
Improving Users’ Acceptance in Recommender System

Chen Wei

B.Eng. in Software Engineering

South China University of Technology

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2013



ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisors, Professor Wynne Hsu and

Professor Mong Li Lee for their valuable guidance, continuous support, encouragement

and freedom to pursue independent work throughout my Ph.D study. Above all, they are

like my friend, which I appreciate them from my heart.

I would also like to thank my thesis committee, Professor Anthony K. H. Tung and

Professor Chew Lim Tan, who provided encouraging and constructive feedback. To the

many anonymous reviewers at the various conferences, thank you for helping to shape

and guide the direction of my work with your careful and detailed comments.

I would also like to thank my classmates in the Database Research Lab for their

supports and friendship especially during the many sleepless night rushing to complete

experiments before conference deadline. Specially, I would like to thank my parents for

supporting me spiritually throughout my life.

Last but not the least, I would like to thank my wife Zhou Ye for her personal support

and great patience. Without her encouragement and understanding, it would have been

impossible for me to finish my Ph.D study.

i



ii



TABLE OF CONTENTS

1 Introduction 1
1.1 Improving users’ acceptance using Rating and Tagging Data . . . . . . 2
1.2 Improving users’ acceptance using Cross Domain Data . . . . . . . . . 4
1.3 Improving users’ acceptance using Social Trust Data . . . . . . . . . . 6
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 11
2.1 Recommender System . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Techniques of Recommender System . . . . . . . . . . . . . . . . . . . 12

2.2.1 Content Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Measurement of Users’ Acceptance . . . . . . . . . . . . . . . 19

2.3 Recommender System using Rating and Tagging Data . . . . . . . . . . 21
2.4 Recommender System using Cross Domain Data . . . . . . . . . . . . 25

2.4.1 Latent feature shares . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Binary Knowledge Transfer using Cross Domain Data . . . . . 27
2.4.3 Ternary Knowledge Transfer using Cross Domain Data . . . . . 28

2.5 Recommender System using Social Trust Data . . . . . . . . . . . . . . 28
2.5.1 Neighborhood-Based Model using Social Trust Data . . . . . . 29
2.5.2 Model-Based using Social Trust Data . . . . . . . . . . . . . . 31

3 Improving users’ acceptance using Rating and Tagging Data 33
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Tensor algebra and multilinear analysis . . . . . . . . . . . . . . . . . 36
3.3 Recommender System Overview . . . . . . . . . . . . . . . . . . . . . 41

iii



3.3.1 Recommender Engine - Quaternary Semantic Analysis . . . . . 44
3.3.2 Top-N Recommendation and Prediction . . . . . . . . . . . . . 49
3.3.3 Tag-based Explanation and Feedback . . . . . . . . . . . . . . 51

3.4 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Experiments on Users’ Acceptance . . . . . . . . . . . . . . . 61
3.4.2 Sensitivity Experiments . . . . . . . . . . . . . . . . . . . . . 71

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Improving users’ acceptance using Cross Domain Data 75
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Cross Domain Framework . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Cluster-Level Tensor . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Fusing Social Network Information . . . . . . . . . . . . . . . 84

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.1 Experiments on Users’ Acceptance . . . . . . . . . . . . . . . 89
4.4.2 Sensitivity Experiments . . . . . . . . . . . . . . . . . . . . . 95
4.4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Improving users’ acceptance using Social Trust Data 101
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Receptiveness over Time Model . . . . . . . . . . . . . . . . . 105
5.3.2 Applications of RTM . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4.1 Experiments on Users’ Acceptance . . . . . . . . . . . . . . . 119
5.4.2 User Interest Change Case Study . . . . . . . . . . . . . . . . . 121
5.4.3 User Receptiveness Case Study . . . . . . . . . . . . . . . . . 122
5.4.4 Sensitivity Experiments . . . . . . . . . . . . . . . . . . . . . 123

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusion 125
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

iv



SUMMARY

Personalized recommender systems aim to push only the relevant items and informa-

tion directly to the users without requiring them to browse through millions of web re-

sources. The challenge of these systems is to achieve a high user acceptance rate on their

recommendations. Collaborative filtering is a method of increasing user’ acceptance to-

wards recommendation (filtering) about the interests of a user by collecting preferences

or taste information from many users (collaborating). In this thesis, we focus on im-

proving user’s acceptance by collaborative filtering on three popular user-generated data

types: social tagging and rating data, cross domain data and social trust data. We outline

our approaches as follows.

First, we study the problem of increasing the user’s acceptance using social tag-

ging and rating data. We show that ternary relationships such as users-items-ratings,

or users-items-tags, are insufficient to increase user’ acceptance towards recommenda-

tions. Instead, we model the quaternary relationship among users, items, tags and ratings

as a 4-order tensor and cast the recommendation problem as a multi-way latent semantic

analysis problem. A unified framework for user recommendation, item recommenda-

tion, tag recommendation and item rating prediction is proposed. Besides that, we also

provide the explanation for the recommendation by using tags. Tags are used as in-

termediary entities that not only relate target users to the recommended items but also

v



understand users intents. Our system also allows tag-based online relevance feedback.

Experiment results on a real world Movielens dataset show that the proposed approach

is able to increase the user acceptance compared to the state-of-the-art recommendation

techniques.

Next, we study the problem of increasing the user’s acceptance using cross domain

data, which enables more accurate recommendation by leveraging the knowledge in the

other domain. We first show that high dimension relationships transfer without decom-

position may decrease user’ acceptance towards recommendations. Instead, we model

the high dimension relationship transfer without decomposition. We propose a gen-

eralized cross domain collaborative filtering framework that integrates social network

information seamlessly with cross domain data. This is achieved by utilizing tensor

factorization with topic based social regularization. This framework is able to transfer

high dimensional data without the need for decomposition by finding shared implicit

cluster-level tensor from multiple domains. Extensive experiments conducted on real

world datasets indicate that the proposed framework outperforms state-of-art algorithms

for item recommendation, user recommendation and tag recommendation.

Finally, we study the problem of increasing the user’s acceptance using social trust

data. We show that the complex interaction between user interests and the social rela-

tionship over time is important to increase the user’s acceptance toward recommenda-

tion, which is ignored by existing recommender systems model. We propose a proba-

bilistic generative model, called Receptiveness over Time Model (RTM), to capture this

interaction. We design a Gibbs sampling algorithm to learn the receptiveness and in-

terest distributions among users over time. The results of experiments on a real world

dataset demonstrate that RTM-based recommendation outperforms the state-of-the-art

recommendation methods. Case studies also show that RTM is able to discover the user

interest shift and receptiveness change over time.
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CHAPTER 1

INTRODUCTION

As we enter the age of social networks, social media has been expanding rapidly, lead-

ing to a massive amount of user-generated data. Applications of recommender system

typically involve different kinds of data such as rating data from Netflix1, social tagging

data from Digg 2, web click log from Google 3 , purchase and review data from Amazon

4, and location data from Foursquare 5, etc. At the same time, the growth of crowdsourc-

ing, where knowledge can be harvested from the masses, gives rise to new ways to build

intelligent recommender system to increase user’ acceptance towards recommendation.

While there have been some research works that focus on the mining the knowledge

from different kinds of user generated data, more works need to be done. In this thesis,

we focus on three types of user generated data. They are social tagging and rating data,

cross domain data and social trust data respectively.

1www.netflix.com
2digg.com
3www.google.com
4www.amazon.com
5https://foursquare.com
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1.1 Improving users’ acceptance using Rating and Tag-

ging Data

Social network systems such as FaceBook and YouTube have played a significant role

in capturing both explicit and implicit user preferences for different items in the form

of ratings and tags. This forms a quaternary relationship among users, items, tags and

ratings. Existing systems have utilized only ternary relationships such as users-items-

ratings [30, 4, 42, 66], or users-items-tags [74, 68, 59] to derive their recommendations.

However, recommendations based on ternary relationships which would have missed out

important associations and may decrease users’ acceptance as it is not accurate.

Table 1.1: Ternary relations among user, rating and item in Book Domain

User Rating Item
U1 like Forrest Gump
U1 like Beautiful Mind
U2 like Forrest Gump
U2 like Groundhog Day
U2 like Groundhog Day
U3 like Forrest Gump
U4 dislike Forrest Gump
U4 dislike Toy Story
U5 like New moon
U6 like New moon
U7 like Good omens
U8 like James Bonds Girls
U9 like Ghost rider
U9 like James Bonds Girls
U9 like Scorpia

Let us consider the ternary relationship users-rating-items in Table 1.1. From this ta-

ble, we conclude that users U1, and U2 have common interests with U3 since they all like

the movie “Forrest Gump”. Hence, the movies “Beauti f ulMind” and “Groundhog Day”

will be recommended to U3 because U1 and U2 also like “Beauti f ul Mind” and “Groundhog Day”.

On the other hand, if we consider the ternary relationship users-tags-items in Table

1.2. The users U2 and U4 are said to have common interests with U3 because they both

2



Table 1.2: Ternary relations among user, tags, and item in Book Domain

User Tag Item
U1 psychology Forrest Gump
U1 psychology Beautiful Mind
U2 comedy Forrest Gump
U2 excellent Groundhog Day
U2 comedy Groundhog Day
U3 comedy Forrest Gump
U4 comedy Forrest Gump
U4 comedy Toy Story
U4 overrated Toy Story
U5 fantasy New moon
U6 romance New moon
U7 drama Good omens
U8 action James Bonds Girls
U9 action Ghost rider
U9 action James Bonds Girls
U9 adventure Scorpia

tag the movie “Forrest Gump” as “comedy”. As a result, “Groundhog Day” and “Toy

story” will be recommended to U3 since U2 and U4 also tag “Groundhog Day” and “Toy

story” as “comedy”.

Now, instead of the two ternary relationships, we consider the quaternary relation-

ships among users, tags, ratings, and items as shown in Table 1.3. We note that only users

U2 would be highlighted to U3 and the only movie recommended to U3 is “Groundhog

Day”. This is because although U1 likes “Forrest Gump”, he likes it for its psychology

aspects as shown by the tag he used psychology, whereas U3 likes the movie “Forrest

Gump” as a comedy. Hence, U1 does not share a common interest with U3. As a result,

U1’s item “Beauti f ul Mind” will not be recommended to U3.

Similarly, although U4 tags “Toy S tory” with “comedy”, the rating given by U4 for

the movie is ”dislike”. In other words U3 and U4 have different opinions on “Forrest Gump”

even though they both use the tag “comedy”, U4 should not be considered as having com-

mon interests with U3.

Clearly, there is a need to capture the quaternary relationship among users, items,

tags and ratings so as to develop more accurate recommender system.

3



Table 1.3: Quaternary relations among users, tags, ratings and items in Book Domain

User Tag Rating Item
U1 psychology like Forrest Gump
U1 psychology like Beautiful Mind
U2 comedy like Forrest Gump
U2 excellent like Groundhog Day
U2 comedy like Groundhog Day
U3 comedy like Forrest Gump
U4 comedy dislike Forrest Gump
U4 comedy dislike Toy Story
U4 overrated dislike Toy Story
U5 fantasy like New moon
U6 romance like New moon
U7 drama like Good omens
U8 action like James Bonds Girls
U9 action like Ghost rider
U9 action like James Bonds Girls
U9 adventure like Scorpia

1.2 Improving users’ acceptance using Cross Domain Data

With the increasing popularity of social media communities, we now have data repos-

itories from various domains such as user-item-tag data from social tagging in book

and movie domains [39] [40], and friendship data between users in social networks

[44, 28, 69, 86]. The joint analysis of information from various domains and social

networks has the potential to improve our understanding of the underlying relationships

among users, items and tags and increase users’ acceptance in recommender systems.

For example, users who like to read romance books generally have similar prefer-

ences as users who like to watch romance movies. By learning the characteristics of

romance lovers from the Movie domain and transferring the learned characteristics to

the Book domain, recommender systems can predict users’ preferences more accurately

and provide more customized recommendations. Besides the cross domain knowledge,

another major source of information that has yet to be fully utilized is that of social

network data. For example, users interests may be affected by their friends.

Let us consider Table 1.4 and Table 1.5 which show sample data from the auxiliary

4



Table 1.4: Ternary relations among users, tags, and items in Movies Domain

User Tag Item
U′1 fantasy Twilight
U′1 romance Twilight
U′1 drama Big Daddy
U′2 fantasy Spider man
U′2 adventure Spider man
U′2 action Iron Man
U′3 drama Big Daddy
U′3 comedy Little man
U′4 action Iron Man
U′4 action Star war
U′5 adventure Die hard
U′5 adventure Braveheart

Table 1.5: Social Trust in Books Domain

User User
U3 U2

U5 U7

U8 U9

Movie domains and social network respectively. Suppose we want to recommend some

book to user U5 in Table 1.2. Unfortunately, we cannot find similar users in the Book

domain to base the recommendation on since U5 is the only user who uses the tag fantasy.

However, we can utilize the denser Movie domain dataset to learn the characteristics of

users and make suitable recommendations to U5.

For example, Table 1.4 show the ternary relationship in the Movie domain. Based

on the relationship, we see that U5 is similar to U′1 and U′2 because they all like fantasy

items. Further, we observe that the book ‘New moon‘, read by U5, has been tagged as

fantasy and romance. Between users U′1 and U′2, we observe that U′1 watches fantasy,

romance and comedy type of movies, while U′2 watches fantasy, adventure and action

type of movies. Thus, we conclude that U5 is more similar to U′1 than U′2. In addition,

from the Movie domain, we realize that users who like fantasy and romance type of

movies also like comedy movies. Thus, we should recommend comedy books “Good

omens” to U5. This is further strengthened by the friend relationship in Table 1.5, As we

5



know from some social network website that U5 is a friend of U7, we may infer that U5

is influenced by U7. As such, we will recommend the same book “Good omens” to U5

which have been tagged by U7 before.

1.3 Improving users’ acceptance using Social Trust Data

With the advent of online social networks, social trust based CF approaches to recom-

mendation have emerged [28, 69, 47]. The assumption is that friends tend to influence

their friends to exhibit similar likes and dislikes. Hence, we can also increase user ac-

ceptance in recommender systems by taking into account the social relationships.

Table 1.6: Example of Table 1.2 over Time

(a) Ternary relations among user, rating and item over
Time in Book Domain

User Rating Item Time
U1 like Forrest Gump T1

U1 like Beautiful Mind T1

U2 like Forrest Gump T1

U2 like Groundhog Day T1

U2 like Groundhog Day T1

U3 like Forrest Gump T1

U3 like Toy Story T2

U4 dislike Forrest Gump T1

U4 dislike Toy Story T1

U5 like New moon T1

U6 like New moon T1

U7 like Good omens T1

U8 like James Bonds Girls T1

U9 like Ghost rider T1

U9 like James Bonds Girls T1

U9 like Scorpia T1

U10 like Toy Story T2

U10 like Shrek T2

(b) Social Trust Over Time

User User Time
U3 U2 T1

U5 U7 T1

U8 U9 T1

U3 U10 T2

U10 U3 T2

Let us consider the snapshots of users’ item ratings of Table 1.1 at time points T1 and

T2 in Table 1.6(a). Besides that, we also have additional social relationship at time points

T1 and T2 in Table 1.6(b). Suppose our target user is U3. At time point T1, both users

6



U1 and U2 have watched and rated the Book “Forrest Gump”. Traditional CF methods

[63, 66, 57] will group U1, U2 and U3 as similar users and recommend “Beauti f ul Mind”

and “Groundhog Day” to U3 since U1/U2 has watched these books previously. Yet, U3’s

interest does not remain static. We observe that at time point T2, his interest has shifted

from comedy book to animation book as he rates a new item “Toy S tory”. Recognizing

this, CF with temporal dynamics will recommend another animation book ”S hrek” to U2

instead. On the other hand, looking at the social relationships among users, we realize

that U1 and U3 are friends. Hence, social network based CF will conclude that U3

probably like “Groundhog Day” since his friend U2 has read and rated this book. Each

of the different methods arrive at different items to recommend. How do we reconcile

the different recommendations? To complicate matter, social relationships are not static

but evolve over time as a user can make new friends and old friends do grow apart. We

observe that at time point T1, U3 has only one friend U2, whereas at time point T2, his

friends are {U2,U10}. Now if we want to give a recommendation to U3 at time point T2,

what item should we recommend so that it is most likely to be accepted by U3?

To answer this question, we must be able to quantify the degree of influence on a

user’s decision making process from his/her long term and short term interests, as well

as his/her social trust relationships over time. Note that these two factors are not in-

dependent. We advocate that when two users’ long term and short term interests are

aligned, they are likely to become friends, and they will tend to be more receptive to-

wards each other’s preferences. Conversely, if the users’ interests are not aligned, they

will grow apart after some time and become less receptive towards the preferences of

the other user. Clearly, there is a need to quantify the dynamic interaction between user

interest and social trust so as to develop a more accurate recommender system.

1.4 Contributions

The contributions of this thesis are stated as follows:
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This thesis examines three ways to improve users’ acceptance towards recommen-

dation. First, Quaternary Semantic Analysis (QSA) algorithm that utilizes social rating

and tagging data is proposed. Second, FUSE algorithm is proposed to allow knowledge

transfer from other domain to the target domain. Third, Receptiveness over Time Model

(RTM) algorithm is proposed by modeling the interaction between users’ interest and

social relation. The major contributions are summarized as follows.

• We show that ternary relationships are insufficient to provide accurate recommen-

dations which may decrease users’ acceptance. Instead, we model the quater-

nary relationship among users, items, tags and ratings as a 4-order tensor and

cast the recommendation problem as a multi-way latent semantic analysis prob-

lem [81, 84]. A unified framework Quaternary semantic analysis(QSA) for user

recommendation, item recommendation, tag recommendation and item rating pre-

diction is proposed. The results of extensive experiments performed on a real

world dataset demonstrate that our unified framework outperforms the state-of-

the-art techniques in all the four recommendation tasks.

• We show that cross domain data can be transferred without decomposition may

decrease user’ acceptance towards recommendations and propose a generalized

cross domain collaborative filtering framework FUSE that integrates social net-

work information seamlessly with cross domain data [82]. We find shared implicit

cluster-level tensor from multiple domains and perform tensor factorization with

topic based social regularization. Extensive experiments conducted on real world

datasets indicate that the proposed framework outperforms state-of-art algorithms

for item recommendation, user recommendation and tag recommendation.

• We show that the complex interaction between user interests and the social rela-

tionship over time is important to increase the user’s acceptance toward recom-

mendation [83]. We propose a probabilistic generative model, called Receptive-

ness over Time Model (RTM), to capture this interaction. We design a Gibbs sam-
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pling algorithm to learn the receptiveness and interest distributions among users

over time. Experimental results on a real world dataset demonstrate that RTM-

based recommendation outperforms the state-of-the-art recommendation methods.

Case studies also show that RTM is able to discover the user interest shift and re-

ceptiveness change over time.

1.5 Organization

The rest of this thesis is organized as follows. Chapter 2 includes a literature review

covering some existing recommendation algorithms on different types of data. Their

strengths and weaknesses are discussed. Based on the literature review, we present the

unified framework for social tagging and rating data in detail in Chapter 3. In Chapter

4, we develop a cross domain framework that is applicable in transferring knowledge

from different domain. Further in Chapter 5, we describe methods for improving users’

acceptance by modeling the social trust over the time. Finally, Chapter 6 concludes the

thesis and provides future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Recommender System

Recommender system help user to choose items by predicting user’s interest on an item

based on various sorts of information including item, user information and interactions

between users and items. Resnick and Varian [62] describe a recommender system as a

system which can acquire users’ opinions about different items and also use these opin-

ions to direct users to those items that might be interesting to them. Herlocker [22] says

that a recommender system is one that predicts what items a user might find interesting

or suitable to his/her needs. Burke [13] put forward his definition that a recommender

system is any system that can produce individualized recommendations and have the

ability to guide users in a personalized manner to find interesting information items in a

large space of possible options.
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2.2 Techniques of Recommender System

Broadly speaking, recommender systems can be classified into two types: (1) Content

based [5, 51, 50, 55, 49, 56, 6, 38] (2) Collaborative Filtering [66, 61, 12, 77, 29, 73, 79,

88, 89, 35, 26, 25, 10, 72, 54, 33, 34, 37, 64, 87].

2.2.1 Content Filtering

The content filtering approach [5, 51] creates a profile for each user or item by building

a vector space whereby both the items and users are represented as points in this space.

Given a target user, we obtain obtain the set of the most relevant items for the target user

by comparing the distances between the items and the user profiles and retrieving the

items’ points in the space that are nearest to user profile.

More formally, assuming there is a set of attributes (keywords) {a1 · · · ak} character-

izing item i. The attributes are usually computed by extracting a set of features from item

i (its content) which is useful for recommendation purposes. Let Content(i) denotes the

profile of item i, we have

Content(i) = {w1,w2 · · ·wk} (2.1)

where wk is the weight of k th attribute of item i, this weight can be attained based

on the calculation of TF-IDF [65].

Similarly, Let User(u) be the vector of weights built for user u as follows:

User(u) =
1

|Itemlike|

∑
i∈Itemlike

Content(i) (2.2)

where Itemlike define the sets of items that users u has previously purchased. Given

the user u profile vector and an item l, we calculate the user u’s preference towards to

item l (similarity between user u and item l) as follows:
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p(u, i) = sim(User(u),Content(l)) (2.3)

where sim(·, ·) denotes the cosine similarity between two vectors. Consequently,

a recommender system will determine the appropriateness of recommendation by the

similarity.

Instead of TF-IDF to obtain the weight of attributes for items/users, Pazzani et al,

[55] try to learn “importance” of attribute from the underlying data using statistical

learning which is Bayesian classifier. Similarly, Mooney et al, [49] have applied text

categorization to extracted users/items attributes and their weights. This is done by

simple Bayesian text-categorization algorithm extended to efficiently handle set-valued

features. Balabanovic et al, [5] represents users/items with the 100 most important at-

tributes instead of all attributes. Pazzani et al, [56] design machine learning approach

for learning a linear classifier which try to represent each user as a vector of weighted

words derived from positive training examples using the Winnow algorithm. Besides

bayesian and machine learning approach, Basu et al, [6] use rule induction to represent

the relation between user and items. They design Ripper to learn a function (sets of

rules) that takes a user and item as input and predicts whether the movie will be liked or

disliked. In order to incorporate other information such as rating information, Lee [38]

treats the recommending task as the learning of a user’s preference function that exploits

item content as well as the ratings of similar users. They perform a study of several

mixture models for this task.

In terms of scalability, Berry et al, [7] pointed out the need to introduce some di-

mensionality reduction technique such as latent semantic analysis [17] and probabilistic

latent semantic indexing [25] for the vector space model. Recently, Wang et al, [80] try

to further extent the latent semantic indexing in the large-scale data.

One of the disadvantage of content-based techniques is that it is limited by the fea-

tures that are explicitly associated with the items that these systems recommend. There-

fore, in order to have a sufficient set of features, the content must either be in a form that
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can be parsed automatically by a computer (e.g., text), or the features should be assigned

to items manually. While information retrieval techniques work well in extracting fea-

tures from text documents, some other domains have an inherent problem with automatic

feature extraction. For example, automatic feature extraction methods are much harder

to apply to the multimedia data, e.g., graphical images, audio and video streams. More-

over, it is often not practical to assign attributes by hand due to limitations of resources

[2].

Another disadvantage is that, if two different items are represented by the same set of

features, they are indistinguishable. Therefore, since text-based documents are usually

represented by their most important keywords, content-based systems cannot distinguish

between a well-written article and a badly written one, if they happen to use the same

terms [2].

Besides content filtering, collaborative filtering (CF) is another important class of

recommender system techniques. The major difference between collaborative filtering

and content-based recommender systems is that collaborative filtering only uses the user-

item ratings data to make predictions and recommendations, while content-based recom-

mender systems rely on the features of users and items for predictions. Both content-

based recommender systems and CF systems have limitations. While CF systems do

not explicitly incorporate feature information, content-based systems do not necessarily

incorporate the information in preference similarity across individuals.

2.2.2 Collaborative Filtering

Collaborative filtering (CF) in recommender systems can be roughly divided into two

major categories. Memory-based methods aim at finding like-minded users to predict

the active user’s preference [66, 61, 12, 77, 29, 73, 79, 88, 89]. Model-based methods

[35, 26, 25, 10, 72, 54, 33, 34, 37, 64, 87] model the user-item-rating or user-item-tagging

interaction based on the observed rating or tagging.
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Memory-based

User based GroupLens published the first paper [61] in collaborative filtering, which

is also called user-based collaborative filtering. However, user-based CF fails when the

databases are large and sparse . In 2000, Amazon proposed the item-based collaborative

filtering [66], which is more scalable compared to the user-based CF. User-based CF be-

lieves that target user will have similar preference to users with similar interests. Cosine

similarity and Pearson correlation [66] are two typical measures to evaluate the similarity

of interests. Two users are represented as two vectors in the m dimensional item-space,

where m is the total number of items in the data. The cosine similarity between user i

and j is defined:

sim(i, j) = cos(~i, ~j) =
~i · ~j

||~i|| ∗ ||~j||
(2.4)

where · denotes the dot-product of the two vectors.

Figure 2-1: User-based CF

As illustrated in Figure 2-1, target user u’s rating on item i depends on other similar

user rating on item i. Ratings by users who are more similar are weighted more and

contribute more towards the prediction of the item rating. The set of similar users can

be identified by employing a threshold or selecting the top-N. The most similar users

Nu(uk) is defined as follows:
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Nu = {uk|rank sim(u, uk) ≤ N,Ruk ,i , ∅} (2.5)

where Ruk ,i is the rating of user uk on item i.

Consequently, the predicted rating R̂u,i of test item i by test user u is computed as

[66, 61]:

R̂u,i = ū +

∑
uk∈Nu

sim(u, uk)(Ruk ,i − ūk)∑
uk∈Nu

sim(u, uk)
(2.6)

where ū and ūk denote the average rating made by user u and uk, respectively. Exist-

ing methods differ in their treatment of unknown ratings from similar users (Ru,i = ∅).

Item based CF algorithms [61, 66] use similarity between items instead of users to

predicted the rating of the items. The assumption is that people who agreed in the past

tend to agree again in the future. Users who usually give similar ratings to the same

items are considered to be similar. Two items are represented as two vectors in the m

dimensional user-space, where m is the total user in the data. In cosine similarity, the

similarity between item i and j is defined:

sim(i, j) = cos(~i, ~j) =
~i · ~j

||~i|| ∗ ||~j||
(2.7)

where · denotes the dot-product of the two vectors.

The prediction (preference) of user u given to item i can be obtained by computing

the sum of the ratings given by the user on the items similar to i. Each ratings is weighted

by the corresponding similarity sim(i, j) between items i and j.

Pu,i =

∑
all similar items, j(sim(i, j) ∗ Ru, j)∑

all similar items, j(|sim(i, j)|)
(2.8)

The weighted sum is one of the representation of calculated the prediction, there can

be other approaches such as regression [66]

A number of extensions on memory-based collaborative filtering have been pro-
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posed, Breese et al, [12] design several similarity measurements, including techniques

based on correlation coefficients, vector-based similarity calculations, and statistical

Bayesian methods. In order to address data sparsity problem, Ungar et al, [77] group

users into clusters based on the items they have purchased and making recommenda-

tions at the cluster level rather than individual level. Taking into account the impact of

rating discrepancies among different users, Jin et al, [29] propose an optimization algo-

rithm to automatically compute the weights for different items based on the clustered

distribution of user vectors in item space. For example, an item that is highly favored by

most users should have a smaller impact on the user-similarity than an item for which

different types of users tend to give different ratings. Su et al, [73] extend Bayesian be-

lief nets (BNs) to handle multi-class data and apply it on memory based collaborative

filtering tasks. Wang et al, [79] unify the user based CF and item based CF in a gen-

erative probabilistic framework. Recently, there are many other researchers looked into

the incorporation of the tagging data to improve memory based collaborative filtering

[88, 89].

Model-based

Latent factor models are an alternative approach that tries to explain the ratings by char-

acterizing both items and users on, say, 20 to 100 factors inferred from the ratings pat-

terns. Figure2-2 illustrates this idea for a simplified example in two dimensions [35].

Consider two hypothetical dimensions characterized as female- versus male-oriented

and serious versus escapist. For this model, a user’ predicted rating for a movie, relative

to the movie’ average rating, is equal to the dot product of the movie’ and user’ locations

on the graph. For example, we expect Gus to like “Dumb and Dumber”, hate “The Color

Purple”, and do not mind “Leathal Weapon”.

Model-based CF method utilizes singular value decomposition and its variants. Re-

cently, a number of research have investigated the use of Latent Semantic Analysis

(LSA) [26], probabilistic LSA [25],latent Dirichlet allocation (LDA) [10]. Latent Se-
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Figure 2-2: Latent factor model illustration

mantic Analysis (LSA) [26] is first proposed to use in the language and information

retrieval communities and later applied in recommender system. Based on the LSA,

probabilistic LSA [25] was proposed to provide the probabilistic modeling, and further

latent Dirichlet allocation (LDA) [10] provides a Bayesian treatment of the generative

process.

Along another direction, several attempts have been made to improve the recommen-

dation accuracy based on the matrix factorization model. Specifically, matrix factoriza-

tion methods usually seek to associate both users and items with latent profiles repre-

sented by vectors in a low dimension space that can capture their characteristics. Low-

rank matrix factorization algorithms for collaborative filtering can be roughly grouped

into non-probabilistic and probabilistic (non-negative) approaches.

For non-probabilistic approach, [72] approach uses margin based loss functions such

as the hinge loss used in SVM classification, and its ordinal extensions for handling

multiple ordered rating categories. For ratings that span over K values, this reduces to

finding K − 1 thresholds that divide the real line into consecutive intervals specifying
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rating bins to which the output is mapped, with a penalty for insufficient margin of sep-

aration. Rennie and Srebro [72] suggest a non-linear Conjugate Gradient algorithm to

minimize a smoothed version of this objective function. Fueled by the Netflix compe-

tition, several improvements have been proposed including the use of regularized SVD

[54], and the idea of matrix factorization combined with neighborhood based methods

[33]. Koren [34] extend his work in [33] to incorporate time information and name it as

timeSVD++. The timeSVD++ method assumes that the latent features consist of some

components that are evolving over time and some others that are dedicated bias for each

user at each specific time point. This model can effectively capture local changes of user

preference which the authors claim to be vital for improving the performance.

Another class of techniques is the non-negative matrix factorization popularized

by the work of Lee and Seung [37] where non-negativity constraints are imposed on

user/item latent profile. NMF is in fact essentially equivalent to Probabilistic Latent

Semantic Analysis (pLSA) [25] which has also previously been used for Collaborative

Filtering tasks. Different from [72] which is non-probabilistic framework, Ruslan et al,

[63] present probabilistic algorithms that scale linearly with the number of observations

and perform well on very sparse and imbalanced datasets. Bayesian PMF (BPMF) [64]

provides a Bayesian treatment for PMF to achieve automatic model complexity con-

trol. It demonstrates the effectiveness and efficiency of Bayesian methods and MCMC

in real-world large-scale data mining tasks. Yu et al, [87] develop nonparametric matrix

factorization methods by allowing the latent factors of two low-rank matrix factorization

methods, the singular value decomposition (SVD) and probabilistic principal compo-

nent analysis (pPCA) [75], to be data-driven, with the dimensionality increasing with

data size.

2.2.3 Measurement of Users’ Acceptance

The measurement of users’ acceptance determines on the quality of a recommendation

system. According to Herlocker [24], metrics evaluating recommendation systems can
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be broadly classified into the following broad categories: predictive accuracy metrics,

such as Mean Absolute Error (MAE) and its variants; classification accuracy metrics,

such as precision, recall, F1-measure, and ROC sensitivity and other metrics such as

transparency [9], [22], trustworthiness [18], scalability [3], [21], [66], [67], or privacy

[58], [67]. In this thesis, our focus is on predictive and classification accuracy.

Predictive accuracy metrics mainly compare the estimated ratings against the actual

ratings e.g. Mean Absolute Error (MAE), root mean squared error (RMSE).

Mean Absolute Error (often referred to as MAE) measures the average absolute

deviation between a predicted rating and the user’s true rating. Mean absolute error (Eq.

2.9) has been used to evaluate recommender systems in several cases [66, 63, 4, 44]. The

MAE is given by:

MAE =

∑
ru,i∈D |ru,i − r̂u,i|

|D|
(2.9)

where ru,i is the rating given by user u for item i, r̂u,i is the predicted rating and D is the

size of the testing dataset.

Root Mean Squared Error (often referred to as RMSE) are variant of MAE by

squaring the error before summing it. The RMSE is given by:

RMS E =

√∑
ru,i∈D(ru,i − ˆru,i)2

|D|

where ru,i is the rating given by user u for item i, r̂u,i is the predicted rating and D is the

size of the testing dataset.

In many applications, the task is to recommend to users items that they may adopt In

this case we are interested in the classification accuracy of the recommendation.

Common classification accuracy metrics include precision [23], recall [23] , F-measure[23],

and Receiver Operating Characteristic (ROC) [23]. A recommendation is true positive

(TP) if an item recommended has been adopted by the user. It is true negative (TN), if

an item that has not recommended is not adopted by the user. It is false negative (FN),
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if an item that has not recommended the user is adopted by the user. It is false positive

(FP), if an item that has recommended is not adopted by the user.

Based on this, we have:

Precision =
T P

T P + FP

Recall =
T P

T P + FN

F =
2 ∗ Precision ∗ Recall

Precision + Recall

Receiver Operating Characteristic (ROC) is a graphical technique that uses two met-

rics, true positive rate (TPR) and false positive rate (FPR) where:

T PR =
T P

T P + FN

FPR =
FP

FP + T N

The curve is obtained by plotting TPR against FPR as we vary the number of item

recommenced to the user.

2.3 Recommender System using Rating and Tagging Data

Collaborative tagging systems, also known as folksonomies are web-based systems that

allow users to upload their resources, and to label them with arbitrary words, so-called

tags. These systems are becoming more common among web users. For example popu-

lar web services such as Flickr1, del.icio.us2, Last.fm3 etc, allow users to tag or label an

1www.flickr.com
2delicious.com
3www.last.fm
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item of interest as shown in Figure 2-3.

Figure 2-3: Tags in Flickr

Bogers [11] has attempted to extend existing CF algorithms to tag-based collabora-

tive filtering where the user and item similarities are computed based on their overlaps in

tagging behavior For instance, users who have many of the same tags and thus have more

tag overlap between them, can be seen as rather similar. Items that are often assigned the

same tags are also more likely to be similar than items that share no tag overlap at all.

For Tag-based CF using user similarity, they calculate tag overlap on the User-Tag

matrix or on the binarized User-Tag matrix, depending on the metric. The user similarity

in equation 2.4 is changed to Jacard overlap sim jaccard(i, j) between user i and user j. Let

two users be represented as two vectors in the t dimensional tag-space, where t is the

total number of items in the data, the similarity between user i and user j is defined as

sim jaccard(i, j) =
|~i ∩ ~j|

|~i ∪ ~j|
(2.10)

where~i and ~j are user and item vector respectively.
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Likewise, for Tag-based CF using item similarity, they calculate tag overlap on the

item-tag matrix or on the binarized item-Tag matrix, and Jacard overlap between items

is used for item similarity. However if we only applied the standard memory-based CF

algorithms to the data sets, we would be neglecting the extra layer of information formed

by the tags. In other words, we will lose the tagging information which not only tells

what a user likes, but also why he or she likes it.

Figure 2-4: Extend user item matrix by including user tags as items and item tags as
users (Tso-Sutter et al. 2008)

To address the problem, Tso-Sutter et al. [76] propose a generic method that al-

lows tags to be incorporated into standard CF algorithms, by decomposing the three-

dimensional<user-item-tag> correlations into three two-dimensional correlations, which

is <user, tag> and <item, tag> and <user, item> as shown in Figure 2-4.

However,decomposing the three dimensions all together without reducing them into

lower dimensions result in information loss. Symeonidis et al. (2008) [74] and Rendle

et al. (2009) [59] proposed tensor factorization based approach for folksonomy data

structure. By representing user-item-tag as a 3-order tensor A, one is able to exploit

the underlying latent semantic structure and obtain the multi-way correlations between

users, tags and items (See Figure 2-5).

The factorization ofA is expressed in Equation 2.11. U (i) are orthonormal matrices

corresponding to the dominant singular vectors at i-mode . S is the core tensor that

contains the singular values, thus it has the same size as A and the property of all or-
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Figure 2-5: Tensor representation left (Symeonidis et al. 2008), right (Rendle et al.
2009)

thogonality. The symbol ×i denotes the i-mode multiplication between a tensor and a

matrix.

A = S ×1 U(1) ×2 U(2) ×3 ×3U(3) (2.11)

After decomposingA, the matrices U(1),U(2),U(3) and the core tensorS are truncated

by maintaining only the highest D singular values and the corresponding singular vectors

per mode (henceforth, D denotes the fraction, e.g., 0.7, of the maintained values divided

by the original number of values). This produces the truncated matrices Û(1) ∈ R|User|×D1 ,

Û(2) ∈ R|Item|×D2 , Û(3) ∈ R|Tag|×D3 . and the truncated core tensor Ŝ ∈ RD1×D2×D3 . Using

truncation we can approximate with the reconstructed tensor Â as expressed in Eq. 2.12

and illustrated in Figure 2-6.

Â = S ×1 Û(1) ×2 Û(2) ×3 ×3Û(3) (2.12)

Once is computed, the list with the N highest scoring tags for a given user u and a

given item i can be calculated by:

Top(u, i,N) =
N

argmax
t∈T

Âu,i,t (2.13)

Recommending N resources to a given user u for a particular tag t can be done in a

similar manner. Moreover, other users can be recommended to a particular user u given

a specific tag t, according to the total score that results by aggregating all resources that
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Figure 2-6: Tensor Factorization

are tagged with t by u.

Different from Symeonidis et al., Rendle et al. (2009) distinguish between positive

and negative examples and missing values in order to learn personalized ranking of tags.

The idea is that positive and negative examples are only generated from observed tag

assignments. Observed tag assignments are interpreted as positive feedback, whereas

the non-observed tag assignments of an already tagged resource are negative evidences.

All other entries, i.e., all tags for a resource that a user has not tagged yet, are assumed

to be missing values (Figure 2-5).

2.4 Recommender System using Cross Domain Data

In real-world recommender systems, users can rate only a limited number of items, so the

rating matrix is always extremely sparse. The available rating data that can be used for

k-NN search, probabilistic modeling, or matrix factorization are clearly insufficient. The

sparsity problem has become a major bottleneck for most collaborative filtering meth-

ods. Cross-domain collaborative filtering is an emerging research topic in recommender

systems. It aims to alleviate the sparsity problem in individual CF domains by transfer-

ring knowledge among related domains. For example, users who like to read romance

books generally have similar preferences as users who like to watch romance movies as
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shown in Figure 2-7. By learning the characteristics of romance lovers from the Movie

domain and transferring the learned characteristics to the Book domain, recommender

systems can predict users’ preferences more accurately and provide more customized

recommendations.

Figure 2-7: The correspondence of transfer from Movie Domain to Book Domain

Cross domain collaborative filtering methods can be categorized into (a) latent-feature

sharing[71] [14][45][78] (b) binary relationships knowledge transfer [52][40]; and (c)

ternary relationship knowledge transfer with decomposition [70].

2.4.1 Latent feature shares

A common cross-domain CF scenario is that the data in one domain (e.g., a new book

website) are very sparse while the data in some related domain are abundant (e.g., a pop-

ular movie website). In such cases, knowledge can be transferred over related system

domains to the domain where data is sparse and help to improve the recommendation

accuracy. A system domain is further decomposed into two sub-domains: user domain

and item domain. For the item domain knowledge transfer, [71] aimed at making use of
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relation in the item domain such as movie and genres, and actors and movie etc. These

multiple relations in item domain are represented as multiple matrices, they try to im-

prove predictive accuracy by exploiting information from one relation while predicting

another. To this end, they propose a collective matrix factorization model.

For the user domain knowledge transfer, [14] jointly considering multiple heteroge-

neous link prediction tasks such as predicting links between users and different types

of items including books, movies and songs. A nonparametric Bayesian framework is

proposed for solving the collective link prediction problem, which allows knowledge to

be adaptively transferred across heterogeneous tasks while taking into account the simi-

larities between tasks. Ma et al, [45] considering the connections among users which is

trust relation. They propose framework to incorporate the social trust as restrictions on

the recommender system. Recently, Vasuki et al, [78] consider recommendation prob-

lem given the the current state of the friendship and affiliation networks. these two net-

works are used as user domina knowledge transfer. In particular, they design two models

of user-community affinity for the purpose of making recommendations: one based on

graph proximity, and another using latent factors to model users and communities.

2.4.2 Binary Knowledge Transfer using Cross Domain Data

For binary relationships knowledge transfer, Li et al [39] design Rating-pattern sharing

which is also called CodeBook Transfer (CBT) for solving adaptive transfer learning

(domain adaptation) problems in CF. Then the idea was incorporated into a probabilistic

model, Rating-Matrix Generative Model (RMGM)[40], for solving collective transfer

learning (multi-task learning) problems in CF.[52] introduces a coordinate system trans-

fer over multiple domains and transfer framework consisting of multiple data domains.

These approaches share user/item latent feature spaces across CF domains and knowl-

edge can be transferred through the shared latent features.
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2.4.3 Ternary Knowledge Transfer using Cross Domain Data

With the rapid development of Web 2.0, Tagging has become a ubiquitous function in

most of today’s recommender systems. Social tags have also been used to link domains

since they can be used as an agreed vocabulary to describe items from any domain in a

simple, generic way. Y.Shi [70] exploited tags to improve recommendation by proposing

a matrix factorization based method use tags as bridge for cross domain transfer, by

reducing the ternary relation to two 2D correlations and use these for regularization.

In particular, they utilize tags to build user-user and item-item similarity matrices.

The similarity between two users/items from different domains is proportional to the

number of tags shared by their annotation profiles. Computed similarities are incorpo-

rated as constraints into a probabilistic model based on matrix factorization and collab-

orative filtering.

2.5 Recommender System using Social Trust Data

In the past few years, the dramatic expanding of Web 2.0 Web sites and applications pose

new challenges for traditional recommender systems. Traditional recommender systems

always ignore social relationships among users by utilizing users’ feedback data such

as rating data as shown in Figure 2-8(a). The Facebook and Twitter, Research have

tried to make recommendation based on social relation as shown in Figure 2-8(b) and

2-8(c). They believe that users’ interest and item selection are often influenced by their

friends. In order to improve recommender systems and to provide more personalized

recommendation results, it is necessary to incorporate social network information among

users in recommender system.

Figure 2-9 shows how Amaazon make recommendation by using the social trust in

Facebook. The list of friends who also like the recommendation is listed at the bottom of

each recommendation. Generally, trust-based CF can be categorized into neighborhood-

based [20, 48, 27] and model based method [44, 28, 69, 86] .
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(a) Rating Matrix R (b) Social Trust Relation (c) Social Trust Matrix T

Figure 2-8: User Feedback, Social Relation and its Matrix representation

Figure 2-9: Recommendation based on Social Trust Data

2.5.1 Neighborhood-Based Model using Social Trust Data

Given user u, let F(u) denote the friend of user u, and N(u) denote the set of items user

u likes. The preference of user u on item i can be defined as number of user u’ friends

who like item i :

pui =
∑

f∈F(u),i∈N(v)

1

This simple model only considers direct trust. It does not consider the indirect trust

(Friend-of-a-Friend). Some memory based approaches have been proposed for recom-

mendation in social rating networks [20, 48, 27].

Golbeck [20] analyzed some of the properties of trust in social networks to design

a trust propagation algorithm that took the indirect trust into account and propose Ti-

daTrust. TidalTrust performs a modified breadth first search in the trust network to
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compute a prediction of item’s rating. Basically, it finds all raters with the shortest path

distance from the source user and aggregates their ratings weighted by the trust between

the source user and these raters. To compute the trust value Tu,v between user u and v

who are not directly connected, TidalTrust aggregates the trust value between u’s direct

neighbors and v weighted by the direct trust values of u and its direct neighbors, that is

Tu,v =

∑
w∈F(u)Tu,wTw,v∑

w∈F(u) Tu,w

Once the raters T have been selected (e.g. Tu,v must be larger than some threshold),

the rating prediction of user u on item i is calculated as the weighted average of all raters

T ’ ratings:

R̂u,i =

∑
w∈T Tu,wRw,i∑

w∈T Tu,w

P. Massa [48] introduces MoleTrust. The ideas used in MoleTrust and TidalTrust are

similar except MoleTrust considers all raters up to a maximum-depth given as an input.

maximum-depth is independent of any specic user and item. Also, to compute the trust

value between u and v in MoleTrust, they perform a backward exploration. It means that

the trust value from u to v is the aggregation of trust values between u and users directly

trusting v weighted by the direct trust values.

Similarly, M. Jamali [27] proposes a random walk method (TrustWalker) which com-

bines trust-based and item-based recommendation. Specifically, TrustWalker consists of

two major components: random walk in the trust network and probabilistic item rating

selection on each visited node. During the random walk, a user’s direct and indirect

friends are visited in the trust network. Whenever a friend is visited, if she has rated the

target item, her rating is logged; if she has not rated the target item, but has rated an item

similar to the target item, her rating is logged with certain probability. The probability

of using a rating of a similar item in place of a rating for the target item increases as the

length of random walk increases. This probabilistic item rating selection aims to avoid

30



traverse deeply in the network when no user in a close neighborhood has rated the target

item.

M. Jamali et.al employ the Pearson Correlation Coefficient of ratings expressed for

two items to calculate the similarity value between item i and item j,

corr(i, j) =

∑
u∈Uc

(Ru,i − R̄u)(Ru, j − R̄u)√∑
u∈Uc

(Ru,i − R̄u)2 ∑
u∈Uc

(Ru, j − R̄u)2
(2.14)

where Uc is the set of users who have rated both i and j, Ru,i and Ru, j are ratings of u

assigned to item i and j respectively. R̄u is the average rating issued by user u. Values

of the Pearson correlation are in the range of [0, 1]. Only items with positive correlation

with the target item are considered. The similarity value is then calculated as:

sim(i, j) =
1

1 + e−
|Uc |

2

× corr(i, j) (2.15)

where |Uc| is the number of users who rated both i and j.

2.5.2 Model-Based using Social Trust Data

In contrast to the neighborhood-based approaches, the model-based approaches use the

observed user-item ratings and social trust to train a compact model that explains the

given data, so that ratings could be predicted via the model instead of directly manipu-

lating the original rating database as the neighborhood-based approaches do.

H.Ma [44] proposed a matrix factorization approach for social network based rec-

ommendation, called STE. Their method is a linear combination of basic matrix factor-

ization approach and a social network based approach. The predicted ratings R̂u,i of user

u on item i is obtained as follows:

R̂u,i = αUuVU
i + (1 − α)

∑
v∈F(u)

Tu,vUuVT
i

where U ∈ R|number o f users×R| and V ∈ R|number o f items×R| is the latent feature profiles
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for users and items respectively. F(u) denotes user u’s direct friends and Tu,v denotes

the trust level between user u and v. The trade-off between the feedback data (ratings)

and the influence from social network is determined by α ∈ [0, 1]. Obviously, the social

influence is ignored for α = 1, while α = 0 assigns the highest possible weight to the

social influence.

The STE model does not consider the transitivity of trust in social networks. M.

Jamali [28] propose SocialMF model that addresses the transitivity of trust in social

networks. In SocialMF model, the dependence of a user’s feature vector on the direct

neighbors’ feature vectors can propagate through the network, making a user’s feature

vector dependent on possibly all users in the network (with decaying weights for more

distant users). The training objective function to optimize RMSE is as following:

min
U,V

∑
all observed rating Ru,i

(Ru,i − R̂u,i)2 + β
∑

all user u

||Uu −
∑

v∈F(u)

Tu,vUv||
2
F + λ(||U ||2F + ||V ||2F)

where U ∈ R|number o f users×R| and V ∈ R|number o f items×R| is the latent feature profiles

for users and items respectively. F(u) denotes user u’s direct friends and Tu,v denotes

the trust level between user u and v. The trade-off between the feedback data (ratings)

and the influence from social network is determined by β > 0. Obviously, the social

influence is ignored for β = 0, while increasing β will put more weight to the social

influence.

Besides these model, a number of extensions for social recommendation have been

proposed and the detail can be obtained from the bibliography given in [69, 86].

32



CHAPTER 3

IMPROVING USERS’ ACCEPTANCE

USING RATING AND TAGGING DATA

Users’ rating and tagging data help to improve users’ acceptance towards recommenda-

tion system. Existing systems have utilized only ternary relationships such as in rating

network (users-items-ratings) [30, 4, 66, 42], or social tagging network (users-items-

tags) [74, 68, 59] to increase the accuracy in recommender system respectively. How-

ever, to the best of our knowledge, there is no existing work which considers the qua-

ternary relationship among users, items tags and ratings. This relationship is important

to understand the user’s interest. Besides that, we also help in improving the users’ ac-

ceptance towards recommendation system by explaining their recommendations in our

framework.

In this chapter, we propose to improve users’ acceptance which take the quaternary

relation which is user-item-tag-rating into account. We model the quaternary relationship

among users, items, tags and ratings as a 4-order tensor and cast the recommendation

problem as a multi-way latent semantic analysis problem. A unified framework for user

recommendation, item recommendation, tag recommendation and item rating prediction
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is proposed. In addition, we also provide explanations on why the items are recom-

mended and provide adaptive feedback scheme to further increase users’ acceptance.

3.1 Motivation

The amount of information on the Web is increasing at a lightning pace. In order to

adequately cope with this information overload, recommendation systems are needed to

bring the relevant resources to the attention of the users automatically. Recommendation

systems are typically classified according to the type of tasks they are intended for, which

include:

1. User recommendation - Here the task is to identify users with common interests so

as to extend the connection among users with similar interests (e.g., Amazon 1 and

Facebook 2). Existing user recommendation systems (e.g., Amazon) determine

users with common interests either through the fact that these users often give the

same rating to similar resources, or they use similar tags to describe the resources.

2. Item recommendation - Instead of stopping at identifying users with common in-

terests, this task goes one step further. Based on the identified set of users with

common interests, the items that this set of users are interested in become the

candidates for recommending to the target user (e.g., Amazon and YouTube 3).

3. Tag recommendation - This task has emerged recently due to the popularity of

social tagging activity. Users typically use a ubiquitous vocabulary as tags to

reflect the semantics of the items from his/her point of view. In order to improve

the selection of vocabulary to be used as tags, tag recommendation is now a hot

research area which aims to provide users with a good set of tags to describe items

(e.g., Amazon, Facebook and Flickr 4). Most tag recommendation systems rely on

1http://www.amazon.com
2http://www.facebook.com
3http://www.youtube.com
4http://www.flickr.com
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identifying similar users and recommending the tags used by these similar users

on similar resources.

4. Item rating prediction - Here, the task goes beyond just determining whether an

item should be recommended to a user. Instead, the recommendation systems

need to predict the degree of preference a user is likely to exhibit for an item (e.g.,

Netflix 5).

Till now, most, if not all, recommendation systems utilize only ternary relationships

in generating their recommendations. The collaborative filtering-based recommendation

systems [30, 4, 42, 66] typically make use of the users-rating-items relationship to group

users based on their ratings on items, whereas the tag-based recommendation systems

utilize the users-tags-items relationship to perform the various tasks [74, 68, 59]. We ar-

gue that recommendations based on ternary relationships are not accurate as they would

have missed out important associations. The quaternary relationships can reveal seman-

tics that cannot be obtained otherwise. This is reinforced by the following observations:

1. Users may use the same tag for an item but have different ratings for it. For ex-

ample, users U2 and U4 both use the same tag “comedy” on item “ForrestGump”.

However, user U2 likes the book but U4 does not. Hence using tag information

alone is insufficient.

2. Items may have multiple tags indicating their different facets. This could give rise

to varied ratings, depending on the facet considered by the user. For example,

“ForrestGump” is tagged as a “psychology” book by user U1 and a “comedy”

by U4. However, the book may be not a good comedy book as U4 dislike it. Yet

this book could be an interesting psychology book since user U1 like it. In other

words, rating information alone is insufficient.

3. Some tags may carry implicit semantics that can reveal the users’ preferences. For

example, user U2 tags book “GroundhogDay” with the tag “excellent” implying
5http://www.netflix.com
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that U2 likes the book. Similarly, the tag “overrated” which is tagged by the user

U4 will imply that U4 dislikes the book “Toy Story”. This observation tells us that

the combination of tag and rating information gives extra insights into the users’

preferences.

In order to capture the quaternary relationship among users, items, tags and ratings,

we propose a model based on the 4-order tensor. We apply the Higher-Order Singular

Value Decomposition (HOSVD) [36] in the 4-order tensor to reveal the latent semantic

associations among users, items, tags and rating. With this model, we design a unified

framework to perform item rating prediction as well as user, item and tag recommenda-

tions.

In addition, we also provide explanations on why the items are recommended to

users proved to be impossible. We achieve this by utilizing the PARAFAC model to

extract latent features of users and items and map them to a common basis in terms of

tags. We then generate profiles of users and items in the form of tagclouds. These tags

capture the semantic features of items from users’ point of views and allow us to gener-

ate explanations that are intuitive to users in the form of tagclouds. Our recommender

system also allows users to provide feedback on the recommended items. Based on the

feedback, we design an incremental algorithm to update the approximate core tensor to

generate a new list of recommendations. We carry out experments on a real world dataset

to demonstrate the effectiveness of our proposed approach and explanation. To the best

of our knowledge, this is a first work to explore the use of the quaternary relationship

among user, items, tags and ratings for recommendation tasks.

3.2 Tensor algebra and multilinear analysis

Tensor algebra and multilinear analysis have been applied successfully in many domains

[32, 36]. In this section, we review the concepts and terminologies used in the thesis.

For the sake of simplicity, Table 3.1 summarizes the symbols used in describing the
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following section.

Table 3.1: Meanings of symbols used

Symbol Meaning
u A user
U The set of all users
v A item
V The set of all items
t A tag
T The set of all tags
A the tensor containing the ratings and taggings will be a 4-dimensional tensor
Â the approximate tensor

A(n) n-mode matrix unfolding of tensorA
×n n-mode product
U(i) Latent feature matrix of tensorA at mode i

(U(i))T Transpose of latent feature matrix of tensorA at mode i

A tensor is a multidimensional array. An N-order tensor A is denoted as A ∈

RI1×···×IN with elements ai1...in and dimensions I1,I2, · · · IN .

Table 3.2: Example dataset of a 3-order tensor

I1 I2 I3 element value
1 1 1 1
1 2 2 1
2 3 3 1
3 1 1 1

For example, the corresponding 3-order tensor A for the example dataset in Table

3.2 is:

A(:, :, 1) =


1 0 0

0 0 0

1 0 0

 A(:, :, 2) =


0 1 0

0 0 0

0 0 0

 A(:, :, 3) =


0 0 0

0 0 1

0 0 0


Definition 1 The matrix unfolding of an N-order tensor A = RI1×···×IN along the di-

mension d are vectors obtained by keeping the index d fixed while varying the other

indices.
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The unfolding of our example 3-order tensorA along each dimension is:

A(1) =


1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0



A(2) =


1 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0



A(3) =


1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0


Note that the definition of the matrix unfolding involves the tensor dimensions I1, I2,

I3 in a cyclic way. Hence, for the unfolding of dimension Ic × IaIb, the index Ib varies

more slowly than Ia.

Definition 2 The n-mode product of a tensor A = RI1×···×IN by a matrix U = RJn×In ,

denoted byA ×n U, is a (I1 × I2 · · · In−1 × Jn × In+1 · · · × IN)-tensor where the entries are

given by

(A ×n U)i1i2i3···in−1 jnin+1···iN

=
∑

in

ai1i2i3···in−1inin+1···iN · u jnin

For example, the 1-mode product of a tensor A = R2×3×4 by a matrix U = R5×2,
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denoted asA ×1 U is an 5 × 3 × 4 tensor in which the entries are given by

(A ×1 U) ji2i3 =

2∑
k=1

aki2i3 · u jk 1 ≤ j ≤ 5

PROPERTY 1. Given the tensor A ∈ RI1×···×IN and the matrices U ∈ RJn×In and

V ∈ RJm×Im (n , m), we have

(A ×nU) ×m V = (A ×m V) ×nU =A ×nU ×m V

PROPERTY 2. Given the tensor A ∈ RI1×···×IN and the matrices U ∈ RJn×In and

V ∈ RKn×Jn , then

(A ×nU) ×n V =A ×n (V ·U)

Definition 3 Let ~V (1) ∈ R1×I1 , ~V (2) ∈ R1×I2 · · · ~V (N) ∈ R1×IN be vectors. Then the outer

product of two or more vectors, denoted asA = ~V (1) ⊗ ~V (2) · · · ⊗ ~V (N), is a (I1×I2 · · ·×IN)-

tensor where the entries are given by

A(i1, · · · , iN) = ~V (1)
i1
× ~V (2)

i2
· · · × ~V (N)

iN

for all 1 ≤ in ≤ In, 1 ≤ n ≤ N.

The Higher-Order Singular Value Decomposition (HOSVD) is a generalization of the

Singular Value Decomposition (SVD) to higher-order tensors [36] and can be written as

n-mode product:
A = S ×1 U(1) ×2 U(2) · · · ×N U(N)

where U(n) contain the orthonormal vectors (or n-mode singular vectors) spanning the

column space of theA(n) (n-mode matrix unfolding ofA). S is the core tensor and has

the property of all orthogonality.

Consider our example tensorA and its matrix unfoldingA(1). We perform SVD on

A(1) and obtain the resultant left singular matrix:
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U(1) =


−0.85 0 0.53

0 −1 0

−0.53 0 −0.85

 U(2) =


1 0 0

0 1 0

0 0 1

 U(3) =


1 0 0

0 1 0

0 0 1



With this, the core tensor S ∈ R3×3×3 can be constructed as described in [36]. We

have S =A ×1 (U(1))T ×2 (U(2))T ×3 (U(3))T where

S(:, :, 1) =


−1.38 0 0

0 1 0

−0.32 0 0

 S(:, :, 2) =


0 −0.85 0

0 0 0

0 −0.53 0

 S(:, :, 3) =


0 0 0

0 0 −1

0 0 0



Definition 4 The n-rank of tensor denoted by RN = rankn(A), is the dimension of

the vector space spanned by the n-mode matrix We denote the rank of tensor A as

rank(A) = (rank1(A) · · · , rankn(A))

Definition 5 Given a tensorA = RI1×···×IN , the RANK − (R1 · · · ,RN) approximation Â

is defined as minB∈S ||A −B||
2
F , S = {B||rank(B) ≤ (R1 · · · ,RN)} where ||A − B||2F is

the least-square cost.6

Suppose we want to get the RANK-(2,3,3) approximation, we first retain the first ci

column of matrix U(i) at mode i (1 ≤ i ≤ 3) as follows:

Û(1) =


−0.85 0

0 −1

−0.53 0

 Û(2) =


1 0 0

0 1 0

0 0 1

 Û(3) =


1 0 0

0 1 0

0 0 1


6the square frobenius norm is defined as ||A||2F =

∑R1
i1=1 · · ·

∑RN
iN =1A(i1 · · · , iN)2
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We can now construct the approximate core tensor Ŝ ∈ R2×3×3 using S = A ×1

(Û(1))T ×2 (Û(2))T ×3 (Û(3))T :

Ŝ(:, :, 1) =

 −1.38 0 0

0 1 0

 Ŝ(:, :, 2) =

 0 −0.85 0

0 0 0

 Ŝ(:, :, 3) =

 0 0 0

0 0 −1



Finally, we obtain the RANK-(2,3,3) approximation Â = Ŝ ×1 Û(1) ×2 Û(2) ×3 Û(3):

Â(:, :, 1) =


1.2 0 0

0 1 0

0.72 0 0

 Â(:, :, 2) =


0 0.72 0

0 0 0

0 0.45 0

 Â(:, :, 3) =


0 0 0

0 0 1

0 0 0



where ||A − Â||2F=0.618 which is minimized.

3.3 Recommender System Overview

Figure 3-1 shows the framework of the proposed recommender system. The repository

contains users’ rating and social tagging activities and user profiles. The Watcher mon-

itors log user activities such as the tags they use, the ratings they give to items, etc. We

provide an interface for users to choose tags that are used by other users (e.g, Pixar,

Disney, animaton, TomHanks, cgi.etc) or add their own tags to the books (see Figure

3-2(a)). Besides that, user can rate the item based on his/her opinion.

Based on the user profiles, the recommender utilizes the 4-order tensor model to

generate personalized recommendation using Quaternary Semantic Analysis QSA and

provide explanation for the recommended items. The Advisor shows the top-N items

to the user, and accepts feedback from the user if s/he is not satisfied with the rec-
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Figure 3-1: Recommendation System Overview

ommendations. Based on the feedback, the recommender will compute a new list of

recommendations for the user.

After mapping the users, tags, items and ratings to a common basis, we compute the

k nearest tags for each user. These tags are displayed as a tagcloud 7 that summarizes the

user’s interest. Similarly, we also compute the k nearest tags for each item and display

them as a tagcloud to summarize the items’ topic. A red (blue) colored tag indicates that

it is often associated with positively (negatively) rated items. A black colored tag means

that it is neutral.

Figure 3-2(a) shows a screenshot of our recommender system. From the user and

item tagclouds, a user will realize that “Toy story” is recommended to him/her because

these clouds have tags in common “classic”, “disney” “imdb top 250” and “animation”.

The context to aid user understanding, e.g., “disney” “animation”, “classic”, “imdb top 250”

and “Oscar” are key factors that characterize the user. Note that a user can choose dif-

ferent levels of summarization by controlling the number of tags displayed.

Figure 3-2(b) shows the new list of items recommended after the user clicks on the

thumb-up icon for “Tom Hanks” and “Adventure”.

In summary, the system consists of several components. The main three sub-components

are described: (1) Recommender Engine- QSA (2) Advisor-Top-N recommendation (3)

7Tagclouds are generated using WordCram (http://wordcram.org/)
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(a) Before feedback

(b) After feedback

Figure 3-2: Screenshots of recommendation system
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Advisor-Top N Recommendation Explanation and FeedBack In the following sections,

we describe each sub-components in details in the following sections.

3.3.1 Recommender Engine - Quaternary Semantic Analysis

In this section, we will show our Recommender Engine - Quaternary Semantic Analysis

The main idea behind the quaternary semantic analysis is to capture the underlying rela-

tionships among users-tags-items-ratings. Suppose we have a list of quadruples <u,t,r,v>

denoting that a user u will provide tag t to a book v and give the rating r if he has watched

v before. We first model this list of quadruples as a 4-order tensorA ∈ U × T × R × V ,

where U is the set of all users, V the set of all items/resources, T the set of all tags and

R the set of ratings. An entryA(u, t, r, v) has a value 1 if the quadruple <u,t,r,v> exists,

otherwise it has a value of 0.

We reduce the rank of the original tensor to minimze the effect of noise on the under-

lying population and reduce spareness. This is achieved by approximating the tensorA

to a lower rank tensor. Given the dimensions of users, tags, ratings and items, namely,

c1, c2, c3, c4, we want to obtain the RANK-(c1, c2, c3, c4) approximation of Â such that

the square frobenius norm defined as:

||Â||2F =

I1∑
i1=1

· · ·

IN∑
iN=1

Â(i1, · · · , iN)2

is minimized.

In our experiments, we set c1, c2, c3, c4 to preserve 70%, 90%, 80%, 90% of the

original tensor information in each dimension respectively.

Tensor Approximation Algorithm

Algorithm 1 shows the details for approximating a tensor. We first apply SVD on the

four matrix unfoldings A(1),A(2),A(3), and A(4). Note that:

A(i) = Û(i) · S(i) · (V̂(i))T , 1 ≤ i ≤ 4 (3.1)
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Algorithm 1: Quaternary Semantic Analysis
Input:

List of quadruples < users, tags, rating, items >;
Dimensions of users, tags, ratings and items c1, c2, c3, c4;

Output:
Approximate Tensor Â;

1: Initialization: From the quadruple (users, items tag and rating), we construct tensor
A ∈ R|U |×|T |×|R|×|V |, where |U |, |V |, |T | and |R| are the number of users, items and tags
and rating respectively

2: Calculate the matrix unfolding A(1),A(2),A(3), and A(4) from tensorA.
3: Construct the variance matrix Ci = A(i)AT

(i) for each mode 1 ≤ i ≤ 4
4: Compute U (i) by diagonalizing Ci, 1 ≤ i ≤ 4

5: Remove the least significant rows |U | − c1, |V | − c2, |T | − c3 and |R| − c4 from
U(1),U(2),U(3), and U(4), respectively. Denote the result as Û(1), Û(2), Û(3), and Û(4).

6: Calculate the approximate core tensor Ŝ as follows:

Ŝ =A ×1 (Û(1))T ×2 (Û(2))T ×3 (Û(3))T ×4 (Û(4))T

7: Approximate the original tensor by:

Â = Ŝ ×1 Û(1) ×2 Û(2) ×3 Û(3) ×4 Û(4)

In order to obtain the left matrix of the SVD, we first define a matrix Ci as follows:

Ci = Ai · AT
i , 1 ≤ i ≤ 4, (3.2)

Since each Û(i) and V̂(i) are orthogonal and each S(i) is diagonal, we substitute (3.1)

into (3.2):

Ci = AiAT
i

= (Û(i) · S(i) · (V̂(i))T ) · (Û(i) · S (i) · (V̂(i))T )T

= Û(i)(S(i))2(Û(i))T

Therefore, each required U(i) can be computed by diagonalizing each Ci and taking its
eigenvectors (Lines 3-4).

Consider our example quaternary relations in Table 3.3 which is the subset of Table
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Table 3.3: Quaternary relations among users, tags, ratings and items in Book Domain

User Tag Rating Item
U1 psychology like Forrest Gump
U1 psychology like Beautiful Mind
U2 comedy like Forrest Gump
U2 excellent like Groundhog Day
U2 comedy like Groundhog Day
U3 comedy like Forrest Gump
U4 comedy dislike Forrest Gump
U4 comedy dislike Toy Story
U4 overrated dislike Toy Story

1.3. We initialize the the weights of the quadruples to 1, as shown in Table 3.4. A 4-order

tensorA ∈ R4×4×4×2 can be constructed from this table. For example, the first quadruple

< U1, psychology, like, ForrestGump > will correspond to the entryA(1, 1, 1, 1)=1.

Table 3.4: Data of the tensorA

User Tag Rating Item Val
U1 psychology like Forest Gump 1
U1 psychology like Beautiful Mind 1
U2 comedy like Forest Gump 1
U2 excellent like Groundhog Day 1
U2 comedy like Groundhog Day 1
U3 comedy like Forest Gump 1
U4 comedy dislike Forest Gump 1
U4 comedy dislike Toy Story 1
U4 overrated dislike Toy Story 1
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For each matrix unfolding A(i), 1 ≤ i ≤ 4, we compute U (i) as follows:

U(1) =



0 0 1 0

0.92 0 0 −0.38

0.38 0 0 0.92

0 1 0 0


U(2) =



0 1 0 0

0.95 0 0 −0.30

0.21 0 0.71 0.67

0.21 0 −0.71 0.67



U(3) =



0.88 0 −0.27 −0.40

0.22 0 −0.50 0.84

0.29 −0.71 0.58 0.27

0.29 0.71 0.58 0.27


U(4) =

 1 0

0 1



We maintain only a subset of the original dimensions in each of the four modes

(Line 5). Here, we choose c1 = 3, c2 = 4, c3 = 4, c4 = 2. The resulting Û (i) are shown as

follows:

U(1) =



0 0 1

0.92 0 0

0.38 0 0

0 1 0


U(2) =



0 1 0 0

0.95 0 0 −0.30

0.21 0 0.71 0.67

0.21 0 −0.71 0.67



U(3) =



0.88 0 −0.27 −0.40

0.22 0 −0.50 0.84

0.29 −0.71 0.58 0.27

0.29 0.71 0.58 0.27


U(4) =

 1 0

0 1


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Lines 6-7 compute the approximate tensor Â. The final weights of the quadruples

are shown in Table 3.5. We observe that the algorithm has added the following two

quadruples:

< U3, comedy, like, Groundhog Day>

<U3, excellent, like, Groundhog Day>

Note that user U3 has not used the tag “excellent” previously, and there is no in-

dication on which item should be recommend to U3 based on the tags “comedy” and

“excellent” in the original table (recall Table 3.4). However, the newly added quadruples

indicate that the book “Groundhog Day” is associated with user U3 and tags “comedy”

and “excellent” with a weight of 0.35. Hence, the book “Groundhog Day” will be rec-

ommended to U3.

Table 3.5: Output of the approximate tensor Â

User Tag Rating Item Val
U1 psychology like Forest Gump 1.01
U1 psychology like Beautiful Mind 1
U2 comedy like Forest Gump 1.2
U2 excellent like Groundhog Day 0.85
U2 comedy like Groundhog Day 0.85
U3 comedy like Forest Gump 0.50
U4 comedy dislike Forest Gump 1
U4 comedy dislike Toy story 1
U4 overrated dislike Toy story 1
U3 comedy like Groundhog Day 0.35
U3 excellent like Groundhog Day 0.35

We observe that latent associations such as the newly added quadruples in Table 3.5

may not be found if the tensor data is sparse, that is, most of the entries are 0. This

problem is particularly acute as we are working with the quaternary relationship. We

overcome this problem by applying a smoothing technique to Line 1 in Algorithm 1.

The smoothing method is based on the similarity between items. For each user < u, r, t >

in the tensor, let S 1 be the set of items that are rated and tagged by user u, and S 2 = V

- S 1 where V is the set of all items/resources. We assign < u, r, t, v j > with the overall
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similarly between item v j ∈ S 2 and the items in S 1.

The overall similarity between item v j ∈ S 2 and the items in S 1 can be calculated as

follows:

S IM(v j, S 1) =

∑
vi∈S 1

sim(vi, v j)
|S 1|

(3.3)

where sim(vi, v j) is the cosine similarity between items vi and v j, assuming the items

are represented by vectors of word weights.

The most time consuming steps in Algorithm 1 are the diagonalization of the un-

folding matrices and the computation of the approximate core tensor. For real world

applications involving large tensors, the work in [32] utilizes parallel architectures to

optimize memory usage and reduce computation time. Note that the approximate tensor

needs to be updated when we have new users, items, or tags. We adopt the methods

described in [74] to incrementally update the approximate tensor.

3.3.2 Top-N Recommendation and Prediction

We describe how the proposed quaternary semantic analysis can provide a unified frame-

work for the 4 common tasks: item recommendation, item rating prediction, user rec-

ommendation and tag recommendation.

• User Recommendation.

This is achieved in the proposed framework as follows: We first initialize the set

Q to be empty. For each quadruple < u, r, t, i > involving the target user u, we find

the set of quadruples that have the same r, t, and i values and add them to Q. Next,

we group the quadruples in Q according to the user and aggregate the weights for

each user. The top N users with the highest weights are recommended to u.

• Item Recommendation.

Here, we assume that a user likes a item if he/she has given a 5-star rating to the

item [33]. Let Tu be the set of tags that a user u has used to tag items which s/he
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likes. For each item i in V , we compute its total weight

wi =
∑
t∈Tu

Â(u, t, r, i)

Then we sort the items according to their wi and return the top N items with the

highest weights.

• Tag Recommendation.

In our framework, the task of tag recommendation is reduced to examining the

weights of the quadruples in the approximate tensor Â which indicate how likely

a user u would use the tag t for an item i if he has given the rating r before. Hence,

we sort the quadruples involving u, r and i according to their weights and return

the top N tags.
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• Item Rating Prediction.

We use the approximate tensor Â to predict the item rating as follows. Let the

rating scale be [1,Rmax]. Let Tu be the set of tags that a user u has used to tag

items. The rating that a user u will give to an item i such as ru,i (1 ≤ ru,i ≤ 5) is

given by:

ru,i =

∑Rmax
j=1

∑
t∈Tu

j · Â(u, t, j, i)∑Rmax
j=1

∑
t∈Tu
Â(u, t, j, i)

3.3.3 Tag-based Explanation and Feedback

While achieving accurate recommendation is good, this does not automatically lead to

high users’ acceptance of the recommended list. In the section, we describe how our

system further increases users’ acceptance of recommendations by providing a more in-

tuitive tag-based explanations of why the items are recommended and adaptive scheme.

In particular, we try to utilize the PARAFAC model to extract latent features of users

and items and map them to a common basis in terms of tags. We then generate profiles

of users and items in the form of tagclouds. These tags capture the semantic features

of items from users’ point of views and allow us to generate explanations that are in-

tuitive to users in the form of tagclouds. Our recommender system also allows users

to provide feedback on the recommended items. Based on the feedback, we design an

incremental algorithm to update the approximate core tensor to generate a new list of

recommendations.

Tag-Based Explanation

Social tagging has become a common online activity of web users. This has generated

a rich set of tags for products 8, movies 9, videos clips 10, news articles 11, blogs 12. All
8www.amazon.com
9www.movielens.org

10www.youtube.com
11digg.com
12technorati.com
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these tags capture the semantics of items from users’ points of view, using a ubiquitous

vocabulary for heterogeneous domains of objects. We propose to use social tags to

explain the recommendation made by QSA.

Tags are good rich semantic feature space of both items and users. For better illustra-

tion, For example, in Table 3.3, U1 likes the book “Forrest Gump” and tags it with the

tag “Psychology”. We observe that an item is often associated with tags that provide the

semantic features for characterizing the item. As shown in Table 3.3, the tag “comedy”

highlights the light-hearted nature of the book “Forrest Gump”. We can also infer users’

preference for certain aspects of an item based on the tags used and the rating informa-

tion. For example, U4 does not seem to like comedies since he tags “Forrest Gump” as

“comedy” and rates them with “dislike” (see Table 3.3). In contrast, U2 tags the same

book as “comedy” and rates them with “like”. In addition, tags can serve to highlight the

latent associations between an item and the user. For example, a system with QSA en-

gine may recommend “Groundhog Day” to U3 since U3 likes and tags “Forrest Gump”

as comedy.

Tags can be used as explanation for the recommendation. In order to provide an intu-

itive explanation for the recommendation, our idea is to map the underlying relationships

among user-tag-item-rating to a common basis in terms of tags so that it is meaningful

and understandable to the users.

To achieve this, we need to extract the latent features of users, tags, items and map

them into a common space. Figure 3-3 shows the mapped 2D space of users, items, and

tags for our running example.

From the distribution, we observe that “Grounghog Day” and U3 are close together,

suggesting that the two are rather similar. In addition, the closest tag to U3, and “Grounghog Day”

is comedy. In other words, the dominant feature in U3 and “Grounghog Day” is comedy.

Hence, the recommender system can explain to u3 that “Grounghog Day” is recom-

mended because he/she likes comedy and “Grounghog Day” is a comedy.

The extraction of the latent features of users, tags, and items and mapping them into
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Figure 3-3: Distribution of users, tags, and items in r = 2 dimensional space.

a common space requires a special decomposition model that allows only one to one

mapping of dimension across each mode. In this thesis, we adopt the PARAFAC model

to carry out the tensor decomposition. Given a tensor A of size I1 × I2 · · · × IN and an

input rank r, the PARAFAC tensor decomposition is defined as

Â =

r∑
j=1

~U
(1)
j ⊗
~U

(2)
j ⊗ · · ·

~U
(N)
j (3.4)

where ~U
(n)
j denotes the jth column of matrix U(n) of size In×r, ||A −Â ||2 is minimized.

Recall in previous step, we obtain an approximate tensor Â by step 7 of Algorithm

with

Â = Ŝ ×1 Û
(1) ×2 Û

(2) ×3 Û
(3) ×4 Û

(4) (3.5)

where Û(i) (1 ≤ i ≤ 4) isU(i) after removing the least significant column.

We use the PARAFAC model to carry out a tensor decomposition on the tensor Ŝ to
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obtain a set of projection matrices P̂(i) (1 ≤ i ≤ 4) as shown below.

Ŝ =

R∑
j=1

~̂P(1)
j ⊗

~̂P(2)
j ⊗ · · ·

~̂P(4)
j

= Ŝ′ ×1 P̂(1) ×2 P̂(2) ×3 P̂(3) ×4 P̂(4)

(3.6)

where ~̂P(i)
j denotes the j th column of matrix P̂(i) and P̂(i) ∈ Rci×r (1 ≤ i ≤ 4), also we

have a core tensor Ŝ′ ∈ Rr×r×r×r and Ŝ′(i, j, k, l) = 1 if and only if i = j = k = l.

In our example, the four projection matrices obtained are as follows:

P̂(1) =


0 −0.01

1.61 0

0 1.41

 P̂(2) =



1.51 −0.01

0 1.41

0.45 0

0.07 0.01



P̂(3) =



0.76 0.81

0.74 −0.19

0.18 −0.84

0 0.27


P̂(4) =

 0 1.41

1.61 0



With the projection matrices, we can now map the latent feature matrices to a com-

mon space. Recall Equation (3.7), we replace the core tensor Ŝ with Ŝ′ and obtain

Â =(Ŝ′ ×1 P̂(1) ×2 P̂(2) ×3 P̂(3) ×4 P̂(4)) ×1 · · ·

Û(1) ×2 Û
(2) ×3 Û

(3) ×4 Û
(4)

(3.7)

By Property 1 and Property 2, we rearrange Equation (3.7) to get
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Â =Ŝ′ ×1 (Û(1) · P̂(1)) ×2 (Û(2) · P̂(2))×3

(Û(3) · P̂(3)) ×4 (Û(4) · P̂(4))
(3.8)

Let Û′
(i)

= Û(i) · P̂(i) (1 ≤ i ≤ 4). By substituting Û′
(i)

into Equation (3.8), we have

Â = Ŝ′ ×1 Û
′
(1)
×2 Û

′
(2)
×3 Û

′
(3)
×4 Û

′
(4)

(3.9)

where Û′
(1)
∈ RU×r, Û′

(2)
∈ RV×r, Û′

(3)
∈ RR×r and Û′

(4)
∈ RT×r

Table 3.6 shows the resultant mapped 2D space for users, tags, and items.

Table 3.6: Latent features of users, tags and items extracted.

Entity Dimension 1 Dimension 2
U1 0.01 1.09
U2 0.22 0
U3 0.39 0
U4 0.96 0

Psychology 0 1.09
Comedy 0.88 0.01

Forrest Gump 0.96 0.77
Groundhog Day 0 0.45
Beautiful Mind 0.85 0

Toy Story 0 0.85

In this mapped space, we use the cosine similarity to compute the distance between

a user u and a tag t ∈ T .

sim(u, t) =
Vu · Vt

‖Vu‖‖Vt‖

where Vu and Vt are the vectors for u and t in the 2-D space respectively.

Similarly, we can obtain the distance between an item i and a tag t as follows:

sim(i, t) =
Vi · Vt

‖Vi‖‖Vt‖
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where Vi and Vt are the vectors for i and t in the 2-D space respectively.

Let us consider user U3 and item “Groundhog Day”. Since we have

sim(U3, “comedy”)=1

sim(U3, “psychology”)=0

sim(“Groundhog Day”, “comedy”)=1

sim(“Groundhog Day”, “psychology”)=0

we will characterize both u3 and “Toy S tory” using the tag “comedy”. Once this is

done, the recommender system can automatically generate the explanation for the ”why”

question as follows: “This recommendation is made because your profile indicates a high

preference for “comedy” books and “Groundhog Day” is a “comedy” book”.

To provide further insights on the recommendation, we categorize tags into three

groups depending on how often they are associated with positively rated items, nega-

tively rated items, or mixed rating by the user. The categorization of a tag t for a user u

is obtained by computing the total tensor values for each rating over all the items.

pre f (u, t) =
∑
i∈V

Â(u, i, t, “like”) −
∑
i∈V

Â(u, i, t, “dislike”)

We say that t is a positive tag for u if pre f (u, t) > 0, negative if pre f (u, t) < 0, and

neutral if pre f (u, t) = 0.

Adaptive Feedback Recommendation

After receiving the recommendations and the corresponding explanations, sometimes

the users may find the recommendations unsuitable due to inaccurate profile descrip-

tions. A novel feature of our recommendation framework is its ability to allow users

to provide feedback and dynamically adjust the recommendation list based on the feed-

back. Back to our running example, suppose U3 is not happy with the recommendation

of “Groundhog Day”. He/She is able to rate the recommendation “Groundhog Day”

with the rating “dislike”. This is equivalent to changing the weight of the tensor element

56



A(U3, “Comedy”, “dislike”, “Groundhog Day”) to 1.

Alternatively, the user may choose to adjust his/her profile description to more ac-

curately reflect his/her current interests. Figure 3-2(a) shows an interface that allows a

user to adjust the weight of individual tag description in the profile description. Suppose

a user u likes the artist “Tim Allen”, he can click on the thumb-up icon. If he does not

like “Tim Allen”, he will click on the thumb-down icon. For each thumb-up on the tag

t, we search for book m that has been tagged using t by users other than u and replace

weight of the tensor elementA(u, t, “like”,m) by a small constant c = 1/q (q is the count

of users other than u who tagged book m with tag t) . Similarly, for each thumb-down

action, the weight of tensor element A(u, t, “dislike”,m) will be replaced by a small

constant c = 1/q

With the updates of tensor elements, we need to re-compute the latent feature matri-

ces. However, the high computational complexity of HOSVD [81] renders this approach

infeasible for online application, especially the digitalization and variance updating step,

i.e. Step 3 and Step 4 of Algorithm 1 in [81]. For most time-critical applications, when

the change of the variance matrix is small, it is not worthy digitalizing that matrix.

Here, we address the problem of incrementally updating the latent feature matrices as

new tensor elements are inserted over time in large volumes. Our idea is to continuously

track the changes to the latent feature matrices Û(i) (1 ≤ i ≤ 4) using the online PCA

technique [53]. The details of our algorithm is presented in Algorithm 2. For each mode

i, we read in a updated column of a matrix unfolding A(i), denoted as ~X. We adjust the

latent feature matrix Û(i) by performing the following three steps for each dimension

incrementally:

• Project ~X onto ~̂U(i)
j

to obtain y (Line 7)

• Estimate the reconstruction error (~E) and the energy based on the y values and ~̂U(i)
j

(Lines 8-9)

• Update ~̂U(i)
j

based on the estimate (Lines 10)
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Intuitively, the goal is to adaptively update Û(i) (1 ≤ i ≤ 4) quickly based on the new

update. The larger the error ~E, the more ~̂U(i)
j

is updated. However, the magnitude of this

update should also take into account the past data currently ”captured” by Û(i). For this

reason, the update is inversely proportional to the current energy S(i)

The details of the algorithm is presented in Algorithm 2.

Algorithm 2: Online Tensor Analysis
Input:

Latent Feature Matrix Û(i) (1 ≤ i ≤ 4)
Energy Matrices S(i) ∈ Rci×ci

TensorA ∈ RI1×I2×I3×I4 ;
Output:

Updated Latent Feature Matrix Û(i) (1 ≤ i ≤ 4)
Updated Energy Matrices S(i) ∈ Rci×ci

Approximate Core tensor Ŝ;
1: for i = 1 to 4 do
2: Calculate the matrix unfolding A(i) from tensorA.
3: for each updated column vector ~X in A(i) do
4: ~X′=~X
5: for j = 1 to ci do
6: Let ~̂U(i)

j
denotes the jth column of Matrix Û(i) and S(i)( j) be the jth

eigenvalue of S(i)

7: y = ( ~̂U(i)
j

)T ~X′ (project X on to ~̂U(i)
j

)
8: S(i)( j) = S(i)( j) + y2 (update the energy at jth eigenvalue)

9: ~E = ~X′ − y · ~̂U(i)
j

(calculate the approximation error)

10: ~̂U(i)
j

=
~̂U(i)

j
+

y· ~E
S(i)( j)

(update the latent feature matrix)

11: ~X′ = ~X − y ~̂U(i)
j

(repeat with residual)
12: end for
13: end for
14: end for
15: Calculate the approximate core tensor Ŝ as follows:

Ŝ =A ×1 (Û(1))T ×2 (Û(2))T ×3 (Û(3))T ×4 (Û(4))T

For our running example, suppose U3 changes

A(u3, “Comedy”, “dislike”, “Groundhog Day”) to 1 , the updated latent feature matrices

are:
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Û(1) =



−0.74 0.59

−0.33 −0.74

−0.59 −0.33

−0.32 −0.31


Û(2) =



0 1.05

0.88 0

0 0.42

0.33 0



Û(3) =



−0.74 0.52 −0.43

−0.63 −0.76 0.17

−0.23 0.40 0.89

−0.28 0.53 −0.73


Û(4) =

 1 0

0 1



Based on the updated latent feature matrices, we compute the new approximate core

tensor and the result is shown in Table 3.7.

Table 3.7: Output of the updated approximate tensor Â

User Tag Rating Item Val
U1 psychology like Forrest Gump 1.13
U1 psychology like Beautiful Mind 0.93
U1 comedy like Forrest Gump 0.89
U2 comedy like Forrest Gump 1.18
U2 excellent like Groundhog Day 0.75
U2 comedy like Groundhog Day 0.75
U3 comedy like Forrest Gump 0.89
U3 comedy dislike Toy Story 0.70
U4 comedy dislike Forest Gump 0.82
U4 comedy dislike Toy story 0.72
U4 overrated dislike Toy story 0.78
U3 psychology like Beautiful Mind 0.24
U3 comedy dislike Toy story 0.51
U3 overrated dislike Toy story 0.51

Once again, we map this tensor to a common basis as described in Section 3 and

obtain Table 3.8.
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Table 3.8: Updated Latent features of users, tags, items and ratings extracted.

Entity Dimension 1 Dimension 2
U1 0.05 1.12
U2 0.77 0.12
U3 0.52 0.27
U4 0.22 0.17

Psychology 0 1.08
Comedy 1.13 0.01

Forrest Gump 0.74 0.56
Toy Story 0.52 0

Beautiful Mind 0 0.76
Groundhog Day 0.42 0

Hence, after the feedback from U3, we have

sim(U3, “comedy”)=0.83

sim(U3, “psychology”)=0.37

sim(“Beauti f ul Mind”, “comedy”)=0

sim(“Beauti f ul Mind”, “psychology”)=1

The profile descriptions of both u3 and “Beauti f ul Mind” are now updated to tags

“comedy” and “psychology”. Consequently, the Book “Beauti f ul Mind” will now be

recommended to U3.

3.4 Experimental Studies

We conduct experiments to evaluate the effectiveness of our proposed framework for

item recommendation, item rating prediction and tag recommendation. We implemented

our framework in MATLAB and run the experiments on a 2.33Ghz Intel Core 2 CPU

with 4GB RAM, running Windows 7-64 bit.

Experimental Dataset We use the publicly available MovieLens dataset available at

http : //www.grouplens.org/node/73. This dataset comprises of two files. The first file

contains users’ tags on different movies. The second file contains users’ ratings on differ-
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ent movies on a scale of 1 to 5, with 1 being bad and 5 being excellent. By joining these

two files over user and movie, we obtain the quadruples < user,movie, tag, rating >.

We have a total of 24563 quadruples with 2,026 users, 5,088 movies, and 9,078 tags.

We pre-process these quadruples to generate a subset such that each user, movie and tag

occur at least 10 times in the dataset. The resulting dataset has 11122 tuples with 201

users, 501 movies, and 404 tags. Table 4.7 shows the statistics of the users’ ratings after

pre-processing.

We carried out three sets of experiments to evaluate our proposed approach. The first

set of experiments evaluates the effectiveness of users’ acceptance in terms of accuracy

on item, user and tag recommendation task. The second set of experiments is a user

study to demonstrate the effectiveness of users’ acceptance in terms of explanation style.

Finally, the third set of experiments show that updating the recommendation through

user feedback is able to increase user acceptance in terms of accuracy.

Table 3.9: Statistics of rating data
Statistics Users Movies
Min. # of ratings 5 1
Max. # of ratings 203 58
Mean. # of ratings 32.58 ± 35.61 13.06 ± 8.67

3.4.1 Experiments on Users’ Acceptance

We demonstrates five sets of experiments to show that our proposed approach increase

the effectiveness of users’ acceptance on item, user, tag recommendation task, explana-

tion style and adaptive feedback scheme.

Experiments on Item Recommendation

We first evaluate the task of users’ acceptance on item recommendation, We compare

our method with the following existing methods:
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1. UPCC [60]. This method uses the Pearson’s Correlation Coefficient to cluster

similar users and recommend items based on these similar users.

2. IPCC [66]. This method uses the Pearson’s Correlation Coefficient to cluster

similar items for recommendation.

3. Probabilistic Matrix Factorization (PMF) [63]. This is a state-of-the art collab-

orative filtering algorithm that utilizes the ternary relationship among user, item

and ratings.

4. Ternary Semantic Analysis (TSA) [74]. This method recommends items based

on the ternary semantic analysis on users-items-tags.

We use the Hit Ratio [30] as the metric to evaluate the users’ acceptance on various

item recommendation methods. For each user u ∈ U, we randomly choose one item i

that has a rating of 5 and withhold the quadruples involving u and i. Then we run the 5

methods to generate the top N items recommended for this user. If the item i is among

the top N recommended items, then we say that a hit has occurred. The hit ratio of a

method is given by:

HitRatio =
Numbero f hits

|U |

Figure 3-4 shows the hit ratio of the 5 methods as we vary N. We observe that the

proposed QSA method has a higher hit ratio compared to the other methods. In partic-

ular, QSA outperforms TSA, PMF, IPCC and UPCC by more than 23%, 50%, 60% and

80% respectively. This is because QSA can find more accurate latent associations using

quaternary relationships compared to ternary relationships of either users-items-ratings

or users-items-tags. UPCC and IPCC find similar users or items (neighbors) by calcu-

lating Pearson correlation coefficient. If a user has few ratings for items, then it will be

difficult for UPCC and IPCC to find neighbors. The PMF approach suffers from the data

sparsity problem and is unable to extract sufficient feature information. On the other

62



hand, TSA captures user’s interest (topic) by using tag, but does not judge how much

he likes these topics (rating). By utilizing quaternary relations, the proposed QSA over-

comes the data sparsity problem and captures both users’ opinions and interests with the

rating and tagging information.
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Figure 3-4: Hit ratio for Top N item recommendation

Experiments on User Recommendation

For the task of users’ acceptance on interesting user recommendation, we determine the

similarity of items among the recommended top N users [74] since users with shared

interests are more likely to tag and rate similar items. We compute the item similarity

as the average of the cosine similarity of their TF × IDF tag term vector [74] and cosine

similarity of the rating vector [66].

Let NBu be the set of top N users recommended to u. The intra-neighborhood simi-

larity is given by the average cosine similarity of all items for the users in NBu:

IntraS im(NBu) =

∑
w∈NBu

∑
i∈Iu, j∈Iw

sim(i, j)∑
w∈NBu

|Iu||Iw|

where Iu and Iw are the sets of items tags by users u and w.

Let Randomu be the set of N users randomly chosen from the set of users U − {u}.
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We can determine the inter-neighborhood similarity as follows:

InterS im(Randomu) =

∑
w∈Randomu

∑
i∈Iu, j∈Iw

sim(i, j)∑
w∈Randomu

|Iv||Iw|

where Iu and Iw are the sets of items tags by users u and w respectively.

Table 3.10: Comparison of intra- and inter- similarity between QSA and TSA

Method Intra − similarity Inter − similarity
TSA 0.10 0.08
QSA 0.145 0.065

Table 3.10 shows the intra-similarity and inter-similarity of QSA and TSA. We

observe that the average intra-similarity is consistently higher than the average inter-

similarity for both QSA and TSA. In particular, QSA outperforms TSA in intra-similarity

indicating that more relevant users are found by QSA. Table 3.10 shows that the average

of intra-similarity for QSA is about 0.15, while the average inter-similarity is only 0.065.

Experiments on Tag Recommendation

For the task of users’ acceptance on tag recommendation, we evaluate our algorithm

QSA against the two state-of-the-art methods: TSA [74] and RTF [59]. For each user

u ∈ U, we randomly choose one item i and remove all quadruples involving u and i from

the dataset. Then we run the 3 methods to generate the top N tags recommended for this

user.

We use the standard recall and precision measures to evaluate the results:

Precision =
Number o f Hits

N

Recall =
Number o f Hits

|Tu,i|
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where Tu,i is the set of tags used by user u on item i.

Figures 4-4(a) and 4-4(b) show the precision and recall of the 3 methods for varying

values of N. It is clear that QSA is able to achieve a higher recall and precision compared

to the other two methods.
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Figure 3-5: Precision and recall for tag recommendation

Experiments on Item Rating Prediction

For the task of users’ acceptance on item recommendation, we also evaluate the predic-

tive performance of QSA for item ratings. We compare QSA with UPCC, IPCC and
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PMF only because TSA is based on user-item-tag relationship and does not use rating

information.

We use the Mean Absolute Error (MAE) and Coverage as the evaluation metrics [4].

Coverage refers to the fraction of items that an algorithm is able to give a predicted

rating. The MAE is given by:

MAE =

∑
t∈T |ru,i − r̂u,i|

|D|

where ru,i is the rating given by user u for item i, r̂u,i is the predicted rating and D is the

size of the testing dataset.

We use 80% of the dataset as training set and 20% as the testing set, and compute

the MAE and coverage for different methods. The five-fold cross validation results are

shown in Table 3.11. We observe that the coverage is not 100% for UPCC and IPCC,

which confirms that these two methods are unable to deal with the problem of data

sparsity effectively. On the other hand, QSA alleviates the data sparsity problem with

the help of tagging information, thus achieving 100% coverage with a lower MAE.

To analyze the statistical significance of the results, we conduct a paired t-test. Let ai,

bi, i = 1, 2, · · · , n, be the MAE values obtained using methods A and B respectively. Let

di = ai − bi and d̄ be the average value of di, i = 1, 2, · · · , n. We set the null hypothesis

as d̄ = 0. The p-value is computed using the t-statistics:

T =
d̄

s/
√

n

where s is the standard deviation of d. A p-value that is less than 0.01 indicates the

existence of statistically significant evidence against the null hypothesis. We compare

the results of QSA against UPCC, IPCC and PMF and obtain the p-values of 3.52E-06,

4.02E-06 and 1.70E-03 respectively. These results indicate that the improvement in the

MAE values for QSA is statistically significant compared to UPCC, IPCC and PMF.
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Table 3.11: MAE and Coverage

Method MAE Coverage
UPCC 0.7424 97.29%
IPCC 0.7458 98.05%
PMF 0.692 100%
QSA 0.673 100%

Efficiency of Online Recommendation

In this section, we conduct experiments to compare the efficiency of incremental versus

non-incremental algorithms for latent feature computation. We divide the data from

Dec 2005 to Jan 2009 into 5 time points and measure the computational time spent on

building the latent feature model at each time point. Figure 3-6 shows the runtime of both

incremental and non-incremental algorithms. We observe that the runtime of the non-

incremental algorithm increases over time as more data arrives. On the other hand, the

runtime of the incremental algorithm does not increase over time. On average, the non-

incremental algorithm takes thrice as long to build the latent feature model as compared

to the incremental algorithm. This shows that the incremental algorithm is efficient and

able to handle highly dynamic and continuously growing data.
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Experiment on Explanation Styles

In order to evaluate the user acceptance of the explanation style of items recommended,

we conduct an extensive user study to compare 3 styles of explanations.

1. Item-based Explanation. This approach computes the top−k most similar items.

It has the format ”Item X is recommended, because you have tagged and rated

items Y.” The similarity between X and Y is computed based on the cosine simi-

larity of the items’ ratings, and is provided along with the recommendation.

2. Feature-based Explanation. This approach shows the features 13 of items recom-

mended to the user. It has the format ”Item X is recommended, because it contains

features a,b....”.

3. TagCloud Explanation. This approach uses a tagcloud to summarize the tags

used for characterizing the user profile and the recommended item.

Table 3.12 shows the different explanations for the recommended item “Jurassic

Park”.

Table 3.12: Example explanations for recommended movie.

Method Recommendation Explanation

Item-
based Jurassic Park

Because you tagged and rated
”I Heart Huckabees” (0.63),

”1984” (0.62),
”Saving Private Ryan” (0.56)

Feature-
based Jurassic Park

Because it contains
Steven Spielberg,

Sam Neill, Laura Dern,
Dinosaur, Island,

adventure, family and Sci-fi

TagCloud Jurassic Park

13The extraction of the features are done by joining with the Internet movie database
(http://www.imdb.com/interfaces)
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We have a total of 30 participants in our online user study. This study has two phases:

Data Collection Phase and Evaluation Phase.

In the Data Collection Phase, the goal is to construct users’ profile based on their rat-

ing and tagging activities. A user is asked to rate (on a scale of 1 to 5) and tag two sets of

movies. The first set of movies contains the top-40 most popular movies in MovieLens.

The second set of movies is selected from the top-200 movies in MovieLens. These

movies have the highest variance in their user ratings. In order to ensure that there is a

reasonable overlap in the tags used, users have to choose from a pre-determined list of

tags.

In the Evaluation Phase, the system will show each user the 3 different styles of

explanation that corresponds to a list of movies. We hide the movie title and ask the user

to look at the information provided in the explanation to decide if this is the type of movie

that he/she will like to watch. The ratings obtained based entirely on the information

provided in the explanation is called the explanation ratings and the ratings obtained

during the Data Collection Phase the actual ratings.

Table 3.13: Difference between explanation ratings and actual ratings

Explanation style µd σd

Item-based 0.56 0.82
Feature-based 0.47 1.22
Tagcloud-based 0.03 0.73

The best explanation style is one that minimizes the difference between the explana-

tion ratings and actual ratings [8]. Table 3.13 shows the results of the user study. We use

µd and σd to denote the mean and standard deviation of the differences between explana-

tion ratings and actual ratings. It is clear that tagcloud-based explanation has the lowest

mean and standard deviation compared to item-based and feature-based explanation, in-

dicating that it is the most intuitive and easily understood by the users.

We also ask the participants to explicitly express their preferences for each explana-

tion style for user’ explanation preference measurement. The rating is performed on
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a scale of 1 to 5 with 1 being the least preferred and 5 being the most preferred. Ta-

ble 3.14 shows the survey results with µq and σq denote the mean and standard deviation

of the survey ratings respectively. We observe that the participants strongly preferred

tagcloud-based explanation style.

Table 3.14: User ratings of preferred explanation style

Explanation style µq σq

Item-based 2.56 0.91
Feature-based 2.17 0.86
Tagcloud-based 4.06 0.74

Experiment on Adaptive Feedback

In this set of experiments, we evaluate the effectiveness of users’ feedback in improving

user acceptance of our recommended items. Users are given a list of top 10 recommen-

dations by our system, and asked to provide ratings for these items. They are allowed

to give feedback on the recommendations that they are not satisfied with. After each

feedback, the system will generate a new list of top 10 recommendation list to the user.

We repeat these rounds of feedback up to 5 times.

We use the following evaluation metrics.

1. Mean Absolute Error (MAE) which is given by

MAE =

∑
i∈Items 5 − r̂u,i

N

where r̂u,i is the rating given by user u for item i and N is the number of items

recommended.

2. Precision measures the proportion of the correctly recommended items for top-N

items and is defined as

Precision(N) =
Number o f items with rating 5

N
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3. Average precision (AP) is the average of the precision for top-k items, 1 ≤ k ≤ N.

AP =

∑N
k=1 Precision(k)

N

Table 3.15 shows the results for each round of feedback. We observe a 9% im-

provement in MAE, 13.8% improvement in Precision(10) and 41 % improvement in

AP between round 1 and round 5.

Note that 50 % of the users stop giving feedback after round 2, implying that they are

satisfied with the recommended items. The results obtained in round 3 is comparable to

round 5, indicating that we are able to achieve near optimal values in just a few rounds

of feedback.

Table 3.15: Results of User Feedback

round 1 round 2 round 3 round 4 round 5
MAE 1.04 1.06 0.91 1 0.94
P(10) 0.36 0.37 0.41 0.41 0.41
AP 0.25 0.31 0.34 0.35 0.36

In addition, we observe that MAE and AP increase slightly in round 4 while Preci-

sion(10) remains unchanged. With Precision(10) remains unchanged, we know that the

total number of hits is the same in round 3, 4 and 5. The increase in AP suggests that

more relevant movies are recommended at the top in each round. Closer examination

of the data reveals that in round 4, a less well-known movie has been recommended to

the users. Due to the unfamiliarity of this movie, many users give a 3 star rating to this

movie. As a result, MAE has increased slightly.

3.4.2 Sensitivity Experiments

We also conduct experiments to study the effect of core tensor dimensions c1, c2, c3,

and c4 on the performance of our algorithm QSA. We first vary each dimension to find

the settings that give the best performance. This occurs when c1 = 45, c2 = 125, c3 =

165, c4 = 4.
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Figure 3-7: Effect of core tensor dimensions on hit ratio

For ease of visualization, we vary two of the four dimensions and keep the other two

dimensions fixed at their optimal values. The results are shown in Figure 3-7. Figure 3-

7(a) shows the effect on hit ratio as we vary c1 and c2 while keeping c3 fixed at 165

and c4 fixed at 4. Figure 3-7(b) shows the effect on hit ratio as we vary c1 and c3 while

keeping c2 fixed at 125 and c4 fixed at 4. Figure 3-7(c) shows that results of varying

c2 and c3 while c1 and c4 are fixed at 45 and 4 respectively. From the figures, we ob-

serve that a good approximation of the original diagonal can be achieved by preserving

70%, 90%, 80%, 90% of the original tensor information in each dimension respectively,

that is, c1 = 45, c2 = 125, c3 = 165, c4 = 4.

3.5 Summary

In this chapter, we have shown that quaternary semantic analysis can lead to more accu-

rate recommendation. We have proposed using a 4-order tensor to model the four het-

erogenous entities: users, items, tags and ratings. We further employed the higher order
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singular value decomposition to reduce the dimensionality of the 4-order tensor, thereby

casting the recommendation problem as a multiway latent semantic analysis problem.

Extensive experiments have been conducted on a real world dataset for item recom-

mendation, user recommendation, tag recommendation, and item rating prediction. The

results demonstrated that quaternary semantic analysis outperforms state-of-the-art al-

gorithms in all the four tasks.
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CHAPTER 4

IMPROVING USERS’ ACCEPTANCE

USING CROSS DOMAIN DATA

Collaborative Filtering techniques purely rely on the observed rating/tagging data, the

sparsity problem has become a major bottleneck for CF methods. In real-world sce-

narios, we can easily find related CF domains that recommend similar items with the

target one. For example, movies, books, and music are related in entertainment; mo-

bile phones, notebook PCs, and digital cameras are related in electronic products. Can

we establish a bridge between related CF domains and transfer useful knowledge from

one another to improve the performance? Since movies and books are somewhat re-

lated (they have some correspondence in genre and the users of the both rating websites

may reflect similar social aspects [16]), we believe that the users’ behaviors in differ-

ent domains can share similar patterns. Thus, transfer of knowledge can be beneficial.

Furthermore, this knowledge-transfer idea can be generalized to any related real-world

domains. Besides the rating and social tagging data, it is necessary to incorporate cross

domain data to better understand users’ interest and make better recommendation. In

this chapter, we extend the work of previous chapter to improving the users’ acceptance
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by the help of related cross domain information.

4.1 Motivation

With the increasing popularity of social media communities, we now have data reposi-

tories from various domains such as user-item-tag data from social tagging in book and

movie domains, and friendship data between users in social networks. The joint analysis

of information from various domains and social networks has the potential to improve

our understanding of the underlying relationships among users, items and tags and in-

crease user acceptance in recommender systems.

For example, users who like to read romance books generally have similar prefer-

ences as users who like to watch romance movies. By learning the characteristics of

romance lovers from the Movie domain and transferring the learned characteristics to

the Book domain, recommender systems can predict users’ preferences more accurately

and provide more customized recommendations.

Recent works [52, 40] apply transfer learning methods to utilize data in some aux-

iliary domain such as Movie domain, and transfer knowledge that are consistent in this

domain to a target domain such as Book domain. However, they are limited to transfer-

ring only binary relationships, e.g. user-item, in the form of matrices. Shi et al. [70]

use tags as a bridge for cross domain transfer by decomposing the ternary user-tag-item

relation into two binary relations user-tag and item-tag. Unfortunately, these decompo-

sition is lossy and may lead to inaccurate recommendations. Thus, we advocate that

recommendation using cross domain data should be carried out without decomposition.

Another major source of information that has yet to be fully utilized is that of social

network data. Researchers have proposed to use data from the social network domain

to increase user acceptance in recommender systems [28, 47]. The assumption is that

the social network structure is useful for predicting users’ preferences because users’

interests may be affected by their friends. However, this assumption is not realistic as it
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implies that if two users, say ui and u j, are friends, then ui will be influenced by u j on all

topics/aspects.

In this chapter, we propose a tensor factorization based framework to fuse knowledge

from different domains. We design a topic-based social trust regularization to integrate

social network information with cross domain data. Our contributions are as follows:

• For cross domain data, we construct a shared three dimensional cluster level ten-

sor as a bridge to uncover the hidden knowledge between the target domain and

auxiliary domain. In particular, we extend tensor factorization to the setting of

transfer learning.

• For social network information, we construct a shared users’ latent feature space

and design a topic based social trust regularization model, which has not been well

studied in cross domain recommender systems.

• Experiments on real world datasets demonstrate the effectiveness of using multiple

domains and social network for recommendation.

To the best of our knowledge, this is the first study that combines cross domain rec-

ommendation and social network in a unified framework. The rest of this chapter is

organized as follows. Section 4.2 gives the problem formulation. Section 4.3 describes

the cross domain framework. Section 4.4 presents the experimental results. We summa-

rize in Section 4.5.

4.2 Problem Formulation

A tensor is a multidimensional array. An N-order tensorA is denoted asA ∈ RI1×···×IN

with elements ai1...in and dimensions I1,I2, · · · IN . Let the target domain dataset be a list

of tuples < u, t, v > denoting that a user u tags an item v with tag t. We model this target

domain dataset as a 3-order tensorAt gt ∈ Utgt × Ttgt ×Vtgt, where Utgt is the set of users,
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Ttgt is the set of tags, and Vtgt is the set of items/resources. At gt(u, t, v) has a value of 1

if the tuple < u, t, v > exists, otherwise it has a value of 0.

For example,let’s consider the Table 4.1 for simplicity. we can model it the tagging

activities of users in Table 4.1 as a 3-order tensorA with dimensions 5×5×5. The entry

A(1,1,1) has a value of 1 since it corresponds to the tuple <U5,’fantasy’,’New moon’>

which is found in Table 4.1. On the other hand, the entryA(1,3,1) has a value of 0 since

its corresponding tuple <U5,drama, ’New moon’> does not exist in Table 4.1.

Table 4.1: Book domain dataset

User Tag Item
U5 fantasy New moon
U6 romance New moon
U7 drama Good omens
U8 action James Bonds Girls
U9 action Ghost rider
U9 action James Bonds Girls
U9 adventure Scorpia

Similarly, we model the dataset in the auxiliary domain such as movie domain in

Table 4.2 asAaux ∈ Uaux × Taux × Vaux. Note that our proposed approach can handle the

case when Utgt ∩ Uaux = ∅ and/or Vtgt ∩ Vaux = ∅.

Table 4.2: Ternary relations among users, tags, and items in Movies Domain

User Tag Item
U′1 fantasy Twilight
U′1 romance Twilight
U′1 drama Big Daddy
U′2 fantasy Spider man
U′2 adventure Spider man
U′2 action Iron Man
U′3 drama Big Daddy
U′3 comedy Little man
U′4 action Iron Man
U′4 action Star war
U′5 adventure Die hard
U′5 adventure Braveheart

At the same time, suppose the users in the target domain are connected to each other
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via some social network. We model the user connections as a Utgt × Utgt trust matrix,

F = [ fu,w] where u,w ∈ Utgt and fu,w ∈ [0, 1] denotes the degree of social trust that u has

on w. A value of 0 implies u does not trust w while a value of 1 suggests that u trusts w

completely.

We formulate the recommendation problem as a tensor missing value prediction

problem. The goal is to generate a ranked list of users/items/tags based on the predicted

value in the tensor. Here, we show how to extract the informative, yet compact cluster-

level tensor (knowledge we want to transfer) from the auxiliary domain along with the

mappings of users, items and tags between target and auxiliary domains, and the social

trust knowledge in the target domain to enable better prediction results in the target do-

main. In other words, we want to predict the missing values in At gt with knowledge

fromAaux and the trust matrix F = [ fu,w].

LetA∗t gt be the tensor obtained. Based onA∗t gt , we can use it to perform the follow-

ing recommendation tasks.

• Tag recommendation. This is to find the top-N tags that user u is most likely to

use for an item v and can be derived from

N
argmax

t∈Ttgt

[A∗t gt]u,t,v

• Item recommendation. This task recommends the top-N items for user u based on

the set of tags Tu s/he has used previously. The top-N items is determined from

N
argmax

v∈Vtgt

∑
t∈Tu

[A∗t gt]u,t,v

• User recommendation. This task recommends the top-N most likely friends for

user u as follows:
N

argmax
u′∈{Utgt−{u}}

∑
(u,t,v)∈At gt

[A∗t gt]u′,t,v
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4.3 Cross Domain Framework

In this section, we first describe our approach to establish a bridge from the auxiliary

domain to the target domain. Then we present our framework to fuse the social network

information and the cross domain data to generate recommendations.

4.3.1 Cluster-Level Tensor

The key to a successful knowledge transfer from the auxiliary domain to the target do-

main lies in extracting the appropriate information from the auxiliary domain and estab-

lishing a mapping from the extracted knowledge back to the target domain. Here, the

knowledge we want to extract are groupings of users, items, and tags that have similar

characteristics. Our proposed method will construct a cluster tensor in the auxiliary do-

main. Then we will map the users, tags and items in the target domain to the clusters in

the auxiliary domain.

We first perform a PARAFAC tensor decomposition on the auxiliary tensor Aaux.

This decomposition maps users, items and tags into a shared latent feature space. In this

shared space, we perform clustering to obtain groups of similar users, items, and tags.

The PARAFAC tensor decomposition for a tensor A of size I1 × I2 · · · × IN with an

input rank R is defined as [36]:

Â ≈

R∑
j=1

[Û(1)]∗ j ◦ [Û(2)]∗ j ◦ · · · [Û(N)]∗ j

where Û(n) of size In × R for n = 1, ...,N and [Û(i)]∗ j denotes the jth column of matrix

Û(n) and ||A − Â ||2F is minimized. ||.||2F is the square frobenius norm. It is defined as

||A||2F =
∑R1

i1=1 · · ·
∑RN

iN=1A(i1 · · · , iN)2. ◦ is the outer product between vectors. The entry

A(i1, · · · , iN) is equal to
∑R

j=1[Û(1)]i1 j × [Û(2)]i2 j · · · × [Û(N)]iN j

For the Movie dataset in Table 4.2, the PARAFAC tensor decomposition factorizes

the auxiliary tensorAaux in the form of the latent feature representation Û(i) (1 ≤ i ≤ 3)
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as follows:

Aaux ≈

R=5∑
j=1

[Û(1)]∗ j ◦ [Û(2)]∗ j ◦ [Û(3)]∗ j

where [Û(i)]∗ j denotes the jth column of matrix Û(i), and Û(1) ∈ R|Uaux |×5, Û(2) ∈ R|Taux |×5,

and Û(3) ∈ R|Vaux |×5.

The projection matrices Û(i) (1 ≤ i ≤ 3) obtained for the Movie dataset are as follows:

Û(1) =



0 0.53 0 1 0

0.53 0 1 0 0

0 0.85 0 0 0

0.85 0 0 0 0

0 0 0 0 1


Û(2) =



0 0 0.71 0.71 0

0 0 0 0.71 0

0 1 0 0 0

0 0 0.71 0 1

1 0 0 0 0


Û(3) =



0 0 0 1 0

0 0.85 0 0 0

0 0 1 0 0

0.85 0 0 0 0

0 0.52 0 0 0

0.52 0 0 0 0

0 0 0 0 0.71

0 0 0 0 0.71


Based on the projection matrices, we apply some existing clustering algorithm to

cluster the users, items, and tags. Table 4.3 shows the clusters obtained.

Table 4.3: Clusters for the Movie domain in Table 4.2

(a) Users

Cluster ID Cluster
User-G1 { U′1 }
User-G2 { U′2 }
User-G3 { U′3 }
User-G4 { U′4 }
User-G5 { U′5 }

(b) Tags

Cluster ID Cluster
Tag-G1 { fantasy }
Tag-G2 { romance }
Tag-G3 { drama }
Tag-G4 { adventure }
Tag-G5 { action }

(c) Items

Cluster ID Cluster
Item-G1 { Twilight }
Item-G2 { Big Daddy, Little man }
Item-G3 { Spider man }
Item-G4 { Iron man, Star war }
Item-G5 { Die hard, Braveheart }

With this, we replace the ids of user, item and tags in the auxiliary dataset with their
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Table 4.4: Cluster-level tensor in Movie domain.

User Tag Item Val
User-G1 Tag-G1 Item-G1 0.5
User-G1 Tag-G2 Item-G1 0.5
User-G1 Tag-G3 Item-G2 0.5
User-G2 Tag-G1 Item-G3 0.5
User-G2 Tag-G4 Item-G3 0.5
User-G2 Tag-G5 Item-G4 0.5
User-G3 Tag-G3 Item-G2 1
User-G4 Tag-G5 Item-G4 1
User-G5 Tag-G4 Item-G5 1

respective cluster id to obtain a cluster-level tensor, denoted asAcluster
aux ∈ RR×R×R. Table

4.4 shows the cluster-level tensor obtained for the Movie dataset. The Val column is the

normalized count of the duplicate tuples obtained after replacing the ids. We use this

tensor to transfer the knowledge from the auxiliary domain (Movie) to the target domain

(Book).

Transferring knowledge from Aaux to At gt is achieved through a reverse process

of summarization in the auxiliary domain. By assuming that there exists implicit cor-

respondence between the user/ tag/item group of the auxiliary domain and those of the

target domain. Based on the cluster-level tensor and the correspondence of user/tag/item

group, we reconstruct the tensorA∗t gt as follows:

A∗t gt =Acluster
aux ×1

ˆU(1)
t gt ×2

ˆU(2)
t gt ×3

ˆU(3)
t gt (4.1)

where Û(1)
t gt ∈ R

|Utgt |×R , Û(2)
t gt ∈ R

|Ttgt |×R, and Û(3)
t gt ∈ R

|Vtgt |×R are user latent feature matrix,

tag latent feature matrix and item latent feature matrix which we want to learn respec-

tively. ×n is n-mode product. The n-mode product of a tensorA = RI1×···×IN by a matrix

U = RJn×In , denoted byA ×n U, is a (I1 × I2 · · · In−1 × Jn × In+1 · · · × IN)-tensor where the
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entries are given by [36]:

(A ×n U)i1i2i3···in−1 jnin+1···iN

=
∑

in

ai1i2i3···in−1inin+1···iN · u jnin

To compute the optimalA∗t gt for recommendation, we need to find the Û(i)
t gt (1≤i≤3)

such that the difference between the observed tensor At gt and the reconstructed tensor

A∗t gt is minimized, that is,

min
Û(1)

t gt ···Û
(3)
t gt

||At gt −A
∗

t gt ||
2
F (4.2)

Table 4.5: Mapping between Book and Movie domains.

(a) Users

User Cluster ID Weight
U5 User-G1 0.2
U′6 User-G1 0.61
U′7 User-G3 1.8
U′8 User-G4 0.46
U′9 User-G2 1.5

(b) Tags

Tag Cluster ID Weight
fantasy Tag-G1 0.3

romance Tag-G2 2.68
drama Tag-G3 0.50

adventure Tag-G4 1.47
action Tag-G5 1.24

(c) Items

Item Cluster ID Weight
New moon Item-G1 1.22

Good omens Item-G2 1
Scorpia Item-G3 0.89

James Bonds Girls Item-G4 1.24
Ghost rider Item-G4 0.76

Table 4.5 shows the correspondence Û(i)
t gt (1≤i≤3) between the users, items and tags

in the Book domain and the user, item, tag clusters in the Movie domain. The Weight

column indicates how similar a user/item/tag is to the cluster.

Suppose we want to recommend some books to user U5 in Table 4.1. User u1 in the

Movie domain forms a cluster User-G1. From Table 4.5, we observe that the mapping

between user U5 and cluster User-G1 has a weight of 0.2, indicating that U5 has similar

interests as the users in cluster User-G1. Since users in User-G1 like drama movies ’Big
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Daddy’, we may infer that user U5 may also like drama books and thus recommend the

book ’Good Omens’ to U5.

4.3.2 Fusing Social Network Information

Besides cross domain data, another valuable source of information is the social network

information. Existing works on social recommendations [28][47] are all based on the

assumption that friends in the social network will have similar interests in all topics

and areas. They incorporate such a network-based similarity property among users to

regulate the latent factor modeling as follows.

h =

N∑
i=1

N∑
j=1

Fi j||[Û(1)
t gt]i∗ − [Û(1)

t gt] j∗||
2

=

N∑
i=1

N∑
j=1

Fi j

 R∑
r=1

([Û(1)
t gt]ir − [Û(1)

t gt] jr)2


=

R∑
r=1

[Û(1)
t gt]

T
∗r(D − F)[Û(1)

t gt]∗r

= tr([Û(1)
t gt]

T (D − F)Û(1)
t gt) (4.3)

where Fi j is the similarity between users ui and u j (defined in terms of either Vector

Space Similarity (VSS) or Person Correction Coefficient (PCC) [47]), N is the number of

users in target domain, and D is a diagonal matrix whose diagonal elements Dii=
∑

j Fi j

and tr(·) denotes the trace of a matrix. The terms targets to minimize the difference

between the latent vectors of [Û(1)
t gt]i∗ ∈ R

1×R and her or his friend [Û(1)
t gt] j∗ ∈ R

1×R for all

r topics (1 ≤ r ≤ R) with same weight.

Here, we want to differentiate user interest based on topics. We define a similarity

matrix F(r) for each topic r (1 ≤ r ≤ R), where R is the dimension for the users’ latent

feature Û(1)
t gt . If users i and j are friends, then we define their similarity on a topic r,
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denoted by F(r)
i j , as follows:

F(r)
i j =

[Û(1)
t gt]ir[Û(1)

t gt] jr√∑R
k=1[Û(1)

t gt]ik

√∑R
k=1[Û(1)

t gt] jk

Otherwise their similarity F(r)
i j = 0.

We introduce the topic-based similarity function into the latent factor model and

modify Eq (4.3) to the following:

h =

N∑
i=1

N∑
j=1

R∑
r=1

F(r)
i j ||[Û

(1)
t gt]ir − [Û(1)

t gt] jr||
2

=

N∑
i=1

N∑
j=1

F(r)
i j

 R∑
r=1

([Û(1)
t gt]ir − [Û(1)

t gt] jr)2


=

R∑
r=1

[Û(1)
t gt]

T
∗r(D(r) − F(r))[Û(1)

t gt]∗r

= tr([Û(1)
t gt]

T (D(r) − F(r))Û(1)
t gt) (4.4)

where N is the number of users in the target domain, D(r) is a topic-based diagonal matrix

whose diagonal elements D(r)
ii=

∑
j F(r)

i j and tr(·) denotes the trace of a matrix.

By combining Equations (4.2) and (4.4), we obtain the objective function for mini-

mization:

f = min
Û(1)

t gt ···Û
(3)
t gt

||A −A∗t gt ||
2
F

+λ ·
∑R

r=1 tr([Û(1)
t gt]

T (D(r) − F(r))Û(1)
t gt) (4.5)

Equation (4.5) can be reduced to a non-negative tensor factorization problem with

regularization [1]. We derive the multiplicative updating rules for Û(i)
t gt (1 ≤ i ≤ 3) as

follows:

[Û(1)
t gt]∗r ← [Û(1)

t gt]∗r ~
[A(1)[Ŝ

A
(1)]

T ]∗r + λF(r)[Û(1)
t gt]∗r

[Û(1)
t gtŜ

A
(1)([Ŝ

A
(1)]T ]∗r + λD(r)[Û(1)

t gt]∗r
(4.6)
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Algorithm 3: FUSE
Input:

List of tuples <users, tags, items>; λ;
Cluster-level tensorAcluster

aux ∈ RR×R×R

Output:
TensorA∗t gt;

1: Initialization: From the tuple (users, items tag), we construct tensor
At gt ∈ R

|U |×|T |×|V |, where |U |, |V | and |T | are the number of users, items and tags
respectively

2: Random initialize
[
Û(1)

t gt

]0
,
[
Û(2)

t gt

]0
and

[
Û(3)

t gt

]0
to random nonnegative value.

3: for t = 1 to Max iteration do
4: for r = 1 to R do
5: Update [Û(1)

t gt]
t
∗r using Equation (4.6).

6: end for
7: Update [Û(2)

t gt]
t using Equation (4.7).

8: Update [Û(3)
t gt]

t using Equation (4.8).
9: end for

10: A∗t gt ≈A
cluster
aux ×1 Û(1)

t gt ×2 Û(2)
t gt ×3 Û(3)

t gt

Û(2)
t gt ← Û(2)

t gt ~
[A(2)[Ŝ

A
(2)]

T ]

[Û(2)
t gtŜ

A
(2)[Ŝ

A
(2)]T ]

(4.7)

Û(3)
t gt ← Û(3)

t gt ~
[A(3)[Ŝ

A
(3)]

T ]

[Û(3)
t gtŜ

A
(3)[Ŝ

A
(3)]T ]

(4.8)

where A(n) ( 1 ≤ n ≤ 3 ) is matrix unfolding of tensorA at mode n, Ŝ
A
(n) = [Acluster

aux ×m,n

Û(m)
t gt ](n), and ~ is the Hadamard product. The matrix unfolding of an N-order tensor

A = RI1×···×IN along the dimension d are vectors obtained by keeping the index d fixed

while varying the other indices and is denoted as A(d). The Hadamard product of a matrix

U = RI×J by a matrix V = RI×J, denoted as U ~ V = RI×J where the entries are given by

[U ~ V]i j = [U]i j · [V]i j

where 1 ≤ i ≤ I and 1 ≤ j ≤ J.

These multiplicative update rules have stationary points at local minimum, and will

not break the non-negativity constraint for the matrix Û(i)
t gt (1 ≤ i ≤ 3) [37]. The con-
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vergence of the above multiplicative update rules can be proven by using the auxiliary

function method similar to the work in [37].

Table 4.6: Output tensorA∗t gt

User Tag Item Val
U5 fantasy New moon 0.04
U6 romance New moon 1
U7 drama Good Omens 0.97
U8 action James Bonds Girls 0.72
U9 action Ghost rider 1.17
U9 action James Bonds Girls 0.72
U9 adventure Scorpia 1
U5 romance New moon 0.33
U5 drama Good Omens 0.05
U6 fantasy New moon 0.11
U6 drama Good Omens 0.15
U′8 action Ghost rider 0.45
U9 fantasy Scorpia 0.20

Based on the above multiplicative update rules, we design an iterative algorithm to

obtain Û(i)
t gt (1 ≤ i ≤ 3) which minimize the objective function. The complete algorithm

is shown in Algorithm 3. The most time consuming steps in Algorithm 1 are Steps 5,

7 and 8 with a a complexity of O(|U | × |V | × |T | ×R). However, since the matrices A(i)

and Ŝ
A
(i) are sparse, we will utilize the sparse matrix property to reduce the complexity.

Let N1 denote the non-zeros of A(i) and N2 the non-zeros of matrix Ŝ
A
(i). If both matrices

are sparse, the complexity is O(R × N1 + |U | × N2), O (R × N1 + |T | × N2)and O(R ×

N1 + |V | × N2) for i=1, 2 and 3 respectively. As such, the complexity for Algorithm 1 is

bounded by O(Max iteration × (R × N1 + (|U |+|V |+|T |) × N2)). Our experiments show

that Max iteration is typically less than 15.

Table 4.6 shows the A∗t gt obtained using cross domain information with social net-

work. Note that the last 6 tuples are newly added. Previously, we are unable to recom-

mend any books to U5 since s/he is the only one who has used the tag ’fantasy’. However,

the new tuple < U5, drama, Good Omens, 0.05 > associates the book ’Good Omens’ and

the tag ’drama’ with user U5 with a weight of 0.05. Thus, we can now recommend the
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drama book ’Good Omens’ to U5. In addition, although U8 and U9 are friends, ’Scorpia’

is not recommended to U8 since ’action’ is their only common topic of interest. With the

new tuples, we can recommend ’Ghost rider’ to U8.

4.4 Experiments

In this section, we evaluate the effectiveness of the proposed framework for recommen-

dation. We implemented 3 versions of FUSE for the various recommendation tasks:

• FUSE+: the algorithm utilizes topic-based social regularization

• FUSE: the algorithm does not utilize topic-based social regularization

• FUSE−: the algorithm does not utilize social network information. This is achieved

by setting λ = 0 for FUSE

We implement our framework in MATLAB and perform the experiments on a 2.33Ghz

Intel Core 2 CPU with 4GB RAM, running Windows 7-64 bit. By default, R = 50 and

λ = 10 in our experiments. We use the following data sets in our experiments:

• MovieLens dataset1 (Auxiliary domain): This is a publicly available dataset which

comprises of two files. The first file contains users’ tags on different movies. The

second file contains users’ ratings on different movies on a scale of 1 to 5, with 1

being bad and 5 being excellent. By joining these two files over user and movie,

we obtain the quadruples <user,movie, tag, rating>. We have a total of 24563

quadruples with 2,026 users, 5,088 movies, and 9,078 tags. We pre-process these

quadruples to generate a subset such that each user, movie and tag occur at least

10 times in the dataset. The resulting dataset has 24,185 tuples with 339 users,

982 movies, and 582 tags.

1http://www.grouplens.org/node/73
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• LibraryThing dataset2 (Target domain): Librarything is an online book review

website. This dataset also comprises of two files. The first file contains users’ tags

and ratings on a scale of 1 to 5, with 1 being bad and 5 being excellent on different

books. The second file contains users’ trust statements on different users (binary

value is recorded here to indicate the friendship). We have a total of 2,056,487

tuples with 7,279 users, 37,232 books, and 10,559 tags. We pre-process these

tuples to generate a subset such that each user, book and tag occur at least 5 times.

The resulting dataset has 402,246 tuples with 2,834 users, 2,768 books, 1,012 tags

and 7,279 trust statements.

Table 4.7 summarizes the characteristics of these two datasets.

Table 4.7: Characteristics of datasets.

Statistics Movie Books
Users 339 2,834
Items 982 2,768
Tags 582 1,012
Social Relations N.A 7,279
# of tuples 24,185 402,246

We carried out three sets of experiments to evaluate our proposed approach. The first

set of experiments evaluates the effectiveness of users’ acceptance in terms of accuracy

on item recommendation task. The second set of experiments evaluates the effectiveness

of users’ acceptance in terms of accuracy on tag recommendation task. Finally, the third

set of experiments show the effectiveness of users’ acceptance in terms of accuracy on

user recommendation task.

4.4.1 Experiments on Users’ Acceptance

We demonstrates five sets of experiments to show that our proposed approach increase

the effectiveness of users’ acceptance on item, user, tag recommendation task.

2http://www.librarything.com/
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Experiments on Item Recommendation

We first evaluate the users’ acceptance on item recommendation. We compare our meth-

ods with the following existing methods:

1. UPCC [60]. This method uses the Pearson’s Correlation Coefficient to cluster

similar users and recommend items based on these similar users.

2. IPCC [19]. This method uses the Pearson’s Correlation Coefficient to cluster

similar items for recommendation.

3. TSA [74]. This method recommends items based on the target domain data only,

which is a ternary semantic analysis on users-items-tags.

4. RMGM [40]. This is a state-of-the art cross domain collaborative filtering algo-

rithm that utilizes the user-item networks. Latent factor is set to 50.

5. TagCDCF [70]. This is a state-of-the art cross domain collaborative filtering al-

gorithm that utilizes the tagging networks by reducing the three-dimensional cor-

relations to two 2D correlations. Latent factor is also set to 50.

We use the Hit Ratio [19] as the metric to evaluate the effectiveness of the various

item recommendation methods. Noted that, MAE is not used here as the rating infor-

mation is not available. Besides, We compare FUSE with UPCC, IPCC, ISA , RMGM

and TagCDCF. We do not compare FUSE with QSA as QSA requires both tagging and

rating information to be available, yet we are unable to obtain cross domain datasets that

have both rating and tagging information. For each user u ∈ U, we randomly choose

one item v that has tagged by user previously and withhold the tuples involving u and

v [19]. Then we run the various methods to generate the top N items recommended for

this user. If the item v is among the top N recommended items, then we say that a hit has

occurred. The hit ratio of a method is given by:

HitRatio =
Number o f hits

|U |
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Figure 4-1 shows the performance of FUSE+ with existing recommendation algo-

rithms such as UPCC, IPCC, and TSA. We observe that FUSE+ is a clear winner, indi-

cating that the joint analysis of cross domain information and social network are useful

in understanding the users’ interests better and providing better item recommendation

compared to TSA which makes use of the social tagging network, and UPCC/IPCC

which make use of the rating network only.
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Figure 4-1: Results for Item Recommendation.
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Figure 4-2: Results for Item Recommendation.

We investigate the effectiveness of utilizing topic-specific social regularization for

recommendation. Figure 4-2 shows the results when we vary N from 10 to 100. We
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observe that FUSE consistently outperforms FUSE− indicating the benefits of incorpo-

rating social trust information in recommendation. Further, FUSE+ outperforms FUSE

by an average of at least 8 % demonstrating that accurate modeling of topic-specific trust

relationships leads to more accurate item recommendation.
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Figure 4-3: Results for Item Recommendation.

Figure 4-3 shows the effectiveness of utilizing cluster-level tensor in cross domain

recommendation. We observe that FUSE− consistently outperforms TagCDCF, RMGM,

UPCC and IPCC as we vary N from 10 to 100. In particular, RMGM outperforms UPCC

and IPCC, indicating that cross domain transfer of binary relationships (user-rating) can

improve recommendation accuracy. Further, TagCDCF outperforms RMGM demon-

strating that tag information is useful in cross domain recommendation. However, since

TagCDCF requires the decomposition of ternary relationship into two binary relation-

ships (user-item and item-tag), there is information loss resulting in reduced accuracy

compared to FUSE−.

Experiments on Tag Recommendation

For the task of users’ acceptance on tag recommendation, we evaluate our algorithm

against two state-of-the-art methods: TSA [74] and RTF [59]. For each user u ∈ U, we

randomly choose one item v and remove all tuples involving u and v from the dataset
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[59]. Then we run the methods to generate the top N tags recommended for this user.

We use the standard recall and precision measures to evaluate the results:

Precision =
Number o f Hits

N

Recall =
Number o f Hits

|Tu,v|

where Tu,v is the set of tags used by user u on item v.
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Figure 4-4: Tag recommendation

Figures 4-4(a) and 4-4(b) show the precision and recall of the methods for vary-

ing values of N. We see that FUSE+ is able to achieve a higher recall and precision

compared to the other three methods. FUSE+ outperforms FUSE by 2.5% on average

in both recall and precision, indicating that topic-specific trust regularization can im-

prove tag recommendation compared to traditional trust regularization. Both FUSE+

and FUSE outperform FUSE− , indicating the effectiveness of incorporating social trust

in tag recommendation. All our methods outperform state-of-the-art TSA demonstrating

the effectiveness of using cluster-level tensor in transferring knowledge from the Movie

domain to Book domain.

93



Experiments on User Recommendation

For the task of users’ acceptance on interesting user recommendation, we compare our

algorithm with TSA [74]. For each user u ∈ U, we randomly choose one of his/her friend

u f and remove u f from u’s friendship list. Then we run the algorithms to generate the

top N users recommended for this user. We use the standard recall measures to evaluate

the results:

Recall =
Number o f Hits

|U |

Figure 4-5 shows the results for varying values of N. We observe that FUSE+ achieves

the best performance and outperforms FUSE by 10% on average, while the performance

of FUSE− is very close to TSA. This confirms that both topic-specific trust and social

network information are useful in user recommendation task.
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Figure 4-5: User recommendation

In order to evaluate the effectiveness of our methods in recommending interesting

users, we first determine the similarity of items among the recommended top N users

[81] since users with shared interests are more likely to tag and rate similar items and

with similar friends. We compute the item similarity as the cosine similarity of their TF

× IDF tag term vector [81].

Let NBu be the set of top N users recommended to u. The intra-neighborhood simi-
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larity is given by the average cosine similarity of all items for the users in NBu:

IntraS im(NBu) =

∑
w∈NBu

∑
i∈Iu, j∈Iw

sim(i, j)∑
w∈NBu

|Iu||Iw|

where Iu and Iw are the sets of items tagged by users u and w.

Let Randomu be the set of N users randomly chosen from the set of users U − {u}.

We can determine the inter-neighborhood similarity as follows:

InterS im(Randomu) =

∑
w∈Randomu

∑
i∈Iu, j∈Iw

sim(i, j)∑
w∈Randomu

|Iv||Iw|

where Iu and Iw are the sets of items tagged by users u and w respectively.

Table 4.8 shows the intra-similarity and inter-similarity of FUSE+ and TSA. We ob-

serve that the average intra-similarity is generally higher than the average inter-similarity

for all the three methods. Furthermore, FUSE+ have much higher intra-similarity and

inter-similarity as compared to TSA. This indicates that more relevant users are found

by FUSE+ and hence lead to more accurate user recommendation.

Table 4.8: Intra- and inter- similarity between FUSE and TSA

Method Intra-similarity Inter-similarity
TSA 0.15 0.09

FUSE+ 0.225 0.037

4.4.2 Sensitivity Experiments

We also examine the effect of various parameters on the performance of Algorithm FUSE

and FUSE+ for item recommendation. Figure 4-6(a) shows the results as we vary the ten-

sor dimension R. We observe that the proposed method FUSE+ consistently outperforms

the FUSE. This provides a evidence that the topic-based social recommendation is use-

ful and can be used to improve the recommendation accuracy. We also find that the hit

ratio of both FUSE and FUSE+ increase as R increases, but decrease after R = 50 which
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may be caused by model over-fitting when the latent dimensions are large. Thus we set

R = 50.
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Figure 4-6: Sensitivity analysis

Figure 4-6(b) shows the hit ratio for various values of λ as we vary the number of

iterations from 1 to 25. We observe that when we increase the iteration to be around 10,

there seem to be little improvement for any large iteration. This suggests that a small

number of iteration (such as 10) is enough for models. In other words, our algorithms

typically converge after 10 iterations.
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Figure 4-7: Sensitivity analysis on λ

Figure 4-7 shows the impact of λ on the recall rate of our algorithms. Recall that

the parameter λ control how much the information from social network will dominate
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the learning process. In the extreme case where λ = 0, the social network information

is not used. As we can see from Figure 4-7, adopting a larger λ value can help to avoid

the sparsity problem suffered by most MF-based CF methods. When we set λ > 0,

we can achieve better results. This clearly demonstrates the impact of social network

information, that is, adding more social network information can improve the gener-

alization ability of the model. Moreover, Figure 4-7 also shows that the performance

might degrade when λ is too large. In practice, we should choose a moderate value of λ.

We observe that the best recall is obtained when λ = 10 indicating that social network

information helps to improve item recommendation.

Table 4.9: Example of Top 10 representative tags for 5 groups in movies and books
domain

Cluster Tags from LibraryThing Tags from MovieLens

Cluster 1 humor, england, jane austen, classics, non fiction humorous, jane austen, humor, history, england
animals, books, children, british, historical anime, disney, library, 70mm, classic

Cluster 2 adventure, war, world, history, political steven spiberg, adventure, war, action, super hero
philosophy, exploration, action, fun, dark murder, johny deep, tom hanks, nasa, zombie

Cluster 3 crime, spouse, romance, french, James Bond crime, romance, 007, James Bond , dramma
sherlock holmes, action, series, australian, blake bruce wills, brad pitt, japan, french, pg

Cluster 4 science, aliens, mars, mystery, future sci-fi, aliens, space, future, magic
space, intelligence, technology, star, robots mystery, travel, robots, trip, boring

Cluster 5 relationships, man-woman, friendship, female, family divorce, romance, love, money, sex
marriage, divorce, royalty, murder, keeper family, sweet, france, friendship, sentimental

4.4.3 Case Study

Finally, we show a sample of the mappings we obtain between the books and movies

domains in our experiments. Table 4.9 shows the top 10 representative tags for 5 clusters.

These clusters are randomly chosen from our 50 clusters. For each cluster, we take the

top 10 most frequent tags as its representative tags.

By examining the tags for each cluster, we see that our algorithm is able to iden-

tify the topic for movies and books and find the correspondence between the different

domains. For example, both the book “Jane Austin” and the movie “Jane Austin” are

mapped to Cluster 1, while the character “James Bond ” from movies and books are

mapped to the same Cluster 3.
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4.4.4 Scalability

Finally, we show the scalability of Algorithm 3 after mapping it to the MapReduce

framework. The expensive operations in the algorithm are the matrix multiplication

in the update formulae in Eq. (4.6), (4.7). Following the idea of [43], we implemented

the MapReduce version of Algorithm 3 on our in-house cluster, Awan 3. The cluster

consists of 72 computing nodes, each of which has one Intel X3430 2.4GHz processor,

8GB of memory, two 500GB SATA hard disks and gigabit ethernet. On each node, we

install CentOS 5.5 operating system, Java 1.6.0 with a 64-bit server VM, and Hadoop

0.23.6. All the nodes are connected via three high-speed switches.
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Figure 4-8: Scalability analysis

We vary the dataset size from 2 million to 10 million by duplicating the users, items

and tags in the original datasets and run the experiment by setting the model dimension

R to 10 and 20 respectively. Figure 4-8 shows the results. We observe that the runtime

increases linearly with respect to the dataset size for both R = 10 and R = 20. This

shows that our algorithm is scalable with respect to the dataset size.

3http://awan.ddns.comp.nus.edu.sg/ganglia/
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4.5 Summary

In this chapter, we have presented a novel collaborative filtering method for integrat-

ing social network and cross domain network in a unified framework via latent feature

sharing and cluster-level tensor sharing. This framework utilizes data from multiple do-

mains and allows the transfer of useful knowledge from auxiliary domain to the target

domain. The results of extensive experiments performed on a real world dataset show

that our unified framework outperforms the state-of-the-art techniques in all the three

recommendation tasks. We have also implemented the algorithm on a map-reduce in-

frastructure and have demonstrated its scalability.
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CHAPTER 5

IMPROVING USERS’ ACCEPTANCE

USING SOCIAL TRUST DATA

Online social networks present new opportunities for further improving the users’ ac-

ceptance of RS. In real life, people often resort to friends in their social networks for

advices before purchasing a product or consuming a service. Findings in sociology and

psychology fields indicate that human beings tend to associate and bond with similar

others, so called homophily. Due to the stable and long-lasting social bindings, people

are more willing to share their personal opinions with their friends, and typically trust

recommendations from their friends more than those from strangers and vendors. The

phenomenally popular online social networks, such as Facebook, Twitter, and Youtube,

provide novel ways for people to communicate and build virtual communities. Online

social networks not only make it easier for users to share their opinions with each other,

but also serve as a platform for developing new RS algorithms to automate the otherwise

manual and anecdotal social recommendations in real life social networks. We have seen

the existing recommender algorithms which aim to improve users’ acceptance in social

rating/tagging data, cross domain. The previous two chapters present recommender al-
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gorithms for these data. However, they don’t study the social trust data in recommender

system. In order to improve recommender systems and to provide more personalized

recommendation results, we need to incorporate social trust data among users. In this

Charter, we focus on recommender systems in Social Trust Data.

5.1 Motivation

Recommender systems are fast becoming the tools of choice for a user to sieve through

tons of online materials in order to find information that is relevant to him/her. Many of

these recommender systems employ collaborative filtering (CF) techniques to identify

similar users based on their purchased history or past ratings to generate personalized

recommendation. This works well when the users have long term interests that do not

change from time to time. However, for users with short term interests, modeling the

shift in users’ interests has been shown to improve recommendation accuracy. This is

achieved by introducing a personalized time factor for each user to capture the shift in

users’ interests over time [85, 34, 31, 41]. With the advent of online social networks,

social network based CF approaches to recommendation have emerged [28, 69, 47].

The assumption is that friends tend to influence their friends to exhibit similar likes

and dislikes. Hence, we can further improve recommendation accuracy by taking into

account the social relationships.

Let us consider the snapshots of users’ item ratings of Table 5.1(a) at time points

T1 and T2. Besides that, we also have additional social relationship at time points T1

and T2 in Table 5.1(b). Suppose our target user is U3. At time point T1, both users

U1 and U2 have watched and rated the Book “Forrest Gump”. Traditional CF methods

[63, 66, 57] will group U1, U2 and U3 as similar users and recommend “Beauti f ul Mind”

and “Groundhog Day” to U3 since U1/U2 has watched these books previously. Yet, U3’s

interest does not remain static. We observe that at time point T2, his interest has shifted

from comedy book to animation book as he rates a new item “Toy S tory”. Recognizing
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Table 5.1: Example datasets

(a) Ternary relations among user, rating and item over
Time in Book Domain

User Rating Item Time
U1 like Forrest Gump T1

U1 like Beautiful Mind T1

U2 like Forrest Gump T1

U2 like Groundhog Day T1

U2 like Groundhog Day T1

U3 like Forrest Gump T1

U3 like Toy Story T2

U4 dislike Forrest Gump T1

U4 dislike Toy Story T1

U5 like New moon T1

U6 like New moon T1

U7 like Good omens T1

U8 like James Bonds Girls T1

U9 like Ghost rider T1

U9 like James Bonds Girls T1

U9 like Scorpia T1

U10 like Toy Story T2

U10 like Shrek T2

(b) Social Trust Over Time

User User Time
U3 U2 T1

U8 U9 T1

U3 U10 T2

U10 U3 T2

this, CF with temporal dynamics will recommend another animation book ”S hrek” to U2

instead. On the other hand, looking at the social relationships among users, we realize

that U1 and U3 are friends. Hence, social network based CF will conclude that U3 is

likely to like “Groundhog Day” since his friend U2 have read and rated this book. Each

of the different methods arrive at different items to recommend. How do we reconcile

the different recommendations? To complicate matter, social relationships are not static

but evolve over time as a user can make new friends and old friends do grow apart. We

observe that at time point T1, U3 has only one friend U2, whereas at time point T2, his

friends are {U2,U10}. Now if we want to give a recommendation to U3 at time point T2,

what item should we recommend so that it is most likely to be accepted by U3?

To answer this question, we must be able to quantify the degree of influence on a

user’s decision making process from his/her long term and short term interests, as well

as his/her social trust relationships over time. Note that these two factors are not in-
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dependent. We advocate that when two users’ long term and short term interests are

aligned, they are likely to become friends, and they will tend to be more receptive to-

wards each other’s preferences. Conversely, if the users’ interests are not aligned, they

will grow apart after some time and become less receptive towards the preferences of the

other user.

In this chapter, we propose a model called the Receptiveness over Time Model (RTM),

to quantify the dynamic interaction between user interest and social trust. This model

utilizes a probabilistic generative approach to leverage on the information embedded in

a users’ social trust network, and the users’ rating history. The RTM captures (1) the

degree of receptiveness for each user over time (modeling receptiveness change), (2) the

distribution of personal preference over the latent topics for each user over time (mod-

eling users’ interests change), (3) the distribution of items for each topic over time. The

estimation of the RTM model parameters is performed using Gibbs sampling MCMC

procedure. To overcome the data sparsity problem, we design a special Bayesian treat-

ment to the latent variable to ensure that the evolution of latent parameter is smooth and

share the topic-level rating knowledge across different time points. We carry out experi-

ments on a real world Epinions dataset to demonstrate the effectiveness of our proposed

approach. We also demonstrate how RTM can be used to explicitly track and visualize

the change in users’ interests and their receptiveness to other users.

The rest of the chapter is organized as follows. Section 5.2 describes our problem

formulation. Section 5.3 shows our proposed Method. Section 5.4 presents the experi-

mental results, and we summarize in Section 5.5.

5.2 Problem Formulation

In recommender systems, we have a set of users U = { u1, ... ua } and a set of items

M = { m1, ... mb }. At time t, a user u expresses his/her preference for an item m by

giving a rating in the range of 1 to 5 with 1 being the least preferred and 5 being the most
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preferred. These ratings are represented using the matrix R(t) with dimensions |U | × |M|.

Each entry in this matrix, r(t)(u,m), corresponds to the rating provided by user u on item

m at time point t.

Besides the rating information, we also represent the social relationships among the

users at time t in the form of a matrix S (t) with dimensions |U | × |U | such that its en-

try s(t)(u, v) = 1 if u issues trust statement towards user v at time point t. Otherwise

s(t)(u, v) = 0. Note that S (t) is asymmetric in general.

We formulate our task as follows: Given a user u ∈ U at time t and an item m ∈ M,

we want to predict the rating that u will give to m at time t based on the past rating history

and social relationships, i.e. R(t′) and S (t′) for all t′ ∈ [1, t).

5.3 Proposed Method

In this section, we first give our problem formulation. Then we describe the RTM model

and show how the model can be used for various tasks such as rating prediction, tracking

receptiveness between friends and user interest change.

5.3.1 Receptiveness over Time Model

In order to capture the dynamic interactions between long term and short term inter-

ests as well as friendships for recommendation, our model has two parts. The first part

models user receptiveness at a single time point. The second part incorporates temporal

information to allow for modeling over time.

Single Time Point Receptiveness Modeling

Receptiveness captures the dynamic interaction between user interest and social trust.

Existing social CF filtering approaches [47, 46, 28, 69] incorporate social trusts as aux-

iliary data to regulate user preferences for recommendation. In other words, if two users

are friends, social CF approaches will assign greater weights to their corresponding pref-
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erences. However, we realize that a user’s decision making process is not so simplistic.

A person may be his/her friend, however, if that friend’s interests are not aligned with

him/her, the receptiveness to that friend’s interest will not be high and vice versa.

Among the approaches that model user’s interests for recommendation, Bi-LDA has

proven to work well in practice [57]. It is a generative model with several advantages

that are suitable for our work:

1. It models the distribution of users’ interest within a probabilistic framework, thus

allowing a more interpretable explanation compared to the matrix factorization

approach.

2. It allows the inclusion of prior knowledge into the generative process and a prin-

cipled framework to select model structure. This proves to be useful in linking

consecutive time points to avoid the data sparsity problem in the second part of

RTM.

Table 5.2: Meanings of symbols used

Symbol Meaning
u A user
U The set of all users
f Friend of user

F(u) The set of user u’s friends
K Number of user topic
L Number of item topic

z f riend
u,m

The receptive friend picked
for rating given by user u on item m

zuser
u,m

The user topic picked
for rating given by user u on item m

zitem
u,m

The item topic picked
for rating given by user u on item m

π
f riend
u Distribution of user u over users’ friend
πuser

u Distribution of user u over users’ topics
πitem

m Distribution of item m over items’ topics

Φzuser
u,m ,zitem

u,m

Rating-scale mixing proportion
of user-item topic joint distribution
over values {1...R} for topic zuser

u,m , zitem
u,m
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However, Bi-LDA does not incorporate social relationships. For this reason, we

extend Bi-LDA to incorporate social relationships and call it Bi-LDAsocial. Table 5.2

summarizes the symbols used in describing the Bi-LDAsocial model. In Bi-LDAsocial,

each user u follows a preference distribution π
f riend
u that depicts how likely u’s friend

will contribute to u’s item rating decision. The probability for a friend of u to influence

the item rating decision is proportional to the receptiveness of u to this friend. Note that,

we assume u is a special friend of himself/herself (i.e.,u ∈ F(u)).

In addition, each user u and item m follow the topic distribution parameters πuser
u and

πitem
m respectively. To rate an item m, a user u first draws a user topic zuser

u,m and the item m

draws a item topic zitem
u,m from the corresponding distributions. Φzuser

u,m ,zitem
u,m

is the rating-scale

mixing proportion of user-item topic joint distribution over values {1...R} for topic zuser
u,m ,

zitem
u,m .

During the generative process, ratings are generated as follows:

1. Choose a K × L distribution over ratings Φ ∼ Dir(β)

2. Choose a distribution over friends for each user π f riend
u ∼ Dir(α f riend)

3. Choose a distribution over K users’ topic for each user πuser
u ∼ Dir(αuser)

4. Choose a distribution over L items’ topic for each item πitem
m ∼ Dir(αitem)

5. For each rating ru,m:

• Choose receptive friend

z f riend
u,m ∼ Multinomial(π f riend

u )

• Choose user topic

zuser
u,m ∼ Multinomial(πuser

f )

• Choose item topic

zitem
u,m ∼ Multinomial(πitem

m )

• Choose a rating ru,m ∼ Φzuser
u,m ,zitem

u,m
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The graphical model is shown in Figure 5-1. We note that the decision of rating

given by user u on item m is based on the receptiveness of a friend (including u hime-

self/herself). The receptive friend z f riend
u,m can be drawn from Multinomial (π f riend

u ). Once

the receptive friend z f riend
u,m is picked, we randomly draw a topic zuser

u,m from user z f riend
u,m ’s

preference based on Multinomial(πuser
u ). Similarly, a topic zitem

u,m from item m is also drawn

based on Multinomial(πitem
m ). The user and item topics zuser

u,m and zitem
u,m together with user-

item topic joint distribution Φ jointly specify the rating, that is, ru,m ∼ Φzuser
u,m ,zitem

u,m
.

Figure 5-1: Graphical model representation of Bi-LDAsocial

In order to compute the rating ru,m, we need to obtain a number of model parame-

ters, Θ = { π
f riend
u , z f riend

u,m , πuser
u , πitem

m , zuser
u,m , zitem

u,m , Φzuser
u,m ,zitem

u,m
}. Among them, π f riend

u ∈ R1×|U |

with Dirchlet priors α f riend captures distribution of the receptiveness of user u to his/her

friends, πuser
u ∈ R1×K with Dirchlet priors αuser depicts the distribution of user u’s prefer-

ences on the K users’ topics, πitem
m ∈ R1×L with Dirchlet priors αitem captures the distribu-

tion of an item m on the L items’ topics, Φ ∈ RK×L with Dirchlet priors β is rating-scale

mixing proportion of user-item joint topic, z f riend
u,m represents the receptive friend whom

user u has picked for the rating given by user u on item m, zuser
u,m represents the topic user
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u has picked and zitem
u,m represents the topic item m has picked. The hyper-parameters of

the Dirichlet priors α f riend, αuser, αitem and β can be simply set to 1 [57].

Let X be the observed rating for user u on item m. Putting everything together, we

obtain the joint probability distribution for the Bi-LDAsocial as follows:

Pr(X, z f riend, zuser, zitem,Φ, πuser, πitem)

= Pr(X|zuser, zitem,Φ) Pr(Φ|β) Pr(zuser|πuser)×

Pr(πuser|αuser, z f riend) Pr(z f riend|π f riend)×

Pr(π f riend|αr) Pr(zitem|πitem) Pr(πitem|αitem)

(5.1)

Solving this equation is intractable, instead we adapt the collapsed Gibbs sampler

[15] to learn the model parameters. In particular, we analytically marginalize out all

the conjugate distributions Φ, πuser, πitem and π f riend and obtain an expression for the

joint probability P(X, zuser, zitem, z f riend). With this, we can compute the conditional dis-

tributions necessary for Gibbs sampling. We give the explicit forms for the following

conditional distributions where x = ru,m is the observed rating, k = zuser
u,m and l = zitem

u,m :

P( f = z f riend
u,m |Θ\z f riend

u,m , x) ∝
(
(n f riend

u, f )¬(u,m) + α f riend
)

×

(
(nuser

f ,k )¬(u,m) + αuser
)( N¬(u,m)

k,l,x + β∑
r (N¬(u,m)

k,l,r + β)

) (5.2)

where n f riend
u, f denotes the number of times that user u is receptive to f in all the ratings

, (n f riend
u, f )¬(u,m) denotes the number of times that user u is receptive to f in all the ratings

excluding ru,m, (nuser
f ,k )¬(u,m) denotes the number of times user f will be assigned to user

topic k in all the ratings except for ru,m, Nk,l,r represents the number of times the user with

user topic k has rated item with item topic l with the rating r, and N¬(u,m)
k,l,x represents the

number of times the observed rating x has been given by user with user topic k on item

with item topic l excluding ru,m.
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Similarly, we define the conditional distribution for user topic zuser
u,m :

P(zuser
u,m = k|Θ\zuser

u,m , x)

∝

(
(nuser

f ,k )¬(u,m) + αuser
) ( N¬(u,m)

k,l,x + β∑
r (N¬(u,m)

k,l,r + β)

) (5.3)

The conditional distribution is the same for the item topic with the role of user and

item reversed.

P(zitem
u,m = l|Θ\zitem

u,m , x)

∝

(
(nitem

m,l )¬(u,m) + αitem
) ( N¬(u,m)

k,l,x + β∑
r N¬(u,m)

k,l,r + β

) (5.4)

where (nitem
m,l )¬(u,m) denotes the number of times that an item m is assigned to item topic l

in all the ratings except for ru,m, and Nk,l,r represents the number of times that a user with

user topic k has rated an item with item topic l with the rating r.

The parameter π f riend, πuser, Φ and πitem can be obtained as follows:

π
f riend
u, f =

n f riend
u, f + α f riend∑

f∈F(u) (n f riend
u, f + α f riend)

Φk,l,x =
Nk,l,x + β∑

r (Nk,l,r + β)

πuser
u,k =

nuser
u,k + αuser∑

k (nuser
u,k + αuser)

πitem
m,l =

nitem
m,l + αitem∑

l (nitem
m,l + αitem)

(5.5)

The algorithm of the collapsed Gibbs sampler for inferring these latent variables

{z f riend, zuser, zitem} is shown in Algorithm 4.

Receptiveness over Time

The second part of RTM is to model the dynamic interaction of users’ interest along with

the receptiveness among friends over time. Given the users’ rating histories at T different
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Algorithm 4: Gibbs sampling for Bi-LDAsocial

input : Users’ rating histories X, users’ trust relation S , K and L
output: πuser, Φ, πitem and π f riend

/*Initialization of the latent variables and counters*/1

Random initialize z f riend, zuser and zitem2

Initialize n f riend, nuser, nitem and N as 03

foreach x = ru,m ∈ X do4

f = z f riend
u,m ,k = zuser

u,m and l = zitem
u,m5

Increase the counter of n f riend
u, f , nuser

u,k , nitem
m,l and Nk,l,x6

end7

for index=1 to Iter do8

/* for each rating x = ru,m in X */9

foreach x = ru,m ∈ X do10

/* Sample Friends */11

f = z f riend
u,m ∼ P(z f riend

u,m |Θ\z f riend
u,m , x) according to Equation (5.2)12

/* Sample Users’ Topics */13

k = zuser
u,m ∼ P(zuser

u,m |Θ\z
user
u,m , x) according to Equation (5.3)14

/* Sample Items’ Topics */15

l = zitem
u,m ∼ P(zitem

u,m |Θ\z
item
u,m , x) according to Equation (5.4)16

f = z f riend
u,m , k = zuser

u,m , l = zitem
u,m , x = ru,m17

/* Update Counter */18

Update the counter n f riend
u, f , nuser

u,k , nitem
m,l and Nk,l,x19

end20

end21

/* Get the mean estimate for π f riend, πuser, Φ and πitem */22

π f riend, πuser, Φ and πitem can be calculated according to Eq. (5.5).23
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time points, a naive approach is to fit a Bi-LDAsocial model at each time point and learn

the receptiveness and user interest distribution at the various time points, denoted as {

π f riend (1), · · · , π f riend (T )} and { πuser (1), · · · , πuser (T )}, respectively. However, using this

approach, the latent topics learnt at time point t1 may be totally different from that at

time point t2. Furthermore, since we regard each user in the different time point as

independent, we are unable to make use of his/her ratings in the past. This worsens the

data sparsity problem.

To overcome the shortcomings, we assume that the overall interest distribution of the

whole user population should remain stable. This enable us to share the Φ across the

different time points. In addition, we impose constraints on πuser and π f riend by assuming

dependency between two consecutive snapshots as follows:

π f riend (t) ∼ P(π f riend (t)|π f riend (t−1))

In other words, we introduce a prior from π f riend (t−1) to π f riend (t) so that at time t, we

are drawing from the Dirichlet prior parameterized by π f riend (t−1) where

π f riend(t) ∼ Dirchlet(λπ f riend (t−1))

The intuition of λπ f riend (t−1) can be interpreted as the prior observed counts that user is

receptive to his/her friends before any friend from the current time points is observed.

Similarly, we introduce the parameterized prior for both user and item topic distributions:

πuser (t) ∼ Dirchlet(λπuser (t−1)),

πitem (t) ∼ Dirchlet(λπitem (t−1))

The graphical representation of the RTM model is shown in Figure 5-2. With this

change, the conditional distribution of Equation (5.2) is now
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Figure 5-2: Graphical model representation of RTM Model

P( f = z f riend
u,m |Θ\z f riend

u,m , x) ∝
(
(n f riend

u, f ,t )¬(u,m,t) + λπ f riend (t−1)

)
×

(
(nuser

f ,k,t)
¬(u,m,t) + λπuser (t−1)

)( N¬(u,m,t)
k,l,x + β∑

r (N¬(u,m,t)
k,l,r + β)

) (5.6)

where (n f riend
u, f ,t )¬(u,m,t) denotes the number of times that user u is receptive to f in all the

ratings at time t excluding r(t)
u,m. (nuser

f ,k,t)
¬(u,m,t) denotes the number of times user f will be

assigned to user topic k in all the ratings at time t except for r(t)
u,m. Nk,l,r represents the

number of times the user with user topic k has rated item with item topic l with the rating

r, N¬(u,m,t)
k,l,x represents the number of times the observed rating x has been given by user

with user topic k on item with item topic l excluding r(t)
u,m Similar change can be applied

to the Equation (5.3) and (5.4) by introducing an additional temporal dimension for the

counter, that is:

P(zuser
u,m = k|Θ\zuser

u,m , x)

∝

(
(nuser

f ,k,t)
¬(u,m,t) + λπuser (t−1)

u,k

) ( N¬(u,m,t)
k,l,x + β∑

r (N¬(u,m,t)
k,l,r + β)

) (5.7)

113



P(zitem
u,m = l|Θ\zitem

u,m , x)

∝

(
(nitem

m,l,t)
¬(u,m,t) + λπitem (t−1)

u,k

) ( N¬(u,m,t)
k,l,x + β∑

r N¬(u,m,t)
k,l,r + β

) (5.8)

With this, based on the Eq. (5.5), the parameter π f riend, πuser, Φ and πitem can be

constructed as:

π
f riend (t)
u, f =

n f riend
u, f ,t + λπ

f riend (t−1)
u, f∑

f∈F(u) (n f riend
u, f ,t + λπ

f riend (t−1)
u, f )

πuser (t)
u,k =

nuser
u,k,t + λπuser (t−1)

u,k∑
k (nuser

u,k,t + λπuser (t−1)
u,k )

πitem (t)
m,l,t =

nitem
m,l,t + λπitem (t−1)

m,l∑
l (nitem

m,l,t + λπitem (t−1)
m,l )

Φk,l,x =
Nk,l,x + β∑

r (Nk,l,r + β)

(5.9)

The process of generating time series ratings is summarized as follows:

1. Choose a K × L distribution over ratings Φ ∼ Dir(β)

2. For time t = 1, choose a distribution over friends F(u) for each user π f riend (1)
u ∼

Dir(α f riend);

For time t > 1, choose a distribution over friends F(u) for each user π f riend (t)
u ∼

Dir(λπ f riend (t−1))

3. For time t = 1, choose a distribution over K users’ topic for each user πuser (1)
u ∼

Dir(αuser).

For time t > 1, choose a distribution over K users’ topic for each user πuser (t)
u ∼

Dir(λπuser (t−1)).
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4. For time t = 1, choose a distribution over L items’ topic for each item πitem (1)
m ∼

Dir(αitem).

For time t > 1, choose a distribution over L items’ topic for each item πitem (t)
m ∼

Dir(λπitem (t−1)).

5. For each rating x = r(t)
u,m:

• Choose user friend

f = z f riend
u,m ∼ Multinomial(π f riend (t)

u )

• Choose user topic

k = zuser
u,m ∼ Multinomial(πuser (t)

f )

• Choose item topic

l = zitem
u,m ∼ Multinomial(πitem (t)

m )

• Choose a rating r(t)
u,m ∼ Φk,l

Based on the generative process, we can design Gibbs sampling to infer the latent

variables as shown in Algorithm 5.

Note that that the cost of running a full Gibs iteration is O(p) where p is the total

number of rating observations.

5.3.2 Applications of RTM

In this section, we discuss how the RTM model can be used for rating prediction, tracking

receptiveness over time, and analyzing users interest change.

• RTM-based Rating Prediction

Having obtained the RTM model, we predict the rating made by user u on item m

at time point t as follows:

r̂(t)
u,m =

∑
f∈F(u)

π
f riend (t)
u, f [πuser (t)

u ]>Φπitem (t)
m
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Algorithm 5: Gibbs sampling for RTM
input : Users’ rating histories over time R={R(1),...R(T )},

users’ trust relation over time
S ={S (1),...,S (T )},
K, L and λ

output: πuser (t), Φ, πitem (t) and π f riend (t)

/*Initialization of the latent variables and counters*/1

Random initialize z f riend, zuser and zitem2

Initialize n f riend, nuser and nitem and N as 03

foreach x = r(t)
u,m ∈ X do4

f = z f riend
u,m ,k = zuser

u,m and l = zitem
u,m5

Increase the counter of n f riend
u, f ,t , nuser

u,k,t , nitem
m,l,t and Nk,l,x6

end7

/* for each rating x = r(t)
u,m in X */8

for index=1 to Iter do9

foreach x = r(t)
u,m ∈ X do10

/* Sample Friends */11

f = z f riend
u,m ∼ p(z f riend

u,m |Θ\z f riend
u,m , x) according to Equation (5.6)12

/* Sample Users’ Topics */13

k = zuser
u,m ∼ P(zuser

u,m |Θ\z
user
u,m , x) according to Equation (5.7)14

/* Sample Items’ Topics */15

l = zitem
u,m ∼ P(zitem

u,m |Θ\z
item
u,m , x) according to Equation (5.8)16

/* Update Counter */17

Update the counter n f riend
u, f ,t , nuser

u,k,t , nitem
m,l,t and Nk,l,x18

end19

end20

/* Get the mean estimate for π f riend (t), πuser (t), Φ and πitem (t)*/21

π f riend (t), πuser (t), Φ and πitem (t) can be calculated according to Eq. (5.9).22
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• Receptiveness Change Analysis

For a given user u, the receptiveness of u to his/her friends (including user u) at

time point t is π f riend (t)
u . By constructing the receptiveness of other users to user u

in T time points, we can track the receptiveness of other users on user u over time:

C f riend
u =

[
π f riend (1)

u , ..., π f riend (t)
u

]
where C f riend

u is an |U | ×T matrix. Each column in C f riend
u can be interpreted as the

expected probability where user u may be receptive to the other |U | users at time

point t. In other words, we can discover who are the users that u is most receptive

to at the particular time point.

• User Interest Change Analysis

For a given user u, we compute the user u’s preference over item topic at time

point t as [πuser (t)
u ]>Φ. By constructing u’s preference over item topic for all T

time points, we can track u’ s interest change over time:

Cu =

[
[πuser (1)

u ]>Φ, ..., [πuser (t)
u ]>Φ

]
where Cu is a L × T matrix. Each column in Cu can be interpreted as the expected

ratings provided by user u on all the L item topic at time point t. By sorting the

columns, we can discover what kind of items are preferred by a user at a certain

time point.

5.4 Experimental results

In this section, we evaluate the effectiveness of the proposed RTM model that utilizes

both time-stamped rating data and trust over time for users’ acceptance on recommen-

dation in terms of rating prediction. We also implement two variants of RTM:
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• RTM-StaticSocial: this variant assumes that the social trust does not change over

time while user interest may shift over time as reflected by the time-stamped rating

data. This is achieved by using the same social trust information for all the time

points.

• RTM-StaticInterest: this variant assumes that the user interest does not change

over time and only the social trust changes over time. This is achieved by using

the same rating information for all the time points.

We compare the proposed models with the following state-of-the-art recommender

methods for rating prediction:

1. Probabilistic Matrix Factorization (PMF) [63]. This is a matrix factorization

based CF algorithm that utilizes static user ratings on items. No social trust infor-

mation is used.

2. Bi-LDA [57] This is a generative model that also utilizes static ratings for predic-

tion. Again no social trust information is employed.

3. TimeSVD++[34] This is temporal CF algorithm that assumes user interests change

over time and is the baseline of temporal CF methods. This method does not in-

corporate social trust information.

4. SocialMF [28]. This is a social CF algorithm that utilizes the social trust informa-

tion and is the baseline of social CF methods. This method does not consider the

shift in user interest.

Table 5.3 gives a summary of the various methods. All the experiments are carried

out on an Intel Core i7-2600 CPU with 8GB RAM, running Windows 7-64 bit.

We use the Epinions dataset1 in our experiments. This dataset comprises of two files.

The first file contains 717, 667 user trust statements with time-stamps, while the second

1http : //www.trustlet.org/wiki/ExtendedE pinionsdataset
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Table 5.3: Summary of methods.

Data used No social trust S tatic social trust S ocial trust over time
S tatic rating Bi-LDA, PMF SocialMF RTM-StaticInterest

Rating over time TimeSVD++ RTM-StaticSocial RTM

file contains 13, 668, 319 users’ ratings provided by 120, 492 users on 755, 760 articles

on a scale of 1 to 6, with 1 being not helpful and 6 being most helpful. Each rating is

associated with a time-stamp over the period from February 2001 to July 2002.

We sort the data according to the time-stamps and split the data into 6 equal time

slices. Each time slice corresponds to about 3 months. We use the first 5 time slices

of data as the training data, and the last time slice for testing. We also filter out users

that have made less than 10 unique ratings. After pre-processing, we obtain 5, 077, 392

users’ ratings with 9, 149 users and 116, 697 articles and 236, 878 social relations. Table

5.4 summarizes the statistics of the rating dataset.

Table 5.4: Statistics of rating dataset.

Statistics Users Movies
Min. # of ratings 10 1
Max. # of ratings 39,467 1134
Mean. # of ratings 554.96 ± 1681.11 43.50 ± 41.04

5.4.1 Experiments on Users’ Acceptance

We evaluate the task of users’ acceptance on item recommendation utilizing both time-

stamped rating data and trust over time. In this set of experiments, we compare the

performance of the various methods. We use the standard evaluation metrics Mean Ab-

solute Error (MAE) and Root Mean Square Error (RMSE) as our measurement defined

as follows:

MAE =

∑
ri∈D(ri − r̂i)
|D|
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Figure 5-3: Accuracy of Rating Prediction

RMS E =

√∑
ri∈D(ri − r̂i)2

|D|

where D denotes the test dataset, ri is the actual rating and r̂i is the predicted rating.

A smaller value of MAE or RMSE indicates a better performance.

Figure 5-3 shows the results when we vary the number of user/item dimensions from

10 to 50. We observe that the proposed RTM model has the lowest MAE and RMSE,

demonstrating that capturing the dynamic interest between user interest and social trust

can improve the rating prediction accuracy. In particular, RTM model lowers the RMSE
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(MAE) by as much as 7.71% (8.26%) compared to the SocialMF model, and 8.14%

(9.29%), compared to TimeSVD++.

Both SocialMF and RTM-StaticInterest outperform conventional CF models that do

not incorporate trust information, namely, Bi-LDA and PMF. This indicates that social

trust can help improve the rating prediction accuracy. Both TimeSVD++ and RTM-

StaticSocial model user interest over time and thus perform better than Bi-LDA and

PMF.

5.4.2 User Interest Change Case Study

Here, we visualize the user interest profile obtained from the RTM model over time.

Figure 5-4 shows the interest profiles of 2 users from the Epinions dataset. We observe

that the user 739’s interests remains stable over the time, as indicated by his/her high

preference for user latent topic 1 throughout the 6 time points. User 365’s main interest

is in the latent topic 4 from time points 1 to 3, and changes to latent topics 9 from time

point 4 to 6, showing a shift in his/her interest.

Figure 5-4: User interest change over time

On closer examination, we find that user 739 has rated a lot of reviews in the topic

with id 72 for all the time points. On the other hand, user 365 mainly rated reviews on

the topic with id 549 from time points 1 to 3, and then change to rate reviews on the topic

with id 447 from time points 4 to 6. This confirms that the interest profiles obtained from
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the RTM model can capture user interest change.

5.4.3 User Receptiveness Case Study

Figure 5-5: User interest profiles and their trust relationships

Next, we analyze the user interest profiles and their social trust relationships over

time. Figure 5-5 shows the interest profiles of 4 users and their social trust relationships

at time points T1 and T6. Suppose user 433 is our target user. We note that at time

point T1, user 433 does not know user 34 and their interest profiles are quite different.

However at time point T6, user 34 has become user 344’s friend and his/her interest

profile has shifted to become similar to that of user 344. Looking at Figure 5-6 which

shows the receptiveness of user 433 towards the other 3 users over time, we observe

that the receptiveness of user 433 to user 34 increases sharply at T6. This indicates

that the RTM model captures the dynamic interaction between user interests and social

relationships faithfully.
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Figure 5-6: Receptiveness change over time

5.4.4 Sensitivity Experiments

In this section, we examine the effect of various parameters on the performance of the

RTM model.

Effect of varying K and L

Table 5.5 shows the RMSE of RTM as we vary the number of user topic K and the

number of item topic L from 10 to 50. We observe that RMSE does not vary much. The

best performance is achieved by setting K = 40 and L = 50.

Table 5.5: Effect of K and L on RMSE
HHH

HHHK
L

10 20 30 40 50

10 0.5572 0.5512 0.543 0.5419 0.5420
20 0.5532 0.5473 0.5447 0.5428 0.5443
30 0.5718 0.5518 0.5428 0.5434 0.5417
40 0.5534 0.5417 0.5412 0.5431 0.5367
50 0.5521 0.5447 0.5401 0.5414 0.5439

Effect of varying λ

Recall that the parameter λ control how much the prior information is transferred from

the previous time slice to the current time slice. When λ = 0, no prior information is
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Figure 5-7: Sensitivity analysis on λ

Figure 5-7 shows the RMSE obtained for varying λ values. We observe that the best

performance is obtained when λ = 1, indicating that prior information helps to improve

item rating prediction.

5.5 Summary

In this chapter, we have motivated the need to capture the dynamic interaction between

trust and user interest for recommendation. We have designed the RTM generative model

that incorporates user interest and social trust relationships over time. We have also de-

vised efficient algorithms to learn the latent variables in the RTM model using Gibbs

sampling. Experimental results have shown that RTM-based recommendation outper-

forms state-of-the-art CF methods. In addition, the model provides easy interpretations

to allow easy visualization of users’ receptiveness and interest change over time.
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CHAPTER 6

CONCLUSION

In this thesis, we have investigated improving user’s acceptance for recommender sys-

tems using three popular data. We have reviewed the current work in the area of tagging

data, cross domain data and social trust data in recommender system. Although there

has been a lot of works in these areas, there remain challenges to be addressed. This

thesis has focused on three research problems.

The first research has dealt with increasing the users’ acceptance by capturing the

explicit and implicit preference with rating and tagging information. We exploit a qua-

ternary relationship among users, items, tags and ratings. We have shown that ternary

relationship among user, item and ratings which are insufficient to provide accurate

recommendations. Instead, we have modeled the quaternary relationship among users,

items, tags and ratings as a 4-order tensor and casted the recommendation problem as a

multi-way latent semantic analysis problem. A unified framework for user recommen-

dation, item recommendation, tag recommendation and item rating prediction has been

proposed. The results of extensive experiments performed on a real world dataset have

demonstrated that our unified framework outperformed the state-of-the-art techniques in

all the four recommendation tasks. To the best of our knowledge, this is the first work
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to explore the use of the quaternary relationship among users, items, tags and ratings for

recommendation tasks.

Second, we have investigated the problem of increasing users’ acceptance using cross

domain data setting. We have presented a novel collaborative filtering method for inte-

grating social network and cross domain network in a unified framework via latent fea-

ture sharing and cluster-level tensor sharing. This framework utilizes data from multiple

domains and allows the transfer of useful knowledge from auxiliary domain to the target

domain. The results of extensive experiments performed on a real world dataset have

demonstrated that our unified framework outperforms the state-of-the-art techniques in

all the three recommendation tasks. We have also implemented the algorithm on a map-

reduce infrastructure and have shown its scalability.

Finally, we have motivated the need to capture the dynamic interaction between trust

and user interest for increasing users’ acceptance in recommendation. We have designed

the RTM generative model that incorporates user interest and social trust relationships

over time. We have also devised efficient algorithms to learn the latent variables in the

RTM model using Gibbs sampling. Experimental results have shown that RTM-based

recommendation outperforms state-of-the-art CF methods. In addition, the model pro-

vides easy interpretations to allow easy visualization of users’ receptiveness and interest

change over time.

6.1 Future Work

First, with the popularity of different social media applications (e.g. foursquare), we

have additional user-generated data such as geo-location data. This creates an even more

complex relationship that extend beyond quaternary relationships. One possible direc-

tion for future work is to extend the QSA framework to create higher-order tensor that

can take into consideration geographical influence so as to model users’ profiles and

capture users’ interest more accurately.
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Second, FUS E assumes that the source and target domains are related to each other

in some sense. However, when this assumption is not true, negative transfer may result

and the learner can perform worse than if no transfer takes place at all. Given a target

domain/task, it is an important research question on how to find related source/auxiliary

domains/tasks to ensure positive transfer.

Third, besides accuracy and transparency, diversity, serendipity and trust are also

important factors in improving the users’ acceptance. For example, the recommenders

may always recommend popular movies such as Avatar to users, this not good if the

user has already seen the recommendation before. User wants novel recommendation

and not the items he/she already knows. Increasing the diversity and serendipity of

recommendation is an important research direction.

Finally, the availability of big data presents many exciting opportunities to develop

algorithms and to build scalable and robust recommender systems that can adapt and

learn from bulk quantities of dynamic real-world data in a life-long learning manner.
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