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SUMMARY 

Gastric cancer is the second leading cause of cancer death worldwide, 

but has been little studied compared with many other tumors. Copy number 

alteration (CNA) and loss of heterozygosity (LOH) are two common events 

that are related to the tumorigenesis in gastric cancer. LOH is a genetic 

abnormality that causes the loss of one normal allele of a specific gene when 

the other allele has already been mutated. LOH can result in the inactivation of 

tumor suppressor genes (TSGs), and therefore, regions that are frequently and 

independently subject to LOH often harbor TSGs. So far, however, there have 

been few systematic, genome-wide studies of LOH in gastric cancer. Here we 

report the results of genome-wide assessments of CNAs and LOH in 45 gastric 

tumors assayed by Affymetrix SNP 6.0 arrays, each with matched non-

malignant DNA. Analysis of regions that frequently undergo LOH in these 45 

tumors implicates TSGs already known to contribute to gastric carcinogenesis; 

these include TP53 (80%), CDKN2A (67%) and APC (53%). This analysis 

also implicates several candidate TSGs that, to our knowledge, have not been 

previously linked to gastric carcinogenesis. These genes include PTPRD and 

DOCK8 on chromosome 9p. In addition, we unexpectedly found that the 

extent of LOH in tumors is highly correlated with gender and with tumor 

subtypes. These correlations may reflect underlying differences in the 

mechanisms of cancer development and progression. 

Because the accuracy of inference of copy number alteration, LOH, 

and allelic imbalance from SNP arrays mainly depends on the software 

applied, we compared eight commonly used free programs with respect to 



ix 

 

their sensitivities and specificities. We concluded that ASCAT and CNAG 

outperformed the other methods.   

Finally, our analysis of LOH facilitated and supported the discoveries 

of novel TSGs in gastric carcinoma and cholangiocarcinoma (bile duct cancer) 

by next-generation whole-exome sequencing. We also show that one of the 

analytical methods that we studied, ASCAT, can be applied not only to SNP-

array data, but also to next-generation sequencing data. 



x 

 

TABLE OF ABBREVIATIONS 

GC: gastric cancer 

CNA: copy number alteration 

TSG: tumor suppressor gene 

LOH: loss of heterozygosity 

BAF: B allele frequency 

LRR: log R ratio 

GTC: Affymetrix Genotyping Console  

APT: Affymetrix Power Tools  

CNAG: Copy Number Analyser for Genechip  

GAP: Genome Alteration Print 

PSCN: Parent-Specific Copy Number (PSCN)  

TAPs: Tumor Aberration Prediction Suite   

ASCAT: Allele-Specific Copy Number analysis of Tumors 

GISTIC: Genomic Identification of Significant Targets in Cancer 

HDGC: hereditary diffuse gastric cancer 

RDAAC: Read Depth and Allele Count, a modified version of ASCAT 

applied to exome sequencing data 

 

  

http://www.pnas.org/content/107/39/16910.abstract


xi 

 

LIST OF TABLES 

TABLE 1. Several known TSGs that undergo LOH in various cancers. ........ 20 

TABLE 2. Regions that undergo frequent LOH in gastric cancer. .................. 21 

TABLE 3. Clinical and pathological information on tumors studied. ............. 86 

TABLE 4. Regions with LOH in ≥35% of gastric adenocarcinomas. ........... 87 

TABLE 5. Summary of frequently deleted regions. ........................................ 88 

TABLE 6. Summary of frequently amplified regions. .................................... 89 

TABLE 7. Summary of regions with homozygous deletions in more than one 

sample. ............................................................................................................. 90 

TABLE 8. Strong association between mutations in TP53 hotspots and LOH at 

TP53. ................................................................................................................ 91 

TABLE 9. Cox proportional hazards analysis provides no evidence that LOH 

proportion influences prognosis. ...................................................................... 92 

TABLE 10. Values of different parameters used in ASCAT analysis. ........... 93 

TABLE 11. Tumors for which ASCAT was unable to estimate allele-specific 

copy numbers. .................................................................................................. 95 

 

  



xii 

 

LIST OF FIGURES 

FIGURE 1. Epidemiology of gastric cancer. ..................................................... 4 

FIGURE 2. The TP53 pathway. ....................................................................... 10 

FIGURE 3. NF-κB pathway activation induced by H. pylori infection. ......... 13 

FIGURE 4. The canonical Wnt signaling pathway. ........................................ 13 

FIGURE 5. Different genetic mechanisms that cause LOH. ........................... 19 

FIGURE 6. The overview of the flow of a Affymetrix Genomewide SNP array.

.......................................................................................................................... 24 

FIGURE 7. Flowchart of SNP array data processing procedure for CNA and 

LOH detection. ................................................................................................. 49 

FIGURE 8. The clustering and pattern recognition algorithms used by GAP 

and TAPS. ........................................................................................................ 50 

FIGURE 9. Comparison of CNA and LOH detection across the genome for 

different methods at different proportions of tumor and non-malignant cells. 52 

FIGURE 10. LOH on chromosome 1 at varying proportions of tumor DNA as 

inferred by six programs. ................................................................................. 54 

FIGURE 11. Comparison of sensitivities (A, B, C) and specificities (D)for 

different methods. ............................................................................................ 55 

FIGURE 12. Example ASCAT profile and allele-specific copy numbers. ..... 75 

FIGURE 13. Examples of tumor and non-malignant pairs that ASCAT was 

unable to analyze.............................................................................................. 77 

FIGURE 14. Relationship between tumor content and ASCAT’s ability to 

generate an allele-specific-copy-number model. ............................................. 78 

FIGURE 15. Frequencies of LOH and CNA across 45 gastric tumors. .......... 78 

FIGURE 16. Identification of significant somatic copy number alterations 

across gastric cancer by GISTIC. ..................................................................... 79 

FIGURE 17. LOH and CNA proportions in males and females...................... 81 

FIGURE 18. Comparisons of proportions of LOH and CNA in gastric tumors 

according to the Lauren histological subtypes. ................................................ 82 

FIGURE 19. Relationship between TP53 mutation and proportion of genome 

subject to CNA. ................................................................................................ 82 

FIGURE 20. Relationship between standard deviations of segmented BAF and 

segmented LRR. ............................................................................................... 84 

FIGURE 21. Kaplan-Meier survival analysis comparing outcomes by 

proportion of LOH and average ploidy. ........................................................... 85 

Figure 22. Western blot of proteins PTPRD and DOCK8 using various cell 

lines. ................................................................................................................. 96 

FIGURE 23. DOCK8 and PTPRD siRNA knock-down analysis show no 

significant effect of these two genes on cell proliferation. .............................. 97 



xiii 

 

FIGURE 24. The ASCAT profile of two gastric tumors assayed by Affymetrix 

SNP 6.0. ......................................................................................................... 101 

FIGURE 25. Comparison of RDAAC analysis using next-generation 

sequencing data and ASCAT analysis using Affymetrix SNP 6.0 data. ....... 103 



1 

 

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 

1.1 Aims and Outlines 

Gastric cancer is a complex disease with high mortality. It is the second most 

common cause of cancer death worldwide [1], and the five year survival rate for patients 

with the late stage of cancer is ～4% [2]. The effects of treatment are very limited, 

partially due to the intrinsic heterogeneity of the cancer.  Therefore, it is important to 

understand the mechanisms of gastric cancer comprehensively in order to develop more 

effective therapy. 

Tumorigenesis in gastric cancer is caused primarily by genetic alterations [3]. 

Tumorigenesis is marked by the aberrant regulation of genes that are involved in different 

signaling pathways such as cell proliferation and apoptosis. The aberrations include 

genome copy number changes, chromosomal translocations, single nucleotide 

substitutions, epigenetic modifications, insertions-deletions, and loss of heterozygosity 

(LOH). 

LOH is a type of genetic alteration that often provides the second hit of 

tumorigenesis in the Knudson two-hit model of tumorigenesis. In the model, the first hit 

is a mutation on one allele of a gene, and LOH will cost the loss of the other wild-type 

allele [4]. The detection of LOH in tumors facilitates the discovery of tumor suppressor 

genes (TSGs) since TSGs are often located in regions that recurrently undergo LOH. In 

general, at the cellular level, mutations in tumor suppressor genes are recessive, and cells 

that contain one normal and one mutated gene copy still behave normally. However, 

LOH causes cells to lose the remaining normal gene and thus to develop into a tumor. 

TSGs play a key role in carcinogenesis and tumor progression, but our understanding of 
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TSGs is still limited. While some commonly mutated TSGs have been well studied, there 

is evidence that more remain to be discovered. The development of SNP arrays and the 

analytical approaches facilitate the discovery of regions that frequently undergo LOH in 

gastric cancer, which can lead to the discovery of regions containing TSGs.  Therefore, it 

would be of great significance to understand the pattern of recurrent LOH in gastric 

cancer.  

Since few studies of gastric cancer LOH have been undertaken, our aim is to 

understand the effect of LOH in tumorigenesis through a comprehensive genome-wide 

study, and a detailed study of LOH in gastric cancer may present potential biomarkers for 

prognosis and treatment. In addition, we aim to find novel tumor suppressor genes in 

LOH regions and to understand the effect of these genes on gastric cancer development. 

In the current chapter, we provide the background information regarding gastric 

cancer epidemiology and pathology, LOH and the Affymetrix SNP 6.0 array platform 

that we used for whole-genome copy number and LOH analysis.  

In Chapter 2, we focus on the analysis of data of gastric cancer tumor-normal 

pairs with the Affymetrix Genomewide SNP 6.0 platform. We present for the first time a 

whole-genome LOH map of gastric cancer and evidence for several novel tumor 

suppressor genes that may play a key role in tumorigenesis. We also showed a significant 

correlation between LOH and other genetic alterations.  

In Chapter 3, we investigate the application of diverse approaches to copy number 

and LOH analysis and discussed the sensitivity and specificity of these approaches as 

affected by different tumor content.  



3 

 

In addition to the genomic alteration analysis in gastric cancer, in Chapter 4, we 

also present the application of LOH analysis to other types of cancers, which aids the 

discoveries of novel TSGs in the respective cancer types. We also show that the 

analytical methods of LOH on SNP 6.0 arrays can be adapted to next-generation 

sequencing data. 

1.2 General Introduction of Gastric Cancer 

1.2.1 Epidemiology 

Gastric Cancer was the fourth most common cancer in the world, with an 

estimated 989,600 new cases [1]. GC occurrence varies globally and is more prevalent in 

East Asia (extremely high in South Korea, Japan and China) and South America 

(Figure1). With 72% of all new cases occurring in male patients, the incidence rate is 

twice as high in males as in females. Gastric cancer has a high mortality rate and is the 

second leading cause of cancer death worldwide, accounting for over 700,000 deaths 

annually [1]. In Singapore, the incidence rate was ~ 22.3 per 100,000 in 2002, with a 

mortality rate of 17.8 per 100,000 [5]. Despite the steady decline of gastric cancer 

incidence rates over the 30 years (Figure 1B) presumably due to  the diet changes, 

improved sanitation and increased screening (especially in Japan), the absolute incidence 

rate has risen because of the aging of the world population.  

1.2.2 Diagnosis 

Early stage gastric cancer is often asymptomatic and thus can seldom be detected. 

Therefore, in countries with high incidence rates of gastric cancer such as Japan, mass 

endoscopic screening programs are conducted for early diagnosis and treatment [6]. 

Usually, a double-contrast barium x-ray followed  by an upper endoscopy (EGD) is the 
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main procedure to diagnose gastric cancer on patients who present with the symptoms 

such as weight loss, abdominal pain, nausea and vomiting or those with multiple risk 

factors [7]. A biopsy is required if any abnormality is seen by EGD. Further tests, 

including endoscopic ultrasound, computed tomography scan and positron emission 

tomography scan are necessary after the initial diagnosis of gastric cancer to determine 

treatment options.   

 

FIGURE 1. Epidemiology of gastric cancer.  

(A) Age adjusted incidence rates of gastric cancer per 100,000 in 2008. (B)  Trends in 

age adjusted incidence rate of stomach cancer per 100,000 men in selected countries. 

(Reproduced from Globocan 2008. http://globocan.iarc.fr/) 

 

Tumor stage is an important indicator for both diagnosis and treatment of gastric 

cancer. There are two major staging systems for gastric cancer: the Japanese 

Classification of Gastric Cancer (JCGC) [8] and the International Union Against Cancer's 

tumor-node-metastasis (TNM) system [9]. The 5-year survival rates for gastric cancer 

vary significantly for different stages. The 5-year survival rate for stage I can reach up to 

60% while the survival rate for stage IV is only around 4% [10]. 

1.2.3 Histology 

http://globocan.iarc.fr/
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Two main systems of histological classification are widely used: the Laurén 

classification and the WHO classification. 

The Laurén system classifies according to the pathological criteria and consists of 

two main types: the intestinal type and the diffuse type [11]. Intestinal type gastric tumors 

form irregular tubular or papillary structures and are normally well differentiated. Diffuse 

type gastric tumors have structures that are inconspicuous, may have signet-ring cells, 

and are undifferentiated or poorly differentiated. Adenocarcinomas of this type tend to 

aggressively invade the gastric wall. The intestinal type carcinomas frequently occur in 

old men while the diffuse type is more prevalent in young women [12]. A third type, 

termed "mixed", contains both intestinal and diffuse histological features [13]. The mixed 

type is more aggressive and tends to have larger sized tumors, deeper invasion, and more 

common lymph node metastasis compared to the other two types [12].  

The Laurén classification is roughly comparable with the WHO classification 

[14]. The WHO classification classifies gastric cancer into four main categories: Tubular, 

papillary, mucinous, and poorly cohesive based on the descriptive criteria [15]. The 

papillary, tubular and mucinous subtypes of gastric cancer are usually classified as 

intestinal according to the Laurén system, while poorly cohesive tumors are always 

classified as diffuse in the Laurén system. 

Genetic and epigenetic alterations vary significantly between intestinal and 

diffuse gastric cancer  [16], which has led to the hypothesis that the two subtypes have 

different etiologies. The “Correa Model” [17] posits that an intestinal tumor progresses 

through a number of sequential steps, which usually start from the gastritis caused by H. 

pylori infection. Then it progresses subsequently from atrophic gastritis to carcinoma. 
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However, diffuse gastric cancer is not included in this model, and no premalignant lesion 

is known. Thus this model suggests that these two subtypes differ significantly in their 

molecular pathways of tumorigenesis. 

1.2.4 Treatment 

Surgery is the most common treatment for all stages of gastric cancer. The basic 

goal is to remove all cancer and a margin of normal tissue, but the effects depend on the 

extent of invasion and the location of the tumor.  

Besides surgery, radiation therapy and chemotherapy are often applied to treat 

gastric cancer. Radiation therapy kills cancer cells by high-energy x-rays and 

chemotherapy uses drugs to stop the growth and division of cancer cells. Most 

chemotherapy treatments apply the combination of at least two drugs, such as 

fluorouracil (5-FU, Adrucil) and cisplatin (Platinol) [18, 19]. Our recent study [20] 

identified three robust subtypes in gastric tumors: "invasive", "proliferative" and 

"metabolic" based on gene expression profiling, and we found that metabolic-subtype 

tumors were preferentially sensitive to 5-FU treatment, while invasive-subtype may be 

more sensitive to PI3K/AKT/mTOR pathway inhibitors. Another study found that 

patients with higher EGFR expression benefit from the chemotherapy using the 

combination of 5-FU and cisplatin. [21].  

No standard of care has been established for gastric cancer yet, because gastric 

cancer is a heterogeneous disease and the relative benefits of drugs are unclear [22]. 

However, the development of targeted therapy casts light on the treatment of gastric 

cancer. Targeted therapy interferes with specific molecules that are involved in tumor 

growth and progression in order to inhibit the growth of cancer. It can improve clinical 
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outcomes and generally does not have the same types of severe side effects as standard 

chemotherapy. The recent ToGA (Trastuzumab for Gastric Cancer) trial has shown that 

Trastuzumab,  a HER2 inhibitor, when combined with chemotherapy, improved the 

overall survival of patients with HER2-positive gastric tumors [22].  We have also 

reported that FGFR2-amplified tumors show sensitivity to dovitinib, a FGFR/VEGFR 

targeting agent [23]. 

1.2.5 Etiology 

There is strong evidence that environmental factors, which presumably lead to 

somatic genetic and epigenetic alterations, play a major role in gastric carcinogenesis. In 

some cases, there are also known inherited genetic risk factors for gastric 

adenocarcinoma. Chronic inflammation, exposure to carcinogens and genetic 

susceptibility significantly increase the risk of gastric cancer [24, 25].  

Helicobacter Pylori Infection 

H. pylori, a bacterium that colonizes the gastric epithelium, is the strongest known 

risk factor for gastric cancer, especially cancers in the lower part of the stomach. H. 

pylori is estimated to contribute ~75% of the risk of gastric cancer [26]. H. pylori 

carcinogenesis includes several mechanisms. H. pylori infection may lead to chronic 

gastritis, gastric atrophy and intestinal metaplasia [27-31], which constitute progression 

towards intestinal-type gastric cancer [17].  Strain-specific bacterial virulence factors, 

such as the vacuolating cytotoxin VacA and CagA of the cag pathogenicity island (cag-

PAI), also play a key role in disease outcome [32, 33].  

Diet, Smoking and Alcohol 
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Evidence has shown that consumption of salted meat and fish, smoked foods and 

N-nitroso compounds, together with a low intake of fresh fruits and vegetables, increases 

the risk of developing gastric cancer [34-36]. Animal experiments indicated that ingestion 

of salt can cause gastritis and enhance pathogenic response to H. pylori infection [37]. A 

questionnaire study on 2112 Welsh men with 13.8 years follow-up revealed a significant 

decrease in cancer risk by the consumption of fresh fruits and vegetables [38]. The same 

result was also observed in a large scale cohort study of 265,118 adults in Japan from 

1966 to 1982.  

In addition, studies have shown that gastric cancer is associated with smoking and 

alcohol consumption. The study of 19,657 men from 1990 to 1999 revealed that smoking 

increased the risk of the differentiated type gastric cancer [39]. Another study between 

1974 to 1992 on the cohort of 32,906 people showed that the relationship of gastric 

cancer with smoking is dose-dependent [40]. Cigarette smoke promotes gastric tumor 

growth [41] and is a more pronounced risk factor in cardia gastric cancer (gastric cancer 

in the upper part of the stomach). Another case-control study from Russian based on 448 

cases and 610 controls indicated the relationship between hard liquor drinking and cardia 

gastric cancer in men [42]. 

Genetic Susceptibility 

Several known inherited factors attribute to risk for gastric cancer, including 

inherited cancer predisposition syndromes, genetic polymorphisms, and germline 

mutations. 

 Individuals with inherited cancer predisposition syndromes such as Lynch 

syndrome, Li-Fraumeni syndrome, and hereditary diffuse gastric cancer (HDGC) 
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syndrome, have a higher risk of developing gastric cancer [43, 44].  Lynch syndrome, 

also known as hereditary non-polyposis colorectal cancer, is an autosomal dominant 

inherited medical condition that has an increased risk of gastric cancer as well as other 

cancers. Lynch syndrome is caused by the defects in DNA mismatch repair genes such as 

MSH2, MLH1, MSH6, and MLH3, which lead to microsatellite instability [45-48]. Li-

Fraumeni syndrome is a hereditary disorder caused by germline mutations in TP53 [49]. 

It is characterized by first appearance of cancer at a young age and recurrence over the 

whole life span. HDGC syndrome is characterized by susceptibility for diffuse gastric 

cancer and the majority of HDGC patients possess germline mutation of E-cadherin 

(CDH1) [50-53]. 

Germline mutations of certain genes were also observed in gastric cancer. β-

catenin and APC mutations were frequently observed in intestinal type gastric cancer [54, 

55]. In addition, BRCA2 germline mutations were found in 21% of HDGC patients [56].  

Polymorphisms in the human interleukin (IL)-I beta gene and IL-I receptor 

antagonist gene are associated with an increased risk of gastric cancer due to H. pylori 

infection [57], and the pro-inflammatory polymorphisms of cytokines TNF-α and IL-10 

also altered the risk of noncardia gastric cancer (gastric cancer in all other areas of the 

stomach other than the top portion) [58]. In addition,  recent genome-wide association 

study of gastric adenocarcinoma tested over 500,000 single nucleotide polymorphisms 

(SNPs) for association with gastric cancer in 2,240 cases and reported that polymorphism 

of a SNP in PLCE1 at 10q23 showed significant relationship with the susceptibility of 

cardia gastric cancer [59].  

1.2.6 Molecular Pathogenesis 
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Gastric cancer is triggered by multiple somatic alterations, genetic or epigenetic, 

involving a number of oncogenes, tumor-suppressor genes, and DNA-repair genes. These 

prominent aberrations include somatic mutations, genomic copy number alterations, LOH, 

and DNA methylation, histone acetylation/methylation. Accumulated genomic damage 

eventually affects different cellular pathways and causes them to sustain proliferative 

signaling, evade growth suppressors, resist cell death, enable replicative immortality, 

induce angiogenesis, and activate invasion and metastasis [60].   

1.2.6.1 Cancer-Related Pathways 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. The TP53 pathway.  

Reproduced from [61]. 

 

TP53 Pathway 

Frequent LOH and mutations in TP53 are well-known mechanisms of 

carcinogenesis [62-65]. The TP53 tumor suppressor gene plays a vital role in the 

response to environmental and intracellular stresses.   
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In normal cells, MDM2, an E3 ubiquitin ligase, forms a complex with TP53 to 

regulate its degradation. Inhibition of this process causes the activation and accumulation 

of TP53. The TP53 gene then directly regulates the downstream genes to modulate 

growth arrest (p21), apoptosis (BAX), DNA repair (GADD45) or protein degradation 

(MDM2) (Fig 3).  

NF-κB Pathway 

Inflammation caused by H. pylori infection is strongly associated with gastric 

carcinogenesis, and the activation of NF-κB is a critical regulator of genes involved in 

immune and inflammatory responses [66]. The general pathway is described in Fig 4. 

Without stimulation, NF-κB dimers interact with the inhibitors of NF-κB (IκBs) and 

remain inactive in the cytoplasm [66].  The activation and translocation of NF-κB into 

the nucleus is controlled by the degradation of IκBs. IκBs are phosphorylated by the I

κB kinases (IKKs) and undergo proteasome-dependent degradation in response to a 

variety of extracellular stimuli following H. pylori infection [67]. H. pylori delivers 

cytotoxin-associated gene A (CagA), a cag-PAI encoded protein, into the epithelial cell 

cytosol, which is phosphorylated and binds to tyrosine phosphatase to trigger the NF-κB 

activation cascade. In addition, the activation of the NF-κB pathway is triggered by 

various pro-inflammatory cytokines such as IL-1β and TNF-α. Lipopolysacharide 

(LPS), which target spanning-membrane receptors IL-1R, TNFR and TLR4 (Toll-like 

receptor 4) respectively, is a major outer membrane component activated by the NF-κB 

pathway. In tumor cells, the activation of NF-κB has impaired regulation [68-70]. 

Subsequently, The activation of NF-κB induces inflammatory and tissue-repair genes 
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including MIP-2, MMP3, and VEGF and also increases the expression of ICAM-1, a cell 

adhesion molecule [67].  

Wnt Signaling Pathway 

Wnt signaling plays an important role in regulating cell proliferation and 

differentiation, and the pathway involves multiple interacting factors. Mutations in 

pathway-related genes including APC, β-catenin (CTNNB1) and AXIN, have been 

reported in gastric cancers [52, 71, 72]. In the absence of the extracellular Wnt ligands, 

the APC forms a complex with AXIN and GSK3β to phosphorylate β-catenin, an 

intracellular signaling molecule, which leads to the degradation of β-catenin. With the 

activation of Wnt, it binds to the cell-surface receptors of the Fizzled family and activates 

disheveled family protein (DSH), DSH then inhibits the activity of the APC-Axin-GSK3

β-β-catenin complex, resulting in the accumulation of β-catenin in the cytoplasm. β-

catenin binds to TCF reporters to activate Wnt target genes involved in cell cycle, 

apoptosis, cell growth and cell adhesion (Fig 5).  

1.2.6.2 Genetic and Epigenetic Alterations 

Gastric cancer is a complex disease and undergoes various somatic genetic and 

epigenetic alterations, including single nucleotide substitution, genomic copy number 

changes, loss of heterozygosity, and epigenetic modifications. 
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FIGURE 3. NF-κB pathway activation induced by H. pylori infection.  

Reproduced from [73]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. The canonical Wnt signaling pathway.  

Reproduced from [74]. 
 

Gene Mutations 
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Somatic mutations have long been studied in gastric cancer [52, 55, 75]. The 

initial studies of somatic mutations in primary gastric cancer focused on TP53, a well-

known tumor suppressor gene, and discovered a range of non-synonymous mutations that 

frequently occur in gastric cancer, especially in early-stage tumors [63, 64]. 

Subsequently, studies have revealed that somatic mutations in APC and β-catenin play 

key roles in tumor progression [52, 55]. KRAS, an important gene in the mitogen-

activated protein kinase (MAPK) cascade, is also frequently activated due to mutations in 

the caused progression of gastrointestinal malignancies [76, 77]. In addition, TTFI1, a 

candidate tumor-suppressor gene that provides a physical barrier at the gastric mucosa 

against various noxious agents, was found to lose its expression due to mutations [75]. 

The development of next-generation sequencing has vigorously boosted the 

genome-wide mutational analysis of gastric cancer with lower cost compared to 

previously available sequencing methods. Recent studies using exome-sequencing have 

reported several novel cancer-related genes that are frequently mutated in gastric cancer, 

including ARID1A and FAT4 [78, 79]. Somatic inactivation of these genes by mutations 

likely contributes to gastric tumorigenesis based on analysis in large series of tumors and 

based on experiments in cell lines. 

Copy Number and Gene Expression Alterations 

Genome-wide analyses of gastric cancer have revealed several regions of 

recurrent changes in DNA copy number, which indicate the possible location of 

oncogenes and tumor suppressor genes involved in gastric tumorigenesis. Copy number 

alterations such as recurrent genomic amplifications on chromosome arms 1p, 6p, 7q, 8p, 

11q, 16q, 17q, and 20q and deletions on chromosome arms 3p, 4q, 5q, 9p, 16p, 17p and 
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18q are common in gastric cancer [80-83]. Copy number changes are often accompanied 

by expression alterations of genes in the corresponding regions. Many gastric cancer-

related oncogenes are up-regulated by DNA amplification, including C-MET, K-SAM and 

ERBB2 [83-87]. In addition, gastric cancers sometimes show down-regulation of tumor-

suppressor genes (TSGs), including RUNX3 and FHIT, by copy number loss, leading to 

the loss of functions of these two tumor suppressor genes [88, 89]. 

The global gene expression profiles of gastric cancer have provided distinct gene 

signatures for diagnosis and treatment [20, 90-92]. A diversity of gene expression 

patterns in gastric cancer reflects variations in intrinsic properties of tumor and normal 

cells and variations in the cellular composition of gastric cancer [93]. Moreover, distinct 

gene expression profiles were also found between diffuse and intestinal gastric cancer 

[94]. Intestinal gastric tumors show overexpression of genes involved in cell proliferation, 

such as CDX1, MYO1A, MTP, and down-regulation of genes that are associated with 

epithelial differentiation. In contrast, in the diffuse type, genes encoding extracellular 

proteins are up-regulated, which is accompanied by the down-expression of e-cadherin 

(CDH1).  In addition, amplification of ERBB2 is especially common in intestinal gastric 

adenocarcinomas, while K-SAM and C-MET overexpression is more common in diffuse 

gastric tumors [95, 96].  

Microsatellite Instability (MSI)  

Microsatellites are short, repetitive DNA sequences that are widely and randomly 

distributed throughout the human genome. Microsatellite Instability (MSI) is 

characterized by novel-sized alleles detected in microsatellite sequences that are only in 

tumor tissues. MSI has been reported in many sporadic gastric cancers [63, 97, 98] and is 
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sometimes associated with germ-line mutations of the DNA mismatch repair (MMR) 

genes such as MSH2 and MLH1, which are involved in base-base MMR during DNA 

replication [99, 100]. Loss of MMR leads to an accumulation of DNA replication errors 

in cell proliferations, especially in short repetitive nucleotide sequences, which thus leads 

to MSI. Several studies have found that gastric cancers with high-frequency MSI (MSI-

H) show specific clinical phenotypes compared to low-frequency MSI (MSI-L) and 

microsatellite stable (MSS) tumors [101, 102]. MSI-H tumors tend to be of the intestinal 

subtype and have higher survival rates. MSI status also plays an important role in 

characterizing tumors and predicting prognosis, with MSI-L/MSS group showing better 

response to 5-FU treatment [103].  

Epigenetic Modifications 

Epigenetic modifications, such as DNA methylation and histone acetylation or 

methylation, are important alterations in gastric cancer. DNA hyper- and 

hypomethylation at CG dinucleotides (CpGs), were discovered to have a correlation with 

tumor suppressor gene silencing and oncogene overexpression, respectively [104, 105], 

and hypermethylation of CpG islands (CGIs , regions of high CpG density)  in gene 

promoters is widely associated with transcriptional silencing in cancer [105]. Numerous 

studies have investigated the role of DNA methylation in gastric cancer development, 

identifying genes frequently hypermethylated in gastric tumors such as MLH1 and 

CDKN2A [55, 98, 106]. Methylation is also a common second hit to the CDH1 gene 

subsequent to the germ-line mutation of the first allele, which is a major cause for 

hereditary diffuse gastric cancer [107]. In eukaryotic cells, five different histone proteins 

exist, termed H1, H2A, H2B, H3 and H4. Certain histone modifications, such as 
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methylation, and acetylation can lead to the change of the structure of the chromatin, 

which may contribute to gene activation or silencing. Hypo-acetylation of histones H3 

and H4 in the p21 promoter region is frequently observed in gastric cancer [108]. While 

conducting global acetylation analysis, the level of acetylated histone H4 is much lower 

in gastric cancers compared with that in non-neoplastic mucosa, which indicates a strong 

correlation between the reduced histone H4 acetylation and the tumor progression [109].  

1.2.7 Gastric Cancer Biomarkers 

Gastric cancer is a heterogeneous disease comprising multiple intrinsic subtypes 

and is naturally resistant to many anticancer drugs. The discoveries of biomarkers to this 

cancer may make personalized treatment possible, which may reduce the mortality and 

improve the effectiveness of therapies. Tan et al used gene expression profiles to reveal 

the distinct biological properties of gastric cancer groups, and found two intrinsic 

genomic subtypes (G-INT and G-DIF) that had different response to 5-FU and oxaliplatin 

treatment [110]. Another recent study showed three robust subtypes ("invasive", 

"proliferative" and "metabolic") from the study of two large gastric cancer cohorts and 

discussed their differences in therapeutic vulnerabilities [20].  In addition, a 

comprehensive bench-to-bedside model for personalized treatment of gastric cancer 

considering both genomic markers and environmental effects has been developed and 

proposed [111]. Patients can be classified into low and high metastatic risk groups 

according to prognostic gene signatures and low-risk patients can avoid chemotherapy 

toxicity by applying surgery alone. Although gastric cancer treatment remains a major 

challenge, an increasing number of studies reveals that new, robust biomarkers may 

significantly improve the survival rates of patients. 
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1.3 Loss of Heterozygosity 

1.3.1 General Introduction to LOH 

Loss of heterozygosity (LOH) is a genetic abnormality that causes the loss of one 

normal allele of a specific gene when the other allele has already been mutated. In other 

words, LOH is a constitutional genotype change from heterozygous to homozygous in 

somatic cells. According to Knudson's "two hit" hypothesis of tumorigenesis raised in 

1971 [4], the first hit is usually a point mutation that inactivates one copy of a tumor 

suppressor gene (TSG), and individuals will not develop cancer at this point. Instead, 

they develop cancer only when the second hit occurs, which causes the loss of the 

remaining functional TSG allele. LOH occurs at a higher frequency than single 

nucleotide substitutions and the still-intact copy of the gene is far more likely to be lost 

through LOH than by a second point mutation. Hence, LOH is a common second hit in 

carcinogenesis. As a result, detection of LOH has been widely used to identify genomic 

regions that harbor TSGs and to characterize different tumor types, pathological stages 

and progression [112, 113]. 

LOH may occur due to non-disjunction, mitotic recombination, deletion, 

chromosome non-disjunction and reduplication, or gene conversion (Fig 6). Regions 

subject to hemizygous loss of DNA copy number exhibit LOH, but the converse is not 

always true. LOH without copy number changes, or Copy Number Neutral Loss of 

Heterozygosity (CNNLOH), is caused by duplication of the chromosome containing the 

mutated allele and loss of the chromosome containing the normal allele. It is also 

common in gastric cancer. 
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FIGURE 5. Different genetic mechanisms that cause LOH. 

(White circle: normal allele, black circle: mutated allele.) 

 

1.3.2 LOH and TSGs in Cancers 

LOH is a common genetic alteration that is observed in various solid tumors. 

LOH was found on chromosome 5 in 20% of the colorectal cancers [114]. Subsequent 

studies showed that the mutational inactivation of TSGs caused by LOH predominates in 

colorectal cancer, including LOH of alleles at chromosomal regions 5q (APC), 17p (TP53) 

and 18q [115]. A significant level of LOH has been found at several sites in ovarian 

cancer, including 3p, 6q, 11p, 17q [116-118]. LOH occurs most frequently on 

chromosomes 3p, 13q and 17p in lung cancer, likely representing the inactivation of key 

tumor suppressor genes including FHIT, TP53 and RB [119-121]. In such cancers as lung, 

non-disjunction 
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ovarian, and colorectal cancers, LOH is found at an early stage of tumor progression 

[122-124].  

These findings, accompanied by the discoveries of gene mutations in region of 

LOH, reveal many TSGs. Inactivation of TP53 due to loss of heterozygosity has been 

demonstrated in a variety of cancers [125-127]. TP53 plays a key role in apoptosis, 

genomic stability, and inhibition of angiogenesis. The p16 gene encodes a protein that 

can inhibit the ability of CDK4 and CDK6 to phosphorylate the retinoblastoma protein 

and the inactivation of this protein may lead to uncontrolled cell cycling and growth. The 

region containing CDKN2A undergoes frequent allelic loss in multiple cancers [128-131]. 

Several well-studied known TSGs are summarized in table 1.  

1.3.3 LOH in Gastric Cancer 

LOH plays an important role in gastric tumorigenesis due to its ability to 

inactivate TSGs. LOH can be detected in up to 80% of gastric tumors, and LOH 

frequency increases during tumor progression [132]. Many studies have been conducted 

to comprehensively analyze LOH in gastric cancer and have revealed several 

chromosome arms that frequently undergo LOH, including 1q, 3p, 4p, 5q, 7p, 8p, 9p, 

11q, 12q, 13q, 17p, 18q, 21q, and 22q [133-135]. LOH analysis also identified several 

arms and regions along the genome that contain TSGs important in gastric tumorigenesis, 

such as 17p (TP53) [134], 5q (APC), and 18q (DCC and SMAD4). Table 2 summarizes 

the chromosomal regions that frequently undergo LOH in gastric cancer and the tumor 

suppressor genes (if known) that are targeted by LOH events in these regions. 

TABLE 1. Several known TSGs that undergo LOH in various cancers. 

Gene 

Chromoso

mal 

Location 

Sporadic Cancers 
Function of 

Proteins 
Reference 
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RUNX3 1p36 gastric cancer 

transcription 

factor (TF) co-

factor  

[136] 

FHIT 3p14.2 many types 

diadenosine 

triphosphate 

hydrolase 

[137-139] 

APC 5p21 

colorectal, pancreatic, and 

stomach carcinomas; 

prostate carcinoma 

β-catenin 

degradation 
[140-143] 

CDKN2A (p16) 9p21 many types CDK inhibitor [128-131] 

PTEN 10q23.3 

glioblastoma; prostate, 

breast, and thyroid 

carcinomas 

PIP3 phosphatase [144, 145] 

RB 13q14 

retinoblastoma; sarcomas; 

bladder, breast, 

esophageal, and lung 

carcinomas 

transcriptional 

repression; 

control of E2Fs 

[146-149] 

CDH1 16q22.1 invasive cancers cell-cell adhesion [150, 151] 

TP53 17p13.1 
many types, up to 50% of 

all tumors 

transcription 

factor 
[125-127] 

 

TABLE 2. Regions that undergo frequent LOH in gastric cancer. 

Chromoso

mal regions 
TSGs Frequency References 

1q  50%-67% [134, 152] 

3p FHIT 32.4% [153] 

5q APC, MCC 34%-60% [134, 154] 

7q TES 32%-43% [154-156] 

8p  44% [157] 

9p  36.4% [158] 

10p KLF6 53% [159] 

12q  55% [152] 

13q  38.1%-41% [158, 160] 

17p TP53 37.5%-68% [134, 156, 158, 161] 

18q SMAD4, DCC, BCL2 29%-61% [158, 161-163] 

21q  40%-43% [154, 156] 

 

1.4 Genome-Wide SNP Array Application on CNA and LOH Analysis 

1.4.1 Genome-wide SNP Array 

Traditional methods to study CAN and LOH such as restriction fragment length 

polymorphism (RFLP), molecular cytogenetic analysis, florescence in situ hybridization 

http://en.wikipedia.org/wiki/Restriction_fragment_length_polymorphism
http://en.wikipedia.org/wiki/Restriction_fragment_length_polymorphism
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(FISH) and microsatellite analysis, require a lot of time and effort. The instability of the 

markers and the difficulty of automating PCR based analysis make their usage for 

genome-wide studies unpractical. 

The invention of microarrays makes possible the high-throughput analysis of 

CNA and LOH on a genome-wide scale. Array-based comparative genomic hybridization 

(aCGH) is a technology with probes detecting total copy number of genomic sites. 

Because aCGH is unable to detect allelic states of SNPs, it is only applicable to analyze 

genome-wide DNA CNAs [164-166]. In addition, the number of probes and thus the 

genomic resolution in this older array technology was lower than that of the chips now 

available [167]. 

The development of single nucleotide polymorphism (SNP) arrays provides a 

major advance. SNP arrays offer the advantage of providing high resolution genotype 

information in addition to copy number variation information in a single experiment with 

a very high density of genomic coverage. With genotype information, it is possible not 

only to determine the de novo CNA in patients, but also to decide the origins of 

chromosomes, check for sample mix-up, and study copy number neutral genomic 

variation such as uniparental disomy and copy number neutral loss of heterozygosity. 

Advances in computational methodology have been critical in facilitating application of 

this technology to molecular genetics. 

Affymetrix and Illumina are two major manufacturers of SNP array platforms that 

are widely used. The differences between them are the underlying technologies. 

Affymetrix GeneChip assays are based on the hybridization of genomic DNA to assays. 

Oligonucleotides of probes are printed directly on the chips. The probes are 25-mer 
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sequences targeting both alleles of the SNPs. A DNA segment with complete 

complementary sequences will be hybridized to the chip and bind to the specific probe 

more efficiently than a probe with a mismatch, which is represented by a higher 

fluorescence signal that can be detected.  However, Illumina Infinium II assays use a 

single base extension method to obtain the allelic information for SNPs. Beads with DNA 

probes sticking out of them are randomly deposited into microwells on a substrate. Each 

bead contains a 29-base unique sequence to allow the identification of probes. The probe 

sequences are 50 bases long SNP locus-specific primers and are complementary to the 

sequences adjacent to the SNP sites. After DNA fragmentation and hybridization to 

probes, they are extended with hapten-labelled nucleotides and the incorporated 

nucleotides are detected by fluorescence-labelled antibodies for further analysis. Because 

of these differences, data processing procedures of the platforms from these two 

manufacturers are slightly diversified.  Our study only uses Affymetrix SNP 6.0 arrays 

and the details will be described.  

The Affymetrix Genome-Wide Human SNP Array 6.0 allows us to look 

simultaneously at more than 1.8 million probe sites on a single array with an inter-marker 

distance of 696 base pairs [168]. The chip includes 906,600 SNP probes and 946,000 

non-polymorphic probes, with the latter targeting non-SNP loci. For each locus, the chip 

contains three or four replicated pairs of 25-nt perfect-match (PM) probes quantifying the 

amount of DNA target to optimize the accuracy of estimation. The two alleles of a SNP 

are arbitrarily labeled as "allele A" and "allele B". Therefore, the genotype of a SNP from 

a diploid sample is typically AA, AB or BB. 
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The basic flow of processing for SNP 6.0 arrays is described in Fig 8. In short, 

500 ng of total genomic DNA is digested with Nsp I and Sty I restriction enzymes. 

Fragments from restriction enzyme digestion, regardless of size, are then ligated to 

universal adaptors. A generic PCR primer that recognizes the adaptor sequence is used to 

amplify these adaptor-ligated DNA fragments, and PCR products of 200 to 1,100 bp in 

size range are preferred by PCR conditions. These PCR amplified products are combined 

and purified, and then they are fragmented, labeled, and hybridized to a SNP 6.0 Array 

(Figure 7). The probe-level fluorescence signal intensities are then detected and 

processed. 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. The overview of the flow of a Affymetrix Genomewide SNP array. 

Reproduced from www.affymetrix.com. 

 

Each allele of a SNP has three or four replicated perfect match probes that are 

completely complementary to the sequences of the allele. These probes are printed 

directly on the chip. As shown in Figure 7, six rectangles comprises the probes for a SNP, 

http://www.affymetrix.com/
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with the top three target one allele and the bottom three target the other allele, 

respectively. If there are equal amounts of DNA with each genotype, the post-

hybridization intensities of the top three rectangles will be similar to those of the bottom 

four rectangles. If only one allele is present in the DNA, e.g. the allele complementary to 

the top rectangles, then the top three rectangles will be much brighter than the bottom 

four rectangles. If there is allelic imbalance, which can occur in cancer, then the two 

alleles might be present, for example, in a ratio of 2:1.  In this case, if the more abundant 

allele is detected by the top rectangles, these will be approximately twice as bright as the 

bottom rectangles. Therefore, from the signal intensities of the rectangles detected, we 

can infer the allele specific copy numbers. 

After hybridization, each SNP array slide is scanned and the array probe signal 

intensities are obtained. A number of preprocessing steps are required to convert raw 

intensity measurements into biological inferences, and these steps can significantly 

influence the quality of the ultimate measurements. The underlying principle is that the 

signal intensities mainly depend on the amount of target DNA in the sample. The 

intensities of the fluorescence signals may be affected by various systematic variations 

such as the array manufacturing process and the affinity between targets and probes. To 

accurately estimate the true copy number of each allele, the raw data need to be 

normalized considering these systematic errors. Many algorithms have been developed to 

normalize the raw intensities [169-171],  such as quantile normalization [172] and Copy-

number estimation using Robust Multichip Analysis (CRMA) v2 [173]. These algorithms 

take the raw intensity image of SNP arrays as inputs and derive the signal intensities for 
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the A and B alleles through several normalization steps. The former algorithm is applied 

in analyzing multiple arrays, while the latter one is suitable for single array processing. 

Genotyping is also crucial to obtain information out of the raw intensities. For the 

early series of SNP data, the partitioning around medoids (PAM)-based algorithm [174] 

and a dynamic model algorithm [175] are utilized. With the evolution of the platforms, 

more and more new algorithms have been developed and are proven more accurate in 

genotyping the SNP arrays, such as BRLMM-P [176],which models the log-transformed 

intensities as a stochastic function, and Birdseed [177], which uses an expectation-

maximization (EM) procedure to fit the signals from the test samples to a two-

dimensional Gaussian mixture model with a priori. 

The preprocessed data are further analyzed for various applications such as 

genome-wide association studies, copy number and LOH analysis. The latter two 

analyses will be described in the next part. 

1.4.2 Application of SNP Arrays on Copy Number and LOH Analysis 

The SNP array offers the ability to define CNA and LOH in a tumor 

simultaneously and is a powerful platform for oncogene and TSG discoveries. Genome-

wide LOH analysis using SNP arrays is typically performed by comparison of tumor and 

adjacent normal genomic DNA from the same individual. LOH can be discovered by a 

change from a heterozygous state in the normal sample to a homozygous state in the 

tumor sample. If a matched normal is unavailable, several algorithms are also available to 

analyze the SNP array using pooled references [178, 179]. 

Many free or commercial tools have been developed for the SNP array data 

analysis, including Affymetrix Genotyping Console (GTC), Affymetrix Power Tools 
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(APT), Nexus (BioDiscovery, http://www.biodiscovery.com/software/nexus-copy-

number/), Copy Number Analyser for Genechip (CNAG) [179], dchip [180], PennCNV 

[163], PICNIC [181], QuantiSNP [182], Genome Alteration Print (GAP) [183], Parent-

Specific Copy Number (PSCN) [184], Tumor Aberration Prediction Suite (TAPs) [185] 

and Allele-Specific Copy Number analysis of Tumors (ASCAT) [186]. Details will be 

described in Chapter 2.  

  

  

http://www.pnas.org/content/107/39/16910.abstract
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2.1 ABSTRACT 

We evaluated several publicly available software packages for analysis of copy 

number analysis (CNA) and loss of heterozygosity (LOH). We evaluated their 

performance on a previously published data set [185] that consists of a dilution series of 

cancer-cell-line DNA mixed with matched germ-line DNA.  The dilution series was 

assayed on Affymetrix SNP 6.0 arrays. Here we describe, compare, and evaluate the 

performance of the algorithms utilized by these methods in each step of analyzing SNP 

array data. ASCAT and CNAG outperformed the other methods in inference of CNA and 

LOH.   
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2.2 INTRODUCTION 

CNA and LOH are important types of genetic alteration in cancers [187], and 

characterization of these alterations plays a key role in both diagnosis and drug 

development. Single nucleotide polymorphism (SNP) arrays provide a genome-wide high 

resolution view of these alterations. Several high-throughput studies have applied SNP 

arrays to characterize CNA and LOH in various cancers [188-191]. The power of SNP 

arrays for this application depends on sophisticated computational methods.  

Affymetrix Genome-Wide Human SNP Array 6.0 arrays interrogate > 1.8 million 

genomic sites, including 906,600 SNPs and 946,000 non-polymorphic sites, at the latter 

of which it assesses copy number. For this array design, average inter-marker distance is 

696 base pairs [168]. For each SNP site, the chip contains three or four overlapping pairs 

of 25-nt probes. Each probe is perfectly complementary to one of the two alleles at the 

SNP. The two alleles of a SNP are by convention labeled "allele A" and "allele B" 

regardless of the actual bases. Thus, each SNP probe is associated with either "allele A" 

or "allele B", and the genotype of a SNP is denoted AA, AB or BB. To estimate copy 

number and allelic imbalance at each SNP one uses two values: the log R ratio (LRR) and 

the B allele frequency (BAF). LRR is the log of the ratio of observed tumor probe 

intensities to reference normal intensities, and deviations of LRR from zero are evidence 

for CNA. BAF is the proportion of the B allele in the two-allele mixture. Deviations of 

BAF values from the expected 1:1 ratio at heterozygous sites constitutes allelic imbalance 

and indicates aberrant copy numbers of at least one of the two homologous chromosomes 

at that site. 

http://www.affymetrix.com/products_services/arrays/specific/genome_wide_snp6/genome_wide_snp_6.affx
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Complications in estimation of CNA and LOH from LRR and BAF arise from 

several sources, including prominently (1) tumor aneuploidy and polyploidy and (2) 

admixture of DNA from non-malignant genomes. 

Tumor aneuploidy is the chromosomal instability that reflects the defects in 

mitotic segregation in cancer cells. The total amount of DNA in an aneuploid tumor 

sample can differ significantly from the diploid normal sample. Due to the restriction of 

the technique, the protocol for SNP arrays constrains the amount of DNA other than the 

number of cells to be the same for each assay. Therefore, a 2n segment in a triploid tumor 

sample will show smaller signal intensities compared to the same 2n segment in the 

diploid normal sample (LRR < 0), and without adjusting the ploidy state, the data will be 

similar as a hemizygous deleted segment in a diploid tumor sample. The reason is that the 

zero baseline of the LRR does not represent a normal diploid copy number but an average 

copy number of the tumor sample.  

The second problem in mining SNP array data arises from the admixture of non-

tumor cells in the tissue sample from which the DNA sample is extracted. The presence 

of a normal DNA dilutes the amplitude of the signal changes that reflect the genomic 

alterations in the tumor DNA. Thus, using  fixed thresholds to detect the copy number 

variations may fail due to this admixture of non-tumor DNA [192, 193], and considering 

the proportion of tumor DNA  increases the accuracy of copy number estimation [185, 

186]. 

The basic steps to analyze data generated by SNP arrays include: (1) 

normalization, (2) genotype calling, (3) LRR and BAF calculation, (4) segmentation, and 
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(5) CNV and LOH calls.  Figure 20 provides a comprehensive overview of the algorithms 

used by each tool for each step.  

Many free or commercial tools have been developed to estimate CNA and LOH 

from SNP array data, and they vary in their approaches to each of the basic steps.  

Several studies have evaluated and compared methods for CNA detection. 

Winchester et al. [194] compared the performance of five methods, including Birdsuite 

[177], CNAT (Copy Number Analysis Tool) [195], GADA (Genome Alteration 

Detection Analysis) [196], PennCNV [163], and QuantiSNP [182], on data generated by 

both Illumina 1M Duo and Affymetrix SNP 6.0 platforms. This study suggested the use 

of any two programs on a single dataset in order to utilize the advantages of each 

software package to improve sensitivity and specificity. This study also recommended the 

use of software that is specially designed for the platform to be used, such as QuantiSNP 

for Illumina SNP array data. In another study, Dellinger et al. [197] evaluated seven 

methods, including CBS (circular binary segmentation) [198], CNVFinder [199], 

cnvPartition [200], GLAD (Gain and Loss Analysis of DNA) [201], Nexus [202], 

PennCNV and QuantiSNP, in various processing steps on data generated by both the 

Illumina HumHap 550 and Affymetrix SNP 6.0 platforms. This study recommended 

determining the optimal parameters using a subset of samples with high-quality genotype 

call rates before analyzing the whole dataset. In yet another study, Eckel-Passow et al. 

[203] focused on comparing the locus-level copy number estimates generated by four 

different tools, including APT (Affymetrix Power Tools) [204], Aroma. Affymetrix [205], 

PennCNV and CRLMM (Corrected Robust Linear Model with Maximum Likelihood 

Distance) [206], on data from Affymetrix SNP 6.0 arrays. They found that PennCNV had 

http://biron.usc.edu/~piquereg/GADA/
http://biron.usc.edu/~piquereg/GADA/
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a better performance and a more user-friendly interface and detected CNAs with smaller 

bias and variability of locus-level copy number data. These studies all showed that 

various methods have diverse advantages and need to be carefully chosen to meet 

specific requirements.  

However, these studies only focused on CNA analysis and did not carry out any 

comparison of the performance of LOH analysis, even when the packages evaluated 

offered this capability. In addition, all these studies compared segmentation-based 

algorithms and HMM-based algorithms to identify CNAs, but the performance of 

recently developed pattern recognition algorithms have not been investigated. The 

differences between the types of algorithms will be discussed later. An additional 

limitation of these studies is that they are all based on unpaired analysis, despite the fact 

that paired analysis of CNA and LOH by comparing the tumor sample to its matched 

normal samples has been effective in avoiding the miscall of germ-line copy number 

polymorphisms. Therefore, the present study focuses on the performance of different 

methods that simultaneously carry out both CNA and LOH detection.  

Here, we evaluate eight programs, including GAP (Genome Alteration Print) 

[183], Birdsuite, PennCNV, CNAG (Copy Number Analyzer for GeneChip) [179], 

PICNIC (Predicting Integral Copy Numbers In Cancer) [207], paired PSCBS (Parent-

Specific Copy-numBer Segmentation) [208], TAPS (Tumor Aberration Prediction Suite) 

[185] and ASCAT (Allele-Specific Copy Number analysis of Tumors) [186]. Although 

some of the programs have been already evaluated, we assessed the performances of both 

CNA and LOH analysis by these programs. We apply each of these methods to data from 

a dilution series of a single tumor cell line (NCI-H1395) mixed with increasing 

http://bioinfo-out.curie.fr/projects/snp_gap/
http://www.genome.umin.jp/CNAG%20User%20Manual%20ver1.1.pdf
http://www.pnas.org/content/107/39/16910.abstract
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proportions of germ-line DNA from the same donor, as reported in [185]. Spectral 

karyotyping indicates that the cell is approximately triploid [209]. The dilutions were 

assayed on Affymetrix Genome-wide SNP 6.0 arrays, and a spectral karyotype of the 

tumor was available to provide information on copy number independent of the 

Affymetrix data. The analysis provides a detailed picture of the performance of these 

eight programs at varying mixtures of tumor and normal DNA.  
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2.3 MATERIALS AND METHODS 

2.3.1 Lung Cancer Cell lines 

The Affymetrix Human Genome-wide SNP 6.0 data of lung cancer cell line NCI-

H1395 with different tumor content (100%, 70%, 50% and 30%) and its patient-matched 

blood cell line NCI-BL1395 were obtained as .CEL file from GEO accessions GSE29172 

and GSM645856 (www.ncbi.nlm.nih.gov/geo/). In the dilution series, DNA from normal 

blood cell line NCI-BL1395 was mixed with DNA from the lung cancer cell line NCI-

H1395, and the DNA ratio was adjusted to compensate for NCI-H1395 being nearly 

triploid, so the proportions of tumor DNA were 100%, 80%, 65%, and 42%.  

2.3.2 CNA and LOH Analysis 

CNAG 

CNA and LOH analysis was performed by CNAG (version 3.3.0.1 beta) using the 

default parameters.  Paired samples with their references are matched in the data 

extraction .We chose “non-allele-specific analysis” with self-reference only. CN gains, 

losses and LOH were defined according to the default.  

Birdsuite 

CNA and LOH analysis was performed by PennCNV according to the online 

instructions (http://www.broadinstitute.org/science/programs/medical-and-population-

genetics/birdsuite/birdsuite-manual). Affymetrix Power Tools were utilized for data 

normalization before Birdsuite analysis. Birdseed was used for SNP genotyping and 

Canary was applied to genotype the known CNPs. The default settings by Birdsuite were 

used to run the programs. 

GAP 

file:///C:/Users/rozen/AppData/Local/Temp/www.ncbi.nlm.nih.gov/geo/
http://www.broadinstitute.org/science/programs/medical-and-population-genetics/birdsuite/birdsuite-manual
http://www.broadinstitute.org/science/programs/medical-and-population-genetics/birdsuite/birdsuite-manual
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CNA and LOH analysis was performed by GAP according to the online 

instructions and default settings (http://bioinfo-out.curie.fr/projects/snp_gap/). Allelic 

difference data were output from Affymetrix Genotyping Console 4.0 and were directly 

utilized by GAP as the inputs.  

PennCNV 

CNA and LOH analysis was performed by PennCNV according to the online 

instructions 

(http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affy_gw6.html). Quantile 

normalization and birdseed-v2 calling algorithm were used by Affymetrix Power Tools to 

generate the signal intensities and genotyping calls from raw CEL files. Allele-specific 

signals were then extracted to calculate LRR and BAF values. Copy number variation 

and LOH were calculated based on the Hidden Markov Model (HMM). 

PICNIC 

CNA and LOH analysis was performed by PICNIC according to the online 

manual 

(ftp://ftp.sanger.ac.uk/pub/cancer/picnic_software/picnic_src/PICNIC_implementation_g

uide.pdf). Matlab is used to execute the program. In general, we applied the default 

settings of PICNIC to normalized the raw signal intensities and generate contamination 

fraction and ploidy estimations. Then such information was the premise to infer CNA and 

LOH by HMM. 

ASCAT 

CNA and LOH analysis was performed by ASCAT. We preprocessed the raw 

SNP 6.0 array fluorescence signal with CRMA v2 and TumorBoost to get the normalized 

http://bioinfo-out.curie.fr/projects/snp_gap/
http://www.openbioinformatics.org/penncnv/penncnv_tutorial_affy_gw6.html
ftp://ftp.sanger.ac.uk/pub/cancer/picnic_software/picnic_src/PICNIC_implementation_guide.pdf
ftp://ftp.sanger.ac.uk/pub/cancer/picnic_software/picnic_src/PICNIC_implementation_guide.pdf
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LRR and BAF data. Then we applied ASCAT to generate allele-specific copy numbers 

from the pre-processed data. We used the following parameter settings: median 

smoothing; minimum segment length (kmin) =100SNPs; LRR compaction factor (γ) 

=0.5. In addition, we modified ASCAT to use a new parameter, α, which represents a 

BAF compaction factor analogous to the LRR compaction factor γ. We used α=0.6 for 

our analysis of Affymetrix SNP 6.0 arrays. We also modified the procedure whereby 

ASCAT’s segmentation algorithm determines whether there is allelic imbalance at a 

particular segment. All the programs are written in R. 

TAPS 

CNA and LOH analysis was performed by TAPS. We used CRMA v2 to 

preprocess the raw data, which is the same as described in ASCAT preprocessing. 

Segmentation of LRR is conducted by CBS. TAPS were then performed using the default 

settings.  

Paired-PSCBS 

CNA and LOH analysis was performed by paired-PSCBS according to the online 

instructions (http://www.aroma-project.org/vignettes/PairedPSCBS-lowlevel ). We used 

CRMA v2 to preprocess the raw data, which is the same as described in ASCAT 

preprocessing. The R package “Paired PSCBS” was utilized to run the programs. LOH 

was inferred by the LOH calling algorithm integrated into the package. We calculated the 

standard deviations by comparing the observed LRR to the estimated LRR. We also 

calculated the median estimated LRR, and the positive value of the median estimated 

LRR was set as the arbitrary sample-adaptive threshold for CN gains and the negative 

value was the threshold for CN losses.  

http://www.aroma-project.org/vignettes/PairedPSCBS-lowlevel
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2.4 RESULTS AND DISCUSSION 

Using the dilution series data generated from the lung cancer cell line NCI-H1395 

and its matched blood cell line NCI-BL1395 from [185], as described above, we 

evaluated the performance of eight programs commonly used for analyzing CNA and 

LOH. These tools apply various algorithms, as shown in Figure 20. A summarization of 

the features of these tools is also presented in Tables 10 and 11.  

2.4.1 Data Pre-processing 

The intensities of the fluorescence signals obtained by scanning the image of the 

chips are affected by various factors including both biological and non-biological 

variation. Several preprocessing steps are required to convert raw intensity measurements 

into biological inferences, and these steps can significantly influence the qualities of the 

ultimate inferences. Several preprocessing algorithms have been proposed to reduce 

unwanted non-biological variability and obtain the accurate CN information for each 

allele.  

GAP utilizes the CN5 algorithm [210], which is implemented on the Affymetrix 

Genotyping Console (GTC) to normalize signal intensities and estimate raw CNs. CN5 

applies adaptive background correction to address issues of optical background noise, the 

effects of non-specific hybridization, to probe-specific variation in intensity. To 

normalize across arrays, it uses sketch quantile normalization as the across-array 

normalization algorithm to address the effects of non-biological variation due to chip 

manufacturing and experimental procedures. Quantile normalization is a scaling based 

algorithm that makes use of a baseline array (usually with the highest genotype calls). 

The algorithm assumes that the distribution of signal intensity will not change and tries to 
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make the test array distribution and the baseline array distribution identical in statistical 

properties.  

Birdsuite and PennCNV employ Affymetrix Power Tools (APT) for 

preprocessing. APT uses RMA (Robust Multi-array Analysis) for background correction, 

sketch quantile normalization for inter-array variation removal, and PLIER (Probe 

Logarithmic Intensity ERror) for probe intensity summarization.  

PICNIC [207] first constructs a training group in the preprocessing step with 461 

normal samples from the Affymetrix SNP 6.0 array. It then applies a Bayesian approach 

to fit the allelic signal intensities of the tumor sample to the three clusters observed in the 

training group and uses the maximum posterior estimation to obtain normalized allele-

specific signals that map the three clusters. During this process, aneuploidy samples are 

automatically adjusted. It also estimates parameters required for segmentation, including 

tumor content and tumor ploidy.  

GAP, Birdsuite, PennCNV, and PICNIC all normalize the signal intensities of the 

tumor samples to pooled reference samples. The former three methods use the 270 

HapMap samples  from the International HapMap Project [211] and PICNIC uses the 461 

normal samples in the training group from [207].  Normalization strategies based on a 

pooled reference sample do not in practice distinguish somatic copy number alterations 

from germ-line copy number variation, because the algorithms do not examine the non-

tumor reference samples for copy number variation. 

CNAG [179] corrects the raw signal intensities of a sample by compensating for 

varied enzyme-digested fragment lengths and for GC content. CNAG addresses the issue 

of aneuploidy by accepting from the user an indication of regions that are a-priori thought 
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to be diploid. In CNAG, a paired normal sample is used as the reference for the 

corresponding tumor sample.  

CRMA v2 (Copy–number estimation using Robust Multichip Analysis) [173] is a 

single-array method to remove chip background noise, crosstalk between alleles, the 

effects of probe sequence composition on the stability of hybridization, and effects due to 

the varying lengths of the restriction fragments that are hybridized to the probes (and that 

vary systematically from SNP to SNP). Unlike Birdsuite and PennCNV that utilize 

quantile normalization and process multiple samples together, CRMA v2 can process 

each array independently, and for the paired analysis, only the tumor sample with its 

matched normal sample are required. Thus, it is easy to apply CRMA v2 to new arrays as 

they are produced without having to reprocess the old arrays. ASCAT, paired PSCBS and 

TAPS all use CRMA v2 for preprocessing. 

2.4.2 Genotyping 

Genotyping is a crucial step in the analysis of SNP array data. Accurate 

genotyping helps to exclude non-informative SNPs (those that are homozygous in the 

normal sample). However, because of tumor aneuploidy and because DNA from solid 

tumors usually also contains DNA from non-malignant cells, genotyping SNPs in the 

tumor sample is a very different problem from, and much more difficult than, genotyping 

SNPs in non-malignant DNA.   

GAP uses BRLMM-P (Bayesian Robust Linear Model with Mahalanobis distance 

classifier) [176] conducted on GTC for genotyping. BRLMM-P first calculates the initial 

genotype for each SNP using the DM algorithm [212]. It then random selects a subset of 

non-monomorphic SNPs to estimate the prior information of cluster centers and variance-
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covariance matrices. Combining the initial genotypes and the prior information, the 

algorithm applied a Bayesian procedure to get the posterior estimation of the three cluster 

centers as well as the variance matrices. Finally, SNP genotypes are delineated based on 

the Mahalanobis distance between SNPs and the three cluster centers. 

Birdsuite and PennCNV rely on Birdseed v2 [177] for genotyping. Birdseed v2 

uses an expectation-maximization procedure to fit the signals from the test samples to a 

two-dimensional Gaussian mixture model with a priori estimation. PICNIC genotypes 

SNPs simply based on the three clusters generated in the preprocessing step, and these 

clusters have already been adjusted by the aneuploidy information it estimates.  

CNAG utilized the WGSA (whole-genome sampling analysis) algorithm [213]for 

genotyping in order to remove non-informative SNPs from further analysis. WGSA 

derives clusters of genotypes from a fix set of 108 non-malignant training samples. The 

algorithm then partitions around medoids of clusters
 
to get the genotype for each SNP. 

Only three genotypes are called: AA, AB and BB. 

ASCAT, paired PSCBS, PICNIC, and TAPS employ the “naive genotyping 

algorithm” [214] to identify informative SNPs. This algorithm simply calculates the two 

local minima of the empirical density of BAF data in the normal sample and it sets the 

threshold based on the normal BAFs to call the genotypes. 

2.4.3 LRR, BAF and Decrease in Heterozygosity 

All the programs that we evaluated rely on LRR and BAF as key values from 

which to infer tumor genomic copy number and LOH state at each SNP. LRR and BAF 

are calculated based on the normalized signal intensities of each SNPs. LRR can be used 

to estimate total copy number, while BAF quantifies the imbalance between two alleles. 
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SNP arrays provide both total and allele-specific signals at SNP loci and only 

total copy number estimates at non-polymorphic loci. LRR at locus j, denoted Rj, is 

defined as to increase the signal-to-noise ratio, and the normalized decrease in 

heterozygosity can be used by ASCAT, paired PSCBS, and TAPS. 

To assess the accuracy of the five preprocessing approaches (CN5, Quantile, 

CRMA v2, CNAG, and PICNIC), we compared the median LRR and the median absolute 

deviation (MAD) of LRR across all loci (both polymorphic and non-polymorphic) on 

chromosome 17 as calculated from data from the lung cancer cell line NCI-H1395 (Table 

12). The spectral karyotype of this cell line indicates that all of chromosome 17 is triploid 

[209]. We found that CRMA v2 produced the minimum MAD when compared to other 

preprocessing algorithms. The models used by CNAG and PICNIC can account for 

aneuploidy and polyploidy in the tumor in calculation of LRR, and they have done so in 

the case. As a consequence, they both estimated higher LRRs than the other three 

methods, which implicitly assume that the tumor samples are approximately diploid when 

calculating LRRs. Preprocessing algorithms that use paired normal samples as references 

(CRMA v2, CNAG, and PICNIC) obtained lower MADs than preprocessing algorithms 

using pooled normal references (CN5 and Quantile normalization).  

2.4.4 Segmentation 

The signal intensities that reflect copy numbers are noisy, and four of the eight 

tools that we evaluate (GAP, paired PSCBS, TAPS, ASCAT) smooth LRRs and BAFs by 

segmentation. Segmentation splits the genome into regions with equal copy numbers. 

Circular binary segmentation (CBS) [198] is the most widely used algorithm for LRR 

segmentation. Because both LRR and BAF may carry information regarding the location 
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of copy-number change-points, CBS is also sometimes used to segment BAF values 

(usually transformed to decrease in heterozygosity, ρ) to identify regions with allelic 

imbalance and LOH. CBS assumes that the changes in total copy number or allele-

specific copy number that underlie the changes in measured LRR or BAF are discrete and 

affect contiguous markers on the genome. In our tests of CBS we have found that it is 

sensitive to consecutive outliers and tends to segment noisy regions into small 

fragmentary pieces; we have been unable to correct this by adjusting the smoothing 

parameters available (data not shown). 

GAP determines the breakpoints of LRR and BAF separately using CBS. TAPS 

and paired PSCBS apply a two-step segmentation strategy: they first detect change-points 

from the LRRs alone, and then further improve the change-points with the decrease in 

heterozygosity (ρ) values. TAPS makes use of k-means clustering method to identify 

and remove segments with non-informative SNPs, while Paired PSCBS directly removes 

non-informative SNPs based on the naive genotype calls of paired normal samples.  

ASCAT segments using the ASPCF (Allele-Specific Piecewise Constant Fitting) 

algorithm [186], which simultaneously fits piecewise constant functions to the LRR and 

ρ’s. ASPCF includes a penalty term for creation of each segment, and the sensitivity and 

specificity of ASPCF is significantly affected by the value of this term.  

2.4.5 CNA and LOH Calls in Programs that Use HMMs 

Four of the approaches we studied (CNAG, Birdsuite, PennCNV and PICNIC) do 

not have a separate segmentation step, but rather directly apply discrete state hidden 

Markov models (HMM) to LRRs and possibly BAFs to infer CNA and LOH. The HMMs 

aim to determine unobserved underlying states from a sequence of observed data points. 
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For these applications, the underlying states are taken from pre-specified, finite sets of 

total copy numbers and allele-specific copy numbers. The HMMs may fail to detect 

tumor-specific copy number variants and LOH due to the heterogeneity of tumor samples, 

which appear as fractional copy number changes rather than integer copy number states. 

Previous comparison of these algorithms with other methods have shown a loss of ability 

to detect copy number changes and LOH when tumors are diluted with normal cells [192], 

as is usually the case for solid tumors obtained by biopsy or surgery.  

CNAG defines seven total-copy-number emission states (0-6 copies) and two 

LOH states (“present” or “absent”). PennCNV’s HMM has six emission states: loss of 

one copy, loss of two copies, normal state (diploid), normal state with LOH, single copy 

duplication or double copy duplication. However, PennCNV does not provide 

information in its output about the copy-neutral LOH state. Birdsuite considers only total 

copy numbers, and emits one state out of the five possible pre-defined copy number 

levels (0-5 copies); thus, Birdsuite cannot identify regions of LOH. PICNIC, on the other 

hand, considers allele-specific copy numbers, which allows it to identify regions of likely 

LOH. 

2.4.6 CNA and LOH Calls in Programs that Use Segmentation 

Four of the programs that we assessed (Paired PSCBS, GAP, TAPS, and ASCAT) 

have separate steps that segment LRR and BAF prior to inferring total and allele-specific 

copy numbers. Paired PSCBS calls CN gains and losses based on a sample-specific 

arbitrary threshold, which is the median estimated LRR plus or minus 0.25 standard 

deviations (of the segment, respectively). Segments with LRRs greater than the upper 

threshold are called CN gains and those LRRs below the lower threshold are CN losses.  
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GAP and TAPS employ clustering and pattern recognition to decide CN and LOH 

states. They create two-dimensional clusters based on LRR and a measure that captures 

BAF information, and then match these clusters to specific allele-specific copy numbers. 

Both methods address the problems of tumor aneuploidy and admixture of DNA from 

non-malignant cells. To capture BAF information, GAP uses a measure called allelic 

difference, which is the ratio of intensity differences between the each of the two alleles 

in the tumor and the reference. TAPS uses a measure called the allelic imbalance ratio, 

which is calculated as (B/(A + B)), where A and B are the normalized signal intensities of 

allele A and allele B. These two methods both utilize two-dimensional scatter plot with 

LRR by either allelic difference (GAP) or allelic imbalance ratio (TAPS) (Figure 21), and 

both scatter plots capture similar information. An advantage of these clustering-based 

approaches is that that they can detect heterogeneity of chromosomal aberrations within a 

tumor, that is, the situation in which there are different populations of cells with different 

genomics aberrations. However, the accuracy of theses algorithms is significantly 

affected by the number clusters present in the sample. If there are only a few clusters, 

these methods tend to associate clusters with incorrect allele-specific copy numbers. 

Therefore, GAP and TAPS accept manual input regarding tumor ploidy, which can 

ameliorate this problem. 

In estimating allele-specific copy numbers, ASCAT also estimates tumor ploidy 

and the proportion of non-malignant cells in the source of the DNA sample as parameters. 

ASCAT searches across possible values for average tumor ploidy and for possible 

proportions of non-tumor cells to find values that minimize the total distance between 

estimated allele-specific copy numbers and nearest nonnegative whole numbers. 
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Therefore, ASCAT is more robust in the face of tumor aneuploidy and low tumor content 

than other methods. However, because the ASCAT algorithm tends to rely heavily on 

BAF information, tumors with BAF values that are uniformly close to 0.5 often cannot be 

analyzed by ASCAT. ASCAT also generates a goodness-of-fit score for each identified 

chromosomal copy-number aberration.  This score indicates ASCAT’s confidence in the 

estimated allele-specific copy numbers. ASCAT often cannot estimate allele-specific 

copy numbers from data with very noisy LRR or from samples with extremely low tumor 

content.  

2.4.7. Evaluation and Comparison of Eight Programs in Data from a Dilution 

Series 

We investigated how well the eight programs delineated CNA and LOH across 

the genome as the proportion of non-malignant DNA increases (Figure 22). Birdsuite, 

PennCNV and GAP detected the fewest CN gains and GAP found the fewest regions of 

LOH even in the pure tumor sample. The observation might be explained partially by the 

unpaired normalization that Birdsuite, PennCNV, and GAP performed doing the 

preprocessing step. The performance of paired PSCBS in detecting CN gains and losses 

indicates the weakness and limitations of this algorithm in tackling aneuploid tumor 

samples. CNAG, PICNIC, ASCAT and TAPS show similar performances in detecting 

CN alterations in the pure tumor. However, the proportion of copy number gains detected 

by PICNIC drops drastically as the proportion of non-malignant DNA increases. This 

result stems from the ability of PICNIC to consider mixture of non-tumor DNA in the 

sample, because the three methods that can account for this show much less loss of ability 

to identify CNAs as the proportion of tumor in the sample decreases. CNAG and TAPS 



47 

 

both successfully detected around 25% LOH in the pure tumor, and then the proportion 

of LOH detected by these two samples increased in 70% tumor sample (Figure 22C). 

This may be due to misinterpretation of allelic imbalance as LOH in some regions. The 

power of CNAG to infer LOH regions is kept steady while the TAPS detects almost no 

LOH when the tumor content at or below 50%: TAPS’s performance degrades markedly 

in samples with <50% tumor content. ASCAT shows almost no loss in its ability to detect 

LOH in samples with very low proportions of tumor cells (Figure 22C); it thus may be 

the most suitable algorithm for detecting LOH in samples with low tumor content. Figure 

23 shows details of LOH analyses on chromosome 1 by various methods. As BAF 

gradually shrinks to 0.5 with the decrease of tumor content, fewer LOH regions were 

called. However, CNAG, PICNIC and ASCAT still preserve some ability to detect LOH 

even when there is only 30% tumor content.  

In addition, we tested the sensitivity and specificity of those methods by 

analyzing CNA and LOH using an approach first reported in [185] (Figure 24). This 

approach takes regions of CNA as real when they are called by five of the eight programs 

in the samples with 100% tumor content. Analogously, it takes regions of LOH as real if 

they are called by four out of the six programs that generate LOH estimates. The pattern 

of sensitivities of different methods is similar to the pattern of proportions of alterations 

found by these methods. With one exception, all the programs show high specificities in 

the analyses.  The exception is paired PSCBS in analyzing 70% tumor, which over-calls 

LOH, possibly by mistaking allelic imbalance for LOH.  
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2.5 Conclusions 

We compared eight commonly-used tools for analyzing CNA and LOH in tumors 

assayed by Affymetrix SNP 6.0 arrays. We evaluated their performances in a triploid 

tumor in a dilution series representing 100%, 70%, 50%, and 30% tumor cells mixed with 

non-malignant cells.  A spectral karyotype of the tumor was available to provide 

information on copy number independently of the Affymetrix data. 

We found that ASCAT performed the best with respect to sensitivity and 

specificity for detecting CNA and LOH. ASCAT is especially stable in calling LOH from 

samples with tumor content as low as 30% (Figure 24C). In addition, we found that 

CNAG,  although it does not estimate and adjust the tumor content, nevertheless 

performs well in estimating CNA and LOH in samples with lower tumor proportion. We 

conclude that ASCAT and CNAG are the best two choices among the eight tools to 

obtain accurate estimates of CNA and LOH from paired tumor-normal samples assayed 

by Affymetrix SNP 6.0 arrays. ASCAT is written in R and its parameters can be changed 

by programmers, but not by end users. Therefore, it is more suitable for labs with 

computational expertise. CNAG has a more user-friendly interface and is more 

convenient to use. 
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2.6 Figures 

FIGURE 7. Flowchart of SNP array data processing procedure for CNA and LOH 

detection.   

* indicates algorithms applied in various tools for each step. 
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FIGURE 8. The clustering and pattern recognition algorithms used by GAP and 

TAPS. 

The graphs were generated from the SNP array data for the lung tumor cell line NCI-

H1395 (100% tumor content). (A) GAP uses a scatter plot of LRR by allelic difference, 

with the best-fitting model that allows interpretation of the CN and LOH states for all 

clusters. The numbers in the colored boxes (e.g. 2/1) indicate that the total copy number 

for segments in the cluster is 2 and that the B alleles have 1 copy. (B)  TAPs uses a 

scatter plot of LRR by allelic imbalance ratio. The graph shows allele-specific copy 

numbers determined for each cluster. For example, “3m1” indicates that a total copy 

number of 3 and a minor allele copy number of 1. 
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FIGURE 9. Comparison of CNA and LOH detection across the genome for different 

methods at different proportions of tumor and non-malignant cells.  

Proportions of CN gains, losses and LOH are based on the ratio of altered SNP number to 

the total SNP number. Copy number gain refers to regions with > 2 copies and copy 

number loss refers to regions with 1 or 0 copies. 
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FIGURE 10. LOH on chromosome 1 at varying proportions of tumor DNA as 

inferred by six programs.  

100%, 70%, 50%, and 30% indicate the proportion of tumor cells in the dilution series. 

Each graph contains four rows. The first row is the LRR normalized data along 

chromosome 1. The second row is the raw BAF data, and the third row is the BAF data 

after normalization by TumorBoost. The colored lines in the fourth rows represent the 

regions of LOH detected by different methods on chromosome 1.  
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FIGURE 11. Comparison of sensitivities (A, B, C) and specificities (D)for different 

methods.  

For panels A, B, and C, the Y axes indicate the proportion of assumed real events 

detected (calculated by numbers of SNPs). For copy number alteration, sensitivity was 

calculated as the ratio of the number of altered SNPs detected by the given method to the 

number of SNPs detected by five out of eight of the programs. For panel D, the Y axis 

indicates the proportion of assumed real 2N regions without LOH that were determined 

as such by each method. Common unaltered regions were defined as the heterozygous 

copy number 2 called by at least five out of the eight methods and the specificity was 

calculated as the percentage of unaltered SNP number detected by the specific method to 

the common unaltered SNP number.  
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3.1 Abstract 

Gastric cancer is the second leading cause of cancer death worldwide but has been 

little studied compared with other cancers that impose similar burdens on public health. 

Gastric cancers often undergo loss of heterozygosity (LOH), sometimes resulting in the 

inactivation of tumor suppressor genes. Therefore, regions that are frequently and 

independently subject to LOH are likely to harbor tumor suppressors. However, patterns 

of LOH across gastric tumors have yet to be comprehensively studied by the most 

sensitive method currently available: high-density single-nucleotide polymorphism 

arrays. Here we report the results of genome-wide assessments of LOH and copy number 

alterations in 77 gastric adenocarcinomas. We used an array that assays genotype and 

allelic copy number at 906,600 single nucleotide polymorphisms. LOH is prevalent; on 

average 27% of each tumor genome was subject to LOH. The analysis of LOH implicates 

well-known tumor suppressors, including TP53 (61% of the tumors), CDKN2A (58%) 

and APC (42%). This analysis also implicates a candidate tumor suppressor, DOCK8, 

which, to our knowledge, has not been previously linked to gastric carcinogenesis. We 

also found that TP53 mutations occur almost exclusively in samples with LOH at that 

gene, confirming the important role of LOH in its inactivation. In addition, our analysis 

was able to detect somatic homozygous deletions in a mixture of tumor and non-

malignant DNA, which allowed us to survey these deletions as well. The systematic and 

broad characterization of LOH and homozygous deletions presented here can serve as 

resource to aid in the future identification of new driver genes in gastric 

adenocarcinomas.   
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3.2 Introduction 

Gastric cancer is the fourth most common cancer in the world and the second 

most common cause of cancer death [215]. In 2008, it caused 738,000 deaths (10% of all 

cancer-related deaths) [1]. Gastric cancer is especially prevalent in East Asia, Eastern 

Europe, and parts of Central and South America [1]. Current treatments have only slight 

survival benefits. Except in Japan, where endoscopic screening is common, the overall 

five year survival rate is only 20-25% [216].   

Although there have been many studies of LOH in gastric cancer, due to the 

limitations of previously available technologies, most have focused on small 

chromosomal regions or have assayed only a few markers on each chromosome arm. In 

particular, there were many studies based on restriction-fragment length polymorphism 

and microsatellite markers in specific genomic regions, which found that several tumor 

suppressor genes (TSGs), including TP53, APC, and DCC are often affected by LOH in 

gastric cancer [134, 155, 157, 162, 217-219]. In addition, surveys that sampled a few loci 

on each chromosome arms have identified LOH affecting every chromosome arm [135, 

154], Nevertheless, genome-wide patterns of LOH across multiple gastric tumors have 

yet to be systematically studied by the most thorough and sensitive method currently 

available: high-density single-nucleotide-polymorphism (SNP) arrays.  

In addition to LOH, gastric cancers also commonly possess genomic copy-

number alterations (CNAs), i.e. genomic amplifications and deletions. The most recent 

studies used comparative genomic hybridization (CGH), array CGH, or SNP arrays and 

have provided an extensive and detailed view of CNA in gastric cancer [23, 80, 81, 217, 

220]. Some CNAs have clinical implications. Amplification and over-expression of MET 
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and ERBB2 are associated with poor survival [84, 86, 87], as is KRAS amplification [23]. 

In addition, there is evidence that patients with amplifications of FGFR2 benefit from 

dovitinib treatment [23]. 

Here we delineate a high-resolution, comprehensive view of genomic regions 

subject to LOH and CNA, including homozygous deletion, based on microarray assays of 

~906,600 SNPs in gastric adenocarcinomas and matched non-malignant tissue. 
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3.3 Materials and Methods 

3.3.1 Patients and Samples 

Primary gastric adenocarcinomas and matched non-malignant tissue samples were 

obtained from Singapore Health Services with approval from the institutional review 

board. All samples were obtained with signed informed consent. Table 3 summarizes 

histopathological and patient characteristics. 

3.3.2 DNA Extraction and Hybridization 

Genomic DNAs from snap-frozen gastric tumors and matched non-malignant 

gastric tissues was extracted using a Qiagen genomic DNA extraction kit. The DNA was 

then hybridized to Affymetrix Human Mapping SNP 6.0 arrays (Affymetrix, Santa Clara, 

CA) according to the manufacturer’s protocol. The chips were scanned with a GeneChip 

scanner using the Affymetrix GeneChip Operating Software. SNP positions were 

represented according to the hg18 (build 36) version of the human genome sequence. 

Some of the array data were previously published in [23]. However, these data were not 

previously analyzed for LOH, allelic imbalance, or homozygous deletions.  

3.3.3 SNP Array Data Pre-processing 

We used CRMA-v2 (Copy-number estimation using Robust Multichip Analysis 

version 2) [173] to extract intensity values for both alleles of each SNP from the SNP 

array data in the .CEL files. In this process, CRMA attempts to account for (1) crosstalk 

between alleles, (2) probe sequence effects, and (3) the effects of the varying sizes of 

fragments generated by restriction enzyme digestion prior to hybridization. We then 

processed each tumor-and-non-malignant pair with TumorBoost [214] to increase the 

signal-to-noise ratio of the allele-specific signals. This made it substantially easier to 
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detect allelic imbalance. Matched non-malignant samples were used as the reference for 

generating log2 relative ratios (LRRs) and B-allele frequencies (BAFs) for the SNPs. The 

LRR of a SNP is the log2 of the signal intensity at that SNP (summed over both alleles) in 

the tumor sample divided by the signal intensity in the matched non-malignant sample. 

The BAF of a SNP is the proportion of the total signal in the tumor deriving from the 

non-reference allele. (The non-reference allele is designated the B allele, whence the term 

B-allele frequency.)  

3.3.4 ASCAT Profiling of Allele-Specific Copy Numbers 

We used ASCAT (Allele-Specific Copy number Analysis of Tumors) [186] 

versions 2.0 and 2.1 to estimate allele-specific copy numbers from the LRRs and BAFs 

while accounting for the effects of cancer-cell polyploidy and aneuploidy and the 

admixture of DNA from non-malignant cells (FIGURE 12). We selected ASCAT after 

evaluating several other analytical software packages, including CNAG (Copy Number 

Analyzer for GeneChip) [179] and GAP (Genome Alteration Print) [183]. For evaluation 

we used published data from a dilution series of cancer cell-line DNA mixed with DNA 

from non-malignant tissue from the same person [185]. We evaluated the software 

packages based on their (1) ability to detect LOH, allelic imbalance, and CNA in samples 

with a low proportion of tumor cells and (2) ability to be used in semi-automated fashion 

from the command line. Details of the evaluation are presented in Chapter 2. We made 

several modifications to ASCAT to work effectively with Affymetrix Human Mapping 

SNP 6.0 arrays, as detailed in Table 10. 

The main inputs to ASCAT are LRRs and BAFs computed from DNA samples 

from a tumor and matched non-malignant tissue as described above (Figure 12A,B). 
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ASCAT analyses these for SNPs that are heterozygous in the non-malignant sample, and 

therefore informative with respect to LOH and allelic imbalance. ASCAT smoothes 

random SNP-to-SNP variation in LRRs and BAFs by segmentation. The green dots in 

Figure 12A and B show the segmented LRR and BAF values, superimposed on the 

original, unsegmented values, which are indicated by the red dots. After segmentation, 

ASCAT generates genome-wide allele-specific copy number profiles (Figure 12D). The 

profiles estimate (1) the proportion of tumor and non-tumor cells in the tumor sample 

(“aberrant cell fraction” in Figure 12D), (2) allele-specific copy numbers of chromosomal 

segments across the genome, and (3) reliability scores for these estimates (Figure 12E). 

ASCAT also provides an average ploidy for each tumor sample, which is the average of 

the copy numbers of informative SNPs across the genome (“Ploidy” in Figure 12D). 

3.3.5 Cell Culture 

Six gastric cancer cell lines (YCC10, SCH, NUGC3, IM95, N87 and YCC16) and 

one gastric mucous epithelium cell line (HFE145) were selected for studies of candidate 

TSGs PTPRD and DOCK8. Cell lines IM95 and HFE145 were cultured in Dulbecco's 

modified Eagle medium (DMEM) with 10% FBS (fetal bovine serum) and 10mg/L 

insulin. Cell lines YCC16 and YCC10 were cultured in Minimum Essential Medium 

Eagle medium (MEM) with 10% FBS. Cell lines SCH, NUGC3 and N87 were cultured in 

Roswell Park Memorial Institute medium (RPMI) with 10% FBS. 

3.3.6 Preparation and Transfection of siRNA 

The siRNAs targeting PTPRD and DOCK8 were purchased from Dharmacon 

(www.dharmacon.com). Cells were seeded onto 60mm culture plates at a density of 2×

10
5
 cells/mL and cultured overnight to reach 80% confluency before transfection. Cells 

http://en.wikipedia.org/wiki/Roswell_Park_Memorial_Institute_medium
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were transfected with 5nM of siRNA using DharmaFECT reagent in opti-MEM serum-

free medium at 37°C in 5% CO2 atmosphere for 24h. Then the medium was removed and 

replaced with the original culture medium.  

3.3.7 Western Blot Analysis 

Cells were cultured until 80-90% confluency and proteins were extracted with 

lysis buffer (2% SDS). Proteins were separated on 6% SDS-PAGE, and then transferred 

to nitrocellulose membranes. After blotting with 5% non-fat dry milk and 0.1% Tween 20 

in Tris-buffered saline, membranes were incubated separately with either rabbit 

polyclonal anti-PTPRD or rabbit polyclonal anti-DOCK8 antibodies (1:200 diluted in 1% 

non-fat dry milk). The membranes were subsequently incubated with goat anti-rabbit 

secondary antibodies and screened by Odyssey® Imager of Li-COR.  

3.3.8 Cell proliferation assays 

Cell proliferation assays were performed with a CellTiter96 Aqueous 

Nonradioactive Cell Proliferation Assay kit (Promega) following the manufacturer’s 

instructions. The 96-well plates were measured with a Perkin-Elmer plate reader.  
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3.4 Results 

We analyzed 113 gastric tumors with their paired adjacent non-malignant tissues 

using ASCAT. For 77 of the 113 pairs, ASCAT was able to estimate allele-specific copy 

numbers across the genome. ASCAT was unable to estimate allele-specific copy numbers 

for the remaining pairs for the following reasons (Table 11): (1) excessively variable 

LRR data that ASCAT was unable to segment reasonably (12 tumors, Figure 13A); (2) 

BAF values that are almost uniformly 0.5, which could be due to a tumor genome 

completely lacking LOH or allelic imbalance or, alternatively, to a very low proportion of 

tumor cells contributing to the DNA sample (22 tumors, Figure 13B); or (3) apparently 

low tumor content as evidenced by very little variation in the segmented LRRs and few 

divergences of the BAFs from 0.5 (2 tumors). The samples that ASCAT was not able to 

analyze had lower pathologist-estimated tumor proportions compared to samples that 

ASCAT succeeded in analyzing (p = 0.034, one-sided Wilcoxon rank-sum test, Table 3, 

Figure 14A). Furthermore, the minimum tumor cell proportion that ASCAT was able to 

estimate was 18%, suggesting that it is not able to analyze samples with content lower 

than this (Figure 14B). These two observations implicate low tumor content as a possible 

major reason that ASCAT could not estimate allele-specific copy number for some 

samples. 

LOH Landscape in Gastric Cancer. 

LOH is prevalent in gastric cancer (Figure 15, Table S3): on average, 26.8% of 

each gastric cancer genome was subject to LOH (range 0.13% to 77.7%). LOH is also 

pervasive: 98% of the SNPs assayed were subject to LOH in at least 10% of tumors. We 

focused on the 10 regions that were subject to LOH in ≥ 35% of the tumors (Table 4). 
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Chromosome arm 17p, which contains TP53, is the region most frequently subject to 

LOH, and 61% of the tumors show LOH there. Chromosome arms 9p (58% of tumors, a 

region containing the well-known TSG CDKN2A) and 5q (42% of tumors, a region 

containing the well-known TSG APC) also frequently undergo LOH. Several other TSGs 

in regions subject to frequent LOH include MAP2K4, NCOR1, and CDKN2A (Table 4). 

Copy-number neutral LOH (CNNLOH) accounted for an average of 51% of LOH in each 

sample. However, in some LOH peaks, for example the one in 18q, more than half of the 

tumors with LOH have hemizygous deletions; 18q contains the likely TSG DCC (deleted 

in colorectal cancer). 

Recurrent Somatic CNAs in Gastric Cancer 

Because ASACT estimates allele-specific copy number in order to identify 

regions of LOH, it also detects CNAs. For this analysis, we considered a region to be 

subject to CNA in a sample if the ASCAT-determined integral copy number was less 

than or greater than two. We observed a total of 2,037somatic CNAs, (954 gains and 

1,083 losses) across the 77 tumors; the mean number of copy number gains per sample 

was 12 (median=7) and the mean number of losses was 14 (median=6). With the ASCAT 

profile for each sample as input, GISTIC (Genomic Identification of Significant Targets 

in Cancer [221]) identified 40 regions (17 gains and 23 losses) that underwent significant 

CNA (Figure 16, Tables 5 and 6). The regions of significant CN gain and loss identified 

in this study are similar to those identified in a previous study using different 

methodologies in 193 tumor samples from the same collection [23]. 

Because the current analysis considers the effects of tumor aneuploidy and 

mixture of non-malignant genomes in the tumor samples (Figure 16), it can identify 
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homozygous deletions. The highest frequency of homozygous deletion involves a region 

on 3p that contains no well-characterized genes (6 tumors). Other recurrent homozygous 

deletions are in within chromosome arms 8p (4/77) and 18q (4/77) (Figure 15D, Table 7). 

The well-known TSGs CDKN2A (p16, ARF), AXIN1, and SMAD4 were each 

homozygously deleted in 2 tumors. 

Relation between Genomic Alterations and Tumor Characteristics  

In order to investigate the biological implications of LOH and CNA in gastric 

cancer, we compared LOH and CNA proportions among different clinical subgroups. We 

found that tumors from males tend to have higher proportions of LOH than those from 

females (Figure 17A, p=0.04, Wilcoxon rank sum test, not significant considering that we 

tested four hypotheses). There were no significant relationships between gender and any 

of CNNLOH proportion, CN loss proportion, or CN gain proportion. (Figure 17B-D). 

We also evaluated the LOH proportions in intestinal compared to diffuse gastric 

tumors. We found no significant relationship between CNNLOH or CNA proportion and 

these two histological subtypes (Figure 18).  

LOH and TP53 mutations  

We also found evidence that TP53 mutations are associated with higher levels 

genomic instability as detected by ASCAT. We previously reported results of screening 

for mutations in the TP53 hot spots (exons 4, 5, 6, 7, 8 and 9) [78] in 56 of the 77 tumors 

that we analyzed. Among these 56 tumors, those with TP53 mutations had a higher 

proportion of the genome affected by CNAs (p = 0.029 by Wilcoxon rank-sum test, 

Figure 19). This result is consistent with previous studies that have linked genomic 

instability to mutations on TP53 [222, 223].  
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In addition, we found that TP53 mutations occurred almost exclusively in tumors 

with LOH at that gene: only three samples had TP53 mutations but no LOH at that gene 

(p=4.75e-4, Fisher's exact test, Table 8). This is consistent with Knudson’s model that 

LOH is a common second hit after a previous heterozygous loss of function mutation [4]. 
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3.5 Discussion 

Limitations 

Genome-wide analyses of CNA and LOH are challenging due to the mixture of 

malignant and non-malignant genomes in tumor samples. No standard method has 

emerged as the most appropriate to accurately estimate allele-specific copy numbers in 

tumors with low proportions of malignant cells. ASCAT performed well in our 

evaluation of it in a dilution series in the face of a low proportion of malignant cells [224]. 

Nevertheless, it appears that ASCAT's ability to complete its analysis rapidly approaches 

nil when the proportion of malignant cells is < 20% (Figure 14B). Indeed, it is impossible 

for any analytic approach to distinguish a tumor sample consisting almost entirely of non-

malignant cells from a sample consisting entirely of malignant cells with normal genomes 

that completely lack large-scale genomic aberrations. ASCAT was not able to generate 

allele-specific-copy-number profiles for 22 tumor samples with flat BAFs (Figure 13B). 

If these included some tumors that completely lacked genomic aberrations, then we 

would have overestimated the proportion of gastric adenocarcinomas with LOH, allelic 

imbalance, and CNA. We note, however, that on the whole, earlier genome-wide surveys 

found similar or higher estimates of the proportions of tumors affected by LOH [135, 154] 

or CNA [81].  

In addition, ASCAT was unable to complete its analysis of 12 tumors for which 

the LRRs were excessively variable (Figure 13A). In most tumors  for which ASCAT 

was able to generate an allele-specific-copy-number profile, the standard deviations of 

the segmented LRRs and BAFs are tightly correlated (blue circles in Figure 20). For the 

samples with excessively variable BAFs, however, the standard deviations of the BAFs 
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are relatively lower (red squares in Figure 20). Indeed, the LRRs change frequently 

without corresponding changes in BAFs in these tumors.  This then suggests the high 

variability of the LRRs represent an experimental artifact rather than a characteristic of 

these gastric cancer genomes. 

Comparison to previous findings on CNA in gastric cancer 

Compared to the CN amplification pattern in 34 gastric cancer cell lines found by 

Tada et al [217], we found similar regions that are frequently amplified in gastric cancer, 

including 8q, 11p, and 20q. We also corroborated several other regions that were 

previously reported to frequently undergo CNA [81-83]. When comparing the CNA 

landscape in our analysis to a previous CN study using 193 tumor samples from the same 

collection [23], we found marked similarity in the CNA patterns, which confirmed 

several previous findings, such as the amplifications of FGFR2 and ERBB2.  

Comparison to previous findings on LOH in gastric cancer 

Several studies have found that LOH occurs more often in intestinal-type gastric 

tumors than diffuse-type tumors [225, 226]. However, this was not observed in other 

studies [132, 154, 156]. The present whole-genome analysis found no evidence of 

differences in the proportion of LOH between the two types (Figure 19A,B). 

Previous univariate analyses indicated that patients with low levels of LOH had 

better survival than those with high levels of LOH or non-detectable LOH [101, 217]. To 

assess the prognostic impact of LOH in gastric cancer in our data, we conducted a Kaplan 

Meier survival analysis comparing patients with high versus low proportion of LOH. We 

found no evidence of differences between the two groups (Figure 21A). Multivariate 

analysis in a Cox proportional hazards model that treated the proportion of LOH as a 
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continuous variable likewise showed no evidence that survival was related to the 

proportion of LOH (Table 9). We also found no evidence of an effect of average ploidy 

on survival (Figure 21B).  

Candidate tumor-suppressor genes subject to frequent LOH 

We found that the short arm of chromosome 9 (9p) is subject to frequent LOH in 

gastric cancer (58%). Several studies have reported similar observations, with frequencies 

ranging from 22% to 64%. The well-known TSG CDKN2A (p16) is located on 9p21, and 

is mutated in numerous tumor types [227-229]. This gene is frequently deleted or 

hypermethylated [230-235] in gastric cancer, and in our analysis this gene was 

homozygously deleted in 2 tumors (Figure 15D). However, it is possible that there are 

other TSGs in this region that contribute to gastric carcinogenesis. Two genes that look 

promising in this regard are PTPRD (protein tyrosine phosphatase, receptor type, D) and 

DOCK8 (dedicator of cytokinesis 8). 

PTPRD is inactivated by gene deletion or mutation in various cancers, including 

lung cancer, neuroblastoma, glioblastoma, melanoma, and squamous cell carcinoma 

[236-241] and was previously noted to undergo LOH in gastric cancer [217]. In addition, 

PTPRD was homozygously deleted in 2 out of 77 gastric tumors. PTPRD also interacts 

with MIM, a potential metastasis suppressor gene, in regulating cytoskeletal remodeling 

[242]. PTPRD’s ability to dephosphorylate STAT3 is abrogated by cancer-specific 

mutations in PTPRD [239]. The evidence above supports the hypothesis that PTPRD acts 

as a TSG.  

DOCK8, another candidate TSG in 9p is a guanine nucleotide exchange factor 

(GEF) that is responsible for activation of Rho GTPases by exchanging bound GDP for 
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free GTP. Homozygous deletion and reduced expression of DOCK8 were observed in 

lung cancer [243-245]. We also observed increased mRNA expression levels of DOCK8 

in tumors compared to non-malignant gastric epithelium (p=0.02, data are not shown). 

This may indicate an attempt by cells to up-regulate mutationally inactivated variants of 

the gene. 
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3.6 Conclusions 

This genome-wide survey of LOH, allelic imbalance, and CNA, including 

homozygous deletions, in 77 gastric adenocarcinomas provides a more systematic and 

detailed picture than previously available. Because the regions commonly affected LOH 

and CNA are broad and encompass many genes, information about these regions alone is 

not sufficient to unambiguously identify driver genes. In the future, when integrated with 

information on somatic point mutations and experimental studies, the results from this 

study may aid in the identification of new driver genes in gastric adenocarcinomas. 
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3.7 Figures 

FIGURE 12. Example ASCAT profile and allele-specific copy numbers.  

(Data for tumor 97005.) (A) LRR. The x-axis shows the indices of autosomal SNPs 

that are heterozygous in the non-malignant sample. The y-axis shows the LRR value of 

SNPs in the tumor relative to the non-malignant sample. Green dots show ASCAT’s 

segmentations. (B) BAFs for the SNPs plotted in A. Green lines show ASCAT’s 

segmentation. (C) The solution space for the two parameters "ploidy" and "aberrant cell 

fraction", with the location of the chosen values marked with an “X”. (D) ASCAT’s 

model of allele-specific copy numbers. The y-axis indicates the estimated (integer) 

chromosomal copy number. Red and green lines indicate the more common and less 

common chromosomal haplotypes, respectively. The lines are vertically offset slightly to 

avoid superimposition. (E) The aberration reliability score, a measure of how well the 

calculated allele-specific copy-number model in panel D explains the observed LRRs and 

BAFs. 
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FIGURE 13. Examples of tumor and non-malignant pairs that ASCAT was unable 

to analyze.  

(A) Excessively noisy LRR leading to breakdown in segmentation. (B) Flat BAF.  
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FIGURE 14. Relationship between tumor content and ASCAT’s ability to generate 

an allele-specific-copy-number model.  

(A) Pathologist-estimated tumor proportions in samples for which ASCAT was able or 

unable to generate allele-specific-copy-number models. P value by one-sided Wilcoxon 

rank-sum test. (B) Distribution of ASCAT-estimated tumor-cell proportion for 77 

samples. 
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FIGURE 15. Frequencies of LOH and CNA across 45 gastric tumors.  

Several known TSGs are indicated. 
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FIGURE 16. Identification of significant somatic copy number alterations across 

gastric cancer by GISTIC.  

The y-axes are the positions across the autosomal genome, and the x-axes are the GISTIC 

q-values. Several known or putative gene cancer-related genes are indicated in peaks that 

passed the cut-off (q-value <0.25).  
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FIGURE 17. LOH and CNA proportions in males and females.  
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FIGURE 18. Comparisons of proportions of LOH and CNA in gastric tumors 

according to the Lauren histological subtypes. 
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FIGURE 19. Relationship between TP53 mutation and proportion of genome 

subject to CNA.  

P-value by Wilcoxon rank-sum test. 
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FIGURE 20. Relationship between standard deviations of segmented BAF and 

segmented LRR. 
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FIGURE 21. Kaplan-Meier survival analysis comparing outcomes by proportion of 

LOH and average ploidy.  

(A) Patients with high proportions of LOH (24 patients, >30% of the genome) versus 

patients with low proportions of LOH (21 patients, <30%). (B) Patients with high tumor 

ploidy (21 patients, average ploidy >2.6) versus patients with low tumor ploidy (24 

patients, average ploidy < 2.6). The outcome was overall survival. 
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3.8 Tables 

TABLE 3. Clinical and pathological information on tumors studied. 

Category Subcategory 
All 

tumors 

Tumors 

with 

ASCAT 

estimate 

Tumors 

without 

ASCAT 

estimate 

P-value, 

with vs. 

without 

ASCAT 

estimate 

Test 

Age Range 
25-

92yrs 
25-92yrs 32-88yrs 0.39 t 

 
Median 67yrs 65yrs 68yrs 

  
Pathologist-

estimated 

tumor 

content 

Range 0%-90% 0%-90% 5%-60% 0.034 

One-sided 

Wilcoxon rank-

sum 

 
Median 35% 60% 20% 

  
Gender Female 41 23 18 0.058 Fisher's exact 

 
Male 72 54 18 

  
Laurén 

class-

ification 

Diffuse 44 26 18 0.139 
Fisher's exact 

(excluding mixed) 

 
Intestinal 62 46 16 

  

 
Mixed 7 5 2 

  
TNM Stage I 14 10 4 0.956 Chisq 

 
II 20 13 7 

  

 
III 61 41 20 

  

 
IV 18 13 5 

  
G-INT / 

G-DIF 

subtype 

G-INT 57 43 14 0.087 
Fisher's exact 

(excluding NC) 

 
G-DIF 45 26 19 

  

 
NC 11 8 3 

  
Overall 

survival 

time 

(months) 

Range 
0.2-

178.1 
0.2-167.0 

2.27-

178.1 
0.298 

Kaplan-Meier 

log-rank 
b
 

 
Median 

a
 30.0 28.8 45.1 

  
Tumor 

grade 
Poorly diff 69 45 24 0.81 Fisher’s exact 

 

Moderately 

diff 
40 29 11 

  

 
Well diff 4 3 1 

  
T: t-test; G-INT: genomic intestinal [110]G-DIF: genomic diffuse [110]; NC: not 

classifiable; Chisq: chi-squared test; diff: differentiated. 
a 
Medians and log-rank test calculated by the survfit and survdiff functions in the R 

package “survival” (http://cran.r-project.org/web/packages/survival/index.html) [246]. 

http://cran.r-project.org/web/packages/survival/index.html
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TABLE 4. Regions with LOH in ≥35% of gastric adenocarcinomas. 

Region Start End 
Size 

(Mb) 

# 

tumors 

Fre-

quency 
Cancer genes in region 

17p 6,689 19,117,656 19.1 47 0.61 
MINK1, NLRP1, TP53, 

MAP2K4 

9p23-

p21.1 
11,219,652 30,245,385 19.0 45 0.58 CDKN2A (p16, ARF) 

9p24.3 36,431 597,816 0.5 43 0.56 
 

9p24.2-

p23 
3,935,361 11,218,369 7.3 43 0.56 

 

9p24.3-

p24.2 
597,901 3,934,989 3.3 42 0.55 

 

4p16.1-

p15.33 
5,374,196 36,322,279 9.7 33 0.43 EVC2 

4q13.1-

q24 
58,284,649 187,905,789 75.2 33 0.43 CDS1, NFKB1 

18q12.1-

q22.3 
28,823,732 69,726,488 40.9 33 0.43 

DCC, ELP2, SMAD2, 

SMAD4 

3p14.2 60,114,683 60,463,734 0.3 33 0.43 FHIT 

5q13.2-

q31.3 
70,702,961 141,259,534 70.6 32 0.42 PIK3R1, APC, CTNNA1 

9q31.1-

q31.3 
104,435,842 112,108,911 7.7 31 0.4 

 

18p11.32-

p11.22 
1,543 8,733,340 8.7 20 0.26 ROCK1 

21q21.1-

q21.2 
20,978,977 24,744,845 3.8 30 0.39 

 

14q13.1-

q32.2 
31,265,961 98,535,237 67.2 27 0.35 NEK9, TSHR 
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TABLE 5. Summary of frequently deleted regions. 

Location Start End 
Size 

(Mb) 
q-value Genes in the region 

3p14.2 60,375,508 60,463,797 0.1 
8.80E-

17 
FHIT 

9p21.3-

p21.2 
19,929,120 26,948,438 7.0 

1.80E-

10 
CDKN2A,CDKN2B,MLLT3 

18q23 73,971,555 76,117,153 2.1 
1.80E-

10  

4p16.3-

p16.1 
1,521,326 9,443,993 7.9 

6.40E-

07 
FGFR3,WHSC1,STK32B,EVC2,POLN 

4q34.3-

q35.1 
181,383,219 182,941,584 1.6 

6.40E-

07  

17p13.3 1 8,692,440 8.7 
4.30E-

06 
CRK,PER1,TP53,YWHAE,USP6,RABEP1,NLRP1,MINK1,CYB5D2 

21q21.1 19,272,221 19,819,004 0.5 
5.70E-

06  

8p23.3 417,858 2,188,791 1.8 
7.70E-

06  

5q11.2-

q12.1 
58,333,900 59,098,226 0.8 

5.00E-

05  

19p13.3 1 5,106,307 5.1 
5.00E-

05 
GNA11,MAP2K2,SH3GL1,STK11,TCF3,FSTL3 

14q32.2-

q32.33 
98,542,686 103,995,378 5.5 

2.80E-

04 
HSP90AA1,CDC42BPB,BCL11B 

5q35.3 178,644,954 179,734,920 1.1 
6.30E-

04 
MAPK9 

14q11.2 21,418,624 22,057,861 0.6 
1.03E-

03  

22q13.31 43,195,272 46,946,850 3.8 
2.06E-

03  

6p25.3 1,846,495 2,122,022 0.3 
2.62E-

03  

16q23.1 77,106,158 77,279,261 0.2 
5.58E-

03 
WWOX 

1p36.32 1 3,899,451 3.9 
1.70E-

02 
TP73,TNFRSF14,PRDM16 

6q26 162,484,045 162,860,227 0.4 
2.30E-

02 
PARK2 

12p.13.31 6,053,015 6,703,364 0.7 
3.32E-

02 
ING4,ZNF384 

11p15.5 1 3,445,116 3.4 
4.99E-

02 
CARS,CDKN1C,HRAS 

15q15.1 38,166,323 43,737,772 5.6 

1.59E-

01 BUB1B,CASC5,HMGN2P46 

7q36.3 154,841,836 158,821,424 4.0 

1.94E-

01 MNX1 

2q37.3 239,627,375 242,951,149 3.3 

2.21E-

01 HDAC4 
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TABLE 6. Summary of frequently amplified regions. 

Location Start End Size (Mb) q-value Genes in the region 

1q42.3 232,761,812 233,339,801 0.6 7.50E-02 
 

6p21.1 43,690,070 44,128,387 0.4 7.50E-02 
 

7p11.2 54,569,040 55,378,541 0.8 7.50E-02 EGFR 

7q21.2 91,763,193 92,799,547 1.0 7.50E-02 CDK6 

8q24.21 128,415,541 128,832,045 0.4 7.50E-02 MYC 

12p12.1 24,958,055 25,551,845 0.6 7.50E-02 KRAS 

13q22.1 72,589,238 73,243,304 0.7 7.50E-02 
 

15q26.3 94,252,474 100,338,915 6.1 7.50E-02 IGF1R 

17q12 34,863,650 35,320,545 0.5 7.50E-02 ERBB2, CDK12 

18q11.2 18,375,383 18,600,004 0.2 7.50E-02 
 

19q12 34,820,561 35,362,277 0.5 7.50E-02 CCNE1 

20q13.33 59,924,052 62,435,964 2.5 7.50E-02 SS18L1, CDH4 

11p13 34,438,885 35,369,622 0.9 8.41E-02 

 10q26.13 123,195,729 123,531,151 0.3 1.12E-01 FGFR2 

5p13.1 25,319,140 41,417,176 16.1 1.56E-01 IL7R,LIFR 

2q36.3 227,164,747 228,310,820 1.1 2.03E-01 

 3q26.2 170,897,488 172,571,402 1.7 2.08E-01 

 



90 

 

TABLE 7. Summary of regions with homozygous deletions in more than one sample. 

Chr Start End Size (Mb) 
# 

samples 
Genes in the region 

1 554,484 3,784,133 3.23 3 TP73, PRDM16 

2 239,627,708 242,697,433 3.07 2 HDAC4 

3 60,278,544 60,572,503 0.29 5 
 

4 26,568 4,023,209 4.00 2 WHSC1,FGFR3,GAK 

5 81,949 2,012,324 1.93 2 TERT 

6 1,851,860 2,109,454 0.26 2 
 

8 103,565 2,188,481 2.08 4 CSMD1 

8 2,188,792 4,197,712 2.01 3 CSMD1 

8 4,198,154 11,468,631 7.27 2 CSMD1 

8 11,532,066 43,898,071 32.37 2 PCM1,WHSC1L1,FGFR1,WRN,HOOK3,MAP2K1 

9 21,007,240 22,088,619 1.08 2 CDKN2A,CDKN2B 

11 188,510 3,443,300 3.25 2 CDKN1C,HRAS,CARS 

12 6,415,872 6,555,449 0.14 2 

 14 21,443,181 22,053,063 0.61 2 

 14 83,885,524 85,056,916 1.17 2 

 14 98,674,664 106,356,482 7.68 2 AKT1,CDC42BPB,BCL11B,HSP90AA1 

16 26,671 2,203,517 2.18 2 TSC2 

16 77,251,379 77,276,096 0.02 2 WWOX 

16 84,294,768 84,458,328 0.16 3 

 16 86,129,781 88,690,776 2.56 3 FANCA,CBFA2T3 

18 46,825,370 69,678,634 22.85 2 BCL2,MALT1,DCC,KDSR,SMAD4 

18 69,679,190 75,288,153 5.61 3 

 18 75,300,011 76,116,029 0.82 4 

 20 59,334,918 62,382,907 3.05 2 SS18L1 

21 9,928,594 19,664,061 9.74 3 

 21 19,668,806 22,054,808 2.39 2 

 21 42,256,842 46,519,823 4.26 2 U2AF1,SIK1 
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TABLE 8. Strong association between mutations in TP53 hotspots and LOH at 

TP53. 

  

TP53 

mutated 

TP53 wild 

type 

P-value by 

Fisher's 

exact test 

LOH at TP53 Yes 27 12 4.8x10
-4

 

 
No 3 14 
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TABLE 9. Cox proportional hazards analysis provides no evidence that LOH 

proportion influences prognosis. 

Variable coef exp(coef) se(coef) z p 

LOH proportion 0.1948 1.215 1.09 0.179 0.86 

Age 0.0096 1.01 0.016 0.598 0.55 

Gender -0.4245 0.654 0.448 -0.949 0.34 

TNM Stage 1.0303 2.802 0.276 3.731 0.00019 

Adjuvanttreatment 0.2045 1.227 0.453 0.451 0.65 

Intestinal type 0.6084 1.837 0.452 1.347 0.18 

Mixed/other type 0.71 2.034 0.834 0.851 0.39 
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3.9 Supplementary Table 

TABLE 10. Values of different parameters used in ASCAT analysis. 

Sample 
ASCAT 

version 
µ value Germline BAF limits 

Min 

Goodness of 

Fit 

Segment length 

970005 2.0 1.5 0.35, 0.65 85 100 

980011 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

980021 2.0 1.5 0.35, 0.65 85 100 

980029 2.0 1.5 0.35, 0.65 85 100 

980097 2.0 1.5 0.35, 0.65 85 100 

980156 2.0 1.5 0.35, 0.65 85 100 

980369 2.0 1.5 0.35, 0.65 65 100 

980390 2.0 1.5 0.35, 0.65 65 800 

980401 2.0 1.5 0.35, 0.65 85 100 

980417 2.0 1.5 0.35, 0.65 85 100 

980418 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

980437 2.0 1.5 0.35, 0.65 85 100 

980447 2.0 1.5 0.35, 0.65 65 100 

990005 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

990010 2.0 1.9 0.35, 0.65 85 100 

990041 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

990044 2.0 1.5 0.35, 0.65 85 100 

990046 2.0 1.5 0.35, 0.65 65 100 

990060 2.0 1.5 0.35, 0.65 85 100 

990069 2.0 1.5 0.35, 0.65 85 100 

990071 2.0 1.5 0.35, 0.65 85 100 

990090 2.0 1.5 0.35, 0.65 85 100 

990097 2.0 1.5 0.35, 0.65 85 100 

990098 2.0 1.5 0.35, 0.65 65 800 

990108 2.0 1.5 0.35, 0.65 65 100 

990111 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

990119 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

990170 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

990172 2.0 1.9 0.35, 0.65 85 100 

990195 2.0 1.5 0.35, 0.65 85 100 

990203 2.0 1.5 0.35, 0.65 85 100 

990228 2.0 1.5 0.35, 0.65 85 100 

990247 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

990275 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

990300 2.0 1.5 0.35, 0.65 85 100 

990339 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

990355 2.0 1.5 0.35, 0.65 85 100 

990396 2.0 1.5 0.35, 0.65 85 100 
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990412 2.0 1.5 0.35, 0.65 65 100 

990474 2.0 1.5 0.35, 0.65 85 100 

990475 2.0 1.9 0.35, 0.65 85 100 

990489 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

990515 2.0 1.5 0.35, 0.65 85 100 

2000040 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

2000068 2.0 1.5 0.35, 0.65 85 100 

2000085 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

2000088 2.0 1.5 0.35, 0.65 85 100 

2000169 2.0 1.5 0.35, 0.65 65 100 

2000175 2.0 1.5 0.35, 0.65 85 100 

2000201 2.0 1.5 0.35, 0.65 85 100 

2000242 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

2000286 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

2000303 2.0 1.5 0.3, 0.7 85 100 

2000362 2.0 1.5 0.35, 0.65 85 100 

2000403 2.0 1.5 0.35, 0.65 65 100 

2000433 2.0 1.5 0.35, 0.65 85 100 

2000441 2.0 1.5 0.35, 0.65 85 100 

2000877 2.0 1.5 0.35, 0.65 85 100 

2000892 2.0 1.5 0.35, 0.65 85 100 

20020011 2.0 1.9 0.35, 0.65 85 100 

20020448 2.0 1.5 0.35, 0.65 65 800 

20020720 2.0 1.5 0.35, 0.65 85 100 

20263644 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

32226415 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

38877042 2.0 1.5 0.35, 0.65 85 100 

46404174 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  

47492137 2.0 1.9 0.35, 0.65 85 100 

57689477 2.0 1.5 0.35, 0.65 85 100 

57701999 2.0 1.5 0.35, 0.65 85 100 

58947266 2.0 1.5 0.35, 0.65 85 100 

61669256 2.0 1.5 0.35, 0.65 85 100 

66811693 2.0 1.5 0.35, 0.65 85 100 

73291145 2.0 1.5 0.35, 0.65 85 100 

76629543 2.0 1.5 0.35, 0.65 80 100 

87622942 2.0 1.5 0.35, 0.65 85 100 

91228050 2.0 1.9 0.35, 0.65 85 100 

96141474 2.1 1.5 0.35, 0.65 85 as determined by ASCAT 2.1  
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TABLE 11. Tumors for which ASCAT was unable to estimate allele-specific copy 

numbers.  

Sample ID ASCAT fail reason Laurén classification Gender 

970003 Excessively variable LRR Diffuse Female 

970017 Flat BAF Diffuse Female 

980035 Flat BAF Intestinal Male 

980251 Flat BAF Diffuse Female 

980319 Flat BAF Mixed Male 

980327 Flat BAF Mixed Female 

980344 Excessively variable LRR Diffuse Female 

980386 Flat BAF Diffuse Female 

980436 Flat BAF Intestinal Female 

980442 Flat BAF Diffuse Female 

990015 Flat BAF Intestinal Male 

990024 Flat BAF Intestinal Male 

990068 Excessively variable LRR Diffuse Male 

990070 Apparently low tumor content Diffuse Male 

990089 Apparently low tumor content Intestinal Male 

990129 Excessively variable LRR Intestinal Female 

990136 Excessively variable LRR Intestinal Male 

990205 Excessively variable LRR Intestinal Female 

990413 Flat BAF Diffuse Male 

990424 Flat BAF Diffuse Male 

2000114 Flat BAF Intestinal Male 

2000159 Flat BAF Intestinal Female 

2000178 Flat BAF Intestinal Female 

2000238 Flat BAF Diffuse Female 

2000291 Flat BAF Diffuse Male 

2000346 Flat BAF Diffuse Female 

2000479 Flat BAF Intestinal Male 

2000617 Excessively variable LRR Intestinal Male 

2000920 Excessively variable LRR Intestinal Male 

2001159 Flat BAF Intestinal Male 

2001226 Excessively variable LRR Diffuse Male 

2001229 Flat BAF Diffuse Female 

2001241 Excessively variable LRR Diffuse Female 

37262942 Excessively variable LRR Diffuse Female 

43658255 Excessively variable LRR Intestinal Male 

65256293 Flat BAF Diffuse Female 
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3.10 Supplementary Figure:  

(Experimental analysis did not show significant evidence that PTPRD and DOCK8 have 

functional relationship to tumorigenesis) 

 

Figure 22. Western blot of proteins PTPRD and DOCK8 using various cell lines. 

(Black arrows: cell lines selected for corresponding gene knock-down experiments) 
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FIGURE 23. DOCK8 and PTPRD siRNA knock-down analysis show no significant 

effect of these two genes on cell proliferation.  
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CHAPTER 4 LOH ANALYSIS IN CANCER RESEARCH 

4.1 Results 

4.1.1 LOH Analysis of Candidate TSG detected by Whole-Exome Sequencing in 

Gastric Cancer  

Exome sequencing by next-generation sequencing approaches is a newly 

developed technique. It is cheaper compared to whole-genome sequencing as it targets 

only the coding sequences. The exome is the part of the genome that is composed by 

exons, the coding regions of genes that can be translated into protein and the untranslated 

regions flanking them (UTRs). Although exons only occupy approximately 1% of the 

genome, mutations on exons comprise around 85% disease-related mutations [247]. 

Therefore, exome sequencing is an efficient way to discover novel oncogenes and tumor 

suppressor genes (TSGs) with functional changes due to mutations in various diseases.  

Loss of heterozygosity (LOH) is usually a second hit in the Knudson’s two-hit 

model to lose the second normal allele after one allele of the TSG has already been lost 

because of mutation [4]. Thus, LOH analysis facilitates the discovery of TSGs and 

supports the findings of mutational analysis by exome sequencing. 

We have introduced the epidemiology and etiology in Chapter 1. In our recent 

study, we sequenced the coding regions of ~18,000 genes in 15 gastric cancers with their 

matched normal samples and found 718 nonsynonymous mutations in 661 genes [78]. In 

addition to well-known tumor related genes such as TP53, PIK3CA and CTNNB1, we 

also revealed 26 genes that are recurrently mutated in gastric cancer (mutations found in 

more than 2 tumors out of the 15 discovery dataset). Among these genes, FAT4 is 

especially interesting. It belongs to the E-cadherin family and may be involved in the 

http://en.wikipedia.org/wiki/Untranslated_Region
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Wnt/planar cell polarity signaling pathway. Two non-silent mutations were found in the 

15 gastric adenocarcinomas by exome sequencing and a further Sanger sequencing in the 

additional 95 gastric cancers discovered four more mutations. We applied the LOH 

analysis (as described in Chapter 2 Methods) using ASCAT [186] on these six tumors 

with FAT4 mutations and found that 4 out of 6 samples also have LOH at FAT4 (Figure 

25),  which supports the Knudson’s model regarding the loss of function of TSGs. The 

combination of the exome sequencing mutational analysis and the SNP array LOH 

analysis reveals that FAT4 is a candidate TSG in gastric cancer. Therefore, the FAT4 

silencing experiments were conducted on cell lines with wild-type FAT4 and FAT4 

silencing result in a significant increase in cell proliferation. This suggests that FAT4 

functions as a tumor suppressor to suppress the tumor proliferation. 

4.1.2 CNA and LOH Analysis in Both SNP Array and Next-Generation 

Sequence Data 

Although next-generation sequencing is now widely used to detect somatic 

mutations in cancers, the data can also be used for CNA and LOH analysis. The data can 

be used to detect: (1) gains or losses of chromosomal segments, and (2) LOH, or more 

generally, allelic imbalance, which is the presence of unequal numbers of maternal and 

paternal chromosome segments. We used a modified version of ASCAT algorithm [186], 

which is called RDAAC (Read Depth And Allele Count), to identify CNA and LOH from 

next-generation sequencing data and compared the results with those from the Affymetrix 

SNP 6.0 arrays. The general mechanisms of ASCAT and RDAAC are the same, except 

that RDAAC calculated LRR and BAF based on read depths of alleles and did not need 

to adjust for BAF contraction effect. To get a measure analogous to LRR obtained from 
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SNP arrays, RDAAC uses the log2 ratio of read depths in the tumor sample to read depth 

in the matched non-malignant sample. To get a measure of the BAF, RDAAC uses the 

ratio of reads with the variant allele (i.e., the B allele), to total number of reads. 

Results of analyses based on SNP array data and on whole-exome sequencing 

data are similar (Figure 26). In general, RDAAC analysis on next-generation sequencing 

and ASCAT analysis on SNP array data found that the tumor is hypertetraploid (average 

ploidy of 4.38 by RDAAC and 4.37 by ASCAT) and that the sample has ~70% tumor 

content (67% by RDAAC and 71% by ASCAT). We can observe a clearer separation of 

BAF values in the next-generation sequencing data than in the SNP array data (for 

example, on chromosomes 3 and 4). This may be a consequence of a nearly direct 

assessment of BAF in next-generation sequencing data compared to possibly non-linear 

measurements of allele-specific intensities in the Affymetrix SNP chip technology. 

Therefore, RDAAC analysis on next-generation sequencing is more efficient at detecting 

LOH and allelic imbalance in samples with lower tumor content. However, we also 

notice a higher coverage of SNPs in the Affymetrix data, which facilitates the detection 

of small alterations in CN and allelic balance. The larger number of SNPs in the 

Affymetrix data compared to the exome-data is a simple consequence of the fact that the 

number of SNPs present in exons is less than the number assayed by the Affymetrix chip. 
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4.2 Figures 

FIGURE 24. The ASCAT profile of two gastric tumors assayed by Affymetrix SNP 6.0.  

LOH was found at FAT4 in tumors that also have missense somatic mutations in  

FAT4. Panels A, B, and C refer to tumor 990515 and panels D, E, and F refer to 2000068. FAT4 

is located in the middle of the long arm of chromosome 4.  

(A, D) LogR ratio (LRR). Each red dot shows, for a single SNP, the log2ratio of the total (i.e. 

both alleles combined) probe intensities in the tumor to the total probe intensities in the matched 

non-malignant sample. The overlaid green dots show the segmentation (i.e. smoothing) of these 

data.  

(B, E) B allele frequency (BAF). Each red dot shows the proportion of non-reference alleles in 

the tumor sample at sites that are heterozygous in the matched non-malignant sample. As in 

panels A and B, the green dots show the segmentation of these data. Regions where the green 

dots are simultaneously displaced to values higher and lower than 0.5 are regions of LOH or 

allelic imbalance.  

(C, F) ASCAT estimates the genomic copy number of the two parental copies of each 

chromosome (arbitrarily colored red and green). Note that (the “green” copy) is completely 

deleted (copy number 0), leading to LOH. 

In both 990515 and 2000068, ASCAT estimates that one copy of chromosome 4 is completely 

lost (minor copy number is 0), and combined with the widely separated BAF data, we can infer 

LOH with copy loss at FAT4 in both two tumors from the ASCAT profile. 

*The graph was original produced by the author of the thesis and was utilized in the 

supplementary of [78]. 
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FIGURE 25. Comparison of RDAAC analysis using next-generation sequencing data and 

ASCAT analysis using Affymetrix SNP 6.0 data.   

(A) Analysis on next generation whole-exome sequencing data. (B) Analysis on Affymetrix SNP 

6.0 data.  

The top panel shows the logR ratio (LRR), which is the log2 of the ratio of the total signal 

intensity from the tumor data to the matched germ-line sample. Each red dot represents the LRR 

value at a site that is heterozygous in the germ-line, and the green dots show the segmentation of 

these data.  

The second panel is the B allele frequency (BAF) data, which shows the proportion of non-

reference alleles in the tumor sample at sites that are heterozygous in the germ-line sample.  The 

green dots also show the segmentation of these data. Regions where the green dots are 

simultaneously displaced to values higher and lower than 0.5 are regions of LOH or allelic 

imbalance. 

The third panel is the allelic-specific copy number that shows the estimated genomic copy 

number of the two parental copies of each chromosome (colored red: major allele copy number 

and green: minor allele copy number).   

The fourth panel is the aberration reliability score that shows ASCAT’s confidence in its 

estimates of chromosomal copy number at all locations that do not have one copy of each allele. 

The fifth panel is the predicted chromosome-segment counts before rounding to integer values. 

The bottom panel is the solution space, with the best score marked by “X”. 

*(A) was produced by Dr. John Richard McPherson. 
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CHAPTER 5 CONCLUDING REMARKS 

Gastric cancer is one of the leading causes of cancer death worldwide. Most cases are 

detected as advanced stage disease, at which point treatment options are few and usually 

of limited benefit. However, gastric cancer has been much less intensively studied than 

many other common tumors, and the molecular mechanisms of gastric cancer formation 

and progression remain poorly understood.  

CNA and LOH are common mutational events in gastric carcinogenesis. LOH is a 

key indicator of genomic instability and can be used to identify candidate tumor 

suppressor genes (TSGs). Studies of the spectrum of LOH in gastric cancer will improve 

our understanding of genetic alterations in gastric cancer tumors and identify possible 

new TSG.  

In this work, we developed a modified version of the Allele Specific Copy 

Number Analysis of Tumors (ASCAT) algorithm that improved analysis of Affymetrix 

SNP6 data. Compared to other algorithms and tools (Section 2.4.1), this analysis offers 

better ways to: 

(1) Analyze noisy data 

(2) Avoid genotyping errors 

(3) Estimate total and allele-specific copy number in samples from aneuploid tumors 

(4) Tackle samples with low tumor content 

We delineated the genome-wide landscape of CNA and LOH in gastric adenocarcinoma, 

including several regions, such as 9p and 17p, that frequently undergo LOH. The LOH 

landscape suggested the existence of novel TSGs, including PTPRD and DOCK8.  
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However, our functional analysis of these two genes failed to link their function to 

tumor proliferation. Therefore, further functional assays such as invasion and adhesion 

assays, are required to test their tumor suppressor functions.  

Although this study utilized data generated from Affymetrix SNP 6.0 arrays, the 

probes of which cover the whole cancer genome with high densities, we suspect that data 

from Illumina Infinium whole genome genotyping (WGG) arrays might be less noisy, 

based on our very limited experience with this latter chip (data not shown). Thus, 

introducing more tumor samples and a repetition of experiments on other platforms may 

provide a refinement of the results in this study.  

Furthermore, our experiences lead us to believe that there is still room for 

improvement in the development of algorithms for genome-wide assessment of CNA and 

LOH, especially using next-generation sequencing data, including use of whole-genome 

(as opposed to whole-exome) data, along with information on copy number breakpoints 

that whole-genome data can often provide. Beyond the basic studies of candidate TSGs, a 

comprehensive experimental analysis is required in subsequent studies to confirm the 

roles that these genes play in cancer initiation or progression.  

 

 



106 

 

REFERENCES 

1. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90. 

2. Survival rates for stomach cancer. Available from: 
http://www.cancer.org/Cancer/StomachCancer/OverviewGuide/stomach-cancer-
overview-survival-rates. 

3. Volchenboum, S.L., et al., Comparison of primary neuroblastoma tumors and derivative 
early-passage cell lines using genome-wide single nucleotide polymorphism array 
analysis. Cancer Res, 2009. 69(10): p. 4143-9. 

4. Knudson, A.G., Jr., Mutation and cancer: statistical study of retinoblastoma. Proc Natl 
Acad Sci U S A, 1971. 68(4): p. 820-3. 

5. Law, S. and J. Wong, Changing disease burden and management issues for esophageal 
cancer in the Asia-Pacific region. J Gastroenterol Hepatol, 2002. 17(4): p. 374-81. 

6. Hamashima, C., et al., The Japanese guidelines for gastric cancer screening. Jpn J Clin 
Oncol, 2008. 38(4): p. 259-67. 

7. Layke, J.C. and P.P. Lopez, Gastric cancer: diagnosis and treatment options. Am Fam 
Physician, 2004. 69(5): p. 1133-40. 

8. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer, 2011. 
14(2): p. 101-12. 

9. Wittekind, C. and B. Oberschmid, TNM classification of malignant tumors 2010. 
Pathologe, 2010. 31(5): p. 333-338. 

10. 5-year survival statistics by stage. American Cancer Society  2012; Available from: 
http://www.cancer.org/Cancer/StomachCancer/DetailedGuide/stomach-cancer-
survival-rates. 

11. Lauren, P., The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called 
Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol 
Microbiol Scand, 1965. 64: p. 31-49. 

12. Zheng, H.C., et al., Mixed-type gastric carcinomas exhibit more aggressive features and 
indicate the histogenesis of carcinomas. Virchows Arch, 2008. 452(5): p. 525-34. 

13. Carneiro, F., M. Seixas, and M. Sobrinho-Simoes, New elements for an updated 
classification of the carcinomas of the stomach. Pathol Res Pract, 1995. 191(6): p. 571-
84. 

http://www.cancer.org/Cancer/StomachCancer/OverviewGuide/stomach-cancer-overview-survival-rates
http://www.cancer.org/Cancer/StomachCancer/OverviewGuide/stomach-cancer-overview-survival-rates
http://www.cancer.org/Cancer/StomachCancer/DetailedGuide/stomach-cancer-survival-rates
http://www.cancer.org/Cancer/StomachCancer/DetailedGuide/stomach-cancer-survival-rates


107 

 

14. Vauhkonen, M., H. Vauhkonen, and P. Sipponen, Pathology and molecular biology of 
gastric cancer. Best Pract Res Clin Gastroenterol, 2006. 20(4): p. 651-74. 

15. Hamilton, S.R., et al., Pathology and genetics of tumours of the digestive system. 2000: 
IARC Press. 

16. Tahara, E., Genetic pathways of two types of gastric cancer. IARC Sci Publ, 2004(157): p. 
327-49. 

17. Correa, P., Human gastric carcinogenesis: a multistep and multifactorial process--First 
American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer 
Res, 1992. 52(24): p. 6735-40. 

18. Ohtsu, A., et al., Randomized phase III trial of fluorouracil alone versus fluorouracil plus 
cisplatin versus uracil and tegafur plus mitomycin in patients with unresectable, 
advanced gastric cancer: The Japan Clinical Oncology Group Study (JCOG9205). J Clin 
Oncol, 2003. 21(1): p. 54-9. 

19. Vanhoefer, U., et al., Final results of a randomized phase III trial of sequential high-dose 
methotrexate, fluorouracil, and doxorubicin versus etoposide, leucovorin, and 
fluorouracil versus infusional fluorouracil and cisplatin in advanced gastric cancer: A trial 
of the European Organization for Research and Treatment of Cancer Gastrointestinal 
Tract Cancer Cooperative Group. J Clin Oncol, 2000. 18(14): p. 2648-57. 

20. Lei, Z., et al., Subtypes of Human Gastric Cancer Show Systemic Differences in Genomic 
and Epigenetic Characteristics and Responses to 5-FU and PI3K Inhibitors. In review, 
2012. 

21. Kim, J.S., et al., Biomarker analysis in stage III-IV (M0) gastric cancer patients who 
received curative surgery followed by adjuvant 5-fluorouracil and cisplatin 
chemotherapy: epidermal growth factor receptor (EGFR) associated with favourable 
survival. Br J Cancer, 2009. 100(5): p. 732-8. 

22. Scartozzi, M., et al., Chemotherapy for advanced gastric cancer: across the years for a 
standard of care. Expert Opin Pharmacother, 2007. 8(6): p. 797-808. 

23. Deng, N., et al., A comprehensive survey of genomic alterations in gastric cancer reveals 
systematic patterns of molecular exclusivity and co-occurrence among distinct 
therapeutic targets. Gut, 2012. 

24. Amieva, M.R. and E.M. El-Omar, Host-bacterial interactions in Helicobacter pylori 
infection. Gastroenterology, 2008. 134(1): p. 306-23. 

25. Milne, A.N., et al., Nature meets nurture: molecular genetics of gastric cancer. Hum 
Genet, 2009. 126(5): p. 615-28. 



108 

 

26. Parkin, D.M., The global health burden of infection-associated cancers in the year 2002. 
Int J Cancer, 2006. 118(12): p. 3030-44. 

27. Goldblum, J.R., et al., Inflammation and intestinal metaplasia of the gastric cardia: the 
role of gastroesophageal reflux and H. pylori infection. Gastroenterology, 1998. 114(4): p. 
633-9. 

28. Ikeno, T., et al., Helicobacter pylori-induced chronic active gastritis, intestinal metaplasia, 
and gastric ulcer in Mongolian gerbils. Am J Pathol, 1999. 154(3): p. 951-60. 

29. Satoh, K., et al., Distribution of inflammation and atrophy in the stomach of Helicobacter 
pylori-positive and -negative patients with chronic gastritis. Am J Gastroenterol, 1996. 
91(5): p. 963-9. 

30. Sipponen, P., et al., Helicobacter pylori infection and chronic gastritis in gastric cancer. J 
Clin Pathol, 1992. 45(4): p. 319-23. 

31. Ye, W., et al., Helicobacter pylori infection and gastric atrophy: risk of adenocarcinoma 
and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric 
cardia. J Natl Cancer Inst, 2004. 96(5): p. 388-96. 

32. Basso, D., et al., Clinical relevance of Helicobacter pylori cagA and vacA gene 
polymorphisms. Gastroenterology, 2008. 135(1): p. 91-9. 

33. Polk, D.B. and R.M. Peek, Jr., Helicobacter pylori: gastric cancer and beyond. Nat Rev 
Cancer. 10(6): p. 403-14. 

34. Kim, H.J., et al., Dietary factors and gastric cancer in Korea: a case-control study. Int J 
Cancer, 2002. 97(4): p. 531-5. 

35. Kono, S. and T. Hirohata, Nutrition and stomach cancer. Cancer Causes Control, 1996. 
7(1): p. 41-55. 

36. Ward, M.H. and L. Lopez-Carrillo, Dietary factors and the risk of gastric cancer in Mexico 
City. Am J Epidemiol, 1999. 149(10): p. 925-32. 

37. Fox, J.G., et al., High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, 
and enhances Helicobacter pylori colonization in C57BL/6 mice. Cancer Res, 1999. 59(19): 
p. 4823-8. 

38. Hertog, M.G., et al., Fruit and vegetable consumption and cancer mortality in the 
Caerphilly Study. Cancer Epidemiol Biomarkers Prev, 1996. 5(9): p. 673-7. 

39. Sasazuki, S., S. Sasaki, and S. Tsugane, Cigarette smoking, alcohol consumption and 
subsequent gastric cancer risk by subsite and histologic type. Int J Cancer, 2002. 101(6): 
p. 560-6. 



109 

 

40. Siman, J.H., et al., Tobacco smoking increases the risk for gastric adenocarcinoma among 
Helicobacter pylori-infected individuals. Scand J Gastroenterol, 2001. 36(2): p. 208-13. 

41. Shin, V.Y., et al., Nicotine promotes gastric tumor growth and neovascularization by 
activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis, 
2004. 25(12): p. 2487-95. 

42. Sung, N.Y., et al., Smoking, alcohol and gastric cancer risk in Korean men: the National 
Health Insurance Corporation Study. Br J Cancer, 2007. 97(5): p. 700-4. 

43. Capelle, L.G., et al., Risk and epidemiological time trends of gastric cancer in Lynch 
syndrome carriers in the Netherlands. Gastroenterology, 2010. 138(2): p. 487-92. 

44. Varley, J.M., et al., An extended Li-Fraumeni kindred with gastric carcinoma and a codon 
175 mutation in TP53. J Med Genet, 1995. 32(12): p. 942-5. 

45. Fishel, R., et al., The human mutator gene homolog MSH2 and its association with 
hereditary nonpolyposis colon cancer. Cell, 1994. 77(1): p. 1 p following 166. 

46. Papadopoulos, N., et al., Mutation of a mutL homolog in hereditary colon cancer. 
Science, 1994. 263(5153): p. 1625-9. 

47. Ou, J., et al., Biochemical characterization of MLH3 missense mutations does not reveal 
an apparent role of MLH3 in Lynch syndrome. Genes Chromosomes Cancer, 2009. 48(4): 
p. 340-50. 

48. Nicolaides, N.C., et al., Mutations of two PMS homologues in hereditary nonpolyposis 
colon cancer. Nature, 1994. 371(6492): p. 75-80. 

49. Varley, J.M., Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat, 2003. 
21(3): p. 313-20. 

50. Guilford, P., et al., E-cadherin germline mutations in familial gastric cancer. Nature, 1998. 
392(6674): p. 402-5. 

51. Kaurah, P. and D.G. Huntsman, Hereditary Diffuse Gastric Cancer. 1993. 

52. Nakatsuru, S., et al., Somatic mutation of the APC gene in gastric cancer: frequent 
mutations in very well differentiated adenocarcinoma and signet-ring cell carcinoma. 
Hum Mol Genet, 1992. 1(8): p. 559-63. 

53. Kaurah, P., et al., Founder and recurrent CDH1 mutations in families with hereditary 
diffuse gastric cancer. JAMA, 2007. 297(21): p. 2360-72. 

54. Ebert, M.P., et al., Increased beta-catenin mRNA levels and mutational alterations of the 
APC and beta-catenin gene are present in intestinal-type gastric cancer. Carcinogenesis, 
2002. 23(1): p. 87-91. 



110 

 

55. Park, W.S., et al., Frequent somatic mutations of the beta-catenin gene in intestinal-type 
gastric cancer. Cancer Res, 1999. 59(17): p. 4257-60. 

56. Jakubowska, A., et al., BRCA2 gene mutations in families with aggregations of breast 
and stomach cancers. Br J Cancer, 2002. 87(8): p. 888-91. 

57. El-Omar, E.M., et al., Interleukin-1 polymorphisms associated with increased risk of 
gastric cancer. Nature, 2000. 404(6776): p. 398-402. 

58. El-Omar, E.M., et al., Increased risk of noncardia gastric cancer associated with 
proinflammatory cytokine gene polymorphisms. Gastroenterology, 2003. 124(5): p. 
1193-201. 

59. Abnet, C.C., et al., A shared susceptibility locus in PLCE1 at 10q23 for gastric 
adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet, 2010. 42(9): p. 
764-7. 

60. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 
144(5): p. 646-74. 

61. Boland, C.R., et al., Infection, inflammation, and gastrointestinal cancer. Gut, 2005. 54(9): 
p. 1321-31. 

62. Ranzani, G.N., et al., p53 gene mutations and protein nuclear accumulation are early 
events in intestinal type gastric cancer but late events in diffuse type. Cancer Epidemiol 
Biomarkers Prev, 1995. 4(3): p. 223-31. 

63. Strickler, J.G., et al., p53 mutations and microsatellite instability in sporadic gastric 
cancer: when guardians fail. Cancer Res, 1994. 54(17): p. 4750-5. 

64. Tamura, G., et al., Detection of frequent p53 gene mutations in primary gastric cancer by 
cell sorting and polymerase chain reaction single-strand conformation polymorphism 
analysis. Cancer Res, 1991. 51(11): p. 3056-8. 

65. Yamada, Y., et al., p53 gene mutations in gastric cancer metastases and in gastric cancer 
cell lines derived from metastases. Cancer Res, 1991. 51(21): p. 5800-5. 

66. Dolcet, X., et al., NF-kB in development and progression of human cancer. Virchows Arch, 
2005. 446(5): p. 475-82. 

67. Karin, M. and Y. Ben-Neriah, Phosphorylation meets ubiquitination: the control of NF-
[kappa]B activity. Annu Rev Immunol, 2000. 18: p. 621-63. 

68. Isomoto, H., et al., Implication of NF-kappaB in Helicobacter pylori-associated gastritis. 
Am J Gastroenterol, 2000. 95(10): p. 2768-76. 



111 

 

69. Keates, S., et al., Helicobacter pylori infection activates NF-kappa B in gastric epithelial 
cells. Gastroenterology, 1997. 113(4): p. 1099-109. 

70. Zarrilli, R., V. Ricci, and M. Romano, Molecular response of gastric epithelial cells to 
Helicobacter pylori-induced cell damage. Cell Microbiol, 1999. 1(2): p. 93-9. 

71. Clements, W.M., et al., beta-Catenin mutation is a frequent cause of Wnt pathway 
activation in gastric cancer. Cancer Res, 2002. 62(12): p. 3503-6. 

72. Horii, A., et al., The APC gene, responsible for familial adenomatous polyposis, is 
mutated in human gastric cancer. Cancer Res, 1992. 52(11): p. 3231-3. 

73. Smith, M.G., et al., Cellular and molecular aspects of gastric cancer. World J 
Gastroenterol, 2006. 12(19): p. 2979-90. 

74. Taketo, M.M., Wnt signaling and gastrointestinal tumorigenesis in mouse models. 
Oncogene, 2006. 25(57): p. 7522-30. 

75. Park, W.S., et al., Somatic mutations of the trefoil factor family 1 gene in gastric cancer. 
Gastroenterology, 2000. 119(3): p. 691-8. 

76. Corso, G., et al., Oncogenic mutations in gastric cancer with microsatellite instability. Eur 
J Cancer, 2011. 47(3): p. 443-51. 

77. Lee, S.H., et al., BRAF and KRAS mutations in stomach cancer. Oncogene, 2003. 22(44): p. 
6942-5. 

78. Zang, Z.J., et al., Exome sequencing of gastric adenocarcinoma identifies recurrent 
somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet, 2012. 

79. Wang, K., et al., Exome sequencing identifies frequent mutation of ARID1A in molecular 
subtypes of gastric cancer. Nat Genet, 2011. 43(12): p. 1219-23. 

80. El-Rifai, W., et al., Consistent genetic alterations in xenografts of proximal stomach and 
gastro-esophageal junction adenocarcinomas. Cancer Res, 1998. 58(1): p. 34-7. 

81. Kimura, Y., et al., Genetic alterations in 102 primary gastric cancers by comparative 
genomic hybridization: gain of 20q and loss of 18q are associated with tumor 
progression. Mod Pathol, 2004. 17(11): p. 1328-37. 

82. Koizumi, Y., et al., Changes in DNA copy number in primary gastric carcinomas by 
comparative genomic hybridization. Clin Cancer Res, 1997. 3(7): p. 1067-76. 

83. Kokkola, A., et al., 17q12-21 amplicon, a novel recurrent genetic change in intestinal type 
of gastric carcinoma: a comparative genomic hybridization study. Genes Chromosomes 
Cancer, 1997. 20(1): p. 38-43. 



112 

 

84. Carneiro, F. and M. Sobrinho-Simoes, The prognostic significance of amplification and 
overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer, 2000. 88(1): 
p. 238-40. 

85. Hattori, Y., et al., K-sam, an amplified gene in stomach cancer, is a member of the 
heparin-binding growth factor receptor genes. Proc Natl Acad Sci U S A, 1990. 87(15): p. 
5983-7. 

86. Lemoine, N.R., et al., Amplification and overexpression of the EGF receptor and c-erbB-2 
proto-oncogenes in human stomach cancer. Br J Cancer, 1991. 64(1): p. 79-83. 

87. Park, J.B., et al., Amplification, overexpression, and rearrangement of the erbB-2 
protooncogene in primary human stomach carcinomas. Cancer Res, 1989. 49(23): p. 
6605-9. 

88. Baffa, R., et al., Loss of FHIT expression in gastric carcinoma. Cancer Res, 1998. 58(20): p. 
4708-14. 

89. Li, Q.L., et al., Causal relationship between the loss of RUNX3 expression and gastric 
cancer. Cell, 2002. 109(1): p. 113-24. 

90. Hippo, Y., et al., Global gene expression analysis of gastric cancer by oligonucleotide 
microarrays. Cancer Res, 2002. 62(1): p. 233-40. 

91. Kim, H.K., et al., Distinctions in gastric cancer gene expression signatures derived from 
laser capture microdissection versus histologic macrodissection. BMC Med Genomics, 
2011. 4: p. 48. 

92. Oue, N., et al., Gene expression profile of gastric carcinoma: identification of genes and 
tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of 
gene expression. Cancer Res, 2004. 64(7): p. 2397-405. 

93. Chen, X., et al., Variation in gene expression patterns in human gastric cancers. Mol Biol 
Cell, 2003. 14(8): p. 3208-15. 

94. Boussioutas, A., et al., Distinctive patterns of gene expression in premalignant gastric 
mucosa and gastric cancer. Cancer Res, 2003. 63(10): p. 2569-77. 

95. Wu, M.S., et al., Genetic alterations in gastric cancer: relation to histological subtypes, 
tumor stage, and Helicobacter pylori infection. Gastroenterology, 1997. 112(5): p. 1457-
65. 

96. Yokota, J., et al., Genetic alterations of the c-erbB-2 oncogene occur frequently in tubular 
adenocarcinoma of the stomach and are often accompanied by amplification of the v-
erbA homologue. Oncogene, 1988. 2(3): p. 283-7. 



113 

 

97. Halling, K.C., et al., Origin of microsatellite instability in gastric cancer. Am J Pathol, 1999. 
155(1): p. 205-11. 

98. Suzuki, H., et al., Distinct methylation pattern and microsatellite instability in sporadic 
gastric cancer. Int J Cancer, 1999. 83(3): p. 309-13. 

99. Keller, G., et al., Analysis for microsatellite instability and mutations of the DNA 
mismatch repair gene hMLH1 in familial gastric cancer. Int J Cancer, 1996. 68(5): p. 571-
6. 

100. Thibodeau, S.N., et al., Altered expression of hMSH2 and hMLH1 in tumors with 
microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res, 
1996. 56(21): p. 4836-40. 

101. Falchetti, M., et al., Gastric cancer with high-level microsatellite instability: target gene 
mutations, clinicopathologic features, and long-term survival. Hum Pathol, 2008. 39(6): 
p. 925-32. 

102. Wu, M.S., et al., Distinct clinicopathologic and genetic profiles in sporadic gastric cancer 
with different mutator phenotypes. Genes Chromosomes Cancer, 2000. 27(4): p. 403-11. 

103. An, J.Y., et al., Microsatellite instability in sporadic gastric cancer: its prognostic role and 
guidance for 5-FU based chemotherapy after R0 resection. Int J Cancer, 2011. 

104. Feinberg, A.P. and B. Vogelstein, Hypomethylation distinguishes genes of some human 
cancers from their normal counterparts. Nature, 1983. 301(5895): p. 89-92. 

105. Jones, P.A. and S.B. Baylin, The epigenomics of cancer. Cell, 2007. 128(4): p. 683-92. 

106. Toyota, M., et al., Aberrant methylation in gastric cancer associated with the CpG island 
methylator phenotype. Cancer Res, 1999. 59(21): p. 5438-42. 

107. Oliveira, C., et al., Quantification of epigenetic and genetic 2nd hits in CDH1 during 
hereditary diffuse gastric cancer syndrome progression. Gastroenterology, 2009. 136(7): 
p. 2137-48. 

108. Mitani, Y., et al., Histone H3 acetylation is associated with reduced p21(WAF1/CIP1) 
expression by gastric carcinoma. J Pathol, 2005. 205(1): p. 65-73. 

109. Yasui, W., et al., Histone acetylation and gastrointestinal carcinogenesis. Ann N Y Acad 
Sci, 2003. 983: p. 220-31. 

110. Tan, I.B., et al., Intrinsic subtypes of gastric cancer, based on gene expression pattern, 
predict survival and respond differently to chemotherapy. Gastroenterology, 2011. 
141(2): p. 476-85, 485 e1-11. 



114 

 

111. Roukos, D.H., Innovative genomic-based model for personalized treatment of gastric 
cancer: integrating current standards and new technologies. Expert Rev Mol Diagn, 2008. 
8(1): p. 29-39. 

112. Kuramochi, M., et al., TSLC1 is a tumor-suppressor gene in human non-small-cell lung 
cancer. Nat Genet, 2001. 27(4): p. 427-30. 

113. Okada, S., et al., Loss of Heterozygosity at BRCA1 Locus Is Significantly Associated with 
Aggressiveness and Poor Prognosis in Breast Cancer. Ann Surg Oncol, 2011. 

114. Solomon, E., et al., Chromosome 5 allele loss in human colorectal carcinomas. Nature, 
1987. 328(6131): p. 616-9. 

115. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 
61(5): p. 759-67. 

116. Eccles, D.M., et al., Early loss of heterozygosity on 17q in ovarian cancer. The Abe 
Ovarian Cancer Genetics Group. Oncogene, 1992. 7(10): p. 2069-72. 

117. Ehlen, T. and L. Dubeau, Loss of heterozygosity on chromosomal segments 3p, 6q and 
11p in human ovarian carcinomas. Oncogene, 1990. 5(2): p. 219-23. 

118. Lee, J.H., et al., Frequent loss of heterozygosity on chromosomes 6q, 11, and 17 in 
human ovarian carcinomas. Cancer Res, 1990. 50(9): p. 2724-8. 

119. Girard, L., et al., Genome-wide allelotyping of lung cancer identifies new regions of allelic 
loss, differences between small cell lung cancer and non-small cell lung cancer, and loci 
clustering. Cancer Res, 2000. 60(17): p. 4894-906. 

120. Shiseki, M., et al., Comparative allelotype of early and advanced stage non-small cell 
lung carcinomas. Genes Chromosomes Cancer, 1996. 17(2): p. 71-7. 

121. Tseng, R.C., et al., Genomewide loss of heterozygosity and its clinical associations in non 
small cell lung cancer. Int J Cancer, 2005. 117(2): p. 241-7. 

122. Ruivenkamp, C., et al., LOH of PTPRJ occurs early in colorectal cancer and is associated 
with chromosomal loss of 18q12-21. Oncogene, 2003. 22(22): p. 3472-4. 

123. Sato, N., et al., Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor 
gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from 
benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the 
ovary. Cancer Res, 2000. 60(24): p. 7052-6. 

124. Wistuba, II, et al., Allelic losses at chromosome 8p21-23 are early and frequent events in 
the pathogenesis of lung cancer. Cancer Res, 1999. 59(8): p. 1973-9. 



115 

 

125. Campo, E., et al., Loss of heterozygosity of p53 gene and p53 protein expression in 
human colorectal carcinomas. Cancer Res, 1991. 51(16): p. 4436-42. 

126. Christiansen, D.H., M.K. Andersen, and J. Pedersen-Bjergaard, Mutations with loss of 
heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid 
leukemia after exposure to alkylating agents and significantly associated with deletion 
or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol, 2001. 19(5): p. 
1405-13. 

127. Huang, Y., et al., Loss of heterozygosity involves multiple tumor suppressor genes in 
human esophageal cancers. Cancer Res, 1992. 52(23): p. 6525-30. 

128. Bartoletti, R., et al., Loss of P16 expression and chromosome 9p21 LOH in predicting 
outcome of patients affected by superficial bladder cancer. J Surg Res, 2007. 143(2): p. 
422-7. 

129. Brenner, A.J. and C.M. Aldaz, Chromosome 9p allelic loss and p16/CDKN2 in breast 
cancer and evidence of p16 inactivation in immortal breast epithelial cells. Cancer Res, 
1995. 55(13): p. 2892-5. 

130. Papadimitrakopoulou, V., et al., Frequent inactivation of p16INK4a in oral premalignant 
lesions. Oncogene, 1997. 14(15): p. 1799-803. 

131. Reed, A.L., et al., High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and 
neck squamous cell carcinoma. Cancer Res, 1996. 56(16): p. 3630-3. 

132. Choi, S.W., et al., Prognostic implications of microsatellite genotypes in gastric 
carcinoma. Int J Cancer, 2000. 89(4): p. 378-83. 

133. Panani, A.D., Cytogenetic and molecular aspects of gastric cancer: clinical implications. 
Cancer Lett, 2008. 266(2): p. 99-115. 

134. Sano, T., et al., Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in 
human gastric carcinomas. Cancer Res, 1991. 51(11): p. 2926-31. 

135. Yustein, A.S., et al., Allelotype of gastric adenocarcinoma. Cancer Res, 1999. 59(7): p. 
1437-41. 

136. Bae, S.C. and J.K. Choi, Tumor suppressor activity of RUNX3. Oncogene, 2004. 23(24): p. 
4336-40. 

137. Huiping, C., et al., High frequency of LOH, MSI and abnormal expression of FHIT in gastric 
cancer. Eur J Cancer, 2002. 38(5): p. 728-35. 

138. Mao, L., et al., Frequent abnormalities of FHIT, a candidate tumor suppressor gene, in 
head and neck cancer cell lines. Cancer Res, 1996. 56(22): p. 5128-31. 



116 

 

139. Sozzi, G., et al., Loss of FHIT function in lung cancer and preinvasive bronchial lesions. 
Cancer Res, 1998. 58(22): p. 5032-7. 

140. Boynton, R.F., et al., Loss of heterozygosity involving the APC and MCC genetic loci 
occurs in the majority of human esophageal cancers. Proc Natl Acad Sci U S A, 1992. 
89(8): p. 3385-8. 

141. Fodde, R., The APC gene in colorectal cancer. Eur J Cancer, 2002. 38(7): p. 867-71. 

142. Hugel, A. and N. Wernert, Loss of heterozygosity (LOH), malignancy grade and clonality 
in microdissected prostate cancer. Br J Cancer, 1999. 79(3-4): p. 551-7. 

143. Medeiros, A.C., et al., Loss of heterozygosity affecting the APC and MCC genetic loci in 
patients with primary breast carcinomas. Cancer Epidemiol Biomarkers Prev, 1994. 3(4): 
p. 331-3. 

144. Cairns, P., et al., Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. 
Cancer Res, 1997. 57(22): p. 4997-5000. 

145. Li, J., et al., PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, 
breast, and prostate cancer. Science, 1997. 275(5308): p. 1943-7. 

146. Feugeas, O., et al., Loss of heterozygosity of the RB gene is a poor prognostic factor in 
patients with osteosarcoma. J Clin Oncol, 1996. 14(2): p. 467-72. 

147. Gouyer, V., et al., Loss of heterozygosity at the RB locus correlates with loss of RB protein 
in primary malignant neuro-endocrine lung carcinomas. Int J Cancer, 1994. 58(6): p. 818-
24. 

148. Wang, S.I., et al., Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res, 
1997. 57(19): p. 4183-6. 

149. Xu, H.J., et al., Loss of RB protein expression in primary bladder cancer correlates with 
loss of heterozygosity at the RB locus and tumor progression. Int J Cancer, 1993. 53(5): p. 
781-4. 

150. Berx, G., et al., Mutations of the human E-cadherin (CDH1) gene. Hum Mutat, 1998. 
12(4): p. 226-37. 

151. Simpson, P.T., et al., Molecular evolution of breast cancer. J Pathol, 2005. 205(2): p. 248-
54. 

152. Fey, M.F., et al., Clonal allele loss in gastrointestinal cancers. Br J Cancer, 1989. 59(5): p. 
750-4. 

153. Xiao, Y.P., et al., Loss of heterozygosity and microsatellite instabilities of fragile histidine 
triad gene in gastric carcinoma. World J Gastroenterol, 2006. 12(23): p. 3766-9. 



117 

 

154. Tamura, G., et al., Allelotype of adenoma and differentiated adenocarcinoma of the 
stomach. J Pathol, 1996. 180(4): p. 371-7. 

155. Ma, H., et al., Extensive analysis of D7S486 in primary gastric cancer supports TESTIN as 
a candidate tumor suppressor gene. Mol Cancer, 2010. 9: p. 190. 

156. Nishizuka, S., et al., Loss of heterozygosity during the development and progression of 
differentiated adenocarcinoma of the stomach. J Pathol, 1998. 185(1): p. 38-43. 

157. Baffa, R., et al., Definition and refinement of chromosome 8p regions of loss of 
heterozygosity in gastric cancer. Clin Cancer Res, 2000. 6(4): p. 1372-7. 

158. Choi, S.W., et al., Fractional allelic loss in gastric carcinoma correlates with growth 
patterns. Oncogene, 1998. 17(20): p. 2655-9. 

159. Sangodkar, J., et al., Functional role of the KLF6 tumour suppressor gene in gastric cancer. 
Eur J Cancer, 2009. 45(4): p. 666-76. 

160. Motomura, K., et al., Loss of alleles at loci on chromosome 13 in human primary gastric 
cancers. Genomics, 1988. 2(2): p. 180-4. 

161. Ranzani, G.N., et al., Loss of heterozygosity and K-ras gene mutations in gastric cancer. 
Hum Genet, 1993. 92(3): p. 244-9. 

162. Uchino, S., et al., Frequent loss of heterozygosity at the DCC locus in gastric cancer. 
Cancer Res, 1992. 52(11): p. 3099-102. 

163. Wang, K., et al., PennCNV: an integrated hidden Markov model designed for high-
resolution copy number variation detection in whole-genome SNP genotyping data. 
Genome Res, 2007. 17(11): p. 1665-74. 

164. Garnis, C., et al., High resolution analysis of non-small cell lung cancer cell lines by whole 
genome tiling path array CGH. Int J Cancer, 2006. 118(6): p. 1556-64. 

165. van Beers, E.H. and P.M. Nederlof, Array-CGH and breast cancer. Breast Cancer 
Research, 2006. 8(3): p. 210. 

166. Wilhelm, M., et al., Array-based comparative genomic hybridization for the differential 
diagnosis of renal cell cancer. Cancer Res, 2002. 62(4): p. 957-60. 

167. Pinkel, D. and D.G. Albertson, Array comparative genomic hybridization and its 
applications in cancer. Nat Genet, 2005. 37 Suppl: p. S11-7. 

168. McCarroll, S.A., et al., Integrated detection and population-genetic analysis of SNPs and 
copy number variation. Nat Genet, 2008. 40(10): p. 1166-74. 



118 

 

169. Rigaill, G., et al., ITALICS: an algorithm for normalization and DNA copy number calling 
for Affymetrix SNP arrays. Bioinformatics, 2008. 24(6): p. 768-74. 

170. Bolstad, B.M., et al., A comparison of normalization methods for high density 
oligonucleotide array data based on variance and bias. Bioinformatics, 2003. 19(2): p. 
185-93. 

171. Li, C. and W. Hung Wong, Model-based analysis of oligonucleotide arrays: model 
validation, design issues and standard error application. Genome Biol, 2001. 2(8): p. 
RESEARCH0032. 

172. Carvalho, B., et al., Exploration, normalization, and genotype calls of high-density 
oligonucleotide SNP array data. Biostatistics, 2007. 8(2): p. 485-99. 

173. Bengtsson, H., P. Wirapati, and T.P. Speed, A single-array preprocessing method for 
estimating full-resolution raw copy numbers from all Affymetrix genotyping arrays 
including GenomeWideSNP 5 & 6. Bioinformatics, 2009. 25(17): p. 2149-56. 

174. Liu, W.M., et al., Algorithms for large-scale genotyping microarrays. Bioinformatics, 
2003. 19(18): p. 2397-403. 

175. Cutler, D.J., et al., High-throughput variation detection and genotyping using 
microarrays. Genome Res, 2001. 11(11): p. 1913-25. 

176. BRLMM-P: a genotype calling method for the SNP 5.0 array, in Affymetrix. Technical 
report. 2007. 

177. Korn, J.M., et al., Integrated genotype calling and association analysis of SNPs, common 
copy number polymorphisms and rare CNVs. Nat Genet, 2008. 40(10): p. 1253-60. 

178. Beroukhim, R., et al., Inferring loss-of-heterozygosity from unpaired tumors using high-
density oligonucleotide SNP arrays. PLoS Comput Biol, 2006. 2(5): p. e41. 

179. Nannya, Y., et al., A robust algorithm for copy number detection using high-density 
oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res, 2005. 
65(14): p. 6071-9. 

180. Lin, M., et al., dChipSNP: significance curve and clustering of SNP-array-based loss-of-
heterozygosity data. Bioinformatics, 2004. 20(8): p. 1233-40. 

181. Greenman, C.D., et al., PICNIC: an algorithm to predict absolute allelic copy number 
variation with microarray cancer data. Biostatistics. 11(1): p. 164-75. 

182. Colella, S., et al., QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and 
accurately map copy number variation using SNP genotyping data. Nucleic Acids Res, 
2007. 35(6): p. 2013-25. 



119 

 

183. Popova, T., et al., Genome Alteration Print (GAP): a tool to visualize and mine complex 
cancer genomic profiles obtained by SNP arrays. Genome Biol, 2009. 10(11): p. R128. 

184. Chen, H., H. Xing, and N.R. Zhang, Estimation of parent specific DNA copy number in 
tumors using high-density genotyping arrays. PLoS Comput Biol, 2011. 7(1): p. e1001060. 

185. Rasmussen, M., et al., Allele-specific copy number analysis of tumor samples with 
aneuploidy and tumor heterogeneity. Genome Biol, 2011. 12(10): p. R108. 

186. Van Loo, P., et al., Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S 
A, 2010. 107(39): p. 16910-5. 

187. Lengauer, C., K.W. Kinzler, and B. Vogelstein, Genetic instabilities in human cancers. 
Nature, 1998. 396(6712): p. 643-9. 

188. Lieberfarb, M.E., et al., Genome-wide loss of heterozygosity analysis from laser capture 
microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays 
and a novel bioinformatics platform dChipSNP. Cancer Res, 2003. 63(16): p. 4781-5. 

189. Zhao, X., et al., An integrated view of copy number and allelic alterations in the cancer 
genome using single nucleotide polymorphism arrays. Cancer Res, 2004. 64(9): p. 3060-
71. 

190. Primdahl, H., et al., Allelic imbalances in human bladder cancer: genome-wide detection 
with high-density single-nucleotide polymorphism arrays. J Natl Cancer Inst, 2002. 94(3): 
p. 216-23. 

191. Pfeifer, D., et al., Genome-wide analysis of DNA copy number changes and LOH in CLL 
using high-density SNP arrays. Blood, 2007. 109(3): p. 1202-10. 

192. Staaf, J., et al., Segmentation-based detection of allelic imbalance and loss-of-
heterozygosity in cancer cells using whole genome SNP arrays. Genome Biol, 2008. 9(9): 
p. R136. 

193. Assie, G., et al., SNP arrays in heterogeneous tissue: highly accurate collection of both 
germline and somatic genetic information from unpaired single tumor samples. Am J 
Hum Genet, 2008. 82(4): p. 903-15. 

194. Winchester, L., C. Yau, and J. Ragoussis, Comparing CNV detection methods for SNP 
arrays. Brief Funct Genomic Proteomic, 2009. 8(5): p. 353-66. 

195. Copy Number and Loss of Heterozygosity Estimation Algorithms for the GeneChip Human 
Mapping Array Sets, in Affymetrix. White Paper. 2007. 

196. Pique-Regi, R., et al., Sparse representation and Bayesian detection of genome copy 
number alterations from microarray data. Bioinformatics, 2008. 24(3): p. 309-18. 



120 

 

197. Dellinger, A.E., et al., Comparative analyses of seven algorithms for copy number variant 
identification from single nucleotide polymorphism arrays. Nucleic Acids Res, 2010. 38(9): 
p. e105. 

198. Olshen, A.B., et al., Circular binary segmentation for the analysis of array-based DNA 
copy number data. Biostatistics, 2004. 5(4): p. 557-72. 

199. Fiegler, H., et al., Accurate and reliable high-throughput detection of copy number 
variation in the human genome. Genome Res, 2006. 16(12): p. 1566-74. 

200. DNA copy number and loss of heterozygosity analysis algorithms, in Illumina. 2010. 

201. Hupe, P., et al., Analysis of array CGH data: from signal ratio to gain and loss of DNA 
regions. Bioinformatics, 2004. 20(18): p. 3413-22. 

202.   ; Available from: http://www.biodiscovery.com/software/nexus-copy-number/. 

203. Eckel-Passow, J.E., et al., Software comparison for evaluating genomic copy number 
variation for Affymetrix 6.0 SNP array platform. BMC Bioinformatics, 2011. 12: p. 220. 

204. Affymetrix Power Tools. Available from: 
http://www.affymetrix.com/support/developer/powertools/index.affx. 

205. Bengtsson, H., et al., Aroma.affymetrix: A generic framework in R for analyzing small to 
very large Affymetrix data sets in bounded memory. Report 745, Department of 
Statistics, University of California, Berkeley, . 2008. 

206. Scharpf, R.B., et al., A multilevel model to address batch effects in copy number 
estimation using SNP arrays. Biostatistics, 2011. 12(1): p. 33-50. 

207. Greenman, C.D., et al., PICNIC: an algorithm to predict absolute allelic copy number 
variation with microarray cancer data. Biostatistics, 2010. 11(1): p. 164-75. 

208. Olshen, A.B., et al., Parent-specific copy number in paired tumor-normal studies using 
circular binary segmentation. Bioinformatics, 2011. 27(15): p. 2038-46. 

209. Grigorova, M., et al., Chromosome abnormalities in 10 lung cancer cell lines of the NCI-H 
series analyzed with spectral karyotyping. Cancer Genet Cytogenet, 2005. 162(1): p. 1-9. 

210. Affymetrix, Genotyping Console 4.0 User Manual. 2008. 

211. International HapMap Project. Available from: 
http://hapmap.ncbi.nlm.nih.gov/hapmappopulations.html.en. 

212. Di, X., et al., Dynamic model based algorithms for screening and genotyping over 100 K 
SNPs on oligonucleotide microarrays. Bioinformatics, 2005. 21(9): p. 1958-63. 

http://www.biodiscovery.com/software/nexus-copy-number/
http://www.affymetrix.com/support/developer/powertools/index.affx
http://hapmap.ncbi.nlm.nih.gov/hapmappopulations.html.en


121 

 

213. Kennedy, G.C., et al., Large-scale genotyping of complex DNA. Nat Biotechnol, 2003. 
21(10): p. 1233-7. 

214. Bengtsson, H., P. Neuvial, and T.P. Speed, TumorBoost: normalization of allele-specific 
tumor copy numbers from a single pair of tumor-normal genotyping microarrays. BMC 
Bioinformatics, 2010. 11: p. 245. 

215. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J 
Cancer, 2010. 127(12): p. 2893-917. 

216. Hartgrink, H.H., et al., Gastric cancer. Lancet, 2009. 374(9688): p. 477-90. 

217. Tada, M., et al., Prognostic significance of genetic alterations detected by high-density 
single nucleotide polymorphism array in gastric cancer. Cancer Sci, 2010. 

218. Rhyu, M.G., et al., Allelic deletions of MCC/APC and p53 are frequent late events in 
human gastric carcinogenesis. Gastroenterology, 1994. 106(6): p. 1584-8. 

219. Baffa, R., et al., Loss of heterozygosity for chromosome 11 in adenocarcinoma of the 
stomach. Cancer Res, 1996. 56(2): p. 268-72. 

220. Vauhkonen, H., et al., DNA copy number aberrations in intestinal-type gastric cancer 
revealed by array-based comparative genomic hybridization. Cancer Genet Cytogenet, 
2006. 167(2): p. 150-4. 

221. Beroukhim, R., et al., Assessing the significance of chromosomal aberrations in cancer: 
methodology and application to glioma. Proc Natl Acad Sci U S A, 2007. 104(50): p. 
20007-12. 

222. Smith, M.L. and A.J. Fornace, Jr., Genomic instability and the role of p53 mutations in 
cancer cells. Curr Opin Oncol, 1995. 7(1): p. 69-75. 

223. Overholtzer, M., et al., The presence of p53 mutations in human osteosarcomas 
correlates with high levels of genomic instability. Proc Natl Acad Sci U S A, 2003. 100(20): 
p. 11547-52. 

224. Wu, Y., Genome-Wide Analysis of Loss of Heterozygosity and Discovery of Novel Tumor 
Suppressor Genes in Gastric Cancer, in Singapore-MIT Alliance. 2013, National University 
of Singapore: Singapore. 

225. Fang, D.C., et al., Infrequent loss of heterozygosity of APC/MCC and DCC genes in gastric 
cancer showing DNA microsatellite instability. J Clin Pathol, 1999. 52(7): p. 504-8. 

226. Vauhkonen, M., et al., Differences in genomic instability between intestinal- and diffuse-
type gastric cancer. Gastric Cancer, 2005. 8(4): p. 238-44. 



122 

 

227. Cachia, A.R., et al., CDKN2A mutation and deletion status in thin and thick primary 
melanoma. Clin Cancer Res, 2000. 6(9): p. 3511-5. 

228. Foulkes, W.D., et al., The CDKN2A (p16) gene and human cancer. Mol Med, 1997. 3(1): p. 
5-20. 

229. Lang, J.C., et al., Frequent mutation of p16 in squamous cell carcinoma of the head and 
neck. Laryngoscope, 1998. 108(6): p. 923-8. 

230. Muscarella, P., et al., Genetic alterations in gastrinomas and nonfunctioning pancreatic 
neuroendocrine tumors: an analysis of p16/MTS1 tumor suppressor gene inactivation. 
Cancer Res, 1998. 58(2): p. 237-40. 

231. Wu, M.S., et al., Intragenic homozygous deletions of MTS1 gene in gastric cancer in 
Taiwan. Jpn J Cancer Res, 1996. 87(10): p. 1052-5. 

232. Zhao, G.H., et al., Relationship between inactivation of p16 gene and gastric carcinoma. 
World J Gastroenterol, 2003. 9(5): p. 905-9. 

233. Tang, S., et al., Relationship between alterations of p16(INK4a) and p14(ARF) genes of 
CDKN2A locus and gastric carcinogenesis. Chin Med J (Engl), 2003. 116(7): p. 1083-7. 

234. Wu, M.S., et al., Overexpression of mutant p53 and c-erbB-2 proteins and mutations of 
the p15 and p16 genes in human gastric carcinoma: with respect to histological subtypes 
and stages. J Gastroenterol Hepatol, 1998. 13(3): p. 305-10. 

235. Chung, Y.J., et al., Microsatellite instability-associated mutations associate preferentially 
with the intestinal type of primary gastric carcinomas in a high-risk population. Cancer 
Res, 1996. 56(20): p. 4662-5. 

236. Purdie, K.J., et al., Allelic imbalances and microdeletions affecting the PTPRD gene in 
cutaneous squamous cell carcinomas detected using single nucleotide polymorphism 
microarray analysis. Genes Chromosomes Cancer, 2007. 46(7): p. 661-9. 

237. Kohno, T., et al., A catalog of genes homozygously deleted in human lung cancer and the 
candidacy of PTPRD as a tumor suppressor gene. Genes Chromosomes Cancer, 2010. 
49(4): p. 342-52. 

238. Solomon, D.A., et al., Mutational inactivation of PTPRD in glioblastoma multiforme and 
malignant melanoma. Cancer Res, 2008. 68(24): p. 10300-6. 

239. Veeriah, S., et al., The tyrosine phosphatase PTPRD is a tumor suppressor that is 
frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl 
Acad Sci U S A, 2009. 106(23): p. 9435-40. 



123 

 

240. Giefing, M., et al., High resolution ArrayCGH and expression profiling identifies PTPRD 
and PCDH17/PCH68 as tumor suppressor gene candidates in laryngeal squamous cell 
carcinoma. Genes Chromosomes Cancer, 2011. 50(3): p. 154-66. 

241. Nair, P., et al., Aberrant splicing of the PTPRD gene mimics microdeletions identified at 
this locus in neuroblastomas. Genes Chromosomes Cancer, 2008. 47(3): p. 197-202. 

242. Gonzalez-Quevedo, R., et al., Receptor tyrosine phosphatase-dependent cytoskeletal 
remodeling by the hedgehog-responsive gene MIM/BEG4. J Cell Biol, 2005. 168(3): p. 
453-63. 

243. Sato, M., et al., Identification of chromosome arm 9p as the most frequent target of 
homozygous deletions in lung cancer. Genes Chromosomes Cancer, 2005. 44(4): p. 405-
14. 

244. Takahashi, K., et al., Homozygous deletion and reduced expression of the DOCK8 gene in 
human lung cancer. Int J Oncol, 2006. 28(2): p. 321-8. 

245. Kang, J.U., et al., Frequent silence of chromosome 9p, homozygous DOCK8, DMRT1 and 
DMRT3 deletion at 9p24.3 in squamous cell carcinoma of the lung. Int J Oncol, 2010. 
37(2): p. 327-35. 

246. Therneau, T.M. and P.M. Grambsch, Modeling Survival Data: Extending the Cox Model. 
2000, New York: Springer. 

247. Choi, M., et al., Genetic diagnosis by whole exome capture and massively parallel DNA 
sequencing. Proc Natl Acad Sci U S A, 2009. 106(45): p. 19096-101. 

 

 

 

 

 

 

 

 


