a first order approximation of the uncertain parameter. Specifically,

denote the demand and cost factor coefficients as dki and cki,j, respectively. The

parameters then take on the following affine functions:

di(ṽ) = di +
K∑
k=1

dki ṽk ∀ i ∈ I, ṽ ∈ Zγ (6.9)

ci,j(ṽ) = ci,j +
K∑
k=1

cki,j ṽk ∀ (i, j) ∈ A, ṽ ∈ Zγ (6.10)

where di and ci,j are the nominal values of the consumer demand and produc-

tion cost.

6.4.2 A Robust Design Model for Supply Network Planning

In the presence of uncertainties, the supply network planning decisions

are made in two stages. The “here and now” (non-adjustable) decisions are

long term planning decisions and need to be made before the uncertainties are

resolved. These include the network configuration y and capacity installation

p. Upon observation of demands d and operational cost rates c, the “wait and

see” (adjustable) decisions, i.e. the distribution x, are then implemented.
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For a given value of γ, define the following robust mixed integer optimization

problem over the uncertainty set Zγ:

r(γ) = min z (6.11)

s.t.

z ≥
∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

(fi,jyi,j + ui,jpi,j + ci,j(ṽ)xi,j(ṽ))− τ ∀ ṽ ∈ Zγ (6.12)

pi,j ≤ hi,jyi,j ∀ (i, j) ∈ A, j ̸= t (6.13)

xs,i(ṽ) ≤ ps,i ∀ i ∈ I, ṽ ∈ Zγ (6.14)

|xi,j(ṽ)− xj,i(ṽ)| ≤ pi,j ∀(i, j) ∈ A, i, j ̸= s, t

ṽ ∈ Zγ (6.15)∑
{j|(j,i)∈A}

xj,i(ṽ)−
∑

{j|(i,j)∈A}

xi,j(ṽ) = 0 ∀ i ∈ I, i ̸= s, t

ṽ ∈ Zγ (6.16)

xi,t(ṽ) ≤ di(ṽ) ∀ i ∈ I, ṽ ∈ Zγ (6.17)

yi,j ∈ {0, 1} , pi,j , xi,j(ṽ) ∈ ℜ+ ∀ (i, j) ∈ A

ṽ ∈ Zγ (6.18)

The objective function r(γ) in (6.11) minimizes the worst-case budget

shortfall formulated in the right-hand side of (6.13) achievable over Zγ , and

each of the constraints (6.13)–(6.18) are required to hold for all uncertain pa-

rameter outcomes over Zγ. Note that positive values of r(γ) indicates that

the total cost exceeds the stipulated budget τ and is hence unacceptable.
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The robust design problem then seeks to achieve non-positive budget short-

falls over Zγ for as large γ as possible:

γ∗ = max
γ∈[0,1]

γ s.t. r(γ) ≤ 0 (6.19)

where γ∗ is the highest achievable robustness level across all feasible design

solutions. Hence, the solution returned by the robust optimization problem

(6.11)–(6.18) under γ∗ is the required robust design solution. A simple bisec-

tion search algorithm (Algorithm 1) can be applied to solve (6.19). In each

pass of the algorithm, the robust optimization model (6.11)–(6.18) is solved

for a fixed γ.
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Set tolerance level α;

Initialize the maximum possible γ to γ+ = 1 and lowest possible γ to

γ− = 0;

while (γ+ − γ−) > α do

γ∗ = γ++γ−

2
;

Solve problem (6.11)–(6.18) given γ∗ ;

if r(γ∗) ≤ 0 then

γ− = γ∗;

else

γ+ = γ∗ ;

end

end

Algorithm 1: Bisection search procedure on γ

6.4.3 Model Variation: Greenhouse Gas Emissions Budget

In some situations, practitioners may prefer to articulate design require-

ments such as a cap on CO2 emissions, rather than monetizing the effects of

emissions in a total cost model. The problem is then to achieve as high a

robustness as possible in achieving both a cost budget τ and a CO2 emission

budget target τ ′. Defining wij(ṽ) as the uncertain per unit CO2 emissions

associated with supply activity xij, the following two constraints describe the

cost budget shortfall and emission budgets respectively.
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∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

(fi,jyi,j + ui,jpi,j + ci,j(ṽ)xi,j(ṽ)) ≤ τ, ṽ ∈ Zγ (6.20)

∑
(i,j)∈A

w̃i,jxi,j(ṽ) ≤ τ ′, ∀ w̃i,j ∈ Wi,j, (i, j) ∈ A, ṽ ∈ Zγ (6.21)

As in the previous sections, w̃i,j can be modelled using the affine random

factors uncertainty model where Wi,j represents its uncertainty set for (i, j) ∈

A. The results in the rest of this chapter can also be applied to this model

variation without loss of generality. The connection of the robustness index

γ to success probability given the presence of adjustable affine decisions is

discussed in Appendix E.

6.5 Tractable Approximations for the Robust Design Model

6.5.1 Convex Uncertainty Sets

Solving the robust design problem (6.19) involves solving the following

robust optimization problem (6.11)–(6.18) for a fixed robustness level γ re-

peatedly (see Algorithm 1). Since the constraints in r(γ) are required to hold

for all uncertain outcomes ṽ ∈ Zγ, the number of constraints in (6.11)–(6.18)

is of the order MK (M realizations, K uncertain parameters), which is clearly

intractable for even moderate size problems. For clarity of exposition, in the

following the discussion is focused on the cost budget constraint (6.12) (since
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these are the most complicated in the model), re-written in the following form

for convenience.

∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

(fi,jyi,j + ui,jpi,j + ci,j(ṽ)xi,j(ṽ))− z − τ ≤ 0 ∀ṽ ∈ Zγ

The above set of constraints can be replaced with the following single

inequality, or robust counterpart :

∑
(i,j)∈A

(fi,jyi,j + ui,jpi,j)− z + sup
ṽ∈Zγ

∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

ci,j(ṽ)xi,j(ṽ)− τ

 ≤ 0

(6.22)

Applying the affine factors uncertainty model for cij(ṽ) = c0i,j + c1i,j ṽ1 +

· · ·+ cKi,j ṽK , the supremum operator term in (6.22) can be rewritten as:

sup
ṽ∈Zγ

∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

(
c0i,j + c1i,j ṽ1 + · · ·+ cKi,j ṽK

)
xi,j(ṽ)− τ


= sup
ṽ∈Zγ

∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

(
c0i,jxi,j(ṽ) +

K∑
k=1

cki,j ṽk · xi,j(ṽ)

)
− τ



In the following, the uncertainty associated with the adjustable decisions

x (i.e. assume that they are non-adjustable) is temporarily ignored and its de-

pendence on ṽ is suppressed. Furthermore, since the terms
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∑
(i,j)∈A (fi,jyi,j + ui,jpi,j) − z in (6.22) do not involve uncertainty, the dis-

cussion can be focused on the following constraint without loss of generality:

sup
ṽ∈Zγ

∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

(
c0i,jxi,j +

K∑
k=1

cki,j ṽk · xi,j

)
− τ

 ≤ 0 (6.23)

For a given x, the left-hand side of the above inequality involves the maxi-

mization of an objective function linear in v over a discrete set Zγ. Generally,

this is a non-convex optimization problem that can be extremely difficult to

solve for Zγ of high cardinality. The key idea of achieving tractability in robust

optimization is to construct uncertainty sets that result in safe and tractable

robust counterparts. Consider the following constraint with the hypercube

Hγ = {ṽk ∈ [−γ, γ], ∀ k, · · · , K}, :

sup
ṽ∈Hγ

∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

(
c0i,jxi,j +

K∑
k=1

cki,j ṽk · xi,j

)
− τ

 ≤ 0 (6.24)

Since Zγ ⊆ Hγ, clearly (6.24) implies (6.23), and is hence a safe approxi-

mation of (6.23). Tractability is achieved by applying the established results

in the robust linear optimization(see for instance Ben-Tal and Nemirovski

(1999)). In particular, for any given x, the left-hand side of (6.24) involves the

maximization of the objective affine in v over the convex set Hγ. Furthermore,

since Hγ is a hypercube, it can be described using a small number of linear
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inequalities. This admits a reformulation of the robust counterpart in linear

programming format of polynomial size (Bertsimas and Sim, 2004) similar to

what has been shown from Proposition 1 in Chapter 3.

6.5.2 Affine Decision Rules and Adjustable Budget Partitioning

The robust supply design problem involves decisions x that are adjustable

in the observed outcomes of the uncertain factors ṽ. Generally, robust coun-

terparts of uncertain linear programming problems with adjustable decision

variables are computationally intractable (Ben-Tal et al., 2004). In the robust

optimization literature, a resolution is to restrict the policy space of all ad-

justable decisions to the set of policies affine in the uncertain data (i.e. affine

decision rules). In particular, for the adjustable decisions x(ṽ):

xi,j(ṽ) = x0
i,j +

K∑
k=1

xk
i,j ṽk ∀ (i, j) ∈ A, ṽ ∈ Hγ (6.25)

where x0
i,j, · · · , xk

i,j are the affine rule parameters approximating the adjustable

decision xi,j(ṽ) to be optimized. For robust linear programming problems with

deterministic left-hand side coefficients, affine decision rules results in tractable

robust counterpart models that can be formulated in linear programming for-

mat of polynomial size (Ben-Tal et al., 2004). Affine decision rules are widely

acknowledged to be very useful constructs that permits scalability of robust

optimization models (Chen et al., 2008).
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We now consider the robust formulation of the constraints (6.24). Unfor-

tunately, (6.24) involves uncertain data coefficients (i.e., the operational costs

ci,j(ṽ)), and hence, the resulting robust counterpart formulation remains in-

tractable even with the application of affine decision rules for x(ṽ). More

specifically, the resolution of the supremum operation in (6.24) is generally a

non-convex optimization due to the product terms of v in ci,j(ṽ)xi,j(ṽ).

To circumvent the issue of tractability, in the following proposition a simple

but safe approximation of (6.23) is proposed. The chief advantage of the

approximation is that it retains the linear structure of the model, so that

mixed-integer programming solvers can still be directly applied for solution

purpose. The idea of the proposed approximation is based on creating artificial

but adjustable partitions of the cost budget τ under uncertainty so that each

resulting ‘partitioned’ constraint is more amenable to computation.

Proposition 3 Consider the following set of constraints on x(ṽ):

sup
ṽ∈Hγ

 ∑
(i,j)∈A

cki,j ṽk · xi,j(ṽ)− τk

 ≤ 0 ∀ k = 1, ..., K (6.26)

sup
ṽ∈Hγ

∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

c0i,jxi,j(ṽ)− τ0

 ≤ 0 (6.27)

K∑
k′=0

τk′ ≤ τ ∀ ṽ ∈ Hγ (6.28)
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where τ0, · · · , τK are defined as real valued decisions adjustable in ṽ. (6.26) -

(6.28) is then a safe approximation to the budget shortfall constraint (6.24).

Proof : In order for (6.26) - (6.28) to be a safe approximation of (6.24), it

suffices to show that any x ∈ {x | ∃ (x, τ ) feasible in (6.26)− (6.28)} is also

feasible in (6.24). The following then holds true:

sup
ṽ∈Hγ

∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

c0i,jxi,j(ṽ) +

K∑
k′=1

∑
(i,j)∈A

ck
′

i,j ṽk′xi,j(ṽ)− τ


≤ sup
ṽ∈Hγ

∑
i∈I

eidi(ṽ) +
∑

(i,j)∈A

c0i,jxi,j(ṽ)− τ0

+

K∑
k=1

 sup
ṽ∈Hγ

 ∑
(i,j)∈A

cki,j ṽk · xi,j(ṽ)− τk




≤ 0

The first inequality follows from applying (6.28), and the basic argument that

for any set of real valued functions, the sum of the supremum of each function

is no less than the supremum over the sum of the functions. The second

inequality follows from the assumption that x is feasible in (6.26) - (6.27).

�

The approximation in Proposition 2 is not yet directly amenable to

tractable solution since (6.26) involves the product term cki,j ṽk · xi,j(ṽ). How-

ever, this can be resolved by enumeration of ṽk on its discrete outcome space.

Define ṽ−
k = [ṽ1, · · · , ṽk−1, ṽk+1, · · · , ṽK ] ∈ ℜK−1, that is, all the components of
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ṽ less ṽk. In a similar sense define alsoHk−
γ = H1

γ×· · ·×Hk−1
γ ×Hk+1

γ ×· · ·×HK
γ .

Constraint (6.26) is then equivalent to the following:

sup
ṽ−

k ∈Hk−
γ

 ∑
(i,j)∈A

cki,j ṽk · xi,j(ṽ)− τk

 ≤ 0 ∀ ṽk ∈
{
v1k, · · · , vMk

}
(6.29)

Note that in each of the above constraints (one for each ṽk ∈
{
v1k, · · · , vMk

}
),

the supremum operation is performed over ṽ−
k ∈ Hk−

γ . Also, in this scheme,

the number of constraints required is of the order K×M , and hence the result-

ing robust counterpart model is polynomial in size. Finally, since the linear

constraints (6.27)–(6.29) are deterministic in the constraint coefficients, affine

decision rules can be applied to x(ṽ) and τ to achieve a tractable approxima-

tion for the adjustable robust optimization problem.

6.6 Computational Experiments

This section presents the numerical studies of the proposed robust design

model for supply network design. We consider a power supply and distribu-

tion planning problem involving the installation of a set of generation facilities

and their interconnections (i.e. via transmission lines). The cost of the net-

work includes installation, capacity, demand shortage and environmental (CO2

equivalent emission) costs. The objective of the design problem is to meet a

given cost budget as well as possible under data uncertainty.
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6.6.1 Power Generation Case Problem

The case study involves a hypothetical twelve-area (node) power supply-

demand system (refer to Figure 6.1), consisting of twelve power generation

units and 27 connections between areas. The parameters used for the annual

generation and load activities in each area are presented in Table 6.1. Note

that there are different types of generation plants in the system, including coal

(CL), hydroelectric (HY), geothermal (GT) and natural gas (NG) plants.

Table 6.1
Generation and load parameters

Area Load (MW) Generation (MW) Type of Generation Fixed Cost ($M)

1 - 8,220 CL 3,200
2 6,750 8,220 CL 3,200
3 5,850 8,220 CL 3,200
4 10,650 4,795 NG 550
5 - 4,795 GT 250
6 1,500 822 HY 1,650
7 - 822 HY 1,650
8 2,000 5,000 GT 250
9 1,300 822 HY 1,650
10 2,550 4,795 GT 250
11 3,000 4,795 NG 550
12 - 4,795 NG 550

In this example, the load requirements and the emission rates are assumed

to be uncertain data, modelled using the affine factor model approach with

K=12 primitive uncertainties ṽk ∈ [−1, 1], ∀ k = 1, · · · , K. An increment of

0.05 is used for the interval [−1, 1], which leads to the discrete sample space

ṽ ∈ {−1,−0.95, · · · , 0.95, 1}, where the number of samples is equivalent to

M=41.
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The load factor coefficients dki , k = 1, · · · , 12 are randomly generated and

assumed to be at most one half of the nominal values in Table 6.1. The

nominal values and range of the uncertain emission rates are stated in Table

6.2 (from Lenzen (2008)). Table 6.3 shows the cost rate parameters used

in the numerical study. The capacity cost is assumed to be $0.01 per MW,

where each connection has a maximum installable capacity of 5,000 MW. The

activity cost parameter c̃i,j includes both operational cost ($0.01 per MW) and

emission cost (assumed to be $20.00 per ton CO2 (Trembath et al., 2012)). A

shortage penalty of $2.00 per MW is charged on every unit load that is not

met by the system.

Table 6.2
Emission Parameters from Generation Plants (from Lenzen (2008))

Area Range of emissions Nominal emissions
(g CO2 \ MWh) (g CO2 \ MWh)

Coal (1,2,3) 0.8430-1.0460 0.8430
Natural Gas (4,11,12) 0.4910-0.6550 0.4910
Geothermal (5,8,10) 0.0700-0.1100 0.0700
Hydroelectric (6,7,9) 0.0100-0.0440 0.0100

Table 6.3
Cost Parameters

Parameter Value

Capacity cost $0.01 per MW
Operational cost $0.01 per MW

Connection installation cost $20 per connection
Emission cost $20.00 per ton CO2 equivalent

Shortage penalty cost $2 per MW unfulfilled load
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6.6.2 Performance Study of Robust Design Model

The performance of the proposed robust design model for the energy sup-

ply network problem is first studied through computational examples. All the

models were developed using ROME version 1.0.8 beta (Goh and Sim, 2011).

CPLEX was used in conjunction with ROME to solve the mixed integer pro-

gramming models.

Table 6.4 presents the (worst-case) minimum cost r(γ) obtained by fixing

γ at various levels and solving the corresponding robust optimization problem

(6.11)–(6.18). For the purpose of minimizing worst-case cost, the τ parameter

in (6.12)–(6.18) is set to zero. The average computer solution time of the model

is around 19.5 seconds. Generally, the optimal cost r(γ) is non-decreasing in

γ, which is not surprising, since higher γ levels correspond to more averse

projections of the uncertain emission rates and loads. Also, under increased

robustness, solutions favoring higher levels of capacity investments and stock-

piling may be more preferable (this will be verified later). Note that the case

γ = 0 corresponds to solving the nominal data problem without consideration

of uncertainties. From Table 6.4, the optimal cost r(γ) = 35, 443. An inter-

pretation of this is that if one had specified the budget target τ = $35, 443,

the best achievable robustness γ∗(τ = $35, 443) = 0. Since γ = 0 is least

preferable from a robustness point of view, this implies that the budget might

be too optimistic in the presence of uncertainties. A useful interpretation of
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Table 6.4 is then the following. Increasing the budget levels (as in Table 6.4)

enables developing solutions that improve the design robustness. For instance,

increasing the total cost budget to $40, 148 increases robustness level γ to 0.6.

More specifically, if τ is set to $40, 148 in the robust design problem (6.19),

then the best achievable robust design solution permits hedging against all

uncertainties arising from Z(γ = 0.6). Hence, Table 6.4 provides the efficient

trade-off between the cost budget and the robustness level that is acceptable

to the decision-maker. Clearly, the case when γ = 1 (with r(γ) = $48, 177 in

Table 6.4) implies that the achieved solution is ‘as good as it gets’ from the

robustness point of view. This implies that, for the purpose of robustness, one

would never justify budgets above $48, 177.

Table 6.4
Equivalent minimum network costs with respect to the robust-
ness of the supply design network

γ 0 0.40 0.60 0.80 1.00

r(γ) ($’100) 35, 443 38, 553 40, 148 44, 612 48, 177

The performance of the robust design solutions for the various robust-

ness levels in Table 6.4 is evaluated using out-of-sample testing with 3,000

randomly-generated realizations of the uncertain data. Figure 6.2 plots the

frequency diagrams of the total costs. Table 6.5 summarizes some important

out-of-sample performance measures of the realized total cost (sample aver-

age, sample standard deviation, probabilities of budget target τ = r(γ), and

expected shortfall with respect to r(γ)).
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Fig. 6.2. Histogram of total network costs for the robust design
model. The targets τ refer to the minimum network costs
r(γ) (represented by dashed lines) and are superimposed on
the respective histograms.
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Table 6.5
Performance evaluation of robust design models based on uni-
form distributions

Robustness γ 0 0.40 0.60 0.80 1.00
Budget target τ ($’100) 35,443 38,553 40,148 44,612 48,177
Mean ($’100) 52,151 43,469 42,016 41,656 44,742
SD ($’100) 4,260 3,303 2,220 1,348 1,056
P(TC ≤ r(γ = 0)) 0 0 0 0 0
P(TC ≤ r(γ = 0.40)) 0 0.0557 0.0183 0 0
P(TC ≤ r(γ = 0.60)) 0 0.2367 0.3403 0.2957 0
P(TC ≤ r(γ = 0.80)) 0.0267 0.5970 0.8270 0.9453 0.3147
P(TC ≤ r(γ = 1.00)) 0.1887 0.9040 0.9947 1.0000 1.0000
EL(TC − r(γ = 0)) 16,708 8,025 6,572 6,213 9,299
EL(TC − r(γ = 0.40)) 13,598 4,946 3,468 3,103 6,189
EL(TC − r(γ = 0.60)) 11,347 3,007 1,578 1,022 3,938
EL(TC − r(γ = 0.80)) 8,017 1,057 256 35 776
EL(TC − r(γ = 1.00)) 4,369 140 3 0 0

Qualitatively, the histogram plots in Figure 6.2 indicate that as robustness

level γ increases, so does the probability of achieving the respective budget

targets. Furthermore, the variability of the cost realizations decreases signifi-

cantly with increasing robustness level. These trends are also observed in the

summary statistics in Table 6.5. In addition, as the robustness level γ in-

creases from 0 to 0.8, the sample average costs in Table 6.5 first decrease, and

then increase when γ = 1.0 (an explanation for this will be discussed later).

The probability of achieving a given budget target generally increases with

solutions that are more robust (higher γ), with the exception of that corre-

sponding to γ = 1. Note that in Table 6.5, the sample probability of achieving

τ = r(γ) is zero; verifying again that the minimum cost from the nominal data

model is too optimistic to be used as a budget in the presence of uncertainties.
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The observed trends for the success probabilities are similar for the expected

shortfalls so that generally, solutions with higher robustness also suffered lower

budget target shortfalls. In summary these observations strongly suggest that

the robustness level γ gives reasonably good gauge of solution performance

that is consistent with the descriptive statistics performance measures.

A reason for the sample average costs observed in Table 6.5 can be ex-

plained using Figure 6.3 which plots, for each robustness level, the sample

average cost components of capacity investments, load shortage penalties and

emissions penalties. The plots show that capital investments increase while

shortage penalties decrease as γ increases. This verifies the intuition that

design solutions that offer higher capacity buffer are more favorable with in-

creasing uncertainty aversion that is associated with the increasing robustness

levels. Indeed, the simulation results in Figure 6.3 show that at γ = 0 and

γ = 0.4, a (relatively) small increase in capacity investment costs is rewarded

by a significantly higher level of savings in shortage penalties. The effective-

ness of the trade-off however diminishes with increasing uncertainty aversion.

In particular, when γ = 1.0, huge levels of capital investments are made. The

large uncertain load projections however, are possibly too conservative from

practical perspective, and consequently yields no significant marginal benefit

from reducing load shortages. Finally, from Figure 6.3, emission penalty costs

increase (very slightly) with increasing γ. It is important to note that the

total realized loads served increases as γ increases, and hence the associated
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emission levels and operational costs are also expected to increase on average.

However, the observed increase in the operational cost is very small, possi-

bly due to the ability of the robust design solution to mitigate the emission

penalties by diverting increased loads to cleaner power generators.
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Fig. 6.3. Cost contributions of installation, emission and shortage penalty

6.6.3 Comparison of Robust Design with Sample Average Design

This section compares the performance of the robust design solution model

with a design solution obtained using the sample average approximation (SAA)

method. To build the SAA model, a discretized uniform distribution is as-

signed to the outcome space of ṽk, for each k = 1, · · · , K. Random samples of

ṽ were then generated as inputs for the SAA optimization model. Since the

SAA solutions depend on the samples used, three sets of samples, for each of
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three different sample sizes (250, 500 and 1,000) were generated to obtain nine

different design solutions. The average computer solution times for the SAA

model are 76.8, 403.9 and 1,830.1 seconds for sample sizes of 250, 500 and

1,000, respectively. To facilitate a meaningful comparison with the robust de-

sign model, the largest objective function value from the nine instances of the

SAA problem ($40, 148) was used as the budget target (i.e. set τ = $40, 148)

in all the subsequent computations. The robust design model (6.19) is then

solved at this level of budget target to yield the robust design solution.

Performance Comparison

Out-of-sample performance of the two design solutions are evaluated us-

ing 3,000 randomly generated realizations of the uncertain parameters. The

robustness and out-of-sample results are summarized in Table 6.6.

Table 6.6
Performance evaluation of models based on uniform distributions

SAA Design Robust Design

Robustness γ 0.45 0.55
Mean ($’100) 43,375 42,519
SD ($’100) 2,830 2,647

P(TC ≤ $40, 148) 0.1353 0.1633
EL(TC − $40, 148) 3,325 2,880

Note that in Table 6.6, the robustness level of the SAA solution (γ = 0.45)

is evaluated by fixing the budget level τ = $40, 148 and the design variables

(with the SAA solution) in the constraints (6.12)–(6.18), and then maximiz-
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ing γ in (6.19). For the same budget level, the optimal robust design yields

γ = 0.55. This indicates that there exists designs that strictly improves the

robustness level over the SAA, the best of which allows protection against

55% of the uncertain data. Furthermore, the results in Table 6.6 show that for

the out-of-sample mean, variance, success probability and expected losses, the

robust design solution also outperforms the SAA design solution marginally.

Note that the fact that the success probability is relatively low, is not indica-

tive of the capability of the robust design model. Rather, what it means is

that using the SAA optimal cost objective as a budget target itself, may be

quite optimistic (since SAA is concerned only with expected performance).

In summary, the results in Table 6.6 indicates that the improved robustness

γ = 0.55 comes at no cost of the other performance measures, despite the

fact that probability assumptions were not used explicitly in the robust design

model.

Table 6.7 shows the cost breakdown of the sample average costs in the

components of capacity installations, shortage and emission penalties for both

solutions. The results are entirely consistent with those in the previous section:

the robust design favors higher capacity investments in order to hedge against

larger uncertain loads, and this is rewarded by substantial cost savings in the

shortage penalty. The increase in emission costs, due to the larger volume of

load served, on the other hand is comparatively much smaller.
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Table 6.7
Cost contributions of capacity, shortage and emissions penalty

SAA Design Robust Design

Installation Cost ($’100) 35,130 35,516
Shortage Penalty ($’100) 4,514 3,100
Emissions Cost ($’100) 3,731 3,903

Total($’100) 43, 375 42, 519

Solution Comparison

We next study the supply network design solutions obtained by the SAA

and robust design models. Table 6.8 shows the respective capacities assigned

for the power generator at each node.

Table 6.8
Capacity of generation plants installed. Values in parenthesis
are percentages with respect to maximum capacity of plant.

Plants SAA Design Robust Design
1− CL - -
2− CL 7,882 (95.89) 6,907(84.03)
3− CL 7,993 (97.24) 7,361 (89.55)
4−NG 4,795 (100.00) 4,795 (100.00)
5−GT 4,795 (100.00) 4,795 (100.00)
6−HY 822 (100.00) 822 (100.00)
7−HY - -
8−GT 4,795 (100.00) 4,395 (91.68)
9−HY 822 (100.00) 822 (100.00)
10−GT 4,795 (100.00) 4,795 (100.00)
11−NG 4,726 (98.56) 3,774 (78.73)
12−NG - 3,810(79.48)

The total installed generation capacities for the robust design is 42,276

MW, slightly higher than that in the SAA design (41,425 MW). This is ex-

pected, and consistent with the insights from Table 6.7, since the robust design

anticipates higher loads. In both designs, although coal plants are used to
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generate the largest amount of power supply (MW per plant), cleaner sources

such as geothermal and natural gas have almost close to maximum capacity

installed, compared to the coal plants. This indicates a strategy of prioritizing

the use of cleaner technologies (whenever physically and economically feasible)

to mitigate the emission penalties. Outstanding loads are then fulfilled with

coal generated power. The fact that the hydro-electric generator in Area 7 is

not installed in both solutions is due to the lack of economy of scale, since the

hydro-electric plant has very small capacity and high fixed costs compared to

the other plants.

Figure 6.4 plots the total capacity installed (as a percentage of maximum

capacity) for each type of generation technology. It is interesting to note

that for the robust design solution, there is a significant increase in natural

gas generation capacity (and a corresponding decrease in coal-fired generation

capacity) over the SAA design. This is chiefly due to the installation of the

natural gas plant in Area 12 in the robust design solution (see Table 6.8). An

explanation for this is that under the more averse projections of the loads and

emission rates, the robust design model attempts to mitigate the increase in

emission penalties by diverting the additional required generation from the

coal-fired plants to natural gas plants. A more detailed discussion of the

emission mitigation strategy based on the supply network configurations shown

in Figure 6.5 is as follows.
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We first discuss how a reduction in the coal use is achieved in the robust

design solution for Area 2 (which contains a coal-fired plant). In the robust

design solution, the geothermal plant in Area 10 is installed at maximum

capacity (4795 MW) and is dedicated to serve the load in Area 2. Outstanding

loads are supported by the coal-fired plant in Area 2 itself. On the other hand,
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in the SAA solution, Area 2 is supported by only a part of the generation

capacity from Area 5 (also a geothermal plant with maximum capacity 4795).

This is because Area 5 is also connected to Area 4 to jointly support the

load requirement in Area 4 (together with the generators in Areas 8 and 10).

Consequently, the coal-fired generator in Area 2 itself is installed at higher

capacity. In contrast, for the robust design solution, the additional natural

gas plant in Area 12 is dedicated to serve the load requirements in Area 4.

This then frees up the capacity of the geothermal plant in Area 10, which

is 100% dedicated to serve the load requirements in Area 2, hence effectively

reducing coal use in Area 2.

Similarly, the capacity of the coal plant in Area 3 in the robust design is

also lower compared to that in the SAA design. In the SAA design, Area 3

is connected to Area 9, in order to help supplement the supply for Area 9

(note that the hydro-electric generator in Area 9 is not installed; and Area 9

is not connected to anywhere else). In contrast, in the robust design, the coal

plant in Area 3 is essentially ‘off-the-grid’ (i.e. it is not connected to any other

areas), and is hence only required to generate enough supply for its own load

requirements. Furthermore, the load from Area 9 is now supported by the

cleaner geothermal plant in Area 8. This is again possible due to the addition

of the natural gas plant in Area 12, which frees the geothermal capacity in

Area 8 (from contributing to Area 4).
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In summary, the robust design solution not only recommends the appro-

priate additional capacity to install, in order to improve hedging against load

uncertainty (and hence reducing unserved loads), it effectively exploits the flex-

ibility of the network connections to help divert power generation using coal

to using cleaner sources, hence effectively mitigating the potential increase in

CO2 emissions.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

There has been a continuous stream of research works that make use of the

satisficing approach within the context of optimization. This can be attributed

to how inherent the approach is in the decision making process. This research

proposed its application to production and logistics planning problems to con-

tribute to the growing literature in this field of study.

This work initially applies the TRO model to dynamic workforce-inventory

system and power supply system. The computational studies demonstrate that

the application of the proposed optimization model is able to improve the be-

havior of both systems significantly under uncertainty. The results of the TRO

model lead to the creation of stability and achievement of transient require-

ments in the inventory-workforce system. The oscillations in the power supply

system are also seen to be controlled despite the fluctuations in the uncertain

parameters. The respective models are able to generate policy parameter set-

tings, which lead to the reduction in the frequency of oscillations and at the

same time meet the required projections for the state variables throughout

the simulation run. All in all, this applications show the effectiveness of the
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satisficing approach in the design of policies for dynamic systems. The ap-

proach has been able to identify appropriate settings that allowed the system

to achieve its targets throughout the planning period.

Meanwhile, offshore gas field development is an important strategic prob-

lem in the oil and gas industry since it entails huge amounts of capital in-

vestment. The research highlights the importance of uncertainty in develop-

ment planning arising from the efficacies of the unexplored gas reserves. The

complexity in gas field development is further complicated by the issue of en-

dogenous uncertainty in a dynamic decision-making process. To address these

challenges, the target oriented robust optimization framework has been ap-

plied to the problem understudy. This framework allows a decision maker to

flexibly specify target performance objectives such as net present value. The

optimization model is solved to maximize the robustness of the planning solu-

tion to reservoir uncertainty in achieving the NPV target. Unlike in stochastic

optimization approaches, the target oriented robust optimization model does

not require specific assumptions on the probability distributions modeling the

uncertain subsurface parameters

Finally, the third problem application involves a supply network design

problem integrated with CO2 considerations under uncertainty. A two-stage

robust design mixed-integer programming model is proposed to maximize the

protection of the supply design against uncertainties in demands and emis-

sion rate parameters. The design problem is to first determine the production
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facilities to install in the network, their capacity levels, and the network con-

nectivity. When the uncertainties are revealed, a supply distribution plan is

then formulated to minimize the costs of emissions and demand shortfalls. The

problem is translated into a TRO model having the objective of achieving a

total cost budget target as well as possible under uncertainty.

7.2 Summary of Contributions

7.2.1 Chapter 3-Robust Target Oriented Optimization Approach

This research develops a target-oriented robust optimization model that

maximizes the degree of uncertainty for a given set of feasible solutions. The

degree of uncertainty is defined as the robustness index, which is found to be

coherent with an axiomatic definition of satisficing measures. Furthermore, the

index is also shown to share fundamental similarities with the use of probability

measures from the aforementioned axiomatic definition.

The robustness index is integrated into a decision-analytic framework that

could be used in conjunction with the modeling paradigms of robust optimiza-

tion and control theory based methods such as SD. A key advantage of the

underlying mathematical programming model is its ease in computation, and

that it does not require specific probability distributions to be assumed for

the uncertain variables. Furthermore, it does not require the user to specify

subjective weights as in typical utility maximization approaches. Rather, the
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user specifies the set of design goals to be satisfied. The computed solution is

then one that seeks to achieve these goals as well as possible under uncertainty.

7.2.2 Chapter 4-Dynamic Systems

SD and stability analysis represent good platforms for the application of

the TRO approach since these take on a perspective that a system could only

be understood by considering a certain planning period rather than by mere

instances of this period. Thus, decisions and policies would inevitably have to

be made within the context of such operating conditions.

Currently, formal methods of SD analysis do not extend readily to design

problems in the presence of parametric uncertainties. The TRO approach

addresses this gap by incorporating eigenvalue analysis with a mathematical

programming approach. It has been developed as a means to calibrate model

parameters subject to the achievement of targets in the presence of uncertainty.

It enables the achievement of dynamic performance specifications under un-

certainties, so that stability and transient behaviors such as overshoots and

oscillations in the system can be appropriately shaped.

The approach involves the approximation of nonlinear systems into their

linear form. It utilizes information obtained from current eigenvalues and

behavior of state variables to set the stability and performance measure re-

quirements. Through the use of these approximations and the formulation of a

TRO model, the approach has been able to simultaneously evaluate the effects
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of policy settings to both the behavior modes and state variable projections.

The integration of the satisficing measure to the TRO model identifies the

set of policy parameters that not only achieves the stability and performance

measures requirements, but also maximizes the magnitude of uncertainty in

the system. Decision makers can thus ensure that system targets would always

be met even when uncertain parameters deviate from their nominal values.

7.2.3 Chapter 5-Offshore Gas Field Development Planning

A key technical contribution in this research is the demonstration that un-

der the target oriented robust optimization approach, it is sufficient to consider

fixed policies to obtain an optimal solution to the problem. Also, the optimal

fixed policy can be evaluated by solving a single solution-independent worse

case instance of the problem, which can be easily identified in the develop-

ment planning problem. This is important since the resolution of a difficult

dynamic planning problem under endogenous uncertainty is now reduced to

solving a mixed integer programming problem that assumes a single outcome

of the uncertain parameters. This was not possible for stochastic program-

ming approaches in previously published works. Hence, the TRO model is

highly attractive for practitioners who require fast turnaround planning and

decision-support that can be efficiently implemented using commercially avail-

able solvers.
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The computational studies demonstrate that the performance of the TRO

model is very competitive if not better compared with SAA models. This is

encouraging since the TRO model uses much less information (in particular

the probability distributions) than the SAA models. It has also been shown

that an efficient frontier (in the expected NPV and standard deviation) of

solutions can be described systematically by solving the TRO model over a

range of aggressiveness in target setting. Finally, the computational study of a

multi-stage development planning problem indicates that while the model may

initially plan for the worst-case outcomes, the folding horizon implementation

allows the re-optimization to leverage on newly available information in the

case of better-than-expected outcomes of the gas well parameters.

7.2.4 Chapter 6-Supply Network Design

This problem application shows how the TRO model could be used along-

side the development of convex uncertainty sets and affine decision rules. To

achieve computational tractability, a safe approximation is proposed based on

the partitioning of the cost budget target. Consequently, solving the TRO

model involves only solving a small collection of mixed integer programming

models. Using a case example based on a power generation and distribution

network system, the computational studies show that the proposed robust de-

sign model is highly competitive with an SAA model in various performance

measures despite the fact that probability distributions were not explicitly
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used in the robust design model. Furthermore, investigating the solutions of

the robust design model demonstrates its effectiveness in mitigating emissions

level. This strongly suggests that the proposed robust design approach has an

important role to play in green supply chain design and optimization under

uncertainty.

7.3 Direction for Further Study

The satisficing measure presented in this paper has been developed based

on a set of axioms. This therefore presents an opportunity to look into other

properties of satisficing measures found in the literature. Among these prop-

erties include quasi-convexity, risk duality and measures that reward diversifi-

cation. In connection, a future direction of this research may also involve the

development of additional types of satisficing measures. This may primarily

be done through the extension of the general framework defined by Brown

and Sim (2010) and Brown et al. (2012), which will consider the magnitude of

shortfall, computational tractability and joint probability of attributes meeting

the targets.

This research also lays detailed methodological foundations and concepts

that are valuable in developing comprehensive decision-support technology for

resilient large scale systems in the future work. In this regard, one impor-

tant consideration for future work will be the implementation and integration

of the proposed approach with a SD modeling software platform. With the
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increasing availability of free optimization software in the Internet, a promis-

ing approach is an open source initiative to develop the software components

of the proposed design framework. These can include linear dynamic system

evaluation modules, local search algorithmic modules, and interface modules

to various SD simulation programs. An open source approach can enable a

rapid and reliable software development process, and can also encourage tech-

nical and methodological advances through networking of SD modelers and

optimization experts interested in these areas.

In the case of the offshore gas field development problem, a future direc-

tion can be in the consideration of both exogenous and endogenous types of

uncertainties. It is important to account for both types since regardless of the

nature of uncertainties, each one would inevitably impact decisions and the

economic profitability of a project. As an example, the price structure of gas

depends on the type of contract agreed upon by the producer and customer.

Long-term contracts generally assign fixed prices on the amount of gas to be

supplied to the customers whereas short term contracts allow for more price

volatility and demand uncertainty. The profiles of reserves are also at best

obtained from estimates at the planning stage. An objective for a future work

is then to give a comprehensive analysis of a development project that cap-

tures properties found in decision parameters such as price, demand and well

reserves. One can look into how these parameters affect different areas of gas

production and distribution networks.
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Finally, the proposed robust design model can also be easily extended to

incorporate multiple performance goals. For instance, multiple CO2 budgets

can be incorporated. This may arise due to decentralized budget allocation,

or can represent different annual emission requirements. The CO2 budgets

themselves may even be uncertain, i.e. representing uncertain outlook of en-

vironmental legislations. Furthermore, the capital investment budget require-

ments may also contain uncertainties. Future work includes extension of the

model to a multi-stage planning environment, where facilities and connecting

infrastructures can be installed based on realized information at each stage.
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APPENDIX



A. SYSTEM DYNAMICS METHODOLOGY

An important purpose of the SD method is to facilitate the inquiry of complex

socio-economic dynamics. Forrester (1961) initially defined it as,

“...the study of the information feedback characteristics of in-

dustrial activity to show how organizational structure, amplifica-

tion (in policies), and time delays (in decision and actions) interact

to influence the success of the enterprise. It treats the interactions

between the flows of information, money, orders, materials, person-

nel, and capital equipment in a company, an industry, or a national

economy.”

The focus on capturing system interactions, feedback loops and delay pro-

cesses has made the use of SD invaluable in the elucidation of complex sys-

tems. An outcome of the work by Forrester (1961) is a simulation game that

is commonly used in supply chain classrooms known as the Beer game. This

originated from the “Forrester Model” shown in Figure A.1, which is described

by six interacting flow systems, namely the flows of information, materials, or-

ders, money, manpower, and capital equipment (Angerhofer and Angelides,

2000).
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Orders from customers 

Deliveries to customers 

          Legend 

 

                              flow of goods 

  

                              flow of orders (information) 

 

                               length of delay 2 

Fig. A.1. Forrester Model of a production-distribution system
(Forrester, 1961)

Through his use of SD, he was able to point out issues such as demand

amplification, inventory swings, and effect of advertising policies on produc-

tion variations, decentralized control, or management process. Specifically, he

was able to demonstrate the unintended consequences termed as the bullwhip

phenomenon in supply chains, due to order placement decisions made with

limited information.

However, SD has also been often criticized for not having sufficient rigor

and analytical support (see for instance, Ansof and Slevin (1968) and Tow-

ill (1982)). Model analysis is usually approached in an ad-hoc manner, and

very few systematic guidelines are provided to improve performance. For-
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rester (1980) has likewise stressed the importance of appropriate policy design

methods in shaping and controlling system behavior in SD applications. As

a consequence, there has been considerable interest and progress in the devel-

opment of formal approaches to analyze the influence of system structure on

dynamic behavior.

A.1 Formal Approaches in System Dynamics

Distinct from ‘flight simulator’ approaches of combining intuition with

repeated simulations to understand system behavior, formal approaches are

based on mathematical analysis of the system structure using tools from vari-

ous relevant fields. Formal approaches are useful in supporting the analysis of

large systems that need to be represented using large scale dynamic models.

These include the application of modal control theory to SD, for instance by

pole assignment (Forrester, 1982; Keloharju, 1987; Mohapatra and Sharma,

1985), or by sensitivity analysis (Diallo and Rahn, 1987). An essential step

enabling the modal control approach of analysis is a linearization of the origi-

nal (generally non-linear) dynamic system model. Diallo and Rahn (1990) de-

scribe the procedure to obtain linear dynamic model approximations amenable

to analysis.

A related class of formal approaches in SD based on linear system theory is

the use of eigenvalue elasticity analysis (EEA) pioneered by Forrester (1982).

EEA focuses on studying the contribution of each feedback loop to each mode
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of behavior in the SD model. A number of researches have since attempted

to improve on the EEA approach. Kampmann (1996), Kampmann and Oliva

(2006) and Saleh et al. (2010) show that it is possible to analyze only a subset

of the feedback loops in order to scale down the number of loops to be analyzed.

Goncalves (2009) studies how eigenvectors, together with eigenvalues, can be

used to explain overall behavior trajectories of the state variables.

This research proposes an extension of the formal approach in SD based on

the methods of modal control and eigenvalue analysis. In the above cited works

on applying modal control in SD (Mohapatra and Sharma, 1985; Ozveren and

Sterman, 1989), the objective is to synthesize state feedback controllers that

can achieve desired dynamic system performance. In EEA, the primary objec-

tive is to evaluate the influence of the feedback loops in an SD model (Forrester,

1982; Kampmann, 1996; Kampmann and Oliva, 2006) on the state trajectories.

This involves analyzing the behavior modes with respect to the parameters in

the model through the use of eigenvalues in sensitivity calculations.

While the proposed approach in this research also makes use of eigenvalues,

the objectives are very distinct from these key works. In particular, the aim is

to achieve the desired behavior modes of the system (through the eigenvalues)

under uncertainty. In a broad sense, it can be viewed as an extension of

sensitivity analysis to address design issues under parametric uncertainties.

None of the abovementioned works consider explicitly the issues of system

behavior and stability in the presence of external disturbances or uncertainties.
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Dynamic stability of a system refers to the ability of a system to achieve and

maintain equilibrium under external disturbances. Dynamic system stability

under uncertainties is also often the goal in control theory (Sontag, 1998). In

SD applications, this can have important economic implications. For instance,

in the context of Forrester’s Industrial Dynamics (1961), achieving stability

can be associated with the reduction of inventory swings in the presence of

information delays within a production system.

A.2 Parametric Uncertainties in System Dynamics Models

Any practitioner of SD will acknowledge that the SD modeling process

is replete with challenges where errors and inaccuracies can seep in, among

which include numerical parameter estimation and graphical function solicita-

tion. Uncertainties can have corrupting influences on the behavior of dynamic

systems and failure to account for these in design and analysis can have unde-

sirable and unforeseen consequences. The model analysis and system design

are consequently subject to inaccuracy and need to be treated with a degree

of suspicion (Coyle, 1977).

Consider the following simple example of the hare and lynx model as

adapted from Jensen (2008), where the hare catch rate in Figure A.2 is an

uncertain parameter in the model. In the stock flow model, hare deaths are

defined to be a function of the catch rate, the number of hares and the number

of lynx. The effects of varying the hare catch rate parameter are presented
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in Figure A.3. The trajectories represented by dashed lines show the behav-

iors of the hare and lynx when the value of the hare catch rate is 0.04, while

the trajectories represented by solid lines show the behaviors when the same

parameter is set at 0.08.

Fig. A.2. Stock flow diagram of the system

When the hare catch rate is 0.04, the hare and lynx populations both ex-

hibit oscillatory behaviors throughout the time horizon considered. However,

when the hare catch rate is 0.08, an ‘overshoot and collapse’ behavior mode is

observed for both the hare and lynx populations. The change in the parame-

ter setting not only affects the level of the populations but more importantly

changes the behavior modes in the system. These differences indicate that

for some systems, even a slight change in the settings can lead to drastically

different behavior patterns. Thus, the realization of policies may entirely be
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Fig. A.3. Dynamics of the hare (top) and lynx (bottom) populations.

different from what has been designed upon the introduction of parametric

uncertainties.

SD has often been compared to other quantitative approaches and criticized

for its lack of rigor in the evaluation of model validity, specifically with regards

to the effects of accuracy in parameter estimation (Meadows, 1980). Some

proponents of SD have defended against these issues by arguing that SD is

concerned only with the general behavior patterns of systems rather than

short-term precision forecasts. This position may be reasonable in certain

situations. For instance, in the seminal urban dynamics model (Forrester,
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1969), urban decay (i.e., unemployment rate) was observed to persist over

large range of parameter values (i.e., building construction rate) as long as the

policy structure remains (i.e., attracting more businesses).

Consequently, Forrester’s view is that the model parameter values are of

secondary importance in the presence of interlocking feedback loop struc-

tures. Similarly, in discussing about the calibration of table functions, Sterman

(2000) points out that systems in which strong balancing feedback mechanisms

are present tend to self-correct its behavior when parameter values fluctuate.

While it may be justifiably argued that in such cases (such as the urban dy-

namics model), the influence of parameter values is not overly important, the

point of view taken in this research is that one cannot always depend on the

nature of the system presented to sufficiently dampen the effects of parameter

uncertainties in the analysis (the hare and lynx model is one such counter-

example).
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B. WORKFORCE-INVENTORY STOCK

MANAGEMENT STRUCTURE

As mentioned, the workforce-inventory model in Saleh et al. (2010) was based

from the work of Sterman (2000). This section provides a supplementary

discussion on how the stock and flow structure of the model had been formed.

The stock management structure accounts for the foundation of the workforce-

inventory model. This structure is described in Figure B.1 and demonstrates

how a firm maintains an inventory of finished goods and fills orders as they

arrive.

Fig. B.1. Stock Management Structure Sterman (2000)
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Aside from the finished goods inventory, the firm also maintains an inven-

tory of WIP goods, which are increased by production starts and subsequently

decreased by production. Orders that the firm fail to fulfill are assumed to be

lost sales. As mentioned by Sterman (2000), the key production control and

inventory management decisions made by the firm include order fulfillment

(determining the ability to fill customer orders based on the adequacy of in-

ventory) and production scheduling (determining the rate of production starts

based on the demand forecast and inventory position of the firm, including

the WIP inventory). Both of these decisions involve an important feedback

control rule which adjusts the production starts to move the levels of inventory

and WIP toward their desired levels as depicted in Figure B.2.

Fig. B.2. Stock Management Structure Sterman (2000)
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The above figure expounds on how order fulfillment and production schedul-

ing decisions are carried out in the system. The system could only fulfill cus-

tomer orders if inventory is larger than the desired shipments. Consequently, if

inventory falls below the desired levels, this will trigger the production schedul-

ing to increase production starts. The adjustment variables are then propor-

tional to the difference of the desired and the actual inventory levels, delayed

by a certain adjustment time. The delay is incorporated to account for the time

it will take production schedulers or management to react to the discrepancies

between actual on-hand inventory and the desired quantities.

In the workforce-inventory system, workforce or labor is defined to be the

limiting resource for the rate of production starts. Similarly, Figure B.3 shows

that this is also modelled to follow a stock management structure, wherein

the system seeks to maintain a workforce level that could support the desired

production in order to fulfill customer orders.

However, the hiring of workers does not occur instantaneously on the event

that the firm needs additional workers. As discussed by Sterman (2000), hiring

takes time since positions must be authorized and vacancies must be created.

Furthermore, job openings must be posted and advertised, followed by inter-

views, background checks, training, and other delays. As shown in Figure B.4,

these considerations are represented by the level of vacancies in the system.

The amount of vacancies is increased by the vacancy creation rate and de-

creased by the vacancy closure rate. The latter is determined by the hiring
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Fig. B.3. Stock Management Structure Sterman (2000)

rate. Hence, the stock of vacancies is the supply line of orders for workers that

have been placed but not yet filled. The Time to Fill Vacancies represents the

average delay between creating and filling a vacancy (Sterman, 2000).

Fig. B.4. Stock Management Structure Sterman (2000)
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Fig. B.5. Stock Management Structure Sterman (2000)

Finally, the workforce and inventory components of the system are in-

tegrated through the identified connections in Figure B.5. Specifically, the

desired workforce level is based on the desired production level. In turn, the

production rates is determined by the current workforce level.
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C. DERIVATION OF PERFORMANCE

CONSTRAINTS FOR WORKFORCE-INVENTORY

SYSTEM

In order to translate the targets to the dynamic response constraints, calculate

for the right (V ) and left (W ) eigenvectors using the nominal values of the

current system, which are respectively found as in the following:

V =



0.3331 0.7832 0.7832 −0.6713

0.0215 −0.0068 + 0.0066i −0.0068− 0.0066i −0.0010

−0.0589 −0.0052− 0.0053i −0.0052 + 0.0053i 0.0010

−0.9408 −0.0593 + 0.6188i −0.0593− 0.6188i 0.7412



W =



0.0034 + 0.0091i 0.0034− 0.0091i −0.0104 −0.0086

0.9495 0.9495 −0.8844 −0.1727

0.3026− 0.0818i 0.3026 + 0.0818i −0.4665 −0.9849

0.0039 + 0.0083i 0.0039− 0.0083i 0.0054 −0.0067


Subsequently, it is also necessary to obtain the matrices corresponding to

the partial derivatives of state matrix D with respect to the uncertain and
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control variables. For instance, in the case of the uncertain parameter ATF,

this is equivalent to:

∂D

∂ATF
=



0 0 0 0

0 0 −1
ATFV 2 0

−(MCT+WAT )
(10∗IAT∗LAT∗V AT∗WAT )

1
(ADE∗V AT ) −

1
(LAT∗V AT )

1
ATFV 2

−1
(10∗LAT∗V AT∗WAT )

0 0 0 0



Thus, the change in the eigenvalues with respect to ATF is,

W T · ∂D
∂ATF · V

W TV
·∆ATF

The same procedure is carried out for the remaining variables and targets in the

system, where the partial derivatives of matrix D with respect to each variable are

as follows:

∂D

∂MCT
=



0 0 0 −1
MCT 2

0 0 0 0

−
1

10∗LAT∗WAT
+ ATF

10∗LAT∗V AT∗WAT
IAT 0 0 0

0 0 0 1
MCT 2



∂D

∂WAT
=



0 0 0 0

0 0 0 0

−
1

10∗LAT∗WAT −
MCT

10
+WAT

10
LAT∗WAT2 + ATF

10∗LAT∗V AT∗WAT − ATF∗(MCT+WAT )

10∗LAT∗V AT∗WAT2

IAT 0 0
1

10∗LAT + ATF
10∗LAT∗V AT

WAT 2

0 0 0 0
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∂D

∂ADE
=



0 0 0 0

0 1
ADE2 0 0

0 −
ATF
V AT

+1

ADE2 0 0

0 0 0 0



∂D

∂V AT
=



0 0 0 0

0 0 0 0

ATF∗(MCT+WAT )
10∗IAT∗LAT∗V AT 2∗WAT

ATF
LAT∗V AT 2 − ATF

ADE∗V AT 2
1

V AT 2
ATF

10∗LAT∗V AT 2∗WAT

0 0 0 0



∂D

∂LAT
=



0 0 0 0

0 0 0 0
MCT
10 +WAT

10
LAT2∗WAT

+
ATF∗(MCT+WAT )

10∗LAT2∗V AT∗WAT
IAT

ATF
V AT

+1

LAT 2 0
1

10∗LAT2+
ATF

10∗LAT2∗V AT
WAT

0 0 0 0



∂D

∂IAT
=



0 0 0 0

0 0 0 0
MCT
10 +WAT

10
LAT∗WAT

+
ATF∗(MCT+WAT )
10∗LAT∗V AT∗WAT
IAT 2 0 0 0

0 0 0 0
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Using the notations z1, ..., z5 and y1 and y2 for the uncertain and design variables,

respectively, it therefore follows that S
y
µ +S

y
ω and Szµ +Szω can be obtained by the

summation of the eigenvalue sensitivity matrices,

S
y
µ + S

y
ω =

2∑
m=1

W T · ∂D
∂ym

· V
W TV

Szµ + Szω =
5∑

l=1

W T · ∂D
∂zl

· V
W TV

Thus, once the sensitivity matrices have been classified according to the real and

imaginary parts, the updated eigenvalues are then equivalent to:

µ (y, z) = µ̄+ S
y
µ · y + Szµ · z

and

ω (y, z) = ω̄ + S
y
ω · y + Szω · z

where the stability constraints can be formulated for u as µ (y,z) ≤ 0. A similar

procedure is applied to the remaining dynamic response constraints.
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D. ALTERNATIVE UNCERTAINTY SET

DEFINITION

This section shows an alternative definition for the uncertainty set, one that allows

z to be negative. To model the uncertain parameters z, we write

z̃ = z̄ + z (D.1)

where z̄ denotes the nominal values of the parameters and the perturbations z are

such that

z ∈ [−γz, γz]

with the scalar parameter γ ∈ [0, 1] and z ≥ 0. Hence, γz or −γz represents the

maximum possible perturbations in the set. Similarly, the relationships between the

uncertain parameters could be defined as follows

Rz ≤ e (D.2)

where the WxK matrix R and the vector e = [e1, · · · , eW ] are estimated coefficients

of the W relationships. Combining the above, for a given γ, we define the set of

possible outcomes Zγ as:

Zγ =
{
z ∈ ℜK : z ∈ [−γz, γz], Rz ≤ e

}
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From the above discussion, the design problem is then to maximize the γ-level

robustness of the system to meet the specified system requirements through the

calibration of the control parameters. That is, we seek a design such that the system

requirements are always satisfied under perturbations of the uncertain parameters

arising from the set Zγ with the largest achievable value of γ. The robust design

problem is stated in the following formulation.

Problem R

max
y∈Y

γ

A · y +B · z ≤ τ ∀z ∈ Zγ (D.3)

(D.3) must hold for all z ∈ Zγ . In order to make the formulation amendable for

solution using linear programming techniques, we apply the following Proposition to

develop an equivalent formulation of Problem R termed as the robust counterpart

problem C.

Proposition 1a: Define P , Q ∈ ℜN×K and E ∈ ℜN×W as matrices of variables.

Problem R is then equivalent to the following:

Problem C

max
y∈Y

γ

s.t.

A · y + (P +Q) · γz + E · e ≤ τ (D.4)

Q− P −E ·R ≤ −B (D.5)

E,P,Q ≥ 0 (D.6)

218



Proof : First, it suffices that:

A · y + max
z∈Zγ

{B · z} ≤ τ (D.7)

The maximization in the left-hand side can be written explicitly as follows.

max B · z s.t. − γz ≤ z ≤ γz , Rz ≤ e (D.8)

The above is a linear optimization problem and the dual formulation can be written

as:

min γz · (P +Q) + eE (D.9)

s.t. P −Q+R · E ≥ B , P,Q,E ≥ 0 (D.10)

where P,Q ∈ ℜN×K and E ∈ ℜN×W denote the variables in the dual formulation.

The formulation C is then derived by replacing the maximization term in (D.7) with

the objective function value in (D.9), thus obtaining (3.6). Finally, (D.5) and (D.6)

are obtained by augmenting (D.10) into R.
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E. CONNECTIONS OF DESIGN ROBUSTNESS

WITH SATISFICING BEHAVIOR

In the following, define the position level a(ṽ) as the uncertain level above a given

target (i.e., a profit target), so that positive realizations of a(ṽ) indicate that the

target is achieved, and negative realizations indicate a target shortfall. For conve-

nience, inequality relations a(ṽ) ≥ 0 are applied in the state-wise sense. We then

have the following axiomatic definition of satisficing measures ρ, where 1 ≥ ρ ≥ 0,

that operate on a(ṽ):

Definition 4 (from Brown and Sim (2010)): A given function ρ (a(ṽ)) is a valid

satisficing measure if all the below are true:

1. Attainment content: If a(ṽ) ≥ 0, then ρ(a(ṽ)) = 1.

2. Non-attainment apathy: If a(ṽ) < 0, then ρ(a(ṽ)) = 0.

3. Monotonicity: If a(ṽ) ≥ a′(ṽ), then ρ(a(ṽ)) ≥ ρ(a′(ṽ)).

4. Gain continuity: limα↓0 ρ(a(ṽ) + α) = ρ(a(ṽ)).

For clarity of notation, in the the following we use the generic compact form of

the constraints of the robust optimization model (6.11)–(6.18) involving adjustable

decisions:

fk(ṽ) ≥ 0 ∀ k = 1, · · · ,K, ṽ ∈ Zγ
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where fk is a given function of ṽ (and hence uncertain in general), and the above

requires fk to be non-negative for all ṽ ∈ Zγ . Defining the position level a(ṽ) =

mink=1,··· ,K fk(ṽ), the above can be re-written as:

a(ṽ) ≥ 0 ṽ ∈ Zγ

The robustness level associated with a(ṽ), for the given set of functions fk,

∀k = 1, · · ·K, is then:

γ (a(ṽ)) =


sup{γ ∈ [0, 1] : minṽ∈Zγ

a(ṽ) ≥ 0} if feasible,

0 otherwise.

(E.1)

The robustness level γ thus describes the largest uncertainty set Zγ that can be

tolerated, given the set of functions fk, ∀k = 1, · · ·K. We then have the following

result:

Proposition 4 γ(a(ṽ)) is a satisficing measure as defined in Definition 1 on the

extreme-value uncertain variable a(ṽ).

Proof : We show that γ(a(ṽ)) defined in (E.1), where the uncertain variable

a(ṽ) = min
k=1,··· ,K

fk(ṽ) ∀ ṽ ∈ Zγ

satisfies each axiom in Definition 1.

221



1. Attainment content.

Given : a(ṽ) ≥ 0

⇒ mink=1,··· ,K fk(ṽ) ≥ 0 ∀ ṽ ∈ Z(γ = 1)

⇒ minṽ∈Zγ
mink=1,··· ,K fk(ṽ) ≥ 0 ∀ γ ∈ [0, 1]

⇒ γ(a(ṽ)) = 1

where the last inequality follows from noting that Z ′
γ ⊆ Zγ whenever γ′ ≤ γ.

2. Non-attainment apathy.

Given : a(ṽ) < 0

⇒ mink=1,··· ,K fk(ṽ) < 0 ∀ ṽ ∈ Zγ , ∀ γ ∈ [0, 1]

⇒ γ(a(ṽ)) = 0 (by definition in (E.1)).

3. Monotonicity. Given fk(ṽ) and f ′
k(ṽ), and where a′(ṽ) = mink=1,··· ,K f ′

k(ṽ),

we have that:

a(ṽ) ≥ a′(ṽ)

⇒ mink=1,··· ,K fk(ṽ) ≥ mink=1,··· ,K f ′
k(ṽ) ∀ ṽ ∈ Z (γ = 1)

⇒ mink=1,··· ,K fk(ṽ) ≥ mink=1,··· ,K f ′
k(ṽ) ≥ 0 ∀ ṽ ∈ Z

(
γ = γ(a′(ṽ))

)
⇒ γ(a(ṽ)) ≥ γ(a′(ṽ))
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4. Gain continuity. We proceed by showing that the below must hold simulta-

neously:

lim
α↓0

γ(a(ṽ) + α) ≤ γ(a(ṽ)) (E.2)

lim
α↓0

γ(a(ṽ) + α) ≥ γ(a(ṽ)) (E.3)

We show (E.2) by contradiction. Suppose limα↓0 γ(a(ṽ) + α) = γ(a(ṽ)) + ϵ

for some ϵ > 0. Then we have that:

min
ṽ∈Z(γ(a(ṽ))+ϵ)

min
k=1,··· ,K

fk(ṽ) + α ≥ 0 ∀ α > 0 (E.4)

Furthermore, by definition of γ(a(ṽ)) we must have:

min
ṽ∈Z(γ(a(ṽ))+ϵ)

min
k=1,··· ,K

fk(ṽ) < 0

Clearly, by choosing any ∆ > 0 and such that ∆ < −minṽ∈Z(γ(a(ṽ))+ϵ)mink=1,··· ,K fk(ṽ),

it follows that

α = − min
ṽ∈Z(γ(a(ṽ))+ϵ)

min
k=1,··· ,K

fk(ṽ)−∆ > 0

which provides the required contradiction in (E.4).

Finally, (E.3) is straightforward to show by applying monotonicity of γ. That

is, we must have that γ(a(ṽ) + α) ≥ γ(a(ṽ)) for all α > 0. �
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